

Proceedings

November 10-12, 1986
Boston, Massachusetts

Sponsored by RF Design Magazine
是

table of CONTENTS
 Proceedings of RF Technology Expo 86
 January 30 - February 1, 1986

Interactive Computer Aided Graphics Applied to RF Circuit Design Alat Victor, Motorola Inc.
New Hybrid Power Amplifier Modules Speed RF Systems Design Eric A. Ulrich, Mir unave Modules \& Devices.
Design Considerations for a 1 kW L-Band Kadar Module
Trville B. Pearce, Microwave Modules \& Devices.
The Basics of RF Power Amplifier Design
Dan Peters, Falcon Communications.
Dan Peters, Falcon Communications.. 33
An Evolutici =i Optimization and Synthesis Programs for Personal Computers Stephen E. Sussman For', Ph.D., SPEFCO Software.
"The Poor Man's Engineering Work Station" or "Cheap CAD"
Richard E. Kolhly, PE, Luckheed California.61

SAW Accelerometers: Integration of Thick and Thin Film Technologies Tim B. Bonbrake, Magnavox and Carl A. Erikson, Anderson Labs.........
Tmprove Synthesized Transceiver Performance and Reliability by Simple Screening of the VCO Active Device
Jaime A. Borras, Motorola, Inc... 87
A CAD Design Program for Analysis of Electro-Thermal Coupling in High Power RF Bipolar Transistors
Antonio Morawski and Boris Hikin, TRW Electronic Components................ 97
Microwave Integrated Receiver for the Morelos Mexican Satellite System
A. Serrano, J. L. Medina, D. Hiriart, CICESE Research Center...................

High Efficiency Power Amplification with Optimally Loaded Harmonic
Waveshaping
William McCalpin, Microwave Modules \& Devices....................................
Modulstion Techniques for Biotelemet?;
Wide-Band High-Dynamir-Range Front-End Circuitry for AM Radio
Wide-Band High-Dynamir-Range Front-End Circuitry for AM Radio
E. H. Nordholt, H. C. Nauta, Delft University of Technology..
The Schottky Diod. Mise
Jack H. Lepoff, Hewlett-Packard.
Design of Coaxial High-Pass Filters Having Various Transfer Properties Dick Wainwright, Cir-Q-Tel, Inc...

High " ower Filters
Dick wainwright, Cir-Q-Tel, Inc... 15
An Ir Dimiting Amplifier Design on "K" Soft Board
Stevn Chambers, Acrian... 16 7
Design of Combline and Interdigital Bandpass Fiters Dick Wainwright, Cir-Q-Tel. 173
The PIN Diode -- Uses and Limitations187
Jack H. Lepoff, Hewlett-Packard.197
RF and Microwave Transistor Bias ConsiderationsGary Franklin, Hewlett-Packard.
207
oderick K. eband RF Power trileHigh Power UHF Pulsed Push-Pull Amplifier Design
A 350 MHz Dual-Gate GaAs FET Frequency Multiplier
Gordon A. Olsen, Rockwell International.229
Aiding Computer-Aided Design -- Curve Fitting With Any Number of VariablesAlding Computer-Alded Designt.............. 245Oscillator Design Using the Device Line Method and Load Pull MethodGary Franklin, Hewlett-Packard..251
Packaging Considerations for KF Transistors
Microstrip Miniture Transfer Switch
Dr. Rajeswari Chattopadhyay, Eswarappa, P. K. Atrey, Indian Telephone
ndustries, Ltd.269
Mathematics of the Linvill Stability Criteria Robert Gunderson, Hughes Alrcraft Co. 273
TechniquesWilliam Mueller, Avantec Inc.287
Design of Dielectrically Stabilized Oscillators Using Feedback Techniques
R. Partha, M. L. Sharma Indian Telephone Industries, ted.................... 291
Iron Powder Co: as for High Q Inductor
Jim Cox, Micromstals, Inc.........10 MHz Lumped Element 3 dB Hybrid
Dr. Rajeswari Chat topadhyay, I. K. L. N. Murthy, Suresh K. R. Nayar,Can
A Commutation Double-Balanced Mixer of High Dymanic Range
Maximizing Crystal oscillator Frequency StabilityBrian E. Rose, Q-Tech Corp.

Proceedings

November 10-12, 1986
Boston, Massachusetts

Dielectric Resonator Filters for UHF and Microwave Applications Dr. Marian L. Majewski, Royal Melbourne Institute of Technology............ 3
Understanding RF Transistor Data Sheet Parameters Norman E. Dye, Motorola Inc. \qquad
Pin Diode Ater.
A. Attenuators and Vector Modulators at Intermediate Frequencies
N. R. W. Long, University College, London.. 35

High Voltage HF/VHF Power Static Induction Transistor Amplifiers
Scott J. Butler and Robert J. Regan, GTE Laboratories...............
An Evolution into SAW Resonators (Low Power Security -- FCC Part 15)
Ronald J. Coash, Notifier Co... 36
A Tracking Impedance Measurement System for Control of Tunable Networks
Virgil L. Newhouse, Rockwell International.. 3
Choosing the Right Crystal and Oscillator for the Application Brian E. Rose, Q-Tech Corp.

The Use of a Computer Model to Determine the Complex Parametric Relationships of a Crystal Oscillator Circuit
Gregory L. Weaver, Plezo Crystal Co. \qquad

Harmonic Filtering at UHF and Microwave Frequencies
RF Technology for NMR
O. Mueller, D. Vatis, W. Edelstein, P. Bottomley, General Electric Co. 419

The Q Factor of Microstrip Matching Network in RF Class C Amplifier Design
P. Gonord, S. Kan, J. P. Ruaud, Institut d'Electronique Fondamentale,

Universite Paris - Sud.. 433
SORF -- An RF Low Power SMD Alternative Package
Harry J. Swanson, Motorola Inc....
Unequal Power Split Hybrid Coupler
S. Pal, S. K. Saini, V. S. Rao, A. Bhaskaranarayana, ISRO Satellite

Centre.............................
Spherical Dielectric Antenna
S. Pal, ISRO Satellite Centre
Average Efficiency of Power Amplifiers
Frederick H. Raab, Ph.D., Green Mountain Radio Research Co.................... 473
A 405 MHz Phased Array Antenna for Atmospheric Wind Measurement
Daniel C. Law, NOAA Wave Promatation Lab..
Practical Considerations for Modulating or Pulling the Frequency of a
Quartz Crystal Oscillator
John B. Fisher, Standard Crystal Corp.
s-Band Butler Matrix Feed Network
V. K. Lakshmeesha, Arvind Agarwal, L. Nicholas, S. Pal, ISRO Satellite
P.C. Mountable Miniature Helical Filter
V. K. Lakshmeesha, G. S. Seetha Raman, 503497
S-Band High Performance Combline Filter S-Band High Performance Combline Filter
Y. K. Làkshmeesha, U. Prabhakaran, S 507
Noise Measurement Instrumentation
George Peter, Cornell University... 511
Temperature Compensation Circuit for Space Data Transmitter
S. Pal, V. S. Rao, N. U. M. Rao, B. Pichalah, S. K. Sain1,
A. Bhaskaranarayana, ISRO Satellite CentreTesting of Narrowband Communications Receivers -- ACSB and SSB
Malcolm Levy, Racal-Dana Instruments, Inc.............................c... .533
Simple Approaches to Limiting Radiation From Foil-Shielded Computer CablesHoward C. Rivenburg and John Juba, Jr., Atlantic Research Corp.............. 543
New Insights into "Old" Network Analysis TechniquesLorenzo Freschet, Hewlett-Packard......................567
A Broadband Lumped Element Variable Attenuator
Dr. Rajeswari Chattopadhyay, I. K. L. N. Murthy, Eswarappa, IndianTelephone Industries Ltd..573
Application Notes for Doubly Rotated Quartz Crystals575
RF Plastic Package Comparison Study 577
Reliable Obstructed Path Coverage DeterminationBruce V. Ziemienski.........................
Spetral Shaping of Radio Frequency WavesJerry J. Norton609
Broadband HF Antenna TestingDavid L. Faust and Moray B. King, Eyring Research Institute625
How To Build Simple and Not-So-Simple Test Equipment In Your Own Lab 633Im Weir, Radio Systems Technology..Distributed $2-20 \mathrm{GHz}$ Monolithic GaAs FET Amplifier DesignGary G. Hawisher, EEsof, Inc. and IIm Aust, Hughes Aircraft643

Papers in order of presentation
at RF Technology Expo 86

Session A-1

Application Notes for Doubly Rotated Quartz Crystals
Lynn C. Heishman, Plezo Crystal Co.
Quartz Crystal
Practical Considerations for Modulating or Pulling the Frequency of Quartz Crystal Oscillator
John B. Fisher, Standard Crystal Corp. \qquad
Choosing the Right Crystal and Oscillator for the Application
Brian E. Rose, Q-Tech Corp..

Session B-1

Average Efficiency of Power Ampliffers
Average Efficienc: Of Power Amplifiers
Frecierirk \&. Raab, Ph.L., Green Mountain Radio Research473
 Scott J. Butler and Rohert J. Regan, GTE Laboratories.................
High Efficiency Power Amplification with Optimally Loaded Harmonic Waveshaping
William McCalpin, Microwave Modules \& Devices

Session C-1

Microwave Integrated Receiver for the Morelos Mexican Satellite System
A. Serrano, J. L. Medina, D. Hiriart, CICESE Research Center.................. 113

Improve Synthesized Tranceiver Performance and Reliability by Simple Screening of the VCO Active Device
Jaime A. Borras, Motorola, Inc..

Session D-1

140 MHz Lumped Element 3dB Hybrid
Dr. Rajeswari Chattopadhyay, I. K. L. N. Murthy, Suresh K. R. Nayar, Indian Telephone Industries Ltd... 30 The Schottky Diode Mixer
Jack H. Lepoff, Hewlett-Packard \qquad
PIN Diode Attenuators and Vector Modulators at Intermediate Frequencies N. R. W. Long, University College, London... 355

Session E-1

Design of Coaxial High-Pass Filters Having Various Transfer Properties
Dick Wainwright, Cir-Q-Tel, Inc... 1
S-Band High Performance Combline Filter
V. K. Lakshmeesha, U. Prabhakaran, S. Pal, ISRO Satellite Centre........... 507

High Power Filters
Dick Wainwright, Cir-Q-Tel, Inc.

Session F-1

SAW Accelerometers: Integration of Thick and Thin Film Technologies Tim B. Bonbrake, Magnavox and Carl A. Erikson, Andersen Labs........ An Evolution into SAW Resonators (Low Power Security -- FCC Part 15) Ronald J. Coash, Notifier Co.
Harmonic Filtering at UHF and Microwave Frequencies
Philip B. Snow, Tektronix Inc... 4

Session G-1

The Q Factor of Microstrip Matching Network in RF Class C Amplifier Design P. Gonord, S. Kan, J. P. Ruaud, Institut d'Electronique Fondamentale, University Paris - Sud.
A IF Limiting Amplifier Design on " K " Soft Boar
Steve Chambers, Acrian.
Basic MODAMP ${ }^{t m}$ MMIC Circuit Techniques
William Mueller, Avantec Inc.. 28

Session H-1

A Broadband Lumped Element Variable Attenuator
A Broadband Lumped Element Variable Attenuator Telephone Industries Ltd...
A Tracking Impedance Measurement System for Control of Tunable Networks
Virgil L. Newhouse, Rockwell International.. 3
S-Band Butler Matrix Feed Network
V. K. Lakshmeesha, Arvind Agarwal, L. Nicholas, S. Pal, ISRO Satellite

Session I-1
Spherical Dielectric Antenna
S. Pal, ISRO Satellite Centre

Reliable Obstructed Path Coverage Determination
Bruce V. Ziemienski, City of Fresno..................

Session J-1

How To Build Simple and Not-So-Simple Test Equipment In Your Own Lab Jim Weir, Radio Systems Technology...
imple Approaches to Limiting Radiation From Foil-Shielded Computer Cables Howard C. Rivenburg and John Juba, Jr., Atlantic Research Corp............ 543

Practical Wideband RF Power Transformers, Combiners, and Splitters Roderick K. Blocksome, Rockwell International (G-2) 1

RF and Microwave, Transistor Bias Considerations
Gary Franklin, Hewlett-Packard (M-4)
The Poor Man's Engineering Work Station, or Cheap CAD Richard B. Kolbly, Lockheed-California Co. (P-4)

The Schottky Diode Mixer
Jack H. Lepoff, Hewlett-Packard (J-3)
The "PIN Diode - Uses and Limitations
Jack H. Lepoff, Hewlett-Packard (T-5)
A Communication Double-Balanced Mixer of High Dynamic Range Edwin S. Oxner, Siliconix (J-3)

Choosing the Right Crystal and Oscillator for the Application Brian Rose, Q-Tech Corp. (C-1)
Maximizing Crystal Oscillator Frequency Stability
Brian Rose, Q-Tech Corp. (N-4)
Harmonic Filtering at UHF and Microwave Frequencies Emmanuel Sang and Philip B. Snow, Tektronix (S-5)

High Power Filters - Specsmanship and Design Considerations Dick Wainwright, Cir-Q-Tel, Inc. (H-2)

High Reliability Electromechanical Switching
J. Hoffman \& H.C. Bell, Jr., Wavecom/Loral (O-4)

Microprocessor Control Considerations for
Modern RF Signal Generators
Ted J. Dudziak, Wavetek Indiana (K-3)
Everything You Wanted to Know About Tuning Diodes John C. Howe, Motorola, Inc. (T-5)

Microware: An Interactive Microwave Fitter Design Program Michael K. Ferrand, Microlab/FXR (H-2)

A Practical Approach to the Design of
Voltage Tuneable Lowpass and Bandpass Filters
Bruce R. Long, ISC Defense Systems (H-2).

RF Design Evaluation Made Easier Through Automated Control S.M. Mussman, Wavetek Indiana (K-3)

OOK, FSK and PSK Data Receivers Using an AM-FM Receiver IC Jon Grosjean, Woodstock Engineering (Q-5) 181

A Thick Film Hybrid Transmitter for Cellular Telephone Pekka Mikkola, Nokia-Mobira Oy (Q-5)

DESIGN: A Program for the Automated Synthesis of Broadband Matching Networks Between Complex Terminations
S.E. Sussman-Fort, Spefco Software (P-4)

Developing Non-Linear Oscillator Models Using Linear Design Tools U.L. Rohde, Communications Consulting Corp. (P-4) 201

TABLE OF CONTENTS

Logarithmic Amplifiers

Tom Munson, Plessey Semiconductors (A-1)
Linear FM Modulator
Jerry Iseli, Texas Instruments (D-1)
EW Applications of High Resolution Compressive Receivers
Merrill M. Apter, Andersen Laboratories, Inc. (R-5) 229
Digital-RF Interfacing - The Story of a Marriage Robert W. Sproul, Lorch Electronics (K-3)

RF Bipolar Parameter Extraction for

Modeling Class C Amplifier Response

P. Sanders, A. Wood,

Motorola Semiconductor Product Sector (F-2) 243

How to Specify PIN Diode Switches

Raymond L. Sicotte, American Microwave Corp. (O-4)253
Lajos Burgyan, Signetics Corp. (R-5) 267
A Thermally Tuned VCOAlbert Helfrick, Dowty RF Industries, Inc. (E-2)275
Computer-Aided Design of a Bipolar Transistor Amplifier Steven Hamilton, Judy Guild, Krin Henderson, EEsof (F-2) . 279Low-Noise Preamplifier Design for NMR
Otward Mueller, William A. Edelstein,G.E. Corporate Research \& Development (L-3)291
A Complex Impedance MeteCarl G. Lodstrom, Dow-Key Microwave (E-2)297
Efficiency of Envelope-Irack Green Mountain Radio Research Co. (G-2) 303
Direct Single Sideband Modulationof Transmitter Output Switcher StagesF.G. Tinta, General Instrument (T-5)313
PIN Diodes and the Theory of Microwave Operation J.F. White, M/A-COM (O-4) 325of Internally Matched FETs
Mahesh Kumar, Bert. S. HewittMicrowave Semiconductor Corp. (M-4).351
Low Noise Oscillator Design
Art Upham, Hewlett-Packard (N-4) 359
Broadband GaAs Monolithic Amplifiers and Their ApplicationsTerence J. Cummings, California Eastern Labs (A-1) 379

A Solid State HF Transmitter for Over-The-Horizon (OTH) Radar Fuat Agi, M/A-COM MPD, Donald J. Hoft, M/A-COM (B-1) . . 385

A HF High Dynamic Range Amplifier Using Feedforward Techniques Jean Yamas, Locus, Inc. (B-1)

389
Coaxial Cable Leakage
Brian E. Shreve, Delta Electronics (Q-5)
399
Design and Analysis of Fourth and
Fifth Order Indirect Synthesizer Loops
James W. Maben, Sanders Assoc. (1-3)
Development of a C-Band Power Module for the Morelos Mexican Satellite System Arturo Velasquez, Arturo Serrano,
CICESE Research Center (B-1) .
Phase Noise Intermodulation and Dynamic Range Peter E. Chadwick, Plessey Semiconductors (R-5)
Advances in Single Chip Frequency Synthesizers P.E. Chadwick, Plessey Semiconductors (I-3)

HFIVHF/UHF Power Static Induction Transistor Performance R. Regan, S. Butler, E. Bulat, A. Varallo, M. Abdollahian, F. Rock, GTE Labs, Inc. (G-2)

A High Performance SAW Filterbank Achieves 80 dB Rejection C. Lanzl, W. Ossman, R. Bernardo,

Andersen Laboratories (D-1)
Bandpass and Bandstop Filter in the 100 to 1000 MHz Frequency Range, or "The Search for Q"
R.V. Snyder, RS Microwave Co., Inc. (S-5)

A Phase Lock Loop That Works - Almost
Michael F. Black, Texas Instruments (I-3).
Construction Tips and Environment for Dielectric Resonator Circuits Lynn Carpenter, Pennsylvania State University (C-1)487
Non-Linearity Effects in RF Circuits
495

A Crystal Controlled Frequency \& Amplitude Calibrator Dan Baker, Tektronix (E-2)
General Price Determinants for RF \& Microwave Filters R.A. Wainwright, Cir-Q-Tel, Inc. (S-5) 509

A New Double-Balanced Mixer of
High Dynamic Range Improves System Performance Aubrey Jaffer, Bertronics (J-3)

The Tactical Miniature Crystal Oscillator (TMXO) T.S. Payne, R.E. Lowell, Piezo Technology (C-1)

Design Considerations for SAWR Oscillators
Katherine L. Feldmann, Watkins-Johnson (D-1)
Monolithic RF Amplifiers for Hybrid Applications Jerry Schappacher, Harris Microwave (A-1)

Session K-2

Aiding Computer-Aided Design -- Curve Fitting With Any Number of Variables Albert Pergande, Martin Marietta Aerospace... 245 An Evolution of Optimization and Synthesis Programs for Personal Computers Stephen E. Sussman-Fort, Ph.D., SPEFCO Software.. Distributed $2-20 \mathrm{GHz}$ Monolithic GaAs FET Amplifier Design Gary G. Hawlsher, EEsof, Inc. and Tim Aust, Hughes Aircraft................. 643

Session L-2

Mathematics of the Linvill Stability Criteria
Robert Gunderson, Hughes Aircraft Co........
Spectral Shaping of Radio Frequency Waves
Jerry J. Norton....................................

Session M-2

RF Plastic Package Comparison Study
Kamil Gresko, Motorola, Inc....................
Packaging Considerations for RF Transistors
Norman E. Dye, Motorola, Inc................................
SORF -- An RF Low Power SMD Alternative Package
Harry J. Swanson, Motorola, Inc.................

Session N-2

Dielectric Resonator Filters for UHF and Microwave Applications
Dr. Marian L. Majewski, Royal Melbourne Institute of Technology........... 335
Design of Combline and Interdigital Bandpass Filters
Dick Wainwright, Cir-Q-Tel.. 17
P.C. Mountable Miniature Helical Filter
V. K. Lakshmeesha, G. S. Seetha Raman, S. Pal, ISRO Satellite Centre....

Session 0-2

The PIN Diode -- Uses and Limitations
Jack H. Lepoff, Hewlett-Packard...
Dr. Rajeswari Chattopadhyay, Eswarappa, P. K. Atrey, Indian Telephone Industries, Ltd... 26
RF and Microwave Transistor Blas Considerations
\qquad

Session U-2

Temperature Compensation Circuit for Space Data Transmitters S. Pal, V. S. Rao, N. U. M. Rao, B. Plchalah, S. K. Saini, A. Bhaskaranarayana, ISRO Satellite Centre... 525

Design of Dielectrically Stabilized Oscillators Using Feedback Techniques Design of Seaaion V-2
RF Technology for NM
O. Mueller, D. Vatis, W. Edelstein, P. Bottomley, General Electric Co... 419

Session V-3

Nolae Measurement Instrumentation
George Peter, Cornell University... 5
"The Poor Man'a Engineering Work Station" or "Cheap CAD" Richard E. Kolbly, PE, Lockheed California.61

Interactive Computer Aided Graphics Applied to RF Circuit Deaign
Alan Victor, Motorola Inc..

Modulation Techniques for Biotelemetry
Robert W. Vreeland, University of Callfornia.. 127
The Use of a Computer Model to Determine the Complex Parametric Relationahipa of a Crystal Oacillator Circuit
Gregory L. Weaver, Plezo Crystal Co...............

High Power UHF Pulaed Push-Pull Amplifier Design
Joseph J. D'Agostino, Jr \qquad . Al .
New Hybrid Power Amplifier Modules Speed RF Systema Deaign
Eric A. Ulrich, Microwave Modulea o Devic

Session Y-3

A 350 MHz Dual-Gate GaAs FET Frequency Multiplier
A. 350 MHz Dual-Gate GaAs FET Frequency Multiplier

A CAD Design Program for Analysia of Electro-Thermal Coupling in High Power RF Bipolar Transistora
Antonio Morawski and Boria Hikin, TRW Electronic Components................. 97

Session Z-3

Iron Powder Cores for High Q Inductors
Jim Cox, Micrometals, Inc.. 2
Wide-Band High-Dynamic-Range Front-End Circuitry for AM Radio E. H. Nordholt, H. C. Nauta, Delft University of Technology................. 133

A Commutation Double-Balanced Mixer of High Dynamic Range
Edwin S. Oxner, Siliconix Inc..

PRACTICAL WIDEBAND RF POWER TRANSFORMERS, COMB INERS, AND SPLITTERS

by

Roderick K. Blocksome
Manager, HF PA/PS Design Group
Rockwell International
High Frequency Communications Division 85535 th Street, NE Cedar Rapids, Iowa 52498

INTRODUCTION

This paper will deal with the practical aspects of designing and building wideband RF power transformers, combiners (or hybrids), and splitters. Emphasis will be on topology. A consistent approach to represent these transformers pictorially and schematically with equivalent circuits showing source and load connections will be developed to help provide an intuitive understanding of the devices. Laboratory test data comparing various designs and topologies is included.

Modern solid state $H F$ power amplifiers are required to operate over increasingly wider bandwidths and at higher power levels for applications in communications as well as electronic countermeasures. Wideband RF power transformers are required for coupling into and out of the solid state devices. The conventional or so-called "wire-wound" transformer and two topologies of the transmission line transformer (conventional and equal delay) are presented.

A wideband RF power combiner (or hybrid) is required to achieve output levels above the capabilities of a single solid state amplifier stage. The RF outputs of two or more identical amplifier modules can be combined to reach these higher powers. Design examples of in-phase, 180 -degree, and quadrature combiners are detailed. Two basic topologies for in-phase and 180-degree combiners are presented.

A wideband RF power splitter (or divider) is simply a combiner or hybrid used in reverse. The splitter topology is the same as a combiner, however splitters are usually operated at lower power levels. The discussion centers around combiners but is equally applicable to power splitter applicatiens.

TRANSFORMERS

The bandwidth of rf transformers does not refer to the usual
-3 dB points since in power applications this represents an unacceptable loss. Typical HF amplifier designs require operation from 2 to 30 MHz and sometimes lower to 1.6 MHz . The transformer losses must be as low as possible over this operational bandwidth. Transformer losses translate to heat that must be removed as well as extra power that must be supplied by the transistors (at the collector/drain efficiency) and ultimately by the power supply (at its conversion efficiency). A few tenths of a dB of unnecessary loss in output
transformers or combiners can mean significant increases in primary power consumption.

New RF power fet devices have operational bandwidths of 1 to 175 MHz making possible extended range amplifiers covering HF and the lower VHF frequencies. Transformer designs covering over six octaves of bandwỉth are required.

A wideband RF power transformer performs one or more of any combination of three basic functions:
(a) Impedance transformation
(b) Balanced to unbalanced transformation
(c) Phase inversion

Transformation of a secondary load to a desired load impedance at the primary of the transformer is the most common function. RF transformers are often referred to by their impedance transformation ratio rather than primary to secondary turns ratio. The former is simply the turns ratio squared. In this application, we are most often interested in manipulating impedances rather than voltages or currents with the transformers. Balanced-to-unbalanced transformers, commonly termed "Baluns" are extremely useful in wideband amplifier designs. A single-ended load can be driven by a push-pull (balanced) source or vice-versa by using a balun transformer. A wideband transformer can also perform a phase reversal from primary to secondary by proper winding connections.

Transformer connections between a source and a load may be either balanced or unbalanced. Additionally, the balanced source or load may be either entirely floating or with center grounded such as two single ended sources phased 180-degrees apart or a load resistor with grounded center tap. The distinction between "balanced, floating" and "balanced, center grounded" may seem unimportant for wideband transformer design, but it is not. A proposed balun transformer equivalent circuit with source and load connected should be drawn showing the magnetization current path.

Figure 1 (a) is an example of a sinfle l:l balun with a floating balanced load. The magnetization current, i_{m}, flows through the load resistor as shown. Figure 1 (b) illustrates what happens to the magnetization current path if the balanced load is changed to a balanced, center tap grounded load. The magnetization current flows through only one winding and only one-half of the load resistance. This causes undesirable phase and amplitude imbalance in the balun restricting the kandwidth The balance can be restored ty using a third or tertiary winding, as shown in figure $1(c)$, to shunt the magnetization current around the load. This illustrates the necessity of considering the type of source and load connections when selecting wideband transforncr tepologies.
:riteractive Combuter Alced Erachice ADolaec to RF Carcuit Desien RT Techribicery Exロ= 66

Introduction
This paper presents several programs which utilize the interactive graphice capability of a desk top computer to aid the RF circuit design engineer. High frequency anplifier desion of class A power amplifiers. low noise desion and atability analyisis are diacussed. Computer alded graphics is demonstrated which asaist the designer in the appropiate tradeoffs. An interactive routine which handles the comunications receiver cascade of noise and distortion is presented along with a "what-if-scenario" applied to a typical recelver syitem: Finallyo a progran which computerizee the Smith Chart and provides aid in broadband impedance matching it demonstrated.

The routines were developed on the Hewlett-Packard seriee 200 personal computer which features on excellent graphics oriented Basic language and the capobility of interactive control of program variables while the program is operating. These features ar not ncessarily limited to the series 200 computers of HP. In fact many of todays personal computer hoex 1 le control forel concentrate on the following specific areas:

1. Clase A power amplifier design
2. Small aignal amplifier stability
3. Smith Chart and interactive graphics aid in broadband matching
4. Nolse figurel gainf distortion of linear cascaded networke. Interaction aids in the optimization of a given cascade.

Clese A Power Amplifier Design

Numerous occasions arise for the need of amall signel ilnear power amplifier. Normally the design criteria if the device is unconditionaliy stable is to provide for aimultaneous conjugate match at the input and output. If low nolse performance ls deasred than the deaigner seeks to find atch the output and maximize the amplifier transducer gain mith VSWR 1 j J. We will discuss these criteria in more detail: but for now the main interest is to provide maximum output power to the load while operating the device Class A. A good design approach to this problem wae presented by Richter and

The nine possible transformer connections are given below:

Unbal anced
Unbal anced
Unbal anced
Balanced, floating
Balanced, floating
Balanced, floating
Balanced, center grounded
Balanced, center grounded
Balanced, center grounded

LOAD \qquad
Unbal anced
Balanced, floating
Balanced, center grounded Unbal anced

Balanced, floating Balanced, center grounded Unbalanced

Balanced, floating
Balanced, center grounded

Wideband RF transformers and combiners typically use a magnetic core. The magnetic cores used in wideband RF transformers are available in a wide variety of shapes and sizes. Balun core, toroidal, sleeves, tubes, beads, and cup cores are the common names for the various shapes. The earliest material used was powdered iron followed by modern ferrites. Ferrite is composed of iron oxide in combination with various proportions of oxides of manganese, magnesiun, nickel, and zinc. In general the ferrites composed of iron, nickel, and zinc are applicable for the HF/VHF frequencies. Various mixes of ferrites are available. A high permcability and moderately low loss material is used for $\mathrm{HF} / \mathrm{NHF}$ power transformers. Operational flux densities must be kept well within the linear portion of the $B-H$ curve of the material. The area inside the
ond again by D. Rosemarin and M. Chorev [2 , $\{3$ J. Their technique is based on choosing the optimum losd conductence for a device operating class A at a given collector voi:,age and collector current. If the device ia not to limit on voltage awing or paak output current then the optimum load conductance is given by

Glopt=Ieq(ma.)/Vec(volts).

If the lood conductence, is lese than the Glopt then the maximum clese a output power is given by

Pl(mw)=(Vcc ${ }^{2}$ 2) G1 (current limited)
and if the load conductance te greater then Gopt then Pl(mw)=(Icc $\left.{ }^{2} / 2 \mathrm{GI}\right)$ (voltege 1imited).

Power loel are plotted graphically on the Smith chart as constant conductance contourt. The center center and radius as measured from the center of the unit circle chart ore given by

$$
r=G \ln /(1+G \ln) \text { and } \rho=1 /(1+G \ln)
$$

where Gln is the normalized load conductance. At the voltage ond current epecified the device S-parameters are measured. Given the S-parameters, conetant output gain contours are calculated and also ploted on the Smith Chart as circular loci 1 J. With the plot of power gain circles and power output circles displayed together it is now possible to visualiy see the trade-off between maximizing the power output and power gain. It is not uncommon to lose several dB of power output by aimultaneously congugate matching the device. Instead, maximizing the power output may only reault
in fow tenths of $d B$ lose in power gain. In i j the in a fow tenths of a dB loss in power gain. In $t 2$, the authors show that the location of the optimum output load circle sith chort Thi contour is the locue of tangency optimum power output and all the respective gain contoure and optimum power output and all the respective gein contours and is shown in Figure (1).

With all this information shown graphically it is now possible to tune the loed reflection coefficient and observe he tradeoff in power output, power gain, and potential input allowing the forced load reflection coefficient $\{$. 1 to be "tuned" interactively and observing
the locstion of the required source reflection coefficient conjugate matched input $\&=5$). At the ame time the actual load reflection coefficient (L , for conjugate matched input is displayed thus allowing the designer to minimize the output VSWR. Figures (2) and (3) demonstrate that if the device were conjugate matched the output power would be reduced by 4.8 db from the maximum. On the other hand maximizing the power output only reduces the power gain by 1.1 db , clearly a good tradeoff;

Small Signal Amplifier Stability

The load and source reflection coefficient must be carefuliy chosen if the device is conditionally stable. Inspection of the Linvill stability factor C, I 4 J or the Rollet atability factork, 5 , aid in determining the probability of are obteined from the meesured y paremeters or s parameter respectfully. In addition to checking the value of C which must be less then 1 to ensure stability, the values of yll and y22 must both be positive and resl for all possible values of real source and load combinations. Using 5 parameters and the K factor a iniliar set of criteria exiat Many individuale look at the k factor abone and this is a necessary condition for stablilty but not aufficent $[6$] The interactive graphics of the next routine demonstrate this vividly and Figures (4) through (6) show the resulte. In oumary a good criterion for unconditional etability is given in $[1,6]$ and repeated here for reference.

The computer aided design routinea presented here illustrate the table regions of the 5 inith chart by circular regions. Depending on the location of these regions the inside of the crrelar regionay orticient Consider the previous $(4,5,6)$. Interactive contral of the load reflection coefflatent (u) hilow you to poedtion the lood constent VSWR circle or on constant gain circle. As ion as the forced load reflection coefficient remaine inside the output atable region circle the source reflection coefficient ($* S$) and the octuel load reflection coefficient (t i) remain positive and real. Ab the forced load reflection coefficient approaches the edge of the output stable region the source reflection coefficient approaches the edge of the unit circle

B-H curve represents the relative loss, therefore the narrow curves are preferred for low loss designs. Detailed information is available from the various ferrite manufacturers.

Core losses and winding dielectric losses heat the core. The core temperature must be held well below the Curie temperature of the ferrite, otherwise the magnetic properties of the ferrite will be permanently altered. Operation near the Curie temperature is not recommended as some materials can go into thermal runaway. The high temperature increases the core loss which in turn further increases the core temperature until the core is ruined.

CONVENTIONAL OR "WIRE-WOUND TRANSFORMERS"

The conventional broadband RF transformer is characterized by a power transfer from the primary to secondary windings via magnetic coupling through the ferrite core. The transmission line transformer, by contrast, is characterized by the use of a transmission line of characteristic impedance, Z_{0}, and a ferrite core. The core suppresses common mode or non-transmission line currents which would otherwise flow due to the transmission line interconnections. A core wound with wire may or may not be a conventional transformer, depending upon how the source and load are connected. Figure 2 illustrates this distinction.

(A) CONVEN
BALUN:

(8) transmission line transformer 11 balun
rIGURE 2 COMPARISON OF CONVENTIONAL AND

In general, the conventional transformer is inferior to the transmission line transformer for the combination of high power capability, low loss, and wide bandwidth. The conventional ransformer can be constructed for a wider range of impedance transformation ratios than the transmission line type. Some ratios will have wider handwidths than others due to the number of turns to achieve the desired turns ratio. There are no fractional turns. If the wire or line passes through the core, it is one turn.

Smith chart. A movement of the load reflection around the outside of the stable circle will force the source reflection coefficient to trace out the complete outside edge of the Smith chart. Further movement of the load reflection coefficient outside of the stable region will force the source reflection coefficient to move outside the Smith Chart (>1 implies negstive real resistive component) and could produce emplififer inatibility. If the combination of forced load reflection coefficient and actual load reflection coefficient is still net poeitive snd real then no not the case then both the input and output ports this $1 s$ device are negative real and oscillation will occur the interactive graphic nature of the program sllows assessment of the smplifier stability ss the load (or the source) reflection coefficient is veried.

Low Noise Amplifier Design

Device noise figure is a function of the source reflection coofficient. Minimization of notse figure and maximizing the amplifier gain is the deaired design goal. Adler $\{7$ j defines a noise measure and Fukui (8 了 applies this concept or technique to sid in optimizing a low noise amplifier deaign. Interactive graphics provides enother method for observing the tradeoffa involved. A plot of smplifier constant gain contours along with noise contours allows a vicual tradeoff to be made 19 J.

Normally the approach taken is to seek the source reflection coefficient which minimizes the nolse figure while maximizing the transistor trensducer power gain. This results in the source reflection coefficient for ilimum noise figure differ from the sctual device input impedance then the input VSWR could suffer. One spproach to this problem is to apply feedbeck sround the device in sn attempt to force the maximun device goin to coincide with the minimum noise figure point device goin to colncide with the minimum noise figure point
[10,11]. Another approach is to adjust the load reflection coefficent interactively and observe the aource reflection coefficient movement. What wo soek is a forced load reflection coefficient value which yielda the maximum avillable gain and at the same time causes the source roflection coefficient to minimize the device noise figure. at the ame time the actual load reflection coefficient should idealy be close to the forced load reflection coefficient in order to minimize the output VSWR. This approach has the benefit of minimizing the input VSWR and therefore preventing input mismatch lose from further
degerading the system noise figure. Figures 17) and (8) illustrates thr results for one device.

Computerizing the Smith Chart

The Smith chart is an indespensible graphical tool which olves e number of RF design related problens. The interactive graphics of a personal computer further enhances this tool and provides for additional ineight into your design problem. A major application is in impedance atching, narrow band se well os broadband. A number of articles have addressed this application including conputer riented routines ill, io the routine demonstrated her rovides the solution to the ladder matching network by lement in the ledder. The chain matrix of any of 12 different element types are included os subroutines. Both parallel and serles form of R,L,C, transiselon lines, tuned ircuits and ideal transformers are included. The benefits of intersctive tuning are quite evident in this application which allows the deaigner to literally tweak element values in the matching network with the simith chart as the graphic backround. Thus the designer can optimbze VSWR and bandwidth. In addition the tune feature ollows a feeling for lement sensitivity as well as which components would lend themselves to optimization in matching way a broadband mplifier. As an example in applying this routine we demonstrate the impedance matching technique presented by Thomas [14,15] in his text. Figure 19 j illustrates the Smith chart divided into 4 high o regions. Depending on the region we wish to match to the center of the chart an appropriate network topology is selected. Figure (10) hows the tuning procedure as each element is "tweaked" and less than 3:1.

The sensitivity of maintaining a low VSWR in a broadband atch can also be investigated through interactive graphing and the Silith chart. The methodology for synthesizing in closed form optimum broadband matching networks is discussed in Chen's text and in Apel's work [16,17]. Figure (11) hows the resulta of applying $\{17 J$ to the match of a Gais The extent to which this element is changed before a VSWR of 2:1 or greater is exceeded becomes quickly apparent.

Figure 3 is a conventional transformer that finds wide usage at low impedances (3 to 20 ohms). The core is commonly referred to as a balun core, yet the transformer may or may not be connected to perform as a balun. Metal sleeves of copper or brass are inserted into the core and connected together at one end to form a primary winding. Connections to the circuit are made at each of the two sleeves at the opposite end. Two pieces of copper clad G-10 circuit board work nicely at each end. The secondary winding is constructed by winding the required turns of insulated wire through the primary tubes.

$$
\begin{aligned}
& \text { FI, SCHEMATIC REPRESENTATION } \\
& \text { FIGURE 3. EXAMPLE OF A II IMPEDANCE RATIO } \\
& \text { CONVENTIONAL TRANSFORMER }
\end{aligned}
$$

One of the factors limiting the high frequency response of the transformer is leakage inductance. Leakage inductance is due to any flux lines that do not link the primary and the secondary. To minimize the leakage inductance, the primary copper tubes should fit quite close in the core holes. They should not be so tight that thermal expansion will cause the core to break. The lead inductances of the primary and secondary windings from the point they exit the core to the circuit connection will also limit performance at the high frequency end, especially on low impedance applications. Shunt capacitance on either the primary or secondary or both will compensate the leakage reactance and extend the useful high frequency limit.

TRANSMISSION LINE TRANSFORMERS

The simplest transmission line transformer is a quarter-wavelength line whose characteristic impedance, Z_{C}, is chosen to give the correct impedance transformation. This relationship is illustrated in figure 4. Mote that this transformer is a narrowband device valid only at frequencies for which the line is odd multiples of a quarter wavelength. The transformation ratio is given by the square of the ratio of the line impedance to the load connected to the line.

Noise Figure, Gein, end Distortion of Linear Ceecaded Networks

Communicetion aysteme require the proper distribution of gain, noise, and ilnearity in order to provide the maximum dynamic range. This requires. proper tradeoff in each stage for noise figure, gain.. and maximum eignal handiling sbility before distortion sets in. One method for the characterletion of coupled with stege-by-stege deecription of notee figure. gain and aclectivity provides complete deacription of receiver performance $[19,201$. A graphic presentation of each tage contribution to the total noise figura or diatortion tage thesigner in seeing uich stage in the casade is the most offenaive. Then interactive tuning of each stage gain. noise figure or third order input intercept allows optimization as well es a sonsitivity onelyale of the receiving system dynamic range. Figure (12) bhows a stage cascede including RF omplifier, mixers and cryatal filters. Figure (13) is a plot of the individual stage notse figure contribution and Figure 14 J a plot of intermodulation distortion contributions. At alance the designer can see which stages are causing the distortion level to fall below a specified goal. By adjusting or tuning each stage in optimum gain, noise figure distribution will result. Any increase in goin, for example stage f, results in improved senaitivity but at the expense of degraded third order distortion due to larger input ilgnal levels present at the lower the noise figure and senaitivity. Thus, s lower syaten dynamic renge occurs.

Conciualona
The RF deaign engineer will benefit from the use of todeys perconsl computers, especially those which provide real-time interactive graphic colutiona. This allowe the engineer to eeek the desired reaponee and investigate the "what-ifeecenario". By providing this sort of "tune" function the designer can not only optimize for s given network response but also gain efeeling for the ensitivity of has design.

References

1. Microwave Trangistor Amplifiers Angysie and Design. Guillermo Gonzalez. Prentice Hall, 1984
2. Predicting Linear Amplifier Performance, Kenneth Richter, Microwaves. Feb 1974, pp. 56-59.69
3. Easy to Plot Grapha Show Power-Gain Tradeoffe, David Rosemarin, Moty Chorev, Microwaves, Dec 1977, pp. 178-183
4. Trangietore and Active Circuite, Linville and Gibbons, McGraw-Hill Book Co.. New York. 1961
5. Stability and power-Gain Invariante of Linear Two Ports, J.M. Rollet. IRE Trensegtione gn Circuit Thegry. Vol CT-9 pp. 29-32. March 1962
. Reapprisal of the Unconditional Stability Criteria for Active 2-port Network in Terma of 5 Psrameters, D. Woods IEEE Trengegctions on circuite eng Syeteag. 1976
6. Optimum Noise Performence of Linear Amplifiers, H.A. Haus, R.B. Adler, Proceedinge q£ IRE. August 1958. PP. 1517-1533
7. Available Power Gain, Noise Figure snd Noise Measure of Two Ports and their Graphical Representation, H. Fikui. IEEE Troneactions on Cixcuit Theory, Vol CT-13. June 66
. Silth Chart Circles Aid Gain Noise Figure Trodeoff. Williom Sutter, Microweven, July 1980, Pp71
8. Stability Considerations of Low Noise Transistor Amplifiers with Simultsneous Noise and Power Match, Les

9. Feedback Effecte on the Noise Performance of Gane Mesfets, George D. Vendelin, IEEE MIİ Sy블gㅗ는․․ 1975 pp. 324-326
10. Automate your Smith-Chart PLots, John R. Brinson Electronic Degign is, Sept 1, 1973
11. SmithMatch, Microwave Software, Author. . James Lev

$$
z_{n}=\sqrt{z_{m} \bullet R_{1}}
$$

$$
Z_{w+}=\frac{Z_{0}{ }^{2}}{R_{L}}
$$

FIGURE 4 SIMPLE QUARTER WAVE

If a forrite sleeve is added to the transmission line (see figure 5), common mode currents (currents flowing in both transmission line conductors in phase and in the same direction) are suppressed and the load may be balanced and floating above ground. The line can now be any length with characteristic impedance equal to the balanced load impedance. The result is a 1:l balun. Low frequency operation is limited by the amount of impedance offered to common mode currents. A good rule-of-thumb requires the impedance presented to common mode currents be not less than five times the load impedance. The line length limits the high frequency response of transmission line transformers.

figure 5 1.1 transmission line balun

If the ferrite loaded length of transmission line in figure 5 is folded back so that the two ends may be interconnected, a

1:4 impedance transformer is formed. A load resistance. R_{L}, connected as shown in figure 6 is reflected to the input of the transformer as $\mathrm{P}_{\mathrm{L}} / 4$. The l ine Z_{0} should be equal to the geometric mean of R_{L} and $Z i n$ for maximum bandwidth. The line length must be as short as possible for extended high frequency operation. The practical high frequency limit for this type of transformer is reached when the line length approaches $1 / 8$ wavelength and appreciable phase error difference occurs at the interconnection of the lines.

A 1:4 transmission line balun transformer may be constructed as shown in figure 7. Two cores are required and may be either balun cores (as shown) or toroids or sleeve cores. The transmission line z_{o} should be the geometric mean of the input and load impedances. This transformer may also be used for balanced-to-balanced source and load connections. Transmission line baluns for $1: 9$ and 1:16 impedance ratios are constructed similarly as shown in figures 8 and 9. The limitation of squared integer transformation ratios is the biggest disadvantage of this type of transmission line transformer. The availability of coaxial cable in a variety of impedances is another limitation. 50 and 75 -ohm cables are by far the most common but impedances of $25,35,60,95$, and 125 -ohns are avail able.

Interactive Computer Aided Graphics Applied to RF Circuit Design RF Technology Expo 86

14. A Precticgl Intoduction to Impedence Matching, Robert L thomas, Aertech Houee, 1976

15. Broadband Impedance Matching in High-a Methoda, R.L. Thomes, EDN Magezine, Dec 1973
16. Bendpase Matching Networks can be Simplified by Maximizing Available Tranaformation, T.R. Apel. MSN, Dec 1983
17. Theory and Deaign of Broadband Matching Networke, Wai-Kai Chen. Pergemon Prese, 1976
18. Intercept Point and Undeaired Reaponses, Richard C. Sagers, 32nd IEEE Vehtculer Technology Cgnference, May 23-25. 1982
19. Understanding Receiving Syatom Design Parameters, Robert P. Miller, Microweye Journel. Feb 1985, PP. 175-177
20. Uee Filter Modele to Analyze Receiver IH, Miscrowayes Novenber 1978, Robert E. Snyder, pp $78-82$

FIG 1 Powen Gair Coritours

figure 7.1 .4 transmission line balun tranformer

FI G2

FIG 3

FIG 4

FIG 5

Several techniques to achieve nonstandard impedance lines include simply parallel connecting two or more lines. For example, two parallel 50-ohm lines provide an effective 25 -ohm line. The parallel lines do not have to be the same impedance either. Bifilar or twisted enameled wire can easily be constructed for odd characteristic impedances also. The impedance depends upon the wire diameter, insulation dielectric, spacing, and number of twists per unit length. Multiples of even numbers of wire may be twisted together and then parallel
connected to achieve low characteristic impedances. The characteristic impedance of experimentally constructed bifilar or twisted pair transmission lines may be determined by measuring the reactance of an open circuit, $1 / 8$-wavelength, sample. The magnitude of the reactance is equal to the line impedance at the frequency for which the line is 45 -degrees in electrical length. Remember to account for the velocity of propagation when determining the $f r e q u e n c y$ of $1 / 8$ wavelength.

Micro-strip transmission lines on printed circuit boards is another technique for achieving virtually any desired line impedance. Mechanical problems with the striplines in ferrite cores may be more difficult but interconnections with the amplifier circuit may be improved.

The bandwidth degradation experienced by not using the correct value of l ine impedance may be acceptable in some applications. Figure 16 is a comparison of two identical 1:4 balun transformers; one wound with the proper 25-ohmine, the other wound with 50 -ohm line. The measurement was macie by connecting two identical transformers back-to-back to provide matched 50-ohm impedance ports to interface with the network analyzer. The indicated loss of one transformer is helf of the measured value. This technique is valuable for evaluating various transformer designs and initially chooseing values of compensation capacitors for leakage reactance.

Conjugate ratch SRO *S

FIG 6

FlG8 Constant Noise Contours

As pointed out earlier, the l:4 transmission line transformers' high frequency response is limited when appreciable phase error is introduced at the interconnection point $a-b$ shown in figure 11. If the connection $a-b$ were made with a transmission line of equal impedance and length as the ferrite loaded line, the phase difference between input and output is eliminated. The transformer topology remains the same, except the $a-b$ connection has the same phase delay as the main transformer line. For this reason this subclass of transmission line transformers are called "Equal Delay

Transmission Line Transformers". The transformer input and output connections can be physically separated which is advantageous in some applications.

figure 11. derivation of the equal delay transformer

Figure 12 (a) is the usual pictorial and schematic representation of a $1: 4$ equal delay transformer. If a third line is stacked on the 1:4 design, a l:9 impedance transformer results. In like manner, four lines produce a l:l6 transformer and so on. Figure 12 (b) and (c) illustrates these ratios. For comparison, if one unit of ferrite is required on the $1: 4$ transformer for a given bandwidth, then two units will be required for the third line on the l:9 transformer. In like manner, the fourth line requires three units of ferrite for the same bandwidth. Notice that these designs are all
unbalanced-to-unbal anced transformers. Suppose we acd ferrite to the bottom line on the $1: 4$ transformer. Now we can lift the grounds on the parallel connected end (still keeping the shields

Four Elcrnerit Matchirig
Networks for Maximum
Bardwictla Poteratial

Frequency	(man)	Reflectio	monticent	Load usur	nl	11
50		. 5392	(-129.1	3.34	17.99	-21.23
51		. 3994	(-163.4	2.33	21.12	-5.848
52		. 2959	(126.5	1.687	34.11	15
S3		. 3199	(60.67	1.941	36.09	35.35
54		. 4079	(30.8	2.378	89.5	44.05
55		. 4815	(3.099	2.155	112.1	P.633
56		. 498	<-9.617	2.74	14.3	-31.27
51		. 4922	(-24.69	2.938	10.9	-59.1
58		. 4429	(-54.03	2.59	58.6	-52.74
59		. 4047	(-11.3	2.359	35.37	-34.22
60		. 4133	(-137.5	2.409	23.29	-15,68
4		. 5117	(170.6	3.096	4.15	. 5387
Impenance Matching Metwor! Starting Froe the Load End:						

Copponent Bescription CMPACITOR_SERIES CMPaciton semit capacitoonseries jmavion_series

32 pF .
68 DF .
11 मF.
310 пн.

FIG 10
FIG9
connected) and connect a balanced, floating load between the center conductors and the shields to form a 1:4 balun. The stray capacitance to ground can be balanced better by interconnecting the center conductor of one coax to the shield of the other coax. The result is the balun transformer described earlier in figure 7.

figure 12 equal delay transformer configuraitions

How much improvement in bandwidth does the equal delay transformer give compared to the conventional transmission line transformer? Figure 13 is a plot of insertion loss versus frequency for the two types constructed on identical cores. Again, the test consisted of measuring two identical transformers conrected back-to-back, so the actual loss for one transformer is one-hal f the measured value.

Compment Description	Copeoment Vilue
CPMCITO SEAES	3.400 pf.
Inuctom_semi	43.513 mil.
Inacton_senies	139.935 an.
cipactiongmut	.63 pf.

FIG11
DESCRIPTION
Receiver Back End
4 pole cryetal
Mixer post-preamp
3 db pad
3 db pad
RF preamplifier
FIG 12

COMBINERS_AND SPLIITERS

When required output power levels exceed the capabilities of a single power amplifier stage, two or more stages or modules are combined to produce the required output. The combiner is closely related to wideband transformers in design and techniques. A power splitter is simply a lower powered version of the combiner used in reverse. The splitter divides the drive signal into multiple equal amplitude outputs to be applied to the amplifier inputs. The power combiner then recombines the amplified outputs into a single signal. Since the splitter is the same as a combiner, the following discussion will mention only combiners.

A wideband power combiner must perform the following basic functions:
a. Provide low insertion loss over the required bandwidth.
b. Provide isolation (minimum coupling) between the input ports.
c. Provide a low VSWR load at the input ports over the required bandwidth.
The operating bandwidth of combiners must be as wide or wider than the amplifiers to not restrict the overall bandwidth of the transmitter. Transmission line techniques are used for lowest loss and widest bandwidth. The primary function of the
combiner is to maintain port-to-port isolation. By isolating the output of one amplifier from the others, multiple failures as a result of a single amplifier failure are avoided. For example, in a two-input-port combiner, if one amplifier is disabled the output power drops by 6 dB . The output drops 3 dB due to lack of power from the disabled module and an additional 3 dB is due to the power from the remaining module dividing equally between the bridging resistor and the output load.

The bridging resistor must dissipate -6 dB of the maximum combiner output power. The bridging resistor value is prescribed by the type and configuration of the combiner as detailed later. Some topologies require either single-ended or balanced, floating bridging resistors. Sometimes the bridging resistor is referred to as the "dump" load or "dump" port since power due to phase or amplitude imbalance is dumped to this load.

The bridging resistor dissipates power due to any slight differences in either the phase or amplitude of the input signals. This relationship is given in figure 14.

There are three basic types of combiners:
a. In-phase combiner or hybrid (two or more input ports)
b. 180-degree combiner or hybrid (two infut ports)
c. 90 -degree combiner or quadrature hybrid (two inyut ports)

FIG 13

FIG 14

$P_{1 .}=\frac{P_{1}+P_{3}}{2}-\sqrt{P_{1} P_{2}} \cos A$. $\begin{aligned} & \text { WHERE } n \text { IS OIFFERENCE IN PHASE } \\ & \text { BETWEEN INPUY PORT SIGNALS }\end{aligned}$
$P_{r m}=P_{1}+P_{s}-P_{m}$
(A) 180-degree hybrid combiner

$P_{r \prime \prime}=\frac{P_{1} \cdot P_{i}}{2} \cdot \sqrt{P_{1} P_{i}} \operatorname{COS*} \quad \begin{aligned} & \text { WHERE IS DIFFERENCE IN PHASE } \\ & \text { BETWEEN INPUT PORT SIGNALS }\end{aligned}$
$P_{n f}=P_{1}+P_{7}-P_{n_{1}}$
(B) in.Phase hybrid COMBINER
figure 14 hybrid Combiner powr relationships
If more than two signals are combined in-phase, the term "combiner" is used since the term "hybrid" refers to a device with two input ports. The topologies of each of the three basic configurations will be examined.

The following definitions apply:
$\mathrm{R}_{\mathrm{L}}=$ output load resistance
$R_{B}=$ bridging resistor
$\mathrm{Z}_{\mathrm{O}}=$ transmission line characteristic impedance
$\mathrm{Z}_{\mathrm{in}}=$ input impedance (with output port terminated)
$S=$ shield connection of coaxial cable
$c=$ center connection of coaxial cable

IN-PHASE COMB INERS
In-phase combiners operate with two or more inputs of equal phase and amplitude to combine into a single output. There are two basic topologies for in-phase combiners, examples of which are shown in figures 15 and 16. The differences are in the number and configurations of the ferrite cores and the value of the bridging resistor. The type-I configuration has a single balun core or toroidal core and a bridging resistor equal to four times the output load. The type-II combiner has two separate cores; either sleeves or toroidal. The bridging resistor is equal to the load resistance. Consideration of physical layout, practical transmission line impedances (20), and bridging resistance (R_{B}) will determine the best type of combiner for a particular design.

A comparison of input impedance and port-to-port isolation between typical type-I and type-II combiners yields interesting results as shown in Figure l7. Both combiners were constructed with a single turn of 50 -ohm coax in the cores. Core material was Stackpole 7D for both types. The test data indicates superior port-to-port isolation with a type-II combiner while the type-I combiner exhibited lower input VSUR.

NEW HYBRID POWER AMPLIFIER

MODULES SPEED RF SYSTEMS DESIGN

by
Eric A. Ulrich
Product Manager - Hybrids Microwave Modules ε Devices, Inc.
500 Ellis Street 500 Ellis Street Mountain View, California 94043

ABSTRACT

For many years low to medium wideband RF amplifiers have been produced in TO-8, TO-12, or TO-39 packages and have become popular with users because of the wide bandwidths, flat gains, small sizes and unconditional stability they offer.

This paper will present the philosophy and design concepts offered in a new hybrid RF power module product line.

INTRODUCTION

For all the convenience and versatility TO style amplifier modules offer the user they still possess two main shortcomings:

1. RF power output is limited to about a half watt due to the relatively poor thermal conductivity of the Kovar header, and
2. Mounting of a TO style module to a printed circuit board requires physical clearance both above and beneath the board, thereby limiting the component packing density which one can achieve.
To address these two drawbacks Microwave Modules and Devices has
developed a new family of Class A RF power amplifier modules, designated the HPM Series, which cover the frequency range of 5 MHz to 2 GHz and which can offer power outputs in the tens of watts. (Figure 1) They are designed in a "Drop-In" flange configuration which is ideal for efficient heat transfer and ease of circuit layout.

THERMAL CONSIDERATIONS

The RF output power of an amplifier packaged in the standard TO-8 header is limited primarily by the high RF transistor junction temperature due to the thermal conduction characteristics of the reader. TO style amplifier modules are most commenly constructed of a cramic substrate, either alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ or berylliam oxide (BeO), allacl ed to a kovar header using gold-germanium solter Kovar, an alloy of nickel, iron, and colbalt, is designed to match the th ermal expansion characteristics of the ceramic substrate, thus preventing substrate cracking during temperature changes. While Kovar is an excelient mechanical match for ceramic substrates, it is an extremely poor thermal conductor (Table 1). Beryllium oxide, on the other hand, is an excellent thermal conductor, having a thermal conductivity five to six times that of alumina. BeO substrates are typically used in medium power hybrid amplifiers to reduce the device junction temperature as much as possible. Its disadvantages, however, include a high cost when compared to alumina and a high toxicity hazard in a powdered or dust state.

A third substrate material, aluminum nitride (AIN), is just now beginning to become available. Aluminum nitride offers a thermal

(A) PICTORIAL VIEW: BALUN CORE \& TOROIDAL CORE

FIGURE 15 TYPE I IN.PHASE TWO PORT COMBINER

(A) PICTORIAL VIEW TUBULAR \& TOROIDAL CORES

FIGURE 16 TYPE II IN.PHASE TWO.PART COMBINER
conductivity near that of BeO without the toxicity problem of BeO . Its present cost, unfortunately, is not less than that of BeO, but, with improved production processes and economies of scale. the cost should come down.

To analyze the temperature problems inherent in packaging a one watt and higher RF amplifier into a TO-8 header the junction to mounting surface temperature rise can be computed for the three situations shown in Figure 2.

Figure 2a and 2b illustrates the cases of a 5 mil thick silicon bipolar transistor die eutectically attached to a $\mathbf{2 5}$ mil thick alumina (Figure 2a) or BeO (Figure 2b) substrate which is then soldered to a 50 mil thick Kovar header.

Figure 2c shows the cross section configuration used in the HPM Series product line. For comparison purposes, a 5 mil thick silicon bipolar die is again shown attached, in this case, to a 25 mil thick BeO substrate. The BeO substrate is gold-germanium soldered to a $1 / 8^{\prime \prime}$ thick flange of Elkonite ${ }^{\boldsymbol{R}}$ 10W3 material. Elkonite ${ }^{\mathbb{R}}$ 10W3 is a copper/tungsten powdered metal metallurgy material that is designed to match the thermal expansion characteristics of BeO while providing a high thermal conductivity (Table I). Figure 3 shows a photograph of the HPM package. The thin film metallized BeO substrate is mounted inside the alumina "window-frame" by using goldgermanium solder and all circuit components are attached to the BeO substrate by using gold-tin solder. Interconnections are by 1 mil diameter gold bond wire.

Elkonite is a registered trademark of CMW, Inc.

Before calculating the temperature rise in all thiee cases, a number of assumptions will be made.

1. A semi-infinite lateral extent of the layers.
2. A 45° heat spreading angle.
3. A square heat source configuration.

With these assumptions made, the equation for the thermal resistance of a particular layer can be given as

Where:
$\mathbf{T}=$ material thickness
$K=$ thermal conductivity
$\mathrm{W}=$ side dimension of the heat source
The silicon layer heat source dimension is chosen to be 6 mils square, which reflects the approximate active area of a 1 watt Class A RF transistor die.

Using the 45° heat spreading assumption, the heat source side dimension W, is increased by twice the thickness of the material of the preceding layer. Therefore using Equation (1) the thermal resistances of the various materials can be calculated. The results are as follows:

$$
\begin{array}{ll}
\mathbf{R}_{\mathbf{t h}}(\text { Silicon }) & =18.6^{\circ} \mathrm{C} / \mathrm{W} \\
\mathbf{R}_{\mathbf{t h}}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right) & =29.6^{\circ} \mathrm{C} / \mathrm{W} \\
\mathbf{R}_{\mathbf{t h}}(\mathrm{BeO}) & =4.6^{\circ} \mathrm{C} / \mathrm{W} \\
\mathbf{R}_{\mathbf{t h}}(\text { Kovar }) & =10.9^{\circ} \mathrm{C} / \mathrm{W} \\
\mathbf{R}_{\mathbf{t h}}(\text { Elkonite } & \left.\mathbf{R}_{1}\right) \\
=1.5^{\circ} \mathrm{C} / \mathrm{W}
\end{array}
$$

FIGURE 17 COMPARISON OF TYPE I AND IYPE I WN.PWASE COMOMERS

The combiner output load impedance is usually transformed to another desired value such as 50 or 75 ohms. This is readily accomplished by one of the wideband transformers described earlier. Usually the output impedance transformer is physically integrated into the combiner assembly. The interconnection between combiner and transformer can be made using micro-strip line techniques if it is not a standard coax impedance.

Theoretically any number of inputs may be combined with an in-phase combiner, but a practical limit is reached when the output impedance becomes too low to allow efficient wideband transformation back to the desired load impedance. An example of a type-II four port in-phase combiner is given in figure 18. Four-port combiners may also be implemented by cascading two port combiners. This technique is illustrated in figure 19 for both types of two port combiners.

In-phase combiners all use a floating brldging resistor. This may be difficult to implement, especially in combiners handling high power. A wideband balun transformer allows using a single-ended or unbalanced load. The balun couldalso transform the balanced impedance to 50 or 75 ohms. Standard coaxial dummy loads, connected to the combiner with coax cable, may then be used as bridging resistors.

Therefore, for the three cases, summing the thermal resistances:

$$
\begin{aligned}
R_{\text {th }}\left(T O-8, \mathrm{Al}_{2} \mathrm{O}_{3}\right) & =59.1^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\text {th }}(\mathrm{TO}-8, \mathrm{BeO}) & =34.1^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\text {th }}(\mathrm{HPM}) & =24.7^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

We shall further assume that for 1 watt of Class A RF power, 4 watts total dissipation (258 efficiency) will be expended by the RF transistor. Therefore, the temperature rise of the transistor junctions for the three cases are as follows:

$\Delta T\left(T O-8, \mathrm{Al}_{2} \mathrm{O}_{3}\right)$	$=236.4^{\circ} \mathrm{C}$
$\Delta T(\mathrm{TO}-8, \mathrm{BeO})$	$=136.4^{\circ} \mathrm{C}$
$\Delta T(\mathrm{HPM})$	$=98.8^{\circ} \mathrm{C}$

With a mounting surface temperature of $+50^{\circ} \mathrm{C}$ the junction temperature can then be computed to be:

$$
\begin{aligned}
T_{j}\left(T O-8, \mathrm{Al}_{2} \mathrm{O}_{3}\right) & =286.4^{\circ} \mathrm{C} \\
T_{i}(\text { TO-8, BeO }) & =186.4^{\circ} \mathrm{C} \\
T_{i}(H P M) & =148.8^{\circ} \mathrm{C}
\end{aligned}
$$

The impact upon reliability of these three temperatures can be understood by using a graph of median time to failure (MTTF) versus junction temperature, the so-called "Arrhenius" relationship. Major device failure mechanisms have been shown to vary expor entially with temperature according to the equation

$$
\text { MTTF }=C \exp (\phi / K T)
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{aligned}
\mathrm{C} & =\text { a constant } \\
\phi & =\text { activation energy } \\
\mathrm{K} & =\text { Boltzman's constant } \\
\mathrm{T} & =\text { temperature }\left({ }^{\circ} \mathrm{K}\right)
\end{aligned}
\end{aligned}
$$

Typical RF transistors under consideration use a gold metal system and have activation energies between 0.6 and 0.7 eV . If we plot the Arrhenius curve using a gold system activation energy (Figure 4), we observe that for a $20^{\circ} \mathrm{C}$ rise in junction temperature the device MTTF is reduced by approximately one half.

The projected MTTF of the silicon bipolar transistor used in the HPM package is found to be approximately four times greater than when mounted in a TO-8 header on a BeO substrate and one hundred times greater than when mounted in a TO-8 header on an alumina substrate. Because we have assumed that the packages are mounted to an infinite heat sink with no thermal resistance, the junction temperature of the TO-8 devices will actually be higher than those calculated. This is due to the thermally non-ideal mounting requirements inherent in TO devices.

MECHANICAL CONSIDERATIONS

TO style modules must be mounted from the back side of the microstrip PC board such that the package is in intimate contact with the ground plane. Failure to provide a positive contact between the microstrip ground plane and the package can result in gain resonances, VSWR degradation and unwanted oscillations, especially in high gain (-40 dB) cascades.

FIGURE IE TYPE II FOUR PORT IN-PHASE COMBINER

FIGURE I9 FOUR PORT COMBINERS IMPLEMENTED WIIH
TWO PORI IN.PHASE HYBRIDS

Because of this requirement, clearance in the housing to which the PC board is mounted must be available both above and below the board. In high package density systems, this volume may not be available without causing the overall subsystem or system package to be larger than desired. In addition, rework and replacement is more difficult with rodules mounted on the underside of PC boards. To address these drawbacks some manufacturers have developed surface mount type packages for amplifiers. However, at the present time, their use appears limited to amplifiers whose output power is less than 100 mW .

HPM AMPLIFIERS

The Microwave Modules and Devices HPM series provides an alternative to discrete device a plifiers for those users who enjoy the ease of design and use that existirg TO style or surface mount amplifiers offer, but who require higher output power or lower distortion. The HPM product line is an attempt to solve the thermal and mechanical limitations inherent in the T0-8 style packages and is designed as a "Drop-In" component, not unlike existing flange mounted RF power transistors, which is ideal for efficient heat transfer. The "Drop-In" configuration also simplifies the circuit board and housing design.

The HPM product line presently consists of several models (Figure 5) which cover the frequency range of 5 MHz to 2 GHz with models under development that will offer power outputs in the tens of watts.

The HPM package is epoxy sealed and leak tested to ensure high reliability. For military applications requiring conformance to MIL-STD-883
a totally hermetic version is being developed. Figure 6 shows a photograph of a prototype hermetic package. This package is designed to be welded closed by using either laser or seam sealing techniques and will provide a leak rate better than 1×10^{-7} atm-cc/sec.

To illustrate the similarity in concept and integration with existing small signal cascadable amplifiers. Figure 7 shows a connectorized housing designed to accommodate up to 3 TO-8 modules driving an HPM module.

REFERENCES

1. "Handbook of Electronic Packaging" McGraw-Hill, 1969.
2. "Engineering Materials Handbook" Montell, First Edition. 1958.
3. "Handbook for Applied Engineering Science" Chemical Rubber Company. Second Edition. 1973.

180-DEGREE HYBRIDS
If the roles of the bridging resistor and the load are interchanged, the result is a 180 -degree hybrid combiner. The two input signals must be 180 -degrees out of phase and of equal amplitude. The output is balanced to ground unless the usual balun is used. Examples of type-I and type-II 180-degree hybrid combiners with output baluns are shown in figures 20 and 21.

Many unique combiner designs are possible by using various combinations of basic combiner types and balun transformers. The combiner described in figures 22 (pictorial) and 23 (schematic) is an example of a four-port combiner using two each type-I in-phase combiners (cores A and F) and two each, parallel connected type-II 180-degree hybrid combiners (cores D and C) and a 4:1 balun transformer (cores B and E) to couple the combined out put to a 50 -ohm load. Connecting two 180 -degree hybrids in parallel avoids using 25 -ohm coax cable and provides the extra core material to handle the higher rf power.

(G) EQUIVALENT CIRCuIt

FIGURE 20 TYPE I 180. DEGREE HYBRID COMBINER

TABLE 1
Thermal Conductivity and Thermal Expansion
of Various Materials

FIGURE 2
Cross Section View of Various Hybrid Amplifier Configurations

FIGURE 1
HPM Series Package

FIGURE 21. TYPE II 180-DEGREE HYBRID COMBINER

fIGURE 22 FOUR PORT TWO STAGE COMBINER USING

FIGURE 3
Inside View of HPM Series Amplifier

FIGURE 4
MTTF Versus Junction Temperature

infuts a a a COMAINE in. Phase as do inputs C a o
THE A' OUTPUT 8 THE CIO OUTPUT COMEINE IN TWO
PAAALLEL CONNECTED 180 OEGREE HYBRIDS TWO IN PAAALLEL AVOIOS $25!420$ COAX CABLE. 180 DEGREE COMBINER GIVES BALANCED 12.5 II LOAD IMPEDANCE,
IDEAL FOR TAANSFORMATION WITH A 4 BALUN TO 50 :

FIGURE 23 FOUA PORT. TWO STAGE COMEINER USING

QUADRATURE HYBRIDS

The quadrature hybrid has two input ports, each of equal amplitude but one is 90 -degrees out of phase relative to the other. Four-phase combining of four amplifier modules is feasible using two quadrature hybrids and a 180-degree combiner.

The quadrature hybrid is constructed by using "all-pass"
networks and a wideband hybrid as shown in the block diagram of figure 24. Two all-pass networks are required; one for 0 -degree (reference) phase shift and the other for 90 -degree phase shift relative to the reference output. The absolute phase shift across an all-pass network changes with frequency, however, the two networks are designed to maintain a constant 90 -degree phase difference between their outputs as the input frequency to both networks is varied.

figure 24 block diagram of a quadrature combiner

The all-pass networks may either be balanced or unbalanced circuits. Typical circuit topologies for both are shown in figure 25. Note that the mutual coupling in the untajanced network must be negative and of a precribed value.

Typical Performance Characteristics of HPM Product Line

MODEL	FREQUENCY RANGE	GAIN	POWER OUTPUT (1dB GAIN COMPRESSION	DC POWER
HPM 501	5-500	10 dB	1.5 Watts	+24V . 6 A
HPM 505	10-500	8 dB	6 Watts	+24V1.2A
HPM 1002	20-1000	9 dB	3 Watts	+24V . 8 A
HPM 2000	50-2000	$1: d B$. 25 Watts	+15 . 3 A
HPM 2001	50-2000	10 dB	1.5 Watts	+15 . 75 A

FIGURE 7

Connectorized HPM Enclosure with Capability for 3 TO-8 Siyle Amplifiers

FIGURE 25. TYPICAL ALLPASS NETWORK TOPOLOGES

Both circuits exhibit difficulties in practical implementation. The balanced lattice network may require long leadlengths and possibly a balun transformer for interface to an unbalanced hybrid. It requires more components than an equivalent unbalanced network and the component values must be closely matched to achieve low VSWR across the design bandwidth.

Implementation of an unbal anced all pass network allows shorter lead lengths and eliminates the balun transformer. It requires fewer components than an equivalent balanced al; pass network. No closely matched component values are required,
however, an exact amount of mutual coupling is required between two inductors.

The quadrature hybrid offers three advantages over the in-phase and 180-degree hybrids when used as an output combiner in solid state wideband power amplifiers. The third harmonic and certain other odd order harmonics cancel in the output port and add in the bridging resistor. The all pass phase shift networks and the basic combiner specifications must hold up to the frequency of the highest harmonic of concern to achieve this in practice. For example, the all-pass networks must provide the 90 -degree phase difference up to at least 90 MHz in order to cancel the third harmonic of a 30 MHz fundamental signal in the hybrid's output.

RF power flowing into the output port of a quadrature hybrid will split, go through the all pass networks, partially reflect at the signal source impedance, go back through the all pass networks, and cancel in the output port and add across the bridging resistor. This is happens whether the power flowing into the output port is the result of a mismatched load or coupling from an adjacent transmitting antenna. The result is the combined power amplifier output behaves as though it has a matched source impedance. The situation of reverse power flow from adjacent transmitter coupling is especially impertant since the two signals cross modulate each other in the active devices. The
intermodulation products caused would be radiated along with the desired signal. The quadrature hybrid will cancel some of these "backdoor" IMD products in it's output port by terminating the energy in the bridging resistor.

Two wideband linear power amplifiers, combined with a quadrature hybrid, will exhibit nearly constant gain under varying load impedances (varying VSWR). The ratio of input power into the quadrature hybrid splitter to the forward power out of the quadrature hybrid combiner will be nearly constant in contrast to the same situation using in-phase or 180-degree hybrids.

Techniques for wideband RF power transformers, combiners, and splitters have been presented with emphasis on topology. Various types of transformers and combiners were examined and classified. Examples of each were presented in pictorial form, schematic, and equivalent circuit in an effort to bridge the gap from theory to working hardware. A rich variety of combinations of the basic transformers and combiners are possible though not covered here. It is hoped that a more complete understanding of the basic types presented here will enable the reader to produce more sophisticated designs.

BIBLIOGRAPHY

1. Badger, G., "A New Class of Coaxial-line Transformers", Ham Radio, Part 1 Feb. 1980, pp. 12-18; Part 2 Mar. 1989 , pp. 18-29.
2. Benjamin, J.A., "Use Hybrid Junctions for more VHF Power", Electronic Design, Aug. 1, 1968, pp. 54-59.
3. Bruene, W.R., "Quadrature Hybrid Behavior When Used as a Power Amplifier Combiner", Rockwell International Working Paper, Feb. 27, 1980.
4. Burwasser, A.J., "Wideband Monofilar Autotransformers", ReF. Design, Part 1 Jan./Feb. 1981, pp. 38-44, Part 2 Mar./Apr. 1981, pp. 26-29
5. Burwasser, A.J., "Taking the Magic Out of the "ragic Tee"n, R.F. Design, May/June 1983, pp. 44-60.
6. Granberg, H.O. "Broadband Transformers and Power Combining Techniques for RF", Motorola Application Note MJ-749, 1975.
7. Granberg, H.O., "Combine Power Without Compromising Performance", Electronic Design, July 19, 1989, pp. 181-187.
8. Granberg, H.O., "Four MOSFETs Deliver 600 W of PF Power", Microwayes \& RF, Jan. 1983, pp. 89-91 \& 120.
9. Krauss, H. L. \& Allen, C.W., "Designing Toroidal transformers to Optimize Wideband Performance", Electronics, Nug. 16 , 1973, pp. 113-116.

DESIGN CONSIDERGIIONS EOR Q 1 KW L L EGND RGDGR MODULE

Orville pearce
Microwave Modules and Devices 550 Ellis Street
Mountain View, CA 94043

INTRODUCIION

Completely solid-state transmitters for very high power radar systems, such as the SPS-40, PAVE PAWS, or TPS 59 have clearly demonstrated several advantages over tube equipments

- Overall reliability is greatly improved.
- Eystem dewn time is decreased.
- Individual modular amplifiers can be replaced while the radar continues to operate.
- Very wide operational bandwidths are easy to achieve.
- Modular solid-state transmitters are ideally suited for phased array systems.

Even though the first solid-state radar systems were significant steps forward in the state-of-the-art, many areas can still be improved further. Microwave Modules (Devices (MMD) has found that an integrated technology approach to the modular amplifier design offers Eignificant performance improvements.

MMD's integrated approach includes eptimization of the design of the transistor die, device packaging, and special matching components targeted for the specific amplifier program. Areas where performance improvemerits can be the most dramatic usirig this integrated approach ares

- Higher power output per module.
- Reduced module cost arid improved manufacturability.
- Amplifier efficiency
- Module reliability.
- Ease of combining large numbers of amplifier modules.
- Thermal mariagement.
- Significant increases in power output per cubic inch of module volume.
- Amplifier bandwidth.
- Harmonic reduction.

This paper will address some of these important performance areas as they apply to the design of the new MMD AC-1214-1000P LBand radar modular building block. Performance improvements push the state-of-the-art forward and make solid construction of multikilowatt transmitters more practical than ever. A summary of the performance of the MMD AC-1214-1000P is shown in Table 1. QMPLIEIER ARCHITECIURE

The 1 KH amplifier architecture (Fig. i) is a modular structure with commonality that centers around aell designed 350
10. Lefferson, P., "Twisted Magnet Wire Transmission Line", LEEE Transactions on parts, Hybrids, and Packaging, Vol. PHP-7, No. 4, Dec. 1971, pp. 148-154.
11. Lewis. W.A., "Low-Impedance Broadband Transformer Techniques in the HF and VHF Range", Collins Radio Co. Working Paper, July 1, 1965.
12. Munk, P.R. \& Sartori, E.F., "A Theoretical and Experimental Study of Transformer Balance ${ }^{n}$. LEEE Transactions on parts, Materials and packaging, Vol. PMP-4, No.1, Mar. 1968, pp. 12-21.
13. Nagle, J.J., "High-performance Broadband Balun", Ham Radio, Feb. 1980, pp. 28-34.
14. Nagle, J.J., "Testing Baluns", Ham_Radio, Aug. 1983, pp. 30-39.
15. Pitzalis. O. \& Couse, T.P.M., "Broadband Transformer Design for RF Transistor Power Amplifiers", US Army Electronics Command, ECOM-2989, July 1968.
16. Ruthroff, C.L., "Some Broadband Transformers", IRE Proceedings, Vol. 47, August 1959, pp. 1337-1342
17. Sevick, J., "Broadband Matching Transformers Can Handle Many Kilowatts", Electronics, Nov. 25, 1976, pp. 123-128.
18. Waight, M., "Report on Quadrature Hybrid Investigation Aug. 1985", Unpublished.
watt, builoing block, sub-module. A basic driver module delivers power to a single sub-module which then orives an array of four sub-modules via a 4 -way divider. The sub-modules are ther combined through a 4-way combiner and that output is put through an isolator for USWR protection of the amplifier.

SUBEMODUL톤

The sub-module uses two separate transistors that re thermally independerit. These two transistors are interconriected in a parallel configuration. Figure 2 illustrates the structure of the MMD sub-module. This block is optimized for use as a wideband power amplifier with 50 ohm interface impedance levels. As a result the sub-module becomes an easy to use building block throughout the amplifier. Some of the features of the MMD submodule are listed in Table 2 and a performance summary is shown in table 3. To realize high performance, RF power module lsee Fig. 3 , that is reliable and reproducible, the design should start at the chip level and builo from there. The oesign of the electrical and mechanical interfaces of the chip with the rest of the module are erucial to the final electrical performance and the long term reliability of the module. Starting a state-of-the-art module design using off-the-shelf RF power transistors often limits both performance and reliability. Following initial electrical ship interfacen, the wideband impedance matehing circuitry must be configured.

PERFORMANCE OF MMD'S AC-1214-1000
1 KILOWATT L-BAND MODULE

PDWER QUTPUT: $\quad 1000$ WATTS MIN. FREQUENCY RANGE: $1 . e$ TO 1.4 GHZ POWER INPUT: 1 WATT EFFICIENCY: 2OX MIN PULSE WIDTH: 10 USEC DUTY CYCLE: 5x OPERATING VOLTAGE: 45 VOLTS RISE TIME: $2 O O$ USEC MAX. FALLTIME: 200 NSEC MAX. DROOP: . 5DB MAX

Table 1

EEATURES DE MMD
SU토 Mㅡ맨ㄴㄷㅗ

- 2.0:i USWR IN AND OUT
- SMALL SIZE
- EASY TD MANUFACTURE
- CONSIStent electrichl performance
- WIDE BANDWIDTH AT HIGH POWER

Table 2.

PEREDRMANCE QE MMD 3 STQ WAII

POWER OUTPUT:	350 WATTS MIN.
FRQUENCY RANGE:	1.20 TO 1.40 GHZ
GAIN:	7 DB MIN
EFFICIENCY:	$40 \times$
PULSE WIDTH:	10 J SEC
DUTY CYCLE:	5π
DPERATING VOLTAGE:	45 VOLTS
RISE TIME:	75 NANOSECONDS (SEE FIG 11)
FALL TIME:	40 NANDSECONDS (SEE FIGURE 11)
PULSE DRODP:	0.2 DE

Table 3.

Two approaches to the sub-module electrical desion were considered; the first, was a push-pull corifiguration, arid the second, a parrallel corifiguratior. The push-pull desigr, has the advantage of reduced even harmonics arid higher inout and output impedances at the device level, but the disadvantage if increased size and complexity. The parallel transistor desigr has the disadvantage of higher even harmonics and lower input arid output impedances at the transistor, but parallel transistor configuration has advantages of smaller size and reduced complexity. Since two of the prime corisiderations were small physical size ard large production quantities, the parallel transistor configuration was chosen for the sub-module design. Even harmonics can be dealt with without much difficulty because of the $15 x$ bandwidth. The microstrip circuit design used for matching the devices is a simple low pass ladder-type network which is straight forward to design and construct. Since the input and output (load conjugate) impedances of the device are quite similar (and both are inductive), the matching circuit is basically the same for both input and output.

First, a simple ladder network is designed to match the impedance of one device referenced to ground lload. Figure 4 illustrates simple "pi" type match from the device impedance to 15 ohms. Next, the two single ended matches are parallel to give 7.5 ohm impedance. The 7.5 impedance is then transformed to 50 ohms with a 20 ohm transmission line of the appropriate length as

CONSIDERATIONS

Gary Franklin
Applications Engineer Hewlett-Fackar San Jose, Ca.

INTEGDICTION
The purpose of this paper is to present an overview of the advantages and disadvantages of some common bias circuits. Resistive, diode, and active bias circuits will be examined and rompared as to how well they stabilize the transistor bias point aqainst $D C$ parameter changes caused by temperature and device-todevice variations.

GIAS FOINT STARILITY
Before examining the bias circuits, let's look at some of the reasons for being concerned about biss stability. Figure la shows a transistor biased for Class A operation which is not stabilized against DC parameter changes. Increasing temperature shifts the bias point further to saturation (Fiqure 1b), while decreasing temperature shifts the bias point closer to cutoff (Fiaure (c). lemperature extremes calised the transistor's DC parameters to change which resulted in the shift of the bias point. In the above example the shift in the bias point was large enough to cause unwanted distortion in the output signal. Figure 2a and $2 b$ show that both gain and noise fiqure of a bipolar transistor are also a furiction of the collector current.

Bias point shifts caused by temperature are not concern. The DC parameters also chanqe due to devicevariations. The DC current gain of microwave bipolar tr can vary over a ranae of 5 , 1 and still be wit manufacturer s electrical specification at 25 degrees means that a shift in the bias point can be c temperature and device-to-device variations. Obviously circuit that can minimize these bias point shifts is di The first step in understanding how to stabilize the bi. is to identify the DC parameters which affect the bias 1 most and how these parameters respond to temperature var

TEMFERATURE SENSITIVE DC FARAMETERS

The principal dependent variable in DC stability arn the collector current ($\left.I_{C}\right)^{[1,2]}$. The following DC nar which are shown in the equivalent circuit of figure temperature sensitive and directly influence the current.

Base to Emitter Voltage (V_{PE}.):
$U_{E E}$ is internal to the transistor and has a
temperature coefficient of 2 mb /deqree C. Figure 4
temperature characteristic of this parampter.

Reverse Collector Current. ('cRo):
${ }^{I}$ ran is the curnent flowing thr ounh the reversed th
shown in Figure 5. Care must be taken with the DC feed design for the best rise time performance, particularly or the input (emitter) side. The feeds should be connected to the lowest possible RF impedance point and have orily eriough inductance to avoid circuit detuning. As can be seen in figure 5 , the $D C$ feed on both the input and output circuits are connected where the transistor matehing networks are paralleled. This is the lowest impedance point where a singie inductor can be used. As a result the inductance used to comnect into these feed points can be kept to minimum, thus minimizing the rise time the rise time of the intrinsic transistors is less than 10 nanoseconds).

The mechanical chip interface is a primary reliability consideration. A major design goal of the modules is to minimize the thermal resistance between the chip and the baseplate. The lower the thermal resistance, the cooler the chip operates and therefore the greater the reliability. The sub-module configuration uses two active areas that are physically separate to better distribute the heat, resulting in lower active area temperaures and improved reliability.

When attempting to design a basic system building block, the ideal is to make all RF connections at the 50 ohm impedance level which is compatible with the system $Z 0$.

By using the sub-module as a building block, the appropriate corifiguration of blocks can be arranged to construct the 1 K.W amplifier as shown in fig. 1.

IRANSISIOR DIE SELECIION

The heart of ary solid-state amplifier design is the semiconductor die and much attention must be paid to this area.

Four basic types of power semiconductor die are available for use at this frequency:

- GaAs MESFET
- Silicon vertical MOSFET
- Silicon Junction FET or SIT
- Silicon Bipolar

Gals MESFETs are horizorital structures with all three terminals (gate, source, and drain) on the top surface. This creates a major problem with large high power devices for both surface interconriect metallization complexity and device wire bonding. Also Gafs material has a high thermal resistance compared to silicon as well as numerous crystal defect problems that result in very low yields for large area, high power devices.

[^0]```
junction of the collector to base. Classically, this leakage
current is expected to double for every 10 degrees C
temperature rise in a silicon semiconductor junction. The
leavage current for silicon is so low that under most
conditions this parameter can be negected.
```

DC Current Gain. ( $h_{\text {FE }}$ )
The $h_{F E}$ of a transistor is defined as the ratio of the
collector current to the base current. This parameter
typically increases linearly with temperature at the rate of
$0.5 \%$ degree $C$.
STABILITY FACTORS

Eefore we proceed to examine the bias circuits, it in useful to introduce the concept of stability factors. The etabiliy factors are defined as the ratio of the incremental change of ${ }^{1} c$ vs the incremental chanqe of each of the three componente 'CBO' $v_{B E}$, and $h_{F E}$. The stability factor equations are given below.
${ }^{1}$ CRO STAEILITY FACTOR

$V_{\text {EE }}$ STAEILITY FACTOR
$S_{V E E}=\frac{{ }^{\partial} I_{C}}{\partial V_{E E}} \cdot 1 h_{\text {FE }}, I_{C E O}=$ constant
$h_{\text {FE }}$ STABILITY FACTOR


The total change in collector current can be expressec of each incremental change caused by ${ }^{1} \mathrm{CBO}, \mathrm{V}_{\mathrm{EE}}$, and t

$$
{ }^{\Lambda_{C}}=S_{I C B O}{ }^{\Lambda_{1}}{ }^{C B O}+S_{V E E} \cdot \Delta V_{E E}+S_{\text {hFE }}{A h_{F E}}
$$

Unfortunately, the stability equations can be complicated even for a simple bias circuit such as th in Figure 5. The equation of Fiqure 5 can be easily di computer, but it doesn't help the designer gain any i selecting component values or in maling circuit $c$ Fortunately, the following approximations can helps stability equations:

* Neglect ICEO When using silicon trangistors. AE stated, the leakage current for silicon is typic that neglecting ICRO will have negligible effe accuracy of the stability equations.
* Drop the hie term, which is the hybriopi inpu for common emitter configuration. The e::tern resistance is ustially murh greater than hie, and the hie term will not upset the accur acy of the
* Assume that $h_{F E} \gg 1$ then $\left(h_{F E}+1\right.$, simplifie' The stability factor $S_{\text {bFE }}$ can be e::pressed as a percent in ${ }^{1} c$ vs a percentaqe change in $h_{F E}[3]$. The new $v i$ defined as frie . The same procedure is used to define
and/power transfer problems at L-Band. Several lower capacitance MOSFET designs have been arinounced but none has yet to be proven repeatable, manufacturable and reliable. Junction FETs (ar SITs) presently available are not useful for 500 MHz because gain and efficiency are too low and the output capacitance is too high. Some new design concepts show promise, particularly for higher voltage operation but production quantity devices are not available.

This then leaves the silicon bipolar device, which in fact, proves to be an excellent solution. Recent processing technology improvements combined with new die geometries have resulted in large signal ft's of over 5 GHz from $h i g h$ power L-band devices.

Two basic types of silicon bipolar oie configuration are available for pulse operation at l-Band. Die A (Fig. 6A) has two large base areas perpendicular to the inputfoutput die bonding.

The common lead is bonded down the centerline of this die. The input bonding is stagpered from front to back, alternating between the common lead bonds. Die B has many maller base areas (Fig. 6B) wich are arranged parallel to the input/output bonding. Both input and common lead bonds are arranged in an alternating pattern down the center lime of the die.

Also to be chosen was the device terminal to be used as ground (common base vs common emitter). For both die types, common base is preferred due to higher gain arid better thermal sharing over the device surface during pulse operation at these frequencies.

Advantages of die $A$ ares

- More base area land therefore emitter perimeter for power capability) per mil of die length.
- Better out put capacitancelpower ratio 10.4 pF/watt US 0.5 pf/watt for die B)
- Fewer bond wires.


## Disadvantages of die A are:

- Unsymmetrical input (emitter) bonding and wide (7 mil) base cells restrict upper frequency response.
- Limited pulse width/duty factor capability 1100 use $5 x$ maximum)

Advantages of die B are:

- Narrow die and numerous base bond wires give very low commori lead inducture for improved ruggeones.e. stability, input/out put isolation, efficiency, and upper capability.
- Spread base cell designallows operation from short pulse to CW oue to better thermal balance.

The stability equations for the previous example ( Figure 5 ) now simplify to the following


The simplified stability factore are easier to hande and it is now apparent that increasing the $R_{C} \mathbf{C}^{\prime} R_{B}$ ratio will decrease KhFE and improve collector current stability againet hfe changes. We now have the tools to examine the bias circuits.

RESISTIVE RIAS CIRCUITS

* 「ined Bias

The fixed bias circuit shown in Figure 6, is the simplest and one of the worst methods of biasing a transistor because it has a very high sensitivity to hre variations. Notice that KhFe ie unity, which means that a $20 \%$ change in hfe will result in a 20 \% change in collector current. Since $h_{f E}$ can vary by as much as 5:1 from device to device, the transistor could be at cutoff with one device and at saturation with another. The base current, which is fixed by the voltage difference between the supply voltage and $V_{\text {PE }}$., is the cause of the poor bias tability. If
the base current were made to decrease with increasing increase with decreasing hfe the bias stability woul, greatly, which exactly describes the operation of circuit.

* Voltage Feedback Bias

The voltage feedback bias circuit shown in improves bias stability by allowing the base current ts to changes in the collector current. If the collector increases, the voltage drop across $R_{C}$ increases which r a lower collector to enitter voltage ' $V_{C E}$ '. Since current is set by the resistor $R_{B}$ and the voltage diffe $V_{C E}$ and $V_{\text {PE }}$, a lower $V_{C E}$ decreases the base curre stabilizes ${ }^{1} C$ to a current closer to the quiescent bia The circuit will handle a decrease in ${ }^{1} c$ in a similar m

A circuit designed with ${ }^{1} c=10 \mathrm{ma}, V_{C E}=10 \mathrm{~V},{ }^{\mathrm{V}} \mathrm{C}$ $h_{\text {FE }}=50$ results in $t_{\text {MFE }}=0.826$. This means that the current will change by $82.6 \%$ of the change in $h_{\text {fe }}$ as co the $100 \%$ change that would be expected from the fi circuit. This is approximatelv a $17 \%$ improvement over bias circuit for this set of conditions. The thFE factor sliows that increasing the $R_{C} / R_{B}$ ratio decre. sensitivity of ${ }^{I} C$ to $H_{F E}$ changes. A small value of $\boldsymbol{R}_{\mathrm{F}}$ the $h_{F E}$ stability, but it isn t alway easy to qet a smal of $R_{E}$. A smaller effertive value of $R_{F}$ is possible te

Disadvaritages of die $B$ are primarily related to a slightly more complex structure to manufacture arid assemble.

## TRANSISIOR PACKAGING AND INTERNAL MATCHING

Three types of device internal matching were considereds

1) single ended, using double input and paralls output resonance matchirg (Fig. 7); 2) single ended, single input match (Fig. 4); and 3) the split push-pull using a single input match (Fig. B). The high impedances of the more complex single ended device at least equalled using the four times impedance increase of the single input matched device when split and used push-pull. The disadvantages of the output matched construction must also be considered.

- The series resonance of Li and Ci (Fig. 7), typically just below the low end of the band (about 1.1 GHz ) causes serious oscillation problems when fast rise/fall times are employed. This usually shows up as a "noisy" spurious signal at 1.1 GHz only 20-30 dB down or as a distortion "glitch" on the detected pulse turn-off slope.

The parallel tank circuit of the output match causes major output signal phase shifts when the device output capacitances change. This "phase modulator" effect can cause phase noise and power combining problems. The
output capacitance is, unfortunately, a furiction of many things iricluding voltage, power level, temperature, and die manufacturing variatioris.

- Failure of the DC blccking capacitor (C1) has historically been a reliability problem with this type of output matchirig structure.

Of the three internal matching techniques considered for the transistors, the single ended input matched device was choser, because it was the least complex, both internal to the transistor package and to external circuitry. It would also yield the smallest module size. The single input match choser will sacrafice some bandwidth and an increase in even harmonics. Typical performance of aingle transistor is shown in Table 4 .

The die of each transistor is packaged in the BeO ceramic cavity shown in fig. 9. Note the very wide inputloutput leads for low inductance of those interfaces. This allows low "Q" device impedances for good broadband performance when shunt tuned and operated into the matching networks. The leads are "captive sealed" between the device lid and the single layer ceramic ring for improved lead strength. Co-fired multi-level ceramic ring packages with exposed, non-captive leads were avoided due to high lead inductance and numerous lead failure problems. 40 mil thick
emitter resistor feedbacl circuit.

* Voltage Feerbact and Constant Base Current Source

The circuit of figure $g$ can be considered to have a constant base current source, formed by the resistor network of $R_{B}$, $R_{A l}$ and $R_{R 2}$. The collector current can be made relatively stable if ${ }^{1} \mathrm{FR}$ is chosen to be much greater than the transistor base current ${ }^{1} \mathrm{R}$. A good choice, somewhat arbitrary, is to pick $\mathbf{1}_{\mathrm{BB}}=5 \mathrm{I}_{\mathrm{B}}$ to $10 \mathrm{l}_{\mathrm{p}}$. A value greater than $10 \mathrm{I}_{\mathrm{B}}$ gives little improvement in stability.

* Emitter Resistor Feedback

The bias circuit of figure 9 is one of the best methods of biasing a transistor. The circuit operates in the following manner. When the collector current and therefore the emitter current increases, the voltage drop across $R_{E}$ increases. The polarity of this voltage opposes the forward bias voltage between base-to-enitter. The reduced $V_{B E}$, decreases $I_{B}$ and therefore ${ }^{1} C$, which stabilizes the collector current closer to its initial value. The stability factor ( $\mathrm{KhFE}^{\prime}$ for this eircuit i= 0.169 when calculated using the design values previously given for the voltage feedbact circuit, and ${ }^{1}{ }^{\mathrm{BB}}=5 \mathrm{I}_{\mathrm{E}} \mathrm{A} \mathrm{K}_{\mathrm{hFE}}=\mathbf{0 . 1 6 9}$ represents a considerable improvement in stability over the previous circuits.

The $V_{\text {RE }}$ stability factor for this circuit is:
$S_{V R E}=\frac{-1}{R_{E}}$ (assuming $R_{E}>\frac{R_{B} \text { ) }}{h_{F E}}$
Thi: equation implies that, the larger the $R_{E}$, the stability against $V_{\mathrm{BE}}$ variations. There is a limit $R_{E}$ can be, since the voltage drop across $R_{E}$ * excessive. The next circuit examined 1 diode compensation) presents a method of stabilizing aç temperature variations without resorting to large $R_{E} v$

The enitter resistor feedback circuit does requi RF considerations which are covered in detail late paper.

- Diode Temperature Compensation

The emitter-base voltage has negative dependence of about 2 mv / degree C , which can be comp introducing diodes into the voltage divider network: a Figure $10^{[4,5]}$.

The calculated stability factor for this circuit $1 / 5.65 R_{E}$, which is a 5.65 times improvement over ti feedbact circuit of Figure 9. The above calculation was the design values from the voltage feedbacl enample, é compensation was done with a single diode that had a $t$ characteristic identical to the transistor emitter-basf

* Zener Diode Elas

The 7ener diode shown in riaurp il determines the

Beo ceramic is used for the package substrate for improved thermal resistance.
Frequency - 1.2 to 1.4 GHz
Pout - 200 Watt
Gain - $\quad 7.0$
Efficiency - $45 x$

TYPICAL TRANSISTOR DATA
Table

## THERMAL CONSIDERAIIONS

Many variables effect the junction temperature of the devices used in the amplifier, including:

- amplifier efficiency and output power
- pulse width/duty factor
- die thermal response time
- die thermal balance ("not spots")
- overall module baseplate temperature
- die to baseplate thermal resistance

[^1]C baseplate temperature will degrade to 0.5 at elevated temperature. A droop of 0.5 of at 30 degrees $C$ will degrade to more than 1.0 at elevated temperatures. Dreop of ever 1 d 15 usually an indication of excessive junction temperature. The ultimate thermal test of any amplifier is a scan of all amplifier die with an infared microscope under actual operating conditions. Typical requirements might ba maximum junction temperature of 140 degrees $[$ with a baseplate temperature of 85 degrees $C$. Thermal scans for pulse widths less than 5 usec are difficult due to risetime limitations of infared sensors, but are essential for verifying reliable amplifier design and construction.

## RIVIDER $C$ COMEINERS CONSIDERRTIDNS

To achieve the required 1 KW output power, four of the submodules must be combined, therefore a divider and combirier must be designed. Two basic types of combining schemes were considered; 1) the Hilkinson combiner and; 2) 90 degree 3 dB hybrid.

Advantages of a Wilkinson divider/combiner

- Excellent amplitude balance.
- Excellent phase balance
- Easy to manufacture basic circuit
- Low insertion loss
- Good port to port isolation
to base voltage $V_{C B}$ of the transistor. The collector to emitter voltage $V_{C E}$ is fixed by the sum of $V_{B E}$ and the zener diode voltage ${ }^{( } V_{Z}$ '. The current through $R_{C}$ divides between the transistor and $D_{1}$. Temporarily ignoring the current through $R_{B}$, the only current flowing through $D_{1}$ is the base current of the transistor. Most of the current flows through the collector an 'C. If the $h_{\text {FE }}$ is low, the current through $D_{1}$ will increase accordingly. However, if $\mathrm{M}_{\mathrm{FE}}$ is high, the current through $\mathrm{D}_{1}$ is low and the regulation as a Zener is poor. Therefore, $R_{p}$ is added to the bias circuit to ensure that enough current flows through the zener for good voltage regulation ${ }^{[6]}$.

This circuit is more stable than the voltage feedback circuit, but the zener diode is nossy and may require a large value bypass capacitor to prevent the Zener soise from mortulating the amplified RF signal.

- Active Ras Circuit

An active bias circuit is shown in figure 12, which uses a riNF transistor $\left(\mathrm{O}_{2}\right)$ to help stabilize the bias point of the RF transistor ( $\mathrm{O}_{1}$ ). The transistor $\mathrm{O}_{2}$ acts as a DC feedback circuit that senses the collector current of $O_{1}$ and adusts $O_{1}$ base current to hold the collector current ${ }^{1} \mathrm{C}_{1}$ constant. The circuit operates in the following manner. It ${ }^{1} \mathrm{c}$, increases, the voltage dron across $\mathrm{F}_{\mathrm{C}}$ increasea and opposes the forward bias of the FNF transisfor which decreases IE2. The decrease in lez causes Ica
and $I_{B_{1}}$ to decrease. The lower base current into $O_{1}$ dec which opposes the original increase in the collector cu

The collector current equation for the fF tran shom in Fioure 12. Notice that if $\left(1+h_{\text {rei }}\right) R_{C}$ 'fez', then the collector current is essentially indei the DC current gains of either of the transistors detailed analysis of this circuit is available literature ${ }^{[7]}$.

The active bias circuit has the best stability of circuits examined, but does renuire the most parts. transistor does form a feedbact circuit. which must he RF bypassed to prevent bias oscillations.

## EMITIER RESISTOR EVFASS

The emitter resistor improves bias stability throud of neqative feedback which is desirable at $D C$, but no frequencies. The $f F$ gain will be refuced if the resist FF bypassed. Hypassing the emitter resistor does ref special precautions to prevent possible oscillations.

First, the emitter bypass capacitor must be larqe. nrovide an effective Rf ground at both the design frequll lower ireguencies. The Smith Chart of figure 13 shows fl on the transistor S-par ampters when the bunass capacitor ton small. ©hanges in the transistor $S_{11}$ and $S_{22}$ oar ame

Disadvantages:

- No USWR isolation the divider.
- No reduction in back IMDs at combiner.
- Difficult to reduce ar eliminate the effects of the capacitanc of isolation resistor.
- Small size can be difficult to achieve and still haride high power.

Advantages of 90 degree 3 di hybrid:

- USWR isolation at divider.
- Reduction in back IMDs at combiner.
- Improvement in harmonics.
- 50 ohm terminations are required therefore, capacitance of termination is less of a problem.
- with proper design amall size can be achieved.
- Low insertion loss.
- Good port to port isolation.


## Disadvantage:

- Amplitude imbalance.

There are several 90 degree 3 dB Hybrid configurations (brareh line, backward wave, rat-race, wireline, etc.l, but because physical size is of paramount importance the sage tightly coupled wireline coupler was chosen. Fig. 10 shows the typical
imertion loss of wireline coupler and how the amplitude balance
is typically less than 0.2 dR over the frequericy bend of 1.2 to 1.4 BHz . Fig. il is plot of irisertion loss versus frequericy of - 4-way divider/combiner the amplitude balance betweer, ariy of the four ports is less thar, 0.6 dB peak-to-peak. The physical size is $1.0 \mathrm{~W} \times 4.00 \mathrm{~L} \times .30 \mathrm{H}$ for the 4 -way combiner including two of the three isolation termination the output isolation termination is mounted to the bottom of the amplifier housirig for better heatsinking).

A combiner and divider were coupled back to back arid insertion, loss measured and the data is shown infig. 12. Which shows the insertion loss to be less than. $B$ dB for a divider and combiner connected back to back.

## LDW LEVEL RRIYER MODULE

The block diagram for the oriver is shown in fig. 13. There are three stages that make up the oriver plus two attenuators. The 2.0 dB attenuator at the input of the driver is for reducing the drive to the first stage for overdrive protectionarid input VSWR improvement. The second stage provides the power to drive the third stage to approximately 100 watts. The 2.0 dB attenuator at the output of the third stage provides VSWR isolation between the output of the driver module and the input of the 350 watt sub-module driver stage. The performance of the
shown on the Smith Chart as $\mathbf{S}_{11}$ ，and $\mathbf{S}_{22}$／．A good RF bypase capacitor should cause little or no effect on the s－parameters． Both $S_{11}$ and $S_{22}$ at 4 GHz remains unchanged after the emitter resistor and 100 pF capacitor ar added，but move off the smith Chart as the frequency decreases．Reflection coefficients greater than 1 indicate conditional stability and are likely to oscillate．A value of 1000 pF would be much better bypase capacitor value．

The second precaution is to minimize the inductance added in the emitter caused by the resistor and capacitor parasitics．The Smith Chart of Figure 14 show the effect of emitter inductance on the transistor＇s S－parameters．Inductance in the emitter can potentially cause conditional stability．In this case，a rather large value of 5 nHy was selected to illustrate the effect．At a frequency of $4 \mathrm{GHz} \mathbf{S}_{\mathbf{2 2}}$ ，has moved off the Smith Chart which indicates that the circuit is conditionally stable．

An effective RF bypass of the emitter resistor is a relatively straightforward procedure as long as the above precautions are taken．

## SUMMARY

This paper has show that bias stability is more a function of the bias circuit design than of the transistor＇s characteristics．The RF and bias circuits should be designed with equal consideration，since the RF performance of an amplifier was
shown to be dependent on the bias stability．

## REFERENCES

1．Fhilip Cutler．＂Electronic Circuit Analysit＂．Vol． 2. McGraw－Hill 1967．Chapters 4－11，pp．220－220．

2．Hewlett－Packard Application Note 944－1．＂Microwave Transistor Bias Considerations＂

3．Albert Malvino，＂Transistor Circuit Approximations＂．McGraw Hill Book Company，196日，pp．202－234．

4．G．J Ritchie，＂Transistor Circuit Techniques，Discrete and Integrated＂，Van Nostrand Reinhold，19日3．pp．日2－84．

5．D．Schilifng，C．Belove，＂Electronic Circuitsi Discrete and Integrated＂， 2 nd Edition pp．190－192．
6．J．H．Reisert，Jr．，＂Ultra Low－Noise U\＃F Preamplifier＂，Ham Radio Magazine，pp．日－19，March 1975.

7．Ralph Carson，＂High Frequency Amplifiers＂，Wiley．1982，2nd Edition，pp．145－187．

| Freq. | 1.2 to 1.4 GHz |
| :--- | :--- |
| Pout | 70 watts min. |
| Piri | 1.0 watts |
| Ve | 45 volts |
| Ic | 9.0 amps (DK) max |

INDUT RETURN LOSS - 130 A max
IYPICAL PEREORMANCE RATA
LDW LEVEL DRIYER

## IGBLE 5

## LLOKW GMPLIEIER PEREDRMANCE

Table 6 is the tabulation of the performance of the 1 kW amplifier module for 1.0 watts input drive. It can be seen that the amplifier module meets or exceeds the design poal set down in Table 1.

## CQNCLUSION

Multikilowatt all solid state amplifiers are seeing increased popularity. With the availability of modular building blocks such as the 350 watt sub-module, these high power amplifiers are both practical and easy to assemble. The sub-module building block using an integrated design from the silicon out to the 50 ohm terminal can be totally optimized for specific program
requirenents. The module described above was targeted for narrow pulse width, (10 usec) low duty cycle ( $5 x$ ) apolicaticori. The same design approach and integrated tectriology can be applied to lorig pulse, high duty cycle applications as well. The practical realization of both parallel combining of transistars and 90 degree combining within the amplifier truly provides a wideband, reproduceable 50 ohm block that can be used to build multikilowatt systems.

| Freq. BHz | Pout W | $\underset{W}{P_{\text {in }}}$ | $\begin{aligned} & \mathrm{RL} \\ & \mathrm{~dB} \end{aligned}$ | $\underset{\text { Amps (Avg) }}{\text { Ic }}$ | Pulse Droop dB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.2 | 1148 | 1.0 | -20 | 4.4 | 0 |
| 1.3 | 1445 | 1.0 | -12 | 5.2 | -. 3 |
| 1.4 | 1175 | 1.0 | -16 | 4.2 | 0 |
| Vc $=45$ Volts |  |  |  |  |  |
| Duty Cycle $=4 \times$ |  |  |  |  |  |
| Pulse | idth 7 |  |  |  |  |

IYPICAL PEREQRMANCE DAIE 1KW L-BAND PDWER AMP.

Iable 6

FIGURE 1
FIGURE 2
A. RF GAIN $\left(\left|S_{21}\right|^{2}\right)$ VS. BIAS POINT

B. NOISE FIGURE VS.

BIAS POINT
 DECREASING TEMPERATURE, AND DISTORTION IN OUTPUT WAVE FORM

FIGURE 3

## PARAMETERS THAT DOMINATE

## CHANGES IN IC AND VCE

WHEN TEMPERATURE VARIES:

- Vbe'
(BASE TO EMITTER VOLTAGE)
- ICBO
(REVERSE COLLECTOR CURRENT)
- $h_{\text {FE }}$
(DC CURRENT GAIN)

DC TRANSISTOR MODEL

C. BIAS POINT SHIFT DUE TO



## FIGURE 4

COLLECTOR CURRENT VS. $V_{B E}^{\prime}$ AND TEMPERATURE

$\mathrm{V}_{\text {BE }}^{\prime}$-BASE EMITTER VOLTAGE (VOLTS)

FIGURE 5

EVEN FOR SIMPLE BIAS CIRCUITS THE EQUATIONS BECOME COMPLICATED


- $S_{h_{F E}}=\frac{\left.h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)\left(V_{C C}-V_{B E}^{\prime}+K_{C B O}\right)}{\left(h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)^{2}}$
$-R_{C}\left[\frac{\left.h_{F E}\left(V_{C C}-V_{B E}^{\prime}+K_{I_{C B O}}\right)+K_{I_{C B O}}\right)}{\left(h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)^{2}}\right]$
Where: $K=h_{I E}+R_{B}+R_{C}$
- GOT ALL THAT?


## FIGURE 6

## FIXED BIAS



- $I_{c}=\frac{h_{F E}\left(V_{C C}-V_{B E}^{\prime}\right)}{R_{B}}$
- $\mathrm{K}_{\mathrm{h}_{\mathrm{FE}}}=1$
- $K V_{B E}^{\prime}=\frac{1}{\left(1-\frac{V_{C C}}{V_{B E}^{\prime}}\right)}$

ADVANTAGE: FEW COMPONENTS,
DISADVANTAGE: INFERIOR TEMPERATURE STABILITY, LARGE Ic VARIATIONS


MMD 1.2 to 1.4 GHz 350 watt. SUB-MODULE
Figure 5

L-BAND DIE CONFIGURATIONS


SPLit Push-pull device matching



## FIGURE 9

Emitter resistor feedback

advantage veay siable when $h_{t i} R_{z}>R_{v}$. FEW PARTS disadvantage: added inductance caused ey ag and C

## FIGURE 10

DIODE TEMPERATURE COMPENSATION


- $\mathrm{s}_{\mathrm{V}_{\text {IE }}}=\frac{-1}{R_{\varepsilon}\left(1+\frac{\hat{R}_{E 1}}{R_{a z}}\right.}$
- $v_{E}=v_{\text {os }}-v_{0}$

$$
=\frac{R_{02}}{R_{81}+R_{02}} v_{c \mathrm{cc}}+\left[\frac{A_{81}}{R_{01}+R_{02}} v_{0}-v_{\mathrm{BE}}\right]
$$

- FOR TEMPERATURE

INDEPENDANCE OF $I_{c}$ VS V $V_{\text {eE }}$ THEN:

$$
\left[\frac{R_{D 1}}{R_{01}+R_{02}} V_{D}-V_{D E}\right]=0
$$

THEN:

$$
V_{E}=\frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{c c}
$$

advantage: stabllizes ic against var DISADVANTAGE: EMITTER NOT GROUNDED

USED FOR THE PUSH-PULL PAIR

figure 10

FIGURE 11

## ZENER DIODE BIAS



- $\mathbf{V}_{\mathbf{z}}=\mathrm{V}_{\mathrm{CE}}-\mathrm{V}_{\mathrm{BE}}^{\prime}$
- $R_{C}=\frac{V_{c C}-V_{C E}}{I_{T}}$
- $R_{B}=\frac{V_{B E}^{\prime}}{I_{B B}}$

ADVANTAGE: EMITTER GROUNDED MORE STABLE THAN WITH A RESISTOR IN PLACE OF THE ZENER
DISADVANTAGE: NOISY

## FIGURE 12

ACTIVE BIAS CIRCUIT

$-I_{C 4}=\frac{h_{E E 1}\left[\frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{C C}-V_{E E 2}^{\prime}\right]}{\left(1+h_{F E 1}\right) R_{C}+R_{B}\left(1+h_{E E 2}\right)}$ WHERE: $\mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{B}}, \| \mathrm{R}_{\mathrm{B} 2}$

- If $\left(1+h_{F E}\right) R_{C}=\frac{R_{B}}{\left(1+h_{F E}\right)} \quad$ THEN
- $I_{C 1}=\frac{h_{f E 1}}{\left(1+h_{F E 1}\right)}\left[\frac{\frac{R_{B 2}}{R_{B 1}+R_{B 2}} V_{c C}-V_{E E 2}^{\prime}}{R_{C}}\right]$
advantage: emitter orounded, very stable, LOW POWER CONSUMPTION
DISADVANTAGE: USES THE OREATEST NUM BE OF PARTS. LOW FREOUENCY OSCILLATIONS POSSIELE

FIGURE 13
EFFECT OF POOR EMITTER RESISTOR BYPASS


FIGURE 14
EFFECT OF EMITTER INDUCTANCE



Ficure 12
"THE POOR MAN'S ENGINEERING WORR STATION" "chear cad"

Richard B. Rolbly, PE

RF TECHNOLOGY EXPO 86
January 30 - February 1, 1986
Anaheim, Californía

THE POOR MAN'S ENGINEERING WORR STATION

$$
\begin{gathered}
\text { by } \\
\text { Richard B, Kolbly }
\end{gathered}
$$

Staff Engineer, Lockheed-California Company Post Office Box 551
INTRODUCTION
The current literature is full of discussion of the new "Engineering work Station" or facilities for Computer-Aided Design (CAD). The working RF design engineer reads of these devices with great anticipation, but soon realizes that these are beyond the normal means of a limited personal or engineering budget. Terms like "silicon compiler" and "gate array design" and "standard cells" are resplendent in the literature. Most working engineers probably will not design integrated circuits or semicustom integrated circuits. The purpose of this paper is to show that the working-level RF design engineer, on a limited budget, can provide an effective facility to simplify his engineering duties.

As a practical matter, few companies are going to allocate tens of thousands of dollars to individual engineers unless an immediate increase in productivity can be shown. It has been my experience that if a computer is not immediately available it loses a great deal of its functionality. If we have to sign up or go across the hall (or across the plantl) to use a computer, we are likely not to bother, and either rely on our experience or just "SWAG" it. Since most companies are unwilling or unable to supply a personal computer to each working engineer who desires one, it is up to each of us to provide our. own computational resources, just as we did with slide rules and calculators. This paper will show how to use the "low end" home and personal
computers to accomplish most of the computational tasks that are required. By using our experience and intelligence in an interactive manner, we can reduce significantly our design "work load" and produce better products in less time.

SOME DEFINITIONS:
Engineering workstation: A collection of equipment that allows the engineer to design and test circuits. For the purpose of this paper, the engineering workstation is a computer-equipped location where a design engineer will spend a significant portion of his work day.

Personal computer: A computer that is immediately available to an individual, of fairly low cost and relatively low processing power. This paper shall be limited to those computers that fall within the normal range of discretionary income for individuals, in general less that two thousand dollars.

Working engineer: The engineer whose primary task is to produce designs. This is the individual who does not have significant personnel or programmatic management duties. HARDWARE:

For purposes of comparision, lets see what hardware might be availble to accomplish our needs. Just as most of us have some form of personal transportation, we shall have to have some sort of personal "computing engine".

Similar to the small motorcycles, there are the "home computers", such as the Commodore 64's and the Atari 800xL. With a little judicious shopping, these can be found for less that a hundred dollars. Although these are definitely in the class of
"motorcycle" computers, they still have 64 kilobytes of memol and a built-in BASIC interpter. A low-cost computer is vei capable of doing sophisticated engineering analysis - includit using the Method of Moments to calculate wire antenna inpt impedance [l]. All of the examples in this paper can be modifit to operate on these little "home computers". such as the Atai with a minimum of effort.

A more typical "personal engineering computer" (PEC) coud be desicribed as having 64 K or more of memory, dual disk drive and operating under either the 8 -bit CP/M operating system or $t$ 16-bit MS-DOS operating system. A computer such as this wil represent an investment of something between $\$ 600$ and $\$ 200$ dollars, depending on how hard one is willing to shop. c course, it is possible to spend more, but the purpose of thi paper is to show how computers that can be purchased by a individual engineer or a tight departmental budget can $d$ significant work. SYSTEM SOFTWARE:

To operate any computer, you will need a certain amount o programs, or software. We have already mentioned the operatin system, in most cases either CP/M or MS-DOS (or one of thei close relatives). Between these two operating systems most o the personal computers are covered. This operating syste software is generally provided with the computer, and is used $t$ provide basic file handling and program loading.

In addition to the operating system or file handler, yo need some sort of 'translator'. Although for many years FORTRA was widely used, it is not as readily available for persona

THE BASICS OF R. F. POWER AMPLIFIER DESIGN

$$
\begin{gathered}
\text { Dan Peters, Preaident } \\
\text { Falcon Communications } \\
\text { P. 0. Box } 8979 \\
\text { Newport Beach, CA } 92658
\end{gathered}
$$

What I hope to do in this paper is to provide a basic idea of why RF power amplifier schematics look the way they do. The examplea used are solid atate 2 meter comunications amplifiera. A frequency high enough to illustrate some points and low enough to use discrete components. We won't cover transmisaion lines, cavities, etc..

With low priced personal computers and low cost design software, you have to be foolish not to be using a computer for your design work. However, I will intentionally ignore computer design programs. Design programs present an interesting paradox. If you are familiar with designing amplifiers, they allow great insight into an optimum design as they allow you to run through and compare many designs quickly. On the other hand, if you are not familiar with the design process, they can mask what is going on. I am assuming you wouldn't be listening to basic presentation, such aa thia, if you were already familiar with the design process and, hence, am ignoring computers.

We will not discuss " S " parameters, or the other tools for gain and stability calculations. Some people say such parameters are not useful for power amplifiers. I feel they are quite useful, but will not go into them in this paper. They are beyond the scope of this basic discussion and the subject is treated extensively in the literature $1,2,3,4,5$ on small signal amplifiers. The techniques are the same for power amplifiers.

And, wonder of wonders, I won't even mention the Smith chart (Although I think I just did).

To begin, what is an amplifier? For our purposes, an amplifier is an assembly of components using input RF power to convert a source of DC power into output RF power of greater magnitude than the input RF power. This is not a definitive definition, so don't worry about the nuances of the wording.

The important parts of a basic amplifier are shown in Figure 1. Let's take a few examples of typical amplifiers and build some schematics. We will start with a 146 MHz amplifier which we want to deliver 50 Watts into a 50 Om load, work off a 13.0 Volt supply, and use an FET as a grounded source amplifier.

First, lets consider the output network.
Using the basic $E=\sqrt{P R}$ (and incidentally, we are not going to use formulas that are much more complex than this), we find that to deliver 50 Watts to 50 Ohms, we must supply 50 Volts rms. Obviously, in order to get 50 volts rms from the 13.0 volt supply, the output network must act as a step-up voltage transformer. To state it a bit differently, the output network must transform the 50 Ohm load so that the transistor sees a lower impedance.

If we asaume the matching network includes tuned circuits of reasonable $Q$, the waveform of Figure 2 is is the maximum that we will see at the output (drain) of the FET. The output will swing from the supply voltage toward zero down to some minimum voltage limited by the transistor and will swing above the supply voltage approximately the same amount. If, for the sake of this example, we assume that $E_{s a t}$ is 3 Volts, we have a maximum voltage of 10 Volts peak ( 13 V . - 3 V .), or about 7 Volts rms . $E_{\text {rms }}=E_{\text {peak }} / \sqrt{2}$. To get our 50
computers as BASIC. In most cases, programs written in fORTRAN can be translated to BASIC with minimum of effort. The only snag in this process (well-known to RF designers) is the lack of COMPLEX data types in BASIC. If BASIC had complex data types, it would be a much more useful language for us. Usually BASIC has been provided with your computer - it might be called MBASIC, GWBASIC, BASICA, APPLESOFT BASIC, etc. but they all tend to be variations of Microsoft's MBASIC V5.2 which has become a de facto standard for small computer BASIC interpeters. By staying with the Microsoft BASIC and its variants, we are assured of:

1 - Ease of program modification and debugging.
2 - A high degree of portability between machines.
3 - A common data file structure that many programs can use.

So far we have discussed the "system software" that comes with each computer. We still cannot do any useful design work until we have applications software - those programs that actually calculate and display the information we use. Where are these programs coming from? As all of you are undoubtedly aware, RF design programs are not as popular as word processors. Yet there are many sources of low cost or free software that are directly applicable or easily modified to our needs.

Low- or no-cost software is avallable from a variety of sources. Most of the programs I use regularly in my duties as a practicing $R F$ engineer have been published in technical magazines. Rf Design Magazine is one of the better sources of programs. Other good sources include EDN, Ham Radio, Microwave

Journal, etc. The bibliography has several references. The important thing to remember is (to quote Tom Lehr) - "let nothing escape your eyes..." Read or scan as many of the publications as possible and start a clipping file.

Another good source of programs is in manufacturer's application notes. These notes are generally tailored to a specific machine, but $I$ have found them to be easily adopted to other computers. As an example, the now obsolete Hewlett-Packard 9100-series of desktop calculators had excellent discussions of programs that could be used for filter design, transmission line calculations, etc and were easily adapted to BASIC. These programs (and calculatorsl) often turn up at flea markets, swap meets and house organ classified advertising.

The US Government and universities have a number of catalogs available that describe programs that have been written and are available for a small fee or free. CAED, an excellent microstrip design package (written in fORTRAN) is availble from the $u S$ Government [2]. Again, most of these programs are tailored to a specific machine or application, but many of them have wide application. A classic example is the circuit analysis program. SPICE, Written and distributed by the University of California [3]. It take a little snooping to find these sources, but other engineers and libraries can be a big help.
^ few companies provide low-cost (defined as under $\$ 100$ ) software for engineers. others, with their full-page advertisements, make us envious, but in general, they tend to be out of range to our budgets. All of us would like to have a program like SPICE2 running on our computers, but cannot justify

## Figure 1



BASIC R. F. POWER AMPLIFIER

Figure 2


DRAIN WAVEFORM - MAXIMUM OUTPUT

Watts, the transistor must see an impedance of:
$R_{C}=\frac{\text { Frass }^{2}}{P}=\frac{\left(E_{\text {peak }} / \sqrt{x}\right)^{2}}{P}=\frac{E_{P e n k}}{2 p}=\frac{\left(E_{\text {supply }}-E_{\text {al }}\right)^{2}}{2 \rho}=\frac{(13-3)^{2}}{2.50}=1 \Omega \quad$ 1)
Thus, the output matching network must transform the 50 Ohms load down to present 1 Ohm to the transistor. If this were an audio amplifier, the output matching rietwork might be a 10 hm to 50 Ohm transformer. Because we are designing an amplifier for communications purposes, we will want to add some filtering to the network and we can use narrow baind networks.

Note that, other than to consider a saturation voltage, we haven't paid any attention to the transistor. We haven't worried whether it was bi-polar, an FET, or made out of "molded muckite". We have simply said that to get 50 Watts from a 10 Volt peak sine wave we have to present it with a load of 10 hm .

Also note that we haven't tried to "match" it's output impedance. Again, we simply determined that with a 13 Volt supply, and a device with a saturation voltage of 3 Volts, the transistor must "see" 1 Ohm to deliver 50 Watts.

There is a common misconception that power amplifiers are designed to "match" the output impedance of the transistor; or to us sophisticated RF types, you need a network that presents a "complex conjucate match".

This is not true, and is not true in most power work. If you want to build a toaster, you select the resistance of the heating element to draw the desired power at the voltage avallable. You do not select a resistance to "match" the source impedance of the power company generators. You would sure brown your toast in a hurry if you did.

Of course, we are not really ignoring the transistor. We are assuming that the device chosen is satisfactory for the supply voltage, has sufficient gain
the cost of many hundreds or thousands of dollars. A more acceptable substitute are "canned" programs such as ACNAP and DCNAP [4,5] from BV Engineering. These companies provide programs at reasonable cost for our requirements. One company, DYNACOMP [6], provides programs in BASIC source form, so they can be modified for a specific application.

The microcomputer publishing industry has been publishing hundreds of books on using your personal computer for everything from cat breeding to sports handicapping. There are several volumes available of programs for engineering computing, but in general, I have found these not to be of much use. A few exceptions are worth noting. F.R. Ruckdeschel's BASIC Scientific Subroutines (Volumes I \& If [7] should be in every engineer's library. These books are a collection of well-documented programs for many of the mathematical operations that are required for serious engineering work. These programs and subroutines are presented with unique line numbers so they can be used directly - a helpful feature. These subroutines can be purchased already on disk at a nominal cost [8]. Another very useful publication is Antenna Design using Personal Computers by David S. Pozar [9]. This little xpublication is a collection of programs for path analysis, transmission line and antenna design, with a good explanation of the theory involved and a comparison of results with calculated values. Also, these programs are availble on disk [10]. A last example of an excellent publication for the engineer engaged in computer-aided design is circuit Design using Personal Computers by T. R. Cuthbert [11].

This volume has numerous programs for design (as opposed to analysis) for the small computer, and includes an excellent discussion of optimization, which is often neglected in CAD articles and publications.

A final source of suitable applications software for our "poor man's work station" is ourselves. Although it takes a bit of effort, writing a program to solve a particular design problem can be a fun. possibly a fellow engineer has a similar requirement to yours and already has a suitable program or one that can be modified. An example of "home brew" engineering programs are included in Appendix A of this paper. Both were written by members of the San Bernardino Microwave Society to solve a specific application, and have been widely distributed and modified by others. Most engineers that write these programs are happy to share them, so always ask, and always give credit where credit is due. In general, these are not the slick finished products that would be available from publishers, but are useful.
PRACTICAL CONSIDERATIONS:
Now that we have discussed the sources of programs that are availbe to the RF design engineer, let's discuss some of the problems we can encounter.

First of all, just because all RASIC programs are similar, they are not identical! In general, when getting a program from another machine, it is necessary to make some minor conversions. Such things as file opening and closing, data formats, and minor syntax variations can drive you up the wall. Multiple statement delimiters, "extra" functions, etc., all have to be resolved and
for the application at the operating frequency, can deliver the required current, has sufficient dissipation capabilities and other parameters to assure adequate operating life, etc. In fact, long before you start with the specifics of a particular design, the chances are that you have spent many hours with data sheets deciding which devices are suitable for the application.

Also, the transistor input and output usually appears reactive and our networks will have to account for these reactances.

Back to the output network. There are many networks that will transform 50 Ohms to 10 hm , and the literature abounds with analyses $6,7,8,9,10,11,12,13,14$ of them. For this example I will use a pair of basic "L" networks.

The "L' network (Figure 3a or 3b for the low-pass version and Figure 4 a or 4b for the high pass), is a basic building block used in many situations. Although well covered in the literature, we will quickly derive the applicable formulas. I would like to take the time because it is such a basic building block. We will be using the circuit of Figure 3 a as our example.

We picked a low pass version because in a well designed amplifier the only spurious signals created by the amplifier are harmonics. Why not use the matching network to help in their removal? If we are using the network to match unequal impedances ( $R_{s}$ not equal to $R_{p}$ ) the response of the network is peaked and a perfect match only occurs at the peak of the response. If the $Q$ is low enough, the bandwidth can be reasonably large

For zero insertion loss, the loaded $Q$ of the series arm must equal the loaded Q of the shunt arm at the peak frequency.

Figure 3

a)

b)

BASIC "L" NETWORK - LOW-PASS CONFIGURATION

b)

BASIC "L" NETWORK - HIGH-PASS CONFIGURATION
corrected. If you are getting a disk-based program from a different (foreign) machine, try to get the program in ASCII format. As a practical matter, I save all of my programs in ASCII instead of the more compact binary format, just to simplify the conversion between different machines. A side benefit of this method of storage allows you to edit and print the source listings with an editor or word processor.

If you are writing programs, try to include provision for storing and loading infomation from disk - this will save you the trouble of typing a circuit over and over. Alittle effort at this stage can make a program much more professional and easier to use. Data files can be designed that can be used by many programs. I use the format of printing to file the independent variable, followed by dependent variables, e.g. frequency, real part of impedance, imaginary part of impedance in actual values, such as Hz, ohms, etc. Try to avoid the use of specific multipliers, such as GHz ; it is then difficult to use your program in a wide variety of situations. Make an effort to maintain consistency whenever possible. When dealing with arrays of data, such as network analysis programs, data files should have a header that specifies the dimensions of the array. It is very easy to forget these parameters when you are working with many different projects.

SOME EXAMPLES
Network Analysis: One of the recurring tasks for the RF design engineer is predicting the performance of a circuit and modifying it until it meets requirements. The normal process is
to rely on our experience, etc. to get an initial design, breadboard, measure performance, and "tweak and trim" until the desired performance is achieved. Computer aided design is a much more difficult task than computer-aided analysis. In design, we input the desired performance and the output is a circuit. In analysis, the circuit is input and the output is performance. Most small computer programs use an input circuit and calculate performance. Computer -aided design programs are available [12] but $I$ have found that convergence on an aceptable design by interaction is a faster and more comfortable approach.

As an example, the process for design and evaluation of a simple diplexer will be demonstrated. This diplexer is to split the FM broadcast band ( $88-108 \mathrm{MHz}$ ) and the 2 -meter amateur radio band (144-148 MHz) from a common source. Since this is intended for very low-cost applications (mobile reception) we decide to use a simple set of Butterworth filter circuits (Figure 1). After coming up with this "quick and dirty" circuit, we load NET85.ASC (Appendix B) and analyze the circuit over the bands of interest. The results of this anaylsis are shown in figure 2. Inspection of this data indicates that fabrication could be simplified by using standard circuit elements shown in figure 3. Continuing to work with NET85, we add these changes and obtain the performance shown in Figure 4. Since our only intent is to build one of these for the car belonging to the president's son we conclude this is an adequate design.

The NET85 program is derived from a program that was originally described in EDN magazinell3]. It was written in a BASIC-like language and has been translated to GWRASIC (Appendix

The design of a matching network lies in our ability to represent a series combination of components as an equivalent parallel combination, and vice versa (Fig. 5). At the conversion frequency, and it is valid at only one frequency, the series and parallel equivalents will have the same impedance. For $Q s$ greater than one, the series equivalent resistance will always be smaller than the parallel equivalent resistance.

There are many ways to derive the proper values, but we will rely on the fact that the $Q_{s}$ must be equal. First, some familiar formulas.

For parallel components, $Q=\frac{R_{2}}{x_{p}}$

For series components, $\quad Q=\frac{X_{s}}{R}$
3)

The standard series to parallel transformation formulas, based on $Q$, are:

$$
\begin{align*}
& X_{p}=\left(1+\frac{1}{Q^{2}}\right) X_{s} \\
& R_{p}=\left(1+Q^{2}\right) R_{S}
\end{align*}
$$

Note that the $Q$ used here is not the total $Q$ of the network but rather the $Q$ of just the two components being considered. In the case of an $L$ network, with the $Q$ of the series arm the same as the $Q$ of the parallel arm, the network $Q$ is $1 / 2$ the $Q$ of each arm, when matched at each end.

In our particular case we have the situation of Figure 6a. We are trying to make a 50 Ohm load appear to be 10 hm .

Place a capacitor across the load as in 6b. At any single frequency we can

Figure 5


SEries / parallel transforms
f). The program has been extensively modified to allow for creation and saving of the program data. Examples of input and output data files are also shown in Appendix B. The files are then plotted on a low-cost commercial plottinq package [14].
f.xampif. II: micromavf. antfinna design

One of the more tedious tasks facing engineers is the occasional defign of an antenna. Ab RF engineers we are often called to come up with at least a rough design for an antena (How big a dish do we need to recelve OSCAR Vilif). Appendix B2 has a straight-forward program to design a suitable Cassegrain or prime-focus reflector antenna. Once a sutable design is reached, other RASIC language programs can be used for more detailed analysis $\mid 9 \|$. The results can then be presented by using one of many available graphing or plotting programs [14]. When using these relatively aimple programs it is important to remember that most of them are based on geometric optic considerations, so do not compensate for edge effects, etc., and will likely provide incorrect answerf for amallantennas. In qeneral, the hiqher the antenna gain, the easier it is to predict ita performance. There are some programs available [9] that go lieyond grometric considerations, but large physical optics or method of moment solutions tend to be beyond personal computers. However, it may be posible to reduce a fairly complex program proqram to parts that will run on a personal computer. The computation-intensive parts, such as the solution of the complex matifcies, could be allowed to run overnight. Most of these proqrams are availble in FORTRAN [15] and could be loaded and
compiled on a MS-DOS based PC, as there are FORTRAN compilerg available that can deal with COMPLEX data types. It is possible to translate these programs to BASIC, but it is left as ar excercise to the reader to accomplish this.
OTHER APPLICATIONS:
The duties of the $R F$ designer generally include a large portion of 'administrative' duties. These include reports, memoranda, statements of work, project tracking, procurement documents, etc. Most of us find these tasks at best a burden and at worst an imposition. Until management sees fit to provide us with adequate administrative and paraprofessional support, these tasks will remain with us. Our "poor man's engineering work station' can be pressed into service to support these functions. By including some form of text editor or word procesing software, reports and memos can be generated quickly and in a more readable form. By relieving the work of preparing documents, I have found that using a small desktop computer increases my engineering productivity significantiy. In addition, most engineers would rather design than perform administrative tasks, so the editing function alone makes a personal desktop computer worthwhile.

Procurement actions, schedules, parts and wirelists, etc. can be efficiently maintained using one of the many microcomputer data hase managers. As an example, I ured a database on and microcomputer to maintain a wire list for a large tiansmitter. Ry simply inquiring the disk, l could get a list of all the locations a particular signal could be found or all siqnals on a

## Figure 6


a)

c)

e)

DERIVATION OF BASIC "L" NETWORR
replace the combination of parallel capacitor and load with a series equivalent. If the right value of parallel capacitor was used, the equivalent series resistor can be made to be 1 Ohm . (Figure 6c)

If we now place an inductor in series, which has the same reactance magnitude as the computed series capacitor, the reactances will cancel and the impedance looking into the network will be our desired 1 Ohm. (Figure 6d)

Transforming the output section back to a parallel circuit, we have the finished network of Figure 6e. Now lets put some numbers on things. Rearranging series to parallel transformation formula 5), above, and solving for $Q$, we have.

$$
\begin{align*}
Q & =\sqrt{\frac{R_{P}}{R_{3}}-1} \\
\text { In our case, } \quad Q & =\sqrt{\frac{50}{1}-1}=7
\end{align*}
$$

From 2) the reactance of the parallel capacitor is,

$$
X_{p}=\frac{R_{p}}{Q}=\frac{50}{7}=-\gamma 7.14 \Omega
$$

And, from 3), the reactance of the series inductor is,

$$
X_{s}=R_{s} \cdot Q=1 \cdot 7=17 \Omega
$$

Note that the reactance of the series inductor is not the same as that of the parallel capacitor; although in high $Q$ cases it is often considered so for convenience.
particular connector or terminal block.
These applications are well known, and it is not my intention to go into great detail, but sometimes we overlook the 'support functions' that take up so much time. If we can develop more time for design work, it enables us to be more effective as engineers. CONCLUSIONS:

This paper has presented one engineer's view of the use of obsolescent technology to make his job easier and more productive. As the cost of computing power continues to decline, we will have the power of supermini computers available to us. In the meantime, the latest technology may not be available. I have tried to show with a few examples how we can use existing low-end hardware combined with relatively simple software to greatly speed up our efforts as design engineers. The key is the immediate availability of a computer. It is better to have an old, slow machine immediately availble to us for a quick evaluation, than a large mainframe that we have to schedule well in advance. The programs and examples $I$ have presented are not necessarily the most efficient or accurate. They are programs that $I$ have used and refined over the years to accomplish specific tasks. There are many things that can be done by the user to make these programs more efficent or easier to use. As an example, an option could easily by added to allow input to NETB5.ASC as reactance values, rather than component values. This change would be very helpful, but I never "got around tuit". The bibliography lists several sources of software, but I make no claims for its accuracy or completeness.

## BIBLIOGRAPHY

[1] Antenna Design using Personal Computers by David s. Pozar, Ph.D. Artech House, Inc. 888 Washington Street Dedham, Massachusetts 02026
[2] Design of Microstrip Components by Computer, by Terry $S$. Cisco NASA CR-1982 1972.
[3] SRICE2G, 6 College of Engineering, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 94720
[4] BV Engineering 2200 Business Way, Suite 207 Riverside, CA
[5] 92501 (714) 781-0252
[6] DYNACOMP, Inc. 6 Rippingale Road Pittsford, NY 14534 (716) 586-7579
[7] BASIC SCIENTIFIC SUBROUTINES by F.R. Ruckdeschel McGraw Hill Publications Co. 1981 (Volumes 1 G 2)
[8] DYNACOMP, op. cit.
[9] Pozar, David S. op. cit.
[10] Artech House, Inc. Publication B84139A.
[ll] Circuit Design Using Personal computers by Thomas R. Cuthbert, Jr. John Wiley $\delta$ Sons, 1983
[12] Cuthbert, op. cit.
[13] EDN Magazine February 14, 1981 pp 126-133
[14] PCPLOT2, published by BV Engineering, op. cit.
[15] A User's Manual for Electromagnetic Surface patch (ESP) Code: Version 11 = Polygonal Plates and Wires by E.f. Newman and P. Alexandropolos The Ohio State University Electroscience Laboratory, Department of Electrical Engineering Columbus, Ohio 43212 September 1983.

The $Q$ of the network is $1 / 2$ the $Q$ of either branch, or,

$$
Q_{\text {total }}=Q_{s} / 2=Q_{p} / 2=7 / 2=3.5
$$

Lets calculate the component values at our selected operating frequency of $146 \mathrm{MHz} . \quad \frac{1}{c}=\frac{1}{\omega x_{c}}=\frac{1}{2 \pi F x_{c}}=\frac{153 \rho F}{2 \pi \cdot N 6 \cdot 106 \cdot 7.14}: 15$

$$
L=\frac{X_{c}}{\omega}=\frac{X_{L}}{2 \pi f}=\frac{7}{2 \cdot \pi \cdot 146 \cdot 10^{6}}=7.6 \mathrm{nH}
$$

Note that the Q was determined only by the impedance ratio and the values were determined by $Q$, impedances and frequency. This is one disadvantage of the simple $L$ network; we can't choose $Q$. Two elements simply do not give us enough degrees of freedom. By making our network a three element network, such as the $T$ and $T$ we can, with some limitations, design for a specific $Q$.

Four element networks give us one more degree of freedom and are often used for broadband matching. One version of a four element network is two cascaded L sections; transforming the load to some intermediate value with one section and matching the intermediate value to the final impedance with the second. Each section has a smaller step up and will operate at lower $Q$. Maximum bandwidth is achieved if the $Q$ of each is the same. This occurs when:

$$
\text { Rintermediate }=\sqrt{R_{\text {smaller }} \times R_{\text {larger }}}
$$

The process can be continued with three, four, or more, sections; although little is generally gained with mare than three.

Lets recalculate our output network as a two section $L$ network. For convenience, I have summarized the calculations in Figure 7. I have added a

Figure 7


## 146 MHz OUTPUT MATCHING NETWORK USING TWIN "L" NETWORKS

APPENDIX A
USER-WRITTEN BASIC DESIGN PROGRAMS
A.l DISH.ASC This program was written by Chuck Swedblom of the

San Bernardino Microwave Society for design and analysis of Cassegrain-reflector antennas. It is based on ray-trace optics.

```
20 ' parabolic antenNa dESIGN program
30 , PARABOLIC ANIENNA DESIGN PROGRAM
40 : Written by C. Swedblom, WA6EXV January 13, 1981 (not Friday)
60: Revised: March 26, 1981
70:
80 'Modified for Microsoft Basic by R. Kolbly, R6HIJ April 3,1981
90 ', (Friday after a Society Meetingl)
100''
100 CLS$=CHRS(27)+"E"
120 PI=3.1415928*
130 DIM X(100)
130 DIM X(100)
l
160 PRINT CLSS
170 PRINT "Select area of interest"
180 PRINT
lo PRINT " 1. Calculate f/D and Gain of a Parabolic Dish."
200 PRINT - 2. Design Sub Reflector for Cassegrain feed."
210 PRINT - - 3. Design Sub Reflect
220 INPUT "Your Choice";ME
230 IF ME < 1 THEN 260
250 ON ME GOTO 290,700,1390
250 ON ME GOTO
270 PRINT "Values between l and 3 onlyl"
20 GOTO 170
290:Calculate f/D
300 '
310 PRINT CLS$
310 PRINT CLS$
330 PRINT
340 INPUT "Depth of Dish, same units as Diameter";CR
350 PRINT "Frequency of Interest, in MHz";MHZ
370 PRINT "Efficency of the Dish in %"; EfF
370 PRINT "Efficency of the Dish in %"; EFF
390 FDR=DIA/(16*CR)
400 LAMDA=30000/(2.54*MHZ)
410 GAIN=(PI*DIA/LAMDA)* 2*EFF/100
420 GAIN=10/LOG(10)*LOG(GAIN).
430,
280 GOTO 170
```


## Figure 8

wrinkle and picked an F1260 MOSFET as our device. The data sheet indicates a series equivalent output reactance of -j .5 Ohms at 146 MHz . I absorbed this . 5 Ohms by making the first inductor .5 Ohms larger. We could also have handled the reactance by resonating it with a shunt inductor (somewhat inconvenient for $D C$ ). At this power level and frequency bi-polar transistor outputs generally look inductive and a shunt C is common.

Figure 8 is a partial schematic showing what the output part of the amplifier we have been discussing might look like.

We are discussing power amplifiers and it might be useful to stop and discuss just what is different when compared to small signal amplifiers. The dividing line between small signal and power amplifiers is a fuzzy one. For example, I used to be very involved with wide dynamic range receiver front ends and when forced to use an RF amplifier might have designed it for over 10 Watts output; yet I considered it a small signal amplifier. On the other hand, I will consider a two Watt intermediate stage in a transmitter chain a power amplifier

Rather than get bogged down with defining a dividing line, let us say our 50 Watt amplifier is a power amplifier and compare it with small signal amplifiers in the milliwatt range. One apparent difference is the impedance levels brought about by the power level and what this does to the components. For example the input inductor of our example calculates to be 3.2 nH . This is a pretty small inductance and represents a fraction of an inch of PC board trace. When dealing with values this small, simple questions like; where does the transistor tab stop and the inductor begin, become difficult to answer and


SCHEMATIC OF OUTPUT SECTION

```
990
1000 '
1010 PRINT CLS$
1020 PRINT " P PARABOLIC DISH/SUB-REFLECTOR*
1040 PRINT:PRINT
050 PRINT "Diameter of Dish..
1060 PRINT USING M$;DIA;:PRINT "Iñ."
1070 PRINT "L/D of Real Dish..
080 PRINT USING MS;FDR
```



```
1100 PRINT USING MS;FDV
1110 PRINT "Focal Point of Real Dish....................................
1120 PRINT USING MS;FR;:PRINT m In."
1130 PRINT "Focal Point of Virtual Dish...........................
1140 PRINT USING MS;FV;:PRINT "In."
150 PRINT "Diameter of Sub-Reflector............................
1160 PRINT USING MS;DSR;:PRINT In."
```



```
1180 PRINT USING MS;FR-M;:PRINT E Inches from Org."
190 PRINT "Location of Feed Horn....................................
1200 PRINT USING MS;(FR-M)-L;:PRINT "; Inches from Org
210 PRINT "Feed Beam Width...
1220 PRINT USING MS;THETA;:PRINTM".......
230 PRINT "Reduction in Gain due to Sub-Reflector..........
1240 PRINT USING MS;BLR;:PRINT n dB."
250 PRINT:PRINT:PRINT
1260
270 : Print X-Y Coordinates of Hyperbolidal Sub-Reflector
280
1290 INPUT "Enter increment for Sub Ref. X-Y Cordinates"; INC
300 PRINT TAB(5);"X-Y Co-ord. for Hyperbolidal.Sub-Ref.
1310 PRINT
1320 PRINT TAB(10);"Y-Co-ord.";TAB(28);"X-Co-ord."
330 PRINT
340 FOR Y=0 TO DSR/2 STEP INC
1350 X(Y)=SQR(A*A+(Y*Y)/(E*E-1))
360 Z=X(Y)-X(0)
1370 PRINT TAB(10);:PRINT USING M$;Y;:PRINT TAB(28);
380 PRINT USING M$:?
1390 NEXT Y
1400 END
```

A. 2 STRIPLIN.ASC This program is for design of microstriplines and has been continously refined. Again, it is user-written.

10 REM THIS PROGRAM CALCULATES THE WIDTH OF A MICROSTRIP LINE 20 REM FOR A GIVEN IMPEDANCE OF WILL CALCULATE THE IMPEDANCE
30 REM OF A MICROSTRIP LINE OF A GIVEN WIDTH
40 REM
50 REM WRITTEN BY C. SWEDBLOM, WA6EXV 12 JUNE 1979 60 REM MODIFIED BY DICK KOLBLY, K6HIJ 16 SEPT 1979 70 REM DIELECTRIC CONSTANTS ADDED K6HIJ 10 MARCH 1981

```
80 REM W=WIDTH OF MICROSTRIP LINE
90 REM H=THICRNESS OF SUBSTRATE MATERIAL
100 REM T=THICKNESS OF MICROSTRIP LINE
110 REM F=FREQUENCY
120 REM E=DIELECTRIC CONSTANT OF SUBSTRATE MATER
130 REM El=DIELECTRIC CONSTANT AT DC
140 REM E2=DIELECTRIC CONSTANT AT FO
150 REN Z=CHARACTERISTIC IMPEDANCE OF MICROSTRIP
160 REM Z1=CHARACTERISTIC IMPEDANCE AT DC
170 REM 22=DESIRED IMPEDANCE,
170
190 REM Dl =IMPEDANCE ERROR FACTOR
2 0 0 ~ R E M
210 Dl=.0001
220 P1 =3.14159265*
230 PRINT "1 OZ Cu=.0013 in, 2 Oz Cu=.0027"
240 PRINT "(1) AIR (2)
250 PRINT "(2) Gl0 FIBERGLASS (e=4.80)"
260 PRINT - (3) TEFLON/GLASS (e=2.55)"
270 PRINT "(4) REXOLITE (e=2.54)"
280 PRINT "(5) TEFLON XX (e=2.10)
290 PRINT "(6) FORMICA XX (e=4.04)"
295 PRINT "(7) DUROID (
300 INPUT "(8) OTHER"; K:IF K=0 OR K=8 THEN 310 EL:
310 INPUT"TYPE OF MATERIAL AND ER'^;AS,E
320 IF K=1 THEN AS="AIR":E=1!
330 IF K=2 THEN AS= ' 'G10':E=4.8
340 IF K=3 THEN AS="TEFLON/FIBERGLASS": E=2.55
350 IF R=3 THEN AS="REXOLITE":E=2.54
360 IF K=5 THEN AS="TEFLON": E=2.1
370 IF K=6 THEN AS="FORMICA XX":E=4.04
300 IF K=7 THEN>B A
00 IF K<< OR K>8 THEN 300
390 INPUT"FREQUENCY (GHZ)';
410 (HPUT SINE THICHNESS"
410 INPUT "LINE THICKNESS";T
420 PRINT
4 3 0 ~ P R I N T
40 PRINT"1. MICROSTRIP WIDTH"
450 PRINT"'2. IMPEDANCE OF MICROSTRIP LINE?"
460 PRINT
4 7 0 ~ I N P U T ~ X ~
480 IF X=2 THEN 680
480 IF X=2 THEN 680 _
490 INPUT "DESIRED IMPEDANCE= ";
500 W=1
510 GOSUB 740
530 GOSUB 820
530 PRINT Z
550 IF ABS ((l-R)/(1+R))<=Dl THEN 620
560 REIA CALCULATE NEW WIDTH
570 W=W*R*R
580 GOTO
590 REM
600 REM ADJUST WIDTII FOR THICKNFES OF LINE
```

cause a little more cut-and-try than we would like. Some people feel that a certain amount of "witchcraft" is involved in the design.

If a fraction of an inch of PC trace is a desired inductor in our circuit, how about the lengths needed just to connect the components together and which don't appear on the schematic?

Amplifier schematics liberally throw ground symbols around, implying that when we see the symbol we can assume there is no voltage at the point. Ha! Our fraction of anch 3.2 nH represents almost 30 hms at 146 MHz . The transistor is delivering power into a 1 Ohm network. It doesn't take much ground length to be a goodly percentage of 10 hm . Very careful layout is required and even then the network is going to look different than calculated.

Capacitors act like values different than marked, due to lead inductance. When dealing with the high value capacitors dictated by the impedance levels involved in power amplifiers, leadless constructions like chip capacitors and metal cased micas are what you use. Even so, inductance is a consideration. A Motorola publication ${ }^{15}$ estimates the metal cased mica capacitors used in VHF power amps, in the values they were discussing, have 1 to 2 nH in parasitic inductance and gives a formula for calculating an equivalent capacitor which will function as the desired value. The amplifier the author was designing required an 880 pF capacitor and the formula indicated that a 420 pF should be used, because of the effect of parasitic inductance. Hardly a small change!

Another significant design difference between small signal and power amplifiers is in the selection of $Q$. In small signal amplifiers, it is not uncommon to lower the $Q$ of the output tuned circuits simply by paralleling
them with resistors. The power lost by this procedure is generally not a consideration and the stability gained is a plus. This is generally not the procedure used in power amplifiers. If you want a specific $Q$, you design the network so that the desired $Q$ is obtained with the normal loads.

We will cover more differences as we $g 0$, but $I$ want to cover one more difference here, and that is the class of amplifier. Small signal amplifters generally operate class $A$ and occasionally drive into class $A B$ with large signals. Power amplifiers can operate class $A, A B, B$ or $C$. There is also a group of high efficiency amplifiers, such as classes $D, E, F, G, H$, and $S$ which we won't even consider here.

Before briefly discussing the classes of amplifier, note that it wasn't necessary to worry about the class when we designed the output network. Whether operating class $A, A B, B$, or $C$ our device must still see an impedance determined by the available voltage swing and desired power. I have made this point often today and do so because it is one of the most frequently misunderstood areas of power amplifier design. I will now let it rest.

Well, maybe not quite yet; because, I know some of you are going to go home and pull out the ARRL Radio Amateurs Handbook, that wonderful source of misinformation and oversimplification, and when you look in the section on power amplifier design you will find formulas different than we used. For example, their formula for the load resistance of a transistor amplifier ignores saturation resistance. This can lead to a significant error.

Their vacuum tube formula, as if there should be a difference, uses plate voltage, plate current, and a factor $K$ which depends upon the class of

| $\begin{aligned} & 610 \\ & 620 \end{aligned}$ | REM GOSUB 1010 |
| :---: | :---: |
| 630 W | $\mathrm{W}=\mathrm{W}-\mathrm{Wl}$ |
| 640 | GOTO 1090 |
| 650 R | REM |
| 660 R | REM Calculate impedance from line width |
| 670 R | REM |
| 680 I | INPUT"LINE WIDTH = ${ }^{\text {a }}$ W |
| 690 | GOSUB 1010 |
| 700 h | $\mathbf{W}=\mathrm{W}+\mathrm{Wl}$ |
| 710 | GOSUB 740 |
| 720 | GOSUB 820 |
| 730 | GOTO 1090 |
| 740 R | REM |
| 750 R | Rem Subroutine to calculate p |
| 760 | REM |
| 770 I | IF $\mathrm{W} / \mathrm{H}<=1$ THEN 800 |
| 780 P | $\mathrm{P}=2 * \mathrm{Pl} /(\mathrm{W} / \mathrm{H})+2.42-(.44 * \mathrm{H} / \mathrm{W})+\mathrm{EXP}(8 * \operatorname{LOG}(1-(\mathrm{H} / \mathrm{W}) \mathrm{l})$ ) |
| 790 | RETURN |
| 800 |  |
| 810 | RETURN |
| 820 | REM |
| 830 | REM SUBROUTINE TO CALUCLATE E1, E2 AND 2 |
| 840 | REM |
| 850 | $E 3=\left((E-1) / 2^{\star}\left(1 / \operatorname{SQR}\left(1+\left(10^{*} \mathrm{H} / \mathrm{W}\right) \mathrm{l}-1\right)\right)\right.$ |
| 860 | $\mathrm{El}=\mathrm{E}+\mathrm{E} 3$ |
| 870 | REM |
| 880 | REM CALCULATE Effective ER |
| 890 | REM |
| 900 | REM DISPERSION EQUATION FROM GETSINGER |
| 910 | REM |
| 920 | 21=60*P/SQR(E1) |
| 930 | $\mathrm{G}=.6+(.009 * 21)$ |
| 940 | $\mathrm{D}=21 /(2.54 * 4 * \mathrm{Pl}$ * H$)$ |
| 950 | $E 2=E+\left(E 3 /\left(1+G^{*} \operatorname{EXP}(2 * \operatorname{LOG}(\mathrm{~F} / \mathrm{D})) \mathrm{)}\right)\right.$ |
| 960 | REM |
| 970 | REM CALCULATE ImPEDANCE,z |
| 980 | REM |
| 990 | Z $=60$ * $\mathrm{P} / \mathrm{SQR}$ (E2) |
| 1000 | RETURN |
| 1010 | REM |
| 1020 | Rem Subroutine to correct line width for thickness |
| 1030 | REM |
| 1040 | IF W/Hく. 15915 THEN 1070 |
| 1050 | $\mathrm{Wl}=(\mathrm{T} / \mathrm{P} 1) *(1+\operatorname{LOG}(2 * \mathrm{H} / \mathrm{T})$ ) |
| 1060 | RETURN |
| 1070 | $\mathrm{Wl}=(\mathrm{T} / \mathrm{Pl}) *\left(1+\operatorname{LOG}\left(\left(4^{*} \mathrm{Pl}{ }^{\text {* }} \mathrm{W}\right) / \mathrm{T}\right)\right.$ ) |
| 1080 | RETURN |
| 1090 | REM |
| 1100 | REM PRINT OUT RESULTS |
| 1110 | REM |
| 1120 | $\mathrm{L}=(11.811 / \mathrm{F}) / \mathrm{SQR}(\mathrm{E} 2)$ |
| 1130 | REM |
| 1140 | REM THESE ARE RESERVED FOR PRINT FORMATS |
| 1150 | REM |

610 REM
620 GOSUB 1010
630 W=W-Wl
640 GOTO
660 REM CALCULATE IMPEDANCE FROM LINE WIDTH
670 REM
680 INPUT"LINE WIDTH $={ }^{\circ} ; W$
690 GOSUB 1010
$700 \mathrm{~W}=\mathrm{W}+\mathrm{Wl}$
710 GOSUB 740
730 GOTO 109
REM
760 REM
$780 \mathrm{P}=2 * \mathrm{Pl} /((\mathrm{W} / \mathrm{H})+2.42-(.44 * \mathrm{H} / \mathrm{W})+\operatorname{EXP}(8 * \operatorname{LOG}(1-(\mathrm{H} / \mathrm{W}))))$
790 RETURN
P=LOG((8*H/W)+W/(4*H))
10 RETURN
830 REM SUBROUTINE TO CALUCLATE E1,E2 AND 2
$850 \mathrm{E}=\left((\mathrm{E}-1) / 2^{\star}\left(1 / \operatorname{SQR}\left(1+\left(10^{*} \mathrm{H} / \mathrm{W}\right)\right)-1\right)\right)$
$860 \mathrm{El}=\mathrm{E}+\mathrm{E} 3$
870 REM
880 REM CALCULATE EFFECTIVE ER
900 REM DISPERSION EQUATION FROM GETSINGER
910 REM
$930-61=60 * P / S Q R(E 1)$

$950 \mathrm{E} 2=\mathrm{E}+\left(\mathrm{E} 3 /\left(1+\mathrm{G}^{\star} \operatorname{EXP}(2 * \operatorname{LOG}(F / D))\right)\right)$
960 REM
970 REM CALCULATE IMPEDANCE, 2
$990 \mathrm{z}=60$ * $\mathrm{P} / \mathrm{SQR}(\mathrm{E} 2$ )
1000 RETURN
1020 REM
1030 REM
1040 IF W/Hく. 15915 THEN 1070
$1050 \mathrm{Wl}=(\mathrm{T} / \mathrm{P} 1) *\left(1+\operatorname{LOG}\left(2^{*} \mathrm{H} / \mathrm{T}\right)\right)$
060 RETURN
(Tl)*(1+LOG((4*P1*W)/T))
090
100 REM PRINT OUT RESULTS
1110 REM
1140 REM THESE ARE RESERVED FOR PRINT FORMATS
1150 REM

1160 PRINT: PRINT:PRINT

1180 PRINT" DIELECTRIC CONSTANT-..........................
1190 PRINT" EFFECTIVE DIELECTRIC CONSTANT-----"; E2
1200 PRINT" OPERATING FREQUENCY----------------"; F;" GHZ"
1210 PRINT" IMPEDANCE OF MICROSTRIP-----------"; $\boldsymbol{z}^{\prime \prime}{ }^{\prime \prime}$ OHHS"
1220 PRINT" WIDTH OF MICROSTRIP--------------"; ${ }^{\prime \prime}$ " INCHES
1230 PRINT" THICRNESS OF SUBSTRATE------------"; ${ }^{\prime \prime}{ }^{\prime \prime}$ " INCHES



1270 PRINT:PRINT:PRINT
1280 INPUT" ANOTHER RUN"; QS:QS=LEFTS(QS,1)
290 IF QS="Y" THEN 1300 ELSE END
1300 IF X=1 THEN GOTO 490 ELSE GOTO 680
amplifier. The $K$ is, in reality, a factor that ties in efficiency and if you were to play with the formula you could tie it back to our voltage swing power output formula. If you are designing for a particular power output, you don't need to know the efficiency to calculate the load impedance.

Unfortunately, they also get into that garbage about complex conjugate matching of the souce impedance and confuse the issue before trying to straighten it out. Remember our toaster example!

Now, I'll let it rest. Back to class of amplifier. In case some of you have forgotten, we will re-define the classes.

A Class $A$ amplifier is one whos bias and drive are such that current is flowing for the entire $360^{\circ}$ of the drive cycle. If you assume a zero source impedance the theoretical maximum efficiency is $50 \%$ at maximum output. Values in the $20 \%$ to $35 \%$ range are more likely. In a truly linear class A amplifier, the power lost in the device is lowest at maximum output. This is the most linear of the classes and also has the highest gain. Due to low efficiency, Class A is generally confined to low power amplifiers.

A class $A B$ amplifier operates at bias and drive levels so the device is conducting for more than $180^{\circ}$ but less than $360^{\circ}$ of the drive cycle. The tuned circuits fill in the missing parts of the RF cycle (so called flywheel effect) and Class AB RF amplifiers can be used for linear work, such as required by SSB, and for SSB use Class AB amplifiers are the most commonly used. $50 \%$ to $60 \%$ efficiencies are not uncommon.

I would like to use this class to poke fun at another popular conception and that is you should always operate an amplifier at less than its designed
out put power for maximum life. There is some validity to this theory. At lower powers some components are stressed less. (I could tell you a story about disintergrating gate bonding wires in poorly designed FET's except we don't have time, and, secondly, I would probably cry a lot.) However, in general, you maximize the life of an amplifier by keeping the transistor temperatures as low as you can.

Falcon Communications makes a Class $A B$ amplifier that delivers 100 Watts when drawing about 12 Amperes from a 13.8 volt supply. 12 Amps at 13.8 Volts is about 166 Watts and if we are getting 100 Watts out, that means we are losing about 66 Watts in the amplifier. Allowing for a few Watts in the DC wiring, the output matching network, and the output filter, we are losing a little over 60 Watts in the two transistors. If we say that 10 of the 12 Watts drive it takes to get 100 Watts out is also dumped in the transistors, we end up with the transistors having to get rid of a little over 70 Wat of heat when the amplifier is driven to full output.

The quiescent current of this amplifier is 6 Amps. Thus, we have $6 \times 13.8$ or about 83 Watts of heat to get rid of if we have no drive but are keyed up. Almost all of the 83 Watts is dumped in the transistors. Thus, the transistors will run hotter at no output than they do at full output.

The point of the story is to caution you against blanket generalities.
A Class B amplifier is biased so the device is just cut off. Current, thus, flows for $180^{\circ}$ of the drive cycle. $65 \%$ efficiency can be achieved. It is reasonably linear.

Although the definition of Class B calls for operation just at cut of $f$, in

## APPENDIX B

NET85. ASC - A useful network analysis program derived from literature, but extensively modified by users for particular needs, including file storage of circuits and results of analysis.

10 ' *** NET* 85 ***
20 SEE EDN FEB 4. 1981 PP 126-133
5. TRANSLATED TO MICROSOFT BASIC BY R.B. ROLBLY

5 DISK FILES FOR SAVING AND RESTORING NETWORKS ADDED
6 DATA FILE OUTPUT CAPABILITY ADDED
GOLDEN RULE SYSTEMS - FEBRUARY 22,1985
 $60 \mathrm{~K}=\mathrm{INT}(\operatorname{FRE}(\mathrm{A}) / 4)-23$
$70 \mathrm{X}=\operatorname{INT}\left(\left(\operatorname{SQR}\left(169+24^{*} \mathrm{~K}\right)-26\right) / 12\right)-1$
80 PRINT USING "You have a maximum of 1 Nodes Available": $X$
90 INPUT "Number of Nodes Desired (CR=10)"; Y
100 IF $X>=10$ AND $Y=0$ THEN $X=10$ : GOTO 140
110 IF $X<10$ AND $Y=0$ THEN $X=Y: G O T O 140$
120 IF Y>X THEN PRINT USING Maximum of 1 \# nodes! $: X:$ GOTO 90
130 IF $Y<X$ THEN $X=Y$
140 DIM $A(X, X), B(X, X), P(X, X), Q(X, x), R(X, X)$
$150 \operatorname{DIM} S(X, X), I(2 \star x), \operatorname{FLS}(4,2)$
60 DIM T $\left(2^{*} x\right), M(2 * x), N(2 * x), O(2 * x), L(2 * x), 2(2 * x)$
170 PRINT USING "You have selected a maximum of ${ }^{\text {t }}$ nodes";
80 FOR J=1 TO X
190 FOR I=1 TO X
$200 \mathrm{P}(\mathrm{I}, \mathrm{J})=0$
$210 \mathrm{Q}(\mathrm{I}, \mathrm{J})=0$
$220 \mathrm{R}(\mathrm{I}, \mathrm{J})=0$
230 S(I,J) $=0$
240 NEXT I
250 NEXT J
260 NODES $=X: X=1: T(X)=0$
270 N=0
280 PRINT "1 RESISTOR"
290 PRINT "2 CAPACITOR"
300 PRINT " 3
310 PRINT "4 TRANSMISSION LINE*
320 PRINT " 5 SHORTED STUB"
330 PRINT "6 OPEN STUB
340 PRINT " 7 OPFRRATIONAL AMPLIFIER"
350 PRINT " 8 NPN TRANSISTOR"
360 PRINT FIELD-EFFECT TRANSISTOR"
370 PRINT " 10 STOP"
380 PRINT " 11 ANALYZE NETWORK"
390 PRINT "12 ENABLE/DISABLE PRINTER"
391 PRINT "13 RESTORE NETWORK FROM DISK"
392 PRINT " 14 SAVE NETWORK TO DISK"

393 PRINT "15 GENERATE ASCII NETWORR FILE"
400 PRINT 16 LOAD NETWORK VALUES FROM ASCII FI
410 PRINT
420 R6=0:INPUT *SELECT FROM LIST (<CR) FOR MENU)
430 IF R6=1 THEN PRINT (1) RESISTOR": GOTO 730
430
IF R6=1 THEN PRINT (1) (1) RESISTOR": GOTO 730
440
IF R6=2 THEN PRINT "(2) CAPACITOR":GOTO 810
450 IF R6=3 THEN PRINT " (3) INDUCTOR": GOTO 770
460 IF R6=4 THEN PRINT "(4) TRANSMISSION LINE":G
470 IF R6 $=5$ THEN PRINT - (5) SHORTED STUB":GOTO 6!
480 IF R6=6 THEN PRINT " (6) OPEN STUB": GOTO 710
490 IF R6=7 THEN PRINT " (7) OP AMP ${ }^{n}$ :GOTO 990
500 IF R6 $=8$ THEN PRINT "(8) NPN TRANSISTOR": GOTO
510 IF R6=9 THEN PRINT " (9) FET TRANSISTOR":GOTO
520 IF R6=10 THEN PRINT "(10) PROGRAM FINISH": STC
530 IF R6=11 THEN PRINT "(11) ANALYSIS":GOTO 106 C
540 IF R6=12 THEN INPUT "(12) HARDCOPY OUTPUT (Y) : H\$=LEFTS(H\$,1): GOTO 420
541 IF R6=13 THEN PRINT "(13) RESTORE NETWORK TO :GOTO 3000
542 IF R6=14 THEN PRINT (14) SAVE NETWORK TO DI
543 IF R6=15 THEN PRINT "(15) GENERATE ASCII NET :GOTO 5000
544 IF R6=16 THEN PRINT "(16) LOAD NETWORK FROM :GOTO 4000
550 GOTO 280
$560 \mathrm{~T}(\mathrm{X})=1:$ INPUT "SHIELD IN": M (X): REM *** TRANSMI
570 INPUT "CENTER IN"; I(X):IHPUT "CENTER OUT";O(X
580 INPUT "SHIELD OUT"; $N(X):$ GOTO 610
590 INPUT "NODE $A^{n}$; M(X)
600 INPUT "NODE $\mathrm{B}^{\prime \prime} ; \mathrm{N}(\mathrm{X})$
610 INPUT "20": $2(\mathrm{X})$
620 INPUT -QUARTER-WAVE FREQUENCY (H2)":L(X)
630 IF $I(X)>N$ THEN $N=I(X)$
640 IF $M(X)>N$ THEN $N=M(X$
650 IF $N(X)>N$ THEN $N=N(X)$
660 IF $O(X)>N$ THEN $N=O(X)$
$670 \quad X=X+1: T(X)=0$
680 GOTO 420
$690 \mathrm{~T}(\mathrm{X})=3$ : REM *** SHORTED STUB ***
700 GOTO 590
72 T(X) $=2$ : REM *** OPEN STUB ***
720 GOTO 590
730 INPUT "NODE $A^{\prime \prime}: I: I N P U T{ }^{*} N O D E B^{n}: J: I N P U T{ }^{*}$ RESI:
$740 \mathrm{~V}=1 / \mathrm{V}$
750 GOSUB 1430
760 GOTO 420
0 INPUT "NODE A"; I:INPUT "NODE B";J:INPUT "INDUS
$780 \mathrm{~V}=1 / \mathrm{V}$
800 GOSUB 1360
800 GOTO 420
010 INPUT "NODE A": I: INPUT "NODF $B^{n} \cdot 3$ : INPUT "CAPACITANCF (FARADS)":V
820 GOSUR 148
830 GOTO 420
840 INPUT "GATE"; K: INPUT "SOURCE"; J:INTITT "URAIN":
practice any amplifier operating near cut off is considered Class B. For example, a bi-polar transistor power amplifier operating with no bias and low base-to-ground DC resistance is generally considered Class B. This would not be a linear amplifier.

A Class C amplifier is biased beyond cut of $f$. Thus, current flows for less, and generally considerably less, than $180^{\circ}$ of the input drive cycle. Class $C$ amplifiers have the highest efficiency, approaching $80 \%$, and the lowest gain of the basic classes. They are very non-linear and used for CW, FM and other services where linearity is not important. They also generate the highest level of harmonics.

When applied to vacuum tubes there are sub classes, such as $A B_{1}$ and $A B_{2}$. The 1 means you never drive the tube hard enough to draw DC grid current, and the 2 means you do.

Class $C$ vacuum tube amplifiers are almost always driven hard enough to draw grid current but the 2 subscript is seldom used.

For some reason, I hear the 1 and 2 subscripts occasionally applied to solid state amplifiers. They have no meaning. With bi-polar transistors you will have $D C$ base current for all classes. If you draw $D C$ gate current in a MOSFET device you had better get your wallet out because you just destroyed it.

The difference in designing for the different classes is primarily one of using knowledge of the conduction angle to be able to calculate the $D C$ current, efficiency and gain. Time prevents going into the specifics. Once again, the topic is well covered in the literature 16,17 .

Next, I would like to briefly cover the input matching network. Here, we are primarily performing an impedance matching function. We are transforming the impedance seen looking into the device to some desired impedance. If we are designing a single stage amplifier, the impedance we desire is generally one of the standard system impedances, such as 50 Ohms, 72 Ohms, 100 Ohms, etc. If we are dealing with a multistage amplifier, the input network of one stage is actually the output network of the preceeding stage. We will limit our discussion to single stage amplifiers, and 50 Ohm systems.

The F1260 MOSFET we have selected for our example amplifier has an input impedance whose real part is about 10 hm at the 146 MHz we are using in our example. Thus, the input matching network could be very similar to the output network and we won't go through any calculations.

The schematic of a 50 Watt, 2 Meter amplifier we manufacture is shown in Figure 9. We will use this schematic rather than a hypothetical example to finish our discussion of why the schematics look the way they do.

The input network is a double $L$, consisting of PC trace and $L 1$ as the inductors and C6, C7 and C9, C10 as the capacitors. C5 is a compensating capacitor added to give a wider range of adjustment. C9 and C10 are metal cased micas for low lead inductance. R5 is just a static drain in this amplifier. In others it could be a swamping resistor. The amplifier has a $T / R$ relay and provision to plug in a receive preamplifier.

Bias is applied to the FET through R3. Because no DC current is involved, R3 is large (10K). Again, if swamping is needed for any reason, R3 could be small. Bias comes from a regulated 8 Volt supply turned on at the same time as

## INPUT GAIN(MHO)";

$850 \mathrm{~L}=\mathrm{J}$
860 GOSUB 1530
870 GOTO 420
880 INPUT "BASE"; R:INPUT "EMITTER";J:INPUT "COLLECTOR"; I:
INPUT "BETA"; R5
890 INPUT
$900 \mathrm{~V}=1 / \mathrm{V}$
$910 \mathrm{~L}=\mathrm{I}$
920 I = K
930 GOSUB 1430
$940 \quad \mathrm{I}=\mathrm{L}$
$950 \mathrm{~L}=\mathrm{J},{ }^{2}$
960 V=V*RS 1530
970 GOSUB 420

1000 INPUT " + OUT"';J:INPUT "GAIN(V/V)"; R5:
INPUT "OUTPUT RESISTANCE(OHMS)": V
$1010 \mathrm{~V}=1 / \mathrm{V}$
1020 GOSUB 1430
$1030 \mathrm{~V}=\mathrm{V} * \mathrm{R} 5$
1040 GOSUB 153
1050 GOTO 420
1060 INPUT "INPUT NODE"; E:INPUT "OUTPUT NODE" $\mathrm{F}: \mathrm{N}=\mathrm{N}-1$
1070 INPUT ${ }^{\circ}$ START, STOP FREQUENCIES (HZ) ${ }^{\prime \prime}$ :G.H
1080 INPUT ${ }^{10}$ OF DATA POINTS"; M
1090 INPUT "FREQUENCY SWEEP-LOG=0(LINEAR=1)";R6";OS:QS=LEFT\$(QS,1)
1092 IF QS="Y" OR QS="Y" THEN GOSUB 7000
$1100 \mathrm{D}=(\mathrm{H}-\mathrm{G}) /(\mathrm{M}-1)$
$1110 \operatorname{R4}=\operatorname{EXP}(\operatorname{LOG}(H / G) /(M-1))$
$1120 \mathrm{RO}=\mathrm{G}: \mathrm{R} 9=0$
$1130 \quad \mathrm{R} 9=\mathrm{R} 9+1$
$1140 \mathrm{~W}=2 * 3.14159$ *R0
$11500=E: Z=F$
1160 GOSUB 2470
1170 GOSUB 2200
$1180 \mathrm{~V}=\mathrm{R} 5: \mathrm{U}=\mathrm{Z}$
1190 IF (E+F)/2=INT((E+F)/2) THEN 1210
$1200 \mathrm{U}=\mathrm{U}-180$
$12100=E: Z=E$
1220 GOSUB 220
$1230 \mathrm{U}=\mathrm{U}-2$
1240 IF V=0 THEN R7=-999: GOTO 1270
1250 IF R5=0 THEN R7=9999:GOTO 1270
$1260 \mathrm{~V}=\mathrm{V} / \mathrm{R} 5: \mathrm{R} 7=8.68589 * \operatorname{LOG}(\mathrm{~V})$
1270 IF U> 180 THEN $U=U-360$
1280 IF U<-180 THEN U=U +360
1290 PRINT USING PS;R0,V,R7,U
1300 IF HS="Y" THEN LPRINT USING PS;R0,V,R7,U
1302 IF PFG=0 THEN GOTO 1310
1304 GOSUB 7200
1310 IF $\mathrm{R} 6=0$ THEN $\mathrm{R} 0=\mathrm{R} 0$ * $\mathrm{R4}$
1320 IF $R 6<>0$ THEN $R 0=R 0+D$

1330 IF R9 < M THEN 1130
$40 \mathrm{~N}=\mathrm{N}+1$
1350 CLOSE:GOTO 420
$1360 \mathrm{R}(\mathrm{I}, \mathrm{I})=\mathrm{R}(\mathrm{I}, \mathrm{I})+\mathrm{V}:$ REM INDL
$1370 \mathrm{R}(\mathrm{J}, \mathrm{J})=\mathrm{R}(\mathrm{J}, \mathrm{J})+V$
$380 \quad R(I, J)=R(I, J)-V$
$390 \mathrm{R}(\mathrm{J}, \mathrm{I})=\mathrm{R}(\mathrm{J}, \mathrm{I})-\mathrm{V}$
1400 IF I $>\mathrm{N}$ THEN $\mathrm{N}=$
1410 IF J $>$ N THEN $\mathrm{N}=\mathrm{J}$
1420 RETURN
$1430 \mathrm{P}(\mathrm{I}, \mathrm{I})=\mathrm{P}(\mathrm{I}, \mathrm{I})+\mathrm{V}$
$1440 \quad \mathrm{P}(\mathrm{J}, \mathrm{J})=\mathrm{P}(\mathrm{J}, \mathrm{J})+\mathrm{V}$
$1460 \mathrm{P}(\mathrm{J}, \mathrm{I})=\mathrm{P}(\mathrm{J}, \mathrm{I})-\mathrm{V}$
1470 GOTO 1400
$1480 \mathrm{Q}(\mathrm{I}, \mathrm{I})=0(\mathrm{I}, \mathrm{I})+\mathrm{V}$
$1480 \mathrm{Q}(\mathrm{I}, \mathrm{I})=\mathrm{Q}(\mathrm{I}, \mathrm{I})+\mathrm{V}:$ REM CAPL
$1490 \mathrm{~J}, \mathrm{~J})=\mathrm{Q}(\mathrm{J}, \mathrm{J})+\mathrm{V}:$ REM
$1490 Q(\mathrm{~J}, \mathrm{~J})=Q(\mathrm{~J}, \mathrm{~J})+\mathrm{V}$
$1500 \mathrm{Q}(\mathrm{J}, \mathrm{J})=\mathrm{Q}(\mathrm{I}, \mathrm{J})-\mathrm{V}$
$1510 Q(J, I)=Q(J, I)-V$
1520 GOTO 1400
$1530 \mathrm{P}(\mathrm{I}, \mathrm{K})=\mathrm{P}(\mathrm{I}, \mathrm{K})+\mathrm{V}:$ REM TRANS
$1540 \quad \mathrm{P}(\mathrm{J}, \mathrm{L})=\mathrm{P}(\mathrm{J}, \mathrm{L})+\mathrm{V}$
$1540 \mathrm{P}(\mathrm{J}, \mathrm{L})=P(\mathrm{~J}, \mathrm{~L})+V$
$1550 \mathrm{P}, \mathrm{R})=\mathrm{P}(\mathrm{J}, \mathrm{K})-V$
$1560 \mathrm{P}(\mathrm{I}, \mathrm{L})=\mathrm{P}(\mathrm{I}, \mathrm{L})-\mathrm{V}$
1570 IF K>N THEN N=
1580 IF L>R THEN $N=L$
1590 GOTO 1400
1600 IF N>1 THEN 1630: REM COMP
$16100=\mathrm{A}(1,1): Z=B(1,1)$
1620 RETURN
1630 0=1
$1640 \mathrm{z}=0$
$1650 \mathrm{~K}=1$
$1660 \mathrm{~L}=\mathrm{K}$
$1670 S=A B S(A(R, K))+A B S(B(R, K))$
$1680 \mathrm{I}=\mathrm{K}-1$
$1690 \mathrm{I}=\mathrm{I}+1$
$1700 \mathrm{~T}=\mathrm{ABS}(\mathrm{A}(\mathrm{I}, \mathrm{K}))+\operatorname{ABS}(\mathrm{B}(\mathrm{I}, \mathrm{K}))$
1710 IF S $>=T$ THEN 1730
$1720 \mathrm{~L}=\mathrm{I}: \mathrm{S}=\mathrm{T}$
1730 IF I $<>N$ THEN 1690
1740 IF L=K THEN 1800
$1750 \mathrm{~J}=0$
$1760 \mathrm{~J}=\mathrm{J}+1$
$1770 S=-A(K, J): A(K, J)=\Lambda(L, J): \Lambda(L, J)=S$
$1780 A=-B(R, J): B(K, J)=B(L, J): B(L, J)=A$
1790 IF J J $>\mathrm{N}$ THEN 1760
$1800 \mathrm{~L}=\mathrm{K}+\mathrm{l}: \mathrm{I}=\mathrm{L}-1$
$1810 \mathrm{I}=\mathrm{I}+1$
$1820 \mathrm{~A}=\mathrm{A}(\mathrm{K}, \mathrm{K}) * \mathrm{~A}(\mathrm{~K}, \mathrm{~K})+\mathrm{R}(\mathrm{K}, \mathrm{K}) * \mathrm{~B}(\mathrm{~K}, \mathrm{~K})$
$1830 S=(A(I, K) * A(K, K)+B(I, K) * B(K, K)) / A$
$1840 \mathrm{~B}(\mathrm{I}, \mathrm{K})=(\mathrm{A}(\mathrm{K}, \mathrm{K}) * \mathrm{~B}(\mathrm{I}, \mathrm{K})-A(I, K) * B(K, K)) / \Lambda$
K) $=\mathrm{s}$

1860 IF $I \ll$ N THEN 1810
$1870 \mathrm{C}=\mathrm{K}-1$

the $T / R$ relay. The output matching network is our familiar double $L$ and I will leave it up to you to find it.

In this amplifier, C 20 is simply a d. c. blocking capacitor to keep d. c. out of the antenna. It could easily have been made part of the output matching network.

Following the amplifier is a 2 section " $m$ " derived low pass filter. In this day of modern filter design, using an "m" derived filter may seem a bit archaic. After all the more modern designs do offer sharper roll-offs. Let me defend the choice.

This amplifier is designed as an add-on to a customers transceiver and since we don't know what transceiver might be used we have no way of knowing what frequencies the spurious signals coming out of that transceiver might be located at. Thus, the amplifier designer's task is to design the amplifier for minimum output of any spurious that the amplifier might generate, namely harmonics; with the first, and dominant, one being the second harmonic.

Though the more modern filters can be made to initially roll off steeper, the old " $m$ " derived can put a beautiful notch right where you need it, at 2 f . In addition, the efficiency of that notch is less dependendent upon load impedance than the slope of some of the modern filters. The defense rests.

Lets discuss the rest of the components and get on to another example. L3, a choke to feed $D C$ to the transistor, is connected close to Q1 at a low impedance (low voltage) point. L3 is bypassed with four bypass capacitors. Two 470 pF , for high frequency bypassing, a 1 uF , for mid frequency bypassing, and a 1000 uF for low frequency bypassing. The gain of the transistor goes up

1880 IF C＝O THEN 1960
$1890 \mathrm{~J}=\mathrm{L}-1$
$1900 \mathrm{~J}=\mathrm{J}+1: \mathrm{I}=0$
$1910 \mathrm{I}=\mathrm{I}+1$
$1920 \mathrm{~A}(\mathrm{R}, \mathrm{J})=\mathrm{A}(\mathrm{K}, \mathrm{J})-\Lambda(\mathrm{R}, \mathrm{I}) \star A(I, J)+B(R, I) \star B(I, J)$
$1930 B(K, J)=B(K, J)-B(K, I) * A(I, J)-A(R, I) \star B(I, J)$
1940 IF C $<>$ I THEN 1910
$1960 \mathrm{C}=\mathrm{K}$
$1970 \mathrm{~K}=\mathrm{K}+1: \mathrm{I}=\mathrm{K}-1$
$1970 \mathrm{~K}=\mathrm{K}+1: \mathrm{I}=\mathrm{K}$
$1980 \mathrm{I}=\mathrm{I}+1: \mathrm{J}=0$
$1980 \mathrm{I}=\mathrm{I}+1$
$1990 \mathrm{~J}=\mathrm{J}+1$
$1990 \mathrm{~J}=\mathrm{J}+1$
$2000 A(I, K)=A(I, K)-A(I, J) * A(J, K)+B(I, J) * B(J, K)$
$2010 B(I, K)=B(I, K)-B(I, J) * A(J, K)-A(I, J) * B(J, K)$
2020 IF Jく＞C THEN 1990
2030 IF I＜＞N THEN 1980
2040 IF K＜＞N THEN 1660
2050 L＝1
$2060 \mathrm{C}=\mathrm{INT}(\mathrm{N} / 2)$
$2070 \mathrm{IF} \mathrm{N}=2 \star \mathrm{C}$ THEN 2100
2070 IF
$20900=A(N, N): Z=B(N, N)$
$2090 \mathrm{O}=\mathrm{A}$
$2100 \mathrm{I}=0$

| 2100 | $\mathrm{I}=0$ |
| :--- | :--- |
| 2110 | $\mathrm{I}=\mathrm{I}+$ |

$\begin{array}{ll}2110 & \mathrm{I}=\mathrm{I}+1 \\ 2120 \mathrm{~J}=\mathrm{N}\end{array}$
$2130 \mathrm{~S}=\mathrm{A}(\mathrm{I}, \mathrm{I}) * A(\mathrm{~J}, \mathrm{~J})-B(I, I) * B(J, J)$
$2140 \mathrm{~A}=\mathrm{A}(\mathrm{I}, \mathrm{I}) * B(\mathrm{~J}, \mathrm{~J})+A(\mathrm{~J}, \mathrm{~J}) * B(I, I)$
$2150 \mathrm{~T}=0$＊ $\mathrm{S}-2{ }^{*} \mathrm{~A}$
$2160 \mathrm{Z}=\mathrm{Z}$＊ $\mathrm{S}+\mathrm{O}$＊ A
$21700=T$
2180 IF I＜＞C THEN 2110
2190 RETURN
2200 R5＝N：REM DET
$2210 \mathrm{~N}=\mathrm{N}-1$
2220 I＝0
$2230 \mathrm{~K}=0$
$2240 \mathrm{~K}=\mathrm{K}+1$
2250 IF K＜＞O THEN 2270
2260 I＝1
$2270 \mathrm{~J}=0: \mathrm{L}=0$
$2280 \mathrm{~L}=\mathrm{L}+1$
2290 IF L＜＞Z THEN 2310
$2300 \mathrm{~J}=1$
$2310 \mathrm{~A}(\mathrm{~K}, \mathrm{~L})=\mathrm{P}(\mathrm{K}+\mathrm{I}, \mathrm{L}+\mathrm{J})$
$2320 B(R, L)=W^{*} Q(R+I, L+J)-R(K+I, L+J) / W+S(K+I, L+J)$
2330 IF Lく＞N THEN 2280
2340 IF K＜＞N THEN 2240
2350 GOSUB 1600
2360 N＝R5
2370 R5 $=\operatorname{SQR}\left(0^{\star} 0+2 \star 2\right)$
$2380 \quad \mathrm{Y}=\mathrm{Z}$
2390 IF O＝0 THEN 2450
$2400 \quad Z=180 / 3.14159 *$ ATN（Z／O）
2410 IF 0＞0 THEN RETURN
$2420 \mathrm{Z}=\mathrm{Z}+\mathrm{SGN}(\mathrm{Y}) * 180$

2430 IF $\mathrm{Y}=0$ THEN $\mathrm{Z}=180$
2440 RETURN
$2450 \mathrm{Z}=90^{*}$＊ $\operatorname{SGN}(\mathrm{Y})$
2460 RETURN
2470 IF T（1）$=0$ THEN RETURN
$2480 \mathrm{X}=0$
$2500 \mathrm{Rl}=\mathrm{R} 1+1: \mathrm{R} 2=0$
2510 R2＝R2＋1
2510 R2 2 R2 $2+1$
2530 IF R $2<>N+1$ THEN 2510
2530 IF R2＜＞N＋1 THEN 2510
2540 IF R1
2550 X $=X+1$
2560 IF $X>20$ THEN RETURN
2570 IF $T(X)=0$ THEN RETURN
2570 IF $T(X)=0$ THEN RETU
2580 IF $T(X)=1$ THEN 2640
2590 IF $T(X)=2$ THEN 2830
2600 RI $=-1 /(Z(X)$＊TAN $(.25 * W / L(X)))$
$2600 \mathrm{R}=-\mathrm{C}$
$26 \mathrm{M}): \mathrm{R}=\mathrm{N}(\mathrm{X})$
$2610 \mathrm{Q}=\mathrm{M}(\mathrm{X}): \mathrm{R}=\mathrm{N}$
2620 GOSUB 2870
2620 GOSUB 2870
2630 GOTO 2550
2630 GOTO 2550 （X） 2640 TAN（ $\left.25^{\text {＊}} \mathrm{W} / \mathrm{L}(\mathrm{X})\right)$ ）
$2650 \mathrm{Q}=\mathrm{M}(\mathrm{X}): \mathrm{R}=\mathrm{I}(\mathrm{X})$
2660 GOSUB 2870
2660 GOSUB 2870
$2670 \quad Q=N(X): R=O(X):$ GOSUB 2870
$2670 \quad \mathrm{Q}=\mathrm{N}(\mathrm{X}): \mathrm{R}=0(X): \operatorname{GOSUB} 2870$
$2680 \mathrm{Rl}=1 /\left(\mathrm{Z}(\mathrm{X}) * \operatorname{SIN}\left(.25^{\star} \mathrm{W} / \mathrm{L}(\mathrm{X})\right)\right)$
$2690 \mathrm{P}=\mathrm{I}(\mathrm{X})$
$2700 \mathrm{R}=\mathrm{N}(\mathrm{X})$
$2710 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})-\mathrm{R} 1$
2720 S（P，R）＝S（P，R）－R1
2730 R＝O（X）
$2740 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})+\mathrm{Rl}$
$2750 \mathrm{~S}(\mathrm{P}, \mathrm{R})=\mathrm{S}(\mathrm{P}, \mathrm{R})+\mathrm{Rl}$
2760 P＝M（X）
2770 S $(R, P)=S(R, P)-R 1$
$2780 \quad S(P, R)=S(P, R)-R 1$
$2790 \mathrm{R}=\mathrm{N}(\mathrm{X})$
$2800 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})+\mathrm{R} 1$
$2810 \mathrm{~S}(\mathrm{P}, \mathrm{R})=\mathrm{S}(\mathrm{P}, \mathrm{R})+\mathrm{R} \mathrm{I}$
2820 GOTO 2550
2830 R2 $=1 /(2(X)$＊TAN（．25＊W／L（X）））
2840 R3 $=1 /\left(Z(X) * S I N\left(.25^{*} W / L(X)\right)\right)$
2850 R1＝R3＊R3／R2－R2
2860 GOTO 2610
$2870 S(Q, Q)=S(Q, Q)+R 1$
$2880 S(R, R)=S(R, R)+R 1$
2890 S $(Q, R)=S(Q, R)-R 1$
$2900 S(R, Q)=S(R, Q)-R 1$
2910 RETURN
2920 END
3000 INPUT＂NAME OF FILE TO LOAD＜CR〉 FOR DIRFCTORY＂；FS： －I，OAD FROM FILf．
3010 IF LEN（F\＄）$=0$ THEN FILES：GOTO 3000
3020 IF F $\$=$＂B：＂THEN FIIES＂ $\mathrm{B}:{ }^{*}$ ．＊＂ ：GOTO 3000
3030 IF FS＝＂$\wedge$ ：＂THFN FIIES＂$\wedge$ ：＊．＊＂：GOTO 3000
significantly as frequency goes down and proper bypassing is necessary to prevent oscillation.

D4 ia a reverae voltage protection diode which blowa the fuse if the aupply voltage ia connected wrong. A lesa apectacular way to do the job is to connect a diode in aeriea with the aupply line. However, leta look back at our example. We aasumed a 13.0 Volt aupply ( 13.8 Volts running a little low, less the drop in the 12 wire supply lines, leas the drop across the fuse) less the 3 Volt saturation voltage; gave ua a 10 Volt peak swing. If we add a aeries diode, the 10 Volta goea down another 0.8 Volta or so. This costs power. Hence, the shunt diode.

S1 ia a thermoatat mounted on the heat sink, which shuta the amplifier down if thinga get too hot. $C 1, R 1, D 1, D 2$, and $C 2$ form a detector to sense the presence of input $R F$ and turn the amplifier on. $R 4$ is another atatic drain. The puriata uae a choke here.

There is no temperature compensation in the bias circuit. It is not needed in MOSFET amplifiers of this power level. The amplifier was placed in a temperature chamber and tested over the range of -40 to $+60^{\circ} \mathrm{C}$. The quiescent current varied only 0.2 Ampa acroas the entire range. Room temperature current was 3 Amps. Current drawn at the 50 Watt point didn't vary aignificantly.

I think we have stared at this 50 Watt amplifier long enough. How about higher power? The power we can design for is, of course, limited by the available devicea. At VHF, using a 13.8 Volt aupply, 60 Watts is about where the induatry is at with MOSFET devices, and 80 Watts with bipolar devices. At higher aupply voltages 150 Watts is obtainable. At low frequencies, Motorola
has the grand-daddy of them all. A MOSFET device delivering 600 Watts up to 100 MHz . As frequency goes up, power comes down, with 50 Watts being about the limit at 450 MHz . 120 Watts at 500 MHz is available in push-pull packages.

If we want more power we have to use multiple devices connected together. One technique is to use a group of lower power amplifiers and combine their output in combining networks. Combining networks ${ }^{18,19}$ are a topic unto themselves and we won't go into them here. Let me simply say that in practice they are more complex than you would be led to believe by the simplified discussion in the texts. He will simply look at devices connected in parallel and push-pull. First parallel.

Lets say we want an amplifier that will deliver 150 Watts at 146 MHz and use a 13.0 Volt aupply. Lets use a pair of bi-polar devices, the MRF247, and assume the saturation voltage is 2 Volts.
Going back to our reliable formula for load impedance we find that the transiators must aee:
$R_{L}=\frac{\left(E_{\text {suppir }}-E_{\text {sat }}\right)^{2}}{2 P}=\frac{(13-2)^{2}}{2 \cdot 150}=0.4 \Omega, ~(1)$

This is a low impedance and trying to get two transiators tied together such that the impedance in the connecting lines is a small fraction of this is almost impossible.

The trick is to tie them together at a higher impedance point and then use matching networks for the individual transistors to get to a lower impedance. This haa a number of advantages, not the least of which ia that it works, and the networks allow some physical separation between the transiators.

Figure 10 is the schematic of a Falcon 150 Watt 2 Meter amplifier using

3040 OPEN " 1 ". $11, F$
3050 INPUT $11, X$
3060 ERASE A,B,P,Q,R,S,I,T,M,N,O,L,Z
3070 DIM $A(X, X), B(X, X), P(X, X), Q(X, X), R(X, X$
3080 DIM $S(x, x), I(2 * x)$
3090 DIM T(2*X),M(2*X),N(2*X),O(2*X),L(2*X),2(2*X)
3095 INPUT $1, N$
3100 FOR J=1 TO X
3110 INPUT 1, I(J),T(J),M(J),N(J),O(J),L(J),Z(J)
3120 FOR $K=1$ TO X
3130 INPUT $1, A(J, K), B(J, K), P(J, K), Q(J, R), R(J, K), S(J, K)$
3140 NEXT K
3150 NEXT J
3160 CLOSF 1
3170 NODES=X: GOTO 420
3500 INPUT "NAME OF FILE TO SAVE <CR〉 FOR DIRECTORY"; F\$: SAVE INTO FILE
3510 IF LEN(F\$)=0 THEN FILES: GOTO 3500

3530 IF F $\$={ }^{\prime \prime} \wedge$ : ${ }^{\prime \prime}$ THEN FILES "A:*.*":GOTO 3500
3540 OPEN "O", 11,F\$
3550 PRINT 1 , NODES, N
3600 FOR J=1 TO NODES
3610 PRINT $1, I(J), T(J), M(J), N(J), O(J), L(J), Z(J)$
3620 FOR $K=1$ TO NODES
3630 PRINT $1, A(J, K), B(J, K), P(J, K), Q(J, K), R(J, K), S(J, K)$
3640 NEXT K
3650 NEXT J
3670 CLOSE 1
3670 GOTO 420
4000 INPUT "Name of file to load <cr> for directory"; Fs
4020 OPEN " ${ }^{2 \prime \prime}$ " $11, F S$
020 IF ROF (1) THEN CLOSE
4035 R6Ss゙m
4035 R6 $\$=$ = $=$ : INPUT 1,R6\$:R6 $=$ LEFT $\$(R 6 \$, 1)$
4040 IF R6 $\$={ }^{\prime \prime}{ }^{\prime \prime}$ " TUEN GOTO 4320
4050 IF R6 $\$=" 2^{\prime \prime}$ THEN GOTO 4400

$\begin{array}{ll}4070 & \text { IF R6 } \$="^{\prime \prime} 4^{n} \text { THEN GOTO } 4150 \\ 4080 \text { IF R6 } \$=" 5^{\prime \prime} \text { THEN GOTO } 4280\end{array}$

4090 IF R6 $\$=" 6^{\prime \prime}$ THEN GOTO 4300
4100 IF R6 $\$=* 7 "$ THEN GOTO 4580


4130 IF EOF(1) TIIEN 420
4140 GOTO 4030
$4150 \mathrm{~T}(\mathrm{X})=1:$ INPUT $1, \mathrm{M}: ~ \mathrm{M}(\mathrm{X})=$ VAL $(\mathrm{M} \$):$ REM *** TRANSMISSION I,INF ***
4160 INPUT $1, I \$: I(X)=V \wedge L(I S): I N P U T$, $O \$: O(X)=V A I(O \$)$
4170 INPUT 11,NS:N(X)=VAL(NS):GOTO 4200
4180 INPUT $1, M S: M(X)=V A I,(M \$)$
4190 INPUT 11,NS:N(X)=VAL (NS
4200 INPUT $1, \mathrm{Z} s: \mathrm{Z}(\mathrm{X})=\mathrm{VAL}(\mathrm{Z} \$)$
4210 INPUT $1, \mathrm{I}, \$: \mathrm{I}(\mathrm{X})=\mathrm{VAL}(\mathrm{L} \$)$
4220 IF $I(X)>N$ TIIFN $N=I(X)$
4230 IF $M(X)>N$ TIIEN $N=M(X)$

4240 IF $N(X)>N$ THEN $N=N(X)$
4250 IF $\mathrm{O}(\mathrm{X})>\mathrm{N}$ THEN $\mathrm{N}=\mathrm{O}(\mathrm{X})$
$4260 \mathrm{X}=\mathrm{X}+1: \mathrm{T}(\mathrm{X})=0$
4270 GOTO 4030 * * SHORTED STUB ***
4280 GOTO 4180
$4300 \mathrm{~T}(\mathrm{X})=2$ REM ** * OPEN STUB ***
$4300 \mathrm{~T}(\mathrm{X})=2$ : REM *** OPEN STUB ***
4310 GOTO 4180
INPUT $1, I \$: I=V A L(I \$):$
INPUT $1, \mathrm{~J} \$: J=V A L(J \$): I N P U T: 1, V \$: V=V A L(V \$)$
$4330 \mathrm{~V}=1 / \mathrm{V}$
4340 GOSUB 1430
4350 GOTO 4030
4360 INPUT $1, \mathrm{I} \$: \mathrm{I}=\mathrm{VAL}(\mathrm{I} \$):$
INPUT $1, \mathrm{~J} \$: J=$ VAL (J\$) : INPUT $1, V \$: V=$ VAL (V\$
4370 V=1/V
4380 GOSUB 1360
4390 GOTO 4030
4400 INPUT 1, I \$: I=VAL (I \$)
INPUT 1,J\$:J=VAL(J\$):INP(IT 1,V\$:V=VAL(V\$)
4410 GOSUR 1480
4420 GOTO 4030
4430 INPUT $1, K \$: K=$ VAL $(K \$):$ INPUT $1, J \$: J=\operatorname{VAL}(J \$):$ INPUT 1, I $I=V A L(I \$): I N P U T \quad 1, V \$: V=V A L(V \$)$
$4440 \mathrm{~L}=\mathrm{J}$
4450 GOSUB 1530
4460 GOTO 4030
4470 INPUT 11 "BASE"; K:INPUT 1, J\$:J=VAL (J§):INPUT 1, IS: $\mathrm{I}=\mathrm{VAL}(\mathrm{I} \$): \mathrm{INPUT}: 1, \mathrm{R} \$: \mathrm{R} 5=\mathrm{VAL}(\mathrm{R} \$)$
4480 INPUT $1, V S: V=V A L(V S)$
$4490 V=1 / V$
$4500 \mathrm{~L}=\mathrm{I}$
510 1=K
gosub 1430
4530 I =
$4540 \mathrm{~V}=\mathrm{V}$ * R
4560 GOSUB 1530
4570 GOTO 4030
4580 INPUT 11,K $:$ : $=$ VAL $(K \$): I N P U T: 1, L \$: L=V A L(L, S):$ INPUT I, IS: I=VAI. (IS)
4590 INPUT 1, J\$: J=VAL(J§):INFUT 1,RS:R5=VAT.(R§):
INPUT 1. VS:V=VAL (VŞ)
$4600 \mathrm{~V}=1 / \mathrm{V}$
4610 GOS 1 B
4630 GOSLIR 153
4640 GOTO 4030
5000 INPUT "Name of file (<cr" for nirectory)"; $\$$
5010 IF LF,N(F§)=0 THEN FILES:GOTO 5000
5020 OPEN "O", $1, F \$$
5200 PRINT " 1 RESISTOR"
5210 PRINT "2 CAFACITOR"
5220 PRINT " 3 INIHCTOK"
5230 PRINT "4 TRANSMISSION IINF.



5810 PRINT 11,R6\$+" * FET
5812 PRINT 11, KS
5814 PRINT $1, J \$$
5818 PRINT II, V\$
5830 GOTO 5360
5840 INPUT "BASE";K\$:INPUT "EMITTER";J\$:INPUT "COLLECTOR": IS INPUT "BETA": R5
860 PRINT R1,R6S+" * NPN TRANSISTOR"
581 PRINT 11,K
5862 PRINT $11, \mathrm{~J}$
863 PRINT 1, IS
864 PRINT 11,R5
865 PRINT $11, \mathrm{VS}$
5940 GOTO 5360
595 INPUT "+IN";RS:INPUT "-IN":LS:INPUT "-OUT"; IS:REM *** OP-AMP ***
5960 INPUT "+OUT";J\$:INPUT "GAIN(V/V)";R5\$:
INPUT "OUTPUT RESISTANCE(OHMS)";VS
5970 PRINT \#1,R6\$+" * OP-AMP"
5972 PRINT 1.,KS
5974 PRINT 1,L
5976 PRINT 1.IS
5978 PRINT 1,J\$
5980 PRINT $11, R 5 \$$
5990 PRINT 1,V\$
6010 GOTO 5360
7000 ' SUBROUTINES FOR FILE HANDLING
010 FOR $\mathrm{J}=1$ TO 4:READ FL\$(J,1):FL\$(J,2)=${ }^{\text {TN }}:$ NEXT J
7020 FOR J=1 TO 4
7030 IF FLS $(\mathrm{J}, 2)={ }^{\text {n }}$ Y" THEN GOTO 7050

7050 NEXT J
7060 -PRINT
7070 INPUT "Choice (enter <cr> or 0 to exit)":C:C=INT(C)
7080 IF FL\$(C,2)="Y" THEN PRINT "Already Selected!":GOTO 7070
7090 IF C=0 THEN RESTORE: RETURN
7100 PFG=1:INPUT "Name of Data File (〈cr〉 for Directory)"; F\$
7110 IF LEN(F§) $=0$ THEN FILES:GOTO 7100
$7120 \mathrm{FLS}(\mathrm{C}, 2)=^{=} \mathrm{Y}^{\mathrm{n}}:$ OPEN ${ }^{\circ} \mathrm{O}^{\prime \prime}, \mathrm{C}, \mathrm{F} \$$
7130 GOTO 7020
7140 DATA "Amplitude versus Frequency", "Phase versus Frequency"
7150 DATA "Amplitude, Phase vs. Frequency", "Amplitude vs. Phase"
7160 CLOSE
7200 FOR JJ=1 TO 4
7210 IF FLS (JJ, 2) = " $\mathrm{N}^{\mathrm{n}}$ THEN GOTO 7270
7220 ON JJ GOTO $7230,7240,7250,7260$
7230 WRITE 1,RO,V:GOTO 7270
7240 WRITE $2, R 0,0: G O T O 7270$
7250 WRITE $13, R 0, V, U: G O T O ~ 7270$
7260 WRITE $4, \mathrm{~V}, \mathrm{U}$
7270 NEXT JJ
frequency goes down. This results in a great tendency to oscillate at low frequencies. RFC2, C9, C10, R3 and RFC3, C12, C13, R4 form feedback loops that keep the low frequency gain down. Because we are dealing with bi-polar transistors, which require blas current, our bias supply needs to be low impedance. Also, because of the well known variations of bias requirements with temperature, the bias voltage must vary with temperature.

The bias is the voltage developed across $D 4$, which receives its current through R2, RFC1, RYla, and RFC4. R5 is a factory adjust to set up the desired quiescent current. If the diode can be considered to be at the same temperature as the transistor this type of bias tracks reasonably well. Some of the tricks used are to use a stud mounted diode mounted on the heat sink, near the transistors, or to mount the diode right on the transistor. We don't do either. The diode is simply a 1 N 4001 mounted on the PC board.

This simple bias scheme is definitely a compromise. The normal blas stabilization methods used at low power require a $D C$ resistance in efther the collector or emitter circuits. Sufficient resistance to effectively stabilize the quiescent would consume a great deal of power and, when we are operating at a low supply voltage, waste enough voltage as to make getting our desired power output difficult. In addition, we don't want to lift the emitter off of ground for RF reasons. Keeping it at an RF ground is difficult enough. They didn't put four emitter tabs on the MRF247 for the fun of it.

There is some help on bias stablity built into the transistor. The device is in reality many transistors internally connected in parallel. To prevent current hogging, hot spots and a number of other nasty problems, the
manufacturer adds a small resistance in the emitter of each of these many transistors. If you are not familiar with the term, this is known as "emitter ballasting".

There is an additional problem with our simple bias scheme. The input $R F$ is rectified by the transistor base-emitter junction, creating a current opposing the bias current. If the bias source is not stiff enough this can bias you toward Class $B$, or even $C$, with the attendant loss of linearity and gain. In the amplifier under review, R2 is 50 Ohms and R5 typically about 2 Ohms and we can still lose ahout $20 \%$ in power gain under some circumstances. It is also important that RFC4 have a low DC resistance.

The final schematic we will take a look at is of a push-pull amplifier. Because we do not make a push-pull amplifier, I have borrowed a schematic from a Motorola Engineering Bulletin ${ }^{20}$. It is shown in Figure 11.

Push-pull at RF is not different in principle from push-pull at audio. You take the input signal and produce two signals $180^{\circ}$ out of phase and apply them to two amplifying devices. The two resulting $180^{\circ}$ out of phase output signals are combined in a transformer or other device to give the output.

At HF the $180^{\circ}$ signals are generally generated and combined with physically identifiable transformers. Years ago, these were generally air cored transformers. Today, toroidal cored transformers are common. For wide bandwidth, the so called transmission line transformer on a toroidal core is common. At VHF and UHF, wound transformers are Impractical and baluns made out of lengths of coaxial cable are common. That is what is used in this 420-450 Mitz amplifier (T1 and T2). First note that they used matching networks to

APPENDIX B. 2 Example of circuit data file for input to the program NeT85.nsc. This file can be generated by the program itself or generated or modified by any text editor. The /* */ are delimiters for remarks and are not added by the program. They have been added for explanation of the file structure. Note that the file structure is the same as is input from the
keyboard.

```
1* RESISTOR * Type of element (1 is a resistor) */
1
2
50
50 * RESISTOR
4
7
50
1 * RESISTOR
6
7
7
50
50
2 * CAPACITOR
3
7
58E-12
2 * CAPACITOR
\(2_{2}^{2}\)
23E-12
2 * CAPACITOR
5
6
23E-12
3 * INDUCTOR
\(2_{3}^{3}\)
72E-9 1* This is a 72 nh inductor */
3 * INDUCTOR
\(3^{3}\)
72E-9
3 * INDUCTOR
5
7
28E-9
/* Type of element (l is a resistor) */
/* Node A */
```

APPENDIX B. 3 Sample output file from NET85.ASC. This data can be edited with any text editor, added to a report, or used by a plotting program, such as PCPLOT2 (BV Engineering, Riverside, CA) :
(The first number is frequency, the second is amplitude.)
$8 \mathrm{E}+07,3.543465 \mathrm{E}-02$
$8.269104 \mathrm{E}+07.3 .831959 \mathrm{E}-02$
$8.54726 \mathrm{E}+07,4.173018 \mathrm{E}=02$
8.83472E+07. 051674 E
$9.13195 \mathrm{E}+07.05106$
$9.439138 \mathrm{E}+07.5 .938689 \mathrm{E}-02$
.
$1.008485 \mathrm{E}+08,8.579546 \mathrm{E}-0$
1.047473E+08, 1368522
1.077473E+08,.1368522
$1.15118 \mathrm{E}+08, .2237623$
$1.15118 \mathrm{E}+08, .2237623$
$1.189903 \mathrm{E}+08, .2785856$
$1.229929 \mathrm{E}+08, .3333452$
$1.271301 \mathrm{E}+08, .3794872$
$1.271301 \mathrm{E}+08, .3794872$
$1.314065 \mathrm{E}+08, .4116778$
$1.314065 \mathrm{E}+08, .4116778$
$1.358268 \mathrm{E}+08, .430391$
$1.358268 \mathrm{E}+08, .430391$
$1.403957 \mathrm{E}+08, .4395925$
$1.403957 \mathrm{E}+08, .4395925$
$1.451184 \mathrm{E}+08, .4434264$


100 WATT $420-450 \mathrm{MHZ}$ PUSH-PULL AMPLIFIER
build the impedances up to workable levels before doing any combining. Second, notice the bias circuit ( $\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{D} 1$ ). This arrangement gives you a stiff source, without as high a DC power loss as was necessary with the simple diode arrangement of the previous schematic.

Some advantages of the push-pull configuration, compared to using two devices in parallel, are:

1) Easier input and output matching due to higher impedance levels.
2) Suppression of even harmonics. This is the classic advantage cited for push-pull stages. However, there are some traps. For example, if in a Class C stage you have capacitive coupling between each device and the output, you may find that the second harmonic is much higher than in the equivalent single ended stage.
3) Collector by-passing is less critical. This is true but don't get carried away.
4) Emitter grounding is less critical. In a push-pull stage it is the emitter-to-emitter path that is more important than the emitter-to-ground path. If you mount the two devices in the same package, where the emitter-to-emitter leads can be real short you can reduce problems considerably. The push-pull package is becoming more common in VHF and UHF devices.
5) The load sharing is better than the equivalent two devices in parallel.


FIGURE 1
Prototype Diplexer Design


FIGURE 3
Diplexer Design using RETMA Values

## LOW-PASS SECTION

| FREQ= | $8.0000 \mathrm{E}+07$ | AMPL= | $4.56 \mathrm{E}-01$ | 20LOG= | -6.8 | PHASE= | -105.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQ $=$ | $8.5000 \mathrm{E}+07$ | AMPL= | 4.52E-01 | 20i.0G= | -6.9 | PHASE $=$ | -113.1 |
| FREQ $=$ | $9.0000 \mathrm{E}+07$ | AMPL= | 4.49E-01 | 20LOG= | -7.0 | PHASE $=$ | -120.9 |
| FREQ $=$ | $9.5000 \mathrm{E}+07$ | AMPL= | 4.48E-01 | 20 LOG= | -7.0 | PHASE= | -129.1 |
| FREQ $=$ | $1.0000 \mathrm{E}+08$ | AMPL= | $4.47 \mathrm{E}-01$ | 20 LOG= | -7.0 | PHASE $=$ | -138.1 |
| FREQ $=$ | $1.0500 \mathrm{E}+08$ | AMPL $=$ | 4.46E-01 | 20LOG= | -7.0 | PIIASE= | -148.2 |
| FREQ= | $1.1000 \mathrm{E}+08$ | AMPL= | 4.42E-01 | 20LOG= | -7.1 | PHASE= | -160.0 |
| FREQ= | $1.1500 \mathrm{E}+08$ | AMPL= | 4.27E-01 | 20LOG= | -7.4 | PHASE= | -173.6 |
| FREQ $=$ | $1.2000 \mathrm{E}+08$ | AMPL $=$ | $3.94 \mathrm{E}-01$ | 20LOG= | -8.1 | PliASE= | 171.2 |
| FREQ= | $1.2500 \mathrm{E}+08$ | AMPL= | $3.40 \mathrm{E}-01$ | 20 LOG $=$ | -9.4 | PHASE= | 155.7 |
| FREQ $=$ | $1.3000 \mathrm{E}+08$ | AMPL= | $2.75 \mathrm{E}-01$ | 20 LOG $=$ | -11.2 | PHASE= | 142.0 |
| FREQ $=$ | $1.3500 \mathrm{E}+08$ | AMPL= | $2.13 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -13.4 | PHASE= | 131.6 |
| FREQ = | $1.4000 \mathrm{E}+08$ | AMPL= | $1.62 \mathrm{E}-01$ | 20LOG= | -15.8 | PHASE= | 124.7 |
| FREQ $=$ | $1.4500 \mathrm{E}+08$ | AMPL= | $1.25 \mathrm{E}-01$ | 20LOG= | -18.1 | PHASE= | 121.1 |
| FREQ $=$ | $1.5000 \mathrm{E}+08$ | AMPL= | $9.77 \mathrm{E}-02$ | 20LOG= | -20.2 | PHASE= | 120.1 |

## HIGH-PASS SECTION

| FREQ= | 07 | A | 2 | 20LOG= | -29.0 | PHASE= | -136.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQ= | $8.5000 \mathrm{E}+07$ | AMPL= | $4.11 \mathrm{E}-02$ | 20LOG= | -27.7 | PHASE= | 134. |
| FREQ $=$ | $9.0000 \mathrm{E}+07$ | AMPL= | $4.89 \mathrm{E}-02$ | $20 \mathrm{LOG}=$ | -26.2 | PHASE= | 130. |
| FR | $9.5000 \mathrm{E}+07$ | AMPL | $6.12 \mathrm{E}-02$ | 20LOG | -24. | PHA | 25 |
| FREQ | $1.0000 \mathrm{E}+08$ | AMPL | 8.13E-02 | 20 LOG | -21.8 | PHASE | , |
| FREQ $=$ | $1.0500 \mathrm{E}+08$ | AMP | $1.13 \mathrm{E}-01$ | 20LOG | -18.9 | PHASE= | -12 |
| REQ | $1.1000 \mathrm{E}+08$ | AMPL | $1.60 \mathrm{E}-01$ | 20LOG= | -15.9 | PHASE= | -12 |
| FREQ= | $1.1500 \mathrm{E}+08$ | AMPL | 2.22E-01 | $201.06=$ | -13.1 | PHASE= | -133 |
| FREQ= | $1.2000 \mathrm{E}+08$ | AMPL= | $2.93 \mathrm{E}-01$ | 20LOG= | -10.7 | PHASE= | -146.4 |
| FREQ $=$ | $1.2500 \mathrm{E}+08$ | AMPL, $=$ | 3.57E-01 | 20 LOG= | -8.9 | PHASE= | -161 |
| FREQ= | $1.3000 \mathrm{E}+08$ | AMPL= | 4.03E-01 | 20LOG= | -7.9 | PIIASE= | -175.9 |
| FREQ $=$ | $1.3500 \mathrm{E}+08$ | AMPL= | $4.28 \mathrm{E}-01$ | 20LOG= | -7.4 | PHASE= | 171.0 |
|  | $1.4000 \mathrm{E}+08$ | AMPL | $4.39 \mathrm{E}-01$ | 20LOG= | -7.1 | PHASE $=$ | 160.1 |
|  | $1.4500 \mathrm{E}+08$ | AM | $4.43 \mathrm{E}-01$ | 20 LOG= | -7.1 | PHASE $=$ | 151.0 |
| FREQ | $1.5000 \mathrm{E}+08$ | AMPL | $4.45 \mathrm{E}-01$ | 20 LOG | -7. | IIAS | 4 |

figure 2 - CAlculated values of diplexer

## references

1. R. Brand, P. Ledger, "Slicing S Parameters", RF Design Sept/Oct 1982 pp 12-21.
2. G. Gonzalez, "Microwave Transistor Amplifiers", Prentice Hall, 1984, Chapter 1.
3. C. Bowick, "RF Circuit Design", Howard W. Sams, 1982, Chapter 5.
4. "R. F. Small Signal Design Using 2-Port Parameters" Motorola Application Note, AN-215.
5. H. Krauss, c. Bostian, F. Raab, "Solid State Radio Engineering", John Wiley \& Sons, 1980, Chapter 4.
6. A. Burwasser, "TI-59 Program Computes Values For 14 Matching Networks", RF Design, Nov/Dec 1983, pp 12-31
7. C. Bowick, "RF Circuit Design", Howard W. Sams, 1982, Chapter 4.
8. J. Hardy, "High Frequency Circuit Design", Reston Publishing Company (Prentice Hall) 1979, Chapter 5.
9. G. Gonzalez, "Microwave Transistor Amplifiers", Prentice Hall, Chapt. 2
10. A. Przedpelski, "Special Low Pass Filters" RF Design Sept/Oct 1982 pp 48-54.
11. S. Houng, "A practical Approach to Amplifier Matching", Microwaves \& RF, July 1985
12. B. Becciolini, "Impedance Matching Networks Applied to R-F Power Transistors" Motorola Application Note AN-721.
13. F. Davis, "Matching Network Designs With Computer Solutions", Motorola Application Note AN-267.
14. F. Davis, "Matching Network Designs With Computer Solutions", Motorola Application Note AN-267.

14 A. LaPenn, "BASIC Program Computes Values For 14 Matching Networks". RF Design, April 1985, pp 44-47.
15. H. Granberg, "A Simplified Approach to VHF Power Amplifier Design", Motorola Application Note AN-791.
16. H. Rrauss, C. Bostian, F. Raab, "Solid State Radio Engineering" John Wiley \& Sons, 1980, Chapters 12, 13.
17. W. Orr, "Radio Handbook", Howard W. Sams, 1981, Chapter 7.
18. H. Granberg, "Broadband Transformer and Power Combining Techniques for RF', Motorola Application Note AN-749.
19. R. La Rosa, "Hybrid Coupled Amps: Can They Weather a Mismatch?", Microwaves, February 1975, pp 44-49.
20. H. Swanson, B. Tekniepe, "A 100-Watt PEP 420-450 Miz Push-Pull Linear Amplifier" Motorola Engineering Bulletin EB-67.


| $\mathrm{FREQ}=$ | $8.0000 \mathrm{E}+07$ |
| :--- | :--- |
| $\mathrm{FREQ}=$ | $8.5000 \mathrm{E}+07$ |
| $\mathrm{FREQ}=$ | $9.0000 \mathrm{E}+07$ |
| $\mathrm{FREQ}=$ | $9.5000 \mathrm{E}+07$ |
| $\mathrm{FREQ}=$ | $1.0000 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.0500 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.1000 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.1500 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.2000 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.2500 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.3000 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.3500 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.4000 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.4500 \mathrm{E}+08$ |
| $\mathrm{FREQ}=$ | $1.5000 \mathrm{E}+08$ |

LOW-PASS SECTION
 AMPL $=4.58 \mathrm{E}-01$ 2010G $=$ $A M P L=4.53 \mathrm{E}-01$ 20LOG $=$ $A M P L=4.52 \mathrm{E}-01$ 20LOG= $A M P L=4.50 \mathrm{E}-0120 \mathrm{LOG}=$ AMPL= 4.46E-01 20LOG= $A M P L=4.33 \mathrm{E}-01 \quad 20 \mathrm{LOG}=$ AMPL= $4.06 \mathrm{E}-01$ 20LOG $=$ AMPL $=3.59 \mathrm{E}-01$ 20LOG= $\mathrm{AMPL}=2.99 \mathrm{E}-01 \quad 20 \mathrm{LOG}=$ AMPL= $2.36 \mathrm{E}-01$ 20LOG= AMPL $=1.82 \mathrm{E}-01$ 20LOG= $\begin{array}{ll}\text { AMPL }= & 1.40 \mathrm{E}-01 \\ \text { AMPL }= & 20 \mathrm{LOG}= \\ 1.08 \mathrm{E}-01 & 20 \mathrm{LOG}=\end{array}$
-6.7
$-6.8$
-6.8
-6.8
-6.9
-6.9 PHASE $=-121.4$
$-6.9 \quad$ PHASE $=-129.4$
PHASE $=-121.2$
$-6.9 \quad$ PHASE $=-138.4$
-6.9
-6.9 PHASE $=-148.3$
-7.0
-7.0
-7.3
-7.8
PHASE $=$
-159.6
$-7.3 \quad$ PHASE $=-172.6$
-7.8
-8.9
$\begin{aligned} &-7.8 \text { PHASE }=172.8 \\ &-8.9 \text { PHASE } \\ & 157.5\end{aligned}$
$\begin{aligned}-8.9 & \text { PHASE }=157.5 \\ -10.5 & \text { PHASE }=143.2\end{aligned}$
$\begin{aligned}-10.5 & \text { PHASE }=143.2 \\ -12.5 & \text { PHASE }\end{aligned}$
$\begin{array}{lll}-12.5 & \text { PHASE }= & 131.3 \\ -14.8 & \text { PHASE }= & 122.6\end{array}$
$\begin{aligned} & 17.8 \text { PHASE }= \\ &-122.6 \\ & \text { PHASE } 117.0\end{aligned}$
$\begin{array}{ll}-19.1 & \text { PHASE } \\ -117.0 \\ \text { PHASE } & 114.2\end{array}$

HIGH-PASS SECTION


FREQ $=8.5000 \mathrm{E}+07$
$\mathrm{FREQ}=9.0000 \mathrm{E}+07$
FREQ $=1.000 \mathrm{E}+07$
FREQ $=1.0500 \mathrm{E}+08$
FREQ $=1.0500 \mathrm{E}+08$
FREQ $=1.1000 \mathrm{E}+08$
$\begin{aligned} & \text { FREQ } \\ & \text { FREQ }\end{aligned} \quad 1.1000 \mathrm{E}+08$
FREQ $=1.1500 \mathrm{E}+08$
FREQ $=1.2000 \mathrm{E}+08$
FREQ $=1.2500 \mathrm{E}+08$
FREQ $=1.3000 \mathrm{E}+08$
FREQ $=1.3000 \mathrm{E}+08$
FREQ $=1.3500 \mathrm{E}+08$
FREQ $=1.3500 \mathrm{E}+08$
$\mathrm{FREQ}=1.4000 \mathrm{E}+08$
$\mathrm{FREQ}=1.4500 \mathrm{E}+08$
FREQ $=1.5000 \mathrm{E}+08$
figure 4 - valufg adjusted to nearest retma values
Fiaure 2 (6)

## STEPHEN E. SUSSMAN-FORT, Ph.D

Associate Professor
Department of Electrical Engineering
State University of New York
(516) 246-5141 (516) 246-6757
and
President
SPEFCO Software
Stony Brook, New York 11790
(516) 751-2376
an evolution of optimization and synthesis programs for personal computers
by
STEPHEN E. SUSSMAN-FORT, Ph.D.
Associate Professor
Department of Electrical Engineering
State Uni versity of New York
$\begin{array}{cc}\text { Stony Brook, } & \text { New York } \\ \text { (516) } & 11794 \\ \text { (516) } & 246-6757\end{array}$
and
President
SPEFCO Software
18 Bennett Lane
Stony Brook, New York 11790
(516) 751-2376
b

## ABSTRACT

Two personal-computer programs for RF/microwave applications - CIAO for analysis and optimization, and DESIGN for matching network synthesis - have undergone substantial revision since their introduction over a year ago. CIAO is now a much more powerful program, with the inclusion of rapid sparse-matrix techniques, a choice of three different optimization algorithms, and high resolution graphics output. DESIGN has a greatly improved user interface and, with the inclusion of a fine-tuning option, is now able to consiatently synthesize lumped and distributed matching networks with response errors on the order of a small fraction of a dB. Thia paper discusses the evolution of CIAO and DESIGN to their present states.


## The Capabilities of CIAO: Original Version

CIAO can analyze and optimize circuits comprising the following elements: resistors; capacitors; inductors; (lossy) transmission lines; controlled sources (with delay); one-ports, two-ports and three-ports described by tables of S, Y, or Z parameters; and gyrators. Scattering parameters for the circuit are calculated between either real or complex loads over a frequency band. The magnitude, phase, and/or phase-shape of any number of the S-parameters may be optimized to achieve specified design goals. Generally, for optimization, new sets of element values are found to minimize the error between the calculated and desired S-parameter values.

In the original version of CIAO, the Fletcher-Reeves [2] gradient optimizer was avallable, highly efficient and accurate adjoint techniques [3] were used to calculate the gradients required by the optimizer, and a "dense" linear equation solver was used in the analysis routines. There was no graphics output. The new CIAO offers a choice of three optimizers, a sparse matrix solver, and simultaneous text and high resolution graphics on a single screen. The benefits of these additions will now be described.

## The New CIAO: Three Available Optimizers

CIAO now offers a choice of two gradient algorithms and one random-grid algorithm for circuit optimization. For a given network problem, one method will prove superior to the others; sometimes the best results can be achieved
by spplying one slgorithm snd then awitching to snother.

The svailsble gradient optimizers are the Fletcher-Reeves (F-R) and Fletcher-Powe11 (F-P) [4] methods. Both of these use information obtained from the gradient of the error function to search for the minimum. When far from a minimum, F-R and F-P both behave like a steepest-descent method and converge at about the same rate. When close to $s$ minimum, F-P converges faster than F-R because F-P atarts acting more like a Newton-Raphson method, which has s quadrstic rate of convergence. These properties of the F-R and F-P methods spply exsctly only to functions with "locsily quadrstic" behsvior. In practicsl circuit problems, the error function may or may not have this charscteristic. Experience has shown us, however, that F-P is ususlly superior to F-R, slthough there are instances where F-R does work better.

CIAO slso provides the choice of the Nelder-Mesd (N-M) [5] random-grid-sesch method. In this algorithm, the error function is evslusted seversl times for a range of element values - i.e. over a "grid" in the vector space of optimizable element values - and from this $s$ "better" set of circuit parsmeters is deduced. $N-M$, like most random-grid methods, is generslly sble to svoid convergence to locsl minima, slthough sometimes the number of function evslustions required becones large. The algorithm is also very effective in those circuit problems where the response is not too sensitive to small changes in the network parsmeters. Such s situstion arises, for example, when optimizing the passbsnd of $s$ lossless, doubly-terminated filter or matching network. This is so becsuse the first-order senaitivity of S 21 to the component values of such a network is
zero st frequencies corresponding to maximum transfer of power between the source and losd [6].

CIAO, with its three optimizers, provides sufficient flexibility to handle the most difficult circuit optimizstion problems.

## The New CIAO: Sparse Matrix Techniques

Both the anslysis and optimization performed in CIAO involve repestedy constructing and solving the linesr nodsl equations of a circuit to obtain scattering parsmeters. The conventionsl mesns of solving linear equations, such as Gaussian elimination or LU factorization, genersily requires s number of mathemsticsl operstions proportionsl to $n^{3}$, i.e. the cube of the number of nodes in the circuit. Many of these mathematical operstions involve multiplications by zero, becsuse the typical nodsl sdmittance matrix $Y$ is sparse, i.e. containa only s small percentage of nonzero entries. For exsmple, the percentsge density of nonzero entries in $Y$ for a ten-node ladder network is 28\%, while for s twenty-node ladder the density falls to under $15 \%$. Clearly, if the useless multiplications by zero were eliminsted in solving the linesr equations, a grest increase in processing speed would be realized.

Sparse matrix techniques consist of specislized algorithms for solving linesr equations by working only on the nonzero entries of the coefficient matrix. For typical nodal equations, the number of msthemstical operations required for solution is linearly proportional to $n$, the number of nodes. Obviously, sn enormous saving in processing time is realized by using sparse

## The Schottiky Diode Mixer

> Jack H. Lepoff

Applications Engineer Hewlett-Packard Company 350 West Trimble Road San Jose, CA 95131

## INTRODUETION

A major application of the Schottky diode is the production of the difference frequency when two frequencies are combined or mixed in the diode. This mixing action is the result of the non-linear relationship between current and voltage, usually expressed as

$$
I=I_{s}\left(e^{\frac{q(V-I R)}{n K T}}-1\right)
$$

The series resistance, $h$, is a parasitic element representing bulk resistance of the semiconductor and contact resistance. It is sometimes confused with dynanic resistance which is the sum of the series resistance and the resistance of the junction where the frequency conversion takes place. The ideality factor, $n$, is unity for an ideal diode and less than 1.1 for a silicon Schottky diode.

Variations in $n$ are not important for $n$ less than 1.1. The effect of saturation current. Is, is very important when the level of local oscillator power is low. This will be demonstrated by comparing results of mixing with diodes having different values of saturation current. Although temperature, $T$, is seen in the exponential and is present in a
more cunplicated manner in saturation current, the effect on mixing efficiency is less than 0.5 dB for 100 degrees C change in temperature. Electron charge, $q$, and Boltzmann constant, $k$, may be combined in the equation

$$
\begin{equation*}
I=I_{s}\left(e^{\frac{V-I R}{.026}}-1\right) \tag{1}
\end{equation*}
$$

## Conversion Loss

Mixing efficiency is massured by the conversion loss, the ratio of signal input power to intenaediate frequency output power. The intermediate frequenoy is the aifference between the signal frequency and the local oscillator frequency. The diode may also generate the sum of these two frequencies. In this case the mixer may be called an upconverter. For a given local oscillator frequency, the difference frequency may be produced by two signal frequencies - one above the 1.0. frequency and one below. Of oourse noise is also contributed at these two frequencies. In some cases, the mixer is designed to respond to both these frequencies. A aixer of this type is called a double sideband mixer. More commonly the mixer is designed to respond to one of these inputs. Since noise comes from both frequencies the double sideband mixer is better - typically 3 dB better.

Noise figure is another measure of aixing efficiency. This is the ratio of signal to noise ratio at the input to signal to noise ratio at the output. Single and double sideband definitions apply to noise figure also. In some applications nolse figure and conversion loss are essentially equal. However, noise figure includes diode noise which becones significant at interwediate frequencies in the audio range (l/f no1se). In these applications noise figure may be much larger than conversion loss.
matrix methods in circuit analysis and optimization.

CIAO now employs a sophisticated sparse matrix equation-solving algorithm, and the resulting increase in processing speed has been impressive, as compared to the original CIAO, which used the conventional "dense" solver. For example, with the sparse solver, the analysis and optimization speeds for various ladder networks improved as follows: (1) four-node network - ran 1.04 times faster; (2) ten-node network ~ ran twice as fast; (3) twenty-one node network - ran ten times faster. Generally, the larger and sparser the network, the greater will be the advantage that sparse matrix techniques realize over dense solvers.

## The New CIAO: Graphics Output and Other Enhancements

CIAO's normal screen-output mode now provides simultaneous text and high-resolution graphics output. In CIAO's graphics mode, which is the default option, the upper half of the screen displays the text output. This consists of the program queries directed to the user, and the analysis and optimization results for the circuit. The user may redirect this text output to the printer. The graphics output from CIAO appears in the bottom half of the screen.

The graphics output is generated automatically by CIAO according to certain default options. By including the appropriate command in the data file, the user may override the defaults either to plot the magnitude or phase of any scattering parameter, or to suppress graphics output altogether. When the
graphics mode is activated, a plot is generated for the initial analysis of the circuit and for each optimizing iteration after the initial analysis. After three plots are constructed on the coordinate axes, the graph is erased and a new set of axes is constructed, possibly with a different ordinate scale. As the iterations proceed, another three plots are drawn. At this point, the graph is refreshed again. The process repeats until the desired number of iterations is completed. Fach plot of a group of three is distinguishable by the intensity of the trace on the screen, and by either dot, cross, or box marks on the plot at the frequency points specified in the data file.

Hardcopy output of the screen's graphics images is possible via the GRAPHICS.COM program, which comes with most MS-DOS $2 . x$ operating systems. Before running CIAO, one need only execute GRAPHJCS.COM; then at any time during or after a CIAO execution, Shift-PrtSc will dump the screen image to the printer.

Automatic Updating of Data Files. Whenever an optimization is concluded or interrupted, the user may, in response to screen query, direct CIAO to save to disk a new data file with the current values of the optimizable circuit elements. This feature makes it very easy to start, stop, and resume an optimization of a circuit - even changing the optimization algorithm along the way, if so desired.

[^2]Another complication of noise figure is the effect of the amplifier following the mixer. Diode manufacturers include the effect of a 1.5 dB nolse figure IF amplifier in the mixer noise figure. Mixer manufacturers do not include this amplifier in the mixer noise definition. In this paper diode efficiency will be measured by conversion loss.

## Parasitic Losses

The diode equivalent circuit of Figure 1 shows the presence of two elements that degrade performance by preventing the incoming signal from reaching the junction resistance there the mixing takes place. The effect of junction capacitance and series resistance was studied by comparing conversion loss data measured with three diodes covering a wide range of these parameters. The 5082-2800 is a general purpose diode, typically used in switching circuits. The 5082-2817 is a 2 GH mixer diode. The 5082-2755 is a 10 CHz detector diode. Figure 2 shows the conversion loss measured at 2 GHz for these three diodes.

The 5082-2800 general purpose diode has a conversion loss several $d B$ worse than that of the other diodes. This is expected because this diode has a higher junction capacitance. The behavior of the low capacitance 5082-2755 detector diode is more interesting. At local oscillator power levels below -3 dBm the conversion loss is better than the loss of the 5082-2817 mixer diode, but at higher power levels it is worse.

A good approximation to the effect of junction capacitance and serles resistance on conversion loss is:

$$
\begin{equation*}
L_{1}=1+\frac{R_{B}}{R_{j}}+w C_{j}^{2} R_{s} R_{j} \tag{2}
\end{equation*}
$$

This is the ratio of avallable power to the power delivered to the Junction resistance, $R_{j}$, using the diode equivalent circuit of Figure 1. The value of junction capacitance varles with voltage as

$$
\begin{equation*}
c_{j}=\frac{c_{o}}{\sqrt{1-\frac{V}{0.6}}} \tag{3}
\end{equation*}
$$

where 0.6 is a typical value of barrier voltage.

The relative values of conversion loss in Figure 2 may be explained by these equations. Zero blas capacitances for the three diodes were measured to be $0.84 \mathrm{pF}, 1.29 \mathrm{pF}$, and 0.13 pF for the $-2817,-2800$, and -2755 diodes respectively.

At a local oscillator power level of 1 milliwatt the forward current is about 1 millianpere. Using the corresponding forward voltages, $C_{j}$ is computed for the tiree diodes. Assuming a junction resistance of 150 ohras, reasonable values of serles resistance may be chosen to make the relative values of $L_{1}$ correspond to the relative measured values.

The faniliar junction resistance equation $R_{j}=\frac{26}{I}$ does not apply for $I=$ rectified current. It refers to $I=D C$ blas current. when

## III. An Optimization Example for the New CIaO

Presented below are a data file, circuit diagram, and partial program output for an optimization example run using the new CIAO. The data file contains comments which explain the optimization process for the circuit. (Comment lines are denoted by an apostrophe being the first character on the line; blank lines are also allowed. CIAO also permits text comments to be appended to any line.) The circuit is described in a nodal-interconnect format and the optimizable parameters are denoted by an asterisk appended to the element codes.

1. CIAO DATA FILE: OPTIMIZATION OF A FOUR-STAGE GaAs FET AMPLIFIER

CIAO is used here to optimize a four-stage, 21 -node amplifier to (1) a prescribed Sll magnitude and phase (for noise figure), (2 a flat 30 dB gain for S 21 , and (3) an S22 magnitude of below '0.20. The initial design of the amplifier displays a
'satisfactory match for S22, a poor match for S11, and a maximum 'gain error for S 21 of 4.3 dB . The optimized design still
' displays a satisfactory match for S 22, a greatly 1 mproved match
'The optimization was stopped after 4 Nelder-Mead iterations 'which required a total of 91 function evaluations. In this
'particular example, neither Fletcher-Powell nor Fletcher-Reeves
'alone is able to achieve results anywhere nearly as good as those 'achieved with Nelder-Mead.

- TYPE of OPTIMIZATION: Nelder-Mead

RUN-TIME for the INITIAL ANALYSIS: 2.1 sec , per frequency point TOTAL RUN-TIME for ITR. $0-4$ ( 91 fn . eval.): 19 min .11 sec.
'Using the dense solver of the original CIAO, the above run-times
'increase by a factor of TEN.

```
Ind 12 .05e-9
cap 2 3 8.2e-12
'For trl, ost: Zo, Length (deg.) Freq.
```


rectified current is 1 mA , instantaneous current varies over forward and reverse values. Junction resistance is very large when the current is negative so the average junction resistance is larger than predicted by this equation.

|  | $C$ <br> $(p f)$ | $R$ <br> (ohms) | $L$ <br> DidB) |
| :---: | :---: | :---: | :---: |
| 2817 | 1.3 | 6 | 1.07 |
| 2800 | 2.2 | 16 | 4.68 |
| 2755 | 0.24 | 50 | 1.47 |

At -3 dBn the 2817 and 2755 curves cross, with the 2800 loss 4.5 dB higher. Thes relative loss can be explained by raising A to 235 ohms and decreasing the capacitance values.

|  | $C$ <br> Diode | $L$ <br> $(\mathrm{~dB})$ |
| :--- | :--- | :--- |
| 2817 | 1.12 | 1.2 |
| 2800 | 2.1 | 5.7 |
| 2755 | 0.23 | 1.2 |

These values of $C_{j}$ and $R_{s}$ were chosen to illustrate the effect on conversion loss. Since saturation currents are different for these diodes and junction resistances may be different, the actual values of $r_{j}$ and $r_{s}$ may be somewhat different.

Equation 2 shows the loss behavior with frequency. At low frequencies the loss is independent of frequency and capacitance. choosing a low value of series resistance provides the best diode. At high frequencies low capacitance becones more important than low series resistance because capacitance is squared in the equation. Figure 3 shows $L_{1}$ vs frequency for the $5082-2835$ diode with $R_{s}=6$ ofms and $r_{j}=1.0 \mathrm{pF}$ and for the HSCH-5310 diode with $R_{s}=17$ ohms and $r_{j}=0.1 \mathrm{pF}$. The lower capacitance makes the -5310 the better diode at microwave frequencies while the lower resistance makes the -2835 the better diode at low frequencies.

## The Effect of Barrier Voltage

The type of metal deposited on silicon to form a Schottky barrier influences the barrier voltage which is involved in the saturation current determining the forward current. We use the term low barrier for diodes with low values of voltage for a given current (usually 1 mA ). We have previously shown the effect of barrier voltage on the variation of junction capacitance with forwand voltage.

Figure 4 shows the measurement of conversion loss for three diodes having a range of barrier potential values.

| Diodes | Barrier <br> Potential |
| :---: | :---: |
| 5082-2817 | 0.64 |
| 5082-2835 | 0.56 |
| HSCH-3486 | 0.35 |


| .78 | -138 | .03 | 74 | 1.77 | 57 | .77 | -85 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .79 | -139 | .03 | 75 | 1.74 | 56 | .77 | -86 |
| .79 | -140 | .03 | 77 | 1.70 | 55 | .78 | -87 |

table9 sparam (optimizing table)
'match sil for noise figure; 821 for 30 dB gain; $\mathbf{s} 22$ for min. value $.86-19000$
$.89-2900031.6220000$
$\begin{array}{rrrrrrr}.90 & -39 & 0 & 0 & 31.622 & 0 & 0 \\ 91 & 0 & 0 \\ .91 & 0 & 0 & 31.622 & 0 & 0 & 0\end{array}$
$87-54 \quad 0 \quad 0 \quad 31.622000$
$\begin{array}{rllll}.87 & -54 & 0 & 0 & 31.622 \\ 86 & -62 & 0 & 0 & 31.622\end{array} 0$
$\begin{array}{llllllll}86 & -62 & 0 & 0 & 31.622 & 0 & 0\end{array}$
nd

The circuit diagram and (partial) program outputare given on the next two pages.


CIMO Exuple: 4-Srage Culs FET Raplifice

At low LO power levels the lower barrler diodes have better performance, significantly better for the lowest barrier diode, the HSCH-3486. At higher power levels this diode loses its advantage because of higher series resistance. The 5082-2835 has lower capacitance and lower series resistance so its performance is better than the 5082-2817 at all power levels. The maximum rated power level of 150 mW is not high enough to demonstrate the increase in conversion loss seen at high power levels for the other diodes.

## Effects of Dr. Blas and Local Oscillator Power Level

Figure 5 shows the conversion loss of a 5082-2817 mixer diode measured at 2 Gliz . The top curve was measured without DC, blas. Optimum Dr. blas was appled at each level for the bottom curve. The curves meet at the optimum local oscillator level where bias does not help. Below this level forward blas is used. Above this level reverse blas is used to reduce the rectified current.

At low levels of $L 0$ power, the conversion loss degrades rapidly unless Dr. bias is used. At -10 dBm the degradation is about 7 dB from the perfornance at the standard 0 dBm power level. Replacing the lost Lo power with DC. blas recovers about 6 dB of the degradation.

At high levels of LO power the performance degrades again. This is caused by the rapid increase of junction capacitance. Reverse bias reduces the current and the capacitance, restoring the diode performance.

## Effect of Load Resistance

Figure 6 shows the effect of mixer load resistance on conversion loss. At low local oscillator power levels the effect is similar to the barrier effect. More rectified current flows with smaller load resistance so performance is better. At higher power levels the degradation due to higher capacitance appears first with the lower load resistances. As a result the optimum value of load resistance increases with 10 power level. At +9 dAm 100 ohms becomes better than 10 ohms. AT +19.5 dBn 400 ohms becomes better than 100 ohms. The load circuit can be designed to provide the optimum resistance as the local oscillator power level changes.

## HARMONIC DISTORTION

Sums and differences of multiples of the two mixing frequencies are produced in the mixing diode. These frequencles appear as spurious responses in the output. This effect was studied by setting the signal frequency at 2 GHz and the power at -30 dAm . The local oscillator was then set at various frequencies to produce harmonic mixing with a difference frequency of 30 mHz . Local oscillator power was one milliwatt. Then the local oscillator was set at 2 GHz and the signal frequency varied. The output levels in dB below fundanental mixing are shom int Figure 7. The diode was placed in a 50 ohm untuned coaxial mount.

The output levels of the $m 1$ products, mixing of the signal fundamental with multiples of the local oscillator, are much higher than

## CIAO Output for 4-Stage faplifier Example

## CIRCUIT ANALYSIS and OPTIMIZATION PROGRAM

(C) Copyright 1984, 1985 Stephen E. Sussman-Fort

11 Rights Reserved

Initial Analysis


## Iteration number: $1 \quad$ - using 28 function evaluation(s). Error function: $90.539 \quad-$

Magnitude errors $[11,12,21,22]: 1.47 \mathrm{E}+000$ 0.00E+000 $8.03 \mathrm{E}+001 \quad 5.04 \mathrm{E}-001$ Phase errors $[11,12,21,22]: \quad 8.23 \mathrm{E}+000 \quad 0.00 \mathrm{E}+000 \begin{array}{lllll}8.00 \mathrm{E}+000 & 0.00 \mathrm{E}+000\end{array}$

| Variable | Value |
| :---: | :--- |
| 1 | $4.65707 \mathrm{E}+001$ |
| 2 | $7.47423 \mathrm{E}+001$ |
| 3 | $6.98742 \mathrm{E}+001$ |
| 4 | $4.65794 \mathrm{E}+001$ |
| 5 | $5.96321 \mathrm{E}+001$ |
| 6 | $5.75146 \mathrm{E}+001$ |
| 7 | $3.50699 \mathrm{E}+001$ |
| 8 | $5.09605 \mathrm{E}+001$ |
| 9 | $4.91413 \mathrm{E}+001$ |
| 10 | $6.15752 \mathrm{E}+001$ |

## CLAO Dutput (cont'd)

| Iteration number: | 2 | -using | 9 function evaluntion(s). |
| :--- | :---: | :--- | :--- |
| Error function: | 6.292 |  |  |
| Iteration number: | 3 | -using | 51 function evaluation(s). |
| Error function: | 4.938 |  |  |
| Iteration number: | 4 | - using | 2 function evaluation(s). |

Magnitude errors [11,12,21,22]: 5.04E-001 0.00E+000 8.80E-001 0.00F+000


## Variable

| Variable | Value |
| :--- | :--- |
| 1 | $4.68837 \mathrm{E}+001$ |
| 2 | $7.71597 \mathrm{E}+001$ |
| 3 | $5.97823 \mathrm{E}+001$ |
| 4 | $4.47366 \mathrm{E}+001$ |
| 5 | $5.52477 \mathrm{E}+001$ |
| 6 | $5.71373 \mathrm{E}+001$ |
| 7 | $3.31566 \mathrm{E}+001$ |
| 8 | $5.31364 \mathrm{E}+001$ |
| 9 | $5.30837+001$ |
| 10 | $5.39265 \mathrm{E}+001$ |
| 11 | $2.40746 \mathrm{~F}+001$ |

Final Analysis

| Freq. <br> ( Hz ) | S11 |  | S12 |  | S21 |  | S22 |  | S21 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mas. | Ang. | Mas. | Ang. | Mas. | Ang. | Mas. | Ang. | 48 | Fact |
| $7.250 \mathrm{E}+009$ | 0.86 | -28 | -72.5dB | 10.9 | 30.217 | 37.1 | 0.15 | 156 | 29.6 | 17.7 |
| $7.350 \mathrm{E}+009$ | 0.89 | -37 | -71.5dB | -13.5 | 31.259 | 16.3 | 0.07 | 95 | 29.9 | 12.5 |
| $7.450 \mathrm{E}+009$ | 0.91 | -43 | -70.8dB | -37.7 | 30.810 | -4.7 | 0.08 | 10 | 29.8 | 10.0 |
| $7.550 \mathrm{E}+009$ | 0.93 | -49 | -69.9dB | -63.0 | 32.078 | -25.2 | 0.13 | -33 | 30.1 | 6.7 |
| $7.650 \mathrm{E}+009$ | 0.90 | -56 | -71.88B | -89.0 | 32.238 | -47.6 | 0.16 | -57 | 30.2 | 10.7 |
| $7.750 \mathrm{E}+009$ | 0.92 | -62 | -70.9dB | -117.9 | 33.011 | -74.5 | 0.17 | -77 | 30.4 | 8.0 |


the in products, mixing of the local oscillator fundamental with multiples of the signal. For example, the $2 x 1$ output is 5 dB below fundamental. Figure 5 shows that this level of fundamental mixing corresponds to a local oscillator level of -8 dBm . The doubling efficiency was about 8 dB . The $1 \times 2$ output is 16 dB below fundamental mixing. This corresponds to a signal level of -46 dBn . The doubling efficiency is 16 dB for the lower level signal frequency. Although fundamental mixing in Figure 5 was measured in a tuned system and the data of Figure 7 was measured in an untuned system, this analysis nevertheless gives a comparison of multiplying at the one milliwatt and one microwatt power levels. Hixing of signal multiples above 2 with local oscillator multiples above the fundamental produced outputs below the -100 d m sensitivity of the recelver.

Harmonic Mixing
While harmonic products are usually considered spurious, in some designs the desired output is the result of harmonic mixing. This is a valuable mixer technique when the frequency is so high that it is difficult to generate the local osclllator power. Hewlett-Packard Application Note 991, "Harmonic Mixing With the HSCH-5500 Series Dual Dlode" describes a technique using the and harmonic of the local oscillator with little loss of efficiency compared to fundamental mixing. Mixers using the $6 \mathrm{th}, 8 \mathrm{th}$, and 10 th harmonics are used to extend the range of Hewiett-Packard spectrum anailyzers to 60 GHz .

## Two Tone Distortion.

Harmonic distortion may be suppressed by a band pass filter at the mixer input. When the distortion is caused by

$$
m f_{L O}-n f_{s}=f_{i f}
$$

the unwanted frequency is

$$
\begin{equation*}
f_{B}=\frac{m}{n} f_{L O}-\frac{f_{i f}}{n} \tag{4}
\end{equation*}
$$

The narrowest filter required corresponds to $m=n=2$ with a rejection bandwith equal to the intermediate frequency.

Two tone distortion is the result of two unwanted signals mixing with each other and the local oscillator to produce an intermediate frequency output. The equation is

$$
\begin{equation*}
r_{L O}-m f_{1}+n f_{2}=r_{i f} \tag{5}
\end{equation*}
$$

Third order two tone intermod may correspond to $m=2, n=1$. In this case the correct intermediate frequency is produced when the desired signal $f_{s}$ equals $2 f_{1}-r_{2}$. The unwanted $f r e q u e n c i e s$ may be arbitrarily close to the desired frequency so the problem cannot be solved with a rilter.

Third order two tone distortion in a 5082-2817 divie was Investigated with a local oscillator frequency of 1.94 Gliz and input

## IV. The Evolution of DESIGN

The Capabilities of DESIGN: Original Version

DESIGN synthesizes lossless lumped and distributed matching networks to provide a specified S2l magnitude response between a real source and a complex load impedance. The method is discussed in [1] and is based on the work of Carlin and Komiak [7]. The most important advantages of DESIGN are: (1) no equivalent circuit models need be constructed for the source and load - only a simple numerical description of the source and load is required as data for the synthesis; (2) the designs are "simpler in structure and superior in frequency response to [classical] equiripple designs" [8]; and (3) no parasitic absorptions or Norton/Kuroda transformations are required in the synthesis.

The original DESIGN was generally able to synthesize networks that were at most a few dB within the S 21 requirements across the frequency band. In any event, the response was close enough to specifications to enable a circuit optimizer (such as CIAO) to reduce the error to a small value. The new DESIGN has enhancements which eliminates the need for such optimization after the synthesis.

## The New DESIGN

DESIGN now has an internal fine-tuning option, as well as certain algorithmic enhancements, which enable the program, by itself, to design its
networks with response errors not exceeding a small fraction of a dB . The fine-tuning option is actually a special purpose optimizer that has been built into the program. The other enhancements mainly involve the proper initial selection of the network topology to guarantee the success of the synthesis for all choices of the source and load. Finally, the user interface has been improved.

The example which follows will fllustrate the new DESIGN's ease of use and excellent accuracy in synthesizing matching networks.

## V. A Synthesis Example for the New DESIGN

We first summarize below the requirements for the matching network to be designed. This is followed by a statement concerning the options used in the DESIGN program. The user must select an appropriate value for the network degree; DESIGN suggests values for the other options. (Most often the defaults suffice.) Then the results of the synthesis are presented before and after the fine-tuning optimization. Finally, a copy of the actual printout of the program is given, along with a schematic of the networks and a plot of the frequency response.
frequencies of 2 GHz and 1.985 GHz . The intermediate frequency was $2 \times$ $1.985-2-1.94=0.03 \mathrm{CHz}$. The measure of distortion is the input Intercept point, the power level where the line of output vs input power for the desired wixing intersects the extension of the spurious line. This is shown in Figure 8. Since the desired output is inear, the suppression of the spurious output is $2 A$ and input intercept is input power plus half the suppression.

With the help of this relationship the intercept point was measured as a function of local oscillator power level. The results are show in Figure 9. At higher local oscillator power levels the desired output Increases while the spurious output decreases. This raises the suppression and the intercept point. At lower levels both desired output and spurious decrease so the intercept point levels off to a constant value.

## Tuning for Better Sensitivity

The ideal mixer should convert all of the signal power to output power at the desired output frequency. However, it is customary to test diodes in a broadband mixer circuit. In this test no attempt is made to recover the power lost in the unwanted output frequencies. Because of these losses and the losses in the diode parasitics, an efficiency of about $35 \%$ is usually achleved.

Special circuits have been developed to improve this figure to come closer to the ideal $100 \%$ efficiency. The most serious spurious response, called the image response, produces an output at the Prequency $2 \mathbf{f}_{\text {LO }} \mathbf{f}_{\mathbf{s}}$. Image recovery mixers are designed to recover this lost power. Two dB improvement has been reported. By properly terminating harmonics up to the third, conversion loss under 2 dB was obtained with a Hewlett-Packard beam lead diode.

## MULTIPLE DIODE MIXERS

Although the intermediate frequency may be produced by mixing in a single diode, very few mixers are made this way. The problems generated by using a single diode include radiation of local oscillator power from the input port, loss of sensitivity by absorption of input power in the local oscillator circuit, loss of input power in the intermediate frequency amplifier, and the generation of spurious output frequencies by hamonic mixing. Some of these problems may be solved by circuit techniques but these circuits often introduce new problems. Most mixers use multiple diode techniques to better solve these problems.

Early mixer designs prevented loss of signal power in the local oscillator circuit by loosely coupling the local oscillator power to the mixer diode. This technique is wasteful of local oscillator power and it sends as much power to the input, possibly an antenna, as it sends to the diode. This local oscillator radiation could be interpreted as a target return when received by a radar. This problem may be alleviated by using

MATCHING NETWORR DESIGN REQUIREMENTS

| - Device Considered: Raytheon RLC832 Low Noise GaAs FET - Matching <br> - Source Impedance: 50 ohms S11 to 50 ohms for maximum unilateral transducer gain <br> - Number of Frequency Points: 5 <br> - Load Description: Reflection coefficient with 50 ohm reference resistance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Frequency ( GHz ) | $\begin{array}{r} \text { Lo } \\ \text { magn } \end{array}$ | Coef.) <br> phase-deg | Desir of Ma | 521 Magnitude ing Network |
| 6.0 | . 78 | -89 | 0.578 | $(-4.76 \mathrm{~dB}$ |
| 7.0 | . 75 | -103 | 0.659 | (-3.62 dB) |
| 8.0 | . 73 | -117 | 0.746 | ( -2.55 dB ) |
| 9.0 | . 70 | -131 | 0.865 | ( -1.26 dB ) |
| 10.0 | . 67 | -144 | 1.000 | $(0.00 \mathrm{~dB})$ |

OPTIONS SELECTED in DESIGN DATA INPUT

- Desired degree of matching network: ---- 5
- Bandpass or Lowpass matching network structure: ---.- L
- Defaults used for all other options.

Defaults used for all other options.

DESIGN RESULTS: (Preliminary, before fine-tuning)

- Lumped Circuit, S21 matched across frequency band to within 0.40 dB - Distributed Circuit, S21 matched across band to within 0.48 dB

DESIGN RESULTS: (Final, after fine-tuning)

- Lumped Circuit, S21 matched across frequency band to within 0.06 dB
- Distributed Circuit, S21 matched acroas band to within 0.07 dB

The next few pages contain a condensed version of DESIGN's printout, the circuit schematics, and a frequency response plot.

## DESION Ouipui for Marching Neimork Desiqu Example

## IATCHING HETWORK DESIGI PROGRA

(C) Copyright 1984 Stephen E. Sussman-Fort All Rights Reserved
Degree of network to be destigneds 5
Source resistance (ohms): 5.80Et日el

| Load Frequencies ( Hz ) | Magnitude | Angle | Desired is21: |
| :---: | :---: | :---: | :---: |
| 6.080E+889 | 7.80E-801 | -89.8 | 8.578 |
| 7.000E+089 | $7.50 \mathrm{E}-801$ | -183.8 | 0.659 |
| 8.80BE+809 | 7.38E-88) | -117.8 | 0.746 |
| $9.088 \mathrm{E}+809$ | $7.88 \mathrm{E}-881$ | -131.8 | 0.865 |
| 1.080E+010 | 6.78E-081 | $-144.0$ | 1.888 |
| MATCHIHG HETWORK DESIGA BEGIHS: | The Resistance Excursion Oplimization |  |  |

... hold down any key to interrupt optimization ...

| Iteration | Function Evaluations |  |
| :---: | :---: | :---: |
| 1 | 5 | 10.263 |
| 2 | 3 | 3.886 |
| Error 4 | has changed by 1 | n 0.50 percent. |

Do you wish to conlinue optimization? (Y/tU) percent

Optimizalion continues ...

The Lumped Element Design
The Distributed Element Design


A circuil analysis follows...

| Freq. ( Hz ) | S21 in d8: | Desired | Lumpeod | Desion | Distribut |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6.080EP809 |  | -4.76 | -5.16 |  | -4.94 |
| 7.008E4089 |  | -3.62 | -3.68 |  | -3.46 |
| -9.09EH099 |  | -2.55 | -2.26 |  | -2.87 |
| 9.808 Ecseg |  | -1.26 | -1.80 |  | -0.86 |
| 1.080EI日10 |  | 0.08 | -0.29 |  | -0.07 |

a directional coupler to send the local oscillator power to the mixer diode. Coupling must be loose so that $L 0$ power is still wasted.

A balanced mixer (Figure 10) provides a better solution. The hybrid circuit splits the $L 0$ power to the two diodes with little coupling to the antenna. A low pass filter is needed to prevent loss of power to the intermediate frequency amplifier. Additional advantages are reduction of LO noise and harmonic mixing. $L 0$ noise is rejected because two signals originating in the same port produce IF outputs that cancel. This is a property of the hybrid circult. Similarly, even order harmonics of elther the 10 or the signal produce cancelling outputs.


#### Abstract

In the double balanced mixer (Figure 11) even order harmonics of both the LO and the signal frequency are rejected. This mixer does not require a low pass filter to isolate the IF circuit. The three ports are Isolated from each other by the symuetry of the circuit. These mixers usually cover a broader band than the others. Ratios as high as 1000:1 are avallable. Microwave equivalents of these mixer circuits are available. Bandwidth ratios as high as 40:1 are available at microwave frequencies.


Intermodulation distortion is reduced when local oscillator power is increased. Several design techniques are used to allow higher drive.

A higher barrier diode may be used to retaln linear response at higher drive levels. More than one diode may be used in each arm of the ring in a double balanced mixer. This permits higher drive level without overheating the diodes. Two rings may also be used to increase the local oscillator level. This technique is also used for image tuning described carller.

## Sumary:

Schottky diode mixing efficiency is related to both diode parameters and circult parameters. Diode parameters studied include capacitance, resistance, and barrier voltage. Circuit parameters include Dr: blas and load resistance. Harmonic response and third order two tone Intermodulation were also studied.


## EQUIVALENT CIRCUIT

FIGURE 1

Desígn Output fon Maiching Netmonk Design Example (coni'd)
Optlmize the (L) umped or (D)istributed deslgn or ( 0 )ult - (L/D,O): I uptimizalion proceeds - hold down any key to stop...

## Function Evaluallon No.: 82

Maximum Response Error in dB $=0.06$
Design refinement completed - hit (cr) to cunllinue...

RESULTS: IRTCHING HETWORK ELEIEEIT UALUES FROH THE 50 DHH SOURCE TO THE COHPLEX-LOAD.

The Lumped Element Design
Series Induclor: $2.129 \mathrm{E}-810 \mathrm{H}$
Shunt Capacilor: $3.757 \mathrm{E}-813 \mathrm{~F}$
Series Inductor: $1.08 \mathrm{E}-989 \mathrm{H}$
Shunt Caparitor: $7.858 \mathrm{EE}-813 \mathrm{~F}$ Series inductori $6.554 \mathrm{E}-810 \mathrm{H}$

A circult analysis follows ..

| Freq. ( $\mathrm{Hz}_{\text {) }}$ ) | 521 in dil | Destred | Lumped Design |
| :---: | :---: | :---: | :---: |
| 6.080E+009 |  | -4.76 | -4.77 |
| $7.088 \mathrm{E}+809$ |  | -3.62 | -3.61 |
| 8.880E+889 |  | -2.55 | -2.56 |
| 9.000E +809 |  | -1.26 | -1.20 |
| $1.800 \mathrm{E}+810$ |  | 0.08 | -1.06 |

Dpilmize the (D)istributed design or ( 0 )uit - ( $0 / 0)_{1}$
Dptimization proceeds - hold down any key to stop...

$$
\text { Function Eualualion Ho. } 94
$$

Maximum Response Error in dB $=0.87$
Design reflinement compleled - hll (er) lo contlnue ...
RESULTS: MATCHIHO HETWDRK ELEMENT UALUES FROH THE 58 DHI SDURCE TD THE COAPLEX-LOAD.

The Distributed Element Design


A circult analysis follows...


Lumped Matching Metwork frow DESIGM




Lunped and Distributed Prequency lesponse is Coincident vith Besired 521 Shape



vI. Conclusion

The evolution of two programs for RF and microwave circuit analysis, optimization, and synthesis has been presented. We expect to continue to improve CIAO and DESIGN to include additional features and speed enhancements.

## VII. References

1. S. B. Sussman-Fort, "CIAO and DESIGN: Circuit Analysis, Optimization, and Synthesis Programs for Personal Computers," Proceedings of RF Design Technology Expo 85, Jan. 23-25, 1985, Anaheim, California.
2. R. Fletcher and C. M. Reeves, "Function Minimization by Conjugate Gradients," Computer Journal, vol. 7. pp. 149-154, 1964.
3. S. W. Director and R. A. Rohrer, "The Generalized Adjoint Network and Network Sensitivities," IEEE Trans. Circuit Theory, vol. CT-16, pp. 318-323, 1969.
4. R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer Journal, vol. 6, pp. 163-168, 1963.
5. J. A. Nelder and R. Mead, "A Simplex Method for Function Minimization," Computer Journal, vol. 7, pp. 308-313, 1965.
6. H. J. Orchard, "Inductorless Filters," Electronics Letters, vol. 2, Sept 1966. pp. 224-225.
7. H. J. Carlin and J. J. Komiak, "A New Method of Broad-Band Equalization Applied to Microwave Amplifiers, LEEE Trans. Microwave Theory and Techniques vol. MTT-27, no. 2, pp. 93-99, Feb. 1979.
8. H. J. Carlin and P. Amstutz, "On Optimum Broad-Band Matching," IEEE Trans. Circuits and Systems, vol. CAS-28, no. 5, pp. 401-405, May 1981




FIGURE 7


INTERCEPT POINT
FIGURE 8



BALANCED MIXER
FICURE 10
"THE POOR MAN'S ENGINEERING WORK STATION" or
"ChEAP CAD"

Richard B. Kolbly, PE

## RF TECHNOLOGY EXPO 86

January 30 - February 1, 1986 Anaheim, California

THE POOR MAN'S ENGINEERING WORK STATION

> Richard By. Kolbly

Staff Engineer, Lockheed-California Company Post Office Box 551
Burbank, California 91520
INTRODUCTION
The current literature is full of discussion of the new "Engineering Work Station" or facilities for Computer-Aided Design (CAD). The working RF design engineer reads of these devices with great anticipation, but soon realizes that these are beyond the normal means of a limited personal or engineering budget. Terms like "silicon compiler" and "gate array design" and "standard cells" are resplendent in the literature. Most working engineers probably will not design integrated circuits or semicustom integrated circuits. The purpose of this paper is to show that the working-level RF design engineer, on a limited budget, can provide an effective facility to simplify his engineering duties.

As a practical matter, few companies are going to allocate tens of thousands of dollars to individual engineers unless an immediate increase in productivity can be shown. It has been my experience that if a computer is not immediately available it loses a great deal of its functionality. If we have to sign up or go across the hall (or across the plant!) to use a computer, we are likely not to bother, and either rely on our experience or just "SWAG" it. Since most companies are unwilling or unable to supply a personal computer to each working engineer who desires one, it is up to each of us to provide our own computational resources, just as we did with slide rules and calculators. This paper will show how to use the "low end" home and personal

The PIN Diode - Uses and Limitations

$$
\begin{aligned}
& \text { by } \\
& \text { Jack H. Lepoff }
\end{aligned}
$$

Applications Engineer
ewlett-Packard Company
350 West Trimble Road
San Jose, ra 95131
ABSTRACT
The PIN diode is a useful element in the design of attenuators, switches, and modulators. Under ideal conditions the diode acts as a current controlled resistor. However, there are 1imitations on performance related to frequency and power.

This paper covers some of the low frequency and high frequency limitations of PIN diode applications and factors deterwining these limits. Other topics are diode parameters that control resistance and power IImitations on attenuator performance.

## INTRODUCTION

The PIN diode is a three layer device (figure 1) - an intrinsic high resistance I layer in the center with conducting $P$ and $N$ layers on either side. The conducting layers are formed by adding inpurities to produce an excess of positive charges on one side and an excess of negative charges on the other. Diode resistance can be controlled by Dr bias voltage. Both positive and negative charges injected into the I layer lower its resistance. Diode resistance is approximately proportional to the inverse of the current.

Ideally PIN diode resistance is controlled by the $D$. current and Independent of the RF power level. However, at high power levels the charge in the I layer may vary at the carrier frequency. In attenuator applications this variation in diode resistance is responsible for distortion. The effect is most severe in absorptive attenuators at low frequencles, with some power also absorbed by diodes in reflective attenuators. Since the amount absorbed depends on the attenuation level, distortion in both types is a function of attenuation.

Most switches are reflective; power is either reflected or passed. Little power is absorbed by the diode so distortion in switches is not a problem. PIN diodes can have a wide range of switching times - fron a few nanoseconds to close to a microsecond. The time depends on the combination of forward current for one state and reverse voltage for the other. Switching time is faster in the transition from reverse to forward bias.

Reverse recovery time is related to switching time. Forward current injects charge into the diode, then a reverse pulse removes the charge. Time for recovery to a low value of current is defined as reverse recovery time, and depends on the values of forward current and reverse voltage used in the measurement.

In addition to switches and attenuators, PIN diodes can be used as absorptive modulators. The diode resistance is varied at the modulating
computers to accomplish most of the computational tasks that are required. By using our experience and intelligence in an interactive manner, we can reduce significantly our design "work load" and produce better products in less time.
SOME DEFINITIONS:
Engineering workstation: A collection of equipment that allows the engineer to design and test circuits. For the purpose of this paper, the engineering workstation is a computer-equipped location where a design engineer will spend a significant portion of his work day.

Personal computer: A computer that is immediately available to an individual, of fairly low cost and relatively low processing power. This paper shall be limited to those computers that fall within the normal range of discretionary income for individuals, in general less that two thousand dollars.

Working engineer: The engineer whose primary task is to produce designs. This is the individual who does not have significant personnel or programmatic management duties.

## HARDWARE:

For purposes of comparision, lets see what hardware might be availble to accomplish our needs. Just as most of us have some form of personal transportation, we shall have to have some sort of personal "computing engine".

Similar to the small motorcycles, there are the "home computers", such as the Commodore 64's and the Atari 800XL. With a little judicious shopping, these can be found for less that a hundred dollars. Although these are definitely in the class of
"motorcycle" computers, they still have 64 ki lobytes of memory and a built-in BASIC interpter. A low-cost computer is very capable of doing sophisticated engineering analysis - including using the Method of Moments to calculate wire antenna input impedance [1]. All of the examples in this paper can be modified to operate on these little "home computers", such as the Atari with a minimum of effort.

A more typical "personal engineering computer" (PEC) could be desicribed as having 64 K or more of memory, dual disk drives and operating under either the 8 -bit $C P / M$ operating system or the 16-bit MS-DOS operating system. A computer such as this will represent an investment of something between $\$ 600$ and $\$ 2000$ dollars, depending on how hard one is willing to shop. of course, it is possible to spend more, but the purpose of this paper is to show how computers that can be purchased by an individual engineer or a tight departmental budget can do significant work.
SYSTEM SOFTWARE:
To operate any computer, you will need a certain amount of programs, or software. We have already mentioned the operating system, in most cases either CP/M or MS-DOS for one of their close relatives). Between these two operating systems most of the personal computers are covered. This operating system software is generally provided with the computer, and is used to provide basic file handling and program loading.

In addition to the operating system or file hander, you need some sort of 'translator'. Although for many years FORTRAN was widely used, it is not as readily available for personal
frequency while passing a higher carrier frequency. The ability to modulate diode resistance is limited by the diode carrier lifetime, the time required to remove charges from the I layer. For efficient modulation the lifetime must be short compared to the modulation period, while low distortion requires the lifetime to be long compared to the carrier period. When these two frequencies are not far apart it may not be possible to satisfy both conditions, and a compromise value of lifetime is chosen.

Figure 2 shows the frequency limitations for diodes with lifetimes ranging fron 10 nanoseconds to 2 microseconds. The fast switching diodes are best with carrier frequencies above a gigahertz and modulation frequencies below 100 kilohertz . The long lifetime diodes are best with carrier frequency above 10 megahertz and modulation frequency below 1 kilohertz. However, these limits are not rigid and diodes are useful beyond these limits.

In addition to the inverse current relation, I layer resistance varies as the square of the I layer thickness and inversely as the lifetime. However, the lifetime is itself a function of I layer thickness so that a longer lifetime diode has more resistance in spite of this inverse relationship. Figure 4 shows that the 5082-3081 diode with 2 microseconds lifetime has 30 times the resistance of the 5082-3043 diode with 15 ns lifetime. Another example of resistance dependence on lifetime is seen in Figure 5. These diodes are in shunt so higher attenuation means
lower resistance. The short lifetime 3141 has lower resistance because it has a thinner I layer.

The relation between resistance and current is not valid at high currents. The resistance levels off at a current which depends on the diode construction. This residual series resistance is usually guaranteed to be below a specified maximum.

Attenuator designers of ten need more information about the resistance current relationship. The specifications for current controlled resistor diodes such as the HPND-4165 shown in Figure 6 include maximum and minimum resistance values at 10 microamperes and at 1 milliampere. In addition, the slope of the curve, the exponent of current, must be matched to 0.04 for all diodes in a batch. Since the slope, $x$, can vary from 0.83 to 1.00 while satisying the resistance specs, this delta slope spec tightens the matching considerably.

A low frequency limitation of the PIN diode is the dielectric relaxation frequency. When current is removed from the diode most of the charges return to the $p$ and $n$ layers. However, sone charges renain in the underpleted portion of the I layer. At low frequencies this undepleted I layer resistance shorts out the I layer capacitance. A capacitance measurement would be high because only a portion of the I layer, the depleted portion, would be measured. Capacitance measurements at low frequencies (1MHIz) require the use of reverse bias to drive out the
computers as BASIC. In most cases, programs written in FORTRAN can be translated to BASIC with a minimum of effort. The only snag in this process (well-known to RF designers) is the lack of COMPLEX data types in BASIC. If BASIC had complex data types, it would be a much more useful language for us. Usually BASIC has been provided with your computer - it might be called MBASIC. GWBASIC, BASICA, APPLESOFT BASIC, etc. but they all tend to be variations of Microsoft's MBASIC V5.2 which has become a de facto standard for small computer BASIC interpeters. By staying with the Microsoft BASIC and its variants, we are assured of:

1 - Ease of program modification and debugging.
2 - A high degree of portability between machines.
3 - A common data file structure that many programs can use.
So far we have discussed the "system software" that comes with each computer. We still cannot do any useful design work until we have applications software - those programs that actually calculate and display the information we use. Where are these programs coming from? As all of you are undoubtedly aware, RF design programs are not as popular as word processors. Yet there are many sources of low cost or free software that are directly applicable or easily modified to our needs.

Low- or no-cost software is available from a variety of sources. Most of the programs i use regularly in my duties as a practicing RF engineer have been published in technical magazines. RF Design Magazine is one of the better sources of programs. Other good sources include EDN, Ham Radio, Microwave

Journal, etc. The bibliography has several references. The important thing to remember is (to quote Tom Lehr) - "let nothing escape your eyes..." Read or scan as many of the publications as possible and start a clipping file.

Another good source of programs is in manufacturer's application notes. These notes are generally tailored to a specific machine, but $I$ have found them to be easily adopted to other computers. As an example, the now obsolete Hewlett-Packard 9100-series of desktop calculators had excellent discussions of programs that could be used for filter design, transmission line calculations, etc and were easily adapted to BASIC. These programs (and calculators!) often turn up at flea markets, swap meets and house organ classified advertising.

The US Government and universities have a number of catalogs available that describe programs that have been written and are available for a small fee or free. CAED, an excellent microstrip design package (written in FORTRAN) is availble from the uS Government [2]. Again, most of these programs are tailored to a specific machine or application, but many of them have wide application. A classic example is the circuit analysis program, SPICE, Written and distributed by the University of california [3]. It take a little snooping to find these sources, but other engineers and libraries can be a big help.

A few companies provide low-cost (defined as under $\$ 100$ ) software for engineers. Others, with their full-page advertisements, make us envious, but in general, they tend to be out of range to our budgets. All of us would like to have a program like sPICE; running on our computers, but cannot justify
charges in the undepleted I layer in order to measure the capacitance of the entire I layer. At higher frequencies the reactance of the undepleted I layer is small and the resistance of the undeplete charges is not small enough to cause this capacitance error, so no reverse bias is needed.

The dielectric relaxation frequency is the frequency where the resistance of the undepleted charges equals the reactance of the undepleted I layer. This frequency is about 80 MHz for general purpose diodes, about 16 GHz for the fast switching diodes. When operating below the dielectric relaxation frequency it is necessary to use reverse bias to reach the specified capacitance. Since reverse bias is normally used in switching applications to speed up the switching, the concept is not important for fast switching diodes.

We have seen two possible problems at low frequency. The resistance can vary at the carrier frequency and the capacitance can vary with reverse voltage. There is also a high frequency limitation. At zero bias we expect the diode to approximate an open circuit. This is true at low frequencies when the capacitive reactance is high. At higher frequencies the reactance decreases and the insertion loss of a shunt diode increases, related to the product of frequency and capacitance. Figure 8 shows how insertion loss varies. When this product is 3.2 for example, the loss is 1 dB .

Figure 9 indicates a technique for extending this frequency limitation. The diode capacitance may be included in a low pass filter with the lead inductances on either side of the diode. Package outline 60 and 61 diodes are made this way. The ribbons to the diode chip are properly shaped to provide the needed inductance. When chips are placed in other packages the limitations due to package parasitics appear at frequencies well below what is shown in Figure 8. Before the insertion loss increases because of low diode reactance, the package inductance resonates with the diode capacitance. Figure 11 shows this resonance for a 0.12 pF diode in packages 15 and 31 at 9.2 GHz and 14.5 GHz . Insertion loss due to diode capacitance alone at these frequencies is about 0.1 dB .

Figure 12 shows the problem at forward bias. The package parasitics resonate with each other changing the low resistance Rs to an open circuit. Similar problems limit the performance of series diodes to the VHF region. Figure 13 shows that isolation drops below 20 dB at a few hundred MHz. Chip isolation was calculated with 0.5 nH assumed for the lead inductance. The graph demonstrates that microwave applications for series diodes require the use of beam leads.

Isolation in a shunt switch is limited by the diode series resistance. Using two diodes together cuts the resistance in half and inproves isolation 6 dB . Figure 14 shows the results of using two diodes spaced by 90 degrees. The $d B$ isolation more than doubles, and the bandwidth is quite wide, exceeding 50 dB isolation for about a $10: 1$
the cost of many hundreds or thousands of dollars. A more acceptable substitute are "canned" programs such as ACNAP and DCNAP [4,5] from BV Engineering. These companies provide programs at reasonable cost for our requirements. One company, DYNACOMP [6], provides programs in BASIC source form, so they can be modified for a specific application.

The microcomputer publishing industry has been publishing hundreds of books on using your personal computer for everything from cat breeding to sports handicapping. There are several volumes available of programs for engineering computing, but in general, I have found these not to be of much use. A few exceptions are worth noting. F.R. Ruckdeschel's BASIC Scientific Subroutines (Volumes I \& II) [7] should be in every engineer's library. These books are a collection of well-documented programs for many of the mathematical operations that are required for serious engineering work. These programs and subroutines are presented with unique line numbers so they can be used directly - a helpful feature. These subroutines can be purchased already on disk at a nominal cost [8]. Another very useful publication is Antenna Design using Personal Computers by David S. Pozar [9]. This little xpublication is a collection of programs for path analysis, transmission 1 ine and antenna design, with a good explanation of the theory involved and a comparison of results with calculated values. Also, these programs are availble on disk [10]. A last example of an excellent publication for the engineer engaged in computer-aided design is Cifcuit Design using Personal Computers by T. R. Cuthbert [11].

This volume has numerous programs for design (as opposed to analysis) for the small computer, and includes an excellent discussion of optimization, which is often neglected in CAD articles and publications.

A final source of suitable applications software for our "poor man's work station" is ourselves. Although it takes a bit of effort, writing a program to solve a particular design problem can be a fun. Possibly a fellow engineer has a similar requirement to yours and already has a suitable program or one that can be modified. An example of "home brew" engineering programs are included in Appendix $A$ of this paper. Both were written by members of the San Bernardino Microwave Society to solve a specific application, and have been widely distributed and modified by others. Most engineers that write these programs are happy to share them, so always ask, and always give credit where credit is due. In general, these are not the slick finished products that would be available from publishers, but are useful.

PRACTICAL CONSIDERATIONS:
Now that we have discussed the sources of programs that are availbe to the RF design engineer, let's discuss some of the problems we can encounter.

First of all, just because all BASIC programs are similar, they are not identical! In general, when getting a program from another machine, it is necessary to make some minor conversions. Such things as file opening and closing, data formats, and minor syntax variations can drive you up the wall. Multiple statement delimiters, "extra" functions, etc., all have to be resolved and
frequency range. It might be expected that this two-diode switch would double the power handling ability, but there is no improvement. The second diode absorbs very little power and dues not contribute to the power specification (Figure 15).

With 1 ohm resistance a shunt diode absorbs less than $10 \%$ of the incident power. In this application the incident power can be 10 times the power rating of the diode. In attenuator applications the multiplier is only two, corresponding to 6 dB of attenuation. Figure 16 shows this ratio as a function of attenuation. Switches can hande many times the diode power rating, since the loss switches from low insertion loss to high isolation. However, this assumes that switching time is fast compared to diode thermal time constant.

Both shunt and series diodes attenuate by reflecting most of the incident power. In many applications this reflected power disturbs the operation of another element of the system. Figure 17 shows a number of attenuator designs that maintain a low value of SHR at all attenuation levels. The $\pi$ and $T$ attenuators are symetrical with the outer diodes set at the same resistance, but the inner diode set at a different value. Bias circuits may be built with "one knob" tuning providing the proper bias current to all three diodes.

The ideal behavior of attenuation controlled by current, independent of RF power, is not valid at high power levels, due to rectification of
the RF signal. Figure 18 shows how low level attenuation is increased at 1.6 watts, with the effect most severe at 3 dB attenuation. Rectification is easier with short lifetime diodes so the 5082-3141 curve is higher. Rectification is also easier at lower frequencies so we would see VHF curves above these. Bias resistance was zero for this data.

Since this increase in attenuation is due to rectified current we expect a reduced effect when bias resistance is increased. This is shown in Figure 19 where the effect is not seen until the power reaches a half watt with bias resistance increased to 100 kilohms. Above that level the opposite effect is seen. Attenuation decreases at higher power indicating an increase of diode resistance. This increase of resistance is the result of diode heating. In this example rectified current is small so the diode heating effect is dominant.

[^3]corrected. If you are getting a disk-based program from a different (foreign) machine, try to get the program in ASCII format. As a practical matter, 1 save all of my programs in ASCII instead of the more compact binary format, just to simplify the conversion between different machines. A side benefit of this method of storage allows you to edit and print the source listings with an editor or word processor.

If you are writing programs, try to include provision for storing and loading infomation from disk - this will save you the trouble of typing a circuit over and over. A little effort at this stage can make a program much more professional and easier to use. Data files can be designed that can be used by many programs. I use the format of printing to file the independent variable, followed by dependent variables, e.g. frequency, real part of impedance, imaginary part of impedance in actual values, such as Hz , ohms, etc. Try to avoid the use of specific multipliers, such as $G H z$ it is then difficult to use your program in a wide variety of situations. Make an effort to maintain consistency whenever possible. When dealing with arrays of data, such as network analysis programs, data files should have a header that specifies the dimensions of the array. It is very easy to forget these parameters when you are working with many different projects.

## SOME EXAMPLES

Network Analysis: One of the recurring tasks for the RF design engineer is predicting the performance of a circuit and modifying it until it meets requirements. The normal process is
to rely on our experience, etc. to yet an initial design, breadboard, measure performance, and "tweak and trim" until the desired performance is achieved. Computer aided design is a much more difficult task than computer-aided analysis. In design, we input the desired performance and the output is a circuit. In analysis, the circuit is input and the output is performance. Most small computer programs use an input circuit and calculate performance. Computer -aided design programs are available [12] but I have found that convergence on an acceptable design by interaction is a faster and more comfortable approach.

As an example, the process for design and evaluation of a simple diplexer will be demonstrated. This diplexer is to split the FM broadcast band ( $88-108 \mathrm{MHz}$ ) and the 2 -meter amateur radio band (144-148 MHz) from a common source. Since this is intended for very low-cost applications (mobile reception) we decide to use a simple set of Butterworth filter circuits (figure l). After coming up with this "quick and dirty" circuit, we load NET85.ASC (Appendix B) and analyze the circuit over the bands of interest. The results of this anaylsis are shown in Figure 2 . Inspection of this data indicates that fabrication could be simplified by using standard circuit elements shown in Figure 3. Continuing to work with NET85, we add these changes and obtain the performance shown in Figure 4. Since our only intent is to build one of these for the car belonging to the president's son, we conclude this is an adequate design.

The NeT85 program is derived from a program that was originally described in CDN magazinell3l. It was written in a BASIC-like language and has been translated to gwrasic (Appendix

## THE PIN DIODE


$a \propto$ DC BIAS CURRENT
$\mathbf{G} \propto \mathbf{a}$

$$
R=\frac{1}{G}
$$

MODULATOR FREQUENCY LIMITATIONS FREQUENCY PERFORMANCE LIMITED BY LIFETIME - $\tau$ 'o megahertz


## I LAYER RESISTANCE

$$
\mathrm{R} \propto \frac{\mathrm{w}^{2}}{1 \mathcal{T}}
$$

W IS I LAYER THICKNESS
BUT LIFETIME IS LONG WHEN I LAYER IS THICK
USUALLY W2 OVERCOMES $\mathcal{T}$ EFFECT SO FOR SAME CURRENT LONG LIFETIME DIODE HAS HIGHER RESISTANCE THAN SHORT LIFETIME DIODE

Flculer :

B). The program has been extensively modified to allow for creation and saving of the program data. Examples of input and output data files are also shown in Appendix $B$. The files are then plotted on a low-cost commercial plotting package [14]. example il: microwave antenna design

One of the more tedious tasks facing engineers is the occasional design of an antenna. As RF engineers we are often called to come up with at least a rough design for an antenna (How big a dish do we need to receive OSCAR VII?). Appendix B2 has a straight-forward program to design a suitable Cassegrain or prime-focus reflector antenna. Once a suitable design is reached, other BASIC language programs can be used for more detailed analysis [9]. The results can then be presented by using one of many available graphing or plotting programs [14]. When using these relatively simple programs it is important to remember that most of them are based on geometric optic considerations, so do not compensate for edge effects, etc., and will likely provide incorrect answers for small antennas. In general, the higher the antenna gain, the easier it is to predict its performance. There are some programs available [9] that go beyond geometric considerations, but large physical optics or method of moment solutions tend to be beyond personal computers. However, it may be possible to reduce a fairly complex program program to parts that will run on a personal computer. The computation-intensive parts, such as the solution of the complex matricies, could be allowed to run overnight. Most of these programs are availble in FORTRAN [15] and could be loaded and
compiled on a MS-DOS based PC, as there are FORTRAN compilers available that can deal with COMPLEX data types. It is possible to translate these programs to BASIC, but it is left as an excercise to the reader to accomplish this. OTHER APPLICATIONS:

The duties of the $R F$ designer generally include a large portion of 'administrative' duties. These include reports, memoranda, statements of work, project tracking, procurement documents, etc. Most of us find these tasks at best a burden and at worst an imposition. Until management sees fit to provide us with adequate administrative and paraprofessional support, these tasks will remain with us. Our "poor man's engineering work station' can be pressed into service to support these functions. By including some form of text editor or word processing software, reports and memos can be generated quickly and in a more readable form. By relieving the work of preparing documents, $I$ have found that using a small desktop computer increases my engineering productivity significantly. In addition, most engineers would rather design than perform administrative tasks, so the editing function alone makes a personal desktop computer worthwhile.

Procurement actions, schedules, parts and wire lists, etc. can be efficiently maintained using one of the many microcomputer data base managers. As an example, I used a data base on an old microcomputer to maintain a wire list for a large tiansmitter. By simply inquiting the disk, I could get a list of all the locations a particular signal could be found or all siqnals on a

## MATCHED ATTENUATOR

 ATTENUATION - dB

ATTENUATION $=20$ LOG $\left(1+\frac{25}{A}\right)$

$$
R \propto \frac{w^{2}}{1 T}
$$

FOR SAME CURRENT, HIGHER ATTENUATION FOR THINNER I LAYER NOT FOR LONGER LIFETIME.

## CURRENT CONTROLLED RESISTORS



## DIELECTRIC RELAXATION FREQUENCY

## -志-

AT LOW FREQUENCIES UNDEPLETED I LAYER RESISTANCE SHUNTS CAPACITANCE SO TOTAL CAPACITANCE IS HIGHER

$$
R=\frac{1}{2 \pi^{f}{ }_{D R} C}
$$

$$
\begin{aligned}
& \text { FOR EXAMPLE: } \\
& \text { for } \varepsilon=10^{-12} \\
& { }^{1}=P=2000 \text {, then }{ }^{f} \mathrm{DR}=\mathbf{8 0} \mathbf{~ M H z} \\
& \text { or, }{ }^{1} \boldsymbol{F} \boldsymbol{P}=10 \text { then }{ }^{f} \mathrm{DR}=\mathbf{1 6} \mathbf{~ G H z} \\
& R=\frac{\rho d}{A} \quad C=\frac{\varepsilon A}{d}
\end{aligned}
$$

Figure 7

## SHUNT DIODE INSERTION LOSS

10 LOG $\left[1+\left(\frac{\pi F C}{20}\right)^{2}\right]$
INSERTION LOSS (dB)

particular connector or terminal block.
These applications are well known, and it is not my intention to go into great detail, but sometimes we overlook the 'support functions' that take up so much time. If we can develop more time for design work, it enables us to be more effective as engineers.

CONCLUSIONS:
This paper has presented one engineer's view of the use of obsolescent technology to make his job easier and more productive. As the cost of computing power continues to decline, we will have the power of supermini computers available to us. In the meantime, the latest technology may not be available. I have tried to show with a few examples how we can use existing low-end hardware combined with relatively simple software to greatly speed up our efforts as design engineers. The key is the immediate availability of a computer. It is better to have an old, slow machine immediately availble to us for a quick evaluation, than a large mainframe that we have to schedule well in advance. The programs and examples $I$ have presented are not necessarily the most efficient or accurate. They are programs that $I$ have used and refined over the years to accomplish specific tasks. There are many things that can be done by the user to make these programs more efficent or easier to use. As an example, an option could easily by added to allow input to NET85.ASC as reactance values, rather than component values. This change would be very helpful, but I never "got around tuit". The bibliography lists several sources of software, but I make no claims for its accuracy or completeness.

## BIBLIOGRAPH

(1) Antenna Design using Personal Computers by David S. Pozar, Ph. D. Artech House, Inc. 888 Washington Street Dedham,' Massachusetts 02026
[2] Design of Microstrip components by computer, by Terry 5. Cisco NASA CR-1982 1972 .
[3] SPICE2G.6 College of Engineering, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 94720
[4] BV Engineering 2200 Business Way, Suite 207 Riverside, CA 5) 92501 (714) 781-0252
$[6] \frac{\text { DYNACOMP, }}{586-7579}$ Inc. 6 Rippingale Road Pittsford, NY 14534 (716) 586-7579
[7] BASIC SCIENTIFIC SUBROUTINES by F.R. Ruckdeschel MCGraw Hill Publications Co. 1981 (Volumes $1 \& 2$ )
[8] DYNACOMP, op. cit.
[9] Pozar, David S. op. cit.
[10] Artech House, Inc. Publication B84139A.
[ll] Circuit Design Using Rersonal Computers by Thomas R. Cuthbert, Jr. John Wiley \& Sons, 1983

12] Cuthbert, op. cit.
[13] EDN Magazine February 14, 1981 pp 126-133
[14] PCPLOT2, published by BV Engineering, op. cit.
[15] A User's Manual for Electromagnetic Surface Patch (ESP) code: Yersion II = Polyoonal Plates and Wires by E.H. Newman and P. Alexandropolos The Ohio State University Electroscience Laboratory, Department of Electrical Engineering Columbus, Ohio 43212 September 1983

## EXTENSION OF HIGH FREQUENCY LIMITATIONS

SOLUTION


LOW PASS FILTER WITH DIODE AS SHUNT CAPACITOR INSERTION LOSS

## RIPPLE <br> VALUE



FREQUENCY
CHEBYSHEV FILTER RESPONSE APPLICATION NOTE 957-2

| PKG. | 15 | 31 |
| :---: | :---: | :---: |
| $C_{P}$ <br> PF | .13 | 0.2 |
| $L_{p}$ <br> $n / f$ | 2.5 | 1.0 |

ATLp L $^{\text {BESONANCE }}$ LOW
DIODE - HIGH INSERTION LOSS FOR SIIUNT DIODE at second hesonance with $\mathbf{C}_{\mathrm{p}}$ - good penformance

## PACKAGE LIMITATIONS

high insertion loss at first resonance

$$
F_{\text {RES }}=\frac{1}{2 \pi \sqrt{L_{p} r_{j}}}
$$

LOW INSERTION LOSS AT SECOND RESONANCE WITH PACKAGE CAPACITANCE INSERTION LOSS - DB


INSERTION LOSS OF PACKAGED SHUNT DIODES .12 pF JUNCTION CAPACITANCE

AT RESONANCE - HIGH INSERTION LOSS FOR SERIES DIODE - LOW ISOLATION FOR SHUNT DIODE

THIS PROPERTY IS USEFUL IN NARROW BAND WAVEGUIDE SWITCHES

APPENDIX A
USER-WRITTEN BASIC DESIGN PROGRAMS
A.l DISH.ASC This program was written by Chuck Swedblom of the San Bernardino Microwave Society for design and analysis of Cassegrain-reflector antennas. It is based on ray-trace optics.

```
10',
20 ' PARABOLIC ANTENNA DESIGN PROGRAM
40 ',Written by C. Swedblom, WA6EXV January 13, 1981 (not Friday)
60 ', Revised: March 26, 1981
80 'Modified for Microsoft Basic by R. Kolbly, K6HIJ April 3, 1981
80 Modified for Microsoft Basic by R.
100 ' CLSS=CHRS(27)+"E"
120 PI=3.1415928#
130 DIM X(100)
140 MS="###.##"
150 D$="###"
160 PRINT CLS$
170 PRINT "Select area of interest"
180 PRINT
190 PRINT " 1. Calculate f/D and Gain of a Parabolic Dish."
200 PRINT " 2. Design Sub Reflector for Cassegrain feed."
210 PRINT " 3. Design Sub Reflec
220 INPUT "Your Choicen;ME
230 IF ME < 1 THEN }26
240 IF ME > 3 THEN 260
250 ON ME GOTO 290,700,1390
260 PRINT CLSS
270 PRINT "Values between l and 3 only!"
280 GOTO 170
280 GOTO 170
300, Calculate
310 PRINT CLS$
320 INPUT "Diameter of the Dish in Inches";DIA
330 PRINT
340 INPUT "Depth of Dish, same units as Diameter";CR
350 PRINT 360 INPUT (
360 INPUT "Frequency of Interest, in MHz";MHZ
370 PRINT
380 INPUT "Efficency of the Dish in %";EFF
380 INPUT "Efficency
400 LAMDA=30000/(2.54*MHZ)
410 GAIN=(PI*DIA/LAMDA)}\mp@subsup{)}{}{\wedge}\mp@subsup{2}{}{**EFF/100
420 GAIN=(PI*DIA/LAMDA) ^2*EFF
430.
```



ISOLATION OF SERIES DIODES
ISOLATION - dB

0.12 pF JUNCTION CAPACITANCE FOR CHIP AND PACKAGED UNITS
0.02 pF BEAM LEAD DIODE CAPACITANCE

PACKAGE 15 RESONATES FIRST BECAUSE Lp LARGER PACKAGE 31 WORSE BELOW RESONANCE BECAUSE Cp LARGER

## BROAD BAND SWITCH DESIGN

 ISOLATION - dB

QUARTER WAVE PAIR
ONE OHM DIODES
ISOLATION MORE THAN DOUBLE
SINGLE DIODE

## ABSORBED POWER DIVISION IN QUARTER WAVE PAIR

* POWER ABSORBED


DIODE RESISTANCE - OHMS SECOND DIODE DOES NOT IMPROVE ABILITY TO HANDLE HIGH POWER

## RATIO OF INCIDENT POWER TO ABSORBED POWER

 POWER MULTIPLIER

```
990 ',
1010 PRINT CLS$
1010 PRINT CLS$
1020 PRINT "
PARABOLIC DISH/SUB-REFLECTOR"
1040 PRINT:PRINT
1050 PRINT "Diameter of Dish..";
1060 PRINT USING MS;DIA;:PRINT iIn."
1070 PRINT nf/D of Real Dish...
1080 PRINT USING M$;FDR
1090 PRINT "f/D of Virtual Dish..
1100 PRINT USING MS;FDV
1110 PRINT "Focal Point of Real Dish................................
1120 PRINT USING M$;FR;:PRINT " In."
1130 PRINT "Focal Point of Virtual Dish..........................
1140 PRINT USING MS;FV;:PRINT " In.
1150 PRINT "Diameter of Sub-Ref lector.............................
1160 PRINT USING MS;DSR;:PRINT " In."
1170 PRINT "Location of Sub-Reflector...........................
1180 PRINT USING MS;FR-M;:PRINT " Inches from Org.
1190 PRINT "Location of Feed Horn...............................";
1200 PRINT USING MS;(FR-M)-L;:PRINT " Inches from Org.
```



```
1220 PRINT
1230 PRINT "Reduction in Gain due to Sub-Reflector........";
1240 PRINT USING MS;BLK;:PRINT " dB."
1250 PRINT:PRINT:PRINT
1270 . Print X-Y Coordinates of Hyperbolidal Sub-Reflector
1280 ,
1290 INPUT "Enter increment for Sub Ref. X-Y Cordinates";INC
1300 PRINT TAB(5);"X-Y Co-ord. for Hyperbolidal Sub-Ref."
1310 PRINT
1320 PRINT TAB(10);"Y-Co-ord.";TAB(28);"x-Co-ord."
1330 PRINT
1340 FOR Y=0 TO DSR/2 STEP INC
1350 X (Y)=SQR(A*A+(Y*Y)/(E*E-1))
1350 X(Y)=SQR(A
1370 PRINT TAB(10);:PRINT USING MS;Y;:PRINT TAB(28);
1380 PRINT USING M$;Z
1390 NEXT Y
1400 END
A. 2 STRIPLIN.ASC This program is for design of microstrip lines and has been continously refined. Again, it is user-written.
10 REM THIS PROGRAM CALCULATES THE WIDTH OF A MICROSTRIP LINE 20 REM FOR A GIVEN IMPEDANCE OF WILL CALCULATE THE IMPEDANCE
30 REM OF A MICROSTRIP LINE OF A GIVEN WIDTH
40 REM
50 REM WRITTEN BY C. SWEDBLOM, WA6EXV 12 JUNE 1979
60 REM MODIFIED BY DICK KOLBLY, K6HIJ 16 SEPY 1979
70 REM DIELECTRIC CONSTANTS ADDED K6HIJ 10 MARCH 1981
```

```
80 REM W=WIDTH OF MICROSTRIP LINE
OO REM H=THICKNESS OF SUBSTRATE MATERIAL
100 REM T=THICKNESS OF MICROSTRIP LIN
110 REM F=FREQUENCY
120 REM E=DIELECTRIC CONSTANT OF SUBSTRATE MATERIAL
130 REM El=DIELECTRIC CONSTANT AT DC
140 REM E2=DIELECTRIC CONSTANT AT FO M MICROSTRIP
160 REM Zl=CHARACTERISTIC IMPEDANCE AT DC
170 REM Z2=DESIRED IMPEDANCE
180 REM L=WAVELENGTH
190 REM Dl=IMPEDANCE ERROR FACTOR
200 REM
210 Dl=.0001
220 P1=3.14159265*
230 PRINT "1 OZ Cu=.0013 in, 2 Oz Cu=.0027"
240 PRINT "(1) AIR (e=1.00)"
250 PRINT "(2) G10 FIBERGLASS (e=4.80)"
260 PRINT "(3) TEFLON/GLASS (e==2.55)"
260 PRINT "(3) TEFLON/GLASS (e=2.55)"
280 PRINT " (5) TEFLON (% =2.54)"
290 PRINT "(6) FORMICA XX (e=4.04)"
295 PRINT " (7) DUROID X (e=2..23)"
300 INPUT "(8) OTHER";K:IF K=0 OR K=8 THEN 310 ELSE 320
310 INPUT"TYYP OF MATERIAL AND ER";AS,E
310 INPUT"TYPE OF MATERIAL AND ER";AS,E
320 IF K=1 THEN AS="AIR":E=1!
340 IF K=3 THEN AS="TEFLON/FIBERGLASS":E=2.55
350 IF K=3 THEN AS="REXOLITE":E=2.54
360 IF K=5 THEN AS="TEFLON":E=2.1
370 IF K=6 THEN AS= "FORMICA XX":E=4.04
```



```
380 IF K<0 OR K>8 THEN 300
390 INPUT"FREQUENCY (GHZ)";F
400 INPUT"SUBSTRATE THICKNESS";H
410 INPUT "LINE THICKNESS";T
420 PRINT "DO YOU WANT"
4 3 0 ~ P R I N T ~
430 PRINT" PRINT"1. MICROSTRIP WIDTH"
450 PRINT"2. IMPEDANCE OF MICROSTRIP LINE?"
450 PRINT"
460 PRINT
480 IF X=2 THEN 680
480 IF X=2 THEN 680
"DESIRED IMPEDANCE="
500 W=1
510 GOSUB 740
520 GOSUB 820
530 PRINT 2
540 R=2/Z2
560 RE| CALCULATE, NFW WIDTH
570 W=W*R*R
580 GOTO 510
590 REM
600 REN ADJUST WIDTII FOR THICKNESS OF LINF
```



## POWER SENSITIVITY AT +32 dBm INPUT

 attenuation increanse db

OATA TAKEN AT 2 GHz
THE INCREASE IS LESS AT HIGHER FREQUENCIES
THE INCREASE IS LESS FOR THE DIODE WITH LONGER LIFETIME (3140) SEE AN 957-3

POWER SENSITIVITY IN A 3 dB PIN ATTENUATOR ATTENUATION dB

FREQUENCY 10 GHz
OIODE HP5082-3141
REVERSE EFFECT AT HIGH VALUE OF bIAS RESISTANCE DUE TO TEMPERATURE EFFECTS.


| 610 | REM |
| :---: | :---: |
| 620 | GOSUB 1010 |
| 630 | $\mathrm{W}=\mathrm{W}-\mathrm{Wl}$ |
| 640 | GOTO 1090 |
| 650 | REM |
| 660 | REM CALCULATE IMPEDANCE FROM LINE WIdTH |
| 670 | REM |
| 680 | INPUT"LINE WIDTH $=$ "; W |
| 690 | GOSUB 1010 |
| 700 | $\mathrm{W}=\mathrm{W}+\mathrm{Wl}$ |
| 710 | GOSUB 740 |
| 720 | GOSUB 820 |
| 730 | GOTO 1090 |
| 740 | REM |
| 750 | REM SUBROUTINE TO CALCULATE P |
| 760 | REM |
| 770 | IF $\mathrm{W} / \mathrm{H}<=1$ THEN 800 |
| 780 | $\mathrm{P}=2 * \mathrm{Pl} /((\mathrm{W} / \mathrm{H})+2.42-(.44 * \mathrm{H} / \mathrm{W})+\operatorname{ExP}(8 * \operatorname{LOG}(1-(\mathrm{H} / \mathrm{W}) \mathrm{)})$ ) |
| 790 | RETURN |
| 800 | $\mathrm{P}=\mathrm{LOG}($ ( 8* $\mathrm{H} / \mathrm{W}) \mathrm{+W} /\left(4^{*} \mathrm{H}\right)$ ) |
| 810 | RETURN |
| 820 | REM |
| 830 | REM SUBROUTINE TO CALUCLATE E1, E2 And 2 |
| 840 | REM |
| 850 | $\mathrm{E} 3=((\mathrm{E}-1) / 2 *(1 / \operatorname{SQR}(1+(10 * \mathrm{H} / \mathrm{W}) \mathrm{)}-1))$ |
| 860 | $\mathrm{El}=\mathrm{E}+\mathrm{E} 3$ |
| 870 | REM |
| 880 | Rem Calculate effective er |
| 890 | REM |
| 900 | REM DISPERSION EQUATION FROM GETSINGER |
| 910 | REM |
| 920 | $\mathrm{Zl}=60$ * $\mathrm{P} / \mathrm{SQR}(\mathrm{El})$ |
| 930 | $\mathrm{G}=.6+(.009 * 21)$ |
| 940 | $\mathrm{D}=21 /(2.54 * 4 * \mathrm{Pl}$ * H$)$ |
| 950 | $\mathrm{E} 2=\mathrm{E}+(\mathrm{E} 3 /(1+\mathrm{G} * \operatorname{EXP}(2 * \operatorname{LOG}(\mathrm{~F} / \mathrm{D}) \mathrm{)})$ ) |
| 960 | REM |
| 970 | REM CALCULATE IMPEDANCE, 2 |
| 980 | REM |
| 990 | $\mathrm{Z}=60$ * $/$ SQR (E2) |
| 1000 | RETURN |
| 1010 | REM |
| 1020 | REM SUBROUTINE TO CORRECT LINE WIDTH FOR THICKNESS |
| 1030 | REM |
| 1040 | IF W/Hく. 15915 THEN 1070 |
| 1050 | $\mathrm{Wl}=(\mathrm{T} / \mathrm{Pl}) *(1+\mathrm{LOG}(2 * \mathrm{H} / \mathrm{T})$ ) |
| 1060 | RETURN |
| 1070 | $\mathrm{Wl}=(\mathrm{T} / \mathrm{Pl})$ * ( $1+\mathrm{LOG}(\mathrm{(4*Pl}$ * W)/T) $)$ |
| 1080 | RETURN |
| 1090 | REM |
| 1100 | REM PRINT OUT RESULTS |
| 1110 | REM |
| 1120 | $\mathrm{L}=(11.811 / \mathrm{F}) / \mathrm{SQR}(\mathrm{E} 2)$ |
| 1130 | REM |
| 1140 | REM THESE ARE RESERVED FOR PRINT FORMATS |
| 1150 | REM |

620 GOSUB 1010
640 GOTO
650 REM CALCULATE IMPEDANCE FROM LINE WIDTH
670 REM
680 INPUT"LINE WIDTH $=" ; W$
690 GOSUB 1010
$700 \mathrm{~W}=\mathrm{W}+\mathrm{W} 1$
10 GOSUB 740
720 GOSUB 820
740 REM 1090
750 REM SUBROUTINE TO CALCULATE $P$
760 REM
$780 \mathrm{P}=2 * \mathrm{Pl} /((\mathrm{W} / \mathrm{H})+2.42-(.44 * \mathrm{H} / \mathrm{W})+\operatorname{EXP}(8 * \operatorname{LOG}(1-(\mathrm{H} / \mathrm{W}))))$
790 RETURN
$800 \mathrm{P}=\operatorname{LOG}\left(\left(8^{*} \mathrm{H} / \mathrm{W}\right)+\mathrm{W} /(4 * \mathrm{H})\right)$
810 RETURN
830 REM SUBROUTINE TO CALUCLATE E1,E2 AND 2
840 REM
$850 \mathrm{E} 3=((\mathrm{E}-1) / 2 *(1 / \operatorname{SQR}(1+(10 * \mathrm{H} / \mathrm{W}))-1))$
870 REM
880 REM CALCULATE EFFECTIVE ER
900 REM DISPERSION EQUATION FROM GETSINGER
10 REM
30 21=60*P/SQR(E1)
$940 \mathrm{D}=21 /(2.54 * 4 * \mathrm{Pl} * \mathrm{H})$
950 E2=E
960 REM
970 REM CALCULATE IMPEDANCE, 2
$990 \mathrm{Z}=60$ * $\mathrm{P} / \mathrm{SQR}(\mathrm{E} 2)$
000 RETURN
REM
020 REM SUBROUTINE TO CORRECT LINE WIDTH FOR THICKNESS
1030 REM

1060 RETURN
$070 \mathrm{Wl}=(\mathrm{T} / \mathrm{Pl})$ * $(1+\mathrm{LOG}((4 * \mathrm{Pl} * \mathrm{~W}) / \mathrm{T}))$
1080 RETU
1100 REM PRINT OUT RESULTS
1110 REM
$120 \mathrm{~L}=(11.811 / \mathrm{F}) / \mathrm{SQR}(\mathrm{E} 2)$
1140 REM THESE ARE RESERVED FOR PRINT FORMATS 1150 REM

1160 PRINT: PRINT: PRINT
1170 PRINT" TYPE OF MATERIAL-........................................

1200 PRINT" EFFECTIVE DIELECTRIC CONSTANT-----"; E2" ${ }^{\prime \prime}$

1220 PRINT" WIDTH OF MICROSTRIP-....................."; " INCHES"

1240 PRINT" THICKNESS OF MICROSTRIP LINE-...--"; ${ }^{\prime \prime}$;" ${ }^{\prime \prime}$ INCHES"
1240 PRINT" THICKNESS OF MICROSTRIP LINE------"; ${ }^{1250}$ PRINT" INCHES"

1270 PRINT:PRINT:PRINT
1280 INPUT"ANOTHER RUN"; Q $: Q \$=$ LEFT $\$(Q \$, 1)$
1290 IF $Q \$={ }^{\prime} Y^{n}$ THEN 1300 ELSE END
1300 IF X=1 THEN GOTO 490 ELSE GOTO 680

## APPENDIX B

NETB5. ASC - A useful network analysis program derived from literature, but extensively modified by users for particular needs, including file storage of circuits and results of analysis.
10 ' *** NET* 85 ***
20 : SEE EDN FEB 4, 1981 PP 126-133
' TRANSLATED TO MICROSOFT BASIC BY R.B. KOLBLY
35 ' DISK FILES FOR SAVING AND RESTORING NETWORKS ADDED
36 ' DATA FILE OUTPUT CAPABILITY ADDED
40 , GOLDEN RULE SYSTEMS - FEBRUARY 22,1985
50 P\$=

$60 \mathrm{~K}=\mathrm{INT}(\mathrm{FRE}(\mathrm{A}) / 4)-23$
$70 \mathrm{X}=\operatorname{INT}((\operatorname{SOR}(169+24 * K)-26) / 12)-1$
80 PRINT USING You have a maximum of it Nodes Availablen;
90 INPUT "Number of Nodes Desired $(C R=10)$ "; $Y$
100 IF $X>=10$ AND $Y=0$ THEN $X=10:$ GOTO 140
$110 \mathrm{IF} X<10$ AND $Y=0$ THEN $X=Y$ : GOTO 140
120 IF $Y>X$ THEN PRINT USING "Maximum of $\#$ nodes!"; X : GOTO 90 30 IF $Y<X$ THEN $X=Y$
$140 \operatorname{DIM} A(X, X), B(X, X), P(X, X), Q(X, X), R(X, X)$
50 DIM $\mathrm{S}(x, x), 1(2 * x), P(x, x), 2(x$
$0(2 * x), L(2 * x), 2(2 * x)$
170 PRINT USING "You have selected a maximum of in nodes"; $x$
80 FOR $J=1$ TO $X$
90 FOR $I=1$ TO
$200 \mathrm{P}(\mathrm{I}, \mathrm{J})=0$
$210 \mathrm{Q}(\mathrm{I}, \mathrm{J})=0$
$\begin{array}{ll}220 & R(I, J)=0 \\ 230 & S(I, J)=0\end{array}$
240 NEXT I
250 NEXT J
260 NODES $=X: X=1: T(X)=0$
$270 \mathrm{~N}=0$
280 PRINT "1 RESISTOR"
290 PRINT " 2 CAPACITOR"
300 PRINT " 3 INDUCTOR ${ }^{n}$
310 PRINT " 4 TRANSMISSION LINE"
$\begin{array}{lll}320 & \text { PRINT } & \text { " } 5 \\ 330 & \text { SRINT } & \text { SHORTED STUB" }\end{array}$
350 PRINT " OPERATIONAL AMPLIFIER
NPN TRANSISTOR"
360 PRINT "9 FIELD-EFFECT TRANSISTOR
0 PRINT "10 STOP"
30 PRINT " 11 ANALYZE NETWORK"
391 PRINT " 13 RESTORE 13 ISABLE PRINTER"
92 PRINT n 14 RESTORE NETWORK FROM DISK"
392 PRINT "14 SAVE NETWORK TO DISK"

393 PRINT " 15 GENERATE ASCII NETWORK FILE
400 PRINT " 16 LOAD NETWORK VALUES FROM ASCII FILE"
410 PRINT
420 R6=0: INPUT "SELECT FROM LIST (<CR> FOR MENU)"; R6
430 IF R6=1 THEN PRINT "(1) RESISTOR": GOTO 730
440 IF R6=2 THEN PRINT "(2) CAPACITOR": GOTO 810
460 IF R6=4 THEN PRINT "(4) TRANSMISSION LINE": GOTO 560
470 IF R6=5 THEN PRINT "(5) SHORTED STUB":GOTO 690
480 IF R6=6 THEN PRINT "(6) OPEN STUB": GOTO 710
490 IF R6=7 THEN PRINT "(7) OP AMP": GOTO 990
500 IF R6=8 THEN PRINT "(8) NPN TRANSISTOR": GOTO 880
510 IF R6 $=9$ THEN PRINT "(9) FET TRANSISTOR":GOTO 840
520 IF R6=10 THEN PRINT "(10) PROGRAM FINISH": STOP
530 IF R6=11 THEN PRINT "(11) ANALYSIS":GOTO 1060
540 IF R6=12 THEN INPUT "(12) HARDCOPY OUTPUT (Y/N)"; H\$ : H\$=LEFT $(\mathrm{H} \$, 1):$ GOTO 420
541 IF R6=13 THEN PRINT "(13) RESTORE NETWORK TO DISK" : GOTO 3000
542 IF R6=14 THEN PRINT " (14) SAVE NETWORK TO DISK": GOTO 3500
543 IF R6 $=15$ THEN PRINT "(15) GENERATE ASCII NETWORK FILE" : GOTO 5000
544 IF R6=16 THEN PRINT "(16) LOAD NETWORK FROM ASCII FIl,E" : GOTO 4000
560 T $(X)=1$ : INPUT "SHIELD IN".M(X):REM *** TRANSMISSION LINE ***
570 INPUT "CENTER IN"; I $(X): I N P U T{ }^{\prime \prime}$ CENTER OUT"; O(X)
570 INPUT "CENTER IN"; I(X):INPUT "CE
580 INPUT "SHIELD OUT"; N(X):GOTO 610
590 INPUT ${ }^{\text {NODE }} \mathrm{A}^{n}$; $\mathrm{M}(\mathrm{X})$
600 INPUT ${ }^{(N O D E} \mathrm{B}^{{ }^{n}: N(X)}$
610 INPUT " $20^{\prime \prime} ; Z(x)$
620 INPUT "QUARTER-WAVE FREQUENCY (HZ)"; L(X)
630 IF $I(X)>N$ THEN $N=I(X)$
640 IF $M(X)>N$ THEN $N=M(X)$
650 IF $N(X)>N$ THEN $N=N(X$
660 IF $O(X)>N$ THEN $H=O(X)$
$670 \quad X=X+1: T(X)=0$
680 GOTO 420
$690 \mathrm{~T}(\mathrm{X})=3$ : REM *** SHORTED STUB ***
700 GOTO 590
$710 \mathrm{~T}(\mathrm{X})=2$ : REM *** OPFN STUB ***
720 GOTO 590
730 INPUT "NODE $A^{n}$; I: INPUT "NODE B": J:INPUT "RESISTANCE (OHMS)";
740 V=1/V
750 GOSUB 1430
760 GOTO 420

$780 \mathrm{~V}=1 / \mathrm{V}$
790 GOSUB 1360
790 GOSUB 136
810 INPUT "NODE A"; I:INPUT "NODF B"; INPUT "CAPACIT'ANCE (FARADS)":V
820 GOSUR 1480
830 GOTO 420
840 INPUT "GATF,"; K: JHPUT" "SOURCE"; J:INPIT "DRAIN"; I:

A COMMUTATION DOUBLE-BALANCED MIXER of high dynamic range

## by

Edwin S. Oxner
Staff Engineer
siliconix incorporated
2201 Laurelwood Road Santa Clara, CA 95054

## INTRODUCTION

Dynamic range remains t'e principle goal of $H F$ mixer design. The intermodulation performance and overload characteristics of a mixer are fundamental qualities used in the evaluation of a good design. Heretofore, most mixers sporting a high dynamic range have been either the passive diode-ring variety, or the active FET mixer. ${ }^{[1]|2|}$

Common to both the diode and FET is their square-law characteristic so important in maintaining low distortion during mixing. However, equally important for high dynamic range $1 s$ the ability to withstand overload that has been identified as a principle cause of distortion in mixing. ${ }^{[31}$ some passive dioderring mixer designs have resorted to paralleling of diodes to effect greater current handling, yet the penalty for this apparent improvement is the need for a massive increase in local-oscillator power.

This report examınes a new FET mixer where commutation achieves high dynamic range without exacting the anticipated penalty of increased localoscillaror drive. Using the Siliconix Sig901, third-order intercept points upwards of +39 dBm (input) have been achieved with only +17 dBm of localoscillator drive!

## CONVERSION EFFICIENCY OF THE COMMUTATION MIXER

Unlike either the conventional diode-ring mixer or the active FET mixer, the commutation mixer relies on the switching action of the quad-FET elements to effect mixing action, Consequently, the commutation mixer is, in effect, no more than a pair of switches reversing the phase of the signal carrier at a rate determined by the local-oscillator frequency. Ideally, we would anticipate little noise contribution and, since the switching mixer, consisting of four "switches," has finite on resistance, performance is similar to that of a witching attenuator. As a result, the conversion efficiency of the commutation mixer may be expressed as a loss.

This loss results from two related factors. First, in the $r_{\text {ps }}$ of the mosFET relative to the aignal and IF impedances; second -- a more common and expected factor -- is the loss attributed to signal conversion to undesired frequencies. There are, however, ways to reduce the effects of undesired frequency generation by the use of filters.

The effect of $r_{D S}$ of the MOSFETs may be determined from the analysis of the equivalent circuit shown in Figure 1, assuming that our local oscillator waveform is an idealized square-wave. It is not, but if we assume that it is, our analysis is greatly eimplified; and for a commutation mixer, a high localoscillator voltage begins to approach the ideal waveform of a square-wave.

Figure 1, showing switches rather than MOSFETs, also identifies the $O N$ state resiftance, $r_{\text {DS }}$ as well as the OFF-state resistance, $r_{\text {OFF }}$. The latter can be disregarded in this analysis as it is generally extremely high. On the other hand, the ON-state resistance, ${ }^{r}$ DS' together with the source and

```
 L=J GAIN(MHO)";
50 L=J
60 GOSUB 1530
90 GOTO 420
80 INPUT "BASE"; K:INPUT "EMITTER";J:INPUT "COLLECTOR";I:
INPUT "BETA":R5
90 INPUT "Rbe (OHMS)";V
00 V=1/
910 L=1
30 GOSUB }143
940 I=L
950 L=J
960 V=V*R5
70 GOSUB }153
90 GOTO 420
990 INPUT " +IN"; K:INPUT m-IN";L:INPUT "-OUT";I:REM *** OP-AMP ***
000 INPUT "+OUT";J:INPUT "GAIN(V/V)";R5
 INPUT "OUTPUT RESISTANCE(OHMS)";V
010 V=1/V
020 GOSUB 1430
1030 V=V*R5
040 GOSUB 1530
1050 GOTO 420
1060 INPUT "INPUT NODE";E:INPUT "OUTPUT NODE";F:N=N-1
1070 INPUT "START,STOP FREQUENCIES (HZ)";G,H
1080 INPUT "# OF DATA POINTS";M
090 INPUT "FREQUENCY SWEEP-LOG=0(LINEAR=1)";R6
091 PFG=0:INPUT "Do you want output data files";QS:QS=LEFTS(QS,1)
1092 IF QS="Y" OR Q$="Y" THEN GOSUB 7000
1100 D=(H-G)/(M-1)
1100 D=(H-G)/(M-1)
1120 R0=G:R9=0
1120 R0=G:R9
1140 W=2*3}
150 W=2*3.14159*R0
150 O=E: Z=F
1160 GOSUB 2470
1180 V=R5:U=2
1190 IF (E+F)/2=INT((E+F)/2) THEN 1210
1200 U=U-180
210 O=E:Z=E
220 GOSUB 2200
1230 UOSUB
1240 IF V=0 THEN R7=-999:GOTO 1270
1250 IF R5=0 THEN R7=9999:GOTO 1270
1260 V=V/R5:R7=8.68589*LOG (V)
1270 IF U>180 THEN U=U-360
1280 IF U<-180 THEN U=U+360
1290 PRINT USING P$;R0,V,R7,U
1300 IF H$="Y" THEN LPRINT USING PS;RO,V,R7,U
l
1310 IF R6=0 THEN RO=RO*R4
1310 IF R6=0 THEN R0 = R0*R4
```

1330 IF R9〈>M THEN 1130
$1340 \quad \mathrm{~N}=\mathrm{N}+1$
1350 CLOSE:GOTO 420
$1360 \mathrm{R}(\mathrm{I}, \mathrm{I})=\mathrm{R}(\mathrm{I}, \mathrm{I})+\mathrm{V}:$ REM INDL
$1370 R(J, J)=R(J, J)+V$
$1380 \mathrm{R}(1, J)=R(1, J)-V$
1400 (F I>N
1410 IF J>N THEN N=J
1420 RETURN
$1430 \mathrm{P}(\mathrm{I}, \mathrm{I})=\mathrm{P}(\mathrm{I}, \mathrm{I})+\mathrm{V}$
$1440 \quad \mathrm{P}(\mathrm{J}, \mathrm{J})=\mathrm{P}(\mathrm{J}, \mathrm{J})+\mathrm{V}$
$1450 \mathrm{P}(\mathrm{I}, \mathrm{J})=P(I, J)-V$
$1460 \mathrm{P}(\mathrm{J}, \mathrm{I})=\mathrm{P}(\mathrm{J}, \mathrm{I})-V$
1470 GOTO 1400
$1480 \mathrm{Q}(\mathrm{I}, \mathrm{I})=\mathrm{Q}(\mathrm{I}, \mathrm{I})+\mathrm{V}$
$1490 \mathrm{Q}(\mathrm{J}, \mathrm{J})=\mathrm{Q}(\mathrm{J}, \mathrm{J})+\mathrm{V}:$ REM CAPL
$1500 \mathrm{Q}(\mathrm{I}, \mathrm{J})=\mathrm{Q}(\mathrm{I}, \mathrm{J})-\mathrm{V}$
$1510 \mathrm{Q}(\mathrm{J}, \mathrm{I})=\mathrm{Q}(\mathrm{J}, \mathrm{I})-\mathrm{V}$
1520 GOTO 1400
$1530 \mathrm{P}(\mathrm{I}, \mathrm{K})=\mathrm{P}(\mathrm{I}, \mathrm{K})+\mathrm{V}:$ REM TRANS
$1540 \mathrm{P}(\mathrm{J}, \mathrm{L})=\mathrm{P}(\mathrm{J}, \mathrm{L})+\mathrm{V}$
$1550 \quad \mathrm{P}(\mathrm{J}, \mathrm{K})=\mathrm{P}(\mathrm{J}, \mathrm{K})-\mathrm{V}$
$1560 \mathrm{P}(\mathrm{I}, \mathrm{L})=\mathrm{P}(\mathrm{I}, \mathrm{L})-\mathrm{V}$
1570 IF $\mathrm{K}>\mathrm{N}$ THEN $\mathrm{N}=\mathrm{K}$
1580 IF L>K TH
1590 GOTO 1400
1600 IF N $>1$ THEN 1630. REM COMP
$610 \mathrm{O}=\mathrm{A}(1,1): \mathrm{Z}=\mathrm{B}(1,1)$
1620 RETU
$1630 \mathrm{O}=1$
$1640 \mathrm{Z}=0$
$1650 \mathrm{~K}=1$
$1650 \mathrm{~K}=1$
$1660 \mathrm{~L}=\mathrm{K}$
$1670 \mathrm{~S}=\mathrm{ABS}(\mathrm{A}(\mathrm{K}, \mathrm{K}))+\mathrm{ABS}(\mathrm{B}(\mathrm{K}, \mathrm{K}))$
$1680 \quad \mathrm{I}=\mathrm{K}-1$
$\begin{array}{ll}1680 & \mathrm{I}=\mathrm{K}-1 \\ 1690 \mathrm{I}=\mathrm{I}+\mathrm{I}\end{array}$
$\begin{array}{ll}1690 & \mathrm{I}=\mathrm{I}+1 \\ 1700 \mathrm{~T}=\mathrm{ABS}(\mathrm{A}(\mathrm{I}, \mathrm{K}))+\mathrm{ABS}(\mathrm{B}(\mathrm{I}, \mathrm{K}))\end{array}$
1710 IF S>=T THEN 1730
$1720 \mathrm{~L}=\mathrm{I}: \mathrm{S}=\mathrm{T}$
1730 IF I $<>N$ THEN 1690
1740 IF L=K THEN 1800
$1750 \mathrm{~J}=0$
$\begin{array}{ll}1750 & \mathrm{~J}=0 \\ 1760 \mathrm{~J}+1\end{array}$
$1770 S=-A(K, J): A(K, J)=A(L, J): A(L, J)=S$
$1780 \mathrm{~A}=-\mathrm{B}(\mathrm{K}, \mathrm{J}): \mathrm{B}(\mathrm{K}, \mathrm{J})=\mathrm{B}(\mathrm{L}, \mathrm{J}): \mathrm{B}(\mathrm{L}, \mathrm{J})=\mathrm{A}$
1790 IF J<>N THEN 1760
$1800 \quad \mathrm{~L}=\mathrm{K}+1: \mathrm{I}=\mathrm{L}-1$
$1810 \quad \mathrm{I}=\mathrm{I}+1$
$820 \mathrm{~A}=\mathrm{A}(\mathrm{K}, \mathrm{K}) * \mathrm{~A}(\mathrm{~K}, \mathrm{~K})+\mathrm{R}(\mathrm{K}, \mathrm{K}) * \mathrm{~B}(\mathrm{~K}, \mathrm{~K})$
$1830 S=(A(I, K) * A(K, K)+B(1, K) * B(K, K)) / \Lambda$
$1840 \mathrm{~B}(\mathrm{I}, \mathrm{K})=(\mathrm{A}(\mathrm{K}, \mathrm{K}) * \mathrm{~B}(\mathrm{I}, \mathrm{K})-\mathrm{A}(\mathrm{I}, \mathrm{K}) * \mathrm{~B}(\mathrm{~K}, \mathrm{~K})) / \mathrm{A}$
1850 A
$1850 \mathrm{~A}(\mathrm{I}, \mathrm{K})=\mathrm{S}$
N THEN 1810
$1870 \mathrm{C}=\mathrm{K}-$ ]
load impedances (viz., signal and intermediate-frequency impedances) directly affects the conversion efficiency.

If we assume that our lucal-oscillator excitation is an idealized squarewave, the switching action may be represented by the fourier series as,

$$
f(x)=\frac{1}{2}+\frac{2}{x} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) \omega t}{(2 n-1)}
$$

Eq. (1)

The switching function, $\subset(t)$, shown in the derivative equivalent circuit of Figure 2, is derived from the magnitude of this fourier series expansion as a power function by squaring the first term, viz., ( $\left.\frac{2}{\pi}\right)^{\text {a }}$.

The avaslable power that can be delivered from a generator of RMS opencircuit terminal voltage, $V_{i n^{\prime}}$ and internal resistance, $R_{g}$, is,

$$
\begin{equation*}
P_{a v}=\frac{v_{i n}^{i}}{4 R_{g}} \tag{2}
\end{equation*}
$$

or, in terms shown in Figure 3

$$
\begin{equation*}
p_{a v}=\frac{v_{i n}}{\pi_{g}} \tag{3}
\end{equation*}
$$

The output power, deliverable to the intermediate-frequency port, is,

$$
P_{\text {out }}=\frac{v_{0}^{2}}{R_{L}}
$$

Eq. (4)

To arrive at $V_{0}$, we first need to obtain the loop current, $i_{L}$, which from
Figure 3, offers,

$$
\begin{equation*}
i_{L}=\frac{v_{i n}}{\pi^{T}\left[R_{g}+n_{D S}\right)+\bar{R}_{L}+r_{D S}} \tag{5}
\end{equation*}
$$

then,

$$
\begin{equation*}
v_{0}=\frac{v_{i n} R_{i}}{M_{i}\left(R_{g}+n_{D S}\right)+R_{L}+n_{D S}} \tag{6}
\end{equation*}
$$

Combining Eqs. (4) and (6),

$$
\begin{equation*}
P_{\text {out }}=\frac{v_{i n}{ }^{2} R_{L}}{T_{\frac{\pi}{2}} T R_{9}+n_{D S}+R_{L}+n_{D S} T^{2}} \tag{7}
\end{equation*}
$$

Conversion efficiency -- $2 n$ the case for the commutation mixer, a loss -may be calculated from the ratio of $P_{a v}$ and $P_{\text {out }}$

$$
\begin{equation*}
L_{c}=10 \log \frac{P_{\text {av }}}{P_{\text {out }}} d 8 \tag{8}
\end{equation*}
$$

Substituting Eq. (3) for $P_{\text {av }}$, and Eq. (7) for $P_{\text {out }}$ we obtain,

$$
L_{c}=10 \log \frac{\left[\frac{\eta^{2}}{4}\left|R_{g}+n_{D S}\right|+R_{L}+n_{D S}\right]^{2}}{n^{1} R_{L} R_{g}} d B \text { Eq. (9) }
$$

The conversion loss represented by Eq. (9) is for a broadband doublebalanced mixer with all ports matched to the characteristic line impedances. The ideal commutation mixer operating with resistive source and load impedances will result in having the image and all harmonic frequencies dissipated. For this case, the optimum conversion loss reduces to

$$
\begin{equation*}
L_{c}=10 \log \frac{4}{\pi^{2}} \quad d 8 \tag{10}
\end{equation*}
$$

or -3.92 dB .
However, a truly optimum mixer also demands that the MOSFETs exhibit an ON-state of zero Ohms, and, of course, an ideal square-wave excitation. Neither is possible in a practical sense.

Equation 9 can be examaned for various values of source and load impedances as well as $r_{D S}$ by graphical representation, as shown in Figure 4, re

```
1880 IF C=0 THEN }196
1890 J=L-1
1910 I= I+1
1920 A(K,J) =A(K,J)-A(K,I)*A(I,J) +B(K,I)*B(I,J)
1930 B(K,J)=B(K,J)-B(K,I)*A(I,J)-A(K,I)*B(I,J)
1930 B(K,J)=B(K,J)-B(K
1950 IF J><N THEN 1900
1960 C=K
1970 K=K+1:I=K-
1980 I= I+1:J=0
1990 J=J+1
2000 A(I,K) =A(I,K)-A(I,J)*A(J,K)+B(I,J)*B(J,K
2010 B(I,K) =B(I,K)-B(I,J)*A(J,K)-A(I,J)*B(J,K
2020 IF J<>C THEN 1990
2030 IF I<>N THEN 1980
2040 IF K<>N THEN 1660
2050 L=1
2060 C=INT (N/2)
2070 IF N=2*C THEN 2100
2080 L=0
2090 O=A (N,N):Z=B(N,N)
2100 I=0
I=I+
2120 J=N-I+L
2130 S=A(I,I)*A(J,J)-B(I,I)*B(J,J)
2140 A=A(I,I)*B(J,J) +A(J,J)*B(I,I)
21450
2170 0=T
2180 IF 1<>C THEN 2110
2190 RETURN
2200 R5=N:REM DET
2210 N=N-1
2220 I=0
2230 K=0
2240 K=K+1
2250 IF K<>O THEN 2270
2260 I=1
2270 J=0:L=
2280 L=L+
2300 G L<>2 THEN 2310
300 J=1
A(K,L) =P(K+I,L+J)
2320 B(K,L) =W*Q(K+I,L+J)-R(K+I,L+J)/W+S(K+I,L+J)
2330 IF L<>N THEN 2280
2330 IF L<<N THEN 2280
2350 GOSUB 1600
2360 N=R5
2370 R5=SQR(O*O+Z*Z)
2380 Y=Z
2390 IF O=0 THEN 2450
2400 2 =180/3.14159*ATN(z/O)
2410 IF O>0 THEN RETURN
2420 2=2+SGN(Y)*180
```

2430 IF $\mathrm{Y}=0$
2450 Z $=90^{*}$ SGN(Y)
2460 RETURN
2470 IF $T(1)=0$ THEN RETURN
$2480 \mathrm{X=0}$
$2490 \mathrm{Rl}=0$
$2500 \mathrm{Rl}=\mathrm{Rl}+1: \mathrm{R} 2=0$
2510 R2=R2+1
$2520 \mathrm{~S}(\mathrm{R1}, \mathrm{R} 2)=0$
2530 IF R $2<>\mathrm{N}+1$ THEN 2510
2540 IF R1<>N+1 THEN 2500
$2550 \quad X=X+1$
2560 IF $X>$
2560 IF $X>20$ THEN RETURN
2570 IF $T(X)=0$ THEN RETUR
$\begin{array}{lll}2580 & \text { IF } T(X)=1 & \text { THEN } 2640 \\ 2590 \text { IF } & \mathrm{T}(X)=2 & \text { THEN } 2830\end{array}$
$2600 \mathrm{Rl}=-1 /(\mathrm{Z}(\mathrm{X}) * \mathrm{TAN}(.25 * \mathrm{~W} / \mathrm{L}(\mathrm{X})))$
$2610 \quad \mathrm{Q}=\mathrm{M}(\mathrm{X}): \mathrm{R}=\mathrm{N}(\mathrm{X})$
2620 GOSUB 2870
2630 GOTO 2550
$2640 \mathrm{Rl}=-1 /(\mathrm{Z}(\mathrm{X}) * \operatorname{TAN}(.25 * \mathrm{~W} / \mathrm{L}(\mathrm{X})))$
$2650 \mathrm{Q}=\mathrm{M}(\mathrm{X}): \mathrm{R}=\mathrm{I}(\mathrm{X})$
2660 GOSUB 2870
$2670 \mathrm{Q}=\mathrm{N}(\mathrm{X}): \mathrm{R}=\mathrm{O}(\mathrm{X}): \operatorname{GOSUB} 2870$
$2680 \mathrm{Rl}=1 /(\mathrm{Z}(\mathrm{X}) * \operatorname{SIN}(.25 * \mathrm{~W} / \mathrm{L}(\mathrm{X})))$
$2690 \mathrm{P}=\mathrm{I}(\mathrm{X})$
$2700 \mathrm{R}=\mathrm{N}(\mathrm{X})$
$2710 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})-\mathrm{R} 1$
$2720 \mathrm{~S}(\mathrm{P}, \mathrm{R})=\mathrm{S}(\mathrm{P}, \mathrm{R})-\mathrm{Rl}$
$2730 \mathrm{R}=\mathrm{O}(\mathrm{X})$
$2740 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})+\mathrm{R}$
$2750 \mathrm{~S}(\mathrm{P}, \mathrm{R})=\mathrm{S}(\mathrm{P}, \mathrm{R})+\mathrm{Rl}$
$2760 \mathrm{P}=\mathrm{M}(\mathrm{X})$
$2770 \mathrm{~S}(\mathrm{R}, \mathrm{P})=\mathrm{S}(\mathrm{R}, \mathrm{P})-\mathrm{R} 1$
$2780 \mathrm{~S}(\mathrm{R}, \mathrm{R})=\mathrm{S}(\mathrm{P}, \mathrm{R})-\mathrm{R}$
$2790 \quad R=N(X)$
$2800 \quad S(R, P)=S(R, P)+R 1$
$2810 \quad S(P, R)=S(P, R)+R 1$
2820 GOTO 2550
$2830 \mathrm{R} 2=1 /(\mathrm{Z}(\mathrm{X}) * \operatorname{TAN}(.25 * W / \mathrm{L}(\mathrm{X})))$
$2840 \mathrm{R} 3=1 /(2(X) * \operatorname{SIN}(.25 * W / L(X)))$
2850 R1 $=$ R3 *R3/R2-R2
2860 GOTO 2610
$2870 \mathrm{~S}(\mathrm{Q}, \mathrm{Q})=\mathrm{S}(\mathrm{Q}, \mathrm{Q})+\mathrm{Rl}$
$2880 \mathrm{~S}(\mathrm{R}, \mathrm{R})=\mathrm{S}(\mathrm{R}, \mathrm{R})+\mathrm{R} \mathrm{J}$
$2890 \mathrm{~S}(\mathrm{Q}, \mathrm{R})=\mathrm{S}(\mathrm{Q}, \mathrm{R})-\mathrm{Rl}$
$2900 \mathrm{~S}(\mathrm{R}, \mathrm{Q})=\mathrm{S}(\mathrm{R}, \mathrm{Q})-\mathrm{Rl}$
2910 RETURN
2920 END
3000 INPUT "NAME OF' FII,F TO LOAD <CR P FOR DIRECTORY"; FS: - I.OAD FROM FILF.

3010 IF LEN $(F \$)=0$ THEN FIl,ES: ©OTO 3000
3020 IF F $\$=$ "B." TUEN FTIES "R:*.*":GOTO 3000
3030 IF $F S=$ "A: " THEH FTJES " $\wedge$ :*.*": GOTO 3000
membering that a nominal 3.92 dB must be added to the values obtained from the graph.

To illustrate how seriously the $O N-s t a t e$ of the mOSFETs affects performance, we need only to consider the sib901 with a nominal $r_{D S}\left(a t V_{G S}=15 \mathrm{~V}\right.$ ) of 23 ohms. With a $1: 1$ signal transformer ( 50 to $25-0-258$ ), $R g / r_{D S}=1.1$. Allowing a $4: 1 \mathrm{IF}$ output impedance to a 50 ohm preamplifier, the ratio $\mathrm{R}_{\mathrm{L}} / \mathrm{r}_{\mathrm{DS}}$ approximates 4. From Figure 4 we read a conversion loss, $L_{c}$, of approximately 3.7 dB , to which we add 3.92 dB for a total loss of 7.62 dB . Additionally, we must also include the losses incurred by both the signal and if transformers. The results compare favorably with measured data.

A careful study of Figure 4 reveals what appears as anomalous characteristic. If we were to raise $R_{g} / r_{\text {DS }}$ from 1.1 to 4.3 (by replacing the $1: 1$ transformer with a 1:4 to effect a signal-source impedance of 100-0-1000). we would see a dramatic improvement in conversion efficiency! The anomaly is that this suggests that a mismatched signal-input port improves performance.

Caruthers ${ }^{[4]}$ first suggested that reactively terminating all harmonic and parasitic frequencies would reduce the conversion loss of a ring demodulator to zero. This, of course, would also require that the active mixing elements (MOSFETS in this case) have zero $r_{D S}$, in keeping wath the data of Figure 4.

A double-balanced mixer is a 4-port, consisting of a signal, image, IF and local-oscillator port. Of these, the most difficult to terminate is the image-frequency port simply because, in theory it exists as a separate port,
but in practice it shares the signal port. Any reactive termination would, therefore, be narrow-band irrespective of its proximity to the active mixing elements.

The performance of an image-termination filter offering a true reactance to the image frequency (100 reflective) may be deduced to a reasonable degree from Figure 4, if we first presume that the conversion loss between signal and IF compares with that between signal and image. The relationship is displayed in Figure 5 where we see the expected variation in amplitude proportional to conversion efficiency finversely proportional to conversion 10ss).

Image-frequency filtering affects more than conversion efficiency. As the phase of the detuned-short position of the image-frequency filter is varied we are able to witness a cyclical variation in the intermodulation distortion as has been confirmed by measurement, shown in Figure 6. By comparing Figure 5 with Figure 6, we see that any improvement in conversion loss appears to offer a corresponding degradation in the intermodulation distortion.

## INTERMODULATION DISTORTION

Unbalanced, single-balanced and double-balanced mixers are distinguished by their ability to selectively rejec, spurious freguency components, as defined in table 1 . The double-balanced mixer, by virtue of its symetry, suppresses twice the number of spurious frequencies as does the single-balanced mixer.

In the ideal mixer, the input signal is translated to an intermediate-

3040 OPEN "I", 11,FS
3050 INPUT $11, X$
3060 ERASE A, B, P, Q, R, S, I,T,M,N,O,L,
3070 DIM $A(X, X), B(X, X), P(X, X), Q(X, X), R(X, X)$
$3080 \operatorname{DIM} S(X, X), I(2 * X)$
3090 DIM T $(2 * x), M(2 * x), N(2 * x), O(2 * x), L(2 * x), Z(2 * x)$
3095 INPUT $\$ 1, N$
3100 FOR J=1 TO X
3110 INPUT $1, I(\mathrm{~J}), T(\mathrm{~J}), M(\mathrm{~J}), N(\mathrm{~J}), O(\mathrm{~J}), L(\mathrm{~J}), Z(\mathrm{~J})$
3120 FOR $K=1$ TO $X$
3130 INPUT $1, A(J, K), B(J, K), P(J, K), Q(J, K), R(J, K), S(J, K)$
3140 NEXT K
3150 NEXT J
3160 CLOSE 11
3170 NODES=X:GOTO 420
3500 INPUT "NAME OF FILE TO SAVE <CR> FOR DIRECTORY"; F\$: - SAVE INTO FILE

3510 IF LEN(FS) $=0$ THEN FILES: GOTO 3500

3530 IF FS="A:" THEN FILES "A:*.*": GOTO 3500
3540 OPEN "O", 11,F\$
3550 PRINT 3600 FOR $J=1$ TO NODES
3610 PRINT $1, \mathrm{I}(\mathrm{J}), \mathrm{T}(\mathrm{J})$
3620 R
3620 FOR $\mathrm{K}=1$ TO NODES
3630 PRINT $1, A(J, K), B(J, K), P(J, K), Q(J, K), R(J, K), S(J, K)$
3640 NEXT K
3660 CLOSE 1
3670 GOTO 420
4000 INPUT "Name of file to load <cr> for directory"; F\$
4010 IF LEN(F\$)=0 THEN FILES:GOTO 4000
4020 OPEN "I", $1, F$
4030 IF EOF(1) THEN CLOSE:GOTO 420
4035 R6 \$="": INPUT 1, R6\$:R6\$=LEFT\$(R6\$,1)
4040 1F R6\$="1" THEN GOTO 4320
4050 IF R6 $\$={ }^{-2 "}$ THEN GOTO 4400
4060 IF R6\$="3" THEN GOTO 4360
4070 IF R6 $\$=$ " 4 " THEN GOTO 4150
4080 IF R6 $\$={ }^{\prime \prime} 5^{\prime \prime}$ THEN GOTO 4280
4090 IF R6 $\$=" 6^{\prime \prime}$ THEN GOTO 4300
4100 IF R6 $\mathrm{S}^{\prime \prime} \mathrm{m}^{\prime \prime}$. THEN GOTO 4580
4110 IF R6 $\$={ }^{\circ} 8^{\prime \prime}$ " THEN GOTO 4470
4120 IF R6S="9" THEN GOTO 4430
4130 IF EOF (1)
$1150 \mathrm{~T}(\mathrm{X})=1$
(X)=1:INPUT $1, \mathrm{M}$ : $M(X)=\operatorname{VAL}(M \$):$ REM *** TRANSMISSION LINE ***

4160 INPUT 1, I $\$: I(X)=V A L(I \$): I N P U T \quad 1,0 \$: O(X)=V A L(O S$
1 INPUT $1, N \$: N(X)=V A L(N \$):$ GOTO 4200
4190 INPUT $1, \mathrm{MS}: M(X)=$ VAL (NS)
4200 INPUT $1, Z \$: Z(X)=\operatorname{VAL}(Z \$)$
4200 INPUT $1,2 \$: 2(X)=V A L(Z \$)$
4220 IF $I(X)>N$ THEN $N=I(X)$
4230 IF $M(X)>N$ THEN $N=M(X)$

4240 IF $N(X)>N$ THEN $N=N(X)$
4250 IF $O(X)>N$ THEN $N=O(X$
$4260 \quad \mathrm{X}=\mathrm{X}+1: \mathrm{T}(\mathrm{X})$
$4280 \mathrm{X})=3$.
REM *** SHORTED STUB ***
$4300 \mathrm{~T}(\mathrm{X})=2$ :
10
320 INPUT 4180

$330 \mathrm{~V}=1 / \mathrm{V}$
4340 GOSUB 1430
4350 GOTO 4030
4360 INPUT 1,1 §: $\mathrm{I}=\mathrm{VAL}(1 \$)$
INPUT 1,J§:J=VAL(J§):INPUT $1, V \$: V=V A L(V S)$
4370 V $=1 / \mathrm{V}$
4380 GOSUB 1360
4390 GOTO 4030
400 INPUT $1, I \$: I=V A L(I \$):$
INPUT $1, J \$: J=V A L(J \$): I N P U T$ 1,V\$:V=VAL (V\$)
4410 GOSUB 1480
4420 GOTO 4030 I $\mathrm{I}=\mathrm{VAL}(\mathrm{I} \$$ ):INPUT $1, \mathrm{~V} \$: \mathrm{V}=\mathrm{VAL}(\mathrm{V} \$)$
$4440 \mathrm{~L}=\mathrm{J}$
450 GOSUB 1530
460
470 INPUT 11 "BASE":K:INPUT $1, J \$: J=V A L(J \$): I N P U T$, I $\$$ $I=V A L(I S): I N P U T$ II,RS:R5=VAL(RS)
4480 INPUT $11, V \$: V=V A L(V \$)$
$4490 \quad V=1 / \mathrm{V}$
$4490 \mathrm{~V}=1 / \mathrm{V}$
$4500 \mathrm{~L}=\mathrm{I}$
$4500 \mathrm{~L}=\mathrm{I}$
4520 GOSUB 1430
4530 I=L
$4540 \mathrm{~L}=\mathrm{J}$
$4550 \mathrm{~V}=\mathrm{V} * \mathrm{R} 5$
4560 GOSUB 1530
4570 GOTO 4030
4580 INPUT $11, \mathrm{~K} \$: K=\operatorname{VAL}(\mathrm{K} \$):$ INPUT $1, \mathrm{~L} \$: \mathrm{L}=\mathrm{VAL}(\mathrm{L} \$):$ INPUT 1,I\$:I=VAL(I\$)
4590 INPUT 1,J§:J=VAL(J\$):INPUT 1,R\$:R5=VAL(R\$) INPUT $1, V \$: V=V A L(V \$)$
$4600 \mathrm{~V}=1 / \mathrm{V}$
4610 GOSUB 1430
4620 V=V*R5
4640 GOSUB 1530
GOTO 4030
"Name of file (<cr> for Directory)":Fs
010 IF LEN(F\$)=0 THEN FILES:GOTO 5000
5020 OPEN "O", 1,FS
200 PRINT " 1 RESISTOR"
210 PRINT " 2
5230 PRINT " 4 TRANSMISSION LINE
frequency without distortion, viz., withour imparing any of the contained information. Regrettably, the ideal mixer does not occur in practice. Because of certain nonlinear.'pes within the switching elements as well as imperfect switching resulring in phase modulation, distortion results.

Identifying Intermodulation Distortion Products
The most damaging intermodulation distortion products (IMD) in receiver design are generally those attributed to odd-order, and, in particular, to those identified as the third-order IMD.

Any nonlinear device may be represented ab a power series,

$$
i_{d}=g_{m} e_{g}+\frac{1}{2!} \frac{\delta g_{m}}{\delta V_{G}} e_{g}^{i}+\frac{1}{3} 1^{\delta \frac{8}{\delta} g_{G}} e_{g}^{3}+\cdots \frac{1}{n!} \frac{\delta^{n-1} g_{m}}{v_{G}^{n-1}} e_{g}^{n} \quad \text { Eq. (11) }
$$

which can be further broken into


The second term is the desired intermediate-frequency we seek, all other higher-orders are undesirable, but, unfortunately, present to a varyign degree as illustrated in Figure 7 .

There are both fixed-level IMD products and level-dependent IMD products! ${ }^{5!}$ The former are produced by the interaction between afixed-level signal, such
as the local oscillator and the variable-amplitude signal. The resultina frequencies may be identified,

$$
n f_{1}: \sigma_{2}
$$

where, $n$ is an integer greater than 1.
Level-dependent IMD products result from the interaction of the harmonics of the local oscillator and those of the signal. The resulting frequencies may be identified,

$$
\begin{equation*}
n f_{1}=m \delta_{2} \tag{13}
\end{equation*}
$$

where, $m$ and $n$ are integers greater than 1.
For a mixer to generate IMD products at the intermediate frequency we must account for at least a two-step process. First, the generarion of the harmonics of the signal and local oscillator: and, second, the mixing or conversion of these frequencies to the intermediate frequency. Consequently, the mixer may be modelled as a series connection of two nonlinear impedances, the first to generate the harmonic products, the second to mix or convert to the intermediate frequency. Although many harmonically-related products are possible, we will focus principally on odd-order IMD products.

If we allow two interfering signals, $f_{1}$ and $f_{2}$, to impinge upon the first nonlinear element of our mixer model, the result will be $2 f_{1}-f_{2}$ and $2 \mathrm{f}_{2}-\mathrm{f}_{1}$. These are identified as third-order intermodulation products (IMD). Other products are also generated taking the form $\mathbf{3 f}_{1}-2 f_{2}$ and $\mathbf{3 f}_{2}-2 f_{1}$. called fifth-order IMD products ( $\mathrm{IMD}_{5}$ ). Unlike the even-order products, odd order products lie close to the fundamental signals and, as a consequence, are


5810 PRINT 1,R6\$+" * FET"
5812 PRINT $1, \mathrm{~K} \$$
5814 PRINT $1, J \$$
5818 PRINT 11 VS
5830 GOTO 5360
5840 INPUT "BASE";K\$:INPUT "EMITTER";J\$:INPUT "COLLECTOR"; I\$: INPUT "BETA": R5S
5850 INPUT "Rbe (OHMS)".VS
5860 PRINT \#l,R6S+" ${ }^{*}$ NPN TRANSISTOR"
5861 PRINT $1, K \$$
5862 PRINT l, JS
5863 PRINT $1, I \$$
5864 PRINT 1, R5 $\$$
5865 PRINT 1, Vs
5940 GOTO 5360
5950 INPUT " + IN"; K§: INPUT "-IN"; LS:INPUT " -OUT"; IS:REM *** OP-AMP ***
5960 INPUT "+OUT"; JS:INPUT "GAIN(V/V)";R5\$:
INPUT "OUTPUT RESISTANCE (OHMS)"; VS
5970 PRINT 1,R6S+" * OP-AMP"
5972 PRINT $1, \mathrm{~K} \$$
5974 PRINT $1, L \$$
5978 PRINT 1
5980 PRINT 1, R5
5990 PRINT 11 VS
6010 GOTO 5360
7000 ' SUBROUTINES FOR FILE HANDLING
7010 FOR $\mathrm{J}=1$ TO 4:READ FLS(J,1):FLS(J,2)="N":NEXT
7020 FOR $J=1$ TO 4
7030 IF FL\$ $(\mathrm{J}, 2)=$ " $\mathrm{Y}^{\prime \prime}$ THEN GOTO 7050
7040 PRINT STR§(J)+"-"+FL\$(J,1)
7050 NEXT J
7060 PRINT
7070 INPUT "Choice (enter 〈cr〉 or 0 to exit)"; C:C=INT(C)
7080 IF FLS $(C, 2)={ }^{\text {"Y }}$ " THEN PRINT "Already Selected!": GOTO 7070
$7090 \mathrm{IF} \mathrm{C}=0$ THEN RESTORE: RETURN
7100 PFG=1:INPUT "Name of Data File (<cr> for Directory)"; F\$
7110 IF LEN(FS) $=0$ THEN FILES: GOTO 7100
7130 GOTO 7020
7130 GOTO 7020 (C)
7140 DATA "Amplitude versus Frequency","Phase versus Frequency"
7150 DATA "Amplitude, Phase vs. Frequency", "Amplitude vs. Phase"
7160 CLOSE
7210 IF FLS $=1$ TJ $21=$ " N " THEN GOTO 7270
7220 ON JJ GOTO $7230,7240,7250,7260$
7230 WRITE 11, RO, V:GOTO 7270
7240 WRITE 1,RO, N: U:GOTO 7270
7250 WRITE 3, RO, V, U: GOTO 7270
7260 WRITE $14, \mathrm{~V}, \mathrm{U}$
7270 NEXT JJ
7280 RETURN
most susceptible of falling within the passband of the intermediate frequency and thus deqrading the performance of the mixer.

A qualitative definition of linearity based upon intermodulation distortion performance is called the Intercept Point. By recognizing that,
the fundamental output (IF) response is directly proportional to the signal input level;
the second-order output response is proportional to the square of the signal input level: and,
the third-order output response is proportional to the cube of the signal input level.
then convergence occurs. The point of convergence is termed the Intercept Point. The higher the value of this intercept point, the better the dynamic. range

Intermodulation Distortion in the Commutation Mixer
Although the double-balanced mixer outperforms the single-balanced mixer as we saw in Table I, a more serious source of intermodulation producta result when the local-oscillator excitation departs from the idealized square-wave. [6][7] This phenomenon is easily recognized by a careful examination of Figure 8, where a sinusoidal local-oscillator voltage reacts not only upon a varying transfer characteristic but also on a varying nonlinear, voltagedependent capacitance (not shown in Figure 8). Although the effects of this sinusoidal transition are not easily derived, Ward $|8|$ and Rafuse $|9|$ have concluded that lowering $R_{g}$ will provide improved intermodulation performancel This conflicts with low conversion loss, as we saw in Figure 4. ${ }^{1101}$

Further examination of Figure 8 reveals that the sinusoidal localoscillator excitation results in phase modulation. That is, as the sinusoidal wave goes through a complete cycle, the resulting gate voltage, acting upon the MOSFET's transfer characteristic, produces a resulting nonlinear waveform. Since all FETs have some offset -- a JFET has a cut-off voltage; a MOSFET has threshold voltage -- it is important, for symmetry as well as for balance, to offer some DC offset voltage to the gates. Optimum ImD performance demanda that the switches operate in 50 duty cycle, that is, the switches must be fully $O N$ and fully $O F F$ for equal time. Without some form of offset bias this would be extremely difficult unless we were to implement an idealized square-wave drive.

Walker ${ }^{[11]}$ has derived an expression showing the predicted improvement in the relative level of two-tone third-order intermodulation products (IMD) as a function of the rise and fall times of the local-oscillator waveforms

$d B$
Eq. (14)
where. $\quad V_{c}$ is the peak-to-peak local-oscillator voltage,
$v_{b}$ is the peak signal voltage.
$t^{\prime}$ is the rise and fall time of $v_{c}$.
$\omega_{L} 0^{\text {is }}$ the local-oscillator frequency.
Equation 14 offers us several interesting aspects on performance. Since any reduction in the magnitude of $v_{s}$ improves the IMD, we again discover that lowering $R_{g}$ (which, in turn, decreases the magnitude of $V_{s}$ ) appears to bene-

APPENDIX B. 2 Example of circuit data file for input to the program NET85.ASC. This file can be generated by the program itself or generated or modified by any text editor. The /* */ are delimiters for remarks and are not added by the program. They have been added for explanation of the file structure. Note that the file structure is the same as is input from the keyboard.

```
1 * RESISTOR * Type of element (lis a resistor) */
\(\frac{1}{2}\)
1 * RESISTOR
* RESISTOR
6
7
2 * CAPACITOR
3
7
58E-12 /* Value of capacitor in farads (58 pf */
\(2_{5}^{2}\)
5
\(23 E-12\)
 2 * CAPACITOR
5
6
23E-12
 \(3^{3}\) * INDUCTOR
\({ }_{3}^{2}\)
72E-9 INDUCTOR /* This is a 72 nh inductor */
\(3^{3}\) * INDUCTOR
3
4
72E-9
3 * INDUCTOR
5
7
7
28E-9
```

APPENDIX B. 3 Sample output file from NFTB5.ASC. This data can be edited with any text editor, addeत to a report, or used by a plotting program, such as PCPLOT2 (BV Engineering, Riverside, (A) :
(The first number is frequency, the second is amplitude.)
8E+07,3.543465E-02
8. $269104 \mathrm{E}+07.3 .831959 \mathrm{E}-02$
$8.54726 \mathrm{E}+07,4.173018 \mathrm{E}-02$
$8.834772 \mathrm{E}+07.4 .599374 \mathrm{E}-02$
$9.131957 \mathrm{E}+07 . .0516254$
$9.439138 \mathrm{E}+07,5.938689 \mathrm{E}-02$
$9.756651 \mathrm{E}+07.7 .032793 \mathrm{E}-02$
$1.008485 \mathrm{E}+08,8.579546 \mathrm{E}-02$
$1.042408 \mathrm{E}+08, .1073953$
1.077473E+08..1368522
$1.113717 \mathrm{E}+08, .1755944$
$1.159903 \mathrm{E}+08, .2785856$

1. $229929 \mathrm{E}+08.333345$
$1.229929 \mathrm{E}+08, .3333452$
$1.271301 \mathrm{E}+08, .3794872$
$1.314065 \mathrm{E}+08, .4116778$
$1.314065 \mathrm{E}+08, .4116778$
$1.358268 \mathrm{E}+08, .430391$
$1.358268 \mathrm{E}+08, .430391$
$1.403957 \mathrm{E}+08, .4395925$
$1.453954 \mathrm{E}+08, .4395925$
$1.499998 \mathrm{E}+08, .4447783$
fit performance. Second, the higher the local-oscillator voltage the better the IMD performance. Third, if we can provide the idealized square-wave drave we achueve infinite : min ovement in IMD performance:

An additional fault of sinusoidal local-oscillator excitation results whenever the wave approaches the zero-crossing at half-period intervals. As the voltage decays we find that any signal votlage may overload the mosfets causing intermodulation and erossmodulation distortion. ${ }^{1121}$ This can be easily visualized from figure 9 where we see the classic i-e characteristics of the mosfet at varying gate voltages. Only at abstantial gate voltage do we witness reasonable linearity, and consequently, good dynamic range.

## DYNAMIC RANGE OF THE COMMUTATION MIXER

As the two-tone Intercept Point increases in magnitude, we generally conclude a like improvement in dynamic range results. Yet, as we have concluded from earlier study, the intermodulation products appear to be a function of both the generator or source impedance as well as the ratio $R_{g} / r_{D S}$ and $R_{L} /{ }^{\text {d }}$ DS (see Figure 4).

In any receiver performance can be quantified by the term Dynamic range. Dynamic range can be extended by improving the sensitivity to low-level signals and by increasing the power-handing ability without being overcome by interfering intermodulation products or the effects caused from desensitration.

There are rules to follow if we are to improve the low-level signal sensitivity. Ideally we would like a mixer to be transparent, acting only to manipu-
late the incoming signals for easy processing by subsequent equipment. The perfect mixer would have no conversion loss and a rero noise figure. However, in the preceeding analysis we discovered that optimum intermodulation performance occurred when the signal-input port is mismatched to the quad MOSFETS (Figure 4). It now becomes clear that a performance trade-off appears necessary. Either we seek low conversion loss and with it a lower noise figure, or we aim for the highest two-tone intercept point. Fortunately, as we seek the latter, our dynamic range will actually improve since a mismatched signal port has less effect upon the signal-to-noise performance of the mixer than does a matched signal port have upon the intermodulatson distortion.

Convention has adentified minimum sensitivity to be the weakest signal Which will produce an output signal 10 dB over that of the noise in a prescribed bandwidth (usually 1 kHz ), or

$$
\text { Sens. }=20 \log \frac{V_{S}+V_{N}}{V_{N}}+10 d 8 \quad \text { Eq. } 1151
$$

Desensitation occurs whenever a nearby unwanted signal causes the compression of the desired signal. The effect appears as an increase in the maxer's conversion loss.

## THE SI8901 AS A COMMUTATION MIXER

Because of package and parasitic constraints, the Sig901 appears best suited for performance in the HF to low VHF region. A surface-mounted version may extend performance to higher frequencies.

In our review of intermodulation distortion we recognized that to achieve


FIGURE 1
Prototype Diplexer Design


FIGURE 3
Diplexer Design using RETMA Values

LOW-PASS SECTION

| FREQ= | $8.0000 \mathrm{E}+07$ | AMPL= | 4.56E-01 | 20LOG= | -6.8 | PHASE $=$ | -105.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQ $=$ | $8.5000 \mathrm{E}+07$ | AMPL= | 4.52E-01 | $20 \mathrm{IOG}=$ | -6.9 | PHASE $=$ | -113.1 |
| FREQ $=$ | $9.0000 \mathrm{E}+07$ | AMPL= | $4.49 \mathrm{E}-01$ | 20LOG= | -7.0 | PHASE $=$ | -120.9 |
| FREQ $=$ | $9.5000 \mathrm{E}+07$ | AMPL= | $4.48 \mathrm{E}-01$ | 20 LOG= | -7.0 | PHASE= | -129.1 |
| FREQ= | $1.0000 \mathrm{E}+08$ | AMPL= | $4.47 \mathrm{E}-01$ | 20 LOG= | -7.0 | PHASE= | -138.1 |
| FREQ $=$ | $1.0500 \mathrm{E}+08$ | AMPL= | $4.46 \mathrm{E}-01$ | 20 LOG= | -7.0 | PHASE= | -148.2 |
| FREQ $=$ | $1.1000 \mathrm{E}+08$ | AMPL= | $4.42 \mathrm{E}-01$ | 20 LOG= | -7.1 | PHASE $=$ | -160.0 |
| FREQ $=$ | $1.1500 \mathrm{E}+08$ | AMPL= | $4.27 \mathrm{E}-01$ | 20 LOG $=$ | -7.4 | PHASE= | -173.6 |
| FREQ $=$ | $1.2000 \mathrm{E}+08$ | AMPL= | $3.94 \mathrm{E}-01$ | 20 LOG= | -8.1 | $=$ | 171.2 |
| FREQ $=$ | $1.2500 \mathrm{E}+08$ | AMPL= | $3.40 \mathrm{E}-01$ | 20 LOG $=$ | -9.4 | PHASE | 155.7 |
| FREQ= | $1.3000 \mathrm{E}+08$ | AMPL= | $2.75 \mathrm{E}-01$ | 20LOG= | -11.2 | PHASE $=$ | 142.0 |
| FREQ $=$ | $1.3500 \mathrm{E}+08$ | AMPL= | $2.13 \mathrm{E}-01$ | 20LOG= | -13.4 | PHASE= | 31.6 |
| FREQ $=$ | $1.4000 \mathrm{E}+08$ | AMPL= | $1.62 \mathrm{E}-01$ | 20 LOG= | -15.8 | PHASE= | 124.7 |
| FREQ= | $1.4500 \mathrm{E}+08$ | AMPL= | $1.25 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -18.1 | PHASE= | 121.1 |
| FREQ $=$ | $1.5000 \mathrm{E}+08$ | AMPL= | $9.77 \mathrm{E}-02$ | 20LOG= | -20.2 | PHASE= | 120.1 |


| HIGH-PASS SECTION |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FREQ= | $8.0000 \mathrm{E}+07$ | AMPL= | $3.54 \mathrm{E}-02$ | 20LOG $=$ | -29.0 | PHASE $=$ | -136.8 |
| FREQ $=$ | $8.5000 \mathrm{E}+07$ | AMPL= | $4.11 \mathrm{E}-02$ | 20 L , OG= | -27.7 | PHASE $=$ | -134.5 |
| FREQ= | $9.0000 \mathrm{E}+07$ | AMPL= | $4.89 \mathrm{E}-02$ | 20LOG= | -26.2 | PHASE $=$ | -130.4 |
| FREQ $=$ | $9.5000 \mathrm{E}+07$ | AMPL= | $6.12 \mathrm{E}-02$ | 20LOG= | -24.3 | PHASE= | -125.5 |
| FREQ $=$ | $1.0000 \mathrm{E}+08$ | AMPL= | $8.13 \mathrm{E}-02$ | 20LOG= | -21.8 | PHASE $=$ | -121.8 |
| FREQ= | $1.0500 \mathrm{E}+08$ | AMPL= | $1.13 \mathrm{E}-01$ | 20 LOG= | -18.9 | PHASE= | -121.4 |
| FREQ= | $1.1000 \mathrm{E}+08$ | AMPL= | $1.60 \mathrm{E}-01$ | 20LOG= | -15.9 | PHASE $=$ | -125.3 |
| FREQ $=$ | $1.1500 \mathrm{E}+08$ | AMPL= | $2.22 \mathrm{E}-01$ | 20 LOG $=$ | -13.1 | PHASE $=$ | -133.9 |
| FREQ= | $1.2000 \mathrm{E}+08$ | AMPL= | $2.93 \mathrm{E}-01$ | 20LOG= | -10.7 | PHASE= | -146.4 |
| FREQ= | $1.2500 \mathrm{E}+08$ | AMPL, $=$ | $3.57 \mathrm{E}-01$ | 20 LOG= | -8.9 | PHASE $=$ | -161.1 |
| FREQ $=$ | $1.3000 \mathrm{E}+08$ | AMPL= | $4.03 \mathrm{E}-01$ | 20 LOG= | -7.9 | PHASE= | -175.9 |
| FREQ $=$ | $1.3500 \mathrm{E}+08$ | AMPL= | $4.28 \mathrm{E}-01$ | 20LOG= | -7.4 | PHASE= | 171.0 |
| FREQ $=$ | $1.4000 \mathrm{E}+08$ | AMPL= | $4.39 \mathrm{E}-01$ | 20 LOG= | -7.1 | PHASE= | 160.1 |
| FREQ= | $1.4500 \mathrm{E}+08$ | AMPL= | $4.43 \mathrm{E}-01$ | 20 LOG= | -7.1 | PHASE= | 151.0 |
| FREQ= | $1.5000 \mathrm{E}+08$ | AMPL= | $4.45 \mathrm{E}-01$ | 20 LOG= | -7.0 | PHASE: | 143.4 |

figure 2 - calculated valies of diflexer
a high intercept point the local-oscillator drive must
approach the ideal square-wave,
ensure a sov duty cycle: and.
offer sufficient amplitude to ensure a full on and orf switching condition, as well as to offer reduced $x_{\text {DS }}$ when $O N$.

Furthermore, to maintain superior overall performance -- in conversion
loss, dynamic range (noise figure) and intercept point -- some form of image frequency termination would be highly desirable even though, understandably, the mixer's bandwidth would be restricted. Consequently, the principal effort in the design of a high dynamic range commation mixer is two-fold. First, and most crucial, 18 to achieve a gating or control voltage sufficient to ensure a positive and hard turn-ON as well as a complete turn-OFF of the wixing elements (MOSFETs). Second, and of lesser importance, is to properly terminate the parasitic and harmonic frequencies developed by the mixer.

Establishing the Gating voltage
Local-oscillator injection to the conventional diode-ring, FET, or mOSFET double-balanced mixer is by the use of the broadband, transmission-line, transformer, ${ }^{[13 \mid}$ as shown in Figure 10 . For the diode-ring mixer where awitching is a function of loop current, or for active FET mixers that operate on the principle of transconductance and thus need little gate voltage, ${ }^{[141}$ the broadband transformer is adequate. If this approach is used for the commutaion mixer, we would need extraordinarily high local-oscillator drive to ensure positive turn-ON. Rafuse ${ }^{\{15]}$ and Mard ${ }^{[16\}}$ used a minimum of 2 w to ensure mixing action; Lewis and Palmer [17] achieved high dynamic range using

5 Hatts! The mosfets used in these early designs were p-channel, enhancement (2N4268) with moderately high threshold ( 6 V max.) and high input capacitance ( 6 pF max.). All of these early mosfer double-balanced mixers relied on the conventional 50 to 100-0-100 transformer for local-oscillator injectIon to the gates.

A major goal is the conservation of power. This goal cannot be achieved using the conventional design. Simply increasing the turns ratio of the coupling transformer is thwarted by the reactive load presented by the gates.

The obvious solution is to use a resonant gate drive. The voltage appearing acrosa the resonant tank -- and thus on the gates -- may be easily calculated,

$$
\begin{equation*}
V=(P \cdot Q \cdot X) \tag{16}
\end{equation*}
$$

$P$ is the power delivered to the resonant tank circuit,
$Q$ is the loaded $Q$ of the tank circuit, and,
$X$ is the reactance of the gate capacity.
Since the gate capacitance of the MOSFET is voltage dependent, the reactance of the gate becomes dependent upon the impressed excitation voltage. To allow this would severely degrade the IMD performance of the mixer. However, we can minimize the change in gate capacitance and remove its detrimental influence using a combination of substrate and gate bias, as shown in Figure 11. Not only does this show itself beneficial in this regard, but, as we saw in Figure 8, a gate bias is necessary to ensure the required 50 duty cycle. Furthermore, a negative substrate voltage ensures that each MOSFET on the monolithic substrate is electrically isolated and that each source-/drain-to-body


Figure 2 (6)

LOW-PASS SECTION

|  | $8.0000 \mathrm{E}+07$ | AMPL | 4.62E-01 | , |  | PHASE $=$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRE | $8.5000 \mathrm{E}+07$ | AMP | $4.58 \mathrm{E}-01$ | 20 LO | -6 | PHASE $=$ |  |
|  | $9.0000 \mathrm{E}+07$ | A | $4.55 \mathrm{E}-01$ | 20 L | -6 | PHA | -12 |
|  | $9.5000 \mathrm{E}+07$ | AMP | $4.53 \mathrm{E}-01$ | 20 LO | -6 | PHASE | -12 |
| FREQ | $1.0000 \mathrm{E}+08$ | AMP | $4.52 \mathrm{E}-01$ | 20 LOG | -6 | PHASE | -138 |
| FREQ | $1.0500 \mathrm{E}+08$ | AMP | 4.50E-01 | $20 \mathrm{LOG}=$ | -6. | PHASE $=$ | -148. |
| FREQ | $1.1000 \mathrm{E}+08$ | AMPL | $4.46 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -7. | PHASE | -159. |
| FREQ $=$ | $1.1500 \mathrm{E}+08$ | AMPL | $4.33 \mathrm{E}-01$ | 20 LOG= | -7. | PHASE= | -172 |
| EQ $=$ | 1.2000E+08 | AMPL= | $4.06 \mathrm{E}-01$ | 20LOG= | -7. | PHASE= | 172.8 |
| FREQ $=$ | $1.2500 \mathrm{E}+08$ | AM | $3.59 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -8. | PHASE= | 157 |
| FREQ $=$ | $1.3000 \mathrm{E}+08$ | AMPL= | $2.99 \mathrm{E}-01$ | 20 LOG $=$ | -10.5 | PHASE $=$ | 143.2 |
| FREQ $=$ | $1.3500 \mathrm{E}+08$ | AMPL= | $2.36 \mathrm{E}-01$ | 20 LOG $=$ | -12.5 | PHASE= | 131.3 |
| FREQ $=$ | $1.4000 \mathrm{E}+08$ | AMPL= | 1.82E-01 | $20 \mathrm{LOG}=$ | -14.8 | PHASE $=$ | 122.6 |
| FREQ $=$ | $1.4500 \mathrm{E}+08$ | AMPL= | $1.40 \mathrm{E}-01$ | 20 LOG $=$ | -17. |  | 117 |
|  |  |  |  |  |  |  |  |

HIGH-PASS SECTION

|  |  |  | $3.23 \mathrm{E}-02$ | $20 \mathrm{LOG}=$ | -29 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $8.5000 \mathrm{E}+0$ | AMP | $3.73 \mathrm{E}-02$ | 0 | -28 | PfiA | -132 |
| FREO | $9.0000 \mathrm{E}+0$ | AMP | . $40 \mathrm{E}-02$ | 0L | -27 | PHA | -128. |
| FREQ | $9.5000 \mathrm{E}+0$ | AMP | $5.45 \mathrm{E}-02$ | 0L | -25. | PHASE |  |
| FREQ | $1.0000 \mathrm{E}+08$ | MP | 7.16E-02 | 0L | -22. | HASE | -1 |
| FREQ | $1.0500 \mathrm{E}+0$ | AMPL | $9.88 \mathrm{E}-0$ | 1 | -20 | PHASE | -11 |
| FREQ | $1.1000 \mathrm{E}+0$ | MP | 1.39E-01 | 20 LOG | -17 | HASE | -12 |
| FREQ $=$ | $1.1500 \mathrm{E}+08$ | AMPL | $1.94 \mathrm{E}-01$ | 20 LOG | -14. | PHASE $=$ | -127.9 |
| FREQ | 1. $2000 \mathrm{E}+08$ | AMPL | $2.59 \mathrm{E}-01$ | 20LOG | -11 | PHASE $=$ | -13 |
| E | 1. $2500 \mathrm{E}+08$ | AMP | $3.24 \mathrm{E}-01$ | 20 LOG | -9. | PHASE $=$ | -152 |
| Q | 1.3000E+08 | AMPL, $=$ | $3.76 \mathrm{E}-01$ | 20 LOG= | -8.5 | HASE $=$ | -167 |
| Q | 1.3500E+08 | AMPL= | $4.09 \mathrm{E}-01$ | 20 LOG= | $-7.8$ | HASE $=$ |  |
|  | $1.4000 \mathrm{E}+08$ | AMPL= | $4.27 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -7. | HASE= |  |
| FREQ= | $1.4500 \mathrm{E}+08$ |  | $4.36 \mathrm{E}-01$ | $20 \mathrm{LOG}=$ | -7. |  |  |
|  | $1.5000 \mathrm{E}+08$ |  | 4.40E-01 |  |  |  |  |

figure 4 - VAlues adjusted to nearest retha values
dicule in sufficiphtly reverse hiabed to prevent half-wave conduction.
Implamentimg the resonant gatr drive may take any of several forms. The rosonant tank crycuit may tif merged with the nscillator, or it can be varactor iuned class a stage, $|18|$ or, as in the present design, an independent resonant tank, shown in figure 12.

To pnsure symmptrical gate voltage in $180^{*}$ anti-phase, if the local oscillator drive is asymmetrical, viz., fed by unbalanced coax, an unbalanced-to-balanced halun must be used (Ti in figure 12), otherwise capacative unbalance results with an attendant loss in mixer performance.

Table 11 offars an interesting comparison between a resonant-gate drive with a loaded tank $Q$ of 14 and a conventional gate drive uaing a 50 to 100-0lona transformer. The importance of a high tank $Q$ is quaphically portrayed in Fiqure 13. The full impact of a hagh gate voltage awing can be appreciated by usinq Equation 14. Here. as $V_{c}$ (gate voltage) increases the intermodulation performance (imD) also improves as we might intultively expect. Calculated and mensured results are shown in figure 14 and demonstrate reasonable agreement. The difference may reflect problems encountered in measuring $V_{c}$ as any probe will inadvertently load, or detune, the resonant tank even with the special care that uns taken to compensate.

If we have the option to choose "high side" or "low side" injection -viz. having the local-oscillator frequency above (high) or below (low) the signal frequency -- a closer inspection of Equation 14 should convance us to choose low-side injection.

Terminating Unwanterf frequencies
If our mixer is to be operated over a restricted frequency range where the local oscilator and gignal frequencies can be manapulared, image-frequency filtering may be possible. Image-frequency filtering does affect performance. For high-side local-oscillator injection an elliptical-function low-pass falter, or for low-side injection a hagh-pass filter might offer worthwhile improvement. In elther case, the falter offers a short-circuit reactance to the image frequency forcing the amage to return once again for demodulation. The results of using a low-pass filter with the commutation wixer are known from our earlzer examınation of figures 5 and 6.

The resonant-gare drive consisting of a high-Q tank offers adequate bypassing of the intermediate frequency and image frequency.

If the if as narrow band, filterang may be possible by simply using a esonant LC network across the pramary of the transformer. ${ }^{119}$

Design Techniques in Bualding the Commutation Mixer
The mixer was fabricated on a high-quality double-copper clad bard (PCB) shown in figure 15. An amprovised socket held the sig901. The signal and if ports used Mini-Circuits. Inc.. plastic t-case pftransformers. For the If, the Mana-Carcuits T4-1 (1:4), for the sagnal, the Mini-Circuats Tl-1T (1:1) or T4-1 was used. The resonant tank was wound on a tanch ceramac form with no sluq. The unbalanced-to-balanced resonant tank drive used a T4-1. The schematic diaqram. figure 16 , 2 s for commutation mixer with high-side injection. operating with an $1 F$ nf 60 MHz .


The principle effort involved the design of the resonant-gate drive.
This necessitated an accurate knowledge of the gate's total capacitive loading effect. To accomplish phis a precision fixed capacitor ( 5 pF ) was substituted for the sisgol and at resonance it was a simple task to calculate the inductance of the resonant tank. Substituting the si8901 made it again a simple task to determine the capacitive effect of the si8901. Once known, a high-Q resonant tank can be quickly designed and implemented. To ensure good interport isolation, syametry is important, so care is necesaary in assembly to maintain mechanical symmetry, especially with the primary winding.

Performance of the Si8901 Commutation Mixer
The primary goal in developing a comutation double-balanced mixer it to achieve a high dynamic range. If this task can be accomplished with an attendant savings in power consumption, then the resulting mixer design should find wide application in $H F$ receiver design.

The following tests were performed.
Conversion efficiency (loss)
Two-tone, Jrd-order Intercept point
Compression level
Desensitization level
Noise Figure
Conversion loss and intercept point are directly dependent upon the magnitude of the local-oscillator power. The mixer' performance is offered in Figure 17. Where the input intercept is plotted with conversion loss.

Both the compression and desensitization levels may appear to contradict
reason. Heretofore, conventional diode-ring demodulators exhibiting compression and desensitization levels an order of magnitude below the localoscillator power level. However, with a comutation MOSFET mixer, switching is not accomplished by the injection of loop current but by the application of gate voltage. At a local-oscillator power level of 417 dBm ( 50 mm ), the 2 dB compression level and desensitization level was 430 dBm ; The singlesideband HF noise figure of 7.95 dB was messured also at a local-oscillator power level of 417 dBm .

## CONCLUSIONS

Achieving a high gate voltage to effect high-level awitching by means of
a resonant tank is not a handicap. Although one might at first label the mixer as narrow-band, in truth the mixer is wideband. For the majority of applications, the intermediate frequency is fixed, that is, narrow band. Consequently, to recerve a wide spectrum of signal frequencies the local oscillator is tuned across a similar band. In modern technology this tuning can be accomplished by numerous methods. Likewise the resonant tank may take several forms. It can be part of the oscillator, or, as in Ref. (18), it can be a varactortuned driver electroncially tracking the local oscillator.

If the local-oscillator drive was processed to offer a more rectangular waveform, approaching the idealized square-wave, we maght then anticipate even greater dynanic range as predicted by Equation 14.
16. Ward, Michael John, op. cit.. pg. 55
17. Lewis, H.D. GF.I. Palmer, op. cit.. Table 1, pg. 26.
18. "Electronically Controlled High Dynamic Range Tuner," Final Report (June 1971) ECOM-0104-4 Research and Development Technical Report.

1. Oxner. Ed., "FETS Work wi.. ir Active Balanced Mixers," EDN. Vol. 18, "1 (January 5, 1973), pF 6, (-72.
2. Oxner, Ed., "Active Double-Balanced Mixers Made Easy With Junction FET's," EDN, vol. 19, 113 (July 5, 1974), Pp. 47-53.
3. Walker, H.P.. "Sources of Intermodulation in Diode-Ring Mixers," The Radio and Electronic Engineer, vol. 46, 5 (May 1967). Pp. 247-55.
4. Caruthers, R.S., "Copper Oxide Modulators in Carrier Telephone Repeaters," Bell System Techncial Journal, Vol. 18. 2 (April 1939), pp. 315-37.
5. Mouw, R.B. S.M. Fukuchi, "Broadband Double Balanced Mixer/Modulatora," Microwave Journal, Vol. 12, 3 (March 1969), pp. 131-34.
6. Lewis, H.D. \& F.i. Palmer, "A High Performance hF Receiver," R.C.A. Missiles \& Surface radar Division Report (November 1968).
7. Walker, H.P., op. cit.
8. Ward, Michael John, "A Wide Dynamic Range Single-Sideband Receiver," M.I.T. MS Thesis, (December 1968).
9. Rafuse, R.P.. "Symmetric MOSFET Mixers of High Dynamic Range," Digest of Technical Papers, 1968 Int'l Solid-State Circuits Conf., pp. 122-3
10. Lewis, H.D. \& F.I. Palmer, op. cit., pq. 13
11. Walker, H.P., op. cit
12. Gardiner, John G., "The Relationship Between Cross-Modulation and Intermodulation Distortions in the Double-Balanced Modulator." IEEE Proc. Letters (November 1968), Pp. 2069-71.
13. Ruthroff, C.L., "Some Broad-Band Transformers," Proc. IRE (August 1959), pp. 1337-42.
14. Kwok, Siang-Ping, "A Unified Approach to Optsmum Fet Mixer Design," Motorola Application Note, AN-410 (n.d.).
15. Rafuse, R.P., op. cit

| Single-Balanced | Double-Balanced |
| :---: | :---: |
|  | $\begin{aligned} & \mathrm{f} 1 \pm \mathrm{f} 2 \\ & \mathrm{f} 1 \pm 3 \mathrm{f} 2 \\ & \mathrm{f} 1 \pm \mathbf{f f} 2 \\ & 3 \mathrm{f} 1 \pm \mathrm{f} 2 \\ & 3 \mathrm{f} 1 \pm 3 \mathrm{f} 2 \\ & 5 \mathrm{f} 1 \pm \mathrm{f} 2 \end{aligned}$ |
| A Comparison of Modulation Products in Single and Double Balanced Mixers to the 6th order |  |
| TABLE I |  |

## SAM ACCELEROMETERS: integration of thick and thin film technologies

by<br>tim b. bonbrake, consultant<br>carl a. erikson, and. and dennis thoma<br>Andersen Laboratories, inc.<br>Bloomfield, Connecticut 06002

## INTRODUCTION

Surface Acoustic Wave (SAW) devices are now being used in many sensor applications:-sj because of their inherent advantages (figure ll. The ability to integrate the SAW delay lines with hybrid microelectronics to make compact, reliable units (Figure 2 ) and the requirement to obtain RF outputs directly proportional to the measurand li.e., acceleration, pressure, vapor, etc.l have allowed this relatively new fanily of sensors to compete with other established sensor technologies such as capacitance and strain gauge type.

This paper describes how both thick and thin film processing technologies were combined to form a successful prototype sAW acceleroneter intended for missile applications sensing $\pm 5065$.

## BASIC DESIGN AND DPERATION

The discussion on the basic design and operation of this accelerometer centers on its key sensing element, the sam delay line Since cost and size were not a major emphasis in this developmental program, a customachined, two-tier, connectorized package (Figure 3) was designed to support and protect the Sall line and house the hybridized electronics.

## Mechanical Design

Initially, two standard SAW materials were investigated; $\mathrm{Y}-\mathrm{Z}$ lithium niobate and st-x quartz. These materials were chosen for the following reasons:

1. Historically they have been the most popular substrates used for SAW devices. LiNb)s is used for its high piezoelectric coupling and $\mathrm{SiO}_{2}$ is used for its thermal stability.
2. Material constants for these particular crystalline cuts afe well known, thus allowing the SAW velocity change fue to strain to be predicted
3. These materials have better mechanical properties than other candidate materials, leading to better production yields and a more rugged accelerometer.

The mechanical configurations investigated were those which were readily derivable from these standard $S A W$ materials and those providing maxinum strain at the surface of the SAH substrate. Mechanical analysis of several configurations mas performed and resulted in how the SAM substrate velocity changed as a function of applied stress, mechanical dimensions, material constants, etc. This analysis concluded that the cantilever beam approach required the least force to achieve a given strain and hence SAW velocity change (Figure 4). The farce (F」) applied to the cantilever beam is provided primarily by the acceleration field acting upon a seismic mass attached to the beam's end. In this cantilever beam comfiguration the mechanical calculations for strain and the material cunstants demonstrated that si-x quartz has nearly twice the sensilivity of lithium notate, thus maring quartz the aterial selected

equivalent circuit of commutation mixer
figure 1


THE POWER-LOOP CIRCUIT WITH ALL elements equivalent. based on THE TRANSFER FUNCTION.
$e(t)=4 / \mathrm{m}^{2}$

FIGURE 3
for the SAW accelerometer prototypes.

## Electrical Desion

The basic design used for the SAH accelerometer prototypes consisted of a single SAW oscillator (fo $\equiv 314 \mathrm{MHz}$ ) driving twin cantilevered SAK delay lines. One delay line is used as a reference and the other is stressed or "deformed" under acceleration by the seismic ass. The intent of this twing delay line configuration is to inimize any temperature effects between the two lines. The two outputs are fed to a phase detector to compare the relative phase shift due to a velocity change in the stressed substrate. The phase detector output is then amplified and used to produce both DC analog and RF outputs proportional to the applied acceleration force.

## BASIC FABRICATION AND ASSEMBLY

The electronics circuitry for the accelerometer was fabricated as a thick film hybrid circuit on a $1^{\prime \prime} \times 0.8^{\prime \prime} \times .025^{\prime \prime}$ alunina substrate. The main electronics board contained a SAH oscillator, power divider, phase detector, amplifier section, and V-to-F circuit (figure 5). The two delay lines and their tuning elements mere monted on a separate base plate and attached to the bottom of the package by screws (Figure b).

## PRELIMINARY TUNING

Frior to package assembly it was necessary to functionally adjust the reference sall delay line to 90 degrees phase difference in relation to the deformable SAM delay line. This insured maximum sensitivity of the phase detector to any stress in the deformable cantilever. The pactage and baseplate fixtures were connected such that the outputs of the power divider were injected into both cantilevered 5 AH lines. The outputs of
both the reference and deformable SAllines were then fed bact into the phase detector on the main electronics board. The $D C$ amplifier output was then monitored and the reference cantilever was adjusted by means of locking screms on the seisaic ass. When maximun amplifier output was obtained the reference cantilever screws were locked in place.

With the reference SAH line now held stationary, the deformable SAW line was manually deflected and the amplifier output chected. The result was approximately a one volt shift at full scale deflection.

The R-C circuitry on the V -to-f section was now adjusted to give a stationary output difference frequency of $550 \mathrm{KHz} \pm 25 \mathrm{kHz}$. This was necessary due to the fact that, because of individual SAH characteristics, component tolerances, etc., the stationary amplifier output varied.

## TESTING RESULTS

Four prototype devices mere built and tested for the following parameters:

1. Linearity
2. Sensitivity
3. Hysteresis
4. Effects of temperature
5. Transverse Sensitivity

The basic procedure for testing the $5 A H$ accelerometers was to mount them onto a centrifuge and calculate the acceleration by converting fFM into 65 . The acceleration was incremented in steps of 5 Gs and the CC output voltage momitored and recorded for each acceleration point.


Fefreit of image termination on
conversion loss


EfFECT OF image termination on
ird-ORDER DISTORTION

the harmonic 6 spurious content
exiting the if port of the
COMMUTATION MIXFR
figure 7

## Linearity and Sensitivity

The SAW accelerometers mere tested for the lingarity and sensitivity at ambient, hot, and cold temperatures. The results of the ambient temperature runs on two units can be seen in Graph ol entitled "SAM-DC Voltage vs. Acceleration". From this graph it can be seen that the tro units displayed a very linear relationship between acceleration and output voltage. The sensitivities of both units differed from around the zero acceleration point to the acceleration extremes. See Table belaw.

| Acceleration | SAH 2 | SAH 3 |
| :---: | :--- | :--- |
| 5065 | $2.6 \mathrm{mV} / 6$ | $5.2 \mathrm{mV} / 6$ |
| 065 | $6.6 \mathrm{mV} / 6$ | $7.8 \mathrm{mV} / 6$ |
| -5065 | $7.8 \mathrm{mV} / 6$ | $9.5 \mathrm{mV} / 6$ |

It must be noted that the cantilevered structures were designed to maximize +6 deflection and liait -6 travel to save package space.

## Hysteresis

The hysteresis of the SAW accelerometer was found by measuring the DC output voltage while incrementing the acceleration from zero to +50 gs and decrementing back to zero. This procedure nas repeated for negative acceleration. A typical SAM hysteresis curve can be seen in Graph $\quad 2$ SAH Accelerometer HYSTERESIS". Fron this graph it can be seen that there is a minimal amount of lag and the accelerometers deviated from their initial measured value by a maximum of 5 mv and ll mv respectively. Effects of Temperature

The effects of temperature were measured by cooling or heating the SAW device and then placing the unit inside an insulated box and running the tests. Raising and lowering the temperature generally had the effect
of raising and lowering the operating point. Raising and lonering the temperature also effected the sensitivity of the SAW units. Sensitivity increased to $-9.46 m \vee / 6$ mhen cold (-25F) and decreased to $-7.0 m / 6$ when hot (150F). Sensitivity at ambient temperature is -7.89m/g. This phenomenon is probably due more to semiconductor physics than the SAM temperature sensitivity. Saturation current through the phase detector diodes mill increase with temperature and thereby reduce phase detection sensitivity. These effects can be compensated for with additional electronics.

NOTE: The operating point of the accelerometer at times shifted around irrespective of operating conditions. This explains why the hot curve is lower than the ambient curve in 6 raph $\# 3$ " 5 AH Accelerometer Temperature Effects". In general the operating point for this particelar unit lowered with use.

Iransverse Acceleration
Transverse acceleration is a critical in missile applications because acceleration occurs in more than one axis as the missile maneuvers. Honever, transverse acceleration was found to have very little if no affect on the $D C$ output voltage. See Tible belon.


$X$ direction is aris of desired motion
$r$ direction acceleration has no affect at all
$z$ direction acceleration has $0.2 m v / 6$ sensitivity

effect of sinusoidal local oscillator
waveform on if linearity
figure $\theta$




Local oscillator drive using CONUENTIONAL BROADBAND TRANSFORMERS
figure 10

## Sumary of Testing Resultes

The SAW accelerometers exhibited reasonably linear relationship between output voltage and acseleration. The units did display some offset and sensitivity drift with temperature variations. The offset voltage increased with a temperature increase and sensitivity increased as temperature decreased. Transverse acceleration is not a problem and hysteresis effects also don't appear to be a problem but more testing is needed to confirm this. The most common problem encountered in testing the units was that the offsets mere at times unpredictable and often took a long time to stabilize.

In general, the $5 A W$ accelerometers worked well for prototypes. There were problems encountered in the testing that pointed to the associated electronics and mechanical mounting. Several improveents to overcome these problems will be addressed in the next phase of development.

CONCLUSION
This development program on SAN actelerometers proved very successful. The acceleration versus output voltage data was linear and reproducible to $\pm 50$ 65. Size and cost reductions are being pursued in a follow-on developmental program which will provide a low profile, surface mountable package.

## REFERENCES

[1] "A Surface Acoustic Wave Gas Detector", A. Bryant et.al., 1981 Ultrasonics Symposium Proceedings, pp 171-174.
[2] "Cantilever-Beased SAW Acceleroneters", P. L. Meunier and P. Hartemann, 1982 Ultrasonics Symposium Proceedings, pp 299-702.
[3] "Teaperature Sensor Using SAW Delay Line", D. Kauden et.al., 1981 Ultrasonics Symposium Proceedings, pp 148-151.


Reasons to Use SAW Devices


Reasons to Use Thick/Thin Technologies with SAW Devices

effect of bias and substrate voltace on gate reactanct figure 11

resonant-gate drive transformer, t2, is tunfo
TO RESCNATE WITH $C_{G G}$ OF SI8901

FIGURE 12

influence of loaded $Q$ on gate voltage versus l.o. poher figure 13

frfects of gate volitage on INTERMODUIATION DISTORTION FIGURE, 14


FIGURE 3
SAW Accelerometer
Package Assembly


FIGURE 4
Cantilever Beam


FIGURE 5
Electronics Substrate


FIGURE 6
Cantilever SAK Substrate with Tuning Components

schmatic, - commitation donihl.p-balanc.ed mider
Ficilise 16


GRAPH 1


GRAPH 2

（ロリパリ

Woild Radio History

## IMPROVE SYNTHESIZED TRANSCEIVER PERFORMANCE AND RELIABILITY <br> by Simple screening of the vCO ACTIVE DEVICE

## ABSTRACT:

This article describes the effect of $1 / f$ noise from high frequency bipolar junction transistors on the performance of a synthesized transceiver; and it offers an explanation for the origin of the noise together with a simple screening technique to improve the transceiver performance and reliability.

## Introduction:

A basic element of frequency synthesized transceivers is the phase-lock loop circuit in which the output of a voltage-controlled oscillator (VCO) is constantly compared with the frequency of a reference crystal controlled oscillator. Synthesized transceiver performance is mostly based on the choice of design parameters for the phase-lock loop circuit. A compromise in loop bandwidth will optimize the desired switching speed with respect to the specified spurious output levels. The phase noise sources in the phase-lock loop ${ }^{1,2}$ are responsible for the spectral purity of the transceiver. The close-in phase noise will affect the residual FM hum and noise performance as well as the transceiver adjacent channel selectivity specifications.

To achieve good close-in phase noise, it is necessary to maximize the resonator's loaded $Q$ and its available output power while choosing an active device with a low noise figure and a low $1 / f$ noise contribution. This article describes the effect of $1 / f$ noise from high frequency bipolar junction transistors on the performance of a synthesized transceiver; and it offers an explanation for the origin of the noise together with a simple screening technique to improve the transceiver performance and reliability.

## Cause and Effect of $1 / f$ Transistor Noise:

The major cause of $1 / f$ noise in bipolar transistors has been traceable to surface properties. Surface contamination or defects can degrade $1 / f$ noise performance and transistor reliability by creating early failures in the field. ${ }^{3}$

The $1 / f$ transistor noise caused a degradation in the VCO phase noise in the synthesized transceiver; distinctly affecting the residual FM hum and noise and the

Choosing the right chystal ano oscillator for the application

## by

Brion E. Rose Vice President. Q-Tech Corporation Los Angeles, Co.90064

Some of the considerations which go into e decision on the choice and design of erystale and cryatel oscillators are listed below:

Fundamental veraus overtone mode erystal.
2. Parallel mode versus series mode.
3. VHF crystal versus multiplier chain
4. Uncompensated versue texo or ocxo.
5. Trimable versue no trim odjustment.
6. Solder sealed package versue hybrid.
7. Voltage control required.
8. Stringent short term stability requiremente.
9. Tight ageing requiremente.
10. Stert-up time.
11. Radiation requirements.
12. Shock and vibration rquiremente.
13. Low current (battery operated)
14. Low parts count. Gate Oscillator.

In order to organize some of the above considerations, this paper arbitrarily begins with a 20 mHz , fundamental mode crystal in on HC-18 holder, to be used in an oscillotor driving a receiver local oscillator chain to 400 MHz .
The characteristics of this crystal and itg circuit are described and some of the options and considerations of the list are compared to thi: 20 MHz example.

## FAEQUENCY STABILITY

Assume that the oecillator has a temperature stability of $\pm 40 \mathrm{PPm}$ (part: per million) over the tamperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. To this must be added an againg factor. Ona can conearvatively assume 2 PPM ageing the 1 st year of operation and a life time ageing factor of 4PPM. Ueing these essumptions, the worst case frequency error will be $40+4$ or 44 PPM.

In Hertz;

$$
20 * 10^{6} * 44 * 10^{-6}=880 \mathrm{~Hz}
$$

and at the end of the $\times 20$ multiplier chain $20 \times 880=17,600 \mathrm{~Hz}$.

This frequency error would be tolerable if this fictitious local oscillator was part of a receiver with a 200 kHz I.f. bandwidth. If, howaver, the bandwidth were only $2 \mathrm{kHz}, 017600 \mathrm{~Hz}$ error in the local oscillator would be excessive. The narraw band assumption will be made in order to see where it leads the
adjacent channel selectivity performance. The $1 / f$ transistor noise was first verified by the -9dB per octave slope of the single-sideband phase noise spectral density, $L(f m)$ plot. ${ }^{4}$ The high frequency bipolar transistor noise was then amplified in a low noise amplifier and recorded on a low frequency spectrum analyzer.

The transistors with excessive $1 / f$ noise showed a relatively low DC beta and a large difference in the absolute value of this parameter at different collector currents. Thus, a simple characterization of the DC beta of the VCO active device can improve synthesized transceiver performance and reliability.

## Transceiver Performance Background:

The transceiver includes a transmitter and a receiver section coupled to the frequency synthesizer which generates the appropriate injection signals to allow the transmission and reception of the carrier frequency.

The transmitter residual FM hum and noise specification is a measurement of the signal-to-noise quality of the transmitter within a specified bandwidth. Specifically, it denotes the ratio of residual frequency modulation to standard test modulation measured on a test receiver. In a narrowband system the standard test modulation is $60 \%$ of the 5 kHz maximum system deviation, and the test receiver bandwidth is in the audio voice pass-band range of 300 to 3000 Hz .

The synthesizer characteristics play a major role in determining the receiver selectivity specification; in particular, the close-in phase noise. Receiver selectivity is a measure of channel protection against undesirable signals close to the receiver carrier frequency. This is typically measured at the adjacent channel frequency, and it serves as a figure of merit for different types of receivers.

The transmitter sideband noise is also directly influenced by the phase noise at the output of the voltage controlled oscillator which serves as the injection frequency for the transmitter section.

## Transceiver Degradation Due To 1/f Noise:

The residual FM hum and noise level of the VCO varied in excess of 20 dB from a maximum measurement of -36 dB . (ratio in dB of the test modulated audio to the residual noise audio level). The inconsistent VCO hum and noise levels were traced to the $1 / f$ noise of the active device in the oscillator circuit.

The spectral response of the voltage controlled oscillator was measured using a double balance mixer as a phase detector in a narrow bandwidth loop to maintain phase quadrature with the reference source. ${ }^{5}$ This setup was capable of measuring better than $-140 \mathrm{~dB} / \mathrm{Hz}$ from the reference source. A plot of the spectral density response for two different bipolar transistors from the same generic lot measured on the same VCO is shown in Figure 1.

The difference shown in the spectral density plot is due to the higher $1 / f$ transistor noise. The characteristic -9 dB per octave slope is clearly shown on the top trace of the plot, while the spectral density slope for the good device (bottom trace) shows the -6 dB per octave normally associated with the white FM noise.

The adjacent channel receiver selectivity, 25 kHz from the carrier frequency, was also degraded by 5.5 dB for the measurements taken with the samples outlined on Figure 1 After tracing the transceiver degradations to the active device of the oscillator circuit, the high frequency bipolar transistor was fully characterized.
oscillator design. The maximum error must now be restricted to aboul 200 Hz , or

$$
\text { DF, PPM }=200 / 400=0.5 \mathrm{PPM}
$$

Thi: new requirement forces the design to either a much more stable crystal oscillator, or to system in which the oscillator 1. locked to a etoble master reference. These two approaches will be considered next.

## TCXO': and OCXO's

C Iemperatura Compensoted Crystal Oacillator and Oven Contralled Crystal Oacillators)

Before considering the two options of TCXO and OCXO, the questions of ogeing and estability must be oddreseed. If the receiver must operate without edjustmant throughout its life, then ageing will probably determine the quality of cryatal osillator requirad (and therefore the price, size and o.c. power). If the frequency of the oecillator can be corrected by electrical or mechanical edjuetment to remove frequency error due to ageing, the frequancy accuracy will be daminated by temperature rather than age. TCXO's and OCXO's will be considered with this assumption.

日riefly, a texo correcte the erystal frequency versue temperature charactaristic by means of a compensation network which applies o correction voltage to varicap diode in serie: with the crystal. An ocxo eddresses the problem by controliling the temperature at the cryetal with o minioture oven. Simplified schematics of a typical rexo and ocxo are shown in figure 1

ocxo


Figure 1, Simplified TCXO and OCXO

## Bipolar Transistor Characterization:

The 1/f transistor noise was amplified and recorded on a low frequency spectrum analyzer. An audio amplifier was built with the high frequency bipolar transistor to amplify its own internal noise, and its output was passed through two additional stages of low-noise operational amplifiers. An overall gain of 100 dB was obtained from these amplification stages which served to drive the low frequency spectrum analyzer.

The noise spectral density for several transistors is shown in Figure 2. These pictures illustrate the different noise patterns observed.

The VCO residual FM hum and noise was measured for several transistors, then the spectral density was recorded on the low frequency spectrum analyzer, and finally the DC beta at the operating collector current ( 5 mA ) was measured for each device. A graph illustrating the correlation among these variables is shown in Figure 3.

The noise voltage at 1 kHz versus beta graph (Figure 3) shows a strong correlation of the high noise bipolar transistors responsible for the poor hum and noise levels to the low DC beta values recorded. In particular, transistor noise levels below 3 nV VHz at 1 kHz were found to correspond to VCO hum and noise levels lower than -52 dB.

However, since the residual FM hum and noise is measured in the audio voice pass-band range rather than at a specific frequency, a more accurate means of measurement was developed. This consisted of a noise test system whose output was a DC voltage level resulting from rectifying and integrating the $1 / f$ noise in the specified audio bandwidth. A block diagram of the new noise test system is shown in Figure 4.

The amplified transistor noise was band limited from 300 to 3000 Hz with a $750 \mu \mathrm{sec}$ preemphasis filter, processed through a full wave rectifier and integrated over a seven second period. The result of the integration was a DC voltage level proportional to the $1 / f$ transistor noise. Figure 5 shows the relation of the rectified band limited noise voltage to the measured hum and noise levels. This graph also correlates an average DC noise voltage threshold limit of 0.5 Vdc to a VCO hum and noise acceptable level of $-51 \pm 1 \mathrm{~dB}$.

Furthermore, Figure 6 shows the more accurate relationship of the rectified DC noise voltage to the hum and noise measurement and the oscillator transistor DC beta. This graph shows that the majority of the transistors with DC betas higher than 90 at 5 mA collector currents (VCE $=5 \mathrm{~V}$ ) had good VCO hum and noise performance. Further tests on a larger number of the same generic type transistors have shown a similar correlation (Figure 7).

Moreover, data at different collector currents was also taken, specifically at 5 mA and $10 \mu \mathrm{~A}$. This data showed that the transistors with high noise levels demonstrated a large difference in these two collector currents. Refer to Figure 8.

Separate batches of transistors from different lots were specifically tested for noise, DC beta and the beta difference at different collector currents. In general, all transistors with betas higher than 90 showed low noise voltage levels and fairly close DC beta readings at the two collector currents mentioned. One batch of the high beta transistors ( Bave $=130$ ) showed high average noise voltage levels, but a large difference in DC betas at these two collector currents also was characteristic of this batch of transistors (beta difference was greater than 60).

The new epecification of .5 PPM pute the requirement somawhere in the gray area between Texo's and OCxO's. Low coet, commercial rexo'a typically meet $\pm 1 \mathrm{PPM}$ over $0^{\circ} \mathrm{C}$ to $50^{\circ}$ The example oscillator's specification and temperature range puts the design near the border of the best that can be done with a rexo, and consequently it would be a oostly unit. OCXO' easily provide stabilities of $+1 \times 10^{-8}$ stabilitias of $\pm 1 \times 10$ over the required temper
provide ageing rates lese than $1 \times 10^{-9}$ per day.

However, ovenized unite are larger, heavier, and consume much more power than non-oven types. Representative specifications are ahown in Table 1. Notice that some compromises may have to be made between requiremente, performance, and price.

## PHAGE LOCKED GYETEM

As an alternative, assume that this syetem already containe a stable master oscillator at 5 mz . The basic oryetal oncillator can then be locked to this master using e phase locked loop. Fiqure 2 illustrates the circuitry involved. Notice that a varactor in series with the crystal hes been added in order to be able to pull (frequency shift) the frequency to exactly four times the reference 5 mHz .

Some notes concerning phase locking a crystal oscillator are eppropriate.

1. The gain conetant of a crystal controlled oscilletor, ko, in Hertz per volt, is typically three to four ordere of magnitude

TABLE 1 -- typical dexo ano tcxo

| SPECIFICATION | 0 OCO | TEXO |
| :---: | :---: | :---: |
| Frequency | 5 or 10 mHz | 5 to 50 MHz |
| Output Level | 1 Vrma into 50 ohms | $\begin{aligned} & \text { sinewavé TTL, } \\ & \text { or cmós } \end{aligned}$ |
| Hermonic Oistortion | -40 dBc | -20 d8c |
| Frequency Adjustment | +2.5 PPM minimum <br> coarse mechanical. <br> $\pm 2 \times 10 E-7$ fine <br> It PPM voltege control | $\frac{ \pm 2 \times 10 E-6}{\text { minimum }}$ |
| Input Voltoge | + 12 V.O.C., $\pm 10 \%$ | + 12 V.O.C., $\pm 5 \%$ |
| Frequency Stability ve Input Voltage | $\begin{gathered} \pm 3 \times 10 \mathrm{E}-9 \text { for } \\ \pm 10 \% \end{gathered}$ | $\begin{gathered} \pm 2 \times 10 \mathrm{E}-7 \text { for } \\ \pm 5 \% \end{gathered}$ |
| Frequency Stability $v$ bloed | $\begin{gathered} \pm 1 \times 10 \mathrm{E}-9 \text { for } \\ \pm 10 \% \end{gathered}$ | $\begin{aligned} & +2 \times 10 \mathrm{E}-7 \\ & \text { for } \pm 2: 1 \text { vswA } \end{aligned}$ |
| Frequency Stability ve Temperature | $\begin{aligned} & \pm 5 \times 10 \mathrm{E}-9 \\ & -20^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \pm 5 \times 10 \mathrm{E}-7 \\ & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$ |
| Warm-Up Time | $\begin{aligned} & \pm 1 \times 10 \mathrm{E}-7 \text { in } 15 \mathrm{mina} \\ & \pm 1 \times 10 \mathrm{E}-8 \text { in } 20 \mathrm{mina} \end{aligned}$ | - 1 second |
| Aging Rate | 1 $\times 10 \mathrm{E}-9 / 24$ hours | 1×10E-8/24 houre |
| Short Term Stability |  | $\begin{array}{rl} 1 \times 10 E-9 & 5 \cdot m . s \\ T a u & 1 \mathrm{sec} \end{array}$ |
| Input Current | 340ma. at turn-on 135ma. at $25^{\circ} \mathrm{C}$ 225ma. at $-20^{\circ} \mathrm{C}$ | 15 ma. |
| 6120 | $2^{\prime \prime} \times 2^{\prime \prime} \times 4^{\prime \prime}$ | $1^{\prime \prime} \times 2^{\prime \prime} \times 0.5^{\prime \prime}$ |

## 1/f Noise Correlation To Surface Effects:

The major cause of $1 / f$ noise in semiconductor devices is traceable to surface properties of the materials. The generation and recombination of carriers in the suriace energy states and the density of surface states are important contributing factors. The 1/f noise has decreased with improved surface treatments in manufacturing, but even the interface between the silicon surface and the grown oxide passivation can create $1 / f$ noise sources. ${ }^{3}$

Three distinct sources of low-frequency noise in bipolar junction transistors have been reported in the literature: 6

1. A $1 / f$ noise source associated with the surface of the emitter-base junction,
2. A $1 / f$ noise source associated with the active base region of the transistor, and
3. Anomolous burst noise associated with the forward-biased emitter-base junction.

The noise spectral density of the transistors shown in Figure 2 correlates to these reported findings.

A good NPN high frequency transistor is designed with a narrow base width to reduce the transit time of the minority carriers, and with small emitter and collector areas to reduce junction capacitance. ${ }^{7}$ A common fabrication technique uses interdigitated (emitter-base) geometries to increase the useful emitter edge length while keeping the overall emitter area to a minimum. This technique maximizes the perimeter-to-area ratio so that most of the emitter current will pass through the periphery, avoiding the large series resistance of the extremely thin base region.

Thus, the increased amount of current flow through the suriace junction periphery
tends to make the high frequency transistor more susceptible to surface defects. In contrast, low frequency (audio) transistors tend to have lower $1 / f$ noise because their emitter geometries are designed to minimize the perimeter-to-area ratio so that more of the emitter current will avoid the periphery.

## 1/f Noise Correlation to DC Beta:

The basic operation of the NPN bipolar transistor consists of the injection of electrons from the emitter as minority carriers into the base region. Through the diffusion process they are collected at the collector region. The design objective for an efficient transistor is to match the number of electrons arriving at the collector to those being injected by the emitter. However, because of the electron-hole-pair (EHP) recombination at the base through the bulk and the surface, a 100 percent efficiency is never achieved. The holes required for the EHP recombination are supplied by the base current. In addition, the hole current that flows across the base to the emitter junction is also supplied by the base current.

The narrow base region width requirement minimizes the EHP recombination at the bulk, while recombination at the surface is best treated with careful and clean processing steps. Some of the $\mathrm{Si}-\mathrm{SiO}_{2}$ surface charge mechanisms reported are: 8

1. Space charge within the oxide due to mobile contaminant ions (such as sodium).
2. Energy "traps" due to ionizing irradiation of the silicon sample,
3. Fast surface states which occur because of disruption of the periodicity of the lattice at the suriace, and
4. Fixed surface state charge. Qss.

Since the DC beta (base to collector current amplification factor) is the ratio of collector


Figure 2, Phase Locking
lesg than that for a VCO (voltage controlled oscillator). The 20 MHz example would have on overage KO of 500 Hz per volt.
2. The loop bandwidth for a phase locked loop using a crystal controllad ascillator is typically 10 to 200 Hz . Very much norrowar bandwidthe may cause loop phase fitter problems. Wider bandwidths are limited by frequency response roll-off caused by the narrow band nature of the oscillator.
3. The erystal oscilletor must be capable of being pulled, or slawed, by an amount equal to its temperature and ageing frequancy error. This ossumes that the mester oscilletor drift 1s negligible. The texo and the phase locked oscilletor both require electronic tuning, by means of a varactor diode, or
varicap. It is appropriate to discuse varactor tuning in more detail, before discuesing overtone crystal osillators becouse overtones have very limited "pullability."

VCXO (VOLTAGE CONTAOLLED CAYSTAL OSCILLATOA
The equivalent circuit for e erystal is shown in figure 3.


Figure 3, CRystal Equivalent circuit

Li, Ci and $A 1$ represent the piezoelectric coupled mechonical resonator characteristics. $\quad$ is the copacitor formed by the crystal electrodea. Typical values for the 20 mHz crystal are shown. When the crystal is part of a complete circuit, as shown in Figure 4, oscillation occurs ot a frequency above $f 1$, where the crystal series arm presents a net inductive reactance, resonant with the capacitors and inductors in the circuit
current to base current, the EHP recombination mechanism is a major contributor to this amplification factor. Consistently, for a given emitter current, if there is additional recombination due to surface effects, a larger number of electrons will recombine with the holes at the base and surface, decreasing the collector current and dropping the DC beta.

The surface effects and $1 / f$ noise on high beta devices tend to be less noticeable because of the larger collector currents, but severe 1/f noise in high beta devices could still degrade the transceiver performance. For this reason, the difference in DC betas at separate collector currents became a second screening mechanism. A large beta roil-off at the low collector current of $10 \mu \mathrm{~A}$, compared to the operating collector current of 5 mA , has been observed on devices with high $1 / f$ noise, whereas norma devices have exhibited a minor beta roll-off (a difference of 10-20) due to the smaller number of electrons available for the EHP recombination.

In general, transistors with a high DC beta at low collector currents did not exhibit excessive 1/f noise.

## Excessive $1 / f$ Noise - A Reliability Predictor:

Correlation exists between high values of 1/f noise and poor reliability. It has been reported in reference 3 that artificial aging experiments have correlated excessive $1 / f$ noise with the probability of early failure. The artificial aging experiments have noted that a large increase in 1/f noise occurs just prior to device failure, and units with low initial values of noise have demonstrated a longer life under these artificial conditions.

In a separate noise testing study for reliability screening ${ }^{9}$, defective devices from tested samples showed abnormally high noise levels compared to the majority of good
samples. The study concluded that defective samples can be identified and rejected using noise testing methodology based on $1 / f$ noise.

In addition to the surface effect mechanisms covered, excessive 1/f noise may be the result of defective contacts, fractures or irregularities at the emitter-base junction which could also cause an early transistor failure. Early screening of the excessive $1 / f$ noise devices will improve the reliability of the circuit and hence the system in which they will operate, in our case, the synthesized transceiver.

## Conclusion:

Excessive 1/f noise in the active device of the VCO was shown to degrade the performance of the synthesized transceiver. Spectral purity, transmitter residual FM hum and noise, and receiver selectivity were degraded by the transistors with $1 / f$ noise problems.

Noise testing on a large sample of high frequency bipolar transistors from different manulacturing lots showed a strong correlation for low noise transistors to high DC beta samples and especially at low collector currents.

Therefore, a simple screening of the VCO active device for high DC beta and a small difference in this parameter at the two specified collector currents could improve the synthesized transceiver performance and reliability.


Figure 4, CAystal ano circuit
The resonant frequency of the complete circuit con be calculated for any particular set of valuen by writing the appropriate equations for the resonant frequency and solving. Thie 1e conveniently done on a computer. Seven caees have been calculated and presented in table 2 for typical circuit values.

In Table 2 the valuet of $\mathrm{C} 1, \mathrm{C}, \mathrm{C} / \mathrm{C}, \mathrm{L} 2$ and the veractor parameters (C3) are varied to show the effect on frequency pulifig and linearity. A control voltage range of 1 valt to 10 volts is assumed. The frequency data is listed as; (1) PPM away from crystal eries arm resonance. (2) the $1 v$ to 10 V fequency delta, (3) The frequency voltage ensitivity in PPM per voit, ot the ende of the range.

In case 1 , the difference in senaitivity at $1 \vee$ and 10 V ie extreme. Thie resulte from the varactor capacity-voltoge characteristic and from the lose of sensitivitiy as the crystal is pulled further from resonance. Case 2 is like Case 1 except that C 1 has been halved. It is seen that the delta $F$ is algo reduced by 2, showing the direct dependence of "pullability" on C1. This 1e discuseed in the section on overtone operation. Notice that the difference in $1 V$ to 10 V senoitivity $1:$ not osexeme in case 2 becaue the cryatal is not pulled os far from eories resonance. Case 3 showe that $C 4$ reduces pulling and degrades linearity.

In Case 4 the varactor 4 valt value is changed from 30 plcofarads to 15 picafarads, resulting in greater pullability and better linearity. Canes 5, 6, and 7 use a hyperabrupt varactor (gemma = .8) instead of the abrupt function one. This yields improvement in pulifng and linearity. Finaliy, Case ghows that the addition of a three microhenry geries inductor (L2) further increases pulling. Ons note of caution. Reducing the varactor copacity results in on increase of the circuit parallel loss. In Case 6, for example, unless the erystal resistance is suitably low, the circuit may stop oscillating at 10 volts."

- This topic is addreseed in the paper maximizing Crystol Oscillator Frequency Stability" Eession A-2, r.f.expo 86.


## REFERENCES

1. H.W. Anderson, "Low Power VHF/UHF Synthesizer Design," RF Design, May/June 1984, pp. 42-47.
2. Roger Muat, "Designing Oscillators for Spectral Purity," Microwaves \& RF, July 1984, pp. 133-160.
3. C.D. Motchenbacker and F.C. Fitchen, "Low Noise Electronic Design," (New York: John Wiley \& Sons, Inc., 1973), pp. 18, 19, 87.
4. Dieter Scherer, "Today's Lesson - Learn About Low-Noise Design," Microwave, April 1979, pp. 116-122.
5. D.A. Howe, "Frequency Domain Stability Measurements: A Tutorial Introduction," NBS Technical Note 679, (March 1976)
6. R.C. Jaeger and A.J. Brodersen, "Low Frequency Noise Sources in Bipolar Junction Transistors," IEEE Trans. Electron Devices, Vol. ED-17, No. 2, February 1970.
7. B.G. Streetman, "Solid State Electronic Devices," (New Jersey: Prentice-Hall, Inc., 1972), pp. 354-357.
8. A.S. Grove, "Physics and Technology of Semi-Conductor Devices," (New York: John Wiley \& Sons, Inc., 1967), Chapter 12.
9. S.K. Khobare, "Noise Testing Study," Electronics Test. October 1981, p. 16

Figure 1 : Single Sideband Phase Noise 1 Hz Bandwidth
$v s$.
Carrier Frequency Offset


Offset Frequency ( Hz )

## THE OVERTONE CAYSTAL ANO OSCILLATOR

It might be asked of the madel local oecillator chain, "why start at $20 \mathrm{MHz} ?^{"}$ "Why not ues a 5 th overtone erystal at 100 MHz , save a lot of multiplication and mave the close in apurious out by a factor of 5"?

Far the original atability aseumption of $\pm 40 \mathrm{PPM}$, this might be an attractive choice. With a tight frequency tolerance, it ie not, and to see why, the overtone equivalent circuit will be examined. Shown in figure 5 below it the equivalent circuit of the same 20 MHz crystal, but for the 3rd or 5 th overtone mode:


Figure 5, overtone equivalent circuit

It is seen that the inductance remaine the same, while $C i$ i. reduced by a factor $N^{2}$, where $N$ is the overtone, 3, $5,7 *, ~ g *$ etc. Cansequently, the "pullability" of on overtone crystal is raducad by approximately the overtona number quared, compared to

* Higher than sth are relatively rare
the fundamental mode. Typical pullability for a 60 mHz 3 rd overtone would be on the order of $\pm 30 \mathrm{PPM}$, and for a 100 mHz 5 th overtone, $\pm 10 \mathrm{PPM}$. Clearly, there is not enough pull range to use these modes in the tcxo or phase locked examples described here.


## SHORT TERM STABILITY

Thus far, those ystematic changes in frequency have been discussed which are due to factors such os tamperature and time. Decillator frequency ia also perturbed by random, naise-like factors, and these perturbationatypically ara impartant for disturbances with time constante from microsecands to seconds. This short term stability is masured in the time domain whero some type of frequency counter is the key instrument, and in the frequency damain, where epectral analysis of one form or another is used.

In many of these measurements it is necessary to use two oscillators, either with a smallfrequency offset, or locked together in o phase locked system. Same typical time domain values are listed in table 1.

## OTHER TOPICE IN CRYSTAL ANO OSCILLATOR SELECTION

1. Clock oscillators: Miniatura, self contained erystal oscillator and output buffer cambinations. These hybrid units are available with output frequencies from sub-Hertz to 150 mHz . Dutputs are compatible with standard lagic families, TTL, CMOS, ECL. Militarized units are available with stabilities of $\pm 50 \mathrm{PPM}$

FIGURE 2
Noise spectral density of high frequency transistors
The spectrum analyzer setting

Bandwidth Vertical Scale Horizontal seale. Nolse Gain

300 Hz
dbv with + 10 db offset $1 \mathrm{KHz} / \mathrm{Div}$
100 db

Each photograph shows two traces; the bottom trace is the reference transistor, while the top trace is the device under test

$n \mathrm{VVHz}$

over the temperture range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Low power oscilletors: Decilletore for bettery opereted equipment must sometimes operate on leas than one milliampere. Uaing AT cut erystels in the low megohertz range and epecial circuitg this kind of requirement con be met while retoining the advantege of the $A T$ cut crystala. For outputs in the tens of kilohartz, where looser frequency tolerances or norrower temperature ranges obtoin, tuning fork cryetel oecilletore ore ovoilable with current draine in the tene of microamperes.
3. AGC: 6imple AGC control of the oscilletor opereting point provides many odvontages. Low crystal power diesipation, importent for good ogeing, con be ochieved while ovoiding circuit stert-up problems sometimes essociated with very low power aperation.

## SUMMARY

choosing a crystal ond crystal oucillotor circuit requires matehing between the requiremente of the application ond the characteristics of the oscillotor. If the oscillator must be pulled more than 10 or 20 PPM , a fundomental cryetol in the 10 to $25 \mathrm{WHz}_{\mathrm{z}}$ ronge is probobly indicated. If the ultimate in temperoture stability, ageing ond oloee-in noise is the object, a 3rd or 5 th overtone, 5 MHz , ovenized unit is indicated. For small Eize, low coit, and nominal AT cut stobility, o clock oscillator might meat the objectives.

If VHF or UHF outputg ore needed a 3rd or 5 th overtone cryatol oscillotor, operating up to 150 mHz might implify the design.

|  |  | CIAC | $\begin{aligned} & \text { UIT } \\ & 3, V \end{aligned}$ | PARAME VARACTOA | TERG <br> R |  |  |  |  |  | FRE | Quency <br> DELTA F | $\begin{aligned} & \text { PULLII } \\ & \text { F, PPM } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAGE | c 1 | co | 4V.c | c gamma | C4 | C5 | C6/c7 | L2 | $1$ | 1 V | 10 V | OELTA | $\begin{aligned} & \mathrm{OF} / \mathrm{OV} \\ & (\mathrm{IV}) \end{aligned}$ | $\begin{aligned} & 0 F / 0 V \\ & (10 V) \end{aligned}$ |
| 1 | . 02 | 5 | 30 | . 5 | 0 | 2 | 100 | 0 | 1 | 322 | 519 | 197 | 38 | 4 |
| 2 | . 01 | 5 | 30 | . 5 | 0 | 2 | 100 | 0 | 1 | 161 | 259 | 98 | 19 | 7 |
| 3 | . 02 | 5 | 30 | . 5 | 20 | 2 | 100 | 0 | I | 284 | 363 | 79 | 20 | 4 |
| 4 | . 02 | 5 | 15 | . 5 | 0 | 2 | 100 | 0 | 1 | 447 | 753 | 306 | 65 | 20 |
| 5 | . 02 | 5 | 15 | . 8 | 0 | 2 | 100 | 0 | 1 | 379 | 858 | 179 | 87 | 34 |
| 6 | . 02 | 5 | 15 | . 8 | 0 | 2 | 50 | 0 | 1 | 488 | 912 | 424 | 76 | 30 |
| 7 | . 02 | 5 | 15 | 8 | 0 | 2 | 100 | 3 | 1 | -5 | 680 | 685* | 130 | 45 |

* Even greater pulling can be accomplished with o more complex circuit.

Figure 4 : Noise Test Fixture Block Diagram




MAXIMIZING CRYGTAL OSCILLATDA FREQUENCY GTABILITY
by

Brian E. Rose
Vice prisident
Q-Tech Corporation
20i Cermelina Avo. Los Angeles, Ce. 90064

## INTRDDUCTION

Frequency stability is one of the central topice in the etudy of crystel oscilletora, for the exceptional etobility of quartz cryatele is their fundemental advantage over other resonatora. Both the long term and short term stability of cryetel oscilletora 18 importent. Long term etobility, characterized by terme such as "drift" or "ageing", is the syetematic, non-rendom chenge in frequency with time, often expreseed in terms of frequency chenge per day or per year. Ghort term atability is the random, noiselike behavior of the output frequency. In a measurement eyetem based on ofrequency counter (time domoin), the short term stability is typically meseured over gote times from milliseconde to eeconds. The some rendom behovior of the frequenoy, but measurad in a syetem bosed on a epeotrum analyzer ffequency domein), is often epecified in terme of the ingle-sidebend level
(ralative to the carrier) of the angle modulation noise sidebande, at video frequencies from fractions of Aertz to tens of Megahertz.

The etudies which have been done on thie topic foll into two groups: Studies of the crystal by itself, and analysis of crystal oecilletor behavior. The former ore often concerned with the theory of quartz resonator: and with practical considerations concerning surface preparation, electrodes, cleanlinese, naw designs, etc. The latter include studies and experiments with the various oscillator configurations, ach as the Colpitts, Clapp, Pierce, Butler, etc.

In the study of crystal oacillator stability, it is critical to examina the oscillator and circuit together. Perticularly when considering short term etability, conclusions based on obeervations of the crystal alone can lead to erroneous results. In order to examine the crystel-circuit relationship in some deteil, this etudy is confined to one perticular oecilletor configuration. Howevar, insights obtained from the particular case will allow conclusions which are useful in the generel. Exact equations for the crystel are used, and computer numericel methode are used to generete the various reactances and, even more importent, the derivotives of these reectances.

For the purpose of onslyzing the stabilizing effect of the crystal on the rest of the circuit, assume thet the crystal is

Figure 8 : DC Beta vs. Collector Current


perfectly atable. In fact, certain noisy processes ore aseociated with the crystalitealf, and crystal frequency dependence on temperature and time 10 well known.

THE CIACUIT
Figure ia shows the circuit chosen for the analysit of the relationship between cryetal , circuit, and frequency itebility. The oscillator configuration is the popular Colpitts. Although the Colpitte is a grounded collector type of circuit, a mall impedance in the collector provides o convenient ignol output point and at frequencies of 10 mz and lower this impedance hos little effect on the oscillator bese-mitter circuit.

THE CRYSTAL
Figure ib showe the equivalent circuit of the frequency control crystal. The eariea circuit of $C 1, L i$ ond $A 1$ reprasent the electricel equivalent circuit of the piezoalectric coupled mechanical resonance of the crystal. The reectences of $C$ and $L$ ara orderf of magnitude larger than that which would be obtainad from electrical components, and the ratio of these raectances to A1, the loss term, or $Q$, is typicelly 50,000 to 1,000,000; esein, three or more orders of magnitude larger than what can be obtained from electrical cepacitors and inductore. CO repreants the parallel plate capacitor formed by the cryatal electrodes. Typical values for a 10 MHz fundamental cryetal are noted in the figure.



FOR STABLE OSCILLATION: $\because P P=-X P T ; R P P=-R P T$ 1.c.
Figure 1a, b, e The Circuit
f CAU uEsigh pragram ror analysis of elecioro-ihermal COUPLINI; IH HIGH POWER RI BIPOLAR IRANSISIORS

## Antonio Morawskı <br> Boris Hikin

tru rt oevices
4520 Rriation Blud
hesiracit
A sophisticated thermal analysis program for CAD and CAE in the field of high fiequeacy hipolar power transistors is aresented. 11 is shown to agree with the experimental observations of phenomena associated with RI transistor operation, namelv, electro-thermal interactions. Iemperature. and current density distributions are analyzed and presented as a function of power density. RT and OL operation, fotal emitter ballasting, contour emitter ballasting, ambient temperature, and cell splitting. A figure of merit to describe current uniformity across the active area is introduced. The methed of solution and modeling of transistor electro-thermal coupling is discussed.

## INIROIIICIION

The push in solid state amplifier design has constantly been toward botll hagher frequency and power requirements. Ihis only emphasizes the need for guantitative understanding of the coupling between the two major phusical phennmena present in transistor operation,
namely, electrical and thermal behauior. Both are intimately related to device performance that is crucial to the amplifiet designer. Ihese are reliability and efficiency issues, which although they appear to be at opposite ends of the performance spectrum at first thought, are indeed very much tied together.

Efficiency ultimately can always be related to currell undformity over the transistor cell. This itself is tied to both the temperature distribution over the cell and the vertical structure of the transistor, such as collector thickness. collector resistivity. base profile, etc. Horizontal factors such as finger spacing, cell spacing, and resistor ballasting also blay o major role. Reliability is usually thought of in terms of maximum junction temperature because of its direct impact on mean time to failure. Other reliability issues include current distribution cie. rurrent densifies which can not be verified directly experimentally), and catastropline fallure due to thermal runaway usimally due to masuse of the device.

Other researchers have solued the temperature distribution problem for uniform and evell arbitrary nower distribution for idealized transistor-like structures. Ihese solutions include hoth analutical and numerical models. The result generally is the temprature distribution for the entire deuice. lhese works ate adequate in those regimes when the temperatire and current Histributions are not extreme, if., when the temperature and cur rent
 that

## theory of oscillation

The crystal, capacitors C5, C2, and C3, plus the transistor raactances form a parallal remonant network at frequency f. The transistor provides geln, enough to offeet the loses in the resonont circuit. It is useful for the present analyeis to divide the circuit into the two parts ahown in figure ic. The cryetal, plus capacitor CS can be analyzed os o net induotive reaotance XPP and parallel resietance, RPP. The transiator and C2 plue c3 are analyzed as a single parallal capacitive reactance and o porallel negetive reaigtance, resulting from tranaigtor gain. The circuit oecillater ot frequency where the poitive (inductive) reactance of the crystal "elde" equale the nagative (capacitiva) trangistor "side". At turn-on, the negetive resietance RPT developed by the traneistor (connected to the oomplete tuned eireuit) is of a lower value than the poitive loe factor RPP. The net reifistance is therefore negative, and oecilletion begine. The omplitude of the oscilletion builds to the point where some amplitude dependent gain factor, such as transistor eaturation, lowers the gain and raises the ffeotive negative resistance to exactiy equal RPP, the condition necessary for eteady state oecillation.

This establishes the conditions for the onalygit. The following eections how that over the very narrow frequency range of inductive reactance of the crystal, the capacitive reactance of XPT 1: essentially constant and therefore oscillation occurs ot
the "intergection" of the value of XPT and the ropidly changing XPP. The etability of oscillation depends on this relationship.

## THE REACTANCE CURVE

Figure 2 hows graphically the eteep rite of the parallel reactance and resistance curves due to the crystal, plotted as a Punction of frequency. As mantioned above, ouer the narrow frequency range depicted (.2\%), the capacitive reactance of XPT 1 : esentially constant. Therefore, the capacitance associated with the XPT value can be asigined to the right hand vertical scale. If, for example, we choose $\mathrm{C} 2=\mathrm{C} 3=40 \mathrm{pF}$, then $\mathrm{CT}=20 \mathrm{pF}$, and the frequency of oecillation will be at point $B$.

The pertinent question is where we would choose to operate for best etebility, but two forbiden regions must be discuesed first. Practical circuit considertions including parasitic reactances and active device capacitances limit the maximum reactance of oparation. In figura 3, the boundary above which it 1: impractical to operate is orbitrarilly chosen as B, OOO ohme, or 2 pF.

The exact values are unimportant because this is not the region of optimum stability. The other boundary, which is importent, is determined by RPP, the equivalent parallel resistance.

- Equations in Appendix
current injection for the transistor as a whole is very much deperdent ont temberature, but this dependence is much more pronounced for the transistor locally. Hagh current injection aggrauates high lemperatures, which in turn iromote euen higher current injection, which results in even higher temperatures. this process, known as current localization, can easily lead to thermal runaway. The normal Ri transistor in fact operates under these aguravaled collditions of high current densities and high temperatures, and the results of the works mentioned aboue cannot be used.

In this naper we report the simultaneous solution of this coupled problem (when it exists, ie., no thermal rurioway). Dur own work resulted in a digital computer program IEMP30 that is easy to use, requiring a minimum of inputs, and is built around an extremely robust algarithm.

## MHEL DESCPIPIIOM

Hecause the thermal time constants anvolved are long compared to the exciting frequencies (an the Rf range) we concern ourselurs with the steady state case. I[MP30 solves for the surface temperature distribution in the actiue regions of the Rf transistur. These reqions may consist of a single cell or a multi-celled array. rach cell is composed of an arrav of emstter fingers. IIMP3II also prouides the current distritution over these fangers. line results. bollo current and temperature, can either be tabulated or plotted.

Ihermal Model - 3 Himensional Heat Iransfer froblem

```
Hhe algorithm for the calculation of the temberatore
```

distribution 15 based on an analutical sulution of lhe three
dimensional problen for surface temperatures.

$$
\nabla^{2} 1(x, y, z\rangle=0
$$

The solution for the temerature al the surface $1<x, y, 01$ tales on the following form:

$$
1\langle x, y, 0\rangle=\int\left(x, y ; x^{\prime}, y^{\prime}\right) P\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \quad \text { (2) }
$$

where $\phi\left\langle x, y, x^{*}, y^{\circ}\right\rangle$ is the Green's function for (1). Hir analutical solution is derived with the assumption that the heat distribution $P(x, y)$ developed at the surface $i=$ krollwi. the temperature at the britom of the chip 25 lirld constant and uniform Whe ching is homogenmis and uniform. Hie dependelice of the thermal conductivity $k$ of silicon is descritied by the expression

```
K flo- I N H IWaltsicolki
(3)
```

Where $\operatorname{Mn}$, H are ennstants that depend on the bulk resistionty of the silicon substrate and 1 is the lemperature an kelunh.

Flectrical Mode: - Transistor Hetion
Whe electracal behazior of the device is treated by tor mation ul each emitter fangri 10 all cells anto a number of identicisl transistors whuse clechical parameters are derived frim an approprately scaled uerison of the entare denace. lhest motividial
 to


As discusead above (Theory of Dscillation), negative resistance is the model ehoeen to represent the gain relation between the traneistor and the circuit. This resistance depends on the transistor characteriatics and the values and ratio of $\mathbf{C 2}$ and C3. At present, it is important only to note that a minimum value of RPT (maximum gain), exist for any circuit value choice. Clearly, the circuit will not osillate $1 f$ RPP on the crystal aide 1: lese than RPI generated on the transistor side, so boundary exists.

In the example, 400 ohms has been chosen as the boundary, so the circuit must operate somewhere between point $A$ and point $C$. Where shall the greatest stability be obtainedf if the crystal aide only is considered, one might be tempted to choose point $C$, eince the derivative of XPP with respect to frequency is highest ot this point. To resolve the question, one must examine the transistor side in greater detall and determine the form of the unstable reactance.

THE TRANSISTOA SIOE
Aecall from Figure 1 that the trangistor aide is defined as containing tha capacitors C 2 and C 3 and the transistor itself. The admittance of this side will have real and imaginary parts as shown in that figure. The real part will be a negative Since RPT depende on C2, C3 and C2/C3, the boundary between I and II is actually a curved ilne.
make a single emstter inger (Figure 1). fur thermore, these emitter fingers are coupled to one another via emitter ballasting resistors whin may or may not be equal. Ihe constraints for the electrical problem are that the total collector current and collector voltage are given, and the base-emitter voltage 15 the same for all finger transistors. The model for the nodal transistors is derived from a modified Gummel-Poon model which includes high current beta rolloff. The current injection of each elementary transistor is effected by the local temperature at that node. The current distribution calculation reflects either a OC or Class A RI solution, or high frequency Class $C$ operation where the low frequency beta is scaled with the it of the deunce.

Llectro-Ihermal Coupling
the solution to the total problem requires the simultaneous solution to bath the thermal and electrical problems as described above so that each problem is consistent with the conditions imposed on it by the other. Namely, the electrical solution is to be consistent with the temperature distribution as dictated by the thermal problem. Similarlu. the thermal solution is to be consistent with the power (current) distribution as calculated by the electrical problem.

The solution lo the total problem being nonlinear in wature requires some kind of iterative scheme. Ithe electrical problem being intrinsicly nonlinear (1 ~exp(u/ut)) is also solved by iteration. Only
the thermal problem iricluding the nonlinearity of the thermal conductivities is put into such a form that the solution is given tuy exact techiniques, or rather an analutic form.

The algorithm for the solution of the total problem can be seer readily in rigure 2. 'irst, a uniform current distribution is assumed, and the corresponding temperature distribution is calculated. Ihis thermal distribution prouides the assignment of operating temperatures to the indiuidual nodal transistors. for this thermal profile, the comon emitter-base voltage for all fingers is the only parameter which uniquely defines the current at each nodal transistor. The appropriate value for this emitler-base voltage satisfies the condition that the total collector current is conserved.

Narmally. the resultinq nodal currents will not be consistent with the power distribution previously used to calculate temperatures. 14 this were the case, this would mean a sell consistent solution pair for both temperature and current has beril obtained. However, a new temperature distribution needs to lir calculated based on the latest solution to the electrical protplem. From this resulting temperature distribution a- llew set of nodal currents can be calculated. Ihis process 15 repeated until self consistency 15 reached.

The determination of the emitter-base voltage, howeupr, is 1 int so straight-forward. It is comilicated by the fact that the medial transistors are not compled dirpctly to one another. Itiss is trice onls
conductance of value 1/RPT and the imoginory o poitive susceptance $8-1 / X C T$ parallel (the defining equations are shown in the Appendix.)

It is beyond the of of this peper to quantitatively model and analyze the various long and ahort term instabllitiss on thit side of the circuit. Rather, some syetematic and random processess will be postulated, and the form of tha circuit reactance instabilities will be shown. Armed with these modele we can join the left and right aides of the circuit to describe the parameter that determines frequency stablity.

## CAEE I

The first model assumes that $C$ parallel hos a tolerance on its average value which varies this value with time, temperature, or other systamatic function. In this case

$$
C=C T *(1+0)
$$

Where e represente the delta change from nominal (temperature, tolerance, etc.). The incremental reactance change, ox, dueto e Is then:

| $D X=1 /(2 \pi F C T)-1 /(2 \pi F C T(1+e))$ | $(1.6 .2)$ |
| :--- | :--- |
| $D X=(1-(1-8)) /(2 \pi F C T)$ | $(1.6 .3)$ |
| $D X=-/(2 \pi F C T)=X T$ | $(1.6 .4)$ |

## CASE ${ }^{2}$

Assume that the porallel copacitor CT has a fixed, stable part in paraliel with a small variabia capacitor $C V$ which
represents all of the inetability or noisy portion of the circuit.
$D X=X T-X T * X C V /(X T+X C V)$
(1.6.5)
$D X=(X T)^{2} /(X T+X C V)$
(1.6.6)

For $X C V \gg X N$ :
$O X=\left(X T^{2} / X C V\right)=(X T)^{2}(2 \pi F) C V$

CASE 3
Asaume that the current genarator gm * Ib has a quadrature noise component in $\angle 90^{\circ}$

Tha noise current into the base is derived in appendix $B$ as: $\overline{19 n}=\overline{1 n} /(1+\times 2 / \times 3+g m \times 2)$
(1.6.8)

Assuming gm * $\times 2 \gg(1+\times 2 / \times 3)$ :
then $\mid \overline{\mid \overline{|n|}}-\overline{1 n} /(g m * x 2)$
(1.6.9)

The "noisy reactance", $X N$, which would cause this current to flow 1:
$\mathrm{XN}=\mathrm{gm} \# \mathrm{X2} * \mathrm{E}=/ \overline{1 n}$
Whare es is the ofillator voltage at the base. Then

| $D X$ | $=X T-X T * X N /(X T+X N)$ | $(1.6 .11)$ |
| ---: | :--- | ---: |
|  | $=(X T)^{2} /(X T+X N)$ | $(1.6 .12)$ |

for $X N \gg X T$
$0 X=(X T)^{2} * \overline{1 n} /(\operatorname{es} * g m * X 2)$
(1.6.13)
$(1.6 .13)^{\text {for }} x_{2}=K \| x T$
(1.6.14)
$D X=X T \| \overline{i n} /(K$ es *g)
on a finget leuct. Jhe modal transistors that belong to one finger are decoupled from the next by means of the extermal emitter finger ballasting resistors. In practice, this mears that the same problem exists on the finger leuel that exists for the total device. fach mitter finger has its own unique potential that satifies conservalion of current in that finger.
the ileratiur procedure described aboue results in thr electrical and thermal solution for the $O C$ case. This solution can also be used for class $H$ RI applications where the RI power is small compared t., the fll nower dissipation. Itios analusis is alsil applicable to class $C$ operation by modifying the injection efticiency of the transistor. In this case the transistor current gain should be scaled down and determined by rt and the operating frequency:
beta $=$ belal $/$ surt $\left.\langle 1 \text { - (beta } 0 \text { f/ft })^{-2}\right\rangle$ (4)
where betall is the of current gein, f the frequency if nheration, and 11 is the current gam bandwidth product.

Computational Consideralions
Like any other numerical solution that approximates a continuum by discretization, the accuracy improves with the number of nodes. In the same manner, this increases the time required for calculation. Specific to our problem, the time necessary for the calculation of temperature increases with the square of the number of
points. Fur the electrical prnthem which inuolves three nested louns <node current. finger current, and emitter-basp voltage). the computational effort also increases rapidly with the number of nodes. By taking advantage of symetry whinch most real devices employ the computational time required was observed to be reduced by a factor of 10

Hdditional reduction in the cost of computation was acheved hy the use of look up tables for eliminating redundant calculations. Special efforts were made in acceleroting the convergence of the algoritlim by using improved prediction methods.

The time required for a tupical example ${ }^{(1) c e l l . ~} 550$ modes, well ballasted, moderate power dissipation ~ $11 \mathrm{~kW} / \mathrm{cm} \mathrm{c}_{\text {\% }}$ was almil 300 CPU seconds on a PRIME 750.

User Inpuls/Parameters
Whe inbuts for program use call the brakell up into two categories: those that describe horizontal configuration. Hose that describe the device's vertical parameters, and those that descrithe operalifig and boundary conditions.

The horszontal parameters that determine deuice performance include:

## - chip dimensions

chip thickne:ss

Summarizing the thrae caies:
(1) $11 \times(X T)^{2}$
(2) $D X=(X T)^{2} *(2 \pi F) * C V$
(1.6.16)
(3) $D X=(X T) * \overline{i n} /$. $\mathrm{gm} * K$
(1.6.17)
(1.6.18)

Now we turn back to the complete circuit to find the form of delto frequency, DF.

## dELTA FREQUENCY

The reactance curve of Eq. A6 plotted infigure 2 has a slope of DX/OF ohms per PPM. If one assumes an "operating" point of $X T$, then the frequency instability at that point will be:
$D F=[1 / D X / D F] \quad D X$
Going back to the three cases developed in eection 1.6, and subetituting XPP-XPT=XT (condition of resonence),


These are the functions which yield the value of $D F$, the frequency instability of the total circuit, for the three cases of the preceding section. The quentities to the right of the
brackets ore constonts determined by the degrea of instobility on the transistor side. The two functions in the brackets (one and three are the same) are determined by the eryetal, the capacitor Cs, and the value of the $X T$, the parallel reactance. In order to minimize delta prequency, we wish to moximize the inverse of these, which are,

| I $(D X / D F) * 1 / X P P$ |  |
| :--- | :--- | :--- |
| II $(D X / D F) * 1 /(X P P)^{2}$ | $(1.7 .5)$ |
| $(1.7 .6)$ |  |

These functions will be called the fractional reactance elopa, Type I and Type II, to emphasize the fact thtitis the fractional slope which determines stability, not the sbsolute slope. In figure 3, the fractional reactance slope functions and the reactance elopes have been plottedfore number of example cases, including the 10 mHz crystal of figure 2 , 5 mHz thira overtone, and a 60 mHz third overtone. The functions are meximum at the lower boundary. The intuitively attractive steap slope at point "C" in figure 2 is now hown to be deceptive because of the role of fractional slope in stability.

The effect of $A 1$ and $Q$ now became clear. The fractional reactance slope depends on XCI of the crystal, so for all other factors equal, one alway wants to maximize that. But begt stability is found at the lowest reactance, and that occurs at a value determined by RPP which depends on R1, the crystal earies

- cell configuration - to itself and to chip
- emitter configuration in the cell
- emitter ballasting distribution (Re)
uniform or arbitrary on a finger basis
Uertical parameters which characterize particular transistor process include
- epi thickness and resistivity
- Gummel-Poon parameters
- parasitic emitter resistance
- two dimensional injection effects extransic base resistance - rb* knee current
$-r t$

Iinally, transistor operating conditions are input. These include:

> - bottom chip temperature
> - total collector current
> - collector voltage
> - operating frequency

## RESULTS

Benctmark Problem
For purposes of illustration a model to be used as a benchmark will now be considered. It represents a typical RI transistor with $f t$ on the order of 5 GHz and saturated output capability of 1 L at 1 GHz . This structure as seen in figure 3 consists of 50 emitter fingers. 2 microns wide, spaced 4 microns apart. Each emitter finger has its own ballast resistor of $\mathbf{8 0}$ otims. which makes for $\mathbf{1 . 6}$ othms for the whole device. The total base area 1517 by 1.2 mils. Chip size is 25 by 18 mils. and 4.5 mils thick.

The benchmark operating conditions for purposes of comparison, are $1 \mathrm{C}=100 \mathrm{~mA}$, Uce $=15 \mathrm{U}$. and $\mathrm{Imin}=60 \mathrm{C}$. 1 he typical printed output for the solution of this problem under these conditions can be seen in figure 9.

This data 15 organized into three parts. The first of these 15 a short sumary that reports the minimur and maximum temperatures and nodal currents and the asscociated fingers. This is done for each cell in the structure. It should be noted that all currents unless noted are normalized to the current that would exist if the current were uniformly distrabuted across the device. Also seen is the heading " $X$ AREA USEO" which is a figure of merit that describes uniformity in current distribution across the cell.

The next section describes the temperature and current profiles along the fangers (y axis macrons) that were selected

Several thinge have happened. At XPP qual 94 ohme, point C, RPP now equol: 277 ohms, so this point violates the lower boundry of 400 orms. Adjusting XCT to 112 ohme (changing $C T$ ), point $O$, gives RPP equal 402 otime. DXIOF is now 2.14 so the fractional reactance slope (I) 1: 1.91E-2. The Etability hav ben improved by about 14 percent for type I instabilities, compared to point A. Gut the type II fractional ractance slope in decreased by about 5 percent. So the enswer for this particular example depende on the exact noture of the circuit instabilities. Note that this example as sume: a perfect capacitor for CS. If CS were o varactor diode it is apparent that as the value decreases it is posible to move to o point where RPP is too low for oscilletion. In vexo deaigns then, the margin for oscillation hould be adjusted at minimum capacity.

## CDNCLUSION

For several models of transistor and circuit instabilities it is sean that frequency stability is maximized when the fractional reactance slopes, Type I and Typa II, are maximum. For a number of crystal examples these functions ore moximum ot the lowest parallel reactance. The minimum reactance point depends on the value of APT, the parallel negative resistance. The effect of a capacitor in eeries with the crystal on etability depends on the exect neture of the circuit instabilities.

## AEFEAENCES

1. Bottom, V.E., "Introduction to Quartz Crystal Unit Oesign." Now York: O. Van Nostrand, 1982
2. Clapp, J. K., "An Inductance - Capacitance Oscillator of Unusual Frequency Stability." Proceedings of tha IRE, 1948, pp. 356-357
3. Frerking, M. E. Merystal Oscillator Dasign and Temperature Compensation, " New York: Van Nastrand, 1970
4. Matthys, A. J., "Crystal Dscillator Circuits," New York: John Wiley 6 Sós, 1983
5. Aidenour, L. N., "Vacuum Tube Amplifiera," Radiation Loboratory Series', v.18: New York: McGraw-Hill, 1948
6. Parzen, B., "Design of Crytiol and Other Harmanic Oscillatori, " New York: John Wilay E Sons, 1983
in the previous part for extrema in temperature and current.
Whe last part of the printout is a detailed summary on a finger by finyer basis for each cell. Included are the temperatures and currents at both ends and center of each finger. Also included is the total finger current normalized and in mA as well as the ballast resistance associated wath that finger.

Hs call be seen for this benchmark casp the maximum temperature and current occur in the same finger, number 26. Ihis maximum junction temperature of 114 C occurs in the same finger where the current is $13.5 x$ greater than nominal. The mimimum current and temperature occur at the corner of the cell in finger number 1 . The temperature here is 87 C and the current is only $81 x$ of nominal. As seen in the sumary for all fingers, the variation in finger currents is only $10.7 x$ while the variation in nodal current over the whole device is $28.5 \%$. This umiformity in finger current is due to strong emitter ballasting. while there is no mechanism to force uniform current distribution along the finger.

The same data is effectivelv presented graphically in ligures 5 and 6. Iemperature and nodal current are plotted as a function of finger positioned for cross-sections along the center of the cell and cell edge. lt is euident that even for these benign operating conditions there is a noticeable
varialion in temperature and current from center to edge.
Figures 7 and $B$ present similar data for temprotur $r$ and current. except that the independent variable is position along the finget. Chosen for illustration are the hotest and coolest fingers at the center and end of the cell respectivelu.

In figure 9 total finger currentinmitis plotted as a function of finger position. The sum of these finger currents must add up to the required 100 mA .

Data can also be presented in a quasi three dimensional format as sren in figure 10 . The output from ICMF3llis compatible with two dimensional thermal analysis programs using finite element techiniques thal were also generated by the authors. Shown ill figure 10 is temperature over the active region. Whe projection of the contour over the bottom plane gives the position and shape of the cell. The " $x$ " and " $v$ " dimensions are in mils. lisothermal representation of this same data is seen infigire 11 . The difference between isntherms cor responds to 2 C.

Influence of Gperating Point
It 15 well known that the high-current. low-voltage nperating reqime renresents a less stressful condition than low-currell. Wigh-voltage operalion, for constant nower. Iln. low-current. high-voltage condition vields higher junction temperatures ant greater nomumiformity ill current distribution. this. increask $u$ stress results frum incffectual emiter halta:, 1 ,


Figure 3, Relative Slopes
resistance. Tha crystal resistonce determines etability indiractly by
restricting the "operating" Doint of the circuit.

## GEAIEG CAPACITANCE

Con one improve frequency etebility by putting o capocitor in series with the crystal? The intuitive onswer to this recurring question goes os follows (refer tofigure 2). The slope, ox/DF, increses with frequency but the frectionel reactance slope decreasen with frequency. At pointe $A$ ond $B$ then,

Table 1.8.1

|  | PFM | APP | XPP |  | trpe | TYPE II |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0x/0F | OX/( OF*XPP) | OX/( OF XPP ${ }^{2}$ ) |
| A | 55 | 402 | 94 | 1.58 | 1.68E-2 | 1. $79 \mathrm{E}-4$ |
| B | 440 | 25k | 841 | 2.29 | 2. $2 \mathrm{E}-3$ | 3. $2 \mathrm{E}-6$ |

so better etebility is obtained at $A$. If one odds o cepocitor of reactance -747 ohms in series with the crystol, the entire curve 1. Mifted in the negative direction. Ia not now the reactan s ot

F - 440 PPM equal to 841 minus 747 or 94 ? And eince the curve 18 simply inifted, hove we not now the DX/DF of point g but ot the reactames of point $A$ ? Table 9.8 .2 show the reaultg of adding a 21.3 pro copacitor

TABLE 1.8. 2

TYPE I
type II

|  | PPM | APP | XFP | OX/OF | OX/(OF\#XPP) | $O X /(O F \# X P P)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $C$ | 436 | 277 | 94 | 2.04 | $2.17 E-2$ | $2.31 E-4$ |
| 0 | 444.4 | 402 | 112 | 2.14 | $1.91 E-2$ | $1.71 E-4$ |

at 1 ow currents. Another reason for this behauior is due to the degradation of beta with high current which makes base resistance ballasting significant. This is borne out by reterence to figure 12 . For all data points, the total DC dissipation was held to 1.5 W ; the current was changed from 35 to 300 mA . Hot only is a reduction in the maximum junction temperature observed, but the effective area used increases from 6D to $99 x$ with increasing current. Ihis effect is even more dramatic as the total dissipation increases.

## Rmbient Conditions

The role of the nonlinearities associated with the thermal conductivity of silicon and current transport can be seen in Iigure 13. In this case we have plotted the maximum junction temperature versus the botton temperature of the chip. If the thermal conductivity of silicon had no dependence on temperature there still should not be a one for one increase in junction temperature as denoted by the line "linear model". This is because current injection itself depends strongly (expotentiallly) on temperature.

## Emitter Ballasting (Re)

The dilemma in the use of emitter ballasting is that even though it prouides for a more rugged device, it acts as a parasitic element electricallu. which reduces transistor efficiency
and gaill. The RF transistor designer would like to mimimize these undesirable effects and still guarantee reliable operation. Figure 14 presents the dependence of maximum junction temperature and "Z Area Used", ie. current nonuriformity, on total emitter resistance. Ihis is done for the benchmark model with identical ballasting resistors. It is seen that no significant change in transistor behauzor occurs until Re druns below. 4 ohms. After the total emittel resistance drops belou the dunamic resistance of the emitterbase junction Ut/lc - 33 olms at 110 C the maximum junction temperature begins to rase quickly, and current becumes localızed to the hot spot of the device. If ballasting were much further reduced, the benchmark madel would experience thermal runaway euph for these moderate operating conditions. This is evident from the fact, that for Re $=.1$ otms the maximum junction temperature jumps to 136 C and the " X Area Used" drups to $48 \%$. Iigures 15 and 16 present the temperature and nodal current distrabutions for the casp Re $=.1$ ohms. The localization of current and temperature in the center of the cell is readily observed.

Figure 17 shows the normalized finger currents as a function of finger positition with Re as a parameter. lt can be seen that with the decrease in emitter ballasting the current tends to crourd in the center of the cell. As seen previously all Figure 14 one call observe the strakang jumb an current localization in going from . 2 to . 1 otms.

APPENDIX A_ EqUATIONS

## CAYETAL

```
x1 - XL1 + XC1 ; F1 = 1/2 *|(LI + C1)*.5
(A1)
```



``` xo - \(-j / 2 \pi F\) * co
```

CRYSTAL SERIES EQUIVALENT
$X E=X O^{*}((R 1-2+X 1 \#(X 0+X 1)) /(R 1-2+(X 0+X 1)-2)$
RE $=R_{1} /\left(\left(R_{1} / X_{0}\right) \cdot 2+\left(\left(x_{0}+x_{1}\right) / \times 0\right)^{\wedge} 2\right)$

PARALLEL: XPP and RPP from RE and XE $\pm$ XCS $X P P=\left(R E \wedge 2+(X E+X C S){ }^{\wedge} 2\right) /(X E+X C S)$

RPP $\left.=(R E \times 2+(X E+X C S))^{\wedge} 2\right) / R E$

DERIVATIVES: COMPUTER CALCULATED INCAEMENT
OXPP - XPP E - XPP (F-freq. increment)
appenoix 最 thansistion mooel


11-vb*1/( $1+\times 2 / \times 3+g m * \times 2)+\overline{1 n} /(1+\times 2 / \times 3+g m * \times 3)$
$Y=11 / v b=1 / R P T+1 / X C T$
RPT $=$ gm* $\times 2 * \times 3+(\times 2+\times 3)^{-2 / g m * \times 2 * * 3 \quad \text { (83) })}$
хСт $=((\times 2+\times 3)-2)-(2 m * 2 * \times 3)-2)) /(\times 2+\times 3) \quad$ (84)
xCT $=\times 2+\times 3$
( 85 )
$\overline{11 n}=\overline{1 n} /(1+\times 2 / \times 3+g m * \times 2) \quad$ ( 8 )
$\overline{11 n} \dot{1 n} / 8 m^{*} \times 2 \quad$ ( 8 )
$X N=-s / 1 n=g m * * 2 * e s$

## Contoured Ballasting

In view of the fart that it is desirable to ballast at lower levels from an circuit point of wiew. IEMP30 gives the RI transistor designer the tool to change ballasting contours and obtain quantitative information on the effects of contouring on currell and temperature distribution. As an examole the benchmark modil for $R$ e $=.2$ ohms was selected. Ihe emitter fanger hallast resistors were chosen as seen in figure 18. Ihe emitter resistors were varied linearly in value from 6 to 10 olims for fingers 1 to 10 respectively. fingers 11 to 25 were assigned resistor values that also varied linearly from 10 to 14 ohms respectivelv. The resistors belonging to positions 26 through 50 are summetric about the center of the cell. The total emitter resistance for this contcured case was held to . 2 ohms. llis level is also shown for the uniform case where all 50 resistors have the value of 10 othms.

The effect of this contour ballasting is presented in「igure 19. The results for the uniform case veilded a maximum Junction temperature of 123 C and " $x$ Area Used" of 70x. By going to this contoured scheme the junction temperature was reduced to 114 C . 1 this 15 the same result as calculated for the 1.6 uniformly hallasted case. More significant, however. is the fact that the figure of merit for current uniformity increased to Be. \%.
his coull still further be amproved uron by refining the contour of the thallast resistors. The examile shown represpit a simple guess on our part based on the results from the 1311 form casc.

## RT Behavior

lt is also well known that the level for adequately ballasting RI transistors for Class $l$. operation 15 mucti lowet then for Class $\boldsymbol{f}$. Whis 15 reflected in the fact that lhermat resistance as measured under self-bias in Class fis lower llial under pure DC conditions. What is inferede 15 that thr numel distribution undet strictly Ri conditions is more uniform that in Class A. We attrabute this improvemmt in uniformity to degradation of gaill with frequency. This degradation of galn is not only due to beta rolloff with frquency but is alsna strong function of collector current amplitude. Ho lise curient amplitude ancrensers, base widenang effects beliome more pronounced. Hhis phenomenon shargly limites the ability of the RI current to 1 nealize. The $0 C$ commonent of this ciur rent, whed is responsible for healing. follows the $\mathbb{R}$ current disiratution and tends to be mure umform in combarison to of oneriation will the same power dissibation. fiqure $2(1$ illustrates low thas plipnomenon is hatdind in 1fMF30. Buth eurues correspond to the helifimark model with uliform rmitet thallastimu of ar mimso fhe ififference hetwern 1 billz and ill operation is dramith at
temperature $\langle 114 \mathrm{C}$ us 134 C , area used $\langle 99 \mathrm{x}$ us $70 \%$ ), as well as the finger current distribution as shown in figure 20.

## Multi-Cell Siructures

The ability of IEMP30 to handle multi-celled structures is shown 1n Figure 21. A new transistor configuration based on the benchmark model was investigated. This new deuxce is a four cell array having the same number of emitters and base area as the benchmark model. The spacing between cells was 2 mils in both directions. In all other respects the conditions and model parameters of these two devices were the same. As seen from the short summaries, the improvement in "X Area Used" ( $97 x$ us $90 x$ ) and maximum junction temperature 〈96 $C$ us 119 C〉 is significant. An interesting observation is that the fingers where maximum temperature and current occur is shifted from the center of each cell. This means that there still is thermal coupling between cells

Device Maniaturization
The reasons for shrinking geometries of RF transistors are directly related to improuing frequency performance. The reduction of cell area results in smaller collector-base capacitance. Jighter emitter structures lead to improved injection performance and reduction of the extrinsic base resistance. All these directly impact the maximum frequency of operation. The limitations here are related to two parameters
primarily. chip thickness and power density.
rigure 22 illustrates the effects of scaling dowll the benchmark model: all horizontal dimensions were scaled down bu a factor of two. In the new device all 50 emitters are 1 micron wide, the length of the cell is reduced to 8.5 mlls , and the cell width is retained to be 1.2 mils. The results of the computer calculation are presented in figure 22. Both maximum temperature and the " $x$ Area Used" dramatically change for the worse. The "X Area Used" goes from $89 \%$ to 64x, while the neak Junction temperature jumbs to 166 C versus 119 C .

## Correlation with Experimental Results

The quantitative reliabilty of IEMP30 was ve ified using liquid crustal techniques. Liquid crustals were used because of Their excellent spataal resolution < 2 micron). for the structures measured agreement with measured data was exeellent (within 5 C).

## oncllusions

A sophisticated thermal analusis program for CAO athd Cht in the field of high frequency bipolar power transistors was developed. It has been shown to agree with the qualitatiup plimomenon associated with RT transistor operation, namely, electro-thermal interactions. lemperature, and current density distribution were analyzed and presented as function of power densily

## HARMONIC FILTERING AT UHF AND MICROWAVE FREQUENCIES

$$
\begin{gathered}
\text { Philip B. Snow } \\
\text { Microwave Teknology Organization } \\
\text { Tektronix, Inc. } \\
\text { F.O. Box 500, } 58-147 \\
\text { Buavert }
\end{gathered}
$$

The need for good filtering at a reasonable cost, size and performance is important to the designer of communications systems andfor equipment. For instance, harmonic suppression in oscillators have traditionally utilized low or band pass filter circuits to reduce distortion. These types of filters usually have well defined "skirt(s)" and high out-of-band rejection that require coupled, multi-element, high Q resonators.

At UHF and microwave frequencies, distributed elements (transmission lines of prescribed impedance) are employed to achieve an acceptable design due to their higher $Q$ and predictability at microwave frequencies compared with standard lumped elements. However, distributed element filters also have problems. Tuning ("tweaking") multi-distributed elements in production is tedious and odd frequency reentrant modes are omnipresent. Tuning is a problem in that the lengths of the distributed elements must be altered (shortened/lengthened) in the alignment of the filter. This is not easy since the multiresonant elements interact. The reentrant issue is one that is difficult to deal with in design and generally requires a
compromise in performance to minimize its effect. By concentrating on the harmonic frequencies and the reentrant nature of distributed elements, a designer can turn a problem into a simple solution.

Before actually designing any filter using transmission lines, it is important to understand transmission line resonant circuits and their reentrant behavior. The general expression for the impedance down a dissipationless transmission line is:
zin $=2 O^{*}\left(\left(21+j 20 * \tan \left(B^{*} 1\right)\right) /\left(20+j z 1 * \tan \left(B^{*} 1\right)\right)\right)$
(Eq.1)
where: $Z 0$ = characteristic impedance of the transmission line
B $=2 * \mathrm{Pi} / \mathrm{L}$
$\mathrm{L}=$ the frequency wavelength in the transmission line.
$1=$ the length of the transmission line between $Z i n \&$ 21 .

Zl $=$ the load impedance on the end of the line.

To form a simple minimum loss resonant circuit, $z l$ can be a short-circuit ( $\mathrm{z} 1=0$ ) or zl can be an open-circuit (zl=00). In reality, at microwave frequencies even a good short-circuit is slightly inductive (due to its finite length) and an open-circuit is slightly capacitive (due to end fringing capacitance). Both these parasitic effects require the transmission line to be

RF and $O C$ operation, total emitter ballasting, contour emitter ballasting, anbient temperature, and cell splitting. A iigure of merit to describe current uniformity across the active area was introduced. The method of solution and modeling of transistor electro-thermal coupling was discussed. The program is easy to use, converges ropidly, and presents data in o concise and convenient format.



slightly lonqer to achieve a desired Zin that would normally be predicted by Eq. 1.

If $21=0$ (short-circuit load) is substituted into Eq. 1 then:

```
zin= zsc= jzo*Tan(2*Pi*l/L)
```

(Eq. 2)

From the transcendental nature of Eq. 2, it is apparent that the impedance of a shorted transmission line has more than one unique length; (1) for a given wavelength, (L) at which it will be series resonant at $\mathrm{Zsc}=0$, and parallel resonant at $\mathrm{Zsc}=00$. Therefore, from Eq. ${ }^{\text {. the following information can be derived: }}$

```
Zsc = 0 when l = 0, L/2, L, (3/2)*L, 2*L,
Zsc}=00\mathrm{ when 1 = L/4, (3/4)*L, (5/4)*L, (7/4)*L,
If ZI = 0 (open-circuit load) and is substituted into a
``` rearranged form of Eq. 1 then:
\(\mathrm{Zin}=\mathrm{Zoc}=-\mathrm{j} \mathrm{ZO}_{\mathrm{*}} \operatorname{Cot}(2 * \mathrm{Pi}\) *1/L)
(Eq. 3 )

Eq. 3 is also transcendental, and it is apparent that the impedance of an open transmission line has more than one unique
length (l) for a given wavelength (L) at which it will be parallel resonant at \(z o c=00\) and series resonant at \(z o c=0\). From Eq. 3 the following information can be derived:

\author{
zoc \(=00\) when \(1=0, L / 2, L,(3 / 2) * L, 2 * L, \ldots . . . . .\).
}

ZOC \(=0\) when \(1=\mathrm{L} / 4,(3 / 4) * \mathrm{~L},(5 / 4) * \mathrm{~L},(7 / 4) * \mathrm{~L}, \ldots .\).

From inspection of the derived length (1) data for Zsc and Zoc, it can be concluded that the shortest or fundamental line for a distributed resonant circuit is one-quarter wavelength ( \(\mathrm{L} / 4\) ). This excludes \(l=0\) because it is outside the boundary conditions for a finite resonant element.

Thus far the discussion of distributed resonant circuits has been confined to a fixed wavelength (L) or frequency with a variable line length (1). This constraint has allowed the concept of the fundamental one-quarter wavelength to be established as a basic resonant building block for a filter. From a practical stand point (l) is fixed and by definition (L) is variable across the frequency spectrum. The relationship between wavelength (L) and frequency (F) is:

\[
\begin{aligned}
& \text { rell wor rimen mo. }
\end{aligned}
\]

Figure 4．Typical TEMP 3D output for structure shown above．This benchmark model represents a device with ohms emitters．base area of 17 ． 1.6 are Vce \(=15 \mathrm{~V}\) ，Ic \(=100 \mathrm{~mA}\) ，and \(\operatorname{Tmin}=60 \mathrm{C}\) ．


Figure 5.


Pigure 6.

Temperature and Current distributions along the cell
length for the benchmark model under conditions described in Figure 4


Pigure 7.


Fifure 9.


Figure 8.

Pigures 7，8．Temperature and Current distributions along finger length for distributions along．finger leng

Figure 9．Finger Current injected at each finger for the benchmark model．
\(\mathrm{L}=\mathrm{Vp} / \mathrm{F}\)
(Eq. 4)
where: \(V p=\) velocity of propagation of the wave within the line.

For purposes of further discussion, the angular expression in Eq. 2 and Eq. 3 can be rewritten in the following form:
(Eq.5)
where: \(\quad l=\) Lo/4
\(L_{o}=V_{p} / F o\)
Fo \(=\) fundamental resonant frequency


Figure 1.

Figures 1 and 2 show Lo/4 shunt transmission lines with short-circuit and open-circuit loads respectively. Their analogous lumped element equivalent is shown adjacent to them.


Figure 2.


Figure 10. Three Dimensional Representaion of Surface Temperature for the benchmark model (Figure 4.). Tmax \(=114 \mathrm{C}\), \(\operatorname{Tmin}=87 \mathrm{C}\).


Figure 11. Isothermal Representation of Surface Temperatures shown in Figure 10. Tmax \(=114 \mathrm{C}, \mathrm{Imin}=87 \mathrm{C}\). \(2 \mathrm{C} /\) iso therm.


Figure 12. Effects of tradeoff in current vs, voltage for constant power dissipation for the benchmark model (Figure 4.).


Figure 13. Effect of ambient temperature on maximum junction temperature Tj for the benchmark model (Figure 4.).

The impedances (Zsc and Zoc) of the distributed circuits in Figures 1 and 2 are shown plotted versus freuency in Figures 3 and 4 respectively:

Figure 3.


Figure 4.

The multiple parallel and series resonances are unique to distributed elements compared to their lumped element counterparts which have only one resonant frequency.

It should be apparent by now what is meant by the reentrant or periodic nature of distributed resonant elements from Figures 3 and 4 and how they can be used as repetitive band-reject filters to suppress harmonics in an oscillator application. However what might not be obvious is how to achieve parallel resonance at the fundamental oscillator frequency (Fl) and series resonance at the even and odd harmonics of that frequency. The distributed circuit shown in Figure 5 is the key structure and the initial step in designing such a filter.

There is a unique characteristic about a shorted quarterwave resonator. No matter where it is tapped along its length, it will always be parallel resonant.


Figure 14. Effect of total Re in the case of uniform ballasting on \(T j\), maximum junction temperature (see Figure 4. benchmark model)


Figure 15.


Figure 16.
Temperature and Current Distributions for the benchmark under standard conditions with uniform ballasting and total Re = . 1 ohms.


The reason for this is that shorted transmission lines less thar (L/4) (i.e. 12) will always be inductive and open transmission lines less than (L/4) (i.e. 11) will always be capacitive. If \((11+12)=(L 1) / 4\) then the two resultant reactances (or susceptances) will be equal in magnitude and opposite in sign on the imaginary impedance axis. Tius the shunt configured circuit in Figure 5 is parallel resonant at the frequency F1. This can be readily proved by substituting \(1=\) (L1)/8 and L \(=\mathrm{L} 1\) into Eq. 2 and Eq. 3 which yields:

Since it makes little difference where a shorted quarterwave transmission line is tapped to achieve a parallel resonance, the next question might be why was the circuit in figure 5 configured such that \(11=12=(L 1) / 8\) ? The answer to that is simple. Series resonance (band-reject) will occur: when \(11=\mathrm{L} / 4\) at \(2 * \mathrm{~F} 1,(3 / 4) * \mathrm{I}\), at \(6 * \mathrm{~F} 1,(5 / 4) * \mathrm{~L}\) at \(8 * \mathrm{~F} 1, \ldots . .\). and when \(12=\mathrm{L} / 2\) at \(4^{*}\) F1, L at \(8 *\) F1,
Thus, the circuit in Figure 5 exhibits the composite impedance of that shown in Figures 3 and 4: where \(F O=2 *\) F1.

The filter structure in Figure 5 is, however, only good for filtering "even" harmonics of the d?sired or band-pass frequency F1. All the "odd" harmonics (3*F1, 5*F1, 7*F1....) cannot be suppressed as easily as ALL the "even" harmonics are with a SINGLE tapped (Ll)/4 distributed structure shown in Figure 5. This is due to the fact that \(F l\) is, in a broad sense, an "odd" harmonic ( \(1 * F\) ) and conflicts with the requirement that \(F 1\) be band-passed while the remaining "odd" harmonics (F3, F5, F7.....) be band-rejected. Thus to achieve this design constraint each "odd" harmonic requires one unique shunt (Ll)/4 distributed structure tapped progressively closer to the open end of the transmission line the higher thr "odd" harmonic frequency.


Figure 17. Effect of total Re in the case of uniform ballasting on finger current (ie., current ballasting on finger current (ie., cu injection along


Figure 18. Finger ballast as a function
of position for the cases of uniform and contoured ballasting.


Figure 19. Resulting current injection along celi length for the cases of along cell leng th for the cases of
uniform and contoured ballasting (Figure
18).


Figure 20. Comparison of Class C and Class A operation for the case \(\operatorname{Re}=0.1\) ohms.
cell no.
 \(\qquad\) nInimum \(\qquad\) \& AREA


 "

\section*{|||||||||||||||||||||||||||||||||||||||||||||||||||}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline сей мо. & \multicolumn{3}{|r|}{maximum} & & & \multicolumn{2}{|l|}{himinum} & & 3 area \\
\hline & тenp & Ft & cuarent & fo & теmp & F\% & cuarent & f: & used \\
\hline
\end{tabular}

Figure 21. Illustration of cell splitting and multi-cell handing by TEMP3D Total base area, and emitter areas are conserved. Cell spacing in top model is 1.0 mils edge to edge.

Figure 6 shows these structures graphically depicted to the 7th harmonic:


The length of each of tive "open" sections of the distributed structures must be \(\mathrm{L} / 4\) (series resonance, \(\mathrm{Zoc}=0\) ) at the desired "odd" harmonic frequencies. This open-stub length (Loc) translates to the fundamental wavelength (LI) using the following equation:

Combining the structure in Figure 5 with any or all of the tapped (Ll)/4 structures in Figure 6 constitutes a filter that can be tailored to a prescribed harmonic suppression. The author used this technique to reduce the distortion in a 500 MHz SAW resonator oscillator. Only two (Ll)/4 structures were required; the "even" one in Figure 5 and the 3rd harmonic "odd" one in Figure 6. A photograph of the transmission characteristics of this filter is shown in Figure 7.


FIGURE 7.

Note the parallel resonance at the 500 MHz fundamental and the series resonance at the 2 nd ( 1000 MHz ), \(3 \mathrm{rd}(1500 \mathrm{MHz})\), and 4 th ( 2000 MHz ) harmonics. Figure 8a shows the oscillator without the filter, and figure 8 b shows the oscillator with the filter. Thus, with a few shunt distributed elements, an effective yet


Figure 22. Illustration of device scaling. All horizontal dimensions of cell on the left have been reduced by a factor of 2 . Benchmark model is seen on the right.
simple filter can be designed without complex synthesis and fabricated without tedious "tweaking" in manufacturing.


From the filter response shown in Figure 7, it should be apparent that the harmonic attenuation (suppression) is finite (i.e. ) 30 dB ), not infinite as predicted by Eq. 2 or 3, where 2 in =0. Equations 2 and 3 are derived from Eq. 1 which assumed no loss (dissipationless line). Distributed quarter-wave (L/4) resonant lines have loss that can be calculated if the equivalent unloaded \(Q\) value is known.

The equation for the equivalent (lumped \(L / C\) ) unloaded \(Q\) for an "open" \(L / 4\) resonant \(1 i n e\) can be derived by equating its derivative of impedance (with respect to angular frequency ( \(2 * P_{i}\) * )) with the derivative of impedance of a lumped \(L / C\) series resonant circuit. The resultant of that mathematical computation divided by Rs (series resistance) yields:
\[
Q u=(P i / 4) *(20 / R s)
\]

Eq. 7 can be used to calculate Rs at any harmonic frequency ( Fn ) if Qu is known at Fn . The harmonic attenuation (An) at any Fn can be predicted by judicious use of the following equation:
\(A_{n}=R s^{\prime} /\left(\right.\) Rs' \(\left.^{\prime}+(R o / 2)\right)\)
(Eq. 8 )
Where: Rs' = the equivalent series resistance of all the \(\mathrm{L} / 4\) and multiple \(L / 4\) lines with series resistance at \(F n\).

Ro \(=\) Source and load resistance assumed equal (i.e. 50 ohms)

Applying a similar procedure as used to obtain Eq. 8 an equation for insertion loss can be created as foilows.

The equation for the equivalent (lumped \(I / C\) ) unloaded \(Q\) for a "shorted" L/4 resonant line can be derived by equating its
derivative of susceptance (with respect to angular frequency) with the derivative of susceptance of a lumped \(L / C\) parallel resonant circuit. The resultant of that mathematical computation divided by \(G\) (parallel conductance) yields:
\[
\begin{equation*}
Q u=(P i / 4) *(R p / Z o) \tag{Eq.9}
\end{equation*}
\]

Where: \(R p=1 / G=\) parallel resistance.

\section*{Eq. 9 can be used to calculate \(R p\) at the fundamental} frequency (F1) if Qu is known. The insertion loss (I.L.) can be predicted using the following equation:
I.L. \(=(\mathrm{Rp} / \mathrm{m}) /((\mathrm{Rp} / \mathrm{m})+(\mathrm{Ro} / 2)\)
(Eq. 10) Where: \(m\) = number of shunt (L1)/4 resonators in the filter. (i.e. \(m=2\) for the filter in Figure 7.)

The filter in Figure 7 was configured with . 047 inch diameter semirigid coaxial cabie with a dielectric constant \(E r=\) 2. Different transmission line media, whether coax, stripline, microstrip, etc. will have different Qu's. By configuring some (Ln)/4 "open" resonant lines in the desired transmission line media and making harmonic attenuaricn (An) measurements at each harmonic frequency ( \(F n\) ), the unloaded \(Q^{\prime s}(Q u)\) can be calculated
using Equations 7 and 8. Rs' reduces to \(R\) in a single (Ln)/4 resonant line. \(n=\) desired harmonic number (i.e. \(1,2,3,4 \ldots\) ).


Microwave Integrated Receiver for the Morelos Mexican Satellite System
A. Serrano, J.L. Medina, D. Miriart CICESE, Research Center Espinoza 843, Ensenada, B. C. MEXICO

\section*{ABSTRACT}

This article describes the characteristics and design procedure of a microwave integrated front-end for the Morelos Mexican Satellite System. The receiver works at Ku band and provides a \(0.9-1.4 \mathrm{GHz}\) signal to the modem. The main application of this receiver is educational television reception. However, the system can be used for thin route telephone and data transmission applications.

\section*{INTRODUCTION}

The Morelos Satellite is a hybrid system for both C and Ku Bandl. It is expected to be fully operational at the beginning of 1986. The satellite system is composed of two satellites, Morelos I located at \(113.5^{\circ}\), and Morelos 11 located at \(116.5^{\circ}\) West. The two satellites are versions of the HS376, the most purchased commercial communications satellite in the world. Morelos is the first Mughes Aircraft satellite to use a planar array for reception of the four Ku band channels, each
one with 108 MHz bandwidth, covering the country with a minimum effective isotropic radiated power (KuEIRP) of 44 dBW . The transmit and receive beams for \(C\) band and the transmit beams in Ku band are provided by a 6-foot wide shared aperture grid antenna with two polarization selective surfaces. The front surface detects horizontally polarized signals and the rear detects vertically polarized signals. Two separate microwave feeds are used for both polarizations. The \(C\) band structure of the satellite consists of 12 vertically polarized narrowband channels with 36 MHz bandwidth each and six horizontally polarized with 72 MHz bandwidth. The front-end described in this article is designed for the Ku frequency band of the Morelos System. Figures 1 and 2 show the physical structure of Morelos and its EIRP "footprint" respectively.

\section*{11. LINK CALCULATIONS}

In order to define the technical specs of the Ku band front-end, a computer program that provides the main parameters of the link was developed. This program is particularly adapted to the characteristics of the Morelos Satellite system and gives important information about the receiver's performance under several input conditions. Fig. 3 shows a flow-diagram of the computer program. The output data are given graphically and can be adjusted for different input data according to the designer needs.

\section*{HIGH POWER FILTERS}

\section*{Specsmanship \& Design Considerations}

By Dick Wainwright, Chief Scientist
Cir-Q-Tel, Inc.

\section*{Abstract:}

Blivetry*: power; feasibility; \(Q:\) selectivity; gradients; hot spots; energy storage; contaminants; ionization; breakdown; peak-average; C.W.; A.M.; \% modulation; F.M.; etc.; volt-amps; connectors; size; weight; heat generation, flow \& sinking; ionization; impacting; altitude; humidity; salt spray; insulation; shock; vibration; harmonic content; rejection; source \& load; EMI; form factor; skin depth-plating; dissipation factor; dielectric strength; topology; susceptibility; losses; volts; amps; volt-amps; \(Q\); MTBF; manufacturers ratings \& reality; heat; heat flow; - - all are but a smattering of the flow of words/thoughts that haunt every sensible designer of high power devices. (Notice: certain key words were repeated

\footnotetext{
*Blivetry: The art of defying the basic laws of physics by forcing two or more objects to fit into the same space - analogous to fitting ten pounds of parts into a one pound container.
}
to emphasize their importance.)
Customers, bless them, generally think of filters as bandaids - one often hears the uninformed say, "Anyone can design filters - the textbooks are full of tables of element values". That is true, but volts and amps and concomitant happenings make a difference. "The ratings", not the values, are of fundamental importance in power handling devices, design and application. A little experience usually results in a lot of smoke testing.

An intimate knowledge and an awareness bordering on paranoia, plus considerable experience are fundamental requisites.

The writer has on innumerable occasions lost the "first go-around" on a project bid on the basis of: price, size, weight and exceptions prudently taken, in some instances, because the user did not know or furnish such very important information as:
a. Harmonic content of transmitter power output relative to fundamental power
b. Possible incompatibility of specified connectors with specified power and load conditions
c. The amount of surface area available for heat conduction/radiation and/or availability of cooling air. Assuming that cooling air is available, the rate of air flow, pressure, as well as the temperature of the cooling air, must be known.

Figures 4 and 5 are provided by the program and show the behabior of carrier to noise ratio (C/N) with respect to two basic parameters, the low noise amplifier noise figure FLNA and the low noise amplifier gain GLNA for different antenna gains. Fig. 6 shows the relation between \(\mathrm{C} / \mathrm{N}\) and S/N for a typical TVRO receiver (Microdyne 1100 TVR) \({ }^{2}\).

It can be seen from fig. 4 that for \(F_{L N A}=3 \mathrm{~dB}, \mathrm{C} / N\) is around 19 dB . According to Fig. 6 this value fo \(C / N\) would give a \(S / N\) of more than 50 dB which would imply a good TV reception; however, if the sensitivity of the system given by Equation 1 is taken into consideration for the case of the Morelos System with a KuEIRP of 44 dB , it is observed that for FLNA \(=3 \mathrm{~dB}\) there is a minimum acceptable operational margin (OM) of around 3 dB . The operational margin is given by Equation 2 as:
\(s(\mathrm{dBm})=(\) Noise \(F\) loor \(=-174 \mathrm{dBm})+F_{L N A}+10 \log _{10} B W\)
\(O M(\mathrm{dBm})=\operatorname{ILNA}-S\),
where \(B W\) is the satellite channel bandwidth, which is 500 MHz for Morelos (11.7-12.2 GHz), and ILNA is the signal level at the LNA's input and is given as:
\(I_{\text {LNA }}(d B m)=E I R P+\) Free Space Loss + GANT,
where \(G_{\text {ANT }}\) is the earth station antenna gain.

For \(F_{L N A}=3 \mathrm{dBm}\) and \(B W=500 \mathrm{MHz}\), we obtain \(\mathrm{S}=-84.02 \mathrm{dBm}\) and for EIRP \(=44 \mathrm{dBW}\) free space loss of -205.18 dB and GANT \(=50 \mathrm{~dB}\); \(\mathrm{I}_{\text {LNA }}=\) -81.18 dBm . This will result in an \(0 M\) according to Equation 2 of around 3 dB .

Taking into account the results of the above described example it can be observed that if a \(F_{L N A}=6 \mathrm{~dB}\) is chosen \(O M\) would be around zero; e.g., the input signal is immersed in noise. This situation is not desirable at all. In order to increase the operational margin OM, ILNA should increase. It can be seen from Eq. 3 that EIRP and GANT should in turn be increased. However, increasing EIRP is not feasible because it is fixed from the satellite specs, and GANT is difficult to increase beyond 50 dB , at least for Ku band commercial antennas. The most practical possibility to improve \(O M\) is to reduce \(F_{L N A}\) to the minimum and try to push Gant beyond 50 dB with the minimum possible losses in the antenna feed system.

Fig. 5 shows the direct influence of GLNA on the \(C / N\) value. Available Ku band commercial antennas with 40-50 dB gain are considered for this figure. It can be observed that for FLNA \(=2 \mathrm{~dB}\) the LNA's gain could be around 35 dB to obtain adequate values of \(\mathrm{C} / \mathrm{N}\). This implies that increasing the gain beyond 35 dB at the \(11.7-12.2 \mathrm{GHz}\) frequency band
d. Heavy shock and vibration specifications were specified along all three major axes when in fact the applicarion, under power, was indoors and fixed.
e. Specifications indicating unrealistically low values of device VSWR (e.g. 1.1:1) when in fact the filter would in practice be operating continuously into loads of never less than \(2: 1\) and often in excess of 3:1 VSWR. (In some cases an infinite VSWR of any phase) Specified selectivity, i.e., ratio of "f" low-reject/"f" high pass ( \(\mathrm{f}_{\mathrm{p}}\) (high) was given as very nearly \(1: 1\); and it is not unusual to find specifications indicating selectivity ratio values of \(1.01: 1\), 1.02:1, etc. When using a number of filters to cover a broad range of frequencies it is usually best to uniformly distribute the power pass band and reject to pass ratios to avoid undue stress on any of the filters: see Example (1).
f. Other mitigating relationships that, taken as whole, result in unrealistic designs.

Taking it from the top, a-f:
a. Harmonic content of transmitter output:

Typical solid state transmitters, of recent vintage, can be expected to yield harmonic power levels of (push-pull final through combiner to 50 ohms unbalanced): Table 1

\section*{TABLE 1}
\begin{tabular}{lcccc} 
Harmonic Order & Level dBc & Harmonic watts/KW (fundamental) \\
\hline 2nd & \(:\) & -18 & 15.8 \\
3rd & \(:\) & -12 & 63.1 \\
4th & \(:\) & -21 & 7.9 \\
5th & \(:\) & -18 & 15.8 \\
6th & \(:\) & -22 & 6.3 \\
7th & \(:\) & -21 & 7.9 \\
8-13 & : Avg. & -22 & 37.8 ) Avg.: \(6.3 \mathrm{~W} /\) harmonic
\end{tabular} Total Harmonic Power: 154.6 watts/KW fundamental power As an aside, note at this juncture that the customer may wish to use a ferrite isolator at the transmitter output to obtain a well-matched transmitter output, but, through oversight, may neglect the fact that most isolators are frequency sensitive, resulting (possibly) in excessive heating by harmonics, resulting in isolator burn-out and/or additional harmonic generation caused by the ferrite being operated near the Curie temperature of the materials, etc.
(b) Connectors power rating insufficient for application. Most connector manufacturers haven't the foggiest idea of how much power/apparent power their connectors will safely handle. Current ratings, not voltage ratings, are generally the problem drivers. \(Z_{o}\) is of little consequence in systems working with very high VSWR values - of course they are directly related.
does not provide any further improvement.

From the link analysis we can define the design requisites of the receiver for Morelos in the Ku band: Maximum \(F_{L N A}<3 d B\); desirable GANT \(\geq 50 \mathrm{~dB}\) and \(\mathrm{G}_{\mathrm{LNA}} \geq 30 \mathrm{~dB}\).

SyStem integration

Fig. 7 shows the basic structure of the Ku band receiver for the Morelos Satellite system. We are using an integration approach that combines monolithic microwave integrated circuit (MMIC) subsystems (basically LNA blocks) manufactured by NEC with other hybrid microwave circuits assembled in our laboratory. The technical specs for the LNAMMIC are3: Bandwidth \(-11.7-12.2 \mathrm{GHz}, \mathrm{F}_{\text {LNA }}=(\) MC5806A \()-2.2 \mathrm{~dB}\) FLNA (MC5806B) - \(3.0 \mathrm{~dB} \mathrm{G}_{\text {LNA }}=17 \mathrm{~dB}\). Considering these specs and the design requisites defined before, it can be seen that if two LNA modules are connected in cascade we will achieve the design objectives: \(G_{L N A} \geq 30 \mathrm{~dB}\) and \(F_{L N A} \leq 3 \mathrm{~dB}\). Careful packaging and assembling of the MMIC modules is an important factor to obtain a successful design. Improper assemblies would result in a loss of gain per module of around 2 or 3 dB and instabilities in noise figure.

The picture shown in figure 8 corresponds to the subassembly of the Ku band integrated receiver. Local oscillator, mixer and intemediate
frequency amplifier are respectively MC5808, MC5807 and MC5805 NEC hybrid modules. The band pass filter and other interstage modules are designed in our laboratory.

CONCLUSIONS

The Ku band front-end described in this article will be tested directly on the Morelos System when the two satellites are fully operational around the first trimester of 1986. Final testing of the modules will provide information about the conveniences of using malc instead of conventional hybrid modules from the economic and efficiency points of view. The program developed for the link analysis of Morelos has been very useful in defining the receiver's specs and it is expected to improve it to cover more subtle aspects of the parameters of the link.

ACKNOWLEDGEMENTS. We thank Ricardo Chavez, Benjamin Ramirez and Isabel Alcaraz for their valuable participation in the final manuscript.

\section*{REFERENCES}
1) Comparative Analysis of C and Ku Frequencies for the Mexican Satellite Communications Domestic System (In spanish) Hughes Document Ref 43 (82) 001132/F2017. March, 1982, Hughes Aircraft Co.

Given the fact that most filters are "reflective devices" i.e. produce attenuation by reflection of power rather than being absorptive, abscrptive filters are generally much more expensive and generally considerably larger than reflective devices. However, in many UHF and above, frequency range applications the use of harmonic absorptive filters may make a lot of sense.
(c) How much surface area should one allow for the cooling of high power filters, and, if cooling air is available, what is its pressure and rate of flow?

First one may make the assumptions:
1. The maximum power vs, connector type is in the order of \(2 / 3\) of the cable attached, derated appropriately.
2. Normally a high power filter ('hot" surface temper-
acure) is designed such that the hot surface temperature of the filter does not exceed ambient \(C^{\circ}+50^{\circ} \mathrm{C}\) with a heat sinking plate average temperature of no more than ambient air \(\mathrm{C}^{\circ}+10^{\circ} \mathrm{C}=+95^{\circ} \mathrm{C}\) max. Cooling air, if available, should not exceed an effective temperature of \(+80^{\circ} \mathrm{C}\); hence, air speed may be an important consideration as the air approaches the filter hot spots.

In many cases substantial size fins may be required but fins are not very effective in cramped air flow spaces - convection air currents must be free to circulate if convection cooling represents a sábstantial portion of the cooiing means,
and surrounding heat conducting surfaces may need to have rough surface to "wipe" the heat out of the circulating air.
(d) Heavy shock and vibration specifications along all three major axes, i.e., \(G\) forces applied to coaxial filters should be studied carefully and if at all possible, the strong \(G\) forces should be confined to the smaller dimensions of the coaxial structure. Minimal forces of no more than 5G, preferably, and no more than lOG max. (ll m/sec. std. shock specifications) on the length should be applied to coaxial high power filters of substantial size, plus consideration as to the adequacy of mounting hardware and supporting structures is essential. (e) Selectivity, time delay, energy storage \& electrical (absorptive) losses/heat generation go hand in hand.

Q: The ratio of:

\section*{\(\frac{\text { Energy Stored per Cycle }}{\text { Energy Dissipated per Cycle }}\) of the applied energy}
is a critical consideration in the design of all filters in general, and is of great importance in high power filters. For a given loss, the required ratio of \(Q\) unloaded/Q loaded is different for every filter design. It is not uncommon for certain designs to require inductor \(Q\) unloaded values in excess of 500-1000 or more and for capacitors 3500-8000 or more to barely eke out a responsive design, where rejection bandwidths to low loss band edge ratios are quite small, say much less than l.2:1 for 40-60 dB rejection; almost impossible values
2) Microdyne 110 TVR Receiver Data Sheet, Microdyne Corp., Ocala Florida 1983.
3) MMIC data sheet, MC 5806A, MC 5806B, Nippon Electric Corp. 1984.


FIG.I) BASIC STRUCTURE OF MORELOS I, II

fig.2) Ku band satellite 'root print"

fig.3) Link calculation flow chart for morelos
of 2000 or more for coil \(Q\) and over \(10,000-15,000\) capacitor \(Q\) may be required, but unobtainable because of space, moding and!or frequency limitations.

The \(Q\) of coils increases roughly as the square root of frequency, hence generally high frequency filters yield lower losses, given the same selectivity and available space.

For a given loss (see Table 2) the unloaded \(Q\) required increases substantially with passband ripple (VSWR),
complexity, \(n\) and type of filter. (Elliptic, all-pole Chebishev, Butterworth, etc.).

\section*{TABLE 2}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Selectivity \\
\(\mathrm{f} 60 \mathrm{~dB} / \mathrm{f} 3 \mathrm{~dB}\)
\end{tabular} & \[
\begin{aligned}
& \text { Nominal } \\
& \text { VSWR }
\end{aligned}
\] & Filter Design \(\begin{aligned} & \text { Repre } \\ & \text { Qul } \\ & \text { Loss }\end{aligned}\) & sentative for a Given (approx.) & \[
\begin{aligned}
& \text { Energy } \\
& \text { Storage }
\end{aligned}
\] \\
\hline 1.25 & 1.2 & Elliptic (0.01 dB Ripple) & 1000 & 20 \\
\hline 1.5 & 1.35 & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple=0.1 dB }
\end{aligned}
\] & 550 & 15 \\
\hline 1.7 & 1.2 & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple=0.01 dB }
\end{aligned}
\] & 460 & 12 \\
\hline - & - & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple }=0.001 \mathrm{~dB}
\end{aligned}
\] & 290 & - \\
\hline 2.1 & 1.2 & Butterworth & 200 & 10 \\
\hline 4.2 & - & Bessel & & - \\
\hline
\end{tabular}

Table 2 indicates representative values - not absolutes.
As an example, a 0.01 dB Chebishev (all-pole) filter re-
quired approximately \(\frac{460}{200}-1 \sim 84 \%\) more \(Q\) than a Butterworth
filter for a given loss and the Elliptic filter given has twice the energy storage indicating that voltages and currents are roughly \(40 \%\) more than in a Butterworth filter.
(f) Other factors of consequence:
(1) Phase linearity vs. f.
(2) Matching of phase: \(A \pm 5^{\circ}\) phase matching specifications may nearly double the price relative to a non-matching phase unit because of the component tolerance problem alignment accuracy and the need to "fix" parts to preclude minute variations in operating environment.
(3) Humidity: High humidity conditions, especially with condensation presents substantial problems
(4) Altitude: Derating or pressurization with dry nitrogen or sulfur hexafluoride may be forced as a solution. Of course, pressurization eliminates humidity problems.
(5) etc.

The author wishes to thank the following people who were very helpful in the preparation of this paper as well as for the permission of the management of Cir-Q-Tel to publish these data and information:
Ronald B. Alexander, Esq., Board Chairman; Douglas H. Alexander, President; Hilda A. Wainwright, Vice President \& Corporate Treasurer; Ann McCauley. Executive Secretary/Office Manager; Norman Selinger, Sales Manager; Joan King \& Jay Kociol for proofreading and helpful hints; Dorothy DeWitt, my secretary, for her hard work, patience and understanding, and to all of the fine people at Griffith \& Coe Advertising, Inc. of Hagerstown. Maryland for their expert artwork.


FIG.4)C/N V.S. FLNA FOR A KU BAND RECEIVER



FIG. 8) OUTPUT S/N AS A FUNGTION OF FM DETECTOR INPUT C/N


FIG.7) BASIC STRUCTURE OF THE KU BAND RECEIVER

Addenda to: High Power Filters, Specsmanship

\section*{and Design Considerations \\ by: R.A. Wainwright}

Suppose one wishes to provide filters covering the 100-1000 MHz frequency range that will in turn yield greater than 40 dB attenuation at the second and higher order harmonics; let \(\mathrm{N} f\) be the number of contiguous band filters.

First, determine the number of octaves included in this band: 100-1000 MHz (an octave is a 2:1 frequency ratio).

Then:
(1) \(100-200 \mathrm{MHz}\) - lst octave
(2) \(200-400 \mathrm{MHz}\) - 2nd octave
(3) 400-800 MHz - 3rd octave
(4) \(800-1600 \mathrm{MHz}\) - 4 th octave (up to 1000 MHz is all the coverage that is required however,
or
On: octave number is an integer: On \(2^{N f}\). If one is to evenly distribute the filters such that: Note all logarithms are to base 10.
(1) \(\mathrm{Ki}=\frac{\mathrm{fc}}{\mathrm{f}}\) (VSWR) high \(\qquad\) is about the same for all
filters, then given: \(K N f=\frac{1000}{100}=10\)
then for each filter Ki
(2] \(K(N f)=10=K i \geqslant f\) ) etc.; \(N f=4\) (filters minimum)
(A)

\section*{Then: \(\frac{\log }{\mathrm{Nf}} 10=\log \mathrm{Ki}\)}
and
\(K i=(\) antilog 10\() / 4=1.77827941\)
(see Fig. E-1)
If 5 filters were to be used, which number will be determined
upon evaluation of filters chosen for this task, then, (see
Fig. E-2)
if \(\mathrm{Nf}=5\)
Then
\(K i=(\operatorname{antilog} 10) / 5=1.584893192\)
Assuming 4 or 5 filters, then develop Table 1

\section*{Table 1}

VSWR Passband of Filters 1-4 or 1-5
\begin{tabular}{ccccccc}
\hline Ki & & 1 & 2 & 3 & 4 & 5 \\
\hline 1.78 & \(\mathrm{Nf}=4\) & \(100-178\) & \(178-316\) & \(316-562\) & \(562-1000\) & - \\
1.56 & \(\mathrm{Nf}=5\) & \(100-158\) & \(158-250\) & \(250-395\) & \(395-628\) & \(628-1000\)
\end{tabular}

From Fig. E-4 for \(N(f)=4\) or 5 given \(K i=1.78\) and \(K i=1.58\) respectively, assuming an elliptic-like response device is compatible with other electrical parameters, ratings, etc.; Then:

The ratio of the lowest 2nd harmonic frequency ( 2 fL ) to highest passband (VSWR) frequency (fch) for \(N f=4\) and 5 are


FIG.8) SINGLE CONVERSION MODULE FOR THE KU BAND
RECEIVER


\section*{Table 2}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Filter } 1 \\
& (2 \mathrm{fL} / \mathrm{fcH})
\end{aligned}
\] & \multicolumn{4}{|l|}{Filter 2 Filter 3 Filter 4 Filter 5 ( \(2 \mathrm{fL} / \mathrm{fcH}\) ) \((2 \mathrm{fL} / \mathrm{fcH})(2 \mathrm{fL} / \mathrm{fcH})(2 \mathrm{fL} / \mathrm{fcH})\)} \\
\hline \[
\begin{array}{r}
\bar{N} \mathrm{f}=4 \quad 200 / 178= \\
1.123
\end{array}
\] & 1.123 & 1.123 & 1.123 & 1.123 \\
\hline \[
\begin{aligned}
& \text { Nf }+5 \quad 200 / 158= \\
& 1.26
\end{aligned}
\] & 1.26 & 1.26 & 1.26 & 1.26 \\
\hline
\end{tabular}

From Fig. E-2, [( \(2 \mathrm{fL} / \mathrm{fcH}\) ) -1\(]=0.123\) absissa (frequency scale) and: rejection + return loss \(=60 \mathrm{~dB}\) ordinate. If return loss is selected as 20 dB VSWR approx. 1.25:1) then 40 dB rejection +20 dB return loss \(=60 \mathrm{~dB}\) at 0.123 and 0.26 respectively (absissa value on Fig. E-4).

For \(N f=4\) : at 0.123 (abissa) and 60 dB : rejection + return loss (ordinate) one finds \(n=11\) (elliptic) filter. (see mark "e")

For \(\mathrm{Nf}=5\) : at 0.26 (absissa) and 60 dB on ordinate. (see mark " \(x\) "), \(n=9\) (elliptic) filters, (Fig. E-2).

If on the other hand one wishes to use an all-pole 0.01 dB ripple Chebishev, (of practical construction) ladder network series coil, and shunt capacitors, with no finite frequency traps

Then: for \(\mathrm{n}=19\) the ratio: \(\mathrm{fcH} / 2 \mathrm{fL}=1.36\) for 40 dBc attenuation, (note: Chebishev filters having more than 19 elements, \(n=19\)
are not generally considered practical) it becomes apparent that additional \(10-1000 \mathrm{MHz}\) band segmentation may be necessary, (see Fig. E-3 and Table 3.

If: \(\mathrm{fcH} / 2 \mathrm{fL}=1.36\) then solving for Nf (minimum), \(\mathrm{fL}(1)=100\) MHz , then \(1.36 \mathrm{fcH}=2 \mathrm{fL}=200 \mathrm{MHz}\)

Then \(\mathrm{fcH}(1)=200 / 1.36=147 \mathrm{MHz}\)
Proof: \(1.47^{6}=10=10.09029837\)
Please be aware that the Tables and graphs given herein Do Not List Theoretical Values.

Figures E-1, E-2 etc. are self explanatory. For all-pole (equi-ripple passband and monotonic reject band) Chebishev filters the reject band attenuation (dB) given by
[Eqn. 5]
\(d B @ f x=10 \log \left\{\left[1+\log ^{-1} \frac{\alpha r(d B)}{10}\right] \cosh ^{2}\left[n \cosh ^{-1}\left(\frac{f x}{f c H}\right)\right\} f x>f(H)\right.\)
where: \(\{f x(d B\) ] is the frequency of \(x(d B)\) of rejection \(\propto r\) is the specified pass band ripple ( \(d B\) )
fch is the theoretical passband upper end, i.e. equi-ripple band edge. Table 3 gives the (practical) values of the rejection and frequency parameters for 0.01 dB ripple ( \(\propto \mathrm{r}\) ) in the pass band for various practical \(n\) odd values. Practical filter intrinsic-matched conditions, VSWR values between 1.25
\& \(1.4: 1\) will in general be obtained depending on practical component tolerances. Table 3 lists (practical) ratios of \(f(x d B) / f c H\)

\section*{HIGH EFFICIENCY POWER AMPLIFICATION WITH} OPTIMALLY LOADED HARMONIC WAVESHAPING

\author{
William McCalpin
}

High efficiency power amplification is achievable by utilizing harmonic waveshaping techniques to control the collector voltage and current waveforms. By appropriately manipulating these waveforms, the collector-voltage current product is minimized; thus, the power dissipated in the device is reduced. The goal of the waveshaping is to approximate a switching type device which has at least one abrupt step in either voltage or current in order to reduce the time in which both are present. This can be accomplished by pulsing the input to produce a square current waveform and employing the device as a saturated current source with a load network that will create a first approximation of a half-sinusoid voltage.

To elucidate the realization process of the RF amplifier made, five main points are presented: the need for Class \(F\) operation, a description of Class \(F\) amplification, a Fourier analysis of the waveforms required, the practical realization of the amplifier and the data and analysis from operation and testing.

Power amplification is separated into several modes of operation having various maximum theoretical efficiencies and output powers. In practical terms, operation in all of these classes is in suboptimum conditions due to losses, bandwidth and drive level requirements, and saturation limits of the active
device. For our application, an amplifier output level of 50 watts at a single frequency of 425 MHz is used, so it is expected that the practical data should come close to the theoretical limits of the class of operation.

For this particular frequency and output level. Class F was chosen because high efficiency was required and there exists inherent problems with high efficiency operation in other classes at this carrier frequency. Class A linear amplification was avoided because an optimum efficiency of only 508 at maximum power output is possible. This limit exists because the device and the load receive the same amount of power from the supply. The most common form of Class B amplification is a transformer coupled push-pull configuration with a maximum theoretical efficiency of 78.58. Class \(C\) has a maximum effic ency between 85 and \(90 \%\) depending on the angle of conduction; however, at UHF frequencies it has relatively low efficiency. Class \(D\) utilizes the notion of a switch in order to reduce device dissipated power which brings the theor etical efficiency to \(100 \%\). However, in order to reasonably simulate the switch ing action, an active device of 25 to 30 times the fundamental frequency is required. The fundamental frequency of our amplifier was set at 425 MHz which puts the \(\mathrm{f}_{\mathrm{T}}\) too high for a UHF device to reasonably simulate a switch.

Class F models the device as a saturated current source and utilizes a load network that resonates at harmonic frequencies as well as the funda mental. Class F efficiency is limited in that fully switched waveforms are not possible because the power dissipating in each switching transition cannot be reduced simutaneously. \({ }^{1}\) In addition, the waveshaping in Class \(F\) requires on
for all-pole Chebishev filters. Where \(\chi_{\mathrm{r}}=0.01 \mathrm{~dB}\) (passband ripple)

Table 3

Table of Practical Values of \(f(d B) / f(h i g h)\) for \(x d B\) Rejection for 0.01 dB ripple, practical, VSWR: 1.25:1 Chebishev all-pole ladder
\begin{tabular}{lllllllll}
\(n\) & 20 dB & 30 dB & 40 dB & 50 dB & 60 dB & 70 dB & 80 dB & 90 dB \\
\hline 7 & 1.8 & 2.15 & 2.75 & 3.4 & 4.2 & 5 & - & \\
9 & 1.52 & 1.80 & 2.15 & 2.5 & 3.0 & 3.5 & 4.0 & \\
11 & 1.42 & 1.73 & 1.85 & 2.1 & 2.42 & 2.75 & 3.1 & \\
13 & 1.32 & 1.50 & 1.70 & 1.90 & 2.15 & 2.38 & 2.65 & \\
15 & 1.23 & 1.37 & 1.55 & 1.72 & 1.94 & 2.15 & 2.36 & 2.60 \\
17 & 1.15 & 1.28 & 1.44 & 1.60 & 1.77 & 1.95 & 2.14 & 2.30 \\
19 & 1.12 & 1.21 & 1.36 & 1.52 & 1.64 & 1.78 & 1.90 & 2.06
\end{tabular}

FIG. E-3 might well be a graphical specification for a set of 6 filters spanning the \(100-1000 \mathrm{MHz}\) power passband where \(K i=1.47\) and 40 dB is obtained as harmonic rejection.
Additional figures show Typical-All-Pole-Lowpass Filters.

Table 4*
Passband VSWR/ripple (dB)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline VSWR & 2 & 1.8 & 1.5 & 1.4 & 1.36 & 1.3 & 1.24 & 1.2 & 1.1 & 1.05 \\
\hline ripple & 0.51 & 0.37 & 0.18 & 0.12 & 0.10 & 0.07 & 0.05 & 0.035 & 0.01 & 0.0026 \\
\hline
\end{tabular}
* Ref: Cir-Q-Tel, Inc. catalog (since 1962) page 35, Table 28

\({ }^{f} T\) of only 10 times the fundamental frequency which is more within the limitations of an active UHF device. "Second Harmonic Peaking" is a variation that uses a second harmonic resonator to include the second harmonic component in the collector voltage making a first approximation of a half-sinusoid. The device produces a square collector from a pulsed input. The collector waveforms and a circuit containing the second harmonic resonator are given in Figure 1 below.


Figure 1
Circuit and waveforms from Fourier Analysis, See Raab, F.H. "Analysis of Second-Harmonic-Peaking Power Amplifier", May 1982, pp 2-3.

The second harmonic resonator in Figure 1 (represented by \(L_{2} / C_{2}\) ) presents a load to the second harmonic which is included in the collector voltage waveform. The fundamental resonator shunted to ground acts as a lowpass filter to the second harmonic removing it from the output, thus the load only dissipates power at the fundamental frequency.

A Fourier analysis of the collector waveforms, given by F.H. Raab \({ }^{2}\), clarifies the increase in efficiency due to the harmonic loading. With the second harmonic resonator. the collector voltage waveform is represented by
\[
v_{C}(\theta)=v_{C C}+v_{O M^{5}} \ln e+v_{2 M^{2}} \cos 2 e
\]

Eecause the second harmonic sine wave is centered in the middle of the voltage waveform it cannot flatten the collector voltage and is therefore not included. Naximum flatness is achieved when the second derivative is zero which implies that the switching transition has become abrupt. The first two derivatives of the collector voltage are given below.
\[
\begin{aligned}
& e v_{C}(e) / e \theta=v_{O M} \cos \theta-2 v_{2 M^{5} \sin 2 \theta} \\
& e^{2} v_{C}(e) / e e^{2}=-v_{04} \sin e-4 v_{2 r_{i}} \cos 2 \theta
\end{aligned}
\]

By setting the second derivative equal to zero and theta equal to three pi over two it is observed that
\[
\begin{gathered}
0=-\left(-v_{O M}\right)-4 v_{2 M}(-1) \\
\text { or } \\
v_{2 M}=-v_{O M} / 4 .
\end{gathered}
\]



If the minimum collector voltage is to be zero, and if \(\mathrm{V}_{2 \mathrm{M}}\) is negative one fourth \(V_{O M}\) when theta is three pi over two, then
\[
\begin{aligned}
& 0=v_{C, \min }=v_{C C}-v_{O M}-v_{2 M} \\
& v_{O M}-(4 / 3) v_{C C}
\end{aligned}
\]
and
\[
\begin{gathered}
v_{C, \max }=v_{C C}+v_{O M}-v_{2 M} \\
\text { or } \\
v_{C, \max }=(8 / 3) v_{C C}
\end{gathered}
\]

The power output is therefore
\[
P_{0}=V^{2} O M / 2 R=(8 / 9) V_{C C}^{2} / R
\]

Since the device produces a square collector current, the values of the DC input current and the peak collector current can be evaluated from the collector voltage.
\[
1_{O K:}=v_{O M} / R=(4 / 3) v_{E C} / R
\]

Because the collector current is a squarewave
\[
\begin{gathered}
\mathrm{I}_{\mathrm{OH}}=(2 / \mathrm{PI}) \mathrm{I}_{\mathrm{C}, \max } \\
\text { or }
\end{gathered}
\]
\[
I_{C_{0, \max }}=(2 \mathrm{PI} / 3) v_{C C} / R_{P}
\]
and if the DC input is half the maximum collector current, then
\[
I_{D C}=(P I / 3) v_{C C} / R .
\]

The input power is the product of the supply voltage and current and
is therefore
\[
F_{1 .}=v_{C C}{ }^{1}{ }_{D C}=(F I / 3) v_{C C}^{2} / R
\]

With this information the performance of the power amplifier can now be determined. The collector efficiency of the P.A. is the ratio of the output power to the supply power input or
\[
\begin{aligned}
\text { eff. }=P_{0} / P_{i} & =\left((8 / 9) v_{C C}^{2} / R\right) /(P I / 3) v_{C C}^{2} / R \\
& =(.849) * 100 \%=84.9 \%
\end{aligned}
\]

The normalized power output capability is defined as the ratio of the power to the product of the peak collector voltage and the peak collector current or
\[
\begin{aligned}
& =(1 / 2 \mathrm{PI})=0.159 \text {. }
\end{aligned}
\]

For comparison the normalized power output for a Class \(C\) amplifier operating at \(85 \%\) efficiency is calculated to be equal to 0.112 . Thus, a high theoretical efficiency and normalized power output is attainable by manipulating the second harmonic component in a Class \(F\) amplifier configuration.

A pulse amplifier using the theoretical analysis described above was constructed that operated at 425 MHz with a peak power output of 50 watts. The circuit construction used is given below in Figure 2. The transmission lines shown serve two purposes, one is to match the low output impedance of the


A. FILTER ELEMENT


FIG. F-5
LEVY A-Z, \(\mathrm{n}=19\)-2KW C.W. \(2: 1\) LOAD-HIGH POWFR TOW PASS FITTER; fc = 1.65 GHz . PASSBAND LOSS: 0.1 dB TYPICAL
device cullector to the standard 50 ohm output, and the other is to present the second harmonic loading required to produce the desired waveforms at the device collector for Class \(F\) operation.


The first step in matching the collector impedance of the device used to the circuit output is determinimg the impedance looking back at the device from the transmission lines. A model of the device used in the circuit design is given below.


Where:
\[
\begin{aligned}
& 1-.8 \mathrm{nH} \\
& \mathrm{C}_{\mathrm{OB}}=39 \mathrm{pF} \text { (measured at } 1 / 2 \mathrm{~V}_{\mathrm{CC}}=14 \mathrm{~V} \\
& \mathrm{R}^{\mathrm{OB}}=\left(\mathrm{v}_{\mathrm{CC}}-\mathrm{v}_{\text {sat }}\right)^{2} / 2 \mathrm{P}_{0}, \mathrm{~V}_{\text {sat }}=3 \mathrm{~V} \\
& =(25)^{2} / 2 * 50 \text { watts }=6.25 \text { chms } \\
& z_{L}=4.45 L-.163 \\
& Z_{L}=4.39-j .721 \text { at } 425 \mathrm{Mriz}
\end{aligned}
\]

In order to calculate the circuit elements necessary to match the device collector impedance to 50 ohms and manipulate the second harmonic loading, a computerized circuit optimization program was used. Withe the stubs modeled as shunt capacitors, (at the fundamental frequency) the optimized dimensions for the microstrip lines were calculated. The result values are shown in Figure 4.

figure 4

The optimized capacitance values were then used in a microstrip stub program which iterates the process of calculating an accurate value of \(E_{\text {eff }}\) from the dielectric thickness and the \(E_{\text {rel }}\) of the Teflon fiberglass material. From this, the dimensions of the stubs and the speed of the wave in the line were determined. The two stubs are lambda over eight in length at the fundamental frequency or lambda over four in length at the second harmonic Points \(A\) and

B on Figure 5 are open circuited which translate through a lambda over four stub transformation to present a second harmonic short to ground, thus providing the low-pass filter shown in Figure 1. Moving back towards the device collector from the circuit outpul. the second harmonid shorts at points \(A^{\prime}\) and \(5^{\prime}\) translate through the lambda over four lines to a high impedance which presents a second harmonic load at the collector.


The remainder of the circuit elements in Figure 2 are positioned to provide DC supply to the device collector while maintaining stability in the circuit. The series capacitors on the input and output are 510 pf chip capacitors for DC blocks. The inductor-resistor branches are ferrite core wire would inductors with a 15 ohm resistor to provide a supply path while presenting an open circuit to the RF power. The left-hand capacitor on the supply branch is a 1500 MF charge storage capacitor to preserve the squareness of the current pulse at the collector by preventing pulse slump and poor rise time. The right-hand capacitor is a . 1 MF parallel plate bypass capacitor to bring RF ground to that node to prevent any RF power from entering the
power supply or meters.

Along with the circuit in Figure 2, a circuit with exactly lambda over eight transmission lines, and a circuit with the optimized line lengths but using tuning capacitors instead of the stubs were constructed and tested for comparison. The three configurations are shown in Figure 6.


The data below shows the device collector efficiency, overall efficiency, and overall gain of the three amplifier configurations, where:
\[
\begin{aligned}
& \text { Collector efficiency }=P_{0} / V_{C C} * I_{D . C} \\
& \text { Overall efficiency }=P_{0}-P_{1} / V_{C C}{ }^{*} I_{D . C} \\
& \text { Overall gain }=10 \log _{10} P_{0} / P_{1}
\end{aligned}
\]

\section*{High Reliability Electrowechanical Switching}

\section*{by \\ J. Hoffman and H. C. Bell, Jr. \\ Wavecom/Loral \\ Northridge, CA 91324}

\section*{Abstract}

Recent developments and induetry trends in electromechanical switching are presented. Switch life, measured in millions of cycles per switch position is compared between what is obtainable in the laboratory and what switch manufacturers will guarantee. The maximum frequency of operation, recently extended from 18 to 26.5 Ghz can be expected to reach 40 Ghz soon, with the connector performance being the critical factor. Switch configurations of the single-pole \(n\) throw and transfer types are standard, and new configurations include the "S-switch" and n-port matrix switches. Drivers are available with TTL and optional BCD decoders built into the switch. Switch desion and fabrication techniques are focused on high reliability, including materials and processes for spacecraft and operating vibration levels up to 82 9rms-

Introduction
When the subject of hioh reliability electromechanical switches comes up, the first question that is usually asked is unhy electromechanical switches in the age of solid state? Comments then follow about the lower reliability of components with moving parts. The purpose of this paper is to present performance characteristics of electromechanical switches currently available that are accurately described by the term "high reliability."

Besides having no moving parts, solid-state switches have the advantages of very fast switching time and small size. The disadvantages of solid state switches generally include higher loss, less isolation, higher SWR, lower power handling, and higher price. Also, solid state switches do not offer many of the options that are available with electromechanical switches.

The type of switches described will be limited to those with coaxial RF connectors only.

Switch Operation
The functional block diagram of an electromechanical switch is shown in Figure 1. The actuator provides the necessary mechanical forces to perform the switching functions, which take place in the RF head. The key parts of the actuator are at least one solenoid (including a coil and plunger), and rockers and springs as required by

Circuit 1: lambda over eight transmission lines with tuning capacitors of
\[
\begin{aligned}
& \mathrm{C}_{1}=33.4 \mathrm{pF} \text { and } \mathrm{C}_{2}=18.1 \mathrm{pF} . \\
& \mathrm{P}_{\text {in }}=15 \mathrm{~W}, \mathrm{P}_{\text {out }}=73 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4.3 \mathrm{~A}
\end{aligned}
\]

Collector eff. \(=60.6 \%\)
Overall eff. \(=48.2 \%\)
overall \(\mathrm{gain}=6.9 \mathrm{~dB}\)
Circuit 2: optimally matched transmission lines with tuning capacitors of
\[
\begin{aligned}
C_{1}=24.0 \mathrm{pF} \text { and } \mathrm{C}_{2} & =8.45 \mathrm{pF} . \\
\mathrm{P}_{\text {in }}=8 \mathrm{~W}, \mathrm{P}_{\text {out }} & =54 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.7 \mathrm{~A} \\
& \text { Collector eff. }=71.4 \% \\
& \text { Overall eff. }=60.8 \% \\
& \text { Overall gain }=8.3 \mathrm{~dB}
\end{aligned}
\]

Circuits 3: optimally matched transmission lines with lambda over eight stubs.
\[
P_{i n}=7.7 \mathrm{~W}, \mathrm{P}_{\text {out }}=51 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=27.9 \mathrm{~V}, 1_{\mathrm{C}}=2.2 \mathrm{~A}
\]

Collector eff. \(=83.1 \%\)
Overall eff. \(=70^{\circ} .5 z\)
overall gain \(=8.2 \mathrm{~dB}\)

The above data was optimized and measured after careful tuning. The increase in efficiency is believed to be primarily due to an improvement in impedance matching along with a drop in the supply current necessary to maintain the specified output level. As shown in Figure 7 below, the highest efficiency was attained in a tight notch at 425 MHz . This notch is caused by
a small dip in the supply current, however, a relatively high level of efficiency was maintained over a 20 MHz bandwidth. Because a trade-off exists between gain and efficiency due to the fact that the collector waveforms can be overdriven to produce sharper edges, the data in Figures 7 and 8 was tuned for optimal efficiency and gain simultaneously to more accurately portray the liequency response shown below \({ }^{3}\)



the actuation mode. The RF head includes the RF connectors, center conductor probes, and reeds (contacts).

The driver circuit may be internal or external to the switch, and provides the selected actuation voltages. Optional indicator circuits permit external monitoring of the switch position and operation

Figures 2 through 4 illustrate the common types of actuation available in an electromechanical switch. In the latching confiquration (Figure 2) the switch remains in a position until a new control voltage is applied to another positions In the noraally open configuration (Figure 3) no position is connected until power is applied, and the position is disconnected when power is removed. In a failsafe switch (Figure 4) one position will remain cornected whenever power is removed.

Design Reliability
The industry standard guaranteed switch life currently being offered by switch manufacturers is one million cycles per position. Much longer life has been obtained in the laboratory, including a Wavecom SPGT switch which performed for more than 27 sillion cycles per position.

Actuator. The actuator subassembly is the most critical part of the electromechanacal switch from a reliability standpoint. Referring to figure 2, the actuator must provide a vertical force with no horizontal component. Any horizontal force will cause chatter,
wear, stress, fatioue, and eventual failure of the switch. A properly designed solenoid has parts which are independent of each other, resulting in a minimum of interference, and is capable of 150 million cycles with no impairment of function.

Reed The second most important part of the switch is the reed, which provides the electrical contacts. Two processes must be performed correctly on the reed heat treating and gold plating These processes are usually developed and maintained in a proprietary status by ach switch manufacturer. In achieving the 27 million cycles per position mentioned above, there was no change in insertion loss.

Temperature. The parts of a switch which are affected the most by temperature extremes are springs and solenoid coils, Standard spring steel will stiffen at -54 deg \(C\) and will soften and lose tension at +120 deg \(C\). A special corrosion-free spring material which stiffens at -100 deg \(C\) and softens at +370 deg \(C\) may be used instead. Colls may be constructed to function from -85 to +190 deg C. Using these techniques, an electromechanical switch will operate from -60 to +135 deg \(C\) with no degradation in loss, SWR, or isolation.

Vibration Wavecom switches in a normally-open multi-position configuration have passed operating tests with up to 82 grms random vibration.

Spacecraft. The manufacture of high reliability switches for space systems may require more material traceability and process

A spectrum analyzer was used to probe along the series transmission lines to determine the harmonic component at different locations. Figures 9 and 10 show the harmonic response for the optimally matched transmission lines with and without the stubs respectively. (The stubs replaced by tuning capacitors).

ficure 10
Mesaured at amplifier out put

As shown in the data above, there is more second harmonic component in the circuit with the stubs acting as a second harmonic load, yet the second harmonic component is removed from both when probed at the output. Since the efficiency increased from Circuit 2 to Circuit 3, it can be concluded that this rise in efficiency is due to the waveshaping caused by the harmonic load. It is also possible that a better impedance match resulted from using the stubs; however, the junctions of the stubs with the lines can only at best be approximated in a practical sense and is therefore difficult to determine for certain.

Thus, it has been demonstrated that high efficiency and power output are available in practical terms at a UHF radio frequency of 425 MHz . At this carrier frequency, a collector efficiency of 83.18 with a gain of 8.3 dB was achieved using the second harmonic waveshaping techniques and impedance matching described above.

Options
Internal terminations. All positions may be independently terminated in 50 ohms, with a 1.5 SWR maximum and 5 watts CW dissipation to 26.5 Ghz .

Indicators. As a result of recent improvements in indicator circuits, the sam lifespan is now possible for indicators as for the RF switch. Typically after a million cycles, the indicator DC resistance is less than 0.5 ohm

Driver logic. Most switch applications now involva computer control. Electromechanical switches can interface to IEEE 488, HP-1B, BCD/CMOS and TTL logic. In effect, almost any type of electronic interface is possible, ither internal or external. The driver circuits can also control other circuits besides the switch.

Confiqurations. Figures B-11 show the details of SP2T failsafe and latching switches, and SPGT failsafe and normally open switches. These are representative of conventional configurations. Options in these types of switches include normally open with failsafe to position 1, break before make, and either electronic or mechanical make before break (capable of hot switching).

Figure 12 is a schematic of the common transfer switch, which permits switching between the combinations \(1-3,2-4\) and \(1-2,3-4\). A more general type is the " S -switch" shown in Figure 13. This adds the combination 1-4, 2-3 to those of the transfer switch.

Another type of configuration is called a matrix switch (not to be confused with a switch matrix), as shown in Figure 14. The center position is a dummy one that has no external connection. By appropriate actuation, any two external ports can be commected to each other through the center, with all other ports open or terminated internally. Variations are possible such as adding reeds between adjacent ports, wich allows the simultaneous connection of certain port pairs.

\section*{Applications}

Because of the increasing reliability and performance of electromechanical switches, they are now being used routinely in highraliability space, airborne, missile and ground systems. They continue to be widely used in test equipment, instrumention and communication systems.

\section*{FOOTNOTES}
\({ }^{1}\) Frederick H. Raab, Ph.D. "Fundamental Limitations in Class-E and Class-F Power Amplifiers, " Green Mountain Radio Research Co., Copyright 1982.
\({ }^{2}\) Complete Fourier Analysis by
Frederick H. Raab, Ph. D., "Analysis of Second-Harmonic-Peaking Power Amplifier", Green Mountain Radio Research Co., Copyright, 1982.
\({ }^{3}\) David M. Snider, "A Theoretical Analysis and Experimental Confirmation of the Optimally Loaded and Overdriven RF Power Amplifier", IEEE Transactions on Electron Devices, Vol, ED-14, No. 12. December 1967.

\section*{BIBLIOGRAPHY}
1. J.H. Johnson, High Power Solid State Circuit Design, Unpublished Paper, 1985.
2. H.L. Krauss, C.W. Bostian, and F.H. Raab, Solid State Radio Engineering,

New York, John Wiley and Sons, 1980.
3. F.H. Raab, Analysis of Secdnd-Harmonic-Peaking Power Amplifier, Green Mountain Radio Research Co., Copyright, 1982. (RN82-26).
4. F.H. Raab, Fundamental Limitations In Class-E and Class F Power Amplifiers. Green Mountain Radio Research Co., Copyright, 1982 (RN82-18)
5. D.M. Snider, A Theoretical Analysis and Experimental Confirmation of the Optimally Loaded and Overdriven RF Power Amplifier, IEEE Transactions on Electron Devices, Vol, ED-14, No. 12, December 1967.
contral than is required for other applications. Depending on system requirements, some materials and parts may be prohibited due to outgassing or radiation sensitivity. Taking these into account, electromechanical switches are well-suited for space applications.

Performance
RF characteristics- Single-pole switches with two through six positions and SMA connectors are capable of the following performance through 26.5 Ghzs
\begin{tabular}{ll} 
SWR & 1.5 maximum \\
Insertion loss & 0.5 cth maximum \\
Isolation & 60 do to 18 Ghz \\
& 50 db to 26.5 Ghz
\end{tabular}

Swept-frequency performance data are shown in Figures 5-7.
Until recently, the industry standard performance was only up to 18 Ghz. Thig was extended to 26.5 Ghz through careful refinement of the design. The high frequency SWR performance is determined by the electrical characteristic: of the connector and the RF cavity ssee Figure 8). The SMA connectors used are very rigid and not susceptable to damage from many matings, and they perform better than APC 3.5 mm or K connectors through 26.5 Ghz. Sources of discontinuities which affect the SWR are the transitions from the coax probes to the reed, and the teflon guide pins in the sides of the RF cavity. By experimentally matching out these discontinuities, and by
maintaining close mechanical tolerances in fabrication, good SWR performance is possible.

The absolute upper frequency limit is determined by the isolation, which results fram the waveguide-below-cutoff characteristic of the RF cavity. As more switch poles and positions are added, the high frequency performance suffers due to the size of the RF cavities. The maximum operating frequency for some representative production switches are
\begin{tabular}{ll} 
2P2T & 24 Ghz \\
SP8T & 19.5 Ghz \\
SP10T & 18 Ghz \\
SP12T & 12 Ghz
\end{tabular}

Using new designs, switches in the pre-production stage include SP2T, 2P2T, SP4T and SP6T configurations which operate up to 40 Ghz.

Switching. The industry standard switching time has been 20 ms. This has been reduced to less than 7 ms for normally open and 2.5 ms for latching modes. A switching time of less than 1 ms can be expected in the near future.
power handling. The power handling capability of electromechanical switches is limited usually by that of the RF connector.

\section*{modvlation teciniques for biotelemetey}

\section*{by}

Robert W. Vreeland
University of California, San Francisco
Research and Development Laboratory 533 Parnassus Avenue, Roomu-10
San Franciaco, Califf. \(94143-0702\)

Biotelemetry can be defined as a means of wireless transmission of physiological data. Transmission can be via radio, infrared or ultrasound. The frequencies of interest range from \(D C\) for temperature telemetry to several thousand Hertz for muscle voltage monitoring.

In aerospace biotelemetry, the telemeter is caried in the aircraft or spacecraft and need not be extremely lightweight. This is not the case, however, when ambulatory people or animals must be monitored. Ambulatory biotelemetry has necessitated the development of a number of interesting battery saving techniques.

Probably the first ambulatory biotelemeter was developed by Norman Holter. It was about the size of a five gallon water can and had to be carried on a pack board. This was followed in 1952 by a compact telemeter using Raytheon subminiature tubes (1).

The advent of the transistor led to renewed interest in ambulatory biotelemetry in the late fifties and early sixties (2-6). These early telemeters usually exployed self excited oscillators operating in the \(100 \mathrm{MHz}_{\mathrm{z}} \mathrm{FM}\) broadcast band (Fig 1 ). This circuit utilized the patient as aransmitting antena.


MODULATION

Fig. 1. A 100 MHz self excited oscillator. The transiftor is a 2 N835. Modulation sensitivity is adjusted by selecting the biasing resistor (ri). The batteries are miniature 1.35 volt mercury cells.

Although transistor manufacturers don't like to mention the fact, the junctions in bipolar transistors are actually voltage controlled tuning diodes. Telemeter designers soon learned to utilize this property as method of frequency modulation. A base to emitter signal of only about a millivolt was found to produce adequate deviation at 100 MHz . This meant that the amplifier for telemetering a 50 microvolt fect (brain voltage) signal need have a gain of only 20 .

A major problem with these direct \(F M\) transmitters was motion artifact due to detuning of the tranmitter when the person being telemetered moved his hand near the tank coil. The problem was solved by using an FM-FM system with a frequency modulated audio subcarrier. This technique is still used ill most EKG (heart rate) telfmeters.



Figure 10. SPbT failsafe switch with terminations.

Hand capacitance detuning is a problem only when low frequency signals such as heart voltage or brain voltages are to be telemetered. In the case of higher frequency signals such as muscle voltage, the movement artifact can be removed by high pass filtering. We have used this technique in a simple multiplex telemeter for muscle voltage and muscle tension (7). Direct \(F M\) was used for the muscle voltage and a high frequency subcarrier was used to transmit data from the muscie tension strain gage.

Much of the early interest in biotelemetry was for EEG (brain valtage) studies. A typical application was the location of a seizure focus by implanting multiple electrodes within the patient s brain. A continuous multichannel recording was made day and night until the patient had acizure. The focus was then located by observing which electrodes detected the strongest signal. The epilepsy could then be treated by destroying amall portion of the brain at the seizurefocus. This was usually done by heating the brain with adio frequency probe. Cases of this type are now usually treated with drugs rather than surgery.

In the beginning, multiple channel recording was done with a separate transmitter for each channel. This was soon found to be impractical. The \(1 R I G\) format of multiple FM subcarriers was then used to some extent (Fig. 2). However, it had afairly heavy battery drain because separate subcarier oscillator was required for each channel. Continuous operation of the transmitter and all subcariar oscillators was required.

It soon became evident that the best way to conserve


Fig. 2. The IRIG format of multiple subcarriers was used in some early telemeters. Its major disadvantage was excessive battery drain.


Fig. 3. Pulse position modulation can be generated by a train of pulse width modulated one-shots. This circuit user SN518B one-shots. They are modulated by sn 524 A amplifiers.
battery power was to pulse the carrier on and off. As early as 1961 Kamp and Storm Van l.eeuwen (8) used a combination of pulse width modulation and pulse repetition rate modulation in a t o channel system. Although a third channel could have heen added


Figure 1. Functional block diagram.
Figure 3. Normally open switch.


Figure 4. Failsafe switch.


Figure 7. sealation plot.
by employing pulse amplitude modulation they recognized that this would have ben undesirable because of amplitude variations due to signal fading.

A typical hard wired electroencephalograph machine has eight or more channels. Researchers have always wanted to telemeter that number of signals with low battery drain. In order to do this, various pulse coding schemes have been tried. The simplest and most commonly used is pulse position modulation. In this system, the spacing betwen any adjacent pair of pulses represents the height of an amplitude sample for a particular channel. The data sampleafor the various channels are transmitted sequentially. At the end of the pulse train there is either synchronizing pulse or aynchronizing space. A new pulse train representing the next set of amplitude samples is then transmitted.

One of the earliest pulse position modulation telemeters used a chain of pulse width modulated one shots separated by buffers (9) (fig. 3). The buffers introduced a short delay between adjacent oneshot pulses so that a pulse train was generated when the one-shot outputs were combined in a NOR gate. This pulse train triggered a one microsecond one-shot which in turn keyed the transmitter. Each pulse train was initiated by a clock pulse. There was a synchronizing space at the end of each pulse train.

The received pulses were fed serially into a shift register with parallel outputs for the four data channels. At the start of each received pulse train a reset one-shot was triggered. Its time constant was chosen so that it would time out during
the sychronizing space at which time it reset the shift register. Other investigators (10) have used a synchronizing pulse rather than a sthchonizing space. This, however, required special circuitry to distinguish between the synchronizing pulse and the data pulses.

We subsequently built a six channel telemeter using the same basic multiplexing one-ahot chain (11). This technique worked well but did not make the best use of available battery power.

In order to prolong battery life, we decided to eliminate the one-ahots and substitute a ramp generator and a volage comparator. These circuits were common toll of the nine data channels (12). The data channels were sequentially connected to the comparator by CD4016 CMOS switches (Sl-S9) (Fig. 4).


Fig. 4. A simplified block
diagram of aine channel pulse poaition modulation telemeter. The signal
input switches are
CD4016 \({ }^{\circ}\). A MMT 3823 J FET
is used to dump the capaci-
tor in the ramp generator
after each data sample.
Pulse spacing is determined
by the reference level
Ret on the comparator by
the input signal sample.
Actually pighteen switches were used berause each input was push


Figure 11. SP6T normally open switch.


Figure 12. Transfer switch schematic.


Figure 13. "S-switch" schematic.


Figure 14. Matrix switch schematic.
pull. Sequencing of the switches was done by a CD4017 shift register. The selected signal channel was amplified by the common preamplifier and used to establish a reference level on the voltage comparator. If the signal level was high, the reference level was high and it took the ramp generator langer to run up to this reference level. When the reference level was reached, the comparator dumped the ramp generator integrating capacitor via a \(J\) FET. It also pulsed the tranamitter on and shifted the shift register to enable the next input chanel. After all nine channels had been sampled there was a synchronizing space. A clock then reset the shift register.

This circuit eliminated the need for separate preamplifiers and separate pulse width modulators for each chancel. The elimination of separate preamplifiers was due to the low noise characteristics of CMOS switches. This property of cmos is not well known. Let us suppose that we are switching with a single MOS FET other than CMOS. The fate must be pulsed high to close the switch. Since the line we are switching is high impedance ( 200 K ohms) a portion of the control pulse will be coupled via the gate to channel capacitance into the signal line. Now, let us assume that we are using a cmos switch. This consista of \(P\) channel MOS FET in parallel with an \(N\) channel MOS FET. Since these two MOS FETS require opposite polarity control pulses the portions of the control pulses that are capacitively coupled into the signal line effectively cancel. This circuit worked well for recording from depthelectodes implanted within the brain since the brain signal level was a couple of hundred microvolts peak to peak. For scalp electrode
recording an individual preamplifier for each channel was required.

The NASA people have built an eight channel 0.l percent accuracy pulse code modulation telpmeter (13). The data aignals were first converted into pulse width modulation by amp generator. These pulses gated a 10 MHz oscillator. The 10 MHz pulses within these gated pulse trains were counted hy a 10 stage counter. Output from the counter went to parallel in, serial out shift register which in turn keyed the transmitter.

All of the foregoing telemetery sybtems were for AC signals. Drift is a major froblem when DC signals such as temperature are telemetered. Fryer (14) han used a free runing multivibrator as a subcarier oscillator. One of the two time constant determining resistances was the temperature sensing thermistor. The other was a reference resistor which established the zero reference level. The telemetered temperature was proportional to the ratio of these two resistances.

\section*{References}
(1) Glasscock, W.R. and Holter, N.J. Radioelectroencephalograph For Medical Research, Electronics, 1952, 25: 126-129
(2) Vreeland, R.W., Williamb, l..A., Yeager, C.l. and Henderann, J. Unit Telemeters Scalp Voltages. Electronics, 1958. 31:86
(3) Fischler, H., Blum, B., Frei, E.G. and Streifler, M. Telemetering of efgefrom Unrestrained Convilsive Cats By A Transistorized Anplifier-Transmitter. Electroenceph, Ciin. Neurophysiol., 1961, 13: 807-812
(4) Vreeland, R., Collins, C., Williams, L., Yeager, C.. Gianascol A. and Henderson Jr., J.A. A Subminiature Radio EEG For Studies of Disturbed Children. Electroenceph. C1in. Neurophysiol., 1963, 15: 327-329
(5) Fryer, T. B. and Deboo, G. J. A High Performance Miniature Biopotential Telemetry syatem. Proc. lith An. Conf. Engr. In Med. and Biol., Nov., 1964: 39
(6) Vreeland, R.W. and Yeager, C.l.. Application of Subminiature Radio Telemetry Equipment to EEG Analysiefrom Active Subjects. Proceedings of the \(6 t h\) International Congrese of Electroencephalography and clinical Neurophysiology, Aug., 1965
(7) Vreeland, R.W., Chierici, G. and Miller, A.J., An Implantable Telemeter For Long Term Studies of Muscle Tension and EMG, Proc. 7 th Int. Symp. on Biotelemetry, Stanford, Calif., Aug. 1982
(8) Kamp, A. and Storm Van Leeuwen, W.A. Two-Channel EEG Radio Telemetering system, Electroenceph. Clin. Neurophysiol., 1961, 13: 803-806
(9) Vreeland, R.W. and Yeager, C.l.. A Four Channel Integrated Circuit Telemeter for Seizure Monitoring, Digest of the 7 th International Conference on Medical and Biological Engineering, 1967, Stockholm, Sweden
(10) Freyer, T. B., Sandler, \(H\). and Datnow, B. A Multichannel Implantable Telemetry System. Med. Research Engr. Mar.-Apr., 1969: 9-15
(11) Vreeland, R.W., Yeager, C.l. and Henderson, J., A Compact Six-Channel Integrated Circuit EEG Telemeter.

Electroenceph. C1in. Neurophysiol., 1971, 30: 240-245
(12) Vreeland, R.W. and Yeager, C.l.. Low level "cos/mos" Multiplexing for Simplified EEG Telemetry, Biotelemetry il. 2nd Int. Symp. 1974, Davos, Switzerland: 55-57 (Karger, Basel 1974)
(13) Fryer, T.B. and West brook, R.M. A Multichannel Biotelemetry Transmitter Using \(\quad\) PCM Subcarrier. Biotelemetry II: 202-204 Proc. 2nd Int. Symp. on Biotelemetry, Davos, Switzerland, May, 1974 (Karger, Basel 1974)
(14) Fryer, T.B., Deboo, G.J. and Winget, C.M. Miniature Long Life Temperature Telemetry System. J. Applied Fhysiology, Vol. 21, No. 1, Jan., 1966: 295-298

Microprocessor Control Conslderations for Modern Rr Signal Generators
\[
\begin{gathered}
\text { by } \\
\text { undzi }
\end{gathered}
\]

Ted J. Dudziak, P.E
Asst. Product Development Manager
Wavetek Indiana, Ine.
P. O. Box 190

Beech Grove, II 46107
Since the introduction of the microprocessor in the early 70's, there have been many improvements in technology. These improvements have allowed the microprocessor and its assoclated control elements to be more frequently incorporated into electronic designs. This paper examines some of these improvements and discusses thee in the context of new RFignal generator design.

The most significant improvement. affected the microprocessor itself. Improvements in menufacturing lead to more efficient chip layouts and faster apeeds which allowed more high-level functions to be included in the basic device. Figure 1 illustrates this by thowing the types of functions mich are now available in a single package. The resulting reduced chip count allows for a more cost effective design. In addition, the single-chip microprocessor now creates the possibility of including high-level control in the lowest levels of a design. For an RF design mich include: vCO, the high-level functions can include frequency control, linearity correction, leveling, calibration, and dynamic loop compensation. There is a device specifically made for TV tuner control which includes a ample phase detector and frequency prescaler.

Additional ROM/EPROM allows for more code to be written which means more control features. On-board ram usually satisfles the software engineers
programing requirements. In addition, a portion of the rar can usually be battery backed up so that information such as calibration data can be retained during power-dom conditions. The serial port is useful for providing simple interface to other microprocessors in the design. A programable timer is important in providing those valuable delay aseocinted with real-world events such se settling times associated with narrow loop bandwidths. In adition to delays, the timer function usually includes an event count feature. This may be useful for control event timing during aigital sweep. The \(1 / 0\) ports provice a simple parallel interface to control olements such as D/A converters, counters, mid storage registers. They may almo be used to implement simple serial date-bus.

In more recent devices, EEPROM has been included allowing for nonvolatile date storage without the battery mentioned above. There is, however, still a linitation on the number of write cycles for these storage elements. EEPROM should etill be used only for storing data which is infrequently modified, e.g. calibration data.

The A/D converter opens a mole range of possibilities such as a comprehensive self-test and diagnostics as well as calibration of detected RF level and modulation circuitry.

CMOS technology appears to be dominating over older technologies such as bipolar (TIL) and MHOS. The amall geometries are allowing for faster speeds while retaining the overall low power advantage over the older technologies. In addition, total chos design allows for fully static operation. This means that the timing element or oscillator of aigital element can be stopped
without affecting the state of the digital operation. HCHOS is the nomenclature for high-speed low-power digital devices.

Improvements in ideroprocessor design are not linited to the hardware. Although the Von Hewman architecture is still retained, instructions have been added to the traditional bicroprocessor control set

Softrare Engineers routinely set and clear flag and ztatus indicators junt as Hardmare Engineers utilize single bit control mechanismillike those required by analog tranamission gates and relay controls. The System or Product Engineer will want to group the non-byte control lines into logically grouped, however, highly mixed byte eleaente to keep the hardware count \(10 w\). This means a lot of softrare activity on a bit basis. Bit orientated instructions which SET. CLEAR and TEST/BRAMCH are now available which allow more efficient programaing and faster throughput. These inatructions were traditionaliy accomplished by AMDing and or'ing a mask byte to the desired control register. The mask byte would affect the desired bits of the control resister.

As mentioned previously, HCHOS technology allow for fully static operation. Two instructions (STOP and wair) have been aded to take advantage of this. WaIr causes the microprocessor to halt operation mile the on-board oscillator remains on. STOP halts the microprocessor operation but shuts off the on-board oscillator. The microprocessor returns to full operation through its IMTERRUPT facility. The microprocessor resumes operation when a restart or make-up signal is applied to the interrupt pin of the microprocessor. These instructions provide two important operational advantages: 1) extremely

Low power consumption and 2) no interference to surrounding circuitry (conducted) or the external (radiated) anvironment while in the sTop or wair modes.

When designing an RF signal generator there are two major control considerations which affect the overall instrument performance. The first is the user interface (front-panel keyboard, display and GPIB) and the second is the overall control mechanism wich menipulates the RF section (frequency, lavel and modulation). Attention to both of these areas is important to good overall user friendiness.

In general, it if considered to be good practice to keep the processing speed of user orientated device below 100 maec. This will minimize an offect called "rubber-banding". This effect is noticed when the user modifies an instrument setting and does not notice an effect on the instrument operation until after the naxt setting has been obtained. If a apin knob or cursor keys are used on the front panel, the operator will overshoot the desired setting and will have to go through several iterations of adjustment to got to the desired operating point.

The Wavetek Model 2500 RF Signal Generator utilizes the Motorole HC146805e2 microprocessor and a eerial data-bus control structure. The user interface is entirely interrupt driven except for the displays which use dedicated drivers for the cultom LCD's.

Either a parallel or serial data-bus atructure can be used when designing the control mechanism. Since the data-bus will be the mechaniam for controlling both the front-panel operation and the RF sections, special

\section*{E.H. Nordholt and H.C. Nauta*} Delft University of Technology Dept. of Electrical Engineering

Mekelweg 4, 2628 CD DELFT The Netherlands

\section*{ABSTRACT}

This paper presents the bipolar integrated input-amplifier and frequency-conversion circuitry of an \(A M\) upconversion front end for car-radio recelvers. Thanks to the upconversion concept and the excellent performance of the wide-band high-dynamic range front end, tuned preselection filters can be onitted, thereby eliminating the need for adjustments and reducing production costs considerably. Tuning is easily accomplished by varying only the oscillator frequency.

The dynamic range of the front end exceeds 120 dB . Field strengths up to about 20 and \(200 \mathrm{mV} / \mathrm{a}\) can be handled without noticeable second- and third-order intermodulation, respectively.

\section*{INTRODUCTION}

Conventional AM receivers for long-wave and medium-wave reception use intermediate frequencies somewhere between 450 and 490 kHz . Such receivers need a preselection filter to reject the image and other spurious channels. This filter has to be tuned along with the local oscillator. Band switches and several adjustments are required to ensure adequate tracking.

Well-aligned receivers with mechanically tuned variable capacitors or colls can provide excellent performance, but are expensive. The use of varactors for tuning as an alternative offers the possibility of digital synthesizer tuning. However, their nonlinearity reduces the useful dynamic range of the preselection filter. Besides, band switches and adjustments are still needed.

This paper presents the front-end circuitry of an upconversion receiver for car-radio with a block diagram as shown in

Figure 1. The complete receiver has been integrated in a conventional bipolar process ( \(\mathrm{f}_{\mathrm{Tnpn}}=400 \mathrm{MHz}\) ). Channel selectivity has been realized by a low-cost 10.7 Mlz quartz filter. The upconversion concept evades the need for tuned preselection. A low-pass filter at the mixer input effectively rejects image and local-oscillator-related spurious responses. However, a proper nolse match to the whip antenna has to be realized in a wide-band lowdistortion amplifier, since a fixed low-pass filter in front of this amplifier would seriously impair noise performance [1]. The gain of this amplifier has to be kept low because very large input signals have to be handled linearly. As a consequence, the noise and intermodulation performance of the frequency-conversion ctrcuits (mixer and local oscillator) are also very important.

The first section of this paper discusses a capacitive-feedback wide-band input amplifier with an optimally blased bipolar input stage. The dynamic range of this amplifier has been extended by means of an automatic gain switch, which is activated when very large field strengths are present somewhere in the spectrum.

The second section deals with the frequency conversion circuits. A double-balanced switching mixer, a negative-resistance "one-pin" LC oscillator and a buffer stage maximize the dynamic range. In order to accurately fix the oscillator output amplitude even with large parameter varlations, while maintaining an acceptable noise performance, a novel type of AGC has been employed.

\section*{input amplifier and agc switch}

\section*{amplifier configuration}

The low-frequency equivalent circuit of a car-radio whip antenna, including the cable to the receiver input is shown in Figure 2. The open antenna voltage is given by
\[
v_{a}=h_{\text {eff }} E_{a} \text {. }
\]
where \(E_{a}\) is the electric field strength and \({ }^{h_{p f f}}\) is the offective height. For a whip antenna, heff equals half its physical length \(1_{a}\)

\footnotetext{
*Also with: Sagantec b.V., Croy 5a, 5653 I.C EiNDHOVEN The Netherlands
}
consideration was given to the selection to minimize conducted noise to the \(R F\) sactions, reduce the device count for implementins the deta-bus, and maintain good overall throughput to ensure good user response. The gerial data-bus easily satisfies the first two design criteria. There is an obvious 8:1 speed disadvantage over a byte orientated parallel data-bus. The real question is "Kow bad is it?" Measurements made on the Model 2500 show that the entire RF control structure of 112 bite or 14 bytes can be transmitted in lewn than 10 meec. Figure 2 shows a schematic of the datu-bus and Figure 3 showe a flow chart of the algoritha used to transmit the data.

Within the control circultry of the dF section the 74HC595 shift register was the primery storage element. Theme devices were cascaded as necessary to complete the control strings. There are six (6) control strings and atrobe signal. Table I shows the partitioning of the control functions.

\section*{TABLE I. COMTROL FUBCTIOM STRIMGS}
vco Control
Trequency Divider
DDS Protion
DDS Programaing
Output Level and FA Deviation Correction Register Strobe
table il. status imdicators
- 400 Hz square Wave
- \(\quad \mathbf{~ F r e q u e n c y ~ C a l i b r a t i o n ~}\)

Fi Over-Deviation
Lo-Loop Unlock
Main-Loop Unlock
Reverse Power Protection Trip Unlevel

Several error conditions can be detected and indicated to the operator on the front-panel. Table II lists these as well as two additional status lines.

The 400 Hz clock line is read during the pewer-up sequence to determine if the frequency reference is operational. Since the 400 Hz output is the last output in the reference chain, this is just like taking its pulse. An error wll also occur if the rear-panel switch is set to EXT REF and the oxternal reference is not connected.

The other status line is ured to implement afrequency self-calibration routine for each of the four vco's. In this routine, each of the oscillators is calibrated and the results stored in the battery backed-up ram. The entire frequency va. voltage characteristic is measured for aech oscillator. Mo external equipment is required.

Another contributor to generator performance is computational throughput. Hicroprocessors are not very good number crunchers. While this may seen contrary to the primary usage of aicroprocessor, the existence of the floating-point coprocessor is evidence that the need exists for better arithoetic capability. The computation of a transcendental function should always be avoided. Floating-point multiply and divide routines should be used only when absolutely necessary while the use of add and subtract should be minimized. BCD representations are generally very acceptable even though they are inefficient for raM storage. Binary representations are native to the microprocessor but are difficult to interpret as the result is usually always binary related and not in nice multiples of 10 .

\section*{\(h_{\text {eff }}=\frac{1 / 2}{}{ }_{a}\).}

In conventional recelvers, the source capacitance \(\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{c}}\) forms an inherent part of the preselection filter. Its reactive part is thus tuned out, thereby significantly simplifying the realization of good notse and intermodulation performance. It can be shown [1] that a filter that covers the whole band to be received and that includes the source impedance would unacceptably degrade nolse performance. Therefore a wide-band amplifier has to be used.

A frequency-independent response to the electric field, and consequently to the open antenna voltage, is obtained in a capaci-tive-feedback amplifier according to Figure 3. The gain of this amplifier is approximately given by
\[
\frac{v_{o}}{v_{a}}=-\frac{c_{a}}{c_{f}}
\]

Note that the cable capacitance ideally does not influence the gain. The impedance level of the low-pass filter behind the preamplifier is chosen as high as \(470 \Omega\) to keep the output current low. Insertion loss has been kept saall by using an asymmetrical filter terminated in the high input impedance of the voltage-tocurrent converter of the mixer.

\section*{amplipier implementation}

Figure 4 shows the circuit diagram of the wide-band input amplifter. The signal path is formed by the NPN transistor \(Q_{A}, Q_{B}\) and \(Q_{C}\). The noise of the circuit is determined predominantly by the first two stages. Assuming that the blas current of the second stage is much larger than that of the first stage, the spectra of the equivalent input noise sources of the amplifier can be approximated as
\[
S\left(v_{n}\right)=4 k T\left\{r_{b A}+r_{b B}+r_{e A} / 2\right\}, S\left(i_{n}\right)=2 q I_{B} .
\]

Referring to figure 5, the spectrum of \(\mathrm{v}_{\text {eq }}{ }^{\text {in }}\) sertes with the antenna voltage \(\mathrm{v}_{\mathrm{a}}\) can be written as
\[
s\left(v_{e q}\right)=\left\{\frac{\left(c_{a}+c_{c}+c_{f}\right)^{2}}{C_{a}}\right\} s\left(v_{n}\right)+\frac{1}{w^{2} C_{a}^{2}} s\left(i_{n}\right) .
\]

The equivalent noise voltage ( \(v_{\text {eq }}\) ) in a 2.5 kHz bandwidth and for \(r_{b A}+r_{b B}=100 \Omega\) is depicted in Figure 6 for various values of the input-stage blas current. A tradeof \(f\) is observed between highand low-frequency nolse performance. An acceptable compromise is obtained at a bias current of \(50 \mu \mathrm{~A}\). The equivalent nolse voltage than equals \(0.8 \mu \mathrm{~V}\) at 1 MHz and 1.5 nV at 150 kHz measured in a 2.5 kHz bandwidth

In order to achieve a high loop gain, the second-stage load is made very high by means of active bootstrapping \(\left(Q_{1}-Q_{4}\right)\). The loop gain has a dominant pole determined by the fmpedance level at node \(B\). The impedance is formed by a capacitance with a value of about 10 pF . With a feedback capacitance \(\mathrm{C}_{\mathrm{f}}=22 \mathrm{pF}\), a gain of about 0.6 and a bandwidth of 60 mHz is obtained. In order to minimize intermodulation due to high-frequency input signals a smaller bandwidth is highly desirable; however, this should not be realized at the expense of a smaller slew rate. The only appropriate technique to reduce the bandwidth without deteriorating, as a result of slew-rate \(1 i \mathrm{mitations}\), is the use of plantomzeros [2]. A network consisting of two colls and a resistor in series with the amplifier input provides such zeros. It has been designed such that the amplifier nolse performance is scarcely degraded and the frequency response is 3 dB down at 7 miz .

The output stage is blased at a collector current of 6 mA and can deliver a peak-to-peak voltage of 4 V to the low-pass filter. In low-end applications a fixed feedback capactior of 22 pf can be used. In that case an antenna voltage of about 2 V , corresponding to a field strength of \(4 \mathrm{~V} / \mathrm{m}\) can be handled. The total equivalent noise (including mixer contributions) can then have a value of 1.6 \(\mathrm{HV}(B=2.5 \mathrm{kHz}\) ). The dynamlc range exceeds 120 dB . Second- and third-order intermodulation products become noticeathle (i.e. are equal to the nolse floor) at input-signal levels of 15 and 100 mv . respectively. These measurement results bring the second- and third-order intermodulation-free dynamic range (iNFDR) to 80 and 97 dB , respectively.

A good compromise is to perform any anslog sealing required to give a "good" result. For instance the level control DAC is a 10 bit binary device with the LSB scaled for 1 gV gas of RF output. This gives a 1 gV to 1.024 V control range. Logarithaic or dBa representations are obtained by first converting the dBa value to volta through the use of a precalculated look-up table. The binary result is then applied to the 10 bit dac.

The frequency control is primarily BCD. This keeps the reference frequency an even value and simplifies the required arithmetic.

An interesting concern is the organization of the data ntrings. It is recommended that the data flow be from left to right or LSB shifted out first. This means that the most significant byte of BCD control string will be the last to the transmitted in the serial string. Logical control string organization reduces the amount of manipulations required by the software to fornat the string before it is transmitted.

One method of improving the user response time would be to run the microprocessor clock at faster rate. The HC146805E2 runs at a hitz clock rate which result: in a 1 MHz cycle time due to internal divide by circuitry. hCmos devices are running at toggle rates in oxcess of 30 mHz . Succassful experiments were performed at clock rate of B hiz or 2 miz cycle times, however, the standard device is not guaranteed at those speods. Faster parts could be selected by the manufacturer. Wote that a change in processor apeed affects the value of the delays produced by the microprocessor's timer element.

The Model 2500 utilizes a single microprocessor to handle both the front-panel operations as well as the RF control. The previously described
clock diracted serial data-bus performe the commication to each of the sections, An alternate approch would be to have two microprocessors, one for each of the required control functions. Commications between each microprocessor would take place with either a bi-directional serial or parallel data-bus. The Model 2500 does use an additional microprocessor to inplement the standard GPIB commications festure. A parallel 8 bit bidirectional data-bus provides the data exchange mechanisa. The handshake mechanism has been simplified for a two microprocessor implementation. However, multiprocessor parallel data-bus structure has been conceptualized called quick-bus. It provides a data exchange mechanim for up to 14 nicroprocessor controlled -lements. There are some sinilarities co the VII bus oparation, however the simplification makes anltiprocessor parallel data-bue practical for applications such as an RF signal generator or aweeper. The signaling and arbitration logic is realizable in a smple Programable Array Logic (PAL) device.

The front-panel was designed for maximan flexibility and smooth operation. Two custon LCD displays with switchable EL back-lighting were used. The modulation and level displaye were designed so they are interchangeable. The keyboard matrix is implemented with two MSI devices and can be expanded up to 64 elements. The spin-knob is a conductive plastic incremental encoder which mells in modest quantities for eight dollars. This is in contrast to the optical encoders which sell for 30 to 50 dollars. The keyboard and spin knob are serviced on demand through the interrupt service routine. The interrupt facility providen minimum response time for the user.

\section*{Autosatic gain switch}

In order to further increase the dynamic range of the input amplifier, the gain is switched automatically to a lower value as soon as a certain input level is exceeded. Figure 7 shows the basic implementation, where the position of the switch has been chosen such that it has no detrimental effect on noise and intermodulation performance. An external JFET is used as a switch. It is driven by a logic signal obtained by appropriate detection and comparison with a reference level of the amplifier output signal. The comparator hysteresis is chosen 3 dB more than the required gain variation so as to obtain a safe margin, where the gain remains low before the switch is deactivated, thereby avoiding bouncing.

In order to detect the signal level sufficiently accurately, a full-wave rectifier is employed. Comparison with the reference level is performed by two cascaded comparators, the first of which has the required hysteresis. The second comparator is added to avoid a possible source of instability in the switch operation. With \(C_{f 1}=10 \mathrm{pF}\) and \(\mathrm{C}_{\mathrm{f} 2}=30 \mathrm{pF}\), field strengths of \(2 \mathrm{~V} / \mathrm{m}\) and \(8 \mathrm{~V} / \mathrm{m}\), respectively, can be handled linearly. The noise floor in a 1.5 kHz bandwidth lies at 1 and \(2 \mu \mathrm{~V}\) at 1 MHz , respectively. Se-cond-and third-order IMFDR are at 77 and 90 dB when the switch is deactivated and at 86 and 97 dB when it is activated.

\section*{mixer, buffer and local oscillator}

Since the preamplifier has to handle large signals at a restricted supply voltage ( \(V_{\text {Bmin }}=7.5 \mathrm{~V}\) ), the gain is limited to a rather low value. The same holds for the conversion gain of the mixer. The large dynamic range desired and the low gain values involved make the noise and distortion originating from the frequency conversion action more important than in conventional receivers. When infinite betas and a zero switching time are assumed, the current transfer \(i_{0} / i_{i n}\) of a double-balanced mixer (Figure 8) does not contribute to noise and distortion. In the case of finite betas, the distortion is generated by current-induced beta varlations and the nolse is determined by the base-current shot noise, exclusively. Finite switching times introduce additional wixer distortion, since the signal current is transferred in a
nonlinear way from input to output during the switch transitions. Finite switching times also lead to other noise contributions besides the base-current shot noise.

Without a doubt, the best mixer performance is obtained when it is driven by a high-slope local-oscillator signal. Ideally, the "finite-slope" noise contributed by the conversion process is then completely determined by the local-oscillator noise. In the fre-quency-conversion circuitry described here, this situation has been accomplished to a reasonable extent. The mixer switching tiae is less than 5 ns .

In order to obtain adequate noise performance in the local oscillator an LC oscillator is preferred over a relaxation oscillator. Pulling effects are avoided by employing a limiting diffe-rential-pair stage that drives the mixer. Though this limiting action may increase the white notse floor of the local-oscillator signal, the carrier-to-noise ratio of the output signal is still sufficiently high so as not to degrade the receiver noise performance significantly.

The amplitude of the oscillator sine-wave should be fixed well enough to guarantee that the differential-pair buffer stage acts as a current switch. Some form of automatic level control in the oscillator is required to make the amplitude virtually independent of impedance variations in the resonance circuit.

A basic method for the reallzation of a sultable negativeresistance "one-pin" oscillator is shown in Figure 9. This circult, however, does not include the proper means for amplitude stabilization. It is useful for appreciating the stabilization technique used in the oscllator to be presented here to distinguish three different modes of operation.

In the first mode, the incremental loop gain \(g_{m}{ }^{R}\) is just slightly higher than unity. When the oscillator amplitude in that case is smoothly limited by the third-order nonlinearity of the differential-palr transconductance, the circuit behaves as a Van der Pol oscillator. In this mode of operation, small varlations, either in the resonance-circult impedance or in the blas current.

The Model 2500 has full and state-of-the-art talker and listener implementation for the GPIB interface. The comand set is very user friendly. It llows verbose and essentially eelf-documentins comand formet for modern AIE and lab bench test systems. The implementation eliminates the vague and cryptic command sets present in current competitive spignal generators. The talker function allows the full machine atatue to be obtained as well as comprehensive reporting sechanism for functional orrors.

The most important consideration in the control of F designs is good comminications between the gif and software Design Groups. The commications mechanism should be controlled document wich both groups can comprehend It will start with copies of the RF Designer's engineering notebook and end up beins reformatted into a for that the Software Engineer can perform his design. The result should be one that either group can pick up and understand the control mechanism of RF sections.

I would like to acknowledge the offorts and contributions of the entire Model 2500 design team. In particular the RF Design Engineers for their patience with the Software Design efforts, the Software Engincers wo worked through some difficult organizational situations, and the Mechanical Design Engineers who were the brunt of all the loose ends.

\section*{CLOCK GENERATOR \\ MCEB75}


\section*{SERIAL PORT} MC685?
I28 GYTES RAM MC6Bia

\[
\begin{gathered}
\text { SERIAL PERIPHERAL IIO + WATCHDOG TIMER + HCMOS + ENHANCED } \\
\text { INSTRUCTIDNS } \\
\text { MCGBDI + }
\end{gathered}
\]
GK MORE ROM
GK MORE ROM
12B MORE RAM
12B MORE RAM
ES EEDRO
ES EEDRO
    MOM6A3:6
    MOM6A3:6
    MCEB;D
    MCEB;D
        1/4 MCM281E
        1/4 MCM281E

MC6Brici:
may easily result in turn-off or in an increase in amplitude and a much stronger limiting action.

In the second mode of operation the stronger limiting action is put to good use, and the differential pair acts as a curren switch. As long as the output voltage of the circuit is so small that no saturation occurs, the output amplitude depends linearly on the tail current and on the resistance in the resonance cir cuit. Though less than in the previous situation, the output amplitude is still rather sensitive to parameter spread, and the appropriate level for the buffer is hard to guarantee.

In the third mode of operation, the tail current and the resistance of the resonance circuit are so large, and the collec-tor-to-base voltage so swall that efther \(Q 1\) or \(Q^{2}\) saturates. During the peaks of the output voltage, the resonance circuit is short-circuited and the noise performance cannot be expected to be much better than in a regenerative oscillator.

The oscillator can be forced to operate either in the first or second mode by using well-known AGC techniques. These techniques, however, require a form of detection together with some low-pass filtering in order to control the magnitude of the tail current. The nethod presented here is intended to force the oscillator to operate in the second mode by using a novel ACC technique. The operation principle is illustrated in Figure 10. The tail current of the differential pair is modulated with the oscillator signal. In the waveform supplied to the resonance circuit the first-harmonic content is thus reduced, all the more so as the output amplitude increases, as depicted in Figure 11

The differential pair providing the tail current is biased such that \(Q_{4}\) initially conducts and \(Q 5\) does not. After the oscillations are started, the amplitude at the base of \(Q^{4}\) will get a value such that this transistor will be driven out of conduction during the peaks of the oscillator signal. The amplitude will thus be fixed at a value closely corresponding to the \(D C\) bias voltage between the bases of the tall-current differential pair

A complete circuit diagram of the oscillator-buffer combina-
tion is shown in Figure 12 . The tuning range amply exceeds the required range of \(10.85-12.32 \mathrm{MHz}\), so that no adjustments are needed for guaranteed acquisition of the frequency-synthesizer phase-lock loop

The output sine-wave amplitude is fixed at a value of about 0.5 V , large enough to obtain a proper switching action of the buffer stage. A wide range of tank-circuit impedances can be used. Impedances as low as 1 kO still do not stop oscillations. With a resonance circuit with a \(Q\) of 50 , the carrier-to-noise ratio at 9 kHz from the carrier is about 70 dB in a 5 kHz bandwidth. Since the adjacent-channel rejection in the If filter is much smaller than 70 dB , the oscillator noise does not impair receiver selectivity.

The signal input of the mixer is driven from a differentialpair voltage-to-current converter using simple emitter degradation. As only low-frequency operation (up to 1600 kHz ) is involved, the nonlinearity of this circuit can be solely attributed to the exponential relationship between \(V_{B E}\) and \(I_{C}\). A straightforward calculation of the third-order intermodulation then shows that it hardly contributes to the intermodulation generated in the preamplifier when it is biased at a tall current of 10 mA and with 150 Q degeneration resistors.

The noise contribution of the mixer as a whole (including the \(\mathrm{V}-\mathrm{I}\) converter) can be largely attributed to the \(\mathrm{V}-\mathrm{I}\) converter. As consequence of the switching operation, not only is the noise o the input frequency band and the Image frequency band converted to the IF frequency, but also the noise in the bands related to the odd oscillator harmonics. The low-pass filter effectively short circuits the equivalent nolse current source of the \(\mathrm{V}-1\) converter at frequencles higher than the cut-off frequency. So, only the base-band contribution is determined by both the equivalent input ources. A calculation of the various contributions leads to an quivalent input spectrum in series with the preamplifier output \(s\left(v_{n o}\right)=4 \mathrm{kT} 3700\). This source transforms into an equivalent source n series with the antenna voltage:


FIGURE 2 : MODEL EERO SERIAL DATA-BUS STRUCTURE


FIGURE こ : MODEL ESR2 SERIAL DATA-BUS CONTRO:
\[
s\left(v_{e q}, a\right)=\left(\frac{C_{f}}{C_{a}}\right)^{2} s\left(v_{n o}\right) .
\]

This nolse source is significant in the case of low preamplifier gain (activated switch). In the high-gain situation (deactivated switch) the preamplifier noise dominates.

\section*{CONCLUSIONS}

This paper presented an integrated front end for a long-wave and medium-wave \(A M\) car-radio receiver. The circuits are realized In a conventional bipolar process ( \(\mathrm{f}_{\mathrm{T}}=400 \mathrm{MHz}\) ). Thanks to the upconversion concept and the high dynamic range of the various circuits, the system needs no adjustments, thereby significantly reducing production costs. The second- and third-order IMFDR amount to 86 and 97 dB , respectively, in high field-strength situations, where an automatic gain switch in the preamplifier is activated. The maximum field strength that can be handled is 8 v/m.

\section*{acknowledgement}

The authors wish to thank the Philips Industry Group Car Radio for its interest and support. The efforts of the IC workshop of the Delft University of Technology are gratefully acknowledged.

\section*{references}
[1] H.C. Nauta and E.H. Nordholt, "Fundamental aspects of nolse optimization in radio input stages", 27th Midwest Symposium on Circuits and Systems, vol. 1, June 11-12, 1984, West Virginia University, Morgantown, U.S.A.
[2] M.S. Ghausi and D.O. Pederson, "A new design approach for feedback ampliffers', IRE Trans. Circuit Theory, vol. CT-8, pp. 275-284, Sept. 1961.
E.H. Nordholt and H.C. Nauta


Fig. 1 Block diagram of an upconversion receiver.


Fig. 2 Circuit representation of whip antenna and cable.


Fig. 3 Input-amplifier configuration with caparitive feedback.

\section*{EVERYTHING YOU WANTED TO KNOW ABOUT TUNING DIODES}
\[
\begin{aligned}
& \text { by } \\
& \text { John C. Howe }
\end{aligned}
\]

Product Engineer, Motorola Inc.
soos East McDowell Road
Phoenix, Arizona 85008

\section*{INTRODUCTION}

Voltage variable capacitors or tuning diodes are best described as diode capacitors employing the junction capacitance of a reverse biased PN junction. There is a wide range of available capacitances and different device types. The capacitance of these devices varies inversely with the applied reverse bias voltage.

Tuning diodes have several advantages over the more common variable capacitor. They are much smaller in size and lend themselves to circuit board mounting. They are available in most of the same capacitance values as air variable capacitors. Tuning diodes offer the designer the unique feature of remote tuning.

\section*{SIMPLIFIED THEORY}

A tuning diode is a silicon diode with very uniform and stable capacitance versus voltage characteristics when operated in its reverse biased condition. In accordance with semiconductor theory, a depletion region is set up around the PN junction. The depletion layer is devoid of mobile carriers. The width of this depletion region is dependent upon doping parameters and the applied voltage. Figure IA shows a PN junction with reverse bias applied, while Figure IB shows the analogy, a parallel plate capacitor. The equation for the capacitance of a parallel plate capacitor given below predicts the capacitance of a tuning diode.


FIGURE I - Tuning Diode Capacity Analogy
\[
C=\frac{e A}{A}
\]
where \(\quad \epsilon=\) dielectric constant of silicon equal to \(11.8 \times \leqslant 0\)
\(\mathrm{f}_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\)
\(\mathrm{A}=\) Device cross sectional area
\(d\) = Width of the depletion layer.
The depletion layer width d may be determined from semiconductor junction theory.


Fig. 8. Double-belanced switching mixer.
\(\mathrm{V}_{10}\) is the local-oscilletor signai.


Fig. 10. AGC by teil-current modulation.


Fig. 11. Woveforms in the circuit of Fig. :0

Fig. 4. Complete ciroult diagram of the ampilifier.





Fig. 12. Complete circuit alagram of oscillator-buffer.

The more accepted method of determining tuning diode capacitance is to use the defining formula for capacitance.
\[
\begin{equation*}
C=\frac{d Q}{d V} \tag{2}
\end{equation*}
\]

The charge, \(Q\) per unit area, is defined as:
\[
\begin{equation*}
Q=E \tag{3}
\end{equation*}
\]
where \(E=\) Electric field

So we have capacitance per unit area:
\[
\begin{equation*}
c=\frac{C}{A}=c \frac{d E}{d V} \tag{4}
\end{equation*}
\]

Norwood and Shatz use these ideas to develop a general formula:
\[
\begin{equation*}
c=\left[\frac{q B \in m+1}{(m+2)(V+0)}\right] \quad 1 / m+2 \tag{5}
\end{equation*}
\]
\(\mathrm{m}=\) Impurity exponent
c = Capacitance per unit area

Lumping all the constant terms together, including the area of the diode, into one constant, \(C_{D}\) we arrive at:
\[
\begin{equation*}
C_{J}=\frac{C_{D}}{(V+\beta)^{r}} \tag{6}
\end{equation*}
\]
where
\(\mathbf{1}\) = Capacitance Exponent, a function of impurity
exponent
\(\sigma=\) The junction contact potential
( \(\approx 0.7\) Volts)

The capacitance constant, \(C_{D}\), can be shown to be a function of the capacitance at zero voltage and the contact potential. At room temperature we have:
\[
\begin{align*}
& C_{D}=C_{0}(\nabla)^{\gamma}  \tag{7}\\
& C_{o}=\text { Value of capacitance at zero voltage }
\end{align*}
\]

The simple formula given in Eq. 6, very accurately predicts the voltage-capacitance relationship of tuning diodes. There are many detailed derivations of junction capacitance, so further explanation is not necessary in this paper.

The capacitance of commercial tuning diodes must be modified by the case capacitance.

\section*{The equation then becomes:}
\[
\begin{equation*}
\mathrm{C}=\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{J}} \tag{8}
\end{equation*}
\]
where
\(\mathrm{C}_{\mathrm{C}}=\) Case capacitance typically 0.1 to 0.25 pF
\(C_{J}=\) Junction capacitance given by equation 6 .

The Schottky Diode Mixer
\[
\begin{gathered}
\text { by } \\
\text { Jack H. Leporf } \\
\text { Applications Eng ineer } \\
\text { Hewlett-Packard Company } \\
350 \text { West Trimble Road }
\end{gathered}
\]

San Jose, CA 9513

\section*{INTRODUCTION}

A major application of the Schottiky diode is the production of the difference frequency when two frequencies are combined or mixed in the diode. This mixing action is the result of the non-linear relationship between current and voltage, usually expressed as
\[
I=I_{s}\left(e^{\frac{q(V-I R)}{n K T}}\right.
\]

The series resistance, \(R\), is a parasitic element representing bulk resistance of the semiconductor and contact resistance. It is sometimes confused with dynamic resistance which is the sum of the series resistance and the resistance of the junction where the frequency conversion takes place. The ideality factor, \(n\), is unity for an ideal diode and less than 1.1 for a silicon Schottky diode.

Variations in \(n\) are not important for \(n\) less than 1.1. The effect of saturation current, is, is very important when the level of local oscillator power is low. This will be demonstrated by comparing results of mixing with diodes having different values of saturation current. Although temperature, \(T\), is seen in the exponential and is present in a
more conplicated manner in saturation current, the effect on mixing efficiency is less than 0.5 dB for 100 degrees C change in temperature. Electron charge, \(q\), and Boltzmann constant, \(k\), may be combined in the equation
\[
I=I_{s}\left(e^{\frac{V-I R}{.026}}-1\right)
\]

\section*{Conversion Loss}

Mixing efficiency is measured by the conversion loss, the ratio of signal input power to intermediate frequency output power. The intermediate frequency is the difference between the signal frequency and the local oscillator frequency. The diode may also generate the sum of these two frequencies. In this case the mixer may be called an upconverter. For a given local oscillator frequency, the difference frequency may be produced by two signal frequencies - one above the 1.0 frequency and one below. Of course noise is also contributed at these two frequencies. In some cases, the mixer is designed to respond to both these frequencies. A mixer of this type is called a double sideband mixer. More commonly the mixer is designed to respond to one of these inputs. Since noise comes fromboth frequencies the double sideband mixer is better - typically 3 dB better.

Hoise figure is another measure of mixing efficiency. This is the ratio of signal to noise ratio at the input to signal to noise ratio at the output. Single and double sideband definitions apply to nolse figure also. In some applications noise figure and conversion loss are essentially equal. However, noise figure includes dlode noise which becomes significant at intermediate frequencies in the audio range ( \(1 / \mathrm{f}\) noise). In these applications noise figure may be much larger than conver iton loss.

\section*{TUNING RATIOS/MANUFACTURING PROCESSES}

The tuning or capacitance ratio, TR, denotes the ratio of capacitance obtained with two values of applied bias voltage. This ratio is given by the following expression for the tuning diode junction.
\(T R=\frac{C_{j}\left(v_{2}\right)}{C_{j}\left(v_{1}\right)}=\left[\frac{v_{1}+1}{v_{2+0}}\right]^{r}\)
where \(\quad \mathrm{C}_{\mathrm{J}}\left(\mathrm{V}_{1}\right)=\) Junction capacitance at \(\mathbf{V}_{\mathbf{l}}\)
\(\mathrm{C}_{\mathbf{j}}\left(\mathrm{V}_{2}\right) \quad=\) Junction capacitance at \(\mathbf{V}_{\mathbf{2}}\)
\[
\text { where } v_{1}>v_{2}
\]

In specifying \(T / R\), some tuning diode data sheets use four volts for \(\mathbf{V}_{\mathbf{2}}\). However, in order to achieve larger tuning datios, the devices may be operated at slightly lower bias levels with some degradation in the Q specified at four volts. (See the discussion of \(Q\) versus voltage in the circuit \(Q\) section, later in this paper.) Furthermore, care must be taken when operating turing diodes at these low reverse bias levels to avoid swinging the diode into forward conduction upon application of large ac signals. These large signals may also produce distortion due to capacitance modulation effects.

Since the effects of and case capacitance, \(\mathrm{C}_{\mathrm{C}}\), are usually small, Eq. 9 may be simplified to the following for most design work:
\(T R=\frac{C\left(V_{\min }\right)}{C\left(V_{\text {max }}\right)}=\left[\frac{V_{\text {max }}}{V_{\text {min }}}\right]^{V}\)

The frequency ratio is equal to the square root of the tuning ratio. This tunable frequency ratio assumes no stray circuit capacitance.

Another parameter of importance is \(\boldsymbol{X}\), the capacitance exponent. Physically, 8 depends on the doping geometry employed in the diode. Varactor diodes with \(\gamma\) values from \(1 / 3\) to 2 can be manufactured by various processing techniques. The types of junctions, their doping profiles, and resulting values of are shown in Figure 2. These graphs show the variation of the number of acceptors \(\left(N_{A}\right)\) and the number of donors ( \(\mathrm{N}_{\mathrm{D}}\) ) with distance from the junction.

Abrupt junctions are the easiest to manufacture. This type of junction gives a \(\\) of approximately \(1 / 2\) and a tuning ratio on the order 3 with the spcified voltage range. Therefore the corresponding frequency range which may be tuned is about 1.7 to 1.0. A typical example is the IN 5441 A :
\(C\left(v_{2}\right)=C(30 v)=2.34 \mathrm{pF}\)
\(C\left(V_{1}\right)=C_{(4 \mathrm{~V})}=6.8 \mathrm{pF}\)
\(T R=2.9\)
\(\boldsymbol{V}=0.47\)
The subscripts on the capacitance refer to the bias voltage applied.

In many applications such as tuning the television channels or the \(A M\) broadcast bands, a wider frequency range is required. In this event, the circuit designer must use a tuning diode with a hyper-abrupt junction. The hyper-abrupt junction TD has a \(\gamma\) of one or two and much larger turnable frequency range than does the abrupt junction TD. Table I shows typical types of tuning diodes available and their unique characteristics. Figure 2 also shows the processing steps necessary to achieve the desired capacitance exponent. To produce an abrupt junction a \(\mathbf{P}+\) diffusion forms the anode in an epitaxial layer which is the cathode. To produce a hyper-abrupt junction

Another complication of noise figure is the effect of the amplifier following the mixer. Diode manufacturers include the effect of a 1.5 dB noise figure If amplifier in the mixer noise figure. Mixer manufacturers do not include this amplifier in the mixer noise definition. In this paper diode efficiency will be measured by conversion loss.

\section*{Parasitic Losses}

The diode equivalent circuit of Figure 1 shows the presence of two elements that degrade performance by preventing the incoming signal from reaching the junction resistance where the mixing takes place. The effect of Junction capacitance and series resistance was studied by comparing conversion loss data measured with three diodes covering a wide range of these paraneters. The \(5082-2800\) is a general purpose diode, typically used in switching circuits. The 5082-2817 is a 2 GHz mixer diode. The 5082-2755 is a 10 GHz detector diode. Figure 2 shows the conversion loss measured at 2 GHz for these three diodes.

The 5082-2800 general purpose diode has a conversion loss several dB worse than that of the other diodes. This is expected because this diode has a higher junction capacitance. The behavior of the low capacitance 5082-2755 detector diode is more interesting. At local oscillator power levels below -3 dAm the conversion loss is better than the loss of the 5082-2817 mixer diode, but at higher power levels it is worse.

A good approximation to the effect of junction capacitance and series resistance on conversion loss is:
\[
\begin{equation*}
L_{1}=1+\frac{R_{s}}{R_{j}}+W^{2} r_{j}^{2} R_{s} R_{j} \tag{2}
\end{equation*}
\]

This is the ratio of available power to the power delivered to the Junction resistance, \(R_{j}\), using the diode equivalent circult of Figure 1. The value of junction capacitance varies with voltage as
\[
\begin{equation*}
c_{j}=\frac{c_{o}}{\sqrt{1-\frac{v}{0.6}}} \tag{3}
\end{equation*}
\]
where 0.6 is a typical value of barrier voltage.

The relative values of conversion loss in Figure 2 may be explained by these equations. Zero blas capacitances for the three diodes were measured to be \(0.84 \mathrm{pF}, 1.29 \mathrm{pF}\), and 0.13 pF for the -2817 , -2800 , and -2755 diodes respectively.

At a local oscillator power level of 1 milliwatt the forward current is about 1 milliampere. Using the corresponding forward voltages, \(C_{j}\) is computed for the three diodes. Assuming a junction resistance of 150 ohms, reasonable values of series resistance may be chosen to make the relative values of \(L_{1}\) correspond to the relative measured values.

The familiar junction resistance equation \(R_{j}=\frac{26}{I}\) does not apply for \(I=\) rectified current. It refers to \(I=D r\) bias current. When
\(\left.\begin{array}{llllllll}\begin{array}{llllll}\text { Device } \\ \text { Series }\end{array} & \begin{array}{l}\text { Capacitances } \\ \text { Available }\end{array} & \begin{array}{l}\text { Tuning } \\ \text { Radio }\end{array} & \begin{array}{l}\text { Tuning } \\ \text { Voltage }\end{array} & & & \begin{array}{l}\text { Freq. } \\ \text { Ratio }\end{array} & \end{array} \begin{array}{l}\text { Junction } \\ \text { Type }\end{array}\right]\)
with a 1.0 it is necessary to "grade" the epitaxial layer with an ion impant. This produces a tuning diode with a tuning ratio of 4 to 6 when a supply voltage of 25 volts is available. The final challenge in tuning diode designer is to produce a junction with a tuning ratio in excess of 10 with a supply voltage of only 10 volts or less. For this characteristic a hyper-abrupt junction with a \(\gamma=2.0\) is required. It is produced by "grading" this epttaxial layer with a trible ion implant. The ability of the manufacturer to place tnese implants ir the epitaxial layer in a repeatable manner as well as the uniformitv of the epitaxial tayer determines the consistency of the device to device C-V curve

rectified current is 1 mA , instantaneous current varies over forward and reverse values. Junction resistance is very large when the current is negative so the average junction resistance is larger than predicted by this equation.
\begin{tabular}{llcc} 
Dlode & \begin{tabular}{c}
\(C\) \\
(pF)
\end{tabular} & \begin{tabular}{c}
\(R\) \\
(ohms)
\end{tabular} & \begin{tabular}{c}
\(L\) \\
(dB)
\end{tabular} \\
2817 & 1.3 & 6 & 1.07 \\
2800 & 2.2 & 16 & 4.68 \\
2755 & 0.24 & 50 & 1.47
\end{tabular}

At -3 dBn the 2817 and 2755 curves cross, with the 2800 loss 4.5 dB higher. This relative loss can be explained by raising 8 to 235 ohms and decreasing the capacitance values.
\begin{tabular}{llll} 
& \begin{tabular}{c}
\(C\) \\
Diode \\
(pF)
\end{tabular} & & \begin{tabular}{c}
L \\
\((\mathrm{dB})\)
\end{tabular} \\
2817 & & 1.12 & 1.2 \\
2800 & & 2.1 & 5.7 \\
2755 & & 0.23 & 1.2
\end{tabular}

These values of \(C_{j}\) and \(R_{s}\) were chosen to illustrate the effect on conversion loss. Since saturation currents are different for these diodes and junction resistances may be different, the actual values of \(c_{j}\) and \(R_{s}\) may be somewhat different.

Equation 2 shows the loss behavior with frequency. At low frequencies the loss is independent of frequency and capacitance. Choosing a low value of series resistance provides the best diode. At high frequencies low capacitance becomes more important than low series resistance because capacitance is squared in the equation. Figure 3 shows \(L_{1}\) vs frequency for the 5082-2835 diode with \(R_{s}=6\) ohms and \(C_{j}=1.0 \mathrm{pF}\) and for the HSCH-5310 diode with \(R_{a}=17\) ohms and \(r_{j}=0.1 \mathrm{pF}\). The lower capacitance makes the -5310 the better diode at microwave frequencies while the lower resistance makes the -2835 the better diode at low frequencies.

\section*{The Effect of Barrier Voltage}

The type of metal deposited on silicon to form a Schottky barrier influences the barrier voltage which is involved in the saturation current determining the forward current. We use the term low barrier for diodes with low values of voltage for a given current (usually 1 mA ). We have previously shown the effect of barrier voltage on the variation of junction capacitance with forward voltage.

Figure 4 shows the measurement of conversion loss for three diodes having a range of barrier potential values.
\begin{tabular}{cc} 
Diodes & \begin{tabular}{c} 
Barrier \\
Potential
\end{tabular} \\
& 0.64 \\
\(5082-2835\) & 0.56 \\
HSCH-3486 & 0.35
\end{tabular}

\section*{CIRCUIT Q}

Popular types of mechanical tuning capacitors often have \(Q^{\prime}\) s on the order of a thousand or greater. The \(Q\) of tuned circuits using these capacitors is generally dependent only on the coil. When using a tuning diode, however, one must be conscious of the tuning diode Q as well. The Q of the tuning diode is not constant being dependent on bias voltage and frequency. The Q of tuning diode capacitors falls off at high frequencies, because of the series bulk resistance of the silicon used in the diode. The Q also falls off at low frequencies because of the back resistance of the reversebiased diode.

The equivalent circuit of a tuning diode is often described as shown:


\section*{FIGURE 3 - Equivalent Circuit of a Tuning Diode}
where
\(\mathbf{R}_{\mathrm{p}} \quad=\) Parallel resistance or back resistance of the diode
\(\mathrm{RS}_{\mathrm{S}} \quad=\) Bulk resistance of the silicon in the diode
Ls' \(^{\prime}=\) External lead inductance
LS = Internal lead inductance
\(\mathrm{C}_{\mathrm{C}}=\) Case capacitance

Normally we may neglect the lead inductance and case capacitance. This results in
the simplified circuit of Figure 4.


FIGURE - Simplified Equivalent Circuit of A Tuning Diode

The tuning diode Q may be calculated with equation II.
\[
\begin{equation*}
Q=\frac{2 \pi f C R_{p}^{2}}{R_{s}+R_{p}+(2 \pi f C)^{2} R_{s} R_{p}^{2}} \tag{11}
\end{equation*}
\]

This rather complicated equation is plotted in Figure 5 for RS \(=1.0\) ohm,


FIGURE 5 - Graph of \(Q\) versus Frequency

At low LO power levels the lower barrier diodes have better performance, significantly better for the lowest barrier diode, the HSCH-3486. At higher power levels this diode loses its advantage because of higher series resistance. The 5082-2835 has lower capacitance and lower series resistance so its performance is better than the 5082-2817 at all power levels. The maximum rated power level of 150 mW is not high enough to demonstrate the increase in conversion loss seen at high power levels for the other diodes.

\section*{Effects of DC. Bias and Local Oscillator Power Level}

Figure 5 shows the conversion loss of a 5082-2817 mixer diode measured at 2 GHz . The top curve was measured without DC, bias. Optimum DC, blas was applied at each level for the bottom curve. The curves meet at the optimum local oscillator level where bias does not help. Below this level forward bias is used. Above this level reverse bias is used to reduce the rectified current.

At low levels of \(L 0\) power, the conversion loss degrades rapidly unless Dr: bias is used. At -10 dBm the degradation is about 7 dB from the performance at the standard 0 dBm power level. Replacing the lost Lo power with DC, bias recovers about 6 dB of the degradation.

At high levels of 10 power the performance degrades again. This is caused by the rapid increase of junction capacitance. Reverse bias reduces the current and the capacitance, restoring the diode performance.

\section*{Effect of Load Resistance}

Figure 6 shows the effect of mixer load resistance on conversion loss. At low local oscillator power levels the effect is similar to the barrier effect. More rectified current flows with smaller load resistance so performance is better. At higher power levels the degradation due to higher capacitance appears first with the lower load resistances. As a result the optimum value of load resistance increases with LO power level. At +9 dBm 100 ohms becomes better than 10 ohms. AT +19.5 dBm 400 ohms becomes better than 100 ohms. The load circuit can be designed to provide the optimum resistance as the local oscillator power level changes.

\section*{HARMONIC DISTORTION}

Sums and differences of multiples of the two mixing frequencies are produced in the mixing diode. These frequencies appear as spurious responses in the output. This effect was studied by setting the signal frequency at 2 CHz and the power at -30 dBm . The local oscillator was then set at various frequencies to produce harmonic mixing with a difference frequency of 30 MHz . Local oscillator power was one milliwatt. Then the local oscillator was set at 2 GHz and the signal frequency varied. The output levels in dB below fundamental mixing are shown in Figure 7. The diode was placed in a 50 ohm untuned coaxial mount.

The output levels of the \(m 1\) products, mixing of the signal fundamental with multiples of the local oscillator, are much higlier than
\(R_{p}=30 \times 10^{9}\) ohms, at \(V=4\) volts and \(C=6.8 \mathrm{pF}\), typical for a INS 139 tuning diode at room temperature.

At frequencies above several MHz , the \(Q\) decreases directly with increasing frequency by the simpler formula given below:
\[
\begin{equation*}
\mathrm{Q} \approx \mathrm{Q}_{\mathrm{S}}=\frac{1}{2 \pi \mathrm{fCR}_{\mathrm{s}}} \quad(\text { High Frequency } \mathrm{Q}) \tag{12}
\end{equation*}
\]

The emphasis today is on decreasing \(R_{s}\) so better high frequency \(Q\) can be obtained. At low frequencies \(Q\) increases with frequency since only the component resulting from \(R_{p}\), the back resistance of the diode, is of consequence.
\[
\begin{equation*}
Q \approx Q_{p}=2 \pi f C R_{p} \text { (Low Irequency } Q \text { ) } \tag{13}
\end{equation*}
\]
\(Q\) is also dependent on volrage and temperature. Higher reverse bias voltage yields a


FIGURE \(6-Q\) versus Reverse Bias and Temperature
lower value of capacitance, and also since \(R_{s}\) decreases with increasing bias voltage, the \(Q\) increases with increasing voltages. Similarly, low reverse bias voltages accompany larger capacitances, and lower \(\mathrm{Q}^{\prime} \mathrm{s}\). Increasing temperature also lowers the Q of tuning diodes. As the junction temperature increases, the leakage current increases, lowering \(\mathbf{R}_{\mathbf{p}}\). There is also a slight decrease in \(\mathbf{R}_{\mathbf{s}}\) with increasing temperature, but the effects of the decreasing \(R_{p}\) are greater and this causes the \(Q\) to decrease. The effects of temperature and voltage on the Q of a 1 N 5139 at 50 MHz are plotted in Figure 6.

\section*{PACKAGE CONSIDERATIONS}

Tuning diodes are available in a variety of packages. Two common ones are the axial lead DO204AA, previously referred to as the DO7 and the radial lead TO226AC, sometimes called the two lead TO92. The DO204AA is a hermetically sealed glass package wheras the TO226AC is a plastic encapsulated one. Figures 7 and 8 show the form and dimensional analysis of these two packages. The cost of a tuning diode

\begin{tabular}{c|c|c|c|c}
\hline & \multicolumn{2}{|c|}{ MILIMEILRS } & \multicolumn{2}{c}{ INCHES } \\
\hline DIM & MIN & MAX & MIN & MAX \\
\hline & & & & \\
A & 5.84 & 7.62 & 0.230 & 0.300 \\
\hline\(B\) & 2.16 & 2.72 & 0.085 & 0.107 \\
\hline 0 & 0.46 & 0.56 & 0.018 & 0.022 \\
\hline\(F\) & - & 1.27 & - & 0.050 \\
\hline\(K\) & 25.40 & 38.10 & 1.000 & 1.500 \\
\hline
\end{tabular}

FIGURE 7 - DO204AA Dimensional Analysis
the in products, mixing of the local oscillator fundamental with multiples of the signal. For example, the \(2 x 1\) output is 5 dB below fundamental. Figure 5 shows that this level of fundamental mixing corresponds to a local oscillator level of -8 dBm . The doubling efficiency was about 8 dB . The \(1 \times 2\) output is 16 dB below fundamental mixing. This corresponds to a signal level of -46 dBra . The doubling efficiency is 16 dB for the lower level signal frequency. Although fundamental mixing in Figure 5 was measured in a tuned system and the data of Figure 7 was measured in an untuned system, this analysis nevertheless gives a comparison of multiplying at the one milliwatt and one microwatt power levels. Mixing of signal multiples above 2 with local oscillator multiples above the fundamental produced outputs below the -100 den sensitivity of the receiver.

\section*{Harmonic Mixing}

While harmonic products are usually considered spurious, in some designs the desired output is the result of harmonic mixing. This is a valuable mixer technique when the frequency is so high that it is difficult to generate the local oscillator power. Hewlett-Packard Application Hote 991, "Harmonic Mixing With the HSCH-5500 Series Dual Diode" describes a technique using the 2nd harmonic of the local oscillator with little loss of efficiency compared to fundamental mixing. Mixers using the 6th, 8 th, and 10th harmonics are used to extend the range of Hewlett-Packard spectrum analyzers to 60 GHz .

Two Tone Distortion.
Harmonic distortion may be suppressed by a band pass filter at the mixer input. When the distortion is caused by
\[
m r_{L O}-n f_{s}=f_{i f}
\]
the unwanted frequency is
\[
\begin{equation*}
f_{s}=\frac{m}{n} f_{L O}-\frac{f_{i f}}{n} \tag{4}
\end{equation*}
\]

The narrowest filter required corresponds to \(m=n=2\) with a rejection bandwith equal to the intermediate frequency.

Two tone distortion is the result of two unwanted signals mixing with each other and the local oscillator to produce an intermediate frequency output. The equation is
\[
\begin{equation*}
\mathbf{f}_{L O}-m f_{1}+n f_{2}=\mathbf{f}_{i f} \tag{5}
\end{equation*}
\]

Third order two tone intermod may correspond to \(m=2, n=1\). In this case the correct intermediate frequency is produced when the desired signal \(f_{s}\) equals \(2 f_{1}-f_{2}\). The unwanted frequencies may be arbitrarily close to the desired frequency so the problem cannot be solved with a filter.

Third order two tone distortion in a 5082-2817 diode was investigated with a local oscillator frequency of 1.94 CHz and input

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{014} & \multicolumn{2}{|l|}{milatmeters} & \multicolumn{2}{|l|}{Inchis} \\
\hline & nt" & nax & m/n & max \\
\hline A & 4.33 & 5.33 & 0.170 & 0.210 \\
\hline B & - 15 & 5.81 & 0.875 & 0.70 \% \\
\hline \(\checkmark\) & 3.18 & 4.19 & 0.125 & 0.165 \\
\hline 0 & 0.41 & 0.51 & 0.016 & 0.028 \\
\hline ; & 0.401 & 0.482 & 0.016 & 0.6!? \\
\hline 6 & \multicolumn{2}{|r|}{1.27 Est} & \multicolumn{2}{|l|}{0.05 c 8st} \\
\hline H & -1 & 1.27 & - & 0.050 \\
\hline \(J\) & \multicolumn{2}{|r|}{2.54 Bst} & \multicolumn{2}{|l|}{0.100 BSC} \\
\hline ' & 12.70 & - & 0.500 & - \\
\hline & 6.35 & - & 0.250 & - \\
\hline \(\cdots\) & 2.03 & 2.66 & 0.880 & 0.105 \\
\hline P & 2.93 & - & 0.115 & - \\
\hline * & 3.43 & - & 0 0.35 & - \\
\hline 5 & 0.36 & c. 41 & 0.058 & C.e1e \\
\hline
\end{tabular}

\section*{FIGURE 8 - TO226AC Dimensional Analysis}
package is a function of its piece parts cost and its adaptability toward automation in the assembly process. Because of its relatively expensive piece parts and nonadaptability toward automated assembly the DO204AA is the most expensive tuning diode package, but it does provide a hermetically sealed environment for the tuning diode die. On the other hand, the TO226AC has much less expensive piece parts and is very highly adaptable to automated assembly, but it is not a hermetically sealed package. Tuning diodes are also now available in a surface mount package. This package is available in the TO236AA (standard profile) and TO236AB (low profile) configurations. This package is also commonly known as SOT23. Figure 9 shows the form and dimensional analysis of the package. Due to size constraints about the largest capacitance tuning diode available in the package is 33 pF . This barrier will

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DIM} & \multicolumn{2}{|l|}{MILIJETER} & \multicolumn{2}{|r|}{IMCuts} \\
\hline & M17 & mas & NIM & max \\
\hline \(A\) & 2.80 & 3.04 & 0.1102 & 0.1197 \\
\hline ! & 1.20 & 1.40 & 0.472 & 0.0551 \\
\hline \(\stackrel{5}{6}\) & 0.85 & 1.20 & 0.033 & 0.0012 \\
\hline 0 & 0.37 & 0.50 & 0.0150 & 0.020 \\
\hline F & 0.085 & 0.130 & 0.0034 & 0.0051 \\
\hline 6 & 1.78 & 2.04 & 0.0701 & 0.0807 \\
\hline * & 0.45 & 0.60 & 0.0177 & 0.0236 \\
\hline k & 0.10 & 0.25 & 0.0040 & 0.0098 \\
\hline 1 & 2.10 & 2.50 & 0.0830 & 0.0984 \\
\hline " & 0.45 & 0.60 & 0.0180 & 0.0236 \\
\hline " & 0.89 & 1.08 & 0.0350 & 0.0001 \\
\hline
\end{tabular}

FIGURE 9 TO236AA Dimensional Analysis
surely be broken by the development of larger surface mount packages. At this time the cost of a surface mount package is somewhat higher than that of the two lead TO92, but because the surface mount package is highly adaptable to automated assembly it is expected that as the use of surface mount packages increases this volume will reach the point where the piece parts cost of the package will approach that of the two lead TO92.

\section*{MANUFACTURER'S DATA SHEETS}

This section will discuss the information available to the designer from typical
frequencies of 2 CHz and 1.985 CHz . The intermediate frequency was \(2 x\) \(1.985-2-1.94=0.03 \mathrm{GHz}\). The measure of distortion is the input intercept point, the power level where the line of output vs input power for the desired mixing intersects the extension of the spurious line. This is showm in Figure 8. Since the desired output is linear, the suppression of the spurious output is \(2 \AA\) and input intercept is input power plus half the suppression.

With the help of this relationship the intercept point was measured as a function of local oscillator power level. The results are show in Figure 9. At higher local oscillator power levels the desired output increases while the spurious output decreases. This raises the suppression and the intercept point. At lower levels both desired output and spurious decrease so the intercept point levels off to a constant value.

\section*{Tuning for Better Sensitivity}

The ideal mixer should convert all of the signal power to output power at the desired output frequency. However, it is customary to test diodes in a broadband mixer circuit. In this test no attempt is made to recover the power lost in the unwanted output frequencies. Because of these losses and the losses in the diode parasitics, an efficiency of about \(35 \%\) is usually achieved.

Special circuits have been developed to improve this figure to come closer to the ideal \(100 \%\) efficiency. The most serious spurious response, called the image response, produces an output at the frequency \(2 \mathrm{f}_{\text {LO }} \mathbf{f}_{\mathbf{s}}\). Image recovery mixers are designed to recover this lost power. Two dB improvement has been reported. By properly terminating harmonics up to the third, conversion loss under 2 dB was obtained with a Hewlett-Packard beam lead diode.

\section*{MLLTIPLE DIODE MIXERS}

Although the intermediate frequency may be produced by mixing in a single diode, very few mixers are made this way. The problems generated by using a single diode include radiation of local oscillator power from the input port, loss of sensitivity by absorption of input power in the local oscillator circuit, loss of input power in the intermediate frequency amplifier, and the generation of spurious output frequencies by harmonic mixing. Some of these problems may be solved by circuit techniques but these circuits often introduce new problems. Most mixers use multiple diode techniques to better solve these problems.

Early mixer designs prevented loss of signal power in the local oscillator circuit by loosely coupling the local oscillator power to the mixer diode. This technique is wasteful of local oscillator power and it sends as much power to the input, possibly an antenna, as it sends to the diode. This local oscillator radiation could be interpreted as a target return when received by a radar. This problem may be alleviated by using

\title{
115441A,B,C \\ thru \\ 115456A,B,C
}
manufacturer's data sheets. Figure 10 shows the first page of a data sheet for an abrupt junction TD. It normally includes basic type information, maximum ratings and package mechanical information. Figure 11 shows the second page of this data sheet Information on this page concentrates on electrical characteristics and parameter test methods, as well as including the first graph of a typical characteristic - normalized capacitance versus temperature at various reverse bias voltages. Figure 12 shows the third page of the data sheet. It includes the graphs of most interest to the designer. These include: diode capacitance versus reverse voltages, (C-V curve) figure of merit (Q) versus reverse voltage at a fixed frequency and versus frequency at a fixed voltage, reverse current versus reverse blas voltage for three temperatures and forward voltage versus forward currents. Figure 13 shows the first page of a data sheet for a hyper-aburpt junction tuning diode. It includes primarily the same information as on the first page of the data sheet for the abrupt junction tuning diode. Figure 14 shows the second page of this data sheet. It again includes a table of electrical characteristics, but in this case also shows a C-V curve and a graph of figure of merit ( \(Q\) ) versus voltage at a fixed frequency. A useful comparison is the C-V curve of the abrupt junction diode versus that of the hyper-abrupt junction diode
\begin{tabular}{|c|c|c|c|}
\hline noume & 'symbol & value & Unit \\
\hline Reverse Valuge & \(V_{\text {f }}\) & 30 & vois \\
\hline Device Ditaipation \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Derate ubove \(25^{\circ} \mathrm{C}\) & \(P_{\text {D }}\) & \[
\begin{aligned}
& 400 \\
& 2.67
\end{aligned}
\] & \[
\operatorname{mwN}_{m \times 10}
\] \\
\hline Operatug function Tempersture Range & TJ & -175 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storger Temperature Range & \(\mathrm{T}_{319}\) & -65 \(20+200\) & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

FIGURE 10
VOLTAGE VARIABLE CAPACITANCE DIODES

\section*{SILICON EPICAP \({ }^{\text {® }}\) DIODES}
epitaxial passivated abrupt junction tuning diodes designed for electronic tuning. FM. AfC and harmonic generation applications in AM itrouth 1 Friges.
- Excellent O Factor at High Frequencies
- Gueranteed Capacitance Change - 2.01030 V
- Guaranteed Temperature Coefficient

Capacitance Tolerance - 10\%. 5.0\%, and 2.0\%
- Complete Typical Design Curves

a directional coupler to send the local oscillator power to the mixer diode. Coupling must be loose so that \(L 0\) power is still wasted.

A balanced mixer (Figure 10) provides a better solution. The hybrid circuit splits the \(L\) power to the two diodes with little coupling to the antenna. A low pass filter is needed to prevent loss of power to the intermediate frequency amplifier. Additional advantages are reduction of LO noise and harmonic mixing. LO noise is rejected because two signals originating in the same port produce IF outputs that cancel. This is a property of the hybrid circuit. Similarly, even order harmonics of either the LO or the signal produce cancelling outputs.

In the double balanced mixer (Figure 11) even order harmonics of both the LO and the signal frequency are rejected. This mixer does not require a low pass filter to isolate the IF circuit. The three ports are isolated fron each other by the symmetry of the circuit. These mixers usually cover a broader band than the others. Ratios as high as 1000:1 are available. Microwave equivalents of these mixer circuits are available. Bandwidth ratios as high as \(40: 1\) are available at microwave frequencies.

Intermodulation distortion is reduced when local oscillator power is increased. Several design techniques are used to allow higher drive.

A higher barrier diode may be used to retain linear response at higher drive levels. More than one diode may be used in each arm of the ring in a double balanced mixer. This permits higher drive level without overheating the diodes. Two rings may also be used to increase the local oscillator level. This technique is also used for image tuning described earlier.

\section*{Sumary:}

Schottky diode mixing efficiency is related to both diode parameters and circuit parameters. Diode parameters studied include capacitance, resistance, and barrier voltage. Circuit parameters include DC. bias and load resistance. Harmonic response and third order two tone intermodulation were also studied.


EQUIVALENT CIRCUIT
FIGURE 1


FIGURE 11

\section*{typical device performance}
- Diode capacitance vorub reve ase vol-ije

figure of meait
- but reverse voltage

- reverse cuabent



FIGURE 12


\section*{MVAM108 MVAM109 MVAM115 MVAM125}


MVAM108 O MVAM109 O MVAM115 O MVAM 125

```

 ")
    ```

- capacitance varum reverse voltage

va Reverast votiagt woits.

FIGURE 14



\section*{SPECIFYING TUNING DIODES}

Three common methods of specifying tuning diodes for a particular design application are as follow:
1. Specify a nominal capacitance \(\pm\) the maximum allowed variation in percent at the lowest voltage which is to be used and a capacitance ratio minimum (and maximum if necessary) between the lowest voltage and highest voltage to be used in the design. This is the method found on most manufacturers' data sheets.
2. Specify a minimum and maximum capacitance at the lowest and highest voltages to be used in the design.
3. Specify a minimum and maximum capacitance at the lowest, the median, and highest voltages to be used in the design. This method enables the circuit designer to "tie down" the C-V curve of a hyper-abrupt junction tuning diode over a large voltage variation.

\section*{SUMMARY}

Voltage variable capacitors commonly referred to as tuning diodes are rapidly replacing air capacitors in many applications. These devices offer many advantages over previously available variable capacitors, the major one, of course, is the ability to employ remote tuning which has made possible the electronically tuned radio. The circuit designer must be aware of the tuning range and Q limitations of tuning diodes in order to use these devices effectively. Also to be considered must be the package chosen and the cost thereof. A well constructed manufacturer's data sheet can provide the circuit designer with a wealth of information needed to aid him in his
design, but the designer must realize that the manufacturer only specifies a capacitance at one voltage and a capacitance ratio between one pair of voltages. If necessary, the circuit designer must request these specifications for his own particular design voltages.

\section*{REFERENCES}
1. Norwood, Marcus; and Shatz, Ephraim, "Voltage Variable Capacitor Tuning: A Review." IEEE, 56:5, May 1968, pp. 788-98.
2. Chang, Y.F., "Capacitance of p-n Junctions: Space Charge Capacitance." Journal of Applied Physics, 37:6, May 1966, pp. 2337-42.
3. Gimmel, H.K.; and Schaufter, D.L., "Depletion Layer Capacitance of \(p^{\dagger} n\) Step Junctions." Journal of Applied Physics, 38:5, April, 1967, Pp. 2148-53.
4. Gray, P.E.; DeWitt, D.; Boothroyd, A.; Gibbons, J., Physical Electronics and Circuit Models of Transistors. New York, John Wiley \& Sons, 1964, pp. 8-54.
5. Warner, R.; Fordernwalt, J., Integrated Circuits, Design Principles and Fabrication, New York, McGraw-Hill, 1965, pp. 31-68.
6. Doug Johnson and Roy Hejhall, "Tuning Diode Design Techniques," Motorola Application Note AN-551
7. George C. Onodera, "Method of Producing an Ion Implanted Tuning Diode," United States Patent \#4,106,953, August 15, 1978.


FIGURE 7


INTERCEPT POINT
FIGURE 8



BALANCED MIXER
FlCURE 10

DOUBIGE BALAMCED MITKER TIGORE 11


DESIGN OF COAXIAL HIGH-PASS FILTERS HAVING VARIOUS TRANSFER PROPERTIES

\section*{by Dick Wainwright \\ Chief Scientist, Cir-Q-Tel. Inc.}

Abstract: As explained in a companion paper 1/ "Design of Combline and Interdigitated Bandpass Filters' (usually with narrow band wide tuning range) the cost of construction depends heavily on the physical form assumed by the precision ground plane housing and the physical form and fit of the component parts/elements.

Various types of filters of highpass formulation are given. Pseudo-elliptic and all-pole Butterworth, Chebishev and other realizations such as Gaussian, etc. are described. The series capacitive elements may be formed as leflon-insulated coaxial capacitors, the shunt elements of which may be conposed of a simple helix or straight (coaxial) inductor for the all-pole designs or by a series inductor-capacitor combination for the Elliptic or Pseudo-elliptic high pass. n-odd values are in general preferred, which simplifies construction. Other classes of filters: Zobel, Levy A-Z, (Ref.6) Butterworth, Gaussian and Bessel all-pole (n-odd) are of similar consruction; however, the Bessel, various Gaussian realizations,

\footnotetext{
1/ "Design of Combline and Interdigitated Bandpass Filters"
}

Transitional, and the Inverse Chebishev Elliptic are, in general, unsymetrical; thus they are somewhat more difficult to build.

Figures \(2 A\) and \(2 B\) are schematic diagrams highlighting the series 'C' capacitors of the devices described comprising the centrally located coaxial capacitors, the \(C_{1+2} \ldots C_{n-2}\). These \(C_{\text {odd }}\) capacitors may be broken up into an array of two capacitors each in series to provide for the filter-internal 'C' series, the schematics for which are as shown in Figures \(2 B\) and \(3 B\). This construction technique provides for accessible attachment of shunt elements 'L' or 'L-C'. Of course. these elements may be stepped as to diameter (see Fig. 4A and B) and plugged into each other, resulting in a lesser number of pieces in the construction, but somewhat more complicated in terms of component tolerance realization and assembly; in which case, the capacitors \(C_{s}\) are not present.

In general, \(n\)-odd equally terminated filters \(\left(R_{S}=R_{I_{0}}=Z_{o}\right.\) maximum power transfer terminations) have been assumed, i.e.. n-odd: 3, 5. 7...n-odd.

The shunt elements connect at convenient accessible locations as shown in the various pictorial cutaway figures: 4. 5 and 6

\section*{MICROWARE}

An Interactive Microwave Fllter Design Program

\author{
Michael K. Ferrand \\ Senior Microwave Engineer \\ Microlab/FXR \\ Ten Microlab Rd. \\ Livingston NJ 07039
}

Microware is a microwave filter design program that enables the user to design filters in a logical, step by step manner. A brief outline, including a flow chat will be given followed by three examples.

Three common filter designs are now supported by the program. They are:
1. Lumped Component Designs. A majority of filter design in the frequency range below 1 GHz is of the lumped component type. Virtually any type of circuit configuration may be realized. The sub-program "LUMP" designs some of the more basic circuits. The types supported by this program are:

Tank, Mesch, Lowpass/Bandpass, 4 types of elliptical filters. Impedance and Nortons transforms can be applied to the prototype circuit. Filters can be designed by component value allowing "off the shelf" components to make up a large part of the circuit.

Waveguide Filters. An accurate design sub-program is included. "IPWG" is based on realizing a lumped circuit with waveguide elements. Currently the program only supports TE01 mode designs. With this, inductive coupled elements in the form of an iris or post may be used.
3. Cavity Filters. The third sub-program "INTCL" can design interdigital and combline filters. The user has a variety of options as to the size and electrical configuration. Both round rod and rectangular resonator designs are available. The user also has the option of tapped loading, short or open circuit transmission lines to transform in and out of the filter.

\section*{- MainMenu -}

The Cornerstone of Microware
While there seems to be an abundance of analysis and optimization programs on the market, the first step, synthesis is often neglected. In addition to this, many segments of our industry require specilized programs that may not be marketable. A few programs that do have synthesis capabilities are:

Compac - Has a built in synthesis package that lets the user design coupled lines, impedance matching transformers and filters. Available separately is a filter design kit, complex matching and PLL design.

These Figures 4, 5 and 6 all include schematic of (actual) the complete high pass filter (type of shunt element(s) optional for Chebishev all-pole or Pseudo-Elliptic high pass filter); note capacitors \(C_{s}, 1-3, C_{s}, 3-5\), etc. (See Note, Figure 5.) Note: In suspended substrate (SSS) or strip/microstrip designs the dual of the networks shown may conveniently be used.

Patent protection has been applied for on these device designs.

The determination of element values follows standard design procedure which is described in the references. See example pages 8, 9 and 10.

\section*{REFERENCES FOR FURTHER READING}

Ref. 1: 'Microwave Engineers' Handbook", Artech House, Inc., Horizon House-Microwave, Inc., Theodore S. Saad, Editor. Co-editors: R.C. Hansen, G.J. Wheeler, Library of Congress Card No. 76-168891
Ref. 2: Frederick E. Terman, "Radio Engineers Handbook", McGraw Hill Book Co., Inc., New York. 1943; First Edition

Ref. 3: Anatol Zverev, "Handbook of Filter Synthesis", John Wiley \& Sons, New York, Library of Congress Card No. 67-17352

Ref. 4: D.J. McLean, "COCC1 Insertion Loss Design of Electric Filters", Technical Report No. 2, 1956, Stanford Electrical Laboratories, Stanford University. Prepared under ONR Contract No. 225(4), NR 373360

Ref. 5: L. Young, G.L. Matthaei, E.M.T. Jones, "Microwave Filters, Impedance-Matching Networks and Coupling Structures", McGraw Hill Book Co., Library of Congress Catalog No. 64-7937

Fig. 6: R. Levy, Generalized rational function approximation in finite intervals using Zolatarev functions, IEEE Trans. Microwave Theory Tech Vol. MTT-18, Dec. 1970 pp. 1052-1064

The author wishes to thank the following people who were very helpful in the preparation of this paper as well as for the permission of the management of Cir-Q-Tel to publish these data and information:

Ronald B. Alexander, Esq., Board Chairman; Douglas H. Alexander, President; Hilda A. Wainwright, Vice President \& Corporate Treasurer; Ann McCauley, Exec. Sec.. Norman Selinger, Sales Manager; Joan King and Jay Kociol for proofreading and helpful hints; Dorothy DeWitt, my secretary for her hard work, patience and understanding, and to all of the fine people at Griffith \& Coe Advertising, Inc. of Hagerstown, Maryland for their expert artwork.

EESof - Has a series of filter design programs by Wenzel/Erlinger Associates. PLL and complex match synthesis programs are also available.

Filsyn - Has the most comprehensive lumped element designs available. The user has the option of specifying all design parameters, including the location of the poles and zeros.

Other programs with design capabilities are available from DSI
Software ( microstrip and stripline coupled lines). Etron (various RF design programs) and the E.E Public Domain Library (many design programs in the public domain).

It was found that none of these programs provided all of the capabilities for our day to day needs. With this in mind the concept of an all purpose microwave filter design program was conceived. One of the foremost requirements was to provide an interactive environment so that the designs could be modified via software. This program consists of three different areas:
1. User inputs design criteria.
2. Edit Specs.
3. Electrical design

As the user procedes through the program they are guided with the "Windows" and pull down "Menus" familiar to user of the Macintosh. If, at any time the user exceeds the limits of the program's design capability the user is warned with a prompt. Next the specs that have been entered are presented on the screen. The user has the opportunity to change or delete them at this time. When satisfied the design specifications are written to a file named "INSPECS". At any time during the design procedure this can be recalled and changed. Now the program enters the electrical design stage. The normalized element values are calculated and then impedance and frequency scaled. The program now links with the desired sub-program. The Macintosh provides the most "User-Friendly" environment both for programming and design. While the terms "Windows", "menus" and "event-managers" might not be familiar to many electrical engineers, they are an integral part in the world of computer programming. When this program was first written, Microsoft Basic was one of the few languages available. Since beginning, the availability of \(C\) language compilers has provided a more flexible environment. A great part of the math routines have been converted to " C ".

While the user proceeds through the program, menus document the
 having Elliptic like band responses

all mights reseaven IHR A. A. WAINWHI cinotel incohporaten 1O5NH WHEATLEY ST
progress and the user can "pull" down a menu at any time and modify that particular specification. Much of the program can be executed with use of the "mouse", a graphic pointing device used in this program.

The Design Examples.
Three design examples will be given, all originating from the same main program. The user is offered a variety of design considerations and the program flows in a logical, straight-forward way. The three design examples given here are actual working designs now in production at Microlab/FXR. The management of Microlab/FXR is to be thanked for providing the design information for publication.

\section*{Example 1. Lumped Component Design.}

This example is for a "Reflectionless" bandpass filter. Reflectionless in that the unit maintains a good VSWR over a much wider range then the bandpass filter. Required also was a flat group delay over the 3 dB bandwidth of the filter necessitating a Bessel Response. The design specifications are as follows:

Center Frequency: 300 MHz .
Bandwidth ( 3 dB ): \(\mathrm{F}_{0}+/-15 \mathrm{MHz} . \min .+/-18 \mathrm{MHz}\). max.
VSWR: \(\leq 1.1: 1\) at \(F_{0}\)
\(\leq 1.3: 1\) from \(250-350 \mathrm{MHz}\).
Group Delay: \(20+/-2 n\). relative to a thru line
\(\leq 1.5 \mathrm{nS}\) over 3 dB bandwidth
Insertion Loss: \(\leq 1.0 \mathrm{~dB}\) at \(\mathrm{F}_{0}\)
Stopband: \(\geq 20 \mathrm{~dB}\) relative from D.C. -250 MHz . and \(350-1000 \mathrm{MHz}\).
Figure II shows a functional diagram of the required circuit.


Figure il

To obtain a good VSWR over a bandwidth much wider then the passband of the filter a combination of two 3 dB hybrid couplers are used. The filters are separated by a tine length via the coupled line of 90 degrees at center frequency ( 300 MHz .). When the filters are phase matched over their 3 dB bandwidth, reflection from either filter is absorbed by 50 ohm termination incorporated on either side of the coupler. Thus the input VSWR is determined by the accuracy that the two filters can be phase matched. This


FIG. 2 A1 TYPICAL SChematic, n odd, ALL-POLE HIGH PASS FILTER


FIG. \(2 A 3\) END VIEW OF FIG. \(2 A 2\).
NOTE: THE TUBULAR GROUND.PLANE ENCASING THE SERIES CAPACITY CHAIN C1, \(C_{3}, C_{5}\)

FREQUENCY. I mode is that frequency above which a tube ol diameter D no longer supports a TEM wave.


FIG. \(2 B 2\) IDEALIZED SCHEMATIC DIAGRAM OF EELIPTIC.LIKE
HIGHPASS FILTER. SHOWING SPLIT CENTRAL C' SERIES.


TUBULAR GROUND PLANE. CASING FOR 'C' Odd CAPACITORS FIG. 2B3: END VIEW OF FIG. 2 B2
NOTE: THE TUBULAR GROUND.PLANE ENCASING THE SERIES CAPACITY CHAIN C1. C3. CS
C Odd IDEALLY PROVIDES FOR A \(Z 0=\) Rg \(=\) RI CONFIGURATION ICO.AXIALITO PROVID

FREQUENCY. I mode is that liequency above which a tube of diameter D no longer supports a TEM wave
technique is also used to phase match filters when only a scalar network analyzer is available. When first constructed two prototype filters and hybrid couplers were built. Then the filters were aligned and adjusted for best group delay response. With the appropiate connectors the two filters and couplers were put together. At this time it was necessary to match the filters to get the required VSWR response. The combination of VSWR and tight group delay variation requirements made this a difficult and time consuming procedure. An electrical schematic is shown below.

figure ill

\section*{Design Impedance: \(50 \Omega \quad\) Transform to: \(1329.91 \Omega\)}

Shunt Capacitor \(\mathrm{C}_{1}=51.57344 \mathrm{pF}\).
Series Capacitor \(\mathrm{C}_{2}-12.40538 \mathrm{pF}\).
Shunt Inductor \(\mathrm{L}_{1}=2.796390 \mathrm{E}-02 \mu \mathrm{H}\).
Coupling Capacitor \(K_{12}=.630816 \mathrm{pF}\).
Inductor \(\mathrm{L}_{2}=2.86628 \mu \mathrm{H} . \quad\) Capacitor \(\mathrm{C}_{3}=10 \mathrm{pF}\).
Coupling Capacitor \(\mathrm{K}_{23}=1.12957 \mathrm{pF}\).
Inductor \(\mathrm{L}_{3}=2.86628 \mu \mathrm{H} . \quad\) Capacitor \(\mathrm{C}_{4}=10 \mathrm{pF}\).
Coupling Capacitor \(\mathrm{K}_{34}=2.58944 \mathrm{pF}\).
Shunt Inductor \(\mathrm{L}_{4}=2.796390 \mathrm{E}-02 \mu \mathrm{H}\).
Series Capacitor \(\mathrm{C}_{5}=15.62833 \mathrm{pF}\).
Shunt Capacitor \(\mathrm{C}_{1}=27.76726 \mathrm{pF}\).
Transform to: \(122.12335 \Omega\) to \(50 \Omega\)

The responses of a typical production unit are shown in figure \(V\).

\section*{Example 2. Interdigital Filter}

This example shows the extreme bandwidths that can be achieved by this program. An equi-ripple bandwidth of \(66 \%\) has been achieved in this design ( program maximum is \(-70 \%\) ). In addition to the wide bandwidth, the VSWR and insertion loss specifications add to the difficulty of this requirement.

The design specifications are as follows:
Passband Frequency: \(8.0-16.0 \mathrm{GHz}\).


\section*{VSWR: \(\leq 1\) 5:1 over passband}

Insertion Loss: 50.6 dB . over passband
Stopband: \(\geq 25 \mathrm{~dB} @ 6.4 \mathrm{GHz}\). and 20 GHz .

Power: 100 Watts Avg. 3 KW peak 1\% Duty Cycle

This requirement for a wideband interdigital filter approaches the limits of both the electrical and physical designs currently available. The basis for interdigital filter design is widely documented (See Ref. 1-6). This program offers the user the option of designing with rectangular and round rods, rectangular giving the most efficient coupling for a given spacing and the round rod approach being less expensive to manufacture. A schematic is shown below:


The filter was designed following the program prompts (see menus at the
end of the article ). The wideband design with rectangular bar resonators was used. To make the spacings between the bars practical, a high internal impedance and a large ratio of ground plane spacing to bar thickness was used. The printout containing the mechanical dimensions is shown below.

\section*{INTERDIGITAL / COMBLINE DESIGN}

Bar Thickness: 0.02 ins.
Design Impedance: \(50 \Omega\)
Bar Length(1,N): 0.225 ins.
Cavity Width: 0.2459 Ins.

Ground Plane Spacing: 0.300 ins Internal Impedance: \(175 \Omega\) Bar Length (2,N-1): . 200 ins.
\begin{tabular}{|c|c|c|c|c|}
\hline k & \[
\frac{C_{k}}{-}
\] & Width (ins.) & \[
\begin{gathered}
C_{k, k+1} \\
\cdots \\
e
\end{gathered}
\] & \begin{tabular}{l}
Spacing \\
(ins.)
\end{tabular} \\
\hline Bar (1) & 3.2772 & . 1398 & & \\
\hline Spacing (1,2) & & & 2.0716 & . 0220 \\
\hline Bar (2) & . 8419 & . 0343 & & \\
\hline Spacing (2,3) & & & 1.0040 & . 0532 \\
\hline Bar (3) & 1.4699 & . 0556 & & \\
\hline Spacing (3,4) & & & . 9137 & . 0605 \\
\hline Bar (4) & 1.5228 & . 0557 & & \\
\hline Spacing (4,5) & & & . 8839 & . 0634 \\
\hline Bar (5) & 1.5413 & . 0557 & & \\
\hline Spacing ( 5,6 ) & & & . 8735 & . 0644 \\
\hline Bar (6) & 1.5462 & . 0557 & & \\
\hline Spacing (6,7) & & & . 8735 & . 0644 \\
\hline Bar (7) & 1.5413 & . 0557 & & \\
\hline Spacing (7,8) & & & . 8839 & . 0634 \\
\hline Bar (8) & 1.5228 & . 0557 & & \\
\hline Spacing (8,9) & & & . 9137 & . 0605 \\
\hline
\end{tabular}


EXAMPLE:
design a high pass filter to the following specifications
1. PASSBAND: \(0.9 \geq 4 \mathrm{GHz}\); LOSS \(\leq 0.5 \mathrm{~dB}\)
2. \(\mathrm{Zo}=50\) ohms, passband VSWR \(\leq 1.5-1\)
3. REJECT \(\leq 500 \mathrm{MHz}: \geq 35 \mathrm{~dB}\)

CONNECTORS: N(F) IN: N(M) OUT
from references; Allowing design margin. SET ic at 800 MHz THEN
\[
\frac{\operatorname{fc}}{\ln (>35 \mathrm{~dB})} \sim \frac{800}{500}=1.6, \text { Indicating } n=8,
\]

USE \(n=9\) FOR SYMMETRICAL DESIGN ( \(n\)-odd) THEN COMPUTE ELEMENTS: ( 0.01 dB ripple)
\[
\begin{array}{ll}
C_{1}=4.885 \mathrm{pf} & \mathrm{~L}_{2}=6.97 \mathrm{nH} \\
C_{3}=2.205 \mathrm{pf} & \mathrm{~L}_{4}=5.808 \mathrm{nH} \\
C_{5}=2.088 \mathrm{pl} &
\end{array}
\]

SEE SCHEMATIC BELOW (FIG. E-1)


FIG. E-1; SCHEMATIC
RESULTING IN:


WEIGHT: <5 OZ. FIG. E-2 OUTLINE DRAWING HIGHPASS FILTER
THE RESPONSE CURVES: AMPLITUDE AND RETURN LOSS FROM
\(10 \mathrm{MHz}-10 \mathrm{GHz}\) IS GIVEN IN FIG. E-2 A AND B
LOSS: < 0.5 dB FROM \(0.850-4.7 \mathrm{GHz}\)
VSWR: < 1.5:1 FROM 0.810-4.6 GHz
\begin{tabular}{|c|c|c|c|c|}
\hline Bar (9) & 1.4699 & . 0556 & & \\
\hline Spacing ( 9,10 ) & & & 1.0040 & . 0532 \\
\hline Bar (10) & . 8419 & . 0343 & & \\
\hline Spacing (10,11) & & & 2.0716 & . 0220 \\
\hline Bar (11) & 3.2772 & . 1398 & & \\
\hline
\end{tabular}

The electrical response for a typical production unit is shown in figure VI

\section*{Example 3. Waveguide Filter}

This example shows the accuracy which a waveguide filter with difficult stopband requirements can be realized. Adding to the difficulty of this design are the insertion loss and VSWR requirements.

Center Frequency: 15.1 GHz .
Bandwidth: . 25 GHz .

Insertion Loss: 50.3 dB over Passband
VSWR: \(\$ 1.3: 1\) over passband
Stopband: \(\geq 60 \mathrm{~dB}\). @ 14.6 GHz . and 15.7 GHz .

This third requirement is for a low loss waveguide filter uses equations available from ref. 1-3. The user may choose to design with an inductive post or iris. The program includes corrections for the finite thickness of the post or irises. If the calculated reactance causes the thickness of the end posts to be tess then 0.050 ins. the program will calculate an offset post.

The electrical circuit is shown below:


The user follows the program prompts and the print out of the mechanical

\section*{dimensions are as follows.}

Inductlve Post Wavgulde Design

\section*{Post Diameters}

Post (1)= 0.100 ins.
Post (2) \(=0.16295\) ins.
Post (3) \(=0.16746\) ins
Post (4)=0.17001 ins
Post (5) \(=0.17001\) ins
Post (6) \(=0.16746\) ins
Post (7)=0.16295 Ins.
Post (8) \(=0.100\) ins.

\section*{Post Spacings}

Spacing (1,2) \(=0.60709\) ins
Spacing (2,3)=0.67603 ins.
Spacing (3,4)=0.68136 ins.
Spacing (4,5)=0.68136 ins.
Spacing \((5,6)=0.67603\) ins.


Spacing ( 6,7 ) \(=0.60709\) ins.

References:

\section*{Interdigital and Combline Design}
1. Conformal Transformation Combined with Numerical Techniques, with Application to Coupled-Bar Problems

Ralph Levy
IEEE Microwave Theory and Techniques. April 1980
2. Tapped-Line Coupled Transmission Lines with Applications to Interdigital and Combline Filters

Edward G. Cristal
IEEE Microwave Theory and Techniques. December 1975
3. A Study of the Phase and Filter Properties of Arrays of Parallel Conductors Between Ground Planes

JT Bolljohn
IEEE Microwave Theory and Techniques. March 1962
4. Coupled Circular Cylindrical Rods Between Parallel Ground Planes Edward G. Cristal
IEEE Microwave Theory and Techniques. July 1964
5. Coupled Rectangular Bars Between Parallel Piates William Getsinger
IEEE Microwave Theory and Techniques. June 1962
6. Microwave Filters, Impedance Matching Networks and Coupling Structures

Matthaei, Young \& Jones
Artech House
1. Improved Single and Multiaperature Waveguide Coupling Theory, Including

Expianation of Mutual Interactions
Ralph Levy
IEEE Microwave Theory and Techniques. April 1980
2. Waveguide Handbook
N. Marcuvitz

MIT Radiation Lab Series
3. Microwave Filters, Impedance Matching Networks and Coupling Structures

Matthaei, Young \& Jones
Artech House

\section*{Lumped Componant Design}
1. Handbook of Filter Synthesis

Anatol V. Zverev
Wiley-InterScience
2. Reference Data for Radio Engineers ITT
3. Filtering in the Time and Frequence Domains Blinchikaff and Zverev
Wiley-InterScience


FIGURE V

MICAOLAB/FXR PART BP-B21 TESTER FFRE. PT. 200


MICTOLAB/FKA PART EL-C15 8-30-E6 TESTER PMS FFRES. PT. 200 EODY \(\# 9\) EVALMTION


FIGURE VI
 booy is insertion loss evaluition


\section*{HIGH POWER FILTERS}

\section*{Specsmanship \& Design Considerations}

By Dick Wainwright, Chief Scientist
Cir-Q-Tel, Inc.

\section*{Abstract:}

Blivetry*: power; feasibility; \(Q:\) selectivity; gradients; hot spots; energy storage; contaminants; ionization; breakdown; peak-average; C.W.; A.M.; \% modulation; F.M.; etc.; volt-amps; connectors; size; weight; heat generation, flow \& sinking; ionization; impacting; altitude; humidity; salt spray; insulation; shock; vibration; harmonic content; rejection; source \& load; EMI; form factor: skin depth-plating; dissipation factor; dielectric strength; topology; susceptibility; losses; volts; amps; volt-amps; \(Q ;\) MTBF; manufacturers ratings \& reality; heat; heat flow; - . all are but a smattering of the flow of words/thoughts that haunt every sensible designer of high power devices. (Notice: certain key words were repeated

\footnotetext{
*Blivetry: The art of defying the basic laws of physics by forcing two or more objects to fit into the same space - analogous to fitting ten pounds of parts into a one pound container.
}
to emphasize their importance.)
Customers, bless them, generally think of filters as bandaids - one often hears the uninformed say, "Anyone can design filters - the textbooks are full of tables of element values". That is true, but volts and amps and concomitant happenings make a difference. "The ratings", not the values, are of fundamental importance in power handling devices, design and application. A little experience usually results in a lot of smoke testing.

An intimate knowledge and an awareness bordering on paranoia, plus considerable experience are fundamental requisites.

The writer has on innumerable occasions lost the
"first go-around" on a project bid on the basis of: price, size, weight and exceptions prudently taken, in some instances, because the user did not know or furnish such very important information as:
a. Harmonic content of transmitter power output relative to fundamental power
b. Possible incompatibility of specified connectors with specified power and load conditions
c. The amount of surface area available for heat conduction/radiation and/or availability of cooling air. Assuming that cooling air is available, the rate of air flow, pressure, as well as the temperature of the cooling air, must be known.


FIGURE VII
d. Heavy shock and vibration specifications were specified along all three major axes when in fact the application, under power, was indoors and fixed.
e. Specifications indicating unrealistically low values of device VSWR (e.g. 1.1:1) when in fact the filter would in practice be operating continuously into loads of never less than \(2: 1\) and of ten in excess of 3:1 VSWR. (In some cases an infinite VSWR of any phase) Specified selectivity, i.e., ratio of "f" low-reject/"f" high pass ( \(f_{p(h i g h)}\) was given as very nearly \(1: 1\); and it is not unusual to find specifications indicating selectivity ratio values of \(1.01: 1\), 1.02:1, etc. When using a number of filters to cover a broad range of frequencies it is usually best to uniformly distribute the power pass band and reject to pass ratios to avoid undue stress on any of the filters: see Example (1).
f. Other mitigating relationships that, taken as whole, result in unrealistic designs.

Taking it from the top, a-f:
a. Harmonic content of transmitter output:

Typical solid state transmitters, of recent vintage, can be expected to yield harmonic power levels of (push-pull final through combiner to 50 ohms unbalanced): Table 1

\section*{TABLE 1}
\begin{tabular}{cccc} 
Harmonic Order & Level dBc & Harmonic watts/KW (fundamental) \\
\hline 2nd & \(:\) & -18 & 15.8 \\
3 rd & \(:\) & -12 & 63.1 \\
4th & \(:\) & -21 & 7.9 \\
5th & \(:\) & -18 & 15.8 \\
6th & \(:\) & -22 & 6.3 \\
7th & \(:\) & -21 & 7.9 \\
\(8-13\) & \(:\) & Avg. & -22
\end{tabular}

Total Harmonic Power: 154.6 watts/KW fundamental power
As an aside, note at this juncture that the customer may
wish to use a ferrite isolator at the transmitter output to
obtain a well-matched transmitter output, but, through oversight, may neglect the fact that most isolators are frequency sensitive, resulting (possibly) in excessive heating by harmonics, resulting in isolator burn-out and/or additional harmonic generation caused by the ferrite being operated near the Curie temperature of the materials, etc.
(b) Connectors power rating insufficient for application. Most connector manufacturers haven't the foggiest idea of how much power/apparent power their connectors will safely handle. Current ratings, not voltage ratings, are generally the problem drivers. \(Z_{o}\) is of little consequence in systems working with very high VSWR values - of course they are directly related.

Given the fact that most filters are "reflective devices" i.e. produce attenuation by reflection of power rather than being absorptive, absorptive filters are generally much more expensive and generally considerably larger than reflective devices. However, in many UHF and above, frequency range applications the use of harmonic absorptive filters may make a lot of sense.
(c) How much surface area should one allow for the cooling of high power filters, and, if cooling air is available, what is its pressure and rate of flow?

First one may make the assumptions:
1. The maximum power vs. connector type is in the order of \(2 / 3\) of the cable attached, derated appropriately.
2. Normally a high power filter ("hot" surface temper-
ature) is designed such that the hot surface temperature of the filter does not exceed ambient \(\mathrm{C}^{\circ}+50^{\circ} \mathrm{C}\) with a heat sinking plate average temperature of no more than ambient air \(\mathrm{C}^{\circ}+10^{\circ} \mathrm{C}=+95^{\circ} \mathrm{C}\) max. Cooling air, if available, should not exceed an effective temperature of \(+80^{\circ} \mathrm{C}\); hence, air speed may be an important consideration as the air approaches the filter hot spots.

In many cases substantial size fins may be required but fins are not very effective in cramped air flow spaces - convection air currents must be free to circulate if convection cooling represents a substantial portion of the cooling means,
and surrounding heat conducting surfaces may need to have rough surface to "wipe" the heat out of the circulating air.
(d) Heavy shock and vibration specifications along all three major axes, i.e., G forces applied to coaxial filters should be studied carefully and if at all possible, the strong \(G\) forces should be confined to the smaller dimensions of the coaxial structure. Minimal forces of no more than 5G, preferably, and no more than \(10 G\) max. ( \(11 \mathrm{~m} / \mathrm{sec}\). std. shock specifications) on the length should be applied to coaxial high power filters of substantial size, plus consideration as to the adequacy of mounting hardware and supporting structures is essential.
(e) Selectivity, time delay, energy storage \& electrical (absorptive) losses/heat generation go hand in hand.

Q: The ratio of:
\(\frac{\text { Energy Stored per Cycle }}{\text { Energy Dissipated per Cycle }}\) of the applied energy
is a critical consideration in the design of all filters in general, and is of great importance in high power filters. For a given loss, the required ratio of \(Q\) unloaded/Q loaded is different for every filter design. It is not uncommon for certain designs to require inductor \(Q\) unloaded values in excess of 500-1000 or more and for capacitors 3500-8000 or more to barely eke out a responsive design, where rejection bandwidths to low loss band edge ratios are quite small, say much less than 1.2:1 for 40-60 dB rejection; almost impossible values

\section*{A Practical Approach to the Design of} Voltage Tunable Lowpass and Bandpass Filters

\author{
Bruce R. Long \\ ISC Defense Systens \\ 3725 Electronics Way P. O. Box 3025 \\ Lancaster, Pennsylvania 17064
}

\section*{Introduction}

Many filters are used in RF systers. Most are fixed tuned but occasionally a tunable filter is required. A preselector in a receiver is one example. Tunable filters are also useful as tracking filters in frequency synthesizers, as variable IF filters in block conversion receivers and as variable post detection video filters. Tunable filters can be constructed by mechanically ganging tuning components to a cormon tuning shaft but this approach is bulky, expensive and not very adaptable to microprocessor control. Voltage tuned filters overcome these difficulties and are suitable in many applications. The control voltage can come from a front panel potentiometer, a microprocessor controlled DAC, or from another voltage controlled stage such as a voltage controlled oscillator allowing both stages to track one another.

This paper explores the design of voltage tuned lowpass and constant percentage bandwidth bandpass filters. Many filters are designed quite easily using tables of normalized component values. A lowpass filter design example is presented to emphasize the relationship between filter component values, impedance, and freguency. This relationship implies careful control of filter impedance is essential if the filter is to be
tuned. With this understanding the lowpass filter is transformed into a tunable lowpass filter covering one octave with the help of a pair of impedance control networks.

Next this approach is extended to include constant percentage bandwidth bandpass filters. The paper concludes with a discussion of intermodulation performance, practical frequency and tuning range, and circuit modifications to improve realizability. Filters, tunable over at least one octave, from several hundred kilohertz to several hundred megahertz, can be successfully designed using this approach.

\section*{Filter Design Review}

Textbook filter design usually involves finding the roots of the filter transfer function as the starting point for a classical circuit synthesis approach. While providing insight to the mathematical origins of the filter this approach has little to recommend it for day to day filter design.

It is simple to design most filters from standard tables. These tables consist of component values for filters nomalized to one ohm, one radian per second and are available from several references including Williams and Zverev. Select from the table the component values for a prototype lowpass filter with the appropriate number of poles and of the desired filter family (Butterworth, Tschebyshev, Bessel, etc). Final component values are obtained by frequency and impedance scaling of the prototype values. Figure 1 shows a three pole, 20 MHz Butterworth lowpass filter and the prototype from which it was scaled.

A lowpass filter can be transformed into a highpass, bandpass, or bandstop filter and implemented with lumped LC components, or transmission
of 2000 or more for coil \(Q\) and over \(10,000-15,000\) capacitor \(Q\) may be required, but unobtainable because of space, moding and/or frequency limitations.

The \(Q\) of coils increases roughly as the square root of frequency, hence generally high frequency filters yield lower losses, given the same selectivity and available space.

For a given loss (see Table 2) the unloaded \(Q\) required increases substantially with passband ripple (VSWR), complexity, \(n\) and type of filter, (Elliptic, all-pole Chebishev. Butterworth, etc.).

\section*{TABLE 2}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Selectivity \\
\(\mathrm{f} 60 \mathrm{~dB} / \mathrm{f} 3 \mathrm{~dB}\)
\end{tabular} & \[
\begin{aligned}
& \text { Nominal } \\
& \text { VSWR }
\end{aligned}
\] & Filter Design \(\begin{aligned} & \text { Repres } \\ & \text { Qui. } \\ & \text { Loss }\end{aligned}\) & sentative for a Given (approx.) & \begin{tabular}{l}
Energy \\
Storage
\end{tabular} \\
\hline 1.25 & 1.2 & Elliptic (0.01 dB Ripple) & 1000 & 20 \\
\hline 1.5 & 1.35 & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple=0.1 dB }
\end{aligned}
\] & 650 & 15 \\
\hline 1.7 & 1.2 & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple=0.01 dB }
\end{aligned}
\] & 460 & 12 \\
\hline - & - & \[
\begin{aligned}
& \text { Chebishev (all-pole) } \\
& \text { ripple=0.001 dB }
\end{aligned}
\] & 290 & - \\
\hline 2.1 & 1.2 & Butterworth & 200 & 10 \\
\hline 4.2 & - & Bessel & & - \\
\hline
\end{tabular}

Table 2 indicates representative values - not absolutes.
As an example, a 0.01 dB Chebishev (all-pole) filter required approximately \(\frac{460}{200}-1 \sim 84 \%\) more \(Q\) than a Butterworth filter for a given loss and the Elliptic filter given has twice the energy storage indicating that voltages and currents are roughly \(40 \%\) more than in a Butterworth filter.
(f) Other factors of consequence:
(1) Phase linearity vs. f.
(2) Matching of phase: \(A \pm 5^{\circ}\) phase matching specifications may nearly double the price relative to a non-matching phase unit because of the component tolerance problem alignment accuracy and the need to "fix" parts to preclude minute variations in operating environment.
(3) Humidity: High humidity conditions, especially with condensation presents substantial problems.
(4) Altitude: Derating or pressurization with dry nitrogen or sulfur hexafluoride may be forced as a solution. Of course, pressurization eliminates humidity problems.

\section*{(5) etc.}

The author wishes to thank the following people who were very helpful in the preparation of this paper as well as for the permission of the management of Cir-Q-Tel to publish these data and information:
Ronald B. Alexander, Esq., Board Chairman; Douglas H. Alexander. President; Hilda A. Wainwright, Vice President \& Corporate Treasurer; Ann McCauley, Executive Secretary/Office Manager: Norman Selinger, Sales Manager; Joan King \& Jay Kociol for proofreading and helpful hints; Dorothy DeWitt, my secretary, for her hard work, patience and understanding, and to all of the fine people at Griffith \& Coe Advertising, Inc. of Hagerstown, Maryland for their expert artwork.
lines as required. Other transformations that rearrange component values to improve realization are also possible.

To transform a lowpass filter into a bandpass filter shunt inductors and series capacitors are added to resonate the shunt and series branches at the desired filter center frequency. The new filter retains the bandwidth and impedance of the original lowpass filter. A 60 MHz bandpass filter transformed from a 20 Mitz lowpass filter has a passband extending from 50 to 70 MHz . The center frequency can be shifted by changing the values of the shunt inductors and series capacitor withour affecting the filter bandwidth or impedance.

\section*{Tunable Lowpass Filter Design}

This section of the paper develops an approach to the design of tunable lowpass filters which takes advantage of frequency and impedance scaling. The results will be applied later to the design of voltage tuned bandpass filters. Since frequency and impedance scaling go hand in hand to dbtain filter component values careful control of filter impedance is necessary if the filter is tuned. What type of impedance control is required and how can it be incorporated into a practical design?

Let's look at a three pole Butterworth lowpass filter, tunable over an octave from 60 to 120 MHz with a 50 ohm imput and output impedance. A 60 MHz filter is designed by frequency and impedance scaling of the Butterworth prototype (Figure 2a). The 120 MHz version of this filter is identical in form but has inductors and capacitors one half as large as its 60 MHz counterpart (Figure 2 b ).

The filter in Figure 2 b can be converted into its 100 ohm equivalent (Figure 2a) by doubling the inductor value and nalving the size of the
capacitors. Notice the inductor in this filter is the same as the inductor in the 60 MHz 50 ohm filter.

A voltage tuned filter could be built if each of the filter components were replaced with its voltage variable equivalent. While voltage variable capacitors are widely available in the form of varactor diodes, voltage variable inductors are a bit of a problen.

Electrically variable inductors, relying upon the saturation of a ferrite core by a \(D C\) control current, are available; nowever, they are expensive, bulky and consume a large amount of control current. An ideal voltage tuned filter would use only varactor diodes as tuning elements.

The total variation required to tune a filter over an octave is four to one, half of the variation coning from the inductors, the other half from the capacitors. Fixing the inductor value and using varactors to tune the filter means the entire four to one tuning variation must come from the varactors. Something has to give, and as implied earlier that something is the filter impedance. Comparing Figures \(2 a\) and \(2 c\) shows that a fourfold reduction of the filter capacitors doubles both the filter frequency and impedance. Filter impedance variation as the filter is tuned is the price that must be paid for the convenience of fixed inductors.

Impedance variation of this magnitude is not acceptable in most applications. In addition to the dovious VSWR problem, filter bandwidth and insertion loss are adversely affected by input and output mismatch. Perhaps the unwanted impedance variation can be compensated by a tunable matching network that provides a variable impedance match as the filter is tuned. This compensation network should be as simple as possible and should not require variable inductors. In addition, its tuning varacters

Addenda to: High Power Filters, Specsmanship and Design Considerations by: R.A. Wainwright

Suppose one wishes to provide filters covering the \(100-1000\) MHz frequency range that will in turn yield greater than 40 dB attenuation at the second and higher order harmonics; let Nf be the number of contiguous band filters. First, determine the number of octaves included in this band: 100-1000 MHz (an octave is a 2:1 frequency ratio).

Then:
(1) \(100-200 \mathrm{MHz}\) - 1st octave
(2) 200-400 MHz - 2nd octave
(3) 400-800 MHz - 3rd octave
(4) \(800-1600 \mathrm{MHz}\) - 4 th octave (up to 1000 MHz is all the coverage that is required however,
or
On: octave number is an integer: On \(2^{N f}\). If one is to evenly distribute the filters such that: Note all logarithms are to base 10.
[1] \(K i=\frac{f c}{f} \frac{\text { (VSWR) high }}{\text { operate(VSWR) }}\) low is about the same for all
filters, then given: \(K N f=\frac{1000}{100}=10\)
then for each filter Ki
[2] \(K(N f)=10=K i^{\text {Nf }}\) ) etc. \({ }^{N f=4}\) (filters minimum)
(A)

Then: \(\frac{\log 10}{\text { Nf }}=\log \mathrm{Ki}\)
and
\(K i=(\) antilog 10\() / 4=1.77827941\)
(see Fig. E-1)
If 5 filters were to be used, which number will be determined
upon evaluation of filters chosen for this task, then, (see
Fig. E-2)
if \(N f=5\)
Then
\(\mathrm{Ki}=(\operatorname{antilog} 10) / 5=1.584893192\)
Assuming 4 or 5 filters, then develop Table 1

\section*{Table 1}

VSWR Passband of Filters 1-4 or 1-5
\begin{tabular}{llccccc}
Ki & & 1 & 2 & 3 & 4 & 5 \\
\hline 1.78 & \(\mathrm{Nf}=4\) & \(100-178\) & \(178-316\) & \(316-562\) & \(562-1000\) & - \\
1.56 & \(\mathrm{Nf}=5\) & \(100-158\) & \(158-250\) & \(250-395\) & \(395-628\) & \(628-1000\)
\end{tabular}

From Fig. E-4 for \(N(f)=4\) or 5 given \(K i=1.78\) and \(K i=1.58\) respectively, assuming an elliptic-like response device is compatible with other electrical parameters, ratings, etc.; Then:

The ratio of the lowest 2nd harmonic frequency (2fL) to highest passband (VSWR) frequency (fcH) for \(N f=4\) and 5 are
should track those of the filter to which it is connected.
An L-Match is a simple two element impedance transformation network used for single frequency resistive impedance matching. Figure 3a shows an L-Match network, transforming 50 ohms to 75 ohms at a frequency of 60 MHz , and the relevant design equations. Can this network provide twice the impedance transformation ( 50 ohms to 150 ohms) at twice the design frequency without changing the inductor?

Repeating the L-Match design for a frequency of 120 MHz and an impedance transformation of 50 to 150 ohms gives the network shown in Figure 3b. The shunt capacitor is one half of its 60 MHz value and the inductor is unchanged.

By simultaneously tuning the shunt capacitor, the L-Match can properly terminate a 60 to 120 MHz tunable lowpass filter providing the filter is redesigned to present an impedance of 75 ohms at 60 Miz .

The initial impedance step-up required at the minimum filter frequency is a function of the filter tuning range and is found by simultaneous solution of the L-Match design equations to provide the proper impedance transformation at both ends of the filter tuning range. This solution is expressed by the equation listed below where \(R\) is the filter tuning ratio, and N is the initial impedance transformation at the low frequency end of the filter tuning range. \(N\) is equal to 1.5 for a one octave tunable filter and decreases to 1.25 for a two octave filter.
\[
N=\frac{R^{2}-1}{R(R-1)} \quad R=\frac{\text { filter upper frequency }}{\text { filter lower frequency }}
\]

Octave tuning requires a four to one capacitance ratio in the filter section as opposed to the two to one ratio needed in the matching network.

Ideally both ratios should be the same to allow the use of a comon tuning varactor.

The matching and filter section varactors can be combined into a single varactor if part of the varactor capacitance variation is absorbed or swamped with a fixed padding capacitor. For an octave tuned filter the padding capacitor makes up one third of the low frequency matching capacity with the other two thirds coming from the varactor.

Combining the matching network shown in Figure 3 with the filter from Figure 2a and 2 c gives the tunable filters in Figure 4. The tuning capacitance varies fourfold from 69 pf at 60 mHz to 17.3 pf at 120 MHz . At 60 MHz 16.7 pf of the tuning capacitance tunes the matching network, while the remaining 52 pf is part of the filter network.

Blocking capacitors can be added to isolate the varactor control voltage which is supplied through a decoupling resistor or RF choke. The actual padding capacitor will be smaller than calculated when the stray capacitance at that node is considered.

\section*{Tunable Bandpass Filters}

A voltage controlled bandpass filter can be designed by lowpass to bandpass transformation of a voltage controlled lowpass prototype. Unfortunately the lowpass to bandpass transformation which works well for wideband (BW > 10\%) filters gives unrealizable component values if a narrowband filter design is attempted. Many advantages of a tunable bandpass filter are lost if the filter bandwidth is too large.

An alternative narrowband approach exists which gives more reasonable component values. It relies upon capacitive, inductive, or magnetic, coupling of parallel resonators and is suitable for filter bandwidths of 20
as given in Table 2

\section*{Table 2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Filter } 1 \\
& (2 \mathrm{fL} / \mathrm{fch})
\end{aligned}
\] & \multicolumn{4}{|l|}{Filter 2 Filter 3 Filter 4 Filter 5 ( \(2 \mathrm{fL} / \mathrm{fcH})(2 \mathrm{fL} / \mathrm{fcH})(2 \mathrm{fL} / \mathrm{fcH})(2 \mathrm{fL} / \mathrm{fcH})\)} \\
\hline \[
\overline{\mathrm{Nf}=4}
\] & \[
\begin{array}{r}
200 / 178= \\
1.123
\end{array}
\] & 1.123 & 1.123 & 1.123 & 1.123 \\
\hline Nf+5 & \[
\begin{array}{r}
200 / 158= \\
1.26
\end{array}
\] & 1.26 & 1.26 & 1.26 & 1.26 \\
\hline
\end{tabular}

From Fig. E-2, [(2fL/fcH) \(-1 〕=0.123\) absissa (frequency scale) and: rejection + return loss \(=60 \mathrm{~dB}\) ordinate. If return loss is selected as 20 dB VSWR approx. \(1.25: 1\) ) then 40 dB rejection +20 dB return loss \(=60 \mathrm{~dB}\) at 0.123 and 0.26 respectively (absissa value on Fig. E-4).
For Nf=4: at 0.123 (abissa) and 60 dB : rejection + return loss (ordinate) one finds \(n=11\) (elliptic) filter. (see mark " \({ }^{\circ \prime \prime}\) )

For \(\mathrm{Nf}=5\) : at 0.26 (absissa) and 60 dB on ordinate. (see mark " \(x\) "), \(n=9\) (elliptic) filters, (Fig. E-2).
If on the other hand one wishes to use an all-pole 0.01 dB ripple Chebishev, (of practical construction) ladder network series coil, and shunt capacitors, with no finite frequency traps

Then: for \(n=19\) the ratio: \(\mathrm{fcH} / 2 \mathrm{fL}=1.36\) for 40 dBc attenuation, (note: Chebishev filters having more than 19 elements, \(n=19\)
are not generally considered practical) it becomes apparent that additional \(10-1000 \mathrm{MHz}\) band segmentation may be necessary, (see Fig. E-3 and Table 3.
If: \(\mathrm{fcH} / 2 \mathrm{fL}=1.36\) then solving for Nf (minimum), \(\mathrm{fL}(1)=100\) MHz , then \(1.36 \mathrm{fcH}=2 \mathrm{fL} \quad=200 \mathrm{MHz}\)
Then \(\mathrm{fcH}(1)=200 / 1.36=147 \mathrm{MHz}\)
Proof: \(1.47^{6}=10=10.09029837\)
Please be aware that the Tables and graphs given herein Do Not List Theoretical Values.

Figures E-1, E-2 etc, are self explanatory. For all-pole (equi-ripple passband and monotonic reject band) Chebishev filters the reject band attenuation (dB) given by
[Eqn. 5]
dB efx \(=10 \log \left\{\left[1+\log ^{-1} \frac{\alpha r(d B)}{10}\right] \cosh ^{2}\left[n \cosh ^{-1}\left(\frac{f x}{f \mathrm{fH}}\right)\right\} \mathrm{fx}>\mathrm{fcH}\right.\)
where: \(\lceil f x(d B]\) is the frequency of \(x(d B)\) of rejection \(\propto r\) is the specified pass band ripple ( \(d B\) )
fch is the theoretical passband upper end, i.e. equi-ripple band edge. Table 3 gives the (practical) values of the reJection and frequency parameters for 0.01 dB ripple ( \(\alpha\) r) in the pass band for various practical \(n\) odd values. Practical filter intrinsic-matched conditions, VSWR values between 1.25 \& \(1.4: 1\) will in general be obtained depending on practical component tolerances. Table 3 lists (practical) ratios of \(f(x d B / f e H\)
percent or less. Minimm filter bandwidth is limited primarily by resonato \(Q\) and acceptable filter insertion loss. of the three possible coupling configurations the capacitively coupled version is the most common due to its economy and ease of manufacture.

Several references are available to guide the design of capacitively coupled resonators but one of the most straightforward approaches is given by williams. Nodal Q's and coupling coefficients for a wide variety of filters including Butterworth. Tschebyshev, and Bessel filters are listed in tabular form. Component values are found by frequency and impedance scaling of these values. The process is best illustrated by an example.

The design starts with the desired filter \(Q\).
\(Q=\frac{f 0}{B W}\)

> fo \(=\) filter center frequency
> \(\mathrm{BN}=\) filter 3 dB bandwidth

Nodal inductors and capacitors are found next.
\[
L=\frac{Z}{2 \pi f o Q q} \quad C=\frac{1}{(2 \pi f o)^{2} L}
\]
\(Z=\) filter impedance
qn = nodal Q (from tables)
The coupling capacitor \(C_{12}\) is found by
\(C_{12}=\frac{\mathrm{kl2} \mathrm{C}}{\mathrm{Q}} \quad \mathrm{k}_{12}=\underset{\text { coupling coefficient }}{ } \quad\)\begin{tabular}{l} 
(from tables)
\end{tabular}

The total capacitance at each node must equal the nodal capacitance. In a two pole filter the shunt capacitor equals the nodal capacitance Minus the value of the coupling capacitor. Working through the equations for a two pole Butterworth, 60 MHz filter gives the filter shown in Figure 5 a . The filter bancwidth is 20 percent.

From this point the filter can be impedance and frequency scaled without affecting its percentage bandwidth. A fourfold capacitor value reduction will double the filter frequency and impedance just as before (Figure 5b). Combining this filter with the previously designed L-Match network gives a constant percentage bandwidth filter tunable from 60 to 120 Miz. This filter is shown in Figure 5c.

The inductors are rather small but still entirely feasible for small dianeter air wound coils. Accurate repeatable coils can be wound using commonly available machine screw threads as winding forms. (For details see the article by Anderson listed at the end of this paper). Alternatively the inductors can be made larger, and the capacitors made smaller, by raising the 50 ohm filter impedance to something higher with a pair of broadband transformers.

\section*{Implementation}

Substituting varactors for the variable capacitors in Figure 5c produces a voltage tuned filter. In principal only three varactors are required for a two pole bandpass filter; one coupling capacitor and two tuning capacitors. However, the coupling capacitor is much smaller than the tuning capacitors so two different types of varactor diodes must be used. Moreover, the varactor capacitance variation and tuning curves must match exactly. Finding two different varactors each having the correct capacice and identical tuning curves is very difficult.

A more reasonable approach is to choose a varactor for the coupling capacitor and obtain the larger tuning capacitance by placing a number of varactors in parallel. This way precise tracking between the coupling and tuning varactors is insured although the ratio between the tuning and the
for all-pole Chebishev filters. Where \(\alpha_{\mathrm{r}}=0.01 \mathrm{~dB}\) (passband ripple)

Table 3

Table of Practical Values of \(f(d B) / f(h i g h)\) for \(x d B\) Rejection for 0.01 dB ripple, practical, VSWR: 1.25:1 Chebishev all-pole ladder
\begin{tabular}{lllllllll}
n & 20 dB & 30 dB & 40 dB & 50 dB & 60 dB & 70 dB & 80 dB & 90 dB \\
\hline 7 & 1.8 & 2.15 & 2.75 & 3.4 & 4.2 & 5 & - & \\
9 & 1.52 & 1.80 & 2.15 & 2.5 & 3.0 & 3.5 & 4.0 & \\
11 & 1.42 & 1.73 & 1.85 & 2.1 & 2.42 & 2.75 & 3.1 & \\
13 & 1.32 & 1.50 & 1.70 & 1.90 & 2.15 & 2.38 & 2.65 & \\
15 & 1.23 & 1.37 & 1.55 & 1.72 & 1.94 & 2.15 & 2.36 & 2.60 \\
17 & 1.15 & 1.28 & 1.44 & 1.60 & 1.77 & 1.95 & 2.14 & 2.30 \\
19 & 1.12 & 1.21 & 1.36 & 1.52 & 1.64 & 1.78 & 1.90 & 2.06
\end{tabular}

FIG. E-3 might well be a graphical apecification for a set of 6 filters spanning the \(100-1000 \mathrm{MHz}\) power passband where \(K i=1.47\) and 40 dB is obtained as harmonic rejection.

Additional figures show Typical-All-Pole-Lowpass Filters.

\section*{Table 4*}

Passband VSWR/ripple (dB)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline VSWR & 2 & 1.8 & 1.5 & 1.4 & 1.36 & 1.3 & 1.24 & 1.2 & 1.1 & 1.05 \\
\hline ripple & 0.51 & 0.37 & 0.18 & 0.12 & 0.10 & 0.07 & 0.05 & 0.035 & 0.01 & 0.0026 \\
\hline
\end{tabular}
* Ref: Ćir-Q-Tel. Inc. catalog (since 1962) page 35, Table 28

coupling capacitors is limited to integer values. Pole to pole and unit to unit tracking is also improved since varactor variations tend to average out across the group.

For the filter in Figure 5 c the ratio between the tuning and the coupling capacitance is almost seven to one. Nearly perfect tracking is possible using one varactor for the series coupling capacitor and seven varactors for each shunt capacitor. The BE-109 varactor which has a capacity of 8.8 pf at 15 vac and 35 pf at 2 vac is suitable.

The number of varactor diodes required can be reduced by manipulating the filter to reduce the shunt to series impedance ratio. Tapped inductors can be used to increase the size of the coupling capacitor, or decrease the size of the shunt capacitors. The tap can be located anywhere along the coil, however, a centertap providing a four to one impedance transformation is physically convenient. The capacitors scale directly with impedance so a four to one transformation increases (or decreases) the affected capacitors by a factor of four.

The series coupling capacitor can also be increased with a Pi to Tee conversion. First form a Pi network consisting of the series capacitor and a portion of the two adjacent shunt capacitances. Then convert this network into a Tee increasing the value of all three capacitors in the process. Design equations are given in Figure 6. Choosing equal values for \(C_{1}, C_{2}\) and \(c_{3}\) increases all the capacitors by a factor of three. Intermodulation for Performance

The use of series opposed diodes is of ten suggested to recuce intermodulation distortion. This configuration makes it impossible for the applied RF to force either diode into conduction. In addition, the RF
voltage applied to each diode is cut in half. Large amounts of distortion will be generated if a varactor is driven into conduction but in low power filters the dominant distortion mechanism appears to be RF modulation of the varactor tuning voltage. This effect is most pronounced at low varactor voltages where the slope of the varactor tuning curve is large and the tuning voltage is small.

One test with a single pole varactor tuned filter gave an input third order intercept of +10 dim . Replacing the single varactor diode with a pair of series opposed diodes (total of four varactors) increased the third order intercept by six \(d B\). The tuning voltage was two volts in both cases. Intermodulation distortion decreased rapidly as the tuning voltage was increased. Best intermoculation performance is obtained by keeping the filter impedance as low as possible, avoiding low varactor tuning voltages, and using series opposed diodes.

\section*{Tuning Range}

Filter tuning range is essentially the square root of the usable varactor capacitance range with octave tuning requiring a four to one capacitance variation. Several factors tend to limit the available tuning range. At the high frequency end stray capacity can significantly limit the maximum filter frequency. At the low frequency end intermodulation performance is degraded and the filter insertion loss may increase.

A simple varactor equivalent circuit consists of a variable capacitor in series with a fixed resistor. When the varactor capacitance is small as it is at higher tuning voltages the resistor makes up a small portion of the overall device impedance and the varactor \(Q\) is high. Decreasing the tuning voltage decreases the varactor reactance without greatly affecting the series resistance. The result is decreased varactor \(Q\) and increased

filter loss at low tuning voltages. Whether the filter loss actually increases or not depends upon the bandwidth of the filter and the \(Q\) of the filter inductors.

Despite these effects octave range filters are easy to build and wide capacitance range varactors such as the Motorola MVAM-125 make filters tunable over at least two octaves possible although perhaps not easy. Needless to say wider tuning ranges require better varactor tracking and greater attention to stray capacitance and inductance.

\section*{Frequency Range}

Filters below one megahertz are possible although the muber of varactors required might be excessive. Increasing the filter impedance helps at the expense of increased inductor size and reduced intermodulation performance.

In the UHF region filters to at least 500 MHz are possible. At these frequencies the filter inductors become very small, the effects of component lead and package parasitics become apparent, and finding suitable varactors is difficult. As before the filter impedance can be increased to reduce the inductor problem but the improvement that can be achieved is limited by the effects of stray capacitance. Careful circuit layout is very important and reducing the tuning range to less than an octave helps

The maximum practical frequency of these filters is an interesting question. Macrostrip and other transmission line techniques come to mind but transmission line inductors have the undesirable property of turning into capacitors if the frequency is doubled. With careful design and construction useful filters with limited tuning ranges might be possible well above one gigahertz.

The design of voltage tuned lowpass and constant percentage bandwidth filters can be summarized as follows.
- Choose filter type, tuning range, number of poles and impedance.
- Determine initial impedance transformation N needed at the low frequency end of the filter tuning range.
- Design L-Match networks using N obtained above.
- Use tables to design the filter section. Use capacitively coupled resonators to implement narrowband bandpass filters. Filter impedance at the low end of its tuning range is N times 50 ohms in most cases.
- Select fixed padding capacitors to equalize tuning capacity ratios in the matching and filter sections then merge matching and filter varactors. Absorb stray capacitance into the padding capacitor.
- Manipulate filter impedance using tapped inductors or a capacitance Pi to Tee conversion to obtain an integer ratio between shunt and coupling capacitance using a minimum number of varactors.
- Use series opposed varactors and low filter impedances to minimize intermodulation distortion.

\section*{References}

Anderson, Leonard H., "Self-Supporting Coils", Ham Radio Magazine, July 1977.

Williams, Arthur B., Electronic Filter Design Handbook. McGraw-Hill Book Company, New York, 1981.

Zverev, Anatol I., Handbook of Filter Synthesis, John Wiley and Sons,


A. FILTER ELEMENT


FIG. E-5
LEVY A-Z, \(n=19\)-2KW C.W. 2:1 LOAD-HIGH POWER LOW PASS FILTER; fc \(=1.65 \mathrm{GHz}\) PASSBAND LOSS: 0.1 dB TYPICAL \(C\) incoapoateo


La \(60 \mathrm{MHz}^{2}, 50 \mathrm{OHM}\)

'2b \(120 \mathrm{MHz}, 50 \mathrm{OHM}\)

ec \(120 \mathrm{MHz}, 100 \mathrm{OHM}\)
Figure 2
3 Pole Butterwort Lowpass Filters

high power lowpass filters

yavinty




Eivivici.


















\section*{AN I F LIMITING AMPUFIER DESIGN ON -K SOFT BOARD}

\section*{KEY PERFORMANCE REQUIREMENIS}
- SNR: -50dBm - IhPut \(=-60 \mathrm{dBC}\)
- Sigmal power, - -50 to 9 8dBm input \(=410 \mathrm{dBm}\)
- Moise power, - -97 KTN Nolse input = +10 dBM
- IMD \(=-19 \mathrm{DBM}\)
- Moise pedestal flatness \(=5 \mathrm{~dB}\) a 50 Mhz
- frequency
- \(1000 \pm 50 \mathrm{MHz}\)

Ihe nolse power has required to oulet the receiver hhen mo signal mas present.

Table I


Figure 6 Capacitor PI to TEE Conversion

Block Diagram I and Table II shows the allocation of performance by stage. There are lour amplifier stages and two filters. The amplifiers each contribute approximately +34 dB gain for a total of 130 dB galn. The gain level of 130 dB is required to amplify the -97 KTN noise energy of the input up to a +10 dBm output. Slage A1 is biased somewhat differently than the other three amplifiers to establish the noise figure of the total amplifier. Filters F1 and F2 both have an insertion loss of -8 dB due to the installation of 3 dB pads at both input and output. Amplifiers A1, A2 and A3 all use HXTR-5101 transistors, while the output amplifier A4 uses HXTR-5104 transistors for a higher saturated output level. Amplifier A1, while establishing the noise figure of the amplifier, also has the widest range of input level (from 97 KTN to a +10 dBm inpul). Its output saturates at +15 dBm ol outpul power due to the use of the HXTR- 5101 transistor.

The block diagram shows that as we get further down the amplification path, each of the amplifier stages is going into hard saturation. This causes a problem in the first layout.

As previously stated, the amplifier A1 establishes the signal to noise ratio (SNR) of the total amplifier. Filter F1 sets the noise bandwidth. Amplifiers A1 thru A4 combine lor a total of 130 dBm gain. Filter F2 shapes the signal bandwith, and Amplifier A4 is in a limiling mode for all input signals.

One of the problems of this design is that all the amplifiers are in hard saturation with the +10 dBm inpul to the lirst stage. Amplifier A 3 is in a hard saturation at the -51 dBm input level. Ideally, amplifier A4 should be the only amplifier in saturation. This causes several types of problems. When an amplifier stage has an overdriven base emitter junction, the bias becomes negative and the second harmonics increase to a level equal to that of the fundamental signal. This overcriven condition causes this stage to become a good mulliplier. It also causes what is known as the McDonald Eliect. The McDonald Eflect occurs when the emitter-base junction is overdriven by an input signal over an extended period ol time. Hot carriers build up in this junction. With hot carriers in the junction, the HFE or Beta of the device goes to 0 , limiting the gain of the device.


Block Diagram I

\section*{ALLOCAIION}
- Amplifier \(A_{1}\) Establishes the SMr
- Filter fi sets the nolse band width
- Amplifiers \(A_{1}\) - A 4 combine for 130 dB of gain.
- filter f2 shapes the sigmal band width
- amplifier ah is in a limiting mode at all input levels.

PROBLEM
- All amplifier in hard saturation at the + 10 dbm input
- amplifier aj is in hard saturation at the -50 dBm input

TABLE II

There are solutions to these design problems. First, it is imperative that we establish a device Beta parameter for the vendor. Second, control of the bias current must be established. Passive limiting must also be added. Figure I shows the current divider ratio of base current to shunt current which is established at a \(10: 1\) ratio. The shunt current is actually 10 times that of the base current. Under these conditions, the effect of the base voltage going negative is eliminated.

Figure II shows the adding of a Schotky barrier diode in a passive limiting application. These diodes clip the input signal, to all stages except lor the last output stage, at a . 4 Volt peak to peak swing. This can only be done with an FSK, PM or FM type signal and cannol be employed on an AM signal. The overall schematic of amplifiers A1 through A3, shown in Figure II, shows how each of the bases uses a Schortky barrier diode to add the passive limiting. Only one device now remains in an active limiting mode.

In order to design the matching network for amplifier A4, it is necessary to establish some large signal S parameters for the device. Table ill shows the published small signal S parameters and the measured large signal S parameters at the appropriate VCE and collector current. In order to establish the optimum S parameters for designing the matching circuitry that works for the output stage, it is necessary to set up a special S parameter measurement lest station. This test station employs a signal generator, circulators, an input and reflective power meter, a triple stub tuner, and a special 50 Ohm to 50 Ohm circuit with the transistor soldered in. Another triple stub tuner is used on the output, a spectrum analyzer (HP8410) is needed to check for second harmonic, and an output power meter will be required to obtain optimum output power.

After optimum performance is achieved at each individual frequency, the triple stub tuners are terminated at 50 Ohms and the transistor is removed from the circuit. The network analyzer is used to launch in and measure the output complex conjugate and the input complex conjugate of the device. Figure IV shows such a test setup.

- PaSSIVE LIMItING


Figure II

RF Design Evaluation Made Easier Through Automated Control

\section*{by}
S. M. Mussmann

Senior Software Engineer
en Indiana, In
Beech Grove, Iy 46107
With the advent of work stations for more efficient product development attention now turns to the task of adequate design and product testing. The manufacturing environment offers an excellent automated testing solution which can readily be applied to the engineering development laboratory. Thia solution is based around the IEEE 488 general purpose interface bus (GPIB) The following discussion will take the reader through an introduction to GPIB, common definitions and specifications, and an outline of criteria for selectins a GPIB instrument. In addition, specific RF design examples will be given to emphasize the enhanced testing capability and efficiency. A series of programs are included in the appendix for reference in setting up similar test and evaluation procedures.

The manufacturing environment has experienced automation for many years. This began with the first assembly lines and continues to be a driving factor for economical production facilities. Industrial societies have learned that automation is an essential requirement for an efficient, as well as high quality operation.

In the past ten years that mind set has found aiche in the development engineering laboratories. We've graduated from mechanical pencils, to hand held calculators, to sophisticated work stations and CAD/CAM development. The
impellent for this transition was much the same as or the manufacturing floor. The need was crucial to shorten the development time without riaking the quality of the product or incurring undue liabilities by putting a product on the market without adequate teating. In addition, our country is experiencing a shortage of experienced design engineers on top of the rising cost of an engineering education and the rapid rise in starting salaries for new graduates. These factors all call for new methodology for producing quality products, at low cost, and even lower development cycle time.

It is easy to aee why the application of automated testing has moved into the ensineering development laboratory to become a permanent fixture. Mew design test and characterization can benefit from the same efficiency as manufacturing by utilizing equipment containing automated testing features. Design verification can be made at each level of the product before the finished item is complete, thus saving the need for costly corrections and redesigns. The savings in time and personnel is obvious. Yet, there are other subtle areas where integrated automated testing during product development can have an impact. There is a great potential for a higher quality of work and increased productivity by reducing the tedium and length of tasks: such as harmonic characterization in a particular design. Design documentation becomes easier and an aditional confidence in the design is obtained through the ability to repeat the same tests for verification. Essentially, most user error attributed to test methadology can be eliminated.

Current automated design tools for the electronics world are usually inefficient in ternas of data bases or are not compatible or applicable.


Figure IV

Block Diagram II shows the final line up of the devices using the passive diode limiting at each of the stages (except for the last device in A4). As indicated in the block diagram, the output saturated level of all the amplifiers is +9 dBm , well below the hard saturated output level. Only amplifier A4. with its good matching network for large signal parameters, is in saturation. This gives us a flat +10 oBm across the band of interest.

\section*{CIRCUTT CARD ASSEMBLYMATERIAL}

When it was decided that high " \(K\) " Duroid material would be used for the construction of this amplifier, strong concerns were voiced by the production and manufacturing engineers. But there are both pros and cons of using the oid standard of Kovar/Ceramic materials. On the positive side. Kovar/Ceramic works and we have procedures that are already in place to manufacture using this material. The thermal expansion of the Alumina/Kovar to the chips mounted on top is approximately the same. It is extremely stable down to -55 C, and we hold etching tolerances to 3 mils +1 mil.

On the negative side, using the Ceramic/COR system, extra drawings are required for the ceramic printed circuit board. Kovar is very heavy and costly to machine and plate. The Kovar carrier must be ultra flat, you must use thin film techniques for etching, and it requires a hot plate. In addition. the alumina substrate requires the use of laser drilling for the printed circuit holes.

While using the Duroid 610.5 material has some manulacturing handicaps (the fabricated boards must be bought outside, new internal manufacturing procedures must be devised, and there is a danger f pad lifting from excessive rework), the advantages are significant. The use of the Duroid material equires no ceramic drawings, Kovar carriers or flatness. The material is flexible and can be batched. stepped and repeated using MC equipment. Most of all, during breadboard testing it has passed emperature cycling on the breadboards from 0 through 85 C with components attached to the boards and using the alumina backing. No dielectric fractures have occured.

Therefore, the question now becomes "Where are these automated test features available?". The answer is simple, "They are already here - just look for them out in your production facility and brins them into the lab". The General Purpose Interface Bus available on many pieces of test equipment provides the ability for this automated testing. In the engineering lab, it offers one of the best methods for characterizing new design A GPIB instrument allows the creation of an application specific data base with a minimum amount of pain. Visualize some of the doantages to performing the following characterizations through an automated means: phasa noise, output level accuracy and flatness, frequency settling time and switching speed, spurious and harmonic response. All of these are available now and actual test setupp and programs for some of these applications will be given in this discussion.

Let' pause moment and take look at GPIB and what it has generically to offer. The GPIB is a commuications protocol spacified by IEEE 488 "Standard Digital Interface for Programmble Instrumentation". You may have also heard of Hewlett-Packard's version called HPIB. The general purpose interface bus allows the remote transmission of an ASCII data string which simulates the front panel operation of an instrument. Each instrument is assigned an address over the bus and is then polled when activated. This allows for multiple addressing of several identical instruments wich are used for the same purpose or provides the means to daisy chain different pieces of test equipment. In comparison, the RS-232 interface requires a specific hardware data port at nost computer or concentrator for each piece of interfacing equipment

GPIB communication has been availabie since 1975 and highly accepted and supported since 1978. It provides a digital data exchange at rates of imbyte per second in a byte aerial, bit parallel format. The LEEE 488 specification provides a means for standardizing the mechanical interface, the electrical interface, and the bus communications protocol that is the signaling of data ready, data accepted, etc. As of this date no standard is provided for the codes and format which are used to represent the instrument's front panel operation. A subsection of the IEEE P-98) Comittee called TAPIS (Transportable Architecture for Programable Instrument Systems) is trying to standardize on the codes that GPIB instruments understand. A published document on their recomendations will probably not be available for another year as they were scheduled for completion Mid 1986 and have not yet reached that milestone. For now, the format of codes is instrument dependent. In some cases, a specific manufacturer may use the ame codes and formats for all of their products. In any event, it is the instrument dependent qualities of GPIB application which make the selection of test equipment critical. This interface is tantamount to the successful transition of the automated test from the manufacturing to the development environment.

Aside from the decision to employ automated teating through GPIB there is a bit of system design which must be completed in order to produce the test setup. The system will require the device under test, the GPIB test equipment, and system/test controller. The test equipment involved must be capable of either receiving external commuication, transmitting information, or both In GPIB lingo, these qualities are referred to as listen and talk.
didoe Limitinc performuce by stace
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
0
\]} & \[
1
\] & & & \multirow[t]{2}{*}{\(\rightarrow\)} & \multirow[t]{2}{*}{\[
4
\]} & \multirow[t]{2}{*}{\(\overbrace{n}\) Filter(2)} & \\
\hline & & mecre( & m & & & & \\
\hline ıome &  & 沙先 &  &  & : 0 & \({ }^{416}\) & \\
\hline catalour & ** & 0 & * 40 & ** \({ }^{\circ}\) & -1" & - \({ }^{\text {ab }}\) & \\
\hline Oswr & - & cor & - \({ }_{\text {a }}\) &  &  &  & \({ }_{\text {a }}^{\text {P10 }}\) \\
\hline
\end{tabular}

Block Diagram II

\section*{IHE ACTIVE LIMIIING STAGE}
- the last stage of amp af is the true active limiter.
- must use large signal "s" parameters to design the input and output matching nethork.
- hp small signal s-parameters
\[
\text { VCE }=18 \mathrm{~V}, \quad \text { ic }=110 \mathrm{~mA}
\]
- Measured large signal S-parameters
\[
\text { VCE }=10 \mathrm{~V} \quad \mathrm{IC}=35 \mathrm{~mA}
\]
\[
\begin{array}{llll}
\$ 11 \\
.70<169 & 1.5<78 & .10<64 & \$ 22<105
\end{array}
\]

\section*{conculson}

When designing an IF limiting amplifier that requires 130 dB gain, passive limiting is critical at each individual stage except for the last output stage. The last stage, which is actually doing the active limiting. must have large signal S parameter data taken in order to establish good input and output matching networks. Passive diode clipping or limiting can only be used with FSK, FM or PM type modulation, and cannot be used for AM. High "K" Duroid material makes an excellent material for this type of circuitry.

A device that listens is capable of receiving data over the common bus when and only when it is adoressed. Examples of these devices are programable signal sources, programmable power supplies, printers, and "dumb" display devices. A device that talks is capable of transmitting data over the common bus under the same addressing conditions. Examples of talkers are frequency counters and tape readers.

Some instruments include labeling on the back of a piece of test equipment that will give the equipment's specific level of GPIB intelligence. Be careful, not all instruments can both talk and listen. The HP 8656 A or \(B\) signal generator, for example, is Listen only device. Unfortunately. decoding the GPIB label may be difficult if it is not properly documented or if a copy of IEEE 488 is not readily accessible.

For a quick overview of what to look for, take the example of the Wavetek 2500 signal generator. It has complete source and acceptor eapability (SH1, AH1), is a basic talker and listener (T6, L4), has extended modes of talk and listen disabled (TEO, LEO), has complete remotellocal (RL1), device clear ( \(D C 1\) ), and device trigger (DT1), and service request (SR1) capability. It has the parallel poll (PPO) and controller (CO) options disabled. E2 designates the type of electrical interface as one using tri-state drivers as opposed to open collector (El) drivers.

In addition to the talk andfor listen capability of the test equipment. the system will require a GPIB controller. The controller will specify the talkers and listeners on the bus and regulate the data flow and access. Host controllers will also provide means of programming test sequences to further
increase throughput. Usually, this programming will be in BASIC or a BASIC related form for universality.

There are several sources of controllers in the current marketplace. The traditional form is an independent, dedicated instrument with keyboard entry and some sort of display feedback. Wavetek, Tektronix, and HewlettPackard all make this sort of GPIB controller. With the wide acceptance of IBM PC compatibles there are several companies producing plug-in boards for P.C.s to perform the IEEE 488 interfacing. In many cases, this can also be accorplished through an RS- 232 to IEEE 488 converter. National Instruments and IOTech manufacture such equipment which allows the user to tap off of computer resources currentiy in house.

A good application of the PC type arrangement is a custom integrated workstation consisting of an IBM PC with a GPIB interface card communicating with an 148753 Metwork Analyzer with \(S\) parameter test set and the design under test. Using GPIB and Touchtone software the device under test can be fully characterized.

There is little specific advice for selecting a controller. The basic guidelines of cost, ease of use, longevity, and compatibility, as used in any capital expenditure, should be taken under consideration. Efficient usage of equipment provides a strong case for selecting a bC based product for integration as a controller. The drawback to be aware of for this application is the speed of execution. The PC products are notoriously slower than dedicated controllers which can be a distinct hinderance in the ATE environment.

As alluded to briefly before, it is in those areas, unregulated by the IEEE standards, which make the selection of automated test equipment critical. It is the area of codes and formats that exhibits the least amount of standardization. As each piace of test equipment has its own set of codes and formats, the user is essentially learning new language developed specifically to talk to that equipment. The language should offer a consistent methodology for replicating the front panel operation of the instrument. The codes should be easy to remember through the use of memonics with the restrictions of being neither too cryptic nor too verbose. As an illuatration, look at the specification of frequency. RF output level, and AM using the HP 8901A modulation analyzer and the wavetek 2500 signal generator.
\begin{tabular}{ccl} 
HP 8901 & Wavetek 2500 & \\
H5 Specification \\
R2 & FRQ & frequency \\
M1 & INM & suffix for RF output level \\
& & AM, the 2500 has internal NM (IAM) and \\
& & external AM (KAM)
\end{tabular}

Though both offer a amplified memonic for the specified front panel input, there are no memory clues provided in the 8901 code.

More than simplified code is needed to adequately convey the meaning of the front panel operations across the GPIB bus. The code should provide for a variety of numeric inpur formats such as engineering suffixes ( HHz ) and exponents (E6). Flexibility should be allowed in the syntax of the programing
e.g. the use of space characters should not be restricted. In selecting a GPIB instrument. remember, the user will have to be learning a new programing language. To reduce the learning curve time, that language should be as close to normal conversant engineering terms as possible.

Some instruments have accomplished the task of providing a user friendly interface with a technique called minimum uniqueness formating. This means that each command entry (front panel function) can be represented by minimum number and sequence of shanumeric inputs. As long as the user includes those minimum characters in the required order, any version of the command can be accepted. The minimum format may be consistent for all entries, such as a three character memonic, or it may vary. If the only comand available starting with the letter \(F\) is frequency, then the minimum representation of a frequency input may be the single initial letter. Using the minimum uniqueness philosophy, F, FRQ, FREQ, FRQCY, FREQUENCY may all be employed to request a frequency command. In addition, an instrument with this type of coding will usually allow any combination of upper or lower case letters.

After formatting the command portion of the GPIB message, there is a requirement for formatting the numeric entry and termination of the message. Fortunately, there is a defacto standard for all of this data entry, pioneered by Tektronix. Tek codes and formats are specified under Tektronix Standard 962-1780-01 and cover the device depenaent message coding for all Tektronix GPIB controllable produsts. As the IEEE standard is not yet available. any instrument advertising that they conform to Tek codes and formats will be the closest to following a standard as there is today.
design of combline and interdigital bandpass filters
by Dick Wainwright
Chief Scientist; Cir-Q-Tel, Inc.

Abstract: The economic design of parallel coupled bandpass filters, e.g. interdigitated and combline having rod (finger-like), helical coil and annular ring inductive elements with necessary tuning capacitors \(\mathrm{C}_{\mathrm{t}}\), in precision machined rectangular box-like (ground plane) containers can be an expensive proposition, especially given the fact that the average purchase order quantity for such devices is in the order of \(10-15\) units. Hence, in general, the savings resulting from volume manufacturing processes are not available.

Standardization is in many organizations a sometime thing. The cost of precision machining for small volume orders even with CNC machining substantially drives the cost of manufacturing, the making of cavities-holes, drilling and tapping is expensive in any shop, by almost any means.

The component value(s) realization of various filters having Pseudo(Quasi) \(1 /\) Elliptic, (Inverse Chebishev), all-pole Chebishev, Butterworth, Gaussian, Bessel and other response shapes to satisfy a given set of specifications is not terribly difficult. One can, with a digital computer, design rather complex devices in seconds - the precision
machining and assembly processes may take hours. If one must "design in" self equalization \(\underline{1 /}\) and/or near band edge traps by means of non-adjacent resonator coupling, etc., the machine assembly/adjustment times may expand astronomically and will usually require very astute technicians for their adjustment.

This paper suggests designs* that have been realized In round, hollow, right circular cylindrical ground-plane housings that have been manufactured in substantial quantities, that yield superior time and frequency responses. Cavities-holes are expensive, unless one buys them ready-made, as is the case with the seemingly infinite variety of commercially available tubing: round, rectangular or of almost any shape, size, wall thickness, material, etc. that are easily made by casting, drawing or extruding and perhaps by other means.

The round-tube ground plane housing is easily punched, drilled, tapped, plated, painted, etc., and it provides degrees of freedom for a wide variety of resonator shapes: posts, helically coiled of many shapes, annular ring-like (uniform transmission line, semi-microstrip-1ine) (Fig.1).

\section*{*Patent (s) Applied For}

1/J. D. Rhodes, "Theory of Electrical Filters" Chapter 7, John Wiley \& Sons ISBN: 0471718068

Tektronix presents a great amount of detail on the formatting of a basic message unit. There are several building blocks which are combined as required for each message. The code representing the front panel command key is termed a header. With a header there may be an arsument which can be either a numeric entry. such as a frequency setting, or a character entry, such as commanding "RF om". Each message is completed with a terminator wich may be an end of message designator such as carriage return / line feed or it may be a concatenation terminator indicating that there is another message on the same line. The diagram below illustrates a typical message string
header sp humeric arguient sp suffit sp termizator
The spaces in all areas except between the header and first argument are optional. The following examples are actual code input for the wavetek 2500. They illustrate both the minimum uniqueness format and the methods of buildins - complete message string

Frequency 500.00 nHz ; LVL 300 mV ; RF ON et 18
IAM 50\%; FRQ 123 E6; Level 500 E-9: STR 5 lf eoi
The semicolon is used as message delimeter and the end of string terminations are actually control characters and are not actually printed.

Aside from the friendiness of the user interface, choosing a GPIB instrument should also include an evaluation of supplementary functions. These are comands which are available to the GPIB user but are not accessible from the front panel of the instrument. One of the bigbcst advantages is remote error reporting. A GPIB user may be able to receive RF error feedback from the instrument in more detail and in a more obvious manner than the local user.

Indications such as FM over deviation, loop unlocked, and carrier unleveled can be commuicated actoss the bus as soon as they occur and in "plain English" terminology. Error reporting may also include syntactical errors as related to the GPIB input e.g. Header Error, and system and communications errors. Additional enhancements such as service requests from the instrument to the bus controller and executing a group of commands simultaneously may also be available.

The concerns outlined above are basically software driven. There are other areas to be aware of when selecting a GPIB instrument which are more hardware related. Two rather simplistic ones involve setting the address of the instrument and the end of string identifiers. If these items are assigned via a hardware switch in the GPIB instrument further investigation as to the locetion and accessibility of the switch is needed. A software override of the address and termination may also be provided.

Some unobvious pitfalls may be present in the actual digital architecture of the GPIB instrument under consideration. If single processor is controlling all instrument functions, the speed of execution may be relatively slow. This will effect both the GPIB responsiveness and the RF output. If the instrument uses two separate processors for control. specifically separate processors for the front panel operations and GPIB cormunications, there is a possibility of master/slave contention. Care should be taken to determine which side has execution priority so that the maximum throughput can be obtained.

In addition, a GPIB processor will need to have its clock running at
which may be simply arrayed in comb-line, interdigital, or, because of the round element mounting (ground) plane one may angularly rotate (Fig. 2 D ) the elements up to \(\pm 180^{\circ}\) ( \(\theta\) plane) or tilt them ( Y plane)-(yaw-Z axis) or rotate annular inductors in the \(\pm\) \(\dagger\) plane. One may also simply add fixed or adjustable decoupling elements and/or design for very wide tuning ranges, e.g., narrow band designed for up to \(7 \% \mathrm{~dB} B \mathrm{~B}\), or more, that may be simply adjusted over 2:1, 3:1, or, 5:1 tuning ranges. Many such devices have been designed and constructed. In the case of helical coils, pitch and winding sense may al so be a design variable.

By proper design of coupling structures and general parts layout, one may obtain nearly constant percentage/MHz bandwidth over very wide tuning ranges in the 1 MHz 18 GHz range of frequencies.

The possibilities literally boggle one's imagination!
All devices electronic contain nothing more than: coils (L), capacitors (C), \(\pm\) resistance ( \(\pm R\) ) or the equivalents or mixes thereof, and their necessary connections by means of conduction or induction (field coupled), which are necessarily limited to \(L, C\) or \(R\) or a mix thereof as elements/equivalent elements, in passive circuitry.

Figures 1 and 2 are self-explanatory. Figure 1 shows some of the possible inductive element, physical configurations that may be used in round-tubular ground plane
housings. Figure 2 shows some possible array configurations of the inductive elements that may be used in a round-tubular ground planes. Figure 3 gives details on an 8 resonator, interdigitated, annular ring inductive element bandpass filter that tunes the range \(300>600 \mathrm{MHz}\), having a nominal 3 dB BW of: \(1.3 \%\) \& \(300 \mathrm{MHz}, 2.5 \%\) \& 450 MHz and \(3.3 \%\) e 600 MHz , roughly linearly increasing \% 3 dB \(B W\) vs. fo, as was required in the specifications.

Table 1 lists general passband responses for this device. Figure \(3 C\) and \(D\) are plots of the general passband response. Figure 3 D is the ploted response obtained while sweeping the passband and from 125 MHz to 4.9 GHz . Over 80 dB of rejection was obtained for this filter on an HP N.A. 8505 sweeping to 1.3 GHz . However, the plots given were taken on an HP scaler N.A. having a noise floor of roughly -50 dBc . Figs. 3D and 3 G are the filter responses with wide band sweep, as indicated. Figs. \(3 E\) and \(3 H\) are plots of the group delay responses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{fo MHz} & \multicolumn{6}{|c|}{TABLE 1} \\
\hline & \(\propto\) Eo dB & 3 dB BW &  & \(\pm 5^{\circ}\) (1) LINक BW &  & \[
\begin{aligned}
& 1.5: 1 \text { (MHz) } \\
& \text { VSWR BW }
\end{aligned}
\] \\
\hline 300 & 8.1* & 4 & 4.4 & 3.5 & 2.7 & 2.7 \\
\hline 600 & 5.4* & 20 & 27.2 & 17.9 & 11.8 & 11.8 \\
\hline
\end{tabular}

\footnotetext{
* All tests were on unplated devices of aluminum construc-
tion. Data measured on an HP 8505 vector N.A. for Table 1.
}
all times in order to detect its address from the bus. This clock will induce noise throughout the instrument. How the manufacturer handles the area of Rr immunity to this clock noise is another critical point.

The actual GPIB interface to the BUS can be controlled through single dedicated chip. This relieves the instrument software from the handshaking tasks. Several devices are currently on the market to handle this commanication. Yet, some of those do not conform to the IEEE 488 standard nor can they handle the higher date cransmission rates now prevalent in today's technologies. In those cases, data can actually be lost. Another pitfall is the exiatence of ghost interrupts through the BuS communication device. Thase are timing related problems where the controller is faster than the interfaca device used in the instrument being controlled. The interface device can miss critical communication signals au to its inability to handle the transmission rates.

In sumation, there are critical areas to research in choosing a GPIB instrument which involve both software and hardware. The most evident area, though, is that of the user interface. The user is essentially employing three different languages when implementing an automated test setup: the language of the test instrument (individual codes and formats), the language of the controller, and the language of the control program. Choosing a system wich will reduce the learning curve in any of these areas will be a great asset.

Now that you have completed a crash course on selecting and setting up a GPIB system, here comes the fun part. What can you actually do with this information?

For the GPIB novice, the appendix includes walk through progran demonstrating talk and listen features. This program is written for the HP 9825 controller and the Wavetek 2500 signal generator. It shows the combination of controller language and instrument specific language which a user would have to implement to achieve GPIB communication.

A typical example of an efficiency improvement through GPIB usage is the characterization of harmonics as related to the carrier in an RF design. This is a task which is exceedingly tedious to do under manusl conditions. Typically, a system under test would be connected to a apectrum analyzer. The uaer would manuilly change the source frequency and "eye-ball" the occurrence of harmonics and spurs. Of course, it was easier if one knew where to look in frequency range and in level. By automating this sort of test, no previous knowladge of the circuitry is needed. A purely objective search can be made acros: the frequency band and a recording can be produced showing all power occurrences. The same test could be repeated at several temperature ranges to characterize the loss in the attenuators due to increases in temperature. Spikes or drops could be easily located emphasizing the phase relationships between various oscillators. All of this could be plotted and permanently stored in a period of 15 minutes. Factors such as allowing settling time for the signal generator can be included in the controlling program insuring the most accurate data possible.

The sketch below illugtrates the test aet up for harmonic characterization of the Fluke 6060A signal generator. Included in the appendix are plots of the results at varying temperatures.

Figure 4 gives general details on a 10 resonator combline tunable bandpass filter tuning from \(3>8 \mathrm{GHz}\) (the electrical performance data on the devices shown in Figures 5C through F are incomplete in that the N.A. noise floor is shown at about -60 dBc . This unit should yield an ultimate rejection of well over -100 dBc ).

The tunable combline filter shown in Figure 4 has essentially a \(2.5 \%, 3 \mathrm{~dB} \mathrm{BW}\) over its entire \(>3: 1\) tuning range: \(3>8 \mathrm{GHz}\). No noticeable spurious returns (above approximately -60 dBc ) are apparent to nearly 13.4 GHz over the entire tuning range.

If one were so inclined, one might say that this device in an evanescent mode device at the lower tuned frequencies where:
\[
\frac{F(m i n) \text { mode }}{\text { Fo }(m i n) \text { tuned }}=\frac{13.4 \mathrm{GHz}}{2.7 \mathrm{GHz}} \sim 5: 1
\]
and a combline at the upper reaches of its tuning range where: \(F\) mode/fo \(=\frac{13.4}{8.15}<2.1\)

Remembering, of course, that the response above 13.4 GHz is waveguide moding, and not an element caused spur response.

Figure 5 gives the general details on the rotation coupled (WS \({ }^{2} / \theta, \Psi, \phi, p\), ) bandpass filter, in this case a 4 pole, 2 zero tunable device tuned to 92.3 MHz , spacing, sense, and judicious use of partial electric walls and an
adjustable coupling capacitor between two of the elements yields exceptional time and frequency domain properties in a relatively small package weighing 4.2 ounces.

Figure 5C: Linear frequency, 2 cycle semi-log plot of: amplitude, return loss and group delay. The group delay is exceptionally flat to the \(7 \mathrm{~dB}, \mathrm{~B} . \mathrm{W}\). and then rolls off monotonically, a general characteristic of linear phase filters that also have excellent time domain properties.

The additional data table: (Figure 5C) shows tabulations for the non-linear \(\pm 1^{\circ}\) and \(\pm 0.5^{\circ}\) bandwidths; the interesting features are, however, the exceptionally deep notches: \(110-112 \mathrm{dBc}\), and the pulse response, which was traced from an oscilloscope photograph; the apparent time sidelobe (note: looks more like it may have been caused by a load mismatch since it is devoid of normal zero-axes crossings which are typical of the "ringing effect") is on the order of -33 dBc , which incidentally is the return loss minima value measured at fo. See Return Loss Plot (Figure 5C)
Conclusions: The physical realization of parallel coupled-tubular-1ike, combline, interdigital filters and the use of angularly variable coupling means \(\theta, \Psi\) and \(\phi\) angle rotated elements for controlled coupling/decoupling have been described for a variety of inductive element

The use of this type of program was exceedingly beneficial in determining whether or not the generator met its rated specifications.


Using the same setup, automated testing can be used to determine the frequency switching time of new design. The following two plots show the responsiveness of the Wavetek 2500 during its initial design stages. The signal generator is rated at awitching speed of \(200 \mathrm{~ms} .+1-100 \mathrm{~Hz}\) of final value in CW and for changes greater than 10 kHz in FH mode, with typical speed of 100 ms . To prove the initial design, GPIB testing was used to determine, plot, and record the awitching speeds across eritical bands. This exercise was extremely beneficial in pointing out both the high performance areas, as seen in the switch completed in approximately 50 msec , and the areas which required refinement. Such characterization can assist not only the design groups but can emphasize design superiority in a sales or marketing arena. A picture is worth a thousand words as the saying goes. Those pictures, proving technical superiority, are asily generated using GPIB test procedures in the engineering lab. The program used to generate the switching \(t\) ime evaluation is also included for your reference in the appendix.

The last example to be presented is no more complex in test procedures or setup as the previous illustrations, but does encompass more critical RF design area, that of phase noise characterization. As the local oscillator
phase noise will affect the overall performance of a receiving system,
obtaining an accurate analysis of the receiver system is highly critical. In a manual mode, this measurement is time consuming and highly vulnerable to human error. In an R.P. application note (270-2) the recomendation is to use a narrow resolution bandwidth and perform eight sweeps, collecting data by hand at specified offset frequencies. All of these functions can be efficiently programmed and controlled through the use of the GPIB and a programable spectrum analyzer. Using the programable features of the analyzer will provide the opportunity to determine the phase noise sideband envelope over a wide frequency range. This is done by selectively avoiding discrete signal points.

The last series of charts in the appendix shows a thorough evaluation and comparison between Fluke, HP, and Marconi signal generators with respect to upper sideband phase noise.

Again, the use of test equipment with GPIB can be seen as a very valuable design development tool. It can be employed both in technical market definition, such as the comparison of competitive equipment, and in design definition and evaluation. GPIB in the engineering lab increases both the credibility of the data and the efficiency in obtaining that data. Certainly, RF design testing can be made easier through automated testing procedures.

\section*{ACKNOWLEDGEMENT}

I would like to thank Bill Kennedy, Engineer, Wavetek Indiana, Inc. for his contribution of application prosrams and plots.
configurations that are easily incorporated into moderately narrow band tunable bandpass filters. Because tunability was of prime consideration in these designs, wide bandwidth > 5\% BW 3 dB was not considered. However, much wider bandwidths are practical with many of these structures, depending on (a) type of resonator, and (b) orientation of inductive elements, spacing, \(\boldsymbol{\theta}\), and \(\phi_{\text {, }}\) angle relationships, etc.

Coupling or decoupling may be obtained by spacing, rotation or by the use of decoupling iris, or other means, in the form of probes, crossing wires or posts which may in turn be rotated as a design variable: Figures 5.

As an added feature, one may incorporate (a) partial walls (septums) which may be rotated as to position to provide controlled decoupling (partial electric or magnetic walls) or one may use direct or tapped \(L\) or \(C\) coupling to further enhance the range of possibilities for various response shapes in the frequency and/or time domain.

A generalized design procedure has not been presented here since the arithmetic is rather cumbersome and to some extent proprietary; also, patent protection has been sought on the general design of all of these devices.
(conclusions continued on page 8)

\section*{(conclusions continued)}

References
(1) J. D. Rhodes, "Theory of Electrical Filters" Chap. 7, John Wiley \& Sons ISBN: 0471718068
(2) Patent application filed with patent attorneys Kirschstein, Kirschstein, Ottinger \& Israel, New York, NY: R. A. Wainwright, Inventor
(3) G. L. Mattaei, L. Young, E. M. T. Jones, "Microwave Filters, Impedance-Matching Networks and Coupling Structures" Chapters 5-8, McGraw Hill Book Co. Copyright 1964, Library of Congress Catalog Card No.
\(64-7937\)

The author wishes to thank the following people who were very helpful in the preparation of this paper as well as for the permission of the management of Cir-Q-Tel to publish these data and information:

Ronald B. Alexander, Esq., Board Chaiman; Douglas H. Alexander, President; Hilda A. Wainwright, Vice President \& Corporate Treasurer; Ann McCauley, Exec. Sec., Norman Selinger, Sales Manager; Joan King and Jay Kociol for proofreading and helpful hints; Dorothy DeWitt, my secretary for her hard work, patience and understanding, and to all of the fine people at Griffith \& Coe Advertising, Inc. of Hagerstown, Maryland for their expert artwork.
```

4: "LISTER2, TALI ROUTINE ON S50R":

```


```

 "GE|E moorer"": oev "EO".7C
 "GEIE coorers":oev "BO
 C12
 G: "Enable SRO":mrt "so"."ROS ON"
 8: wat W
 10: OEE "RCE"
\: "FRCM"t::d E FREQUENCY in MHE",F
ent "Enter FREOUENCV 2n MH=";
14: Tnt "EN",MFRO AEtr(F):- MH
16: mrt "."ERO "EFER
18: 0st Mexd"
18: OSb "SELECT"
26: WLUL":400 =
E1: "LVL":4xe 2 OUTPUT LEVEL in fFMm".L
まこ: wrt "se"."LVL -sstr(L)\&" gEM"

```


```

20: wrt " B0"."LV
27: wait WFeno"
20: gst MENAO"*
29:
E1: "MOD*:fxd =

```



```

=0: ote "FTE
3E: "AM":4%01 AMELITUDE MODULGTION in %",M
So: ene "Enter AMFLITUDE MODULGT

```

```

42: walt"*
4=: If ME="IAM":wrt "BO","IAMO"
AA: 1f ME="XAM":Wr: "B0","\XAMフ"
4E: W%1: W
AE: ose
AE:
AG; "EM":t:00 = EM DEMIATION 2n KHE",
51: wre "EO",Ms:" m\&tr(M): VH="

```


```

Ew: mosem
ES: =s= "Fert"
EO. P:
EE. "rTE":
EG: er.t "Enter 1000 or AMN for MOR. FATE", F
1,

```


FIa. 1A


FIG. 1 SOME OF THE POSSIGLE INDUCTIVE ELEMENT PHYSICAL CONFIGURATIONS THAT MAY G. 1 SE USED IN A ROUND.TUBULAR GROUND PLANE HOUSING.


FIC. 16



all piohts reserved OR. R. A. WAINWRA Cibotel incorporated 10504 WHEATLEY ST.
KENSINGTON, MD 20093

SOME POSSIBLE TYPES OF INDUCTIVE ELEMENT ARRAYS THAT MAY BE USED IN A ROUND TUBULAR GROUND PLANE: \(\Theta\) and \(\Psi\) ROTATION FOR FIGS. 2A \& 28 AND \(\theta\), \(\Psi\) AND \(\phi\) FOR ANNULAR RING, TOROIDAL HELIX RING: REF. 2B2: TO THESE MA BE ADDED VARIOUS COUPLING STRUCTURES FOR ADDITIVEISUBTRACTIVE INTERFERENCE \(1 /\) Angle \(\Psi\) applies to all Figure 2 drawings.



FIG. 281: POST/FINGER COMBLINE


FIG. 282: POST/FINGER, INTERDIGITATED


FIG. 2B3: POST-ROTATION COUPLED
SOME POSSIBLE TYPES OF INDUCTIVE ELEMENT ARRAYS THAT MAY BE USED IN A ROUND TUBULAR GROUND PLANE: \(\theta\) and \(\Psi\) ROTATION FOR FIGS. 2A \& 28 AND \(\boldsymbol{\Theta}, \Psi\) AND \(\phi\) FOR ANNULAR RING, TOROIDAL HELIX RING: REF. 2B2: TO THESE MAY BE ADDED VARIOUS COUPLING STRUCTURES FOR ADDITIVEISUBTRACTIVE INTERFERENCE 1 Angle \(\Psi\) applles to all Figure 2 drawings.


FIG. 2C1: ANNULAR RING, COMBLIN
NOTE: RIngs have an added degree of freedom In \(\pm \phi^{\circ}\) rotation angle


FIG. 2C2: ANNULAR RING - INTERDIGITATED
all hights reserved OR. R. A. WAINWRIOH imotel incorporate 1504 WHEATLEY ST. KENSINGTON, MD 20895

FIG. 2C3: ANNULAR RING, ROTATION COUPLED
NOTE: The Helical Ring Toroidal Inductor Array is ieft to the
Imagination of the reader, Rel. FIG. 1 B2
SOME POSSIBLE TYPES OF INDUCTIVE ELEMENT ARRAYS THAT MAY BE USED IN A SOME POSSIBLE TYPES OF INDUCTIVE ELEMENT ARRAYS THAT MAY BE USED IN ROUND TUBULAR GROUND PLANE: \(\Theta\) and \(\Psi\) ROTATION FOR FIGS. 2A \& 28 AND MAY BE ADDED VARIOUS COUPLING STRUCTURES FOR ADDITIVEISUBTRACTIVE INTERFERENCE 1 I Angle \(\mathbf{\Psi}\) applies to all Figure 2 drawings.





FIG. 3 A: PHOTO; B: SCHEMATIC FOR 8 RESONATOR, INTERDIGITATED ANNULAR RING. TUNABLE BANDPASS FILTER:

RANGE \(=300>600 \mathrm{MHz}\).

All pighis reserved ALI RIGHIS RESERVET
 CIROTEL INGORPOHATED 10504 WHIEAILEY ST. KENSHILIOH, MD 20日gs
\[
\begin{aligned}
& \text { CHI: A } A^{-M}=9.53 \mathrm{~dB} \\
& 10.0 \mathrm{~dB} / \text { REF }-9.56 \mathrm{~dB}
\end{aligned}
\]
\[
\begin{array}{cc}
\mathrm{CH} 2: ~ B & -\mathrm{M}_{\mathrm{REF}} \\
5.0 \mathrm{~dB} & -14.75 \mathrm{~dB} \\
\text { - } 14.00 \mathrm{~dB}
\end{array}
\]
\[
5.0 \mathrm{~dB} / \text { REF }-14.00 \mathrm{dE}
\]


\section*{Woodstock Engineering}

HCR Box llo, Pulpit Rock Road
South Woodstock. CT 06267

\section*{Abstract}

The Sprague ULN2241A and ULN3840A ICs are designed to be used in consumer AM-FM radios. They contain all the necessary functions for a complete AM tuner plus the FM IF and detector. With a few simple changes in the recommended circuitry, they can be used in a wide variety of low cost crystal controlled or synthesized 00 R (carrier is amplitude modulated or turned on and off by the data). FSR (carrier is shifted in frequency by the data), and PSR (carrier is shifted in phase by the data) data receivers. The range of data rates is almost unlimited because the IF frequency is not limited to 455 kHz and the inclusion of an internal mixer and regulated supply means that in many cases, the complete unit can be built with a few coils and an unegulated supply.

ULN2241A and ULN3840A

Biock diagrams of the ULN2241 and ULN3840 are shown in Figures 1 and 2 respectively. The two ICs are essentially identical in performance except that the latter has more
features and therefore more pins. The one exception is that the ULN224l provides an AGC output from pin 10 in the \(F M\) mode which goes from 5 V to 0 as the input signal increases. The ULN3840, on the other hand has a DC output from pin 15 which increases with the input signal level and goes from 0 to about 4 volts in both the AM and FM modes. Other features unique to the ULN3840 are an AFC output, a mute signal, and a mute input pin.

Typical radio receiver circuits using these two ICs are shown in Figures 3 and 4. Note that the complete AM tuner is contained in the IC and only the tuned circuits need to be added. The AM local oscillator is a negative resistance type and is internally connected to a low-noise balanced mixer. A very important feature of the ICs is that the AM and FM IF amplifier are common and use the same transistors. Each stage of the \(I F\) amplifier is down 3 dB at about 30 MHz , and there are four stages. This differs from most combination radio IC's which have different IF sections for \(A M\) and \(F M\) and the AM section is usually designed not to have much gain above 455 kHz . Since they are common in the ULN2241 and ULN3840, the IF out pin is common for both modes and the detector coils must be connected to feed the FM and AM detectors. In this application, the AM detector coil is a short circuit in the FM mode, and the 22 ut coil feeds the FM quadrature detector coil. Because a quadrature detector is a phase detector with one input connected internally to the IF output and the other connected to the quadrature coil, it can also be used, as we shall see later, as part of a phase


\(180\)

The frequency range of operation of the mixer is from audio up to about 100 MHz and although the maxer is designed to work only in the \(A M\) mode, it can be turned on in the FM mode by connecting a bias resistor from the reference voltage to the mixer bias pin (12 on the ULN224l and 15 on the ULN3840). The mixer works quite well at 100 mHz if a buffered signal is fed to the oscillator input port, and it will handle input signals up to about 30 mV without significant crossmodulation, but in the \(A M\) mode the internal oscillator gives up at about 30 MHz . A stable internal regulated voltage is available from pin 9 on the 2241 or 13 on the 3840. If this voltage is used for other circuits in the receiver which require a regulated voltage like an oscillator, then the unit can be ouilt to operate from an unfegulated supply. (The current drawn from the regulator should not be more than about 2 MA.) The input impedances to the mixer and IF amplifier are quite high at the lower frequencies, and so it \(1 s\) possible to accommodate a wide variety of \(R F\) of \(I F\) filters.

The mute output pin of the ULN3840 can be used to drive the internal mute when in the FM mode so that noise is not present at the output when no carrier is being received. It cin also be set up to mute if there is a tuning error and the muts signal could also be fed to the data processing circuits to indicate a loss of carrier or a signal too small for reliable reception.

Personally, I do not like the term OOR because the carrier may not be completely off oecause of leakage. AM seems to be a more appropriate term with the ON/OFF ratio being specified.

AM modulation is not used very often in data transmission, because of claimed susceptibility to errors, but this seems to be grounded in the belief that AM radio has more static than FM. In fact, AM requires a \(S / N\) (power ratio) of only about 18.5 dB for a BER of \(10 \mathrm{E}-9\) (1). AM is also very easy to generate by simply gating the RF signal on and off, and it occupies much less bandwidth than FSK. A \(20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) is not difficult to guarantee in cable systems and bandwidth might be an important factor in these cases. (2) The only restriction here is that the receiver IC has an internal AGC system, so it is better to operate the system with the carrier normally on and the data signals turning it off. The number of data signals in succession which turn the carrier off must be limited depending on the time constant selected for the AGC or the IC gain will increase until it reaches its maximum gain condition.

Figure 5 shows a 14.5 MHz AM data receiver using a crystal controlled external oscillator. The AM local oscillator coil is replaced by a 100 Ohm resistor to prevent it from oscillating due to the internal negative resistance. The IF


STRT + .57205Hz
CRSR +680.20r1H= NARROW BAND SWEEP

Fig. 3F
\(5 T O P+.52946 \mathrm{~Hz}\)



frequency in this case is 4.5 MHz and was selected as a compromise between image rejection and available coil \(Q\) to produce the desired \(I F\) selectivity. Note that the internal detector has not been used here. This is because the data rate for this receiver is up to 38 RBPS and the internal detector is designed for audio use. At lower data rates, the internal detector can be connected to an external comparator. Other possibilities might be a diode detector and comparator.

The AGC time constants are set by the capacitors on pins 16 and 12 with the one on pin 16 being the most important. If the carrier is always on and long strings of data are to be sent, the capacitor on pin 16 can be made larger. If fast attack for the AGC is desired, it can be made smaller.

If higher data rates are desired, a wider bandwidth filter can be used. A 10.7 MHz ceramic FM IF filter will allow data rates up to about 140 KBPS . If the data rates are low, a 455 kHz IF can be used but this may require dual conversion to achieve the desired spurious response rejection.

It should be pointed out that the occupied bandwidth of \(A M\) data signals is only two times the data rate. The occupied bandwidth of FSK signals is approximately 2 (data rate)+ 2 (frequency shift) so that this data receivers which can nandle 140 RBPS in the AM mode would handle only about 65 FBPS in an FSR mode with a frequency shift of 75 kHz .

FSR Data Receivers

Grounding pin 16 of the ULN2241 or 1 of the ULN3840 puts it into the FM mode. As was mentioned above, the mixer is off in this mode, but as was mentioned earlier, it can be turned on by connecting a resistor from the reference voltage to the mixer bias pin. In the ULN224l, this resistor can instead be connected to the AGC voltage on pin 10 so that the mixer gain is reduced as the signal level increases. Figure 6 shows a 49 MHz FSR receiver using an external crystal oscillator and comparator to produce the output pulses. Unlike in the \(A M\) case, there is no limit on how long the data can stay in the 0 or 1 state. This particular data receiver uses a 10.7 MHz FM receiver \(I F\) filter and will operate up to about 50 KBPS. Current 10.7 MHz FM receiver IF filters such as the Murata SFE 10.7 ML or Toko CFSD have excellent group delay response and cause very little pulse distortion.

The FM detector is a standard quadrature detector and when it is correctly tuned at the center frequency, the output from pin 5 is the same \(D C\) voltage as the reference voltage on pin 9. In the ULN 3840 , the AFC output \(p\) in can also be used if a load resistor is connected from pin 7 to pin 13. The reference voltage can then be used as the other input to the comparator.

An alternative to this arrangement is, of course, the Motorola MC 3356 which has been specifically designed as an FSR data receiver.



PSR modulation is capacie of low error rates in the presence of noise (1) and occupies a bandwath only equal to twice the data rate ( 6 ), Dut the circuitry is complex and there are restrictions on the data format because of the phase ambiguity problem. One solution for polled systems was mentioned in another paper (4) and other schemes are presently used for telepnone data receivers. (Polled systems are those in which a number of recelvers are polled in sequence.) The most common solution for RF data receivers is to use a phase-locked-10op with a very narrow bandwidth for demodulation. In any case, the ULN2241 and ULN3840 have many of the necessary components for constructing the loop (3). Figure 7 shows a PSR demodulator which uses the phase detector in the ULN2241 for the loop and an external MC1496 phase detector to detect the 180 degree phase changes. The vCo locks up at 90 degrees from the signal at the IF output on pin 8 of the ULN2241, and the IF output is shifted 90 degrees by \(T 10\) and applied to the MC1496. Thus the ULN2241 contains the \(Q\) detector and the MCl496 the \(I\) detector. The output of the \(I\) detector is fed through a low-pass filter to a comparator to produce the output data.

The \(Q\) or loop phase detector consists of the quadrature detector components in the IC, and the audio output pin, pin 5. is the phase detector output. The phase detector constant for the ULN2241 and ULN3840 is 3.8 volts/radian. The
internal impedance at the audio output pin is about 900 ohms so R1 is added together with \(R 2\) and \(C\) to form a passive loop filter. If the ULN3840 is used instead, the AFC output could be used, and the load resistor from pin? to 13 could be Rl of the loop filter. The AFC output is a current source with a detector constant of about 700 uA/radian. The oscillator constant, Ro, for this circuit 18577 e 3 radians/sec/volt, so the loop frequency of this design \(15 \mathrm{l} \mathrm{kHz} .(5)\) This is a relatively narrow band loop, but it still will have a problem with data pulses over about 200 microseconds long; (5) when the carrier changes phase 180 degrees, the loop tries to follow it, and if the carrier stays at 180 degrees long enough, the vco will lock on to the 180 degree carrier. If the vco changes only 90 degrees, the role of the two phase detectors is reversed and the data will be lost. Thus, the length of the data pulses must be restricted or some means must be found to accommodate longer ones. A common solution is to build a very narrow-band loop and use a crystalcontrolled VCO to keep it very close to the center frequency so that lock-up can be achieved in a reasonable length of time.

Conclusion

It has been shown that low-cost \(R F\) data receivers can be Duılt with integrated circuits commonly used for consumer AM/FM radios, and their operating frequencies are not limited to the broadcast frequencies. Aimost any range of data rates and type of modulation can be accommodated, and in many




STRT \(+7.6514 G H z \quad\) MKR +8.15566 Hz STOP \(\$ 8.2322 \mathrm{EHz}\)
PASSBAND SWEEP fo \(=8.15 \mathrm{GHz}\)
FIG. AE
all rights reserved OR. R. A. WAINWRIGHT 1301) 946 -1800 ciratel incorporated 10504 WHEATLEY ST.
KENSING TON, MD 2099
cases, very few external components are required. In particular, the Sprague ULN2241A and ULN3840A are exceptionally good for this application because of the wide frequency response of their internal mixer and IF stages and features like AGC drive, signal strength indication and mute input and output.

\section*{REFERENCES}
1. Garner, William J., "Bit Error Probabilities Relate to Data-Link S/N " MICROWAVES , November 1978 p. 101
2. GrosJean, Jon, "Selection of an Optimum Modulation Scheme for CATV Data Transmission", NCTA 3lst ANNUAL CONVENTION TECBNICAL PAPERS MAY 3-5 1982
3. GrosJean, Jon, "Phase Locked Loops Using Quadrature Detector Integrated Circuits", IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, Feb 1976,Vol 22,Number 1
4. GrosJean, Jon, "A new Approach to PSK Demodulation" RF TECBNOLOGY EXPO PROCEEDINGS Jan 1985
5. Gardner, Floyd M. PHASELOCR TECBNIQUES, Second Edition, John Wiley \& Sons, New York 1979
6. Schwartz. Mischa, INFORMATION TRANSMISSION, MODULATION AND NOISE, Second Edition, McGraw-Bill, New York, 1970

Figure 1 ULN2241A




STRT +7.46816 Hz MKR +7.46816 Hz STOP +14.7636 Hz WIDE BAND SWEEP TO 14.9 GHz FIG. 4 F
\[
\begin{aligned}
& \text { STOP }+14.763 G H z \\
& \begin{array}{l}
\text { ALL RIGHTS RESERVED } \\
\text { DR. R. A. WAINWRIGHT } \\
\text { BOI) } 946 \text { - } 1800 \\
\text { CIRTEL INCORPORATED } \\
\text { 10504 WHEATLEY SE. } \\
\text { KENSINGTON, MO 20095 }
\end{array}
\end{aligned}
\]

FIG. 5A \(=\) PHOTOGRAPH OF A 4 POLE 2 ZERO LINEAR PHASE BANDPASS FILTER
 all Riahts reserved DR. R. A. WAINWRIGH girotel incoaporaten 10SOA WHIEATLEY ST.
KEASINGION. MD 20895

PATENT APPLIED FOR
FIG. bB schematic.concept of \(A:\left(w-8^{\prime} ; \theta, \uparrow, \phi\right)\) tunable bandpass filter
S - SPACING; So: WINDING SENSE (HELIGAL COILS): Sò, Sè: (CW, CCW)
\(\pm\) O, +1 : ROTATION ANGLE BETWEEN ADJACENT INOUGTORS
\(\pm\) +1. + : YAW ANGLE FROM NORMAL MAJOR z AXIS OF ADJACENT ELEMENTS
\(\pm \phi 1,1+1\) : TWIST ANOLE (ANNULAR INOUCTORS) BETWEEN ADJACENT ELEMENTS
P: PITCH OF WINDINGS







\section*{The PIN Diode - Uses and Limitations}
by
Jack H. Leporf
Applications Engineer 350 West Trimble Road San Jose, CA 95131

ABSTRACT
The PIN diode is a useful element in the design of attenuators, switches, and modulators. Under ideal conditions the diode acts as a current controlled resistor. However, there are limitations on performance related to frequency and power.

This paper covers some of the low frequency and high frequency limitations of PIN diode applications and factors determining these limits. Other topics are diode parameters that control resistance and power limitations on attenuator performance.

\section*{INTRODUCTION}

The PIN diode is a three layer device (figure 1) - an intrinsic high resistance I layer in the center with conducting \(P\) and \(N\) layers on either side. The conducting layers are formed by adding impurities to produce an excess of positive charges on one side and an excess of negative charges on the other. Diode resistance can be controlled by \(D C\), bias voltage. Both positive and negative charges injected into the I layer lower its resistance. Diode resistance is approximately proportional to the inverse of the current.

Ideally PIN diode resistance is controlled by the \(D C\) current and independent of the \(R F\) power level. However, at high power levels the charge in the I layer may vary at the carrier srequency. In attenuator applications this variation in diode resistance is responsible for distortion. The effect is most severe in absorptive attenuators at low frequencies, with some power also absorbed by diodes in reflective attenuators. Since the amount absorbed depends on the attenuation level, distortion in both types is a function of attenuation.

Most switches are reflective; power is either reflected or passed. Little power is absorbed by the diode so distortion in switches is not a problem. PIN diodes can have a wide range of switching times - from a few nanoseconds to close to a microsecond. The time depends on the combination of forward current for one state and reverse voltage for the other. Switching time is faster in the transition from reverse to forward bias.

Reverse recovery time is related to switching time. Forward current injects charge into the diode, then a reverse pulse removes the charge. Time for recovery to a low value of current is defined as reverse recovery time, and depends on the values of forward current and reverse voltage used in the measurement.

In addition to switches and attenuators, PIN diodes can be used as absorptive modulators. The diode resistance is varied at the modulating

A THICK FILM hYBRID TRANSMITTER FOR CELLULAR TELEPHONE
by
PERKA MIKKOLA
NOKIA-MOBIRA OY
research and development departurnt

\section*{P.O.80X 86}

SF-24101 SALO
FINLAND

\section*{Introduction}

Rapidly growing markets of cellular telephones are demanding smaller lighter and cheaper. radiotelephones. To fulfill these demands manufacturer have to search new. production techniques also for the radio units of the cellular telephones. This paper describes the design and performance of a thick film hybrid transmitter. Thick film technique was selected, because it is cheaper and more suitable for mass-production than thin film technique. The frequency range of the transmitter is from 890 MHz to 915 MHz .

The design of the power amplifier is based on measured s-parameters and large signal impedances of the transistors and equivalent circuits of passive components. The analysis and optimization of the matching circuits was done using computer, because the same work done manually would be an overwhelming task.

Measurement of S-parameters was done using an automatic network analyser. Large signal impedances were measured with conventional pull-load method and equivalent circuits of passive components were measured using HP 4191A impedance analyser and the least squares fitting method.

For power amplifiers, the output current is either in the cutoff region or saturation region during a portion of the input signal cycle. This leads to the classification of power amplifiers into three modes of operation: class A, B and C. When the output current flows during the whole input signal cycle, the amplifier is called class A amplifier. If the output current flows only during the half of the input signal cycle, the mode of operation is \(B\) and if the output current flows less than half of the input signal cycle the amplifier is called class \(C\) amplifier.

The class of operation of the transistor amplifier has significant effect on available gain and efficiency. Figure 1 shows the variation of efficiency and maximum output power as a function of operation mode and concuction angle.


Figure 1. Efficiency and power output of power amplifier \(/ 1 /\).
frequency while passing a higher carrier frequency. The ability to modulate diode resistance is limited by the diode carrier lifetime, the time required to remove charges from the I layer. For efficient modulation the lifetime must be short compared to the modulation period, While low distortion requires the lifetime to be long compared to the carrier period. When these two frequencies are not far apart it may not be possible to satisfy both conditions, and a compromise value of lifetime is chosen.

Figure 2 shows the frequency limitations for diodes with lifetimes ranging from 10 nanoseconds to 2 microseconds. The fast switching diodes are best with carrier frequencies above a gigahertz and modulation frequencies below 100 kilohertz. The long lifetime diodes are best with carrier frequency above 10 megahertz and modulation frequency below 1 kilohertz. However, these limits are not rigid and diodes are useful beyond these limits.

In addition to the inverse current relation, I layer resistance varies as the square of the I layer thickness and inversely as the lifetime. However, the lifetime is itself a function of I layer thickness so that a longer lifetime diode has more resistance in spite of this inverse relationship. Figure 4 shows that the 5082-3081 diode with 2 microseconds lifetime has 30 times the resistance of the 5082-3043 diode with 15 ns lifetime. Another example of resistance dependence on lifetime is seen in Figure 5. These diodes are in shunt so higher attenuation means
lower resistance. The short lifetime 3141 has lower resistance because it has a thinner I layer.

\begin{abstract}
The relation between resistance and current is not valid at high currents. The resistance levels off at a current which depends on the diode construction. This residual series resistance is usually guaranteed to be below a specified maximum.
\end{abstract}

Attenuator designers of ten need more information about the resistance current relationship. The specifications for current controlled resistor diodes such as the HPND-4165 shown in Figure 6 include maximum and minimum resistance values at 10 microamperes and at 1 milliampere. In addition, the slope of the curve, the exponent of current, must be matched to 0.04 for all diodes in a batch. Since the slope, \(x\), can vary fron 0.83 to 1.00 while satisying the resistance specs, this delta slope spec tightens the matching considerably.

A low frequency limitation of the PIN diode is the dielectric relaxation frequency. When current is removed from the diode most of the charges return to the \(p\) and \(n\) layers. However, some charges remain in the underpleted portion of the I layer. At low frequencies this undepleted I layer resistance shorts out the I layer capacitance. A capacitance measurement would be high because only a portion of the I layer, the depleted portion, would be measured. Capacitance measurements at low frequencies ( 1 MHz ) require the use of reverse bias to drive out the

The gain of the transistor jecreases if the bias point of the transistor is transfered from class A towards class B, while efficiency increases. Both of these parameters determine also the total efficiency of whole amplifier. The first stage of the power amplifier operates usually in class A. because this class gives the nighest gain and power level is relatively low so the efficiency in this case is not of major importance. The last stages operate on high power level and efficrency nas to be as high as possible without sacrificing the gain of the transistor. for this reason in the UHF frequency range class \(B\) is usually chosen as good compromise between gain and efficiency.

Amplifier design

The target specifications for hybrid amplifier were 23 ds gain with 2 W output power and 12 V supply voltage in \(890-915 \mathrm{MHz}\) frequency range. This leads to three amplifier stages when the average gain of each stage is 7-8 db. The operation classes of the stages were \(\boldsymbol{A}, \mathrm{B}\) and \(B\) for optimin total efficiency.

Class A amplifier can be considered a linear amplifiet and the theory of linear two ports can be applied directly to the design of matching circuits of the transistor. The small siqnal \(S\)-parameters are not useful for class \(B\) amplifier design, because it operates in nonlinear region. In this case the design of the matching circuits is based on large-signal impedances which can be measured using conventional puil load method.

Manufacturers usually give the typical values of S -parameters for packaged transistors. However, in hybrid circuits transistors are ponded on a substrate in chip form. This structure is different from packaged transistor and S-paramesers mentioned in data sheet are not valid anymore.

S-parameters for the first stage transistor were measured using automatic network analyser and anree point calibration method, which uses short circuit, 50 ohm laad and open arcuit as reference impedances. The test jig is shown in figure 2 and reference impedances in figure 3.


Figure 2. s-parameter measurement jig.


Figure 3. Reference impedances for three point calibration.
charges in the undepleted I layer in order to measure the capacitance of the entire I layer. At higher frequencies the reactance of the undepleted I layer is small and the resistance of the undeplete charges is not small enough to cause this capacitance error, so no reverse bias is needed.

The dielectric relaxation frequency is the frequency where the resistance of the undepleted charges equals the reactance of the undepleted I layer. This frequency is about 80 MHz for general purpose diodes, about 16 GHz for the fast switching diodes. When operating below the dielectric relaxation frequency it is necessary to use reverse blas to reach the specified capacitance. Since reverse blas is normally used in switching applications to speed up the switching, the concept is not important for fast switching diodes.

We have seen two possible problems at low frequency. The resistance can vary at the carrier frequency and the capacitance can vary with reverse voltage. There is also a high frequency limitation. At zero bias we expect the diode to approximate an open circuit. This is true at low frequencies when the capacitive reactance is high. At higher frequencies the reactance decreases and the insertion loss of a shunt diode increases, related to the product of frequency and capacitance. Figure 8 shows how insertion loss varies. When this product is 3.2 for example, the loss is 1 dB.

Figure 9 indicates a technique for extending this frequency limitation. The diode capacitance may be included in a low pass filter with the lead inductances on either side of the diode. Package outline 60 and 61 diodes are made this way. The ribbons to the diode chip are properly shaped to provide the needed inductance. When chips are placed in other packages the limitations due to package parasitics appear at frequencies well below what is shown in Figure 8. Before the insertion loss increases because of 1 w diode reactance, the package inductance resonates with the diode capacitance. Figure 11 shows this resonance for a 0.12 pF diode in packages 15 and 31 at 9.2 GHz and 14.5 GHz . Insertion loss due to diode capacitance alone at these frequencies is about 0.1 dB .

Figure 12 shows the problem at forward bias. The package parasitics resonate with each other changing the low resistance \(R\) to an open circuit. Similar problems limit the performance of series diodes to the VHF region. Figure 13 shows that isolation drops below 20 dB at a few hundred Hiz. Chip isolation was calculated with 0.5 nH assumed for the lead inductance. The graph demonstrates that microwave applications for series diodes require the use of bean leads.

Isolation in a shunt switch is limited by the diode series resistance. Using two diodes together cuts the resistance in half and improves isolation 6 dB . Figure 14 shows the results of using two diodes spaced by 90 degrees. The \(d B\) isolation more than doubles, and the bandwidth is quite wide, exceeding 50 dB isolation for about a 10:1

The nonidealities of the network analyser are eliminated by computer, which-calculates the correction factors for measured 5 -parameters and writes out the corrected values on paper or to mass-storage media like floppy disk. These parameters can be used directly to the design of the matching circuits without any kind of peeling process, because reference planes were selected to be on the connection point of the transistor bonding wires.

As previously mentioned, a power transistor can be described in terms of the large-signal source and load impedances required to produce a given output power and gain. A typical measuring system for largesignal impedances and power measurements is illustrated in figure 4.


Figure 4. Measuring system for large-signal impedances \(/ 3 /\).

Tuners used in this measurement system were coaxcial stub tuners. The input tuner was adjusted until reflected power was zero and output tuner was adjusted for given output power level. After the transistor was properly tuned for given power level, the transistor was disconnected from the test setup and the impedances at the reference planes A and B looking toward the generator and toward the load were measured with a network analyser. The conjugates of these impedances represent the transistor's large-signal input and output impedances, respectively. These impedances are functions of output power level, frequency and bias conditions. For this reason the transistor has to be measured in those conditions where it is iṇtended to be used.

Matching circuits consist of microstriplines and ceramic chip capacitors. In spite of the small size of the chip capacitor its equivalent circuit contains small series inductor, which means that the capacitance is a function of frequency. For accurate computer analysis the equivalent circuit of the capacitor has to be measured.

The capacitance was measured with HP 4191A impedance analyser as a function of frequency. The equivalent circuit of the capacitor, which consists of inductor and capacitor in series connection, was fitted to the measurement results, using least squares fitting method. The total capacitance can be written in form
\[
\begin{equation*}
\frac{1}{c_{\text {tot }}}=\frac{1}{c}-\omega^{2} L \tag{1}
\end{equation*}
\]
where \(C\) and \(L\) are the values of the equivalent circuit.

This equation is of quadratic type and coefficients \(C\) and \(L\) can be solved using quadratig regression analysis.
frequency range. It might be expected that this two-diode switch would double the power handilig ability, but there is no improvement. The second diode absorbs very little power and does not contribute to the power specification (Figure 15).

With 1 ohm resistance a shunt diode absorbs less than \(10 \%\) of the incident power. In this application the incident power can be 10 times the power rating of the diode. In attenuator applications the multiplier is only two, corresponding to 6 dB of attenuation. Figure 16 shows this ratio as a function of attenuation. Switches can handle many times the diode power rating, since the loss switches from low insertion loss to high isolation. However, this assumes that switching time is fast compared to diode thermal time constant.

Both shunt and series diodes attenuate by reflecting wost of the incident power. In many applications this reflected power disturbs the operation of another element of the system. Figure 17 shows a number of attenuator designs that maintain a low value of SUR at all attenuation levels. The \(\pi\) and \(T\) attenuators are symmetrical with the outer diodes set at the same resistance, but the inner diode set at a different value. Bias clrcuits may be built with mone knob" tuning providing the proper bias current to all three diodes.

The ideal behavior of attenuation controlled by current, independent of RF power, is not valid at high power levels, due to rectification of
the RF signal. Figure 18 shows how low level attenuation is increased at 1.6 watts, with the effect most severe at 3 dB attenuation. Rectification is easier with short lifetime diodes so the \(5082-3141\) curve is higher. Rectification is also easier at lower frequencies so we would see VHF curves above these. Bias resistance was zero for this data.

Since this increase in attenuation is due to rectified current we expect a reduced effect when bias resistance is increased. This is shown in Figure 19 where the effect is not seen until the power reaches a half watt with bias resistance increased to 100 kilohms. Above that level the opposite effect is seen. Attenuation decreases at higher power indicating an increase of diode resistance. This increase of resistance is the result of diode heating. In this example rectified current is small so the diode heating effect is dominant.
(1) Hewlett-Packard Application Note 936, High Performance PIN Attenuator For Low Cost AGC. Application.

The basic structures of the matching circuits were designed using imittance chart. The starting values were optimized with computer using APLAC program \(/ 2 \%\). This program is intended for the linear analysis of the microwave circuits, but also matching circuits tor noniinear transistor stages can be designed when the input and the output ports of the transıstors are treated as passive impedances (large-signal impedances). Tociay there is more powerfui programs sommercially available than APLAC. Most widely known programs are probably rouenstone and Super-Compact.

\section*{Construction}

The circuit was printed on 0.635 me thick alumina substrate usina gold and resistor pastes. Metallized holes were made printing gold on both sides of the substrate. Chip transistors were bonded to the substrate with conductive epoxy and gold wires using ultrasonic bonding. After this the substrate was fixed to the heatsink with conductive epoxy and the whole circuit was connected to the test jıg. The construction of the transmitter is shown in figure 5 and the test jig is illustrared in figure 6.

Measured performance

The manufactured amplifier was measured in 890-915 MHz frequency range wath 10 mW input power and 12 v suppiy voltage. The measured gain of the amplifier is snown in figure \(\%\) The amplifier acmeves 22 de gain and 1.5 w outpur power.


Figure 5. The manufactured hybrid transmitter.


Figure 6. The test jig of the transmitter


MODULATOR FREQUENCY LIMITATIONS FREQUENCY PERFORMANCE LIMITED BY LIFETIME - \(\mathcal{T}\) fo megahertz


\section*{I LAYER RESISTANCE}
\[
R \propto \frac{W^{2}}{I T}
\]

W IS I LAYER THICKNESS
but lifetime is long when i layer is thick
USUALLY W2 OVERCOMES \(\mathcal{T}\) EFFECT SO FOR SAME CURRENT LONG LIFETIME DIODE HAS

HIGHER RESISTANCE THAN SHORT LIFETIME DIODE
figure



Figure 7. The gain of the amplifier.
Conclusion

The aim of this paper is to investigate possibilities to realize UHP power amplifier with thick film techniques. This technique was verified to achieve acceptable performance in this freguency range if low losses and sharp outlines of the microstrip are not required.

\section*{Acknowledgement}

The author wishes to express his gratitude to professor Veikko Porra of Helsinki University of Technology. Discussions with professor Porra have been very useful during this work.

\section*{REFERENCES}

A/ Krauss H.L., Bostian C.W., Raab F.H:"Solid State Radio Engineering", New York - Chichester - Brisbane -Toronto -Singapore, John Wiley \& Sons Inc.,1980,534 pp.
/2/ Valtonen M.:"APLAC - a frequency domain circuit design program for HP 9816 and HP 9836 computers, 11 Jan 1985 revised 5 May 1986, Helsinki University of Technology, Laboratory of circuit theory and basic electronics.
/3/ Ha T.T.:"Solid State Microwave Amplifier Design", New York Chichester - Brisbane - Toronto, John Wiley and Sons, Inc. 1981,326 pp.
 FOR SAME CURAENT, HIGHER ATTENU
rigurf 5

\section*{CURRENT CONTROLLED RESISTORS}

fiture 6

\section*{DIELECTRIC RELAXATION FREQUENCY}
- 듣 - UNDEPLETED

AT LOW FREQUENCIES UNDEPLETED I LAYER RESISTANCE SHUNTS CAPACITANCE SO TOTAL CAPACITANCE IS HIGHER
\[
R=\frac{1}{2 \pi f_{D R} C}
\]

FOR EXAMPLE:
\[
R=\frac{\rho d}{A} \quad C=\frac{\varepsilon A}{d}
\]
for \(\varepsilon=10^{-12}\)
1F \(P=\mathbf{2 0 0 0}\), then \(\mathbf{f}_{\mathrm{DR}}=\mathbf{8 0} \mathbf{~ M H z}\)
or, \(1 F P=10\), then \(\quad{ }^{\mathbf{f}} \mathrm{DR}=\mathbf{1 6} \mathbf{~ G H z}\)

FIGune 1
SHUNT DIODE INSERTION LOSS
10 LOG \(\left[1+\left(\frac{\pi F C}{20}\right)^{2}\right]\)
INSERTION LOSS (dB)


\section*{EXTENSION OF HIGH FREQUENCY LIMITATIONS}


LOW PASS FILTER WITH DIODE AS SHUNT CAPACITOR INSERTION LOSS


FREQUENCY
CHEBYSHEY FILTER RESPONSE APPLICATION NOTE 957-2

\section*{PACKAGE LIMITATIONS}

at \(\mathrm{L}_{\mathrm{p}} \mathrm{C}_{\mathrm{J}}\) resonance - LOW isolation for series
\begin{tabular}{|c|c|c|}
\hline PKG. & 15 & 31 \\
\hline \begin{tabular}{c}
\(\mathrm{C}_{\mathrm{P}}\) \\
PF
\end{tabular} & .13 & 0.2 \\
\hline \begin{tabular}{c}
\(\mathrm{L}_{\mathrm{P}}\) \\
nH
\end{tabular} & 2.5 & 1.0 \\
\hline
\end{tabular} dIODE - HIOH INSERTION LOSS FOR SHUNT DIODE; at second resonance with \(\mathrm{C}_{\mathrm{p}}\) - good performance

\section*{PACKAGE LIMITATIONS} HIGH INSERTION LOSS AT FIRST RESONANCE
\[
F_{\text {RES }}=\frac{1}{2 \pi \sqrt{L_{p} c_{j}}}
\]

LOW INSERTION LOSS AT SECOND RESONANCE WITH PACKAGE CAPACITANCE INSERTION LOSS - DB


INSERTION LOSS OF PACKAGED SHUNT DIODES
Fliner 11 . 12 pF JUNCTION CAPACITANCE

\title{
DESICN: A Program for the Automated Synthesis of Broadband Matching Networks between Complex Terminations
}

\section*{by}
S. E. Sussman-Fort, Ph.D.

SPEFCO Software
18 Bennett Lane
Stony Brook, NY 11790 (516) 751-2376
I. ABSTRACT: DESIGN - A Program for the

Automated Synthesis of Broadband Matching Networks between
Complex Terminations

A computer program has been written that performs the truly automated synthesis of precision, broadband, gain-sloped, lumped-element or distributed-parameter matching networks between complex sources and complex loads. The algorithm is based upon the real-frequency technique, which requires, as essential data, only a table of values for the source and load impedances, along with a set of desired values for the transducer gain function of the equalizer at a number of frequency points.

The program proceeds virtually automatically to the realization of the matching network once the data file has been read and a degree for the equalizer has been selected. This is in contrast to previous efforts, where the user had to provide special initial solutions, particular error-function weights, and other detailed information in order to obtain convergence of the design algorithm.

The capabilities of the algorithm have been verified in many different matching-network design examples. Some of these examples have been taken from the literature, and, in each such case, the program has been able to meet or

ISOLATION OF SERIES DIODES ISOLATION - dB

0.12 pF JUNCTION CAPACITANCE FOR CHIP AND PACKAGED UNITS
0.02 pF BEAM LEAD DIODE CAPACITANCE

PACKAQE 15 RESONATES FIRST BECAUSE Lp LARGER PACKAGE 31 WORSE BELOW RESONANCE BECAUSE Cp LARGER

\section*{BROAD BAND SWITCH DESIGN} isolation - dB


QUARTER WAVE PAIR
ONE OHM DIODES
is olation more than double SINGLE DIODE
rorupf 14

ABSORBED POWER DIVISION IN QUARTER WAVE PAIR
* POWER ABSORBED


OIODE RESISTANCE - OHMS SECOND DIODE DOES NOT IMPROVE ABILITY TO HANDLE HIGH POWER

\section*{RATIO OF INCIDENT POWER TO ABSORBED POWER}

POWER MULTIPLIER

exceed the efficiency and performance of the previously published designs.
The program runs on IBr. PC/XTiATs and compatibles as well as on HP-series desktop computers.

\section*{II. INTRODUCTION}
A. The Methods and Capaodlities of DESIGN

DESIGN performs the truly automated synthesis of precision, broadband, gain-sioped, lumped-element or distributed-parameter matching network. - also referred to as equalizers - between complex sources and complex loads.

\section*{1. The Advantages of DESIGN's "Real-Frequency" Technique}

The essential part of the synthesis method used in DESIGN is based upon the work of Carlin and Romiak [1]. Their method, also known as the real-frequency
technique, has been shown to produce matching networks that are "simpler in structure and superior in frequency response to equal-ripple designs" [2] based upon the classical approaches of Fano [3] and Youla [4] as developed by Chen [5] and Mellor [6]. Furthermore, the real-frequency technique requires only a simple numerical description of the source and load as necessary data for the synthesis. The design process can proceed automatically once the source and load has been so described. On the sther hand, the classical approaches require. as a preliminary task, the construction of equivalent circuit models for the source and load, and then require substantial designer interaction to perform such tasks as parasitic absorption and impedance scaling via the Norton/Ruroda transformations. To the best of our knowledge, DESIGN is the only comercially available program that employs Carlin and Romlak's superior real-frequency technique for matching network synthesis.

\section*{2. DESIGN: What It Does}

DESIGN synthesizes lossless matching networks to provide a specified magnitude response (Sm21) across a frequency band between a complex source impedance and a complex load impedance. The program user must first construct a data file containing (1) the source and load data, and (2) the desired values for Sm 21 at a number of frequencies points which define the passband. The user interactively inputs the name of the data file and the desired degree of the network once the program starts executing. DESIGN then proceeds with


POWER SENSITIVITY AT +32 dBm INPUT
attemuation micrease de


DATA TAKEN AT 2 GHZ ZERO OHMS BLAS RESISTA:CE THE INCREASE IS LESS AT HICHER FREQUENCIES THE INCREA8E IS LES8 FOR THE DIODE WITH LONOER LPFETIME (3140) sE AN 957-3

POWER SENSITIVITY IN A 3 dB PIN ATTENUATOR
ATTENUATION dB


FREQUENCY 10 GHz
DIODE HP5082-3141
REVERSE EFFECT AT HIGH VALUE OF BIAS RESISTANCE DUE TO TEMPERATURE EFFECTS
only a small amount of user interaction after this point, although certain default options may be reset, if desired, during the synthesis process.

The design procedure is based on a lumped, shunt-capacitor, series-inductor, lowpass topology, with an optional shunt-inductor at the load end of the network providing a bandpass response, if so desired. The program indicates which topology is most appropriate for a given set of source and load data, and the program user has the option to follow this suggestion or not. The allowable circuit structures are capable of handing virtually any set of matching network design requirements.

\section*{3. DESIGN: Single Matching Problems}

The real frequency technique was developed in somewhat different ways for the "single-matching" case, i.e. a real source and a complex load, and for the "double-matching" case, i.e. a source and load which are both complex. The method for single-matching has been described in [7]. Basically, the method involves: (1) constructing a piecewise linear function of frequency, \(R(f)\), as an initial approximation to the real-part of the matching network impedance at the output port; (2) optimizing \(R(f)\) so that the network, if it could be realized exactly from \(R(f)\), would provide the prescribed gain shape across the passband; (3) constructing a rational approximation to \(R(f)\); and (4) realizing and optimizing the final circuit. Our enhancements to the original Carlin-Romiak algorithm include the automation of the design process
and the optimization of the final circuit.
4. DESIGN: Double Matching Problems

At least two different methods have been developed previously to match complex sources to complex loads [8], [9], [10]. In each case a difficult optimization problew must be solved to yield the final circuit. To obtain convergence, the user must first generate a good initial guess to the solution.

DESIGN's method for solving the double-matching problem is a direct extension of the approach to single-matching. The presence of complex sources and complex loads is accommodated by performing a relatively easy optimization on a preliminary design of the network. This initial design is produced automatically by the program.

The technique begins with the conversion of the double-matching problem to one which initially involves only single-matching. This is done by resonating the source impedance with either a series-inductor or a shunt-capacitor so that the source impedance becomes purely real at one frequency. The synthesis then proceeds on the presumption of a purely real source, constant with frequency across the passband, and the given complex load. Hence this part of the design process is identical to the single-matching case. After this preliminary network is designed, the actual complex source is reintroduced,
and the network is optimized co meet the original design goals. The optimization proceeds quickly and efficiently to a solution since (1) we start Erom a comparatively good initial guess obtained in our preliminary design; and (2) we use an optimizer specially developed by us to handle this kind of circuit problem.

\section*{B. The Efficacy of DESIGN's Single- and Double-Matching Algorithms}

DESIGN has been able to duplicate, if not exceed, the quality and efficiency of the networks designed by any of the other single- or double-matching synthesis algorithms. It should also be noted that while DESIGN goes through a sequence of intricate steps to realize the desired matching network, the user need not be familiar with the details of the techniques, because the program proceeds automatically, with very little input from the user. The program does indicate what it is doing at any given moment, and various parts of the program may be interrupted and re-executed, as desired, with different values for the defaults.

\section*{A. The Data File Format for Double-Matching}

The rules for constructing the file are as follows.

The first line of the data provides the following information:
1. The nature of the matching problem - C indicates complex-source to complex-load;
2. How the source is described - 2 for impedance values, \(Y\) for admittance values, or \(S\) followed by a corresponding reference resistance for reflection coefficient values;
3. How the load is described -2 for impedance values, \(Y\) for admittance values, or \(S\) followed by a corresponding reference resistance for reflection coefficient values; and
4. How the desired gain for \(S 21\) is specified - A for absolute magnitude, and \(D\) for decibels.

Each subsequent line gives, for each frequency,
1. The frequency in Hertz, followed by
2. The values for the source (real and imaginary parts for impedance and admittance, magnitude and phase in degrees for reflection coefficient), followed by

\section*{II.. DESIGN SAMPLE SESSION: DOUBLE-MATCHING}
fiF AND MICROWAVE TRANSISTOR EIAS
\[
\begin{aligned}
& \text { CONSIDERATIONS } \\
& \text { Gary Franklin } \\
& \text { Applications Engineer } \\
& \text { Hewlett-Faclard } \\
& \text { San Jose, Ca. }
\end{aligned}
\]

\section*{INTRODUCTION}

The purpose of this paper is to present an overview of the advantages and disadvantages of some common bias circuits. Fesistive, diode, and active bias circuits will be examined and rompared as to how well they stabilize the transistor bias point aqainst \(D C\) parameter changes caused by temperature and device-todevice variations.

EIAS FOINT STABILITV
Alefore examining the bias circuits, let's look at some of the reasons for beina concerned about bias stability. Figure la shows a transistor biased for Class A operation which is not stabilized against DC parameter changes. Increasing temperature shifts the bias point further to saturation (Fiqure 1b), while decreasing temperature shifts the bias point closer to cutoff ( Figure 1c). Temperature extremes caused the transistor's DC parameters to change which resulted in the shift of the bias point. In the above example the shift in the bias point was large enough to cause unwanted distortion in the output signal. Fiqure 2a and 2b show that both gain and noise fiqure of a bipolar transistor are also a function of the collector current.

Gias point shifts caused by temperature are not the onlv concern. The DC parameters also change due to device-to-device variations . The DC current gain of microwave bipolar transistors can vary over a ranae of \(5: 1\) and still be within the manufacturer's electrical specification at 25 degrees \(C\). This means that a shift in the bias point can be caused by temperature and device-to-device variations. Obviouslv . a bias circuit that can minimize these bias point shifts is desirable. The first step in understanding how to stabilize the bias point is to identify the DC parameters which affect the bias point the most and how these parameters respond to temperature variations.
temperature sensitive dc farameters
The principal dependent variable in DC stability antalysis 15 the collector current ( \(\mathrm{I}_{\mathrm{C}}{ }^{[1.2]}\). The following DC rarameters, which are shown in the equivalent circuit of figure \(;\), are temperature sensitive and directly influence the collector current.

Base to Emitter Voltage ( \(V_{E E}\) ):
\(V_{E E}\) is internal to the transistor and has a neqative temperature coefficient of \(2 \mathrm{mv} / \mathrm{deq}\) ee C . Fiqure 4 shows the temperature characteristic of this parampter.

Feverse Collector Current "c. FO ":

3. The values for the load (real and imaginary parts for impedance and admittance, magnitude and phase in degrees for reflection coefficient), followed by
4. The desired value for \(S 21\) (absolute magnitude or \(d B\), as noted above).

Any time an alphabetic character is called for in the first line of the data file, any other symbol may be appended to that character to aid, for example, in the readability of the file. All alphabetic data may be entered in either upper or lower case.

Data entry in the file is entirely free-format; blank lines are allowed anywhere; comment lines are denoted by the single apostrophe (') being the first non-blank character on the line. Furthermore, comments may be appended to the end of any data line. DESIGN will inform the user of most data file errors.

\section*{B. Matching a Complex Source to a Complex Load - An Example}

Consider a typical microwave transistor amplifier, where the topology is a cascade of transistors and matching networks. We shall consider the design of an interstage matching network that (1) couples the output of one Plessey GAT6 GaAs FET to the input of an identical device, and that (2) provides maximum unilateral transducer gain through the cascade of the equalizer and one of the
devices. In other words, we seek an equalizer to provide a prescribed transducer gain function when terminated at the source end by the S22 of the GaAs FET and terminated at the load end by the S1l of the device.

\section*{1. The Data File}

The data file for this problem could be written as follows, according to the rules of the previous section.
'The name of this data file on disk is CEXAMPLO.MCH
'S22 as a source, Sll as a load between a pair of GAT6 GaAs FETs
-First line of data could be written simply as: C S 50 S 50 D
Complex-source Sparams-for-source 50 Sparams-for-load 50 dB-S21
\begin{tabular}{rccccc}
\(8 e 9\) & .735 & -42 & .775 & -107 & -2.71 \\
\(9 e 9\) & .740 & -47 & .750 & -118 & -1.84 \\
\(10 e 9\) & .750 & -52 & .730 & -128 & -1.16 \\
\(11 e 9\) & .755 & -58 & .710 & -136 & -0.515 \\
\(12 e 9\) & .765 & -62 & .695 & -145 & 0.0
\end{tabular}

The gain slope of the equalizer was chosen to achieve an overall flat gain shape between the matching network and the terminating transistor, and to obtain the maximu available unilateral gain.

\footnotetext{
2. Performing the Synthesis
}
junction of the collector to base. Classically, this leakage current is expected to double for every 10 dearees \(C\) temperature rise in a silicon semiconductor junction. The leakage current for silicon is so low that under most conditions this parameter can be negected.

DC Current Gain ( \(\mathrm{hFE}_{\text {F }}\) ):
The \(h_{\text {FE }}\) of a transistor is defined as the ratio of the collector current to the base current. This parameter typically increases linearly with temperature at the rate of \(0.5 \%\) degree \(C\).

STABILITY FACTORS
Eefore we proceed to examine the bias circuits, it is useful to introduce the concept of stability factors. The stabiliy factors are defined as the ratio of the incremental change of \({ }^{1}\) C vs the incremental chanqe of each of the three components \(\mathbf{I}_{\text {CBO }}\), \(V_{\mathrm{EE}}\) ', and \(\mathrm{h}_{\mathrm{FE}}\). The stability factor equations are given below.

I CRO STABILITY FACTOR

\(\checkmark_{\text {EE }}\) STAEILITY FACTOR
\(s_{\text {VEE }}=\frac{\partial \mathbf{I}_{C}}{\partial V_{\text {EE }}} \cdot 1_{n_{F E}, I_{\text {CEO }}}=\) constant
\(h_{\text {FE }}\) STABILITY FACTOF


The total change in collector current can be expressed as the sum of each incremental chanqe caused by \(\mathbf{I C E O}^{\prime} V_{\mathrm{EEE}}\), and \(\mathrm{h}_{\mathrm{FE}}\).

Unfortunately, the stability equations can become very complicated even for a simple bias circuit such as the one shown in Figure 5. The equation of Fiqure 5 can be easily diaested by a computer, but it doesn't help the designer gain any insight into selecting component values or in making circuit comparisons. Fortunately, the following approwimations can help simplify the stability equations:
* Neglect Icgo when using silicon transistors. As previouslv
stated, the leakage current for silicon is typicallv 50 low that nealecting Ican will have negligible effect on the accuracy of the stability equations.
* Drop the hie term, which is the hybrid-pi input impedance for common emitter configuration. The external biasing resistance is usually murh areater than hie, and nealecting the hie term will not upset the accuracy of the equations.
* Assume that \(h_{\text {FE }} \gg 1\) then ( \(h_{\text {FE }}+1\) ) simplifies to \(h_{\text {FE }}\).

The stability factor \(S_{h F E}\) can be e:!pressed as a percentage change in 'c vs a percentage change in \(h_{\text {FE }}{ }^{[3]}\). The new variable is defined as \(\mathrm{K}_{\mathrm{hFE}}\). The same procedure is used to define vaE

In response to screen queries, we type in the data file name, and then specify a degree of 5 mith a lowpass topology. As shown on the next 3 pages, the resistance-excursion optimization proceeds (with all options set to their default values), and we stop it after 12 iterations. DESIGN performs the curve-fitting and final synthesis steps to yield preliminary lumped and distributed circuits, which are seen to furnish a good response at the high end of the band, but whose response degrades at lower frequencies. This is expected as part of our design aigorithm. The final optimization is then applied, again in response to screen queries, and the lumped and distributed circuits yield a final response error of 0.46 dB and 0.78 dB , respectively.

\section*{IV. CONCLUSION}

\section*{DESIGN represents what we believe to be the best program available to date} for matching network synthesis. The program has been constructed to proceed rapidly and automatically to a circuit realization from a basic set of user-supplied data. The User's Guide for DESIGN, obtainable from us, demonstrates 18 examples of matching network synthesis. In those cases where the examples have been taken fror the open literature, the program has been able to meet or exceed the efficiency and performance of the previously published designs.

\section*{MAICHING NETWORK DESIGN BEGINS: The Resistance Excursion Optimization}
... hold down SPACE RAR to interrupt optinization ...


Do you want to RETRY the resistance excursion optimization with different internal program defaults or do you want to CONTINUE with the design process?

Retry or Continue -- (R/C): e
RESLLTS: MATCHING NETWORK. ELEMENT VALUES FROM THE COMPLEX SOLRCE TO THE COMPLEX-LOAD.

\section*{The Lumped Element Design} Series Inductor: \(1.054 \mathrm{E}-009 \mathrm{H}\) Shunt Capacitor: 4.482E-013 F Series inductori \(3.737 \mathrm{E}-010 \mathrm{H}\) Sersee Inductor: 4-195E-010 H

The Distributed Element Design
TRL, 120.0 ohas, 33.51 deg at \(1.000 \mathrm{E}+010 \mathrm{~Hz}\) \(\begin{array}{lll}\text { TRLI } & 120.0 \text { ohas, } \\ \text { OSTI } 23.0 \text { ohns, } & 35.14 \text { deg at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{array}\) \(\begin{array}{lll}\text { OST: } & 25.0 \text { ohms, } 35.14 \mathrm{deg} \text { at } 1.000 \mathrm{E}+010 \mathrm{~Hz} \\ \text { TRLs } 120.0 \text { ohns. } & 11.29 \text { deg at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{array}\) \(\begin{array}{cc}\text { TRL } & 120.0 \text { ohns. } \\ \text { OST: } & 25.0 \text { onms, } \\ \text { ORL } & 32.98 \text { deg at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{array}\) \(\begin{aligned} \text { OST: } & 25.0 \text { onms, } 32.98 \text { deg at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{aligned}\)

\section*{Fress (er) to clear the sereen and to proceed...}

A circuit analysis follows ...
\begin{tabular}{|c|c|c|c|c|}
\hline Freq. ( \(\mathrm{H}_{2}\) ) & S21 in dit & Destred & Lumped Desion & Distributed Design \\
\hline 8. COME +C009 & & -2.71 & -6.96 & -4.75 \\
\hline -. \(000 \mathrm{E}+000\) & & -1.84 & -1.93 & -0.37 \\
\hline 1. CME+010 & & -1.16 & -0.03 & -0.69 \\
\hline 1.100E+010 & & -0.52 & -0.58 & -0.69 \\
\hline 1.200E+010 & & 0.00 & -0.25 & -0.60 \\
\hline
\end{tabular}

Do you want to retry the curve-fitting with new values
for the curve-fit factor or the degree? (v/N): \(n\)
\[
\begin{aligned}
& K_{\text {HFE }}=\frac{\Lambda_{I} C^{\prime} I_{C}}{\overline{\Lambda H}_{F E} / h_{F E}}=\frac{S_{\text {nFE }}}{\mathrm{I}_{\mathrm{B}}}
\end{aligned}
\]

The stability equations for the previous example (Figure 5) now simplify to the following:


The simplified stability factors are easier to handle and it is now apparent that increasing the \(R_{C} / R_{B}\) ratio will decrease \(K_{\text {hFE }}\) and improve collector current stability against \(h_{F E}\) changes. We now have the tools to examine the bias circuits.

RESISTIVE GIAS CIRCUITS
* Fixed Eias

The fixed bias circuit shown in Figure b, is the simplest and one of the worst methods of biasing a transistor because it has a very high sensitivity to \(h_{\text {FE }}\) variations. Notice that \(k_{\text {hFE }}\) is unity, which means that a \(20 \%\) change in hfe will result in a 20 \% change in collector current. Since \(h_{f E}\) can vary by as much as 5:1 from device to device, the transistor could be at cutoff with one device and at saturation with another. The base current, which is fixed by the voltage difference between the supply voltage and \(V_{F E}\)., is the cause of the poor bias stability. If
the base current were made to decrease with increasina hre and increase with decreasing \(h_{F E}\) the hias stability would improve greatly, which exactly describes the operation of the ne:t circuit.

\section*{* Voltage Feedback Eias}

The voltage feedback bias circuit shown in figure 7 improves bias stability by allowing the base current to respond to changes in the collector current. If the collector current. increases, the voltage drop across \(R_{C}\) increases which results in a lower collector to emitter voltage ' \(V_{C E}\) '. Since the base current is set by the resistor \(\mathrm{R}_{\mathrm{E}}\) and the voltage difference of \(v_{C E}\) and \(v_{B E}\), a lower \(v_{C E}\) decreases the base current which stabilizes \(I_{c}\) to a current closer to the quiescent bias point. The circuit will handle a decrease in \(I_{C}\) in a similar manner.

A circuit designed with \(I_{C}=10 \mathrm{ma},{ }^{\prime}{ }_{C E}=10 \mathrm{~V}, V_{C C}=12 \mathrm{~V}\), \(h_{F E}=50\) results in \(M_{\text {hFE }}=0.826\). This means that the collector current will change by \(82.6 \%\) of the change in \(h_{\text {FE }}\) as compared to the \(100 \%\) change that would be expected from the fixed bias circuit. This is approximately a \(17 \%\) improvement over the fined bias circuit for this set of conditions. The khff stability factor shows that increasing the \(F_{C} / R_{B}\) ratio decreases the sensitivity of \(I^{\prime}\) to \(h_{F E}\) chances. A small value of \(F_{F}\) improves the \(h_{\text {FE, }}\) stability, but it isn \(t\) alwav easy to qet a small value of FE. A smaller effective value of \(R_{E}\) is possible usina the

Function Evaluation No． 1188
Maximum Response Error in \(d \theta<=0.46\)
Design refinement completed－hit 〈cr〉 to continue．．．

RESULTS：MATCHING NETWORK ELEMENT VALLES FROM THE COMPLEX SOURCE TO THE COMPLEX－LOAD．

The Lumped Element Design
Series Inductor： \(1.645 \mathrm{E}-009 \mathrm{H}\)
Shunt Capacitor：5．143E－013 F
Series Inductor：5．426E－010 H
Shunt Capacitor：8．550E－013 F
Series Inductor：3．970E－010 H
firess＜cr：to clear the screen and to proceed．．．

A circuit analysts follows．．．
MOTL：Maximun response error in Lumped Design is 0.46 dB ．


Design refinement completed－hit 《cr〉 to continue．．．
pesults：matching networy element values from the comflex source TO THE COMPLEX－LOAD．

The Distributed Element Design
TRL： 120.0 ohes， 47.59 deg at \(1.000 \mathrm{E}+010 \mathrm{~Hz}\)
0St： 25.0 ohms， 36.98 deg at \(1.000 \mathrm{E}+010 \mathrm{~Hz}\)
\(\begin{array}{ll}\text { OST：} \\ \text { TRL } \\ 120.0 \text { ohms，} & 9.73 \mathrm{deg} \text { at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{array}\)
TRL： 120.0 ohms， 9.73 deg at \(1.000 \mathrm{E}+010 \mathrm{~Hz}\)
OSTs 25.0 ohns， 33.11 deg at \(1.000 \mathrm{E}+010 \mathrm{~Hz}\)
\(\begin{array}{ll}\text { OST：} & 25.0 \text { ohns，} 33.11 \mathrm{deg} \text { at } 1.000 \mathrm{E}+010 \mathrm{~Hz} \\ \text { TRL：} 120.0 \text { ohms，} 11.70 \mathrm{deg} \text { at } 1.000 \mathrm{E}+010 \mathrm{~Hz}\end{array}\)

\section*{NOTE：Maximun response error \\ in Distributed Design is 0.78 dB ．}

Fress ecry to clear the screen and to proceed ．．．

A circuit analysis follows ．．．
\begin{tabular}{|c|c|c|c|}
\hline Freg．（ \(\mathrm{Hz}_{2}\) ） & S21 in dB8 & Desired & Distributed Design \\
\hline 8．000E＋009 & & －2．71 & －2．74 \\
\hline 9．OCOE＋0，09 & & －1．84 & －1．06 \\
\hline 1．O00E＋010 & & －1．16 & －1．88 \\
\hline \(1.100 E+010\) & & －0． 52 & －1．24 \\
\hline \(1.200 E+010\) & & 0.00 & －0．75 \\
\hline
\end{tabular}

Do you wish to restart the entire design process from the beginning lwith the same load data）or do you wish to quit？

Restart or Gust－－（R／Q）：\(q\)
emitter resistor feedback circuit.
* Voltage Feedback and Constant Base Current Source

The circuit of figure a can be considered to have a constant base current source, formed by the resistor network of \(R_{B}, \quad R_{B 1}\) and \(\mathrm{F}_{\mathrm{BZ}}\). The collector current can be made relatively stable if IER is chosen to be much greater than the transistor base current \(\mathrm{I}_{\mathrm{E}}\). A good choice, somewhat arbitrary, is to pick \(\mathrm{I}_{\mathrm{BR}}=5 \mathrm{I}_{\mathrm{B}}\) to \({ }^{10 t_{B}}\). A value greater than \(10 I_{B}\) gives little improvement in stability.

\section*{* Emitter Resistor Feedback.}

The bias circuit of figure 9 is one of the best methods of biasing a transistor. The circuit operates in the following manner. When the collector current and therefore the emitter current increases, the voltaqe drop across \(R_{E}\) increases. The polarity of this voltage opposes the forward bias voltage between base-to-emitter. The reduced \(V_{B E}\), decreases \(I_{B}\) and therefore \(I_{C}\), which stabilizes the collector current closer to its initial value. The stability factor ( KhFE' for this circuit is 0.169 when calculated using the design values previously given for the voltage feerbact circuit, and \(I_{E B}=S I_{E} \cdot A K_{\text {hFE }}=0.169\) represents a considerable improvement in stability over the previous circuits.

The \(V_{B E}\) stability factor for this circuit is:
\[
S_{U E E}=\frac{-1}{R_{E}} \text { ( assuming } R_{E}>\frac{\mathbf{F}_{E}}{h_{F E}}
\]

This equation implies that, the larger the \(F_{E}\), the better the stability against \(V_{E E}\), variations. There is a limit to the size \(R_{E}\) can be, since the voltage drop across \(F_{E}\) will become excessive. The next circuit examined ( diode temperature compensation) presents a method of stabilizing against \(V_{E E}\) temperature variations without resorting to large \(R_{E}\) values.

The emitter resistor feedback circuit does require special RF considerations which are covered in detail later in this paper.
* Diode Temperature Compensation

The emitter-base voltage has a negative temperature dependence of about 2 mv degree C , which can be compensated by introducing diodes into the voltage divider network as shown in Figure \(10^{[4,5]}\).

The calculated stability factor for this circuit is \(\mathrm{S}_{\text {vaE }}=\) \(1 / 5.65 R_{E}\), which is a 5.65 times improvement over the emitter feedbact circuit of figure 9 . The above calculation was made with the design values from the voltage feedback example, and assumed compensation was done with a single diode that had a temper ature characteristic identical to the transistor emitter-base unctinn.
* Zener Diode Elas

The 7 ener diode shown in figure 11 determines the collector

\section*{จ. REFERENCES}
1. H. J. Carlin and J. J. Romiak, "A Nev Method of Broad-Band Equalization Applied to Microwave Amplifiers, \({ }^{n}\) IEEE Trans. Microwave Theory and Techniques, MTT-27, no. 2, pp. 93-99, \(\overline{\text { Feb }} \frac{1979 .}{}\)
2. H. J. Carlin and P. Amstutz, "On Optimum Broad-Band Matching, \({ }^{n}\) IEEE Trans. ircuits and Systems, vol. CAS-28, no. 5, pp. 401-405, May 1981.
3. R. M. Fano, "Theoretical Limitations on the Broadband Matching of Arbitrary Impedances," J. Franklin Inacitute, vol. 249, pp. 52-83, Jan. 1950; vol. 249. pp.129-155, Feb. 1950
4. D. C. Youla, "A New Theory of Broadband Matching," IEEE Trans. Circuit heory, vol. CT-11, pp. 30-50, Mar. 1964.
5. W. K. Chen, "Synthesis of Optimum Butterworth and Chebyshev Broadband Impedance Matching Networks," IEEE Trans. Circuits and Systems, vol, CAS-24, Imp. 152-169, Apr. 1977.
6. D. J. Mellor and J. G. Linvill, "Syathesis of Interstage Networks of Prescribed Gain Versus Frequency Slopes," IEEE Trans. Microwave Theory and Techniques. vol. MTT-23, no. 12, pp. 1013-1020, Dec. 1975.
7. S. E. Sussman-Fort, "CIAO and DESIGN: Circuit Analysis, Optimization, and Synthesis Programs for Personal Computers," Proceedings of RF Design Technology Expo 85, Jan. 23-25, 1985, Anaheim, California
. B. S. Yarman, "Broadband Matching a Complex Generator to a Complex Load," Ph.D. Thesis, Cornell University, January 1982
9. B. S. Yarman and H. J. Carlin, "A Simplified 'Real Frequency' Technique Applied to Broad-Band Multistage Microwave Amplifiers," IEEE Trans. Microwave Theory and Techniques, vol. MTT-30, pp. 2216-2222, Dec. 1982 .
10. B.S. Tarman, "A Dynamic CAD Technique for Designing Broadband Microwave Amplifiers," RCA Review, vol. 44, pp. 551-565, Dec. 1983.
to base voltage \(V_{C B}\) of the transistor. The collector to emitter voltage \(V_{C E}\) is fixed by the sum of \(V_{\text {FE }}\) and the zener diode voltage \(\left(V_{Z}\right)\). The current through \(K_{C}\) divides between the transistor and \(D_{1}\). Temporarily ignoring the current through \(F_{B}\), the only current flowing through \(D_{1}\) is the base current of the transistor. Most of the current flows through the collector as \({ }^{\prime} C^{\prime}\). If the \(h_{F E}\) is low, the current through \(D_{1}\) will increase accordingly. However, if \(h_{F E}\) is high, the current through \(D_{1}\) is low and the regulation as a Zener is poor. Therefore, \(\mathrm{R}_{\mathrm{E}}\) is added to the bias circuit to ensure that enough current flows through the zener for good voltage regulation \({ }^{[6]}\).

This circuit is more stable than the voltage feedback circuit, but the Zener diode is noisy and may require a large value bypass capacitor to prevent the zener's noise from mortulating the amplified RF signal.
* Active Bias Circuit

An active bias circuit is shown in figure 12, which uses a FNF transistor ( \(Q_{2}\) ) to help stabilize the bias point of the FF transistor \(\left(Q_{1}\right)\). The transistor \(Q_{2}\) acts as a \(D C\) feedback circuit that senses the collector current of \(Q_{1}\) and adjusts \(Q_{1}\) s base current to hold the collector current \(I_{C 1}\) constant. The circuit operates in the following manner. If IC1 increases, the voltage drop across \(R_{C}\) increases and opposes the forward bias of the FNFtransistor which decreases \(I_{E 2}\). The decrease in \(I_{E 2}\) causes \(I_{C 2}\)
and \(I_{E_{1}}\) to decrease. The lower base current into \(O_{1}\) decreases \({ }^{1} C_{1}\) which opposes the original increase in the collector current.

The collector current equation for the RF transistor is shown in Figure 12. Notice that if \(\left(1+h_{F E 1}\right) \mathrm{F}_{\mathrm{C}} \geqslant \mathrm{FE}_{\mathrm{E}}\) (1+ \(h_{\text {FE2 }}\) ', then the collector current is essentially independent of the \(D C\) current qains of either of the transistors. A verv detailed analysis of this circuit is available in the literature \({ }^{[7]}\).

The active bias circuit has the best stability of all the circuits examined, but does require the most parts. the fill transistor does form a feedback circuit, which must he carefully RF bypassed to prevent tias oscillations.

EMITTER RESISTOF EYFASS
The emitter resistor improves bias stability through the use of neqative feedbact: which is desirable at DC, but not at RF frequencies. The fiF gain will be reduced if the resistor 15 not RF bypassed. Eypassing the emitter resistor does require two special precautions to prevent possible oscillations.

First, the emitter bypass capacitor must be larqe enough te provide an effective fif ground at both the deaign frequencr and lower frequencies. The Smith Chart of \(F_{1}\) qure 13 shows the effect on the transistor S -narameters when the bupass capacitor \(\mathrm{C}_{\mathbf{F}}\), is ton small. Chancies in the transistor \(S_{11}\) and \(S_{22}\) parameters are

\section*{Summary}

The design of oscillators typically starts from the Class A operating condition and then changes into the large signal range for the semiconductor. The designer has two choices: eather to design for highest output power, (highest efficiency) or for lowest noise. Highest output power and lowest noise are not necessarily the same. This paper is a orief summary of requirements towards designing high power low noise oscillators at high frequencies using a dielectric resonator oscillator as an example.

\section*{Introduction}

A variety of transistor feedback artangements are possible Which lead to building an oscillator. Pigure la-c show successful \(R\) f topologies. The tuned element is an circuir, depending upon the devices, with a grounded emitter, grounded base, or grounded collector circuit is better choice. the tuned circuir is responsible for determining the resonant frequency and at the same time provides \(180^{\circ}\) phase shift. The overall performance of the oscillator depends on the \(Q\) of the resonator and of the high frequency performance of the semiconductor. By making slight changes in the citcuit, a field effect transistor can be used at UHP frequencies and higher, instead of the bipolar transistor. Ar microwave frequencies, mesfets are frequenty used. In looking at figure l-C the capacitor fromemater to
ground can be replaced by a series resonant device and therefore obrazning the possibility of using a second runed circuit. This configuration has been used for designing low phase noise oscillators (l) and if this emitter circuit takes over the burden of the high \(Q\) devices, then the other LC circuit is only used as a phase shifter.

In analyzing the semiconductor one obtains the equivalent crecuits, Pigure 2 and 3 , which describe the intrinsic model of the bipolar transistor and the mesper. Por reason of convenience. the model used for the mesper has has all the elements to describe a HEMPT (nign electron mobility transistor). In the past, the dominant nonlinearities have been described in the so-called SPICE model. SPICE is a program that uses non-linear approximation. The computation time is excessive. SpICE programs, including microwave extensions, suffer from the lack of accurare ficrowave models and do not have any facilities for optimizations. Execution speed of SPICE programs are 1,000 times slower ehan their linear counterparts. A new method called the modified Harmonic Balance method has been developed with the key authors being Pred Rosendam and Rowan Gilmore (2). This allows the use of SPICE-like models together with linear programs with as litele as ll overnead and taking full advantage of linear optimizers. As a result, transparent linear programs can be designed. This literature (3, 4) provides informarion on modelling of mespets.

Figures 4 and 5 show the large signal equivalent circuits of
shown on the \(\mathrm{Smith}^{\text {mith }}\) Chart \(\mathrm{S}_{11}\), and \(\mathrm{S}_{22}\) /. A good FF bypass capacitor should cause little or no effect on the s-parameters. Both \(\mathbf{S}_{11}\) and \(\mathbf{S}_{22}\) at 4 GHz remains unchanged after the emitter resistor and 100 pF capacitor are added, but move of \(f\) the Smith Chart as the frequency decreases. Feflection coefficients greater than 1 indicate conditional stability and are likely to oscillate. A value of 1000 pF would be a much better bypass capacitor value.

The second precaution is to minimize the inductance added in the emitter caused by the resistor and capacitor parasitics. The Smith Chart of Figure 14 shows the effect of emitter inductance on the transistor's s-parameters. Inductance in the emitter can potentially cause conditional stability. In this case, a rather large value of 5 nHy was selected to illustrate the effect. At a frequency of \(4 \mathrm{GHz} \mathbf{S}_{22}\), has moved off the Smith Chart which indicates that the circuit is conditionally gtable.

An effective fif bypass of the emitter resistor is a relatively straightforward procedure as long as the above precautions are talen.

SUMMARY
This paper has shown that bias stability is more a function of the bias circuit design than of the transistor's characteristics. The FF and bias circuits should be designed with equal consideration, since the RF performance of an amplifier was
shown to be dependent on the bias stability.

\section*{REFERENCES}
1. Fhilip Cutler," Electronic Circuit Analysis ". Vol. 2. McGraw-Hill 1967. Chapters 4-11, pp. 220-228.
2. Hewlett-Fackard Application Note 944-1, "Microwave Transistor Hias Considerations"
3. Albert Malvino, "Transistor Circuit Approximations". McGraw Hill Hook Company, 1968, pp. 202-234.
4. G.J Ritchie, "Transistor Circuit Techniques, Discrete and Integrated ", Van Nostrand Reinhold, 1983. pp. 82-84.
5. D. Schilling, C. Belove, "Electronic Circuits: Discrete and Integrated ", 2 nd Edition pp. 190-192.
6. J.H. Fieisert,Jr.," Ultra Low-Noise UHF Preamplifier". Ham Fadio Magazine, pp. 8-19, March 1975.
7. Ralph Carson, " High Frequency Amplifiers ", Wiley. 1982, 2nd Edition, pp. 145-187.
the bipolar and the mespet. One of the best papers on bipolar nonlinearities is the book, Modeling the Bipolar Transistor, by Ian Getreu, published by Tektronix, Inc., Beaverton, Oregon, in 1976, Order 062-2841-00.

In order to maintain information on the large aignal handing capabilities during class \(C\) operation, a nonlinear analysis like the one leading to the oscillator amplitude stabilization was calculated. This is shown in the Appendix. While ehe interested reader can follow the Appendix, for those witn less patience, we will assume the following simplifications. The eniter diffusion capacitants
\[
C_{e d}=R \cdot I_{e} / V_{t}
\]

With le being the diode current, in our case the emiter curcent and \(V_{t}\) is the temperature voltage or 26 mV . The emitter diffusion resistor rd = Vt/id. These two nonlinearities are related to the emitter current. The depletion layer capacitants are proportional co. \(\frac{1}{\sqrt{V}}\). Any large voltage or current modulates those elements. It can be shown that the depletion layer capacitants follow the equation \(C=f(V)\).
\[
\int_{t=0}^{\infty} f(c) d t \cdot 2 \cdot c
\]

The transconductance \(G_{m}\) can be expressed as
\[
\sigma_{m} \cdot \sum_{v=1}^{n} g_{v}=
\]
\(=g_{0}+g_{1}+g_{2}++g_{n}\)

Whereby the first component go is the DC transconductance, gitis the transconductance for the basic frequency, and the following are the harmonics.

\section*{Translation Into Nonlinearities}

Recent publications have mostly dealt with modelling the gas PET where the tanslation into large signal parameters is easier based on che fact that the nonlinearities in Pets are somewhat beter co deacribe. Device measurementa on the large signal indicate that the mot contribution for the nonlinearities are \(g_{m}\) and Rds, while the other capacitors have maller contributions. Por this paper, \(I\) will concentrate on bipolar effects.

As a general rule, bipolar transistors have lower phase noise contribution at high frequencies based on the fact that corner frequency, \(f_{c}\), which describes the flicker noise contribution is low. Por small curfents and for power transigtors, the following table can be assumed for \(f\) :
\begin{tabular}{rl}
1 mA & \(=300 \mathrm{gz}\) \\
10 mA & \(=1,000 \mathrm{gz}\) \\
30 mA & \(=10,000 \mathrm{gz}\)
\end{tabular}

This noise contribution \(f\) can be reduced by incorporating a resistor feedback piece in the eqitet, but this is done at the expense of efficiency and cut-off frequency following the approximation \(A=A O /\left(1+R_{e} \cdot G_{m}\right)\). At Erequencies above several thousand \(M H z\), the gain band width product of the bipolar

FIGURE 1
EFFECT OF TEMPERATURE ON THE BIAS POINT
A.

BIAS POINT: AT \(25^{\circ} \mathrm{C}\)

B. BIAS POINT SHIFT DUE TO INCREASING TEMPERATURE AND DISTORTION IN OUTPUT WAVE FORM

C. BIAS POINT SHIFT DUE TO DECREASING TEMPERATURE, AND DISTORTION IN OUTPUT WAVE FORM


FIGURE 2
A. RF GAIN \(\left(\left|S_{21}\right|^{2}\right)\) VS.

BIAS POINT


COLLECTOR CURRENT (mA)
B. NOISE FIGURE VS.

BIAS POINT
(200:

FIGURE 3
PARAMETERS THAT DOMINATE CHANGES IN IC AND V \({ }_{C E}\) when temperature varies:

\section*{- Vbe'}
(BASE TO EMITTER VOLTAGE)
- \(I_{\text {cbo }}\)
(reverse collector current)
(DC CURRENT GAIN)
DC TRANSISTOR MODEL

transistors is no longer sufficient to malntain oscillation. Therefore, one has to switch over to mesfers. The \(N\)-channef field effect ransistors are useful in oscillators from less than a few MHz to approximately \(1,000 \mathrm{mbz}\). Then bipolar microwave transistors should take over, and above 4-6 GHz mespers are the chorce.

A convenient way of obtaing large signal parameters for the bipolar transigtor is to look at the nonlinear model pigure 4 and to computer optimize the equivalent model pigure 2 , by adjusting the nonlinearities as previously indicated by approximately doubling the depletion layer capacities and reducing \(G_{m}\) and adjusting Rde.

Fourier analysis can show that the transconductance Gm and the input conductance re(Y11) can be calculated from the following. The emitter resistance \(\mathrm{R}_{\mathrm{e}}\), which has been described by
\[
\mathrm{Re}_{\mathrm{e}}=26 \mathrm{mV} / \mathrm{I}_{\mathrm{e}}
\]
will be rewritten in the form \(R_{e}=\frac{K_{T}}{q I_{e}}\) whereby Re is said to be
the small signal emitter resistance which increases with signal


Whereby \(E\) is the peak value of the dase emitter signal voltage assume to be given by \(E\). cos ( \(\omega\) ( ). These ratios, expressed in \(I_{o}\) (v) and \(I_{1}(v)\), which are hyberbolic bessel functions of the first kind of order zero and one are shown in the Appendix. It can be further shown mathematically that the transconductance and the input capacitance get reduced in value as a function of the base emitter drive voitage, while the input resistance increases. The final emitter current ts also going to change based to a bias shift as a function of the applied signal voltage following the equation
\[
V_{\text {RiAs }}=\frac{\operatorname{Li}_{1}}{9} \cdot U_{n}[J=(v)
\]

Pinally the peak emitter current using the same nyperbolic function can be expressed as
\[
i_{c}(\text { peak })=\frac{I_{e}(\text { mean }) e^{V}}{I_{0}(V)}
\]

Example: Setting the base to emitter drive voltage \(\frac{g E}{K T}\) to 2 , the value of the transconductance reaches the \(3 d B\) point and the input resistance also increases from the relative value 1 to 1.4. This base emitter drive voltage generates an approximate bias sifift of \(\frac{q E}{K T}\) which then results into atio of the collector current
components relative to twice the mean current of appoximately 1.5 for the peak current, . 7 for the fundamental frequency component,

FIGURE 4 COLLECTOR CURRENT VS. \(V_{B E}^{\prime}\) AND TEMPERATURE

\[
\begin{aligned}
& \text { V }_{\text {BE }}^{\prime} \text {-BASE EMITTER VOLTAGE } \\
& \text { (VOLTS) }
\end{aligned}
\]

FIGURE 5
EVEN FOR SIMPLE BIAS CIRCUITS THE EQUATIONS BECOME COMPLICATED

\(-S h_{F E}=\frac{\left.h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)\left(V_{C C}-V_{B E}^{\prime}+K I_{C B O}\right)}{\left(h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)^{2}}\)
\(-R_{C}\left[\frac{\left(h_{F E}\left(V_{c C}-V_{B E}^{\prime}+K I_{C B O}\right)+K_{I_{C B O}}\right)}{\left(h_{F E} R_{C}+R_{B}+h_{I E}+R_{C}\right)^{2}}\right]\)
Where: \(K=h_{I E}+R_{B}+R_{C}\)
- GOT ALL THAT?

FIGURE 6 FIXED BIAS

- \(I_{c}=\frac{h_{F E}\left(V_{c c}-V_{\mathrm{BE}}^{\prime}\right)}{R_{\mathrm{B}}}\)
- \(K_{h_{\text {FE }}}=1\)
- \(\mathrm{KV}_{\mathrm{BE}}^{\prime}=\frac{1}{\left(1-\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{V}_{\mathrm{BE}}^{\prime}}\right)}\)

ADVANTAGE: FEW COMPONENTS
DISADVANTAGE: INFERIOR TEMPERATURE STABILITY, LARGE Ic VARIATIONS
. 3 for the second harmonic, and less than. for ehe thifd narmonic.

Our large signal model now can be easily obtained by adjusting the values of the small signal equivalent circuit. As previosuly indicated, the valtage dependent capacitors should be essentially doubled.

\section*{Practical Application}

The recent trend to develop oscillators with dielectric stabilizers shall be picked up here and our example ahall be developed around it. Figure 6 show the equivalent circuit of a dielectric resonator oscillator. The entire circuit is described in a circuit file for cadec fusing the parallel resonator approach for the dielectric resonator. The LCR values have been determined from th definition of physics. The transisaion line terminated with 50 ohms is set at quater wavelengths for best coupling and the transission line into the emitcer of the transistor is set at approximately quarter wavelengths as the parallel resonant condition of the dielectic resonator transforms into approximately 2 ohm resistive output resistance into the enitter of the transistor. The circuit can therefore be redrawn as shown in figure 7. To meet the requirements for oscillation the combination of internal and external feedback has to provide the necessary phase shift and this oscillator circuit can be made unstable to meet the approximate criteria by optimizing the
t inductance betwen base and ground while allowing for the resistive feedback in the emitter at large DC curfents. This feedback will reduce the gain band width product of the oscillator. pigure 8 shows the measured resonant character of the dielectric of the pro of the function using an Hp8510 network alanyzer. This permits measurement of the \(Q\) of the resonator. Pigures 9 and 10 show the close-in purity of the oscillatorf and pigure ll shows the aingle side band phase noise. I will deal with the noise calculation in a future paper. The maximum output power is achieved by matching the output impedance calculated \(f\) rom \(P\) out \(\frac{(.9 \times V C R)}{2 P \text { out }}\)

The maximum avatlable output power can be determined from the Pourier coefficient of the fundamental curfent and the voltage swing across the transistor. The output matching stub guarantees 50 ohms matching. By selecting the feedback properly, superior noise performance can be obtained if matching for best noise figure and best output power is done by adjusting the emitter transmision line lengths slightiy offset to the dielectric resonator coupling. Cadec allows one to do such analysis and the details on optimum noise matching will be shown in the following paper. Table shows the cifcuit listing for the cadec circuit file. Note the statement Nab, which stands for Noise Analysis Begin; and the \(\$ 300\) refers to the notse temperature of \(300^{\circ}\) Kelvin. Table 2 shows the listing of the results. please note that 522 magnitude at 4 GHz is approximately 100 .

FIGURE 7 VOLTAGE FEEDBACK BIAS

- \(I_{C}=\frac{h_{F E}\left(V_{C C}-V_{B E}\right)}{R_{B}+h_{F E} R_{C}}\)
- \(K_{h_{F E}}=\frac{1}{\left(1+\frac{h_{F E} R_{c}}{A_{B}}\right)}\)
\[
\text { - } K v_{B E}=\frac{1}{\left(1-\frac{V_{C C}}{V_{B E}}\right)}
\]

ADVANTAGE: SAME AS FIXED BIAS, PLUS BETTER TEMPERATURE STABILITY
DISADVANTAGE: A HIGH R \(/ R_{B}\) RATIO IMPROVES \(K h_{\text {fe }}\), BUT LOW VALUES OF R, ARE DIFFICULT TO ACHIEVE

FIGURE 8
VOLTAGE FEEDBACK AND CONSTANT BASE CURRENT SOURCE

- \(I_{C}=h_{F E}\left[\frac{-V_{B E}^{\prime} A-R_{B 2} V_{C C}}{R_{B} A+R_{B 2}\left(h_{F E} R_{C}+R_{C}+R_{B 1}\right)}\right]\)
- \(K V_{B E}=\frac{1}{\left(1-\frac{V_{B B}}{V_{B E}^{\prime}}\right)}\)

Where: \(A=R_{B 1}+R_{B 2}+R_{C}\)
adVantage: same as voltage feedback plus CAN BE MADE heE INSENSITIVE BY SELECTING \(I_{B A}>1_{0}\)
DISADVANTAGE: MORE PARTS

\section*{FIGURE 9}
emitter resistor feedback

advantage: very stable when \(h_{E E} A_{E}>A_{0}\). FEW pahts disadvantage: adoed inductance caused by \(\mathrm{m}_{\mathrm{z}}\) and \(\mathrm{C}_{\mathrm{e}}\)

FIGURE 10

- FOR TEMPERATURE

FOR TEMPERATURE
INDEPENDANCE OF \(I_{c}\) vS \(V_{\text {eE }}\) THEN:
\[
\left[\frac{R_{01}}{R_{01}+R_{v 2}} v_{0}-v_{0 E}\right]=0
\]

THEN:
\[
V_{E}=\frac{R_{B 2}}{R_{B 1}+R_{E 2}} V_{c c}
\]
advantage: stablizes ic against \(\mathrm{V}_{\mathrm{e}}\) disadvantage: Emitite not arounded

Figure 12 shows a plot of the noise figure and the gain due to rite \(Q\) multiplier effect, the noise figure gets the unusual curve based on matching for maximum output power rather than best noise figure. Figure 13 shows the noise and gain cifcles for the crzcuit configuration chosen.

\section*{Conclusion}

To predict the output power at microwave frequencies and analyze the phase noise of the oscillator, apecifically for MESPETs, more modern techniques like load pulling or Harmonic Balance methods have been developed. It was shown in this paper that by using a somewhat cruder approach for first approximation using bipolar transistors, fairly good underatanding of the mechanism is possible. More experimental results and noise theory will be presented in a forthconing paper.

\section*{references}
(1) U.L. Rohde, Mathematical Analysis and Design of an Uitra Stable Low Noise 100 mbz crystal oscillator with differential Limiter and Ita posabilities in Prequency standards, " froceedings of the 32 nd Annual Symposium on frequency control, 1978. p. 409.
(2) R. Gilmore, Design of a Novel PET Prequency Doubler Using a Barmonic salance Algoritha, " Schlumberger, Houston, tx, presented June 3, 1986 at 1986 IEEE MTT-S International Microwave symposium, Baltimore, Maryland, June 2-4, 1986.
(3) Kenneth M. Johnson, Large Signal Gais mespet oscillator Design, \(\quad\) IeEe transactions on microwave theory and techniques, Vol. MTT 27, No. 3, Mareh 1979.
(4) Biroyuki abe, \(A\) Gais mesfet oscillator quasi-linear design
 vol mit-34, No. 1, January 1986.

ULR: Jd
0180 C (A)
8/14/86



\section*{FIGURE 1}


FIGURE 3
Equivalent circuit
for a MESFET,
including
extensions to HEMPT.


FIGURE 5
Large signal
components in a
field effect
transistor.

PRACTICAL WIDEBAND RF POWER TRANSFORMERS, COMBINERS, AND SPLITTERS

\section*{by}

Roderick K. Blocksome
Manager, HF PA/PS Design Group Rockwell International 85535 th Street, NE Cedar Rapids, Iowa 52498

\section*{INTRODUCTION}

This paper will deal with the practical aspects of designing and building wideband RF power transformers, combiners (or hybrids), and splitters. Emphasis will be on topology. A consistent approach to represent these transformers pictorially and schematically with equivalent circuits showing source and load connections will be developed to help provide an intuitive understanding of the devices. Laboratory test data comparing various designs and topologies is included.

Modern solid state \(H F\) power amplifiers are required to operate over increasingly wider bandwidths and at higher power levels for applications in communications as well as electronic countermeasures. Wideband RF power transformers are required for coupling into and out of the solid state devices. The conventional or so-called "wire-wound" transformer and two topologies of the transmission line transformer (conventional and equal delay) are presented.

A wideband \(R F\) power combiner (or hybria) is required to achieve output levels above the capabilities of a single solid state amplifier stage. The RF outputs of two or more identical amplifier modules can be combined to reach these higher powers. Design examples of in-phase, 180-degree, and quadrature combiners are detailed. Two basic topologies for in-phase and 180-degree combiners are presented.

A wideband RF power splitter (or divider) is simply a combiner or hybrid used in reverse. The splitter topology is the same as a combiner, however splitters are usually operated at lower power levels. The discussion centers around combiners but is equally applicable to power splitter applications.

\section*{TRANSFORMERS}

The bandwidth of rf transformers does not refer to the usual -3 dB points since in power applications this represents an unacceptable loss. Typical HF amplifier designs require operation from 2 to 3 A MHz and sometimes lower to 1.6 MHz . The transformer losses must be as low as possible over this operational bandwidth. Transformer losses translate to heat that must be removed as well as extra power that must be supplied by the transistors (at the collector/drain efficiency) and ultimately by the power supply (at its conversion efficiency). A few tenths of \(a \operatorname{dB}\) of unnecessary loss in output


FIGURE 6
Influence of the packaging to the "intrinsic" transistor.

\section*{FIGURE 7}

Equivalent circuit of oscillator.

\(\begin{array}{ll}\text { CENTER } & 4.175100000 \mathrm{GHz} \\ \text { SPAN } & 0.100000000 \mathrm{GHz}\end{array}\)
MKR 4.00000025 GHz

transformers or combiners can mean significant increases in primary power consumption.

New RF power FET devices have operational bandwidths of 1 to 175 MHz making possible extended range amplifiers covering HF and the lower VHF frequencies. Transformer designs covering over six octaves of bandwidth are required.

A wideband RF power transformer performs one or more of any combination of three basic functions:
(a) Impedance transformation
(b) Balanced to unbalanced transformation
(c) Phase inversion

Transformation of a secondary load to a desired load impedance at the primary of the transformer is the most common function. RF transformers are often referred to by their impedance transformation ratio rather than primary to secondary turns ratio. The former is simply the turns ratio squared. In this application, we are most often interested in manipulating impedances rather than voltages or currents with the transformers. Balanced-to-unbalanced transformers, commonly termed "Baluns" are extremely useful in wideband amplifier designs. A single-ended load can be driven by a push-pull (balanced) source or vice-versa by using a balun transformer. A wideband transformer can also perform a phase reversal from primary to secondary by proper winding connections.

Transformer connections between a source and a load may be either balanced or unbalanced. Additionally, the balanced source or load may be either entirely floating or with center grounded such as two single ended sources phased 180-degrees apart or a load resistor with grounded center tap. The distinction between "balanced, floating" and "balanced, center grounded" may seem unimportant for wideband transformer design, but it is not. A proposed balun transformer equivalent circuit with source and load connected should be drawn showing the magnetization current path.

Figure 1 (a) is an example of a simple l:l balun with a floating balanced load. The magnetization current, \(i_{m, ~ f l o w s ~}^{\text {f }}\) through the load resistor as shown. Figure l (b) illustrates what happens to the magnetization current path if the balanced load is changed to a balanced, center tap grounded load. The magnetization current flows through only one winding and only one-half of the load resistance. This causes undesirable phase and amplitude imbalance in the balun restricting the bandwidth. The balance can be restored by using a third or tertiary winding, as shown in figure \(l(c)\), to shunt the magnetization current around the load. This illustrates the necessity of considering the type of source and load connections when selecting wideband transformer topologies.

MKR 4.000 000 7 GHz


CENTER 4.000 G00 GII RES 日W 3 kHz

SPAN 453 kHz WP 138 msec

\section*{flgure 11}

Single side band phaze noise of the oncillacor under phase locked condition to improve clone-in
nolse. INGLE SIDEBAND PHASE NOISE


(A) balanced load. floating

(8) balanced load center ghounded

(C) Balanced load. Center grounded with tertiahy WINDING (C-C)
FIGURE 1 I: TRANSMISSION LINE BALUN

The nine possible transformer connections are given below:
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{SOURCE} \\
\hline
\end{tabular}

Unbal anced
Unbal anced
Unbalanced
Balanced, floating
Balanced, floating
Balanced, floating
Balanced, center grounded
Balanced, center grounded
Balanced, center grounded

LOAD \(\qquad\) ......-. .-. .-. Unbalanced

Balanced, floating Balanced, center grounded Unbal anced

Balanced, floating Balanced, center grounded Unbalanced Balanced, floating Balanced, center grounded

Wideband RF transformers and combiners typically use a magnetic core. The magnetic cores used in wideband RF transformers are available in a wide variety of shapes and sizes. Balun core, toroidal, sleeves, tubes, beads, and cup cores are the common names for the various shapes. The earliest material used was powdered iron followed by modern ferrites. Ferrite is composed of iron oxide in combination with various proportions of oxides of manganese, magnesiun, nickel, and zinc. In general the ferrites composed of iron, nickel, and \(z i n c\) are applicable for the \(H F / V H F\) frequencies. varicus mixes of ferrites are available. A high permeability and moderately low loss material is used for \(\mathrm{HF} / \mathrm{V}\) PF power transformers.

Operational flux densities must be kept well within the linear portion of the \(\mathrm{b}-1 \mathrm{l}\) curve of the naterial. The area inside the

\section*{TABLE 1}


Loading OLD R＿日IP：707．0 5EHz＿日IP

RADEE DIER \＆I CCS DEMO
DFO

\begin{tabular}{|c|c|c|c|c|}
\hline FREDUENCY／Hz & V0G／DE & K／M & S22／M & NF／DE \\
\hline 2.000069 & 3.8834 & \(-1.7918\) & 1． 5326 & 5.9668 \\
\hline 2.100059 & 3.9953 & －2．0137 & 1.4000 & 6.6199 \\
\hline 2．20e0eg & 4.1620 & －2．1896 & 1.4901 & 7.1993 \\
\hline 2.300069 & 4.3795 & －2．3280 & 1.5801 & 7.7163 \\
\hline \(2.4000{ }^{\text {g }}\) & 4.6465 & －2．4360 & 1.6795 & 0.1735 \\
\hline 2.5000 g & 4.9639 & －2．5196 & 1.7901 & 8.5957 \\
\hline 2.6000 g & 5.3342 & －2．5792 & 1.9145 & 8.9703 \\
\hline 2.700069 & 5.7616 & －2．6207 & 2.0557 & 9．3078 \\
\hline 2.8000 E & 6.2517 & －2．6448 & 2．こ180 & 9.6119 \\
\hline \(2.9000{ }^{3}\) & 6.8123 & －2．6530 & 2.4071 & 9.8958 \\
\hline 3.0000 E 9 & 7.4533 & －2．6466 & 2.6310 & 10.1321 \\
\hline 3.100059 & 8.1902 & －2．6265 & 2.9009 & 10.3536 \\
\hline 3.2000 g & 9.0404 & －2．5935 & 3.2338 & 10.5526 \\
\hline 3.300069 & 10.8312 & －2．5485 & 3.6561 & 10.7314 \\
\hline 3.4000 E 9 & 11.2015 & －2．4922 & 4.2113 & 10.8926 \\
\hline 3.50009 & 12.6114 & －2．4253 & 4.9762 & 11.0387 \\
\hline 3.6000 g & 14.3600 & －2．3487 & 6.1014 & 11.1727 \\
\hline 3.700069 & 16.6285 & －2． 2629 & 7.9264 & 11.2980 \\
\hline \(3.9000{ }^{\text {g }}\) & 19.8063 & －2．1689 & 11.4104 & 11.4184 \\
\hline 3.900069 & 25.0126 & －2．0673 & 20.7047 & 11.5391 \\
\hline 4.0000 g & 38.6398 & －1．9590 & 98.3514 & 11.6561 \\
\hline \(4.1000{ }^{\text {9 }}\) & 22.5771 & －1．8358 & 15.4591 & 11.4400 \\
\hline 4.2000 g & 16.6318 & －1．6967 & 7.7296 & 11.1960 \\
\hline 4.300089 & 13.1829 & －1．5457 & 5.1390 & 10.9048 \\
\hline 4.4000 g & 10.7703 & －1．3850 & 3.8399 & 10.5977 \\
\hline 4.5000 g & 3.9298 & －1．2205 & 3.0571 & 10.2664 \\
\hline 4.6000 E 9 & 7.4540 & －1．0518 & 2.5321 & 9.3131 \\
\hline 4.7000 g & 6.2318 & －． 8819749 & 2．1541 & 9.5410 \\
\hline \(4.30009^{\text {a }}\) & 5.1969 & －． 7129069 & 1.3550 & 9．1546 \\
\hline \(4.9000{ }^{\text {9 }}\) & 4.3061 & －． 5461934 & 1.6431 & 8.7557 \\
\hline 5．0000E9 & 3.5298 & －． 3831572 & 1.2610 & 8.3644 \\
\hline 5.1000 eg & 2.8468 & －．224965？ & 1.3101 & 7.9791 \\
\hline 5.2000 E 9 & 2.2411 & －．0i25551 & 1.1827 & 7.6172 \\
\hline 5.3090 e9 & 1.7005 & ． 0733075 & 1.0733 & 7.2949 \\
\hline \(5.4000{ }^{\text {g }}\) & 1.2156 & ．2120132 & ． 9782942 & 7.0313 \\
\hline 5.50009 & ． 7783439 & ． 3430991 & ．8949142 & 6.8471 \\
\hline \(5.6000{ }^{5}\) & ． 3824293 & ． 4662352 & ． 8211659 & 6.7629 \\
\hline \(5.7000{ }^{9}\) & ．0255103 & ．5812119 & ． 7555744 & 6.7975 \\
\hline 5.2000 g & －． 3059532 & ． 5879287 & ． 6979492 & 6.9560 \\
\hline 5.9000 E 9 & －． 6068547 & ．7563835 & ．5447851 & 7.2804 \\
\hline 6.000089 & －． 8936193 & ．8：66621 & ． 5992061 & 7.7519 \\
\hline
\end{tabular}

B-H curve represents the relative loss, therefore the narrow curves are preferred for low loss designs. Detailed information is available from the various ferrite manufacturers.

Core losses and winding dielectric losses heat the core. The core temperature must be held well below the curie temperature of the ferrite, otherwise the magnetic properties of the ferrite will be permanently altered. Operation near the Curie temperature is not recommended as some materials can go into thermal runaway. The high temperature increases the core loss which in turn further increases the core temperature until the core is ruined.

CONVENTIONAL OR "WIRE-WUUND TRANSFORMERS"
The conventional broadband RF transformer is characterized by a power transfer from the primary to secondary windings via magnetic coupling through the ferrite core. The transmission line transformer, by contrast, is characterized by the use of a transmission line of characteristic impedance, \(z_{o}\), and a ferrite core. The core suppresses common mode or non-transmission line currents which would otherwise flow due to the transmission line interconnections. A core wound with wire may or may not be a conventional transformer, depending upon how the source and load are connected. Figure 2 illustrates this distinction.

(A) CONVENTIONAL OR Wirewound transformer il:
BALUN)

(8) transmission line transformer (1. balun)

FIGURE 2 COMPARISON OF CONVENTIONAL AND
TRANSMISSION LINE TRANSFORMERS

In general, the conventional transformer is inferior to the transmission line transformer for the combination of high power capability, low loss, and wide bandwidth. The conventional transformer can be constructed for a wider range of impedance transformation ratios than the transmission line type. Some ratios will have wider bandwidths than others due to the number of turns to achicve the desired turns ratio. There are no fractional turns. If the wire or line passes through the core, it is one turn.

\section*{APPENDIX}

We mentioned briefly that the oscillator amplitude stabilizes due to some nonlınear performance of the transistor. There are various mechanisms involved, and depending on the circuit, several of them are simultaneously responsible for the performance of an oscillator. Under most circumstances, the transistor is operated in an area where the dc bias voltages are substantially larger than the ac voltages. Therefore, the theory describing the transistor performance under these conditions is called "small-signal theory". In a transistor oscillator, however, we are dealing with a feedback circuit that applies positive feedback. The energy that is being generated by the initial switch-on of the circuit is being fed back to the input of the circuit, amplified, and returned to the input again until oscillation starts. The oscillation would theoretically increase in value unless some limiting or stabilization occurs. In transistor circuits, we have two basic phenomena responsible for limiting the amplitude of oscillation.
1. Limiting because of gain saturation and reduction of open-loop gain.
2. Automatic bias generated by the rectifying mechanism of either the diode in the Dipolar transitor or in the junction field-effect transistor. In MOSFETs an externai diode is sometimes used for this biasing.
3. A third one would be external AGC, but it wili not be considered here

The oscillators we discuss here are self-limiting oscillators.
The self-limiting process, which by generating a dc offset bias moves the operating point into a region of less gain, is generally noisy. For very low noise oscillators, this operation is not recommended. After dealing with the quarter-wavelength oscillator in the preceding section, we will deal here only with the negative resistance oscillator, in which, through a mechanism a negative resistance is generated due to
feedback and is used to start oscillation with the passive device. Here we look at what is happening inside the transistor that is responsible for amplitude stabilization, and we will thus be in a position to make a prediction regarding the available energy and the harmonic contents.

Figure A-l shows the quarter-wavelength oscillator redrawn in such a way that the source electrode is now at gorund potential while the gate and drain electrode are electrically hot. The reason for doing this is because we will look at the gate-tosource transfer characteristic and use its nonlinearities as a tool to describe what is happening. The same analysis can be applied to a transistor circuit, provided that the resistors used for dc bias are small enough not to cause any dc offset. The field-effect transistor characteristic follows a square law and, therefore, can be expressed as
\[
\begin{equation*}
i_{2}=I_{\text {DSS }}\left(1-\frac{V_{1}}{V_{2}} j^{2}\right. \tag{A-68}
\end{equation*}
\]

Figure 3 is a conventional transformer that finds wide usage at low impedances ( 3 to 20 ohms). The core is commonly referred to as a balun core, yet the transformer may or may not be connected to perform as a balun. Metal sleeves of copper or brass are inserted into the core and connected together at one end to form a primary winding. Connections to the circuit are made at each of the two sleeves at the opposite end. Two pieces of copper clad G-1 circuit board work nicely at each end. The secondary winding is constructed by winding the required turns of insulated wire through the primary tubes.


One of the factors limiting the high frequency response of the transformer is leakage inductance. Leakage inductance is due to any flux lines that do not link the primary and the secondary. To minimize the leakage inductance, the primary copper tubes should fit quite close in the core holes. They should not be so tight that thermal expansion will cause the core to break. The lead inductances of the primary and secondary windings from the point they exit the core to the circuit connection will also limit performance at the high frequency end, especially on low impedance applications. Shunt capacitance on either the primary or secondary or both will compensate the leakage reactance and extend the useful high frequency limit.

\section*{TRAUSMISSION LINE TRANSFORIERS}

The simplest transmission line transformer is a quarter-wavelength \(l\) ine whose characteristic impedance, \(z_{C}\), is chosen to give the correct impedance transformation. This relationship is illustrated in figure 4. note that this transformer is a narrowband device valid only at frequencies for which the line is odd multiples of a quarter wavelength. The transformation ratio is given by the square of the ratio of the line impedance to the load connected to the line.

For any other device, we have to take the necessary transfer characteristic into consideration, and this could theoretically be done by changing the square law into \(\underline{n}\) th order. The voltage \(v_{1}\) will be in the form


Figure A-1 Quarter-wavelength oscillator with grounded source electrode.
\(v_{1}=v_{b}+V_{1} \cos \omega t\)
This is the voltage that is being generated due to the selectivity of the tuned circuit at which there is a resonant frequency. Inserting this into the above equation and using
\[
\begin{equation*}
v_{x}=v_{p}-v_{b} \tag{A-70}
\end{equation*}
\]
we obtain
\[
\begin{equation*}
i_{2}=\frac{I \Delta s s}{V^{2}}\left(v_{x}^{2}-2 v_{x} V_{1} \cos \omega t+v_{1}^{2} \cos ^{2} \omega t\right) \tag{A-71}
\end{equation*}
\]

Once we know the peak value of \(i_{2}\), we can expland this into a
Fourier series. In this case a Fourier series expansion for \(i_{2}\) has only three terms; that is,
\[
\begin{array}{rlr}
i_{2}(t) & =I_{0}+I_{1} \cos \omega t+I_{2} \cos 2 \omega t & (A-72) \\
I_{0} & =\frac{I_{05 s}}{V^{2}} V_{x}^{2}+\frac{V_{1}^{2}}{2} & (A-73) \\
I_{1} & =-2 \frac{I_{0 s s}}{V_{0}^{2}} V_{x} V_{1} & (A-74) \\
I_{2} & =\frac{I D S S}{V^{2}} \frac{V_{1}^{2}}{2} & (A-75)
\end{array}
\]

Because of the square-law characteristic, \(I_{1}\) is a linear function of \(V_{1}\) and we can define a large-signal average transconductance \(G m\),
\[
\begin{equation*}
G_{m}=\frac{I_{1}}{V_{1}}=-2 \frac{I D S S}{V_{P}^{Z}} V_{x} \tag{A-76}
\end{equation*}
\]

In the case of the square-law characteristic, we find the interesting property that the small-signal transconductance gm at any particular point is equal to the large-signal average transconductance \(G_{m}\) at the same point. The second harmonic distortion is the output current is given by
\[
\begin{equation*}
\frac{I_{2}}{I_{1}}=\frac{V_{1}}{4 V_{x}}=\frac{V_{1}}{4 V_{p}} \frac{g_{m q}}{g_{m}} \tag{A-77}
\end{equation*}
\]

The transconductance \(G_{m}\) can be defined in such a way that it indicates the gain for a particular frequency relative to the fundamental, which means that there is a certain \(\mathrm{G}_{\mathrm{m}}\) for the fundamental frequency and one for the second harmonic, and in the general case, a \(G_{m n}\) for the \(n\) th-order harmonic. In the more general form, we rewrite our equation
\[
\begin{equation*}
i_{d}=C_{n}\left(-v_{b}+v_{1} \cos x\right)^{n} \tag{A-78}
\end{equation*}
\]

As this current will exist only during the period from \(-\alpha\) to \(+\infty\), the equation
\[
-a<x<+\infty
\]
exists only for
\[
\begin{aligned}
i_{2} & =0 \\
x & = \pm \alpha \\
\cos a & =\frac{V_{b}}{V_{1}}
\end{aligned}
\]

We can rewrite our equation for the drain current or collector current of a transistor:
\[
\begin{equation*}
i_{d}=C_{n} v \rho(\cos x-\cos \omega)^{n} \tag{A-79}
\end{equation*}
\]


If a ferrite sleeve is added to the transmission line (see figure 5), common mode currents (currents flowing in both transmission line conductors in phase and in the same direction) are suppressed and the load may be balanced and floating above ground. The line can now be any length with characteristic impedance equal to the balanced load impedance. The result is a l:l balun. Low frequency operation is limited by the amount of impedance offered to common mode currents. A good rule-of-thumb requires the impedance presented to common mode currents be not less than five times the load impedance. The line length limits the high frequency response of transmission line transformers.


If the ferrite loaded length of transmission line in figure 5 is folded back so that the two ends may be interconnected, a 1:4 impedance transformer is formed. A load resistance, RL, connected as shown in figure 6 is reflected to the input of the transformer as \(R_{L} / 4\). The line \(z_{o}\) should be equal to the geometric mean of \(R_{L}\) and \(z_{i n}\) for maximum bandwidth. The line length must be as short as possible for extended high frequency operation. The practical high frequency limit for this type of transformer is reached when the line length approaches \(1 / 8\) wavelength and appreciable phase error difference occurs at the interconnection of the lines.

A 1:4 transmission line balun transformer may be constructed as shown in figure 7. Two cores are required and may be either balun cores (as shown) or toroids or sleeve cores. The transmission line \(Z_{o}\) should be the geometric mean of the input and load impedances. This transformer may also be used for balanced-to-balanced source and load connections. Transmission line baluns for \(1: 9\) and \(1: 16\) impedance ratios are constructed similarly as shown in figures 8 and 9. The limitation of squared integer transformation ratios is the biggest
disadvantage of this type of transmission line transformer. The availability of coaxial cable in a variety of impedances is another limitation. 50 and 75 -ohm cables are by far the most common but impedances of \(25,35,60,95\), and 125 -ohmis are available.

The dc value of the current
\[
\begin{aligned}
& I_{d}=\frac{1}{\pi} \int_{0}^{\pi} I_{d} d x \\
& I_{d}=\frac{C_{0} V_{1}}{\pi} \int_{0}^{x}(\cos x-\cos x \gamma d x
\end{aligned}
\]
\[
(A-80)
\]
or

The amplitude of the fundamental frequency
\[
\begin{equation*}
I_{1}=\frac{2}{\pi} \int_{0}^{\pi} i_{d} \cos x d x \tag{A-82}
\end{equation*}
\]
or
\[
\begin{equation*}
I_{1}=\frac{2 C_{n} V_{1}^{n}}{\pi} \int_{0}^{\pi}(\cos x-\cos a)^{n} \cos x d x \tag{A-83}
\end{equation*}
\]

For \(n=1\), the collector current
\[
I_{d}=C_{1} V_{1} A_{1}
\]
and the amplitude of the fundamental frequency
\[
I_{1}=C_{1} V_{1} B_{1}
\]

For \(n \times 2\), the collector current is therefore
\[
I_{d}=C_{2} V_{1}^{2} A_{2}
\]
and the amplitude of the fundamental frequency
\[
I_{1}=C_{2} V_{1}^{2} B_{2}
\]
\[
(A-87)
\]

With the definition of the conduction angle,
\[
\begin{equation*}
a=\operatorname{arc} \frac{V_{b}}{V_{1}} \tag{A-88}
\end{equation*}
\]

These values are listed in Table A-3.

TABLE A-3 NORMALIZED FOURIER COEFFICIENTS
\begin{tabular}{lllllll}
\hline\(\frac{V_{b}}{V_{1}}\) & \(A_{1}\) & \(B_{1}\) & \(\frac{B_{1}}{A_{1}}\) & \(A_{2}\) & \(B_{2}\) & \(\frac{B_{2}}{A_{2}}\) \\
\hline 0 & 0.318 & 0.500 & 1.57 & 0.250 & 0.425 & 1.7 \\
0.1 & 0.269 & 0.436 & 1.62 & 0.191 & 0.331 & 1.73 \\
0.2 & 0.225 & 0.373 & 1.66 & 0.141 & 0.251 & 1.78 \\
0.3 & 0.185 & 0.312 & 1.69 & 0.101 & 0.181 & 1.79 \\
0.4 & 0.144 & 0.251 & 1.74 & 0.0674 & 0.126 & 1.87 \\
0.5 & 0.109 & 0.195 & 1.79 & 0.0422 & 0.0802 & 1.90 \\
0.6 & 0.077 & 0.141 & 1.83 & 0.0244 & 0.0458 & -1.95 \\
0.7 & 0.050 & 0.093 & 1.86 & 0.0118 & 0.0236 & -2 \\
0.8 & 0.027 & 0.052 & 1.92 & 0.0043 & 0.0082 & -2 \\
0.9 & 0.010 & 0.020 & 2 & 0.00074 & 0.00148 & 2 \\
1.0 & 0 & 0 & 2 & 0 & 0 & 2 \\
\hline
\end{tabular}

These are the normalized Fourier coefficients as a function of \(\underline{n}\) and the conduction angle. Theoretically, this has to be expanded to the order \(n\) of 3 or 4 , depending on the particular device, and can be found from tables or by a digital computer

For simplifications, let us go back to the case of our square-law device, where our transconductance
\[
\begin{equation*}
G_{m}=\frac{I_{1}}{V_{t}}=-2 \frac{I_{\theta s y}}{V_{f}^{f}} V_{x} \tag{A-89}
\end{equation*}
\]

This can be rewritter in the form
\[
G_{m}=\frac{2 I_{0 s s}}{V_{p}^{2}}\left(V_{0}-V_{b}+V_{i} \cos \omega t\right)
\]

\(V_{p}\) is the pinch-off voltage of the field-effect transistor, \(V_{b}\) is the bias voltage that is measured between source and ground, and \(V_{1}\) is the peak value of the voltage of the fundamental frequency. Figure A-2 shows the effect where the sine wave is driving the transfer characteristic, and the resulting output currents are narrow pulses. Based on the duration, the mutual conductance 9 m becomes a fraction of the dc transconductance \(G_{m}\), and therefore the gain is reduced. For small conduction angles \(I_{n} \mid I_{d}\), the mutual conductance can take very small values, and therefore the gain gets very small; that is the cause for stabilizing the amplitude in the oscillator. We note that the gain is being reduced as the amplitude causing the small conduction angle is increased.

Fourier analysis indicates that, for a small harmonic distortion, the RF voltage at the source or gate (depending on where it is grounded) has to be less than 80 mv . Now we can design the oscillator performance.

Let us assume that the saturation voltage of the active device is 2 V , battery voltage applied to the transistor is 12 V , and the transistor starts at a de current of 10 mA with a source resistor of 2008. This results in a voltage drop of 1 V at the source and 2 V in the device; therefore, 9 V is available. It can be assumed that the maximum voltage at the drain will be \(9 \times \sqrt{2}\). The capacitor voltage divider from drain to voltage now depends on the gain. If we assume an \(I_{n} \mid I_{d}\) of 0.15 for about \(50^{\circ}\) conduction angle, \(2 \alpha\), and the dc conductance of the transistor at


FIGURE A-2 Current tips as a function of narrow conduction angles in a square-wave transfer characteristic.
the starting dc operating point is \(20 \mathrm{~mA} / \mathrm{V}\), the resulting transconductance is \(3 \mathrm{~mA} / \mathrm{V}\).

Next we need the output impedance the quarter-wave resonator provides,
\[
R_{L}=Q \frac{1}{\omega C}(250 \mathrm{MHz})
\]
or
\[
R_{L}=600 \frac{1}{2 \pi \times 47 \times 10^{7 / 2} \times 250 \times 10^{6}}=81278
\]

As we want 9 V rms at the output, we have to use the equation
\[
\begin{aligned}
\frac{V_{\text {ous }}}{V_{\text {in }}} & =A(\text { voltage gain })=g_{m} R_{L}=3 \times 10^{-3} \times 8.127 \times 10^{3} \\
A & =24.38
\end{aligned}
\]
or
\[
V_{i n}=\frac{8 V}{A}=328 \mathrm{mV}
\]

This would mean that the capacitance ratio of the feedback capacitors \(C_{1}\) and \(C_{2}\) would be 1:24.38. In practice we will find that this is incorrect, and we need a l:4 or 1:5 ratio. The reason for this is that the equations we have used so far are not


Several techniques to achieve nonstandard impedance lines include simply parallel connecting two or more lines. For example, two parallel 50 -ohm 1 ines provide an effective 25 -ohm line. The parallel lines do not have to be the same impedance either. Bifilar or twisted enameled wire can easily be constructed for odd characteristic impedances also. The impedance depends upon the wire diameter. insulation dielectric, spacing, and number of twists per unit length. Multiples of even numbers of wire may be twisted together and then parallel
connected to achieve low characteristic impedances. The characteristic impedance of experimentally constructed bifilar or twisted pair transmission lines may be determined by measuring the reactance of an open circuit. \(1 / 8\)-wavelength, sample. The magnitude of the reactance is equal to the 1 ine impedance at the frequency for which the line is 45-degrees in electrical length. Remember to account for the velocity of propagation when determining the frequency of \(1 / 8\) wavelength.

Micro-strip transmission lines on printed circuit boards is another technique for achieving virtually any desired line impedance. Mechanical problems with the striplines in ferrite cores may be more difficult but interconnections with the amplifier circuit may be improved.

The bandwidth degradation experienced by not using the correct value of line impedance may be acceptable in some applications. Figure 10 is a comparison of two identical 1:4 balun transformers; one wound with the proper 25 -ohm line, the other wound with 50 -ohm line. The measurement was made by connecting two identical transformers back-to-back to provide matched 50 -ohm impedance ports to interface with the network analyzer. The indicated loss of one transformer is halt of the measured value. This technique is valuable for evaluating various transformer designs and initially chooseing values of compensation capacitors for leakage reactance.
accurate enough to represent the acutal dc shifts and harmonic occurrences. As mentioned in sections \(4-1\) and \(A-1-5\) a certain amount of experimentation is required to obtain the proper value. To determine the actual ratio, it is recommended that one obtain from the transistor manufacturer the device with the lowest gain and build an oscillator testing it over the necessary temperature range. As the gain of the transistor changes as a funciton of temperature (gain increases as temperature decreases for fieldeffect transistors and acts in reverse for bipolar transistors), a voltage divider has to be chosen enat is, on the one hand, high enough to prevent the device from going into saturation which will cause noise, and on the other hand, small enough to allow osclllation under worst-case conditions. Suitable values were determined for the CP643 transistor and shown in the circuit for the field-effect quarter-wavelength transistor.
--See Chapter A-1-6, "Oscillator Amplitude Stabilization," from Digital PLI Frequence Synthesizers, pp. 400-405. Copyright, Dr. Ulrich L. Rohde.


As pointed out earlier, the \(1: 4\) transmission line transformers' high frequency response is limited when appreciable phase error is introduced at the interconnection point \(a-b\) shown in figure 11 . If the connection \(a-b\) were made with a transmission line of equal impedance and length as the ferrite loaded line, the phase difference between input and output is eliminated. The transformer topology remains the same, except the \(a-b\) connection has the same phase delay as the main transformer line. For this reason this subclass of transmission line transformers are called "Equal Delay

Transmission Line Transformers". The transformer input and output connections can be physically separated which is advantageous in some applications.


Figure 12 (a) is the usual pictorial and schematic representation of a \(1: 4\) equal delay transformer. If a third line is stacked on the l:4 design, a l:9 impedance transformer results. In like manner, four lines produce a 1:16 transformer and so on. Figure 12 (b) and (c) illustrates these ratios. For comparison, if one unit of ferrite is required on the 1:4 transformer for a given bandwidth, then two units will be required for the third line on the 1:9 transformer. In like manner, the fourth line requires three units of ferrite for the same bandwidth. Notice that these designs are all unbalanced-to-unbalanced transformers. Suppose we add ferrite to the bottom line on the 1:4 transformer. Now we car lift the grounds on the parallel connected end (still keeping the shields

Logarithmic Amplifiers

\section*{Tom Munson}

Plessey Semiconductors
3 Whatney, Irvine, CA 92718

Radio first started with just a simple detector. Some early users complained that this lacked sensitivity. The next step was to add a linear amplifier. Then the problem was strong signals, which occasionally required an alert hand on the gain control to avoid severely overloading the receiver. The immediate solution was an automatic finger on the gain reduction control, but AGC systems had problems with choices for time constants, occasionally causing inappropriate responses.

With the advent of radar at the start of WW II the job of the IF amplifier became more demanding. The origin of the problem can be seen in the radar range equation below.
\[
\begin{array}{rl}
P G^{2} \delta \lambda^{2} & S \\
\hline(4 \pi)^{3} R^{4} & G
\end{array} \quad \begin{aligned}
G & =\text { received power } \\
0 & =\text { tangenna gain (ratio, not } d B \text { ) } \\
\lambda & =\text { wavelength cross section (area) } \\
R & =\text { range }
\end{aligned}
\]

The troublsome term is the \(1 / R^{4}\) factor. Since the received signal varies as \(1 / R^{4}\), a \(2: 1\) change in range leads to a 12 dB
change in signal. A radar with a maximum range of 32 miles will normally be expected to resolve the same target at less than 1 mile. A \(32: 1\) range variation gives a 96 dB signal variation. Linear amplifiers with such dynamic range are not currently practical.

One solution to this problem is a swept gain IF amplifier strip. Predictive information is available on the returning radio echo. The time of arrival is directly proportional to the range. If we make the gain of the amplifier time variant so that the gain is proportional to \(T^{4}\) ( \(T\) = time elapsed since the transmission of the outgoing pulse) then the IF strip output amplitude should be constant for a particular target at all ranges.

The swept gain method allows wide dynamic range while maintaining the fine amplitude resolution of a linear amplifier. The problem is that swept gain deals poorly with "surprises". A large target can easily paralyse the amplifier. If the recovery time is 1 us , then any object less than 250 feet behind the large reflector will be hidden. The swept gain IF will also fail to pick up small targets, even when they are close in. Surface skimming anti-ship missles are an example of this class of low radio reflection objects.

Limiting amplifiers, which level the output of the IF to a fixxed amplitude, are useful in radars where frequency or phase information is of interest. Doppler and MTI sytems are examples. A limiting IF requires a separate detector system to retain received signal amplitude information if needed.
connected) and connect a balanced, floating load between the center conductors and the shields to form a l:4 balun. The stray capacitance to ground can be balanced better by interconnecting the center conductor of one coax to the shield of the other coax. The result is the balun transformer described earlier in figure 7.
(A)

(B)

(C)
rex
figure 12 equal delay taansformen configurations

How much improvement in bandwidth does the equal delay transformer give compared to the conventional transmission line transformer? Figure 13 is a plot of insertion loss versus frequency for the two types constructed on identical cores. Again, the test consisted of measuring two identical transformers connected back-to-back, so the actual loss for one transformer is one-half the measured value.


In the demanding environments of radar, sonar and ECM rapid pulse repetition and amplitude variation cannot be dealt with by the normal AGC loops used in AM and SSB radio systems, because these depend on the continuous nature of the carrier. New techniques used to avoid interception and jamming involve wider use of the electromagnetic spectrum, frequency agility, and pulse compression or dispersion. Such systems require broadband IF amplification that responds instantaneously.

The common technique to achieve the instantaneous compression of dynamic range is to use a logarithmic amplifier. This gives an output voltage that is proportional to the logarithm of the input. Compare this to the case of linear amplifiers where output voltage is proportional to input voltage and to limiting amplifiers where amplitude information is removed by leveling the output.

The important characteristic of a log amp system is its huge instantaneous dynamic range and resulting fast response time. This has advantages over AGC systems where a fixed time constant is optimised to meet predicted variations in amplitude. Sophisticated AGC variations are bulky and expensive. The typical result is a loss of amplitude information if the time constant is too large.

When is a logarithmic amplifier IF system the best choice? The electronics industry sees requirements for instantaneous amplitude compression of input signals in many specialized receiver systems. In a typical log amplifier
strip an input dynamic range of 80 dB can be compressed to about 20 dB by the logging action. The output can then be easily processed by succeeding circuitry.

When is a log amp inappropriate? When input amplitude is an important component of the desired information. In applications like radar signature analysis, terrain mapping radar, and terrain following radar linear amplifiers are often used. Logarithmic amplifiers sacrifice amplitude precision for dynamic range, so a linear amplifier will provide superior resolution in these systems.

TYPES OF LOG RECEIVER SYSTEMS

Receivers that accept pulsed signals, such as those used In radar and ECM, tend to use two techniques to step down the signal to a manageable frequency. The heterodyne mixer is widely used in search radar. The crystal video (or microwave detector) is seen on broadband warning and direction finders. Figure 1 shows schematically the essential output signal differences of the logarithmic signal processing employed with these techniques.
(1) LOG VIDEO SYSTEMS

Log video amplifiers are used in systems requiring simplicity, compactness and low price. These systems lack the sensitivity and dynamic range achieved by successive

\section*{COMBINERS_AND_ SPLITTERS}

When required output power levels exceed the capabilities of a single power amplifier stage, two or more stages or modules are combined to produce the required output. The combiner is closely related to wideband transformers in design and techniques. A power splitter is simply a lower powered version of the combiner used in reverse. The splitter divides the drive signal into multiple equal amplitude outputs to be applied to the amplifier inputs. The power combiner then recombines the amplified outputs into a single signal. Since the splitter is the same as a combiner, the following discussion will mention only combiners.

A wideband power combiner must perform the following basic functions:
a. Provide low insertion loss over the required bandwidth.
b. Provide isolation (minimum coupling) between the input ports.
c. Provide a low VSWR load at the input ports over the required bandwidth.
The operating bandwidth of combiners must be as wide or wider than the amplifiers to not restrict the overall bandwidth of the transmitter. Transmission line techniques are used for lowest \(10 s s\) and widest bandwidth. The primary function of the
combiner is to maintain port-to-port isolation. By isolating the output of one amplifier from the others, multiple failures as a result of a single amplifier failure are avoided. For example, in a two-input-port combiner, if one amplifier is disabled the output power drops by 6 dB . The output drops 3 dB due to lack of power from the disabled module and an additional 3 dB is due to the power from the remaining module dividing equally between the bridging resistor and the output load.

The bridging resistor must dissipate -6 dB of the maximum combiner output power. The bridging resistor value is prescribed by the type and configuration of the combiner as detailed later. Some topologies require either single-ended or balanced, floating bridging resistors. Sometimes the bridging resistor is referred to as the "dump" load or "dump" port since power due to phase or amplitude imbalance is dumped to this load.

The bridging resistor dissipates power due to any slight differences in either the phase or amplitude of the infut signals. This relationship is given in figure 14.

There are three basic types of combiners:
a. In-phase combiner or hybrid (two or more input ports)
b. 180-degree combiner or hybrid (two input ports)
c. 90-degree combiner or quadrature hybrid (two infut ports)
detection and true \(\log\) amplifiers. Log video amplifiers perform the logging function directly on the video signal from a microwave detector. It is worth noting that although it is possible to get a \(\log\) video amplifier system with a dynamic range of 80 dB , the overall system dynamic range is reduced to half by the square law of the detector. \(\log\) video sytems are employed in direction finders, alarm systems and other less sensitive measurement equipment.

\section*{(2) TRUE LOG SYSTEMS}

The second system works from a mixer and is for applications where both sensitivity and minimal frequency distortion in the IF are required. True log amplifiers have a undetected, undistorted IF output of amplitude approximating the logarithm of the input amplitude. Stages can be cascaded to give up to 80 dB of dynamic range. A dual-gain technique is used to obtain the log transfer function. Figure 2 shows such a stage, consisting of a limiting amplifier of gain \(G\) in parallel with a unity gain amplifier. This is in fact a hybrid between a linear and a limiting amplifier in form as well as function.

The single stage soft limiting dual-gain characteristic is shown in Figure 3. For small input signals the gain is around 10 dB . The gain drops to unity when the input signal reaches the saturation point of the limiting amplifier part of the stage. The delays can be matched in the unity gain and
limiting amplifier portions of the stage to minimize
frequency distortion and phase error. The theoretical
transfer function of a six stage true \(\log\) system is shown in figure 4, plotted with both axes linear. It is a series of straight lines with breakpoints where each limiting amplifier saturates. The practical characteristic is curved, giving reduced ripple and less log error. Low ripple is dependent on component matching. An eight stage strip with an 80 dB dynamic range is possible.
(3) SUCCESSIVE DETECTION LOG SYSTEMS

Successive Detection is the most commonly used \(\log\) IF amplification system. To meet the required dynamic range, identical limiting amplifiers with logarithmic detectors are cascaded. The parallel sum of their detected outputs produce a composite logarithmic straight line transfer function.

The basic stage in a successive detection strip is shown in Fig. 5. A limiting amplifier of 10 dB gain is followed by a low level detector. The single stage response is shown in Fig. 6. An important feature is that the video and RF outputs limit at a precise input level. A three stage strip built with circuits of this type is shown in Fig. 7. The first stage will give a video output identical to a single device. The second is constant so when a logarithmic scale is used for the RF input the second stage video output will be identical to that of the first stage just displaced to the

figuab 14 hybaid combinea pown helationships
If more than two signals are combined in-phase, the term "combiner" is used since the term "hybrid" refers to a device with two input ports. The topologies of each of the three basic configurations will be examined.

The following definitions apply:
\(R_{L}=\) output load resistance
\(R_{B}=\) bridging resistor
\(Z_{0}=\) transmission line characteristic impedance
\(Z_{i n}=\) input impedance (with output port terminated)
S = shield connection of coaxial cable
\(C=\) center connection of coaxial cable

\section*{IN-PHASE COMBINERS}

In-phase combiners operate with two or more inputs of equal phase and amplitude to combine into a single output. There are two basic topologies for in-phase combiners, examples of which are shown in Figures 15 and 16 . The differences are in the number and configurations of the ferrite cores and the value of the bridging resistor. The type-I configuration has a single balun core or toroidal core and a bridging resistor equal to four times the output load. The type-II combiner has two separate cores; either sleeves or toroidal. The bridging resistor is equal to the load resistance. Consideration of physical layout, practical transmission line impedances ( \(z_{0}\) ), and bridging resistance ( \(\mathrm{R}_{\mathrm{B}}\) ) will determine the best type of combiner for a particular design.

A comparison of input impedance and port-to-port isolation between typical type-I and type-II combiners yields interesting results as shown in Figure 17. Both combiners were constructed with a single turn of 50 -ohm coax in the cores. Core material was Stackpole 7D for both types. The test data indicates superior port-to-port isolation with a type-II combiner while the type-I combiner exhibited lower input VSNR.
left by the stage gain, as shown in Fig. 8. This shows the individual transfer characteristics of the three cascaded stages separated by the gain of each limiting amplifier. A 10 dB increase in signal will drive number three detector to its maximum output and similar increases will sequentially saturate D2 and then D1.

The final step is to sum the video outputs. The schematic and corresponding response are shown in Fig. 9. For each increase in input level corresponding to a single stage gain, a contribution equal to the maximum video output from a single stage is added to the summed video output. To obtain a straight \(\log\) law, stages must be well matched, particularly the detector characteristic and the flatness of the limiting level.

Successive detection log strips give amplification, great sensitivity ( -80 dBm ), and large dynamic range. They are widely used in marine radars, I.F.F. systems, primary surveillance radars, missile radars, navigation alds, instrumentation, etc.. Their only disadvantage is that the signal phase and frequency information is degraded.

The dynamic range of a log strip can be extended by increasing the number of stages. The limit is reached when the last stage in the cascade reaches full video output solely on the noise produced by the first stage. The number of stages can be increased if the bandwidth of the strip is reduced. It is common practice to insert a bandpass filter In the centre of the \(\log\) strip for this purpose. Care must
be taken that the filter insertion loss is 0 dB or the log response of strip will have \(a\) " \(k i n k\) " in the middle of the response curve. Another technique for increasing the dynamic range is to attenuate the input signal and apply it to another short strip operating in parallel to the main strip. The video output from this "lift" strip is added to that from the main strip. Normally the log response limits when the input signal exceeds that necessary to produce full video output from the first stage. The lift strip is fed with an attenuated signal and will continue to give an output change. The limit to this technique is reached when the input voltage is sufficient to cause damage or overload in the first stage of the main strip.

The Plessey SL2521 is a monolithic IC approach to the successive detection \(\log\) amplifier. The features that make it unique are an improved bandwidth over previous IC amps, 1.3 GHz , and the ability to simultaneously give both a log linear successive detection video output and a phase linear limited IF output. This previously required two separate IF strips, a successive detection \(\log\) strip for video information and a limiting strip for phase information. When cascaded into a six stage strip the result is 60 dB dynamic range, 600 MHz video detection bandwidth, and 450 MHz IF bandwidth with low phase error.

The monolythic approach offers advantages over and above its combined excellence in both phase and amplitude accuracy.


Compared to a hybrid device the monolythic system has higher reliability, since there are no bonds or solder joints to fail. The final result is not only more reliable than the labor intensive solution, it is physically smaller and lighter. Last but not least the monolythic solution is cheaper.

Three six stage \(10 g\) amplifiers were constructed and evaluated by the Royal Signals and Radar Establishment in England. The basics of the R.S.R.E. results are sumarized in the following five figures.

Fig. 10 shows the detected video response of the strip as the input amplitude is varied from -80 dBM to +10 dBM . Response is shown for four different frequencies. Note that the response is \(\log\) linear between -55 dBM and -5 dBM at frequencies from 60 to 600 MHz . The detected video level drops as the frequency increases, but the slope of the detected output remains relatively constant.

Fig. 11 is the error of the video response. Fig 10 shows small deviations from a perfect linear response. Fig 11 shows this deviation at two frequencies. Note that this is a very difficult measurement to make, requiring attenuators with an absolute accuracy of .25 dB across a range of 80 dB . Hewlett Packard offers a laboratory service that is capable of providing special attenuators individually calibrated to these tolerances. the calibration is valid only at one
frequency, so each frequency measured requires a set of super precision attenuators. The video output thus obtained indicates accuracy of .5 dB max error between -55 dBM and -5 dBM at both frequencies tested.

Fig. 12 graphs the output amplitude of the IF port with varying input levels at three frequencies in the range. One of the virtues of the SL2521 is its ability to provide both accurate video output and a quality limited IF respose. The IF output gives solid limiting from -45 dBM to +5 dBM . Both the limiting level and the limiting knee are essentially constant with changes in frequency.

Fig. 13 illustrates the change in phase with change in input amplitude of one of the strips. One of the most unique properties of the SL2521 is that it gives both a \(\log\) linear video output and a phase 1 inear IF output. At 70 and 450 MHz the phase delay through the six stage strip changes less than 2 degrees across the full dynamic range. The worst case frequency gives a maximum change of 8 degrees across the amplitude range.

Fig. 14 gives the differential phase tracking error between amplifiers across 70 dB of dynamic range. For many uses the absolute amount of the phase shift through the amplifier and the variation of the phase shift with input amplitude are not important. What is important is that the


The combiner output load impedance is usually transformed to another desired value such as 50 or 75 ohms. This is readily accomplished by one of the wideband transformers described earlier. Usually the output impedance transformer is physically integrated into the combiner assembly. The interconnection between combiner and transformer can be made using micro-strip line techniques if it is not a standard coax impedance.

Theoretically any number of inputs may be combined with an in-phase combiner, but a practical limit is reached when the output impedance becomes too low to allow efficient wideband transformation back to the desired load impedance. An example of a type-II four port in-phase combiner is given in figure 18.

Four-port combiners may also be implemented by cascading two port combiners. This technique is illustrated in figure 19 for both types of two port combiners

In-phase combiners all use a floating bridging resistor. This may be difficult to implement, especially in combiners handling high power. A wideband balun transformer allows using a single-ended or unbalanced load. The balun could also transform the balanced impedance to 59 or 75 ohms. Standard coaxial dummy loads, connected to the combiner with coax cable. may then be used as bridging resistors.
difference between two channnels remain constant. Phased array radars are an example of such a system. The differential phase change across the available dynamic range is less than 1 degree at 60 and 120 MHz and less than 2.5 degrees at 450 MHz for the six stage SL2521 log strip..

Special thanks to Peter Chadwick and Doug Rleven for assistance in the preparation of this manuscript.


Fig. 1 Block diagram of broadband pulse amplification showing log video, successive detection, and true
log techniques.


Fig. 2 True log amp block diagrad showing limiter and unity gain amps in parallel


Fig. 3 Transfer function of true \(\log\) stage showing dual gain characteristic


Fig. 5 Basic successive detection stage


FIGURE 18 TYPE II FOUR PORT IN-PHASE COMAINER


FIGURE 19 FOUR POAT COMBINEAS IMPLEMENTEO WITH
TWO PORT IN.PHASE HYBAIDS


Fig. 6 Successive detection stage transfer function

Fig. 7 Three stage log strip



Fig. 8 Video outputs from three stage strip


Fig. 9 Summed video output from
three stage strip


Fig. 10 Video output va. if input for six stage SL2S21 strip


Fig. 11 Log error va. Input level

\section*{80-DEGREE HYBRIDS}

If the roles of the bridging resistor and the load are interchanged, the result is a 180 -degree hybrid combiner. The two input signals must be 180-degrees out of phase and of equal amplitude. The output is balanced to ground unless the usual balun is used. Examples of type-I and type-II 180-degree hybrid combiners with output baluns are shown in figures 20 and 21.

Many unique combiner designs are possible by using various combinations of basic combiner types and balun transformers. The combiner described in figures 22 (pictorial) and 23 (schematic) is an example of a four-port combiner using two each type-I in-phase combiners (cores \(A\) and \(F\) ) and two each, parallel connected type-II 180 -degree hybrid combiners (cores \(D\) and \(C\) ) and a 4:1 balun transformer (cores \(B\) and E) to couple the combined output to a 50 -ohm load. Connecting two 180-degree hybrids in parallel avoids using \(\mathbf{2 5}\)-ohm coax cable and provides the extra core material to handle the higher rf power.

(C) EQUIVALENI CIRCUIT

FIGURE 20 TYPE I 180 .DEGREE HYERID COMGINER


Fig. 12 IF limiting characteristic


Fig. 13 Phase change vs. input level

\(\# \rightarrow 60 \mathrm{mHz}_{2}\)
\(0-0.320 \mathrm{mHz}^{2}\)
\(-0-0.20 \mathrm{mHz}\)
\(\cdots-0.0 \mathrm{mHz}\)

Fig. 14 Phase tracking of amplifier pairs with changing input level


FIGUAE 21. TYPE \(\|\) 180.DEGAEE HYARID COMBINEA


FIGUAE 22 FOUA POAT. TWO STAGE COMEINER USING

LINEAR FM MODULATIJR
by
Jerry Iseli
RF Design Engineer
Texas Instruments
P.O. Box 660246 M/S 8276

Dallas, TX 75266

\section*{ABSTRACT:}

A system has been developed that will generate a IInear fM modulated pulse signal. The system uses a 100 MHz clock and a 200 MHz CW input to generate a 20 ns pulse of 200 MHz energy. This culse is used to excite a surface acoustlc wave (SAW) expander. The resulting signal is a continuous linear sweep of frequencies of 75 MHz bandwidth, centered about 200 MHz . The duration of this sweep, or chirp, of frequencies is selected by using different SAW expanders. The chirp is then amplified and gated in time to sharpen the corners of the generated spectrum. The system has been designed, assembled, and successfully tested.

\section*{INTRODUCTION}

Linear FM is a modulation scheme that is commonly used in radar systems. 1 This modulation consists of a sweep of frequencles, sometimes called a chlrp, that occur within a given time period and with a specific repetition rate (figure !). This
paper discusses a system that has been developed to generate this modulation.

\section*{THEORY}

A LInear FM waveform may be generated by exciting a dispersive delay line with an impulse function. The dispersive delay line transfer function is flat in amplitude and has linear group delay within its bandwidth (Figure 2). The impulse response of the dispersive delay line is the inverse fourler transform of its transfer function. This is a signal of time duration \(t\) with the instantaneous frequency varying IInearly over the bandwidth of the delay line. This waveform is called the expanded pulse (FIgure 1). 2

This transformation may be visuallzed by thinking of the delay line as a frequency sensltive delay element that passes lower frequencles with the least amount of delay and higher frequencies with the greatest delay (figure 3). If you simultaneously input all the frequencles within the delay line's bandwidth they come out in progression from low to high resulting in the expanded pulse.

In our case the dispersive delay line is implemented with a Surface Acoustic Wave (SAW) expander. Three different expanders are used to generate different expanded pulse widths. The


INPUTS A \(\&\) B COMBINE IN.PHASE AS DO INPUTS C \(\&\) o
THE AB OUTPUTA THE COO OUTPUT COMBINE IN TWO
PARALEL CONNECTED 180 DEGREE HYBIDS. TWO IN
PARALLEL CONNECTED 180 DEGREE HYBRIISS. TWO IN
PAALLLL AVOIOS 25 I 2 COAX CABLE. 180 DEGRE
COMBINEA GIVES BALANCED 12.5 I LOAD IMPEOANCE:
IOEAL FOR TAANSFORMATON WITH A A: BALUN TO SO

Figute 23 foun port two stage comainen using

\section*{QUADRATURE HYBRIDS}

The quadrature hybrid has two input ports, each of equal amplitude but one is 90 -degrees out of phase relative to the other. Four-phase combining of four amplifier modules is feasible using two quadrature hybrids and a 180 -degree combiner. The quadrature hybrid is constructed by using "all-pass"
networks and a wideband hybrid as shown in the block diagram of figure 24. Two all-pass networks are required; one for o-degree (reference) phase shift and the other for 90 -degree phase shift relative to the reference output. The absolute phase shift across an all-pass network changes with frequency, however, the two networks are designed to maintain a constant 90-degree phase difference between their outputs as the input frequency to both networks is varied.


Figure 24 block diagham of a quadrature combinea

The all-pass networks may either be balanced or unbalancec circuits. Typical circuit topologies for both are shown in figure 25. Note that the mutual coupling in the unbalanced network must be negative and of a prescribed value.
expanders have a transfer function which exhibits linear group delay over a bandwidth of 75 MHz centered at 200 MHz .

To approximate the impulse function the SAW expanders are exclted with a 10 ns pulse of 200 MHz . The spectrum of thls pulse approximates an impulse function within the 75 MHz bandwidth (Figure 4).

In the SAW expanders the 10 ns input signal is spread over many microseconds resulting in a large loss in amplitude. The loss may be calculated by:
(1) Expansion Loss \((d b)=10 \mathrm{log} \frac{\text { Expanded pulse width }}{\text { Input pulse width }}\)

This loss is in addition to the CW insertion loss of the device. The expansion and insertion losses for the three SAW expanders are summarlzed in Table 1.
\begin{tabular}{|c|c|c|c|}
\hline SAW EXPANDER & INSERTION LOSS & EXPANSION LOSS & TOTAL LOSS \\
\hline 0.64 us & 35 db & 18.1 db & 53.1 db \\
\hline 5.12 us & 35 db & 27.1 db & 62.1 db \\
\hline 20.48 us & 42 db & 33.1 db & 75.1 db \\
\hline
\end{tabular}
table 1. SAW EXPANDER LOSSES

\section*{SYSTEM CONFIGURATION}

The linear FM signal is generated by simultaneously inputing a spectrum of frequencles to a SAW expander. Three SAW expanders are used to generate expanded pulse widths of \(0.64 \mathrm{us}, 5.12 \mathrm{us}\), and 20.48 us. These pulses are then amplified and gated to eliminate any undesired signals outside the pulse. A CW mode is also avallable for test purposes.

The modulator consists of four sections: a digital control section, a Pre-SAW module, the SAW expanders, and the Post-SAW module. These sections are configured as shown in figure 5.

The construction style for the RF sections is microstip PWBs on Glo material. The Pre and Post-SAW sections were mounted in separate aluminum housings to provide shielding and isolation for the circuitry. The digital control section is located on a card cage PWB as part of the parent system. The switches and SAW expanders are connectorized modules and are connected to the other sections with semi-rigid cable and SMA connectors.

\section*{OIGITAL CONTROL SECTION}

In response to a modulator trigger signal the digital control section generstes two signals: a 10 ns ECL pulse which is sent to the Pre-SAW module and a varlable width TTL gate which is sent to the Post-SAW module. The width of the TTL gate signal is equal to the output pulse width of the selected SAW expander, within the resolution of its clock ( 400 ns ).


FIGURE 25 TYPICAL ALLPASS NETWORK TOPOLOGIES

\section*{Both circuits exhibit difficulties in practical} implementation. The balanced lattice network may require long leadlengths and possibly a balun transformer for interface to an unbalanced hybrid. It requires more components than an equivalent unbalanced networ \(k\) and the component values must be closely matched to achieve low VSWR across the design bandwidth.

Implementation of an unbalanced all pass network allows shorter lead lengths and eliminates the balun transformer. It requires fewer components than an equivalent balanced all pass network. No closely matched component values are required,
however, an exact amount of mut ual coupling is required between two inductors.

The quadrature hybrid offers three advantages over the in-phase and 180-degree hybrids when used as an output combiner in solid state wideband power amplifiers. The third harmonic and certain other odd order harmonics cancel in the output port and add in the bridging resistor. The all pass phase shift networks and the basic combiner specifications must hold up to the frequency of the highest harmonic of concern to achieve this in practice. For example, the all-pass networks must provide the 90 -degree phase difference up to at least 90 MHz in order to cancel the third harmonic of a 30 MHz fundamental signal in the hybrid's out put.

RF power flowing into the output port of a quadrature hybrid will split, go through the all pass networks, partially reflect at the signal source impedance, go back through the all pass networks, and cancel in the output port and add across the bridging resistor. This is happens whether the power flowing into the output port is the result of a mismatched load or coupling from an adjacent transmitting antenna. The result is the combined power amplifier output behaves as though it has a matched source impedance. The situation of reverse power flow from adjacent transmitter coupling is especially important since the two signals cross modulate each other in the active devices. The

\section*{PRE-SAW MODULE}

A schematic diagram of the Pre-SAW module is shown in Figure 6. The Input signal for the expander is generated by gating a 200 MHz CW signal for 10 ns . This waveform is shown in Figure 4.

The 201 MHz CW input is amplified by Al to +7 dbm at the input to the mixer. MI. A 10 ns ECL pulse is input from the digital control board to the mixer \(I F\) port through \(A 2\). The \(D C\) offset voltage on the IF port is trimmed by the 500 ohm pot; this increases the LO to RF isolation of the mixer to approximately 60 db at room temperature. The waveforms shown In Figures 4 are oresent it the RF port of Mi. This signal is amplified to +20 dbm before it is output to the SAW expanders. A test input is provided which turns the mixer on at all times to allow a CW output. It is important that all amplifiers which process the pulsed signal be broadband so that a minimum of distortion is generated.

\section*{SAW EXPANDER ASSEMBLY}

A schematic diagram of the SAW expander assembly is shown in Figure 7. Si and S2 determine which of the three SAW expanders or a bypass path is selected. The attenuators on the expander outputs are used to adjust the signal level so that it is identical irregardless of which path is selected.

\section*{POST-SAW MODULE}

A schematic diagram of the Post-SAW module is shown in Figure 8. The Post-SAW module consists of three amplificstion stages, a gated mixer and a limiter. The signal level at the Input to this module is approximately -67 dbm . therefore a large amount of gain is needed to restore it to a useable level; this is accomplished with A1, A2 and A3. The mixer is gated on by a TTL signal colncldent with the leading edge of the expanded pulse. This prevents the large galn in front of the mixer from producing unnecessary nolse when the pulse is not present; it also sharpens the edges of the expanded pulse. As In the Pre-SAW module DC bias is provided for the mixer to improve its isolation. The gated expanded pulse at the mixer output is IImited by about 6 db in Li. This removes any amplitude ripple in the expanded pulse. The output level is 0 dom.

\section*{SUMMARY AND SUGGESTIONS FOR FIJRTHER WORK}

This system has been prototyped and thoroughly tested. Al of the design goals were met. The modulator is presently integrated into a prototype radar system.

There are three areas which I feel could be changed to improve the performance.
intermodulation products caused would be radiated along with the desired signal. The quadrature hybrid will cancel some of these "backdoor" IMD products in it's output port by terminating the energy in the bridging resistor.

Two wideband linear power amplifiers, combined with a quadrature hybrid, will exhibit nearly constant gain under varying load impedances (varying VSNR). The ratio of input power into the quadrature hybrid splitter to the forward power out of the quadrature hybrid combiner will be nearly constant in contrast to the same situation using in-phase or 180 -degree hybrids.

Techniques for wideband RF power transformers, combiners, and splitters have been presented with emphasis on topology. Various types of transformers and combiners were examined and classified. Examples of each were presented in pictorial form, schematic, and equivalent circuit in an effort to bridge the gap from theory to working hardware. A rich variety of combinations of the basic transformers and combiners are possible though not covered here. It is hoped that a more complete understanding of the basic types presented here will enable the reader to produce more sophisticated designs.

\section*{BIBLIOGRAPBY}
1. Badger, G., "A New Cl ass of Coaxial-line Transformers", Ham Radio, Part 1 Feb. 1980 , pp. 12-18; Part 2 Mar. 1980, pp. 18-29.
2. Benjamin, J.A., "Use Hybrid Junctions for more Vhf Power". Electronic Design. Aug. 1, 1968, pp. 54-59.
3. Bruene, W. B., "Quadrature Hybrid Behavior when Used as a Power Amplifier Combiner", Rockwell International Working Paper, Feb. 27, 1980.
4. Burwasser, A.J., "Wideband Monof ilar Autotransformers", ReFe Design, Part 1 Jan./Feb. 1981, pp. 38-44, Part 2 Mar./Apr. 1981, pp. 20-29.
5. Burwasser, A.J., "Taking the Magic out of the "Magic тee"n, R.F. Design, May/June 1983, pp. 44-60.
6. Granberg, H.O. "Broadband Transformers and Power Combining Techniques for RF", Motorola Application Note AN-749, 1975.
7. Granberg, H.O., "Combine Power Without Compromising Performance", Electronic Desjign, July 19, 1980. pp. 181-187.
8. Granberg, H.O., "Four MOSFETS Deliver 600 W of RF Power". Microwayes_RF, Jan. 1983, pp. 89-91 \& 120.
9. Krauss, H.L. \& Allen, C.W., "Designing Toroidal transformers to Optimize Wideband Performance", Electronics, Aug. 16 , 1973, pp. 113-116.
1. To achieve the maximum signal to nolse level at the modulator output it is necessary to drive the SAW expanders with as large a signal as possible. This creates a requirement for a high power switch at the expander inputs. This part can be costly and hard to obtain. A low power switch may be used by assigning a separate power amp to each expander and swltching the low power input to the amp as shown in Figure 9.
2. The signal to noise level is degraded on the . 64 us and 5.12 us expanders by the attenuators on their outputs. The attenuators are used to provide equal levels at the Post-SAW input. This equallzation may also be accomplished by amplifying the output of the 20.48 us and 5.12 us expanaers to the level of the . 64 us expander before the switch. This is shown in figure 10.
3. The expanded pulse is gated by a signal that is generated from a 400 ns clock. For the .64 us (640ns) expanded pulse this results in a rather coarse gate. Orlginally a fourth expander with a longer pulse width was used in the system. This required the 400 ns clock to generate a gate signal long enough for it. With the present three expanders a higher frequency clock could be used to generate a gate of finer resolution. This will eliminate some ootential signal processing problems elsewhere in the radar.

\footnotetext{
'Skolnik, M., "Radar Handbook", McGraw-Hill, 1970, P. 20-4.
}

2Andersen Laboratories, "Dispersive Delay Lines", 1983
10. Lefferson, P., "Twisted Magnet Wire Transmission Line", IEEE Transactions on Parts, Hybrids, and Packaging, Vol. PHP-7. No. 4, Dec. 1971, pp. 148-154.
11. Lewis. W.A., "Low-Impedance Broadband Transformer Techniques in the HF and VHF Range", Collins Radio Co. Working Paper, July 1, 1965.
12. Munk, P.R. Sartori, E.F., "A Iheoretical and Experimental Study of Transformer Balance ", IEEE Transactions on Parts, Materials and Packaging, Vol. PMP-4, No.1, Mar. 1968, pp. 12-21.
13. Nagle, J.J., "High-performance Broadband Balun", Ham Radio, Feb. 1980, pp. 28-34.
14. Nagle, J.J., "Testing Baluns", Ham Radio, Aug. 1983. pp. 30-39.
15. Pitzalis. O. Couse, T. P.M. "Broadband Transformer Design for RF Transistor Power Amplifiers", US Army Electronics Command, ECOM-2989, July 1968.
16. Ruthroff, C.L., "Some Broadband Transformers", IRE Proceedings, Vol. 47. August 1959, pp. 1337-1342.
17. Sevick, J., "Broadband Matching Transformers Can Handle Many Kilowatts", Electronics, Nov. 25, 1976, pp. 123-128.
18. Waight, M., "Report on Quadrature Hybrid Investigation Aug. \(1985^{\circ}\), Unpubl ished.


Figure I. Linear FM Pulse Modulation


Figure 2. Transfer Function of Dispersive Delay Line


FIGURE 3. DISPERSIVE delay Line



Figure 6. Presaw Madule


Figure 4. 200 MHz Impuise



high power uhf pulsed push-pull amplifier design

Prepared by:
Joseph J. D'Agostino Jr.
Applications Engineer

October 1985

RF Push Pull amplifiers can be somewhat of a mystery to those engineers who've never designed one. This application note attempts to unlock some of that mystery by simplifying those nebulous areas that make a push pull amplifier different than a single ended or parallel amplifier. The name push pull in itself implies a different mode of operation than two transistors operating in parallel.

In a standard Class \(C\) amplifier, one half of the input sine wave (positive or negative) turns the amplifier on while the other half maintains a reverse bias. lf a periodic sine wave symmetrical about a horizontal axis with positive and negative half cycles were being delivered to two Class \(C\) common emitter transistors in parallel, the positive half cycle would turn on both of the transistors while the negative half cycle would keep them reverse biased. In push pull operation, the sine wave is shifted 180 degrees for one of the two parallel transistors. The result is such that the positive half cycle is no longer delivered to each transistor simultaneously but instead separately so that when one transistor is on the other is off. This mode of operation has a lot of nice advantages not the least of which are thermal since two transistors in close proximity are not dissipating power at the same moment in time.

Figure 1 shows the current flow through a one to one transformer being delivered to two resistive loads where \(R s=R_{1}+R_{2}\) and \(R_{1}=R_{2}\).


FIGORE 1
ew hfflications of hieh resolution comfressive receligers
Br
merkill m. after
andersen laboratories. Inc
1280 alue hills averue BLOOMFIELD, GT Ob002

\section*{abstract}
with the crowaing of the electroagnetic soectrun and the evolution of soriad spectrum and other complex signatures, the ELINTiESM deands of the \(1990 \cdot \mathrm{~s}\) wall oose new challenges to EW receiver eanufacturers. Resolution domn to the hundreds of Hertz and real-tiee processing wall be essential.

This oader wall aake the svsten designer aware of fan of these analog technologies for signal orocessing in radar systens. When low cost. low comelexaty. and flexibility are ker considerations in contiguring a ststen, analog technology should be the svsten designer's dirst chorce to meet these reouirements.

INIEOTUCILON: IHE EN STEENARIQ
Analog compressive (aicroscan) receivers can be used to provide fast, realtae spectrua analysis of the If operating band. The range of their perforance is characterized in figure 1 . The alcroscan receiver can provide quick processing tiaes, wide bandwidths or very good resolution depending on the envaronment and users needs. Applications can vary fron electronic intellıgence gathering, radar warning receivers, anti-radiation seekers to soving target indicators (ATI).

The coepressive receivers function is to perforathreat analysis on a comolex signal environment. This environment is crowded with different modulating techniques, magnitudes of signals and frequencies. the conoressive receiver can be confagured to gather and translate an unknown. cronded trequency/tise spectra, perfora a true instantaneous fourier transfore and outout valuable inforataon which can be used fer threat accuraev aeasurements.

Threat accuracy can be defined as the prababilaty of intercept (fol) ratio processing and scan tiae and system resolution. Each one of tnese toascs wall be discussed within the body of the paper.


Since the primary voltage equals the secondary voltage and primary current equals secondary current, then the voltage drop across the two loads is equal assuming equal resistances. It's easy to see that during the positive half cycle current flows in a clockwise direction and \(R_{1}\) has a positive voltage drop across it with respect to ground while \(R_{2}\) has negative drop with respect to ground. If \(R_{1}\) and \(R_{2}\) were emitter base junctions, \(R_{1}\) would be on and \(R_{2}\) would be off during the positive half cycle. The negative half cycle is just the reverse.

Many times a one to one balun made out of single piece of fifty ohm coax is used to generate push pull action in an RF amplifier. Figure 2 shows a typical arrangement. The electrical configuration is different than the one to one transformer in figure l, but the basic operation is the same


FIGURE 2

The center conductor acts as the primary and the outside shield acts as the secondary. The transformer coupling action between the primary and the secondary is identical to one to one transformer in that there is an induced EMF in the secondary. The only difference between the coaxial transformer and a conventional transformer is the way the interwinding capacitance is laid out. In conventional transformers, the interwinding capacitance is an unwanted capacitance that limits high frequency performance because it resonates with the leakage inductance to produce a loss peak |1|. In transmission line transformers, the interwinding capacitance is arranged such that it is part of the characteristic impedance of the line. Therefore, if the transmission 1 ine transformer is terminated in its \(Z_{0}\), there will
be no resonances that will limit its upper frequency response. This means that the coaxial balun is a transmission line as well as a trans former.

Because the electrical configuration of the coaxial balun is identical to that of a twisted pair, the theoretical explanation of the balun will be carried out using the twisted pair. Figure 3A shows a conventional twisted pair. In order to maintain good transformer action, the primary and secondary must be tightly coupled. This results in interwinding capacitance which can be tolerated because it contributes to the \(Z_{0}\) of the 1 ine. The inductance per unit length, along with the distributed interwinding capacitance, assigns some \(Z_{0}\) to the transformer. The \(Z_{0}\) simply becomes part of the matching circuit while the transformer allows for push pull action. If it were possible to achieve good coupling without interwinding capacitance, than push pull action could be achieved without the transmission line. Said another way, it 18 only necessary to have transformer action for the push pull effect, it is not necessary to have a transmission line.


Figure 3B shows the twisted pair in a simpler form so that it can be analyzed. During the positive half cycle, a current \(l_{1}\) flows into the load \(R_{1}\) causing an increasing magnetic ficld \(A_{1}\) in the direction shown by the right hand rule. The direction of the induced current in the secondary can be found by Lenz's Law: 'If the external flux increases, the magnetic field of the induced curront will be in tho opposite direction" \(|2|\). Therefore, \(A_{: ~}\) is responsible for the induced current \(I_{2}\). The secondary is now a source with its own current and voltage. The voltage of this source is in surh a direction as to mantain the diroction of curront la. [3] it's

\section*{IHETEI DE THE COMESESSIVE RESEIVER}

A compressive receiver can be coniagured in two basic forms which are illustrated in Figure 2. Each one has its own aoolications when used witnin the EW environment.

The C-M-C compressive receiver, Figure 2B, has its own applications mithin the Ew environment, Dut due to te poorer ovnamic range and increased zost over the M-C-M sustem, it wall only de oriefly mentioned.

The \(C-M-C\) configuration suffers from poorer drnaaic range dus to its signal-to-noise ratio. Typacally the disoersave devices insertion loss is - 30 d b to -400 A. Anv incoaing ff signal aust be recovered before convolution occura. and then be recovered again at the outout of the second dapersive devace. Wath the M-C-M contiguration this recoverv of signal-to-noise as ainiazed.

In the M-E-M contiguration. Figure \(2 A\). the ancoang fif signal has only to be recovered after going through one disoersive device and not twa. The sweping local ascillator (SLO) has negligible effect on the insoang signal due to its noise level. The nosse level of the SLO is strictiy limited to the thermal noise of itself.

The \(M-C-M\) coapressive receiver wall be discussed in deptn and specificaliy mention the multiply long-convolve short M-C-M transform eethod. Either m-E\(M\) or \(C-M-C\) conifguration can guarantee \(100 \%\) probability of intercept when a tanoen sustem is iademented.


FIGURE 2A: Multiply-Convolve-Multiply Fourier Transform System


FIGURE 2B: Convolve-Multiply-Convolve Fourier Transform System


FIGURE 2C: Multiply-Convolve Fourier Transform System
important to mention here that the currents \(I_{1}\) and \(I_{2}\) are considered odd modes of currents which are the dominant modes in this type of transformer [4]. Even modes of current are not shown here but would be in the same direction instead of the opposite direction. Even modes of current are caused by flux linkages between the primary and secondary instead of linkages around each.

Summing up the voltages around the loop (Figure 3C) it's easy to see that the transformer primary voltage cancels the transformer secondary voltage so that the source voltage (Vs) is impressed across two equal loads just as originally shown in Figure 1 . Since the current through the two loads is the same and the voltage across each is half the source voltage, the impedance of each is one half the source impedance. If a 50 ohm twisted pair (or coaxial line) is used, then each side of the balanced end is 25 ohm's to ground.


FIGURE 3B, C

\section*{DESIGN \#1}

A one to one coaxial balun will now be used in a push pull design. Inspection of Figure 2 shows that the length of the balun determines how much inductance to ground \(z_{2} w i l l\) see. The impedance to ground of the outside shield of a coaxial cable is termed the rejection mode impedance. This is basically the \(X_{L}\) of this shield. If the balun is sufficiently long, this rejection mode impedance will not affect the match at \(Z_{2}\) significantly. As a rule of thumb, the balun should be made long enough so that the rejection mode impedance is five times that of the \(Z_{0}\) of the line \(|5|\). If size constraints restrict the balun's length, an alternate solution would be to use the rejection mode impedance as a shunt \(L\) to ground at \(Z_{2}\). This would then require an equivalent inductance to ground at \(z_{1}\) to insure that each side of the balun have the same complex impedance. The first design to be demonstrated will use this approach.

The SD1565 was selected for this narrowband 425 MHZ push pull 500 Watt application due to its excellent thermal characteristics under long pulse conditions. This transistor operates at 40 Volts and is capable of 500 Watts at 250 microseconds, ten percent duty cycle, Class \(C\) operation.

The input and output impedances from the data sheet are \(1.75+\mathrm{J} 2.75 \Omega\) and \(1.8+J .5 \Omega\) respectively. Referring to Drawing \({ }^{\prime} 1\), which is normalized to \(25 \Omega\), the effect of shunt 1 can be seel. For convenience, the impedance and admittance condinates have been reproduced on the left side of the chart. The inductive reactance of the outside shield of two inch semi-rigid coax was measured to be til34.15 ? . Normalized to \(25 \Omega\) this gives \(3415 / 25=1.366\). Starting at the center of the chart at \(\wedge(25 \Omega)\) and moving along the constant resistance circle to \(B\) gives a shunt inductive reactance value of 1.30 read at \(C\) A serins capacitalles of value .48 read at 1 transforms the impedance to .65 at \(E\) The umormalized impedance at \(F\) is then (.65) \(25 \Omega=16.25\) si and the capacitance value at D is \(\mathrm{C}=1 / 2 \mathrm{~F}\) \(\mathrm{X}_{\mathrm{C}}\) where \(\mathrm{C}=1 /(2)(3.14)\left(425 \times 10^{6}\right)(.48)(25)=31.2 \mathrm{Pr}\). This shunt \(L\), series \(C\) high pass configuration will be the same for the input and output of tho circuit (see Drawing \#4) so that the rest of this example will but mithed from the imperdance of the device aut to

If onlv one systen 15 to be used and a axisum fol is required, the M-C-M multaply short macroscan receiver should be inplemented. Thas confaguration as designed wath a shorter dead tame interval to provide maxamen coverage of the analysis bandwath. This system has an added adrantage in that asolitude and phase anforeation is preserved for possible down line signal processing if the user requires. Spectral phase can be preserved allowing inverse transforaing back to the original input donain. If spectral fhase data is not reauired by the user, in threat analysis, the user could simply eliainate the final aultiply stage which is used to preserve phase data, Figure \(2 C\). Deravation of the above systess eentaoned generated waveforas can be


A ooint that should be aentioned is that the M-C-M aultiplv long systen's Fourier output spectra does not exactly correspond to the input spectra. This is due to an effect known as asliding fourier Effect" transfora.

\section*{QEEKATION QF IHE COMPRESSIUE REGEIYER}

Let us assume the scenario in which figure 3 , a functional block diagram of a compressive receiver. detects a varietv of threat spectrawich aust be quackly detected. analyzed, discrianated and acted upon. This threat spectra could be transeitted fron a hostale freouency janeer, hopper or Eff commications. These intercepted signals are mixed with the known generated sharp or the swepping local oscillator.

\(\begin{array}{ll}\text { FIGURE 3: } & \text { Compressive IF Receiver } \\ & \text { Functional Block Diagram }\end{array}\)
Thas signal is amplifieg ano fed into the compressor of the icrosean receiver. The compressor is designed with the required bandwidth. dispersion and opposite sign slope of the \(5 L O\) and can be weighted. Convolution oczurs. and the output is the magnitude of the fourier transior of the condex input spectra.

The weighting can be a separate "Black Box" within the receiver if the user prefers. Tvpically amming or Tavlor meighting function is used. Weighting is perforaed mithin the receiver to reouce time sidelobes at the output. Thas gives the systea the capability to resolve siailar frequencies with substantially different power levels and modating technacues. weighting of the output pulse does incur soes svisten resolution loss, but the device bandwidth can be increased to comoensate for this. A conerent or noncoherent systen can be desiofned if the user requires.
l'he output matching is configured using Drawing \#2 and starts at 16.25 a at A (. 65 normalized) and works back towards the generator (the transistor's output impedance). The movement from \(A\) to \(B\) represents a shunt capacitive reactance of (1.25) \(25 \Omega=31.25 \Omega\) at \(C\). This reactance can be realized in a shunt configuration to ground or can be referenced to the opposite side of the balun. Since one side of the balun is always 180 degrees out of phase with respect to the other, the voltage across the balun is always twice the voltage to ground. Therefore, the same transformation can be realized by doubling the capacitive reactance to ground and referencing it to the opposite side of the balun. Instead of \(31.25 \Omega\) to ground then this becomes 62.5 across the line. The value of capacitance across the line is givell by:
\[
\text { (1) } C=1 /\left(2 \pi F X_{C}\right)(2)
\]
where \(X_{C}\) is the unnormalized value.
Therefore \(C=1 /(2)(3.14)\left(425 \times 10^{6}\right)(31.25)(2)=5.9 \mathrm{pF}\)

Since the chart is normalized to 25 all transmission line matching sections will be \(25 \Omega\) lines for simplicity. The first transmission line matching section transforms from \(B\) to \(E\) by rotating around the center of the chart along a constant VSWR circle from B toward the generator to the real axis. The length of line is determined by extending a straight line from the chart center through \(B\). The value at \(D\) is then . 054 wavelengths. One wavelength in free space equals
(2) \(\lambda_{0}=11808 / F(M H Z)\)

This becomes \(11808 / 425=27.78\) inches. The relative velocity of propogation for the substrate is .4729 . The guided wavelength in the material is then
\[
\text { (3) } \lambda_{0} \cdot V_{p}=\lambda_{g}
\]
which gives \(\lambda_{g}=(.4729) 27.78=13.137\) inches. The length of transmission line in inches is
which gives 13.137 (.054) \(=.709\) inches.

Another shunt capacitance moves from \(E\) to \(F\) which gives a reactance at \(G\) of (.5) \(25 \Omega=12.5 \Omega\) and a capacitance value from equation (1) of 15 pf . Another transmission 1 ine of length. 037 read at \(H\) transforms from \(F\) to \(I\). This length in inches is computed from (4) which makes it . 486 inches. The last shunt capacitance moves from 1 to \(J\) and is computed from (1) to be 48 PF . The final transmission line is a movement from \(J\) to \(N\) and its length is computed from \(L\) minus \(M\) or \(.018-.0035=.0145\). Then from (4) its length is .190 inches Point \(N\) is the conjugate of the output impedance of the generator Since the scheme here has been to match from the load towards the generator then it is necessary to match to the generators conjugate and not the output impedance of the generator itself. Point \(N\) is read as . 072 - J.020, unnormalized is then \(1.8-J .5 \Omega\) which is the conjugate of the output impedance of the transistor at 425 MHZ.

The input network will be configured on Drawing \#3. The input impedance of the device is given to be \(1.75+J 2.75 \Omega\) and this is normalized at point \(A\). Since this is the load the network configuration will still work towards the generator which is the \(25 \Omega\) point at the center of the chart. The first shunt capacitance imnediately at the device leads is a movement from \(A\) to \(B\) and is read at \(C\) to be 50 PF from (1). A transmission line matching section from \(B\) to \(D\) is read at \(E\) to be .0535 which is .702 inches (4). The final shunt capacitance from \(D\) to \(F\) is read at \(G\) to be 13.5 PF (1) Fis now matched to the center of the chart ( \(25 \Omega\) ) by the configuration of Drawing \#1.

The ecmpleted circuit is shown in Drawing \#4. Evaluation of this design showed very good performance at the 500 Watt level; howover, a problem of instability was observed during drive up. To explain further, as the input power was varied, it was observed that the part would oscillate but once full power was aplifed conplete stability was achleved. Illis is attributable to the fact that the part has higher gain at less than full power. Since the device is a common base configuration, at some frequency it has a negative resistance input component. This nogative resistance component coupled with the

\section*{}

Analog pulse conpression can be accomplished using specific technologies of Surface Acoustic Wave (SAW) Reflective Array Compressor; (RAC) or Imoedance Control fevices (IMCDN). Each devace has ats adyantages and applacations within the receiver.

IMCON IEEHNOLOGY
The IACOM. which was develooed at Andersen Laboratories, inc., in 1968, is used as a ker sigrial orocessing comoonent for commercial. malitary anc aerosoace systen applications

The IMCDN 15 based on the concepts of aingle grating dispersive devace which akes use of Perinis observations that apedance asatches whien occur at joints in wavequides can produce reflections. By controlling the ocation of these impedance eisaatches or surface discontinuities, a grating device could be generated where reflections could be adyantageously used

As allustrated in Fiqure 4 , the \(\operatorname{lMCON}\) is configured using a rectanoular thin steel strio as the meda for mave propagation. At one end of thas stel strid two oiesolectric norizontal shear mode transducers are edge bonded so the steel. These piezoelectric transducers are cut and lapped along the proper axis to allow for highest coupling of electric energy. The function of the paezoelectric transducers is to convert an electric signal to an acoustic signal and then to retransfer this acoustic energy back to electric energy at the output of the device. A herrinquone-like pattern or grating is designed and photolithographically itched on to the steel at 45 degree angle to the acoustic path fron the transtucers. The grating oattern is
designed so that the acoustic energy at various frequencies reilecis at difiering distances fron the transducers, qiving a precisalv controllec tiae delar as a function of frequency to the output

An acoustic danping aterial is applied to the edges and one end of the steel strip. This acoustic danping aderial helps to eliminate any type of t:ae spurious signals which mav degrade the performance of the device.

H key advantage of the IMCDN over other technologies as the avallabidity to routinely amplitute correct and phase correct for any type of ambagutaes which mav occur due to manafacturing imperfections.

Depanding on eustomer's requirements, amolitude and phase errors can be controlled to tolerance typical of \(\pm 0\). 20 B of amplitude error. and \(\pm 1^{0}\) of phase error. sidelobe structure in the area of -400 B is the norm for IMCON perforaance and -50dB sidelobes have been demonstrated. Dispersions froa B usec to 5o5 usec can be iaplesented on one steel strip, and if recuired the IMCONs can be cascaded together to achieve lo, ofonsec of dispersion in one packag̣e.

The IMCDN is a linear device mhose delav vs. orequency characteristic curve can be deined by figure 5. The phase resocnse of the dMCON is defared as a oladratic response. it is considered reciprocal device in that once it is tuned a:ther transjuser can be cenfigured as either anput or outout
:MCDNs can be desagned, decording to the userg needs, as either uo-chirf (positave slope devices) or domn-chirp enegative slope devices!. An uo-chirg
fact that the high pass (section from Drawing \#1) has a series resonance which will reflect a zero impedance, at some frequency, to the device at the input and output sets the stage for potential instability. The solution for this is to get away from the series resonance by using a low pass configuration.

\section*{DESIGN \#2}

If a one to one balun is made long enough so that the rejection mode impedance does not contribute to the match, it can be characterized quite easily for the intended frequency of use. By connecting the balun as shown in figure 2 and using good high frequency \(25 \Omega\) chip resistors for \(Z_{1}\) and \(Z_{2}\), the balun will show a low VSWR ( \(50 \Omega\) unbalanced impedance) for all frequencies where the unbalanced to balance transformation is occurring. At very low frequencies its input will simply be \(25 \Omega\) and at high frequencies it will be limited only by leakages \([6]\). No compensation for the rejection mode impedance is necessary if the balun is long enough. Drawing 7 shows a 5 inch balun suitable for UHF.

With the rejection mode impedance out of the way, the design will he fabricated between the device and \(25 \Omega\). This second design will the broader bandwidth, from 400 to 450 MH , which will require low \(Q\) matching. The \(Q\) is calculated from the following:
\[
\text { (5) } \frac{\sqrt{\mathbf{F} 1 \cdot \mathbf{F 2}}}{F^{2}-F 1}=\mathbf{Q}
\]

For this example \(Q=\frac{\sqrt{400 \cdot 450}}{450-400}=\frac{424.3}{50}=8.5\)

This is a 3 db Q which means that the half power points will br at the band edges. A more desirable situation would be to have \(90 \%\) of max power at the band odges which would correspond to a . 5 dh \(Q\) The conversion factor from a \(3 \mathrm{db} Q\) to a \(.5 \mathrm{db} Q\) is \(.34|7|\). Therefore, \(8.5(.34)=2.83\). To be conservative, a \(Q\) of 2 will be used. A constant \(Q\) circle of 2 , where \(Q=X / R\), is plotted on Drawing \(\# 5\).

Without the aid of an optimization program, the aproach will be to select the transistors impodance at some frequency to design around. The contor frequency is aproximately 425 MII ; howovir, all transistors exhibit some roll off with frepuency so that an impedance piont above center frequency will bu used. A convenient noint will be 435 mil\%. At 435 mir\% the transistors output impedaner is 1.8 . 128 Drawing \#5 is mormalizod to \(25 \Omega\), point \(A\). The first shunt capacitance from \(A\) to 13 is read at \((\mathbb{C}\) to be \(1.4(2512)=35\) and from qquation (1) \(C=5 .: P F\). From \(B\) to \(D\) is a longth of transmission
device is oesigned with the low frequency grating iines appearing closese to the transducers and traversing up the eedia of proportion. As the freguency ancreases the grating line spacing will physically get closeo together through the band of interest. This is ofposite for dom-chirp devices. The un-charg imCON can oderate from 4 MHz to 24 MH : math 50\% dancmaths. omncharp gevices oo have sone bandwadth liastations oue to undesired accustic modes . but can be amplenented as long as the bandmath is under \(10 \%\) imGONs can be designed deoending on a custoner proference as linear fM or nonlinear fM. ihe NLFM IMCOM has a slode which whll vary across ite oceratang Danc.

figure 4: san rac/imcom servecture

arar \([: \because:\)

FIGURE 5: SN RACIIMCON UP-CHIRP SME RAC/IMCON UP-CHIRP
TRENEMCY DISPERSIOA

\section*{¢qu}
 througnout analog devace tor oulse comoresi:on sesnnioues". Center freouencies as high as \(16 H\) : are being develoded and scon will be at!e to te comercially faoricated. Disoersions of \(15, \mathrm{~h}\) us. banumadtas of sou mas. and sadelobes of - tigate can be realized mithar the latoratory under togn:lv controlles asnufacturing telerances. The adiantage of the SAM \(E A C\) over ase otner analog devises and the digital counterpart is its sise. weight. cazt and reibadistr.

The suriace acoustic wave reflective arrav comoressor (5AN finil is the \(5 \hat{H}\) tectinology counterpart to the IMCON. The SAM RAC is conceotually sialar in structure to the bificm in that grating lines are etched into abitrate such as lithiua nabate, or other, depending on the user applicable envirgnaent. The SAW RaC offers practical metnods of achieving lanear and non-linear fM dispersive delay characteristics. Using ion beae etehing, grating lines can be etched into a substrate in varying deoths to acheve the user s resured anolitudeffequency meighting characteristics. Grating lines can be positiones if required to achiove the above mentioned non-linear deiay function.

The SGW RAC is eost sulted for eoderate dispersions (s100 usec), bandmidth caoabilities frag 20 MHz to 100 MHz and sidelobe performance of -TSaB. tupacal, in the linear fr application.

The SAL FAC ooprates at center ireouencaes from lot MH: to i000 MHz and can de easab manufactured as ud-enirp or domn-charp devices.

\section*{SQu}

The comorssive receiver is fast, active real time fourier analvas receiver that has applications in ELINT/ESM surveillance. The IMCON or SAW RAC when configured in the comoressive receiver mall generate the linear eweep of the desired dispersion and analysis bandwidth. The linear ewees can be generated by impulsing the specific olspersive devices as in the case of a coherent susten or the user ar choose to do thear omn triggering of the chiro as in the non-coherent system.
line read frome to \(F\) as \(.0975-.0609=.0366\). At \(435 \mathrm{MHZ} \lambda_{0}=\) \(11808 / 435=27.14\) inches and \(\lambda g=(.4729) 27.14=12.836\). From equation (4) this length of transmission line is . 470 inches. The shunt capacitance from \(D\) to \(G\) is read from \(C\) and \(H\) as
\[
\text { (6) } \frac{1}{X_{1}}-\frac{1}{X_{2}}=-\frac{1}{X_{C}}
\]
where \(X_{C}\) is the normalized reactance.
Therefore, \(\frac{1}{.5}-\frac{1}{1.4}=\frac{1}{X_{C}}\) and \(X_{C}=.777\). Unnormalizing and using equation (1), \(C=9.4 \mathrm{PF}\). From \(G\) to \(J\) is a transmission line of length determined by \(I\) plus \(K\) where \(I=.0535\) and \(K=.003\). From equation (4) this length is .725 inches. The value of capacitance from \(J\) to \(M\) is read at \(L\) and \(N\) using equation (6) but now \(X_{2}\) is a negative quantity since it's on the opposite side of the chart.
\[
1 / .142-(-1 / 44)=1 / X_{C}
\]
where \(X_{C}=.1415\). From equation (1) and unnormalizing, \(C=51.6 \mathrm{PF}\). The length of transmission 1 ine form \(M\) to \(P\) is read at \(O\) as .01558 . This length is .200 inches. The impedance at \(P\) unnormalized is 1.8-J.2 n which is the conjugate of the collector output impedance.

The input circuit is shown on Drawing \#6. The input impedance at 435 MHZ is \(1.75+\mathrm{J} 2.65 \Omega\) and is shown at \(A\). The capacitance from \(A\) to \(B\) is measured at \(C\) plus \(D\) and computes to be 52 PF . The transmission line from \(B\) to \(E\) and measured at \(F\) \(p l u s G\) and computes to be .810 inches. The second capacitance from \(E\) to \(h\) read at 1 minus \(J\) is 8.7 PF. Another transmission line from \(H\) to \(M\) read at \(L\) minus \(K\) is 450 inches. Then the last capacitance from \(M\) to \(O\) measured at \(N\) is 4.9 PF which matches to 25 п.

The completed circuit is shown in Drawing \#7 and provides excellent broadband performance. Typical performance shows in excess of 500 Watts at 400 MHZ through 430 MHZ and 480 Watts at 450 MHZ . The design is very stable with changes in power levels, changes in tuning and changes in collector voltage thus proving that the high pass design was the reason for some previous instability.

\section*{Conclusion:}

The theory of a one to one balun was described along with two applications. Both applications have definite advantages. In no way does this device note intend to imply that the high pass configuration is inferior. However, the conclusion is drawn that its application is better suited to high power common emitter or lower power common base devices.

It is recommended that all baluns are characterized before being used in a new design. Experience proves that the additional time to characterize baluns is worth avoiding the frustration of not knowing whether an inoperable circuit is due to the balun or matching components.

The outgut op the oi三gerzave oevice tia \(h_{1}\) gh energy expanoed oulse with the designed olsoprabue content and analvsas banowadth.

\section*{}

Now that the baic bualding blocks are understood we can begin to define some teranaloug withan the receiver. Thas teranology will be helpful when the user 15 reasu to dram us technical soecification of a compressive receiver

\section*{SEECTEGL EESOOTION GOMPUTATIONS}

Eoe: ral resolution \(\mathrm{s} \delta \mathrm{f}\), s cefined as the sallest frequency oeviation of ostferense that san be detecteo and accuratelv esasured. Resolution down to the huncreds of martz can be achieveo mien large time bandmath products are 1molemen:es

where
sf Eisten Resolution
\(\Delta t \quad=\) Susten fispersion \(^{2}\)
Fo Fulse Eroacening Factor as a result of a
weighting function being used to suppress temooral sidelobes. For example. when \(f=1.0\) this is a typical pulse brozdening factor for no weighting: when F \(=1.5\) thas is a tyoical pulse broadening factor for a Tavlor weighting of 47-50dE.

\section*{FRQCEESING IIME COMPUTATIONS}

Processang tiae 15 defined as the amount of tae the compressive reciver needs to analyze an incoaing frequency soectrus once it has been captured withan the analysis oand and disolay the Fourier transfore at the output as a function of tise.

Frocessing tine is defined as. \(\mathrm{P}_{\mathrm{t}}=\mathrm{K}(\Delta \mathrm{t})\) *t

\section*{where}
t \(\quad\) Signal Processing Time
\(K \quad\) Multiplication factor for the number of cascadeo conoressive receivers
- Syiter Dispersion

Delar rime attributed 0 non-digoersive devices, l.e., mixers, banogass iflters.

\section*{FULSE WIQTH COMEUIATIQNS}

Fulse width measureaents can be defined as
-40 pulse midth \(=P\) \(\frac{0}{\Delta \tau}\)
where
\(P\) : Pulse groadening factor as a result of a weighting function beang used to suppress temoral sidelobes
\(\Delta f=\) Analysis Bandwadth


EOI COMEUTLILONS
Probabilaty of intercept is defined as the chance that asignal, if present withsn a given frequency/tiae spectra, will be detected.

Fol for a comeressive receiver can be defined as anama of 50\%. Thas is
characters:ed by:
Pulse Repetition Tiae
mere \(\Delta \tau=\) susten disoersion

Any gignal which is captured wathin the ramp of the charp will be displayed as a fourser transfora. If two compressive recelvers were to be run so that their "chirps" mere to share some overlap tine, Figure b, a \(100 \%\) FOI would be guaranteed!



\section*{CONLLSETON}

The use of euch devaces as SAW ard IMCON technology give the cemorassive recesver the flexibility, low cost and low complexity that if required when designing signal processing raoar systens. These technologies give a user the necessary requirements of excellent resolution, wide band surveillance and true fast fourier analysis of all types of inceaing signatures which are present within the EW/E!M environment. When the if soectrua is to be analyzed, \([M C O N\) and SAW analog technology should be the systen designer s choice.

\section*{REFERENCES}
 Science Publishers 日.V., New York, 1985, pp 271-275.
2. Ibid. pg 275.
: Sittig and Coquin, Filters and Dispersive Delay Lines using Repetitively miseatehed Ultrasonse Transaission Lines", IEEE Trans. on Sonics and Ultrasonics, Vol. SU-15, No. 2, April 1968.
. Martin, T. A., Macrowave Networl: Approach to the IMCON Disoersive Delay Line", The University of Connecticut. Ph.D., 1974
5. Brookner. Eli, "Trends in Radar Signal Processing". Macrowave Journal, Oetaber 1982.
\(100 \%\) GUARANTEED POI
BLOCK DIAGRAM
figure 6


IMPEDANCE OR AOMITTANCE COORDINATES



\section*{IHOMSON-CSF}

MONIGOMERYUILLE, PENNSYLUANIA
SEMICONDUCIOR DIUISION

D 1565-HB Circuit Diogrem 425 MHz Engineering Prototype

SEMICONDUCIOR DIUISION




Comments: This engineering prototype circuit works well but it is unstable on drive up once the circuit is into soturation the stobility is fine


IMWEDUNCE OR ADMITTANCE COORDINATES


digital - RF interfacing

The Story of a Marriage

\section*{by}

Robert W. Sproul

Vice President, Director of Engineering

Lorch Electronics Corp.

\section*{submitted to}

RF DESIGN RF EXPO EAST

NOV. 1986

\section*{digital - RF Interfacinc}

The Story of a Marriage
My story begins in a far-off place, many years ago, at the time of the flood. All creatures of the earth boarded the Ark in pairs, two by two. Noah, the engineer in charge of construction, selected at the last moment his final pair, a couple of engineers. One was an RF engineer, the other of the digital persuasion.

Since then, the two disciplines have prospered in their separate ways, managing until recently to avoid much contact with each other. Within the last few years, however, the cultural restraints of the past have been thrust aside, and we are now in an era of fruitful cooperation.

The disciplines of RF and Digital have foined forces. The place where they have met is called the interface. Fraught with problens and tensions of protocol, this boundary is important and deserves our attention.

Three factors make the digital-RF interfoce increasingly important:
First, the systems of today call for sophisticated, almost symphonic control of a large number of separate elements, be they anternas, phase shifters, attenuators or separate signal paths, etc., etc. The individual contributions of these elements are cambined and manipulated by computer prograns to create powerful systems.

Second, the necessary digitally controlled components are available today to control the phase, attenuation and routing of RF signals; \((R F\) and \(I F\) are considered equals in this discussion).

Third, computer prograns and control systems are available to give, receive and digest information to and from RF equipment.

Where is the RF-Digital interfoce? Precisely where does RF become digital? This is rather like asking where the source of the Nile is. The most obvious case is that of a digitally controlled RF component, in the form of an attenuator, phase shifter, multi-pole electronic switch or switch matrix, to name a few. Inside each such package, the designer has to do what is required so that the unit will perform its function when addressed digitally by the user. The component designer thus provides the first interface, but he does it in private, as it were. As long as he remains consistent with an accepted method of address, he can do what he wants inside his box, and in that sense he has few problems with this first interface, most of which is hidden mercifully from view.


\section*{IHOMSON-CSF}

Drowing - 7

\section*{MONIGOMERYUILLE, PENNSYLUANIA}

SEMICONDUCTOR DIUISION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbols} & \multicolumn{3}{|c|}{Volues} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{Test Conditions} \\
\hline & Min & Typ & Mox. & & \\
\hline Po* & 500.0 & - & - & W & \(r=425 \mathrm{MHz}\) Vce \(=40.0 \mathrm{~V}\) Pin \(=54 \mathrm{~W}\) \\
\hline Po* & 450.0 & 4800 & - & W & \(\mathrm{r}=400-450 \mathrm{MHz}\) Vce \(=40.0 \mathrm{~V}\) \\
\hline Nc & 50.0 & 55.0 & - & \% & \(r=425 \mathrm{MHz}\) Vce \(=40.0 \mathrm{~V} \mathrm{Po}=500 \mathrm{~W}\) \\
\hline VSWR** & - & 30:1 & - & - & \(r=425 \mathrm{Mhz}\) Vce \(=40 \mathrm{OV} \mathrm{Po}=500 \mathrm{~W}\) \\
\hline
\end{tabular}
-Pulse Width 250us, 10\% Outy Cycle
- All Phase Angles

REFERENCES
[1] Ruthroff, C.L. Some Broad Hand Transformers Proceedings of the IRE, August \(1959,-\overline{\mathrm{PP}}-1337-1342\)
[2] Grob Basic Electronics, McGraw-Hill, 3rd Edition
[3] Smith, Kalph J. Circuits Devices and Systems John Wiley \& Sons, Iñe. 1976
[4] Rotholz, Eisch Transmission Line Transformers, IEEE Transactions on Microwave Theory and Techniques, Vol MTT-29 No. 4, April 1981
[5] Max, Lee Apply Wideband Techniques to Balanced Amplifiers Microwaves, Jūly 1980
|6| Basset, Raymond Three Balun Designs for Push Pull Amplifiers Microwaves, July 1980
|7| Litty, Thomas Microstrip RF Amplifier Design RF lesign, Jamarylfebruary i979

If we assume that our \(R F\) designer is producing an \(R F\) receiver, then he will soon have the confidence to group various components, each digitally controlled, into a complete, self-contained design. Now he has to face a different, and more scary, interface, because in the outside world strangers will want to talk to his machine, and he will not be able to cover up little idiosyncrasies as he could in the privacy of his own domain.

In that sense the first true interface is the public one, where the digitally controlled component, sealed in its oun container and provided with connections and data sheet, meets its alien user. As units become more complex, and as major assemblies are separated physically from each other by greater distances, the interface changes in nature, and requires quite different approaches. Most of these latter interface considerations can be said to be purely digital in nature, and no longer of the RF sort, but in this age of increasing complexity it behoves the \(R F\) engineer to become more aware of the overall digital scene, and certainly the digital engineer can learn from the \(R F\) engineer, particularly in terms of processing high frequency bit-streans.

One aspect of the interface is that of architecture, the 'big picture', in which the flow of information is studied in terms of systens such as the IEEE-488 bus and its associates, for example the economical and hard-working RS-422C and variants. References thereto are appended to this paper.

The other aspect concerns the nitty-gritty detail of interfacing, at the level where wire meets wire and voltage meets current. This aspect, in the experience of this speaker, is the most problematic, and gives the greatest opportunity for creative chaos. My company supplies digitally controlled camponents to the industry, and \(I\) believe it is appropriate to discuss some of the practical problems that have risen with the interface. Some of them may sound silly and obvious, but all have caused problens at one time or another for those peering across the Digital-RF frontier. The list is unending, but I have selected a few of the more obvious.

Any discussion of interface detail must begin with Transistor-Transistor Logic, or THL, which has truly become the day-to-day language, the lingua franca, of RF-Digital interfacing. Most RF engineers have heard of TTL, and know that it uses two woltage levels to represent the two states of the binary system; a low voltage of about zero represents a ' 0 '. while a nigh voltage of plus 5 or so represents a '1'. Right 7.............WRONG!

The above statement epitomizes the type of misunderstanding that can make life difficult. Figure 1 illustrates my oun first attempt, many years ago, to test a TIL device. When switch \(s\) was open, voltage Vi applied across the input of the gate was zero. When the switch was closed, vi becane \(+5 v\). Should have worked! All digitally literate persons in the audience will smirk at such innocence, but I found later that a lot of people had been down this particular alley, to their later chagrin.

Figure 2 uses a typical TTL interface to demonstrate what was wrong. At the left is a THL gate output of the open-collector type, which uses R1 to provide the collector of transistor Q1 with positive voltage. Sametimes a transistor is used to perform the function of R1, and the output is referred to quaintly as a 'totem pole'. R1 is also connected to the emitter of gate input transistor Q2.

When the base of Q1 is biased 'on', base and collector currents ib and ic flow, the latter being predominantly from the emitter of Q2, since R1 is of high resistance. Inter-stage woltage vi changes from +5 V to about +0.3 V , with the flow of emititer current le from Q2 thru Q1 to ground. The effect on Q2 is to lower the collector woltage, cutting off transistor Q3 and changing the state of gate 2. It is interesting to see how TTL evolved as an improved version of the earlier Diode-Transistor-Logic, or DTL. The circular inset of Figure 2 shows how the diodes of DTL become the transistor of TIL. Note that the input woltage vi indeed changed from +5 V to +0.3 V , just as the test circuit of Figure 1 was meant to simulate; the difference is that something else happened too. Transistor Q1 of gate 1 acted as a sink, permitting emitter current from input transistor \(\mathbf{Q}^{2}\) to flow, thus initiating the state-change process in gate 2. Table 1 sumarises the action.

A full discussion of the exact operating criteria for proper 7TL operation is beyond the scope of this paper. (the interested are encouraged to read the attached References), but already we can see the important truth that THL operation is first and foremost concerned with impedance change, in this case from the enititer of Q2 to ground. Anything that causes that impedance, or simply resistance, to change efficiently from a low to a high value will operate the \(T\) IL gate properly. A screwdriver held from enititer to ground will do just fine. The \(+5 V\) level at the input is not essential, but enhances noise immity in practical systems, by ensuring that transistor Q2 is held 'off' even when noise spikes of a few wolts are present.

A 350 Mhz Dual-gate GaAs FET Frequency Multiplier
Gordon A. Olsen
Microwave Engineer
Rockwell International
400 Collins Road NE
Redar Rapids, IA 52406

\section*{Abstract}

This paper describes a dual-gate fet frequency multiplier with 13 dB conversion gain for an input frequency of 350 Mhz . The bias on the second gate provides gain control in excess of 40 dB while maintaining better than 20 dB return loss.

\section*{I. Introduction}

Since its development in 1966 [l], the GaAs MESFET has continually increased in popularity. In its youth, the GaAs MESFET was used almost exclusively in high microwave frequency and low noise applications where low cost silicon transistors were not functional. An increased interest in GaAs technology has produced a variety of GaAs FETs including the dual-gate GaAs FET which was developed in 1971 [2]. The dual-gate fet has been widely used in mixers, variable gain amplifiers, and in modulators [3]-[5]. It has also been reported as a frequency multiplier with 8 dB conversion gain at \(k u\) band [6].

Eventually, fabrication techniques have brought the cost down, and the high volume demand of such industries as mobile
cellular radio has in particular brought about the development of a low frequency (less than 1 GHz ), low cost dual-gate GaAs FET.

The purpose of this paper is to demonstrate the feasibility of using a low cost dual-gate GaAs FET as a frequency multiplier and to indicate the important parameters in the design of this multiplier. This paper presents the design of a frequency doubler with 10 dBm output power and 13 dB conversion gain for an input frequency of 350 Mhz .

\section*{II. The Dual-gate FET}

The characteristics of the dual-gate FET have been well documented [1]-[6], and will be presented here as a brief summary. The forward transconductance of a dual-gate fer has inherent non-linear characteristics which can be used to generate harmonics of the drive frequency. The addition of a second gate provides a simple means to vary the device gain, with little effect on the characteristics of the first gate. In addition, with proper \(R F\) termination of the second gate, the dual-gate FET has higher gain than the single-gate FET of the same width [3].

> Ifl. Circuit Description

The dual-gate \(F E T\) multipier can be used in a variety of applications requiring frequency doubling and gain control. The application discussed here is the replacement of current


FIG I
HOW NOT TO CONTROL M TTL GATR


FIG 2
BASIC
circuitry which consists of a PIN diode attenuator and a bipolar multiplier. The redesign was motivated by three factors: first, the PIN diode attenuator reqires a fairly large amount of board space; second, the attenuator requires more current than can be provided by a common Op-amp, thus requiring additonal transistors for current supply; finally, the dual-gate fet is much easier to bias since the bias on the PIN diodes must inversely track each other to maintain 50 ohms input and output impedances.

In order to be a functional replacement for the present circuitry, the dual-gate \(\operatorname{FET}\) doubler is required to deliver an output power ranging from +8 dBm to -7 dBm with an input power to the multipier of \(\mathbf{- 3} \mathbf{d B m}\) at 350 Mhz .

The multiplying device used for this circuit is an MRF967. However, for commercial applications, the MRF966 or NEC's NE41137 could be used. The multiplier is constructed on 30 mil teflon glass with 50 ohms input and output impedances.

With sufficient \(R\) voltage at the first gate, the FET generates harmonics in the drain current due to its non-linear transfer characteristics. The output circuit filters the desired harmonic while reflecting the unwanted components. It is important that at the fundamental frequency the filter produce a Low impedance on the drain rather than a high impedance because, for a given peak drain voltage, any voltage at the fundamental frequency requires a corresponding decrease in the peak voltage of the second harmonic. Also, for power efficiency, it is
important that there be a reactive load for the higher order harmonics. A square wave at 2 fo yields a voltage component at 2 Fo of 1.3 times the voltage of the square wave. This suggests that the drain voltage should include odd harmonics of 2 Fo.

An output filter which is an open circuit above 2 fo provides a means for the higher harmonic voltages to add to the second harmonic voltage to produce a square wave. In contrast, a filter that becomes short circuited at higher harmonics could also be used to reflect those components, but would reduce the possibility of generating a square wave voltage at the drain. Both types of filters were used, and while the open circuit filter gave better results, it is believed that this is a result of better reflection of the unwanted harmonics rather than improved drain voltage wave form.

Figures la and \(1 b\) show the drain voltage and output spectrum, respectively, with the short circuit filter, while Figures \(l c\) and \(l d\) show the results with the open circuit filter. The figures show that the wave shape of the drain voltage is not an improved square wave when using the open circuit filter however, the unwanted harmonics are better suppressed. It is believed that the reason the open circuit did not produce a square wave is that the harmonics were not added in proper phase. In fact, the filter was replaced with two quarter-wave stubs such that the impedance was a short at all odd harmonics of Fo, passed 2 Fo, was a short at even harmonics of 2 Fo and an open at odd

Figure 3 shows a practical ith test circuit at the right, compared with the original non-working circuit of Figure 1 at the left. The volue of the resistor \(R\) is arbitrary within limits; 3 K ohms is reasonable. When switch \(S 2\) is open, the gate input is high impedance and held high to +5 V . When \(S 2\) is closed, the input voltage is close to zero and a low impedance permits the emitter current of the input gate to flow unimpeded.

The above does not mean that the TTL recommended levels corresponding to ' 1 ' and ' 0 ' are unimporant; it is just that a gate input will of its own accord assume the appropriate voltages if the proper high or low impedance connections are made to it. You never 'apply' the correct voltages to it. If. for example, the sink path impedance connected to the gate input is too high. then the entiter current to ground will cause too high a voltage drop, and the emitter bias will not permit proper gate operation. In that case the input voltage will exceed the specified maximum.

While these considerations are important when testing a TTL unit, they are equally important in normal circuit design. For example, the output of a TIL gate that will 'feed' the input of another has a finite sink current capability. If more current has to be sunk than can be handled by the gate output, then the emitter voltage of the input gate will become too high and exceed permitted limits.

Figure 4 illustrates this point. Assume that, for some reason, a total of twenty gate inputs are connected in parallel and have to be driven from a TIL source. The enitters of the input transistors, Q1 thru Q20, each carry a nomal sink current of about 1.6 mA . (This is standard for TTL, al though it is sensible always to check the handbook for the sink requirements of a particular gate). The total sink current is then 32 mA .

If the twenty input gates of the figure are hidden, being enclosed within a digital attenuator or like device, then a problem can arise when the user of the device goes to provide a TIL control driver. All he has been told is that the attenuator is TIL compatible, and he may assume that a normal lowcurrent gate will do the job, providing a maximum sink current capability of 16 mA . The interface will not work, and a lot of effort may be expended finding out why:

The answer here is to tell the user more detail about the required interface, and this is done by adding the note 'TTL compatible, 20 standard loads'. It will be realized that this is a very unusual case, but it is not at all unusual to have two gates in parallel, and to find that the driver


(a)

(c)

(b)

(d)

Figure 1 . Drain voltage and output spectrum of multiplier different filter schemes. (a) and (b) correspond to a short circuit filter, (c) and (d) in (a) and (c) were measured through a resistive divider which corresponds to \(5 \mathrm{~V} / \mathrm{div}\).
harmonics of 2 Fo. This is the condition required for generating a square wave at 2 fo; however, the odd harmonics of 2 fo added to the voltage produced by the 2 Fo component in the wrong phase, and instead of a square wave, it produced a triangle wave which degraded performance. This experiment tends to verify the assumption that the improved performance due to an open circuit filter was the result of better filtering.

It has also been demonstrated that a reactive termination at the second gate is very important in maximizing gain [3]. A sliding short was used for RF termination on gate 2 to allow adjustments of the reactance in order to optimize conversion gain.

Finally, a triple stub tuner on the output and a series and shunt variable capacitor on the input were used to match into 50 ohms.

\section*{IV. Circuit Optimization}

Figure 2 shows the circuit schematic. With vd set at 5 volts and \(P_{i n}\) at \(-3 \mathrm{dBm}, \mathrm{Vgl}, \mathrm{Vg} 2\), the termination at g 2 , and the load impedance were simultaneously adjusted to give maximum conversion gain. The first attempt at optimizing the circuit was done by optimizing the gain with respect to one variable, then holding that variable constant, optimizing with respect to another variable, and then the next variable, etc., and continuing again with the first variable until all variables were
gate was feeding other gates in addition to those of the attenuator in question. If told how many standord loads have to be sunk, the user can provide a high-current driver gate or take other precautions.

A further caveat. You may recall my associating the low-voltage state with digital '0', and the high-voltage state with a '1'. Beware! Your digital engineer can get very tricky with things like "negative logic, active low". and you con find, too late and to your expensive embarrassment, that he meant 'TTL \(1=10 w^{\prime}\). The safest thing for the \(R F\) engineer to do is refer to the states as 'TTL High', and 'TTL Low' or even 'TTL Low Voltage', etc. In the case of a digital attenuator, for example, the specification should then read:

> 'TIL high \(=\) odB, TTL low \(=x d B^{\prime}\)
> Rather than:
> 'TTL \(1=\) OdB, TTL \(0=x d B^{\prime}\)
such a message rings loud and clear across the interface. Never proceed with a design until this matter is fully clarified. You may get laughed at for being pedantic, but he who laughs last laughs within budget and delivers on time.

It was pointed out earlier that a TTL device can be tested by making a simple metollic, e.g. screwdriver, connection from TTL input to ground. Figure 5 shows how not to do that, and raises an important point about handling devices safely without impairing reliability.

Whether it is a screwdriver or an alligator clipheld in the hand, the wrong method, i.e. touch the input and then ground it, can result in destruction of the unit, because of the static charge that can build up on hands and other things that may touch the input. In the right method, the grounded metal is applied to the input. Small difference, big effect! Such a circumstance may not be likely to arise in a completed design, but many a chip has gone to its reward at Incoming Inspection, at the hands of a dedicated inspector who wated to make sure the thing was working properly, and who did not have specialized test equipment to test all the different devices that cross his bench.

Fortunately. TTL devices are remarkably rugged and under most circumstances do not require special handling as some CMOS and diode assemblies do, with grounded wrists and conductive floor mats. Simple good manners and common sense will usuolly suffice.


GROUNDING
Earlier we encountered Open-Collector and Totem-Pole TTL output circuits, each of which has its place in classical digital practice. One facet of their use can be exploited by the RF engineer. Figure 6 shows the two types side-by-side, with each in the high output state. In the case of the open-collector output, the circuit is defined fully by the values of Vcc and \(R\), both of which can be known with precision; if some analog function is to be operated by the output, it can be properly designed. In the case of the totem-pole circuit, the exact value of the open-circuit voltage is dependent on a number of variables, and cannot be known as precisely. The primary reason for the totem-pole's use is in achieving speed of operation, as the output is driven high.

The one area where the digital engineer can learn from his \(R F\) colleague is that of high speed operation. ITL gates are avoilable with operating times in the region of a few nanoseconds. In addition, the gates of TTL include very high gain amplifiers that limit severely to form the square waves we all enjoy; but they are still very high gain devices with enormous bandwidths. In terms of RF amplifiers, we are dealing with units having gains of 10 to 60 dB , and bandwidths of \(D C\) to several hundred Megohetriz. Whereas the RF engineer would shield such boxes and have them on a proper ground plane with short interconnecting leads, the digital world tends still to think in terms of plostic devices mounted on boards having no effective ground plane, and with long, thin wire interconnections. Shame on them! They deserve the oscillations, crosstalk and ringing they get.


Figure 2. Circuit schematic showing open circuit type output filter.
optimized. It was found that by setting the voltage at gland adjusting the other variables a maximum could be reached where changes in Vgl or any other variable only degraded performance, which indicated that the circuit was optimized. However, by setting Vgl at a different value and re-optimizing the other variables, a different optimum (sometimes better) was reached. The same phenomenon was observed when holding any other variable constant. Therefore, one could not simply tune each variable one at a time and arrive at the global optimum. It was observed, however, that the optimum position of the sliding short did not change much from one optimum to the next, thus giving a good starting point for that variable. The optimum Vg l and Vg 2 were found by plotting optimum gain against set values of Vgl and Vg2. This data was found by starting at \(\operatorname{fixed} \mathrm{Vg}\) land Vg 2 , adjusting


Figure 3. Optimum gain vs. Vgl with Vg2 as a parameter.


Figure 4. conversion gain
the output impedance to its optimum, and then adjusting the sliding short to its optimum position. The gain was then recorded, Vg2 was incremented, and the circuit was optimized again. After repeating this over the range of Vg2, Vgl was incremented, \(V g 2\) reset, and the process was repeated. This process gave the plot of optimum gain vs. Vgl and Vg2 which was used to determine optimum bias conditions.

\section*{V. Results}

The gain data obtained from optimizing at various bias conditions is shown in Figure 3. The optimum bias was determined

Similarly, when high-speed digital bit streams have to be transported more than an inch or so, there is an ancient body of transmission line theory and practice available to the digital engineer from the earliest days of radio, so that he can improve his systems without reinventing the wheel. Such knowledge deals directly with the problems of delay, circuit ringing, reflections, etc., that plagued the engineers who laid the first transAtlantic cable eons ago.

What I have tried to do is highlight some of the problems of the Digi-tal-RF interface in practical terms; there is a long way to go, but it looks as if the artificial interface of mutual ignorance is being broken down, to the benifit of both comps. We now have reached another interface - that between this talk and the next. Thank you for listening.


Ref. 1 'Designing with TIL Integrated Circuits' T.I Series, McGraw-Hill.
Ref. 2 'The TIL Design Handbook' Texas Instruments.
Ref. 3 'IEEE Standard Digital Interface for Programable Instrumentation', ANSI/IEEE Std. 488, (New York IEEE Inc. 1978)
Ref. 4 'Line Circuits for IEEE and EIA Inustry Standards, Texas Instruments, Inc., Dallas, TX 1982), Document SC6-588.
Ref. 5 'Reprints from Microwaves and RF on TTL Interfacing Articles', by R.Sproul, Lorch Electronics Corp., 105 Cedar Lane, Englewood, NJ 07631.
from Figure 3 to be -1.1 volts at \(g l a n d \quad 0\) volts at 2 . The corresponding termination on gate 2 was measured to have a reflection coefficient of \(1 / 36 \mathrm{deg}\). at 700 Mhz .

According to small signal theory, the optimum voltage on g2 should have been +2 V [2],[3]. However, very little improvement was achieved here at higher voltages, and in fact, as Vg2 became positive,the circuit stability became very sensitive to changes in the termination at gate 2 and in the output circuitry.

With the variables held constant at the positions of maximum gain, Vg2 was decremented to give conversion gain and return loss as functions of second gate bias voltage. The shunt resistor on gate 1 degraded conversion gain by about \(1 d B\), but it improved the variation of the input impedance significantly. Figure 4 shows the conversion gain and return gain as functions of Vg 2 . As indicated in the figure, this circuit gave 12 dB conversion gain with -3 dBm input power, and demonstrated more than 50 dB gain control while maintaining better than 20 dB return loss.
VI. Conclusions

The usefulness of a low frequency GaAs dual-gate FET as a frequency multiplier has been demonstrated. This multiplier slightly exceeded its maximum output requirement of 8 dBm and exceeded its range requirement by almost 40 dB , demonstrating the dual gate FET's unique feature of gain control through the bias
of its second gate. Furthermore, with the correct termination on the second gate, the dual-gate FET provides more gain than can be achieved from a single-gate FET of the same size.

\section*{Acknowledgements}

The author wishes to thank J. P. Young for his participation in technical discussion.

\section*{References}
[1] C. A. Mead, "Schottky barrier gate field effect transistor," roc, IEEE, vol. 54, pp 307-308, Feb. 1966.
2] J. Turner, A. Waller, E. Kelley, and D. Parker, mbal-gate GaAs microwave FET," Electron. Lette, vol 7, pp. 661-662, Nov. 1971.
[3] C. A. Liechti, "Performance of dual-gate GaAs FET's as gaincontrolled low-noise amplifiers and high-speed modulators," IEEE Trans, Microwwiye Theory Tech., vol. MTT-23, pp. 46i469, June 1975.
(4) M. Maeda and Y. Minai, "Microwave variable-gain amplifier with dual-gate GaAs FET," IEEE Trans. Microwaye Theory Tech., vol. MTT-22, pp. 1226-1230, Dec. 1974.
[5] J. A. Goel and H. J. Wolkstein, "a 4-8 GHz dual-gate MESFET amplifier," Electron, Lette vol. 14, pp. 167-168, Mar. 197 [6] P. T. Chen, C. T. Li, and P. H. Wang, mperformance of a dual-gate GaAs MESFET as a frequency multiplier at Ku-band, IEEE Trans, Microwaye.Theory Teche, vol. MTT-27, pp. 411 415, May 1979

\title{
RF BIPOLAR PARAMETER EXTRACTION FOR MODELING CLASS C AMPLIFIER RESPONSE
}

\section*{P. SANDERS}
A. WOOD

\section*{motopral inc. \\ SEMICONDUCTOR PRODUCTS SECTOR \\ ISCPETE SEMICONDUCTOR GROUP}

5005 E. MCDOWELL RO
HOEHIX. AZ. 85008

Today's RF circuit designer has many circuit response simulation models at his disposal to speed breadboarding, and to provide some unique analysis capabilities. Some of these models employ rigorous transistor models based to a large extent upon the Integral Charge-Control bipolar transistor model published by H. K. Gummel and H. C. Poon in 1970. (1) The G-P model basically improves upon the dc model of Ebers and Moll (2) in that it incorporates a unified approach to charge storage within the device thus enhancing its ability to predict ac performance.

Our major concern here is with the accuracy of the model parameters as evidenced by the precision of the circuit simulation. Since parameter extraction from dc and ac measurements involves curve fitting and extrapolation from tangents, one must take care to arrive at solutions that are physically rational as well as satisfying the requirements for a good fit. We begin with those derived from dc measurements of the device.

\section*{Parameter Extraction From DC Measurements}

The most informative dc measurement to be performed is what is known as the "Gummel Plot" (fig 1.) This is simply a log vs. Iinear plot of collector and base currents ( \(I_{C}\) and \(I_{B}\) ) vs. the intrinsic base-emitter forward Dias voltage ( \(\mathrm{V}_{\mathrm{B}^{\prime} E^{\circ}}\) ) with \(\mathrm{V}_{\mathrm{BC}}=0\). From this plot one can determine
the transport saturation current ( \(\mathrm{I}_{\mathrm{S}}\) ),
ideal maximum forward beta ( \(B_{F}\) ),
the foward current emission coefficient ( \(N_{F}\) ),
the base-emitter forward bias emission coefficient ( \(N_{E}\) )
the base-emitter forward blas leakage saturation current ( \(I_{\text {SE }}\) or
\(\mathrm{C}_{2}\) ), the forward knee current ( \(\mathbf{K F F}\) ).
Transport Saturation Current ( \(\mathrm{I}_{5}\) ) is obtained by extrapolat ing the plot of the natural \(\log\) of collector current to the \(y\) axis \(\left(V_{B E}=0\right)\). The value obtained for \(I_{S}\) is proportional to the area of the emitter base junction, and therefore is device type dependent.

Ideal maximum forward beta \(\left(B_{F}\right)\) can be determined from the maximum separation Detween the two curves ( \(1 \mathrm{C}^{\prime} / I_{8}\) ), and varies substantially from waf er lot to wafer lot. A typical low noise transistor may have \(B_{F}\) from 100 to 200, while a 12.5 volt, class C power transistor will typically have a \(\mathbf{B}_{\mathbf{F}}\) of 40 to 80 .

The forward emission coefficient ( \(N_{F}\) ) is extracted from the slope of the \(I_{B}\) locus in the mid region of the plot and models the deviation from ideal slope. NF typically has a value of near unity.

The base-emitter low level forward bias emission coefficient ( \(N_{E}\) or \(\mathrm{n}_{\mathrm{EL}}\) ) is typically 2 for a shallow junction transistor, and is calculated from the slope of the \(I_{B}\) line near the \(Y\) axis.

\section*{Slope \(=q /(\) NE \() K T\)}

The base-emitter leakage saturation current ( \(\mathbf{I S E}_{\mathrm{SE}}\) or \(\mathrm{C}_{\mathbf{2}}\) ) models
leakage current of the forward blased base-emitter junction. It is obtained from the \(Y\) axis Intercept of the extrapolated curve for IB

\section*{( \(Y\) intercept) \(=\mathrm{C}_{2}{ }^{\prime}\) s}

Forward knee current ( \(\mathbf{I}_{\mathbf{K F}}\) ) characterizes the onset of high injection effects and is near where the slope of the \(I_{C}\) curve changes to half its original value.

Similarly, a group of parameters is extracted from the Gummel Plot of the reverse transistor (i.e., exchanging collector for emitter) (fig. 2),

\section*{yielding:}
maximum reverse beta ( \(\mathbf{B}_{\mathbf{R}}\) ),
reverse current emission coefficient ( \(N_{R}\) ),
base-collector leakage emission coeficient ( \(\mathrm{N}_{\mathrm{C}}\) ).
base-collector saturation current ( \(\mathrm{I}_{\mathbf{S C}}\) or \(\mathbf{C}_{\mathbf{4}}\) ),
and reverse knee current ( \(\mathbf{I}_{\mathbf{K R}}\) ).
Extracted from DC Beta plots ( \(I_{C} \vee s V_{C E}\) for stepped \(I_{B}\) ) are measurements from which the forward Early Voltage ( \(\mathbf{V}_{\mathbf{A F}}\) ), and collector resistance ( \(\mathbf{R}_{\mathbf{C}}\) ) can be extracted.
\(\mathbf{V}_{\text {AF }}\) can be graphically determined (fig. 3) by extending a tangent of the \(I_{C}\) plot to intercept the \(x\) axis (a negative number). The foward Early Voltage is an indication of the doping level of the active base in the vicinity of the collector. As the voltage across the collector-base Junction is increased, the effective base charge is reduced as the collector depletion area spreads into the base, and so forward beta increases (the Early Effect \({ }^{(3)}\) ). For lower frequency devices with deeper bases ( \(P_{t}\) < 2 Ghz), \(V_{\text {AF }}\) is typically over 100 volts, but for very high frequency NPNs, and especialiy PNPs, the Early Voltage may be considerably less than 50 volts.
\(\mathbf{R}_{\mathbf{C}}\) can be extracted as \(\mathbf{R}_{\mathbf{C}(\text { sat })}\) and/or \(\mathbf{R}_{\mathbf{C}}\) (active) by calculating the slope of the line tangent to the \({ }^{I} C\) curve in the saturation region, or through the knees of the active region, respectively (fig. 4).

The reverse Early Voltage ( \(V_{A R}\) ) is similarly extracted from the reverse beta plot ( fig .5 ). Because the reverse transistor"s "collector" is the heavily doped emitter region of the forward transistor, the depletion area spreads more readily into the more lightly doped base, and \(V_{\mathbf{A R}}\) is normally less than \(\mathbf{V}_{\text {Af }}\).

\section*{Parameter Extraction From Capacitance Vs. Voltage Mesurements}

Capacitance parameters are obtained by employing curve fitting techniques, assuming that capacitance vs voltage follows the model:
\[
c_{j}(v)=c_{j} 0 /(1-v / f)^{m}+c_{(\text {para })}
\]
\(\mathrm{C}_{\text {(para) }}\), the parasitic capacitance of the package, bond pads, and die metallization must be measured and/or calculated. With the appropriate algorithm, \(\mathrm{C}_{\text {(para) }}\) can also be curve fitted. A reasonable approximation of \(\mathrm{C}_{\text {(para) }}\) would be \(50 \%\) of specifled capacitance at rated voltage for a typical 12 volt UHF transistor, to less than 20\% for a 50 volt microwave puised power transistor

Barrier potential \(\int\) is typically 0.5 to 0.7 volt, and the gradient factor \(m\) is expected to be .33 to .50 , representing the graded junction and abrupt junction respectively Specific conditions such as collector grading can lead to effective values of \(m\) beyond the normal range. More accurate models are needed.

Simulation programs such as SPICE \({ }^{(8)}\) use \(f\) and \(m\) only to calculate capacitance vs voltage, so even though the absolute numbers arrived at through curve fitting may not be in agreement with physical data, the circuit simulation results may be. The art is to set limits for parameters derived from device layout and process knowledge, and force the optimization of the curve fit (fig. 6, 7).

\section*{Parameter Extraction From AC Measurements}

Forward transit time ( \(\mathbf{t}_{\boldsymbol{F}}\) ) is the sum of the emitter to collector time delays for carrier propagation through a transistor, and can be determined from the measurement of hife over a range of frequencies and collector currents the common emitter forward current gain is most easily derived for \(R F\) and microwave devices by first measuring the scattering parameters on a network analyzer, and then converting to the hybrid parameters. There are now a number of network analyzer systems available offering semi-automatic, and automatic, parameter extraction and calibration. Many systems offer on-line conversion from 's' parameters to other parameters including ' h ' parameters. Determination of transit time from hfe then becomes a relatively simple task of plotting the inverse product of the forward current gain (hfe) and radian frequency
```

AIDING COMPUTER-AIDED DESIGN
Curve Fitting With Any Number
of Variables
by Albert Pergande
Staff Engineer
Martin Marietta Orlando Aerospace

```

\section*{Int roduction}

A large amount of specialized design data is not available in convenient form for use with computer-aided design (CAD) systems. This data may be in tabular form, graphical form, or as a large mathematical system requiring advanced solution techniques. A polynomial or other simple funcion can often be used to approximate the data over some limited range of form

\section*{Multivariate Curve Fitting}

If given aset of ( \(n\) ) observed data points ( \(Y i, i=1\) to \(n\) ) and a set \(x\) of the \(m\) independent variables that generated them ( \(x_{1}, x_{2}, \ldots x_{m}\) ), it is convenient to approximate the \(Y s\) with some function:
\[
\begin{equation*}
Y=F\left(x_{1}, x_{2}, \ldots x_{m}\right) . \tag{1}
\end{equation*}
\]

The function \(F\) must be linear in its coefficients, its form must be
\[
\begin{align*}
& {\left[B_{1} \times G_{1}\left(x_{1}, x_{2}, \ldots x_{m}\right)+B_{2} \times G_{2}\left(x_{1}, x_{2}, \ldots x_{m}\right)+\right.}  \tag{2}\\
& \left.B_{k} \times G_{k}\left(x_{1}, x_{2}, \ldots x_{m}\right)\right]
\end{align*}
\]

Where each function \(G\) has no undetermined coefficients.
Equivalently:
\[
\frac{d G_{j}}{d B}=0
\]
and
\[
\begin{equation*}
\frac{\mathrm{dF}}{\mathrm{~dB}_{\mathrm{j}}}=\mathrm{Gj} \tag{4}
\end{equation*}
\]
for j from l to k .

With these restrictions it is possible to find the coefficient set \(B\) directly using linear algebra.

Utilizing the least squares method to find the set of \(B\) coefficients that form the beat fit to the given data set, function of the form
\[
\begin{equation*}
e=\sum_{i=1}^{n}\left\{y_{i}-F_{i}\left(x_{1}, x_{2}, \ldots x_{m}\right)\right] \tag{5}
\end{equation*}
\]
needs to be minimized, where \(e\) is the sum of the squares of the errors (SSE)
By setting:
\[
\begin{equation*}
\frac{d e}{d B_{j}}=0=\sum_{i=1}^{n}\left(Y_{i}-\frac{d F_{i}}{d B_{j}}\right)^{2} \tag{6}
\end{equation*}
\]
a set of \(k\) equations in \(k\) unknown is generated, and allows a solution for the elements of B .

\section*{Matrix Solution}

There is a concise solution to the set of equations generated by Equation (6). The first step is to define the following matrices:
\(1 X\) is a matrix of \(n\) rows and \(k\) columns, where each row consists of the functions \(G_{1}, G_{2}, \ldots G_{k}\) applied to the independent variable set
\(\underline{2} X^{t}\) is the transpose of \(x\)
3 is a column vector of the dependent variables to be approximated

4 B is a column vector of the coefficients \(B_{k}\) that we wish to
5 e is a column vector of the errors in the approximation at each point
t can be shown (Reference 1) that to determine B, the matrix equation

\section*{\(\left[x^{t} x\right]\) B \(=x^{t} \mathbf{y}\)}
must be solved.
frequency intercept is given by \({ }^{(6)}\)
\[
R E\left(h_{\text {ie }}\right)=r_{\text {bcon }}+r_{b^{\prime}}+r_{b b^{*}}+r_{e^{\prime}}+w_{t} L_{e}
\]

The effect of the parasitic capacitances, \(C_{b c}\) and \(C_{b e}\), and the extrinsic collector junction capacitance, \(C_{0}\), is to reduce the real component of \(h_{\text {le }}\) by an amount depending on the magnitude of \(h_{\text {le }}\) including this capacitance, and, as \(h_{\text {in }}\) approaches the real axis, at high frequency the real part of the input impedance can be approximated by (7).
\[
\operatorname{RE}\left(h_{\text {in }}\right)=\operatorname{RE}\left(h_{i e}\right) /\left(1+B^{2} \text { *RE }\left(h_{i e}\right)^{2}\right)
\]
where

\section*{\(B=2 \pi 2 f\left(C_{b c}+C_{b e}+C_{0}\right)\)}

Accurate determination of Rb by this method depends on a know ledge of the emitter inductance, and the parasitic package and transistor capacitances. For transistors with high it, small values of base resistance are easily swamped by the dominant emitter inductance term.

Difficulties in measuring the " \(h\) ' parameters at high irequencles are best avoided by the more practical method of measuring the 's' parameters. The base resistance is a function of the current, and this dependence is modeled in the circuit simulator by allocat ing a low and high current value for the base resistance, RB and RBM, and a current at which RB palls half way to the minimum value, IRB. input Impedance circles are required over a range of blas currents to determine these values ( Fig . 12).

For class ' \(B\) ' and ' \(C\) " ampllifler simulations, RB can be represented by the high current value without much loss of accuracy

\section*{Application of SPICE in Class "C' Amplifier Design}

Parameters determined by the above methods can be used to simulate the operation of class ' C ' amplifler circults and gatn an appreciation of the various terminal current and voltage waveforms. SPICE has been used to simulate a rf transistor operating as a class 'C' amplifier at 870 MHz with 12.5 volt collector bias, with the results compared to the performance of
an actual circuit.
The 12 cell interdigitated geometry used in this comparison was packaged in a UHF flange package, with double emitter wire bonds to minimize package intuctance. The SPICE parameters were extracted on a single cell die to improve accuracy. These parameters were then scaled for the larger die and the package parasitics included. Measurements were made, at an output power of 5 Watts, of the input and output impedances at the fundamental, second and third harmonics. Impedance transforming networks on input and output were modeled to accurately represent the load seen by the transistor (Fig. 13). Since the performance, especially efficiency, is strongly dependent on the collector harmonic loading, operating conditions of the test amplifier were replicated as closely as possible. In a synthesis role the packaged transistor impedances would normally be calculated from the terminal current and voltage waveforms. SPICE was able to predict the gain within 0.5 dB and the efficiency within \(6 \%\) of the performance of the actual circuit.

Collector voltage for the initial 100 nsec after the start of the analysis is shown in fig. 14. Because the operation of the circuit is highly non-linear and certain of the circuit time constants are relatively long, a number of cycles need to be analyzed bef ore the response reaches a quasi-static solution. The collector voltage waveform indicates a damped oscillation exists, eventually decaying after approximately 150 nsec. The oscillation is a resonance of the collector bias choke with the collector capacitance, and illustrates the need for long analysis periods.

Five cycles have been expanded in the subsequent plots to show the collector and base voltage and current waveforms (fig. 15, 16, 17). The collector and base current waveforms are forced to be sinusoidal by the active matching networks. SPICE also provides the facility for determining the circuit performance as a function of frequency, but only for small signal conditions, and theref ore is unusable when the device is initially biased off

Although SPICE does not provide circuit optimization capabilities, when allied with network synthesis and analysis programs (i.e. SUPERCOMPACT \({ }^{(9)}\) or TOUCHSTONE \({ }^{(10)}\) ) circuit performace can be evaluated and the design checked to ensure maximum ratings are not exceeded. The effects of changes in the device parameters can also be assessed and the influence of parasitic components can be analyzed. This

There are several ways to solve Equation (7), including methods that do not require forming the matrix inverse of \(X^{t} x\). [ \(Q-R\) Decomposition, (Reference 2) J. The general method of solving Equation (7) is to evaluate:
\(B=\left[x^{t} x\right]^{-1} x^{t} \mathbf{y}\)
Although not as efficient as the Q-R Decomposition, its methodology is somewhat clearer and provides results adequate for the purpose at hand.

\section*{Choice of a Basis Function}

Virtually any function with the appropriate number of variables is a suitable basis function, as long as it is linear in its coefficients. The suitable basis function, as long as it is linear in its coefficients
following are some examples of linear and nonlinear basis functions:
\[
\begin{equation*}
F=A x y^{2}+B y z^{3} \cos (w)+C \sqrt{x}+D e^{(2 x+1)} \tag{9}
\end{equation*}
\]

Equation (9) is linear, with coefficients A through \(D\) to be deter-
\[
\begin{equation*}
F=A x^{B} y_{z} C^{D} \tag{10}
\end{equation*}
\]

Equation (10) is also linear; however logarithms must be used to transform it to:
\[
\begin{equation*}
\log (F)=\log (A)+B \log (x)+C \log (y)+D \log (z) \tag{11}
\end{equation*}
\]

Finally, the equation
\[
\begin{equation*}
F=A \cos (B w+C) \tag{12}
\end{equation*}
\]
is nonlinear in its coefficients, as there is no transform that will separate all unknown ( \(A, B, C\) ) into linearly independent functions of the variables.

The choice of basis function depends largely on what result is desired. For multivariate problems, tamily of polynomials is a good choice because of it simplicity and the abitity to add as many variables as needed. Polynomials are also the easiest to implement in CAD programs, and run the fastest. It should be noted that a polynomial in the form
\(\left(A x^{3}+B x^{2}+C x+D\right)\left(E y^{3}+F y^{2}+G y+H\right)\left(J z^{3}+K z^{2}+M z+N\right)\)
must be expanded to:
\[
\begin{equation*}
A_{1} X^{3} Y^{3} Z^{3}+A_{2} X^{2} Y^{3} Z^{3} \ldots A_{64} \tag{13}
\end{equation*}
\]

O make the coefficient set linear. Also note that what initially appears o be a system with 12 unknowns actually requires solving for 6 cofficients. Given the 64 coefficients, it may be possible to separate them and solve for the set ( \(A, B, \ldots N\) ) but this is a difficult task and the coefficients are generally complex.

The degree of the individual polynomials should be chosen with some discretion. As the individual number of terms grow, the number of coeffiients to be determined grows alarmingly. A large number of coeff akes the matrix \(x\) large, and many data points are required
overdetermined (i,e., n>> me fit will be "wavey" (Figure 1). In
Figure 1, a 1 st, 4 th and 8 th degree polynomial approximate a set of points
As the order of the polynomial increases, the error of the approximation As the order of the polynomial increases, the error of the approxination thits all the points, it clearly fails to provide a good interpolation to the data set.

The last basis set to consider is the function:
\[
\begin{array}{r}
f=A 0+A 1 \sin (w)+A 2 \sin (2 w) \ldots+A p \sin (p w)+ \\
B l \cos (w)+B 2 \cos (2 w) \ldots+B q \cos (q w) \quad(15)
\end{array}
\]
where both \(p\) and \(q\) do not both \(=0\).
When this series is truncated to some finite number of terms, the result is an approximation to a Fourier transform. The data must be transformed using equation (16) to the interval (-pi,pi) or ( \(0,2 \mathrm{pi}\) ). While this is not the most efficient method of calculating a Fourier transform, does allow the freed to make \(A\), an another variable, allowing one to optimize a particular coefficient.

\section*{Scaling}

As higher degree functions are used to fit a particular data set, the individual terms in the \(X\) matrix become larger. When they differ by several orders of magnitude, the potential for numerical error increas and inversion of \(x^{t} x\) becomes a larger problem. To counter this, all of the dependent and independent variables should be mapped onto the range ( \(-1,1\) ) using a linear transform (Equation (9)). After the regression is performed, the inverse transform can be applied to map the function hack to its original range. All terms of \(X\) and \(Y\) will then lie between \(\pm 1\) :
\(v^{l}=\frac{2}{\left(V_{\text {max }}-V_{\text {min }}\right)} x \quad v+\frac{\left(V_{\min }+V_{\text {nax }}\right)}{\left(V_{\min }-V_{\max }\right)}\)
is demonstrated by the influence on gain and collector efficiency of variation in emitter inductance snown in fig. 18

\section*{Conclusions}

While linear models for RF circuit response have been in use for some time, models based upon intrinsic transistor parameters have only recently found utility in predicting RF power ampilfier response Extraction of these parameters from \(I-V, C-V\) and \(A C\) measurements is still, however, something of an art Utilizing these models to characterize the AC response of a class C amplifier gives insight into device design and process optimization, as well as circuit performance considerations

To demonstrate this approach to computer alded design, a 12.5 Volt, \(870 \mathrm{MHz}, 5\) Watt amplif ier has been modeled, and the results discussed, especially model parameter extraction.


\section*{REFERENCES}
1. H. K. Gummel and H. C. Poon, "An Integral Charge Control Model of Bipolar Transistors," Bell Syst. Tech J., Vol. 49, pp. 827-852, May 1970
2. J. J. Ebers and J. L. Moll, "Large-Signal Behavior of Junction Transistors," Proc. IRE Vol. 42, pp. 1761-1772, December 1954
3. J.M. Early, "Effects of Space-Charge Layer Widening in Junction Transistors," Proc, IRE, Vol 40, pD 1401-1406, November 1952
4. I Getreu: "Modeling the Blpolar Transistor". Tektronics, Inc. Beaverton, OR. Nov 1979
5. R. T. Unwin, et al: "Comparison of methods used for determining base spreading resistance", LEE Proc., Vol. 127. Pt. I, No. 2, pp. 53-61 Adril, 1980
6. W. E. Beadle, et al: Design, Fabrication, and Characterization of Germanium Microwave Transistor., IEEE Trans E. D., Vol. EDi6, No 1, pp. 125-138, Jan. 1969
7. M. K. BKarnoski and D. D. Loper: Microwave Characteristics of Ion Implanted Bipolar Transistors", Solid State Electronics, Vol. I6, pD. 441-451, 1973.
8. L. W. Nagel and D 0. Pederson, "Simulation Program With integrated Circuit Emphasis (SPICE)" 16th Midwest Symposium on Circuit Theory Waterloo, Ontario, April 12, 1973. All simulations run on SPICE2, availabie from the Electronics Laboratory of the University of Calif. Berkely.
9. SUPERCOMPACT, a software product of Compact Software, Palo Alto, Ca. (703-698-0215)
10. TOUCHSTONE, a software product of EEsof, Westlake Village, Ca (818-991-7530)

\section*{ACKNOWLEDGMENTS}

Special thanks to Ivan Pesic of Silvaco Data Systems for parameter extraction software support, Tony Alvarez of Motorola for helpful discussions, and to Tom Baker of Motorola for proof reading the text

Fig. 1. Gummel Plot

When scaled in this manner, the coefficients of the regression follow a set pattern. That is, the coefficient that makes the smallest the exact number of basis functions for optimum fit isn't knognitude. If begin with a large number of them, and repeatedly perform the regresion dropping the least important function until either the accuracy beging to erode or the desired number of functions remains.

Quality of the Fit
After approximating a set of data with some function, a natural question is "How good a fit is it?". In other words, does the derived function accurately model the data, or is a more or less elaborate model needed? A
common way to answer this question is to consider the multiple regression coefficient, or \(R^{2}\). \(R^{2}\) is defined as:
\[
\begin{equation*}
R^{2}=\frac{\sum_{i=1}^{\eta}\left(\hat{Y}_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)} \tag{17}
\end{equation*}
\]

Where \(\bar{X}\) is the average value of \(y\)
\(Y\) is the predicted value of \(y\)
\(Y\) is the data set
\(\mathbf{R}^{2}\) varies from 0 to 1 . A value of 0 jndicates that the fitted function approximates the data no better than \(\hat{Y}=\overline{\mathcal{Y}}\). A value of 1 means that the approximation has matched all the points exactly. This should be viewed with some skepticism, as \(R^{2}\) can be made to equal exactly 1 by choosing as many coefficients as there are data points. (Again, see Figure \(l\) and its "wavey" fit.)

\section*{Limitations of Curve Fitting}

Although curve fitting is a very powerful tool in many branches of science and engineering, its results must be taken with a grain of salt. The resulting equations must be viewed for what they are an approximation over aist be derived. They can be used for interpolation, but not for extrapolation. Outside of the intended range, the equations might do anything, and it cer tainly has no particular relationship to what the modeled system would do. And, if the system is not over determined to a sufficient degree, a "wavey" function may well result. Always plot your results to perform a visual inspection.

\section*{Example 1 - Suspended Stripline}

A function for a frequency dependent suspended stripline transmission line is generated (Figure 2). The three parameters to be considered are strip width, dielectric constant of the substrate, and operating frequency We will predict wave impedance ( 20 ) and effective dielectric cunstant (keff). The data will be scaled to the interval \((-1,1)\). Variables mapped to this region are primed. Initial values were determined from a standard paper on suspended stripline (Reference 3) using the program SuperCompact. The time needed to calculate the 125 values for the regression took wel over an hour on SuperCompact, which uas running on the Apollo Domain System. The resulting polynomials run considerably quicker.

The curve is valid over the following range of input parameters with the corresponding transfer functions:


Additional parameters describing the stripline are:
\(\frac{B_{1}}{h}=3, \frac{B_{2}}{h}=3, \frac{a}{h}=10\) and the metal has zero thickness


FIg. 2. Reverse Gummel Plot.

fig. 3. Forward Early Voltage

fig. 4. Collector Resistance (RCactive).


Flg 5. Reverse Early Vollage.

The resulting functions are good over these ranges to within \(2.67 \%\) for 20 and \(4.5 \%\) for Keff.
\(Z^{\prime}{ }^{\prime}=-0.6385352098-0.1067620906 \mathrm{Er}^{\prime}\)
+3.481023304E-03 Freq \({ }^{+}+2.435179168 \mathrm{E}-03 \mathrm{Er}^{\prime}\) x Freq \({ }^{\prime}\)

\(-2.867867028 \mathrm{E}-04 \mathrm{Freq}^{\prime} \times \mathrm{Er}^{\prime} \times\) Width'
0.5297363704 Width'2 \(-6.539253142 \mathrm{E}-02 \mathrm{Er}^{\prime} \times\) Width \({ }^{2}\)
\(-8.288004956 \mathrm{E}-04 \mathrm{Er}^{\prime} \times\) Freg' \(x\) Width' 2
\(-0.3191094332 \mathrm{Er}^{\prime} \times\) Width' \({ }^{2}+3.948039494 \mathrm{E}-02 \mathrm{Freq}^{\prime} \times\) Width \(^{\prime 3}\)

Reff \({ }^{\prime}=-0.1607894999+0.7549461296 \mathrm{Er}^{\prime}\)
+0.0814640615 Freq \(^{\prime}+0.0572409262\) Er \(^{\prime} \times\) Freq \({ }^{\prime}\)
+0.2464396608 Width \(^{\prime}+0.1040612513\) Width \({ }^{\prime} \times\) Er \(^{\prime}\)
+0.0454664369 Width' \(^{\prime} \times\) Freq \(^{\prime}+0.0421388077\) Width \(^{2}\)
\(-0.1771355508 \mathrm{Er}^{\prime} \times\) Width' \(^{\prime}-0.0459836924\) Freq' \(^{\prime} \times\) Width \({ }^{3}\)

\section*{Waveguide E-Plane Septum Filter}

A popular way of building waveguide filters is to place an array of rectangular strips of metal (called septa) in the E-plane of the waveguide. at a very low cost (Reference 4). To build such a filter, the septum is modeled Tee of inductors (Figure 3). The values \(X_{s}\) and \(X_{p}\) are a complex function of the septum, waveguide dimensions, and frequency (Reference 5). Owing to the dispersive nature of waveguide, \(X_{p}\) and \(X_{s}\) can be modeled as physical inductors over only narrow bandwidth. Plots of \(\mathrm{X}_{s}\) and \(\mathrm{X}_{\mathrm{p}}\) as as physical inductors over only a narrow bandidth. Plots of Xs and Xp as
a function of w with frequency as a parameter are available as small plots in the published literature. Approximate solutions for \(\mathrm{Xp}_{\mathrm{p}}\) and \(\mathrm{X}_{8}\) as
functions of physical dimensions may be had by solving a complex set of equations using the variational method (Reference 5). Since graphical data is available in the region of interest (i.e., WR-28), the simplest way to determine \(X\) s and \(X P\) is to \(f i t\) a curve to the graphical data and use the resulting equations to design the filter. Initial values for the filtes are generated from classical filter design methods (Reference 6).

The firat step is to enlarge the graphical data so that values may accurately be read from it. An enlarging photo-copier works well, but it is also possible to use an overhead projector, a microscope with digital positioning, or whatever is most easily accessible. This daca is operated on by Equation 8 , yielding regression coefticients for the data set' along equations 29 and 30 . Over the range 28 to 38 CHz and septum widths fo idths form 1 to 200 mil , the error is less than 2.6 and \(2.5 \%\) for these equations:
\(W^{\prime}=(0.01111 \times\) Width \()-1.22222\)
(25)
\(F^{\prime}=(0.16667 \times\) Frequency \()-5.33333\)
\(\mathrm{X}_{\mathrm{s}^{\prime}}=\left(3.41329 \times \mathrm{Xs}^{\prime}\right)-1.25031\)
(28)
\(\begin{aligned} X_{p}^{\prime}= & -0.7348365815-0.4007322178 W^{\prime} \\ & +0.2520677187 W^{2}\end{aligned}\)
\(+0.1627606451 \mathrm{~W}^{14}+0.2697266795 \mathrm{~F}^{\prime}\)
\(-0.2522981693 F^{\prime} \times W^{\prime}+0.8263478164 E-01 F^{\prime} \times W^{\prime}\)
\(0.799333394 E-01 F^{\prime}\)
\(0.799333394 E-01 F^{\prime}+0.433514566 E-01 F^{\prime 2} \times W^{\prime 2}\)
\(-0.8596676895 E-01 F^{\prime} \times W^{\prime 2}+0.9651804516 E-01 F^{\prime 3} \times W^{\prime 4}\)
\(\mathrm{Xg}^{\prime}=0.4674951695 \mathrm{~W}^{\prime}-0.2667132517 \mathrm{~W}^{2}\)
\(0.1441766713 W^{3}+0.5238057254 \mathrm{FI}^{\prime}\)
+0.2172888051 F' \(\times W^{\prime}-0,11135707485 F^{\prime} \times W^{\prime}\)
\(+0.5170873288 \mathrm{E}-01 \mathrm{~F}^{\prime} \times \mathrm{W}^{\prime 3}-0.2741439220 \mathrm{E}-01 \mathrm{~F}^{\prime 2} \times \mathrm{W}^{\prime}\)
\(+0.7424136480 \mathrm{E}-01 \mathrm{~F} 2^{\prime} \times \mathrm{H}^{\prime 2}-806092104 \mathrm{E}-01 \mathrm{~F}{ }^{2} \times \mathrm{W}^{\prime} 4\)
\(+0.7424136480 \mathrm{E}-01 \mathrm{~F}^{2} \times \mathrm{KW}^{2}-.8060922104 \mathrm{E}-01 \mathrm{~F} \mathrm{C}^{2} \times \mathrm{KW}^{\prime}\)
With a simple set of expressions for the reactance values, the filter design procedes along well worn paths (Reference 6). A 1 GHz bandwidth 3 dB ripple Chebychev filter was designed with a 35 CHz center frequency (Figure 4).

\section*{Conclusion}

A method to fit a set of data to a group of basis functions in any number of variables has been described, along with criteria for judging the quality of the fit and the appropriateness of the basis functions used. Several design examples were used to show the application of curve fitting to typical microwave engineering problems. The limitations of curve fit ting were discussed.

I would like to thank Joe Chenkin for the valuable help he has provid ed, particularly for the design of the filter.

fig. 6. Collector-Base Junction Capacltance

rig. 7. Emilter-Base Junction Capacltance.


Fig. B. Forward Transit time Extraction.



Fig. 9. Reverse Iransit time Extraction.


Figure 1. Increasing the degree of approximation improves the accuracy of the fit on point by point basis, at the expense of "wavey" fit.


Figure 2. The 3 parameters to be considered in this suapended atripline are strip width, dielectric constant of the aubstrate and
operation frequency.


Figure 3. The e-plane waveguide septum filter was built by placing rectangular atrips of metal (septa) in the e-plane of the waveguide


Figure 4. A 1 GHz bandwidth 3 dB ripple Chebychev filter, designed with a 35 GHz center frequency will produce the above responsp curves.


Fig. 10. Note that rbb' is the primary current dependent cempentent of Rb.


FIg. II. Base Resistance Extraction From Impedance CIrcles

DATA FILE FOR CIRCUIT SIMUATION

\section*{}





104350.700 m
ctrmas 5717

If 70.3 sm

\(\operatorname{tsE} 518112.0 .80 \mathrm{~mm}\)

texh2 10112.0582 m
ment 1405

ctent 1213 48M,
tcsin2 15140.7 mm
JIW 10 Sismo 10 OTantel







vint in- 80



. \(\mathrm{Cl01}\)

FIO 13. SPICE FIIE

\section*{References for Polynomial Fitting Paper}

1 Draper and Smith, "Applied Regression Analysis," John Wiley \& Sons New York, 1967, pages 58-59.

2 Dongrarra, Moler, Bunch, and Stewart, "Linpak User's Guide," Chapter 9, Siam, Philadelphia, PA, 1979.

3 Yamashita and Atsuki, "Stripline with Retangular Outer Conductor and Three Dielectric Layers," Institute of electrical and Electronic Engineers, Volume 18, 15 , May 1970, pages 238-244.
\(4 \quad\) Yi-Chi Shi, Tatsuo Itoh, and L.Q. Bui," Computer Aided Design of Millimeter Wave E-plane Filters, "Institute of Electrical and Electronic Engineers, Volume 31, 2, Pebruary 1983, pages 139-141.

5 Kuniai and Venakada, "The Design of Bandpass Filter with Inductive Strip - Planar Circuit Mounted in Waveguide," Institute of electrical and Electronic Engineers, Volume 22, 10 , October 1974, pages
\(869-873\).

6 Matthaei, Young, and Jones, "Microwave Filters, Impedance Matching Networks, and Coupling Structures," Aratech House, Dedhan, MA, pages 427-440.


Fig. 14. Collector Waveform To 100 ns

[1g. 15. Collector Waveform 160-166ns


Fig. 16. Base Waveform 160-166ns
oscillator design using the device line method
and load full method
Gary Franklin
Applications Engineer
Hewlett-Packard
San Jose, Ca.

\section*{INTRODUCTION}

The purpose of this paper is to examine two methods of oscillator design. The general requirements for designing an oscillator using the concept of the negative resistance one port will be covered, along with how the device line and load pull methods are used to determine the load impedance necessary for maximum oscillator output power.
negative resistance one port
The design examples in this paper use the concept of transforming a three port bipolar transistor into a negative resistance one port. Before proceeding with a design example, the concept of the negative resistance one port needs to be examined. Figure 1 shows a negative resistance one port connected to a load which has both a reactive and resistive component. This network combination will start oscillating if the magnitude of the small signal resistance ( \(\left|R_{D}\right|\) ) is greater than the load resistance \(F_{L}\), and at a frequency where the reactive components \(X_{D}\) and \(X_{L}\) are equal but of opposite sign. The steady state oscillation condition requires that \(\left|R_{D}\right|=R_{L}\), which implies that the 5 -
parameters of the one port decrease with increasing power. Computer programs can be used to design the one port and the output matching circuit required for oscillation, if the large signal impedances of the one port are known. The device line and load pull method provide a means of measuring the large signal impedances of the one port.

\section*{device line method}

As was pointed out above, one problem when designing an oscillator is not knowing what load impedance should be placed on the one-port to deliver the required output power and frequency. One solution to this problem is to measure the one-port impedance as a function of output power. The impedances can be measured by first designing the one-port not to oscillate when loaded by a so ohm generator. A network analyzer is used to measure the impedances as the one-port is driven by increasing input power. Since the one-port is a negative resistance device, the reflected power is greater than the input power. The added power is the reflected power minus the input power and will reach a ma:imum.

The above procedure has generated the device line for the one-port \({ }^{[1]}\). All of this may seem very complicated, but is reallv nothing more than the measurement of large sional s -parameters for an amplifier. In this case the amplifier is a one-port device and the test is limited to the measurement of \(S_{11}\).

The desion procedure may be summarized as follows:


Fig. 17. Collector and Base Waveforms 160-166ns


Fig. 18. Anpllifer Gain and ffficiency vs. Emilter Inductance
1. Choose a transietor circuit topology that will induce a negative resistance on the terminal used as the output port. This circuit configuration will be determined in part by the transistor package used, and how the device will be biased.
2. Maximize the reflection coefficient of the one port using the transistor's small signal s-parameters. Figure 2 shows that when the one port reflection coefficent is infinity, the one port impedance is equal in magnitude to the load impedance, but with opposite sign.
3. If the circuit of step 2 does not omcillate into 50 ohme, then use the device line method to measure the load impedance for maximum output power.
4. If the circuit of step 2 does oscillate into 50 ohms, then use the load pull method to measure the load impedance for maximum output power \({ }^{[2]}\). Detail: of the load pull method will be covered later in this paper.
5. Design an output matching network using the measured load impedance.
6. Build complete oscillator by combining the circuits of step: 2 and 5.
An example will help clarify the above procedure and how the negative resistance port is designed.

\section*{FIRST EXAMPLE}

\footnotetext{
The first example uses an HXTR-4101 common base bipolar
}
transistor. The goal is to design an oscillator at 4.3 GHz that will deliver the maximum output power from the transistor (about \(+20 \mathrm{dBm})^{[3]}\). The objective is to place the transistor in some type of circuit topology that will produce a negative resistance on its output port. Using the transistor's small signal sparameters and with the help of a computer analysis program, several different circuit topologies were examined for the ability of inducing a negative resistance. Figure 3 shows the circuit topology finally selmeted. This circuit must have a large signal negative resistance magnitude less than 50 ohms so it will not oscillate when loaded by the test equipment. Remember that our purpose thus far isto design and build a nonoscillating circuit from which we can measure its negative resistance as a function of output power.

A COMPACT \({ }^{[4]}\) computer progran was written to maximize \(s_{22}{ }^{\prime}\). by varying transmission line lengths \(L_{1}\) and \(L_{2}\) (Figure 3). The minus sign in line 14 instructs the optimization program to maximize the reflection coefficient. Optimizing the circuit for maximum \(s_{22}\), also sets the negative resistance magnitude to be equal to the load resistance (refer back to Figure 2). It was convenient to design for a negative resistance of 50 ohms. The first line of the COMPACT program specifies the open stub on the emitter with an estimated line length of \(2.54 \mathrm{~mm}(0.100 \mathrm{inch})\) to be optimized. The shorted stub on the base (Figure 3) is actually composed of two parallel shorted stubs which are specified in
lines three and four. After maximizing for \(\mathbf{S}_{\mathbf{2 2}}\), the emitter stub length was increased to 2.96 mm ( 0.117 inch ) and the base stubs to \(7.86 \mathrm{~mm}(0.310\) inch). The circuit was constructed on 0.031 inch thick Duroid \({ }^{\text {TM }} 5880\), and is shown in Figure 4. We will come back to the circuit shortly, but for now continue with another example.

SECOND EXAMPLE
In this second example the objective is to design a medium power ( 1 watt) oscillator at 2.0 GHz . For this design an HXTR4103 common collector bipolar transistor will be used \({ }^{[5]}\). This transistor is housed in a flange mounted package, the HPAC200GB/GT. Once again a circuit topology is selected (figure 5 ) and the circuit element optimized to maximize \(S_{22}\), using the transistor's small signal S-parameters. The impedance of the open transmission line was arbitrarily picked to be 50 ohms and only the length of the transmission line optimized. This circuit was also constructed on 0.031 inch thick Rogers \(\mathrm{FT} / \mathrm{Duroid}^{\text {TM }} 5880\) and is shown in figure 6. device line method

The 4.3 GHz circuit using the HXTR-4101 transistor did not oscillate into 50 ohms: therefore, the device line method was used to measure the load impedance for oscillation. The test setup is shown in Figure 7. Since the resistance is negative the reflection coefficient exceeds unity and the impedance lies outside the normal Smith Chart. Displaying a reflection coefficient greater than one is possible by interchanging the
test and reference ports on the HP 8411 A harmonic frequency converter. This inverts the reflection coefficient so that the analyzer shows the circuit impedance with the sign changed. This is exactly the impedance that must be connected to the circuit to complete the oscillator. Figure \(\theta\) shows the admittance load line measured for the circuit. The admittance of \(0.26+10.32\) corresponds with the maximum added power of the circuit which is the output power expected when the oscillator is completed.

\subsection*{4.3 GHz OUTPUT MATCHING NETWORK}

The output matching network must transform the 50 ohm load to a normalized admittance of \(0.26+j 0.32\) at point \(A\) (Fiqure 9). First an open shunt line is added to move the 50 ohm load to point B. A 50 ohm transmission line then rotates the admittance at point B to point \(A\). The final 4.3 GHz oscillator circuit is shown in Figure 10. The measured output power of the oscillator agreed very well with the predicted \(P_{\text {max }}\) of 19.6 dBm (Figure 11). Figure 12 shows the phase noise for the final oscillator. This completes the design and testing of the 4.3 GHz oseillator. Now we will return to the 2 GHz oscillator.

\section*{LOAD PULL METHOD}

The 2 GHz circuit using the \(\mathrm{HXTR}-4103\), did oscillate into 50 ohms, which prevents the use of the device line method. Reoptimizing the circuit with a load resistance lower than 50 ohms may result in a circuit that will not oscillate, but the

HOW TO SPECIFY PIN DIODE SWITCHES
Raymond by L . Sicotte
President
American Microwave Corporation
7311 G Grove Road
Frederick, MD 21701

\section*{I INTRODUCTION}

When purchasing PIN diode swithces, it is important that they are completely specified to assure system performance. It is also important that the specification be achievable. This paper is designed to help a systems designer specify realizeable PIN diode switches.

There are six key parameters essential to specify pin diode switches. These are:
1) TYPE i.e., SPST, SPDT, SP3T, DPDT, etc.
2) OPERATING FREQUENCY BAND
3) INSERTION LOSS
4) ISOLATION
5) SWITCHING SPEED
6) POWER HANDLING

There are five secondary parameters that may require specification. These are:
1) LOGIC COMPATIBLE DRIVER TYPE AND SPEED.
2) PHASE TRACKING ARM TO ARM AND/OR UNIT TO UNIT.
3) OFF ARM TERMINATIONS.
4) INTERCEPT POINT OR COMPRESSION POINT
5) VIDEO TRANSIENTS

11 SWITCH TYPE
Most PIN diode switches are of the single pole multiple throw type.
They range from single throw up through 8-12 throws. The most popular type is the SPST or pulse modulator type. In general the greater the number of throws, the less popular the switch and, hence the less readily available it is. American Microwave has standard switch designs up through 5 throws in the three popular bands of interest HF, UHF/VHF, and Microwave. We also have designs for 8 and 10 throws at \(H F\) and Microwave.

The most popular multi-pole switch is the DPDT type, commonly known as the TRANSFER SWITCH. These units are available in UHF/VHF and Microwave bands. High order multi-pole switches are generally referred to as switch matrices, which is a whole subject matter by itself.

III OPERATING FREQUENCY BANDS
American Microwave classifies PIN switches into five operating frequency bands. They are:
a) VIDEO which covers from 10 KHZ to 2 MHZ , not manufactured at AMC.
b) HF which covers 2 MHZ to 32 MHZ , AMC series \(5 W-0230\) switches.
c) UHF/VHF covering 10 MHZ to 2000 MHZ , AMC series \(\mathrm{SW}-2000\) switches.
d) MICROWAVE covering 10 MHZ to 20 GHZ and above, AMC series SW-218 switches.
e) Milimeter wave switches, 20GHZ and up

The above bands have loosely defined boundaries which overlap. They are indicative of the five different technologies avallable to the switch
decision was made to use the load pull method to measure the load resistance necessary for maximum oscillator output power. Figure 13 shows the test set-up for the load pull measurement system. The output of the oscillator is connected to a sliding tuner and 50 ohm load combination. The output power of the oscillator, and the load impedance presented to the oscillator is measured as the tuner is varied. The spectrum analyzer is used to verify that the output spectrum of the oscillator is stable single frequency before an impedance measurement is made. Figure 14 shows the optimum load impedance measured for the 2.0 GHz eircuit 115 + j 70 ohms). The output network for the 2.0 GHz circuit was then designed.
2.0 GHz OUTPUT MATCHING NETWORK

The load impedance for maximum output power at 2.0 GHz is first normalized to 70 ohms and plotted as an admittance at point A (Figure 15). The output matching network must transform the 50 ofm load to a normalized admittance of . 444 - jo. 270 at point \(A\). First an open shunt line is added to move the 50 ohm load to point C. A 70 ohm transmission line of 0.201 wavelength then rotates the admittance at point \(C\) to point \(B\). The design is completed by adding another open shunt line to move the admittance at point \(B\) to point \(A\). The PC board artwork layout forthe final oscillator is shown in figure 16. The output power of the oscillator is typically +30 dBm . The phase noise of the
oscillator is shown in Figure 17. This completes the design of the 2.0 GHz oscillator.

SUMMARY
The two examples given in this paper have shown that the device line and load pull methods are useful tools for the designer. The methods help bring a systematic approach to the design of oscillators in an area where empirical methods abound.

\section*{REFERENCES}
1. Walter Wagner, "Oscillator Design by Device Line Measurement". Mierowave Journal February 1979 pp. 43-48.
2. Dennis Poulin, "Load-Fiull Measurements Help Meet Your Match", Microwaves November 1980 pp. 61-65.
3. Hewlett-Packard Application Note 975, " A 4.3 GHz Oscillator Using the HXTR-4101 Bipolar Transistor."
4. Compact Software
5. Hewlett-Packard Application Note 994, " A 2 GHz Fower Oscillator Using the HXTR-4103 Bipolar Transistor."
manufacturer as well as four distinct applications areas of switch requirements.
There are some special application bands and technologies such as the high speed, low transient IF switching technology which is reflected in the SWB-0070 series of switches in the AMC catalog.

\section*{IV THE PIN DIODE}

A simplified equivalent circuit of the PIN diode is shown in figure 1. The forward biased diode is a current controlled resistor. The resistance vs current behavior of a typical PIN diode is shown in figure 2. The reversed biased diode is a voltage controlled capacitor. The capacitance vs voltage of a typical PIN diode is shown in figure 3.

\section*{\(\checkmark\) INSERTION LOSS}

Simple, most basic switches have the lowest loss for any given operating band. For a given technology or operating band, insertion loss increases with increasing frequency proportional the square root of frequency in a well designed PIN switch. Insertion loss originates in four basic areas.
a) Conductor or transmission line loss within switch itself due to the presence of microstrip, coaxial line or waveguide interconnecting lines.
b) Resistance losses due to finite resistance of series connected components such as PIN diodes and/or finite " \(Q\) " capacitors.
c) VSWR losses due to mismatch of components within the switch or at the terminals of the switch. VSWR losses at the terminals of the switch can be tuned out externally to improve losses, those within the switch must be minimized in design. These actually are the cause for ripples in the insertion loss vs frequency characteristic.

Assuming a switch is well designed, i.e., lowest loss transmission media, lowest resistance diodes and other series components are employed and all internal VSWR's are minimized, the loss of the switch is then dependent on the complexity of the design. In general, multi-throw units are more lossy as the number of throws increases. The addition of off-arm terminations and video filters increases the loss of the switch for a given technology. Also increased on/off isolation will contribute slightly to the loss. The insertion loss is lowest in the least complex switch configurations. For low loss switches, keep the specification simple.
vI ISOLATION
PIN diodes are connected to the transmission line in series or in shunt. Isolation is achieved by reverse biasing series connected diodes or forward biasing shunt connected diodes. The shunt mounted diode provides the most effective means for achieving broadband, relatively frequency independent isolation. It is ideally frequency independent but practically, small parasitic reactances generally affect broadband performance. Isolation is also acheived by reverse biasing series mounted diodes. Isolation for the series mounted diode decreases with increasing frequency.

Series-shunt diode configurations are frequently employed in multithrow broadband switches to achieve relatively high isolation in a simple structure. An example of the performance of a series-shunt connection is shown in figure 4 for the AMC model SW-218-2 switch. Note how the isolation decreases with increasing frequency. Multiple diodes connected in series on in shunt are frequently employed in PIN switches to achieve relatively high isolation over

FIGURE 1

- START.UP CONDITION
\[
\begin{aligned}
& \left|R_{D}\left(\omega_{0}\right)\right|>R_{L} \\
& \text { AND }-X_{D}=X_{L}
\end{aligned}
\]
- STEADY STATE CONDITION
\[
\left|\mathbf{R}_{\mathbf{D}}\left(\omega_{\mathrm{o}}\right)\right|=\mathbf{R}_{\mathbf{L}}
\]

FIGURE 2

- \(\Gamma_{D}=\frac{V_{0}}{V_{i}}=\frac{V_{0}}{0}=\infty\)
- SINCE \(\Gamma_{D}=\frac{Z_{L}-Z_{D}}{Z_{L}+Z_{D}}\)
- THEN \(Z_{L}=-Z_{D}\)

EXAMPLE NO. 1
COMMON BASE BIPOLAR

a broad band of frequencies. The isolation vs frequency characteristic of a shunt connected array of forward biased diodes is the AMC model SW-2184-1A SPST unit, shown in figure 6 which achieves 85 dB isolation over the \(2-18 \mathrm{GHz}\) band by judiciously spacing four shunt connected diodes. An example of a switch employing an array of reverse biased series connected diodes is the AMC model SW-2000-1, shown in figure 7, which achieves 70 dB minimum isolation over the \(10-2000 \mathrm{MHz}\) band. It is interesting to note that the \(5 W-2000-1\) unit has more insertion loss at the low end of the band than that of the SW-218-1A unit. This of course is due to the finite resistance of the forward biased series diodes in the \(S W-2000-1\) unit.

For narrowband applications, the possibilities are endless for combining and tuning diodes for excellent tradeoffs between insertion loss and isolation. Many designers have employed series and shunt inductors to resonate the capacitance of reverse biased PIN diodes to achieve excellent isolation-insertion loss performance over limited frequency bands. (see reference 1)

\section*{VII SWITCHING SPEEO}

Switching speed of a PIN diode switch is generally defined as the time for the RF to traverse \(10 \%\) to \(90 \%\) levels. Other definitions such as the time from 1 dB to 60 dB levels are occasionally employed for high isolation requirements. The switching speed is generally controlled by two factors, the time required to remove the stored charge from the diode junction and the theoritical maximum speed at which the charge can be removed from the junction. The time required to remove the stored charge from the junction is limited by the transit time of the PIN diode. The transit time is given by

\section*{It \(\mathrm{t}=\mathrm{W} 1 / \mathrm{Vs}\)}
where \(W 1=\) the device I-region thickness (cm) \(V_{s}=\) maximum saturated velocity \(=10 \times \mathrm{ep} 7 \mathrm{~cm} / \mathrm{sec}\)

The I-region thickness is related to the breakdown voltage vb by \(\mathrm{Wl}=\mathrm{Vb} / 20\)

Additionally, the stored charge in the forward biased diode junction is related to the monority carrier lifetime of the junction by

\section*{\(Q_{s}=I * T\)}
where Qs=stored charge (coulombs)
If=forward current (amperes)
T=minority carrier lifetime (seconds)
As a minimum for operation as a PIN switch the diode lifetime is shown vs the lowest operating frequency in figure 8. Further, the transit time as a function of breakdown voltage is shown in figure 9. (see reference 2) For minority carrier lifetimes shorter than \(10 n s\), state-of-the-art PIN drivers can switch in approximately the transition time of the device. Longer lifetimes require higher currents and larger, slower switching transistors causing switching times to be longer than the transition time.

Low intermodulation and harmonic distortion PIN switches require diodes with longer than minimum minority carrier lifetimes and hence switch more slowly.

High power PIN switches require higher Vb diodes which results in slower transition times and slower switching times.

FIGURE 4
TOPOLOGY OF NON-OSCILLATING CIRCUIT


FIGURE 5

\section*{EXAMPLE NO. 2}

COMMON COLLECTOR BIPOLAR


COMPACT PROGRAM TO
MAXIMIZE S \({ }_{22}{ }^{\prime}\)


FIGURE 6
TOPOLOGY OF CIRCUIT


\section*{VIII POWER HANDLING}

The power handling capability of PIN diode switches is controlled by three parameters. First is the upper operating temperature of the device. Second is the breakdown voltage and third the charge storage capability of the device. For silicon PIN diodes, best reliability is achieved by keeping junction operating temperatures below 200 degrees centigrade. Since series mounted diodes are more dissipative and have poorer heat sinking capabilities than shunt mounted configurations switch designers tend to avoid series configurations in high power applications. Since series configurations are essential to wideband multi-throw switches, these units tend to be the lowest power handling configurations. Hence, high power broadband switches are difficult to realize. One usually ends up trading power for bandwidth.

It is necessary that the breakdown voltage be at least twice the peak RF voltage that the diode will see and that the forward charge stored in the junction be greater than the charge moved on one-half cycle of the RF current waveform. The former requirement will assure that the diode not exceed its voltage breakdown and the latter that the forward biased junction will not be depleted in operation. The elements are essential to linear non-destructive operation of the diode under high power operation

IX LOGIC COMPATIBLE DRIVERS
The three most popular logic families are Transistor-Transistor-Logic (TTL) Emitter Coupled Logic (ECL) and Metla Oxide Semiconductor (MOS/CMOS)

Of the three, TTL logic is by far the most popular. ECL and CMOS are a distant second. Four of the most popular forms of TTL driver circuits are shown in figure 10 . We will confine this discussion to TTL compatible drivers.
or best performance, switch drivers must be electrically as well as mechanic ally integrated in the switch unit. It is possible to achieve clean, transient free switching by designing electrically compatible drivers
"Unit load" drivers are highly desirable because they are compatible with the widest range of TTL product line I.C.'s. A "unit load" is defined as 40 microamperes maximum source current and 1.6 milliamperes maximum sink current. Drivers are available in multiples of "unit load". True TTL compatibility also requires a logic "low" to be \(0-.8\) volts and a logic "high" to be \(2.0-5.0\) volts at the input ( \(0.8-2.0\) volts is andefined region)

All TIL compatible drivers have delay. Generally the driver delay is defined as the time from 50\% TTL level to where the RF signal changes by \(10 \%\). i.e., 0-10\% for turn-on or 100-90\% for turn-off. It is caused by energy storage in the driver and/or RF circuitry. The delay is a result of the time required to remove the stored energy before the switch state can be changed. The stored energy can be stored charge in the base region of a switching transistor or stored in various capacitors and inductors in the driver circuit or the bias decoupling circuit. Often this delay is different for turn-on and turn-off. This phenomenon can lead to pulse shrinkage or pulse expansion when the PIN switch is operated in a pulse mode. Since driver delay is consistent from unit to unit in a well designed PIN switch, a systems designer can often pre-trigger the switch and essentially "program-out" the driver delay. When it is not possible to anticipate the delay, it is necessary to specify delay equalization. An example of a PIN switch with equalized delay is the AMC model SW-218-1A series pulse modulator with modulation characteristics shown in figure 11. This unit has on/off delay equalization to 5 ns , maximum.

FIGURE 7
TEST SET-UP FOR NON-OSCILLATING SYSTEM


FIGURE 8
ADMITTANCE LOAD LINE


FIGURE 9

\section*{OUTPUT NETWORK DESIGN}


FIGURE 10
4.3 GHz FINAL OSCILLATOR CIRCUIT


Another phenomenon of driver delay is minimum pulse width. Since delay involves charging and discharging of components within the driver circuit, it isnecessary to "charge" or "discharge" the driver before any RF changes in signal level are observed. This results in a minimum pulse width for any switch with integral logic drivers. The minimum pulse width is approximately equal to the delay in the driver.

\section*{\(x\) PHASE TRACKING}

Often systems require switches that are "phase tracked". A phase tracking requirement is best achieved by first equalizing the time delay between arms of a multi-throw switch (if a multi-throw is indicated) and equalizing the time delay from unit to unit within a production run or product line if required.

Since the PIN switch is made up internally of many elements, i.e., diodes, capacitors and chokes with their accompanying mounting parasitic reactances and losses, it is necessary to control the uniformity of parts and assembly techniques to achieve best phase tracking.

For unit-to-unit phase tracking on a lot-to-lot basis, it is necessary to build a phase standard unit that is maintained at the switch vendor's facility which has an impact on the price of the initial lot of switches.

Typical state-of-the-art phase tracking is as follows:
\begin{tabular}{lll} 
BAND & PHASE TRACKING \\
HF & 1 Degree \\
UHF/VHF & 2 Degrees \\
MICROWAVE & 10 Degrees
\end{tabular}

\section*{XI OFF ARM TERMINATIONS}

Often PIN switches are employed to commutate or switch VSWR sensitive components such as antenna elements in an array, oscillators or amplifiers. Normally switches have an infinite VSWR in the OFF position. Figure 12 shows a switch with off arm terminations having an extra switching section that switch the terminal in question into a matched load when that arm is turned off. This in effect controls and stabilizes the VSWR in both the ON and OFF condition of the switch. You must specify off arm terminations when it is necessary to control OFF VSWR.

Be aware that when the specified arm is commutated or switched there is a period of time when the VSWR is unspecified. This is particularly important in high power switches where momentary high reflected power levels can be troublesome.

The addition of off arm terminations adds complexity to the switch which results in additional insertion loss and poorer phase tracking.

\section*{XII INTERCEPT POINT OR COMPRESSION POINT}

Compression in a PIN switch is a less well defined parameter than in soy an amplifier. So we will limit our remarks in this section to intercept point. The concept of intercept point is well documented in the literature and we will not go into it here. Rather we will examine the elements that control intercept point of PIN diode switches and their tradeoff on overall switch performance.

Intermodulation is a result of nonlinear mechanisms within the PIN diode primarily and occasionally caused by other elements such as nonlinear capacitors, resistors and/or ferrite cores in the bias decoupling chokes. We will confine this discussion to the. PIN diode only.

OSCILLATOR POWER CHARACTERISTIC


FIGURE 12
PHASE NOISE


FIGURE 13
LOAD-PULL BASIC MEASUREMENT SYSTEM


FIGURE 14
LOAD IMPEDANCE FOR
MAXIMUM OSCILLATOR OUTPUT POWER FOR THE HXTR-4103

18 V 130 mA


The primary intermod generator in a PIN switch is the forward biased series PIN diode. Intermod is generated in the diode when the stored charge becomes close to being swept out (or depleted) from the I layer region. Hence low intermod switches employ diodes with longer than minimum minority carrier lifetimes and are biased at relatively high forward currents to store a lot of charge in the junction. The degree of linearity is controlled by the percentage of charge depleted from the junction by the RF cycle. Highly linear switches have small percentages of charge depletion.

A secondary intermod generator is the non-linear capacitance vs voltage characteristic of the reversed biased PIN diode. This phenomenon is relatively easily controlled by selecting diodes with flat capacitance vs voltage characteristics and biasing the device into that region of the curve.

XIII VIDEO TRANSIENTS
Refer to figure 13, the equivalent circuit of a typical PIN switch. When the diodes are switched between biasing conditions a change on voltage or current occurs at the bias decoupling element adjacent to the output terminals. This element acts to differentiate the waveform (current for the shunt inductor and voltage for the series capacitor) and cause a pulse, spike or video transient at the output terminal. This transient occurs in all PIN switches but is controllable by various means.

The most effective means of controlling video transients are:
1) Slowing the switching waveform
2) Filtering the video spectrum
3) Balancing or cancelling two equal video transients

The first is very effective when switching speed is not important. Slowing
the switching waveform will slow switching speed. The second is effective when the switch operating band is above the frequency band where the video spectrum is concetrated. The addition of high pass filters at the input and output terminals of PIN switches at frequencies above 500 MHZ has proven very effective in reducing transients. Typically the highest speed switches (INS) have at least \(90 \%\) of the video spectrum below IGHZ. Filtering has its accompanying side effects. It will often introduce unwanted "ringing" in the switching waveform. Balancing has been employed very effectively as a means of reducing video transients without affecting switching speed or introducing "ringing". Unfortunately present state-of-the-art technology has limited balancing technique to UKF/VHF band. An example of the balancing technique is the AMC SWB-0070 series of IF switches shown in figure 14.

\section*{XIV CONCLUSION}

Six essential and five supplementary parameters have been presented to aid in the specification of PIN diode switches. Tradeoffs between the various parameters have also been explored. It is hoped that this will help bridge the gap between switch users and switch designers.

A sample specification is presented in figure 15 to serve as a prototype switch specification to aid in bridging the gap.

\section*{REFERENCES:}
1. R.N. Assaly. "PIN Diode Switches for Space Applications", MTT, 1967
2. M/A COMM PIN Diode Designers' Guide, 1983.

FIGURE 15

\section*{OUTPUT NETWORK DESIGN}


FIGURE 16
FINAL CIRCUIT TOPOLOGY FOR THE 2.0 GHz OSCILLATOR


FIGURE 17
PHASE NOISE OF THE LOW Q MICROSTRIP 2.0 GHz OSCILLATOR USING THE HXTR-4103 (Posc \(=29.8 \mathrm{dBm})\)



\title{
*BROADBAND PIN SWITCH SPDT \\ SW-218-2 \\ 0.3 TO 18 GHz
}


\section*{SPECIFICATIONS}
- Frequency Range: 0.3 to 18 GHz
- Frequency Range: 0.3 to 18
- Isolatlon: 55 dB , Min.
- VSWR: 2.0 to 1
- Swliching Speed: \(100 \mu\) typ.
- Blas: Port on: -50 ma

Blas: Port on: -
Port olf: +30 ma
- Power Handiling: \(+20 \mathrm{dBm}, \mathrm{CW}\), Mex.
- Operating Tomp.: \(-85^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

\section*{DESCRIPTION}

The SW-218-2 is a SPDT Pin Swlich Intended for wide band switching ap pllcations in commercial and millian environments. It has an instantaneous frequency coverage from 0.3 to 18 GHz and leatures all solld state chlp diode and microstrip constructlon for rugged rellable operation.
-Llcensed under U.S. Patent No. 3,812,438

\section*{SPECIFICATIONS, Cont'd.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FREQUENCY ( \(\mathrm{GHz}^{\text {) }}\) & 0.3 & 0.2 & 4.0 & 8.0 & 12.0 & 18.0 \\
\hline MAX. INSERTION
LOSS (dB) & 1.2 & 1.2 & 1.1 & 1.0 & 1.8 & 2.5 \\
\hline MIN. ISOLATION (dB) & 85 & 80 & 75 & 70 & 85 & 55 \\
\hline max. VSWR & 1.7 & 1.5 & 1.5 & 2.0 & 2.3 & 2.3 \\
\hline
\end{tabular}

HUMIDITY, SHOCK, ETC. PER MIL-STD 202C
CONNECTORS: 1) RF: SMA FEMALE
2) BIAS: FEED THRU FILTER-SOLDER PIN
3) CONFIGURATION OPTIONS:

001- ONE MALE AND TWO FEMALE SMA CONNECTORS 002- TWO MALE AND ONE FEMALE SMA CONNECTORS 003- THREE MALE CONNECTORS

MECHANICAL DATA

TYPICAL PERFORMANCE




SERIES SHUNT CONFIGURATION
figure 4

\title{
PACKAGING CONSIDERATIONS FOR RF TRANSISTORS
}

\author{
by \\ Norman E. Dye \\ Motorola Semiconductors
}

\section*{INTRODUCTION}

Parasitic reactances, material losses and for higher power devices thermal limitations combine to make package selection for RF transistors a lechnically challenging undertaking. It has been said the best RF package is NO package. And while this is understandable, it is not practical. Thus the trick is to design a package that protects the RF die, heat sinks it and makes connections to the "outside world" with minimal deleterious effects.

This paper will discuss thermal, electrical, mechanical and other considerations in the design of RF packages. Several existing packages will be described in discussing the evolution of RF packages. Finally, new approaches will be proposed to achieve packages with satisfactory characteristics at LOWER COST.

\section*{RF TRANSISTOR PACKAGE CHARACTERISTICS}

Figure 1 is a summary of the primary characteristics of a package suitable for use with high power at high frequencies. Thermal and electrical requirements predominate; however, many other factors influence what can and can'l be done in designing an acceptable RF package. These characteristics will be discussed in the following paragraphs.

\section*{THERMAL CONSIDERATIONS}

The name of the thermal game with RF devices is to maintain die temperature below a prescribed temperature ( 150 deg C to 200 deg C ) during normal operation. For low power devices with the die mounted on the collector portion of the lead frame or on alumina oxide ceramic, this presents little difficulty for dissipations below \(1 / 4\) watt. Typical packages are shown in Figure 2. Use of a copper lead frame and modest heat sinking of the collector lead can increase the dissipation limitation to \(3 / 4\) watt. A wider, thicker collector lead results in the so-called PowerMacro package ( Figure 3) which has a thermal rating of 1.5 watts.

However, where higher power dissipation is required, the RF die must be heat sunk through some medium which offers low thermal resistance while maintaining electrical isolation. The most practical material currently available offering low thermal resistance and simultaneously high electrical resistance is beryllium oxide ( BeO ). Figure 4 depicts the thermal properties of BeO compared with other materials. Figure 5 shows electrical resistivity of BeO along with several common insulators.

\section*{ELECTRICAL CONSIDERATIONS}

Objectively, one wishes to make contact with the RF die while keeping parasitic capacitance and inductance along with conductivity losses at a minimum. Package design--location of external leads, thickness of BeO , path length from die to external lead connections and choice of plating materials allow the package designer to approach these desired results.

A key objective is to keep lead length from die to the external circuit as short as possible. Also leads (including current paths on the ceramic) must be sufficiently wide to prevent excess resistance or inductance. And most important the plating on both ceramic and leads must be low loss and sufficiently thick in skin depths to minimize series resistance to RF current flow.

\section*{OTHERCONSIDERATIONS}

Other factors in addition to thermal and electrical must be considered in designing RF transistor packages. Primarily these can be grouped under "Reliability and Cost" although some may fall more conveniently under "Customer Convenience." In the latter category are items such as type of heat sink (stud or flange) and form factor (surface mount, machine insertable, stripline compatible, etc.)

Reliability, here, covers die attach, wire attach, hermeticity and lead solderability. Both die and wire attach are dependent on plating. High power die attach must have void free, low thermal resistance bonds (Silicon-Gold eutectic is the most common) to prevent thermal hot spots and these bonds can be achieved most readily with an adequate amount of smooth, pure gold (Au). Wire bonds are generally reliable whether \(A u\) on \(A u, A u\) on aluminum (Al), Al on \(A u\) or Au on copper ( Cu ) but if Au plating of the package is involved with Al wire, il is imperative that the plating be free of even the smallest amounts of Thallium (used sometimes in Au plating solutions to improve rate and smoothness of plating).


ISOLATION VS. FREQUENCY, SHUNT ARRAY
FIGURE 5

\section*{"SERIES SW-218 WIDEBAND SPST PIN DIODE SWITCHES WITH INTEGRAL DRIVERS}

\section*{FEATURES}
- 0.3 to 18 GHz Frequency Range
- Low Insertion Loss

Up to 85 dB Isolation
- High Speed - 10 nsec
- Small Slze
- Light Welght
- Rugged Chip and Micrositip Construction

\section*{DESCRIPTION}

The series SW-218 swliches are broadband, high speed, low loss SPST switches whith integral drivers. They are powered by +5 and \(\mathbf{- 1 5}\) volt supplies and are avaliable powered by \(\pm 15\) volits. They are avali able in three models that operate over the entire 0.3 to 18 GHz band. Each features rugged iniegrated cli cuit assemblies of chip PIN on a microstrip transmis sion line and proprietary wideband blas decoupling circuitry.
Swliching is accomplished by TTL compatible driver which is controlled by the user.

FUNCTIONAL SCHEMATIC


Hermetic packages, a representative sample of which is shown in Figure 6, have requirements contrary to those of good RF packages. The lead length through the hermetic seal is usually longer and more lossy than the length required for similar non-hermetic packages. Today, hermeticity is seldom warranted for commercial applications. Modern transistors are constructed with silicon nitride (SiN4) die passivation, Au top metal and Au wire which alleviates the need to keep moisture and foreign material from coming in contact with the die and wire bonds. However, if packages are subjected to contaminants such as those found in vapor phase soldering and subsequent flux removal solutions, gross leak hermeticity is important to prevent particles from getting inside the transistor where long term chemical action could result in premature device failure.

Lead solderability is generally thought to create no problems provided leads are covered with not less than 50 micro-inches of Au plating. But even Au can cause difficulties in soldering if sufficient time is used in soldering such that the Au plating is dissolved in the solder solution. Also, both silver ( Ag ) and Cu tarnish such that these material finishes are rendered useless unless the user is willing to remove the oxides just prior to solder attach (or use the parts with minimal shelf life).

Of the many "other" considerations in designing an RF package, perhaps the most important of all is COST. Metal ceramic packages represent \(50 \%\) or more of the product cost for most RF transistors. The basic problem, then, is how to devise a package with suitable RF characteristics in which a transistor can be assembled without difficulty, which can be put to use at some time in the future, with high reliability, and yet be relatively low in cost.

What are the cost ingredients of RF packages? One can identify 3 major components as shown in Figure 7. These are materials (such as ceramic disc, metal heat sink and lead frame), brazing operations used to assemble the constituent pleces, and plating. Brazing is probably the least expensive of the three and since it is essential--without creating user problems in heat sinking (no heat sink on package) and/or soldering into a circuit (no leads on package)--it will not be discussed further.

Material costs particularly when using BeO can be a sizeable portion of the total package costs. Reduce the amount of BeO and you can reduce material costs. Finally there are plating costs. Since Au is a normal final plate for an RF package for the obvious reasons of good conductivity, inertness, etc., it became a prime target of cost reduction particularly when Au
was selling for \$800/oz. 1) Even today at \$325/oz. Au adds significantly to RF package costs and efforts continue to eliminate it wherever possible.

\section*{EVQLUTION OF BASICPACKAGE TYPES}

\section*{The SOE Package}

In the early 1960's as transistors began to deliver watts of power at frequencies greater than 50 MHz , a new RF power package evolved suitable for micro-strip circuit applications. It was called Stripline Opposed Emitter (SOE) after its planar lead construction with two opposing leads tied to the common element in grounded emitter amplifiers. A picture of the SOE is shown in Figure 8. The raised bridge - an integral part of the lead frame - permits both short base and emitter wires simultaneously thereby reducing parasitic reactances. Thickness of the BeO (typically 60 mils) resulted in a compromise between thermal resistance (thin BeO desired). electrical resistance (thick BeO desired), and mechanical considerations necessary for heat sink attach without fracture of the ceramic disc (thick BeO desired).

Variations of the basic SOE package have resulted in the dual emitter bond (DEB) package (Figure 9). The addition of a 2nd emitter bridge (flat) on the BeO surface allows parallel emitter wires which lowers emitter inductance leading to increased amplifier gain. By widening the flat emitter stripe, the semiconductor manufacturer can add a MOS capacitor thereby achieving the input matched package ( CQ or J0) (Figure 10). Wiring the capacitor between base and emitter raises the input impedance, reduces input losses and reduces input \(Q\). Matching inside the package close to the die is essential for higher power, higher frequency devices in which Zin and/or Zout of the die is less than 0.5 ohms. Without input matching, a device would exhibit excessive circuit losses as well as extremely narrow band characteristics.

\section*{The Isolated Collector Package}

An attempt to achieve the lowest possible common element inductance resulted in the transistor die being isolated on a collector "island" completely surrounded by the common element metallization ( Figure 11). Of course this requires the collector contact to be made via
1) First, Au was removed from the heat sink (flange or stud) where it served no useful purpose other than appearance. Next the Au was reduced in thickness (typically to 50 micro-inches) in
all areas of the package except the die bond pad where it is essential to maintain >100 micro-inches of Au to achieve void free Si -Au eutectic bonds.

SPECIFICATIONS，Cont＇d．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{FREQUENCY（GHz）} & SWITCHING
SPEED & \multicolumn{2}{|l|}{POWER HANDLING CAPABILITY} & \multicolumn{3}{|c|}{POWER SUPPLY} \\
\hline MODEL NO． & CHARACTERISTICS & \[
\begin{aligned}
& 0.3 \\
& \text { to } \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& \text { to } \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& \text { to } \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& \text { to } \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
\text { to } \\
12.4
\end{gathered}
\] & \[
\begin{gathered}
\hline 12.4 \\
\text { to } \\
18.0
\end{gathered}
\] & \[
\begin{aligned}
& \text { ON-to.OFF } \\
& \text { and } \\
& \text { OFF.to.ON }
\end{aligned}
\] & AVG
（WATTS） & Peak \(1 \mu \mathrm{sec}\), max，pw （WATTS） & \[
\begin{aligned}
& +15 \\
& \text { VDC }
\end{aligned}
\] & \[
\begin{gathered}
+5 \\
\text { vDC }
\end{gathered}
\] & \[
\begin{aligned}
& -15 \\
& \text { VDC }
\end{aligned}
\] \\
\hline SW－2182－1A & Min Isolation（dB） Max Ins Loss（dB） Max VSWR（ON Pos） & \[
\begin{aligned}
& 30 \\
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 1.0 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 1.0 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 1.1 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 1.6 \\
& 1.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 45 \\
2.0 \\
1.9 \\
\hline
\end{array}
\] & 10 ns & 2 & 10 & \[
\begin{gathered}
55 \\
m A
\end{gathered}
\] & \[
\begin{gathered}
55 \\
m A
\end{gathered}
\] & \[
\begin{gathered}
35 \\
m A
\end{gathered}
\] \\
\hline SW－2183－1A & Min isolation（dB） Max Ins Loss（dB） Max VSWR（ON Pos） & \[
\begin{aligned}
& 40 \\
& 1.0 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 1.0 \\
& 1.4
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.1 \\
& 1.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.4 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 1.8 \\
& 1.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 70 \\
2.3 \\
1.9 \\
\hline
\end{array}
\] & 10 & 2 & 10 & \[
\begin{gathered}
65 \\
m A
\end{gathered}
\] & \[
\begin{gathered}
65 \\
m A
\end{gathered}
\] & \[
\begin{gathered}
35 \\
m A
\end{gathered}
\] \\
\hline SW－2184－1A & Min Isolation（dB） Max ins Loss（dB） Max VSWR（ON Pos） & \[
\begin{aligned}
& 45 \\
& 1.0 \\
& 1.4
\end{aligned}
\] & 70
1.0
1.4 & \[
\begin{aligned}
& 85 \\
& 1.2 \\
& 4.4
\end{aligned}
\] & 85
1.5
1.6 & \[
\begin{aligned}
& 85 \\
& 2.0 \\
& 1.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 80 \\
2.5 \\
1.9 \\
\hline
\end{array}
\] & 10 & 2 & 10 & \[
\begin{gathered}
75 \\
m A
\end{gathered}
\] & \[
\begin{gathered}
75 \\
\mathrm{~mA}
\end{gathered}
\] & \[
\begin{gathered}
35 \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline
\end{tabular}
－Switching speeds are \(10 \%\) to \(90 \%\) RF and \(90 \%\) to \(10 \%\) RF．Standard TTL dalay is 20 ns ．Max from \(50 \%\) TTL to \(90 \%\) RF for turn－olf and 50 ns ，Max from \(50 \%\) TTL to \(\mathbf{1 0 \%}\) RF for turn－on．

AVAILABLE OPTIONS Option No． Description
\begin{tabular}{ll}
001 & Two SMA Male RF Connectors \\
002 & One SMA Mate and One SMA Female \\
& RF Connector \\
003 & Solder Type Control Terminals \\
004 & \(\pm 15\) Volt Power Supply Requirement \\
& \((+5,-15\) Volt is Standard） \\
005 & 50 Ohm Control Impedance \\
006 & Cannon Multipin MDM9SSP \\
007 & Inverted Logic \\
008 & Extend Frequency to t00 MHz \\
009 & 20 ns，Max Delay \\
010 & 100 ns，Max Switching Speed \\
011 & \\
012 & \(2 n s\), Max Switching Speed
\end{tabular}

品
品


wires which can result in increased collector series inductance. Again provisions can be made for use of an input matching capacitor (Figure 12), or both input and output matching capacitors ( Figure 13).

\section*{Common Emitter TO39 (CE-TO39)}

Cost considerations led to the addition of BeO to a conventional TO39 package (see Figure 14) in a successful effort to reduce the cost of 1 to 4 watt driver transistors operating at frequencies through 500 MHz . Tying the emitter leads to the case and isolating electrically the collector results in high performance ( \(>10 \mathrm{~dB}\) gain) amplifiers that cost in the vicinity of \(\$ 1\) to \$2- a substantial decrease in price from SOE packaged devices.

\section*{Common Emitter TO220 (CE-TO220)}

Still the power levels above 4 watts even at frequencies as low as \(50-100 \mathrm{MHz}\) required the use of the expensive SOE package. This necessitated the modification of a low cost, higher power package (the TO220) such that satisfactory RF periormance could be achieved at least through 175 MHz . Again the key was the use of BeO to isolate the collector and permit low inductance "grounding" of the emitter as shown in Figure 15

Cost savings are not as substantial as in the case of TO39's. Although the basic TO220 package is lower in cost than a TO39, modifying the TO39 involves a relatively small amount of unpatterned BeO while the TO220 requires larger, patterned BeO and, generally, with "wraparound" metallization. The basic package costs of the CE-TO220 can be approximately half that of an SOE and if these savings can be maintained through subsequent assembly and final test operations (not an easy feat to accomplish), the resulting transistor should have a sell price \$1 to \(\$ 2\) less than a comparable SOE packaged part.

Frequency and power limitations do exist in the TO220 package. Basically it is highly undesirable from the standpoint of parasitic lead inductance which results in the package essentially being impractical for use at power levels above 40 watts at \(50 \mathrm{MHz}, 30\) watts at 200 MHz and 10 watts at 500 MHz .

\section*{NEWPACKAGECONCEPTS}

Achieving packages that still provide low thermal resistance, low parasitics, ways to heat sink and ways to access the terminals of the transistor all at LOWER COST is still the primary objective of modern day RF packaging efforts. A novel approach at Motorola is to minimize use of

Au by using it only on the die bond pad of an essentially standard SOE package (Figure 16). Excellent electrical conductivity is still achieved by the use of a copper clad lead frame with the external leads tin plated after assembly. One major problem with this process is the necessity for package hermeticity during the lead plating operation. Also the design concept leaves the basic SOE package intact - which means the cost of patterned BeO and the cost of brazing remain essentially unchanged.

Reducing the BeO is the major thrust of another new RF package concept. Since BeO is only needed under the active transistor die, it can be reduced from a patterned disc or rectangle to a small unpatterned disc or rectangle that is substantially less costly to manufacture. One example of such a package is shown in Figure 17. Here the center disc is BeO while the outer ring is less expensive aluminum oxide (Al2O3). The lead frame includes a collector lead that bridges the gap between materiats and covers the collector bond pad area. While the amount of BeO is minimized, other costs such as brazing and plating are left unchanged. And the extended collector lead necessitates use of a separate raised bridge (if desired).

A less expensive concept that utilizes a semiconductor manufacturer's main asset - the ability to process silicon - is shown in Figure 18. Two thick rectangles of intrinsic silicon are placed on either side of a rectangular block of unpatterned BeO. The three metalized but electrically insulating pieces are brazed to a copper flange along with two pieces of lead frame material. It is relatively simple (and inexpensive) to pattern the silicon rectangles to provide shorting bars on the sides adjacent to the BeO. Wiring, then, provides for collector and base contacts and dual emitter bonds.

\section*{SUMMARY}

Packages suitable for use at RF frequencies must have low parasitics and low loss. For power transistors, the package must also have low thermal resistance from die to case. These requirements historically have resulted in RF power packages being a significant portion of the manufacturing cost of RF power transistors.


Various packages have been designed (CE-TO39, CE-TO220) in efforts to reduce package costs; however, their limitations with respect to power dissipation and parasitics make them unsuitable except in very restricted applications.

This paper has discussed the considerations necessary in RF package design and the evolution of a variety of packages suitable for use at radio frequencies. Finally, several alternate approaches to devising a LOW COST package suitable for use at both high power and high trequency have been proposed.

\section*{FGURE 1}

ChARACTERISTICS OF RF POWER PACKAGES
1. GOOD thermal properties
2. LOW Interelectrode capacitance
3. LOW PARASitic inductance
4. high electrical conductivity
5. RELIABLE
6. LOW COST
7. FORM FACTOR SUITABLE FOR CUSTOMER APPLICATION



FGGURE2-LOWPOWERPACKAGESFORRF


(a)


SINGLE TRANSISTOR WITH SPIKER


PULL-UP, PULL-DOWN TOTEM POLE
(c)

TTL DRIVER CIRCUITS
FIGURE 10



FIGURE 4-THERMAL PROPERTIES OF METALSCERAMICS


FIGURE 5-ELECTRICAL RESISTIVITY OF TYPICAL NSULATORS


FGCURE 6-AHEPMETIC RFPACKAGE

\section*{FIGURE 7}

\section*{COST INGREDIENTS OF} TYPICAL RF POWER PACKAGE.

\section*{MATERIAL}
\(\$ 0.40\)

BeO
METALLIZATION OF BeO
FLANGE, Ni PLATED
\(\$ 0.08\)

LEAD FRAME. Ni PLATED
0.12
\begin{tabular}{lr} 
ASSEMBLY & 0.15 \\
FINAL PLATE & 0.45 \\
& \(\$ 1.00\)
\end{tabular}

FINAL PLATE

(b) SERIES

PIN SWITCH EQUIVALENT CIRCUITS
FIGURE 13

\section*{SWB-0070 SERIES HIGH SPEED I.F. SWITCHES \\ WITH TTL DRIVERS}
\(50-90 \mathrm{MHz}\)

features
HIGH SPEED: 10 ns , Max
LOW TRANSIENT: 50 mv , Max
Roverse Polarty Protection
300\% Overload Protection
for Up To 2 Minutes
Rugged Microstrip Construction
- Integrated TLL Drivers

HIGH ISOLATION: 70 dB, MIn
Olf-arm Terminatlons
- SPST Thru SP8T Conllgurations

FUNCTIONAL SCHEMATIC (SPST)


\section*{SPECIFICATIONS}
- TYPE MODEL

SPST SWB-0070-1A
SP2T SWB-0070-2A
SP3T SWB-0070-3A
SP4T SWB-0070-4A
SP5T SWB-0070-5A
SPGT SWB-0070-6A
SPTT SWB-0070-7A
SP8T SWB-0070-8A
Frequency Range: \(50-90 \mathrm{MHz}\)
- Frequency Range: 50-90 MH
- Insertion Loss: \(1.5 \mathrm{~dB}, \mathrm{Ma}\)
- Isolation: \(70 \mathrm{~dB}, \mathrm{Mln}\)
- Switching Speed: TLL Delay: 5 ns , Max 10\%-90\% RF: 10 ns, Max
- Video Transients: 50 mv, Max
- Video Translenis: 50 mv . Max
- Retum Loss: Input: - \(17 \mathrm{~dB}, \mathrm{Min}\) Output (oft - 14 dB M
nodulstion:
- Intermodulstion:

3rd Order. 2 Tones © +7 dBm \(-50 \mathrm{dBc}\)

FIGURE 14


FGURE 10-THE NPUT MATCHED PACKAGE


FIGLRE Y-THE DUALEMITTERBOND PACKAGE


\section*{AII}

\section*{AMERICAN \\ MICROWAVE CORPORATION}
SWITCH SPECIFICATIONS DATA SHEET
CUSTOMER: \(\qquad\) MODEL \(\qquad\) OPT : \(\qquad\)
1.0 CONFIGURATION:
2.0 FREQUENCY BAND (GHZ):
3.0 INSERTION LOSS:
3.1) MAXIMUM:
3.2) VARIATION:
4.0 ISOLATION:
4.1) MINIMUM:

SWITCHING SPEED:
5.1) \(50 \%\) TTL TO 90\% RF
5.2) 50\% TTL TO 10\% RF
\(5.3)\)
5.4) \(90 \% \mathrm{RF}\) TO \(90 \% \mathrm{RF}\)
TO \(10 \% \mathrm{RF}\)
6.0 VSWR:
6.1) INPUT
\(\left.\begin{array}{l}6.2 \\ 6.3\end{array}\right) \begin{aligned} & \text { OUTPUT } \\ & \text { OUTPUT }\end{aligned}\) (ON)
7.0 RF POWER:
7.1) CW
7.2) PEAK POWER
7.3) PULSE DUTY RATIO
8.0 CONTROL: NO DRIVER TTL DRIVER TTL DRIVER
TTL DECODER \(\square\)
9.0 POWER SUPPLY: VOLTAGE CURRENT (mA)


FIGURE 15


FGURE 13-THE MAAC PAC MOTOROLA ADVANCED AMPLFIER CONCEPT PACKAGE


FIGURE 14-THE COMMON EMTTER TO. 39


FIGURE 15-THE COMMON EMITTER TO-220

\section*{A Low Nolse Fiber Optics Receiver/Amplifier in VHF Range}

\section*{Lajos by Burgyan \\ P.0.Box \(\begin{gathered}\text { Signetics Corporation } \\ 3409 \text {, Sunnyvale, Ca 44088-3409 }\end{gathered}\)}

Despite numerous advantages, the relatively high cost of fiber-optic transmission prevented its wide-spread industrial acceptance. High bandwidth-distance products, a prerequisite for cost-effectiveness, could not be achieved with relatively inexpensive components. The latest technological advances on both transmitter and receiver sides, however, are about to change that.

\section*{Transaittor}

Starting at the transmitter side (Figure 1), the two major problems of the past were the unavailability of inexpensive, light emitting diode (LED) transmitters, capable of \(10-20 \mathrm{MHz}\) modulation rates, and the compounded problea of cost and reliability of laser diodes, required for large channel capacity, single mode, long-distance systems. In examining the present status of the fiber-optic industry we observe, however, that new generations of LEDs, used in most short-range, multimode transmitters, can achieve wide modulation bandwidths, enabling system designers to develop cost-effective systems. For example, commercially available 820-850 nanometer AlGaAs surface emitting devices have significantly decreased in price and can be used up to and beyond 100 MHz ( 200 MBaud ). InGaAsP LEDs can be used in the \(1.3 \mu \mathrm{~m}\) range. Their highly doped versions can be modulated up to bandwidths of several hundred MHz at
the expense of lower output power
InGaAsP laser diodes can go well beyond 1 CHz . Their higher output power and an order of magnitude narrower spectral widths aske these devices the ideal choice for long-range, very high data rate telecommuication systems.

\section*{Recoiver}

The key to cost effectiveness at the receiver side is the ability to offer monolithic IC building blocks that can match those high transaitter data rates with bandwidth, large dynamic range and low noise. These kinds of IC building blocks weren't readily available in the past. Consequently, system designers had to choose between limiting data rates to below 20 MBaud or using costly hybrid modules.

Signetics' solution to the problem is the introduction of the SE/NE5212 trans-impedance amplifier (TIA).
Although the real meaning is different, "trans-resistance" and 'trans-impedance" are used interchangeably in practice. These names designate that these types of amplifers are current-driven at their inputs and generate voltage at their outputs. The transfer function is therefore ratio of output voltage to input current with dimensions of ohms. Since the input is current driven, the input resistance must be low, which means low input voltage swings, no capacitive charge/discharge currents and wide frequency response with generous phase margin. Alternative approaches to the TIA, such as high input impedance FET preamplifiers vith a shunt input resistor, tend to be more bandwidth limited. They exhibit integrating characteristics, and therefore must be


FGGURE 16-AMNMMUMGOL SOE PACKAGE


FGURE 18-ANEWPACKAGECONCEPT


FGGURE 17-AMNMUM BEO SOE PACKAGE CONCEPT
equalized by a differentiating second stage to achieve broad frequency response. The integrating input stage, however, is prone to overload with signals that have high low-frequency content. If the amplifier overloads for any reason, the integrated waveform cannot be restored by differentiation and dynamic range suffers despite the low noise characteristics.
Since the trans-impedance configuration does not have this problea, its superior dynamic range, inherentiy large bandwidth and compatibility with low cost IC technologies make it an attractive approach.

\section*{The ME5212}

The NE5212 TIA is a low noise, wide band integrated circuit with single signal input and differential outputs, ideally suited for fiber optic receivers in addition to many other RF applications.

As shown in Figure 2, a differential output configuration was chosen to achieve good power supply rejection ratio and to provide ease of interface with ECL type post-amplifier circuitry. The input stage (Al) has low noise shunt-series feedback configuration. The open loop gain of \(A 1\) ( \(R_{f}=\) infinite) is about 70 ; therefore, we can assume with good approximation an input stage trans-resistance equal to the value of \(R_{f}=7.4\) KOhms. Since the second stage differential amplifier (A2) and the output emitter followers (A3 and A4) have a voltage gain of about two, the input to output trans-resistance is twice the value of \(R_{f}\), about 14.5 KOhms. The single-ended trans-resistance is half of this value.

Returning to the input stage (Figure 3), a simple analysis can be used to
determine the performance of the TIA. The input resistance, \(R_{i n}\), can be calculated as
\[
R_{1 n}=\frac{v_{1 n}}{-\cdots}=\frac{R_{F}}{i_{1 n}} \frac{7400}{1+A_{v 0 L}}=\frac{-\cdots}{1+70}=104 \text { Ohms }
\]

More exact calculations lead to slightly higher value of 110 Ohms. The collector-base capacitance ( \(\left(\mu_{1}=0.12 \mathrm{pF}\right)\) of \(Q 1\) is by far the largest contributor to the input capacitance due to the Miller-effect:
\[
c_{1 n}=C_{\mu_{1}}(1+70)=0 \mathrm{pF}
\]

Thus, while neglecting driving source- and stray capacitances, \(C_{1 n}\) and \(R_{i n}\) will form the dominant pole of the entire amplifier:

Although significantly wider bandwidths could have been achieved by a cascode input stage configuration, the present solution has the advantage of very unifora, highly de-sensitized frequency response because the Miller-effect dominates over external photodiode and stray capacitances. As an example, a relatively high source-capacitance of 4 pF would decrease the bandwidth by only about \(30 \%\). Consequently, the NE5212 will be relatively insensitive to PIN photodiode source capacitance variations.

Since the dominant pole of the amplifier is at the input node, PIN diode source capacitance will not degrade phase margin

\section*{Package parasitics}

Package parasitics, particularly ground-lead inductances and parasitic

\section*{microstrip miniature transfer switce}
```

Dr. Rajeswari Chattopadhyay
Chief Engineer
Eswarappa
Transmiseifon Rad
Indian Telephone Industries Ltd.
Bangalore, India

```

\section*{AbSTRACT}

A microstrip transfer PIN switch has been developed for the 675 MHz digital microwave system of Indian Telephone Industries Limited, Bangalore. It uses lumped elements to provide \(90^{\circ}\) electrical length between two diodes which is required to increase isolation. An isolation of more than 50 dB is obtained at two \(1801 a t e d\) ports in the 600 to 750 MHz frequency band with a minimum of 15 dB return loss at all the four ports. The maximum insertion loss obtained in the band is 0.8 dB . The switch is \(T\) compatible and has replaced the bulky, coaxial switch which used relays.

\section*{INTRODUCTION}

Transfer switches are required to switch two transmission lines betaween the antenna and load \(Z_{0}\). The configuration of a transfer switch using PiN diodes is shown in Fig.(l). When the control voltages \(V_{c l}\) and \(V_{c 2}\) are positive and zero respectively, only the diodes \(D_{1}\) and \(D_{3}\) conduct and lines (1) and (2) get connected to the antenna and load \(z_{0}\) respectively. When the
control voltages \(V_{c 1}\) and \(V_{c 2}\) ae zero and positive respectively, only the diodes \(D_{2}\) and \(D_{4}\) conduct and line (1) gets connected to the load \(Z_{0}\) and line (2) gets connected to the antenna. First, a switch was developed with only one diode in each path and then a switch with two diodes in each path separated by an electrical length of \(90^{\circ}\) made of lumped elements was developed. The development of these switches will be discussed in the following sections.

Microstrip Tranefer Switch with One Diode in Each Path:
The configuration of the microstrip transfer switch with one diode in each path is shown in fig. (2). The switch was developed on \(1 / 3^{\prime \prime}\) thick Teflon fiberglass substrate ( \(\epsilon_{r}=2.54\) ) ubing HP 5082 - 3001 glass package PIN diodes. The high frequency chip capacitors were used for DC blocking. Air-core coll inductors were used for \(R F\) to DC isolation. The measured performance of the switch is shown in Fig. (3). The minimum return loss obtained is 22.0 dB . The isolation at port No. 3 has decreased from 29.0 dB to 26.5 dB over the 600 to 750 MHz frequency band. The minimum isolation obtained at port No. 4 is 34.5 dB . The 1 solation at port No. 3 is about 6 dB less than that of the isolation at port No.4. This is because the two signals add in phase at port No. 3. The maximum insertion loss obtained is 0.5 dB .

Microstrip Tranefer Switch with Two Diodes in Each Path:
The isolation is expected to increase when two similar
capacitances, can significantly degrade frequency response. To minimize parasitics, the NE5212 is offered in 14-pin as well as an 8-pin package. The 14 -pin version uses multiple grounds to minimize ground wire-bond inductances and leaves pins adjacent to the input unconnected. This will minimize parasitic capacitance and feedback from the outputs. Since the 8 -pin version cannot afford all these techniques, its frequency response is inevitably compromised.

Wile the surface mount \(\mathrm{SO}-14\) version has a typical bandwidth of 150 MHz , the \(50-8\) version achieves 125 MHz . The difference in bandwidth can be utilized advantageously by choosing the appropriate package type and bandwidth as dictated by a particular system requirement.

Further bandwidth modifications can be achieved by a small capacitance between input and output or input and ground. Since the NE5212 has differential outputs, both peaking and attenuating type frequency response shaping are possible

\section*{Fighting noise}

Since most currently installed and planned fiber optic systems use non-coherent transmission and detect incident optical power, receiver noise performance becomes important. The SE/NE5212 goes a long way towards solving this problem. Its input stage configuration achieves a respectably low input referred noise current spectral density of \(3 \mathrm{pA} / \mathrm{h} \mathrm{Hz}\), measured at 10 MHz . This low value is nearly flat over the entire bandwidth. The trans-resistance configuration assures that the external high value bias resistors, often required for photodiode biasing, will not contribute
to total system noise. As shown in the following equation [1], the equivalent input RMS noise current is determined by the quiescent operating point of \(Q_{1}\), the feedback resistor, \(R_{5}\), and the bandwidth, \(\Delta f\), however, it is not dependent on the internal Miller-capacitance. The noise current equation is then

Using design values of \(I_{C Q 1}=0.5 \mathrm{~mA}, R_{f}=7.4 k 0 h m s, \beta=50\) and \(\Delta f=100 \mathrm{MHz}\), the frequency independent term yields 25 nAgns noise. Design values for the frequency-dependent term are: \(C_{3}=1.3 \mathrm{pF}, \quad \mathrm{C}_{1}=0.7 \mathrm{pF}\) and \(\mathrm{rboal}_{1}=170\) Ohms. The measured integrated noise was 33 nA

\section*{Testing the ME5212}

Connecting the NE5212 in an actual fiber optic pre-amplifier configuration, dynamic range, transient response, noise and overload recovery tests are easily measured (Figure 4). In order to replicate actual parasitic capacitances, effects of the photodiode bias network and circuit layout effects, the test circuit should closely resemble the real application conditions. If the intention is to use the device in die form, then the actual hybrid circuit mounting techniques should be used while testing.

In the test circuit shown, an 850 n modulated laser light source feeds an HP-HFBR2202 PIN photodiode which is mounted in close proximity to the NE5212 input. The R-C filter in series with the photodiode eliminates
diodes separated by quarterwave transission line are used in each path instead of one diode. At the frequency at which the electrical length between the diodes is exactly \(90^{\circ}\), the isolation will be double that offered by aingle diode. The dimensions of the switch become too large if the distributed quarterwave lines are used because the length of quarter wave line on \(1 / 32^{\prime \prime}\) thick Teflon fiberglass ( \(\epsilon_{\mathrm{r}}=2.54\) ) is approx. 7.5 cm. The equivalent \(T\) - or \(\Pi\) - section lumped element networks are very convenient in such applications.

The element values of the T-equivalent lumped circuit calculated using the equations:
\[
f_{o}=-\frac{1}{2 \pi \sqrt{L C}} \quad, z_{o}=---\sqrt{\frac{L}{C}}
\]
where \(f_{o}=675 \mathrm{MHz}, z_{o}=50 \Omega\)
are \(\quad L=11.789 \mathrm{nH}, C=4.715 \mathrm{pF}\)

The air-core coil inductors were characterized by making thea resonate in series with the chip capacitors. Johanson thin film variable capacitors were used as shunt capacitors. These capacitors were tuned so that a T-equivalent network consisting of \(L^{\prime}\) s and \(C\) offered a \(90^{\circ}\) electrical length at 675 MHz . The electrical lengths measured at the band edges (at 600 and 750 MHz) are approximately \(77^{\circ}\) and \(105^{\circ}\). The switch circuit is shown in fig. (4). A photograph of the unit is shown in Fig. (6).

The measured performance of the switch is shown in fig.(5). It can be seen that minimum return 1088 of 15 dB is obtained over the required frequency band and is maximum ( \(=32 \mathrm{~dB}\) ) around 700 MHz . The minimum isolation obtained is 50 dB . The maximum ingertion loss is 0.8 dB . Almost bimilar results were obtained when the ports (2), (3) and (4) were taken as input ports. The increase in the insertion 108 f from 0.5 dB to 0.8 dB In the frequency band can be attributed to the lead inductances of the diodes. The computed resulta obtained taking the forward diode resistance as 1 ohm and the reverse junction capacitance as 0.2 pF are as follows: The return loss is more than 17 dB and isolation is more than 50 dB .

The microstrip transfer Pin awitch with lumped elements has given good results over a frequency bandwidth of 22\% (600 to 750 MHz). The switch being. a planar circuit can be easily integrated with other subsystems.

\section*{ACRNOWLEDGEMENT}

The authors wish to record their thanks to management of M/S Indian Telephone Industries Limited, Bangalore for kind permission to publish this paper.
possible disturbances from the power supply. Both differential outputs are AC coupled through 33 Ohm resistors in order to match to the 50 Ohm test system. In most applications these matching resistors are unnecessary. Performance evaluation in the linear region, including amplitude and phase response and power supply rejection can be accomplished by a network analyzer and \(S\) parameter test set (Figure 5). The simple equations given in the figure for the calculation of trans-resistance, \(R_{T}\), are accurate for \(R \gg R_{1 n}\), where \(R_{1 n}\) is the input resistance of the NE5212.

\section*{General purpose RF applications.}

Besides the main fiber-optic receiver apolications, wany other interesting possibilities exist for the the NE5212. Simplicity and ease-of-use are the prevailing characteristics of this device. For instance, amplifiers with 20 dB gain can be built requiring only one external gain setting resistor (Figure 6). The voltage gain of the differential configuration with no load at the outputs can be calculated as follows:
\[
v_{\text {out }}=i_{1 n} \times R_{T}=\frac{v_{1 n}}{R_{8}+R_{1}+R_{1 n}} \quad R_{T} \quad \text { and } \quad A_{4}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{T}}{R_{B}+\ldots \ldots \ldots}
\]
where \(R\) is the signal-source resistance, \(R\) is the external gain setting resistor and \(R_{i n}\) is the input resistance of the NE5212. Substituting the actual values:
\[
A_{v}=\frac{14000}{R_{3}+R+110}
\]
where all values are in Ohms. The graph of Figure 6 is an experimental verification of this formula in a single-ended, 50 Ohm system, using the
test configuration of Figure 5 . Note the 6 dB loss due to the single-ended configuration and another 6 dB due to the 50 Ohm load.
As in all other RF applications, attention to power supply bypassing, clean grounds, and minimization of input stray capacitances is required for optimum perforaance.

Another useful application of the NE212 is as a voltage controlled amplifier, using a DMOS FET device bissed into the linear region (Figure 7). An operational amplifier with supply-to-ground output swing and suppiy-to-ground input common mode range (such as the Signetics NE5230) can provide adequate gate control voltage even with a single 5 V fower supply This type of circuit can have 25 dB AGC range at 50 LHz and 45 dB at 10 HHz with less than harmonic content. AGC range is determined by the \(O N-\) resistance range of the FET and capacitive drain to source feedthrough. If lowest RF feedthrough were required, the FET should be used in a shunt configuration rather than in a series.

Turning towards an entirely different area of application, where contrary to the NE5212s' capabilities, poor phase margins are mandatory, a simple crystal oscillator with buffered output can be built using a minimum number of external components (Figure 8). The feedback signal is taken from the non-inverting output, while the inverting output provides a low impedance ( 150 hm ) output drive. The crystal operates in its series resonance mode Figure \(g\) shows a varactor tuned version with a large tuning range. In Figure 10 the circuit has been optimized for stability at the expense of tuning range


FIG. 1. TRANSFER SWITCH


FIG. 2. MICROSTRIP TRANSFER SWITCH
WITH ONE DIODE IN EACH PATH

a) SSOLATION AND INSERTION LOSS

b) RETURN LOSS

FIG. 3. RESULTS OF THE MICROSTRIP TRANSFER SWITCH WITH ONE DIODE IN EACH PATH.

In RF amplifier applications it is often desirable to limit the amplifier bandwidth in order to minimize noise and RFI. The \(100-150 \mathrm{MHz}\) bandwidth of the NE5212 can be easily modified by connecting a capacitor to the input pin. The device bandwidth then becomes
\[
f_{-300}=\frac{1}{2 \pi R_{1 n}\left(C_{1 n}+C_{E X Y}\right)}
\]
where \(R_{1 n}\) is the input resistance, \(C_{1 n}\) is the input capacitance as specified in the data sheet and \(C_{E x y}\) is the external capacitance. For example, a \(C_{E x y}=33 \mathrm{pF}\) will reduce the amplifier bandwidth to 42 MHz with a single pole roll-off. The transfer curve is shown in Figure 11.
Single-ended to differential conversion is another useful application for the device. Impedance matching is easily accomplished by resistors connected in series with the outputs.

The NE5212 was designed using an advanced oxide-isolated bipolar process. This technology advantageously combines the required characteristics of low noise, large bandwidth, and relatively low cost, due to its high density. The under \(\$ 2.00\) quantity-price of the device, coupled with the capability of up to 300 MBaud date rates will lead to further cost-reduction of fiber-optic receivers. Due to its versatility, many non-fiber optic applications are also possible.

\section*{Reference:}
[1] Robert. G. Meyer, Robert. A. Blauschild: 'A Wide-Band Low-Noise Monolithic Transimpedance Amplifier. IEEE Journal of Solid-State Circuits, Vol. SC-21 No 4, DP 530-533, Aug. 1986.


\[
\begin{aligned}
& L=11.79 \mathrm{nH} \\
& C=4.715 \mathrm{PF} \\
& D=H P 5082-3001 \\
& \text { PIN OIODE }
\end{aligned}
\]

FIG. 4. MICROSTRIP TRANSFER SWITCH WITH TWO DIODES IN EACH PATH


b) RETURN LOSS

FIG. 5. RESULTS OF THE MICROSTRIP TRANSFER SWITCH WITH TWO DIODES IN EACH PATH

 Differantial or strigle anden operation with or whthout laverston is posstble Flqure 6 .

\section*{MATHEMATICS OF THE LINVILL STABILITY CRITERIAI}

\section*{by}

\section*{Bob Gunderson}

Member of Technisal Staff
Hughes Aircraft Company
8433 Fallbrook Avenue
Canoga Park, Ca. 91304

For the power transistor, the ' \(y\) ' parameters at various frequencies are known. The device input admittance and the output admittance are complex. The transistor may not be stable at some freguencies or loadings. The RF designer is interested in finding circuitry and loading which will produce stability. He looks first at the output. Finding this he then determines the input network. Fcr the mathematics to bs used the following circuit model will te used.


Figuse 1, ' \(\because\) ' Parameter Transistor Circuit

A technique the designer may use to aelect the the output circuit is the mathematics of Linvill. The output power from the device is described by a parabaloid of revolution. The power inptit to the device is described by an inclined surface, the input power plane. This inclined plane intersects the parabaloid of revolution. The slope and angles of orientation are dependent upon both device parameters and the output loading.


Figure 2, Power Input and Outpist Surfaces
The parabolic power surface of revolution rests on the \(\pm M\) plane. This LM plane is a Smith chart rotated 180 degrees. The axis of the paraboloid of revolution is perpendicular to the LM plane. The Intarsection of the LM plane and the paraboloid is a circle of unit vadius.

The center of the circle is at \(L=1\) and \(M=0\). Recapping, \(P_{0}\) and \(P_{i n}\) is represented in a three-dimensional coordinate system whose axes are \(L, M\), and \(P\) (power). The \(L \mathbb{N}\) plane represents the zero power cutput reference.


This varlable goln hf anplifler hoe lost than 1\% dislorion. 25 de ronge at 50 HHz


Figure 7


Performance date of the RF ollenuator of Figure 7.
Figure 70


Flgure 7b

\[
\begin{aligned}
P_{0} & =R_{e}\left(V_{2} I_{L}^{*}\right) \\
P_{0} & =\frac{L\left|Y_{21}\right|^{2}}{2 R_{e} Y_{22}}-\frac{\left(L^{2}+M^{2}\right)\left|Y_{21}\right|^{2}}{4 R_{e} Y_{22}}
\end{aligned}
\]

From the above equation the power is also zero if \(L=2\) and \(M=0\); or if \(L=1\) and \(M=1\). And also is if \(L=1\) and \(M=1\); and is if \(L=1\) and \(M=-1\). The result of the intersection of the paraboloid and the LM plane is a circle of unit radius in the \(L M\) plane. The center of the circle is at \(L=1, M=0\).


Figure 3, Sketch of Power Output as a Function of \(L\) and \(M\).


Figure 4, Sketch of Power Input as a Function of \(L\) and \(M\).

Consider a property of the \(L M\) plane following from the fart,
\[
v_{2}=-\frac{y_{21}}{y_{22}+Y_{L}}=-\frac{y_{2]}}{2 R_{e} y_{22}}(L+j M)
\]
and
\[
Y_{L}+Y_{22}=\frac{2 R_{e} Y_{22}}{L+j M}
\]

Any point in the \(L M\) plane represents an admittance whose value is related to \(Y_{L}+Y_{22}\). If \(Y_{22}\) of the active device is known then the load admittance \(Y_{L}\) can be calculated. The expression for \(Y_{L}+Y_{22}\) can be rationalized to give real and imaginary parts. Using the Smith chart overlay, it should be remembered that any immittance chosen from it is a sum, \(L_{L}\) and \(\mathbf{Y}_{\mathbf{2 2}}\). In finding \({ }^{\prime}{ }_{L}\) values, a conversion from the readings taken from the Smith chart must be done.


Vorector luned erystal oscillator with \(0.28 \%\) tuning range
Figure 9.


CONDUCTANCE READ FROM THE SMITH CHART
\[
g_{c}=\frac{\operatorname{Re}\left(Y_{L}\right)}{g_{22}}
\]

SUSCEPTANCE READ FROM THE SMITH CHART
\[
b_{c}=\frac{ \pm \operatorname{Im}\left(Y_{L}\right)}{g_{22}}
\]

These results will be used later after the Linvill charts are plotted.

The following are equations that will be used to prepare the Linvill chart.

GRADIENT LINE ANGLE,
\[
\theta=\tan ^{-1} \frac{I_{m}\left(y_{12} Y_{21}\right)}{-R_{e}\left(y_{12} Y_{21}\right)}
\]

STABILITY FACTOR, C
(Less than one, unconditionally stable)
\[
c \quad=\frac{\left|y_{12} y_{21}\right|}{2 g_{11} g_{22}-R_{e}\left(y_{12} y_{21}\right)}
\]

GAIN AT MAXIMUM POWER OUTPUT, -Goo
\[
G_{o O}=\frac{c}{2}\left|\frac{y_{21}}{y_{12}}\right|_{\left(I n ~ d B=10 \log G_{O O}\right)}
\]

MAXIMUM GAIN, _G MAX
\[
\begin{aligned}
& \text { (Available power gain) } \\
G_{M A X} & =K_{g} G_{o o} \\
K_{g} & =2\left[\frac{1-\sqrt{1-c^{2}}}{c^{2}}\right]
\end{aligned}
\]
gain circle data
gain ratio
\[
g=\frac{G}{G_{00}}
\]

DISTANCE TO CENTER OF GAIN CIRCLE, FROM LINVILL CHART CENTER,
ALONG GRADIENT LINE
\[
d=-g \frac{c}{2}
\]

\section*{RADIUS OF GAIN CIRCLE}
(Radius of Linvill chart is unity)
\(r=\sqrt{1-g+\frac{c_{g}{ }^{2}}{2}}\)

\section*{A Thermally Tuned VCO}

Albert Helfrick
Dowty RFL Industries, Inc.
Powerville Road
Boonton, NJ 07005

Electronic tuning of an oscillator is almost universally accomplished with a varactor diode. There are, however, some applications where the use of the varactor poses some problems. ne such example is a high power oscillator where the high voltage present in the oscillator tuned circuit causes either conduction of the diodes or diode breakdown. Likewise, a pulsed oscillator using a varactor diode can cause a transient frequency shift at turn-on. A high power or pulsed oscillator frequency can be controlled using heated ceramic capacitors without the problems of a varactor diode.

Figure 1 shows an oscillator using a pair of temperaturecompensating ceramic capacitors heated with a resistor for frequency control. Although the example circuit operates at a relatively low power level, the technique can be adapted to oscillators of practically any power level. For the demonstration circuit, two common \(N 750\) ceramic disc capacitors were used. The dipped insulation was removed from the capacitors using a file and a ceramic-based resistor was sandwiched between the two capacitors. Thermal heat sink compound was used to insure good thermal contact between the resistor and capacitors. The ceramic resistor was used because of the relatively high power dissipation
of this resistor for its small size. \(\lambda\) good source of flat ceramic resistors is the DIP or SIP resistance pack where all of the resistors can be placed in parallel.

Figure 2 shows the frequency-voltage and the frequency-time characteristics of the test oscillator. As suspected, the oscillator shows a significant time delay between the applied control voltage and the frequency change. This limits the applications for such an oscillator and precludes any applications requiring rapid frequency correction. An oscillator of this sort would be suited for the control of industrial heating equipment, where frequency control is necessary because of FCC requirements, but tolerances are loose. Another application is for radar transponders where a high power oscillator is pulsed but the frequency control is loose (0.38).

One of the significant disadvantages of the demonstration thermally-tuned oscillator is the use of a capacitor with a high temperature coefficient. Unless the temperature coefficient exactly compensates for the temperature variation of the oscillator inductor, the oscillator will be unstable with ambient temperature. Of course, the oscillator is to be used in an electronically stabilized system and the temperature instabilities will be corrected. However, the inherent instabilities subtract from the possible tuning range of the system. To achieve nominal operating frequency the capacitor must be adjusted to a temperature equal to or higher than the highest desired ambient temperature. This is not an impossible situlation, as it is often done in crystal ovens and temperature stabilized voltage references.
and Stability Factor, C
\begin{tabular}{|c|c|c|}
\hline Reg & value & trial mumeers \\
\hline 1 & \({ }^{11}\) & 17.2 \\
\hline 2 & \({ }_{11}\) & 11.6 \\
\hline 3 & \({ }_{1} 12\) & 0 \\
\hline 4 & \({ }_{12}\) & -0.64 \\
\hline 5 & \({ }_{21}\) & 32.2 \\
\hline 6 & \({ }^{61}\) & -61.1 \\
\hline 1 & 92 & 0.21 \\
\hline \({ }^{\circ}\) & \(\mathrm{B}_{22}\) & 1.89 \\
\hline - & \({ }^{2} \mathrm{res}\) ale & -40.38 \\
\hline . 0 & \({ }^{\text {b }}\) - \({ }^{\text {asule }}\) & -20.6 \\
\hline \({ }^{-1}\) & \(y_{12}{ }^{y_{21}}\) & 45.338 \\
\hline .2 & 0 & -27.03 \\
\hline . 3 & \(c\) & 0.9127 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LIME & KEYCODE & \multicolumn{2}{|l|}{KEYS} & VAUE \\
\hline 001 & 42,21,11 & P LEL & 1 & \\
\hline 002 & 153 & RCL & 3 & 912 \\
\hline 003 & 454 & RCL & 4 & \({ }^{b_{12}}\) \\
\hline 004 & 1225 & 1 & 1 & \({ }_{12}\) \\
\hline 005 & 45 5 & aCl & 5 & \({ }_{21}{ }_{2}\) \\
\hline 006 & 456 & RCl & 6 & \({ }^{81}\) \\
\hline 007 & 4225 & P & 1 & \(y_{21}\) \\
\hline 008 & 20 & & \% & \(y_{12}{ }^{\prime}{ }^{2} 1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LIME & KEYCOOE & KEV'S & value \\
\hline 009 & 49 & 570 9 & STORE \(\mathrm{gr}_{\mathrm{r}}\) \\
\hline 010 & 4230 & P Rep \({ }^{\text {la }}\) & \\
\hline 011 & 4.0 & STO . 0 & STORE Br \\
\hline 012 & 4230 & P Rez̧ Io & \\
\hline 013 & 431 & \(9 \rightarrow P\) & \(\left|y_{12} y_{21}\right|\) \\
\hline 014 & 4.1 & Sto . 1 & \\
\hline 015 & 43, 5, 8 & 9 CF 8 & QLEAR COMPLEX MODE \\
\hline 018 & 45.0 & RC. 0 & \(\operatorname{lo}\left(y_{12} y_{21}\right)\) \\
\hline 017 & 459 & RCa 9 & Re ( \(y_{12} y_{21}\) ) \\
\hline 016 & 18 & ars & -Re ( \(y_{12} y_{21}\) ) \\
\hline 019 & 10 & \(\div\) & Im ( \(y_{12} y_{21}\) ) \(/\)-Re \(\left(y_{12} y_{21}\right)\) \\
\hline 020 & 4325 & \(9 \mathrm{tan}^{-1}\) & \(\tan ^{-1}\left(\operatorname{Re}\left(y_{12} y_{21}\right) /-\operatorname{Re}\left(y_{12} y_{21}\right)\right.\) ) \\
\hline 021 & 4.2 & STO . 2 & - \\
\hline 022 & 2 & 2 & 2 \\
\hline 023 & & ma 1 & \({ }_{11} 1\) \\
\hline 024 & 20 & \(\chi\) & \({ }^{29} 11\) \\
\hline 025 & & nec 1 & 92 \\
\hline 026 & 20 & \(\chi\) & \({ }^{29} 11{ }^{92}\) \\
\hline 027 & 459 & Ra. 9 & Re ( \(y_{12} y_{21}\) ) \\
\hline 028 & 30 & - & \(2 g_{11} 9_{22}-h_{0}\left(y_{12} y_{21}\right)\) \\
\hline 029 & 45.1 & net . 1 & \(\left|y_{12} y_{21}\right|\) \\
\hline 030 & 34 & \(x{ }^{1}\) & \({ }^{29} 11{ }^{2} 22\) - \(\mathrm{Re}_{1}\left(y_{12} y_{21}\right)\) \\
\hline 031 & 10 & + & \(\left|y_{12} y_{21}\right| /\left(29_{11} 9_{22}\right.\) - \(\left.P_{0}\left(y_{12} y_{21}\right)\right)\) \\
\hline 032 & 4.3 & 5 50. 3 & C \\
\hline 033 & & 9 RTM & procren eno \\
\hline
\end{tabular}

As an example, if the capacitor were operated at a nominal temperature of 85 C for a maximum ambient of 70 C , the maximum temperature variation would be 15 degrees neqative and as much positive variation as the components would allow. For maximum frequency variation, the nominal operating temperature of the controlled capacitor would be midway between the maximum temperature that the heated capacitor would allow and the highest ambient temperature expected. The significant disadvantage of this is that there would be a "warm up" period in order to bring the temperature of the heated capacitor to the operating point. In the case of the demonstration oscillator, standard off-theshelf components were used which were relatively large and had a significant thermal inertia. Small geometry ceramic capacitors with integral heating elements could be fabricated to reduce the thermal inertia and improve the thermal coupling to reduce this problem to an acceptable level.

A solution to the warm-up problem is shown in Fiqure 3. In this example the oscillator tuned circuit is resonated with two capacitors. The capacitors have identical values and equal but opposite temperature coefficients. Therefore, the combination of the two temperature coefficients would theoretically be equal to zero.

In this example, each capacitor would be individually
heated, allowing the oscillator frequency to be increased by heating the negative coefficient capacitor or lowered by heating the positive coefficient capacitor.

Two advantages are available from this arrangement. First, the oscillator will be more ambient-stable as previously explained. Secondly, the tuning range of the oscillator would be twice that obtained with a single capacitor, as each capacitor could be heated from the ambient to the maximum temperature the capacitor would allow. In addition, the capacitors do not need to be preheated to a temperature above the ambient and thus there would be a saving of power. Since one capacitor would provide an upward variation of frequency while the second capacitor would provide a similar downward frequency variation, the total variation is twice what a single capacitor would supply.

From a practical standpoint, positive temperature capacitors are rare. A quick check of major capacitor manufacturer's literature indicated that only P100 temperature coefficient capacitors were available. In addition, there was no standard corresponding negative coefficient, the closest being N080 or N150. A parallel combination of equal P100 and N150, for example, will produce an equivalent temperature coefficient of N50. Since most inductors require a negative temperature coefficient capacitor for temperature stabilization, this was not considered as a significant deterrent.

The significant problem was the fact that the largest positive temperature coefficient of off-the-shelf capacitors was only 100 PPM/C. For many applications, much larger coefficients would be desired. ne manufacturer of ceramic capacitors was contacted to determine the range of positive temperature coeffi-

The preceding complex arithmetic program calculates both the stability factor and the gradient line angle by the Linvill technique. The HP 15 c has two parallel stacks for number manipulation. The first parallel stack contains the real part of the complex number; the second stack contains the imaginary part of the complex number. Once the complex numbers are loaded into the stack, the complex arithmetic follows as if you were carrying out ordinary arithmetic operations.

Between lines 002 and 007 the parameters for \(Y_{12}\) and \(Y_{21}\) are loaded into the stack. The complex product \(y_{12} y_{21}\) is taken at line 008. The real and imaginary parts of this product are stored in registers 9 and 0 The real and imaginary parts of \(Y_{12} Y_{21}\) are recalled, divided, and the gradient line angle, \& calculated. This is at lines 016 through 020. The factors for the calculation of the stability factor, \(C\) are recalled and operated on. This is in lines 022 through 031. Finally the result, \(C\) is stored in register . 3

CALCULATOR PROGRAM FOR THE GAIN AT MAXIMUM POWER OUTPUT, POO
This program gives \(G_{00}\) in \(d B\). This is the power level of the gain circle that passes through the \(L M\) plane at \(L=1\) and \(M=0\), (the center of the Smith chart). The values of the transistor ' \(y\) ' parameters must be in the memory stack; and program 'A' must have been run, so that ' \(C\) ' is stored in reg . 3

Maximum Power Output, \(P_{o o}\) program
\begin{tabular}{|c|c|c|c|}
\hline LIME & KEYCOOE & KEYS & value \\
\hline 112 & 42,21,14 & 1 Lit 0 & \\
\hline 173 & 455 & MC. 5 & \({ }_{21}\) \\
\hline 174 & 45 & nat 6 & \(b_{21}\) \\
\hline 175 & 4225 & 1 & hove to complex stack \\
\hline 176 & 453 & \({ }^{4} \mathrm{Cl} 3\) & \({ }_{1} 12\) \\
\hline 171 & 454 & nel 4 & \(b_{12}\) \\
\hline 178 & 4225 & 1 & nove to complex stack \\
\hline 179 & 10 & + & \(y_{31} / y_{12}\) \\
\hline 180 & 431 & \(\rightarrow\) ' & \(\left|y_{21} / y_{12}\right|\) \\
\hline 181 & 43, 5, 8 & CF & QEAR COMPLEX Fluiction \\
\hline 182 & 45,3 & ma. 3 & c \\
\hline 183 & 20 & \(\times\) & \\
\hline 184 & 2 & 2 & \\
\hline 185 & 10 & \(t\) & \[
-\frac{c}{2}\left|\frac{y_{21}}{y_{12}}\right|
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 180 & 4313 & 106 & \\
\hline 187 & 1 & 1 & \\
\hline 188 & 0 & 0 & \\
\hline 189 & 20 & \(x\) & \\
\hline 190 & 4332 & mm & \(6_{0}\) in \\
\hline
\end{tabular}
cient capacitors available. It was learned that positive temperature coefficient capacitors were available to \(P 600\) and higher. These were not generally off-the-shelf capacitors, but are practical capacitors

One practical application of the thermally-tuned oscillator is to stabilize a power oscillator for use in the ISM (industrial, scientific and medical) band. This frequency band is set aside by the FCC for RF heating, burglar alarms, and motion and position sensing. The nominal frequency of the ISM band is 915 MHz and the tolerance is \(+/-13 \mathrm{MHz}\), which is primarily to accomodate free-running oscillators. The tolerance of \(+/-1.4 \%\) is achievable with a careful design of a low power oscillator. There are good reasons to include additional frequency stability into the design of an ISM oscillator. Achieving the desired stability would be more difficult for higher power oscillators. In addition it may be desirable to purposely offset the frequency of an ISM oscillator so that more than one system could coexist at a single location. This offsetting would ebb the permissable tolerance and require a more stable oscillator.

Fiqure 4 shows a block diagram of a stabilized 915 MHz oscillator using an inexpensive color burst crystal and an inexpensive ECL divider. In this example, an old-design phase/frequency detector with separate pump-up and pump-down outputs is used. There are several LSI frequency synthesizer chips available with the separate outputs. To use a conventional singleended output phase detector, a window comparator would be required to provide the separate up and down control outputs.


Figure 1. 30 MHz Test oscillator circuit diagram.


\section*{TRANSISTOR ' \(Y\) ' PARAMETERS, FOR SAMPLE CALCULATION}
\(y_{11}=17.2+j 11.6 \mathrm{~m}\) mhos
\(y_{12}=0 \quad 30.64 \mathrm{~m}\) mhos
\(y_{21}=32.2-j 63.1 \mathrm{~m}\) mhos
\(y_{22}=0.27+j 1.89 \mathrm{~m}\) mhos

GRADIENT LINE ANGLE
\(\theta\) - \(\quad=\) 27.03 DEG
GAIN AT MAXIMUM POWER OUTPUT
\(G_{\infty}=17.03 \mathrm{~dB}\)
STABILITY FACTOR
\(\mathrm{C}=0.9127\)
MAXIMUM GAIN
\[
G_{M A X}=19.374 \mathrm{~dB}
\]

SAMPLE CALCULATION OF MAXIMUM GAIN
\[
\begin{aligned}
& K_{g}= 2\left[\frac{1-\sqrt{1}-c^{2}}{c^{2}}\right] \\
& \text { Where } c+0.9127 \\
& K_{g}= 1.41982 \\
& G_{M A X}= K_{g} G_{O O} \\
& \text { Where } G=50.5159 \\
& G_{M A X}= 1.41982 X 50.5159
\end{aligned}
\]
\(G_{\text {MAX }}=71.7234\)
\(G_{M A X}=10\) LOG 71.7234
\(G_{\text {MAX }_{\mathrm{dB}}}=18.5566 \mathrm{~dB}\)

This gain point on the paraboloid of revolution is the point where the input plane, so oriented, just touches the paraboloid.

\section*{CALCULATION OF GAIN CIRCLE DATA}
\begin{tabular}{|c|c|c|c|}
\hline GAIN RATIO 'g' & \[
\begin{gathered}
\text { GAIN RATIO } \\
\text { IN } \mathrm{DB} \\
\mathrm{~g}_{\mathrm{dB}} \text { ' }
\end{gathered}
\] & distance to CENTER 'd' & RADIUS OF GAIN CIRCLE 'r' \\
\hline 1.41982 & 1.522 DB & -0.6479 & . 00693 \\
\hline 1.25893 & 1.0 & -0.574546 & . 266783 \\
\hline 1.0 & 0 & -. 456376 & . 456376 \\
\hline 0.707 & -1.5 & -. 322658 & . 630165 \\
\hline
\end{tabular}

The distance is measured from the point \(L=1, M=0\) (The center of the Smith chart). A measurement from this central point to the edge of the chart is 3.57 inches. The above values of distance and radius are in relation to unity. These must be converted by a ratio of one to 3.57 This is so that the distances may be made directly on the Smith chart. Sample calculation,
\[
\frac{d_{\text {in }}}{3.57}=\frac{-.6479}{1}: d_{\text {inches }}=2.306 \mathrm{in}
\]



Figure 3. Oscillator configuration with positive and negative temperature coefficient capacitors.


Figure 4. Stabilized oscillator application.
distances in inches for direct transfer to the smith chart
\begin{tabular}{|c|c|c|c|c|}
\hline GAIN RATIO & \[
\underset{\mathrm{DB}}{\mathrm{GAIN} \text { RATIO }}
\] & \[
G_{00}+g_{d B}
\] & DISTAICE TO CENTER of gain CIRCLE IN INCHES & RADILS OF GAIN CIRCLE IN INCHES \\
\hline 1.41982 & 1.522 & 18.55 & -2.306 IN & 0.02467 \\
\hline 1.25893 & 1.0 & 18.03 & -2.04538 & 0.949747 \\
\hline 1.0 & 0 & 17.03 & -1.62470 & 1.62470 \\
\hline 0.707 & -1.5 & 15.53 & -1.14866 & 2.24339 \\
\hline
\end{tabular}

Remember, the gradient line angle, -27.03; and using these above values of distance and radius, draw the Linvill chart.


Figure 5, Linvill Chart

Computer-Aided Design of a Bipolar Transistor Amplifier

\section*{by}

Steven Hamilton, Judy Guild, and Krin Henderson EEsof, Inc.
31194 La Baya Drive
Westlake Village. CA 91362

\section*{Introduction}

To be competitive in the RF and microwave hardware industry, companies must develop sophisticated components and systems at competitive prices .with delivery schedules that tax the most experienced engineers. In response to growing market requirements many companies are turning to computer-aided engineering (CAE) and design (CAD) software to reduce design time and manufacturing costs.

Different design techniques and problens must be understood in order to be efficient with computer-aided design. The purpose of this paper is to present many of the necessary design techniques typically used in developing a new component. The design of a medium power bipolar transistor amplifier serves as an example of how to use these new computer-aided tools in designing modern hardware.

\section*{Design Outline}

The complete procedure used for this example will be as follows:
1) Device Modeling
2) Device Characterization
3) Synthesizing A Matching Network
4) Small Signal Simulation
5) Large Signal Sinulation
6) Fine Tuning the Design
7) Generating the Layout
8) Results
9) Conclusions

\section*{Device Modeling}

The first part of any active design begins with the DC characterization of the active device. For this example the device was a bipolar transistor, MRA0500.19L, manufactured by TRW. This device is a linear power transistor designed for Class " \(A\) " mediun power linear amplifiers with a useable frequency range from 100 to 500 GHz . The transistor is a multi-cell device with internal matching and produces 19 watts @ve- 19 volts and Ic-3.5amps when compressed 1 dB . The small signal gain is 8 dB ainimum.

In order to predict device performance, a suitable model must be used in conjunction with a nonlinear simulator program (mwSPICE) that can provide power measurement and S-parameters [1]. The Gummel-Poon model [2] for an NPN was used for this example. Intially. the I-V and C-V characteristics [3] were measured to obtain the parameters for the SUT model.

Table I lists the key parameters in evaluating the device. The performance of the mWSPICE circuit file listed in Figure A-1, Appendix A, was used for simulation. The default values of other model parameters (not listed) were used during the analysis. Further detalls concerning

THE INPUT MATCHING CIRCUIT
Previously defined ' \(y\) ' parameters, at 200 mHz
\(y_{11}=17.2+j 11.6 \mathrm{~m}\) mho
\(y_{12}=0-j 0.64 \mathrm{~m}\) mho
\(y_{21}=32.2-j 63.1 \mathrm{~m}\) mho
\(y_{22}=0.27+j 1.89 \mathrm{~m}\) mho
and \(Y_{L}\) has been selected, \(0.594-j 2.48\)
Substitute these values into the following equation,
\[
y_{i n}=y_{11}-\frac{y_{12} y_{21}}{y_{22}+y_{L}}
\]
( On the HP 15c, run GSB 1: Note \(y_{11}\) through \(y_{22}\) must be entered in registers 1 through \(8 . Y_{L}\) must be in reg. 9 \& . 0 )


Figure 6, Input Matching Network
A matching circuit is developed by starting with the admittance
\(X_{\text {in }}\). and working leftwards to obtain a 50 ohm termination. First the input admittance, \(37.97+j 49.6 \mathrm{~m}\) mho is not a normalized admittance. It must be divided through by a reciprocal 50 ohms.

This is equivalent to a division by \(20 \times 10^{-3}\). The normalized value is \(1.898+j 2.482 \quad\) This normalized admittance can now be placed directly on the Smith chart. The normalized impedance and admittance coordinates Smith chart is best used here. The impedance values are on the orange lines; and the admittance values are on the green lines. looking through from the green lines to the orange, transforms from admittance to impedance. Move counter-clockwise from -j 0.255, along a constant impedance circle, and arrive at \(-j 0.395\) on the normalized 50 ohm circle. The difference of these two gives the normalized reactance the input impedance must first see. ( \(-\mathrm{j} 0.395-(-j 0.255)=-j 0.14\) It is normalized, so it must be multiplied by 50 to obtain the reactance.
\[
\begin{aligned}
&-j 0.14 \\
& \frac{-j 7.0}{-j 70} \\
& x_{c}=-7.0= \frac{1}{2 \pi \mathrm{fC}}: c=\frac{1}{7.0\left(2 \times 3.14 \times 200 \times 10^{6}\right)} \\
& c=113.68 \mathrm{pF}
\end{aligned}
\]

The impedance of the circuit is at this point parallel to the input impedance. Therefore conversion is now made to admittance, the areell lines.

Table I. Key BIT Model Parameters.
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Description & \multicolumn{2}{|l|}{Value} \\
\hline IS & Transport Saturation Current & 1.5E-3 & Amp \\
\hline BF & Maximum Foward Beta & 85 & \\
\hline VAF & Forward Early Voltage & 52 & volt \\
\hline IKF & Beta Knee Current & 80 & Asp \\
\hline ISE & Base Emitter Leakage Current & 4E.5 & Amp \\
\hline NE & Base Enitter Leakage Coefficient & 1.35 & \\
\hline VAR & Reverse Early Voltage & 6 & Volt \\
\hline RB & Zero Blas Base Resistance & 0.08 & Ohms \\
\hline RE & Emitter Resistance & 0.115 & Ohms \\
\hline RC & Collector Resistance & 0.35 & Ohms \\
\hline GIE & Base Enitter Capacitance & 200p & Farad \\
\hline VJE & Base Enitter Potential & 0.20 & Volt \\
\hline MJE & Base Emitter Coefficient & 3.5 & \\
\hline TF & Forward Transit Time & 115p & Sec \\
\hline XTF & TF Bias Coefficient & 3.5 & \\
\hline VTF & TF Vbc Coefficient & 3.0 & Volt \\
\hline ITF & TF High Current Parameter & 4.5 & Amp \\
\hline GJC & Base Collector Capacitance & 115p & Farad \\
\hline vJc & Base Collector Potential & 0.22 & Volt \\
\hline MLC & Base Collector Coefficient & 0.185 & \\
\hline
\end{tabular}
device model characterization will soon appear in an article in RE Design Magazine. Table II provides a description of key features of the mwSPICE circuit file.

Table II. Circuit File Summary of Figure A-1.
Circuit Data/Block Content
subcircuit "TRAN" \begin{tabular}{l} 
Describes all of the bond lead inductances and \\
all internal parasitics associated with the \\
packaged device.
\end{tabular}
subcircuit "NET"
MODEL block
Supplies the biases to "TRAN."

\section*{Device Characterization}

Using the aforementioned circuit file, a simulation of the primary characteristics, I-V and S-parameters, was performed. In addition, to ensure that the mwSPICE model predicted the correct device performance, a comparison was aade between the measured and awSPICE-predicted I-V and S-parameter data over the design band of 170 to 230 MHz .

Figure 1 shows the comparison of the measured and simulated I-V characteristics while Table III provides the S-parameter comparison of the packaged device. As seen in Figure 1 and Table III, the theoretical and measured data agree quite well

We are at the point, \(1+j 2.05\) adnittance. Moving along the constant admittance circle to one, takes us in a negative admittance direction. Therefore the value is inductive. This distance is
\[
\begin{array}{r}
\text {-j } 2.05 \quad \text { Multiply by } 20 \times 10^{-3} \text { (reciprocal } 50 \text { ohms). } \\
2.05 \times 20 \times 10^{-3}=41.0 \times 10^{-3} \text { mho }
\end{array}
\]

Take the reciprocal to get it into a reactance value (reciprocal of mho).
\(X_{L}=24.39\)
\(X_{L}=2 \pi f L\)
\(L=\frac{24.39}{2 \times 3.14 \times 200 \times 10^{6}}\)


Admittance, unbracketed
Impedance, bracketed

\section*{CALCULATOR PROGRAM FOR INPUT IMPEDANCE}
\[
Y_{\text {in }}=y_{11}-\frac{Y_{12} Y_{21}}{Y_{22}+Y_{L}}
\]
(equation obtained when the ' \(Y\) ' parameter model was first defined.)
To run - GSB 1; (to go to a line GTO CHS 191)
(Note this program will eliminate any previously calculated values of a- and \(C\) obtained in program 'A'.)
\begin{tabular}{|c|c|c|}
\hline Eta & PAPMEIER & \\
\hline 1 & \({ }^{8 \varepsilon_{1}}{ }_{\text {r11 }}\) & 17.2 \\
\hline 2 & \({ }^{14}{ }^{1 / 11}\) & 11.6 \\
\hline 3 & \({ }^{8+12}\) & 0 \\
\hline 4 & \(\ln \mathrm{r}_{12}\) & -0.64 \\
\hline 5 & \(\mathrm{Paz}_{\mathrm{Y} 21}\) & 32.2 \\
\hline 6 & \(\underline{\ln r_{21}}\) & -63.1 \\
\hline 7 &  & 0.27 \\
\hline 8 & \(\ln ^{2} \mathrm{Y}_{2}\) & 1.89 \\
\hline 9 &  & 0.54 \\
\hline . 0 & \({ }^{\ln \gamma_{L}}\) & -2.48 \\
\hline . 1 & PE (Y) \(\left.\chi_{L}+Y_{L}\right)\) & 0.864 \\
\hline . 2 & \(\ln \left(\gamma_{2}+Y_{L}\right)\) & -0. 990 \\
\hline . 3 &  & 31.96 \\
\hline . 4 & \({ }^{\ln } \mathrm{r}_{\text {r }}\) & 29.634 \\
\hline
\end{tabular}


Figure 1(a). Measured I-V curves


Figure 1(b). mwSPICE-produced I-V curves

Table III. Comparison of Measured and Theoretical S-Parameters.

\section*{Measured S-Parameters}

MEASURED BY A NETWORK ANALYZER
VDS-19V, IDS-3.5A
GHZ S MA R 50
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline frea & M(S11) & A(sil) & m(S21) & A(\$21) & M(S12) & A(S12) & M(S22) & A(s22) \\
\hline 170.000 & 0.992 & 175.197 & 0.699 & 69.035 & 0.013 & 48.459 & 0.814 & 174.903 \\
\hline 180.000 & 0.992 & 174.885 & 0.678 & 65.900 & 0.013 & 47.980 & 0.813 & 175.069 \\
\hline 190.000 & 0.992 & 174.573 & 0.653 & 62.764 & 0.013 & 47.504 & 0.813 & 175.235 \\
\hline 200.000 & 0.992 & 174.261 & 0.630 & 59.628 & 0.014 & 47.028 & 0.813 & 175.401 \\
\hline 210.000 & 0.991 & 173.978 & 0.614 & 37.017 & 0.014 & 46.477 & 0.814 & 175.401 \\
\hline 220.000 & 0.990 & 173.696 & 0.598 & 54.405 & 0.014 & 45.925 & 0.816 & 175.401 \\
\hline 230.000 & 0.989 & 173.413 & 0.583 & 51.794 & 0.014 & 45.374 & 0.817 & 175.401 \\
\hline
\end{tabular}
mwSPICE-produced S-Parameters


CALCULATOR PROGRAM, FOR INPUT IMPEDANCE (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline 191 & 42,21. 1 & L. 1 & & \multirow[b]{2}{*}{0.27} \\
\hline 198 & 457 & na. 7 & \({ }^{9} n\) & \\
\hline 193 & 458 & ma. 8 & \({ }^{6} \mathrm{n}\) & 1.89 \\
\hline 194 & 4225 & \(f 1\) & \({ }^{5} 2\) & 0.21 \\
\hline 195 & 459 & Ra. 9 & \({ }^{G} Y\) O & 0.594 \\
\hline 196 & 45.0 & RCL 0 & \({ }^{r} r_{1}\) & -2.46 \\
\hline 197 & 4225 & \(f 1\) & \(Y_{1} 0\) & \\
\hline 158 & 40 & + & \(Y_{22}+Y_{1}{ }^{0}\) & \[
0.864
\] \\
\hline 198 & 4.1 & sto . 1 & PR \(\left(r_{2 Q^{\prime}}+Y_{1}\right){ }^{1}\) & 0.864 \\
\hline 200 & 4230 &  & & -0.59 \\
\hline 211 & 4.2 & ST0. 2 & \(\mathrm{Im}\left(\mathrm{r}_{2}+Y_{1}\right.\) & -0.59 \\
\hline 212 & 4230 &  & \(y_{22}+r_{1}{ }_{0}\) & 0.864 \\
\hline 231 & 453 & nal 3 & 912 & 0 \\
\hline 204 & 454 & RC. 4 & \(\mathrm{O}_{12}\) & -0.64 \\
\hline 205 & 422 & \(f 1\) & \(\mathrm{y}_{12}\) & 0 \\
\hline 206 & 455 & Ra. 5 & 21 & 32.2 \\
\hline 207 & 456 & RC. 6 & \({ }^{2} 21\) & -63.1 \\
\hline 208 & 422 & ! & \(y_{21}\) & 32.2 \\
\hline 208 & 20 & \(X\) & \(\mathrm{Y}_{12}{ }^{\mathrm{Y}} 21\) & -40.38-520.608 \\
\hline 210 & 45.1 & RCO. 1 & PIE \(\left(Y_{n 2}+Y_{l}\right)\) & ) 0.864 \\
\hline 211 & 45.2 & RC. . 2 & \(\operatorname{lm}\left(r_{2}+Y_{L}\right)\) & ) -0.59 \\
\hline 212 & 4225 & \(f 1\) & \(r_{n}+Y_{1}\) & 0.864 \\
\hline 213 & 10 & \(\div\) & \(y_{12} y_{12} /\left(y_{22}+r\right.\) & \(\left.r_{4}\right)^{-20.7-138.0}\) \\
\hline 214 & 451 & no. 1 & \({ }^{9} 11\) & 17.2 \\
\hline 215 & 452 & nC. 2 & \({ }^{11}\) & 11.6 \\
\hline 26 & 4225 & \(f 1\) & \(y_{11}\) & 117.2 \\
\hline 21 & 34 & \(X \geq Y\) & \(y_{12} y_{21} /\left(y_{22}+r\right.\) & ( \({ }^{\prime}\) ) -20.7-138.c| \\
\hline 218 & 30 & - & & 37.9+149.63 \\
\hline 219 & 4.3 & 5 STO 3 & Re Yio & 37.968 \\
\hline 20 & 4230 & \(f \mathrm{Re} \geqslant \mathrm{lm}\) & & 49.634 \\
\hline 21 & 44.4 & ST0 . 4 & \(1 \mathrm{~m} \mathrm{r}_{1 \mathrm{n}}\) & 49.6340 \\
\hline 22 & 4230 & f PE®l19 & \(r_{10}\) & 17.96* 149.634 \\
\hline 23 & 4352 & RTM & & \\
\hline
\end{tabular}

\section*{THE CIRCUIT}


Figure 8 , Transistor Matching circuit

It is assumed that the output circuits can be developed with
the normalized impedance and admittance Smith chart. This is the chart used to develop the input circuits.

\section*{ynthesizing A Matching Network}

With the DC/AC characterization verified, we were then ready to synthesize, in E-Syn [4], an input and output matching network based on the \(S\). parameter file that was generated from the mwSPICE model. For a power design, the output was matched for maximum output power while the input was designed for the best match

The input matching network utilized Chebyshev bandpass networks. Several circuits were provided during synthesis which satisfied the matching requirements. However, the Figure A-2 circuit was selected because it provided a DC block for the base of the B.JT

The results of a power contour analysis revealed that \(\mathbf{S} 22\) was the best match for maximum power; this occurred due to internal matching by the manufacturer. For this example, the nominal output impedance of the device was used as the load to be matched in E-Syn. The output circuit was then synthesized using a Chebyshev transformer (Figure A.3) and matched to an utput impedance of 5.20 hms

\section*{Small Signal Simulation}

The two networks synthesized in E-Syn were incorporated into the original circuit file (Figure A-1) to create the Figure A-4 circuit file. Figure A-4 is a Touchstone/mwSPICE circuit file modified to include S-parameters of the device (S2PA) and allow for imnediate cross-checking of return loss and gain in both the linear (Touchstone) and nonlinear (mwSPICE) simulators

The Touchstone simulation of the complete circuit (Figure 2) shows that the amplifier has a maximus input and output return loss of -7.6 dB and the gain varies from 14.5 dB at the low end of the band to 12.8 dB at the high end. A tabular listing of the Figure 2 circuit file. Table IV indicates that the circuit is unconditionally stable for this simulation.


Figure 2. Small signal response in Touchstone
Table IV. Small Signal Results.
\begin{tabular}{lcccr}
\multicolumn{6}{c}{ Table IV. Small Signal Results. } \\
\hline FREQ.MHZ & DB[S21] & DB[S11] \\
& NET & NET & \begin{tabular}{l} 
DB[S22] \\
NET
\end{tabular} & \begin{tabular}{r} 
K \\
NET
\end{tabular} \\
170.000 & 14.224 & -8.331 & -7.660 & 1.158 \\
175.000 & 14.389 & -9.598 & -8.405 & 1.158 \\
180.000 & 14.455 & -10.619 & -9.227 & 1.159 \\
185.000 & 14.337 & -11.594 & -9.867 & 1.163 \\
190.000 & 14.186 & -12.648 & -10.421 & 1.168 \\
195.000 & 14.042 & -13.890 & -10.816 & 1.170 \\
200.000 & 13.871 & -15.367 & -11.015 & 1.172 \\
205.000 & 13.820 & -16.647 & -11.288 & 1.182 \\
210.000 & 13.735 & -17.609 & -11.348 & 1.191 \\
215.000 & 13.517 & -19.407 & -10.864 & 1.191 \\
220.000 & 13.285 & -21.900 & -10.259 & 1.191 \\
225000 & 13.050 & -26.221 & -9.548 & 1.191 \\
230.000 & 12.801 & -37.245 & -8.795 & 1.191 \\
\hline
\end{tabular}
\[
\begin{aligned}
& r_{11}=\frac{\left(1+s_{22}\right)\left(1-s_{11}\right)+s_{12} s_{21}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}} \\
& r_{12}=\frac{-2 s_{12}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}} \\
& r_{21}=\frac{-2 s_{21}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}} \\
& r_{22}=\frac{\left(1+s_{11}\right)\left(1-s_{22}\right)+s_{12} s_{21}}{\left(1+s_{22}\right)\left(1+s_{11}\right)-s_{12} s_{21}}
\end{aligned}
\]

With these equations, parameters measured in 's' parameters can be converted to the admittance 'y' parameters.

CALCULATOR PROGRAM, HP15C, PARAMETER CONVERSION 's' TO ' y '
\begin{tabular}{|l|ll|l|l|}
\hline 0 & \(S_{11}\) & \(R\) & .13548 & .2395 \\
\hline 1 & \(S_{11}\) & 1 & -.54337 & .9606 \\
\hline 2 & \(S_{12}\) & \(R\) & .0064279 & .001730 \\
\hline 3 & \(S_{12}\) & 1 & .00766043 & -.001066 \\
\hline 4 & \(S_{21}\) & \(R\) & -1.3339 & -.06387 \\
\hline 5 & \(S_{21}\) & 1 & 3.6648 & 3.049 \\
\hline 6 & \(S_{22}\) & \(R\) & .60211 & .06957 \\
\hline 7 & \(S_{22}\) & 1 & -.37624 & .884 \\
\hline 8 & DENO & \(R\) & 1.65 & \(\left(1+s_{11}\right)\left(1+S_{22}\right)-s_{12} S_{21}(R)\) \\
\hline 9 & DENO. 1 & -1.3 & \\
\hline .0 & \(S_{12} S_{21}\) & \(R\) & \(-36.648 \times 10^{-3}\) & \\
\hline .1 & \(S_{12} S_{21}\) & 1 & \(13.339 \times 10^{-3}\) & \\
\hline
\end{tabular}
's' TO 'Y' CONVERSION, continued
\begin{tabular}{|c|c|c|}
\hline 01 & 42,21,15 & Lex E \\
\hline 072 & 452 & mal 2 \\
\hline 073 & 453 & Ma 3 \\
\hline 074 & 4225 & \(f 1\) \\
\hline 075 & 454 & ma 4 \\
\hline C76 & 455 & RCL 5 \\
\hline 077 & 4225 & \(f 1\). \\
\hline 078 & 20 & \(\chi\) \\
\hline 079 & 44.0 & 3to . 0 \\
\hline 080 & 4230 &  \\
\hline 081 & 44.1 & 350.1 \\
\hline 082 & 1 & 1 \\
\hline 083 & 450 & RCL 0 \\
\hline 084 & 451 & nCL 1 \\
\hline 085 & 4225 & fI \\
\hline 006 & 40 & + \\
\hline 087 & 1 & 1 \\
\hline 088 & 456 & RCL 6 \\
\hline 089 & 457 & act 7 \\
\hline 090 & 4225 & f1 \\
\hline 091 & 40 & + \\
\hline 092 & 20 & \(x\) \\
\hline 093 & 45.0 & RCL . 0 \\
\hline 004 & 45.1 & RCL . 1 \\
\hline 055 & 4225 & +1 \\
\hline 09 E & 30 & - \\
\hline 097 & 448 & ST0 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 098 & 4230 & frezim & \\
\hline C99 & 449 & Sto 9 & \\
\hline 100 & 1230 & R fI & \\
\hline 101 & 1 & 1 & \\
\hline 102 & 456 & RCL 6 & \\
\hline 103 & 457 & ncl i & \\
\hline 104 & 4225 & fi & \(S_{22}\) \\
\hline 105 & 40 & + & \((1+522)\) \\
\hline 106 & 1 & 1 & \\
\hline 107 & 450 & RCL 0 & \\
\hline 108 & 451 & RCL 1 & \\
\hline 109 & 4225 & \(f 1\) & \\
\hline 110 & 30 & - & \\
\hline 111 & 20 & \(\chi\) & \\
\hline 112 & 45.0 & RCL . 0 & \(\mathrm{S}_{12} \mathrm{~S}_{21}\) \\
\hline 113 & 45.1 & RCL . 1 & \\
\hline 114 & 4225 & fl & \\
\hline 115 & 40 & + & \\
\hline 116 & 458 & RCL 8 & \\
\hline 117 & 459 & RCL 9 & \\
\hline 118 & 4225 & \(f 1\) & \\
\hline 119 & 10 & \(\div\) & \\
\hline 120 & 44.2 & sto . 2 & \\
\hline 121. & 4230 & fle Flm & \\
\hline 122 & 44.3 & 570.3 & \\
\hline 123 & 2 & 2 & \\
\hline 124 & 16 & CHs & \\
\hline 125 & 452 & RCL 2 & \\
\hline
\end{tabular}

\section*{Large Signal Simulation}
mwSPICE was then used in conjunction with the circuit file (Figure A-4) to to simulate the large signal performance of the complete circuit. An input power level of 1 watt ( +30 dBa ) was used during the simulation because the device was designed for a particular application. Figure 3 shows the simulated output power and gain vs. input power.

At the 1 -watt drive level, the device response was in the linear region; therefore, both the linear and nonlinear simulators should have yielded the same results. This was verified by comparing the graphs of Figures 2 and 4.


Figure 3. Output power and gain vs. input power response in awSPICE.


Figure 4. Return loss and gain vs. frequency response in mwSPICE.

The results of the mwSPICE Fourier analysis (Table V) then indicated that the second harmonic had the highest level at -31 dBc .

Table V. mwSPICE-Produced Fourier Analysis of Circuit.
\begin{tabular}{ccccccc}
\hline \multicolumn{2}{c}{\begin{tabular}{l} 
DC COMPONENT \\
HARMONIC \\
NO
\end{tabular}} & \begin{tabular}{c} 
FREQUENCY \\
(HZ)
\end{tabular} & \begin{tabular}{c} 
FOURIER \\
COMPONENT
\end{tabular} & \begin{tabular}{c} 
NORMALIZED \\
COMPONENT
\end{tabular} & \begin{tabular}{c} 
PHASE \\
(DEG)
\end{tabular} & \begin{tabular}{c} 
NORMALIZED \\
PHASE (DEG)
\end{tabular} \\
\hline 1 & \(2.300 \mathrm{D}+08\) & \(1.779 \mathrm{D}+01\) & 1.000000 & -29.160 & .000 \\
2 & \(4.600 \mathrm{D}+08\) & \(5.108 \mathrm{D}-01\) & .028709 & -119.318 & -90.158 \\
3 & \(6.900 \mathrm{D}+08\) & 1.229 D .01 & .006910 & -55.691 & -26.531 \\
4 & \(9.200 \mathrm{D}+08\) & 5.701 D .02 & .003204 & -12.316 & 16.844 \\
5 & \(1.150 \mathrm{D}+09\) & 3.966 D .02 & .002229 & 1.091 & 30.251 \\
6 & \(1.380 \mathrm{D}+09\) & 3.140 D .02 & .001765 & 2.539 & 31.700 \\
\hline
\end{tabular}
' TO 'y' CONVERSION, continued
\begin{tabular}{|c|c|c|}
\hline 126 & 453 & RCL 3 \\
\hline 127 & 4225 & \(f 1\) \\
\hline 128 & 20 & X \\
\hline 129 & 458 & ACL 8 \\
\hline 130 & 459 & RCL 9 \\
\hline 131 & \(42 \quad 25\) & I \\
\hline 132 & 10 & \(\dagger\) \\
\hline 133 & 44.0 & ST0. 4 \\
\hline 134 & \(42 \quad 30\) & \(R 1\) \\
\hline 135 & 44.5 & \$70. 5 \\
\hline 136 & 2 & 2 \\
\hline 137 & 16 & CHS \\
\hline 138 & \(45 \quad 4\) & 8CL 4 \\
\hline 139 & \(45 \quad 5\) & RCL 5 \\
\hline 140 & 4225 & 1 \\
\hline 141 & 20 & X \\
\hline 142 & 458 & hac 8 \\
\hline 143 & 45 9 & RCL 9 \\
\hline 144 & \(42 \quad 25\) & 1 \\
\hline 145 & 10 & \(\div\) \\
\hline 146 & 44.6 & ST0. 6 \\
\hline 147 & 4230 & R 1 \\
\hline 148 & 44.7 & 9T0. 7 \\
\hline 149 & 1 & 1 \\
\hline 150 & 450 & RCL 0 \\
\hline 151 & 451 & RCL 1 \\
\hline
\end{tabular}


Figure 9, Block Diagram of a Typical 's' Parameter Measurement system


\section*{Fine Tuning the Design}

Next, the variables were tweeked using the tune mode in Touchstone to achieve a flatter gain response. In addition, paraneters to generate the layout were added to the circuit file, which resulted in Figure A-5

The nodified circuit file design was cross-checked in mwSPICE. The results (Tables VI and VII and Figures 5 and 6) demonstrated close agreement between the programs. The mwSPICE gain response was 1 dB less than the Touchstone response due to bias circuitry contained in the SPICEOUT data block which was ignored by Touchstone but had a loading affect on mwSPICE performance.

Table VI. Touchstone Tabular Results of the Final Circuit Design.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FREQ-MHZ} & DB[S21] & \(\overline{\text { DB }}\) [S11] & DB[S22] & K \\
\hline & NET & NET & NET & NET \\
\hline 170.000 & 11.292 & -6.835 & -2.235 & 1.158 \\
\hline 180.000 & 12.001 & -12.127 & -2.430 & 1.159 \\
\hline 190.000 & 11.891 & -16.194 & -3.092 & 1.168 \\
\hline 200.000 & 11.737 & -19.846 & -3.737 & 1.172 \\
\hline 210.000 & 11.846 & -21.765 & -4.264 & 1.191 \\
\hline 220.000 & 11.613 & -20.603 & -4.292 & 1.191 \\
\hline 230.000 & 11.225 & -14.417 & -4.110 & 1.192 \\
\hline
\end{tabular}

Table VII. mwSPICE Tabular Results of the Final Circuit Design.
\begin{tabular}{cclcc}
\hline \begin{tabular}{c} 
FREQ \\
MHZ
\end{tabular} & \begin{tabular}{l} 
INPUT \\
POWER (dBn)
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
POWER (dBm)
\end{tabular} & \begin{tabular}{c} 
GAIN \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
RLOSS \\
(dB)
\end{tabular} \\
170.00 & 30.00 & 40.08 & 10.089 & -7.60 \\
180.00 & 30.00 & 40.88 & 10.88 & -12.80 \\
190.00 & 30.00 & 41.16 & 11.16 & -17.51 \\
200.00 & 30.00 & 4.08 & 11.08 & -18.13 \\
210.00 & 30.00 & 40.79 & 10.79 & -20.27 \\
220.00 & 30.00 & 40.41 & 10.41 & -23.56 \\
230.00 & 30.00 & 39.98 & 9.97 & -16.48 \\
\hline
\end{tabular}

Figure 5. Final circuit file gain response in Touchstone


Figure 6. Final circuit file gain response in the mwSPICE


Figure 10. Block Diagram of a Typical 's' Parameter Measurement system

\section*{REFERENCES:}
1) "The Design of Tetrode Transistor Amplifiers" J. G. Linvill L. G. Schimpf, Bell System Technical Journal, Vol 35, July 1956, pages 813-840
2) Application Note 77-1, Hewlett Packard, pages 2-4

\section*{Generating the Layout}

A circuit layout was then generated by the CAD drawing progran MiCAD [6] and transformed by the postprocessing program MICaask [7] to drive a laser photoplotter .. thus creating the mask for manufacturing the circuit.

The layout modification does not interfere with the design analysis .. MiCAD only reads the necessary physical description while the simulators Touchstone and mwSPICE only read those portions of the circuit file required for a particular simulation

To add microstrip lines for all lumped elements, in MiCAD we added PADI statements which set up transmission lines. their lengths, and the gap desired between then. The PARA statements simply identify parasitics which are to be ignored by MICAD in the layout. Allowing a number of layouts and "mapping" of repeat components and parts to different drawings, MiCAD files were set up as follows:

Layer 0: Used the autoprocessed file input fron Figure A-5 to create
the \(1: 1\) mask drawing file. Text, ground pads, and bias the \(1: 1\) uask drawing file. Text, ground pads, and bi circuitry were added without using the circuit file.
Layer 1: Held the corner narkers and alignment markers.
Layer 2: Held the substrate etched drawing with dimensions and Layer 1 markers copied to it

Layer 3: Held the transistor outline which was copied into the necessary locations on Layer 0 as needed.

Layer 4: Provided the assembly drawing.

The completed mask layout is shown in Figure 7 and the associated assembly drawing appears in Figure 8.


Figure 7. Amplifier mask layout generated by MiCAD.


Figure 8. Amplifier assembly drawing generated by MiCAD.

\section*{The Results}

The final design was then built and tested on a scalar network analyzer. The schematic for the final amplifier design is shown in Figure 9.


Figure 9. The final bipolar transistor amplifier design.

The measured results (Figure 10) confirm the accuracy of the circuit design illustrated in the mwSPICE response (Figure 11). Although the dip in the return loss for the measured response was at a lower frequency than predicted and the gain was slightly lower than predicted, the nature of both responses was the same.

The device used in the tost amplifier was selected from a group of 10 devices used during the device modeling procedure. Since the parameters of the 10 devices were averaged and then used in the circuit file, any single device would not provide a measured response identical to the predicted response. However, if all 10 devices had been rotated in the test amplifier to generate a measured average response, the measured and predicted responses would have been identical.


Figure 10. Measured gain response of the actual circuit.


Figure 11. mwSPICE circuit file response.

Basic MODAMPm MMIC Circull Techniques
By william Mueller
Avantek, Inc.
Santa Clara, Calliornia

Introduclion and MODAMPM MMIC Structure
This paper describes Avantek's MSA (Monolithic Silicon Amplifier) series MODAMP'* silicon bipolar Monolithic Microwave Integrated Circuits (MMICs), intended for use as
general purpose 50 ohm gain blocks. Their single chip general purpose 50 ohm gain blocks. Their single chip uniformity. The waler fabrication process uses nitride seli alignment lor precise registration, ion implantation lor precise doping control, and both gold metalization and nitride the designer to select for approprialte gain, power, noise, an requency chacteristics. Packaging options, ranging from nexpensive plastics to high reliabilily, hermetically seate eramic microstrip.
The ineernal structure of the MODAMPIL MMC is a Deringion onnected pair of transistors with resistive leedback and shown in Fig. 1 . Since \(\mathbf{S}_{11}\) and \(\mathbf{S}_{2 z}\) are set primartiy b resislive divider networks, they remein rolatively constann ove
 adjusting the base vollage of Q 1) hetps desensitize the design o variations in actwe device parameters. A "bleeder" resisto allached to the emitter of Q1 decouples the quiescent bias current of Q1 would necessarily equal the base current of a2). \(\mathrm{A}_{\mathrm{c}}\) also serves a leedback function. As the transistors draw more curren, the voliage drop across \(\mathrm{A}_{\mathrm{C}}\) will decreas.


Figure t. General MOOAMP' sehematic.
Since device \(\beta\) (and, therefore, collecior current, given a fixed bias) tends to incrosise with tomperature, \(\mathrm{A}_{\mathrm{C}}\) atso sorves as a
MODAMP
M'
MMICs,
\(\mathrm{A}_{\mathrm{c}}\) is an in internal etement whose value nay be a solectable option; on others it must be added as an external component. MODAMPru MMMCs containing internal \(\mathrm{Pc}_{\mathrm{C}}\) "s have dash sutixes beginning with " 11 ", e.9.
MSA-0235-11. Units without an internal colloctor resiator have dash sulfixes beginning with " 2 " or have no dash suffix. Since the internal resistive networks prematch both inout and Cutput to 50 ohms, MODAMP'0 MMICs are particularty masy o design with. To design an amplifien, all that's needed is
a 50 ohm microstrip line, blocking capacilors. and some very imple bias circuitry. Nonetheless, because MODAMP MMICs are high irequency dovices, there are some basic construction rules that should be lollowed when using them.


Figure 2. Microstrip structure.

\section*{strplline Structures}

Fig. 2 shows a lypical microstrip structure. Line impedances are determined by strip width (w), boerd dielectric material \(\left.e_{1}\right)\), and diefectric thickness (h). Since the impedances of ohm system, microstrip lines shomatched to ope as close to 50 a 50 chm systom, microstrip lines should be as close to 50 ohms of 50 ohm line for some common board materials are shown in Table 1. Operation in systems with characieristic impedances other than 50 othms is possibte with somewhat MMICs perlorm satisfactority in 75 ohm systems wilhout additional impodance matching.

\section*{soord Material solection}

A board material should be selected that is appropriate for the intended irequency of operation. Although G10 (epoxyalass board) is an sccesptable low cose choice for smalh signal, (uw requency applications, inconsisistencies in the dielectric above 500 MHz , or with low impedance power atages builh on the same board. PTFE woven-glass has much more
consistent dielectric characteristics and pertorms well to consistent dielectric characleristics, and pertorms well 10 requencies in excess of 2 GHz . 11 is also a fairly rugged
naterial that can tolerate substantial rework, and is not particularty sensitive to heat or humidity.
Duroid is the favored material of many microwave designers because of its high dielectric consistency and low dielectric arsapation. Note that 50 ohm line on . 015 " RT/duroid- 5870 is a particularly good match to the lead width of the 70 mil combination. RT/duroid is a somewhat fragite material-it crushes fairty easily, and glues do not adhere well to its substrate so thin metalization patterns are subiect to lifting abused with repeated rework. Some versions can also be with variations in humidity. Care should be taken when working with this malerial.

Tabte 1 . Line widthe for 50 ohm line for various board materials.
\begin{tabular}{|c|c|c|c|c|}
\hline Board Material & \(\epsilon\) & Thickness & whtor 5008 & w for 50, \\
\hline RT/Durotd 5870 & 2.3 & .015* & 2.90 & .044" \\
\hline PTFE-Woven Glass Fiber (Typ.) & 2.55 & \[
\begin{aligned}
& .010^{\circ \prime} \\
& .031 " \\
& 060^{\prime \prime}
\end{aligned}
\]
.062" & \[
\begin{aligned}
& 2.55 \\
& 2.55 \\
& 2.56
\end{aligned}
\] & \[
\begin{aligned}
& .025^{\prime \prime} \\
& .079^{\prime \prime} \\
& .158^{\prime \prime}
\end{aligned}
\] \\
\hline Epoxy-Glase (Gto) & 4.8 & .062" & 1.75 & .108* \\
\hline Aluminametoz & 10.0 & \[
\begin{aligned}
& .025 * \\
& .050^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 0.95 \\
& 0.95
\end{aligned}
\] & \[
\begin{aligned}
& .024^{n} \\
& .048^{n}
\end{aligned}
\] \\
\hline
\end{tabular}


Teble 2. Representative boind material and ithickness for various packnge optlons.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Packege & 04 & 20 & 35 & 70 & 85 \\
Lend Width & \(.030^{\prime \prime}\) & \(.030^{\prime \prime}\) & \(.020^{\prime \prime}\) & \(.040^{\prime \prime}\) & \(.020^{\prime \prime}\) \\
Representative & 610 & PTFE & PTFE & 5870 & G10 or PTFE \\
\multicolumn{1}{|c|}{ Board } & \(\left(.062^{\prime \prime}\right)\) & \(\left(.031^{\prime \prime}\right)\) & \(\left(.010^{\prime \prime}\right)\) & \(\left(.015^{\prime \prime}\right)\) & \(\left(.062^{\prime \prime}\right)\left(.010^{\prime \prime}\right)\) \\
\hline
\end{tabular}

Aumina is an excetlent high frequency material, but because is a ceramic, it is expensive to process and requires Tchants or a diamond scribe for line rowork. His the material I preference for hyborid circuis. Several manufiscturers make ose of min . These poarde are aso approximating high frequency ( \(>1 \mathrm{GHz}\) ) applications.
All boards must be plated on both sides. For sofl boards. 2. Cu plating is the most common choice. When etching the circuit pattern, the entire boltom side plating should be lef

\section*{arasitic}

During board layout, care should be laken to minimize all parasitics. Remember that extra lead length equals extra nductance added to the design. This is particularty importani He circuin is to be operated above 1 GHz . Transmission ines should, whenever possible, run flush to the package. or made in the circuit board so that the MODAMPr" MMICs leads are in the same plane as the ransmission line. MODAMPTw MMICs should be mounted on the elched side of the board to minimize the inductance of "fed through" also creale parasitic effects, called step discontinutites. Although the complete model for such a discontinulty can become quite complicated, the overall effect of the step from ypically. 05 to 2 nH of extra series inductance. Tapering the

Table 3. Parasitic effecis on input impedance mismatch of MSA-0204.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Frequency \\
MHz
\end{tabular}} & \multicolumn{2}{|l|}{MSA-0204, No Parasitics} & \multicolumn{2}{|r|}{Parazhics Only} & \multicolumn{2}{|l|}{MSA-0204 + Parasitics} \\
\hline & vswR & Loss. dB & vswn & Loss. dB & vswa & Loss, dB \\
\hline 500 & 1.09:1 & 0.0 & 1.01 11 & 0.0 & 1.18:1 & . 03 \\
\hline 1000 & 1.23:1 & 04 & 1.12:1 & . 01 & 1.39:1 & 11 \\
\hline 1500 & 1.29:1 & . 07 & 1.22:1 & . 04 & 1 46:1 & . 15 \\
\hline 2000 & 1.29:1 & . 07 & 1.30:1 & 07 & 1.45:1 & . 15 \\
\hline 2500 & 1.28:1 & . 05 & 1.38:1 & 11 & \(145: 1\) & . 15 \\
\hline 3000 & 1.26:1 & . 05 & 1.45:1 & . 15 & 1.53:1 & . 19 \\
\hline
\end{tabular}
ransmission lines from 50 ohms down to the MODAMP MMIC lead width helps minimize this effect. Bends in transmission lines also create parasitic effects and should corners should be chamiered to prevent the bends Irom acting as extra ahum cepacinance. For more information on the propertios of microstrip structures. see K.C. Gupla. Dedham. MA.
To illustrate how important parasitic effects can be, a "arestu" design usis wimulat usin comer from 500 MHz to 3 GHz . Both step discontinuities and parasitic inductances were included in the model. The bocking capacitor was assumed to be a \(100 \mathrm{pF}, 0.1\) inch square ceramic chip with inlinale \({ }^{\text {palasitic and and associated }}\) cricull mismatch only; assuming tosses due to outpun mismatch are of a similar magnitude, the total amplitier loss would be about double that shown. To help distinguish the
effects of parasitic mismatch from those due to device impedances. the simulation was also made of both the network with parasitics terminated in a "perlec" ( \(50+j 0 \mathrm{ohm}\) ) dovice and of a MSA-0204 operated in an ideal (parasiticless) amplifier gain loss ranges from negligibte (less than id dB ) al 500 MHz to nearty. 4 dB al 3 GHz . Remember that the results shown are for minimal realistic parastics. It the layoul is "sloppy. impedance mismatches in excess of 2:1 and bexpected. be expected.
1.26:1

\section*{Conclusions}

The design techniques detailed in this paper are representative of typical CAE/CAD designs for achieving a working model. These techniques are especially important in anticipating circuit sensitivities to manufacturing tolerances. With computer technology rapidly improving engineering fficiency and accuracy, we will soon see computer-aided testing (CAT) available which will enable an engineer to take measured results from automatic network analyzers and automatically update the theoretical model

The successful prediction of the actual performance of this \(R F\) amplifier demonstrates the accurscy of CAE/CAD products. The fact that engineers can now evaluate linear and nonlinear characteristics of circuits before they are manufactured dramatically saves both tine and money.


\section*{Grounding}

Perhaps the second most important consideration in PC grounding. Ground planes should me kept as large and as solid as possible. Aeturn paths for hight frequency circulating currents must be kept as short as possible especially alt the "emitters" of the MODAMP'U MMICs. II, for example, plated through holes are used as ground returns, they should be placed direcily under the ground leads of the MODAMP'w MMIC and be located as near as possibte to the body of the package. This is because any additiona path iength here actis resistance at operating frequencies. Gain, power compression, and high frequency roitofl will all be degraded if proper grounding lechniques are not used. Fig. 3 shows a variety of ways of providing good return paths between

AF grounding. The device analyzed is the MSA-0135.21 Gain vs. Irequency curves are shown lor emitter induc-


Figure 5. Gain vs. trequency as a function of emitter inductance (Le) lor the MSA-0135-21.


Figure 3. Methods of reallzing minimel length return pathe to ground.

MODAMP'"MMICs incorporating internal "collector" resistors (dash 1 option) help demonstrate how important good grounding is. These units give up one ground lead to consequence they sacrifice significant high frequency perlormance. The gain vs. Irequency curves of the MSA-0270-12 (single ground lead) and the MSA-0270-22 (dual ground leads) shown in Fig. 4, demonstrate this pertormance tradeoll. Note the decrease in \(I_{1 \text { de }}\) (the frequency at which the gain is 1 dB lower than the gain at 100 MHz ) from around 1.6 GHz to below 1 GHz . Fig. 5 shows a further exampte of


Figure 4. Typteal gain ves. Irequency for
MSA-0270-12 and MSA-0270-22

\section*{DC Blocking Capactiance}

DC blocking capacitors must be used in both the RF input and the RF output lines to isolate the resistive bias circuitry of the MODAMPru MMIC from the source and load Irequency response of the finished amplifier Low frequency response will be determined by the capacitor's value; it must be high enough to be a reasonable RF "short" al the lowest Irequency of operation. High frequency response will be parasitic inductance capacitor ( \(1 /(2 \mathrm{I}, ~ \mathrm{~L}\) ) Hz , where \(\mathrm{L}=\) parasitic inductance in Henrys, and \(C=\) the capacitor value in Farads). Operation above this Irequency often leads to highly unpredictable circull behavior.

Fig. 8 shows typical eflecis of blocking capacitors on impedance match as a function of Irequency, capacitance. and parasitic induclance. Note that low Irequency match is determined by capacitor value, with the parasitic induclance the value of the parasitic inductor dominates the match, with the value of the capacitor becoming unimportant so tong as it is large enough to be a low series impedance path. The ratio of capacitive reactance to parasitic resistance is called the Q of the capacitor. Blocking capacitors with high Os should always be used to minimize insertion losses.

irfopency, oin
Flgure 6 b


Frroumen, an
Figure sc
a : resonant Irequency, . 25 nH parasitic inductance
- resonant frequency, 0.5 nH parasitic inductance
\(\Delta\) : resonant Irequency, 1.0 nH parasitic inductance
Figure 6. Effects of DC blocking capactiors on VSWF as a functio
Inductance.

\section*{lasing}

In order to deliver full performance, MODAMP"~MMICs must be biased correctly. The internal resistive networks detmine individual transistor operating points; all the use lerminal. For the purpose of bias stability over temperature. erminal. For the purpose of bias stability over temperature hrough a collector resistor (labeled \(\mathrm{R}_{\mathrm{c}}\) in Fig. 1). This esistor works in two ways. First, it compensates for increase in device is with temperature by dropping the transistor's collector voltages whenever they try to draw more collecio
current. Coupled with this ellect is the lact that the collecto resistor will itself be changing in value over temperature

Aesistors with positive lemperalure coerticients such as in ommon carbon composite ( \(+.0001 \%\) per degree C) do a xcelient job compensaing lor the negaive coefficient on-chip resisiors.
\(+100^{\circ} \mathrm{C}\) a drop of at least 1.5 votsture across of \(-10^{\circ}\) to esistor is necessary. The larger this vothage drop is, the mor tabte the bias will be. An inleresting point is that for a fixed bias (constant quiescent current vs. temperature), the gai of the MODAMPr" MMIC will decrease as temperatur
increases. A voltage droo of about 2 V across the collecto resistor allows the bias swing over temperafure to compensate for this gain change, yielding best gain llatness ver temperature.
Table 4 shows an example of how selection of the bias stabilization resistor influences pertormance over temperature hese results come irom device simulations using PSPICE amplifiers. Note that with no stabilization resistor the user risks having the MODAMPM MMIC self desiruct al elevated lemperatures. In general, bias current will increase as
lemperature increases fove to increases in device belas with emperature); gain may either increasa or decreas depending on how well the bias shift compensates for the decreased gain at a constant bias at higher temperatures

Toble 4. Effects of \(R_{c}\) on performence over temperature.
\begin{tabular}{|c|c|c|c|c|}
\hline msA-01 & \multicolumn{4}{|r|}{Operating Vottage \(=5.07 \mathrm{~V}\) Nom.} \\
\hline \[
\begin{aligned}
& \text { Vothapp } \\
& \text { Orop. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { nopiser } \\
& \text { ver }
\end{aligned}
\] & Tomperrature
\(c\)
\(c\) & \[
\begin{gathered}
\text { Buen } \\
\text { Currem, }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Powner Gmin } \\
& 100 \text { MMz. }
\end{aligned}
\]
\[
d p
\] \\
\hline 0 & 0 & \[
\begin{gathered}
-10 \\
25 \\
250
\end{gathered}
\] & \[
\begin{array}{r}
9.5 \\
18.4
\end{array}
\] & \[
\begin{gathered}
-05 \\
188
\end{gathered}
\] \\
\hline 1.5 & \({ }^{2}\) & \[
\begin{gathered}
-10 \\
25 \\
200
\end{gathered}
\] & \[
\begin{aligned}
& 14.2 \\
& 17.2 \\
& 24.3
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& 183 \\
& 190
\end{aligned}
\] \\
\hline 20 & 100 & \[
\begin{gathered}
-10 \\
20 \\
100
\end{gathered}
\] & \[
\begin{aligned}
& 163 \\
& 189 \\
& 24.6
\end{aligned}
\] & \[
\begin{aligned}
& 185 \\
& 189 \\
& 180
\end{aligned}
\] \\
\hline 70 & \({ }^{4} 12\) & \[
\begin{gathered}
-10 \\
25 \\
200
\end{gathered}
\] & \[
\begin{aligned}
& 161 \\
& 168 \\
& 168 \\
& 180
\end{aligned}
\] & \[
\begin{aligned}
& 183 \\
& 181 \\
& 175
\end{aligned}
\] \\
\hline
\end{tabular}

The value of the bias stabilization resistor \(\mathbf{R}_{\mathbf{c}}\) is given by
\[
A_{c}=\frac{V_{c C}-V_{d}}{\text { ohms }}
\]
were \(V_{c c}=\) v. (in volls)
\(V_{d}=\) the vollage at the \(D C\) input terminal of
\(I_{0}=\begin{aligned} & \text { the quiescent bias current drawn by the } \\ & \text { MMMC (in amps) }\end{aligned}\)
Thecommended values of \(t_{4}\) and \(V_{d}\) can be found on the Idividual MODAMP'U MMIC data sheets, both in the Electrica specilications table and above the listing of \(S\)-parameters he dissipation of this resistor is given by
\(P_{\text {dese }}=I_{d}{ }^{2} \times R_{C}\) watts


Figure A-2. Synthesized input circuit created in E.Syn.


Figure A-3. Synthesized output circuit created in E.Syn.

1 FILE:SPCKT
i COMPLETE MODEL OF dEvice and complete circuit

DIM
CKT standard units of measure
CKT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MSUB ER-2.55 H-28.5} & \multirow[t]{2}{*}{T-1.35} & \multicolumn{3}{|l|}{5 RHO-1 RGH-. 02} \\
\hline MLIN_T1 & 1 & 2 & & W-300 & L-500 & \\
\hline IND_LBIN & 2 & 3 & & L-0.2 & & \\
\hline CAP_CMATCH & 3 & 0 & \multicolumn{4}{|c|}{C-345} \\
\hline IND_LB & 3 & 4 & & \multicolumn{3}{|l|}{L-0.20} \\
\hline S2PA Q1 & 4 & 5 & \multirow[t]{3}{*}{6} & \multicolumn{2}{|l|}{[MODEL-QNPN A} & AREA-1.0] \\
\hline IND LE & 6 & 0 & & \multicolumn{2}{|l|}{L-0.18} & \\
\hline IND_LC & 5 & 7 & & \multicolumn{2}{|l|}{1-0.05} & \\
\hline MLIṄ_T2 & 7 & 8 & & W-300 & L-500 & \\
\hline DEF2P & 1 & 8 & & \multicolumn{2}{|l|}{tran} & \\
\hline CAP_CM1 & 1 & 0 & & \multicolumn{2}{|l|}{C-10.58} & \\
\hline IND_LM1 & 1 & 0 & & \multicolumn{2}{|l|}{L-31.73} & \\
\hline CAP_CM2 & 1 & 2 & & \multicolumn{2}{|l|}{C-15.38} & \\
\hline CAP CM3 & 2 & 0 & & \multicolumn{2}{|l|}{C-27. 30} & \\
\hline IND_LM2 & 2 & 3 & & \multicolumn{2}{|l|}{L-15.18} & \\
\hline CAP-CM4 & 3 & 0 & & \multicolumn{2}{|l|}{C-344.6} & \\
\hline TRAN_ Xl & 3 & 4 & & & & \\
\hline 1 S2Pa & 3 & 4 & 0 & \multicolumn{2}{|l|}{B:EESOF. S2P} & \\
\hline IND_LM3 & 4 & 5 & & \multicolumn{2}{|l|}{L-6.74} & \\
\hline CAP_CM5 & 5 & 6 & & \multicolumn{2}{|l|}{C=680} & \\
\hline CAP_CM6 & 6 & 0 & & \multicolumn{2}{|l|}{C-88.89} & \\
\hline RES_RM7 & 6 & 0 & & \multicolumn{2}{|l|}{R-1E6} & \\
\hline IND_LM4 & 6 & 7 & & \multicolumn{2}{|l|}{L-23.11} & \\
\hline CAP-CM7 & 7 & 0 & & \multicolumn{2}{|l|}{C-25.93} & \\
\hline RES_RM8 & 7 & 0 & & \multicolumn{2}{|l|}{R-1E6} & \\
\hline DEF2P & 1 & 7 & & \multicolumn{2}{|l|}{NET} & \\
\hline \multicolumn{7}{|l|}{MODEL} \\
\hline QNPN NPN & & IS -1. & . 5E-3 & BF-85 & VAF-52 & IKF-80 \\
\hline \multicolumn{2}{|r|}{+} & ISE-4E & E. 5 & \multirow[t]{2}{*}{NE-1. 35
RC-0.35} & VAR-6 & \\
\hline & & RE -0. & 115 & & & \\
\hline & & RB \(=0\). & . 08 & RC-0. 35 & & \\
\hline & & CJE-20 & 00pf & VJE-0. 2 & MJE-3.5 & \\
\hline & & TF -11 & 15PS & XTF-3.5 & VTF-3.0 & (1TF-4.5 \\
\hline & & CJC-11 & 5pf & vJC-0. 22 & MJC-0.18 & 185 \\
\hline
\end{tabular}

Figure A-4. E-syn input and output networks combined and modified in E-syn input and output ne
Touchstone (page 1 of 2 )

The power rating of \(R_{C}\) must excesed \(P_{\text {denc }}\) if necessary, the necessary dissipation capability. Some MODAMPru MMICS are aveilable with the collocior resator on the chip. This has obvious size and parts count advantages. The tradeoff is for high frequency performence (see the discussion of grounding above) and bias nexibilly (only one supply vollage will be appropriale for a given internal resistor valua). Also, the on-chip
resistors have negative temperature coefficients, and will not hold the MODAMP'4 MMIC's bias as constant over temperature as will an external carbon resistor.

Chokes and Byposs Capocmors
His recommended that an RF choke (large value inductor) be used in series with the bias stabililzalion resistor. Allhought the
choke is not generalty needed to keep the RF out of the DC there relatively high impedarce of the bias stabilization resiator compared to a 50 otrm load is sulticient for tuis), it is needed \(t 0\) keep the stabilization resistor from appoaring in parallel with the load circuit, and thus degrading the output matcc. A good
rute of thumb is that the impedance of the choke al the lowest trequency of operation (given by \(2 \pi \cdot F \cdot L\) ) plus the value of the stabilization resistor should be at best 500 ohrms. A \(10 \mathrm{\mu H}\) inductor works well as a choke a trequencies as low as 10 NHHz ; it can be einter a moded inductor (lor low cout applications) ower frequencies several turns of wire on a hingh permeabiny ferrine bead should be used. It the choke is omitited, the designer should exped a gain loss of between 0.5 and 1 dB and a decrease in \(P_{\text {, }}\) of of as much as 2 de from the guaranteed
pertormance due to loed impedance mismatch.

A large value bypass capacitor ( \(1 \mu \mathrm{~F}\) or so) should be used in lo ground for any signal that does manage to get pest the choke. This capacitor should be attached between ite supply side of the RF choke and ground.

\section*{Iypleal Creuk Loyouts}

Fig. 7 shows a typical MODAMP'u MMIC circuin board layoun that uses the above construction tecturiques. The layout is for The" PTFE woven-gliss boarc-a reasoneble compromise between cosst, durability, and electrical pernomence. Note that the transmission lines have no bends and are tapered near the
packege of the MODAMP'M MMIC to minimize step disconpackipe of the MODAMPru MMMC io minimize step diaconemimer leads, provide solid ground plines and miniminal emitier perastics for best high trequency performance. The gaps in the Iransmission line are appropriale for 50 mil ceramic chip
capeciors, which have relativety low associmed parastic inductances-typically about 0.5 nH . The OC ped arrangement requires that a bias stabilization resistor be used, but makes the use of an RF choke optional. If the choke is not used, the
stabilization resistor would be connected between the output 50 okm line and the \(V\) vuppip line, and the bypass capachor woutd be attached between the \(V_{C C}\) the and ground. Spacing is appropriate for \(1 /\) watt carbon resistors, molded induciors, and thif electrotyic capacitors. The layout has been designed
so theil the section between the arrows in Fig. 7 can be repeated for multiple cascaded stages. Overal cricul dimensions are \({ }^{1 \prime}\) \(\times 1.5^{\prime \prime}\) tor a single stage, with each additional stage adding
i" to the overat length. The size was chowen for corventience 1" Io the overal length. The size was choeen for convenience of assembly; a more compact layout providing a three stage
cascade of MODAMP MMICs in the same spece and using chip resstors and inductors as shown in Fig. 9. Fig. 8 shows a circuit layout analogous to that in Fig. 7 for a a
MMIC with the internel bias stabilization resistor.


Figure 7. Typical mODAMPr= MMIC circuit (dual ground configuration).


Figure 8. Typical MODAMPi= MMIC circuit (interal \(\mathrm{R}_{\mathrm{c}}\) configuration)


Figure 9. MODAMP'w MMIC circuit layout three slage cascede.


Figure A-4. E-Syn input and output networks combined and modified in Touchstone (page 2 of 2)

1 FILE:SP2 CKT WITH COMPLETE CIRCUIT FILE DESIGN INCLUDING LAYOUT
VAR
W50-189
DIM
Standard units of measure
CKT


Figure A-5. Final circuit file designed for layout generation (page 1 of 2)
```

sOURCE
$\begin{array}{lllrl}\text { NET } & \text { ICS_IBB } & 0 & 20 & \text { DC-.042 } \\ \text { NET } & \text { CAP-CB1 } & 20 & 0 & \text { C-35E6 }\end{array}$
$\begin{array}{lllll}\text { NET } & \text { CAP_CB1 } & 20 & 0 & \text { C-35E6 } \\ \text { NET } & \text { CAP_CB2 } & 20 & 0 & \text { C-1E3 } \\ \text { NET } & \text { IND_LB1 } & 20 & 21 & 1-500\end{array}$
$\begin{array}{lllll}\text { NET } & \text { IND-LB1 } & 20 & 21 & \mathrm{~L}-500 \\ \text { NET } & \text { CAP CB3 } & 21 & 0 & C=470\end{array}$
$\begin{array}{lllll}\text { NET } & \text { CAP_CB3 } & 21 & 0 & \text { C } 470 \\ \text { NET } & \text { IND_LB2 } & 21 & 3 & L-100\end{array}$
Ivs_vCC $30 \quad 0 \quad D C=19.0$
$\begin{array}{lllll}\text { NET } & \text { CAP-CC1 } & 30 & 0 & \text { DC-19.0 } \\ \text { NET } & \text { CAP CC2 } & 30 & 0 & C-35 E 6\end{array}$
NET
NET
NET
NET IVS_VIN 400 AC-1.0 PWR-(30 $30001.7 E 8 \quad 2.3 E 8$.le8 $)$
NET
NET
RES_RIN 401
RES_ROUT 70
$\mathrm{R}=50$
$\mathrm{R}=50$
NET TRAN 40PS 25NS 0 4OPS
PWR IVS_VIN RES_RIN
AC LIN $\overline{13}$ 170MEG 230 MEG
NET AC LIN 13 17OMEG 230MEG
DC IVS_VCC 0221.0 ICS_IBB .020 .100 .020
FOUR 20MOMEG V(7)
OPTIONS ACCT LIST NODE LIMPTS-5e3
TEMP 27.0
PWR RES_RIN 10 RES_ROUT 70
$\begin{array}{ll}\text { NET } & \text { PWR RE } \\ \text { NET } & \text { DC ALL }\end{array}$
NET DC ALL
$\begin{array}{llll}\text { NET } & \text { AC ALL } \\ \text { NET } & \text { SP TRAN_X1 b:EESOF.S2P } 50\end{array}$
OUT
NET DB[S21] GR1
NET DB[S11] GR1A
NET DB[S22]
NET N
FREQ
SUEEP 17023010
GRID
RANGE 17023010
GR1 5151
$\begin{array}{llll}\text { GR1 } 5151 \\ \text { GRIA } & -20 & -0\end{array}$
Figure A.5. Final circuit file designed for layout generation (page 2 of 2)

```

\section*{DESICN OF DIELECTRICALLE STABILIZED OSCILLATORS USING FEEDBACR TECHRIQUES}

\section*{by}
\[
\begin{aligned}
& \text { R. Partha M.L. Sharma } \\
& \text { Asst. Executive Engineer Chief Engineer } \\
& \text { Tranamiseion } R \text { \& } D, \\
& \text { Indian Telephone Industries Ltd. } \\
& \text { Bangalore, India. }
\end{aligned}
\]

\section*{ABSTRACT}

A simple model of dielectric resonator fet oscillator stabilized with the resonator in the feedback path is presented. Based on this model a high efficiency, high Q DRO was developed in the 7 Gliz frequency hand. The oscillator has excellent frequency stability and noise performance. A mechanical frequency tunability of \(\pm 50 \mathrm{MHz}\) and power output of \(+18 \mathrm{dBm} w a s\) achieved.

\section*{INTRODUCTION}

Recent advances in the technology of temperature stable dielectric materials like Barium Tetratitanate and zirconium Tin Tetratitanate have inspired interest in techniques to dielectrically stabilize fundamental microwave oscillators.

Dielectric resonator oscillators (DROs) are highly compatible with modern microwave integrated circuitry. A sufficiently high output power, high frequency stability, small size and low cost are the features of a DRO. The resonator's high O contrifutes to the RRO's excellent FM noise performance.

Oscillators stabilized by a dielectric resonator coupled to the output circuit one-half wave length away from the fet
("passive" injection locking) do not give as high loaded qs and stability as feedback DROs (series or shunt) exhibit.

The development of fundamental microwave oscillators using a dielectric resonator for shunt feedback has been reported in recent articles. This technique has tended to be empirical in nature, often at the design stage italf. This palier presents a design approach which has been found to be both predictable and sufficiently accurate. Usinp an appoximate feedhack model, it was possible to calculate the lengths and impedances of the feedback microstrip elements required to sustain oscillation, with the dielectric resonator completing the feedrack loop. DFas for the 7 CHz and 13 GHz frequency bands were developed using this modeling technique. The test results of the 7 chz Drin only have been included in this paper. The preliminary resultis obtained for the \(K u\) band have been encouraging.

\section*{DESICN}

The basic schematic of anciliator is shown in figure 1.
The condition for oscillation is given by
\[
\Gamma_{R} S_{11}^{\prime}=1 \quad \text { OR } \quad \Gamma_{L} S_{22}^{\prime}=1
\]

The two conditions heing equivalent [2], we choose
\[
\left|\Gamma_{R}\right|\left|S_{11}^{\prime}\right| e^{j\left(\theta_{R}+\theta_{S_{11}^{\prime}}^{\prime}\right)}=1
\]

The magnitude and phase conditions are given by
\(\left|\Gamma_{R}\right|\left|S_{11}^{\prime}\right|=1 \quad\) AND \(\quad \theta_{R}+\theta_{S_{11}}^{\prime}=0\)
For oncilintinas in huild up it is required that \(\left|\Gamma_{R}\right|\left|S_{n}^{\prime}\right|>1\). The mifrostrip resonstor haf low losses and hence it is sufficient if sil can be made greater than unity at the input

\title{
LOW-NOISE PREAMPLIFIER DESIGN FOR NMR \\ by \\ OTWard mueller and william a. edelstein GENERAL ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT \\ SCHENECTADY, NEW YORK, 12301
}

\section*{1. INTRODUCTION}

An important component in any nuclear magnetic resonance (NMR) imaging or spectroscopy system is a low-noise preamplifier. The required minimization of its noise figure can be obtained only by careful design. It must go hand in hand with an optimization of the "noise figure" of the NMR receive coil. The latter requires that the coil quality factor \(Q\) is made as high as possible. Other receiver system components such as cables, protection circuits, matching networks, transmitreceive (T/R) switches etc. should not be neglected in a low-noise design. They can easily add many tenths of a \(d B\) to the overall receiver noise figure.

\section*{2. QUALITATIVE LOW-NOISE DESIGN}

The most critical item in a low-noise preamplifier is its input device. Bipolar transistors have the advantage to provide a relatively large bandwidth at higher frequencies ( \(20-200 \mathrm{MHz}\) ). They must be selected for a high current gain, a large gain-bandwidth product FT of several Gigahertz and especially a low base-region bulk resistance. The latter can be reduced by paralleling two or more transistors. Due to their high input impedance junction field-effect transistors are suitable for low-noise narrow-band
preamplifiers. They should exhibit a high transconductance which increases with the electron mobility in the channel. Since the latter is much higher in gallium-arsenide than in silicon GaAs-MESFET's are also good candidates for low noise NMR preamplifer designs.

As far as circuit design is concerned, the following rule should be obeyed: Eliminate all parasitic series or parallel impedances between base-emitter or gate-source terminals. This implies that, for example, by-passed emitter resistors must not be used and biasing resistors have to be chosen very high compared to the transistor input impedance.

\section*{3. QUANTITATIVE DESIGN}

The expanded noise equivalent circuit of a preamplifier or its input transistor is shown in Figure 1. \(Y s=G s+j B s\) is the source admittance producing the noise current Is. \(\mathrm{Y}=\mathrm{G}+\mathrm{j} \mathrm{B}\) is the input admittance of the noise-less ( \(F=1\) ) ideal amplifier of voltage gain \(A\). The amplifier noise is in good first-order approximation represented by the input related equivalent noise voltage and current generators V and I . At higher frequencies they may be partially correlated, an effect which can be represented by the additional current generators ( YC\() \mathrm{V}=(\mathrm{GC}+\mathrm{jBC}) \mathrm{V}\) where YC is the so-called correlation admittance. Table 1 summarizes the important noise formulas. The noise figure \(F\) defined as the ratio of the total amplifier output noise power to the output noise due to the source resistor only is given by Equation 1. F is minimized by chosing an optimum source admittance \(\mathrm{Y} s=\mathrm{Gs}+\mathrm{jBs}\) as given by Equation 3. The minimum noise figure obtainable is expressed in Equation 4. The following relationship
of the two port network.

For the NEC GaAs FFTs used in the 7 GHz and 13 GHz hands, \(/ \mathrm{S} 11 /\) is between 0.2 to 0.8 . Shunt feedback is developed to make /S11\%/ \(/\) for the condition of oscillation to be met.

The characterization of the feedback network (Figure 2) proceeds as follows. For the chosen electrical length el and impedance \(z i\), and from the mearured \(S\) parameters of the device, the \(Y\) parameters \{say [Y1]\} of the combination of the device and output microstrip element are obtained. It is assumed that at resonance, the dielectric resonator is purely resistive ( \(R\) ). For modeling purposes it is also asumed that the dielectic resonator is placed at the end of microstrip element ( 02,22 ), e2 away from gate of the FFT. For the chosen e2, 22 , and alue of R, the \(Y\) parameters (say \|Y2\|) of the combination of microstrip and dielectric resonator are calculated. Adding [Yi] and [Y2] gives the overall \(Y\) parameters of the feedback network with the active device. The new \(S\) parmeters are derived from this.

The lengths of the microstrip elements al and e2 are chosen depending upon the mechanical configuration of the active device and the circuit topology. A simple computer program was developed to check oscillation conditions for different values of \(\theta 1, \theta 2,21,22\) and \(R\). The value of \(R\) is dependent on the coupling coefficients \(\beta\) and \(\beta 2\) hetween the dielectric resonator and microstrip lines. An optimum coupling is required as weak coupling results in lower output and a tendency to cease oscillations at higher temperstures, while very tight coupling
effects the frequency stahility. el, e2, Ziland 72 are varied to get the condition of /Sili/ >1. A complex confugate is presented at the gate to determine the frequency. Load matching at the output is optimized for a good RF power.

\section*{FABRICATION AND PERFORMANCE}

The DRO was fabricated on Tefion (1/32") fibreglass board ( \(\boldsymbol{E r}=2.54\) ). The biasing arrangement is as ghown in figure 3 with a chip capacitor on the output aide for a DC hlock. The dielectric resonator is magnetically coupled in the TE Olf mode to the gate and drain microstrip ifnes. The resonator acts as a bandpass filter whose centre frequency can be tuned by varying the gap between the top lid and the dielectric. The exact positioning of the dielectric is critical and purely empirical approach has been followed to obtain high frequency stability and a sufficiently high power output. The DRO was free from mode jumps and hysteresis. A chip resistor of 50 ohms terminating the gate circuitry was used to eiminate spurious oscillations.

The frequency stability of the DRO was within \(\pm 400 \mathrm{kllz}\) over \(0^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C}\) at a centre frequency of 7410 MHz . The frequency drift over temperature can he adjusted by proper choice of the resonator temperature coefficient. A resonator with positive temperature coefficient of \(6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) was used in the oscllator. The output power variation remained within \(\pm n, 8 d B\) over the entire temprature ranfe, as shown in Figure 4. Figure 5 shows the variation of frequency as a function of air gap rhicknesa h.
(Equation 5) shows that the noise figure has a parabolic dependence on the source susceptance Bs. The same is partially true for Gs. It is interesting to note that the formulas for \(F\) do not explicitly depend on the input admittance Y . Its effect is contained in the noise generators V and I . In many cases, especially at lower frequencies, the correlation admittance Yc is negliglible. The optimum source conductance \(\mathrm{Gc}(\mathrm{opt})\) is then given by the simple expression \(1 / V\).

\section*{4. OPTIMUM SOURCE ADMITTANCE}

The analysis suggests a simple algorithm for determining the optimum source admittance Ys (opt) to minimize the noise figure \(F\) :
a. Determine the preamplifier input admittance \(\mathrm{Y}=\mathrm{G}+\mathrm{j} \mathrm{B}\).
b. Measure the output RMS noise voltage VL(Gs=00) for a shorted input and VL(Gs=0) for a open-circuited input.
c. Determine from Equation 6 a trial optimum source conductance Gs(opt).
d. Measure the noise figure with this source resistor as a function of parallel source susceptance Bs. The value of Bs which minimizes the noise figure is Bs (opt) \(=-\mathrm{Bc}\).
e. Repeat step \(b\) with \(B s=-B c\) and obtain the final value of Gs(opt) which will not be much different from the previously determined one.

It is interesting to note that \(\mathrm{Bs}(\mathrm{opt})\) is independent of Gs and that in the above procedure it was not necessary to determine the correlation explicitly. Note that if there is no correlation ( \(\mathrm{YC=}=0\) ) then the optimum source impedance is real and simply given by \(R s=1 / \mathrm{Gs}=\mathrm{V} / \mathrm{I}\).

In order to minimize the preamplifier and the NMR system noise figure it is now important that the receiver coil input impedance is matched by a
transformation network to the optimum source admittance given by Equation 3 or 6 in Table 1. The question may arise: What should the input impedance \(Y\) of the preamplifier be? Since the formulas for the noise figure and the optimum source admittance \(\mathrm{Ys}(\mathrm{opt})\) are independent of Y the answer is: It does nor matter as long as the source, in an NMR system the receiver coil, is matched to \(\mathrm{Ys}(\mathrm{opt})\). Since the input impedance of NMR head or body receiver coils is dependent on the size of the patient to be imaged one can use a variable matching network in order to minimize the noise figure or one should use a preamplifier with a very low F.

\section*{5. MEASUREMENT TECHNIQUES}

Since most NMR system operators have liquid nitrogen available in their facilities the so-called two-temperature method of noise figure measurement is very suitable. The preamolifier output noise voltage is measured with the source resistor \(\mathrm{Rs}=1 / \mathrm{Gs}\) first at room temperature T 1 , (V1), and then dipped into liquid nitrogen (T2=77 degree Kelvin, V2). From the curve of Figure 2 (courtesy Dr. Howard Hart, GE-CRD) and the output noise voltage ratio V2/V1 the noise figure \(F\) is obtained. The advantage of this method is its low cost and its suitability for noise measurements in a complete NMR system. It also permits an easy determination of \(F\) as a function of source resistance without impedance transformation networks. Accurate measurements can be made with the fine HP-8970A noise figure meter ( \(10-1500 \mathrm{MHz}\) ), but only in a 50 Ohm system. A comparison between the two methods resulted in good agreement For all NMR low-noise preamplifier measurements one should use only the HP346A and not the 346B noise source.

Excess tuning cases sharp output power variation, afali in loaded ? and mode separation problema. A tendency to mode jump is seen for very low values of h. Moreover close proximity of the tuning serew over the dielectric degrades temperature stability performance. The mechanical tuning range was limited to \(\pm 50 \mathrm{Mliz}\) in keeping with practical considerations.

The use of quartz spacer is recommended for improving the loaded \(Q[4]\). The diameter to height ratio of the dielectric resonator has to be properly chosen for optimum mode separation or spurtous oscillations at other modes are possible for an improper selection of \(D / H\) ratio. When the dielectric is coupled between the feedback microstrip lines, oscillation over range of \(\pm 50 \mathrm{MHz}\) of dielectric resonent frequency is possible depending upon the position of the dielectric from the drain port and also on the tightness of coupling. The frequency of the oscillator is set for alighty higher value than the resonant frequency of the dielectric. Sweep measurement results conducted for the resonator coupled between parallel microstrip lines gave loaded \(Q\) values ranging fron 800 to around 1000 depending upon the closeness of the lines with the dielectric. It is imperative that the resonent frequency and \(Q\) measurement of the resonator he made using a box with the same mechanical dimensions as that of the oscillator. The same microstrip layout was used for fabricating oscillators with centre frequencies from 7.2 to 7.8 GHz . The chickneas of the dielectric and its positioning alone had to be varied to conetruct the oscillators. Repeatability of the oscillatorf was
excellent and final placing of the dielectric resonator was optimized rapidiy.

\section*{EFFECT OF BIASINC}

At lower values of gate voltage the frequency pushing was less. In the configuration used the frequency dependence on gate voltage was considerable. A pushing fipure of approximately \(1 \mathrm{MHz} / \mathrm{Vgs}\) and \(300 \mathrm{kHz} / \mathrm{Vd}\) e was obtalned. at higher values of gate voltages, pushing was 3 MHz/Vgs. The pushing figures for free runing oscillator constructed with the same device read \(80 \mathrm{MHz} / \mathrm{Vgs}\) and \(3 \mathrm{MHz} / \mathrm{Vds}\).

The measured FM noise at 10 kllz from carrier was -97 dbe Hz BW (Figure 7). A harmonic rejection of greater than -30 ABC and spurious rejection more than -60 dBc was obtained.

A dielectric resonator feedback Gafs fet oscillator has been developed which exhibits:
(1) Afrequency stability of hetter than \(\pm 2.5 \mathrm{ppol}{ }^{\circ} \mathrm{C}\).
(2) Mechanical tunahility of \(\pm 50 \mathrm{MHz}\) of centrefrequency.
(3) FM notse of hetter than -97 dBc at 10 kHz from carrier, 1 Hz BH .
(4) A stable power output over 0 to \(50^{\circ} \mathrm{C}\) and over the tunding range.

ACKHOWLEDCMENT
Our thanks are due to A. F. Sekhar and Eswarappa for the many useful discussions we had with them. We also wish to thank K.R. Shantharam, Nok. Ramesh and H.R. Keshavamurthy for the assistance given in fabricating the DRO.

\section*{6. RESULTS: NOISE FIGURE MEASUREMENTS}

In Figure 3 the measured noise figure is shown as a function of source resistance \(R s=1 / \mathrm{Gs}\) for a preamplifier of a low-field NMR system ( 0.12 Tesla, 5.1 MHz). A cascode configuration of 2 junction field-effect transistors (U-310) is used in the input stage. The optimum source resistance is approximately 750 Ohm. Feedback damping has been employed in order to increase the bandwidth of the receiver coil without degrading the noise performance too much. It is interesting to note that \(\mathrm{Rs}(\mathrm{opt})\) remains the same with and without feedback ( \(\mathrm{RF}=00\) ) whereas the input impedance changes drastically from 1700 Ohm, -82 degrees to 250 Ohm, 22 degrees. This preamplifier was connected directly to an NMR receive coil tuned to \(\mathrm{Zin}=750\) Ohm. For \(\mathrm{RF}=00\) a noise figure of \(\mathrm{F}=0.5 \mathrm{~dB}\) and for \(R F=20\) kohm//1pF, \(F=0.7 \mathrm{~dB}\) was obtained. These measurements demonstrate also that the optimum source resistor is for junction field-effect transistors relatively high. Figure 4 shows \(F\) at 5.1 MHz as a function of the source admittance phase angle. For \(\varnothing=+-45\) degree a capacitor or inductor having a reactance of of \(X=1000\) Ohm was connected in parallel to a source conductance of 1 mS . The minimum of the noise figure \(F\) occurs for \(\varnothing=0\) indicating that the correlation admittance Yc is zero. This means that the input related noise voltage and current generators \(V\) and \(I\) in the equivalent circuit of Figure 1 are uncorrelated. The curve demonstrates that even relatively small deviations from the optimum source conductance by a capacitive or inductive component results in a noise figure degradation of several tenths of a dB. One concludes that for noise optimization it is necessary to control especially
the phase angle of the source admittance Ys. In practical terms this means that a few undesired picofarads in parallel to a preamplifier input can degrade \(F\). On the other hand Figure 3 demonstrates that deviations from Gs(opt) are not that critical because that curve has a relative broad minimum. Figure 5 shows the circuit diagram of this J-FET preamplifier.

At higher frequencies bipolar transistors can be used, especially if a large bandwidth is desired, for example for a preamplifier covering the imaging and the spectroscopy frequencies. ( \(64,59,26,16 \mathrm{MHz}\) ). Their optimum source resistor is much lower (Rs(opt)=40... 100 Ohm). Figure 6 shows the frequency response of the noise figure for an amplifier using MA-42197 bipolar devices demonstrating that F-values of less than 1 dB can be achieved over a large frequency range. In Figure 7 the noise figure is plotted as a function of the source resistor and the source susceptance for 64 MHz .

Figure 8 demonstrates an example of a preamplifer for which the correlation admittance \(\mathrm{Yc}_{\mathrm{c}}\) is not zero. The minimum noise figure occurs for a source susceptance of \(\mathrm{Bs}=-3 \mathrm{mS}\). (Parallel inductance with a reactance of \(X L=330\) Ohm). By not neglecting the correlation effect expressed by the correlation admittance \(Y C\) one obtains in this case a noise figure improvement of about 0.2 dB . This amplifier used a by-passed emitter resistor in the first stage which probably caused the noise correlation.

\section*{REFERENCES}
1. C.M. RROWNE, "Network analysis of microwave obcillators using microstrip transission lines", ELECTRONIC LETTERS, vol 13, 17 FEB, 1977.
2. Ganesh r. basawapatna and roger stancliff, "a unified approach to the design of wideband microware solid state oscillators", IEEE Transactions on Microwave Theory and Techniques, Vol.mTT 27, Kay 1979.
3. GINZTON, "Microwave measurements",New York: Hegraw Hili, 1957.
4. C. TSIRONIS, "Highly stable dielectric resonator fet oscillator", IEEE Transactions on Microwave Theory and Techniques, vol MTT-33, April 1985.
5. osamu ishifara, tetsurou mori, hiroshi sawano, and masaari NAKATANI, "A highly Etabilized GaAs fet oscillator uaing s delectric resonator feedback circuit in \(9-14\) Gliz", IERE. Tranactions on Microwave Theory and Techniquea, Vol MTT-28, Ho.8, August 1980.


FIG. 1 SCHEMATIC OF OSCILLATOR CIRCUIT


FIG. 2 DESIGN MODEL

\section*{7. SUMMARY AND CONCLUSION}

In order to obtain good NMR image quality low-noise preamplifiers are required. With careful design and by providing the optimum source impedance noise figures of 0.5 dB can be achieved. At higher frequencies the correlation between \(V\) and \(I\) in the noise equvalent circuit should not be neglected if the noise figure is to be minimized.

\section*{REFERENCES}
1. A. Ambrozy: "Electronic Noise", McGraw-Hill, N.Y., 1982, pp. 140 ff.
2. W.A. Edelstein, P.A. Bottomley and L.M. Pfeiffer: "A signal-to-noise calibration procedure for NMA imaging systems." Med. Phys. , 11, 180, (1984).

(1) \(F=1+\frac{V^{2}\left|Y_{s}+Y_{C}\right|^{2}+I^{2}}{I_{3}^{2}}=\) MINIMUM

(2) \(\quad \partial F / \partial B_{s}=0\)
\(\partial F / \partial G_{S}=0\)
(3) \(\quad B_{s}(O P T)=-B_{C} \quad G_{s}(O P T)=\frac{\sqrt{1^{2}+G_{Z}^{2} V^{2}}}{V}\)

LIQUID NITROGEN METHOD:

EOUIVALENT AMPLIFIER NOISE CIRCUIT UDING CORAELATION BETWEEN VOLTAGE and Curam in noise sources
figure 1
(4) \(F_{M I N}=1+\frac{V^{2}}{2 K T}\left(G_{S}(O P T)+G_{C}\right)\)
(5) \(\left.\left.\quad F=F_{M I N}+\frac{V^{2}}{4 k T G_{S}} \right\rvert\,\left(G_{s}(O P T)-G_{S}\right)^{2}+\left(B_{s}(O P T)-B_{S}\right)^{2}\right]\)
(6) \(\quad Y_{C}=0: \quad G_{S}(O P T)=|G+j B| \cdot \begin{aligned} & V_{L}\left(G_{S}=0\right) \\ & V\left(G_{S}=0\right)\end{aligned}\)

TABLE 1. NOISE FORMULAS


FIG. 4 OSCILLATION FREQUENCY AND POWER OUTPUT OVER O TO \(50^{\circ} \mathrm{C}\)


FIG. 5. MECHANICAL TUNING AS A FUNCTION OF AIR GAP THICKNESS (h)


FIG. 6 SIDE VIEW OF DIELECTRIC RESONATOR COUPLED BETWEEN FEEDBACK MICROSTRIP LINES


\section*{FIGURE 3}


NOISE FIGURE AS A FUNCTION OF THE source admittance phase angle
figure 4


FIGURE 5


LNA.V.1: NOISE FIGURE F VS FREQUENCY
FIGURE 6
double sideband demodulateo fm noise
PER 3.1 kHz BAND WIDTH
200 kHz rms DEVIATION \(=O \mathrm{CD} B=1 \mathrm{~mW}\)
FM NOISE (dBmo)


FIG. 7

NOISE FIGURE VS. SOURCE RESISTANCE FOR LOW NOISE PREAMPLIFIER



FIGURE 7

noise figure versus source susceptance

\author{
IRON POWDER CORES FOR \\ HICH Q INDUCTORS \\ \section*{JIM COX} \\ MICROMETALS, INC,
1190 N. Hawk Circle

}

SUBJECT: A brief overview will be given of the develooment of carbonyl iron powders. It will be shown how the magnetic properties of given iron powder will effect inductor performance and, through example, how the physical size of a
core along with its winding details interact to effect ver core along with its winding details interact to effect \(\begin{gathered}\text { eqersus } \\ \text { frequen characteristics. }\end{gathered}\) frequency characteristics.

INTRODUCTION: A eircuit designer is often faced with need for inductors and transformers. Regardless of whether it is decided to make or buy these components, it it a practical understanding of the parameters that affect their performance.

In the last century the use of solid magnetic material for DC electromagnetics and later laminated magnetic materials for low orequency applications led to the need for materials that would origirial thick laminations it was discovered that the apporerit permeability or inductance decreased as frequency increased and, at the same time, losses became prohibitive, it was found that by using thin sheets of material insulated from one another that better results were obtained. This is primarily due to an
effect known as eddy current shielding. As frequency increases the depth of magnetic penetration decreases for any given material. Thus by having thin sheets, effectively, more of the core body is utilized, This progression worked toward laminations and grain oriented alloys to mett the higher frequency needs.

While the thin oriented laminations were useful for broadbarid audio transformers, they were unable to meet the need for
selective circuits where high Q is reauired. While at low frequency the magnetic field in a coil is in its axial direction, at high frequency, each turn generates its own field concentric with the wire. These fields are coupled with fields from adjacent turns and are coupled to the cor through axia fields rather than one ceritral field. This type of field requires cores osses and. \(A\) s miain relable inductance and eversus

There are two basic classes of iron powders available; Hydrogen reduced irons and carbonyl irons. The hydrogen reduced irons have low resistance, and relatively large particle size. This type of powder produces the highest permeabilities, imporowehin 100), has low lossessat low frequency, but the losses increase significantly thigh frequency, producing very low ot or chokes in line filters and DC output chokes in switching power supplies.
The carbonyl irons, on the other hand, have particle which is formed by the decompositon of pentacarbonyliron vapor. This produces soherical particle with ar onion skin structure. The laminating affect of the onion skin produces a resistivity of the individual particles which is much higher than that of pure iron. This high resistance in conjunction with the very smal frequency performance. The permeability of carbonyl iron powders, and thus their inductarice, can be manufactured to a very tight tolerance and they remain extremely stable with frequency, temperature, and applied signal level. All of these are important considerations in high \(Q\) selective circuits.

The distributed air-gad characteristic of the carbonyl irori powder produces core with permeabilities ranging from 4 to 35 . This feature in conjunction with the inherent high saturation point of iron makes it very difficult to saturate at high power RF. Normally, high power applications are limited by
temperature rise due to core loss.
In the middle 1930's the first ferrites were investigated. The development of these materials produced higher permeabilities than that attainable with iron powder and, at the same time, they had reasonable losses, In many applicatioris the higher permeability of the ferrite materials is a distinct advahiag Permeability is riot nearly as imporiant as attainable \(\theta\) and good stability with varving environmerital arid electrical conditions.

\section*{A Complex Impedance Meter}

\section*{Carl G. Lodstrobm}

\section*{Dow-Key Microwave Corporation}

1110 Mark Avenue
Carpinteria, CA 93013-2918

The idea of this instrument was conceived through the better understanding of the Smith chart that I was able to receive in the late '70s. It took a few years, until around 1980 , to get around to building one, verifying the concept. I remember that it was an antenna that defied tuning, and a 2 -meter version of the instrument was built.

As is apparent in the Smith chart, all mismatches reflect power. At an open end of a transmission line a voltage maximum will occur. This corresponds to a point at the right edge of a Smith chart. At a shorted end there will be a voltage minimum (the left edge), and in the case of a perfect match, there will be equal voltage along the line (chart center). Correspondingly, loads with some imaginary part, inductors and capacitors combined with the load, will move vertically from the center, inductors up and capacitors down. They will not move on a straight line, like their resistive counterparts, but along some resistive circle, and the unity circle if the resistive part is a match. In the vicinity of the center, this vertical movement is approximately a straight line. How do we detect and indicate these deviations, then?

A wise man, Magnus Koch at the Chalmers U. of Technology, Foteborg. Sweden once told me, "Tf you can measure something
with a bridge, do it!" As the years have gone by, I have found them to be words of wisdom, and they certainly apply here. \(\Lambda\) bridge, how to make a bridge that can detect in what direction something takes off on a Smith chart?

One does not have to! As you go along a transmission line away from, say a shorted end, you start at the leftmost end, and we all know that after \(\lambda / 8\), looking back, we will see an inductance with jwL \(=Z_{0}\). After another \(\lambda / 8\), making \(\lambda / 4\) total, it looks like an open circuit, and so on. After one turn around the chart we have traveled \(\lambda / 2\) along the line. Set us now put four little detector diodes, monitoring the voltage on the line, snaced \(\lambda / 8\) apart, one in each "compass direction" around the chart. Well, you say, you can not do that! It introduces a mismatch! True, but ail four diodes do the same. Since they are mutually cancelling, AT That frequency, plus a little line loss, it does not matter.

Let us excite the line and try various loads at the other end. The last diode is to be positioned where the loads will be applied, or an integer multiple of \(\lambda / 8\), in which case the indicators will change sign and label.

Referring to the basic schematic, Figure l, let us look at a short circuit. 04 will obviously get no voltage at all to detect, but D2 will get twice the normal. D3 and Dl will not see any change. Due to the way \(D 2\) and \(D 4\) are turned, a neqative voltage will appear at their summing point. \(n_{n}\) open circuit will produce the opposite, with a oositive voltage from D4 and no voltage from D2. Tn both cases, Dl and D3 will detect equally strong

Ferrites are typically manufactured to a +/-20x tolerance.
INDUCTANCE: The inductance per turn of a closed magnetic structure, like a toroidal core, is described by:

\section*{\(\frac{L}{n^{2}}=\frac{4 \pi u A_{e}}{l}\)}
where:
- inductance in (nH)
= permeability
\(=\) cross-sectional area \(\left(\mathrm{cm}^{2}\right.\)
= path length cm
= number of turns
This illustrates that the inductance per turn of sore is directly related to its permeability and the retio of its cross-section to its path leng.th. Core manufacturers provide an inductance rating for theirecores. There are 3 different descriptions commonly usedi \(n h / t\), mh/ \(1000 t\), and uh/ioot. Because the inductance varies, scuared with turns, the three compare according to this example:
\[
5 n h / t=50 \text { uh/100 turns } *_{\text {bu }} 5 \mathrm{mh} / 1000 \text { turne }
\]

These ratings are used to calculate the required turns for a desired inductance as follows:


If Al in mh/1000 turns,
required turns
\(=1000\left[\frac{\text { desired } \mathrm{L}(\mathrm{mH})}{\text { Al gink }}\right]^{\frac{1}{2}}\)
WICbOWEIVTE
JIW cox

ibOU bOMDEG COBE

1f rated in uh/ 100 turns;
required turns
\[
=100\left[\frac{\text { desired L/uh }}{\mathrm{Al}}\right]^{\frac{1}{2}}
\]

For example, if 3uh is needed on core with an inductance index (A1) of \(49 \mathrm{uh} / 100\) turns then;
required turns \(=100\left[\frac{3}{49}\right]^{\frac{1}{2}}=24.7 \simeq 25\) turns
Q CONSIDERATION: What are some of the considerations for producing high \(Q\) inductors? What is \(Q\) ? In simplified view \(Q=\) \(\tan \theta=W L / R\) where \(\theta\) is the phase angle, wL is the inductive ideal inductor, the phase angle is 90 degrees and the \(\theta\) is infiniter ikewise an inducior with dego of has phase of 45 degrees and thus its reactive and resistive angle \(0^{\circ}\) in degree 150 has phase and of 89.5 degreas

The factorg which make up the effective resistance are quite The factorg which make up the effective resistance are quite
complex. They involve both the core and winding losses. The complex. They involve both the core and winding losses
core losses vary with material., frequency, flux density core losses vary with material, frequency, flux density
core size. The winding losses involve wire resistance, core size, The winding losses involve wire resistance,
turn-to-turn, and turn-to-core capacitive effects which are all frequency and size dependent. There are rigorous analvses of these inter-relationships available, but in gerieral they arie far too complex to be of much practical use when it comes to designing a high \(Q_{1}\) high frequency inductor. The basic trends of these inter-relationshios as they relate to frequency are shown in the following exapmles. The examples will use toroida or donut-shaped cores, but the principles can be applied to other core shapes.

Optimum \(Q\) occurs when the combined core loss equals the total winding loss. It has beeri shown by Legg that, in general, the maximum attainable Qis directly related to the physical size of a core for any given material. It has also been showri, that the frequency at which this maximum attainable \(Q\) occurs is, in general, inversely proportional to permeability, core size, and the square pet of the core 1055 .
Figure illustrates this basic relationship. For a given core material fcarbonyl, E , m - 10 , recommended frequency range of 25 to \(10(\mathrm{Mz})\), the physically large cores provide a hiother peak Q than tho physically small cores and the frequency at utich.
signals, but of opposite signs, so their sum is zero. In a similar way it works for imaginary deviations from the matched condition. Just imagine the chart rotated 90 degrees

The beauty of the Smith chart, or at least one of them, is preserved in this apparatus. It is the fact that near perfect loads will be treated especially carefully and accurately. The concent is clearly not limited to 50 ohm lines. One can imaqine the use of perhaps a 5 ohm line in a test fixture for measuring transistor input impedances.

A limitation is the bandwidth. I would say that the function is very satisfying within a \(10 \%\) band centered around the design frequency. That is certainly more than enough for most "band" operations, be it ham radio, cellular mobile, radar, microwave link or \(C B\). An exception from the bandwidth limitation is of course the well-matched load, which will appear as such, no matter what the frequency.

The maximum possible frequency of operation that can be achieved remains to be determined. The diodes have to be operating, of course, and can always be soread by multiples of \(\lambda / 8\) if physically necessary, but the bandwidth will suffer. HewlettPackard has been kind enough to supoly me with some zero bias diodes good to 10 GHz , but in spite of a lot of care, they got damaged by static electricity. Cising regular "hot carrier" diodes will work to at least 1 GHz , but a signal level of at least -15 dBm is necessary for good signals. \(\AA\) possible method of building the instrument for microwave frequencies is shown in Figure 2.

\section*{Practical Aspects}

It may be more desirable to have the testplane outside the connector, as opposed to just behind it. This is possible by just adding some line after the last diode. This may actually be the preferred method, since all the diodes then will be mounted in an identical manner on the line, thereby balancing each other better. They will then have to be permutated, changing the order from 1-2-3-4 to 4-1-2-3.

It is also possible to measure remote ( \(100 \lambda\) ) objects. By leaving the end of the line open, one can determine to what extent the chart is rotated, and either change the frequency sightly to get the open located on the right, or add some cable, or just remember the position. The insertion loss of the cable limits the sensitivity, of course, but I have derived useful information about a load with a 20 dB attenuator in line and +10 dBm excitation. This corresponds to a vSWR of \(1.02: 1\) or 40 dB return loss. With the same level of excitation \(I\) can detect the difference between a "perfect" load and one of 70 dB reflection. To observe that mismatch on a Smith chart, you would have to use a microscope, since it corresponds to a distance from the center of half the thickness of a human hair.

Displaying the voltages on an \(X-Y\) oscilloscope for a plotter for swept signals) is very convenient. It then becomes apparent that the outline of the displayed field, corresponding to the circular border of the smith chart, is not really circular, but somewhat diamond shaped. Should this be disturbing, a 6 dB attenuator can be left on the measurement port. It is "transparent"
this peak occurs is indeed inversely proportional to the core size. That is to say, large cores reach their odtimum at a lower frequency than the small cores.

Figure 2 illustrates that for the same physical size core, a T50, (which is a \(1 / 2\) o.d. toroidal core), that the frequency at
which the peak \(Q\) occurs increases with decreasing permeability. which the peak o occurs increases with decreasing permeability. Eddy current losses also are involved in determining this optimum frequency.

In this comparison, the inductance has been variable in order to approach an optimized \(Q\) at an optimized frequency, Figure 3 shows a series of \(Q\) curves for the same size core and material, each with a different single laver winding. These curves show that the frequency at which the \(Q\) peaks, decreases as the number of turns, and thus the inductance, increases, it also
that there is a point at which a peak-peak is obtained.

Another interesting comparison is to set the inductance at a fixed value and see how the core size, core material and fixed value and see how the core size, core material and
required windings interact. Figure 4 shows this comparison. While these are not optimized coils, this example illustrates that even with a fixed inductance, larger cores produce higher \(Q\) at a lower frequency than the smaller cores.

Thusfar, the examples given have not considered the winding details, but have looked at the interaction of core size and material as it relates to and frequency. in the examples shown, the windings have all been a full single layer. The following examples illustrate the effects of different types of windirigs and their implications versus frequency.

WINDING CONSIDERATIONS: In arriving at the best winding for a given coil, there are two basic effects, which reduce \(Q\), that need to be considered: resistive and capacitive.
The resistance of copper wire at very low frequency is the same as its DC resistance. The skin depth of an AC current is inversely proportional to the square root of the operating frequency. Thus the \(A C\) resistance of a conductor is proportional to Because of this, the increased resistance due to skin effect will begin to come into play at higher large wire. As resistance as low s 300 kHz and 40 wire is affected around 3 MHz . This resistance is further increased in wound coils due to the proximity effect of adjucent turns.

In order to help the AC resistance of a conductor approach its DC resistance at moderate frequericy, Litz wire can be used. Litz wire is formed by a number of strarids of small insulated wire connected in parallel at the ends and completely interwoven. The interweaving is essential in order for the various strands to equally share the current. There is a significant difference between true litz wire and stranded wire.

Practical Litz wire is very effective at frequencies up to 1 MHz. As frequency increases, however, the benefits begin to disappear. At very high frequencies the reduced resistance due to the interwoven stranding is more than off-set by the capacitive build-up between the strands. Since most of the work in RF today is at frequencies above 1 MHz the use of Litz wire has become rather uncommon.

In a winding, the self- capacitance that is built up is aresult of the turn- to-turn capacitance of adjacent wires as well as of the turn- to-turn capacitance of adjacent wires as well affected by the wire size, the number of turns, and the spacing and positioning of the turns. In general, eapacitive affects on and pecome inereasingly important with frequency squared (f 2 ). For toroidal coil, one of the most important factors in controlling capacitive built-up is to limit the winding to single layer. Figure 5, from Welsby, shows how the self capacitance of a toroidal coil varies with the number of wiridirig layers. It is seen that the addition of even partial second layer dramatically increases the self-capacitance.

This capacitive effect is evident in figure 6. Ir this example all the coils are wound with 28 wire and essentially the same number of turns. Curve il is a single laver winding and has peat © of 244. Curve 2 is the result of addirig onlv 2 turris or a second layer. The resulting \(Q\) is 7 lower. Curve 3 is a randomly wound coil and exhibits even lower Q. And the worst of he group is curve 4 which has 0 turns on the first layer and 0 turns on the second layer. in this example the capacitive ffects have lowered the \(Q\) by over 25\%.

Since the objective is to mirimize both resistarice, which, implies larger conductors and thus multi-layers, and at the same ime to minimize caoacitance, which imolies single lavers with good spacing, it is valuable to keeo in mind that the importarice of resistance varies with \(\sqrt{f}\) and the importance of capacitarice varies with fz. This indicates that at low frequencies resistarice is the domiriant factor and that at high frequericies capacitance is the most important factor.
enough to make good measurements through. It also provides the necessary \(D C\) return path for the diode currents, that may not be present in the load or source.

The matching impedance of the source is not critical at all. A mismatch there reflects part of the power back to the source, but what travels down the line is what counts.

With zero bias diodes it should be possible to use a regular signal generator for the source, with levels of \(1 \mathrm{mV}(-47 \mathrm{dBm})\), and measure receiver inputs without driving them into non-linear regions.

\section*{Other Applications}

Substituting the "perfect" load with a resonant circuit opens ud a few interesting applications. The output from the \(j x\) detector becomes very sensitive to changes in frequency, being zero at resonance. This can be used to measure deviation, modulation, PLL step response and maybe even phase noise. the higher the \(Q\) of the attached resonant circuit, the more sensitivity. A vco can be locked to a cavity or a stub, by feeding back the DC signal.

Another application could be a distance meter, connecting both outputs to an UP/DOWN counter, with an antenna for a load. The sine/cosine information in the reflected signal will run the counter up or down, and one count for every half wavelength will be gathered. This may be a good detector for doooler radar burqlar alarms, eliminating false alarms from objects that are just swingina back and forth in the wind.

\section*{Conclusion}
^ detector has been described, that in sensitivity far exceeds the common VSWR meter, and furthermore provides information about the complex nature of the load, while still being of the same simplicity as a VSWR meter. The tradeoff is bandwidth. Also, it has other potential uses, as outlined, that a VSWR meter has not

\section*{Acknowledgements}

To Magnus Koch, as mentioned above, and to Ingvar Svensson, my teacher at TGG, Goteborg, who had the ability of explaining the Smith chart so vividly that this concept surfaced in one of his more absent-minded students' mind! If all teachers were like him, this world would be a much better place.


Figure \(1(a)\). Basic Schematic of Impedance Meter.

Aside from the effect that coil capacitance has on Q, it also affects the self resonant frequency and apparent inductance of the coil. The greater the coil capacitance, the lower the self resonant frequency and the higher the apparent inductance,

These coils are also, of ten times, either dipped in a material to secure turns or are completely encapsulated. The dielectric characteristics of the material coming in contact with the winding can have profound effect on the coil capacitance and, frequency. In order so minimize the shift and the self-resonan frequency, in order cominimize the shift that occors due to used.

Another characteristic which effects the apparent inductance is leakage inductance. Leakage inductance acts in series with a leakage inductance. Leakage inductance acts in series with a
coils self inductance. This is the result of uncoupled flux and becomes most apparent in high frequency, low inductance coils, particularly when the turns are not evenly distributed around particularly when the turns are not evenly distributed around the core. Here is an example

\(L=, 22 u h\)

200 degrees

\(L=.26 u h\)

120 degrees

\(L=, 39 u h\)

Iri instarices like this where it is possible to drastically change the positioning of the turns, and the permeability of the core material is low, very large differences are seen, In igher Dermeability materials this effect is much less, In a

SUMMARY Iron powder is a core material well suited for high stable iriductors to be used in the 100 KHz to 200 MHz frequency range.

The following relatioriships regarding core material and size have been shown:

\author{
1. For a given material, larger cores produce a higher \(\mathbb{Q}\)
}
at a lower frequency.
2. For a given material arid core size, \(Q\) peaks at a lower

\section*{frequency as the turns are increased. There is a frequency and} winding where \(Q\) is optimized.
3. For a given core size, the optimum value of \(Q\) is inversiey proportional to the permeability,
It has also been shown that from the winding standpoint, in order to help optimize \(Q\) :
1. At low frequency ( < 500 KHz ) that the resistive losses are dominant and thus the use of Litz wire is advantageous.
2. At frequencies above 1 MHz losses due to sapacitive effects begin to dominate and that multilayering is very detrimental to \(Q\). It can generally be stated that afull single layer will provide the best result.

In order to help the design engifieer in his efforts to build high e inductors, Micrometals, inc, has printed on extensive series of \(Q\) ve frequency curves for iron Dowder cores known as that when high \(Q\) is required at a particular frequency and the physical size is limited by packaging requirements that, when possible, it is best to optimize the coil for \(Q\) and to adjust the value of the external resonating capacitors rather thari bo select the desired inductance and then sacrifice \(Q\) in order to achieve the inductance. Another application for which iron powder is receiving
increased aftention is for use in very high freauency broadband matching applications. The extremely linear frequency response of iron powder even with 35 permeability material makes it useful for trarisformers above 50 MHz . The primary ateractior, of iron powder. is its repeatability at the extremely hiof roadbe. Full char up 10 CHz will be avallable in broadband applications up to CHz will be available in the future.


Figure 1 (b). Circuit with measurement plane outsice'unknown' connector. Note diode numbering change.


Figure \(1(c) . \quad\) Practical construction method.


Figure 2. Possible microwave construction method.

ploter resolution \(=500 \mathrm{mv} / \mathrm{in}(\mathrm{X}\) \& Y\()\)
Figure 3. Display of measurements made with Impedance meter
mat Numaen


Figure 1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{General Magnetic Properties} \\
\hline Mix* & \[
\begin{gathered}
\text { Basic } \\
\text { Iron Powder }
\end{gathered}
\] & Material Permeability ( \(\mu \mathrm{N}\) ) & Temperature Shability ( \(\dagger\) ) & Resonant Circuit Frequency \({ }^{\text {flange' }}\) (MHz) & Color Code \\
\hline 1 & Carbonyl C & 20 & \(280 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & .15-2.0 & Blue \\
\hline 2 & Carbonyl E & 10 & 95 & .25-10. & Red \\
\hline 3 & Carbonyl HP & 35 & 370 & .02-1.0 & Gray \\
\hline 6 & Carbonyl 5 F & 8.5 & 35 & 2.0-30. & Yeliow \\
\hline 7 & Carbonyl TH & 9.0 & 30 & 1.0-20. & White \\
\hline 8 & Carbonyl GQ4 & 35 & 255 & .02-1.0 & Orange. \\
\hline 10 & Carbonyl W & 6.0 & 150 & 10-100 & Black \\
\hline 12 & Synthetic Oxide & 4.0 & \(170^{\circ}\) & 20-200 & Green/While \\
\hline 15 & Carbonyl GS6 & 25 & 190 & . 10.3 .0 & Red/White \\
\hline 17 & Carbonyl & 4.0 & 50 & 20-200 & Blue/Yellow \\
\hline 22 & Synthetic Oxide & 4.0 & \(410^{\circ}\) & 20-200 & Green/Orange \\
\hline 0 & Phenolic & 1 & 0 & 50-250 & tan \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
'Frequency range indicated is for maximum \(Q\). For wide-band applications where high \(Q\) is not required the useful frequency range will typically extend 10 in 100 times higher. \\
- Non-linear
\end{tabular}} \\
\hline
\end{tabular}

Figure 2


Figure 4. Top plot was made with a Hewlett-Packard 8510 Network Analyzer. The bottom plot is the same load measured with the Impedance Meter. Shape differences in rotation of the display and the calibration of the center dot ( 50 ohm load).


Figure 5. Effects of an additional tuned circuit, coupled to the antenna. As would be predicted, a high-o response (small loop) occurs at the additional resonant frequency. Light coupling does not greatly disturb the primary antenna response.


Figure 3


Figure 4


Plot A: "perfect" load. Plot B: 52 dB return loss. \((20+6) \times 2\).


Plot C: 40 dB return loss.

Figure 6. Sensitivity demonstration - High sensitivity display can discern difference between "perfect", 52 dB return fication of the center dot in Figure 3.


Figure 5


Figure 6

\section*{Efficiency of Envelope-Tracking RF Power-Amplifier Systems}
by
\(H\). Ra
Frederick H. Raab, Ph.D. Green Mountain Radio Research Company 50 Vermont Avenue, Fort Ethan Allen Winooski, Vermont 05404

\section*{ABSTRACT}

Envelope tracking is a technique for increasing the efficiency of a inear RF power amplifier (PA) by varying its supply voltage to track the envelope of the RF signal. Potential advantages of envelope tracking over other techniques include simple circuitry and usability at any RF frequency, RF bandwidth, and signal bandwidth. Instantaneous power and efficiency characteristics are derived using ideal class-B PAs so that the results can easily be scaled for use with practical PAs. The average efficiencies are then determined as functions of the supply-voltage ratio for a variety of amplitudemodulated signals. The improvement in average efficiency can be quite significant but naturally depends upon the specific type of signal and its peak-toaverage ratio. For example, the 28 -percent average efficiency of a singlevoltage PA with a Rayleigh-envelope signal of \(10-\mathrm{dB}\) peak-to-average ratio can be increased to 48 and 57 percent by two- and three-voltage envelope tracking, respectively.

Envelope tracking is a technique for increasing the efficiency of a linear RF power amplifier (PA) by varying its dc supply voltage to track the envelope of the desired output signal. The improvement in efficiency is achieved because the efficiency of almost any PA is proportional (or approximately proportional) to the ratio of its output voltage to its PEP-output voltage. The improvement in efficiency is especially significant when the signal to be amplified has a high peak-to-average ratio, which causes a linear PA to operate in a low-power, low-efficiency region most of the time.

Consider, for example, the curves in Figure 1 . The instantaneous efficiency of an ideal class-8 PA increases from zero to 78.5 percent as its output increases from zero to peak-envelope power (PEP). The two-tone test signal has a \(3-\mathrm{dB}\) peak-to-average ratio and spends most of its time at amplitudes near PEP, hence the ideal class-B PA amplifier has an average efficiency of 61 percent. However, the speech and multicarrier signals more commonly encountered during actual use have larger peak-to-average ratios (e.g., 10 dB ), resulting in average efficiencies on the order of 30 percent.

If the \(P A\) is operated from half of the full supply voltage, the instantaneous efficiency increases from zero to 78.5 as the \(R F\)-output voltage increases from zero to half of the PEP-output voltage, doubling the instantaneous efficiency for low-amplitude signals. For larger instantaneous outputs, the PA must be operated from the full supply voltage, dropping the instantaneous efficiency to that of an ordinary class-B PA. Nonetheless, the average


(b) Probability densities
efficiency for signals with a \(10-\mathrm{d} 8\) peak-to-average ratio is increased from approximately 30 percent to approximately 48 percent.

The block diagram of a two-voltage envelope-tracking system is shown in Figure 2. The envelope of the input signal is detected and compared to a threshold value. When the envelope is larger than the threshold value, \(V_{D D R P}\) (the dc supply voltage for the RF PA) is switched to the full dc supply voltage \(V_{D D^{*}}\) Otherwise, \(V_{D D R F}\) is switched to the lower supply voltage a \(V_{D D}\) to reduce power dissipation in the RF PA. The lower supply voltage can be obtained from an efficient switching regulator or from a center connection in a series of batteries.

The concept is readily extended to three or more supply voltages. However, the use of a larger number of supply voltages adds to circuit complexity, thus eliminating one of the advantages of envelope tracking. The supply voltage to the RF driver amplifiers can also be varied to reduce their power consumption. In addition, a switched compensation network can be added to correct for gain and phase changes associated with operation of the PA from different supply voltages.

A number of techniques [1-6] are known for implementing high-efficiency RF power amplifiers (e.g., classes D, E, and F) and for combining PAs to increase efficiency (e.g., envelope elimination and restoration, outphasing, and
 Doherty). Envelope tracking is thus neither the only technique nor necessarlly the best technique for improving efficiency. However, it may be the most practical or most effective technique in certain situations, such as when

Figure 1. Efficiency and distribution characteristics.

\section*{140 MHz Lumped Elenent 3dB Hybrid}

\section*{by}

Dr. Rajeswari Chattopsdhysy I.R.L.N. Murthy Suresh K.R. Nayar Chief Engineer Exec. Engineer Delhi University

Transmission RED
Indian Telephone Industries Ltd. Bangalore, India

\begin{abstract}
A \(140 \mathrm{MHz}, 3 \mathrm{~dB}\) hybrid was realized using lumped inductances and capacitances. At microwave frequencies \(3 d B\) hybrids are resifzed using branched line hybrid couplers. Branched line hybrid consists of series and shunt \(\lambda / 4\) transmision lines. At 140 MHz the \(\quad \lambda / 4\) transmission line will be about 53.5 cm long in air, and it would be impractical to fabricate branched line hybrids at these frequencies. The characteristica of tranamission lines can be realized using lumped inductances and capacitances. It is thus posible to realize the branched line coupler in its equivalent form.

The commonly used single section branched line hybrid coupler is shown in fig.l(s). The \(\lambda / 4\) transmission ifnes of this hybrid can be realized by the lumped element pi-network shown in fig. \(1(b)\). The inductance \(L\) and the capacitance \(C\) of this network, in terms of the characteristic impedance \(z_{0}\) and the centre frequency of operation \(f_{0}\) of the equivalent transmission line, are given by the following equations.
\end{abstract}
\[
\begin{aligned}
& \sqrt{L / C}=z_{0} \\
& 1 / \sqrt{L C}=2 \pi f_{0}-\cdots(1)
\end{aligned}
\]

Uaing these equations the \(L\) and \(C\) values for the \(50 \Omega\) and \(50 / \sqrt{2} \Omega\) charecteristic impedance \(\lambda / 4\) transuission line were calculated and the lumped element equivalent of the 140 MHz 3 dB two branched line hybrid is shown in Fig. \(2(a)\). This can be further simplified to the network in Fig. 2(b).

\section*{Realization of the lumped elenent \(\quad \lambda / 4\) tranaisaion line:}

A \(\lambda / 4\) transmisizun line was realized using aircore inductors and variable capacitors (Thintrim). The aircore inductors were measured by reasonating them with a chip capacitor (at a series resonant frequency of 140 mHz ). The series resonant circuit was loosely coupled to input and output microstrip lines with two 6.8 pF series capacitors. Thintrim variable capacitors were tuned to the appropriate value by resonsting them with the measured aircore inductors in aimilar way. To wessure the insertion loss and insertion phase response of the lumped element pi-network, two equal length jo ohms ifes were used on the 31 mil thick Teflon fiberglass substrate. One microstrip line was used as the reference line to eliminste the smbiguities due to co-sxial to microstrip transitions. Layout for this experiment is shown in Fig. 3 ( \(s\) ). The series inductor L ( 56.84 nH ) was connected by cutting the other microstrip ifne, and the capacitors \(C(22.736 \mathrm{pF})\) were grounded by through holes in patches \(P_{1}\) and \(P_{2}\). SMA connectors were used for the external
- The operating frequency is too high for implementation of high-efficiency RF PAs.
- The signal bandwidth is so large that class-S envelope modulators are impractical or inefficient,
- The frequency range of operation is larger than that of the transmis-sion-line couplers required by the outphasing and Doherty techniques, or
- Economic or space considerations do not permit implementation of a class-S envelope modulator.

The objective of this paper is to determine the improvement in efficiency that can be achieved by applying two- or three-voltage envelope tracking to a class-B linear RF PA. While the use of multiple supply voltages in audio PAs has been discussed in the literature \([7,8]\), little consideration has been given to analogous techniques for RF PAs. To obtain generally applicable results, ideal class-8 PAs are assumed. Predictions for a practical PA can be obtained by scaling the results presented here by the efficiency of the PA at peak output.

\section*{2. InStANTANEOUS EFFICIENCY}

The characteristics of ideal and practical class-B PAs are discussed in [1]. It is useful to recall that the dc input current for an ideal class- \(B P A\) is
\[
\begin{equation*}
I_{\mathrm{dc}}=\frac{2}{} \frac{V_{o m}}{R} \tag{1}
\end{equation*}
\]
where \(v_{o m}\) is the output envelope voltage (i.e., \(v_{o m} \sin \omega t\) ) and \(R\) is the load resistance. Note that \(I_{\mathrm{dc}}\) is not dependent upon supply voltage.

A two-voltage envelope tracking system employs supply voltages of \(V_{D D}\) and \(a V_{D D}\) where \(a<1\). Linear operation of the RF PA requires its supply voltage to be at least as large as the desired output voltage. The threshold comparison (Figure 2) required to vary the \(V_{D D R F}\) (as in Figure 3) is described by
\[
v_{D D R P}=\left\{\begin{array}{llllll}
a & v_{D D}, & 0 & < & v_{o m}< & \&  \tag{2}\\
v_{D D} & , & \& & v_{D D}< & v_{O T} & < \\
v_{D D}
\end{array},\right.
\]

The resultant dc input power is therefore
\[
P_{i}=\left\{\begin{array}{l}
a v_{D D} I_{\mathrm{dc}}, 0<v_{O M}<a v_{D D}  \tag{3}\\
v_{D D} I_{\mathrm{dc}}, a v_{D D} \leqslant v_{o m} \leqslant v_{D D}
\end{array} .\right.
\]

The instantaneous dc-input power curves and the corresponding efficiency curves are shown in Figure 4. Note the abrupt decrease in power consumption and increase in efficiency when the \(V_{D D R P}\) is switched from the higher supply voltage to the lower supply voltage.

The three-voltage envelope-tracking concept is analogous to the two-voltage concept but employs supply voltages \(a_{1} V_{D D}, a_{2} V_{D D}\), and \(V_{D D}\), where \(a_{1}<a_{2}<1\). The voltage-switching algorithm is described by
connections to the microstrip lines. HP 8505A network analyzer and 8503A S-parameters bets were used for measurements. Using an in-house circuit analysis package the theoretical response of the pi-network was calculated. The measured and theoretical insertion loss phase response for the lumped element \(\lambda / 4 \quad 50 \Omega\) transmision line is shown in Fig.4. There was very close correlation between the measured and theoretical responses.

\section*{The realization of the lumped eleaent branched line hybrid:}

Since the lumped element pi-network design based on equations (1) and (2) had astisfactory phase response, the branched line hybrid was realized ab per Fig. 2(b). The layout of the lumped element hybrid is shown in fig. 3(b). All the inductors and capacitors were tuned to proper values by the procedure outlined earlier. For this coupler the return loss and isolation maxima occured at different frequencies. The mesured return loss and isolation characteristics are shown in Fig.5. Using the in-house "SCAT" circuit analysis program the lumped element hybrid circuit was analyred. From the theoretical analysis it was found that it is posible to obtain the measured response when there is \(10 \%\) increase in three of the inductor values, \(8 \%\) decrease in the capacitor values and about \(10 \%\) decrease in the value or \(L_{1}(F i g .3 b)\). This order of error in the measurement of \(L\) 's and \(C\) 's can be due to the following reasons:
1. Inaccuracy of the series resonant frequency measurement on the network analyzer.
2. Tolerance of chip capacitors used for weasuring the aircore inductors.
3. The unaccounted loading of the series resonant circuit used for measuring L 's and C 's.

Based on the theoretical analysis, the 3 dB hybrid was tuned to get the response shown in Fig.6. It can be seen that this hybrid has minimum return loss of about 14 dB , a minimum 1solation of about 15 dB and maximum coupling imbalance of 0.7 dB over 128 MHz to 144 MHz . Thus the lumped element 140 MHz 3 dB hybrid has a satisfactory performance over about \(12 \%\) bandwidth. The difference in the theoretical and experimental results (fig.(6)) could be due to the fact that in theoretical modeling the finite \(Q\) 's of the inductors and capacitors were not included. Though this coupler was realized with microstrip input and output lines and SMA connectors were used for our convenience, \(1 t\) can be realized on PCB for integration with other circuits. Unline \(\quad\) Ruthroff transformer this coupler is compatible with planar technology and can be easily miniaturized using thick and thin film techniques. For broader bandwidth,
lumped element equivalent circuits for higher order branched line hybrids can be realized.

\section*{acknowledgement}

The authors wish to record their thanks to management of \(\mathrm{M} / \mathrm{S}\) Indian telephone Industries Limited, Bangalore for kind permission to publish this paper.



Figure 4. Instantaneous power and efficfency characteristics.

\[
v_{D D R P}=\left\{\begin{array}{llll}
a_{1} & v_{D D}, & 0<v_{O m}<a_{1} & v_{D D}  \tag{4}\\
a_{2} & v_{D D}, & a_{1} & v_{D D}<v_{O m}<a_{2} \\
v_{D D D}, & a_{2} & v_{D D}<v_{O m}<v_{D D}
\end{array}\right.
\]
and the corresponding dc input power is
\[
P_{i}=\left\{\begin{array}{l}
a_{1} v_{D D} I_{d C}, 0<v_{O M}<a_{1} v_{D D}  \tag{5}\\
a_{2} v_{D D} I_{d C}, a_{1} v_{D D} \leqslant v_{O m}<a_{2} v_{D D} \\
v_{D D} I_{d C}, a_{2} v_{D D} \leqslant v_{O m}<v_{D D}
\end{array}\right.
\]

The instantaneous power input and efficiency curves are also shown in figure 4.

\section*{3. AVERAGE pOWER input and efficiency}

Average efficiency \([1,9]\) is defined as the ratio of the average \(R F\)-output power to the average dc-input power; i.e.,
\[
\begin{equation*}
n_{\text {AVG }}=P_{\text {OAVG }} / P_{\text {iAVG }} \tag{6}
\end{equation*}
\]

The average powers are determined by integrating the instantaneous powers
weighted by the envelope probability-density function (p.d.f.) over the range of envelope values:
\[
P_{\text {oAVG }}=(1 / 2) \int_{0}^{V_{\text {omPEP }}} V_{o m} p\left(V_{o m}\right) d V_{o m}
\]
and


Fig. 1 (a) SINGLE SECTION BRANCMED LINE COUPLER


FIG. I(b) TQASMSSKON LIE EQUIVALENT LUMDED ELEMENT METWORK


FIG. 2 (a) LC AMALOGUE of A BRAMCHED LINE COUDLER


FIG. 2 (b) SIMDLIFIED LUMPED ELEMENT BRANCHED LINE HYBRID.


FIG. 4. THEORETICAL \& EXPERIMENTAL VALUES OF INSERTION PHASE FOR \(\lambda / 4\) LINE.


FIG. 3 (a) LAYOUT FOR LUMPED ELEMENT \(\lambda / 4\) TRANSMIS5ION LIE MEASUREMENTS

fig. 3 (b) LAyOUt of the lumped element hybrid.
\[
P_{i \mathrm{AVG}}=\int_{0}^{V_{o m P E P}} P_{i}\left(V_{o m}\right) p\left(V_{o m}\right) d V_{o m} .
\]

The peak-to-average ratio is defined by
\[
\begin{equation*}
\xi=P_{o P E P} / P_{o A V G} . \tag{9}
\end{equation*}
\]

A number of useful p.d.f.s are defined in [5] and [9]. For the uniform p.d.f., the dc input power and maximum-efficiency values of \(a_{1} a_{i}\), and \(a_{2}\) can be determined analytically. However, for the other p.d.f.s, the evaluation is most readily accomplished numerically.

\section*{Selected Signals}

Single-sideband suppressed-carrier (SSB/SC) transmitters are conmonly tested with a two-tone signal, while full-carrier AM transmitters are commonly tested with a single-tone modulating signal. Some types of amplitude companders are said to produce a nearly uniform amplitude distribution. Quadrature amplitude modulation (QAM) is being used with increasing frequency in datatransmission systems because of its ability to pack a large number of bits into a single data symbol. All of these selected signals have relatively low peak-to-average ratios.

The average efficiency of two-voltage envelope tracking with the four selected signals is shown in figure 5 as a function of the transition ratio \(a_{\text {. }}\) The maximum average efficiency attainable with both two- and three-voltage envelope tracking as well as the corresponding average efficiency for a single supply voltage are given in Table l. For these signals, two-voltage tracking

figure 5 . Average efficiency of two-voltage tracking with selected signals.


Table 1. Maximum average efficiencies and corresponding voltage ratios.


FIG. 5 UNTUNED COUPLER RESPONSE


FIG 6 TUNED HYBRID COUPLER RESPONSE
makes a significant improvement in average efficiency but three-voltage tracking makes only a small additional improvement.

\section*{Multicarrier and SSB/SC Voice}

The envelope of bandlimited Gaussian noise has a Rayleigh distribution [10]. The envelope of the sum of a large number of independent RF carriers (with either FM or AM) also tends to have a Rayleigh distribution. The average efficiency of two-voltage envelope tracking with Rayleigh-envelope is shown in Figure 6 for peak-to-average ratios of \(5,10,15\), and 20 dB . The maximum average efficiency (obtained with proper choice of a) is shown in figure 7 for peak-to-average ratios from 5 to 20 dB . Average-effictency contours for three-voltage envelope tracking with \(\xi=10\) are shown in Figure 8.

For \(\xi=5 \mathrm{~dB}\), the improvements are similar to those obtained with the four selected signals. However, the improvement in average efficiency becomes much more significant as the peak-to-average ratio increases (Figure 8). For example, at \(\xi=10 \mathrm{~dB}\), the 28 -percent average efficiency of a single-voltage PA is increased to 48 percent by two-voltage envelope tracking and to 57 percent by three-voltage tracking. For \(\xi=20 \mathrm{~dB}\), the average efficiency is increased from a meager 8.9 percent to 38 and 51 percent by two- and three-voltage envelope tracking, respectively. Note that the effect of the transition voltage increases as the peak-to-average ratio increases.

The envelope of an SSB/SC signal produced by speech has a Laplacian (onesided exponential) distribution. The average efficiency as a function of transition voltage is shown in Figure 9 for Laplacian-envelope signals with


Figure 6. Average efficiency of two-voltage tracking with Rayleigh envelope.


Figure 7. Maximum average efficiency of two-voltage tracking for Rayleigh envelope.

\section*{a comeutation double-balanced mixer of high dynamic range}
by

\section*{Edwin S. Oxner}

Staff Engineer
iliconix ineorporate
2201 Laurelwood Road Santa Clara, CA 95054

\section*{INTRODUCTION}

Dynamze range remains \(t\) e principle goal of hF mixer design. The intermodulation performance and overload characteristics of a mixer are fundamental qualities used in the evaluation of a good design. Heretofore, most mixers sporting a high dynamic range have been either the passive diode-ring variety, or the active FET mixer. \({ }^{[1| | 2 \mid}\)

Common to both the diode and FET is their square-law characteristic so important in maintaining low distortion during mixing. However, equally amportant for high dynamic range is the ability to withstand overload that has been identified as a principle cause of distortion in mixing. \({ }^{[3]}\) some passive diode-ring mixer designs have resorted to paralleling of diodes to effect greater current handling, yet the penalty for this apparent improvement is the need for a massive increase in local-oscillator power.

This report examines a new FET maxer where commutation achieves high dynamic range without exacting the anticipated penalty of ancreased localoseallator drive. Using the Siliconix S28901, third-order intercept points upwards of +39 dBm (input) have been achieved with only +17 dBm of localoscillator drive:

\section*{CONVERSION EFFICIENCY OF THE COMMUTATION MIXER}

Unlike eather the conventional diode-rang mixer or the active FET mixer. the commutation mixer relies on the switching action of the quad-FET elements to effect mixing action. Consequently, the commutation mixer is, in effect, no more than a pair of switches reversing the phase of the signal carrier at a rate determined by the local-oscillator frequency. Ideally, we would anticipate little noise contribution and, since the switching mixer, consisting of four "switches," has finite ON resistance, performance 15 sim 1 lar to that of a switching attenuator. As a result, the conversion efficiency of the commutation mixer may be expressed as a loss.

This loss results from two related factors. First, is the \(r_{D S}\) of the mosFET relative to the signal and IF impedances; second -- a more common and expected factor -- is the loss attributed to signal conversion to undesired frequencies. There are, however, ways to reduce the effects of undesired frequency generation by the use of filters.

The effect of \(r_{D S}\) of the MOSFETs may be determined from the analysis of the equivalent circuit shown in Figure 1, assuming that our local oscillator waveform is an idealized square-wave. It is not, but if we assume that it is, our analysis 18 greatly \(s 1 m p l i f i e d ; ~ a n d ~ f o r ~ a ~ c o m m t a t i o n ~ m i x e r, ~ a ~ h i g h ~ l o c a l-~\) oscillator voltage begins to approach the ideal waveform of a square-wave.

Figure 1, showing switches rather than MOSFETs, also identifies the \(O N\) state resistance, \(r_{D S}\), as well as the OFF-state resistance, \(r_{O F F}\). The latter can be disregarded in this analysis as it is generally extremely high. On the other hand, the ON-state resistance, \(r_{D S}\), together with the source and


Figure 12. Maximum average efficiencies and corresponding voltage ratios.
added by envelope tracking are:
- PA gain and phase variation with supply voltage and
- Envelope distortion produced by finite switching time.

\section*{Gain and Phase Variation}

Virtually all solid-state power transistors (whether BJT or FET) contain significant voltage-variable capacitance. In addition, most FETs have inherently nonlinear transfer characteristics. As a result, variation of the supply voltage produces unwanted amplitude and phase modulation of the output signal.

Typical curves of gain and phase variation for a bipolar RF-power transistor [11] suggest maximum deviations of 2 dB and \(5^{\circ}\). However, the contours further suggest that simultaneous reductions in supply voltage and drive result in nearly constant gain and phase characteristics.

In general, determination of the carrier-to-intermodulation (C/I) level requires numerical evaluation based upon a particular signal and PA characteristic. However, some idea of the tolerable gain and phase changes can be obtained by considering the spectrum of squarewave modulation.

Squarewave amplitude modulation between two levels that differ by 0.42 dB results in third-order IMD products 30 dB below the carrier. Squarewave phase modulation produces third-order products whose amplitude is \(2 \Delta \phi / 3 \pi\) relative to a unity-amplitude carrier. Consequently, a phase jump of \(5.7^{\circ}\) ( 0.1 rad ) produces a \(\mathrm{C} / 1\) ratio of 30 dB . It therefore appears that phase variations are not likely to be a problem, while gain variations must be compensated if they
load impedances (viz.. signal and intermediate-frequency impedances) directly affects the conversion efficiency.

If we assume that our local-oseillator excitation is an idealized squarewave, the switching action may be represented by the fourier series as,
\[
\begin{equation*}
6|x|=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) \omega t}{|2 n-1|} \tag{1}
\end{equation*}
\]

The switching function, \(\varepsilon(t)\), shown in the derivative equivalent circuit of Figure 2, is derived from the magnitude of this Fourier series expansion as a power function by squaring the first term, viz., \(\left(\frac{2}{8}\right)^{2}\).

The available power that can be delivered from a generator of RMS opencircuit termanal voltage, \(V_{i n^{\prime}}\) and internal resistance, \(R_{g}\) is,
\[
\begin{equation*}
P_{a v}=\frac{v_{i n}}{\frac{i R_{g}}{2}} \tag{2}
\end{equation*}
\]
or, in terms shown in Figure 3,
\[
\begin{equation*}
P_{a v}=\frac{v_{i n}}{\pi^{\prime} R_{g}} \tag{3}
\end{equation*}
\]

The output power, deliverable to the intermediate-frequency port, is,
\[
P_{\text {out }}=\frac{V_{0}^{\prime}}{R_{L}}
\]

Eq. (4)
To arrive at \(V_{0}\), we first need to obtain the loop current, \(i_{L}\), which from Figure 3, offers,
\[
\begin{equation*}
i_{L}=\frac{v_{i n}}{\frac{\pi}{i}^{I}\left(R_{g}+n_{D S} \mid+R_{L}+n_{D S}\right.} \tag{5}
\end{equation*}
\]
then,
\[
\begin{equation*}
v_{0}=\frac{v_{i n} R_{L} T R_{g}+n_{D S} I+R_{L}+n_{D S}}{\text { ( }} \tag{6}
\end{equation*}
\]

Combining Eqs. (4) and (6),
\[
P_{\text {out }}=\frac{V_{i n}{ }^{2 R_{L}}}{T_{\frac{\pi}{4}}\left[R_{g}+n_{D S}\right)+R_{L}+\left.n_{D S}\right|^{2}} \quad \text { Eq. (7) }
\]

Conversion efficiency -- in the case for the commutation mixer, a loss -may be calculated from the ratio of \(P_{a v}\) and \(P_{\text {out' }}\)
\[
\begin{equation*}
L_{c}=10 \log \frac{P_{a v}}{P_{\text {out }}} d B \tag{8}
\end{equation*}
\]

Substituting Eq. (3) for \(P_{a v^{\prime}}\) and Eq. (7) for \(P_{\text {out, }}\) we obtain,
\[
L_{c}=10 \log \frac{\left[\frac{\pi^{2}}{4}\left|R_{g}+n_{D S}{ }^{\prime}+R_{L}+n_{D S}\right|^{2}\right.}{\pi^{2} R_{L}^{R} g} d 8 \text { Eq. (9) }
\]

The conversion loss represented by Eq. (9) is for a broadband doublebalanced mixer with all ports matched to the characteristic line impedances. The ideal commatation mixer operating with resistive source and load impedances will result in having the image and all harmonic frequencies dissipated. For this case, the opt imum conversion loss reduces to,
\[
\begin{equation*}
L_{c}=10 \log \frac{4}{\pi^{2}} \quad d 8 \tag{10}
\end{equation*}
\]
or -3.92 dB .
However, a truly optimum mixer also demands that the MOSFETs exhibit an ON -state of zero Ohms, and, of course, an ideal square-wave excitation Neither is possible an a practical sense.

Equation 9 can be examaned for various values of source and load ampedamces as well as \(x_{\text {os }}\) by graphical representation, as shown in Fiqure 4, re-

membering that a nominal 3.92 dB must be added to the values obtained from the graph.

TO illustrate how seriously the ON-state of the MOSFETs affects performance, we need only to consider the Si8901 with a nominal \(r_{D S}\) (at \(V_{G S}=15 \mathrm{~V}\) ) of 23 ohms. With a \(1: 1\) signal transformer ( 50 to \(25-0-25 \Omega\) ), \(\mathrm{Rg} / \mathrm{r}_{\mathrm{DS}}=1.1\). Allowing a \(4: 1 \mathrm{IF}\) output impedance to a 50 ohm preamplifier, the ratio \(\mathrm{R}_{\mathrm{L}} / \mathrm{r}_{\mathrm{DS}}\) approximates 4. From Figure 4 we read a conversion loss, \(L_{c}\), of approximately 3.7 dB , to which we add 3.92 dB for a total loss of 7.62 dB . Additionally, we must also include the losses incurred by both the signal and IF transformers. The results compare favorably with measured data.

A careful study of figure 4 reveals what appears as anomalous characteristic. If we were to raise \(R_{g} / r_{D S}\) from 1.1 to 4.3 (by replacing the \(1: 1\) transformer with a \(1: 4\) to effect a signal-source impedance of 100-0-100 ), we would see a dramatic improvement in conversion efficiency! The anomaly is that this suggests that a mismatched signal-input port improves performance.

Caruthers \({ }^{|4|}\) first suggested that reactively terminating all harmonic and parasitic frequencies would reduce the conversion loss of a ring demodulator to zero. This, of course, would also require that the active mixing elements (mOSFETs in this case) have zero \(r_{\text {DS }}\), in keeping with the data of Figure 4.

A double-balanced mixer is a 4-port, consisting of a signal, image, IF and local-oscillator port. Of these, the most difficult to terminate is the image-frequency port simply because, in theory it exists as a separate port,
but in practice it shares the signal port. Any reactive termination would, therefore, be narrow-band irrespective of its proximity to the active mixing elements.

The performance of an image-termination filter offering a true reactance to the image frequency ( 100 reflective) may be deduced to a reasonable degree from Figure 4, if we first presume that the conversion loss between signal and IF compares with that between signal and image. The relationship is displayed in Figure 5 where we see the expected variation in amplitude proportional to conversion efficiency (inversely proportional to conversion 108s).

Image-frequency filtering affects more than conversion efficiency. As the phase of the detuned-short position of the image-frequency filter is varied we are able to witness a cyclical variation in the intermodulation distortion as has been confirmed by measurement, shown in Figure 6. By comparing Figure 5 with Figure 6, we see that any improvement in conversion loss appears to offer a corresponding degradation in the intermodulation distortion.

\section*{INTERMODULATION DISTORTION}

Unbalanced, single-balanced and double-balanced mixers are distinguished by their ability to selectively rejec spurious frequency components, as defined in table I. The double-balanced mixer, by virtue of its symmetry, suppresses twice the number of spurious frequencies as does the single-balanced mixer.

In the ideal mixer, the input signal is translated to an intermediate-

\section*{Switching Time}

Delays in switching to the higher supply voltage can distort the envelope, producing IMD. In general, the C/I ratio depends upon both the type of signal and the transition ratio a. However, useful insight is obtained by considering the results of simulations of two-tone signals with \(\alpha=0.5\).

A pure delay in the voltage transition produces a \(\mathrm{C} / \mathrm{I}\) of 30 dB or more when the delay is less than \(0.1 \mathrm{~s} / \mathrm{B}\left(\mathrm{H}_{2}\right)\). Similarly, a linear (ramp) transition between voltage levels produces a \(30-\mathrm{dB}\) or better \(\mathrm{C} / \mathrm{I}\) ratio provided the total risetime does not exceed \(0.6 \mathrm{~s} / \mathrm{B}(\mathrm{Hz})\). These do not appear to produce unreasonable switching-time requirements for most applications. For example, delays of up to 35 us or risetimes of up to \(200 \mu s\) can be tolerated for ordinary \(S S B\) voice with bandwidth \(B=3 \mathrm{kHz}\).

\section*{5. CONCLUSIONS}

Envelope tracking can be implemented by adding relatively simple and inexpensive hardware to an existing RF power amplifier. This paper shows that it can produce significant increases in average efficiency for amplitude-modulated signals with large peak-to-average ratios. The power-supply switchingtime requirements are quite reasonable for voice-bandwidth signals. Envelope tracking should therefore be considered when improved efficiency is desired.

\section*{6. ACKNOWLEDGEMENTS}

This paper is based in part upon work sponsored by Spar Aerospace Limited, Ste-Anne-de-Bellevue, Quebec, Canada.

\section*{7. REFERENCES}
1. H. L. Krauss, C. W. Bostian, and F. H. Raab, Solid State Padio Engineering, New York: John Wiley and Sons, 1980.
2. F. H. Raab, "High efficiency amplification techniques," IEEE Circuits and Systeme Journal, vol. 7, no. 10, pp. 3-11, December 1975.
3. L. R. Kahn, "Single sideband transmission by envelope elimination and restoration," Proc. IRE, vol. 40, pp. 803-806, July 1952.
4. H. Chireix, "High power outphasing modulation," Proceedinge of the IRE vol. 23, no. 11, pp. 1370 - 1392, November 1935.
5. F. H. Raab, "Efficiency of outphasing RF power-amplifier systems," IEEE Traneactione on Cormmications, vol. COM-33, no. 10, Pp. 1094-1099, October 1985.
6. W. H. Ooherty, "A new high efficiency power amplifier for modulated waves," Proc. IRE, vol. 24, no. 9, pp. 1163-1182, September 1936.
7. T. Sampel, S. Ohashi, Y. Ohta, and S. Inoue, "Highest efficiency and super quality audio amplifier using MOS power FETs in class \(G\) operation," per quality audio amplifier using mos power 307. August 1978.
8. F. H. Raab, "Average efficiency of Class-G power amplifiers," IEEE Tmansactions on Consumer Electronics, vol. CE-32, no. 2, pp. 145-150, May 1986.
9. F. H. Raab, "Average efficiency of power amplifiers," Procsedings of FP Technology Expo '86. Anaheim, CA, Pp. 374-486, January 30 - February 1 1986.
10. P. Beckmann, Probability in Commenication Enginsering, New York: Harcourt, Brace \& World, Inc., 1967.
11. C. R. Smithers, "Further reflections on envelope feedback for linearizing bipolar power amplifiers at HF and VHF," Mobile Fadio Systems and Techniques, IEE Conference Publication, PD. 43-47, September 1984
frequency without distortion, viz., without imparing any of the contained information. Regrettably, the ideal mixer does not occur in practice. Because of certain nonlinearities within the switching elements as well as imperfect switching resulting in phase modulation, distortion results.

Identifying Intermodulation Distortion Products
The most damaging intermodulation distortion products (IMD) in receiver design are generally those attributed to odd-order, and, in particular, to those identified as the third-order IMD.

Any nonlinear device may be represented as a power series,
\[
i_{d}=g_{m} e_{g}+\frac{1}{2}!\frac{\delta g_{m}}{\delta V_{G}} e_{g}^{2}+\frac{1}{3}!\frac{\delta^{2} g_{m}}{\delta V_{G}^{\prime}} e_{g}^{3}+\ldots \frac{1}{n!} \frac{\delta^{n-1} g_{m}}{\delta V_{G}^{n-1}} e_{g}^{n} \quad \text { Eq. (11) }
\]
which can be further broken into
\begin{tabular}{|c|c|c|}
\hline TERM & OUTPUT & TRANSFER CHARACTERISTIC \\
\hline \(g_{m}{ }^{\text {g }}\) & F1, F2 & Linear \\
\hline \[
\frac{1}{2!} \frac{\delta^{g} m}{\delta V_{G}} e_{g}^{z}
\] & \[
\begin{array}{r}
2 F 1, \quad 2 F 2 \\
F 1 \pm F 2
\end{array}
\] & \[
\begin{aligned}
& \text { Second-order } \\
& \text { Square-Law }
\end{aligned}
\] \\
\hline \[
\frac{1}{3}: \frac{\delta^{2} g_{m}}{\delta^{2} v_{G}} e_{g}^{3}
\] & \[
\begin{aligned}
& 3 F 1, \quad 3 F 2 \\
& 2 F 1 \pm F 2 \\
& 2 F 2 \pm F 1
\end{aligned}
\] & Third-Order \\
\hline
\end{tabular}

The second term is the desired intermediate-frequency we seek, all other higher-orders are undesirable, but, unfortunately, present to a varyign degree as illustrated in Figure 7.

There are both fixed-level IMD products and level-dependent IMD products! \({ }^{5 \mid}\) The former are produced by the interaction between a fixed-level signal, such
as the local oscillator and the variable-amplitude signal. The resultina frequencies may be identified,
\[
n \delta_{1} \pm \delta_{2}
\]

Eq. 1121
where, \(n\) is an integer greater than 1.
Level-dependent IMD products result from the interaction of the harmonics of the local oscillator and those of the signal. The resulting frequencies may be identified
\[
\begin{equation*}
n \delta_{1}=m \sigma_{2} \tag{13}
\end{equation*}
\]
where, \(m\) and \(n\) are integers greater than 1.
For a mixer to generate IMD products at the intermediate frequency we must account for at least a two-step process. First, the generation of the harmonics of the signal and local oscillator: and, second, the mixing or conversion of these frequencies to the intermediate frequency. Consequently, the mixer may be modelled as a series connection of two nonlinear impedances, the first to generate the harmonic products, the second to mix or convert to the intermediate frequency. Although many harmonically-related products are possible, we will focus principally on odd-order IMD products.

If we allow two interfering signals, \(f_{1}\) and \(f_{2}\), to impinge upon the first nonlinear element of our mixer model, the result will be \(2 f_{1}-f_{2}\) and \(2 f_{2}-f_{1}\). These are identified as third-order intermodulation products (IMD \({ }_{3}\) ). other products are also generated taking the form \(3_{1}-2 f_{2}\) and \(3 f_{2}-2 f_{1}\). called fifth-order IMD products ( \(\mathrm{IMD}_{5}\) ). Unlike the even-order products, odd order products lie close to the fundamental signals and, as a consequence, are
most suscept ible of falling within the passband of the intermediate frequency and thus degrading the performance of the mixer.

A qualitative definition of linearity based upon intermodulation distortion performance is called the Intercept point. By recognizing that,
the fundamental output (IF) response is directly proportional to the signal input level:
the second-order output response is proportional to the square of the signal input level; and,
the third-order output response is proportional to the cube of the signal input level.
then convergence occurs. The point of convergence is termed the Intercept Point. The higher the value of this intercept point, the better the dynamic. range.

Intermodulation Distortion in the Commutation Mixer
Although the double-balanced mixer outperforms the single-balanced mixer as we saw in Table 1, a more serious source of intermodulation products result when the local-oscillator excitation departs from the idealized square-wave. (61[7] This phenomenon is easily recognized by a careful examination of Figure 8, where a sinusoidal local-oscillator voltage reacts not only upon a varying transfer characteristic but also on a varying nonlinear, voltagedependent capacitance (not shown in Figure 8 ). Although the effects of this sinusoidal transition are not easily derived, ward \({ }^{|\theta|}\) and Rafuse \({ }^{|9|}\) have concluded that lowering \(R_{g}\) will provide improved intermodulation performance! This conflicts with low conversion loss, as we saw in Figure 4. \({ }^{[10]}\)

Further examination of Figure \(\theta\) reveals that the sinusoidal localoscillator excitation results in phase modulation. That is, as the sinusoidal wave goes through a complete cycle, the resulting gate voltage, acting upon the MOSFET's transfer characteristic, produces a resulting nonlinear waveform. Since all FETs have some offset -- a JFET has a cut-off voltage; a MOSFET has threshold voltage -- it is important, for symmetry as well as for balance, to offer some \(D C\) offset voltage to the gates. Optimum IMD performance demands that the switches operate in a 50 duty cycle; that is, the switches must be fully \(O N\) and fully off for equal time. Without some form of offset bias this would be extremely difficult unless we were to implement an idealized square-wave drive.
 in the relative level of two-tone third-order intermodulation products (IMD, ) as a function of the rise and fall times of the local-oscillator waveforms.
\[
20 \log \left[\frac{\left.\left[\begin{array}{ll}
t_{r} \omega_{10} & \frac{v_{b}}{v_{c}}
\end{array}\right]^{8}\right]}{}\right]^{2}
\]

Eq. (14)
where, \(\quad V_{c}\) is the peak-to-peak local-oscillator voltage,
\(V_{s}\) is the peak signal voltage,
\(t_{n}\) is the rise and fall time of \(v_{c}\).
\(\omega_{10}\) is the local-oseillator frequency.
Equation 14 offers us several interesting aspects on performance. Since any reduction in the magnitude of \(v_{s}\) improves the IMD, we again discover that lowering \(R_{g}\) (which, in turn, decreases the magnitude of \(V_{s}\) ) appears to bene-

\section*{Direct Single Sideband Modulation of Transmitter}

\section*{Output Switcher Stages}

Florin G. Tinta

\section*{Abstract}

A new technique allows to obtain Single sideband (SSB) Pulse Duration Modulation without using intermediate DSB signals.

The technique employs instantaneous voltage comparison between modulating and carrier waveforms and between their harmonic conjugates. Timing signals are generated at instantaneous value equality. Through a set of logic gates, these timing signals are applied to a system of master flip-flops, driving switching output stages for power RP transmitters.

In the simplest implementation two such master flip-flops drive differentially the halves of a switching bridge generating a three-level output ( \(1,0,-1\) ). All digital PFT based real-time processing can generate output signals free of the third and all even harmonics using high efficiency five-level bridges operated in the top 92 of their nominal power output.

\section*{I INTRODUCTION}

In general, SSB signals are obtained from Double Sideband Suppressed Carrier (DSB) signals. DBS modulators have always been used as a first explicit processing step of the transmitted signal

The most conventional method consists in eliminating one of the sidebands of the DSB signal by filtering at low power level.

A second method uses phase shifting and several versions of this phase-shift method exist [1], [2]. The output of two DSB modulators supplied with harmonic conjugate (i.e.. \(90^{\circ}\) phase shifted) modulating and carrier waveforms are combined by linear addition. This cancels one of the sidebands and enhances the other if the modulators and the phase-shifting networks are ideal. It implies perfect balancing of modulator non-linearities and requires practically very delicate control of amplitudes and phases.

A third method [3] for SSB generation has four DSB modulators, low-pass filters and a final adding circuit. Again, perfect balancing is required for mutual cancellation of the unwanted sidebands.

Pulse Duration Modulation (PDM or PWM) can be applied directly for amplitude modulation of RF carriers [4].

The pulse duration is tailored in
such a way that there is a linear relation between the magnitude of the modulating signal and the fundamental amplitude of the pulse train. As a result, the pulse duration is related to the
fit performance. Second, the higher the local-oscillator voltage the better the IMD performance. Third, if we can provide the idealized square-wave drive we achieve infinite improvement in IMD performance:

An additional fault of sinusoidal local-oscillator excitation results whenever the wave approaches the zero-crossing at half-period intervals. As the voltage decays we find that any signal votlage may overload the mOSFETs causing intermodulation and crossmodulation distortion. \({ }^{[12]}\) This can be easily visualized from Figure 9 where we see the classic \(i-e\) characteristic of the MOSFET at varying gate voltages. Only at substantial gate voltage do we witness reasonable linearity, and consequently, good dynamic range

\section*{DYNAMIC RANGE OF THE COMMUTATION MIXER}

As the two-tone Intercept Point increases in magnitude, we generally conclude a like improvement in dynamic range results. Yet, as we have concluded from earlier study, the intermodulation products appear to be a function of both the generator or source impedance as well as the ratio \(R_{q} / r_{D S}\) and \(\mathrm{R}_{\mathrm{L}} / \mathrm{r}_{\mathrm{DS}}\) (see Figure 4).

In any receiver performance can be quantified by the term Dynamic range. Dynamic \(x\) ange can be extended by improving the sensitivity to low-level signals and by increasing the power-handling ability without being overcome by interfering intermodulation products or the effects caused from desensitization.

There are rules to follow if we are to improve the low-level signal sensitivity. Ideally we would like a mixer to be transparent, acting only to manipu-
late the incoming signals for easy processing by subsequent equipment. The perfect mixer would have no conversion loss and a zero noise figure. However, in the preceeding analysis we discovered that optimum intermodulation performance occurred when the signal-input port is mismatehed to the quad MOSFETs (Figure 4). It now becomes clear that a performance trade-off appears necessary. Either we seek low conversion loss and with it a lower noise figure, or we aim for the highest two-tone intercept point. Fortunately, as we seek the latter, our dynamic range will actually improve since a mismatched signal port has less effect upon the signal-to-noise performance of the mixe than does a matched signal port have upon the intermodulation distortion

Convention has identified minimum sensitivity to be the weakest signal which will produce an out put signal 10 dB over that of the noise in a prescribed bandwidth (usually 1 kHz ), or
\[
\text { Sens. }=20 \log \frac{V_{S}+V_{N}}{V_{N}}+10 \mathrm{~dB} \quad \text { Eq. (15) }
\]

Desensitation occurs whenever a nearby unwanted signal causes the compression of the desired signal. The effect appears as an increase in the mixer's conversion loss.

\section*{THE SI8901 AS A COMMUTATION MIXER}

Because of package and parasitic constraints, the Si8901 appears best suited for performance in the HF to low VHF region. A surface-mounted version may extend performance to higher frequencies.

In our review of intermodulation distortion we recognized that to achieve
magnitude of the modulating signal in a non-linear way. The fundamental amplitude \(A_{1}\) of a periodic sequence of bipolar pulses of duration \(t_{0}\), period \(T_{c}\) and unit amplitude is given by:
\[
A_{1}=4 / \pi \sin \left(\pi t_{0} / T_{c}\right)
\]

This relation leads to modulation techniques based on instantaneous voltage comparison between a sinusoidal carrier and the modulating aignal. This will be diacussed later in more detail. Full amplitude modulated transmitters using such techniques have been built [5]. possible extension to the generation of DSB signals has been also indicated [5] and practical circuits presented [6]. Indirect generation of SSB signals by adding phase shifted DSB PDM appears also feasible. Limitations of methods of combining outputs of DSB modulators have been mentioned [5]. Alternative ways of producing SSB PDM signals using Kahn's approach [7] were considered. The method of envelope elimination and restoration has received some refinements by using feedback loops [8]. Nevertheless, this approach has some inherent limitations in the phase tracking circuit (for complex and extended dynamic range modulating signal) and is basically indirect, in the sense that the \(S S B\) signals are generated by conventional means at low level. A PDM power amplifier using transistor switching bridges for the envelope restoration allowed to obtain an SSB transmitter with unusually high efficiency [9]

The object of the following paper is the generation of SSB PDM waveforms without the explicit use of DSB signals at a level of efficiency at least comparable with the best AM PDM
sodulated systems. Digital processing of the transmitted signal makes it possible to generate more efficient waveforms which are reducing loss in harmonic power and filtering circuit difficulties.
II Switching concepts
a. DSB Pulse Duration Modulator

This is presented mostly for conceptual definitions.
Figure 1 shows the block diagram of a Double Sideband Suppressed Carrier Pulse Duration Modulator designed to drive differentially a full switching bridge. Two master flip-flops, \(F i\) and \(F 2\) are triggered by two pairs of voltage comparators Cl and C 2.

The modulating signal in "normalized" to the carrier amplitude, i.e.. its amplitude to smaller and at most equal (for \(m=1)\) with the amplitude of the carrier.

The first comparator pair ci receive the carrier c(t) and the modulating signal \(s(t)\) while for the second comparator pair the sign of one of these voltages is reversed.

At instantaneous voltage equality one can have "positive" or "negative" crossing of the applied waveforms if one connects the relative magnitude of their first time derivatives and it is rather simple to produce separate signals corresponding to these two situations.

In the example selected in Figure 1 , one uses distinct comparators. C1+ produces a positive trigger forming pulse when the carrier exceeds the modulating signal immediately after crossing, while ci- produces the positive trigger where the carrier "goes under" the modulating signal.
high intercept point the local-oscillator drive must
approach the ideal square-wave;
ensure a 50 duty cycle; and,
offer sufficient amplitude to ensure a full ON and OFF switching condition, as well as to offer reduced \(r_{\text {DS }}\) when ON.
Furthermore, to maintain superior overall performance -- in conversion
loss, dynamic range (noise figure) and intercept point -- some form of image frequency termination would be highly desirable even though, understandably, the mixer's bandwidth would be restricted. Consequently, the principal effort in the design of a high dynamic range commutation mixer is two-fold. First, and most crucial, is to achieve a gating or control voltage sufficient to ensure a positive and hard turn-ON as well as a complete turn-OFF of the mixing elements (MOSFETs). Second, and of lesser importance, is to properly terminate the parasitic and harmonic frequencies developed by the mixer.

Establishing the Gating Voltage
Local-oscillator injection to the conventional disde-ring, FET, or MOSFET double-balanced mixer is by the use of the broadband, transmission-line, transformer, \({ }^{[13]}\) as shown in Figure 10 . For the diode-ring mixer where switching is a function of loop current, or for active FET mixers that operate on the principle of transconductance and thus need little gate voltage, \({ }^{[14]}\) the broadband transformer is adequate. If this approach is used for the commutation mixer, we would need extraordinarily high local-oscillator drive to ensure positive turn-ON. Rafuse \({ }^{[15]}\) and Ward \({ }^{[16]}\) used a minimum of 2 w to ensure mixing action; Lewis and Palmer \({ }^{[17]}\) achieved high dynamic range using

5 Watts: The MOSFETs used in these early designs were p-channel, enhancement (2N4268) with moderately high threshold ( 6 V max.) and high input capacitance ( 6 pF max.). All of these early MOSFET double-balanced mixers relied on the conventional 50 to 100-0-1000 transformer for local-oscillator injection to the gates.

A major goal is the conservation of power. This goal cannot be achieved using the conventional design. Simply increasing the turns ratio of the coupling transformer is thwarted by the reactive load presented by the gates.

The obvious solution is to use a resonant gate drive. The voltage appearing across the resonant tank -- and thus on the gates -- may be easily calculated,
\[
\begin{equation*}
v=\mid P \cdot Q \cdot x)^{\prime} \tag{Eq. 16}
\end{equation*}
\]
\(P\) is the power delivered to the resonant tank circuit;
\(Q\) is the loaded \(Q\) of the tank circuit; and,
\(X\) is the reactance of the gate capacity.
Since the gate capacitance of the MOSFET is voltage dependent, the reactance of the gate becomes dependent upon the impressed excitation voltage. To allow this would severely degrade the IMD performance of the mixer. However, we can minimize the change in gate capacitance and remove its detrimental influence using a combination of substrate and gate bias, as shown in Figure 11. Not only does this show itself beneficial in this regard, but, as we saw in Figure 8, a gate bias is necessary to ensure the required 508 duty cycle. Furthermore, a negative substrate voltage ensures that each MOSFET on the monolithic substrate is electrically isolated and that each source-/drain-to-body


Pigure 1. DSB Pulse Duration Modulation

The second comparator pair operates in a similar way. The situation shown in Figure 1 corresponds to a \(180^{\circ}\) phase shift of the carrier.

F1 is set at positive crossings \(s(t)\) by \(c(t)\) and reset at positive crossings of \(s(t)\) by \(-c(t)\).

F2 is set by negative crossings of \(s(t)\) by \(-c(t)\) and reset at negative crossings of \(s(t)\) by \(c(t)\).

The outputs of F1 and P2 shown in Figure 1 correspond to a sinusoidal carrier and slow-varying, sign-changing modulating signal. They drive the independently controlled halves of a three-level switching bridge whose basic arrangement is indicated in Figure 2. Biasing, snubbering and circuit details are left aside for clarity.

One can see from that in this arrangement the output signal delivered by the transformer \(U\) depends upon the difference of the switching commands given by Fi and F2. For a bipolar (output), PDM requires at least a three-state or three-level (1,0,-1) configuration.

In a three-level bridge, such a differential arrangement has definite advantages in switching conditions for transistors, easing snubbing problems. It is evident that at zero mediated transitions, the U-C circuit will include a pair of conducting transistors (Q1 and Q2, Q3 and Q4).

Of course, an identical three-level waveform can be obtained by using a less sophisticated difference circuit, also represented in Figure 1.
diode is sufficiently reverse biased to prevent half-wave conduction.

Implementing the resonant gate drive may take any of several forms. The resonant tank circuit may be merged with the oscillator, or it can be a varactor tuned Class B stage, \({ }^{[18]}\) resonant tank, shown in Figure 12.

To ensure symmetrical gate voltage in \(180^{\circ}\) anti-phase, if the local oscillator drive is asymetrical, viz., fed by unbalanced coax, an unbalanced-to-balanced balun must be used (Tl in Figure 12), otherwise capacitive unbalance results with an attendant loss in mixer performance.

Table II offers an interesting comparison between a resonant-gate drive with a loaded tank \(Q\) of 14 and a conventional gate drive using a 50 to 100-0\(100 \Omega\) transformer. The importance of a high tank \(Q\) is graphically portrayed in Figure 13. The full impact of a high gate voltage swing can be appreciated by using Equation 14. Here, as \(v_{c}\) (gate voleage) increases the intermodulation performance (IMD) also improves as we might intuitively expect. Calculated and measured results are shown in Figure 14 and demonstrate reasonable agreement. The difference may reflect problems encountered in measuring \(\mathrm{v}_{\mathrm{c}}\) as any probe will inadvertently load, or detune, the resonant tank even with the special care that was taken to compensate.

If we have the option to choose "high side" or "low side" injection -viz., having the local-oscillator frequency above (high) or below (low) the signal frequency -- a closer inspection of Equation 14 should convince us to choose low-side injection.

\section*{Terminating Unwanted Frequencies}

If our mixer is to be operated over a restricted frequency range where the local oscilator and signal frequencies can be manipulated, image-frequency filtering may be possible. Image-frequency filtering does affect performance. For high-side local-oscillator injection an elliptical-function low-pass filter, or for low-side injection a high-pass filter might offer worthwhile improvement. In either case, the filter offers a short-circuit reactance to the image frequency forcing the image to return once again for demodulation. The results of using a low-pass filter with the commutation mixer are known from our earlier examination of figures 5 and 6.

The resonant-gate drive consisting of a high-q tank offers adequate bypassing of the intermediate frequency and image frequency.

If the IF is narrow band, filtering may be possible by simply using a resonant LC network across the primary of the transformer. \({ }^{[19]}\)

Design Techniques in Building the Commutation Mixer
The mixer was fabricated on a high-quality double-copper clad board (PCB) shown in Figure 15. An improvised socket held the Si8901. The signal and \(1 F\) ports used Mini-Circuits, Inc., plastic T-case RF transformers. For the IF , the Mini-Circuits T4-1 (1:4); for the signal, the Mini-Circuits Tl-1T (1:1) or T4-1 was used. The resonant tank was wound on a -inch ceramic form with no slug. The unbalanced-to-balanced resonant tank drive used a T4-1. The schematic diagram, Figure 16, is for a commutation mixer with high-side injection, operating with an IF of 60 mHz .


Figure 2. Three Level (Bipolar) pom Bridge


Figure 3. Bipolar pulse Duration Moduation
by a DC Signal

This waveform satisfies condition (1) for a DBS (SC)
radio frequency Pulse Duration Modulation. The duration of a pulse defined by the alternating crossing of \(180^{\circ}\) phase shifted carrier waveforms satisfies the equivalent relation:
\[
\begin{equation*}
t_{0}=T_{c} / \pi \text { arc } \sin m \tag{2}
\end{equation*}
\]

Figure 3 illustrates the situation for a constant normalized modulating signal of amplitude m (the modulation index). Polarity reversal of the modulating signal (region \(j\) in Figure i) results in the \(180^{\circ}\) phase shift characteristic of DSB (SC) modulated signals.
b. Three Level SSB Pulse Duration Modulator The switching bridge of Figure 2 can be used to generate bipolar SSB PDM signals. A different control of the two driving flip-flops is required.

In Figure 4, Fi and F2 are controlled by a combination of comand signals originated in tour pairs of comparators and logic gates. An upper side band POM signal is generated by this arrangement; the lower side band can be alternatively generated by reversing a couple of internal connections. Like in the phaseshifting method [2] [3] harmonic conjugates of at least the modulating signal are generated by \(90^{\circ}\) (or \(45^{\circ}\) alternates) phase shifting all pass filters, but the sinilarity ends at this point. An explicit DSB is nowhere generated in this circuit.

Comparator pairs C3 and C4 are supplied with the modulating and carrier signals, the later being shifted with \(180^{\circ}\) in phase (sign reversal) for \(C 4\).

The principle effort involved the design of the resonant-gate drive. This necessitated an accurate knowledge of the gate's total capacitive loading effect. To accomplish this a precision fixed capacitor ( 5 pF) was substituted for the sis901 and at resonance it was a simple task to calculate the inductance of the resonant tank. Substituting the si8901 made it again a simple task to determine the capacitive effect of the si8901. Once known, a high-o resonant tank can be quickly designed and implemented. To ensure good interport isolation, symmetry is important, so care is necessary in assembly to maintain mechanical symetry, especially with the primary winding.

Performance of the Si8901 Commutation Mixer
The primary goal in developing a commutation double-balanced mixer is to achieve a high dynamic range. If this task can be accomplished with an attendant savings in power consumption, then the resulting mixer design should find wide appltcation in \(H F\) receiver design.

The following tests were performed.

\section*{Conversion efficiency (loss)}

Two-tone, 3rd-order Intercept Point
Compression level
Desensitization level
Noise Figure
Conversion loss and Intercept Point are directly dependent upon the magnitude of the local-oscillator power. The mixer's performance is offered in Figure 17, where the input intercept is plotted with conversion loss.

Both the compression and desensitization levels may appear to contradict
reason. Heretofore, conventional diodering demodulators exhibiting compression and desensitization levels an order of magnitude below the localoscillator power level. However, with a commutation MOSFET mixer, switching is not accomplished by the injection of loop current but by the application of gate voltage. At a local-oscillator power level of +17 dBm ( 50 mw ), the 2 dB compression level and desensitization level was +30 dBm ! The singlesideband HF noise figure of 7.95 dB was measured also at a local-oscillator power level of +17 dBm .

\section*{CONCLUSIONS}

Achieving a high gate voltage to effect high-level switching by means of
a resonant tank is not a handicap. Although one might at first label the mixer as narrow-band, in truth the mixer is wideband. For the majority of applications, the intermediate frequency is fixed, that is, narrow band. Consequently, to receive a wide spectrum of signal frequencies the local oscillator is tuned across a similar band. In modern technology this tuning can be accomplished by numerous methods. Likewise the resonant tank may take several forms. It can be part of the oscillator, or, as in Ref. (18), it can be varactortuned driver electroncially tracking the local oscillator.

If the local-oscillator drive was processed to offer a more rectangular waveform, approaching the idealized square-wave, we might then anticipate even greater dynamic range as predicted by Equation 14.


Comparator pairs C1 and C2 are supplied with the harmonic conjugates [1] of the same signals. This implies the use of \(90^{\circ}\) (or \(45^{\circ}\) alternates) phase shifting all pass filters for the modulating signal at least. For a sinusoldal carrier a single frequency phase shifter can be employed.

Regular as well as J-R type flip-flops may be used. In Figure 4 , clock inputs for J-K Elip-Elops and some delay circuits have been not represented in order to preserve with more clarity the basic concept. Clock signals can be used for further refinements of this modulation technique.

The outputs of F1 and F2 (which are not DSB PDM signals) are applied differentially to the switching bridge of figure 2 . The bridge produces three level waveforme which in general may contain successive pulses of the same polarity. One can show that for carrier to modulating signal frequency ratios \(R>3\) the maximum number of successive pulsed of same polarity is two. Figure 5 shows the particular case of the upper SSB PDM signal produced for \(R=3\), at a modulating index \(m=.65\). The sequence is bipolar, with no successive pulses of same polarity.

For \(m=1\), the \(5 s 8\) pulse duration modulation produced by this technique uses the full half period, i.e., generates a square wave with direct transitions from +1 to -1 and vice versa and gets the maximum power which can be generated by a full switching bridge.

\section*{REFERENCES}
1. Oxner, Ed., "FETs Work Well in Active Balanced Mıxers," EDN, Vol. 18, "1
14. Kwok, Siang-Ping, "A Unıfied Approach to Optımum FET Mixer Design," Motorola Application Note, AN-410 (n.d.).
15. Rafuse, R.P., op. cit.
16. Ward, Michael John, op. cit., pg. 55
17. Lewis, H.D. \& F.I. Palmer, op. cit.. Table 1, pg. 26.
18. "Electronically Controlled Hzgh Dynamic Range Tuner," Final Report (June 1971) ECOM-0104-4 Research and Development Technical Report.
2. Oxner, Ed., "Active Double-Balanced Mixers Made Easy wath Junction FET's," EDN, Vol. 19, \#13 (July 5, 1974), pp. 47-53.
3. Walker, H.P., "Sources of Intermodulation in Diode-Ring Mixers," The Radio and Electronic Engineer, Vol. 46, "5 (May 1967), pp, 247-55. 4. Caruthers, R.S., "Copper Oxide Modulators in Carrier Telephone Repeaters," Bell System Techncral Journal, Vo1. 18, "2 (Apr 11 1939). pp. 315-37.
5. Mouw, R.B. s S.M. Fukuchı, "Broadband Double Balanced Mixer/Modulators." Microwave Journal, Vol. 12, "3 (Mareh 1969), pp. 131-34.
Microwave Journal, Vol. 12, "3 (March 1969), pp. 131-34.
6. Lewis, H.D. \& F.I. Palmer, "A High Performance HF Receiver," R.C.A. Missiles surface radar Division Report (November 1968).
7. Walker, H.P., op. cit.
8. Ward, Michael John, "A Wide Dynamic Range Single-Sideband Receiver," M.I.T. MS Thesis, (December 1968).
9. Rafuse, R.P., "Symmetric MOSFET Mixers of High Dynamic Range," Digest of Technical Papers, 1968 Int'l Solad-State Circuits Conf., pp. 122-3. 10. Lewis, H.D. \&F.I. Palmer, op. cit., pg. 13.
11. Walker, H.P., op. cit.
12. Gardiner, John G., "The Relatıonship Between Cross-Modulation and Inter-
modulation Distortions in the Double-Balanced Modulator," IEEE Proc. Letters (November 1968), pp. 2069-71.
13. Ruthroff, C.L., "Some Broad-Band Transformers," Proc. IRE (August 1959), uthroff, C.L.
pp. 1337-42.

> (January 5, 1973), pp. 66-72.
\begin{tabular}{|c|c|}
\hline Single-Balanced & Double-Balanced \\
\hline \[
\begin{gathered}
\mathrm{f}_{\mathrm{s}} \\
3 \mathrm{f}_{\mathrm{s}} \\
5 \mathrm{f}_{\mathrm{s}} \\
\mathrm{f} 1 \pm \mathrm{f} 2 \\
\mathrm{f} 1 \pm 3 \mathrm{f} 2 \\
\mathrm{f} 1 \pm 5 \mathrm{f} 2 \\
2 \mathrm{f} 1 \pm \mathrm{f} 2 \\
2 \mathrm{f1} \pm 3 \mathrm{f} 2 \\
3 \mathrm{fl} \pm \mathrm{f} 2 \\
\\
3 \mathrm{fl} \pm 3 \mathrm{f} 2 \\
4 \mathrm{fl} \pm \mathrm{f} 2 \\
5 \mathrm{f} 1 \pm \mathrm{f} 2
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{f} 1 \pm \mathrm{f} 2 \\
& \mathrm{f} 1 \pm 3 \mathrm{f} 2 \\
& \mathrm{f} 1 \pm 5 \mathrm{f} 2 \\
& 3 \mathrm{fl} \pm \mathrm{f} 2 \\
& 3 \mathrm{f} 1 \pm 3 \mathrm{f} 2 \\
& 5 \mathrm{fl} \pm \mathrm{f} 2
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{A Comparison of Modulation Produčts in Single and Double Balanced Mixers to the 6th Order} \\
\hline \multicolumn{2}{|c|}{table i} \\
\hline
\end{tabular}


Figure 5. Direct Generation of Constant Arplitude Raw SSB Signal (m=.65, \(R=3\) )

This can be simply demonstrated by considering sinusoidal constituents of the modulating and carrier waveforms. Let us consider the time angle \(\theta_{c}\) of the carrier when the instantaneeous values of the modulating sinusoid of amplitude and of a sinusoldal carrier of unit amplitude become equal in absolute value. The time angle for the modulating signal is \(\theta_{c} / R\), where \(R=f_{c} / f_{m}\). Both angles are measured from a common origin. plipflop transitions appear whens
\[
\begin{equation*}
\sin \theta_{c} \cdot\left|m \cdot \operatorname{ain}\left(\theta_{c} / R\right)\right| \tag{3}
\end{equation*}
\]

The absolute value condition represents the fact that conjugate comparator pairs receive sign changed carrier signals. Equation (3) is transcendental and can be solved by numerical methods (one of the solutions has been used in Pigure 5).
\[
\begin{equation*}
\text { If } \left.m=1 \text {, we have } \sin \theta_{c}=\mid \sin \theta_{c} / R\right) \mid \tag{4}
\end{equation*}
\]
and the solutions are given by the following:
\[
\begin{equation*}
n \cdot \pi \pm \theta_{c}=\theta_{c} / R \tag{5}
\end{equation*}
\]

The solutions of equation (7) extend to all trigonometric functions and in particular to
\[
\begin{equation*}
\cos \theta_{c}=\left|\cos \left(\theta_{c} / R\right)\right| \tag{6}
\end{equation*}
\]
which represents the condition for instantaneous value equality of the harmonic conjugate waveforms.

This means that upward and downward transitions in the paired Elip-flop outputs \(Q 1\) and \(\overline{\mathrm{O}}, \mathrm{Q} 2\) and \(\overline{\mathrm{Q} 2}\) (Figure 4) are simultaneous. This implies two level transitions from 1 to -1 and vice versa. The result is a square waves QED.

equivalent circuit of commutation mixer

FIGURE 1


THE POWER-LOOP CIRCUIT WITH ALL
ELE POWER-LOOP CIRCUIT WITH ALL
ELEMENTS EQUIVALENT, BASED ON THE TRANSFER FUNCTION,
\(\varepsilon(t)\)

FIGURE 3

II digital generation of ssb-pDM Signals
A review of digital alternatives of the operations involved In SSB-PDM generation is given below. In addition, the case of five level (2,1,0,-1,2) switching bridges is considered. For multi-level switching bridges which can generate waveforms with reduced harmonic content at high power level, analog approaches, although possible for a certain dynamic range, do not seem practical.

The relative situation of SSB-PDM generation methods is given in Figure 6. For generality indirect methods based on low level analog DSB/SSB signal production followed by envelope AM-PDM restoration are also indicated. Dotted lines show various possible combinations of methods.
a. Harmonic Analysis and Conjugation of Signals

The modulating signal can be sampled and subject to real-time FFT processing for bandwidths covering at least the audio frequency range by using now readily available microprocessors and allied circuits. This may constitute a first step for digitally generating \(90^{\circ}\) phase shifted response, i.e.. the harmonic conjugate of the modulating signal.

For the carrier quadrature signals can be simply generated by divide-by-four flip-flops [10].

Initially, the application of SSB-PDM signal generation was considered for emergency transmissions in the LF


Figure 6. Map of SSB PDM Methods


FIGURE 4 \(L_{c}\) (from Fis.4)

effect of image termination on
CONVERSION LOSS

FIGURE 5
range, but it appears that with fast processors the scope and the frequency range of such transmissions can be considerably enlarged. Digital harmonic conjugation of signals will not be discussed further in this paragraph. Analog constant phase delay, all pass filters have been constructed over wide frequency ranges. Our experience showed that they can be very adequate for carriers in the 2 to 32 MHz range ( 4 octaves) in spread spectrum transmission techniques.

\section*{b. Digital Comparison}

High resolution video frequency \(A / D\) are commercially avallable. The digitized modulating signal can be compared with the stored or analytically generated carrier waveform, at a normalized scale.

Negative and positive waveform crossing in the sense defined previously can be easily defined and their timing accuracy is determined by the clock rate ratio to the highest frequency involved in the signals.

This operation can be done in parallel (or in a serial way by successive sampling) for sign changed carrier and for the harmonic conjugated of the modulating signals generated in either analog or digital way.

\section*{c. Digital Evaluation of the SSB Fundamental}

The fact that the SSB-PDM signal is a succession of pulses of constant amplitude makes the evaluation of the fundamental component by numerical methods straightforward. Because no power generation is considered at this level, it is advantageous to use unipolar ( 1,0 ) pulse sequences instead of bipolar ( \(1,0,-1\) ).

Th fundamental can be simply evaluated by the sum of sampled values of a sinusoidal by the gated clock pulses.

The simplicity of operations involved allows their
Implementation in real time with the help of now comercially available microprocessors, for ranges of modulating and carrier ignals covering many telecommications applications.

Digital evaluation of the fundamental for an analog generated SSB is somewhat more complex, but still it can be performed in real time using FFT algorithms. This is indicated in Figure 6 as a hybrid way which may be considered an extension of the Kahn's method [7].
d. Pive Level Switching Bridges

Blpolar five level waveforms generation can be generated by a switching bridge of the type represented in Figure 7. The normalized (supply) levels are \(2,1,0,-1\) and-2. A generic example is given in Figure 8 a .

Up to a scale factor of \(\pi / 4\), the fundamental amplitude
ls given by:
\[
\begin{align*}
& A=0 \int \frac{1}{d} 2 \cos w d w+\frac{u}{v} \cos w d w=\sin u+\sin v \\
& A=2 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \tag{7}
\end{align*}
\]

effect of sinusoidal local oscillator waveform on if linearity
figure a

 large signal overload distortion
figure 9



Local oscillator drive using CONVENTIONAL BROADBAND TRANSFORMERS

FIGURE 10


Figure 1. Five Level (bipolar) switehing bridge


Figure e. switehlng Waveforme Eliminating

Natural limitations can be described by:
\(\pi / 2 \geq v \geq u \geq 0\)
The symmetry of the waveform eliminates even harmonics. The third harmonic can be eliminated if:
\(\sin 3 u+\sin 3 v=0\)
which, considering (8) leads to the conditions:
\[
\begin{equation*}
v-u=\pi / 3 \tag{10}
\end{equation*}
\]
\(v+u=2 \pi / 3\)
The fundamental amplitude of a five level waveform satisfying (10) results from (7).
\(A(x)=2 \sin \frac{u+v}{2} \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \sin (v-\pi / 6)\) (12)
This relation indicates that an alog timing method similar to the one presented in Section II is possible.

Condition (11) leads to a different relation:
\[
\begin{array}{ll}
A(x)=\sqrt{3} \cos (v-\pi / 3) & (13)  \tag{13}\\
A(x) M=\sqrt{3} & (13 a)
\end{array}
\]

The maximum amplitude of the fundamental following relation (13) corresponds to \(\sqrt{3}\), for \(u=v-60^{\circ}\), a three level degnerate waveform shown in Figure 8b.

For decreased fundamental amplitude while satisfying limitation (8) u shall decrease also, while v.shall grow. The minimu amplitude obtainable in this way corresponds to \(3 / 2\) for \(u\) \(=30^{\circ}, v=90^{\circ}\). This satisfies in the same time condition (10) and is the maximum which can be obtained according to the relation (12).

effect of bias and substrate voltage on gate reactance

FIGURE 11

resonant-gate drive transformer, t2, is tuned
TO RESONATE WITH \(C_{G G}\) OF Si8901

FIGURE 12


INFLUENCE OF LOADED Q ON GATE
voltage versus l.o. power
FIGURE 13


EFFECTS OF GATE VOLTAGE ON
INTERMODULATION DISTORTION FIGURE 14

A particular solution of (13), corresponding to \(u=42^{\circ}\). \(V=78^{\circ}\) given \(A(X)=1.647\) and \(\operatorname{simultaneously~eliminate~the~third~}\) and the fifth harmonic. Such a waveform can be used for high efficiency phase modulated or keyed transmitters. From this level down one has to reduce both \(u\) and \(v\) under the condition (10) up to \(u=0\), as shown in Figure 8c. In this range one has again elfmination of the fifth harmonic for \(u=6^{\circ}\) and \(v=66^{\circ}\).

The amplitude of the fundamental at \(u=0, v=60\) is half of the value given by (13a).
\[
\begin{equation*}
A(x) L=\sqrt{3} \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2} \tag{14}
\end{equation*}
\]

Below this fundamental level one can generate third narmonic free waveforms by splitting the pulse in the center and moving the two halves toward \(v= \pm T / 2\) limits. Such a waveform is shown in Figure 8d. One can show that for third harmonic elimination the duration of each resulting pulse should be \(\pi / 3\).

In split pulse mode the amplitude of the fundamental is
\[
A(f) s=\sin v-\sin u=2 \sin \frac{v-u}{2} \cos \frac{v+u}{2}(15)
\]
where \(u\) indicates this time the 0 to 1 transition. for
\[
v-u=\pi / 3 \text { and } v=\pi / 2
\]
one gets the minimum findamental amplitude
\[
\begin{equation*}
A(\hbar) m=\cos \pi / 3=1 / 2 \tag{16}
\end{equation*}
\]

Below this level the third harmonic cannot be eliminated, in switching waveforms with only four switching transitions for maximum two pulses) per half period.

The power range in which the amplitude of the fundamental can be continuously varied and the third harmonic eliminated is given by the ratio:
\[
\begin{equation*}
P=\frac{A(3)^{2}}{A(3) m}=12 \tag{19}
\end{equation*}
\]
which corresponds to the top 92 of the maximum power output. The complications of adaptive transitions between various modes involved in extending the range have to be traded against high power LC filtering hardware.

\section*{IV CONCLUSION}

The renewed interest in SSB communications comes at a time when the development of fast switching electronics appears to give the possibility of new approaches in generating and modulating power RF signals. New modulation systems are made possible by circuitry developed for digital techniques. Such applications in the audio domain are now well established.

Advances in Fast Digital signal procesaing may result in further reconsideration of traditional modulation methods leading to new levels of quality, efficiency and adaptability. Application Specific Integrated Circuits (ASIC) allowing extremely rapid FFT may contribute to the spread and economic viability of complex modulation techniques in conventional and spread spectrum communications. The present paper gives indirectly some hints on future development possibilities.

mask layout -- printed circuit board
PROTOTYPE BALANCED MIXER
FIGURE 15

schematic - computation double-balanced mixer
FIGURE 16


INPUT INTERCEPT POINT \& CONVERSION LOSS
figure 17

\section*{REFERENCES}
[1] Panter, P.F.: Modulation, Noise and Spectral Analysis, McGraw-hill, New York, 1965.
[2] Noragaard, P.E.: The Phase Shift Method of Single Sideband Generation, Proc. IRE, Vol \(44(1718-1735) 1956\).

3] Weaver, D.R.: A Third Method for Generation and Detection of Single Sideband Signals, Proc. IRE, Vol 44 (1703-1706)

4] Besslich, P.: Device for Amplitude Modulating a Bigh Frequency Carrier Wave, U.S. Patent 3363199, Jan 1968.
[5] Raab, F.f.: Radio Frequency Pulsewidth Modulation, IEEE Trans. Commun. Vol COM-21 (958-966) 1973.
(6] Tinta, F.G., Roenig, L. W. and Cripe, D.W.: Variable pulse width switching Bridges for DSB and ssB Modulation and Power Switching Bridges for DSB and SSB Modulation and Power 1985 (7] Kahn, L.R.: Single Sideband Transmission by Envelope
Elimination and Restoration, Proc. IRE, Vol 40 (803-806) 1952.

8] Petrovic, V. and Gosling, W.: Improved Amplifier and Modulator Circuits, UR Patent Application 7900699, 1979.

9] Smith, R.A., Koenig, L.w. and Cripe, D.W.: Advanced Linear Amplifier, Westinghouse z6460RSAA Independent Research and Development Program Report, 1983-84.
[10] Zavrel, R.F.: ICs Simplify Design of Single-Sideband Receivers EDN, vol. 31 , No. 7 (119-126) 1986

\section*{by}

> Brian E. Roan Vice Prisident
> Q-Tach Corporation

220 Carmalina Avo.

INTRODUCTION
Frequency Etability is one of the oentral topice in the Etudy of crystal osoillotors, for the exoeptionel stability of quertz oryetale is their fundemental advantage over other resonatore. Goth the long term end bhort term stability of cryetel osoilletore 1: importont. Long term etobility, characterized by terme suoh. ©e "orift" or "ogaing", is the syitematio, non-random change in frequency with time, often expreseed in terme of frequenoy ohenge per dey or per yeer. Short term etability io the random, noiselike behevior of the output frequency. In e measurement setem based on e frequency counter (time domein), the short term stability ia typically masured over gate times from milliseoonde to esconds. The same rendom behovior of the frequenoy, but meesured in e eyetem based on epeotrum anelyzer (frequency domein), 1s often epecified in terme of the eingle-eidebend level
(raletive to the carrier) of the angle modulation noise aidebonde, at video frequencies from fractions of Hertz to tens of Megahertz.

The studies which hove been done on this topic foll into two groups: Studies of the orystal by itself, and analysis of crystal oscillator behavior. The former are often oonoerned with the theory of quartiz resonatore and with practical oonsiderations concerning surface preparation, electrodes, oleanlinese, new designe, eto. The latter include studies and experimente with the various oscillator oonfigurations, such as the Colpitts, Clapp, Pierce, Butler, etc.

In the tudy of crystal oscillator tobility, it is critical to examine the oscillator and circuit together. Particulorly when considering short term etobility, conclusions based on obeervations of the crystel elone can lead to erroneous results. In order to examine the crystel-cirouit reletionship in some detell, this etudy is confined to one perticulor oecilletor configuration. However, ingighte obtained from the perticular case will bllow conclusions which ore ueful in the general. Exact equations for the crystal ore used, and computer numerical methode ora uead to generate the various reactoncen and, even more important, the derivatives of these reactances.

For the purpose of anslyzing the etobilizing offect of the crystal on the rest of the circuit, ossume that the crystol is

\section*{Chapter II}

This material is reprinted with permission from MICROWAVE SEMICONDUCTOR ENGINEERING, J. F. White,

\section*{1977, VanNostrand Reinhold Publishers, NY, NY. This section is Chapter II. \\ PINDiodes \\ and the Theory of Microwave Operaton}

\section*{A. The PIN Diode - An Extension of the PN Junction}

\section*{1. Structure}

The PIN diode should not be thought of as something physically different from the PN junction discussed in Chapter 1, but rather different in a sense of degree. In Chapter I we saw that with the abrupt junction the width of the depletion zone is inversely proportional to the resistivity of the P or N region, whichever has the lesser impurity doping concentration. As the width of the depletion zone increases, the capacitance per unit area of the junction decreases. This effect is very beneficial for a diode which is intended for use as a microwave switch because the lower the capacitance the higher the impedance of the diode under reverse bias, and the more effective the device is as an "open circuit."
The limiting case of high resistivity material is undoped (or "intrinsic") I silicon. In practice, of course, no silicon material is without some impurities. A practical PIN diode, then, consists of an extremely high resistivity P or N zone between low resistivity (highly doped) P and N zones at its boundaries, as shown in Figure II-1. 'To distinguish unusually heavily or lightly doped material, special nomenclature has evolved. Heavily doped P and N materials are referred to as \(\mathrm{P}+\) and \(\mathrm{N}+\), respectively. To identify very lightly doped, high resistivity \(\mathbf{P}\) and N material, the Greek letters are used; thus high resistivity P material is called \(\pi-t y p e\) and high resistivity N material is called \(\nu\)-type. Recognizing that perfectly intrinsic material is not practically obtainable, the I region of a PIN diode can consist of either \(\nu\) - or \(\pi\)-type material. The result-


Figure 1I-1 Profiles for the Two PIN Diode Types
perfectly stable. In fact, certain noisy proceases ore asociated with the cryetalitestf, and crystal frequency dependenoe on temperature and time is well known.

\section*{THE CIRCUIT}

Figure 9 shows the circuit ohosen for the analysis of the relationship betwen cryetal, circuit, and frauency etability. The oncillator configuration is the popular Colpitte. Although the Colpitts is a grounded collector type of circuit, a smoll impedance in the collector provides o convenient signal output point and at frequencies of 90 mHz ond lower this impadonce has little effact on the oscillator base-emitter circuit.

THE CRYSTAL
Figure 9 b how the equivalent oirouit of the frequency oontrol cryetal. The eeries circuit of CY, Li and Ri repreeent the electrical equivalent circuit of the piezoelectric coupled mechanical resonance of the oryetal. The reactances of \(C 1\) and \(L_{1}\) are orders of magnitude larger than that which would be obtained from electrical components, and the ratio of these reactances to Rq, the lose term, or \(Q\), is typically 50,000 to 1,000,000; agein, three or mors orderg of magnitude larger than whet can be obtained from electrical copacitor: and inductore. \(C O\) represents the parallel plate capaoitor formed by the cryatal electrodes. Typical values for o 10 mHz fundamental cryetal are noted in the figura.

ing diodes are indistinguishable from a microwave point of view; however, the actual junction forms at opposite ends of the intrinsic zone depending on the choice. This distinction is diagrammed for both cases in ligure II-1.
The first type shown in Figure II-1(b) shows a \(\mathrm{P}+, \nu, \mathrm{N}+\) diode structure. If the I region is of sufficiently high resistivity, what few impurity atoms it has will be ionized and the depletion zone will extend throughout the I region and include a small penetration into both the P and N regions. Because of the heavy doping in the \(\mathrm{P}+\) and \(\mathrm{N}+\) zones the depletion zone will not extend very far into them, and the depletion zone will be essentially equal to the I layer width, \(\mathrm{W}_{1}\). The alternate diode structure, \(\mathrm{P}+, \pi, \mathrm{N}+\) is shown schematically in Figure 11-1(d). Here the depletion zone width is likewise approximately equal to the width of the intrinsic layer but the junction is formed at the \(N+\) interface rather than that of \(\mathrm{P}+\). Controlling the location of the junction has important consequences from the standpoint of passivating the diode chip, but no impact on performance. Most PIN diodes use \(\nu\) material for the I region and the junction is formed at the \(\mathrm{P}+\) interface.

\section*{2. C(V) Law and Punclthrough Voltage}

In the preceding section it was assumed that the I layer is of such high resistivity that, even with no applied bias, the depletion zone extends across the Ilayer to the \(\mathrm{P}+\) and \(\mathrm{N}+\) zones. Under such circumstances \(C_{j}\) is practically independent of applied voltage. At zero voltage the depletion zone has already extended through the I region; as further reverse bias is applied to the diodes, little further widening of the depletion zone proceeds because of very high impurity concentrations and correspondingly large availability of ionizable donors and acceptors in the \(\mathrm{P}+\) and \(\mathrm{N}+\) regions.
The PIN diode which actually does have so high a resistivity I layer that it is depleted at zero bias is called a zero puncbtbrough diode, because the depletion zone has "punched through" to the high conductivity zones even before bias is applied.
Such a situation, however, represents an idealization. Not all practical diodes are zero punchthrough. 1 more general definition of the PIN is a semiconductor diode which consists of two beavily doped \(P\) and \(N\) regions separated by a substantially bigher resistivity \(P^{\prime}\) or \(N\) region.
Figure II-2 shows schematically a practical PIN diode with ionized impurity profiles at zero bias and at punchthrough. At zero bias a

MICROWAVE SEMICONDUCTOR ENGINEERING


Figure II-2 Practical PIN and Reversed Punchthrough Characteristics
large portion, but not necessarily all, of the I region impurities have been ionized and the depletion zone, W(0), may be somewhat less than the I layer width, W. As reverse bias voltage is applied to
theory of oscillation
The erystal, capacitore CS, C2, and C3, plus the transietor resctances form parallel resonant network at frequency \(F\). The trensistor provides gain, enough to offset the loses in the resonant circuit. It is useful for the present enclyeis to divide the circuit into the two perts shown in figure ic. The orystel, plue capacitor CE cen be analyzed as a net inductive rasotance XPP and parallel resietance, APP. The transistor and C2 plus c3 are onalyzed as a Engle parallel capocitive reactanoe and parallel negative resistance, resulting from transistor goin. The circuit oscillates at a frequency where the positive (inductive) reactance of the crystal "eide" equale the negotive (copacitive) transistor "elde". At turn-on, the negative resistance RPT developed by the transiator (oonnected to the oomplete tuned circuit) le of e lower value then the positive lose faotor RPP. The net resistance is therefore negative, and oscillation begine. The amplitude of the oscillotion builds to the point where some omplitude dependent gainfoctor, such os trensietor eeturation, lowers the goin and raises the effeotive negotive reaistonce to exactly equel RPP, the condition necessary for steady state oscillation.

This establishes the conditione for the analyis. The following eections show that over the very nerrow frequency range of inductive reactance of the orystal, the capacitive reactance of XPT is esentially constant and tharefore oscillation occurs at
the "intersection" of the value of XPT and the rapidly changing XPP. The etobility of oscillation depends on this ralationship.
the reactance curve
Figure 2 showe graphically the eteep riee of the parallel reactance and resistance curves due to the eryetal, ploted as a Punction of frequency. Ae mentioned obove, over the nerrow frequency range depicted (.2x), the capacitive reoctence of XPT is eseentially oonstent. Therefore, the copacitance eseociated with the XPT value cen be aseigned to the right hand vertical scale. If, for example, we choose C2-C3-40 pF, then CT=20 pF, and the Prequency of oecillation will be ot point \(\theta\).

The pertinent question is where we would ohoose to operate for bent etability, but two forbiden regione must be discuesed first. Practical circuit considartions including parasitic reactances and octive device capacitances limit the maximum reactance of operation. In Figure 3, the boundary above which it is impractical to operate ie arbitrarilly choeen as e, ooo ohms, or 2 pF.

The exact velues are unimportant because this is not the region of optimum etobility. The other boundory, which is important, ie determined by RPP, the equivalent parallel resistanca.
* Equations in Appendix

PIN Diodes
this diode, depletion layer spreading occurs, and the capacitance, shown in IFigure II-2(b), decreases until the depletion layer has spread definitely to the \(N+\) region, as shown in Figure II-2(c). At this voltage the depletion layer width, \(\mathrm{W}\left(\mathrm{V}_{\mathrm{PT}}\right)\), is approximately equal to \(\mathrm{W}_{1}\). Further spreading of the depletion layer into the low resistivity \(\mathrm{P}+\) and \(\mathrm{N}+\) regions is, for most applications, negligible. The voltage at which the depletion zone just reaches the \(\mathrm{N}+\) contact is the punchthrough voltage, \(\mathrm{V}_{\mathrm{PI}}\).
Because in practice the resistivity levels in the \(\mathrm{P}+\mathrm{I}\), and \(\mathrm{N}+\) regions do not change abruptly, the resulting capacitance versus voltage characteristics have a soft knee. Therefore the punchthrough voltage is not directly measureable with precision. Ilowever, the practical diode usually does have two definable slopes in its \(\mathrm{C}(\mathrm{V})\) characteristic, when plotted using senilog paper as shown in Fig. ure II-2(d). By convention, the voltage intersection of these two straight line projected slopes is called the punchtbrough voltage.
It is to be emphasized that this \(\mathrm{C}(\mathrm{V})\) characteristic is what one obtains when the measurements are made at relatively low frequencies, typically 1 MlIz . At microwave frequencies, the dielectric susceptibility of silicon is much larger than the conductivity of \(\nu\) or \(\pi\) material; thus, the capacitance is effectively equal to the minimum capacitance for all values of reverse bias, as is shown in the following discussion of dielectric relaxation.

\section*{3. Capacitance Measurements and Dielectric Relaxation}

If the capacitance of a PIN diode which does not punch through at zero bias is measured at zero bias, a larger value of capacitance will be measured at a low frequency (such as 1 MII I .) than would be measured at microwave frequencies (such as with a slotted line measurement at 1 GHz ). The reason is that silicon, in addition to being a variable conductor, also has a high dielectric constant. Therefore, its bulk differential equivalent circuit appears as a parallel combination of conductance and capacitance. The relative current division between these two equivalent circuit parameters varies with the frequency of the applied signal, higher frequency currents being carried mostly by the capacitive path.
To illustrate this point, consider Figure II-3 which shows a PIN diode below punchthrough. The portions of the \(P+\) and the I regions which are depleted represent the depletion zone, or "swept region." The remainder of the I region is "unswept" and can be modelled, as shown in IFigure II-3(c), as a parallel resistance-capac-

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
itance circuit, represented by the equivalent circuits elements, Cus and Rus.
The division of current through \(\mathrm{C}_{\text {us }}\) and \(\mathrm{R}_{\text {us }}\) depends upon the ratio of the susceptance of Cus to the conductance ( \(1 / R_{U S}\) ). This ratio in turn depends on the dielectric constant of silicon to its bulk resistivity. The frequency at which the current division between these two elements is equal (i.e., when the susceptance is cqual to the conductance) is defined as the dielectric relawation frequency, \(\mathrm{f}_{\mathrm{R}}\), of the material.
When the operating frequency, \(f\), is equal to or greater than \(3 f_{R}\), the total capacitance represented by the series combination of \(C_{S W}\) and \(C_{U S}\) is approximately equal to \(C_{j}\) (within \(10 \%\) ), the parallel plate capacitance of the totally depleted I region. This value corresponds to the minimum capacity \(\mathrm{C}_{\text {MIN }}\) measured bicyond punchthrough at low frequency.
This point is a major one in the practical characterization of PIN diodes intended for microwave switching applications. It means that practical measurements of the capacitance of a PIN junction can be made at 1 MIIz , and the values so attained will represent a good approximation to the actual capacitance applicable at microwave frequencies. This test only requires that sufficient bias voltage is used during the low frequency measurement to insure that the I region is fully depleted. \(\Lambda\) check to determine whether the I region is in fact fully depleted can be made simply by plotting the \(C(V)\) characteristic for a few representative diodes from the production lot to determine at what minimum bias voltage the measured capacitance reaches what is essentially its minimum value.
The remaining required quantity to determine the applicability of the low frequency \(C_{\text {Min }}\) as a representation for the microwave capacitance, \(C_{j}\), is an estimate of the relaxation frequency for the I region of the diodes being measured. Iligh purity silicon material used to make PIN diodes typically has resistivity in the range of \(500-10,000 \Omega-\mathrm{cm}\) prior to the diffusion and/or epitaxial growth steps used to achieve the low resistivity \(\mathrm{P}+\) and \(\mathrm{N}+\) regions. Ilowever, after the high temperature processing needed to realize these regions, the resistivity of the \(I\) region is always less than that of the starting crystal. Typical values for I region resistivity are in the range of \(100-1000 \Omega-\mathrm{cm}\). The dielectric relaxation frequency for the unswept portion of the I region can be written in terms of the equivalent circuit parameters, directly from the definition which


As discussed above (theory of Oscillation), negative resietence is the model choeen to represent the gain relation between the traneistor and the eircuit. This resistance depende on the transiator characteristics and the valuet and ratio of C2 and C3. At present, it is important only to note that a minimum value of \(\operatorname{RPT}\) (maximum gain), existefor any circuit value choice. Clearly, the eircuit will not oscillate if RPP on the eryetal ife 1s lese than RPT generated on the transistor side, so boundary -xiste

In the example, 400 ohme has been chosen ae the boundary, so the circuit must operate somewhere between point A and point C. where bhall the greatest etobility be obtained? If the crystel -1de only is considered, one might be tempted to choose point \(C\). since the derivative of XPP with respect to frequency it highest ot this point. To resolve the question, one must examine the traneietor side in greater detail and determine the form of the unstable reactance.

\section*{THE TRANSISTOR SIOE}

Recall from Figure 1 that the transietor ide is defined as containing the capacitors C 2 ond C 3 and the transistor iteolf. The admittance of this eide will have real and imaginary parte os shown in that figure. The real part will be o negative *

Since RPT depends on C2, C3 and C2/C3, the boundary between I and II is actually a curved line.

c) detailedeouivalent circuit

d) Lowfreo simplified eouivalent circuit
e) microwave eouivalent circuito

Figure II-3 Keverse Bias PIN Equivalent Circuit
requires that the conductance and capacitive susceptance be cqual at \(f_{R}\). The result is
\(f_{R}=\frac{1}{2 \pi R_{U S} C_{U S}}\)
In turn, the specific values for \(R_{U S}\) and \(C_{U S}\) can be written in terms of the length, 1 , and the area, \(\Lambda\), of this unswept region together with the bulk resistivity, \(\rho\), and the absolute dielectric constant, \(\epsilon_{1} \epsilon_{\mathfrak{R}}\), as follows
\(\mathrm{R}_{\mathrm{US}}=\frac{\rho \mathrm{I}}{\Lambda}\)
\(C_{U S}=\frac{\epsilon_{\mathbf{0}} \epsilon_{\mathbf{R}} \Lambda}{\mathrm{L}}\)
Substituting these expressions into Equation (II-1) together with the value \(\epsilon_{\mathbb{R}}=11.8\) for silicon yields Equation (II-4), which gives the dielectric relaxation frequency directly in GIIz when the resistivity, \(\rho\), is known.
\(f_{R}=\frac{1}{2 \pi \epsilon_{0} \epsilon_{R} \rho}\)
\(\mathrm{f}_{\mathrm{R}}=\frac{153}{\rho(\text { olmm-centimeters })} \quad\) (gigahertz)
This expression is shown graphically in Figure 11-4.


Figure II-4 Dielectric Relaxation Frequency in Silicon of Various Resistivities
conductance of velue \(1 / R P T\) and the imaginary o poitive susceptance \(\theta-1 / X C T\) porellel (the defining equetions are shown in the Appendix.)

It is beyond the soope of this paper to quentitatively model and analyze the variou: long and short term inatobilitise on this side of the circuit. Rother, some systemetic and random procesese will be postulated, and the form of the dirouit reactance instabilitise will be shown. Armed with these modela we can join the left and right sides of the circuit to desoribe the parameter that determines frequency stability.

\section*{CASE I}

The firat model sesumes that \(C\) porollel hee a tolerance on ite average value which varies this value with time, temperotura, or other eystematic function. In this cese
\[
\mathbf{C}=\mathbf{C T} *(1+e)
\]
(1.6.1)

Where e repraiente the delte chonge from nominal (temperature, tolerence, etc.). The incramentel reectence change, \(D X\), due to e is then:
\begin{tabular}{ll}
\(O X=1 /(2 \pi F C T)-1 /(2 \pi F C T(1+e))\) & \((1.6 .2)\) \\
\(O X=(1-(1-0)) /(2 \pi F C T)\) & \((1.6 .3)\) \\
\(O X=-/(2 \pi F C T)=X T\) & \((1.6 .4)\)
\end{tabular}

CASE 2
Aseume that the porallel copacitor CT hes e fixed, itable part in parallel with a small variable capacitor \(C V\) which
represente oll of the instability or noisy portion of the circuit.
\(D X=X T-X T * X C V /(X T+X C V)\)
(1.6.5)
\(D X=(X T)^{2} /(X T+X C V)\)
(1.6.6)

For XCV \(\gg X N:\)
\(D X=\left(X T^{2} / X C V\right)=(X T)^{2}(2 \pi F) c V\)

CABE 3
Asaume that the current generator gm Ib hes o quadrature noise component in \(\angle 90^{\circ}\)

The noise current into the base is derived in eppendix a as: \(\overline{11 n}=\overline{i n} /(1+\times 2 / \times 3+g m * \times 2)\)
Assuming gm * \(\times 2 \gg(1+\times 2 / \times 3)\) :
\[
\begin{equation*}
\text { then } \mid \overline{i|n|}=\overline{\operatorname{in} /(g m \times x}) \tag{1.6.9}
\end{equation*}
\]

The "noisy reactance", XN, which would osuse this current to flow in:

Whare es ie the ofecillator voltege at the bese. Then
\begin{tabular}{rlr}
\(D X\) & \(=X T X^{2} \times X N /(X T+X N)\) & \((1.6 .11)\) \\
& \(=(X T)^{2} /(X T+X N)\) & \((1.6 .12)\)
\end{tabular}
for \(X N \gg X T\)
\(0 X-(X T)^{2}\) *in (es*gm*X2)
(1.6.13)
for \(x_{2}=K * X_{T}\)
(1.6.14)
\(D X=X T \quad \overline{i n} /(K *\) es *gm)
(1.6.15)

Strictly speaking, since the final resistivity of the I layer of a practical diode depends upon the actual processing steps used to fabricate the diode, one could not know beforehand what dielectric relaxation frequency would apply for a particular diode unless a method for determining the magnitude of \(\rho\) as realized in a final device were available. Usually a PIN diode has an I layer resistivity of at least \(100 \Omega-\mathrm{cm}\), which corresponds to \(\mathrm{f}_{\mathrm{R}}=1.53 \mathrm{GHz}\). Thus for operating frequencies of 5 GHz or more the simplified equivalent circuit in Figure II-3(e) can nearly always be applied.
An experimental method does exist for the determination of I layer resistivity through the measurement of the punchthrough voltage and knowledge of the I layer width, which usually is known with reasonable accuracy by the diode manufacturer. To make the calculation, Equation I-10 is solved for \(\mathrm{V}_{\text {PT }}\) at which the depletion layer is equal to the I region width, \(W\). Recognizing that for a PIN the impurity concentration of the \(N+\) contact, \(N_{A}\), is much larger than the impurity concentration in the I region, \(\mathrm{N}_{\mathrm{D}}\), the result becomes
\(V_{P r}=\frac{c N_{D} W^{2}}{2 \epsilon_{0} \epsilon_{R}}\)
But the resistivity of the I region is related to the donor impurity density according to
\(\rho=\frac{1}{\mathrm{~N}_{\mathrm{I}} e \mu_{\mathrm{N}}}\)
where \(\mu_{\mathrm{N}}\) is the electron mobility (i.e., the effective drift velocity of electrons in the I region per unit applied electric field) and \(e\) is the charge of a single electron. Substituting this result in
Equation (II-5) gives
\(\rho=\frac{W^{2}}{2 V_{I V I} \epsilon_{0} \epsilon_{R} \mu_{N}}\)
\(\rho=\frac{\left(2.4 \times 10^{8}\right) \mathrm{W}^{2}}{\mathrm{~V}_{\mathrm{Yr}!}}(\) ohm-centimeters \()\)


Figure II-5 Punchthrough Voltage vs. I Region Resistivity for Various I Region Widths
where \(\quad \epsilon_{\mathrm{R}}=11.8\) (silicon)
\(\mu_{N}=2000\) (centimeters \({ }^{2} /\) volt-second)*
\(\mathrm{W}=\mathrm{I}\) region width (centimeters)
\(\mathrm{V}_{\mathrm{IVI}}=\) punchthrough voltage (volts)
Thus, for example, if a particular diode having an I region width of 0.0025 cm ( 1 mil ) is found to have a punchthrough voltage of 10 V , the resultant average resistivity is \(150 \Omega-\mathrm{cm}\). Equation (II-7) is shown graphically in Pigure II-5 for various values of I region width, W.

\section*{B. Microwave Equivalent Circuit}

\section*{1. Cbarge Control Model}

Transit Time Limit of the I-V Law
In Chapter I the I-V characteristic for a PN junction was given (Fquation (1-1)). The same characteristic applies for the PIN at
*This mobility value is representative for electrons in high resistivity N type silicon, as shown in figure II-8. Thus, this method of I region width determination is limited by the accuracy with which mobility can be estimated.

\section*{Summarizing the thrie cases :}


Now we turn back to the complete circuit to find the form of delte frequency, DF.

\section*{DELTA FREqUENCY}

The reactance curve of Eq. A6 plotted in figure 2 hoe a slope of DX/DF ohms per PPM. If one ossumes on "oparating" point of \(X T\), then the frequency inetability et that point will be:
DF - [1/DX/DF] OX
(1.7.1)

Gaing beck to the three coses developed in section 1.6, and substituting XPP=XPT=XT (condition of resonance),
\(D F-[1 /((D X / D F) *(1 / X P P))]\) (1.7.2)
\(D F-\left[1 /\left((D X / D F) \cdot\left(1 /(X P P)^{2}\right)\right] \cdot(2 \pi F) \cdot C V\right.\)
(1.7.3)

DF - [1/((DX/DF) * (1/XPP))] * In/( gm*ロ** )

These ore the functions which yield the volue of DF, the frequency instability of the total oircuit, for the threa cases of the preceding seotion. The quentities to the right of the
brackete ore constente determined by the degree of instability on the transistor ide. The two functions in the brackets (one and three are the eame) are determined by the erystal, the capacitor CS, and the value of the \(X T\), the parallel reactance. In order to minimize delte frequency, we wish to maximize the inverse of these, which are,
\begin{tabular}{lll} 
I \((D X / D F) * 1 / X P P\) \\
II & \((D X / D F) * 1 /(X P P)^{2}\) & \((1.7 .5)\) \\
& \((1.7 .6)\)
\end{tabular}

These functions will be called the fractional reactance slopan Type I and Type II, to emphasize the fact tht it if the fractional slope which determines atability, not the obsolute slope. In Figure 3, the fractional reactance lope functions and the reactance slopes have been ploted for o number of example cases, including the 10 mHz crystal of Figure \(2,5 \mathrm{mHz}\) third overtona, and o 60 MHz third overtone. The functions ore maximum at the lower boundary. The intuitively attractive eteep slope at point "C" in figure 2 is now shown to be deceptive becouse of the role of fractional slope in stability.

The effect of \(A\) i and \(Q\) now becomes clear. The frectional reectence elope depende on XC, of the crystal, so for all other factors equal, one alwaya wante to maximize that. But best stability is found at the lowest resctance, and that occurs at o value determined by RPP which depends on Ri, the cryetal eeriea

\section*{PIN IDiodes}
low frequencies, for which the RE period is long compared with the transit time of an electron or hole across the I region.
The discussion to follow using a simple carrier transit time model is only approximate. Real diodes have more complex carrier flow, which is non uniform, subject to applied voltages (i.e., nonlinear), and so forth. The approximation is useful, as it permits estimates of frequency behavior and switching speed. The transition between low and high frequency behavior occurs when this transit time is equal to the RF period. To estimate the transit time, recall that the injection of carriers into the depletion zone occurs under forward bias by diffusion. That is, once forward bias is applied it reduces the magnitude of the built-in junction potential, causing holes to diffuse from the \(P\) to the \(N\) region and electrons to diffuse in the opposite direction.
The mechanics of this diffusion charge transport are described by diffusion constants for holes and electrons, \(\mathrm{D}_{\mathrm{P}}\) and \(\mathrm{D}_{\mathrm{N}}\) respectively. Diffusion, being the flow of carriers from a region of high to lower density, is described in terms of a current density proportional to the spatial gradient of charge density according to Equations (II-8) and (II-9).
\[
\begin{align*}
\text { (For holes) } & \mathrm{J}_{\mathrm{P}}=-e \mathrm{D}_{\mathrm{p}}(\nabla \mathrm{p})  \tag{11-8}\\
\text { (For electrons) } & \left.\mathrm{J}_{\mathrm{N}}=-e \mathrm{D}\right)_{\mathrm{N}}(\nabla \mathrm{n}) \tag{11-9}
\end{align*}
\]
where
\[
\begin{aligned}
\mathrm{J} & =\text { current density } \\
e & =\text { unit charge magnitude }=\left(+1.6 \times 10^{-19} \text { coulomb }\right)
\end{aligned}
\]
\(D_{P, N}=\) diffusion constants for holes and electrons respectively
\(\nabla \mathrm{p}=\) spatial gradient of hole density
\(\nabla \mathrm{n}=\) spatial gradient of electron density
To illustrate diffusion, let us estimate the approximate transit time for holes, the slower moving carrier, across the depletion zone of a PN junction of width \(\mathbf{W}\). A one dimensional analysis is used, and Equation (11-8) becomes
\(\left.J_{p}=-e 1\right)_{p} \frac{d p}{d x}\)

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}

The minus sign is required ( D is defined as a positive constant) since current flow is opposite to the direction of increasing charge density. Figure II-6 shows a simplified model of the PIN and majority carrier profiles. The gradient \(\mathrm{dp} / \mathrm{dx}\) is abrupt at the \(\mathrm{P} / I\) interface and an exact analysis would require an analytic representation of \(\mathrm{p}(\mathrm{x})\). However, as an approximation, we use the average gradient of the bole density across the I region, or
\(\frac{d p}{d x} \approx \frac{P_{P}}{W}\)


Figure II-6 Depletion Zone Model Used to Estimate Transit Time Frequency

Equation (II-10) then becomes
\[
J_{p}=P_{p} e v_{\mathbf{P}} \approx e D_{\mathbf{P}} \frac{P_{P}}{W}
\]
where \(J_{p}\) has been written explicitly using carrier velocity, \(v_{p}\), and the density of carriers participating in the hole current flow. But the hole transit time, \(\mathrm{I}_{\mathrm{p}}\) equals \(\mathrm{W} / \mathrm{v}_{\mathrm{p}}\); therefore

Transit Time \(=T_{p} \approx \frac{W^{2}}{D_{\mathbf{P}}}\)

Several thinge have happened. At XPP equal 94 ohms, point \(C\), RPP now equals 277 ohme, so this point violetes the lower boundry of 400 ohme. Adjusting XCT to 112 ohme (changing \(C T\) ), point \(D\), gives RPP equal 402 ohms. DX/DF is now 2.14 so the froctional reactonce slope (I) is 1.91E-2. Tho etability has been improved by about 14 percent for type I instobilities,compered to point \(A\). But the type II fractionol reactance lope is decreased by about 5 percent. So the anewer for this porticular example depende on the exact nature of the circuit inetebilitiea. Note that this exemple assumes a parfect capacitor for CS. If C8 were o varactor diode it is apparent that ae the value deareases it is posible to move to o point where RPP is too low for oscilletion. In VCXD deaigne then, the margin for osillation should be adjusted at minimum capacity.

\section*{CONCLUSION}

For everal modele of trensietor and circuit instabilities it is seen that frequency tability is maximized when the fractional ractance slopez, Type \(I\) and Type II, are maximum. For a number of crystal examples these functions are meximum at the lowest parallel reactance. The minimum reectence point depends on the value of RPT, the parollel nagetive resistance. The effect of a capocitor in series with the orystel on stability depends on the exact noture of the circuit instabilities.

\section*{REFERENCES}
1. Bottom, V.E., "Introduction to Quartz Crystal Unit Design." New York: D. Van Nostrand, 1982
2. Clepp, J. K., "An Induotonce - Capacitance Oscillator of Unupual frequency Stability." proceedinge of the IRE, 1948 pp. 356-357
3. Frerking, M. E. Cryatal Oacillator Design and Tamperatura Compensation," New York: Van Noitrand, 1970
4. Matthys, R. J., "Cryital Oscilletor Circuite," Naw York: John Wiley 6 Gons, 1983
5. Aidenour, L. N., "Vacuum Tube Amplifiera," Radiation Laboratory Eeries, V.18: New York: McGraw-Hill, 1948
6. Parzen, B., "Design of Crystal and Other Marmonic Oecillators," New York: John wiley E Gons, 1983

Accordingly, we can expect that the low frequency I-V characteristic (Equation (l-1)) can no longer be used at frequencies for which the RF period is comparable to \(\mathrm{T}_{\mathrm{p}}\). If a transition frequency, \(\mathrm{f}_{\mathrm{T}}\), is defined for the PIN diode at which
\(\mathrm{f}_{\mathrm{r}}=\frac{1}{\mathrm{~T}_{\mathrm{p}}}\)
then
\(\mathrm{f}_{\mathrm{T}}=\frac{\mathrm{D}_{\mathrm{P}}}{\mathrm{W}^{2}}\)

Frequently, the mobility, \(\mu\), rather than the diffusion constant, \(D\), is evaluated for semiconductor materials. These two constants are related according to the Einstein relationship
\(\mathrm{D}=\mu \frac{\mathrm{kl}^{\mathrm{l}}}{e} \quad\) (centimeters \({ }^{2} /\) second)
where \(\mathrm{D}=\) diffusion constant (centimeters \({ }^{2} /\) second)
\(\mu=\) mobility (average carrier drift velocity per unit applied electric field)
k = Boltzmann's Constant
\(\mathrm{T}=\) absolute temperature (Kelvin)
\(\Lambda \mathrm{t} 300 \mathrm{~K}\) (near room temperature) \(\mathrm{kT} / e=.026 \mathrm{~V}\); thus
\(\mathrm{D})=.026 \mu(\) at 300 K\()\)
The hole and electron mobilities vary both with impurity densities (see F igure 11-7) and temperature (see Figure 11-8). For the present example the hole mobility at 300 K in high resistivity silicon is about \(500 \mathrm{~cm}^{2} / V-\mathrm{s}\) and therefore
\(f_{T}=\frac{1300}{w^{2}}\) megahertz
where \(w\) is 1 region thickness in microns.


Figure II-7 Hole and Electron Mobilitics (at 300 K in silicon) vs. Impurity Density (After A.B. Phillips [1])

Thus, even for a very thin base PIN diode having only a \(2.5 \mu(0.1\) mil) I region, \(\mathrm{f}_{\mathrm{T}}=200 \mathrm{MHz}\). A graph showing how \(\mathrm{f}_{\mathrm{T}}\) varies with \(w\) is shown in Figure 11-9. In practice, PIN diodes used for microwave switching have 1 region widths of \(25-250 \mu \mathrm{~m}\) (1-10 mils) and accordingly the low frequency I-V cbaracteristic given in I:quation (1-1) is useless for evaluating micro wave resistance.

\section*{I Region Charge and Carrier Lifetime}

However, all of the concepts introduced so far to describe low frequency behavior are easily applied to determine the microwave resistance. We shall evaluate I region charge and use it to gauge resistance. From Figure \(11-9\) it is evident that once charge, consisting of holes and electrons, has been injected into the I region under forward bias, it cannot be removed in the brief duration of a half cycle of RF frequency if that RI' frequency is above a few hundred megahertz, even for the thinnest I region (or base width) diodes.
The cbarge control model for the PIN diode allows RF performance to be related to the net steady state hole and electron


Figure 3, Relative Slopes
resietance. The cryetol resistance determines stability indirectiy by restricting the "operating" point of the circuit.

\section*{GERIEE CAPACITANCE}

Con one improve frequency stability by putting a capscitor in series with the eryetolf The intuitive answer to this recurring question goes et followe (refer to figure 2). The elope, DX/DF, increses with frequency but the fractional reactance slape decresses with frequency. At pointe A and \(\theta\) then,

\section*{Table 1.B.1}

so better atability is obtained at \(A\). If one odds a capacitor of reactance \(\mathbf{- 7 4 7}\) ohme in series with the crystol, the entire curve is ehifted in the negative direction. Is not now the reactance at F-44D PPM equal to 841 minus 747 or 947 And since the curve is eimply ehifted, hove we not now the DX/DF of point b but ot the reactance of point A? Table 1.8.2 show the results of adding a 21.3 pFd copacitor.

\section*{TABLE 1.B.2}
\begin{tabular}{lllllll} 
& PPM & RPP & XPP & DX/DF & DX/(DF*XPP) & DX/(DF*XPP) \\
C & 436 & 277 & 94 & 2.04 & \(2.17 E-2\) & \(2.31 E-4\) \\
D & 444.4 & \(4 D 2\) & 112 & 2.14 & \(1.91 E-2\) & \(1.71 E-4\)
\end{tabular}


Figure II-8 Hole and Electron Mobilities vs. Temperature for Various Impurity Densities in Section (After A.B. Phillips [1])


Figure II-9 I Region Width vs. Transit Time Frequency for Silicon PIN Diodes at Room Temperatur'
charges, \(Q_{p}\) and \(Q_{N}\) respectively, in the I region. These charges are equal to the product of the (low frequency) bias current and the respective average carrier lifetime, thus
\(Q_{\mathrm{P}}=\mathrm{I}_{0} \cdot \tau_{\mathrm{P}}\)
\(\mathrm{Q}_{\mathrm{N}}=\mathrm{I}_{\mathrm{o}} \cdot \tau_{\mathrm{N}}\)
That is, after the turn on transient during which the I region charge density is established, the bias current serves as a replenishment source for holes and electrons which have recombined. Referring to Figure II-10, the bias current at the P/I interface consists almost entirely of holes being injected into the I region. At the \(1 / \mathrm{N}\) interface the same bias current consists mainly of electron injection into the 1 region.
The longer the lifetime, the less bias current required to maintain a given charge density and, accordingly, a given microwave conductivity. Before proceeding further it is important to note that long lifetime does not necessarily imply slow switching speed. A properly designed driver can remove I region charge, and thereby reverse bias the diode, in a period shorter than the lifetime. Rather, long lifetime should be considered a measure of the crystalline perfection within the diode.

\section*{APPENOIX \(A_{\perp}\) EQUATIONG}

\section*{CAYSTAL}


\section*{CRYETAL EERIEE EQUIVALENT}


PARALLEL: XPP ond RPP from RE end XE \(\pm\) XCB
\(X P P=\left(R E \wedge^{-2}+(X E+X C 8){ }^{\wedge} 2\right) /(X E+X C 8)\)
RPP \(=(R E-2+(X E+X C 5) \cdot 2) / R E\)

DERIVATIVES: COMPUTER CALCULATEO INCAEMENT
OXPP = XPP © - XPP © (F-freq. increment)

APPENOIX B, TRANGISTOR MOOEL

\(11=v b * 1 /(1+\times 2 / \times 3+g m * \times 2)+\overline{i n} /(1+\times 2 / \times 3+g m * \times 3)\) ..... (B1)
\(Y=11 / v b-1 / R P T+1 / X C T\) ..... (B2)
 ..... ( 83 )
хСТ \(\left.=\left((\times 2+\times 3)^{\wedge} 2\right)-\left(g m^{*} \times 2 * \times 3\right)^{-2}\right) /(x 2+\times 3)\) ..... ( 84 )
xCT - \(\times 2+\times 3\) ..... (B5)
\(\overline{i n n}=\overline{i n} /(1+\times 2 / \times 3+\operatorname{tm} \times 2)\) ..... ( 86 )
\(\overline{11 n}=\overline{i n / g m * x 2}\) ..... (87)
XN:-s/in = gm*x2*es


Figure II-10 Cylindrical I Region Model Used to Estimate I Region Resistance of PIN Diode

A pure intrinsic silicon crystal has a calculated carrier lifetime of 3.7 seconds. With impurity doping of \(10^{15} \mathrm{~cm}^{-3}\) this figure drops to 0.11 ms . [1 (p.80)] In actual diodes the lifetime typically ranges from 0.1 to \(10 \mu \mathrm{~s}\), orders of magnitude less than these theoretically attainable values. To appreciate the reason for this great disparity, it is necessary to review what lifetime represents.
Lifetime is proportional to the improbahility that an electron and hole will recombine. Imperfections in the regular array of crystal atoms create energy states within the otherwise disallowed band gap of silicon. Such intermediate states provide a virtual energy "staircase" by which the recombination proceeds. In a very regular crystalline structure, energy must be given off in the transition of an electron from conduction to valence bands in the form of a 1.1 eV (light emitting) photon; the statistical probability of such an occurrence is low. But with crystalline irregularities, intermediate allowed energy states between these two bands permit a transition in a "staircase" of smaller energy transitions with corresponding low energy phonon (lattice vibrations) emissions, the overall probability of which is higher. Thus lifetime is reduced and recombination is enhanced by the presence of crystalline imperfections and/or impurities.
There are two categories of crystalline irregularities - boundary surfaces and bulk impurities. For a PIN diode the I region boundaries consisting of the highly doped \(\mathrm{P}+\) and \(\mathrm{N}+\) represent rapid re-
combination surfaces for carriers which diffuse into them. I.ikewise the peripheral surface boundary of the 1 region, although not to the same extent as the \(\mathrm{P}+\) and \(\mathrm{N}+\) regions, provides greater recombination probability than would be present for carriers were the silicon crystal of infinitely extended dimensions. Furthermore, from a bulk point of view, even the structure of an undoped silicon crystal is never ideal. There are stress lines and faults where the probability of electron-hole recombination increases. A doped crystal is all the more susceptible to such imperfections because of the temperature shocks, imperfect atomic fit of doping atoms within the silicon, and related crystal stress producing factors associated with diode manufacture.
This brief discussion of lifetime and its determining factors is qualitative. Even an approximate theoretical treatment of the effective lifetime for a real diode is impractical, although some bulk quantitive analytical treatments of semiconductor crystal lifetime have been made. [3] For the diode maker and user, resort must be made to experimental means by which average carrier lifetime can be measured. The conventional method for measuring PIN diode lifetime, \(\tau\), consists of injecting a known amount of charge, \(Q_{0}\), into the \(I\) region and measuring the time, \(\tau_{S}\), required to extract it using a "constant" reverse bias current. [4,5] To appreciate this method, consider the equivalent circuit and charge versus time profiles shown in Figure 11-11.
\(\Lambda\) forward bias current, \(\mathbf{1}_{F}\), is established and permitted to flow for a period long compared to the expected lifetime, thus storing a charge, \(Q_{0}\) equal to \(I_{F}{ }^{\cdot} \tau\) in the diode under test. The current supplies are chosen so that \(R_{R} \ll R_{F}\). Thus, when the switch, \(S\), closes the diode current, \(I_{D}\), reverses direction and reaches a magnitude, \(I_{R}-I_{F}\). The stored charge is removed by this current until it is fully depleted. If the discharge period, \(\tau_{\mathbf{S}}\), is short compared to the lifetime ( \(\tau_{\mathrm{s}} \ll \tau\) ), then negligible recombination occurs during the turnoff and the total stored charge is recovered. In this case, \(Q_{\mathbf{0}}=\mathbf{I}_{\mathbf{F}} \cdot \boldsymbol{\tau}=\left(\mathbf{I}_{\mathbf{R}}-\mathbf{I}_{\mathbf{F}}\right) \tau_{S}\) and the lifetime is found from
\(\tau \approx \tau_{\mathrm{S}}\left(\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{F}}}-1\right) \quad\) where \(\tau_{\mathrm{S}} \ll \tau\)
This same expression gives the approximate switching time, \(\tau_{s}\), of a driver which switches from forward bias, \(I_{F}\), to reverse bias and has a reverse bias transient current switching capability of \(I_{R}-I_{I}\) :

a) SWITCHING CIRCUIT SCHEMATIC


Figure 11-11 Lifetime Measuring Method
amperes. Of course, in a practical driver circuit the forward current supply, \(I_{1}\), would be switched off during reverse bias.
Practically, however, Equation (II-17) is not always directly useable because it may be difficult to switch the diode off in a time short compared with the lifetime. Typical PIN diode lifetimes nay range from \(0.1-10 \mu \mathrm{~s}\), requiring extremely fast switches to satisfy the requirements that \(\tau_{S}\) be small, say one-tenth, of the expected value of \(\tau\). To overcone this problem, a test setup is


Figure II-12 Typical Variation of PIN Lifetime with Forward Current (After Ciccolella, Johnston, and De Loach [6 (p. 289)] )
made whereby the switching time can be adjusted. In the circuit of Figure II-11, \(\mathrm{R}_{\mathrm{R}}\) is made variable. The ratio \(\mathrm{I}_{\mathrm{R}} / I_{\mathrm{F}}\) is adjusted so that \(\tau_{S}=\tau\); the applicable condition is determined by analysis as follows.
If, at \(t=0, I_{F}\) were turned off, the initial charge, \(Q_{0}\) would decay at a rate proportional to the product of the instantaneous charge magnitude in the I region and the recombinate rate, \(1 / \tau\). Actually lifetime is somewhat dependent on the bias current level; a typical variation of PIN lifetime is shown in Figure II-12 [6] for a range of bias currents commonly used. Conventionally this variation of lifetime is ignored, not because it is insignificant, but because its inclusion would not permit the simple analysis which follows. Which is not to say that the analysis isn't useful. Common prac tice is to apply it, but one should be aware of its limitations.
With the constant lifetime assumption, suppose that the "driver" described in Figure II-11 provides no charge extraction current. Then for \(t>0\), the expression describing the instantancous rate of charge ( \(\mathrm{dq} / \mathrm{dt}\) ) of charge in the I region, q , is
\(\frac{d q}{d t}=-\frac{q}{\tau} \quad(t>0)\)
The solution of this differential equation is

\section*{UIELECTRIC RESONATOR FILTERS FOR UHF AND MICROWAVE APPLICATIONS}

\section*{DR. MARIN L. MAEWSKI}

Department of Communication and Electronic Engineering, Royal Melbourne Institute of Technology, Melbourne, Victoria, 3001,

\section*{Australia}

ABSTRACT
Simplified design methods for dielectric resonator bandpass and bandstop microwave filters are discussed. Two typical cases of dielectric resonator operation in the filter circuit, singleand dual-mode, are considered. Some practical filter realizations suitable for UHF and microwave applications are also described.
1. INTRODUCTION

Considerable advances have been made over the last decade in technology of low-loss and temperature stable ceramic materiala suitable in a high-frequency filter applications. Low-loss (or high Q), large dielectric constant, and low frequency-temperature coefficient are the most significant features of temperature compensated ceramic materials that make them very attractive for filter applications at UHF and microwave frequencies [1].

Typically, these filters employ a cylindrical or rectangular shaped dielectric resonator as a basic element in the bandstop, bandpass, and directional filter realizations. A dielectric resonator filter operation is based on a specific mode of dielectric resonator at which the coupling between resonators and distributed transmission medium can be realized and practically controlled in order to obtain the desired filter characteristics. Depending upan applications and frequency range the dielectric resonator filters use a rectangular waveguide, cylindrical waveguide, coaxial line, or microstrip line for transmission medium [2]. Typically, at the UHF frequencies the TEM coaxial transmission lines containing the dielectric ring resonator are most often used for the bandpass filter realizations [3]. At microwave and millimeter wave frequencies the waveguide or microstrip line are mainly used as transmission media since their fundamental propagation modes are compatible with the TE \(\mathrm{m}_{18}\) mode of dielectric resonator [1], [2].

The objective of this paper is to present a brief outline of dielectric resonator filter design methods and to discuss some practical design considerations related to bandpass and bandstop filter realizations.

I'his equation shows the "natural recovery" curve in Figure II-11(b) and demonstrates the definition of lifetime as \(\tau\), the time constant of charge decay. In time \(t=\tau, q\) decays to \(1 / \mathrm{e}\) or about \(40 \%\) of its initial value. However, to make a practical measurement it is necessary to have a measurable quantity; this requirement is most easily fulfilled by providing a reverse current during recovery. Since the reverse current also removes charge from the I region, its effect must be included in the charge defining equation. Equation (II-18) then becomes
\(\frac{d q}{d t}=\frac{-q}{T}+I_{b}\)
This expression is called the continuity equation for stored charge; the name underlies the fact that stored charge is neither created nor destroyed instantaneously, but rather has time continuity. 'This equation is general and applies for charge building with \(I_{D}\) positive, as well as for recovery when the diode bias current direction is reversed and \(\mathrm{I}_{\mathrm{D}}\) is negative. The solution, which can be verified by substitution into Equation (II-20), is
\(q=Q_{0} e^{t / \tau}+I_{D} \tau\)
Imposing the condition that the stored charge be depleted in time \(t=\tau\), as shown graphically in Figure II-11(b), and noting that
\(Q_{0}=I_{I} \tau\) and that \(I_{D}=-\left(I_{R}-I_{F}\right)\), Equation (II-21) gives
\(\left|\frac{I_{\mathrm{R}}}{\mathrm{I}_{\mathrm{F}}}\right|=\mathrm{e}^{-1}+1 \approx 1.4\)
as the test condition under which \(q=0\) at \(t=\tau_{S}=\tau\), permitting a convenient direct measurement. In practice, \(I_{R}\) and \(I_{F}\) can be monitored by connecting an oscilloscope across a small resistance in series with the diode under test. Switch \(S\) is realized using a pulse generator with repetition rate adjusted to permit the application of forward current, \(I_{F}\), for a time which is long compared to the lifetime, \(\tau\), in order that the steady state charge, \(Q_{0}\) equal to \(I_{I} \tau\), is established before the recovery process is measured. A practical

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
description of lifetime and switching speed measurements is given by McDade and Schiavone [7] .

\section*{The Charge Control Model and Microwave Currents}

We have just seen that, from transit time considerations, the PIN I region conductivity cannot follow a microwave signal because the diffusion of charge carriers isn't rapid enough to traverse the I region within the half period of an RF cycle. Moreover, from the preceding discussion of carrier lifetime it is clear that once charge is injected into the I region it resides there for \(0.1-10 \mu \mathrm{~s}\) - the lower limit of which is even long compared to the \(0.005 \mu \mathrm{~s}\) half period of, say, a 1 GII z signal. 'I'hese two facts taken together indicate that the resistance behavior of the PIN at microwave frequencies can be described in terms of the charge present in the I region, q.
To illustrate this point, consider the diode I-V characteristic with superimposed RI' excitations, as shown in Figure II-13. The I-V law shown is typical for a high voltage PIN. Under a forward bias current of 100 mA the I region becomes sufficiently conductive that its microwave impedance drops below 1 ohm of resistance (as we describe in the next section). If a microwave current having, say, \(50 \wedge\) peak amplitude ( 500 times the bias current) is then passed through the diode, the diode is found to remain in the low impedance condition despite the large "negative-going" half cycle of the RF waveform. The reason for this linear operation even un der high RF current magnitudes is clear when the total charge movement produced by the RF signal is considered. Assuming a lifetime of \(5 \mu \mathrm{~s}\), typical of a high voltage PIN, the \(100 \mathrm{~m} \wedge\) bias results in a stored charge of \(0.5 \mu \mathrm{C}\). However, during the negativegoing portion of a 1 GIIz sinusoid, the total charge movement is less than \(0.025 \mu \mathrm{C}\), not even a tenth of the stored charge. This example epitomizes the charge control viewpoint that it is the total stored charge produced by a bias which determines I region resistance ratber than the instantaneous magnitude of an RF current. \(R y d e r *\) has likened the bias level on a PIN diode to "large signal" and the RF as the "small ac component," with respect to the amount of charge stored or removed from the I region. From the above example, the value of the charge control viewpoint is evident.
-R. Ryder (Bell Telephone I,ahoratories; Murray Itill. New Jersey) in a talk given at the N:RI:M Conference in Boston, circa 1970.
2. PRACTICAL DESIGN OE SINCLE-MODE DIELECTRIC RESONATOR FILTERS

Band-pass and band-stop filter design procedures are based on the low-pass prototype element model and a low-pass to bandpass or band-stop frequency mapping as described in [4]. All subsequent steps of the design procedure are outlined in Figure 1. It can be seen from Figure 1 that both maximally flat for Butterworth) and equi-ripple (or Tchebyscheff) responses can be obtained following the design procedure outlined. It also follows that for the determination of a filter components, the dielectric resonator parameters required for a given circuit topology, such as the external \(Q^{\prime} s, Q_{e x}\), and coupling coefficient \(k_{i}\) must be determined first. The \(Q_{\text {ex's }}\) and \(k^{\prime} s\) values related to the physical dimensions of the filter can be obtained either analytically or expermintally or by combination of these two techniques.

With the reference to the band-pass filter equivalent circuit shown in Figure 2 the external \(Q, Q_{e x}\) and coupling coefficientds \(K_{i}\) 's are functionally related to the circuit elements as follows [4]
\(Q_{e x 1}=x_{1} /\left(K_{01}{ }^{2} / R_{1}\right)=g_{0} g_{1} \omega_{1}^{\prime} / w\)
\(Q_{e x_{n}}=x_{n} /\left(x_{n}{ }^{2}, n+1 / R_{n}\right)-g_{n} g_{n+1} \omega_{1}^{\prime} / w\)
and
\[
\begin{equation*}
k_{1,1+1}=k_{1,1}+1 / \sqrt{x_{1}, x_{1}+1}=w_{1} w_{1}^{\prime} \sqrt{g_{1} g_{1}+1} \tag{2}
\end{equation*}
\]
where \(W=\left(\omega_{2}-\omega_{1}\right) / \omega_{0}\) is the fractional bandwidth
\(\omega\). is the center frequency of B-P filter
\(\omega_{i}\) is the edge frequency of L-P prototype filter
\(g_{g}, g_{1}, \ldots g_{i}, g_{i+1}, \ldots g_{n}, g_{n+1}\) are the elements of a L-P prototype filter.

It is essential, however, for a proper design to have the Qex's and \(k^{\prime}\) g parameter values expressed in terms of the filter physical structure and dielectric resonator parameters.

In the most common case of the TE ofs operation mode of cylindrical dielectric resonator being integrated with the waveguide or microstripline, approximate equations for the resonant frequency \(f_{O}\) and unloaded \(Q\) factor, \(Q_{0}\) have been derived and practically verified in various designs [5], [6]. [7].

However, there is no approximate expression available for a coupling coefficient, \(k\), nor for resonator-to-resonator, nor transmission line-to-resonator coupling arrangements. Therefore, the best way in practice is to determine \(k\) from the external \(Q\) factor measurements for a pratical circuit structure, as any attempt to determine the coupling coefficient \(k\) value from analysis inevitably leads to rather complex algebra requiring the use of a computer to get the final solution.

\[
\times(\text { Change }) \quad 50 \wedge \times 0.5 \times 10^{\circ} \mathrm{s}
\]
\[
0.025 \mu \mathrm{C}
\]

Figure II-13 Example Comparing Charge Stored by Bias to Charge Movement Due to lligh Level Microwave Signal

Under reverse bias, a relatively small voltage, about -100 V , is sufficient to hold off conduction of the diode under the application of an RI' voltage whose peak voltage amplitude is as large as \(1,000 \mathrm{~V}\). Again, the brief duration of the half-period of the RF cycle is not sufficient to cause appreciable modulation of the 1 region of the diode, and the diode appears as a high impedance cven with this large voltage magnitude applied.

One might ask why any reverse bias is necessary at all if the diode is nearly non-conducting at zero bias. First, reverse bias fully depletes the I region and its boundaries of charge. Thus, the diode has a higher microwave \(Q\) with reverse bias. Second, the role of a reverse bias is to maintain an average field which tends to prevent the accumulation of significant amounts of charge in the I region. The presence of excessive charge in the space, under high RF fields, can produce impact ionization, with a "runaway" current rise and resultant diode destruction. Nevertheless, under large RF excitation, impact ionization effects are often observed, resulting in a pulse leakage current, since it occurs only under the combined action of RF and reverse bias excitation. It is necessary that the driver circuit have sufficiently low impedance to be capable of providing this pulse leakage current (usually 1.5 mA ) in a high power control device without causing an appreciable drop in the bias voltage supplied, if destructive diode conduction in the reverse bias state with high RF applied voltage is to be avoided.

\section*{2. Forward Biased I Region Resistance}

Having demonstrated the suitability of the charge control approach for determining microwave properties, let us use it to calculate the conductivity and resistance of the I region under forward bias.
Conductivity, \(\sigma\), is a bulk property equal to the ratio of current density, J, to applied electric field strength, E
\(\sigma=\frac{\mathrm{J}}{\mathbf{E}}\)
But J is the directed average rate of flow of electric charge. In terms of I region holes and electrons
\(\sigma=\frac{\mathrm{J}}{\mathrm{E}}=e\left(\frac{\mathrm{v}_{\mathrm{p}} \cdot \mathrm{p}}{\mathrm{E}}+\frac{\mathrm{v}_{\mathrm{N}} \cdot \mathrm{n}}{\mathrm{E}}\right)\)
Also, by definition, mobility, \(\mu\), is the average carrier velocity per unit of applied electric field, thus
\(\sigma=e\left(\mu_{\mathrm{P}} \mathrm{p}+\mu_{\mathrm{N}} \mathrm{n}\right)\)

If the \(Q_{e x}\) is obtained from measurements and the unloaded, \(Q, Q_{0}\) is for example determined analytically, then the coupling factor \(k\) can be obtained from
1) Considering a typical filter structure of the form shown in Figure 3 (a) and (b) the unloaded 0 factor can be calculated using (5):
mity the \(\pi\) aingu p及 (t)


Where the meaning of constants in (4) can be explained with the reference to Figure 3 as follows:
\(a=t+\sin \left(\gamma_{r} t\right) / \gamma_{r}\)
\(p_{g} F_{V}\left[\cos \left(r_{r} E / 2\right) / \sinh \left(r_{z} s\right)\right]^{2}\)
\(b_{a}\left(\cos \left(r_{5} t / 2\right) / \sinh \left(r_{a} d\right)\right]^{2}\)
\(\mathrm{d}_{\mathbf{s}}=\sinh \left(2 \mathbf{r}_{\mathbf{s}} \mathbf{s}\right) / \mathbf{2} \mathbf{r}_{\mathbf{s}}-\mathbf{s}\)
\(d_{a}=\sinh \left(2 r_{a} d\right) / 2 r_{a}-d\)




\(d_{r}=\sqrt{b_{s} b_{a}}\left[\frac{r_{s} \sinh \left(r_{a} d\right)}{\sinh \left(r_{s} s\right)}+\frac{r_{a} \sinh \left(r_{s}\right)}{\sinh \left(r_{a} d\right)}\right]\)

\section*{where}
\[
\begin{aligned}
& r_{r}=\left[\left(\frac{(0}{c}\right)^{2} \varepsilon_{r}-\left(\frac{u}{R}\right)^{2}\right]^{4} \\
& r_{z}=\left[\left(\frac{2.405}{R}\right)^{2}-\left(\frac{\omega_{0}}{c}\right)^{2} \varepsilon_{0}\right]^{4} \\
& \left.r_{a}=\left[\frac{(2.405}{R}\right)^{2}-\left(\frac{\omega_{0}}{c}\right)^{2} \varepsilon_{0}\right]
\end{aligned}
\]
where the parameter \(u\) in (5a) can be approximated as follows:
\(u=2.32+\sqrt{0.033 R^{2}\left(\frac{\omega_{0}}{c}\right)^{2}-0.185}\)
under the assumption that \(\mathcal{E}_{r} \gg 1\), which holds for most dielectric resonators.

In order to assure that the filter circuit shown in Figure 3 is a bandpass type, which means that the RF power flow through the circuit relies on the presence of the \(T E\) ois mode of dielectric resonators, the metallic enclosure must act as a waveguide under cut-off conditions at the filter operated frequency. Otherwise, the circuit will operate as the bandstop filter with the signal power absorbtion at the frequency corresponding to the dominant ree \({ }_{\text {old }}\) mode (or possibly on some other adjacent hybrid modes).
where
\[
e=+1.6 \times 10^{-19} \text { coulomb }=\text { magnitude of electron's charge }
\]
\(\mu_{P, N}=\) mobility of holes and electrons respectively
\(\mathrm{p}, \mathrm{n}=\) respective injected hole and electron densities in I region
The formula for the resistance of a cylindrical conductor of electrical conductivity, \(\sigma\), length \(W\) along the current path, and cross sectional area \(\Lambda\) is [9]
\(R=\frac{W}{\sigma \Lambda}\)
Using the dimensional notation of Figure II-10, the I region resistance is then
\(R_{I}=\frac{W}{e \Lambda\left(\mu_{P} p+\mu_{N} n\right)}\)
Three main assumptions* have been made in this derivation of \(\mathbf{R}_{\mathbf{1}}\) :
1) The I region as a whote is electrically neutral.
2) The bias current, \(I_{0}\), injects holes and electrons which recombine with each other in the I region; the limitations of this assumption are discussed later
3) The carrier lifetime is sufficiently long that both the holes and electrons are uniformly distributed within the I region. Another way of stating this point is that the average hole and electron diffusion lengths, \(L_{p}\) and \(L_{N}\), are much longer than the I region width, W. This condition is usually valid for well designed PIN diodes and can always be verified by using the relation for diffusion length given below
\(L=\sqrt{D_{\wedge P} T}\)
where
\(\mathrm{D}_{\mathrm{AP}}=\) ambipolar diffusion constant \(=2 \mathrm{D}_{\mathrm{P}} \mathrm{D}_{\mathrm{N}} /\left(\mathrm{D}_{\mathrm{P}}+\mathrm{D}_{\mathrm{N}}\right)\)
\(\tau=\) lifetime within the I region
In silicon, \(\mathrm{D}_{\wedge \mathrm{P}}\) has an effective average value for holes and electrons, the ambipolar diffusion constant, of \(15.6 \mathrm{~cm}^{2} / \mathrm{s}\) [8]. Thus
*Fletcher, Neville II.: "The Iligh Current Limit for Semiconductor Junction Devices," Proceedings of the IRI:, Vol. 45, pp. 862-872, June 1957

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
\(\mathrm{L}=40 \sqrt{\tau \text { (microseconds) }}\) (microns)
\(\mathrm{L}=1.7 \sqrt{\tau \text { (microseconds) }}\) (mils)
For example, if the bulk lifetime is \(10 \mu\) s the diffusion length is about \(133 \mu\) ( 5 mils).*
Under these combined assumptions, it follows that the injected hole and electron densities are equal and uniform
\(\mathrm{p}=\mathbf{n}\)
and, furthermore, since they recombine with one another directly
\(\tau_{\mathrm{P}}=\tau_{\mathrm{N}}\)
Then
\(R_{1}=\frac{W}{2 e \Lambda \mu_{A P} \mathrm{P}}\)
where \(\mu_{A P}=2 \mu_{P} \mu_{N} /\left(\mu_{P}+\mu_{N}\right), 610 \mathrm{~cm}^{2} / V-s\) in silicon [8], is the ambipolar mobility, i.e., the effective average of the hole and electron mobilities. But the injected charge is directly proportional to the bias current.
\(\mathrm{Q}_{\mathrm{p}}=e \mathrm{p} \wedge \mathrm{W}=\mathrm{I}_{0} \tau\)
Combining the last two equations gives
\(R_{I}=\frac{W^{2}}{2 \mu_{A P} \tau I_{0}}\)
This expression is applied frequently. We note from it that \(R_{I}\) is theoretically independent of I region area, being proportional to the square of I region width and varying inversely with mobility, lifetime, and bias current. However, care must be taken in the application of Equation (II-34) to practical situations. In particular, the following generalizations should be qualified:
1) Holding all process steps the same except for varying \(A\) pro-
duces a selection of diodes with different capacitances but the same \(R_{I}\) for a given bias current. This situation is true only if
- For an analysis of the case where this assumption is not made, see Leenov's paper, Reference 8.

In either case the resonant frequency of the circuit including the dielectric resonator operated in the \(\mathrm{TE}_{\text {ou }}\) mode may be determined using the transmission line equivalent circuit model introduced in [5] and [6]. For example, the frequency, \(f_{0}\), of the structure shown in Figure \(3(b)\) basically depends on the dielectric resonator parameters such as D - diameter, L height, and dielectric permittivity \(\varepsilon_{r}\) being also a function of the circuit parametera deacribed by the following two equations:
\(\gamma_{r} L=\tan ^{-1}\left(\frac{r_{a}}{\gamma_{r}} \operatorname{coth}\left(d r_{a}\right)\right\}+\tan ^{-1}\left(\frac{r_{E}}{\gamma_{r}} \operatorname{coth}\left(\Delta \gamma_{E}\right)\right)\)
and
\[
\begin{equation*}
\frac{J_{1}(u)}{u J_{0}(u)}=-\frac{x_{1}(w)}{w k_{0}(w)} \tag{8}
\end{equation*}
\]
where \(J_{0}\) and \(J_{1}\) are Bessel functions of the first kind of nth order, while \(K_{n}\) is the modified Hankel function of the \(n\)th order. The \(\gamma_{a r} \gamma_{I}\), and \(\gamma_{E}\) propagation parameters are defined by (5), with the 4 given by ( 6 ).

The following approximation can be used to simplify Eg. (2)
[7]:
\[
\begin{gathered}
\frac{J_{1}(x)}{x J_{0}(x)} \quad \frac{0.23}{(x-2.405)^{1.5}} \text { for } 2.405<x<3.83 \\
\therefore \quad \frac{0.08}{(x-5.52)^{1.3}} \text { for } 5.52<x<7.02
\end{gathered}
\]
and
\[
\text { with } \begin{align*}
& \frac{x_{1}(x)}{x x_{0}(x)}=\frac{2.06}{x^{1.3}}  \tag{10}\\
& w=\sqrt{\left(\frac{\omega_{0}}{c}\right)^{2} R^{2} \varepsilon_{x}-u^{2}}
\end{align*}
\]

Equations (7) to (11) can be used to determine the \(f_{o}\) value when the circuit's and dielectric resonator's parametere are known, or if the \(f_{o}\) is given to find the dielectric resonator parameters (the height \(L\), for example) incorporated with a given circuit structure. In either case the calculations are carried out using a standard iteration method which leads to solution. Therefore, it is customary to asume an Initial value for the dielectric resonator diameter \(D\) which would reduce the computation time, for example, an initial value for \(D\) can be determined from the following equation:
\(D=2.105 \frac{c}{\omega_{0}}\left[\varepsilon_{r}^{-4}+\varepsilon_{s}^{-4}\right]\)
The resonant frequencies determined from measurements and the analysis using Eq. (7) - (11) for different values of a distance d are shown in Figure 4. The agreement between the

\section*{PIN Diodes}
\(\tau\) remains constant; but generally, \(\tau\) decreases with a decrease in \(\Lambda\), since I region carriers are then nearer to the periphery where recombination can occur more rapidly.
2) \(R_{1}\) decreases as \(\left(1 / I_{0}\right)\). Again, this statement holds true only so long as \(\tau\) remains constant. Ilowever, as \(1_{0}\) increases, carrier density increases, and the recombination probability increases, decreasing \(\tau\). Furthermore, a saturation is reached when \(p\) and \(n\) increase sufficiently that substantial injection (holes into the \(\mathrm{N}+\) region and electrons into the \(\mathrm{P}+\) region) becomes significant, in violation of the second assumption used to derive Equation (II-34). Put simply, if there are high densities of electrons and holes in the I region, their chance for recombining increases, decreasing the average lifetime, \(\tau\).
3) Above the transit time frequency, \(R_{1}\) is essentially independent of frequency. This stipulation is only approximately true for most microwave PIN applications. Skin effect causes both the contact and I region resistances to increase somewhat with frequency.
Despite these limitations, Equation (11-34) is very useful and is typically invoked to estimate I region resistance at microwave frequencies. For example, consider a PIN with a \(100 \mu\) ( 4 mil ) I region and a \(5 \mu \mathrm{~s}\) lifetime operated with 100 mA bias current.
Using \(\mu \approx 610 \mathrm{~cm}^{2} / \mathrm{V}\)-s
\[
\begin{align*}
\mathrm{R}_{\mathbf{1}} & =\frac{10^{-4} \text { centimeter }^{2}}{(2)(0.1 \text { ampere })\left(5 \times 10^{-6} \text { second }\right)\left(610 \text { centimeters }^{2} / \text { volt-second }\right)} \\
& =0.16 \text { ohm } \tag{11-35}
\end{align*}
\]

This result is in reasonable agreement with the measured value of \(0.3 \Omega\) for a 1.56 mm ( 61 mil ) diameter*, when one considers that the measured value includes resistive contributions of the ohmic contacts as well as those of the \(\mathrm{P}+\) and \(\mathrm{N}+\) regions. Furthermore, the lifetime at 100 mA is likely to be less than the \(5 \mu \mathrm{~s}\) value which is measured at 10 mA - an additional factor contributory to a higher measured resistance than that calculated.
Using this example let us examine the role of skin effect in the forward biased I region. Using the parameters of the above example and solving Equation (11-26) gives \(\sigma=3(\Omega-\mathrm{cm})^{-1}\). The skin depth, \(\delta\), in a conductor is given by [9]
\(\delta=\frac{1}{\sqrt{\pi f \mu_{0} o}}\)
*Sec data for the MA-47891 PIN diode in rable III-I, Pp. 94-95.

MICROWAVE SEMICONDUCTOR ENGINEERING
where \(f=\) operating frequency (hertz)
\(\mu_{0}=4 \pi \times 10^{-9}\) henry/centimeter \(=\) free space permeability
\(\sigma=\) conductivity (ohm-centimeters) \({ }^{-1}\)
From Equation (II-36), the skin depth for \(\sigma=3(\Omega-\mathrm{cm})^{-1}\) at 1 GHz is 0.09 cm , about equal to the diode radius. This diode example has a junction capacitance of about 2 picofarads and would not usually be used at frequencies much above 1 GHz . At higher frequencies a lower capacitance, and hence reduced diameter, would be employed. Thus, it can be seen 1 region* skin effect usually has but a moderate effect in PIN control devices in the 0.1 to 10 GHz frequency range.
Before leaving the subject of I region conductivity it is interesting to note what level of carrier density, \(p\), was injected into the I region of this sample diode to produce \(\mathrm{R}_{\mathbf{1}}=0.16 \Omega\). An estimate can be made using Equation (11-32) and \(\mu \approx 610 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\), thus
\(\mathrm{p}=\frac{\mathrm{W}}{2 e \mathrm{~A} \mu \mathrm{R}_{1}}=1.7 \times 10^{16} /\) cubic centimeter
Since there is an approximately equal electron density, \(n\), in the I region, the total free carrier density required to produce \(\mathrm{R}_{1}=\) \(0.16 \Omega\) is \(3.4 \times 10^{16} / \mathrm{cm}^{3}\). Recalling that the atom density is about \(10^{23} / \mathrm{cm}^{3}\), this figure represents less than one carrier per million atoms. It is therefore easy to see why the skin depth, so significant with metallic conductors at microwave frequencies, has only a moderate effect even under "high injection" levels in the I region of the PIN diode.

\section*{3. \(R_{R}\) and \(C_{J}\) Reverse Biased Circuit Model}

Under reverse bias the I region is depleted of carriers and the PIN appears as an essentially constant capacitance to a microwave signal. The presence of dissipative losses can be taken into account by either a series or parallel resistance element in the equivalent circuit. In a well-made PIN, the I region has sufficiently high resistivity that most of the dissipation under low RF power conditions occurs in the ohmic contacts made to the diode and in the resistances of the \(\mathrm{P}+\) and \(\mathrm{N}+\) regions. Accordingly, a fixed series resistance, \(\mathrm{R}_{\mathrm{R}}\), used to represent these losses can be expected to offer an equivalent circuit model which is applicable over a broader

\footnotetext{
-Skin resistance may be more important in the \(P\) and \(N\) regions and in the leads at
} tached to them because it affects how the currents enter the I region.
results obtained is very good. It can be observed from Figure 4 that the resonant frequency, \(f_{0}\) is sensitive to the change of distance, \(d\), which in practical filter realizations can be used for frequency tuning. The unloaded \(Q\) factor, \(Q_{0}\) for the resonator incorporated in the structure shown in Figure 1 was 3090 determined from measurements and 2200 using Eq (4), both at frequency 10 GHz .

The band-pass filter for operation at 10 GHz center frequency has been designed using two identical dielectric resonators (with the parameters shown in Figure 4) to obtain maximally flat (Butterworth) transfer characteristic with the 3 dB bandwidth of 50 mHz . The filter was made in the form shown in Figure 3. With the 50 ohm terminations the filter has an external 0 factor, \(0_{e x}=380\).

The low pass filter prototype elements used in computation were: \(g_{0}=g_{3}=1\) and \(g_{1}=g_{2}=\sqrt{2}\), and the coupling coefficient \(k_{12}\) between resonators was approximately equal to \(3.5 \times 10^{-3}\). corresponding to the spacing 1 between resonators of 4.2 mm . The distance d between the top wall of the resonator metallic enclosure and the upper surface of each resonator has been set at 0.5 mm . A good agreement between the designed and
measured characteristics of the filter has been obtained. The filter insertion loss within the pass-band determined experimentally was 1.7 dB at 10 cHz .

An example of another band-pass or band-stop filter realization is shown in Figure 5. This filter realization employes axially coupled cylindrical resonators suspended in the circular waveguide which is furnished with two coaxial couplings. Each resonator has a small centre hole to accommodate the coaxial arrangement of the filter structure. The hole diameter, \(\mathbf{d}_{\mathbf{i}}\) must be much smaller in comparison with the diameter of dielectric resonator, \(D\) to assure almost undisturbed propagation of the \(\mathrm{TE}_{\mathrm{g}} 16\) mode. It has been found that the presence of a small hole in the centre of dielectric resonator helps to better separate the HE modes from the operational TEO1\% mode [8]. The input/output coaxial coupling probes are usually adjusted experimentally for an optimal coupling condition.

The coupling coefficient, \(k\) between resonators may be determined using the following formula, provided that \(d_{i} \ll D_{i}\)
\(k=\frac{F}{2 \pi d_{e}^{4}} \underset{n \geqslant 1}{\Sigma} \frac{U_{o n}^{2}}{A_{n}{ }^{2}} \quad B_{n} \quad \frac{e^{-\alpha_{o n}}{ }^{s}}{o n}\)


Figure II-14 PIN Diode C \(\mathrm{C}_{\mathrm{J}}\) vs. I Region Diameter and Thickness
bandwidth than a parallel conductance. In any event, due to the ratio of diode capacitive reactance to practical RF circuit impedances, the dissipative losses of the PIN under reverse bias are usually much smaller than those under forward bias; thus, the choice of series or parallel R-C equivalent circuit under reverse bias usually can be made according to whichever offers greater computational convenience.
Because of the high relative dielectric constant for silicon ( \(\epsilon_{\mathrm{R}}=\) 11.8), the fringing capacitance (in air) around the I region is rela-
tively small and the capacitance calculated using the parallel plate capacitance formula given below provides a useful estimate of junction capacitance, \(\mathrm{C}_{\mathrm{J}}\). Thus
\(C_{J} \approx \frac{\epsilon_{0} \epsilon_{R} \pi D^{2}}{4 W}\)
where \(\epsilon_{0}=8.85 \times 10^{-14}\) farad/centimeter \(=\) free space permittivity
\(\epsilon_{\mathrm{R}}=11.8=\) relative dielectric constant for silicon
\(\mathrm{D}=\) junction diameter
\(\mathrm{W}=\mathrm{I}\) region thickness
For many design calculations - estimating thermal capacities, breakdown strength, and RF bandwidth - it is desirable to be able to interrelate the tradeoffs between I region dimensions (W and D) and junction capacitance ( \(\mathrm{C}_{\mathrm{j}}\) ). Figure II-14 shows Equation (II-38) graphically for typically available PIN I region widths.

\section*{4. Microwave Circuit Measurements and Cutoff Frequency, \(f_{\sigma}\) Equivalent Circuit Definition and \(f_{c s}\)}

The microwave equivalent circuit for the unpackaged PIN diode chip to be used in this text is shown in Figure II-15. In most applications the PIN diode is used as a switch; therefore, the less capacitance, the better an "open circuit" it presents with reverse bias. The lower the resistances, \(R_{F}\) and \(R_{R}\), the smaller the dissipative losses, and, under forward bias, the more the diode resembles a "short circuit." A figure of merit has been defined [10] to relate the PIN's switching effectiveness, termed switching cutoff frequency, \(\mathrm{f}_{\mathrm{CS}}\). The utility of this definition is apparent later in the discussion of performance limitations.
\(f_{C S}=\frac{1}{2 \pi C_{J} \sqrt{R_{F} R_{R}}}\)
The equivalent circuit parameters are as defined in Figure II-15. Because the additional loss at high power is treated here by a separate equivalent circuit element, \(\mathrm{G}_{\mathrm{R}}\), the definition of \(\mathrm{f}_{\mathrm{CS}}\) as used in this text is limited to microwave power levels below the onset of nonlinear dissipation. The effect of \(\mathrm{G}_{\mathrm{R}}\) is discussed in the next section.
where
\(F=15.2 \frac{D^{4} L}{\lambda_{0}^{2}} c_{r}(\mathrm{~cm})^{3}\) with the assumption that,
\(0.25<L / D<0.7\)
\(\lambda_{0}\) is the free spece mevelength corresponding to the resonant frequency \(f_{0}\).
\(A_{n}=1-\left(U_{o n} D / 2 p_{01} d_{0}\right)^{2}\) is the resonator/
circuit parameter
\(U_{o n}\) are the roots of Bessel function: \(J_{1}(u)=0\), i.e.。
\(U_{01}=3.832, U_{g 2}=7.016\), etc.
with \(n=1\) for \(>0.6\)
and \(n=2\) for \(0.16<s<0.6\)
\(s=1+L\) is the center-to-center spacing between resonators.
\(P_{01}=2.495\) is the first root of Bessel functions \(J_{0}(u)=0\)
\(a_{o n}=\frac{2 \pi}{\lambda_{o n}}\left[1-\left(\lambda_{o n} / \lambda\right)^{2}\right]^{4}\) is the attenuation constant
of \(T E_{\text {on }}\) mode \(\left(\lambda_{01}=1.64 \mathrm{~d}_{\bullet} \lambda_{02}=0.896 \mathrm{~d}_{\bullet}\right.\). etc)
\(A_{n}=J_{0}^{2}\left(U_{o n} D / 2 d_{0}\right) / J_{0}^{2}\left(U_{o n}\right)\) is the ratio of a
squared Bessel functions (zero order).

Bquation (13) is typically solved for the s value with the values of coupling coefficlents \(\mathrm{k}^{\prime} \mathrm{s}\) constrained by the low-pass filter prototype parameters and the remaining circuit parameters intially predetermined (including dielectric resonators). The dielectric resonator parameters; \(D, L, d_{i}\) and \(\varepsilon_{r}\), should be computed first based on the resonant frequency, \(f_{0}\), required for the filter in both band-pass and band-stop designs.

\section*{3. PRACTICAL DESIGN OF DUAL MODE DIELDCCTRIC RESONATOR FILTERS}

The dual-mode dielectric resonator \(B P\) filter is a fairly new development in the microwave filter technology [9]. It is based on a dual- mode cavity approach which proved to be a very successful for the elliptic-type transfer characteristic realizations. The implementation of dielectric resonators into a classical dual- mode cavity filter leads to its weight and size reduction. A typical section of a dual-mode filter loaded by a cylindrical dielectric resonator is shown in Figure 6. The \(H E_{11}\) hybrid mode of dielectric resonator is employed in the filter operation. To design microwave cavity filters with dielectric resonators, determination of two basic factors; the resonant frequency of the cavity and coupling coefficients between

\section*{PIN Diodes}


Figure II-15 PIN Diode Chip Equivalent Circuit
In principle, the values for \(R_{F}\) and \(R_{R}\) could be evaluated and \(f_{C S}\) could be specified under high power conditions. But it is not usually possible to obtain diodes characterized under high power as this task falls to the circuit designer; for this reason the separation of low and high power characterization is more consistent with actual practice.

\section*{Isolation Measurements}

It was shown earlier, \(\mathrm{C}_{\mathrm{J}}\) measurements made at low frequency ( \(\approx 1 \mathrm{MIIz}\) ) with sufficient reverse bias to deplete the I region provide a useable indication of the microwave capacitive reactance to be expected. However, the resistances under forward, \(R_{F}\), and reverse, \(R_{R}\), hius conditions must always be determined by direct microwave measurements since they include not only the inherent 1 region loss effects of the diode but \(\mathrm{P}+\) and \(\mathrm{N}+\) region as well as contact resistances, none of which is predictable with desirable analytic precision. Since, in most control device circuits, the greater microwave dissipation occurs under forward bias, the determination of \(\mathrm{R}_{\mathrm{F}}\) usually warrants the greater attention.
Many diode resistance measurement methods have been described. [11, 12] Ultimately the diode loss in the actual circuit of use is what is desired. For determining \(\mathrm{R}_{\mathrm{F}}\), in either a test circuit or the
actual circuit of use, the terminals where the diode is to be connected are short circuited and the loss of the circuit without diodes (i.e., the cold circuit loss) is measured. The additional circuit loss with diodes installed can then be attributed to the diodes themselves and, if the RF currents through the diodes can be estimated, the equivalent circuit parameters can be determined. Of course, by this time the insertion loss of the circuit under test is known and the value of knowledge of the diode equivalent circuit parameters is only of use in future design applications. Nevertheless, such direct evaluation in the circuit of end use is often required especially where diodes are circuit mounted in chip or beam lead configurations, requiring permanent bonding into the circuit to make the adequate ohmic contact necessary for accurate resistance determinations.
The two most common methods used to characterize PIN diodes, outside of the circuit of end use, are the isolation and reflection (or "slotted line") measurements.
To make an isolation measurement, the diode is used to interrupt a transmission line. When the diode is mounted in shunt with the line (Figure II-16), this method provides a sensitive measurement of the forward resistance, \(\mathrm{R}_{\mathrm{F}}\). The isolation produced by a line shunting admittance Y is (the derivation is in Chapter V )
\[
\begin{align*}
\text { Isolation } & =\frac{P_{A}}{P}=\frac{\mathrm{V}_{\mathrm{A}}^{2} / Z_{0}}{\mathrm{~V}_{\mathrm{L}}^{2} / \mathrm{Z}_{0}}=\left|1+\mathrm{Y} \mathrm{Z}_{0} / 2\right|^{2}  \tag{II-40}\\
& =1+G Z_{0}+\frac{\mathrm{G}^{2} Z_{0}^{2}}{4}+\frac{\mathrm{B}^{2} Z_{0}^{2}}{4}
\end{align*}
\]
where \(\mathrm{Y}=\mathrm{Z}^{-1}=\mathrm{G}+\mathrm{jB}\)
To achieve the maximum test sensitivity, any series inductance introduced when mounting the diode across a transmission line is series resonated by a tunable capacitor. For this reason the measurement is most practical in the 0.5 to 1.0 GHz frequency range. Under these conditions the net series reactance, jX , of the mounted diode is zero and Equation (11-40) reduces to

Isolation \(=1+\frac{\mathrm{Z}_{0}}{\mathrm{R}}+\frac{\mathrm{Z}_{0}{ }^{2}}{4 \mathrm{R}^{2}}\)
individual cavities or input/output coupling ports is necessary. With reference to the cavity shown in Figure 6 the resonant frequency, \(f_{o}\), can be obtained by solving the following two equations [9].
where
\[
S=(T-L) / 2, \text { and }
\]
\(\left.r=(1.841 / B)^{2}-k_{0}^{2}\right)^{\frac{1}{2}}\)
and
where
\[
\begin{aligned}
& a_{1}=K_{b} I_{a}-I_{b} K_{a} \\
& a_{2}=K_{b}^{\prime} I_{a}-I_{b}^{\prime} K_{a}^{\prime} \\
& b_{1}=K_{b}^{\prime} I_{a}-I_{b}^{\prime} K_{a} \\
& b_{2}=K_{b}^{\prime} I_{a}-I_{b} K_{a}^{\prime} \\
& J=J_{1}(h R) \\
& I_{a}=I_{l}(p R), I_{b}=I_{1}(p B) \\
& K_{a}=K_{1}(p R), K_{b}=K_{1}(p B)
\end{aligned}
\]
where \(\quad K_{1}(x)\) is modified Hankel function \(I_{1}(x)\) is modified sessel function
with the primes denoting a differentiation in respect to argument and
\[
\begin{aligned}
& h=\left(\varepsilon_{r} k_{0}^{2}-\beta^{2}\right)^{\frac{1}{2}} \\
& p=\left(\beta^{2}-k_{0}^{2}\right)^{4} \\
& \beta=\pi / L \\
& k_{0}=-\sqrt{\mu_{0} \varepsilon_{0}}=2 \pi / \lambda_{0}
\end{aligned}
\]
where \(\lambda_{\text {. }}\) is the free space wavelength corresponding to the resonant

\section*{frequency \(\mathbf{f}_{\mathbf{o}}\)}

The coupling coefficient, \(k\), between the cavity sections of the form ahown in Pigure 6 can be determined from the following equation.
\(k=\frac{\mu 0}{c o} M \frac{\left.\left.\right|^{H} t\right|^{2}}{\int|E|^{2} d V}=0.4002 M \frac{(1.841 / B)^{2} \gamma_{0}^{3}}{k_{0}^{2}\left[\sinh (\gamma T)-\gamma_{0}^{T}\right]}\)
where \(M\) is the magnetic polarizability of the coupling aperture.

Equation (16) can serve only as a good estimate of the coupling coefficient value, since in practice some adjustments of \({ }^{\prime}\) the coupling slot length, 1, and its width, \(w\), are necessary. A

c) SERIES DIODE (C,. APPROX. VALUE OF R, ) ISOLATION (TWO-PORT) DIODE MEASUREMENT CIRCUITS

Figure 1I-16 Equivalent Circuits for Diode Measurements.

Thus, for example, if a series resonated diode having forward resistance of \(1 \Omega\) shunts a \(50 \Omega\) line, the normalized conductance, \(\mathrm{G} Z_{0}\) equals \(Z_{0} \mathrm{R}_{\mathrm{F}}=50\). The resulting isolation equals 676 , or approximately 28 dB . The resistance limited isolation described by Equation (11-41) is encountered often in both diode measurement and SPS' \({ }^{\circ}\) switch design. For convenient reference it is shown graphically in Figure II-17.
There are some fine points to be considered in performing this measurement. First, if the diode is mounted in a package, the


Figure II-17 Isolation of Line Shunting G or B
package capacitance transforms the effective resistance of the diode. This effect is usually negligible in the \(0.5-1.0 \mathrm{GHz}\) frequency band. Second, the circuitry used must not have significant leakage paths whereby power can reach the load from the generator by alternate paths such as higher order waveguide modes, fringing electric fields and so forth. This condition is readily tested by measuring isolation with the diode replaced by a short circuit of dimensions similar to the diode. Apart from ensuring that the leakage through the device is within acceptable limits, the isolation value so obtained gives an indication of the circuit contact resistance. It is common practice to subtract contact resistance when quoting diode resistance.
\(\mathrm{A}_{\mathrm{n}}\) interesting variation of the shunt mounted isolation measurement occurs when \(\mathrm{C}_{\boldsymbol{J}}\) series resonates with the mounted inductance of the diode (Figure II-16(b)). Then the diode shorts the transmission line under reverse bias and the isolation is a measure of \(\mathrm{R}_{\mathrm{R}}\). From the isolation bandwidth an estimate of \(\mathrm{C}_{j}\) is possible. This technique is usually used in waveguide at high frequencies, \(5-15 \mathrm{GHz}\), to effect resonance with \(\mathrm{C}_{\mathrm{J}}\). Switches built this way are often called reverse mode; the measurement technique is called the DeLoach method. [11] The reverse mode switching circuit is
fine tuning of the resonant frequency in each filter section shown in Figure 6 can be achieved by using metallic actew-tunars mounted on the cylindrical wall of the filter. A t-pole, elliptical-type band-pass filter for operation at the center frequency of \(\mathbf{4 . 2} \mathbf{~ G H z}\) using the filter modules shown in Figure 6 has been recently reported [9]. This filter is currently used for the satellite communication applications.
4. CERAMIC MATERIAL COMPOSITIONS USED FOR DIELECTRIC RESONATORS

The first number in the parentheses corresponds to materials dielectric permittivity and the second one to the temperature coefficient of resonant frequency in ppon 9 .
- \(\mathrm{Ba}\left(\mathrm{Zn}_{1 / 3} \mathrm{Nb}_{2 / 3}, \mathrm{O}_{3}\right\}\)
(38, \(\pm 4)\)
- Ba \(\left(\mathrm{Zn}_{1 / 2} \mathrm{Ta}_{2 / 3}\right)_{3}\) ]
\(=\mathrm{Ba} \mathrm{Ti}_{4} \mathrm{O}_{9} \quad(38,+10)\)
\(-\mathrm{Ba}_{2} \mathrm{Ti}_{\mathrm{g}} \mathrm{O}_{20} \quad(40,+2)\)
\(-(\mathrm{zr}, \mathrm{Sn}) \mathrm{TiO}_{4} \quad(35,29)\)
- \((\mathrm{Ca}, \mathrm{Sr})(\mathrm{Ba}, \mathrm{Zr}) \mathrm{O}_{3}(\mathrm{-30}, 59)\)

Typical values of Q's \(^{\prime}\) for the dielectric resonators using above ceramics are in the range of 5099-19909 at 10 GHz .

\section*{5. CONCLUSION}

Design aspects of the bandpass and bandstop filters using dielectric resonators for microwave and UHF applications have been discussed. Some practical filter realizations have been presented. Due to their relatively mall aize and light welght, they are ideally suited for operation in the space technology applications. These filters also offer excellent temperature stability and can be developed at a low cost.

It has been also shown that both types of filters discussed in the paper can be designed using standard filter synthesis method.
6. REFERENCES
[1] J. K. Plourde, and C.L. Ren, "Application of Dielectric Resonators inHicrowaveComponents", IEEE Trans. Microwave Theory Tech., vol. MIT-29, pp. 754-770 Aug. 1981.
(2) T. D. Iveland, NDielectric Resonator Filters for Application in Microwave Integrated Circuits", IEEE Trans Microwave Theory Tech., vol. MTT-19, pp 643-652, No. 7, July 1971.
important for duplexer and radar receiver protector designs where isolation in the zero biased diode state is required, as well as in other fail safe applications where it is desirable that, should there be a failure of the driver to bias the diode, the high reflection state of the diode switch is obtained.
If the diode is mounted in series with the line (Figure II-16(c)) the high isolation condition gives a measurement of capacitive reactance, \(X_{C}\), equal to \(-\left(2 \pi \mathrm{f}_{\mathrm{J}}\right)^{-1}\), and hence, \(\mathrm{C}_{\mathrm{J}}\). For an impedance \(Z=R+j X\) in series with a line of characteristic impedance, \(Z_{0}=\) \(1 / \mathrm{Y}_{0}\), the isolation, by duality, is given by the dual of Equation (II-41)

Isolation \(=\left|1+\frac{Z Y_{0}}{2}\right|^{2}=1+R Y_{0}+\frac{\left(R Y_{0}\right)^{2}}{4}+\frac{\left(X Y_{0}\right)^{2}}{4}\)

If \(\left|X_{C}\right|>15 R_{R}\), as is almost always the case, the \(R Y_{0}\) terms in Equation (II-43) can be ignored with an error of less than \(1 \%\), and the reactance versus isolation can be read directly from the reactance dominated characteristic curve shown in Figure 11-17. This method is especially useful for measuring the circuit mounted capacitance of low capacitance devices such as beam lead diodes.
Series mounted diodes require special equivalent circuit treatment. Figure II-18 shows schematically the electric field contours of a capacitor representing a reverse biased diode both within and without a series coaxial line mounting. Measured in free space, all E field lines terminate on the diode terminals directly, and a capacitance, \(\mathrm{C}_{0}\), is measured. When mounted in the coax line, however, some E field lines intercept the outer conductor. The effect is that the effective series capacitance, C , is less than \(\mathrm{C}_{0}\). An additional shunt capacitance, \(\mathrm{C}_{2}\), appears, but in most cases the effect of \(\mathrm{C}_{2}\) on the transmission line is negligble, since it serves to replace the distributed capacitance of the section of center conductor removed to install the diode. However, the fact that the mounted series capacitance, \(\mathrm{C}_{1}\), is less than the capacitance associated with the diode, \(\mathrm{C}_{0}\), means that a higher isolation is obtained in a switching circuit (generally a benefit). Moreover, in a phase shifter circuit a different phase shift than that anticipated will be obtained if this effect is overlooked.
The accuracy of the series measurement can be related to the loss and isolation measurement accuracies. Typically the series isolation

b) MOUNTED IN COAXIAL LINE

Figure II-18 Change of Effective Scries Capacitance with Circuit Mounting
(or loss) measurement can be made to within an accuracy of \(\pm 0.1\) dB for losses below 3 dB , and \(\pm 0.3-0.5 \mathrm{~dB}\) for isolation values from \(10-40 \mathrm{~dB}\). Thus, \(\mathrm{R}_{\mathrm{F}}\) can be determined to an accuracy of about \(\pm 2 \% ; X_{C}\), to about \(\pm 5 \%\) of the magnitude of \(Z_{0}\). For most PIN diodes operated at sufficient forward bias to saturate the I region, \(\mathrm{R}_{\mathrm{F}}<1 \Omega\); this measurement method would require impractically low \(\mathrm{Z}_{0}\) for meaningful measurements. However, for \(\mathrm{R}_{\mathrm{F}}\) measurements at low bias levels or with beam lead diodes wherein \(R_{F}=2-10 \Omega\), the measurement is very practical using standard \(50 \Omega\) line. For example, a beam lead diode having \(R_{F}=5 \Omega\) produces a \(10 \%\) insertion loss of about 0.5 dB . The same diode, having \(C_{j}=0.03 \mathrm{pF}\), has a reactance of \(-\mathrm{j} 795 \Omega\) at 10 GH , yielding, in the same test fixture, isolation under reverse bias at 10 CHz of 24 dB .
[3] M. Makimoto, S. Yamashita, 'Compact Bandpass Filters Using Stepped Impedance Resonators", Proc, of IEEE, vol. 67, pp. 16-19, No. 1, Jan 1979.
[4] G.L. Matthei, L. Young, and E.M.T. Jones, "Microwave Filters Impedance Matching Networks, and Coupling Structurea", N.Y. Mc Graw-Hill, 1964.
[5] M. Dydyk, "Dielectric Resonators Add 0 to MIC Filters", Microwaves, Dec. 1977.
[6] M. L. Majewski, MHIC Directional Filters using Dielectic Resonators \({ }^{\text {n }}\), 1982 [EEE MTT- 8 Symposium Digest, PP 416-418.
[7] M. Uydyk, "Apply High-O Resonators to MM-Wave Microstrip", Microwaves, Dec. 1989.
[8] X. Kobayashi and M. Miura, "Optimum Design of Shielded Dielectric Rod and Ring Resonators for Obtaining the Best Mode Separation", 1984 LEEE MTT-S, Symposium Digest, pp. 184-186.
[9] S. J. Fiedziuszko, "Dual-Mode Dielectric Resonator Loaded Cavity Filters", LEEE Trans. Microwave Theory and Techniques, vol. MTT-30, No. 9, pp. 1311-1316, September 1982.


\section*{Reflection Measurements*}

Most of the principles described for isolation measurements are likewise applicable to reflection measurements wherein the diode is used to terminate the line (Figure II-19); the reflection coefficient (I` equal to \(\rho e^{j \phi}\) ) measurement is used to deduce diode parameters. Other things being equal, the sensitivity of this measurement method is about four times that of the matched load method described previously in the determination of \(\mathrm{R}_{\mathrm{F}}\) and \(\mathrm{R}_{\mathrm{R}}\) for a given line impedance and dissipation; therefore, it is used for most standard diode characterizations. Diode reactances under both forward and reverse bias can be determined from the reflection coefficient argument.


Figure II-19 Reflection Measurement Equivalent Circuit

The added sensitivity arises because, if the magnitude of \(\Gamma_{\mathrm{t}}\), is either high or low compared to \(\mathrm{Z}_{0}\), the current ( \(\mathrm{I}_{\mathrm{L}}\) ) or voltage \(\left(V_{L}\right)\) at the end of the line is nearly double the value \(\left(\mathrm{V}_{\mathrm{A}} / \mathrm{Z}_{0}\right.\) or \(V_{A}\), respectively) experienced under matched load ( \(Z_{L}=Z_{0}\) ) conditions; the relative power absorbed in the diode consequently increases fourfold. For both a load impedance \(Z_{L}=R_{L}+j X_{L}\) and a line with \(Z_{0}\) characteristic impedance, the reflection coefficient at the load position is \([13,14]\)
\(\mathrm{I}=\rho e^{j \phi}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{0}\right)+j \mathrm{X}_{\mathrm{L}}}{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{0}\right)+j \mathrm{X}_{\mathrm{L}}}\)
\(\phi=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{I}_{.}}-\mathrm{Z}_{0}}\right)-\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{I} .}+\mathrm{Z}_{0}}\right)\)
\(\rho=\sqrt{\frac{\left(\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{0}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{0}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}}\)
The fractional dissipation in \(7_{1}\), is
Insertion Loss \(=1-\rho^{2}=\frac{4 \mathrm{R}_{\mathrm{L}} \mathrm{Z}_{0}}{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{0}\right)^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}}\)
Under forward bias, using \(Z_{0}=50 \Omega\), both \(R_{t}\) and \(X_{L}\) are usually much less than \(Z_{0}\). The fractional power loss is approximately equal to \(4 \mathrm{R} / \mathrm{Z}_{0}\). Under the same approximation, the insertion loss ratio by the series isolation measurement is approximately equal to \(1+\mathrm{R} / \mathrm{Z}_{0}\) and the fractional loss is approximately \(\mathrm{R} / \mathrm{Z}_{0}\), only one fourth that of the reflection measurement. Thus, for example, with \(Z_{0}=50 \Omega\) and \(R_{F}=1 \Omega\), the measured loss is about 0.4 dB with the reflection method and 0.1 dB with the isolation method, giving (with \(\pm 0.1 \mathrm{~dB}\) accuracy) the determination of \(\mathrm{R}_{\mathrm{F}}\) with \(\pm 0.25 \Omega\) and \(\pm 1.0 \Omega\) accuracies, respectively. Accordingly, when the diode is mounted in series with the line, the reflection measurement is usually employed for determining \(\mathrm{R}_{\mathrm{F}}\).
This method is also used for determining \(R_{R}\) and \(C_{j}\), but the calculations are less convenient than for \(\mathbf{R}_{\mathrm{F}}\) because the series reactance, X , cannot be ignored. Furthermore, the impedance transformation effects of a diode package (the package being necessary if the diode is to be conveniently mounted at the end of a slotted line) are not negligible in the reverse biased condition. For routine diode evaluation the reflection coefficient magnitude, \(\rho\), and phase, \(\phi\), are measured and the exact equations relating diode \(C_{j}\) and \(R_{R}\) are solved using a computer program. \({ }^{*}\) It is common practice to use a coaxial line and obtain a zero impedance reference by short circuiting the line at the leading surface of the diode package (as shown in Figure II-20). Both a phase reference ( \(\phi=180^{\circ}\) ) and a loss reference ( \(\rho=1.0\) ) are thereby established. The packaged diode impedance, \(Z_{L}\), is then evaluated by solving Equation (II-46) for \(\mathrm{Z}_{\mathrm{L}}\)
\(Z_{L}=R_{L}+j X_{L_{L}}=Z_{0} \frac{\left(1+\Gamma^{Y}\right)}{\left(1-\Gamma^{V}\right)}=Z_{0} \frac{\left(1+\rho e^{j \phi}\right)}{\left(1-\rho e^{j \phi}\right)}\)
*Computer programming for circuit evaluation is discussed in Chapter VI.


FIG. 2



FIG. 4


Figure II-20 Schematic and Equivalent Circuit Detail for "Slotted Line"' Measurement of Packaged PIN Diode

It is illustrative of the measurement method to plot the reflection coefficients obtained under forward and reverse bias on the Smith Chart. For this example, consider a PIN with \(C_{J}=2 p F, R_{R}=R_{F}=\) \(0.3 \Omega\) mounted in a package having \(C_{P}=1 \mathrm{pF}\) and \(\mathrm{L}_{\mathrm{INT}}=0.3 \mathrm{nH}\). At 3 (illz the chip impedances are \(0.3 \Omega\) and ( \(0.3-\mathrm{j} 26.5\) ) \(\Omega\) under forward and reverse bias; they are transformed by the package to \((0.37+j 6.30) \Omega\) and \((0.15-\mathrm{j} 15) \Omega\), respectively. When normalized to \(Z_{0}=50 \Omega\) the corresponding reflection coefficients are (from Equation (11-44)) \(1^{`}=0.986 / 165.6^{\circ}\) with forward bias and \(I^{\prime}=0.976 /-145.8^{\circ}\) with reverse bias. These results are shown graphically in Figure II-21. The proximity of the points to the Smith Chart periphery ( \(\rho=1.0\) ) underscores the need for careful measurements if \(\mathrm{R}_{\mathrm{F}}\) and \(\mathrm{R}_{\mathrm{R}}\) are to be evaluated accurately.


Figure II-21 Reflection Coefficients for Measurement Example

While the application of the principles of this method is straightforward, great care must be exercised if results with useful accuracy are to be obtained. Since a single frequency measurement of I' produces only two bits of data, \(\rho\) and \(\phi\), it is necessary either to have foreknowledge of the values of package parasitics (internal inductance, \(\mathrm{L}_{\mathrm{INT}}\), and package capacitance, \(\mathrm{C}_{\mathrm{p}}\) ) or to perform the reflection measurement at more than one frequency in order to solve for \(C_{P}, C_{J}, R_{R}\), and \(R_{F}\). In practice the former method is usually followed. \(\mathrm{C}_{\mathrm{P}}\) is first determined using an empty diode package; this result for \(C_{P}\) is used with an internally shorted package having a wire or strap lead similar to that to be employed with the diodes to be measured. In this respect, the eventual accuracy of evaluation of \(C_{J}\) and \(R_{R}\) is dependent upon the reproducibility of


LON


FIG. 6

PIN Diodes
\(C_{P}\) and \(L_{I N T}\) and their relative reactances compared to that of \(C_{j}\). Furthermore, since the point of measurement and diode reference plane are separated by a line with finite loss, the resulting lossy line transformation (see Chapter VI, Equation (VI-2)) must be taken into account when \(R_{F}\) and/or \(R_{R}\) are small \(\left(<2 \%\right.\) of \(\left.Z_{0}\right)\) as is usually the case. This requirement necessitates a computer program to reduce the data if such measurements are to be made routinely.

\section*{Diode Inductance Measurements and Definitions}

It should be noted that values measured for diode impedances depend to some extent on the test fixture - especially with inductive reactance, which can only be specified in terms of a return path. For example, the inductance per unit length of coaxial line having an outer conductor diameter, \(b\), and an inner conductor diameter, a, is [9]
\(L=\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a}\)
and the characteristic impedance \(Z_{0}\) is [9]
\(Z_{0}=\frac{1}{2 \pi} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \ln \frac{b}{a}\)
For \(50 \Omega\), the ratio b/a equals 2.3 for air dielectric coax. Suppose a packaged diode having 2.5 mm ( 0.1 in ) length and effective diameter, a of 1.25 mm ( 0.05 in ), is first measured under forward bias in a \(50 \Omega\) line having \(b\) equal to \(15 \mathrm{~mm}(0.6 \mathrm{in})\); the inductance is 0.62 nll . If, however, the same measurement is performed using a smaller diameter \(50 \Omega\) coaxial line in which b equals \(7.5 \mathrm{~mm}(0.3\) in), the inductance is 0.45 nH .
Not only the absolute circuit dimensions but also the reference plane definition affects the inductance determination. For example, the above determination of inductance corresponds to reference plane A selection in Figure II-20. If, however, reference plane \(B\) were selected - by replacing with an equivalent length of center conductor to obtain a short circuit measurement reference - insertion impedance would be obtained. Insertion impedance is \(Z_{L}\) less the \(7_{\mathrm{s}}\) of the short circuit terminated length of the measurement line, \(\ell\), neglecting line loss
\(Z_{S}=j Z_{0} \tan \left(\frac{2 \pi \ell}{\lambda}\right)\)
where \(\lambda=\) wavelength at test frequency.
If, as is usually the case, \(20 \ell<\lambda\), the value of the tangent term can be replaced by its argument (within 3\%). Furthermore, \(Z_{S}\) is an inductive reactance ( \(\mathrm{j} 2 \pi \mathrm{f}_{\mathrm{S}}\) ); for a coaxial line
\[
\begin{align*}
\mathrm{L}_{\mathrm{S}}(\text { nanohenries }) & \approx 0.0033 \cdot \ell(\text { millimeters }) \cdot \mathrm{Z}_{0}(\mathrm{ohms}) \\
& \approx 0.084 \cdot \ell(\text { inches }) \cdot \mathrm{Z}_{0}(\text { ohms }) \tag{11-50}
\end{align*}
\]

For the example cited, \(\ell=2.5 \mathrm{~mm}, L_{S}=0.41 \mathrm{n} I \mathrm{I}\), and the diode respective insertion inductance* values determined from measurements in the two line sizes is 0.21 and 0.04 nII respectively.
These examples highlight the importance, especially for inductance measurements of specifying both the measurement fixture and reference plane selection. Similar reasoning indicates that if the actual circuit of use does not duplicate these conditions - and usually it doesn't - calculations of performance sensitive to inductance will be inaccurate unless the new conditions are taken into account.

\section*{C. High RF Power Limits}

\section*{1. Forward Biased Linits}

Under forward bias the PIN diode chip usually has an RF resistance of \(1 \Omega\) or less. Failure of the diode in this bias state will occur if the dissipative heating \(\left(I^{2} \mathrm{R}_{\mathrm{F}}\right)\) is sufficient to cause the diode temperature to rise sufficiently to induce metallurgical changes. For silicon and its dopants, this point is not reached until a temperature of about \(1000^{\circ} \mathrm{C}\). However, the metal contacts at the silicon boundaries introduce failure mechanisms in the vicinity of \(300-400^{\circ} \mathrm{C}\), at which temperatures common contact metals form eutectic alloys with silicon. For example, the goldsilicon eutectic occurs at \(370^{\circ} \mathrm{C}\) [16]. Repeated or continuous exposure of silicon to the eutectic temperature in the presence of the corresponding metal can produce conducting filaments of metalsilicon alloy, which eventually "grow" across the I region of a PIN diode, short circuiting it. This structural change of the diode crys-
*Also sometimes called excess inductance.


\section*{PIN Diodes}
tal is the most common diode failure mechanism with heat, even with reverse breakdown induced failures, described subsequently. Failure of a diode does not occur instantaneously when an over stress is applied unless the resulting temperature greatly exceeds \(300^{\circ} \mathrm{C}\), as can occur with filamentry heating produced by avalanche breakdown in the reverse bias condition. This situation is also discussed subsequently. Except for the rapid failure induced by avalanche breakdown, thermally produced failures proceed over a time period related to the ratio of the operating temperature, r , to that which causes near instantaneous burnout. Rather extensive experiments carried out on computer diodes have shown that the mean time to failure can be described by the empirical relationship [15] given by Equation (II-51)
\(t_{M}(T)=\Lambda e^{+Q / k T}\)
where \(\quad t_{M}\left(T^{\prime}\right)=\) the mean time to failure at operating temperature T
\(\Lambda=a\) constant
\(Q=\) the "activation energy" constant
k = Boltzmann's Constant
\(\mathrm{T}=\) the average device temperature in Kelvin
\[
\left(={ }^{\circ} \mathrm{C}+273\right)
\]

This expression is called the Arrhenius Law. It can be applied when the variation of operating life with temperature is determined by only one failure mechanism - for example, the formation of a particular alloy of the metallization system with the silicon.
To apply this relationship, the failure temperature, \(T_{F}\), is first determined for the diode type; it depends on the semiconductor material (usually silicon for a PIN) and the metallization system. Next the device is operated at a lower temperature for a period until \(50 \%\) of the samples under test fail, establishing a data point along the temperature-time graph. Additional data points at different temperatures are determined to allow for averaging of experimental data. This process, called step-stress temperature testing, is time-consuming because data points corresponding to hundreds and thousands of operating hours are required if the failure curve is to be established with sufficient accuracy to permit meaningful extrapolation to long life operation - on the order of years

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}

Care must be exercised that only the common thermal failure mode applies throughout the step stress tests. Careful analysis, usually including sectioning of failed diodes, is required to, confirm the failure mode of each diode specimen used to establish the failure curve. The resulting temperature-time data plotted on semilog paper form a straight line, permitting extrapolation for longer periods. Figure II-22 shows a typical plot for a surface-glass passivated; mesa type, high voltage PIN diode used in a phased array application. Notice that with a \(200^{\circ} \mathrm{C}\) junction temperature (often cited as a safe operating limit for semiconductor devices) the anticipated mean life is 1000 hours (or 0.1 years), while for \(140^{\circ} \mathrm{C}\) the anticipated mean life is extended to \(1,000,000\) hours (or 114 years). Accordingly the role of operating temperature must be given careful consideration if the estimate of anticipated life is to be meaningful.


Figure II-22 PIN Life Expectancy vs. Temperature (Courtesy P. Ledger, Microwave Associates, Inc.)

\title{
UNDERSTANDING RF TRANSISTOR DATA SHEET PARAMETERS
}

\author{
Norman E. Dye \\ Motorola Semiconductor Products
}

\section*{INTRODUCTION}

Data sheets often are the sole source of information about the capability and characteristics of a product. This is particularly true of RF transistors that are used throughout the world. Thus it is important that the user and the manufacturer of a product speak a common language, i.e., what the semiconductor manufacturer says about a transistor is understood fully by the circuit designer.

This paper reviews RF transistor parameters from maximum ratings to functional characteristics. Comments are made about critical specifications, about how values are determined and what are their significance. A brief description of the procedures used to obtain impedance data and thermal data is set forth. The importance of test circuits is elaborated. Finally, comments are made about possible tradeoffs in device specifications and their importance to the circuit design engineer.

\section*{DCSPECIFICATIONS}

Basically RF transistors are characterized by two types of parameters: DC and functional. The "DC" specs consist (by definition) of breakdown voltages, leakage currents, hFE (DC beta) and capacitances, while the functional specs cover gain, ruggedness, noise figure, Zin and Zout. Thermal characteristics do not fall cleanly into either category since thermal resistance and power dissipation can be either DC or AC . Thus, we will treat the spec of thermal resistance as a special specification and give it its own heading called "thermal characteristics." Figure 1 is one page of a typical RF power data sheet showing DC and Functional specs.

Breakdown voltages are largely determined by material resistivity and junction depths (Figure 2). Each junction voltage - collector/base and emitterbase - is generally specified at a current level that is well within the safe operating limits of a reverse biased junction. The specifications are conventional and generally standard throughout the semiconductor industry.

Leakage currents (defined as reverse biased junction currents that occur prior to avalanche breakdown) are likely to be more varied in their specification and also more informative. Many
transistors do not have leakage currents specified because they can result in excessive (and frequently unnecessary) wafer/die yield losses. Leakage currents arise as a result of material defects, mask imperfections and/or undesired impurities that enter during wafer processing. Some sources of leakage currents are potential reliability problems; most are not. Leakage currents can be material related such as stacking faults and dislocations or they can be "pipes" created by mask defects and/or processing inadequadies. These sources result in leakage currents that are constant with time and if initially acceptable for a particular application will remain so. They do not pose long term reliability problems. On the other hand, leakage currents created by channels induced by mobile ionic contaminants in the oxide (primarily sodium) tend to change with time and can lead to increases in leakage current that render the device useless for a specific application. Distinguishing between sources of leakage current can be difficult which is one reason devices for application in military environments require HTRB (high temperature reverse bias) and burn in testing. However, even for commercial applications where battery drain is critical or where bias considerations dictate limitations, it is essential that a leakage current limit be included in any complete device specification.

DC parameters such as WFE and Cob (output capacitance) need litle comment. Typically, for RF devices hFE is relatively unimportant because the functional parameter of gain at the desired frequency of operation is specified. Note, though, that DC beta is related to AC beta (Figure 3). Functional gain will track DC beta particularly at lower RF frequencies. Generally RF device manufacturers do not like to have tight limits placed on hFE. Primarily the reasons that justify this position are:
a) Lack of correlation with RF performance
b) Difficulty in control in wafer processing
c) Other device manufacturing constraints dictated by functional performance specs which prectude specific limits for hFE.
A good rule of thumb for hFE is to set a maximum to minimum ratio of not less than 3 with the minimum hFE value determined by an acceptable margin in functional gain.

Output capacitance is an excellent measure of comparison of device size (base area) provided the majority of output capacitance is created by the base-collector junction and not parasitic capacitance arising from bond pads and other top metal of the die. Remember that junction capacitance will vary with voltage (Figure 4) while parasitic capacitance will not vary. Also. in comparing devices, one should note the voltage at which a given capacitance is specified. No

PIN IDiodes

\section*{2. Reverse Biased Limits}

The reliability criteria apply for reverse biased operation as just discussed for forward bias. The junction temperature is again the result of ambient and RI' heating. Unlike the forward biased condition, however, the fractional RIF insertion loss does not remain nearly constant once the applied RF voltage has a magnitude which is comparable to either the reverse bias and/or the diode's reverse breakdown voltage. Under these conditions diode dissipation (is nonlinear and increases more rapidly than RF power, producing at times a runaway insertion loss). The onset of this rapidly increasing insertion loss nonlinearity can be used as a practical measurement that the destructive temperature has been reached in the reverse biased state, since diode failure usually occurs if the incident RF power level is increased much beyond this level. Figure II-23 shows a typical insertion loss versus RF power characteristic obtained with a reverse biased diode phase shifter. The mechanisms of reverse biased diode failure under RF voltage stress are


Figure II-23 Insertion Loss vs. Peak Power for a 4 Bit X-Band Phase Shifter Under Reverse Bias in All Bits
(Phase Shifter Described in Chapter IX, pp. 470-475)

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
not sufficiently evaluated for a definitive theory to be developed, largely because of the difficulty of performing such measurements, with enough samples to have adequate statistical data. Qualitively, two conditions in which I region charge is generated occur and which one predominates depends, as described in Figure II-24, upon the relative magnitudes of the peak RF voltage, \(V_{P}\); the bias voltage, \(\mathrm{V}_{\mathrm{BIAS}}\); and the diode breakdown voltage, \(\mathrm{V}_{\mathrm{BD}}\), as described in Figure II-24.


Figure II-24 Operation at High RF Voltage and Reverse Bias

The condition shown in Figure II-24 with voltage, \(V_{p}\), is representative of typical operation near the failure limit. The RF voltage has a large excursion into the forward direction. Although, as has been shown earlier, the duration of this half cycle is insufficient to result in conduction by the diffusion transit (injection) of P region holes and N region electrons across the I region, some charge is introduced into the I region from these boundaries, and not all of it is extracted by the combined action of the reverse bias and
industry standard exists. The preferred voltage at Motorola is the transistor Vcc rating, i.e., 12.5 volts for 12.5 volt transistors and 28 volts for 28 volt transistors, etc.

\section*{MAXMUM RATINGS and THERMAL CHARACTERISTICS}

Maximum ratings (shown for a typical RF power transistor in Figure 5) tend to be the most frequently misunderstood group of device specifications. Ratings for maximumiunction voltages are straight forward and simply reflect the minimum values set forth in the DC specs for breakdown voltages. It the device in question meets the speciiied minimum breakdown vollages, then voltages less than the minimum will not cause junctions to reach reverse bias breakdown with the potentially destructive current levels that can result.

A maximum rating for power dissipation (Pd) is closely entwined with thermal resistance ( \(\theta \mathrm{jc}\) ). Actually maximum Pd is in reality a fictitious number - a kind of figure of merit because it is based on the assumption that case temperature is maintained at 25 degC. However, providing everyone arrives at the value in a similar manner, the rating of maximum Pd is a useful tool with which to compare devices.

The rating begins with a determination of thermal resistance - die to case. Knowing ejc and assuming a maximum die temperature, one can easily determine maximum Pd (based on the previously stated case temperature of 25 deg C ). Measuring \(\theta \mathrm{jc}\) is normally done by monitoring case temperature ( Tc ) of the device while it operates at or near rated output power (Po) in an RF circuit. The die temperature ( \(\mathrm{T}_{\mathrm{j}}\) ) is measured simultaneously using an infra-red microscope (see Figure 6) which has a spot size resolution as small as 1 mil in diameter. Normally several readings are taken over the surface of the die and an average value is used to specily T .

It is true that temperatures over a die will vary typically \(10-20 \mathrm{deg} \mathrm{C}\). A poorly designed die (improper ballasting) could result in hot spot (worst case) temperatures that vary 40.50 degC. Likewise, poor die bonds (see Figure 7) can result in hot spots but these are not normal characteristics of a properly designed and assembled transistor die.

By-measuring Tc and Tj along with Po and Pin - both DC and RF - one can calculate ejc from the formula
\[
\epsilon_{j c}=\frac{\pi_{j} \cdot T_{c}}{r_{i v}-r_{c}} .
\]

Typical values for an RF power transistor might be \(\mathrm{T}=130 \mathrm{degC} ; \mathrm{T}=50 \mathrm{deg} \mathrm{C}\); \(\mathrm{VCC}=12.5 \mathrm{~V}\) : \(\mathrm{Ic}=12 \mathrm{~A}\); \(\operatorname{Pin}(\mathrm{RF})=10 \mathrm{~W}\) : \(\mathrm{Po}(\mathrm{RF})=80 \mathrm{~W}\). Thus
\[
e_{j c}=\frac{130-50}{10+(2.5 \times 12)-5 c}=\frac{80}{5 i} \quad 1 \% / 40=
\]

Several reasons dictate a conservative value be placed on \(\theta\) jc. First, thermal resistance increases with temperature (and we realize \(\mathrm{Tc}=25 \mathrm{deg} \mathrm{C}\) is NOT realistic). Second, Tj is not a worst case number. And, third, by using a conservative value of \(\theta \mathrm{jc}\), a realistic value is determined for maximum Pd. Generally Motorola's practice is to publish \(\mathrm{\theta jc}_{\mathrm{j}}\) numbers approximately \(25 \%\) higher than that determined by the measurements described in the preceding paragraphs, or for the case illustrated, a value of \(\mathrm{ejc}=1.25 \mathrm{deg} \mathrm{C} W\).

Now a few words are in order about die temperature. Reliability considerations dictate a safe value for an all Au (gold) system (die top metal and wire) to be 200 degC . (1) Once Tj max is delermined along with a value for 8jc, maximum Pd is simply
\[
P_{D}(\operatorname{mAx})=\frac{T_{1}(\max )-125 i}{E} .
\]

Speciifying maximum Pd for \(\mathrm{Tc}=25\) degC leads to the necessity to derate maximum Pd for any value of Tc above 25 degC . The derating factor is simply the reciprocal of 0jc!

Maximum collector current (ic) is probably the most subjective maximum rating on RF transistor data sheets. It can, and is, determined in a number of ways each leading to different maximum values. Actually three possible current limitations can exist in RF transistors. One is package related; one is wire related; and a third is die related. Most older, lower frequency transistors are wire and/or package limited which is why these parts generally have Ic max determined by the current handling capabiity of the emitter wires or by dividing maximum Pd by collector voltage (or by BVCEO for added safety). Most higher voltage parts ( 28 V and 50 V ) tend to be wire limited and when operated at lower voltage can safely handle sizeable amounts of current. Lower voltage parts ( 7.5 V and 12.5 V ), however, tend to be package limited and should have ic max determined by power dissipation considerations.
(1)For a more thorough discussion of die temperature, Өjc and reliability the reader is referred to "Thermal Rating of RF Power Transistors" by Robert Johnsen, Motorola Appl. Note \#790

\section*{PIN IDiodes}
the negative-going half of the RF cycle before the next forwardgoing RI: voltage excursion. However small the magnitude of the injected charge may be, it can increase multiplicatively with each succeeding RF cycle through impact ionization; electron-hole pair production results when mobile carriers accelerated by the high RIF field strike silicon atoms in the I region lattice with sufficient energy to promote valence band electrons to the conduction band. This cause of increased insertion loss can be identified experimentally by its bias voltage dependence. Increasing the magnitude of reverse bias voltage sweeps such injected charge out of the I region more effectively and thereby extends to a higher applied RF voltage the onset of rapid insertion loss increase, which precedes what, for present purposes, is called the injection mode failure mechanism.
The second mechanism causing nonlinear insertion loss is the direct impact-ionization mode, occurring when the combined \(\mathrm{RF}+\) bias voltage exceeds the diode bulk breakdown, i.e, \(\mathrm{V}_{\mathrm{P}}+\) \(\mathrm{V}_{\mathrm{BIAS}}>\mathrm{V}_{\mathrm{RD}}\). In this case no partial injection is needed to initiate impact ionization; the requisite electron-hole pairs are obtained directly by high electric field ionization of I region silicon atoms. One might think this mechanism would be eliminated by reducing the bias voltage, since this action would reduce the combined magnitude ( \(\mathrm{V}_{\mathrm{BuS}}+\mathrm{V}_{\mathrm{p}}\) ); but, in most practical cases, where the bias is \(10-20 \%\) of \(V_{B D}\), reduction of \(V_{B U S}\) would only precipitate the in-jection-mode failure. An exception, of course, is when the bias is kept at half the breakdown (i.e., \(\mathrm{V}_{\mathrm{BIAS}}=\mathrm{V}_{\mathrm{BD}} / 2\) ). Then the RF waveform makes no injecting excursion into the forward direction. But for high power switching applications, a driver circuit to accomplish this end requires prohibitively high voltage transistors ( 500 V or more); the overall expense of the RF control circuit with driver could be more readily reduced by using a larger number of PIN diodes operated with less RF voltage stress.
I'ractically, the maximum sustainable \(R F\) voltage, \(V_{P}\) must be determined by measurement. Taking high power loss data for the diode - RiF frequency, pulse length, and duty cycle of intended use - is the most direct and effective technique. In no case can \(V_{P}+V_{B I A S}\) exceed \(V_{B I D}\), where \(V_{B D}\) is the bulk breakdown voltage of the diode.* The bias voltage is selected to be as large as is possible in a practical driver circuit (usually \(10-20 \%\) of the diode's reverse bulk breakdown voltage) and the RF power level (from

\footnotetext{
See Chapter III for bulk breakdown voltage evaluation of practical diodes.
}

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
which the corresponding voltage, \(V_{p}\), can be calculated) is set at the point at which a statistical sample of diodes have been found to undergo rapid loss increase and/or failure. Failures due to either of the two modes described are usually evidenced by a permanent short formed by a conducting filament across the I region.
Most high power switching applications use the PIN diodes in a transmissive circuit with a matched load. Accordingly, failure or removal of the load, transmission line arcing, or any mechanism which affects the load match can result in a voltage reflection and possible RF voltage enhancement at the diode. Neglecting losses in the switching circuit and diodes, this reflection voltage enhancement can double the stress on the diodes. Such a condition, even if encountered only briefly, usually precipitates diode failure. Therefore it is good practice to rate the diode at a stress level \(\mathrm{V}_{\mathrm{R}} \leqslant \mathrm{V}_{\mathrm{p}} / 2\) (see Figure II-24) in order for the device to be able to survive such a total reflection. Since power is proportional to the square of voltage, PIN diode devices should be rated at one-fourth or less of the power level at which, with matched load, they would be expected to undergo near instantaneous failure. Even if provision has been made to minimize the likelihood of a totally reflecting load, consideration should be given to the following factors before opting a power safety factor of less than 4 to 1 :
1) Diode failure is not an exactly reproducible event even with PIN's made by the same process within the same lot. A 2 to 1 variation in burnout is typical for a given process. Thus, a production run of diodes may have a considerably lower (or higher) burnout than experienced with a prototype test lot
2) Most high power tests are conducted at room temperature while practical devices usually must perform at considerably higher temperature, reducing the power safety margin that is inferred from a room temperature test.
3) Iligh power RF testing is often of short duration, an hour or less, due to the generally limited availability of high power testing facilities. However, semiconductor devices are usually expected to have useful lifetimes of years. Derating, according to Figure II-22, is necessary to accomplish long life.
4) PIN devices operated at or below one-fourth of their burnout power are typically found to be able to survive temporary driver failures wherein the high power RF signals are applied with the diodes at zero bias.

Most modern, high Irequency transistors are die limited because of high current densities resulting from very small current carrying conductors and these densities can lead to metal migration and premature failure. The determination of Ic max for these types of transistors results from use of Black's equation for metal migration which determines a mean time between failures (MTBF) based on current density, temperature and lype of metal. At Molorola, MTBF is generally sel at >7 years and maximum die temperature al 200 degC. For plastic packaged Iransistors, maximum Tj is set at 150 degC. The resulting current density along with a knowledge of the die geometry and top metal thickness allows the determination of lc max.

It is up to the transistor manufacturer to specily an Ic max based on which of three limitations (die, wire, package) is paramount. Note however the limitation depends to some extent on application. It is recommended that the circuit design engineer consult the semiconductor manufacturer for additional information if ic max is of any concern in his specific use of the transistor.

Storage temperature is another maximum rating that is Irequently not given the attention it deserves. A range of -55 degC to 200 degC has become more or less an industry standard. And for the single metal, hermetic packaged type of device the upper limit of 200 degC creates no reliability problems. However, a lower high temperature limitation exists for plastic encapsulated or epoxy sealed devices. These should nol be subjected to temper atures above 150 degC to prevent deterioration of the plastic malerial.

\section*{FUNCTIONAL CHARACTERISTICS}

Functional characteristics of an RF transistor are by necessity tied to a specific test circuit (an example is shown in Figure 8). Without specifying a circuit, the functional parameters of gain. reflected power. elficiency - even ruggedness - hold little meaning. Furthermore, most test circuits used by RF transistor manufacturers today (even those used to characterize devices) are designed mechanically to allow for easy insertion and removal of the device under test (D.U.T.). This mechanical restriction sometimes limits achievable device performance which explains why performance by users frequently exceeds that indicated in data sheet curves. On the other hand, a circuit used to characterize a device is usually narrow band and tunable. This results in higher gain than attainable in a broadband circuit. Unless otherwise stated, it can be assumed thal characterization data such as Po vs frequency is generated on a point-by-point
basis by tuning a narrow band circuit across a band of frequencies and, thus, represents what can be actieved at a specific frequency of interest provided the circuit presents optimum source and load impedances to the D.U.T.

Broadband, fixed tuned test circuits are the most desirable for testing functional performance of an RF transistor. Fixed tuned is particularly important in assuring everyone the manufacturer and the user - of product consistency, i.e., that devices made tomorrow will be identical to devices made today.

Tunable, narrow band circuits have led to the necessity for device users and device manufacturers to resort to the use of "correlation units" to assure product consistency over a period of time. Fixed tuned circuits minimize (if not eliminate) the requirement for correlation and in so doing tend to compensate for the increased constraints they place on the device manufacturer. On the other hand, manufacturers like tunable lest circuits because their use allows adjustments that can compensate for variations in die fabrication and/or device assembly. Unfortunately gain is normally less in a broadband circuit than it is in a narrow band circuit and this fact frequently forces transistor manulacturers to use narrow band circuits to make their product have sufficient attraction when compared with other similar devices made by competition. This is called "specsmanship." A good compromise for the transistor manufacturer is to use narrow band circuits with all tuning adjustments "locked" in place. In comparing functional parameters of two or more devices, then, the data sheet reader should be careful to observe the lest circuit in which specific parameter limits are guaranteed.

For RF power transistors, the parameter of ruggedness takes on considerable importance. Ruggedness is the characteristic of a transistor to withstand extreme mismatch conditions in operation (which causes large amounts of outpul power to be "dumped" back into the transistor) without altering its performance capability or reliability. Many circuit environments particularly portable and mobite radios have limited control over the impedance presented to the power amplifier by an antenna, at least for some duration of time. In portables, the antenna may be placed against a metal surlace; in mobiles perhaps the antenna is broken off or inadvertently disconnected from the radio. Today's RF power transistor must be able to survive such load mismalches without any effect on subsequent operation. A truly realistic possibility for mobile radio transistors (although not a normal situation) is the condition whereby an RF power device "sees" a worst case load mismatch (an open circuit, any phase angle) along with maximum Vcc AND greater than normal input drive - all at the same time. Thus the uttimale test for

\section*{PIN Diodes}

Generally PIN devices to control pulsed ligh RF power are limited in the reverse biased state by the maximum safe rated RF voltage stress, \(V_{R}\), as is seen in the circuit discussions to follow. While a device which fails to meet circuit performance expectations may cause some user disappointment, it has been the author's observation that nothing quite equals the state of dissatisfaction resulting when solid-state control devices fail catastrophically due to overrating. No doubt it is for reasons such as this one that it has been industry practice in large phased array systems to design PIN phase slifters to survive operation into a short circuit load of any phase.
Only by carefully rating these devices can the good reliability which has come to be expected, indeed often assumed without question, of solid-state control be sustained. Accordingly, the designer should adopt as a minimum a policy of both designing diode control devices to sustain operation into a short circuit of any phase and testing throughout production to insure that this level, at least statistically, is maintained for the complete population of devices built.

\section*{References}
[1] Phillips, A.B.: Trransistor Engineering and Introduction to Integrated Semiconductor Circuits; McGraw-Hill, Inc., New York, 1962.
[2] Shockley, W.: Electrons and Holes in Semiconductors; D. VanNostrand Co. Inc., Princeton, N.J., 1953; pp. 318 324.
[3] Blakemore, J.S.: Semiconductor Statistics Chapters 5-9); Pergamon Press, New York, 1962.
[4] Ilewlett-Packard Application Note, "The Step Recovery Diode;" Hewlett-Packard Inc., Palo Alto, California, December 1963.
[5] Moll, J.L.; Krakauer, S.; and Shen, R.: "PN Junction Charge Storage Diodes," Proceedings of the IRE, Vol. 50, pp. 43-53, J anuary 1962.
[6] Watson, II.A., (ed.): Microwave Semiconductor Devices and Their Circuit Applications; McGraw-Hill, Inc., New York, 1969.

\section*{MICROWAVE SEMICONDUCTOR ENGINEERING}
[7] Mcl)ade, J.C. and Schiavone, F.: "Switching Time Performance of Microwave PIN Diodes," Microwave Journal, pp. 65-68, December 1974.
[8] Leenov, D.: "The Silicon PIN Diode as a Microwave Radar Protector at Megawatt Levels," IIEEE Transactions on Electron Devices, Vol. ED-11, No. 2, pp. 53-61, Felruary 1964.
[9] Ramo, S. and Whinnery, J.R.: Fields and Waves in Modern Radio; John Wiley and Sons, New York, 1944 and 1953. Also revised by Ramo, S., Whinnery, J.IR., and Van Duzer, Theodore, as Fields and Waves in Communication l:lectronics; John Wiley and Sons, New York, 1965.
[10] Hines, M.E.: "Fundamental Limitations in RF Switching and Phase Shifting Using Semiconductor Diodes," Proceedings of the IEEE, Vol. 52, pp. 697-708, June 1964.
[11] Deloach, B.C. Jr.: "A New Microwave Measurement Technique to Characterize Diodes and an \(800 \mathrm{GH} / \mathrm{z}\) Cutoff Firequency Varactor at Zero Volts Bias," 1963 IEIEE MTT Symposium Digest, pp. 85-91.
[12] Getsinger, W.J.: "The Packaged and Mounted Diode as a Microwave Circuit," IEEE Transactions on Microwave Tbeory and Techniques, Vol. MTT-14, No. 2, pp. 58-69, February 1966. Also see by the same author, "Mounted Diode Equivalent Circuits," IEEE Transactions on Microwave Theory and Tecbniques, Vol. MTT-15, No. 11 , pp. 650-651, November 1967.
Altman, Jerome L.: Microwave Circuits; D. VanNostrand Co., Inc., New York, 1964.
[14] Collin, R.E.: Foundations for Microwave Engineering, McGraw-Hill, Inc., New York, 1966.
[15] Peck, D.S.; and Zierdt, C.H. Jr.: "The Reliability of Semiconductor Devices in the Bell System," Proceedings of the IEEE, Vol. 62, No. 2, pp. 185-211, February 1974.
[16] Hansen, Max: Constitution of Binary Alloys, McCraw-Hill, Inc., New York, 1958.
ruggedness is to subject a transistor to a test wherein Pin (RF) is increased up to 50\% above that value necessary to create rated Po; Vcc is increased about \(25 \%\) ( 12.5 V to 16 V for mobile ransistors) AND then the load rellection coefficient is set at a magnitude of unity while its phase angle is varied through all possible values from 0 degrees to 360 degrees. Many 12 volt (land mobile) transistors are routinely given this test at Motorola Semiconductors by means of a test station similar to the one shown in Figure 9

Ruggedness tests come in many lorms (or guises). Many odder devices (and even some newer ones) simply have NO ruggedness spec. Others are said to be "capable of" withstanding load mismalches. Still others are guaranteed to withstand load mismatches of 2:1 VSWR to-:1 VSWR at rated output power. A few truly rugged transistors are guaranteed to withstand 30:1 VSWR at all phase angles (for all practical purposes 30:1 VSWR is the same ases:1 VSWR) with both over voltage and over drive. Once again it is up to the user to match his circuit requirements agains device specifications.

Then as it the whole subject of ruggedness is not sufficiently confusing, the semiconductor manulacturer slips in the ultimate "muddy the water" condition in stating what constitutes passing the ruggedness test. The words generally say that after the ruggechess test the D.U.T "shall have no degradation in output power." A better phrase would be "no measurable change in output power." But even this is not the best. Unfortunately the D.U.T. can be "damaged" by the ruggedness test and still have "no degradation in output power." Today's RF power transistor consist of up to 1 K or more small transistors connected in parallel. Emitter resistors are placed in series with groups of these transistors in order to better control power sharing throughout the transistor die. It is well known by semiconductor manufacturers that a high percentage of an RF power transistor die (say up to \(\mathbf{2 5 - 3 0 \%}\) ) can be destroyed with the transistor still able to deliver rated power at rated gain, at least for some period of time. If a ruggedness test destroys a high percentage of cells in a transistor, then it is likely that a 2 nd ruggedness test (by the manulacturer or by the user while in his circuit) would result in additional damage leading to premature device failure

A more scientilic measurement of "passing" or "lailing" a ruggedness test is called4 Vre the change in emitter resistance belore and atier the ruggedness test. Vre is determined to a large extent by the net value of emitter resistance in the transistor die. Thus if cells are destroyed, emitter resistance will change with a resultant change in Vre. Changes as small as \(1 \%\) are readily deteclable with \(5 \%\) or less normally considered an acceptable limit. Today's most
sophisticaled device specifications for RF power transistors use this criteria to determine "success" or "failure" in ruggedness testing.

Data sheets for low power RF transistors show such special characteristics as noise figure (NF), maximum available gain (GUmax) and scattering (S) paramelers. " S " parameters are normally taken with the D.U.T. in a standard commercial lixture using a network analyzer such as the one shown in Figure 10. Typically these are given as functions of frequency and lc. The measurements are rouline and need no further comment.

NF and GNF likewise use commercial equipment such as the Eaton 4012 gain-noise analyze or the HP8970A Noise Figure Meler. NF of a transistor will vary with input match and as a result is generally measured in a test fixture with input luning. Usually data is given with a circuit tuned initially for lowest possible NF and then for a standard 50 ohm input. Measuring NF at \(\mathbf{5 0}\) ohms \(\mathbf{Z i n}\) is more repeatable albeit not normally as low in value. The \(\mathbf{5 0}\) ohm measurement is preferred lor production testing because it requires no tuning and can be done with automated test equipment and for this reason is frequently the value specified on data sheets. Likewise, gain is normally specilied for best NF conditions and for 50 ohms Zin.

RF power transistors are typically characterized by impedance parameters rather than small signal "S" parameters. Both Zin and Zout of a device are determined in a similar way, i.e., place the D.U.T. in a circuit and tune both input and output circuit elements to achieve maximum Po at the desired frequency of interest. At maxinum output power, D.U.T. impedances will be the conjugate of the input and output network impedances. Thus, terminate the input and oulput ports of the test circuit, remove the device and measure \(Z\) looking from the device. first, toward the input to obtain the conjugate of Zin and, second, toward the oulput to oblain ZOL which is normally given as the load required to achieve maximum Po

A network analyzer is used in the actual measurement process to determine the complex refiection coellicient of the circuin using, typically, the edge of the package as a plane of reference. A typical measurement setup is shown in Figure 11. Figure 12 shows the special fixture used to obtain the short circuit relerence while Figure 13 illustrates the adapter which allows the circuit impedance to be measured from the edge of the package.

The entire impedance measuring process is somewhat laborious and lime consuming since it must be repeated for each frequency of interest. Note that the frequency range permitted for characterization is that over which the circuil will tune. For other Irequencies, additional test circuits must be designed and constructed, which explains why it is sometimes difficull to get a

PIN Diodes
Questions
1. What is the punchthrough voltage of a PIN diode having a \(50 \mu\) ( 2 mil ) I region width and I region resistivity of \(300 \Omega-\mathrm{cm}\) ?
2. What is the dielectric relaxation frequency of the PIN diode in Question 1 ?
3. What is the transit time of the PIN diode in Question 1 ?
4. If the PIN diode in Question 1 has an average carrier lifetime of \(\tau=2 \mu \mathrm{~s}\), what is the microwave resistance of the I region, \(R_{1}\), when a forward bias of 50 mA is applied?
5. I'or the conditions in Question 4 what is the value of \(R_{1} 1 \mu \mathrm{~s}\), \(10 \mu \mathrm{~s}\), and \(15 \mu \mathrm{~s}\) following the turn off of the forward bias? Neglect reactive effects and assume a constant lifetime of \(2 \mu \mathrm{~s}\), and that the forward bias had been on long enough to establish a steady state charge in the I region before turnoff.
6. If the diode in Question 5 has contact resistance of \(0.2 \Omega\) what isolation does it produce when it shunts a \(50 \Omega\) line with negligible inductance (SPS'r switch) with 50 mA bias? What is the isolation \(1 \mu \mathrm{~s}, 10 \mu \mathrm{~s}\), and \(15 \mu \mathrm{~s}\) after the bias is turned off?
semiconductor manufacturer to supply impedance data for special conditions of operation such as different frequencies, different power levels or different operating voltages.

\section*{TRADEOFFS IN SPECIFICATIONS}

Gain and ruggedness are the most obvious device parameters for compromise in RF power specifications. Devices with high gain - at least high with respect to their figure of merit (emitter periphery/base area) - tend to be fragile, i.e., not rugged. By using higher resistivity material. material with a thicker epitaxial layer and/or increased values of emitter resistance, ruggedness can be enhanced at the expense of gain. Likewise to get higher gain, the user may be asked to accept lower collectorbase breakdown vollages (BVCBO orBVCES and BVCEO) in order to reduce collector resistivity and thereby increase gain.

Transistors specified for operation at a high frequency can be used at a lower frequency to obtain increased gain but almost always such devices at the lower frequency of operation will be fragile. Again for RF power transistors, the user should be wary of unnecessarily specifying tight limits on hFE particularly when functional gain is a test parameter. Also tight leakage current specifications lead to high costs as a result of yield losses and, except where essentia such as low power and power devices with bias, should be candidates as tradeoffs for better prices.

\section*{SUMMARY}

Understanding data sheet specifications and what they mean can be a major asset to the circuit designer as he goes about selecting and using an RF transistor for his specific application. This paper has emphasized some unique data sheet parameters of RF transistors and has explained what these mean from the semiconductor manufacturer's point-of-view. It is hoped this effort will help the circuit engineer make his selection and use of transistors more efficient and effective.

The RF transistor is an unusually complex semiconductor device and difficult to fully characterize. Not all information about RF transistor characteristics has been explained in this paper. Nor can all be covered in a data sheet. The circuit design engineer should contact the device manufacturer for more detailed information whenever it is appropriate. Most if not all current manufacturers of RF transistors have extensive applications support for the express purpose of assisting the circuit designer whenever and wherever assistance is needed.

\section*{FIGURES}
l. A PAGE FROM MRF646 DAT A SHEET (2ND PAGE)
2. GRAPH OF BV VS DOPING LEVEL AND JUNCTION DEPTH
3. BETA VS FREQUENCY CURVE
4. CAPACITANCE VS REVERSE BIAS VOLTAGE CURVE
5. A PAGE FROM MRF 646 DATA SHEET (FRONT PAGE)
6. PHOTO OF INFRA RED MICROSCOPE SETUP
7. X-RAY PHOTO OF DIE BONDED TO BEO
8. PHOTO OF RF TEST CIRCUIT (MRF 646)
9. PHOTO OF FINAL TEST STATION
10. PHOTO OF NET WORK ANALYZER
11. PHOTO OF IMPEDANCE IIEASLIREMENT SETUP
12. PHOTO OF SPECIAL REFERENCE FIXTURE
13. PHOTO OF SPECIAL IMPEGANCE AOAPTER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Comerome & s+um & \(\cdots\) & Tre & \(\cdots\) & \\
\hline \multicolumn{6}{|l|}{off chanactenitics} \\
\hline  & -vceo & \({ }^{\circ}\) & - & - & v* \\
\hline  & evecs & \(\cdots\) & - & - & vak \\
\hline  & eveso & \({ }^{\circ}\) & - & & v* \\
\hline  & & & & & \\
\hline  & 'ces & - & & \(\bigcirc\) & * \\
\hline \multicolumn{6}{|l|}{- craanctranatics} \\
\hline & *FE & \(\infty\) & \(\cdots\) & 100 & \\
\hline \multicolumn{6}{|l|}{} \\
\hline  & \(c_{\infty}\) & & \(\infty\) & 18 & of \\
\hline \multicolumn{6}{|l|}{clucriomal terts} \\
\hline Commen Emite Amation Pome Genn & \(G_{\text {ma }}\) & 48 & \({ }^{6}\) & & \(\infty\) \\
\hline  & \({ }^{\circ} \mathrm{m}\) & - & 13 & 5 & wotn \\
\hline \begin{tabular}{l}
Collactror filing ifict \\

\end{tabular} & - & \(\stackrel{ }{*}\) & 6 & & - \\
\hline \begin{tabular}{l}
Loed Mivineich ©tram \\
 \\

\end{tabular} & ** & \multicolumn{4}{|c|}{} \\
\hline  & \({ }^{\text {\% }}\) \% & & 14.00 & & Omm \\
\hline  & \({ }^{201}\) & & 12:128 & & omm \\
\hline
\end{tabular}
nom.


FGURE 1-TYPICAL DC AND FUNCTIONAL SPECFICATIONS

\section*{DESIGN CONSIDERATIONS FOR THE DEVELOPMENT}

\section*{of Internally matched fets}

Mahesh Kumar and Bert S. Hewitt
Microwave Semiconductor Corporation
100 Schcol House Road
Somerset, N.J. 08873

\section*{Abstract}

This paper describes design considerations for the development of internally matched power GaAs FETs. Both power FET and matching circuit designs are discussed. Examples of single chip and multi-chip designs with power levels of up to 10 Watts in C-band and 2 Watts in Ku-band are presented.

\subsection*{1.0 INTRODUCTIION}

Over the last few years the challenges offered by high power FET design have been largely overlooked in favor of more glamourous projects on Monolithic Microwave Integrated Circuits (MMICs). Monolithic circuits have received a great deal of research funding and effort, and for some applications, MMICs are clearly the technology of choice, i.e., low cost satellite down converters and low power (.2 Watts) \(T / R\) modules for phased array radars; systems where the volume justifies the development costs. However, in many cases where high power is required or the volume required is low, and this is typical of
microwave systems, the discrete power FET is the device of choice. For example, high power internally matched feTs are widely used in point to point microwave communications systems where they have replaced TWTAs because of superior reliability. In space, power FETs are currently used for some satellite down link applications and this use will grow as higher power, higher efficiency devices become available.

At MSC, a wide range of devices for these and other applications is under development in the \(2-26 \mathrm{GHz}\) range. In this paper, design considerations to optimize output power, efficiency and bandwidth will be discussed and illustrated with examples from current development projects.

\subsection*{2.0 POWER FET DESIGN}

To achieve high power capability, a large number of gates must be connected in parallel. This can be accomplished with the simple interdigitated layout of a typical MSC FET shown in Figure 1, with such a layout comes the first problem facing a power FET designer. The FET is a three terminal device, thus any two sets of electrodes can be interconnected directly on the surface of the Gallium Arsenide (in Figure 1 , the gate and drain electrode sets are connected) but the third electrode set cannot. It is this fundamental problem that has led to the wide diversity of designs throughout the industry. Some designers have elected to use air bridge or dielectric cross-


FGGURE 2-THE EFFECT OFCURVATURE ANDRESISTMTY ONBREAKDOWNVOLTAGE


FGGUPE 3-BETA vs FREQUENCY *643*


FGGURE 4-UNCTIONCAPACTTANCE vs VOLTAGE


FIGURE 5-TYPICAL MAXIMUM RATINGS OF AN RF POWER TRANSISTOR
overs to interconnect the third electrode, other have used a flip chip approach as shown in Figure 2, but the technique that is now becoming most widely adopted is the use of via hole connectors as shown in Figure 3.

Via hole technology has two significant advantages. It enables the source electrode to be grounded directly through the chip, thus ensuing a minimum parasitic source inductance and it results in an optimum thermal configuration. To form via holes with high yield, the GaAs wafer must be thinned to approximately 30 microns as shown in Figure 3. This minimizes the heat conduction path through the GaAs to the integral gold plated heat sink.

Having solved the source grounding and thermal design problems, the designer is next faced with choices concerning the number of gates to interconnect the individual width and length of these gates. The gate width and length are selected based on the desired frequency of operation. It is desirable to use the maximum gate width possible at a desired frequency to reduce the number of gates required and thus minimize the overall chip size. Because of losses along the gate which increase with frequency, the gate width is limited to approximately 500 microns at 4 GHz and 100 microns at 20 GHz . Similarly, it is desirable to use the minimum gate length consistent with high yield at a given frequency and in most power FET designs, 1.0
micron is chosen for up to 10 GHz operation and 0.5 micron for above 10 GHz .

The total gate width (number of gates \(x\) gate width) is chosen to achieve the desired output power based on \(0.4 \mathrm{Watts} / \mathrm{mm}\) of gate width. However, as the total gate width is increased, the input and output impedances are reduced and the device becomes progressively more difficult to match. For very high power devices, a compromise between the difficulties of matching a large single chip versus matching and combining several smaller chips have to be investigated. For 10 b bandwidth applications, it is feasible to design single chip devices with output powers in the 5 Watt range with total gate widths of up to 14 mm , but for broad band applications, such as octave band ECM systems, the largest feasible devices are in the 1 watt range.

Modern process lines for power FETs are highly automated, especially in the photolithography area where cassette to cassette equipment is used for the application and development of photoresists and for mask alignment. The most critical steps in the fabrication process are concerned with the gate formation. At MSC, two different types of FETs have been developed which differ only in the details of the gate cross section. One type is designed to operate at the conventional drain bias of 8-10 Volts, the other is designed to operate at 16 Volts. High voltage operation has advantages in the areas of improved linearity for communications systems and improved


FIGURE 6-EQUIPMENT USED TOMEASURE DIE TEMPERATURE


efficiency in phased array radars. At higher voltage the \(I^{2} R\) losses in the feed to the array are significantly reduced and the conversion losses from the typical 28 volts of airborne and satellite systems are also reduced. Although processing yields with highly automated lines can be extremely high, especially if the definition of the 1.0 micron or 0.5 micron gate is accomplished with direct write e-beam technology, (at MSC a Philips EBPG 4 system, which alone represents an investment of \(\$ 2 M\) is used for this function), overall yields are low because power FETs must operate at high current densities and voltages near breakdown where their performance is dominated by the quality of the GaAs materials. At MSC the GaAs layers are grown by vaper-phase-epitaxy and their quality and uniformity are carefully monitored using \(C-V\) analysis and DLTS (Deep Level Transient Spectroscopy).

\subsection*{3.0 MATCAING CIRCUIT DESIGN}

In this section, designs of matching circuits for internally matched FETs are presented. Matching of the input and output impedances of a power FET to 50 ohms requires accurate small and large signal s-parameters and device modeling. The small signal S-parameters are measured using an HP8510 Network Analyzer. A good de-embedding procedure is required to obtain accurate S-parameters. Through-Short-Delay (TSD) is one such method being used to de-embedd the s-parameter at the chip level.

For design of the output matching circuit, it is important to obtain the large signal s-parameters. An automated load-pull technique is used to obtain the large signal output impedance. This technique uses a computer-controlled mechanical double slug coaxial tuner at the output of the FET to match the output impedance of the FET under large signal conditions. Load-pull contours for output power, gain and efficiency are obtained. The large aignal output impedance for optimum output power, gain and efficiency is measured using an hP8510 network analyzer. At MSC an automated load-pull system operating in \(2-26 \mathrm{GHz}\) band is currently being used for the development of a range of internally matched power FETs.

Touchstone and Supercompact microwave circuit design CAD programs are used to design the input and output impedance matching circuits for the FET. The choice of circuit approach, and its implementation, must be considered while designing the input and output matching networks since the overall dimensions of the matching circuits are limited by the package dimensions. At \(C\) - and X -band a 12.9 mm wide package 1 s used while at Ku-band a 9.8 mim wide package is used. At 20 GHz a \(.248^{\circ}\) wide open carrier is used since a package for this frequency is not available at the present time.

Figure 4 is a Smith Chart representation of the design methodology for an internally matched FET. A two section low pass


FIGURE 10-THE HP AUTOMATIC NETWORK ANALYZER


FGGURE 12-SHORT CIRCUT REFERENCE FDXTURE

filter is used for matching the input and output impedances. Lumped element matching is used in C-band whereas distributed approach is used in Ku and k -band. A combination of lumped and distributed elements are used at \(x\)-band. Since the overall size of the matching circuit has to be small to fit the package, a high dielectric constant substrate, such as bariurn tetratinate with Er-38 is necessary in C-band, whereas the more conventional Alumina substrate material (Er=9.8) is used in \(X\), Ku and k-bands. The thickness of the substrate is also a factor in determining the overall size of the input and output matching circuits. The width of the distributed microstripline is proportional to the thickness of the substrate. Use of thinner substrate reduces the overall dimension. However, loss in the circuit increases as the width of the line is reduced. Five and ten mil thick alumina substrates are used in Ku and K-band, while 5 mil thick Barium Tetratitanate substrate and 10-15 mil alumina substrates are used in \(C\) - and \(X\)-bands. The choice of substrate thickness depends on the impedance level of the FET. The input and output impedance of the FET fall with increases in output power. To obtain higher. output power, larger gate peripheries and multiple chips are used. Thus, a trade-off is made between the thickness of substrate, the size of the overall matching circuit and the losses in the output matching network.

\subsection*{4.0 EXAMPLES OF INTERNALLY MATCEED GAAS POWER FETE}

Several internally matched power FETs have been developed at MSC. 3 Watt and 10 Watt internally matched FETs operating over 3.7-4.2 GHz have been developed. Figures 5 and 6 show the variation of output power and third order intermodulation distortion ( \(\mathrm{IMD}_{3}\) ) products as a function of input power for 3 and 10 Watt internally matched FETs, respectively. The gain and efficiency of the 3 watt FET are 12 dB and 408 . The 10 Watt internally matched FET exhibited 9 dB gain and 30: efficiency.

Figure 7 shows the output power and efficiency variation as a function of input power for a high voltage internally matched FET. This FET operates at Vds \(=16 \mathrm{~V}\) and exhibited 14 watt output power with 7.5 dB gain and 29 efficiency at 5.3 GHz .

Table 1 shows the results for output power, gain and efficiency for an internally matched FET operating over \(14.5-15.35 \mathrm{GHz}\) band. An output power of 1 Watt with \(6-7\) dB gain and 20-25: efficiency has been obtained.

A 2 watt output power with \(4-5\) dB gain and 198 efficiency has been obtained over \(17-18 \mathrm{GHz}\). Results for output power, gain, efficiency and return loss over \(17-18 \mathrm{GHz}\) are presented in Table 2.

PIN Diode Attenuators and Vector Modulators
at Intermediate Frequencies
N. R. W. Long

4 Leghorn Road
London NW10 4PH England

\section*{The PIN Diode}

A PIN diode differs from an ordinary detector or switching diode in that it has an extra layer of undoped or Intrinsic semiconductor sandwiched between the \(P\) and \(N\) doped layers normally found. When the device is reverse or zero biased this I layer is devoid of charge carriers and the diode has a very high AC resistance. With forward bias, carriers are injected into the I layer, the diode conducts and the AC resistance drops

The key difference between the PIN diode and the ordinary PN diode is that the minority carriers in the I layer have a significant lifetime, and when this lifetime exceeds the period of an RF signal the normal rectification effects begin to be suppressed because the charges transferred in an RF cycle are less than the charge stored in the device.

When a PIN diode is used for switching a signal the forward bias current in the "on" state need not be as high as the peak RF current and the reverse voltage in the "off" state need not be as high as the peak RF voltage. This is a distinct advantage over the PN diode with no carrier
storage but it is the behaviour of the PIN diode at intermediate bias states that makes it especially useful.

For small signals at RF frequencies the PIN diode appears essentially as a pure resistor. The exact resistance depends on the device construction but it is roughly inversely proportional to the bias current. Typically, a bias range of \(1 \mu \mathrm{~A}\) to 10 mA might give RF resistances of 10 K to 1 ohms.

The quality of this resistance, ie., its linearity and lack of distortion products, can be very good indeed if the diode is used under the right conditions (1). In practical terms this usually means ensuring that the minority carrier lifetime is at least 10 times the signal period and keeping to power levels of less than 0 dBm .

PIN diodes are available from several manufacturers and in a variety of packages, eg. for waveguide or stripline mounting, but for general purposes the most useful is the familiar in-line wire lead glass package. Figure 1 shaows the resistance characteristics of varous Hewlett Packard diodes [2]. Note that the 3080 and 3081 types show less linear control curves. They are, though, particularly useful devices as they have long carrier lifetimes, typically 1.3 us and 2 us respectively.

\section*{Matched Variable Attenuators}

A simple attenuator can be made with a single series or shunt variable impedance element. This, however, is only a matched device at zero attenuation and is not necessarily suitable for the majority of applications. At microwave frequencies it is common to convert unmatched




\section*{FLIP-CHIP TECHNOLOGY}

Fig. 2 Cross-section of a flip-chip PET


Pig. 3 Cross-section of a via-hole PET
circuits to matched by the use of quadrature hybrid couplers (Figure 2a) which are readily printable in stripline.

At lower frequencies hybrids are costly components and other matching techniques can be used. The bridged-tee, Figure 2 b , and the pi, Figure 2 c , attenuators are well known circuits capable of giving variable, matched attenuation over a wide bandwidth if the elements are controlled properly. The bridged-tee requires one less active element but the pi configuration is normally preferred for it higher maximum attenuation with typical components.

\section*{Practical Pi Attenuator Design}

The series and parallel resistances, Rs and Rp, in the pi attenuator must be controlled simultaneously to ensure a good match as the circuit gain, \(G\), is varied. The required resistances are given by
\[
R P=z\left(\frac{1+G}{1-G}\right)
\]
\[
\mathrm{Rs}=\frac{\mathrm{z}}{2}\left(\frac{1}{\mathrm{G}}-\mathrm{G}\right)
\]
and these equations can be used, together with published device data, to calculate the PIN diode bias currents required at various attenuation settings. Because of the nature of the diode characteristics, this procedure is bound to result in control curves that are extremely difficult to realise in practice. It also sheds little light on the performance deterioration to be expected when the curves are not followed exactly.

At this point, many workers might turn to an extensive computer simulation; this author, however, believes that this is a case where better and quicker results can be obtained from a simple set of measurements.

Figure 3 shows the circuit of a PIN diode pi attenuator in which the series and parallel bias currents, is and Ip, can be varied independently. If this is connected to a network analyser capable of measuring return 10ss, \(\left|s_{11}\right|\), and transmission, \(\left|s_{21}\right|\), curves of constant return loss and attenuation can easily be plotted. A representative set is shown in Figure 4.

For a given specification on return loss, there is a certain operating area into which the pattern of bias currents must be fitted. The easiset control pattern appears as a straight line on the plot; this can be generated from a single supply with one control line as shown in Figure 5a.

In the case illustrated, though, 20 dB return loss has been chosen as the target and inspection shows that, within this restriction, a straight line control locus can only give a limited attenuation range. It is clear. though, that a locus of two straight lines, as drawn, will cover the full range. Two circuits for generating such a locus are given in Figure 5 b and 5c. Both give the same pattern of bias currents but the control voltage vs. attenuation responses are different; one is better suited to percentage gain control, the other to dB attenuation systems.

The calculation of component values for these driver circuits is straightforward and will not be detailed here. For the case in question. the attenuator was to be driven from a \(D\) to \(A\) converter and it was desired to keep the fractional gain change per LSB as constant as possible over the whole attenuation range.

Figure 6 shows the final circuitused; a batch of eight of these were construted for signal levelling purposes in a phased arrary system.


Fig. 4 Smith Chart representation of the design for an internally matched FET


Fig. 5 Variation of output power and third order intermodulation distortion as a function of input power for a 3 Watt internally matched FET at 3.7 GHz

Figure 7 shows typical performance at 70 MHz . The control characteristic is reasonably linear: certainly the slope variations are small enough for 8 bit digital control to give consistently small step sizes of 0.5 or less. In this application the attenuator was to be used in a closed loop operation so absolute linearity or accuracy of the control was not a requirement; if this had not been the case, some further software linearisation could have been applied

At low attenuations the input match worsens slightly. This is partly due to compromises made in the bias driver design and partly to stray reactances incurred by the layout and the connecting sockets.

The foregoing example shows how a wideband signal attenuator can be made with a minimum of components. Only one control line is needed and the driver circuit to achieve both a good match and reasonably linear control simultaneously is simple in the extreme.

\section*{Vector Modulators}

In many applications, phase as well as amplitude control of a signal path is required. This might occur, for instance, in certain modulation systems, phased array processing or adaptive cancellation systems.

Standard phase shifter circuits employ switched line lengths, switched loaded lines etc.. Figure 8 . Variable reactance devices, such as varactors, can also be used but are limited to only small phase shifts. Switched systems can be cascaded to give phase shifters capable of covering the full 360 degrees in given step sizes. A disadvantage is that the phase settings are quantised and fine resolution demands many stages, which increases the
insertion loss and potential inaccuracies. It should be noted that these systems are strictly delay inserters rather than pure phase shifters and wideband operation is not generally possible. Nevertheless, the use of cascaded phase shifters in conjunction with an attenuator does give full four quadrant control of the transmission characteristic. The controls are polar, ie., r and \(\theta\), or separate gain and phase adjustments

In many cases it is more appropriate to combine the gain and phase control mechanisms into a single complex attenuator, or vector modulator. The basic scheme is shown in Figure 9. Full control of the transmission vector is possible but the controls in this case are cartesian, ie., \(x\) and \(y\), or I and \(Q\). If all four quadrants are to be covered bi-phase attenuators are required; these have a gain range of -1 to 1 rather than just 0 to 1 . There is a 3 dB minimum theoretical loss through such a modulator; this, however, occurs only at certain phase settings, at others the minimum loss is 6 dB .

Despite this, the vector modulator is useful when fine or continuous adjustment is needed. It compares favourably with, for instance, a 6 or 8 bit phase shifter that may have up to 1 dB loss per bit

Simple attenuators can be converted to bi-phase by the addition of a phase inverter, figure 10a, or by offsetting half the signal. Figure 10 b . The latter method offers easier control but has an inherent 6 dB loss; in the first arrangement it may be difficult to achieve zero transmission.

A better circuit is the hybrid coupler attenuator, versions of which appear in Figure 11. The input power is split between the two variable terminating resistances and the reflections from these terminations


Fig. 6 variation of output powec and thicd ordec intermodulation distortion as a function of input power for a 10 W internally matched FET at 4 GHz


TABLE 1. \(14.5-15.35 \mathrm{GHz} 1\) WATT INTERNALLY MATCHED FET
\begin{tabular}{ccccc} 
Frequency & Output Power & Gain & Return Loss & Efficiency \\
\((\mathrm{GHz})\) & G1dB & P1dB & (dB) & (8) \\
& \((\mathrm{dBm})\) & (dB) & & \\
14.5 & 31 & 6 & 9.8 & 21 \\
15.0 & 31.5 & 7.25 & 12 & 25 \\
15.35 & 31 & 5.5 & 6 & 20
\end{tabular}

TABLE 2. 17 - 18 GHz 2 WATT INTERNALLY MATCHED FET
\begin{tabular}{ccccc} 
Frequency & Output Power & Gain & Return Loss & Efficiency \\
\((\mathrm{GHz})\) & G1dB & (PIdB & (dB) & (8) \\
& \((\mathrm{dBm})\) & (dB) & & \\
\hline 17.0 & 33.5 & 4.7 & 10.5 & 19.3 \\
17.5 & 33.2 & 4.7 & 25 & 18.5 \\
18.0 & 33.5 & 4.0 & 14.6 & 18.1
\end{tabular}
cancel at the input port and add at the output. The depth of cancellation and hence the input match, depends on the quality of the hybrid and how well the resistances track each other. zero transmission, apart from hybrid leakage, occurs when the resistances are 50 Ohms; above or below this value transmission increases, with a phase reversal between the two regimes

With PIN diodes as the variable elements the transmission vs. bias current response is parabolic rather than linear. Also, because of circuit imperfections and temperature effects, repeatable fine control around the zero transmission point may prove difficult. This type of attenuator is best suited to closed loop systems or those with regular calibration.

Any of these bi-phase attenuators can be used to make a four quadrant vector modulator but the hybrid attenuator, with single line control and low minimum loss, is probably the best, Figure 12. The bandwidth of such a circuit is determined by the quadrature hybrids used. It is interesting to note that the coupling network arrangement for this is exactly that found in the six-port network that is used for signal comparison and measurement [3]. This type of vector modulator has been used successfully at 750 MHz by the Independent Broadcasting Authority in Britain (4). A version using a microwave printed stripline network has also been investigated at University College London and shown to give useful results over nearly an octave bandwidth.

A new variation is that shown in Figure 13; this is a method of extending a single bi-phase attenuator to give control of the quadrature transmission as well. No extra quadrature hybrids are required but with phase shifts provided by line lengths the bandwidth is limited. In the
circuit shown the biasing arrangement is simplified by allowing the currents to flow to ground through the power dividers. Most bought in components of this type allow this but care must be taken to ensure that the currents do not saturate any ferrite devices inside.

This circuit, the Reflective Delay Line modulator, has been tried at UCL using comercial couplers at 70 MHz . The PIN diodes used were all HP 3080 types but were not specifically matched. Full cartesian control of the transmission vector was demonstrated; there were no missing sectors or regions of the coverage and because leakage in the couplers can be compensated by adjusting one or the other bias control the zero transmission point can always be accessed. The input return loss varied slightly with control settings but was about 20 dB over the whole range.

A further possibility would be to replace the quadrature hybrid with a 180 degree one and a quarter wave line; this would give an extremely economical four quadrant vector modulator.

\section*{References}

111 "Rectification effects in PIN attenuators". Hewlett Packard Application Note 957-3.
[2] "Diode and Transistor Designer's Catalog", Hewlett Packard Data Book.
[3] A. L. Cullen, "The 6-port and the microprocessor in microwave measurements". Proc. European Microwave Conference 1980, pp74-82.
[4] H. J. O'Neill and B. V. W. Isaacs, "An adaptive cross-polar cancellation system for satellite commications employing dual polarisation frequency re-use". IEE Radio Spectrum Contraverbosity Techniques Conference, 1980, pp 137-141.



Figure 1: PIN diode RF resistances vs. current \(\{2\) ]


Figure 2: Attenuator configurations

LOW NOISE OSCillator Paper
by
Art Upham
Rso Project Manager, Hewlett-Packard 620 signal Drive TAF C-34
Spokane, WA 99220


LOW NOISE OSCILLATOR DESIGN SPECTRAL PURITY
a mela mewn puty mosertory
LOW NOISE OSCILLATIOR DESIG
LOW NOISE OSCIL
A. Eribem obectme

0. spera maxave nevise

OSCILLATIOR COMPUTER ANALYSIS
A Open loop
a Clem los
OTHER NOISE MECHANISMS

We will focus primarily on phase noise (PM) components. \(\mathscr{L}\left(f_{m}\right)\) describes the ratio of SSB power in a 1 Hz B.W. due to phase noise, offset \(\mathrm{f}_{\mathrm{m}} \mathrm{Hz}\), from the carrier, to the total signal power.

Ref. 2, 14, 15


Spectral Purity describes the degree of degradation from a perfect impulse in the frequency domain:
\[
\begin{gathered}
V(t)=\cos \omega_{0} t \\
V(\omega)=\delta\left(\omega_{0}\right)+\delta\left(-\omega_{0}\right)
\end{gathered}
\]

Real signals have some noise associated
\[
V(t)=\left[1+e_{A}(t)\right] \cos \left[\omega_{0} t+\phi(t)\right]
\]

This is a typical phase noise measurement. This oscillator uses a 832.5 MHz surface acoustic wave resonator as the resonator. How good is this performance? Could it be better? What are the limits to the noise performance of this oscillator? What are the significant contributors to its noise?

RF in

parallel element bias

Figure 3: Pi Attenuator test circuit


Figure 5: Bias driver circuits

Figure 4: Lines of constant return loss and attenuation


The previous phase noise plot was measured on Hewlett-Packard's 3047 phase noise measurement system. This system has the capability of measuring noise as low as \(\sim-170 \mathrm{dBc}\). It covers the frequency range 10 MHz to 18 GHz .


Key parameters that will be important in our discussion of phase noise in oscillators include noise iteself as evidenced by the noise figure of the active devices and circuits used in the oscillator, \(1 / \mathrm{f}\) noise of active devices and resonators. AM-FM conversion of noise, upconversion of bias noise, and unflat gain.

Signal levels in the circuit are important. Higher signal levels lead to higher signal to noise ratios and thus better phase noise.
We will see that loaded resonator Q will determine phase noise close to the carrier and that increasing loaded Q will improve phase noise close to the carrier.


We can model an oscillator in the classical feedback form with an amplifier with gain \(G\) and feedback \(\beta\) which includes the resonator. For ososcillation at \(f=f_{0}\), two conditions must be satisfied:
1. Loop gain is greater than one at \(f_{0}\).
\[
|\mathrm{G} \beta|>1 \text { at } \mathrm{f}=\mathrm{f}_{0}
\]
2. Phase shift around the loop \(=0\)
\[
\angle \mathrm{G} \beta=0 \text { at } \mathrm{f}=\mathrm{f}_{0}
\]

In the interest of preventing spurious oscillations at undesired frequencies, two other conditions should be met:
\[
|\mathrm{G} \beta|<1 \text { at } \mathrm{f} \neq \mathrm{f}_{0}
\]
and
\[
\Gamma_{\text {node }}<1 \text { for all nodes at } \mathrm{f} \neq \mathrm{f}_{0}
\]
where \(\Gamma\) is the reflection coefficient looking into any node. (Meeting this condition at the collector and base nodes is usually sufficient.)
Signal to noise ratio at the input to the amplifier is \(\mathrm{P}_{\mathrm{avs}} /\) FkT where \(\mathrm{P}_{\mathrm{avs}}\) is the power available at the input of the amplifier and \(F\) is the noise figure of the amplifier.


P1gure 7: Attanuator performance

in

in


\section*{Figure 8: Phase shifter circuits}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
SHf?TRFFI. Plility \\
KEY RELATIONSHIPS
\end{tabular} \\
\hline
\end{tabular}

We assume that the signal to noise ratio at the input \(\mathrm{P}_{\text {avs }} / \mathrm{FkT}\) causes both amplitude and phase noise in equal amounts. For frequencies far from resonance, \(f_{0}\), where loop gain \(\ll 1\), phase noise relative to the carrier will be
\[
\mathrm{f}_{\mathrm{m}}=\frac{1}{2} \frac{\mathrm{FkT}}{\mathrm{P}_{\mathrm{avs}}}
\]

Thus
\[
\mathscr{L}\left(\mathrm{f}_{\mathrm{m}}\right)=-\mathrm{SNR}_{\mathrm{i}}-3 \mathrm{~dB}
\]
where
\[
\mathrm{SNR}_{\mathrm{i}}=10 \log \left(\frac{\mathrm{P}_{\mathrm{avs}}}{\mathrm{FkT}}\right)
\]
for \(\mathrm{f}_{\mathrm{m}} \gg\) loop bandwidth.
Close to the carrier, loop gain peaking will cause amplification of this noise. Let's first understand loaded resonator Q :
\[
Q_{L}=\left.\frac{f_{0}}{2} \frac{\partial \angle(G \beta)}{\partial f}\right|_{f=f_{0}}
\]
where
\(\frac{\partial \angle(G \beta)}{\partial f}=\) loop gain phase slope.

Loaded Q determines the open loop bandwidth of the feedback loop used to represent the oscillator. Inside the bandwidth.
\[
\frac{f_{0}}{2 Q_{L}} .
\]
when the loop is closed loop peaking increases phase noise. A first order approximation of phase noise is then
\[
L\left(f_{m}\right)=\frac{1}{2} \frac{F k T}{P_{\text {avs }}}\left[1+\left(\frac{1}{f_{m}} \frac{f_{0}}{2 Q_{L}}\right)^{2}\right]
\]
wheie
\(\mathrm{L}\left(\mathrm{f}_{\mathrm{m}}\right)=\) the ratio of SSB noise power due to \(P M\) in a 1 Hz bandwidth (centered \(\mathrm{f}_{\mathrm{m}} \mathrm{Hz}\) off the carrier) to total signal power;
\(\mathrm{F}=\) the noise factor of the active device;
\(\mathrm{k}=\) Boltzmann's constant; \(=1.38 \times 10^{-23} \mathrm{~W}\)-s
\(\mathrm{T}=\) Temperature (in \({ }^{\circ} \mathrm{K} \approx 300^{\circ} \mathrm{K}\) )
\(P_{\mathrm{avs}}=\) the power available from the source, resonator, in watts
\(\mathrm{f}_{0}=\) oscillation or carrier frequency
\(\mathrm{f}_{\mathrm{m}}=\) offset frequency
or
\(\mathscr{L}\left(\mathrm{f}_{\mathrm{m}}\right)=-10 \log \left[\frac{1}{2} \frac{\mathrm{FkT}}{\mathrm{P}_{\mathrm{avs}}}\left[1+\left(\frac{1}{\mathrm{f}_{\mathrm{m}}} \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right)^{2}\right]\right]\)
or
\(\mathscr{L}\left(f_{m}\right)=-3 \mathrm{~dB}-\mathrm{SNR}_{\mathrm{i}}+10 \log \left[1+\left(\frac{1}{\mathrm{f}_{\mathrm{m}}} \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right)^{2}\right]\)

If we express \(P_{\text {avs }}\) in dBm , and knowing that thermal noise in a 1 Hz bandwidth \(=-174 \mathrm{dBm}\), then
\(\mathscr{L}\left(\mathrm{f}_{\mathrm{m}}\right)=-\mathrm{P}_{\mathrm{avs}}(\mathrm{dBm})+\mathrm{NF}(\mathrm{dB})-177 \mathrm{dBc} / \mathrm{Hz}+\) peaking term ( dB ).


This slide presents the previous results in graphical form. For large offsets
\[
\left(\mathrm{f}_{\mathrm{m}} \gg \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right) .
\]
the phase noise floor \(=\)
\[
\frac{F k T}{2 P_{\text {avs }}}=-S N R_{i}-3 \mathrm{~dB} .
\]

Inside the offset frequency
\[
\frac{f_{0}}{2 Q_{L}}
\]
which is the bandwidth of the open loop circuit of our oscillator model, noise rises 6 dB /octave.


Figure 10: Bi-phase attenuators


Figure 11: Hybrid coupler attenuatora

\section*{PHASE NOISE NEAR CARRIER}



Let's look at an example. If we assume a power level of +10 dBm and \(\mathrm{NF}=5 \mathrm{~dB}\) then the phase noise floor
\[
\begin{gathered}
=-177 \mathrm{dBc} / \mathrm{Hz}+\mathrm{NF}(\mathrm{~dB})-\mathrm{P}_{\mathrm{avz}}(\mathrm{~dB}) \\
=-177+5-10=-182 \mathrm{dBc} / \mathrm{Hz} \\
\mathrm{f}_{\mathrm{m}} \gg \frac{\mathrm{f}_{0}}{2 Q_{\mathrm{L}}}
\end{gathered}
\]

For phase noise close to the carrier, the equation for shows
\[
\mathrm{L}\left(\mathrm{f}_{\mathrm{m}}\right) \approx \frac{1}{2} \frac{\mathrm{FkT}}{\mathrm{P}_{\mathrm{avs}}}\left(\frac{1}{\mathrm{f}_{\mathrm{m}}} \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right)^{2}
\]

Thus
\[
\mathscr{L}\left(f_{m}\right) \propto \frac{F}{P_{\text {avs }}} \frac{f_{0}{ }^{2}}{Q_{L}{ }^{2}} \propto \frac{f_{0}{ }^{2}}{\operatorname{SNR}_{i} Q_{L}{ }^{2}}
\]

To minimize phase noise we must maximize signal to noise ratio and loaded Q. Also notice that low phase noise is easier to achieve at low carrier frequencies.
In the example \(\mathrm{f}_{0}=1000 \mathrm{MHz}, \mathrm{P}_{\mathrm{avs}}=+10 \mathrm{dBm}\), \(\mathrm{NF}=5 \mathrm{~dB}\), and \(\mathrm{Q}_{\mathrm{L}}=50\).

\section*{What is \(\mathscr{L}(100 \mathrm{kHz})\) ?}
\[
\begin{aligned}
& \approx \text { phase noise floor }+ \text { peaking } \\
& \approx-182 \mathrm{dBc} / \mathrm{Hz}+20 \log \left(\frac{f_{0}}{2 f_{m} Q_{L}}\right) \\
& \approx-142 \mathrm{dBc} .
\end{aligned}
\]

If \(Q_{L}=500\), this improves 20 dB to \(-162 \mathrm{dBc} / \mathrm{Hz}\).


Starting with a specific close-in phase noise requirement, \(L\left(f_{m}\right)_{\text {required }}\) then \(Q_{L}\) can be determined from
\[
\mathrm{L}\left(\mathrm{f}_{\mathrm{m}} \ll \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right)_{\text {required }} \approx \frac{\mathrm{FkT}}{2 P_{\text {AvS }}}\left(\frac{\mathrm{f}_{0}}{2 \mathrm{f}_{\mathrm{m}} \mathrm{Q}_{\mathrm{L}}}\right)^{2}
\]
\[
\therefore Q_{L} \text { required }>V \frac{F k T}{2 P_{A V S}} \frac{F_{0}}{2 f_{m} V L\left(f_{m}\right)_{\text {required }}}
\]

Having \(Q_{L}\), a resonator may be selected using a rule of thumb that \(Q_{U} \geq 2\) to 5 times \(Q_{L}\).
The power level, \(\mathrm{P}_{\text {avs, }}\), is typically set by limitations in the resonator (higher power means greater AM-FM, and potential spurious responses, aging, etc.) or by NF or power handling limitations in the active device
\[
\begin{aligned}
& \text { Phase Noise Floor }=L\left(f_{m} \gg \frac{f_{0}}{2 Q_{L}}\right) \approx \frac{F k T}{P_{A v S}} \\
& \therefore P_{\text {avs }} \cong \frac{F k T}{L\left(f_{m} \gg \frac{f_{0}}{2 Q_{L}}\right)}
\end{aligned}
\]

This relationship may also give a NF requirement
\(F \cong \frac{P_{\text {AVS }} L\left(f_{m} \gg \frac{f_{0}}{2 Q_{L}}\right)}{k T}\)


Figure 12: "six-port" Vector Modulator
in


Figure 13: Reflective Delay Line vector modulator

Once a potential resonator has been selected, it makes sense to verify some of its parameters, notably its unloaded \(Q\left(Q_{U}\right), 1 / f\) noise, and AM-to-FM conversion. The unloaded Q of a resonator can be measured on a network analyzer by coupling very lightly to the resonator and measuring either the 3 dB bandwidth, phase slope. or the group delay. For this purpose:
\[
\begin{gathered}
\mathrm{Q}_{U}=\frac{\mathrm{f}_{0}}{\mathrm{BW}_{3 d \mathrm{~dB}}} \\
\mathrm{Q}_{U}=\frac{\mathrm{f}_{0}}{2} \frac{\delta \phi}{\delta \mathrm{f}}=\pi \mathrm{f}_{0} \tau \mathrm{GD}
\end{gathered}
\]
where
\(\tau_{G D}=S_{21}\) group delay in seconds
\[
T=Q_{U} / f_{0} \pi
\]


One helpful way to measure \(Q_{U}\) versus frequency is to set the network analyzer in the log frequency mode and draw a 6 dB /octave slope line falling off with frequency. If the group delay rises above the slope line, then \(Q_{U}\) is rising with frequency.

Verifying \(Q_{L}\) in the actual oscillator circuit is also possible, provided that the characteristic impedance \(Z_{0}\) of the network analyzer is near the operating circuit impedance, or that trans-
 formers are used to match the impedances of the test system and the circuit over the frequency range, and power levels are near operating conditions.

Ref. 12, 25, 26, 27


This is an example of \(1 / \mathrm{f}\) noise measurement using the technique in the previous slide. These data are indicative of typical \(1 / \mathrm{f}\) noise seen in SAlV resonators: we've seen 5 to 10 dB better and 20 to 30 dB worse.
D. Halford has suggested a "rule of thumb" phase noise intercept of \(-115 \mathrm{dBc} / \mathrm{Hz}\) at a 1 Hz offset. See ref. 16.


It is possible to predict the phase-noise performance of the oscillator circuit (closed loop) by adding the white phase-noise component, FkT/ \(2 \mathrm{P}_{\text {avs }}\), to the \(1 / \mathrm{f}\) component, \(\mathrm{L}\left(\mathrm{f}_{\mathrm{m}}\right)_{1 / f}\), and then modifying both of these by the oscillator closedloop gain peaking, \(\left[1+\left(f_{0} / f_{m} 2 Q_{1}\right)^{2}\right]\). The total oscillator phase noise is
\[
\begin{aligned}
\mathscr{L}\left(f_{m}\right) & =10 \log \left[1+\left(\frac{f_{0}}{f_{m} 2 Q_{L}}\right)^{2}\right] \\
& \cdot\left[\frac{F k T}{2 P_{\text {avs }}}+L\left(f_{m}\right)_{1 / f}\right]
\end{aligned}
\]

The components of \(1 / \mathrm{f}\) and white phase noise of the amplifier-resonator combination are artificially separated. However, if we measure the total phase noise, \(\mathcal{L}\left(f_{m}\right)_{0 L}\), of the series amplifier-resonator open loop (with the correct terminating impedance and power levels), it's possible to predict the oscillator phase noise directly:
\[
\begin{gathered}
\mathscr{L}\left(f_{m}\right)=10 \log \left[1+\left(\frac{f_{0}}{2 f_{m} Q_{L}}\right)^{2}\right] L\left(f_{m}\right)_{O L} \\
\mathscr{L}\left(f_{m}\right)=\mathscr{L}\left(f_{m}\right)_{O L}+10 \log \left[1+\left(\frac{f_{0}}{2 f_{m} Q_{L}}\right)^{2}\right]
\end{gathered}
\]

This phase-noise prediction can be shown more easily with a graphical approach. First, plot the phase noise due to white noise components. Then, draw \(\mathcal{L}\left(f_{m}\right)_{1 / i}\) on the same graph. Next, draw a -9 dB octave line that intersects \(\mathscr{L}\left(f_{m}\right)_{1 / t}\) at \(f_{m}=f_{0} / 2 Q_{L}\). The intersection of this line with the locus of
\[
\mathscr{L}\left(f_{m}\right)=10 \log \frac{F k T}{2 P_{\text {avs }}}\left[1+\left(\frac{1}{f_{m}} \frac{f_{0}}{2 Q_{L}}\right)^{2}\right]
\]
is \(f_{c}\), the \(1 / \mathrm{f}^{3}\) noise-corner frequency. The \(9 \mathrm{~dB} /\) octave line then serves as the predicted value of \(\mathcal{L}\left(\mathrm{f}_{\mathrm{m}}<\mathrm{f}_{\mathrm{c}}\right)\).
Ref. 41
\[
\text { E( } \left.\mathrm{H}_{m}\right)_{I / 2}^{3} \text { OUE TO TRANSISTOR }
\]

If \(1 / \mathrm{f}\) phase noise modulation is in the resonator or active device, then an increase in \(Q_{1}\) will improve the phase-noise performance in the \(1 / f\) region. This occurs because the loop peaking effect operates on \(1 / \mathrm{f}\) noise as well as white noise as can be seen from the previous equations.


However, if the \(1 / \mathrm{f}\) noise mechanism is frequency modulating the resonator center frequency. then no improvement of \(Q_{L}\) will lower phase noise in the \(1 / \mathrm{f}\) region. If a noise source is phase modulating the oscillator, then changing the phase slope of the resonator-or changing the Q -will affect the depth of modulation.

\section*{High-Voltage HF/VHF Power Static Induction Transiator Amplifiers}

\section*{Scott J. Butler and Robert J. Regan}
```

GTE Laboratorien Incorporated
40 Sylvan Road
Waltham, MA 02254

```

The operation and performance of power static induction transistors (SITs) in HF/VHF amplifiers will be discussed in this presentation.

Unprecedented saturated CW output power levels of greater than 200 W at 225 MHz , with 6-dB power gain and 70\% drain efficiency, have been demonstrated by single-ended ransistors connected in the common-gate configuration. Small-signal measurements on these power SITs indicate a nearly flat \(10-\mathrm{dB}\) gain response from 100 MHz to 3 GHz , and a unity power gain frequency in X-band. \({ }^{1.2}\)

Static induction transistors, which are operated in a common-source configuration, however, can provide very high gain at frequencies in the HF/VHF and lower UHF frequency bands. To accomplish this, the parasitic drain-to-gate capacitance must be neutralized.

The broadband neutralization scheme to be presented is similar to the cross neutralizasion scheme successfully used for push-pull triode vacuum tube amplifiers (Figure 1). In this design, the parasitic feedback capacitance, \(\mathrm{C}_{\mathrm{PG}}\) (capacitance plate to grid), of each active device is neutralized by adding two neutralization capacitors, externally, which are approximately equal in value to the individual parasitic feedback capacitance values. The addition of these neutralization capacitors to the circuit results in a capacitive bridge, as illustrated in Figure 1. Proper selection of the neutralization capacitors balances the bridge, thereby "nulling out" any potential feedback signale between the output and input of the balanced device. The analogous solid state SIT amplifier is shown in Figure 2.

The computed small-signal gain response and stability factor of this cross-neutralized SIT amplifier, shown in Figure 3, demonstrates the broadband performance potential oif this neutralization scheme. Effective broadband neutralization depends upon judicious selection and placement of neutralization capacitors within the transistor package and attention to the bond wire inductance associated with connecting the neutralization capacitors to the SIT chips. The neutralization capacitors are implemented as discrete, high O , low loss
capacitors mounted inside the power transistor package in close proximity to the active SIT chips. Very short bond wires are used to connect them. thus eliminating completely the potential for resonance conditions. As shown in Figure 3, the calculated gain is approximately 14 dB across the entire 1 - to \(\mathbf{2 0 0} \cdot \mathrm{MHz}\) band with a stability factor of \(>14\). Experimental crossneutralized SITs were fabricated in our laboratory using two, six-cell. \(7 \cdot \mu \mathrm{~m}\) pitch SGSITs connected in a single balanced transistor package along with a pair of \(\mathbf{2 7} \cdot \mathrm{pF}\) chip capacitors mounted inside the package to provide neutralization. The amplifier was designed and fabricated using coaxial 4:1 transformers and baluns wound on high permittivity ferrite toroids. Initial power tests were performed at 100 MHz . where the amplifier exhibited 50 W CW output power with \(12.2-\mathrm{dB}\) power gain, as shown in Figure 4 . This amplifier performance reflects the power performance in an "as-fabricated" state, without tuning to optirnize the performance. The device contains enough active area ( \(\mathrm{W}_{\mathrm{g}}=24 \mathrm{~cm}\) ) to deliver about 200 W of out. put power; however, the package which was used is only capable of dissipating approximately 100 W of average power. To establish the CW potential of this amplifier, pulsed operation at a \(10 \%\) duty was examined. Figure 5 illustrates the peak power capability of this device. A peak output power level of 120 W was observed with \(13-\mathrm{dB}\) gain and \(40 \%\) average efficiency. With a proper package and design refinements, output power levels of nearly 200 W across the band should be possible with this design.

\section*{Acknowledgment}

The authors gratefully acknowiedge Mehdy Abdollahian, Anthony Varallo, and Marguente Delaney for their talented work in device packaging, amplifier fabrication, and characterization; Emel Bulat. Maureen Sullivan. Charles Herrick, Steve Rose, and Theress Rubico for device fabrication; and Drs. Paul Haugsjas: Harry Lockwood, and Les Riseberg for their continuous support throughout this work. In addition, we thank Frank Stites of GTE Govermment Systems for his valuable comments and suggestions.

\section*{Roforencer}
1. R. J. Regan and S. J. Butler, "High Voltage UHF Power Static Induction Transistors," Proceedings of RF Technology Expo '85. Anaheim, CA. January 1985. pp. 81-84.
2. R. J. Regan, I. Bencuya, S. Butler. F. Stites, and W. Harrison. "New UHF Power Transistor Operates at High Voltage," Microwaves and RF 24 63. (April 1985)


In many VCOs, the spectral purity is dominated by AM-to-FM conversion mechanisms, rather than the \(\mathrm{SNR}_{\mathrm{i}}\) and \(\mathrm{Q}_{\mathrm{L}}\). One method to predict the AM-to-FM conversion in a diode-tuned VCO is by studying the frequency-versus-tuningvoltage characteristic. A change in the rf voltage amplitude on the resonator can affect the average bias on the varactor. A 10 -percent change in resonator rf voltage corresponds to 10 -percent AM on the carrier. To measure the effects of changing carrier level, one can increase or decrease the rf voltage on the resonator by changing the bias current in the active device. Measure the carrier frequency at 90 -percent resonator voltage and compare this with the average carrier frequency at 110 -percent resonator voltage. The peak-to-peak frequency shift due to 10 -percent AM can then be estimated:
\[
\begin{gathered}
\overline{f_{0}(90 \%)} \cong \frac{f_{0}(+ \text { peak })-f_{0}(- \text { peak })}{2} \\
\Delta f_{p k}(10 \% A M)=\frac{\overline{f_{0}(110 \%)}-\overline{f_{0}(90 \%)}}{2} \\
K_{v}(A M / F M)=\frac{\Delta f_{p k}(10 \% A M)}{10 \%} \mathrm{~Hz} \mathrm{pk} / \% A M
\end{gathered}
\]

This equation provides a solution in frequency modulation/percent AM. The percent AM. A, should be no less than the collector bias current shot noise fluctuations divided by collector bias \(\times 100\) percent:
\[
\mathrm{A} \% \mathrm{AM}=\frac{\sqrt{2 \sqrt{2 q 1_{c}}}}{\mathrm{l}_{\mathrm{c}}} \times 100 \%=200 \sqrt{\mathrm{q} / \mathrm{l}_{\mathrm{c}} \%}
\]
where
\[
\sqrt{2 q_{c}}=\text { the full collector shot noise }
\]
and
\(\mathrm{q}=\) the charge of an electron \(=1.6 \times 10^{-19}\) Coulomb

Now we can predict the closed loop phase noise contribution due to AM-FM:
\[
\mathscr{L}\left(f_{m}\right)_{A M}=20 \log \left[\frac{A K_{v}(\mathrm{AM} / \mathrm{FM})}{2 \mathrm{f}_{\mathrm{m}}}\right]
\]
or total phase noise:
\[
\begin{gathered}
\mathscr{L}\left(f_{m}\right)=10 \log \left\{\left[1+\left(\frac{f_{0}}{2 f_{m} Q_{L}}\right)^{2}\right]\right. \\
\left.\cdot\left[\frac{\mathrm{FkT}}{2 \mathrm{P}_{\text {avs }}}+L\left(\mathrm{f}_{\mathrm{m}}\right)_{1 / f}\right]+\left[\frac{\mathrm{AK}_{v}(\text { AM } / \mathrm{FM})}{2 f_{m}}\right]^{2}\right\}
\end{gathered}
\]

Ref. 28. 29

\section*{PUSH-PULL \\ CROSS NEUTRALIZED AMPLIFIER}



GIT Leboralories
Figure 1


There are several methods for measuring the AM-to-FM conversion coefficient ( \(\mathrm{K}_{\mathrm{vAM}-\mathrm{FM}}\) ). In one case, the resonator must be set up at the appropriate power level with the correct amount of coupling/loading, and connected to a network analyzer. By shifting the power level \(\pm 10\) percent, and monitoring the center-frequency shift.
\[
\mathrm{K}_{v}(\mathrm{AM} / \mathrm{FM})=\frac{\Delta \mathrm{f}_{\mathrm{pk}}(10 \% \mathrm{AM})}{10 \%} \mathrm{~Hz} \mathrm{pk} / \% \mathrm{AM}
\]

Another method of measuring AM-to-FM conversion is to adjust the transistor bias current \(10 \%\), monitor \(\Delta f\), and use
\[
\mathrm{K}_{\mathrm{v}}(\mathrm{AM} / \mathrm{FM})=\frac{\Delta \mathrm{f}_{\mathrm{pk}}(10 \% \mathrm{AM})}{10 \%} \mathrm{~Hz} \mathrm{pk} / \% \mathrm{AM}
\]

Typically, a transistor is collector-current cutofflimiting, so a 10 -percent increase in the colleclor bias current will cause a 10 -percent increase in the resonator voltage. The latter approach may cause a change in the active device's phase angle, but this is acceptable, since it's desirable to characterize the sum of all effects contributing to AM-to-FM conversion.


The AM-to-FM conversion can also be tested dynamically. This technique involves injecting a small, low frequency ( \(f_{i}\) ) current into the transistor's emitter. Adjust \(f_{i}\) until the sidebands around the carrier roll off 6 dB for each octave increase in \(f_{i}\) (which indicates \(F M\) ):
\[
P_{\% A M}=\left(\frac{\text { injected current peak }}{\text { emitter bias current }}\right) \times 100 \%
\]
\(\mathscr{L}\left(\mathrm{f}_{\mathfrak{i}}\right)=\) measured SSB-to-carrier ratio of the injected FM sidebands. From the narrowband FM approximation we have:
\[
\begin{gathered}
\mathscr{L}\left(f_{\mathrm{i}}\right)=20 \log \left(\frac{\Delta \mathrm{f}_{\mathrm{ipk}}}{2 \mathrm{f}_{\mathrm{i}}}\right) \\
\Delta \mathrm{f}_{\mathrm{ipk}}=\left(2 \mathrm{f}_{\mathrm{i}}\right) 10^{\mathscr{L}\left(\mathrm{f}_{\mathrm{i}} / 20\right.}
\end{gathered}
\]
\(\Delta f_{i p k}=\) peak frequency deviation indicated by these sidebands
\[
\therefore K_{v}(A M / F M)=\frac{\Delta f_{i p k}}{P_{\% A M}} \text { in } \mathrm{Hz} \text { peak } / \% A M
\]

One can also measure this FM modulation directly using an 8901 modulation analyzer.

"Many oscillators can be reduced to a Colpitts configuration." The basic layout is an oscillator circuit without a ground terminal. By grounding this circuit at any of its nodes, it can be transformed into any of the other configurations. The preferred topology is one that makes it possible to visualize such things as loop gain, loop phase angle, and stopband stability.

The common-emitter (Pierce) topology is ideal for good out-of-band stability. It yields opencircuit stability at frequencies above about \(f_{T} / 3\), and can be kept stable at lower frequencies. Alternatively, the common-base (Colpitts) topology typically has negative real-part impedance at its emitter from about \(f_{T} / 5\) to \(f_{\max }\) depending on the base-to-ground parasitic inductance. The common-collector configuration, with capacitive loading on its emitter, typically possesses a negative real-part impedance at its base over a significant range of frequencies. Instability is a potential problem whenever there is a negative real part of the impedance at frequencies other than the desired oscillation frequency. The result can be spurious oscillation, squegging, parametric effects, and sharply nonlinear tuning characteristics, especially when a harmonic of the desired frequency crosses through a region of negative resistance. Refs. 9. 10. 4. 5. 6


Figure 2. Cross-Neutralized Common-Source Push-Pull Static Induction Transistor Amplifier Design


Figure 3. Computed Smath-Signal Gain and Stability Factor for Cross-Neutralized Push-Pull SIT Amplifier Shown in Figure 2


Figure 4. \(100-\mathrm{MHz}\) cw Power Periormance for the Cross-Neutralized Push-Pull Common-Source SIT Amplifier

peak pulse daive power (w)
Figure 5. 100 MHz Pulsed Power ( \(10 \%\) Duty Cycle) Performance of Cross-Neutralized Push-Pull
Common-Source SIT Amplifier

1 OR 2 PORT RNALYSIS


Oscillator topologies can be designed as one-port or two-port configurations. One-ports (negativeresistance oscillators) have good track records in the gigahertz region. The two-port topology permits analysis and ease of visualization using feedback theory; loop gain and phase slope may be more easily derived (and measured) to predict loaded \(Q_{L}\) and spectral purity.


This one-port configuration is widely used in the gigahertz region with YIG-tuned oscillators and VCOs; multi-octave tuning range is a key advantage.
Despite its good points, however, this configuration has its drawbacks. It does not allow easy definition of loaded Q for the purpose of predicting phase noise, nor does it permit simple modeling of loop gain. This topology is also susceptible to spurious modes, since the conditions for the emitter relection coefficient, \(\Gamma_{e}>1\), leads to potential instability over a broad range of frequencies. The phase noise for this kind of oscillator can be accurately predicted by a computer method we will discuss shortly.
Refs. 17, 18, 19, 20, 21, 22, 23, 31, 32, 33


The choices are many: bipolar junction transistors, JFETs, SimOSFETs, GaAs FETs, Gunn/ IMPATT diodes, or miniature packaged amplifiers. In all cases, the selection criteria should include low noise figure at the maximum operating junction temperature; low noise figure at higher power in order to get the highest signal-to-noise ratio (SNR) possible; and low noise figure at the source impedance presented to the device. Certain warnings are also in order. Beware of large ripple occurring in small-signal \(\mathrm{S}_{21}\) gain in the presence of a large signal at \(f_{0}\); this indicates nonlinear compression. This is not a parameter that the device manufacturer will specify and must be measured on a network analyzer. Also, be wary of limitations in resonators, such as spurious content in YIG resonators ( \(\geq+10 \mathrm{dBm}\) ) and aging in SAW and bulk crystal resonators ( \(\leq 50 \mu \mathrm{~W}\) is typical for most frequency standards).

Of the devices listed above, the bipolar junction transistor is a natural for low-noise design due to its well-characterized and repeatable parameters. The characteristics of the other devices tend to be not quite so predictable. FETs, for example, exhibit significant variations in pinchoff voltage and performance with temperature. A good rule of thumb is to select \(f_{T}\) at least tivo to three times the operating frequency. and to remember that the noise figure degrades ( \(i_{n}\) increases) as \(f_{0}\) exceeds \(f_{\beta}\).

\section*{Ref. 7}

A JFET is a good choice for achieving low-noise oscillator performance at \(f_{0} \leq U H F\). This performance is most likely due to the high input realpart impedance, which allows tight coupliing and little loading of the resonator (high \(Q_{L}\) ). Concurrently, a good noise figure can be achieved with a high source impedance because the JFET input noise current ( \(i_{n}\) ) is so low:
\[
r_{s}(\text { optimum NF })=e_{n} / i_{n}
\]

The end result is high \(\mathrm{SNR}_{i}\) or very good phasenoise characteristics.
It has been mentioned that phase noise may be dominated by \(\mathrm{SNR}_{\mathrm{i}}\) and \(\mathrm{Q}_{\mathrm{L}}\) (ignoring \(1 / \mathrm{f}\) noise for the moment). Good \(S N R_{i}\) and \(Q_{L}\) depends on the noise figure of the active device at the operating source impedance, on \(P_{a v s}\), and on the \(Q_{L} / Q_{U}\) degradation due to active device and outpui loading. The IFET possesses operating characteristics that enable it to achieve high \(Q_{L} / Q_{U}\) and \(\mathrm{SNR}_{\mathrm{i}}\) simultaneously.

In a two-port oscillator, there are three contributors to \(Q_{L}\) degradation: the input resistance of the amplifier, the output resistance of the amplifier, and the load resistance. One way to improve \(Q_{L} / Q_{U}\) and \(S N R_{i}\) is to use two devices in an oscillator circuit. This two-device circuit lightly loads the resonator due to the high input and output real parts of the JFET impedance. The load is isolated from the resonator by \(Q_{1}\), thus removing the third contributor to \(Q_{L}\) degradation.
At low frequencies especially, take advantage of excess device gain to keep impedances large by using feedback. This will help to not load the resonator Q .


The purpose of an oscillator's coupling networks are: to match the input/output impedance of the active device to that of the resonator for optimum \(\mathrm{P}_{\text {avs }}, \mathrm{Q}_{\mathrm{L}}\), and NF ; to provide enough phase shift to achieve 0-deg. phase in the angle of the loop-gain transfer function at \(f_{0}\), where hopefully the loop gain is greater than 1.0 and near the maximum phase slope; and to select the desired operating frequency mode in a multimode oscillator. Some common forms of coupling networks are presented in refs. \(12,9,10\), and 37.
Three coupling network design objectives can also be stated mathematically as
\[
\begin{gathered}
\left|S_{21}\right|_{\text {loop gain }}>0 \mathrm{~dB} \\
\left.\angle \mathrm{~S}_{21}\right|_{\text {loop gain }}=0^{\circ} \\
\text { for } f=\mathrm{f}_{0} \text { only }
\end{gathered}
\]
and
and
\[
\left|\Gamma_{\text {node }}\right|<1.0
\]
for \(f \neq f_{0}\) and all nodes.
Ref. 12. 9, 10. 37, 38

Title: AN EVOLUTION INTO SAW RESONATORS (Low Power Security -- FCC Part 15) by
Ronald J. Coash -- Notifier/EMHART, 6050 N. 56 St.
EMHART Electrical/Electronic Group Lincoln, NE 68507

\section*{SUMMARY}

Surface Accoustic Wave Resonators are being used in applications such as: CATV, satellite subsystems, signal generators, security systems, garage door openers, etc. At Notifier, the SAWRs are being used in low power security systems. Few books have been written on SAWRs, so the best information to date appears in technical magazines and papers.


Fundamential frequencys of SAWR oscillator circuits range from 150 MHz to beyond \(1,500 \mathrm{MHz}\). SAWRs exhibit characteristics of the historical bulk crystal devices, yet belong to a much different subclass of frequency stabilizers. The selection of a SANR is more diversified than its lower frequency bulk crystal class of frequency stabilizers. Selection and evaluation are key words and are the main issues of this paper. The last page of this paper lists other sources of information on the subject of SAWR technology.

\section*{INTRODUCTION}

The factors involved in the use of SAWRS in short range wireless data commications are paradoxical with cost and dependability being the most important issues. Traditionally, low power (about \(6,000 \mathrm{uV} / \mathrm{m}\) at 3 meters) security alarm transmitters have been limited to LC and bulk crystal devices, but some manufactures are now using Surface Accoustic Wave oscillators as the frequency stabilizing element. The range of these devices is about 200-350 feet (Null Free not Free Space Range).
1.1 Current FCC requirements have made it increasingly difficult to design and mamufacture cost effective "miniture" RF transmitting and receiving devices. In several cases manufacturers are operating (or were at one time) under special wavers, thus pranpting sane of us to use slightly more expensive SAWR technology. Recently, costs have been reduced somewhat, thus making SAWRs more feasable with regard to FM/SANRs being used in cost conscious designs. Many computing devices and portable radios radiate more interference (RFI/EMI) than is allowed for life safety devices under FCC Part 15. To further complicate the situation other regulations (UL 1023) require a one year battery life from a 9 volt "transistor radio battery". Formerly, Notifier manufactured bulk type crystal controlled frequency multiplier VHF transmitters that consummed more power per period of time than the present units do. In this particular case the transmitters transmit a supervisory signal once a minute for 24 hours/day. Note also that the transmitters are in the UHF range instead of previous VHF range.


The S-parameter treatment is convenient for use with network analysis. The measured S-parameter data can be used in computer modeling and analysis, and for comparing measured and predicted performance.

A coupling network can be tested with the setup shown. In this slide, \(\mathrm{Z}_{\text {in }}\) is the reference impedance for \(S_{22}\) at the output port, and \(Z_{\text {out }}\) is the reference impedance for \(S_{11}\) at the input port. The technique is exactly correct if \(Z_{01}=\left.Z_{\text {out }}\right|_{\text {Por } 2}\) and \(Z_{02}=\left.Z_{\text {in }}\right|_{\text {Port } 1}\). Other conditions are that \(\mathrm{Z}_{\text {in }}\) be measured with Port 2 terminated in \(Z_{\text {in }}\), while \(Z_{\text {out }}\) be determined with Port 1 terminated in \(\mathrm{Z}_{\text {out }}\). These conditions are not that easy to achieve; still, if the loop is broken where the impedances are reasonably well characterized (real), and ideal (computer-simulated) transformers are employed to get different input and output reference impedances, a model develops which provides fairly accurate loop gain/
se data.

Q a PHASE SLOPE RT 0


From the previous model we get
\[
\begin{aligned}
\text { I loop gain } 1 & \approx\left|S_{21}\right| \\
\angle \text { loop gain } & \approx \angle S_{21}
\end{aligned}
\]

The results may appear as those shown, where
\[
Q_{L}=\left.\left(f_{0} / 2\right)(\partial \phi / \partial f)\right|_{0}
\]
and
\[
\phi(f)=\angle S_{21}(f)
\]

It's apparent from this example that oscillation, point b, \(\left(\angle S_{21}=0^{\circ}\right)\) will not occur at the maximum phase slope, point c. Consequently, \(\mathrm{Q}_{\mathrm{L}}\) and the phase noise will be unnecessarily degraded. There is, however, sufficient loop gain ( 2 dB at point a) for oscillation.
Adjustments to a coupling network make it possible to achieve maximum \(Q_{L}\), that is, \(\angle S_{21}=0^{\circ}\) at the maximum phase slope. Coupling to the resonator can also be reduced (so that \(\left|S_{21}\right| \approx\) +3 dB at \(\angle \mathrm{S}_{21}=0^{\circ}\) ) in order to increase \(\mathrm{Q}_{1}\). Recall that this action may have deleterious effects on \(P_{\text {Avs }}\) (the power available from the source in dBm ) and noise figure as functions of the source impedance.


Another test (calculated or measured) for the effectiveness of a coupling network is to close the loop and analyze the reflection coefficient ( \(\Gamma\) ) at any node. This slide illustrates this concept. Looking at the output of the oscillator, the necessary condition for oscillation is
\[
\Gamma_{0}>\left.1\right|_{\angle \Gamma_{0}=0}
\]
where
\[
\mathrm{f}_{0} \approx \mathrm{fl}_{\angle \mathrm{r}_{0}=0}
\]

Ref. 20
1.2 Paradox/Contradictions = Strict Design Parameters (for cost effectiveness) Transmitter specifications: cigarette pack size, at least 300 ft . range, low battery detect alarm, 256 system codes, 32 transmitter codes, 4 transmitter function codes, error code, 15 uA . idle current, one year battery life, one minute short supervisory transmissions (every minute of the day), 8 special codes, rugged, . 25 bandwidth, special scheduled transinissions, no external antema, and do all this for the nominal sum of \(\$ 15\) cost (factory). Then meet FCC and UL requirements for life safety devices that have greater restrictions than do other devices not involved in life safety issues, by the time the digital design is costed tiere is little maney left for the r.f. section.
2.0 USE OF SAMR TECANOLOGY VERSES LC CRYSTAL, etc.
2.1 What is a Surface Accoustic Mave Resonator? A SAMR is a frequency stabilizing devise which is used in much the same way as are typical bulk crystal elements, but does so at higher fundamental frequencies ( \(150-1,500 \mathrm{M}-\mathrm{z}\) ). However, the variations in the use of SAMRs used here are more extensive and the specifications vary considerably. There are various articles and papers that have been written on this subject and the purpose of this paper is to cover the somewhat obscure aspects experienced in working with SAWRs.

Since the SANR operates on a surface phenomenum that does not appear to affect the bulk of the piezo-electric substrate, it was decided to try a truly fine idea as shown in Figure 2. The Modulator (Bulk) changes the length of the substrate and thus mudulating the spacing of the surface waves which determine the SAMR's frequency.


Figure 2



Once there is enough loop gain and the correct phase angle in a design, it's time to consider how to deliver power to the load. Power is typically taken from the resonator, but for the sake of flexibility, it should also be possible to tap signal power at any point in the oscillator loop. Tapping power at \(V_{1}, V_{2}\), or \(V_{4}\) may provide a high signal level to drive limiters and maintain a good noise floor. Node \(V_{4}\) may have reduced harmonics content due to the lowpass filtering effect of the inductor. Taking power from \(\mathrm{V}_{3}\) may provide a lower noise floor due to some filtering created by the stopband rejection of the resonator crystal.
Another power-tapping technique is to reflect a load resistance, \(\mathrm{r}_{\mathrm{L}}\), to a desired output node, such that \(r_{L}\) is much greater than the real-part impedance seen looking back into that node at \(\mathrm{f}_{0}\). This can be done with matching networks or transformers. As a consequence, the loop gain (and \(Q_{L}\) ) is reduced (less than 3 to 6 dB ), and the output power may not be significantly reduced.

Tapping power from the collector can provide out-of-band stability by reducing the real-part impedance as seen by the collector (commonemitter and common-base topologies). This creates heightened rejection of undesired modes.

There are many techniques for matching to a load. One method relies on series-to-parallel transformations, ref. 37.

\section*{Oscillator Computer Analysis}

LOW NOISE OSCILLATOR DESIGN SPECTRAL PURITY
A. mis wexwa wity noanvor

LOW NOISE OSCILLATOR DESIGN
R Entuan owarme

D. sted in emvedevire

OSCILLATOR COMPUTER RNALYSIS

OTHER NOISE MECHANISMS


A computer helps to evaluate oscillator circuit output-noise spectral density (phase noise) and signal power in a closed loop format by using linear, frequency-domain analysis techniques. This approach is really just an extension of classical feedback control theory. An oscillator is a feedback amplifier whose poles of closed-loop gain transfer function have moved into the right half-plane. Feedback amplifiers may be analyzed for noise and transfer function for any degree of peaking as long as the poles remain in the left half-plane (resulting in no oscillation). If an oscillator is analyzed with its loop gain adjusted for poles very near the \(\mathrm{j} \omega\) axis, the output noise spectral density will be essentially the same as if the poles were exactly on the \(\mathrm{j} \omega\) axis (resulting in oscillation).
Since this method accurately predicts and uses actual operating power levels, then \(\mathrm{P}_{\mathrm{Avs}}\) does not have to be known apriori. The computer easily handles the changing NF as a function of rapidly changing source impedance near resonance since we are using actual noise generators in our modeling (not an assumed NF).
3.1 Developement of the FSK/FM hybrid oscillator (transmitter) occured with requirements in reduced size and adjustment expense. Below is one of the early circuits used for evaluation of FSK/FM SAW Resonator Oscillators.

470 pf


The circuit above was later modified so that only one adjustment is necessary to set the main frequency and the frequency deviation. In adjusting the SAW TRIM capacitor, one tends to center the main frequency too much to allow for a frequency deviation range of \(90-100 \mathrm{kHz}\). The component \(Q\) and design parameters of the phasing inductors connected to the SAWR are somewhat different than expe. ted. The use of high \(Q\) coils resulted in the oscillator running intermittently is. a "free run mode" when being modulated. Reduction of coil wire size and coil size increased the pullability of the oscillator but the losses of the circuit were greater, thus requiring a different transistor bias level. The circuit components were placed in the same physical orientation as in the schematic diagram in Figure 3.

A rather basic oscillator test procedure was used: voltage variations, power supply switching, frequency and deviation amplitude measurements, etc. The most profound test was performed by placing the hand in contact with all of the oscillator components and upon removal watching the results as the preceeding tests were performed. Then the circuit was tested for maximum frequency deviation while maintaining stability, as shown in Figure 4. The object of the hand interference test is to test for oscillator recovery with and without the circuit pulled off frequency by the modulator. Variations in power supply voltage do not display the same results.

CAITION -- The circuit involved can eventually deteriorate the SAWR and its occurance is so gradual that it is not noticed at first. Changing the bias resistors on the base circuit is necessary for better long range performance. Damage to the SAWR occured at about +18 - 20 dBm . At about +12 dBm the centerline frequency of the SAWR used would change perhaps indicating some internal heating of the SAWR itself. The goal to obtain signal output levels of \(12,333 \mathrm{uV} / \mathrm{m}\) at 3 meters with a single stage SAWR was not obtained. Therefore, a hybrid oscillator with a buffer booster stage was added to the oscillator to obtain more output and save space. Note also that marketing requirements did not allow for a separate antenna to aid in design and range requirements in the initial descrete SAWR design. Essentially the goal became almost impossible to obtain thus making it necessary to maximize all aspects of the design. Again the parameters obtained are intermediate with respect to the advantages between LC and bulk crystal oscillators. The term intermediate is used here primarily due to the manufacturing frequency tolerance of low cost SAWR devices.


These figures demonstrate in more detail the process which allows linear-frequency-domain computer analysis to predict closed loop phase noise. If we focus on \(f_{0}\) where \(\angle S_{21}=0^{\circ}\) and just modify \(\left\{S_{21} \backslash\right.\), then the closed loop gain becomes:
\[
\frac{V_{0}}{V_{i}}\left(f_{0}\right)=\frac{1}{1-G \beta}=\frac{1}{1-\left|S_{21}\right|}
\]
and we see as \(\left|S_{21}\right| \rightarrow 1.0\) then
\[
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\left(\mathrm{f}_{0}\right) \rightarrow \infty
\]
goes to infinity. Note the shape of the closed loop gain peaking at the +3 dB corner.
\[
f_{m}=\frac{f_{0}}{2 Q_{L}} .
\]
changes very little whether the peak is 40 dB or 90 dB or \(\infty\). Very little is gained by focusing on very close in phase noise
\[
\left(\mathrm{fm} \ll \frac{\mathrm{f}_{0}}{2 \mathrm{Q}_{\mathrm{L}}}\right)
\]
because the shape will remain a constant \(6 \mathrm{~dB} /\) octave unless we are investigating the effects of crossing high Q spurious modes.

A basic modeling procedure for predicting parameters like phase noise, \(\mathrm{P}_{\text {out }}\), or node voltages and branch currents follows eight steps:
- choose a limiting mechanism (e.g., collector current) for modeling the oscillator. Typically, adjust \(\mathbb{S}_{21}\) I of the active device to model the collector current cutoff limiting.
- inject a current source into any node.
- adjust the gain \(\left|S_{21}\right|\) to model the limiting mechanism so that the closed-loop gain peaking is greater than 40 dB .
- monitor the emitter current at resonance during the computer analysis and scale the computer-analyzed value to the limiting current actually found or predicted in the circuit.
- scale all node voltages and branch currents by this factor. This provides output voltage, resonator voltage, and any other branch current or node voltages during oscillation.
- remove the current source and add all appropriate noise voltage and current sources.
- plot the spectral density of the output noise.
- review the ratio of the output voltage to the output noise (in a 1 Hz bandwidth) gives the predicted \(S N R_{i}\), hence the phase noise:
\[
\mathscr{L}\left(f_{m}\right)=-S N R_{0}\left(f_{m}\right)-3 \mathrm{~dB} \text { (for PM only) }
\]

This transistor oscillator is biased for collectorcurrent cutoff-limiting (no saturation) operation. Experience teaches us that when the transistor goes into compression then \(\left.\right|_{21} \mid\) decreases and \(\angle S_{21}\) remains approximately the same. As a result, the loop gain variation with level can be modeled through \(\left|S_{21}\right|\) adjustments alone. A more sophisticated model might use full-blown largesignal S-parameters and adjust \(\mathrm{S}_{11}, \mathrm{~S}_{12}, \mathrm{~S}_{21}\), and \(S_{22}\) accordingly (this has not been found necessary to achieve accuracies within 1 to \(2 d B\) ).




\section*{SPBCTRUM ANLYSIS -. MCOLATION}

It should be noted that the SANR manufactures recomend deviation rates of about 100 ppm and not as is shown in these figures. A typical SANR oscillator specification sheet is on page 9. (Courtesy of RF Monolithics, Dallas, Texas)

3.2 The circuit in Figure 3 was modulated with a logic (data) signal voltage of 4.6 volts \(=\operatorname{logic}\) high and about 0.15 volts = logic low. The modulation deviation curve is shown in Figure 7. The same device could be used as a vCo local oscillator in a receiver. In this case the VCO d.c. supply did not stay stable enough over a period of time, thus a fixed SAWR oscillator is used. The particular I C used exhibited voltage reference drift that was significant.

3.3 The harmonic level mentioned in Section 2.2 is somewhat varied and depends upon the output circuits. An interesting observation occured during near field measurements in a chamber e 1 meter and open field measurements 3 meters, as shown in Figure 8. The asteriks designate the open field results. Also note the differences in horizontal and vertical polarization tests.




The next step in this example is to adjust \(\left.\right|_{21} \mid\) until there is at least 40 dB peaking in output due to \(I_{s}\). The exact amount of peaking is not critical, so long as
\[
20 \log \frac{I_{e}\left(f_{0}\right)}{I_{e}\left(f>f_{0}\right)} \geq 40 \mathrm{~dB}
\]

Following this, monitor the emitter current and scale peak value of \(I_{e}(f)\) to the actual emitter bias current, \(\mathrm{I}_{\mathrm{E}}\)
\[
\text { scale }=I_{E} /\left[I_{e}(f)_{\text {max }}\right]
\]

With this completed, all node voltages and branch current of interest can be predicted with
\[
\left.\begin{array}{rl}
V_{0}=\text { scale } \times & \times V_{0}\left(f_{0}\right)_{\max }=\text { output voltage } \\
V_{N} & =\text { scale } \times V_{N}\left(f_{0}\right) \\
I_{B} & =\text { scale } \times I_{B}\left(f_{0}\right)
\end{array}\right\} \quad \begin{aligned}
& \text { any node } \\
& \text { or branch }
\end{aligned}
\]

The next step is to remove \(I_{s}\), introduce all noise generators, and plot the spectral density of the output noise voltage. The computer can automatically generate appropriate noise for all lossy elements.
The use of noise current \(i_{n c}\) accounts for that component of \(i_{n}\) which increase as \(f\) approaches \(\mathrm{f}_{\mathrm{T}}\left(\mathrm{f} \gg \mathrm{f}_{\mathrm{d}}\right)\).
Ref. 7, 8


Output phase noise \(\mathcal{L}\left(f_{m}\right)\) is simply the ratio of output noise, \(e_{0}\left(f=f_{0} \pm f_{m}\right)\), to the output signal voltage, \(V_{0}\), subtracting 3 dB for the desired phase modulation components only:
\[
\begin{gathered}
e_{0}\left(f_{m}\right)=e_{0}\left(f=f_{0} \pm f_{m}\right) \\
\mathscr{L}\left(f_{m}\right)=20 \log \left[e_{0}\left(f_{m}\right) / V_{0}\right]-3 d B
\end{gathered}
\]

Unfortunately, this procedure gives no indication of AM noise performance. However. experience has shown that the AM noise is often within 3 to 6 dB of the phase noise floor for
\[
f_{m} \ll \frac{f_{0}}{2 Q_{L}}
\]
(Courtesy of RF Monolithics)
FIGURE 2 Typical SAW hybrid oscillator specifications Dallas, Texas
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Frequency:} \\
\hline Fundamental output range With integral multiplier & 150 MHz to 1500 ) MHz up to \(\mathbf{6 0 0 0} \mathbf{~ M H z}\) \\
\hline Frequency Tolerance: & \(\pm 10 \mathrm{ppm}\) at \(25^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Temperature Stability: \\
Uncompensated \\
With integral compensation
\end{tabular} & Maximum operating frequency shift Less than 100 ppm for \(100^{\circ} \mathrm{C}\) change Less than 10 ppm for \(100^{\circ} \mathrm{C}\) change \\
\hline SSB Phase Noise: at 0.1 K Hz offset at 1.0 K Hz offset at 10 KHz offset Noise floor & 500 MHz operating frequency Less than - \(75 \mathrm{dBc} / \mathrm{Hz}\) Less than - \(105 \mathrm{dBC} / \mathrm{Hz}_{2}\) Less than \(-130 \mathrm{dBc} / \mathrm{Hz}\) Less than \(-135 \mathrm{dBc} / \mathrm{Hz}\) \\
\hline Power Output: & \(-30 \mathrm{dBm} 10+20 \mathrm{dBm}\) \\
\hline Modulation Options: Pulse modulation &  \\
\hline FSK modulation & \begin{tabular}{l}
Up to 100 ppm frequency deviation at 50 KHz clock rate \\

\end{tabular} \\
\hline Supply Voltage: & \[
\begin{aligned}
& +5 \mathrm{Vdc},+9 \mathrm{Vdc},+12 \mathrm{Vdc} \\
& \pm 10 \% \text { standard }
\end{aligned}
\] \\
\hline Packaging: & \begin{tabular}{l}
Dual in line metal package: \\
Surface mount metal package: Custom
\end{tabular} \\
\hline
\end{tabular}

FIGURE 3 Free running phase noise of 567 MHz SAW FIGURE 4 SAW Hybrid oocillator temperature \(\begin{array}{ll}\text { resonator ocillator } & \begin{array}{l}\text { performance. Curve A - uncompensated oscil } \\ \text { Curve B-integrally compensated oscillator }\end{array}\end{array}\)

4.0 CONCLUSIONS -- Some not so obvious SAWR characteristics -- SELECTION of SAWR

0 or 180 degrees (RS or RP) .- Depends upon active device used
1,2,3, or 4 Port .- Insertion Loss
Operating frequency note Offset PM Characteristics

\section*{Frequency tolerance}

Tenperature Stability of various types
2,3 , or 4 Poles
Tooling Charges for new frequencies
Input and output capacitances
Unloaded Q
Turnover temperature
Bandwidth -- On FSK/FM uses
DC Breakdown Voltage
Series Capacitance -- Resistance -- Inductance
Max Power disipation (if running near limit)

There are other factors involved and awareness of the above is the purpose intended here. As an exercise, try deciding between a 0 degree and 180 degree SAWR and the benefits of each. In building an impedance inverting Pierce oscillator, one would probably use a dual gate FET and a 180 degree SAWR, only to later decide to use a 0 degree device in a hybrid circuit with a buffer stage. The point being that there are many variations in the use of SAWRs and some pre-study and planning is needed to avoid mistakes.

Sources of SAWR technology infornation: RF Monolithics--Dallas,TX; SAWTEK--Orlando, FL; Andersen Laboratories--Bloomfield, CT; Frequency Control Symposium; RF Design Magazine; Microwaves \& RF Magazine.


LOW NOISE OSCILLATOR DESIGN
SPECTRAL PURITY
A manis cuctux puty monemons
LOW NOISE OSCILLATOR DESIGN
R Sextat A reanemer
a. selects semonete
D. seter sincmive vexver

OSCILLATOR COMPUTER ANALYSIS

OTHER NOISE MECHONISMS
A sacrave nocer

These two figures show the computer model and a comparison of predicted results versus measured data. The computer model was even more detailed. including parasitic reactances and \(e_{i}\) and \(i_{n}\). Small signal S-parameter data were used to model the transistors.
The discrepancy below 10 kHz is due to SAWR \(1 / \mathrm{f}\) noise and PLL residual noise. The discrepancy above 100 kHz is due to noise contributions of 4 buffer-limiter stages which were not modeled: measurements in phase noise floor with the buffers removed indicate \(\approx-165 \mathrm{dBc} /\) Hz (computer suggests \(-167 \mathrm{dBc} / \mathrm{Hz}\) ).

The advantages are that we have a precise and controllable experiment with which to better understand the "whys" behind the oscillator performance and predict worse case conditions.

One-port or negative resistance type oscillators may be handled similarly. The procedure involves modeling the oscillator in the manner applied to two-port oscillators, adding in all noise generators, and adjusting \(-R\) or \(S_{216}\).
The adjusiment of \(\left|S_{21 b}\right|\) to achieve better than 40 dB peaking can be automated if an analysis program has optimization capability. The technique requires searching for a peak near resonance and optimizing \(\mid \mathbb{S}_{21 b}\) for maximum peaking. It should be kept in mind that \(f_{0}\) changes slightly with \(\mid S_{216}{ }^{\prime}\).
\[
\mathrm{S}_{21 \mathrm{~b}}=\text { common base } \mathrm{S}_{21}
\]


Computer analysis also allows modeling spurious modes (such as transverse, crossing, and tracking modes) in a resonator (model or use measured S -parameter data). The technique consists of repeating the phase noise analysis either near ( \(\mathrm{f}_{01}\) ) or coincident ( \(\mathrm{f}_{02}\) ) with the undesired mode. In this way, it's possible to see the blooming effect on phase noise due to degradation in phase slope for a coincident mode, or phase noise peaking in the noise floor away from the carrier due to an adjacent mode that comes within 3 to 6 dB of the loop gain of the desired mode.
These analyses were computed from a SAWR oscillator using S-parameter data of the SAWR which has a transverse mode approximately 200 ppm above the desired mode.


A more complicated noise degradation mechanism is low-frequency noise upconverted around the carrier. Low frequency noise contributors ( \(1 / f\) base current noise and \(e_{n}\) or \(i_{n}\) ) may cause excess emitter current noise in the audio frequency range if no attention is paid to low frequency source impedance and feedback effects. When the active device is near compression, the upconversion gain for \(\mathrm{i}_{\mathrm{e}}\) up around the carrier can be as low as -3 to -9 dB . We can measure this by injecting a low level current \(i_{e}\) into the emitter:
Audio upconversion gain, \(G_{C}\), is
\[
\mathrm{G}_{\mathrm{C}}=20 \log \frac{\mathrm{i}_{e}(1 \mathrm{GHz}+1 \mathrm{kHz})}{\mathrm{i}_{\mathrm{e}}(1 \mathrm{kHz})}
\]

A TRACKING IMPEDANCE MEASUREMENT SYSTEM
for Control of Tunable Networks

\section*{Virgil L. Newhouse}

Mgr, HF Filter/Coupler Group
Collins Defense Communications Rockwell International Crporation Cedar Rapids, Iowa 52498 January 1986

\section*{ABSTRACT}

\section*{Applications for advanced design, tunable, HF impedance} matching networks and filters require accurate impedance measurements. This paper describes a Tracking Impedance Measurement System (TIMS) which provides capability for actual in-line impedance measurements. For comparison, a conventional phasing-loading discriminator provides only relative magnitude and phase angle measurements based on a reference impedance. The TIMS operates over a wide power range in the hF band yet generates virtually no noise or spurious signals. Digital outputs are updated rapidly and may be used to calculate impedance, reflection coefficient, and VSIR in real time. These features permit performance of remote impedance measurements. The TIMS also provides selectivity to reduce errors due to interfering signals.

\section*{INTRODUCTION}

Impedance networks are used for antenna couplers (matching networks) and filters in the high frequency range. Figure 1 shows simplified examples of a typical antenna coupler circuit and a bandpass filter (BPF) circuit. Fixed tuned impedance networks are used for applications in which only one frequency is used such as broadcast transmitters. For applications requiring the use of several frequencies, adjustable or tunable impedance networks are needed. Manually adjustable impedance networks were used for many years and are still used for applications which require infrequent retuning. Applications requiring many frequency changes or rapid retuning use automatically tunable impedance networks.

Automatic tuning of an impedance network requires a control system and a sensing device. The control system may be a closed loop analog servo control system or a digital control system. In either case a sensing device and tuning criteria are needed. In this presentation \(I\) will be primarily discussing sensing devices. I will first review the function, application, and limitations of the conventional Phasing-Loading discriminator. I will then present a new concept in sensors for automatic tuning systems called a Tracking Impedance Measurement System (TIMS) which I will call TIMS for short. I will discuss the

The phase noise in amplifiers due to low frequency noise \(i_{n e}\left(f_{m}\right)\) is then
\[
\mathscr{L}\left(f_{m}\right)=20 \log \frac{i_{n e}\left(f_{m}\right)}{l_{e}\left(f_{0}\right)}
\]
\[
-3 \mathrm{~dB}+\text { upconversion gain }
\]
and in the oscillator add the peaking
\[
\begin{gathered}
\mathscr{L}\left(f_{m}\right)=20 \log \frac{i_{n e}\left(f_{m}\right)}{I_{e}\left(f_{0}\right)} \\
-3 d B+G_{C}+10 \log \left[1+\left(\frac{f_{0}}{2 Q_{L} f_{m}}\right)^{2}\right]
\end{gathered}
\]

To prevent these problems analyze via computer the emitter current noise spectral density of the oscillator and all buffer chains from DC to beyond \(f_{0}\). Typically, the noise floor due to this mechanism should be 10 dB lower than the specification limit of that contributed by the oscillator.

There appears to be at least two kinds of \(1 / \mathrm{f}\) noise in transistors: (1) upconverted \(1 / \mathrm{f}\) component of base current noise; (2) \(1 / \mathrm{f}\) phase modulation of the RF signal through the transistor. The reason these components seem separate and distinct is that component (1) should be level dependent since it is upconverted by a nonlinear mixing process. Our measurements show that the \(1 / \mathrm{f}\) PM of active devices remain virtually constant over a significant range of RF power (from limiting to well inside the linear active region [small signal]). Also measuring the 1/f base current noise and the upconversion coefficient we find that the actual residual \(1 / \mathrm{f}\) phase noise of the amplifier is 20 to 30 dB greater than hat predicted by upconversion.


In summary some of the causes of phase noise in oscillators and what to do about them were discussed. The effects of resonator Q , resonator and device \(1 / \mathrm{f}\) noise, and AM-FM conversion on phase noise were discussed. Oscillator topologies and active devices were looked at. Coupling to resonators and coupling to loads and their effects on noise were examined. Methods of measuring and computer modeling the causes of noise in oscillators were discussed. And lastly. mention was made of other mechanisms that can cause noise.

\section*{Appendix 1}
\[
\begin{aligned}
& \mathscr{L}\left(f_{m}\right)=20 \log \frac{\Delta \phi}{2} \text { narrowbsend FM approximation } \\
& L\left(f_{m}\right)=\frac{S_{d}\left(f_{m}\right)}{2} \\
& \left.\mathcal{L}\left(f_{m}\right)=S_{d}\left(f_{m}\right)-3 d B\right\}_{\text {for }} \Delta \phi_{\text {maxd }} \ll 1
\end{aligned}
\]

In this article we have assumed \(\mathcal{L}\left(\mathrm{f}_{\mathrm{m}}\right)=\mathrm{S}_{0}\left(\mathrm{f}_{\mathrm{m}}\right)-3 \mathrm{~dB}\) everywhere for simplicity. Actually as we approach the carrier \(\mathcal{L}\left(f_{m}\right)\) flattens out:


Reason: \(\mathcal{L}\left(f_{\mathrm{f}}\right)\) is the power in \(\mathbf{1 ~ H z}\) band centered \(\mathrm{f}_{\mathrm{r}} \mathrm{Hz}\) off the carrier due to PM divided by total signal power. This is what we would see on spectrum analyzer with a \(1 \mathrm{~Hz} \mathrm{B.W}\). if reference level ( 0 dB ) was the total signal power.
\(\mathrm{S}_{\mathrm{f}}\left(\mathrm{f}_{\mathrm{m}}\right)\) is the phase spectral density or \(20 \log \Delta \phi^{2}\left(\mathrm{f}_{\mathrm{m}}\right)\) in the 1 Hz B.W. here s a simple example which may clarify.
\[
\text { for } \Delta \phi>1 \text { radian }
\]

Signal: \(V(t)=\cos \left(\omega_{c} t+10 \sin 2 \pi 10^{\prime} t\right.\) or carrier with \(\Delta f=10 \mathrm{kHz}\)
\(\mathrm{fm}=1 \mathrm{kHz} ; \beta=10=\bmod\) index
function, operation, and application of the TIMS.
The TIMS was invented by Mr. Harvey L. Landt of Collíns Defense Communications, Rockwell International Corporation, Cedar Rapids, Iowa. Mr. Landt holds United States patent No. \(4,506,209\) issued March 19, 1985 for the TIMS. Full credit and acknowledgement is given to Mr. Landt for this design and for his assistance in the preparation of this paper.

\section*{CONVENTIONAL PHASING-LOADING DISCRIMINATOR}

Tuning criteria which have been used in the past for manual adjustment of impedance networks are not easily adaptable to automatic tuning control systems. For example, finding minimum current or voltage, maximum current or voltage, or minimum reflected power are criteria that may be used in a manual tuning system, but are not easily adapted to automatic tuning systems. Figure 2 shows typical sensor signals versus tuning element position. In 2(A) a minimum is to be detected and in 2(B) a maximum is to be detected. In either case the sensor signal or error voltage is always of the same polarity and cannot be detected with a zero seeking closed loop servo control system. Figure 2(C), however, shows a sensor signal which passes through zero at the tune point and has opposite polarity on either side of the tune point. This signal can be used with a zero seeking
servo control system and the system will be stable at the tune point. The conventional Phasing-Loading Discriminator provides this type of error signal.

\section*{FUNCTIONAL DESCRIPTION}

The conventional phasing-loading discriminator is placed in series with the \(R F\) transmission line at the point tuning intormation is desired. This is usually at the input of an antenna coupler or filter. It contains two error sensing circuits, one for phasing and the other for loading.

The phasing circuit shown in Figure 3 combines RF voltage and current samples vectorially, rectifies the vector sums, and combines the \(D C\) voltages to provide a \(D C\) output error signal. This error signal is a function of the phase angle between the transmission 1 ine voltage and current. The phasing circuit is adjusted to provide an error signal of zero volts when the phase angle is zero. A positive DC error signal may indicate the phase angle is inductive and a negative \(D C\) error signal would then indicate the phase angle is capacitive. In either case the magnitude of the error voltage is a function of the phase angle magnitude, but it is not necessarily proportional.

The loading circuit shown in figure 4 rectifies the individual voltage and current samples and then combines the DC voltages to produce a \(D C\) output error signal. This error signal

Appendix 1

\(\phi(t)=10 \sin 2 \times 10^{\prime} t\)
no harmonics

\section*{BIBLIOGRAPHY}

\section*{References}

1 Leeson, D. B., "A Simple Model of Feedback Oscillator Noise Spectrum". Proc. IEEE. Vol. 54. pp. 329-330. Feb. 1966.
2 Scherer, Dieter, "Todays Lesson-Learn About Low Noise Design". Microwaves, Part I, pp. 116-122, April 1972; Part 2. pp. 72-77. May 1979
3 Temple, R., "Choosing a Phase Noise Measurement TechniqueConcepts and Impiementation". Hewlett-Packard RF and Microwave Measurement Symposium, Feb. 1983.
4 Clarke, K. K.. "Transistor Sine Wave Oscillators--Squegging and Collector Saturation", IEEE Trans on Circuit Theory, Vol. CT-13, No. 4, pp. 424-428, Dec. 1966.

\section*{BIBLIOGRAPHY}

5 Clarke, K. K., "Design of Self Limiting Transistor Sine Wave Oscillators". IEEE Trans on Circuit Theory, pp. 58-63. Mar. 1966.
- Clarke. K. K. and Hess, D. T.. Communications Circuits: Analysis and Design, Addison-Wesley 1978. (Oscillators, squegging. nonlinearities, matching networks, and much more.)
7 Motchenbacker. C. D. and Fitchen. F. C.. Low Noise Electronic Design. Wiley \& Sons. 1973.
-Frequency dependence of base current noise, p. 69.
-Noise in Cascided networks. p. 37
-Transistor noise model approximation. p. 70.
8 Van Der Ziel. A., "Noise in Solid State Devices and Lasers", Electrical Noise: Fundamentals and Sources. pp. 237-265, IEEE Press, 1977. edited by M. S. Gupte.
9 Carson, Ralph S., High Frequency Amplifiers. Witey. 1982. (Sections on inherent stability, non unilateral amps. S-parameters. and bias stability.)
10 Vendelin. G. P., Design of Amplifiers and Oscillators by the S-Porometer Method, Wiley and Sons. 1982.
11 Edson, W. A., "Vacuum Tube Osciilators". Ch. 15. Wiley, 1953.
12 Firth. D.. (Magnavox Co., Ft. Wayne. Indiana, March 15. 1965) Quartz Crystal Oscillator Circuits Design Handbook, available through U. S. Government Printing Office. "AD460 377, Nationa Technical Information Service.
13 Rippy. R.. "A New Look at Source Stability", Microwaves, pp. 42-48. Aug. 76. (Using group delay to predict spectral purity.)
14 Scherer. D., "Generation of Low Phase Noise Microwave Signals". Hewlett-Packard RF \& Microwave Measurement Symposium and Exhibition. Sept. 1981. (Excellent tutorial; also suggestions for echoing effects of \(1 / f\) noise in active device.)
15 Scherer. D. "Design Principles and Test Methods for Low Phase Noise RF and Microwave Sources". Hewlett-Packard RF \& Microwave Measurement Symposium. (Excellent)
16 Haiford, D.. "Phase Noise of RF Amplifiers and Frequency Muitipliers" memoranda, National Bureau of Standards. Boulder. Colorado. in reply refer to 253-04, dates: Oct. 25. Oct. 30. 1967; To: Dr. James Barnes, Chief, 253.00.
17 Ollivier, P. M., "Microwave YiG-Tuned Transistor Oscillator Amplifier Design: Application to C Band". IEEE fournal of Solid State Cir fier Design: Application to C Band"
cuils, Vol. Sch-7, No. 1, Feb. 1972.
18 Okada, F. and Koichi. O.. "CaVG.Tuned Transistor Oscillators in the NF Band, Electronics and Communications in Japan, Vol. 58-B No. 4, pp. 66-71, 1975.

\section*{BIBLIOGRAPHY}

19 Ohwi, K and Okada, F., "On the Characteristics of YIG Resonator Application to a Transistor Osciliator in UHF Band". Memoirs of the Defense Academy, Japan, Vol. XIII. No. 2. pp. 95-105. 1973.
20 Dupre, J. J.. "A 1.8 to 4.2 GHz YIG Tuned Transistor Oscillator with Wideband Buffer Amplifier". (GMTT) Transactions Int'l Microwave Symposium, 1069. pp. 432-438 (WPM-1-3)
21 Besser, Les, "Computerized Optimization of Microwave Oscillators", no date, no journal.
22 Besser. Les. "Optimization for Maximum Reflection Coefficient". Applications Notes. Vol. I. \#5, Super Compact Users Manual. Ver. 1.6. July 1982, CGIS Inc., 1131 San Antonio Road, Palo Alto. CA.. 94303 (415) 966-6440.

23 Basawapatna. G. R. and Stancliff, R. B., "A Unified Approach to the Design of Wideband Microwave Solid State Oscillators", IEEE Tran on MTT. MTT-27, No. 5. pp. 379-385, May 1979. (Exceilent. discusses use of "active load-pull" in designing oscililators.
24 Mitsui. Y.., Nakatan. M.. and Mitsui. S., "Design of GaAs MESFET Oscillator Using Large Signal S-Parameters", IEEE Trans on MTT,
Vol. MTT-25. No. 12. December 1977.

25 Montgomery, Dicke, and Purcell, Principles of Microwave Circuits, McGraw-Hill. pp. 226-231, 1948. (General formulas for Q in resonator/cavity)
26 Warner. F. L. and Hobson. G. S., "Loaded Q Factor Measurements on Gun Oscillators", Microwave Journal, pp. 46-53, Feb. 1970. (Determining QL in a 1 -port oscillator by injection puiling)
27 Hewlett-Packard Application Note AN 117-1. (How to determine Qo, \(Q_{L}\) Qext from S-Parameters and/or Smith Chart)
28 Hamilton. Steve, "FM and AM Noise in Microwave Oscillators", Mi crowave lournal, pp. 105-109, June 1978.
29 Takaoka. A. and Ura. K." "Noise Analysis of Non-linear Feedback Oscillator with AM-PM Conversion Coefficient", IEEE Trans on M Reich. H. I.. Functional Circuits and Oscillators, pp. 314-353. 1961 (Heuristic and understandable).
31 Kurokawa. K., "Some Basic Characteristics of Broadband Negative Resistance Oscillator Circuits", Bell System Technicol Journal. pp. 1937-1955, July-August 1969 (pretty mathematical).
32 Kurokawa, K.. "Microwave Solid State Oscillator Circuits". Micro wove Devices, Chapter 5, edited by Howe \& Morgan. Wiley. 1976 (more practical and understandable than paper above).
is a function of the impedance magnitude. The loading circuit is adjusted to provide an error signal of zero volts when the impedance magnitude is the desired tuned impedance, usually 50 ohms. A positive \(D C\) error signal may indicate an impedance magnitude greater than 50 ohms and a negative \(D C\) error signal would then indicate an impedance magnitude less than 50 ohms. In either case the magnitude of the error voltage is a function of the ratio of the actual impedance magnitude to 50 ohms; but it is not necessarily proportional.

The combination of the phasing and loading circuit response is shown in figure 5 using a z -plane which is a graphical representation with rectangular coordinates plotted as ( \(R, j X\) ). Note there are four basic zones separated by the \(R\) axis and the \(|2|\) curve. The phasing and loading discriminators individually provide directional and speed control error information for a zero seeking servo control system for one of the reactive tuning elements. With appropriate logic control and servo gain and stability circuits the reactive elements can be positioned so the impedance at the discriminator location is \(50+j 0\) ohms.

\section*{APRLICATIONS AND LIMLTATIONS}

The phasing-loading discriminator is used primarily with analog servo control systems. Many automatic tuning antenna couplers have been designed and produced with this type control
system in the past 30 years for use on aircraft, land vehicles, transportable shelters, shipboard, and submarines. Also automatic tuning bandpass filters have been designed and produced for many applications including high power filters for shipboard multicouplers. The phasing-loading discriminator has also been used in the last several years with automatic digital tuning control systems for antenna couplers.

Some important limitations of the phasing-loading discriminator are:
1. Not calibrated for impedance measurement
2. Susceptibility to interfering signals
3. Diode noise
4. High RF power level required

\section*{Impedance Measurement}

The accuracy of the \(D C\) output signal voltage from the phasing or loading discriminator is affected by several factors such as RF power level, diode characteristics versus frequency, and sampling circuit characteristics versus frequency. Therefore the phasing and loading error signals cannot be calibrated to enable accurate impedance measurements. Referring again to Figure 5 only relative impedance information is available as described by the four zones on the graph. For example at point \(A\), the impedance magnitude is greater than 50 ohms and the phase angle is inductive. At point \(B\) the impedance

\section*{BIBLIOGRAPHY}

33 Kenyon. N. D., "Lumped-Circuit Study of Basic Oscillator Behavior", Bell System Technical Journal. pp. 255-272. Feb. 1970 (much leas mathematical elaboration and test results of some of Kurokawa's ideas).
34 Kuvas. R, L., "Noise in Single Frequency Oscillators and Amplifiers". IEEE Transactions on Microwave Theory \& Techniques, Vol. MTT-21. No. 3. pp. 127-134. March 1973 (quite mathematical, but presents a method for predicting both AM as well as \(F M\) noise in oscillators).
35 Slater, John C.. Microwave Electronics, pp. 190-209, 1950 (Reike diagrams).
36 Hamillon. Steve, "Microwave Oscillator Circuits", Microwave Journal, first part, pp. 63 -66 and 84, April 1978.
37 Burwasser. Alex J.. "Tl-59 Program Computes Values for 14 Match ing Networks", RF Design, pp. 12-27. Nov./Dec. 1982.
38 Reference Data for Radio Engineers, 41h Ed.. pp. 122-123. Howard Sams/ITT.

39 Robins, W. P.. Phase Noise in Signal Sources, Peter Peregrins Lld.. UK. 1982.
40 Perkins, F. H., Ir., "Technique Aids SAWR Oscillator Design", Microwave \& RF. March 1984, pp. 153-155 and 182-184.
41 Temple, Bob. personal communication.
42 RF \& Microwave Phase Noise Measurement Seminar, Hewlett Packard 5955-8136.
43 Muat, Roger W., "Designing Oscillators for Spectral Purity". Microwave and RF News. three parts: Vol. 23. No. 7. July 1984, pp. 133wave and RF News. three parts: Vol. 23. No. 7. July 1984. pp. 133-
142. 160; Vol. 23. No. 8. Aug. 1984. pp. 166-170: Vol. 23. No. 9, Sep. 1984. pp. 211-217.

\section*{LIST OF SYMBOLS}
\begin{tabular}{|c|c|}
\hline - offsel frequency & \(\mathrm{P}_{\text {Avs }}=10 \mathrm{log} \mathrm{P}_{\mathrm{om}}+30 \mathrm{dBm}\) \\
\hline FM = frequency modulation & Po \(=\) output power \\
\hline AM \(=\) amplitude modulation & CE = common emitter \\
\hline S. = scattering parameters & CC = common collector \\
\hline \(\mathrm{Q}_{\mathrm{L}}=\) loaded Q & \(\mathrm{CB}=\) common base \\
\hline SAW = surface acoustic wave & \(r=\) reflection coefficient \\
\hline \[
\begin{aligned}
P_{\text {out }}=\text { power available from source } \\
\text { (resonator) in Watts }
\end{aligned}
\] & \(\phi\) = angle of loop gain \\
\hline
\end{tabular}

\section*{LIST OF SYMBOLS}
\(\mathrm{K}_{v}=\) VCO gain: \(\mathrm{Hz} /\) Volt
\(\mathrm{c}_{\mathrm{cd}}=\) group delay
\(\mathrm{I}_{\mathrm{E}}=\) emitter dc bias current
\(\mathrm{I}_{\mathrm{c}}=\) collector dc bias current
- = emitter AC signal current rms
\(f_{0}=\) frequency of oscillation
\(\mathrm{i}_{\mathrm{rx}}=\) collector noise current in \(\mathrm{A}_{\mathrm{rme}} / \sqrt{\mathrm{Hz}^{2}}\)
\(i_{m}=\) emitter noise current in \(A_{m o n} / \sqrt{H z}\)
\(\mathcal{L}(\mathrm{fm})=\) single sideband power in a 1 Hz bandwidth (due to phase noise) referred to signal power in \(\mathrm{dBc} / \mathrm{Hz}\) (see Appendix ll)
SNR \({ }_{1}=\) signal to noise ( 1 Hz BW ) referred to input in \(\mathrm{dB}=\)
\[
10 \log \frac{P_{\text {owt }}}{F k T}
\]
\(L(f m): \mathscr{L}(f m)=10 \log L(f m)\)
\(N F=10 \log F=\) noise figure in \(d B\)
\(F=\) noise factor
\(e_{0}=\) output noise voltage in volts \(\mathrm{rms} / \sqrt{\mathrm{Hz}}\)
\(G=\) active device gain
= source resistance
\(T_{T}=\) current gain-bandwidth
\(\mathrm{K}_{\mathrm{v}}(\mathrm{AM} / \mathrm{FM})=\) VCO gain due to AM-FM in \(\mathrm{Hz} / \% \mathrm{AM}\)
\(\mathcal{I} f_{\text {mbl }}=\) open loop phase noise
magnitude is less than 50 ohms with a capacitive phase angle. Thus only coarse logic decisions can be made to aid the control system to adjust the tuning elements for the tune point.

\section*{Susceptibility}

The conventional discriminator provides no selectivity for rejection of interfering signals conducted from the antenna through the antenna coupler to the discriminator (back door interference). Interfering signals at a different frequency coupled to the antenna from other nearby transmitting antennas can thus cause the antenna coupler to mistune.
Diode Noise
The rectifier diodes in the conventional discriminator can cause noise to be transferred to the RF transmission line. This is an important consideration for low noise transmitter systems. Power Level

The voltage and current samples must be lightly coupled to the transmission line to minimize power loss and alteration of the transmission line impedance. Light coupling results in small sample voltages. The RF power level must be high enough so the sample voltages can sufficiently overcome the diode vol rage drop and provide the necessary sensitivity for the servo control loop. The required RF power level for the conventional discriminator is usually in the 100 watt to 200 watt range.

The Tracking Impedance Measurement System or TIMS was developed to overcome the limitations of the conventional phasing-loading discriminator.

\section*{FUNCTIONAL DESCRIPTION}

The TIMS shown in the block diagram of Figure 6 is an impedance measurement system consisting of a directional coupler, discriminator stage one, discriminator stage two, an \(A / D\) converter, and an I/O device.

The directional coupler is placed in series with the transmission line at the point impedance measurements are desired. It provides forward and reflected RF voltage samples to the discriminator stages. From the forward voltage sample, an injection signal is derived which tracks the signal from the signal source but is offset by 10 kHz . The injection signal is then used to convert the forward and reflected voltage samples to 10 kHz signals which are representative of the original voltage samples. The frequency of the converted signals is constant at the offset frequency of 10 kHz , regardless of the operating signal frequency. These constant frequency signals are filtered to provide selectivity and processed with low frequency circuits to derive voltage analogs of the forward
voltage, reflected voltage, and phase angle between them. These three voltage analogs are supplied to the \(A / D\) converter. An I/O device such as microprocessor can then use the digital form of the forward voltage, reflected voltage, and phase angle to calculate the reflection coefficient, impedance, and voltage standing wave ratio (VSWR).

The TIMS overcomes the limitations previously noted for the phasing-loading discriminator.

\section*{Impedance Measurement}

The TIMS automatically tracks the signal frequency and provides accurate impedance measurements rapidly when the signal frequency is changed.

\section*{Susceptibility}

The TIMS provides selectivity to reject interfering back door signals.

Noise
The directional coupler contains no noise sources. It provides 30 dB of isolation between the transmission line and possible noise sources in the discriminator stages.

Power Level
The discriminator stages operate with low level signals. With appropriate signal attenuators between the directional coupler and the discriminator stages, the TIMS can provide accurate impedance measurements even with the forward power

\section*{level as 1 ow as 10 milliwatts.}

\section*{OPERATIONAL DESCRIPTION}

\section*{Directional Coupler}

The directional coupler is a balanced bi-directional assembly which provides an RF forward voltage sample and an R.F reflected voltage sample. Approximately 30 dB isolation is provided between the transmission line and the voltage sample output. The directivity is greater than 40 dB . For example if the directional coupler is terminated with a 50 ohm resistive loadwith a forward power of 100 watts, the reflected voltage sample will erroneously indicate a reflected power of 10 milliwatts or less. The resulting VSWR error is less than 1.02:1.

Discriminator Stage One
The block diagram for discriminator stage one , which is essentially a dual channel receiver, is shown in Figure 7. The forward voltage sample is applied via a fixed attenuator to an automatic gain control (AGC) circuit which is part of the forward voltage channel. The AGC circuit controls the signal level of both the sampled forward voltage and the sampled reflected voltage. The AGC circuit in the forward voltage channel includes an electronically variable attenuator and an FF amplifier, the combination of which comprises a variarle gain

\section*{Broadband GaAs Monolithic Amplifiers and Their Applications}

By Terence J. Cummings
Applications Engineer
California Eastem Laboratories
3260 Jay Srreet
Santa Clara, CA 95054

\section*{Introduction}

NEC has recently introduced three new low cost broadband MMICs designed for medium power, low noise, and gain block applications. Each MMIC is a cascadable, multioctave, 50 ohm device. Typical bandwidths are from 50 MHz to 3 GHz with NF as low as 2.7 dB for the UPG 100 and high linear power of 20 dBm for the UPG101. The thind device is the NEPA 1001 which is a general purpose GaAs MMIC which is similar to the UPG 100 except with a higher noise figure.

Application of these amplifiers is limited only by the designers imagination. These devices are relatively simple to use, but their wide bandwidths and high fmax require care and good design lechnique. It is our intent to help the designer who may not be totally familiar with using these devices.
Performance Specifications: \(\mathbf{5 0}\) to \(\mathbf{3 0 0 0} \mathbf{~ M H z}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{NEPA1001*} & \multicolumn{3}{|l|}{UPG100} & \multicolumn{3}{|l|}{UPG101} \\
\hline Lem & units & min & typ & max & min & typ & max & min & typ & max \\
\hline Linear Gain & dB & 10/12 & & 15 & 16 & & & 14 & 16 & \\
\hline Flatness & \(\pm \mathrm{dB}\) & & & 1.0/1.5 & 1.0 & 1.5 & & 1.0 & 1.5 & \\
\hline Noise Figure & dB & & 4/4.3 & 4.5/5 & & 2.7 & 3.2 & & & 5.5 \\
\hline Power Out & PldB & 7 & 9 & & 3 & 6 & & 17 & 20 & \\
\hline Isolation & dB & 35 & 40 & & 30 & 40 & & 30 & 40 & \\
\hline Input R.L. & dB & 6 & 10 & & 7 & 10 & & 7 & 10 & \\
\hline Output R.L. & dB & 10 & 16 & & 10 & 13 & & 10 & 13 & \\
\hline Idd & mA & 40 & 60 & 80 & 30 & 45 & 60 & 70 & 100 & 160 \\
\hline Vdd & & & 5 & & & 5 & & & 8 & \\
\hline Igg & mA & & 4 & 5 & & 0.7 & 1.5 & & 1.1 & 3.0 \\
\hline Vg8 & & & -5 & & & -5 & & & -5 & \\
\hline
\end{tabular}
* NOTE: These parameters are divided into two frequency bands; .1-2 GHz and 2-3 GHz.

\section*{Fabrication of the NEPA1001}

The NEPA 1001 is a two stage GaAs MMIC broadband amplifier using FETs with a closely paced electode structure. The devices are fabricated by self-alignment technology using Al side-etching techniques to obtain reproducibility of the spacing between the drain to gate and the source to gate electrodes. As a result, these spaces are reduced to .4 micron. Resistance is reduced in both electrodes and results in a cutoff frequency of 18 GHz . This process is unique in its utilization of ion-implantation. The FET's active layers are formed by using silicon


Ger sem. menlatmo suestate

\section*{Fig. 1}


Fig. 1B
ion-implantation into a semi-insulating GaAs substrate. These implanted layers are then annealed in-implantation in a hydrogen atmosphere. All metrication techniques results in a highly reproducible GaA . MMIC.

\section*{Fabrication of the UPG100 and UPG 101}

The UPG 100 and UPG 101 are also two stage broadband MMIC amplifiers. Fabrication of these devices is slighty different than the NEPA1001. The UPG series amplifiers employ a FET structure which has a tungsten silicide (WSI) offset gate instead of the closely spaced elecrtrode structure. Otherwise the same general process are used for both series of amplifers. The tungsten silicide structure was chosen to improve durability of the devices as well as improve yield and manufacturability. The tungsten silicide process uses what is typically known as a T gate. This process allows the deposition of other metals ( \(\mathrm{Ti}, \mathrm{Pt}, \mathrm{Au}\) ) on top of the tungsten silicide Schottky gate. As a result, higher conductivity is possible, providing improved overall performance. Presently, this process lends itself better to MMIC fabrication than the close electrode structure. The close electrode structure features side wall etching to achieve short gate lengths. This proces does work well, but is more difficult to control for complex devices. Another advantage of the WSI technology is improved protection against electrostatic discharge.

\section*{Circuit Configuration}

The configuration for the UPG100 and 101 are nearly identical. The UPG 100 is the low noise version and differs mainly in the type of FETs used. The first slage uses a gale wide of approximately 1000 microns to improve the input return loss. The second stage uses a device that is about half the gate width of the first stage for improved output return loss. Both devices have gate lengths around .8 micron. One would expect a low noise device for the input which is typically a smaller device. Since smaller FETs exhibit a somewhat higher impedance than larger devices, a larger FET was chosen to simplify the required input matching circuitry.


Figure 2


Figure 3


Figure 4
amplifier. The output of the variable gain amplifier is applied to another RF amplifier and then to an RF detector and bias amplifier which converts the sample forward voltage signal to a variable amplitude DC signal which is used to adjust the variable attenuator. This automatic gain control maintains the voltage level and provides a signal at the output of the variable gain amplifier which is representative of the forward power applied to the directional coupler. The combination of the fixed attenuator, the variable attenuator, and the directional coupler isolation reduce the signal to the appropriate level for the discriminator circuitry. The variable attenuator is automatically adjusted over a 56 dB range for proper operation of the discriminator with variations of the power level at the input to the directional coupler.

One output of the forward voltage channel variable attenuator circuit is an RF sample which is applied to discriminator stage two for generation of the injection signal. The injection signal is applied back to discriminator stage one where it is applied to a power splitter. One output from the power splitter is mixed with the forward voltage signal output from the variable attenuator. The output of the mixer is a 10 kHz signal which is applied to a low pass filter which passes 10 kHz . Signals above \(3 \emptyset \mathrm{kHz}\) are terminated via a high pass filter and a resistor. The output of the low pass filter is applied to
a fixed gain amplifier and then to a bandpass filter which passes 1 kHz . The signal is then rectified by a full wave rectifier to obtain the output signal EF which is a DC voltage analog that represents the voltage of the forward power applied to the directional coupler.

The reflected voltage channel also includes an electronically variable attenuator which is controlled by the AGC circuit. The operation of the reflected voltage channel is identical to the forward voltage channel operation with one exception. In the reflected voltage channel a dual gain amplifier is used between the low pass filter and the bandpass filter. When the circuit is initially used and there is a substantial amount of reflected voltage sampled by the directional coupler, then the low gain setting of the dual gain amplifier is utilized. However as the impedance network being tuned approaches the tuned condition, then the reflected sample decreases and to provide an accurate measurement, the high gain setting of the dual amplifier is used which essentially expands the scale of the reflected voltage measuring circuit. The output signal ER is a \(D C\) voltage analog that represents the voltage of the reflected power existing at the directional coupler.

The phase angle between the forward voltage and reflected voltage output signals from the respective bandpass filters is

The UPG 101 uses 2 larger 1000 micron FETs for both the input and output. The larger output device is the key to the higher output power. Normally, drain currents over 60 mA are very difficult to control using internal bias circuitry. To overcome this problem, an external RFC is required to supply bias to the final stage. Even though the intemal drain resistor is bypassed by an external RFC, it still serves two functions. The first is to improve output VSWR and secondly it provides improved circuit stabiinty from high impedance loads. Failure of the RFC will not arel the inemal resistor can still safely dissipate the power. level the intemal resistor can still safely dissipate the power.


Figure 5


Figure 6

Since the UPG100 has a typical drain current of only 45 mA , internal bias is used and therefore an external choke is not required.

A slightly different configuration is the NEPA 1001. As shown below, feedback is achieved from the drain of the first stage. The NEPA 1001 is a gain block, but can be used in other applications. A low noise figure was not a design goal or this amplifier. Using this amplifier is similar to using the UPG100 in that an extemal RFC choke on the output is not required.


Figure 7


Figure 8


Figure 9

Unfortunately, nature's limitation to the amount of capacitance which can be achieved on

GaAs necessitates external blocking capacitors. External blocking capacitors should be of good quality with low ESR and minimal parastics.

One should consider these capacitors as a series RLC network and keep in mind that their physical size could be too large at 3 GHz . Capacitors other than chip capacitors are not recommended. Leaded capacitors will have too much parasitic reactance. This will either degrade the overall performance of the amplifer or result in unexpected oscillations.

The low frequency performance is also limited by the available capacitance. The internal stages inside these amplifiers are not DC coupled. They all have a blocking capacitor to provide DC isolation in between the stages. This capacitor only serves to block DC. Peaking is provided by the inductor in between the two blocking capacitors. The other critical reactance is Cgs of the liowg stage. Togethr L and C s ache 1 . values for the blocking capaces and pealing in thas cole peak is values for the blocking capacitors and pealing inductor are listed below.


The internal blocking capacitors are the limit of the low frequency response of around 50 MHz. When using caspacitors in MMICs, the low frequency limit is a difficult problem due to the amoun: of space these elements require.

\section*{Digitizing the Amplifiers}

These amplifiers will not perform as well as DC coupled amplifiers for digital data. This type of amplifier will distort a digital waveform. Distortions can be seen as poorly defined peaks and valleys in a 1.2 gigabit NRZ stream. Typical bandwidths required to overcome this problem are approximately 100 KHz to 1.6 GHz and up. The limitation lies mainly in the low frequency limit of the amplifier. The upper linut defines the maximum data rate the amplifier can reproduce. At this time NEC is developing a new AGC amplifer which will be suitable for high speed digital data.

\section*{Application of the UPG 100 and the NEPA 1001}

Simplicity is always desired in any circuit. These devices require only a few extema components. As with any RF circuit, good grounding technique (up to and including microwave frequencies) is of primary concern. Ground loops are traps which have left even the best of designers in a frenzy. Make sure that the ground point is really a ground and not some reactance to ground. Using a few extra plated through-holes may be expensive for board processing, but will prove to be of great value in achieving good performance. These amplifiers have considerable gain well beyond 3 GHz . The user may only intend to use the device to 2 GHz , but the grounding should be sound beyond 3 GHz . A simple test for ground loops is to note \(\mathbf{S} 21\) of the device. If steep and abrupt responses or oscillations occur, assume grounding problems exist. We have tested quite a number of these devices and found that the response is somewhat smooth. By louching the ground plane one should not expect any changes in the response. If any changes circuit; either add more plated through-holes or relocate them. With old circuits, one can add
obtained by the phase comparator. Each channel bandpass filter output is applied to a zero cross detector that senses every time the alternating current signal crosses the zerovoltage potential. The outputs of the two zero cross detectors are logic signals and are compared by a phase detector which provides a signal whose length in time represents difference in occurence of an output pulse from the two zero cross detectors. The output of the phase detector is filtered and amplified and provided as output signal "theta" which is a DC voltage analog representing the phase angle between the voltage of the forward power and the voltage of the reflected power which exists at the directional coupler.

\section*{Discriminator Stage Two}

The block diagram for discriminator stage two is shown in Figure 8. The RF sample previously derived by discriminator stage one is applied to discriminator stage two and is used to generate the injection signal. The injection signal is a single sideband signal that tracks the input RF signal that is applied to the directional coupler but is offset from that input signal by 10 kHz .

The RF sample is applied to a variable gain amplifier whose output is varied by the injection signal and then applied to a
power splitter. One output of the splitter is applied to a buffer amplifier, an output amplifier and pulse shaper, and a divider which divides the signal by 100 to provide the signal VRF which may be used by a frequency counter circuit to determine the input signal frequency. The second output of the power splitter is applied to a buffer amplifier and then to a signal sideband generator.

The single sideband generator uses a phase difference technique to generate the RF injection signal. The output of the buffer amplifier is applied to a broadband 90 degree RF splitter which provides an in-phase signal and a quadrature signal. The in-phase signal is applied to an in-phase mixer where it is mixed with a signal that is provided by a 10 kHz oscillator via the in-phase terminals of a 90 degree audio splitter and a 10 kHz bandpass filter and driver. The quadrature phase signal from the RF splitter is applied to the quadrature phase mixer where it is mixed with a signal that is provided by the 10 kHz oscillator via the quad-phase terminals of the 90 degree audio splitter and a 10 kHz bandpass filter and driver. The outputs of the in-phase mixer and the quadrature phase mixer are combined and the result is applied to an RF output power amplifier which provides the drive power for the injection signal. The injection signal is applied to an RF detector and bias amplifier to generate the signal to control
self-tapping screws that either add more grounding points or knock out the hot spots. Keep in mind that RF currents flow on the outside of the conductors. Transitions can be tricky. Try to choose a ground as close as possible to common to both the ground of the device and the ground of the circuit. Critical ground pointsin this case will be at the connectors and directly below the grounds of the amplifier or bypass capacitors. Having an extended path will introduce an additional reactance in series to the ground circuit. In active devices, this usually results in negative resistance. Under the right conditions, oscillations could result. Below are two circuits, one which we found acceptable, and one which was unacceptable.


Figure 10 - GOOD


Figure 10A - BAD

\section*{Single Stage Operation - NEPA1001}

The NEPA1001 is available in two types of packages. The AA package is a can type, and the FA is a hermetically sealed ceramic flat pack. The flat pack is straight forward and is surface-mountable amplifier on microstrip. Two opposing leads are used to supply +Vdd and \(V g g\). Orthogonal to those leads are another set of opposing leads which are the input and outputs. The back side of the package is the ground


Mounting of the FA package requires soldering the back side of the device. This can be accomplished in many ways and will most likely vary from one application to another. We tried wo methods. One was using a device that was heat sunk to a brass block and the other was to cut hole in the PC board to pick up the ground from the back side of the board.

The FA package was mounted on a brass block by first mounting the circuit with precu holes for the MMICs on to that block. Next the device and its location was pretinned with 93 degree low temperature solder. This solder was chosen mainly because it was available within our lab, and could have been substituted for a higher temperature. The only constraint was to choose a solder that would not require the back side of the MMIC to exceed about 230 degrees C. since the chip is die-attached by eutitic Au-Sn solder. Then the device was carefully dropped into place after the solder started to wet by applying a light pressure by hand through the eraser of a pencil. When the block cooled below the liquid phase of the solder, we carefully removed the pressure. The device has be firmly in place. Finally the last step was to solder the leads. Maximum temperature for this operation is 260 degrees \(C\) for no more than 10 seconds.

Our second approach was considerably easier, but has the disadvantage of poor therma dissipation. This method should not be used for the previously mentioned UPG amplifiers. We started by cutting a hole for the device into the PC board. The device was then dropped into place with its leads flush with the top side of the board. The thickness of the board was chosen so th the back side of the device would be flush with the ground plane. Lastly, the back side of the device was soldered to the circuit boand ground plane by regular 60/40 solder.

Mounting of the canned version or AA package is like that of a general purpose transistor It is important to note that the case is the amplifier ground. This amplifier is also configurable for self biasing

Self-Biasing the NEPA1001
NEC has suggested the following method for self-biasing. Since we must self bias two voltages (Vdd and-Vgg), a total of 10 volts is required. The ground must be RF ground regardless of its DC voltage level. This is accomplished by bypassing RF to ground through at least three 1000 pf chip capacitors. Single positive supply operation is realized by pulling up the potential of the ground against the Vgg terminal.


Figure 12


Figure 13


Figure 14

Negative self-biasing is also possible with the NEPA 1001 by pulling up the ground terminal against the Vgg terminal ( -10 volts).
the variable gain amplifier. The injection signal is applied to discriminator stage one as previously described.

A forward power sample derived from the RF forward voltage sample output of the directional coupler is applied through an RF amplifier to an RF detector. The detected signal is applied to a threshold comparator whose output digital signal fFP will indicate whether enough power is present at the directional coupler to appropriately operate the TIMS and the equipment which is being tuned.

\section*{CONSTRUCTION}

The directional coupler is constructed in a metal chassis. Type \(N\) coaxial connectors are used for the transmission line connections which must conduct up to 2000 watts PEP. Type TNC coaxial connectors are used for the forward voltage sample and reflected voltage sample outputs to prevent misconnection of the high power input signal to these low power outputs. coaxial transmission lines, shielded compartments, toroidal coupling coils, and layout techniques are used to minimize stray coupling and enhance accuracy.

Discriminator stage one is built on one printed circuit card using shielded compartments to isolate the various stages of the circuitry and control electromagnetic interference (EMI). The forward voltage and reflected voltage channels are constructed
with nearly identical component layouts considering the small variations between their circuits. Special care is taken to keep the two variable attenuators nearly identical with small tolerance components so their output voltages will accurately track with each other for variations in the input power to the directional coupler.

Discriminator stage two is built on a second printed circuit card with similar shielded compartment construction.

\section*{APPLICATIONS}

The first application of the TIMS was in a shipboard antenna coupler group designed to solve shipboard simultaneous operation (SIMOP) problems. Currently the TIMS is being incorporated into the design of an aircraft antenna coupler group to solve aircraft SIMOP problems. The TIMS could have applications in many advanced antenna coupler or filter developments.

\section*{SHIPBOARD APPLLCATIONS}

\section*{The Problem}

To describe the shipboard application, I will first discuss the problem which the shipboard antenna coupler group solves. Figure \(9(A)\) illustrates the SIMOP problem that exists when transmitting antennas are closely spaced (collocated) due to


Figure 15


Figure 16

The required resistor for achieving self-biasing can be found by simply applying Ohm's law (remember we want to drop 5 volts):

\section*{\(R=\frac{5 \text { rolts }}{\text { Idd }}\)}

In both cases a resistor value of 90 ohms is required for an Idd \(=55 \mathrm{~mA}\).

\section*{Self-Biasing the UPG 100}

Treatment of the UPG 100 is schematically the same as the NEPA1001. Packaging is quite different from the NEPA 1001 and requires a similar but slightly different approach. The UPG100 is an 8 -pin flat pack. Input and output pins are opposite to each other. Orthogonal to those pins are 3 opposing sets of leads. In the center of each set of 3 leads are the bias supply lines (Vgg and Vdd). The outer leads are the grounds. By applying the same techniques for choosing the bias resistor for the NEPA 1001, one can pull up or down the voltage for either positive or negative supplies. One should also ground all four comer leads with chip capacitors of 1000 pf or larger.


Figure 17
Remember that the bottom of this amplifier is not at ground potential relative to the circuit. Either provide a pad for all 4 leads and the back side, or prevent the DC ground of the device from coming in contact with the circuit ground. Below is the " H " shaped ground pad that we used to isolate the circuit ground from the amplifier ground. Chip capacitors were located, after the device
was installed, at each leg of the " H " pad to the circuit ground.


Figure 18

\section*{Cascading}

Cascading these devices requires good grounding as well as good decoupling between stages. High gain in excess of 40 dB - requires care. Below is an example of a typical circuit


Chokes are recommended but not necessarily required. In this case we choose not to use the chokes in order to see how sensitive the bias line was for high gain amplifiers. This resulted in three stage amplifier that showed no signs of bias instability. If one were to use chokes, a few urns on a ferrite core would most likely suffice. Capacitive decoupling is important. We used at least one 1000 pf chip capacitor on each bias supply as close as possible to the device. Chip capacitors were also located periodically along the main bus and where each of the bias lines converged. Flatness was very dependent on the coupling capacitors in between the stages. Our data sheet recommends 100 pf chip capacitors. We have found that many of these capacitors will exhibit intolerable reactances. First we tried 100 pf chip caps. The response showed shallow glitches (figure 19a-1). Next we tried 1000 pf (figure 19a-2). This removed the previous glitches. Since Finally a 500 pf capacitor was chosen (figure 19a-3) and resulted in capacitance was chosen. previous 1000 fapip with the amplifiers. This was concluded since the effect of the ofount of capacitance was oppos. to the expected response.
space restrictions on board ship. A separation of only 25 feet is not unusual on a ship and substantial coupling occurs between antennas in portions of the HF range. The various transmitting systems obviously must use different operating frequencies but operation with frequencies as close as 58 of each other is of ten desired. Two types of coupling are of concern -- power coupling and impedance coupling.

Power Coupling: Let us first consider power coupling. Consider case 1. With system \(B\) transmitting at frequency \(F 2\), system A is a utomatically tuning at frequency Fl. Some portion of the power radiated by the system \(B\) antenna is coupled to the system A antenna. Usually the power coupled to antenna is 10 \(d B\) or more below the power radiated from antenna \(B\) but in the worst case it may be only 3 dB below the power radiated from antenna B. A typical antenna coupler exhibits very little selectivity to attenuate \(F 2\). The typical phasing-loading discriminator has neither selectivity nor directivity and cannot distinguish transmitter A signals from antenna \(B\) signals. The discriminator can only detect impedance magnitude and phase angle based on the voltage and current existing in the transmission line at the discriminator location. But in this case, the voltage and current are the result of the mixing of the voltages and currents for F1 and F2. Therefore erroneous discriminator output signals are detected which cause mistuning
of antenna coupler A.
Now let us look at case 2. Consider that while system B was not transmitting, antenna coupler \(A\) was tuned and is now transmitting on Fl. Now system \(B\) is keyed and begins to radiate power at F2. The power coupled to antenna A causes erroneous discriminator outputs as in case 1. If antenna coupler A has its automatic tuning circuits activated, for example by constant surveillance or demand surveillance, it will attempt to retune to satisfy the discriminator output signals. Then when system B is unkeyed again and stops radiating, antenna coupler A will attempt to retune to its original settings for \(F 1\).

In typical SIMOP situations a combination of case 1 and case 2 will occur mutually affecting both system \(A\) and system B . The resulting disruption of communications in each transmitting channel is evident.

A possible solution to the power coupling problem would appear to be to simply tune each antenna coupler while the others are not transmitting and then de-activate the automatic tuning controls. This method might be feasible when only two antennas are collocated but many installations have several antennas collocated. More importantly, this method does not solve the other coupling problem--impedance coupling.

Impedance__ Coupling: Referring now to Figure \(9(B)\) note the equivalent circuit representing mutual impedance coupling

Input and output load pulling has shown this configuration to be unconditionally stable. This should be expected since these amplifiers exhibit a stability factor ( K ) of about 3 , at 3.6 GHz , and greater than 20 at 100 MHz . Shown below is the performance of the previous discussion and NEC published data of three cascaded NEPA 1001 amplifiers.


Figure 19a
(CEL)


Figure 19b
(NEC)

Application of the UPG 101
Much of the same precautions for handling and circuit layout apply to the UPG 101 as they do to the NEPA1001 and UPG100. The package of the UPG101 is identical to the UPG100. The UPG101 requires only one additional bias point. Remember that this device is a medium pow amplifier and that the drain current must be applied through an external RF choke. Most any high impedance across the entire band. high impedance across the entire band.

In many cases, transformers or chokes will resonate when the wire becomes a magical length of \(1 / 4\) wave length. One approach that offers extremely good performance is to wind a 30 turn, 30 guage wire conical choke (Height \(=.375\) mils, angle from longitudinal axis \(=30\) degrees 20 turs onto a high frequency tormid core. NEC suggests winding about 20 tums of 38 guage 20 turns onto a high frequency torroid core. NEC suggests winding about 20 turns of 38 guage inexpensive as well as mechanically stable. The disadvantage is that one can expoct about 1 dB loss with this approach and will yield about a 11 dB return loss of the bias tee alone. The cone and the tormid provided about 20 dB retum loss up to about 5 GHz with an insertion loss of about 7 the

It would be a good idea to check the choke by simply connecting the choke across the transmission line to ground. The design goal of such a choke should be the removal of all self resonances far enough away from the passband of the amplifier.

\section*{Self Bias of the UPG101}

Self biasing the UPG101 is difficult. The high drain current would require a large resistor which may contribute large reactance for microwave work. Should a user need or attempt to use this configuratrion, CEL would like to hear your comments.

\section*{Handling the UPG and NEPA Series}

Remember, active GaAs FBTs are components of these devices. Static discharge and biasing precautions are a must. Also, remember that when powering-up, never apply the drain
voltage before the gate voltage. The smaller signal devices, UPG100 and NEPA1001, are current-limited by a drain resistor. Limiting drain curnent makes the devices more forgiving to biasing errors. No doubt that the UPG 101 will be less likely to take a "joke". One must take the same precautions when biasing the UPG101 as when powering any power GaAs FET device.

\section*{Conclusion}

CEL is excited with NEC's development of these new MMIC's. These devices perform well and have lived up to all our expectations. NEC and CEL would like to invite the user to try these devices for whatever application they may have.

CEL is extremely well staffed with experienced sales persons and supported by a knowledgeable applications engineering group. It is the intention of CEL, together with NEC, to support the user for the successful utilization of all of our products. Should any questions arise concerning these MMIC's or other semiconductor products, please feel free to contact: Applications Engineering, California Eastem Laboratories, 3260 Jay Street, Santa Clara, CA 95054. Telephone: (408)988-3500

About the Auahor:
Terence J. Cummings is an applications engineer a California Eastem Laboratories.
between the antennas. To illustrate the problem let us ignore the power coupling. Consider that antenna coupler A is tuned correctly for \(F l\) while antenna coupler \(B\) is tuned correctly for F2. Now while system \(A\) is transmitting, let system \(B\) retune to a new frequency \(F 3\). When antenna coupler \(B\) is tuned, the back impedance \(Z B\) looking from the terminals of antenna \(B\) to the output terminals of antenna coupler \(B\) is now different than it was when antenna coupler \(B\) was tuned for \(F 2\). ZB represents the load impedance \(f\) or the equivalent \(T\) network which represents the collocated antenna system. Consequently \(Z C\), the load impedance for antenna coupler \(A\), is now different and antenna coupler \(A\) is no longer correctly tuned. The automatic tuning controls for antenna coupler A must be activated so it can retune to the new load impedance, but now the coupled power problem (which we ignored for illustration) may prevent correct tuning.

The combination of coupled power and coupled impedance occur in varying degrees in the \(H F\) band depending on type of antenna, separation from collocated antennas, other nearby structures, and the configuration of the antenna coupler impedance matching circuits.

The Solution
Figure 10 illustrates the solution to the shipboard SIMOP problem. A band pass filter is placed between the transmitter and the antenna coupler. The sensing device for automatic
tuning is located at the RF input to the BPF instead of at the RF input to the antenna coupler. The \(F 2\) signal power coupled to antenna \(A\) is now attenuated by the selectivity characteristics of the BPF so the sensing device at the BPF input does not respond to the \(F 2\) signal. The selectivity of the BPF also reduces the level of intermodulation distortion (IMD) resulting from mixing of \(F 1\) and \(F 2\) at the transmitter.

A new problem is created by this configuration. The antenna coupler must be located above deck at the antenna base. On shipboard there is usually insufficient space near the antenna base for the BPF. Thus the BPF is located below deck, probably but not necessarily near the transmitter. A long coaxial transmission line is therefore required between the BPF and the antenna coupler. The length of the coaxial transmission line will be different for each different class ship installation. Tuning of the antenna coupler becomes the problem because the input impedance to the antenna coupler will be translated depending on the coaxial transmission line length and the operating frequency. In other words, the impedance at the input to the BPF where the sensing device is located is not representative of the impedance at the input to the antenna coupler. Therefore a new method is needed to correctly tune the antenna coupler. The TIMS provides that new method and is incorporated into the shipboard antenna coupler group.

\section*{Eunctional Description}

The block diagram of the shipboard antenna coupler group is shown in figure 11. The equipment uses an analog tuning system and is capable of operation with 1500 watts average and 2000 watts PEPRF input power. The tuning elements are servo motor driven vacuum variable capacitors. The directional coupler is located at the RF input to the bandpass filter. The forward and reflected voltage samples are supplied via coaxial transmission lines to the discriminator stages which are located in the control-power supply . The voltage analogs of the forward voltage, reflected voltage, and phase angle are applied via sample and hold circuits and \(A / D\) circuits to the Intel 8086 microprocessor circuit. Using these signals the microprocessor calculates the impedance which exists at the output of the directional coupler.

A calibration method is used to compensate for variations in the length of the forward and reflected voltage sample transmission lines from the directional coupler. A calibration module is included at the RF input to the antenna coupler where a phasing-loading discriminator would be located in previous antenna couplers. At initiation of a tuning cycle the directional coupler sample lines are calibrated. Tuning algorithms based on the calculated impedance at the directional coupler are used to tune the BPF. Then several known impedance

RF loads are switched into the antenna coupler calibration module circuit. As each calibration load is inserted, the calculated impedance at the directional coupler is stored in memory. Subsequently during the antenna coupler tuning process, the real time calculated impedance at the directional coupler and the calibration impedances that were stored are used to calculate the impedance at the input to the antenna coupler. Tuning algorithms are used based on the calculated impedance at the antenna coupler input to control the analog tuning motor speed and direction to reach the tune point. Some of the algorithms rely on the capability of the TIMS to measure actual impedances rather than relative impedances as with the phasing-loading discriminator.

The antenna coupler group utilizes the variable attenuator capability of the TIMS for a low tune power capability. During the group tuning cycle a 6 dB padis inserted at the input to the directional coupler to provide isolation between the untuned filter input and the transmitter output. The variable attenuator range can accomodate the 6 dB pad and the loss in the directional coupler sample coaxial transmission lines which can be up to 250 feet in length. The resulting tune power range is 50 milliwatts to 225 watts during initial tuning and 10 milliwatts to 2000 watts during surveillance tuning as a result of collocated impedance coupling. The TIMS as previously

> Fuat Agi, Vice President Engineering, M/A-COM MPD
> Donald J. Hoft, Sr. Vice President, M/A-COM, Inc.

Today there is an ever-increasing number of radar systems, both for new equipments and for improvenent upgrades, which utilize solid state (SS) high power amplifiers for the transmitter. SS offers major advantages of high reliability and availability, graceful degradation, low MTTR, logistics and low life cycle cost. A well-designed SS system need never have a system outage due to the loss of the modules since the amplifier is distributed and fails gracefully. Amplifier (nodules) building blocks which have failure rates measured in years, have replacement times measured in minutes thus the availability of the systea is essentially lo0\% (approximately 1.0 ). Repair is often possible on-site with skill levels readily available by service personnel.

To exenplify the advancing state-of-the-art in radar SS transaitters, this paper will describe in sone detail HF solid state 200 kH CH transitter which is applicable in an over-the-horizon radar application.

\section*{200KW SS TRANSHITTER}

Over-the-Horizon (OTH) Radars are currently planned in several countries for long-range (over 1000 ailes) surveillance. These modern OTH systems typically utilize transintters with 200 kH (CW) or more of power delivered to an array of 10-20 antenna radiators, see Pigure 1. Thus, depending on the antenna tapering, the power output to each antenna element is between 5 and 40 kH . These systens utilize the ionosphere to reflect HF energy back to
earth, range being a function of the ionosphere characteristics at the time, and the radar operating frequency. A 20 kH solld state transitter developed for this application is shown in Figure 2. The performance is shown in Table 1 and a block diagran of the 20 kH shelter housing configuration is shown in Figure 3.
table 1.
\begin{tabular}{|c|c|}
\hline Frequency Band, Instantaneous & 5-28 MHz \\
\hline (Typical) Power Output, Total & 200 kH CH \\
\hline Antenna Taper & As required in 5, 10, 20 kH increments \\
\hline Housing & Shelters of 20 kH each \\
\hline Load VSTR & 2:1 Max. \\
\hline Cooling & Air \\
\hline Dark Noise & \(-150 \mathrm{dBm} / \mathrm{Hz}\) \\
\hline Near Carrier Noise & -93 dBc/ Hz ( \(2 \mathrm{~Hz} \mathrm{FM} \mathrm{carrier)}\) \\
\hline Band Switching Time & 0.3 sec . \\
\hline Harsonics & -70 dBc \\
\hline Phase Linearity & 1 degree maz. per 100 kHz band \\
\hline
\end{tabular}

In this way each shelter contains 20 kH of power uhich can be configured to delivery either \(20 \mathrm{kH}, 2\) times 10 kH or 4 times 5 kN as required by the antenna system. The total system power requirements (over 200 kilowatts) is achieved with an appropriate number of shelters delivering power to the antenna array elements. As can be seen, a basic building block of the 20 kH unit is a 5 kH amplifier housed in each bay; the center bay contains the appropriate combiner, in the case shown in Figure 2 a \(4: 1\) unit to 20
described also provides selectivity to further reduce susceptibility to the interfering signal.

\section*{AIRCRAFT APPLICATIONS}

Aircraft have SIMOP problems also due to lack of space for antenna separation. We are currently implementing the TIMS into an aircraft SIMOP system. This system is for operation with 400 watts average or PEP RF input power, therefore the directional coupler can be smaller in size. Low power tuning is not a requirement so the variable attenuator is changed to a fixed attenuator and the discriminator injection frequency is changed to 50 kHz to reduce the size of the discriminator stages. The BPF and antenna coupler contain digital tuning elements.

\section*{SUMMARY}

Sensing devices are needed to control automatic tuning of impedance networks. The conventional phasing-loading discriminator has been used for this purpose for many years but it has limitations for modern applications. The TIMS has been developed and patented for use as an impedance measurement system in automatically tunable impedance networks such as antenna couplers and filters. The TIMS overcomes the limitations of the conventional phasing-loading discriminator
such as actual impedance measurement versus relative measurements, susceptibility to interfering signals, noise generation, and high RF power requirements. The TIMS provides accurate impedance measurements that can be used by a microprocessor along with calibration information to calculate impedances at a remote location. The TIMS has been successfully utilized in a shipboard antenna coupler group to solve SIMOP problems due to collocated antennas and is currently being implemented for an aircraft SIMOP solution.

(a) antenna couplea


TYPICAL SIMPLIFIED NETWOAKS
kilowatts. Siallarly the 5 kH amplifier is made up of individual power amplifier modules each of which provides 220 matts of output power from a push-pull configuration. Figure 4 is detailed block diagram of the 5 kH amplifier. The transistors are derated to an average junction temperature of 120 degrees \(C\) ( 150 degrees \(C\) morst case) thus assuring excellent reliability. Figure 5 shows the power response of a typical 5 kH and 20 kH amplifier. Each 5 kH amplifier has its own dedicated power supply which has over-capability via redundant modules; thus providing for high reliability/availability on this critical component. BITE is provided to all power levels from the 220 W modules through the full 20 kH level and further includes a full complement of BITE functions. Maintenance is possible to the individual module ( 225 W ) level. This transeitter is now in production at M/A-COM MPD.


Figure 1. Typical Antenna/Transmitter Array Configuration over the Horizon Radar.

Figure 2.


Figure 3. 20 K Watt Solid-State Transmitter Shelter Architecture.


typical sensor signals vs element position



Phasing - loading discriminator response


Figure 4. 5 Kilowatt Amplifier Subsystem.


Figure \(5.5 \mathrm{~kW}, 20 \mathrm{~kW}\) System Performance Power vs. Frequency.


tims discriminator stage one block diagram

\(\rightarrow\) VRF

antennas may be closely collocated
ANENNAS MAY EE CLOSELY COLLOCATED
PREVENTS TUNN PROBLEMS OUE TO
INTEFERING SIGNALS INTERFERING SIGNALS
REDUCES IMD

SIMOP SOLUIION
FIGURE


AN hF HIGH DYNAMIC RANGE AMPLIFIER USING FEEDFORWARD TECHNIQUES

\section*{by}

\section*{Jean Yamas, Engineer}

Locus, Inc.
P.O. Box 740

State College, PA 16804

\section*{ABSTRACT}

Feedforward is a distortion cancellation technique in which a sample of the distortion generated in an amplifier is coupled off, isolated, amplified, and recombined 180 degrees out of phase to cancel the remaining distortion in the output signal. This paper describes how feedforward was successfully applied to a three decade bandwidth amplifier ( 100 kHz to 100 MHz ) to achieve a second-order output intercept point greater that +100 dBm , a third order output intercept point greater than +55 dBm , and a noise Eigure less than 7 dB .

\section*{FEEDFORWARD THEORY}

A feedforward block diagram is shown in Figure 1 . The main signal path is through the main amplifier and delay line 2 to the output. The distortion generated in the main amplifier is the
source of the signal degradation and is the distortion which is cancelled by the feedforward circuit.


Fig. 1 - Feedforward Block Diagram

Feedforward utilizes a two loop system to accomplish the distortion cancellation. "Loop 1 " shown in Figure 2 A , can be recognized as the first half of the feedforward block diagram of figure 1. "Loop 2," shown in Figure 2B, is the second half. Directional couplers are used to sample and recombine the signal and distortion to achieve the desired results.


Fig. 2 - Feedforward Loops

To cancel the distortion generated in the main amplifier, it is necessary to isolate the distortion. This is the function of Loop 1 of the feedforward circuit. At the input, the clean signal is coupled off following one path through the main amplifier and the other path through delay line 1 . At the output of the main
amplifier, a sample of the distorted signal is coupled down to DC3 where it is recombined 180 degrees out of phase with the clean signal from delay line 1 . By proper choice of circuit gain and attenuation elements in both paths, the two signals will have equal amplitudes and when combined 180 degrees out of phase the signals will cancel, thereby isolating the distortion. Maximum signal cancellation is desirable not only to obtain a "clean" distortion sample, but also to minimize the input level to the error amplifier so that it does not generate distortion. In addition to strict level control and phase requirements, the time delay of both paths must be equal for cancellation to occur. The delay line is designed to obtain this match.

The distortion cancellation is function of Loop 2. Here, the isolated distortion at the output of DC3 is amplified by the error amplifier and coupled to the output to recombine with the distorted signal from the main path of the feedforward circuit. As with the cancellation requirements of loop 1 , the distortion from both paths must have good amplitude and delay match, and must be 180 degrees out of phase. Note that the distortion contributed by the ertor amplifier is insignificant due to the low signal level and so is not a concern.

\section*{Chodsing the might chystal ano} OSCILLATOR FOR THE APPLICATION

\section*{by}

Mrian E. Rose
Vice President
Q-Tech Corporation
2204 Carmelina Ave Los Angeles, Ce. 90064

Some of the oonsiderations which go into decision on the choice and design of crystals ond oryetal oecillotora are listed below:
4. Fundementel versue overtone mode cryetal.
2. Parallel mode versus series mode.
3. VHF cryatal versus multiplier ohain.
4. Uncompenseted veraus texo or ocxo.
5. Trimable versus no trim adjustment.
6. Solder sealed package versue hybrid.
7. Voltage control required.
B. Stringent short term stobility requiremente.
9. Tight ogeing requirements.
40. Start-up time.
११. Radiotion requiremente.
12. Shock and vibration rquiramenta.
13. Low current (bottery operated).
14. Low parte count. Gate Oscillator.

In order to organiza some of the above considerations, this poper arbitrarily begins with a 20 MHz , fundamental mode erystal In an HC-is holder, to be used in an oscillator driving a receiver local oscillator chain to 400 MHz .
The characteristice of this crystal and its circuit are descibed and some of the options and considerations of the list ore compared to this 20 MHz example.

\section*{FREQUENCY GTABILITY}

Assume that the osefllator has a temperature etebility of \(\pm 40\) PPM (perta per million) over the temperature range of \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\). To this must be added an ogeing foctor. One con conservatively assume 2 PPM ogeing the ist year of operotion and o life time ogeing factor of 4PPM. Ueing these assumptions, the worgt case fraquency error will be \(40+4\) or 44 PPM .

In Hertz;
\(20 * 10^{6} * 44 * 10^{-6}=880 \mathrm{~Hz}\),
and ot the end of the \(\times 20\) multiplier choin
\(20 \times 880=17,600 \mathrm{~Hz}\).
This frequency error would be tolerable if this fictitioun local oscilletor was port of o receiver with a 200 kHz I.f. bandwidth. If, however, the bondwidth were only \(2 \mathrm{kHz}, 097600 \mathrm{~Hz}\) error in the local oscillotor would be exceseive. The norrow bend assumption will be made in order to see where it leade the

\section*{DESIGN CONSIDERATIONS}

\section*{AMPLITUDE}

To obtain the amplitude match required from both paths of Loop 1 and Loop 2, the losses of the directional couplers and gain of the amplifiers are calculated.

For Loop 1, equal levels from both paths occur at the output of DC3 when the following equation is satisfied. (All gains and losses in dB)
\[
\begin{aligned}
& S-D 1+G 1-D 2-D 3=S-L 1-D L 1-L 3 \\
& \text { where } L=\text { absolute loss of thru path of } D C \\
& D=\text { absolute loss of coupled port of } D C \\
& D L 1=\text { absolute loss of delay line } 1 \\
& \text { G1 }=\text { gain of main amplifier }
\end{aligned}
\]

Rearranged, this equation is one of three required for feedforward circuit design:

For signal cancellation:
G1 = D1 + D2 + D3 - Ll - L3 - DL1
1

For Loop 2, the equation for amplitude match is
\[
S-L 2-D L 2-L 4=S-D 2-D 3+G 2-D 4
\]
where \(L\) = absolute loss of thru path of DC*
D\# = absolute loss of coupled port of DCN
DL2 = absolute loss of delay line 2
G2 = gain of error amplifier

Rearranging gives the second equation required for feedforward design:

For distortion cancellation:
\[
\text { G2 }=\mathrm{D} 2+\mathrm{D} 3+\mathrm{D} 4-\mathrm{L} 2-\mathrm{L} 4-\mathrm{DL} 2
\]

An additional consideration is the desired gain of the feedforward circuit.

For gain requirements:
\[
\text { GAIN }=\text { G1-D1-L2-L4-DL2 }
\]

The solution to these equations is simplified by several design considerations. For minimum noise figure, DCl and DC 3 should have minimal thru path losses. Minimal loss in the thru paths of DC2 and DC4 is necessary for the highest intercept point. To simplify circuit design, Gl can be set equal to \(G 2\) which forces DC1 \(=\) DC4 and DC2 \(=\) DC3.

PHASE
The phase of the signals can be controlled by choosing appropriate paths through the directional couplers. The circuit diagram of a directional coupler is shown in Figure 3. When a signal enters port 1 , the output at port 2 is 180 degrees out of phase with the input, whereas if the signal enters port 3 , the output at port 4 is in-phase with the input. By directing the signal in the feedforward circuit through the appropriate port, the required phase is obtained.
oscilletor design. The maximum error must now be restrioted to obout 200 Hz , or
DF, PPM - 200/400 = 0.5 PPM

This new requirement forces the design to either a much more stable cryatol oscillotor, or to eyetem in which the oscilletor is locked to a stable master reference. These two apprasche: will be coneidered next.

TCXO:
(Iemperature Compensoted Crystel Oecillator and Oven Controlled Cryetol Qeoillotors)

Before oonsidering the two options of rexo and ocxo, the questions of ageing ond eetebility must be oddreseed. If the receiver must operate without odjuetment throughout itg life, then ageing will probobly determine the quality of crystal oecilletor required (and therefore the price, aize and D.C. power). If the frequency of the oscillator can be corrected by electrical or mechonical odjustment to remove frequency error dua to egeing, the frequency accurecy will be domineted by temperature rather than age. TCXO's and OCXD's will be considered with this oasumption.

Briefly, © TCXO correcte the crystel frequency vereue temperoture chorscteristic by means of o compensotion network which applies a correction voltage to varicap diode in series with the crystal. An ocxo addresses the problemby oontrolifing the temperature at the cryetal with a minioture oven. Simplified schemotics of etypicel TCXO and ocxo ore shown in figure 1.

ocxo

- Figure 1, Simplified TCXO and ocxo


Fig. 3-Directional Coupler

\section*{delay}

Once the gain of the main and error amplifiers and the coupling coefficients of the directional couplers are chosen, the delay of the main amplifier path of Loop 1 is measured and matched by designing delay 1 ine \(l\) accordingly. Efforts should be made to minimize the delay variation versus frequency of the main amplifier path to simplify the delay line design. Similarly, delay line 2 should be designed to match the delay of the delay line path to the error amplifier path of Loop 2.

CANCELLATION REOUIREMENTS
Figure 4 shows the amplitude and phase match requirements to obtain the desired amount of cancellation. As the chart indicates, 20 dB of cancellation can be obtained with 1 degree of
phase match and about 0.9 dB amplitude match. The circuit should have a gain adjustment to adjust the amplitude for a good match and a phase adjustment in the delay lines to attain the delay match. Equalizers and temperature compensation networks are sometimes necessary to obtain more stringent amplitude and phase match requirements.

0. 1 pase emano in ocegres

Fig. 4 - Cancellation Requirements

The new epecification of .5 PPM puts the requirement somewhere in the gray orea betwaen TCXO's and ocxo's. Low oost, commeroial rexo'a typioally meet \(\pm 1 \mathrm{PPM}\) over \(0^{\circ} \mathrm{C}\) to \(50^{\circ}\) The example oscilletor's specitioetion and tempersture range puts the design near the border of the beat that can be done with a TCXO, ond consequently it would be a ootly unit. ocxo's easily provide tebilition of \(+9 \times 10^{-8}\) stabilitien of \(\pm 1 \times 10\) over the required temperature renge, and provide ageing rates lase than \(1 \times 10^{-9}\) per day.

However, ovenized unite are larger, heovier, and consume muoh more power than non-oven types. Aepresentative speoificetions are shown in Table 1. Notice that some oompromises may have to be made between requiremente, performance, and prioe.

\section*{PHAGE LOCKED GYETEM}

As en olternative, assume that this system olraody conteine e stable mastor oscillator at 5 MHz . The basic orystal osoillator oan then be locked to this master using a phose locked loop. Fiqure 2 illustrates the eircuitry involved. Notioe that a varaotor in erife with the orystal has been added in order to be able to pull (frequency hift) the frequenoy to exactly four timee the reference 5 MHz .

Some notes concerning phese locking a crystal osoillator are appropriste.
1. The gein oonstant of arystel oontrolled oecillator, ko, in Hertz per volt, is typically three to four ordere of magnitude

TABLE 1 -- typical ocxo ano tcxo
\begin{tabular}{|c|c|c|}
\hline GPECIFICATION & OCXO & 10×0 \\
\hline Frequency & 5 or 10 MHz & 5 to 50 MHz \\
\hline Output Level & 1 Vrme into 50 ohme & sinewove, TTL, or cmos \\
\hline Hormonio Distortion & -40 dBc & -20 dBo \\
\hline Frequency Adjustment & \begin{tabular}{l}
+2.5 PPM minimum \\
coarse mechanical. \\
\(\pm 2 \times 10 E-7\) fine \\
\#1 PPM voltoge control
\end{tabular} & \[
\begin{aligned}
& \pm 2 \times 10 E-6 \\
& \text { minimum }
\end{aligned}
\] \\
\hline Input Voltaga & + 12 V.0.C., \(\pm 10 \%\) & + 12 V.0.c., +5\% \\
\hline Frequency Stability v: Input Voltage & \[
\begin{gathered}
\pm 3 \times 10 \mathrm{E}-9 \text { for } \\
\pm 10 x
\end{gathered}
\] & \[
\begin{gathered}
+2 \times 10 \mathrm{E}-7 \text { for } \\
\pm 5 \%
\end{gathered}
\] \\
\hline Frequenoy Stobility ve Loed & \[
\begin{gathered}
\pm 1 \times 10 E-9 \text { for } \\
\pm 10 x
\end{gathered}
\] & \[
\begin{aligned}
& \pm 2 \times 10 E-7 \\
& \text { for } \pm 2: 1 \text { vswR }
\end{aligned}
\] \\
\hline Fraquenoy Stability ve Temperature & \[
\begin{aligned}
& \pm 5 \times 10 \mathrm{E}-9 \\
& -20^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5 \times 10 \mathrm{E}-7 \\
& -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Werm-Up Time & \(\pm 1 \times 10 E-7\) in 15 mins
\(\pm 1 \times 10 \mathrm{E}-8\) in 20 mine & < 1 second \\
\hline Aging Rate & 1x 10E-9/24 hours & 1x10E-8/24 hour \\
\hline Short Term Stability & \[
\begin{gathered}
3 \times 10 E-11, r . m . s \\
\text { Tau }, ~
\end{gathered}
\] &  \\
\hline Input Current & \begin{tabular}{l}
340ma. at turn-on \\
135ma. at \(25^{\circ} \mathrm{C}\) \\
225mb. ot \(-20^{\circ} \mathrm{C}\)
\end{tabular} & 15 ma . \\
\hline 6120 & \(2^{\prime \prime} \times 2^{\prime \prime} \times 4^{*}\) & \(1^{\prime \prime} \times 2^{\prime \prime} \times 0.5^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{FEEDFORWARD ARCHITECTURE}

Other feedforward configurations are possible and should be chosen according to design requirements. Figure 5 shows a configuration commonly used for power amplifiers and is attractive because it requires less gain in the main amplifier than that of Figure 1. The disadvantage of the circuit in Figure 5 is that it has a much higher noise figure. This is due to the fact that feedforward not only cancels the distortion contributed from the main amplifier, but also cancels its noise contribution. This leaves only the error amplifier as the nolse source. Since the noise contributed by the error amplifier is the sum of its noise figure and the losses incurred before it, the higher input losses of DCl in figure 5 will result in a much higher noise figure.


OC = Directiomal couplen
Fig. 5 - Feedforward Power Configuration

\section*{HF HIGH DYNAMIC RANGE AMPLIFIER DESIGN}

This project was initiated in an effort to design a high performance amplifier suitable for HF multicoupler applications. An HF multicoupler is used at receiver sites to provide multiple outputs from a single receiving antenna and consists of an amplifier driving an \(n\)-way splitter. Because of the high concentration of both desired and undesired signals in the antenna environment, a high performance amplifier is required. It must not add excessive noise to weak desired signals nor produce intermodulation products from strong signals. The demands placed on such an amplifier are severe.

Preliminary specifications were established based on these demands and what was considered theoretically possible. A gain of around 11 dB was determined to be necessary to offset the loss of an 8-way split. The goals set for the second and third order output intercept points (OIP2 and OIP3, respectively) were based on the performance of a typical 1 watt bipolar transistor and the estimated distortion cancellation capabilities of push-pull and feedforward techniques. In particular, it was estimated that the OIP2 could be improved 20 dB from push-pull and 20 dB from feedforward and the OIP3 could be improved 3 dB from push-pull and 10 dB from feedforward. From this, the goal of +100 dBm for OIP2

lese then that for a \(V C O\) (voltage controlled oscillator). The 20 MHz example would have, an average KO of 500 Hz per valt.
2. The loop bandwidth for phase looked loop ueing a crystal controlled oscillator is typicolly 10 to 200 Hz . Very much narrower bandwidthe may cause loop phase jitter probleme. Wider bendwidths are limited by frequency responee roll-off caueed by the narrow band nature of the oscillator.
3. The cryatal oncillator must be capable of being pulled, or slewed, by an amount equal to ita' temperature and ageing frequency error. This aseumes that the mester oscillator drift 1s negligible. The tcxo and the phase locked oscillator both require electronic tuning, by means of a varactor diode, or
varicap. It is appropriate to diecuss varactor tuning in more detail, before discuesing overtone erystal oscilletore because overtones have very limited "pullability."

VCXO (VOLTAGE CONTAOLLEO CAYSTAL OSCILLATOA
The equivalent circuit for e cryetal is shown in figure 3.


Figure 3, CRyGTAL EqUIVALENT CIRCUIT

Li, Ci end Ri represent the piezoelectric coupled mechenical resonator characteriatics. Co iathe capacitor formed by the crystal electrodes. Typical values for the 20 MHz crystal are shown. When the crystal is part of a complete circuit, as gown in Figure 4 , oscillation occure at frequency above \(F 1\), where the crystal serias arm presents a net inductive reactance, resonant with the capacitora and inductors in the circuit.
and +57 dBm for OIP3 was established. The noise figure was estimated to be \(7 \mathrm{~dB}: 5 \mathrm{~dB}\) from the error amplifier and 2 dB from input losses. With these preliminary specifications, a circuit was built, tuned and tested as described below.

\section*{FEEDFORWARD}

The feedforward configuration used in the HF high dynamic range amplifier was a modification of that shown in figure 1 and is shown in Figure 6. Directional couplers DC2 and DC3 are replaced with aingle directional coupler to achieve the desired results with fewer parts. A gain adjustment is placed within each loop for independent control of signal levels. With this design, three 14 dB directional couplers are used with main and error amplifier gains of \(\mathbf{2 6 . 5} \mathrm{dB}\). This achieves the necessary cancellation in both loops and the desired gain of 11.5 dB .


Fig. 6 - Feedforward Circuit

PUSH-PULL
Feedforward is used to cancel distortion generated in the main amplifier by 20 dB and more. However, second order output intercept points greater than +100 dBm and third order output intercept points greater than +57 dBm require a high performance main amplifier. A push-pull arrangement shown in Figure 7 is used to obtain an additional 20 dB of cancellation of the second order intermodulation product and an additional 6 dB of reduction of the third order intermodulation product. Flatness and phase linearity is improved by using 3 dB directional couplers instead of push-pull transformers. In addition, noise figure and intermodulation products are minimized by biasing amps 1 and 2 with Ic \(=50 \mathrm{~mA}\) and amps 3 and 4 with Ic \(=100 \mathrm{~mA}\) at +15 V . This design is used for both the main and error amplifiers bringing the total power consumption to 9 watts.


Fig. 7 - Push-Pull Arrangement for Main and Error Amplifiers


Figure 4, CAYSTAL AND CIRCUIT
The resonant frequency of the complnte eircuit cen be calculoted for ony particular set of volues by writing the apprapriate equations for the resonant frequency and solving. This is convenientiy done on computer. Geven cosea have been calculoted and presented in Table 2 for typical circuit values.

In Table 2 the values of C1, C4, C6/C7, L2 and the veractor parametere (C3) are veried to show the effect on frequency pulifing end linearity. A control voltege range of 1 volt to 10 volts is essumed. The frequency dota is listed as; (1) PPM oway from cryetal series arm resonance, (2) the \(V\) to 10 V frequency delte, (3) The frequency voltege eensitivity in PPM per volt, ot the ende of the renge.

In case 1 , the difference in sensitivity ot 1 V ond 10 V is extreme. Thie resulte from the varactor capacity-voltege cheracteristic and from the lose of ensitivitiy os the crystal is pulled further from resonance. Case 2 is like Case 1 except that \(C\) C has been halved. It is seen that the delta \(F i s\) elso reduced by 2, showing the direct dependence of "pullebility" on Ci. Thie ie discuesed in the section on overtone operetion. Notice that the difference in \(V\) to 10 V eeneitivity is not estreme in case 2 becouse the cryetalis not pulled es for promeries resonance. Cese 3 showe that \(C 4\) reduces pulling and degrades linearity.

In Case 4 the varector 4 volt volue is changed from 30 picoferode to 15 picofarede, resulting in greater pullability and better linearity. Caeea 5,6 , and 7 use a hyperabrupt varactor (gamme - . 8) instead of the abrupt function one. This yielde improvement in puliing and linearity. Finally, Cese 7 ehowe that the eddition of three microhenry series inductor (L2) further increses pulling. One note of caution. Reducing the verector capacity reaults in on increase of the circuit porollel lose. In Cose 6, for example, unlese the crystel resistence is aitably low, the circuit mey etop oscilleting at 10 volte."
- This topio is addresed in the paper "Moximizing Crystal Oscillator Frequency Etability" Gassion R-2, r.f. expo 86.

\section*{RESISTIVE FEEDBACK}

The amplifiers in the push-pull arrangement use Motorola's MRF587 1 watt bipolar transistors in a resistive feedback network. Negative feedback techniques are beneficial because they produce flatter gain, lower distortion, better impedance match, and temperature stability. Although resistive feedback results in a higher noise figure ( 5 dB versus 1.5 dB ) and a lower intercept point (by 1-2 dB) than a lossless or coupler feedback network, this compromise was accepted in return for the extended bandwidth that it provided. The resistive feedback amplifier circuits are designed based on desired gain of +14 dB per stage to bring the total gain in the push-pull arrangement to 26.5 dB . Gain flatness of the push-pull configuration with resistive feedback amplifiers is \(\pm 0.1 \mathrm{~dB}\) from 100 kHz to 100 MHz with a return loss greater than 20 dB.

\section*{TUNING PROCEDURE}

Loop 1 and Loop 2 are designed independently and fine-tuned after integrating into the final feedforward circuit. The final circuit is tested using resistive coupler test points as shown in Figure 8.


Fig. - Feedformard with Test Points

Tuning the feedforward circuit is performed by using a test signal to simulate the signal that is to be cancelled in Loop l and to simulate the distortion that is to be cancelled in Loop 2. Cancellation of each loop is measured separately and requires a reference. For Loop 1 , a reference is set up by disconnecting the main amplifier and sweeping from the input through the delay line 1 path to test point 1 . Then, with the main amplifier in the circuit, the cancellation is measured by sweeping across Loop 1 from the input to test point 1 . Amplitude and delay adjustments should be made to improve the match for maximum cancellation. similarly, the cancellation of Loop 2 is measured by disconnecting the error amplifier and injecting a test signal into test point 2 through the delay line 2 path to the output to obtain the reference. Then, with the error amplifier in the circuit, the response of Loop 2 from test point 2 to the output is measured and tuned for maximum cancellation.

THE OVEATONE CAYGTAL AND OSCILLATOA
It might be asked of the model local oscillotor ohain, "why etart ot \(20 \mathrm{MHzq"}\) "Why not use a 5 th overton oryetal at 100 MHz , save e lot of multiplication ond move the close in spurious out by - factor of 5"?

For the originel etobility assumption of \(\pm 40 \mathrm{PPM}, \mathrm{this}\) might be on ottractive choica. With atight frequenoy tolarance, it is not, end to eea why, the overtone equivalent circuit will be examined. Shown in figure 5 below it the equivalent oircuit of the same 20 MHz erystal, but for the 3 rd or 5 th overtone mode:


Figure 5, oVERtone equivalent circuit

It is eeen that the inductance ramains the eome, while ci is reduoed by ofoctor \(N^{2}\), where \(N\) is the overtone, 3, 5, 7*, 9* eto. Consequently, the "pullability" of on overtone crystal ie reduoed by approximately the overtone number squared, oompared to
* Higher than 5th are reletively rare
the fundamental mode. Typical pullability for a 60 mHz 3 rd overtone would be on the order of +30 PPM , and for a 100 mHz 5 th overtone, \(\pm 10 \mathrm{PPM}\). Cleorly, there is not enough pull renge to use these modes in the TCXO or phose locked examples deacribed here

GHDAT TEAM GTABILITY
Thus far, those systamatic changes in frequency have been discussed which are due to factors such os temperoture and time Oscillator frequency is also perturbed by random, noisa-like factora, and these perturbations typically are important for dieturbanoes with time conetentefrom microesconde to seconde This ehort term etability is measured in the time domain where some type of frequency oounter is the key instrument, and in the frequency domain, where spectral analyeis of one form or another is used.

In many of these measuremente it ie neceseory to use two ascillotors, either with a moll frequancy offset, or locked together in a phase locked sytem. Some typical time domain values are listed in Table 1.

\section*{OTHER TOPICE IN CRYETAL ANO OGCILLATOR GELECTION}
1. Clock oseillotore: Miniature, self containad crystal oscillator and output buffer cambinations. These hybrid units ore available with output frequenoies from sub-Hertz to 150 mHz Outputa ore compatible with gtandard logic familiss, TTL, CMOS, ECL. Militarized unite ore ovailable with stabilities of +50 PPM

\section*{RESULTS}

Test results of the specified HF high dynamic range amplifier indicate success in attaining the specifications set forth. Figure 9 shows the cancellation curves of loop 1 and Loop 2. As can be seen, better than 30 dB of cancellation of both signal and distortion was attained across most of the three decade bandwidth from 100 kHz to 100 MHz . The gain and return loss curves, shown in Figure 10 , indicate a flat response with \(11.5 \pm 0.5 \mathrm{~dB}\) of gain and return loss better than 18 dB across most of the band. Figure 11 is a plot of the calculated intercept points with and without feedforward based on the intermodulation measurements of a twotone test. The OIP2 was 10 dB higher than the expected +100 dBm due to the 30 dB of cancellation obtained from feedforward rather than the anticipated 20 dB . The OIP3 was better than the expected +57 dBm across most of the band. The noise cancellation effects are presented in Figure 12. With feedforward, the noise figure was below the 7 dB specification.


Fig. 9 - Cancellation (Model RF 1960A)
over the temperture range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
2. Low power oscillotors: Decillotora for bottery operated equipment must sometimes operate on leas than one milliampere. Using \(A T\) cut crystale in the low megohertz ronge ond speciel circuite this kind of requirement can be met while retoining the odvontoge of the AT cut crystols. For outputs in the tens of kilohertz, where looser frequency tolerances or narrower temperature ranges obtein, tuning fork crystel oscillotors are ovailable with current orains in the tens of microamperes.
3. AGC: Simple AGC control of the oscillator operating point providea many advantages. Low erystal power dissipation, important for good ageing, can be achieved while avoiding circuit stort-up probleme sometimes oseociated with very low power operotion.

\section*{SUMMARY}

Choosing a cryetal and crystal oscillator circuit raquiras matehing betweon the requiremente of the opplicotion ond the charocteristics of the oscillotor. If the oscillotor must be pulled more than 10 or 20 PPM , a fundamental erystal in the 10 to 25 mHz range 1 e probobly indicated. If the uitimote in temperatura etobility, ogeing ond close-in noiea ia the object, o 3rd or 5 th overtone, 5 mHz , ovenized unit is indicated. For small size, low coet, ond nominal AT cut etobility, a clock oseillator might meet the objectives.

If VHF or UHF outpute are needed e 3rd or 5 th overtone crystal oscillator, operoting up to 150 MHz might eimplify the design.
table 2 - vcxo
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & IRCl & \[
\begin{aligned}
& \text { UUIT } \\
& 3, ~ v i
\end{aligned}
\] & parame aracto & & & & & & & & Quency DELTA & \[
\begin{aligned}
& \text { PULLIN } \\
& \text { F. PPM }
\end{aligned}
\] & \\
\hline case & c1 & co & 4V.C & gamma & C4 & C5 & C6/C7 & L2 & \[
1
\] & iv & 10 V & OELTA & \[
\begin{aligned}
& \text { OF/OV } \\
& (\mathrm{IV})
\end{aligned}
\] & \[
\begin{aligned}
& \text { OF/OV } \\
& (10 \mathrm{~V})
\end{aligned}
\] \\
\hline 1 & . 02 & 5 & 30 & . 5 & 0 & 2 & 100 & 0 & 1 & 322 & 519 & 197 & 38 & 4 \\
\hline 2 & . 01 & 5 & 30 & . 5 & 0 & 2 & 100 & 0 & 1 & 169 & 259 & 98 & 19 & 7 \\
\hline 3 & . 02 & 5 & 30 & . 5 & 20 & 2 & 100 & 0 & 1 & 284 & 363 & 79 & 20 & 4 \\
\hline 4 & . 02 & 5 & 15 & . 5 & 0 & 2 & 100 & 0 & 1 & 447 & 753 & 306 & 65 & 20 \\
\hline 5 & . 02 & 5 & 15 & . 8 & 0 & 2 & 100 & 0 & 1 & 379 & 858 & 479 & 87 & 34 \\
\hline 6 & . 02 & 5 & 15 & . 8 & 0 & 2 & 50 & 0 & 1 & 488 & 912 & 424 & 76 & 30 \\
\hline 7 & . 02 & 5 & 15 & . 8 & 0 & 2 & 100 & 3 & 1 & -5 & 680 & 685* & 130 & 45 \\
\hline
\end{tabular}
* Even greoter pulifig can be occomplishad with a more complex circuit.



Fig. 12 - Nolse figure with and without Feedforward


Fig. 13-1 18 Compression Point
(Model RF 1960A)

\section*{REFERENCES}
1. H. Seidel, "A Microwave Feed-Forward Experiment," Bell system Technical Journal, Vol. 50 Nov. 1971, pp. 2879-2916.
2. J. Dixon, "A Solid State Amplifier with Feedforward Correction for Linear Single-sideband Applications, iEEE internationa Conference on Communications 1986, Ch 2314-3/86/0000-0728.

THE USE OF A COMPUTER MODEL TO DETERMINE THE COMPLEX PARAMETRIC relationships of a crystal oscillator circuit

> GREGORY L. WEAVER
> OSCILLATOR ENGINEER
> PIEZO CRYSTAL COMPANY
> CARLISLE, PA 17913

\section*{INTRODUCTION}

The circuit modeled by the computer program is a 100 MHz Pierce crystal oscillator driving a common base buffer amplifier. The oscillator was developed by Piezo Systems for a satellite project. Because of the strict design criteria required by the customer for qualification of the oscillator, the modeling program was developed to allow design and analysis to be performed during the prototype phase of the project. As will be shown in this paper, the modeling program created an extremely valuable tool for the oscillator design and was used throughout the project for complex analysis which would have been extremely difficult and time consuming. From this analysis, some very important complex parameters of the oscillator circuit were determined. These include crystal drive, gain margin, loaded 0 of the resonator, group delay of the feedback loop and phase slope. The calculation of these parameters allow a prediction of the phase noise contribution of the oscillator as a signal source.

\section*{THE COMPUTER MODEL}

The computer program models the circuit in an open loop configuration. As shown in Figure 1, the loop is broken at the input to the base of the oscillator transistor. The input impedance of the oscillator transistor is included in the calculation of the collector load. Therefore, the program analysis is simply the calculation of the swept response of a two port network with a complex load determined by the relationships of the circuit elements. From the two port response, the following may be determined: the transistor stage gain with respect to the collector load, the loss due to the feedback loop network, the loss due to the power output to the buffer amp, the magnitude and phase of the collector load and the magnitude and phase of the total loop gain around the oscillator circuit.

The various gain blocks described above are broken down by using complex algebra to calculate the equivalent networks of the circuit elements. The transistor's contribution to the gain blocks is found by using \(S\) parameter data obtained for the transistor at the same DC operation point as used in the circuit. As shown in Figure 2, the circuit elements are divided nto 2 gain blocks. Gain block 1 includes the crystal resonator and the two paralleled capacitors across the base of the oscillator transistor (C2 and C3). The complex impedance of the crystal includes the shunt capacitance ( Co ) of the crystal

RESEARCH REPORT
ON
odaxial cable leakace

ALGUST 1985

DELTA ELECTRONICS, INC. 5730 GENERAL WASHINGTCN DRIVE AIEXANDRIA, VIRGINIA 22312

\author{
Author: Brien E. Streve.
}

Contrary to popular belief, coaxial cable exhibits leakage of electromagnetic energy from its shield at greater than negligible levels. This report is a compilation of research initiated to determine the severity of the leakage of coaxial cable in the frequency range 2 to 30 MHz . Several types of cable, experimental and analytical methods, and numerical results are discussed.

Shielding effectiveness of a coaxial cable is the ratio of the magnetic or electric field intensity without the shield to the field intensity with the shield in place. Analytic methods and laboratory experiments yield an approximate value for shielding effectiveness but the actual realized shielding is dependent on numerous factors, some indeterminable quantitatively, such as physical orientation and installation of the cable, and the effect of neighboring objects and connections. 1

Several methods exist to predict and determine shielding effectiveness of braided shield coaxial cable. The surface transfer impedance concept is very useful for predicting the limits of shielding effectiveness. Treating the gaps between the conductors of the braided shield as radiating aperatures yields a model at the expense of tedious mathematics. Direct measurement methods include a triaxial apparatus to measure the RF voltage and current on the shield as a function of frequency, relative measurements between cables, and absolute measurement of the field in a shielded room using calibrated antennas.

Surface transfer impedance may be thought of as the impedance through the shield of a coaxial cable. For solid metal shields energy is transferred via the diffusion transfer impedance, \(\mathrm{z}_{\mathrm{t}}\). It has been shown that the complex impedance \(z_{t}\) can be computed for solid shields using the
enclosure and the equivalent reactive elements and series resistance of the resonator as entered at the initialization of the program. Gain block 1 represents the loss of the feedback network of the circuit. Gain block 2 includes the capacitive tap off the collector tank (C7 and C9), the coupling resistor between the stages (R13) and the input impedance of the buffer amp. The input impedance of the buffer amp was measured to be about 27 ohms resistive. Though the common base amp should be very low impedance at 100 MHz , enough positive feedback occurs through stray circuit board reactance to increase it to its measured value. The emitter degeneration resistor (R5) is included with the input impedance of the buffer amp to give the circuit element (ZIN2) of Figure 2. Gain block 2 represents the loss due to the power incident to the buffer amp through the capacitive tap (C7 and C9).

The available power gain of the transistor stage is calculated by the use of the measured \(S\) parameters of the transistor two port and the reflection coefficient of the collector load normalized to a 50 ohm system. First, the impedance of gain blocks 1 and 2 is calculated as two paralleled networks. The reactance of the capacitive tap capacitor \(C 7\) is then added in series. The collector load ( ZL ) is calculated by the paralleled impedance of the equivalent impedance of the gain blocks 1 and 2 and the impedance of the collector tank (L1, C5 and C6). This allows the reflection coefficient of collector load in a 50 ohm systems to be determined by the formula:
\[
\Gamma L=\frac{(2 L-50)}{(2 L+50)}
\]

The available power gain is found by the ratio of the reverse scattering coefficient of the equivalent two port to the forward scattering coefficient with respect to \(L\). This is calculated by the use of the following formula:
\[
\operatorname{Pav}=\frac{\left(S_{21} \times \Gamma \mathrm{C}\right)+S_{21}}{\left.\left(\left(1-\left(s_{22} \times \Gamma L\right)\right)\left(1+s_{11}\right)\right){S_{12}}^{1} S_{21} \times \Gamma L\right)}
\]

Also, the input impedance of the oscillator transistor may be calculated by the formula:
\[
\begin{aligned}
\Gamma \text { in } & =s_{11}+\left(s_{21} \times s_{12} \times \mathrm{L}\right) \\
\text { Zinl } & =\frac{50(1+\Gamma \mathrm{in})}{(1-\Gamma \mathrm{in})}
\end{aligned}
\]

From the development of the gain blocks, the total loop gain is simply:
\[
\begin{aligned}
& \text { Aloop }=\operatorname{Pav} \times G_{1} \times G_{2} ; \quad G_{1} \text { is the loss of gain block } 1 \\
& G_{2} \text { is the loss of gain block } 2
\end{aligned}
\]

The above description of the analysis illustrates the completeness by which all of the circuit elements are modeled. This allows a fairly large and detailed initializaton table to be constructed for the model. The effects of individual circuit elements may therefore be examined. Table lists the circuit elements available for input at initialization. The program runs in a "DO FOR" loop with each repetition corresponding to a subsequent increase in sweep frequency. Initially, the program

\(Z_{t}=\frac{2 R d c(t / d)}{\sqrt{\sinh ^{2}(t / d)+\sin ^{2}(t / d)}}\langle 450-\arctan (\operatorname{coth}(t / d) \tan (t / d))\)
\(z_{t}=\) transfer impedance through the shield in chms/meter
\(\mathrm{rdc}_{\mathrm{dc}}=\mathrm{DC}\) resistivity of the shield in chms/meter
= skin deps of shield
\(0=\sqrt{p / 3.1415 f^{\prime}}\) penetration into the shield in meters
\(\mathrm{P}=\mathrm{dc}\) resistivity of shield in chns/meter
\(\mathrm{f}=\mathrm{trequency}\) in Hz
material in \(\mathrm{H} / \mathrm{m}\) permality of shield
resistivity of the shield
solid sh
be judged Nown current to flow through the length of the shield and measuring the cross the shield and the resulting current flow mensured. Accurat measurements depend on a well shielded enclosure for the test sample, accurate instrumentation and methods to measure FF voltage and current shielding the cables to the measurement instrumentation, careful RF grounding of the test fixture and instrumentation, and care in making connections at the ends of the cable to prevent end effects from dominating resulcs. Smith8, DeLorenzo2, Simans7, and Salt6 have documented onductors of the triaxial arrangement. The outer conductor of the test prevent external fields from tainting the results

Comparisons between values of the surface eransfer impedance calculated using Equation 1 and measured values have been made using solid shield coaxial cable. The good agreenent between the values gives confidence in the validity of the direct measurement tectnique using triaxial testers. 2

The discussion of computational methods thus far has been limited to solid shields since the surface transfer iapedance equation variables are readily found and solutions simple. These computations can be used to derive minimum radiation limits or maximum shielding effectiveness values for braided shields. Braided shields exhibit the diffusion transfer irpedance of Equation 1 with \(t\) being equal to the braid wire diameter. Additionally, the gaps between the wires act as an array of electric and magnetic dipoles. Thus inductive (magnetic) coupling and capacitive (electric) coupling allows the fields within the coax to penetrate the shield. Cable eccentricity additionally contributes primarily to the magnetic coupling as detailed by Fowler. 3 Each of the gaps in the braid thus acts as a waveguide to transfer some of the energy from the inside of the cable to the outside. Alternately, the gaps in the braided shield can be thought of as discontinuities in a solid shield which the RF current must flow around thus producing higher field strengths than those generated by the continuous shield. Exhaustive mathematical modeling of the dipole array created by the gaps in the braid has been performed by Ikrath \({ }^{4}\) and Vance9. Fowler3 further models the effects of cable eccentricity, intershield resonance in multi-shield cable, and shield termination methods. He further proves that these effects can generate additional coupling on the same order of magnitude as the transfer impedance calculated solely from braid parameters. These models require several physical parameters of the
starts at 500 Hz below the series resonant frequency of the crystal and increases in 50 Hz steps to 2500 Hz above the series resonance frequency of the crystal. The oscillation point occurs where the "phase open loop" term goes to zero. Table 2 is the computer model's output for a 35 ohm crystal swept from 790 Hz to 2100 Hz above series resonance of the crystal. The output headings are summarized in Table 3. The explanations for the "E2" and "Ixstal" columns will follow in the next section of the paper.

\section*{CRYSTAL DRIVE ESTIMATION BY THE COMPUTER MODEL}

The crystal used in the oscillator circuit is a 100 MHz , 5 th overtone AT-cut. A major problem with AT-cut resonators is flexure mode coupling of other resonant responses within the crystal at fairly high drive levels. Crystal drive is the power dissipation in the resonator. It is determined by the series resistance of the crystal and the \(A C\) current through the resonant circuit by the formula: \(P=I^{2}\). The effect of the model coupling is pertubations in the frequency/temperature curve of the crystal. These unwanted frequency dips can cause sudden drops in frequency by as much as 2 to 3 ppm at specific temperatures over the operation range.

Figure 3 is an example of a crystal with temperature pertubations. During the design review of the crystal
development for the oscillator project, a guard band of 2 mW of drive was imposed by the customer to screen the crystals for acceptance. The 2 mw drive was selected to secure against possible drive increases during the oscillator's life in the satellite. However, this estimated drive level caused frequency pertubations in most of the resonators. The yield through the screening process fell to a severely low level. Because of the computer program's ability to determine current gains around the oscillator loop, the analysis of the output parameters was used to re-evaluate a more reasonable screening level for the resonator drive. The end-of-life criterion could more accurately be determined.

For the drive prediction, a way to determine crystal current is needed. This was developed by straightforward network analysis from the output parameters of the program. The feedback network of gain block 1 is driven by the \(A C\) voltage developed at the junction of the capacitive tap \(C 7\) and \(C 9\). This AC voltage is designated "E2" by the program. E2 is calculated by the following formula:
\[
E 2=I_{1 \text { imit }} \times G 2 \times \mathrm{ZL}
\]
"Ilimit" is the measured DC collector current of the oscillator transistor. An average value of 7.19 mA was used for this parameter. G2 is simply the actual gain ratio of the "DBG2" output parameter and ZL is as stated in Table 3. Multiplying
braid and cable to be determined in order to generate accurate computed results. Such information is not readily available thus this method of determining the shielding effectiveness of coaxial cable was not persued. Moreover, the physical orientation and installation of the cable can greatly affect the parameters of the model such as the spacing between the gaps in the braid, the size of the gaps in the braid, and the angular orientation of the braid wires with respect to the field within the cable.

Smith8 presents a comparison of computed and measured surface transfer impedance impedance of RG-59/U cable. The impedance is composed of diffusion, inductive, and capacitive transfe: impedance components. An error of approxiamtely \(50 \%\) in the computed values of the transfer impedance components resulted revealing the difficulty of determining the physical parameters of the shield braid to generate an accurate model.

The information needed to make accurate calculations of the surface transfer impedance of a coaxial cable shield is difficult to obtain thus limits were calculated and direct measurements made of shielding effectiveness.

To determine the merits of double shielding, a comparison of single shielded versus double shielded cable was executed. For this comparison, single shield RG-59/U and double shield RG-223/U coaxial cable was used. The test is illustrated in Figure 1. A 50 ohm stripline was constructed to act as a radiating antenna. The stripline, terminated in 50 chms, was then driven by the RF source in the network analyzer. The coaxial cable under test terminated in its characteristic impedance of 50 chms was placed on top of the stripline and the energy leaking through the shield measured. Since the field near the stripline is very high and all fields must pass through the shield of the coax, interfering sources are attenuated greatly before
reaching the detector, thus more accurate measurements can be made than if the mimute energy emanating from the coax shield had been collected by the unshielded stripline. The results indicate an approximate 10 to 14 dB of shielding effectiveness is gained by adding the second shield. The quantity is approximate since some of the measurements were made very near the noise floor of the detection system. These measurements are relative and serve only to allow comparisons between cables. In order to determine the actual shielding effectiveness, field strength measurements must be made.

To carry out field strength measurements on double shield RG-214/U coaxial cable the antenna of Figure 2 was constructed. A receiver/generator was used as an excitation source and detection system. The cable, terminated in 50 ohns, was suspended from the ceiling in the center of the lab and driven by 10 Vrms (2 Watts) from the generator. The antenna was then used to probe the resulting field from all points on a 1 meter radius from the cable to locate and measure the maximum radiation for each test frequency. Figure 3 illustrates the test conditions and the data collected. A possible source of error in this measurement is the fact that the data was collected in an unshielded laboratory inside a steel framed building. Reflections, standing waves, RFI sources within the building and antenna VSWR contribute to the error in the measurements. However, the 100 dB shielding effectiveness derived from the measured field strength is the proper order of magnitude based on conversations with engineers at cable manufacturing facilities. 5

To minimize sources of error and in an attempt to generate reproducible test conditions, practical field strength measurements were made on rG-214/U cable using the shielded room, calibrated EMI measurement instrumentation, and technical expertise at Honeywell Signal Analysis

Ilimit by \(Z L\) gives the maximum \(A C\) collector voltage. \(G 2\) then incorporates the loss to the output buffer. With E2 determined, the crystal current may then be calculated. At the capacitive tap, the crystal is a series element to the input of the oscillator transistor. The input impedance of the transistor and the base to ground capacitors C2 and C3 form a reactive divider. This voltage division is represented by "DBGI". G1, the actual gain ratio of "DBGI", is the value:
\[
\mathrm{G} 1=\frac{\mathrm{E} 1}{\mathrm{E} 2}
\]

E1 is the voltage incident on the base of the oscillator transistor on the opposite side of the crystal. Therefore, the crystal current may be calculated by using the crystal impedance at the point of interest:
\[
\begin{aligned} & \text { Ixstal }=\frac{V \times s t a l}{2 \times s t a l} ; \begin{array}{l}\text { Vxstal is the voltage drop } \\ \text { across the crystal } \\ \\ \text { 2xstal is the complex } \\ \text { impedance of the crystal }\end{array} \\ & \text { V×stal }=E 2-(E 2 \times G 1)=E 2-E 1\end{aligned}
\]
therefore, \(\quad\) Ixstal \(=\frac{E 2-(E 2 \times G 1)}{2 \times s t a l}\)

From this analysis, not only was an accurate crystal current determined but an easily measurable point, "E2", was found to make empirical measurements of crystal drive in the actual oscillator unit.

The voltage at \(E 2\) can be measured with a high impedance \(R F\)
voltmeter. The capacitance of the voltmeter probe is approximately 2.2 pF which is only \(6 \%\) of the capacitance of c9. Therefore, the loading impact to the circuit is minor. Table 4 lists the measured value of \(E 2\) for various crystals at acceptance screening. Notice that the values of the measured E2 voltage are within 58 of the \(E 2\) values predicted by the computer program. The predicted values for E 2 of each crystal were determined by inserting the individual crystal parameters into the initialization of the input to the program. The calculated drive for crystal serial number 232:
\[
(4.753 \mathrm{~mA})^{2} \times 39 \text { ohms }=881 \text { microwatts }
\]

Because of the accuracy of the predicted E2, the predicted Ixstal could be used to calculate the drive above. Since the calculated drive for the oscillator is under 1 mW , a reevaluation was accomplished by varying the initialization table of the program by realistic end-of-life tolerances on the circuit elements and DC input. Table 5 lists impact to the drive budget of various tolerance changes of the oscillator circuit elements. Very little change is recorded by component changes due to tolerance drift. The DC input variance of the power supply is guard banded by \(+/-5\). By changing the \(D C\) input by \(+/-\) \(5 \%\) and measuring the E2 value with the RF meter, the worst case increase in drive was found to be less than 100 microwatts. Therefore, a more accurate guard band in drive was estimated to be 1.1 mW . An additional 400 microwatts was added to the guard

Center, Annapolis, Maryland. The rest conditions are illustrated in Figure 4. Two 10 feet long pieces of \(\mathrm{RG}-214 / \mathrm{U}\) were placed in the shielded room. The cables were connected together with a female to female N-cype connector. power from an RF power anplifier outside the shielded room provided the RF excitation for the rest. A dummy load also outside the shielded room was used to terminate the coaxial cable under test. All connections in and out of the room were through bulkhead N-type connectors in the wall of the shielded room. Figure 5 illustrates the emissions measured at a distance of 1 meter from the two 10 feet lengths of RG-214/U at power levels of 10 watts and 100 watts. Theoretically the curves should always be separated by exactly 10 dB . However, the spectrum analyzer detection system plotter did not sample at identical frequencies for each of the power levels introducing differences in the shapes of the curves which are straight line segments between data points. Evidence of this effect is particularly evident in areas of the curves exhibiting high slopes or near maxima and minima of the curves. For example, a data point was plotted at 10 Mt for the 100 matt level but not for the 10 watt level. The slope is so large near 10 Mtz that it appears the 10 watt curve does not track the 100 watt curve due to the error introduced by interpolating between data points on a rapidly changing curve. Taking sampling points into account, the areas of the curves with gradual slopes, particularly in the 2 to 5 Mtz region, exhibit the 10 dB difference in field strength. Thus, if enough points are sampled to allow a smooth curve to be drawn between the data points without missing the extrema of the curves, emissions for any power level can be predicted. Figure 6 includes a third curve indicating the predicted emission level for a 1 kW signal based on the neasured 100 W curve.

In an effort to obtain a numerical value for the surface transfer impedance of RG-214/U cable in order to calculate shielding effectiveness and thus emissions limits, Leonard Visser of the Belden Wire and Cable Research Center was contacted. Mr. Visser is in the process of measuring the surface transfer impedance of the complete line of coaxial cable produced by Belden. When contacted on June 11, 1985 he had not yet measured RG-214/U cable. However, his familiarity with the properties of similar coaxial cable already rested allowed him to estimate the surface transfer impedance to be in the range of 0.1 to 10 milliohms per meter over the frequency span of 2 to 30 Mkz 10

Subsequently, Mr. Visser tested RG-214/U on July 9, 1985. The magnitude of the surface transfer impedance he measured over the frequency range 10 KHz to 500 Miz is illustrated in Figure 7. At 10 KHz the surface transfer impedance is essentially the DC resistivity of the coax shield or 4.6 milliohns per meter. The impedance reaches a minimum value (naximum shielding effectiveness) at 2 Mty and then increases with frequency.

Figure 8 illustrates the shielding effectiveness of double shield RG-214/U, single shield, triple shield, composite shield, and standard 0.012 inch thick solid copper shield semi-rigid coax. Shielding efficiencies were calculated from Figure 7 data for RG-214/U; from surface transfer impedance data presented in the Handbook of Wiring, Cabling, and Interconnecting for Electronicsl for single, riple, and composite shields; and from the surface transfer impedance calculated from Equation 1 for 0.012 inch thick copper. Note that the triaxial composite shield cable consisting of a copper braid over a steel braid over insulation over another copper braid is superior to \(0.012^{\prime \prime}\) thick solid copper at low frequency. This effect is attributable to the greater net thickness of the shield and reduction of
band to insure a margin. The new screening drive for crystal acceptance was reduced to 1.5 mW .

The empirical measurement technique was then used to set the oscillator for 1.5 mW drive level by increasing the power supply to arrive at the necessary \(E 2\) value. Table 4 summarizes the results of the screening test. The 1.5 mW "Ixstal" was determined by:
\[
\text { (1.5 mW) Ixstal }=\sqrt{\frac{1.5 \mathrm{~mW}}{\text { Xstai resistance }}}
\]

The required \(E 2\) voltage is found by:
\[
\frac{\text { (E2 predicted) }(1.5 \mathrm{~mW} \text { I } \times s t a 1)}{\text { (Ixstal predicted) }}=1.5 \mathrm{mWE} 2 \text { measured }
\]

The accuracy of the computer model is confirmed by the above discussion. Therefore, it should have the ability to predict some more difficult circuit parameters.

DETERMINATION OF COMPLEX CIRCUIT PARAMETERS BX THE PROGRAM MODEL

Figure 4 is a graph of four important output parameters of the program over a wide sweep of the circuit in 100 Hz increments. The various curves illustrate the operation of the Pierce oscillator. The loop gain is shown increasing to a peak at around 700 Hz above series resonance. This allows the oscillation build-up to occur before the oscillator achieves a steady state at "zero loop phase". Consequently, the Allen variance of the oscillator will decrease to a final steady time domain value. At the same time, the crystal current is seen
building as the loop gain increases, peaking at 700 Hz . This corresponds to a crystal drive of 1.46 mW , almost 600 microwatts greater than the final steady state value. Again, the extra drive causes a rapid build-up of energy in the resonator to overcome the unstable loop phase at start-up. The start-up times measured for the oscillators were approximately 12 msec .

The \(E 2\) curve illustates the effect of the resonator impedance. The curve reaches a minimum approximately at series resonance of the crystal. This where the crystal has its lowest impedance and therefore loads \(E 2\) the most. As the phase approaches zero, the resonator circuit becomes increasingly higher in impedance. E2 rises until the resonator impedance reaches its maximum and \(E 2\) no longer changes. Notice that the E2 curve is very much like the passive network sweep of a crystal resonator. The phase of the loop steadily decreases to an operating point about 1400 Hz above series resonance. From Table 4. this gives an operation frequency of \(100 \mathrm{MHz}+/-2 \mathrm{ppm}\) for all of the series resonance frequencies listed. The oscillator indeed operates at 100 MHz . Further examination of the curves of Figure 4 allows gain margin, loaded resonator \(Q\), and phase slope to be determined.

Just as the computer model can perform an open loop sweep of the modeled circuit, an actual empirical sweep may be accomplished. Figure 5 shows the test schematic for the empirical sweep. The circuit is broken at the input to the
the surface transfer impedance by the high initial permeability of the ferromagnetic steel braid as analyzed by salt. 6 The three copper braids shield is superior as well as the net thickness of the three copper braids is also greater than 0.012 inch. At higher frequencies the capacitive component of the transfer impedance dominates and the shielding effectiveness decreases for both the three copper braids and the composite shield while the solid shield shielding effectiveness increases dramatically with the decreasing skin depth at higher frequencies. Also note that the shielding effectiveness of double shield coaxial cable is roughly 12 dB greater than that of the single shield with 908 coverage which agrees with the data derived from the comparative measurements previously discussed.

Figure 9 illustrates the electric field intensity generated by a 1 meter length of each cable carrying 1 KW measured at a distance of 1 meter, calculated from the shielding effectiveness curves of Figure 8 using the near field tangential electric field intensity equation for a current filament:
\(E_{t}=30 \alpha 2 L I \sin \theta A_{t} \cos \left(v+\phi_{r}\right)\)
where:
\[
\begin{aligned}
& A_{t}=\left[1-(\alpha r)^{2}+(\alpha r)^{4}\right] /(\alpha r)^{3} \\
& L=\text { length of current filament } \\
& \lambda=\text { wavelength } \\
& I=\text { current } \\
& \theta=\text { angle } \\
& r=\text { distance from current filament } \\
& \alpha=2 \pi / \lambda
\end{aligned}
\]

It is evident from the data presented in Figure 9 that electromagnetic leakage at frequencies less than 10 Mtz is not negligible. Approaching the question of leakage from practical viewpoint; the power that
can be carried by a 1 meter length of RG-214/U without exceeding the emission limit of Figure 9 in the range 2 to 30 Miz was calculated. Incredibly, the maximum power is less than 500 microwatts.

The results of this research indicate that computational methods are good for establishing limits of shielding effectiveness and thus the level of leakage that can be expected from a coaxial cable. Practical measurements in the actual installation environment are very difficult due to interfering sources of RFI, the dependence of the measurement of the radiated fields on physical orientation of the cable, reflections and absorption of the RF energy from nearby objects and location of the measurement antema. As shown by Simons 7 there is not good correlation between calculated and measured emissions due to these effects. Even field strength measurements made in shielded rooms are subject to the errors produced by reflections and standing waves present in such chambers. The shielded room also does not adequately simulate the actual installation of the cable.

The results of the predicted leakage calculations and actual measurements of electric field leakage from coaxial cables presented in this report are shocking when compared with the emissions limits imposed by the various standards. At modest power levels below 10 Miz , even certain types of solid shield coax do not provide adequate shielding to hold emissions below mandated limits. Fortunately, coaxial cable manufacturers have become cognizant of the engineer's need to have shielding effectiveness data in order to design equipment and systems to meet electromagnetic emissions standards and are in the process of making the data available to the FF design engineer in the form of surface transfer impedance measurements.
crystal. This occurs at the junction between gain block 1 and 2. The terminations at the circuit breaks are chosen to approximate those seen during closed-loop conditions. The input to gain block 1 is terminated by a paralleled resistor/capacitor combination equivalent to R13 and \(2 i n 2\). The input to gain block 2 is terminated by a "dummy" crystal and capacitor in series to simulate the loading of gain block 1 . A frequency synthesizer was used to drive the loop and a vector voltmeter was used to record phase and gain changes on either side of the open circuit. Probe \(A\), the reference probe, measures the input to the loop, while probe \(B\) measures the phase and gain change. The vector voltmeter connects the loop in a way without completing the circuit.

The gain margin of the oscillator loop is the excess gain present in the circuit above that required for stable oscillation. By what is commonly referred to as the Nyquist criterion, the active gain and the feedback must satisfy the inequality \(\alpha x B>\) or \(=1\). The gain margin is a guard band for this function. In other words, the excess gain allows an amount of loss due to detrimental effects such as transistor transconductance decrease or loop impedance increase. The greater the gain margin, the stronger the oscillator's ability to withstand such effects. Table 6 is the data gathered for an empirical open loop measurement of a typical 35 ohm crystal. At zero loop phase, a gain margin of 5.6 dB is calculated. Gain margin is found by the formula:
\[
\text { Gmargin }=20 \times \operatorname{LOG}\left(\frac{B}{A}\right)-20 \times \operatorname{LOG}(\operatorname{Cos} \theta)
\]

The value found on Figure 4 at the operating point is about 6 dB . This is an error of \(7 \%\). However, it should be noted that the empirical open loop sweep was done on small signal levels which may cause some error in measurement correlation.

The loaded \(Q\) of the resonator and the phase slope of the open loop are important parameters in the phase stability of the oscillator. The loaded \(Q\) of the resonator represents the actual resonance bandwidth of the crystal in the loop. By examining the crystal current in Figure 4, an estimate of the loaded \(Q\) can be made. The maximum current is 6.471 mA . The 3 dB current is 3.243 mA . Therefore, the calculated loaded \(Q\) is found by the formula:
\[
Q_{L}=\frac{F O}{B W_{3 d B}}
\]

A value of 34,305 is determined. This represents about \(30 \%\) of the typical unloaded \(Q\) of the resonators which is generally true for Pierce oscillators. The phase slope is the rate of change in phase with frequency. This curve represents a transfer characteristic to frequency stability. The phase jitter of the oscillator is directly dependent on the phase slope. An operating point is found on a rather shallow portion of the curve. It may be assumed that the phase stability of the oscillator is not as great as it could be. Phase slope may be related to the loaded \(Q\) of the circuit by the following:

Shielding effectiveness calculations, used with a conservative safety margin, can prevent surprises in the EMI test lab and hold RFI in the equipment operating environment to safe levels.

\section*{REFERENCES}
1. Handbook of Wiring, Cabling, and Interocnnecting for Electronics. New York: MCGraw-Hill Book Campany, 1972
2. DeLorenzo, J.T., "Measurements of the Shielding Effectiveness of Coaxial and Two-Conductor Cables." The Review of Scientific Instruments, Volume 43, Number I (January 1972): 161-164.
3. Fowler, E.P., "A Comparison of the Screening Performance of Braided Coaxial and Triaxial Cables." Peactor Group, United Kingdom Atomic Coaxial and Triax
Energy Authority.
4. Ikrath, Dr. Kurt ."Leakage of Electromagnetic Energy from Coaxial Cable Structures." Fort Monmouth, New Jersey: U.S. Army Signal Engineering Laboratories, 1957.
5. Reuth, Kenneth. Belden Wire and Cable, February 15, 1985, Personal Correspondence.
6. Salt, H., "The Surface Transfer Impedance of Coaxial Cables. "Portsdown, Hants, England: Admiralty Surface Weapons Establishment
7. Simans, Keneth A., "Relating Transfer Impedance to Coaxial Cable Radiation." Hilltown, Pennsylvania: Simons and Wydro Associates.
8. Smith, Kenneth L., "Measure Coaxial-Cable Signal Leakage Directly-Not Pelatively." Electronic Design 10 (May 10, 1979): 92-94.
9. Vance, Edward F., "Shielding Effectiveness of Braided Wire Shields," IEEE Transactions on Electromagnetic Compatibility, Volume EMC-17, Number 2, May 1975.
10. Visser, Leonard. Belden Wire and Cable Research Center, June 11, 1985, Personal Correspondence.

figure 1
comparative shielding efficiency reasurement


FIGURE 2
antenta for fielo measurement


FREQUACY, MHZ
SHIELDING EFFECTIVEVESS, De
12
13
14
15
16
17
18
19

FIGURE 3
rG-214/u leakace measurements

\section*{\(\frac{\Delta g}{\Delta f}=\frac{2 \theta_{c}}{f 0}\)}

However, the group delay of the oscillator is related by the relationship \(Q=\pi \times f o x T\), where \(T\) is the group delay. The group delay through the oscillator is the propagation delay around the loop. Oscillators with large group delays exhibit very good short term stability in the time domain. The group delay is related to frequency jitter by:
\[
\frac{A f}{f 0}=\frac{Q}{2 \pi f 0 \zeta}
\]

The advantage of analyzing frequency jitter this way is that the and \(T\) variables may be split into their individual components. 1) It is not in the scope of this paper to present this concept. However, the group delay can be calculated for the oscillator by the formula:
\[
\frac{\Delta \theta}{\Delta f(36 \theta)}=T
\]

This is directly proportional to the phase slope. From Figure 4, a value of 0.109 msec . is calculated at the operating point. The group delay may be determined in another way. Since the loaded 0 is known, the group delay is found by:
\[
\frac{Q_{1}}{f 0 \pi}=T
\]

Again, the value of 0.109 msec . is calculated. The group delay for the oscillator has been determined in two different ways using the output parameters of the program. The loaded 0 of the oscillator can allow a prediction of the phase noise response of the circuit.

The construction of the phase noise response occurs in three steps: the signal to noise floor, the noise rise due to white noise within the resonator bandwidth and the contribution of \(1 / f\) noise from the active device. The signal to noise ratio is found by the following:
\[
\begin{aligned}
& \text { SNR }=10 \log \left(\frac{\text { Pavs }}{F k T}\right) \\
& S N R=\text { Pavs }-N F-174 \mathrm{dBc} / \mathrm{Hz}
\end{aligned}
\]

Pavs is the power available from the gain source. It can be determined by adding "DBG2", DBG1 and "DBOPLOP" from the program parameters. This represents the gain of the oscillator transistor. A value of 26.44 dB is found for the operation point of Table 2. Since no noise figure analysis was done for the oscillator amplifier, a value will have to be assumed. A value of 3.5 dB is reasonable for semiconductors of the type used in the oscillator circuit. This gives a signal to noise floor of 151 dB . The noise rise due to modulation within the resonator bandwidth can now be determined. A general formula used for this purpose is:
\[
\mathcal{L}(\mathrm{fm})=- \text { SNR }-3 \mathrm{~dB}+10 \log \left(\frac{\mathrm{fo}}{2 \mathrm{fm} \mathrm{Q}_{\mathrm{L}}}\right)
\]


The formula relates the \(F M\) modulation index with the loaded \(Q\) of the circuit. 3 dB is subtracted due to \(A M\) contributions occurring simultaneously in the noise floor. Finally, the \(1 / \mathrm{f}\) noise contribution is added. With an oscillator of this type, the major contribution of shot noise is from the transistor. The formula which can relate this contribution to the previously determined noise is:
\[
(f m)=-S N R-3 \mathrm{~dB}+10 \log \left(\frac{\mathrm{fo}}{2 \mathrm{fm} Q_{L}}\right)+10 \log \left(1+\left(\frac{\mathrm{fo}}{2 \mathrm{fm}_{\mathrm{L}}}\right)^{2}\right)
\]

Table 7 shows the phase noise prediction with the use of this formula to the actual measured noise of the circuit. The two predictions are based on the two loaded \(Q^{\prime} s\) available from the analysis. One is the 3 dB current bandwidth found from the computer program. The other is the phase slope determined from the open loop sweep of Table 6. The phase noise prediction is therefore fairly accurate both with the empirical and modeled open loop sweeps.

\section*{SUMMARY}

The advantage of the computer model is clearly demonstrated by the above results. Rather straightforward network analysis produces a labor saving tool because of the computer's number handing capability. Insight gained by examining the analysis led to new empirical techniques for rather complex measurements. Because of the accurate characterization of the circuit, the operation of a pierce oscillator was presented in graphic detail. Further examination of the output parameters allowed difficult but important circuit relationships to be determined. It is apparent that with more detailed analysis of the computer model's output, further work can be accomplished in the oscillator's design and improvement. Ultimately, the model could be generalized to meet various oscillator types and improve the understanding of crystal oscillator circuits.

\section*{REFERENCES AND ACKNOWLEDGMENTS}

The author expresses his appreciation for the contributions of Pat Godwin to the development of the computer model.
1) Ron Rippy, "A New Look at Source Stability," Microwave, August 1976, pp. 42-48.
2) Roger Muat, "Designing oscillators for Spectral Purity, Part 1," Microwaves and RF, July 1984, pp. 133-142 and p. 160.


\section*{TABLE 1}

C2 and C3: parallel capacitors to base of oscillator transistor Ce: stray capacitance of crystal enclosure (TO-5 style package)
\(C_{1}\) : motional capacitance of crystal resonator
\(R_{1}\) : series resistance of crystal resonator
zin2: complex matrix of input impedance of the buffer amp
R13: coupling resistor between oscillator and buffer amp
C9: grounding capacitor of capacitive tap
R5: emitter degeneration resistor of buffer amp
C7: coupling capacitor of capacitive tap
RLI: resistance of collector tank inductor of oscillator
Ll: inductance of collector tank inductor of oscillator
C5 and C6: tuning capacitors of collector tank of oscillator
F1: series resonance frequency of crystal
\(S_{11}, S_{12}, S_{21}, S_{22}: S\) parameters of oscillator transistor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { F00 } \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dechelop } \\
& \hline 9.500
\end{aligned}
\] & \[
\begin{aligned}
& \text { PHOROP } \\
& 4.300
\end{aligned}
\] & \[
\begin{aligned}
& \text { PII } \\
& 119.19 \%
\end{aligned}
\] & \[
\underset{\rightarrow 1.014}{\text { PRL }}
\] & \[
\log _{\rightarrow 02011}
\] & \[
\underset{-120.018}{\text { P101 }}
\] & \[
\operatorname{loc}_{\rightarrow 0.700}
\] & \[
\begin{aligned}
& \text { P162 } \\
& \$ 1.162
\end{aligned}
\] & \[
0_{0.313}
\] & \[
\begin{aligned}
& 1 \times t \mathrm{tal} \\
& 6.471
\end{aligned}
\] \\
\hline 750 & 9.459 & 40.50 & 121.10 & -37.870 & +. 773 & -123.902 & -8.430 & 50.024 & 0.330 & 6.462 \\
\hline 800 & 9.373 & 36.02 & 123.308 & -3.002 & -7.2708 & -126.446 & -8.147 & 6. 707 & 0.347 & 6.470 \\
\hline 850 & 9.232 & 30.3\% & 183.09 & -50.069 & -7.770 & -129.468 & -7.985 & 47.321 & 0.363 & 6.434 \\
\hline 990 & 9.008 & 29.800 & 128.457 & -57.035 & -0.200 & -138.039 & -7.700 & 65.800 & 0.378 & 6.373 \\
\hline 950 & 8.912 & 26.400 & 131.203 & \(-56.900\) & -6.732 & -134.340 & -7.4173 & 4.307 & 0.373 & 6.258 \\
\hline 1000 & 8.67 & 23.075 & 138.774 & -56.609 & \(\rightarrow .2428\) & -136.436 & -7.5073 & 2.005 & 0.406 & 6.177 \\
\hline 1050 & 8.87 & 19.876 & 136.70\% & -56.54 & - 9.713 & -136.328 & -7.485 & 41.530 & 0.419 & 6.000 \\
\hline 1100 & 8.15 & 16.819 & 138,300 & -31.500 & -10.170\% & -100.04 & -7.3676 & 40.25 & 0.430 & 5.950 \\
\hline 1150 & 7.113 & 13.912 & 141.00 & -56.021 & -10.6312 & -141.611 & -7.3009 & 33.028 & 0.439 & 5. 121 \\
\hline 1200 & 7.616 & 11.157 & 14.257 & -56.790 & -11.0724 & -100.080 & -7.3089 & 77.900 & 0.44 & 3.677 \\
\hline 1200 & 7.307 & 3.54 & 146.43 & -57.04 & -11.502 & -144.365 & -7.2854 & 36. 059 & 0.485 & 5.57 \\
\hline 1300 & 6.977 & 6.107 & 14.500 & -3.311 & -11.219 & -185.543 & -7.200 & 30.89 & 0.62 & 5.377 \\
\hline 1300 & 6.40 & 3.004 & 150.300 & -57.074 & -12.3004 & -1\%.640 & -7.3018 & 33.017 & 0.47 & 5.230 \\
\hline 1400 & 6.388 & 1.43 & 132.051 & -30.000 & -12.729 & -147.099 & -7.3147 & 30.207 & 0.472 & 5.073 \\
\hline 150 & 3.972 & -0.303 & 150.58 & \(-88.00\) & -13.117 & -10.57 & -7.302 & 30.42 & 0.475 & 4.93 \\
\hline 1500 & 5.654 & -2.200 & 130.94 & \(-3.71\) & -13.4\% & -14\%.405 & -7.9350 & 32.76 & 0.489 & 4.76 \\
\hline 150 & 5.315 & -4.06! & 136.188 & -9i. 176 & -13.205 & \(-150.270\) & -7.376 & 2.151 & 0.481 & 4.430 \\
\hline 1600 & 4.97 & \(-5.77\) & 157.2m & -57.51 & -14.200 & -151.019 & -7. 01014 & 31.573 & 0.483 & 0.49 \\
\hline 1650 & 4.400 & -7.269 & 138.278 & -97.73 & -14.5814 & -151.716 & -7.4276 & 31.000 & 0.485 & 4.359 \\
\hline 1700 & 4.30\% & -4.72 & 197.150 & -60.304 & -14.927 & -152.34 & -7.954 & 30.509 & 0.486 & 4.288 \\
\hline 1750 & 3.974 & -10.18 & 159.941 & -60.602 & -15.264 & -152.973 & -7.4819 & 30.0\% & 0.487 & 4.103 \\
\hline 1800 & 3.643 & -11.413 & 160.637 & +1.009 & -15.5851 & -150.502 & -7.5094 & 27.076 & 0.67 & 3.98 \\
\hline 180 & 3.319 & -12.623 & 161.257 & -61.34 & -15.9189 & -159.074 & -7.534 & 20.000 & 0.488 & 3.887 \\
\hline 1900 & 2.997 & -13.760 & 161.007 & -61.646 & -16.303 & -130.574 & -7.563 & 8.97 & 0.100 & 3.77 \\
\hline 1950 & 2.678 & -14.930 & 162.m & -1.976 & -16.5473 & -153.04 & -7.5908 & 3.59! & 0.488 & 3.550 \\
\hline 2000 & 2.364 & -15.237 & 162.79 & -42.272 & -16.8030 & \(-153.487\) & -7.6140 & 28.281 & 0.487 & 3.940 \\
\hline 2050 & 2.054 & -16.780 & 163.113 & -42.57 & -17.1529 & -155.003 & -7.045 & 37.900 & 0. 487 & 3.452 \\
\hline 2100 & 1.147 & -17.582 & 163.184 & -22.929 & -17.44;4 & \(-156.298\) & -7.6676 & 87.318 & 0.487 & 3. 300 \\
\hline \multicolumn{4}{|c|}{\[
\text { Table } 2
\]} & N & \begin{tabular}{l}
لا : sel \\
p) for
\end{tabular} & \[
\begin{aligned}
& 5=42 \\
& 0=F= \\
& \text { de } 1.6 \\
& 2350
\end{aligned}
\] & \begin{tabular}{l}
\[
F, F .1 *
\] \\
mpute cryst
\end{tabular} &  &  & \[
O O \text { Hex }
\] \\
\hline
\end{tabular}

DESIGN AND ANALYSIS OF
FOURTH AND FIFTH ORDER INDIRECT SYNTHESIZER LOOPS
\[
\begin{gathered}
\text { by } \\
\text { James W. Maben } \\
\text { Microwave Subsystems Manager } \\
95 \text { Canal Street } \\
\text { Nashua. NH } 03061-2004
\end{gathered}
\]

Phase locked loops are applied extensively as indirect frequency synthesizers. Most design techniques draw on the vast array of control system theory, particularly second order systems as described by Gardener \({ }^{1}\) and others and the third order system of Przedpeiski. 2

Many applied systems are of higher order due to spurious poles contained in loop components or filtering added to suppress the loop reference frequency sidebands. This paper presents techniques which allow design of systems with four or more poles by compensation of a three pole starting point.

The basic phase locked loop is shown in Figure l with a typical BODE plot. Dynamic performance is determined by the design of the loop filter. Oscillator phase noise suppression and transient response are typical design drivers. Two open loop response poles occur due to the vCo at zero frequency and the loop integrator pole, usually modeled at zero frequency. The remaining poles are contained in the loop filter and as spurious poles in other components. Setting values for the loop components to

FIGURE 1. THE BASIC PIL AND ITS BODE PLOTS

\begin{tabular}{|c|c|c|c|}
\hline FD: offset + or - from crystal series resonance in Hz DBOPLOP: open loop gain in \(d B\) & \begin{tabular}{ll} 
Circuit & Tolerance \\
Element & Change
\end{tabular} & Drive at Zero Phase & Frequency of From Series \\
\hline PHOPLOP: open loop phase in degrees & & & \\
\hline PZL: absolute magnitude of collector load of oscillator & Nominal 35 ohms xtal osc. & \(798 \times 10^{-6}\) watts & 1500 Hz \\
\hline transistor in ohms & C7 and C9 C7 +19, C9 -1\% & \(800 \times 10^{-6}\) watts & 1500 Hz \\
\hline PHZL: polar angle of collector load in degrees & C5 - .166pF & \(820 \times 10^{-6}\) watts & 1500 Hz \\
\hline DBGI: circuit loss of gain block 1 in dB & C5 \(\quad+0.166 \mathrm{pF}\) & \(825 \times 10^{-6}\) watts & 1450 Hz \\
\hline PHGl: phase shift associated with gain block 1 in degrees & C 2 and \(\mathrm{C} 3 \quad \cdot .2+\mathrm{C3})-3 \mathrm{pF}\) & \(808 \times 10^{-6}\) watts & 1598 Hz \\
\hline DBG2: circuit loss of gain block 2 in dB & Nominal \({ }^{\text {a }}\) ohm crystal & \(840 \times 10^{-6}\) watts & 1400 Hz \\
\hline PHG2: phase shift associated with gain block 2 in degrees & Nominal 40 ohm crystal & \(790 \times 10^{-6}\) watts & 1550 Hz \\
\hline
\end{tabular}

TABLE 4

produce a desired response is the goal of the design process. Several critical frequencies are defined on the BODE plot. Of the six shown \(\omega_{0}\) and \(\omega_{r}\), are usually fixed by tuning step requirements and VCO phase noise suppression or tuning speed requirements. This leaves \(\omega_{2}, \omega_{3}\) and \(\omega_{c}\) as variables to set other performance parameters.

\section*{SPURIOUS POLES}

Spurious poles are those that occur in various components usually not by design, but due to some component limitation. These Poles are not contained in the simple loop model, but do influence actual hardware performance. A typical spurious pole occurs due to the finite gain of real operational amplifiers. Figure 2 shows a loop filter with its spurious pole due to limited high frequency gain. This pole at \(10 \omega_{0}\) will reduce loop phase margin by 5.7 degrees. Such poles can be included in the loop design using a compensation technique.

\section*{REFERENCE SIDEBAND FILTERS}

Another difference between model and hardware occurs in the use of multi-pole filters to reduce the reference frequency sidebands. These sidebands are caused by the reference frequency

\(\frac{e_{0}}{e_{i}}=\frac{1+T_{2} S}{T_{1} S}\)
\(\frac{e_{0}}{e_{i}}=\frac{1+T_{2} S}{T_{1} S\left(1+T_{8} S\right)}\)


FREQUENCY \(\longrightarrow\)

FIGURE 2. LOOP FILTER SPURIOUS POLE GENERATION

output of the phase detector reaching the vCO input. Filters added to reduce the sideband level are often used, but not included in the design equations. This results in a difference between calculated and actual performance due to reduced phase margin and unity gain frequency. The detailed loop model of Figure 3 shows a typical reference filter and fifth order loop configuration.

\section*{REFERENCE SIDEBAND LEVEL}

The loop reference frequency must be several times greater than the unity gain frequency if linear continuous data analysis is to be valid. With loop gain at \(\omega_{r}\) much less than one, the gain from phase detector to vCO output is essentially the forward gain of the loop. With a given static phase error, reference sidebands are evaluated as shown in Figure 4 for phase detectors with logic level outputs.

The input signal at \(\omega_{I}\) consists of the fundamental component of the pulsed output of the phase detector. This is 2 times the pulse duty cycle times the peak output voltage. This voltage is filtered by \(F(s)\), the loop filter, and applied to the VCO producing phase modulation of \(\mathrm{Ko} / \omega_{r}\) radians per volt. If this modulation is small, less than six degrees, the sidebands will be \(20 \log \Delta \theta / 2 \mathrm{~dB}\) below the vCO output. Output pulse width for a given static error


FIGURE 3. DETAILED LOOP MODEL



is dependant on phase detector configuration. The popular phase frequency detectors such as the Motorola MC4044 produce a pulse width approaching a constant of 10 to 20 nanoseconds at zero phase difference. Given the pulse width and loop filter characteristics, the sideband level can be determined and the filter requirements established. As the unity gain frequency \(\omega_{o}\) and reference frequency \(\omega_{\mathrm{I}}\) become closer the suppression of the sidebands may require complex filter circuits. If the complex filters poles are known, the suppression can be calculated as shown in Figure 5 .

THIRD TO FIFTH ORDER COMPENSATION TECHNIQUE

A third order loop is designed for optimum phase margin by locating unity gain and minimum phase at the same frequency. Figure 6 shows a BODE plot for an optimum loop. This is a good choice for tunable synthesizers since the phase margin has small variation with variable divider ratio N. This optimum can be closely approached for higher order loops by a compensation process. As the additional poles reduce gain and increase phase at the desired \(\omega_{0}\) the loop filters \(T_{1}\) and \(T_{3}\) can be modified to maintain near optimum conditions. This procedure is quite successful for large separations between \(\omega_{o}\) and \(\omega_{c}\), the filter cut frequency, and remains useful, but not optimum as \(\omega_{c}\) approaches \(\omega_{0}\).

FIGURE 5. REFERENCE FREQUENCY GAIN VERSUS LOOP ORDER

HARMONIC FILTERING AT UHF AND MICROWAVE FREQUENCIES

> Philip B. Snow
> Microwave Teknology Organization
> Tektronix, Inc.
P.O. Box 500, 58-147

The need for good filtering at a reasonable cost, size and performance is important to the designer of communications systems and/or equipment. For instance, harmonic suppression in oscillators have traditionally utilized low or band pass filter circuits to reduce distortion. These types of filters usually have well defined "skirt(s)" and high out-of-band rejection that require coupled, multi-element, high \(Q\) resonators.

At UHF and microwave frequencies, distributed elements (transmission lines of prescribed impedance) are employed to achieve an acceptable design due to their higher \(Q\) and predictability at microwave frequencies compared with standard lumped elements. However, distributed element filters also have problems. Tuning ("tweaking") multi-distributed elements in production is tedious and odd frequency reentrant modes are omnipresent. Tuning is a problem in that the lengths of the distributed elements must be altered (shortened/lengthened) in the alignment of the filter. This is not easy since the multiresonant elements interact. The reentrant issue is one that is difficult to deal with in design and generally requires a
compromise in performance to minimize its effect. By concentrating on the harmonic frequencies and the reentrant nature of distributed elements, a designer can turn a problem into a simple solution.

Before actually designing any filter using transmission lines, it is important to understand transmission line resonant circuits and their reentrant behavior. The general expression for the impedance down a dissipationless transmission line is:
\(z\) in \(=2 O^{*}\left(\left(z 1+j z o^{*} \tan \left(B^{*} 1\right)\right) /\left(Z o+j z 1 * \tan \left(B^{*} 1\right)\right)\right)\)
where: \(z o=\) characteristic impedance of the transmission line B \(=2 *\) Pi/L
\(\mathrm{L}=\) the frequency wavelength in the transmission line.
1 = the length of the transmission line between \(Z i n \&\) z1.
z1 \(=\) the load impedance on the end of the line.

To form a simple minimum loss resonant circuit, zl can be a short-circuit \((\mathrm{zl}=0)\) or zl can be an open-circuit \((\mathrm{zl}=00)\). In reality, at microwave frequencies even a good short-circuit is slightly inductive (due to its finite length) and an open-circuit is slightly capacitive (due to end fringing capacitance). Both these parasitic effects require the transmission line to be

FIGURE 6. BODE PLOT FOR AN OPTIMUM 3rd ORDER LOOP


This procedure maintains constant phase at \(\omega_{0}\) by moving \(T_{3}\) to a value which reduces its phase shift by that of a two polefilter with a given cut-off frequency and damping factor. The loop may be designed from parameters of the third order loop plus two, \(\omega_{c}\) and d, for the filter. Any two poles, including two isolated spurious poles can be defined by a natural frequency \(\omega_{c}\) and a damping factor d.

Figure 7 gives the design equations for third and fifth order loops. An open loop pole zero plot on the s-plane is shown in Figure 8. Here the path of two complex poles moves on constant \(d\) radials toward the origin as the \(\omega_{3}\) pole moves toward infinity on the negative real axis. As the real parts of the poles near equality, they become 3 pole filters with familiar names such as Butterworth, Bessel or Chebyshev. These pole locations can be normalized to the \(\omega_{3}\) values as shown in Figure 9. As \(\omega_{c}\) is decreased beyond this point \(\omega_{3}\) moves very rapidly, due to its relatively low phase slope at \(\omega_{0}\), and the compensated five pole model finally fails as \(\omega_{3}\) goes to infinity. Now the loop becomes fourth order. This condition can be used to define a near optimum fourth order loop consisting of a second order loop plus a two pole reference filter.
slightly longer to achieve a desired \(z i n\) that would normally be predicted by Eq. 1.

If \(\mathrm{Zl}=0\) (short-circuit load) is substituted into Eq. 1 then:

Zin \(=\) Zsc \(=j Z_{o}{ }^{*} \operatorname{Tan}(2 * P i * 1 / L)\)
(Eq. 2)

From the transcendental nature of Eq. 2, it is apparent that the impedance of a shorted transmission line has more than one unique length: (l) for a given wavelength, (L) at which it will be series resonant at \(\mathrm{Zsc}=0\), and parallel resonant at \(\mathrm{Zsc}=00\). Therefore, from Eq. 2 the following information can be derived:
```

zsc}=0\mathrm{ when 1 = 0, L/2, L, (3/2)*L, 2*L,
zsc}=00\mathrm{ when 1 = L/4, (3/4)*L, (5/4)*L, (7/4)*L,

```

If \(\mathrm{Zl}=0\) (open-circuit load) and is substituted into a rearranged form of Eq. 1 then:

Zin \(=\) Zoc \(=-j Z o^{*} \operatorname{Cot}(2 * P i * 1 / L)\)
(Eq. 3 )

Eq. 3 is also transcendental, and it is apparent that the impedance of an open transmission line has more than one unique
length (1) for a given wavelength (L) at which it will be parallel resonant at \(Z o c=00\) and series resonant at \(Z o c=0\). From Eq. 3 the following information can be derived:
```

ZOC = 00 when l = 0, L/2, L, (3/2)*L, 2*L,

```

Zoc \(=0\) when \(1=\mathrm{L} / 4,(3 / 4) * \mathrm{~L},(5 / 4) * \mathrm{~L},(7 / 4) * \mathrm{~L}, \ldots .\).

From inspection of the derived length (1) data for \(2 s c\) and Zoc, it can be concluded that the shortest or fundamental line for a distributed resonant circuit is one-quarter wavelength (L/4). This excludes \(1=0\) because it is outside the boundary conditions for a finite resonant element.

Thus far the discussion of distributed resonant circuits has been confined to a fixed wavelength (L) or frequency with a variable line length (1). This constraint has allowed the concept of the fundamental one-quarter wavelength to be established as a basic resonant building block for a filter. From a practical stand point (1) is fixed and by definition (L) is variable across the frequency spectrum. The relationship between wavelength (L) and frequency (F) is:
figure 7.
OESIGN EQUATIONS FOR THIRD AND FIFTH ORDER LOOPS THIRD OROER
\(T_{33}=\frac{1}{\omega_{0}}\) (SEC \(\phi_{m}-\) TAN \(\left.\phi_{m m}\right)\)
\(T_{23}=\frac{1}{\omega_{0}^{2} T_{33}}\)
\(T_{13}=\frac{K_{0} K_{d}}{\omega \omega_{0}^{2}}\left(\frac{1+\omega_{0}^{2} T_{23}^{2}}{1+\omega_{0}^{2} T_{33}^{2}}\right)^{1 / 2}\)

FIFTH OROER
\(T_{35}=\frac{1}{\omega_{0}}\) TAN \(\left[\operatorname{TAN}^{-1}\left(\right.\right.\) SEC \(\phi_{m}-\) TAN \(\left.\phi_{m}\right)-\) TAN \(\left.^{-1}\left(\frac{2 d \omega_{0} / \omega_{c}}{1-\omega_{0}^{2} / \omega_{c}^{2}}\right)\right]\)
\(T_{25}=\frac{1}{\omega_{0}\left(\text { SEC } \phi_{m}-\text { TAN } \phi_{m}\right)}\)
\(T_{15}=\frac{K_{0} K_{d}}{N \omega_{0}^{2}}\left(\frac{1+\omega_{0}^{2} T_{25}^{2}}{1+\omega_{0}^{2} T_{35}^{2}}\right)^{1 / 2}\left(\left(1-\frac{\omega_{0}^{2}}{\omega_{c}^{2}}\right)^{2}+\left(2 d \frac{\omega_{0}}{\omega_{c}}\right)^{2}\right)^{1 / 2}\)
\(T_{\text {nm }}=\) Wth TIME CONSTANT OF
\(K_{0}=\) VCO GAIM
\(K_{d}\) = PHASE OETECTOR GAIN
\(\mathrm{N}=\) OIVIOER RATIO
\(\omega_{0}=\) UNITY GAIN FREOUENCY
\(\phi_{m}=\) PHASE MARCIM
\(\omega_{\mathrm{c}}=\) MATURAL FREQUEWCY OF
TWO POLE REFEREMCE FILTER
\(d=\) DAMPIMG FACTOR OF TWO
POLE REFERENCE FILTER
\(L=V p / F\)
(Eq. 4 )
where: \(V_{p}=\) velocity of propagation of the wave within the line.

For purposes of further discussion, the angular expression in Eq. 2 and Eq. 3 can be rewritten in the following form:


Figure 1.

A fourth order loop occurs when \(T_{3}\) goes to zero using the fifth order compensation technique. At this point the two pole filter has the same phase shift as the \(w_{3}\) pole in the third order loop.

This condition can be used to derive the filter characteristics for a fourth order loop. Figure 10 shows this process starting with the condition that \(T_{3}=0\) and \(T_{2}\) set at the third order starting point. The resulting design equations show the ratio of filter cutoff frequency to unity gain frequency set by the phase margin and filter damping factor. Figure 11 plots frequency ratio and gain margin as a function of phase margin and damping factor. Relative pole locations for this configuration are shown in figure 12 with the progression of \(w_{3}\) from its third order position at \(\omega_{33}\) through the fifth order \(\omega_{35}\) range to infinity, which produces the fourth order loop. Constant phase margin and unity gain frequency are maintained by the design equations.

GAIN MARGIN

Gain margin is the open loop loss at the frequency where open loop phase equals \(180^{\circ}\). Second and third order loops have infinite gain margins. Their loop gains can be increased indefinitely

FOURTH OROER LOOP AS A LIMIT FIFTH OROER LOOP
1. 5 TH \(T_{3}=T_{35}=\frac{1}{\omega_{0}} \operatorname{TAN}\left[\operatorname{TAN}^{-1}\left(\right.\right.\) SEC \(\left.\left.\phi_{m}-\operatorname{TAN~}_{\phi_{m}}\right)-\operatorname{TAN}^{-1}\left(\frac{2 d a}{1-\mathrm{r}^{2}}\right)\right]\)
2. \(4 T H T_{3}=T_{34}=0\)
3. \(\operatorname{SEC} \phi_{m}-\operatorname{TAN} \phi_{m m}=\frac{2 d t}{1-\varepsilon^{2}}\)
4. LET SEC \(\phi_{m}-\) TAN \(\phi_{m}=K\)
5. FROM 3
\(K=\frac{2 d}{1-e^{2}}\)
6. SOLVIMG FOR :
\(s=-\frac{d}{k} \pm\left(\frac{d^{2}}{x^{2}}+1\right)^{1 / 2}\)
giving the following oesign equations
\(T_{14}=\frac{K_{0} K_{d}}{N_{0}^{2}}\left(\frac{1+1 / K^{2}}{\left(1-1^{2}\right)^{2}+(2 d a)^{2}}\right)^{1 / 2}\)
\(K=\operatorname{SEC} \phi_{m}-\) TAN \(\phi_{m}\)
\(T_{24}=1 / \omega_{0} K\)
\(\frac{\omega_{c}}{\omega_{0}}=\frac{1}{2}=\frac{1}{\left(\frac{d^{2}}{R^{2}}+1\right)^{1 / 2}-\frac{d}{K}}\)
\(\omega_{0}=\) UNITY GAIN FREQUENCY
\(\phi_{m m}=\) PHASE MARGIM
\(0=\omega_{0} / \omega_{c}\)
\(\omega_{c}=\) MATURAL FRED OF TWO POLE FIL
\(d=0\) OAMPING FACTOR OF TWO POLE
\(T_{n, m}=\) Wth TIME CONSTANT OF AN
\(T_{n, m}=\) With TIME CONSTAI

Mith OROER LOOP

The impedances (Zsc and Zoc) of the distributed circuits in Figures 1 and 2 are shown plotted versus freuency in Figures 3 and 4 respectively:

Figure 3.


Figure 4.

The multiple parallel and series resonances are unique to distributed elements compared to their lumped element counterparts which have only one resonant frequency.

It should be apparent by now what is meant by the reentrant or periodic nature of distributed resonant elements from Figures 3 and 4 and how they can be used as repetitive band-reject filters to suppress harmonics in an oscillator application. However what might not be obvious is how to achieve parallel resonance at the fundamental oscillator frequency (F1) and series resonance at the even and odd harmonics of that frequency. The distributed circuit shown in Figure 5 is the key structure and the initial step in designing such a filter.

There is a unique characteristic about a shorted quarterwave resonator. No matter where it is tapped along its length, it will always be parallel resonant.
figure 11.



FIGURE 12. OPEN LOOP POLE locations for the the order LOOP RESULTIIG FROM T3 \(=0\)
without instability. Such loops do not occur in real systems due to the spurious poles discussed above. Loops of order greater than three have a finite gain margin. It is readily determined from the BODE plot for a given loop. The compensation technique does not control gain margin nor does it insure stable operation of all fourth and fifth order loops. As the high frequency poles move lower in frequency the 180 degree phase response moves downard and gain margin falls. Underdamped poles (d<l) aggravate this situation by increasing gain with frequency. This effect, shown in Figure 11, produces fourth order loops using d less than . 3 with small or negative gain margin (oscillators). Fifth order loops with the pole arrays of Figure 9 have good to excellent gain margins.

MORE POLES

This compensation technique produces excellent results for small loop modifications which occur for high frequency spurious poles. As the complexity of the filter increases or it moves lower in freguency the resulting phase slope will move the phase minimum away from unity gain producing non-optimum loops. Decreasing gain margins will also produce unacceptable loops even when phase margin remains high. To date the process has not been applied beyond the five pole loops discussed here. In the above technigue the optimum


The reason for this is that shorted transmission lines less thar (L/4) (i.e. 12) will always be inductive and open transmission lines less than (L/4) (i.e. 11) will always be capacitive. If \((11+12)=(L 1) / 4\) then the two resultant reactances (or susceptances) will be equal in magnitude and opposite in sign on the imaginary impedance axis. Tius the shunt configured circuit in Figure 5 is parallel resonant at the frequency Fl . This can be readily proved by substituting \(1=\) (L1)/8 and \(L=L 1\) into Eq. 2 and Eq. 3 which yields:

Since it makes little difference where a shorted quarterwave transmission line is tapped to achiove a parallel resonance, the next question might be why was the circuit in Figure 5 configured such that \(11=12=(\mathrm{L} 1) / 8\) ? The answer to that is simple. Series resonance (band-reject) will occur: when \(11=\mathrm{L} / 4\) at \(2 * F 1\), \((3 / 4) *\) L at \(6 * F 1,(5 / 4) * L\) at \(8 * F 1, \ldots \ldots\).
 Thus, the circuit in Figure 5 exhibits the composite impedance of that shown in Figures 3 and 4: where \(F O=2 * F l\).

The filter structure in Figure 5 is, however, only good for filtering "even" harmonics of the desised or band-pass frequency F1. All the "odd" harmonics (3*F1, 5*Fl, 7*F1....) cannot be suppressed as easily as ALL the "even" harmonics are with a SINGLE tapped (Ll)/4 distributed structure shown in Figure 5. This is due to the fact that Fl is, in a broad sense, an "odd" harmonic ( \(1 * F\) ) and conflicts with the requirement that \(F 1\) be band-passed while the remaining "odd" harmonics (F3, F5, F7.....) be band-rejected. Thus to achieve this design constraint each "odd" harmonic requires one unique shunt (Ll)/4 distributed structure tapped progressively closer to the open end of the transmission line the higher thr "odd" harmonic frequency.

FIGURE 13. 3RA ORDER LMOP WITII 2 spurious pores
loop condition was taken as equal frequency for unity gain and minimum phase. If this is not optimum for a given condition the design process can begin with any reasonable value for \(\omega_{2}\) rather than that of the "optimum" third order loop. One choice might be the \(1 / f\) phase noise break point for a particular vCO. Lowering \(\omega_{2}\) will allow more complex filtering at the expense of "optimum" phase conditions.

\section*{DESIGN EXAMPLES}

The utility of this technique can be tested by application to to some typical loop designs. Figure 6 is the BODE plot of an optimum third order loop with phase margin of \(50^{\circ}\). This loop has a unity gain frequency of 10 KHz and a reference frequency of 250 KHz . Reference suppression is 47 dB . (Reference suppression is taken as gain at \(\omega_{r}\) and does not account for N.) Figure 13 shows the effect of two spurious op amp poles at 100 kHz . Phase margin. is 38 degrees rather than 50. Unity gain frequency is 9.9 KHz and gain margin is 13 dB . Figure 14 is the same loop designed as fifth order with the compensation equations, providing the desired phase margin and unity gain frequency by modification of \(\mathrm{T}_{1}\) and \(\mathrm{T}_{3}\). Its gain margin is 17 dB and reference suppression 57 dB .


Figure 14. 3td order loop compensated for two spurious poles


Figure 6 shows these structures graphically depicted to the 7th harmonic:


The length of each of the "open" sections of the distributed structures must be \(\mathrm{L} / 4\) (series resonance, Zoc \(=0\) ) at the desired "odd" harmonic frequencies. This open-stub length (Loc) translates to the fundamental wavelength (Ll) using the following equation:
\[
L O C=(L 1) /\left(4^{\star} N\right)
\]
(Eq. 6 )

Combining the structure in Figure 5 with any or all of the tapped (Ll)/4 structures in Figure 6 constitutes a filter that can be tailored to a prescribed harmonic suppression. The author used this technique to reduce the distortion in a 500 MHz SAW resonator oscillator. Only two (Ll)/4 structures were required; the "even" one in Figure 5 and the 3 rd harmonic "odd" one in Figure 6. A photograph of the transmission characteristics of this filter is shown in Figure 7.


FIGURE 7.

Note the parallel resonance at the 500 MHz fundamental and the series resonance at the 2 nd ( 1000 MHz ), \(3 \mathrm{rd}(1500 \mathrm{MHz}\) ), and 4 th ( 2000 MHz ) harmonics. Figure 8 a shows the oscillator without the filter, and Figure 8 b shows the oscillator with the filter. Thus, with a few shunt distributed elements, an effective yet

Figure 15 shows the same third order loop with a two pole filter at 75 KHz added to reduce reference sidebands. Note again that the phase margin and unity gain points are as desired, and the gain margin of 16 dB for this loop. Reference suppression is 65 dB.

Figure 16 shows the fourth order loop produced when \(\omega_{3}\) goes to infinity. Again the phase margin and unity gain are as required, the gain margin is 9 dB and the reference suppression 50 dB .

CONCLUSIONS:

A design technique for fourth and fifth order phase-locked loops has been described which accounts for common loop filter elements not found in earlier models. While not strictly optimum in the mathematical sense, the technique yields very useful results and is valuable as design tool for the equipment design engineer. The technique is readily applied as a computer program which produces circuit component values from performance requirement inputs. \({ }^{3}\)

Figure 15. 3rd onorr witil 75 khz 2 pole adobo


FIGURE, 16. Ath ORDER LOOP WITI 31 KIIz 2 MOI.E

simplefilter can be designed without complex synthesis and fabricated without tedious "tweaking" in manufacturing.


FIGURE 8a


FIGURE 8b

From the filter response shown in Figure 7, it should be apparent that the harmonic attenuation (suppression) is finite (i.e. ) 30 dB ), not infinite as predicted by Eq. 2 or 3, where \(\mathbb{Z}\) in = 0. Equations 2 and 3 are derived from Eq. 1 which assumed no loss (dissipationless line). Distributed quarter-wave (L/4) resonant lines have loss that can be calculated if the equivalent unloaded \(Q\) value is known.

The equation for the equivalent (lumped L/C) unloaded \(Q\) for an "open" L/4 resonant line can be derived by equating its derivative of impedance (with respect to angular frequency (2*Pi*F)) with the derivative of impedance of a lumped \(\mathrm{L} / \mathrm{C}\) series resonant circuit. The resultant of that mathematical computation divided by Rs (series resistance) yields:
\[
\mathrm{Qu}=(\mathrm{Pi} / 4) *(\mathrm{Zo} / \mathrm{Rs})
\]
\[
\text { (Eq. } 7 \text { ) }
\]

Eq. 7 can be used to calculate Rs at any harmonic frequency (Fn) if \(Q u\) is known at Fn . The harmonic attenuation ( An ) at any Fn can be predicted by judicious use of the following equation:
\(A_{n}=R^{\prime} /\left(R^{\prime}+(R o / 2)\right)\)
(Eq. 8 )
Where: Rs' = the equivalent series resistance of all the \(\mathrm{L} / 4\) and multiple \(\mathrm{L} / 4\) lines with series resistance at Fn .

Ro \(=\) Source and load resistance assumed equal (i.e. 50 ohms)

Applying a similar procedure as used to obtain Eq. 8 an equation for insertion loss can be created as follows.

The equation for the equivalent (lumped L/C) unloaded \(Q\) for a "shorted" \(L / 4\) resonant line can be derived by equating its
1. F.M. Gardner, Phaselock Techniques, Second Edition, John Wiley and Sons, New York.
2. A.B. Przedpelski, Analyze, Don't Estimate, Phase-Lock-Loop Electronic Design, May, Sept 1978.
3. S. Zamoscianyk, A CAD program for the design and analysis of third and fifth order phase lock loops. Users manual for FAZLOK, March 15, 1985, Sanders Associates Inc. Internal report.

The author thanks Mr. Steve Zamoscianyk for creating the program FAZLOK, which applies the compensation technique, and Mr. Paul peloquin for extensive use of the program in generating data for this article.
derivative of susceptance (with respect to angular frequency) with the derivative of suscaptance of a lumped \(L / C\) parallel resonant circuit. The resultant of that mathematical computation divided by \(G\) (parallel conductance) yields:
\[
Q u=(\mathrm{Pi} / 4) *(\mathrm{Rp} / \mathrm{Zo})
\]

Where: \(R p=1 / G=\) parallel resistance.

Eq. 9 can be used to calculate \(R p\) at the fundamental frequency (Fl) if Qu is known. The insertion loss (I.L.) can be predicted using the following equation:
\[
\text { I.L. }=(R p / m) /((R p / m)+(R o / 2)
\] Where: \(m=\) number of shunt (Ll)/4 resonators in the filter. (i.e. \(m=2\) for the filter in Figure 7.)

The filter in Figure 7 was configured with . 047 inch diameter semirigid coaxial cable with a dielectric constant Er = 2. Different transmission line media, whether coax, stripline, microstrip, etc. will have different Qu's. By configuring some (Ln)/4 "open" resonant lines in the desired transmission line media and making harmonic attenuarion (An) measurements at each harmonic frequency ( Fn ), the unloaded \(Q^{\prime} s(Q u)\) can be calculated
using Equations 7 and 8. Rs' reduces to Rs in a single (Ln)/4 resonant line. \(n=\) desired harmonic number (i.e. 1,2,3,4....).


\section*{RF-TECHNOLOGY FOR NHR IMAGING/SPECTROSCOPY}
0. hueller, D. vatis, W. edelstein, p. bottomley

\section*{general electric company}

\section*{CORPORATE RESEARCH AND DEVELOPMENT}
medical diagnostics systems branch
\[
\text { SCHENECTADY, N.Y., } 12301
\]

\section*{INTRODUCTION:}

Radio-Frequency (RF) technology has made an important contribution to the implementation of an exciting new medical diagnostics tool during the past couple of years: The NUCLEAR MAGNETIC RESONANCE IMAGING machine, which is able to lok noninvasively inside the human body. This new technique alters the perspective of the radiologist and allows him to diagnose diseases with greater sensitivity. One of the main advantages of NHR images is their excellent soft tissue discrimination. NHR spectroscopy is now being evaluated for possible application to the non-invasive study of body chemistry. Many hospitals are in the process of installing such NMR imaging machines.

This paper reviews the NMR-system with emphasis not on the physics of the nuclear magnetic resonance effect but on the RF technology required to make it operate. Some special RF problems occurring in NMR will be discussed, especially the RF signal and kilowatt power processing.

\section*{PRINCIPLES OF NHR IMAGING}

The nuclei of certain atoms such as hydrogen and phosphorus possess both a magnetic moment and a spin angular momentum. When these nuclei are subjected to an external direct magnetic field, they align themselves in the direction of that field like compass needles. In addition, these nuclear micro-magnets are rotating or "spinning" like gyroscopes or tops with the so-called Larmor-frequency which is proportional to the magnetic field strength Bo. The proportionality factor is a physical constant, the gyromagnetic ratio, which differs greatly for various atoms. For hydrogen that ratio is \(42.58 \mathrm{MHz} / \mathrm{Tes} 1 \mathrm{a}\), and for phosphorus \(17.23 \mathrm{MHz} /\) Tesla. A magnet with a field strength of 15,000 Gauss or 1.5 Tesla operates therefore at a frequency of 63.87 MHz for hydrogen imaging. At the same field phosphorus nuclei can be detected at a frequency of 25.845 MHz . The relative sensitivity is fortunately very high for the diagnostically relevant hydrogen nucleus which is also available abundantly in the human body, mainly as part of the water and lipids (fat) in body tissue.

Magnetic resonance absorption occurs when radio frequency energy is applied at the Larmor frequency. The magnetic vector \(B 1\) of this RF field must be perpendicular to Bo, the static magnetic field, which aligns the spins and produces a macroscopic magnetic moment. Bl flips this magnetic moment vector by a certain angle depending on the magnitude and duration of the applied RF pulse. When the RF field is discontinued the transverse magnetization precesses around the axis of the external main Bo field. Hereby a RF signal is induced in the receiver coil located in the transverse plane. Spatial discrimination for the imaging process is obtained if one applies an additional, linearily varying magnetic field in the \(x, y\) and/or \(z\)-direction of a coordinate system

\section*{OEVELOPMENT OF A C BAND PONER MOOULE FOR THE} morelos mexican satellite system

\author{
Arturo Velazquez Arturo Serrano \\ C.I.C.E.S.E. Research Center \\ Are. Espinoza No. 843 \\ Ensenada, B. C. MEXICO
}

\section*{ABSTRACT}

This article describes the procedures of design and characterization of power modules of 1 Watt, 3 Watt and 5 Watt intended to be used as transmission elements in RF sections of earth stations linked through the Morelos Mexican Satelife system. This article also describes the particular use of the three indicating the number of available channels for each application taking into account the essential parameters of the satellite link. These modules were developed under contract with the National Council of Science and Technology potentially to be used in rural and private network applications in Mexico.

\section*{. INTROOUCTION}

This document deals with the effort made toward the development of high power amplifiers, based in the use of Gasfet devices and intended to be proposed for use with the Mexican satellite system.

We start this program by first making several low and medium power prototypes, to generate an efficient methodology for design and characterization of HPA's modules. Our main interest is to develop the technological aspects involved in the design and fabrication of this type of subsystems, based on our previous experience in the low-noise design.

\section*{II. DESIGM PHYLOSOPHY}

Initially, we must select a circuit topology that allows us to satisfy the operation requirements, taken into account the final application of the amplifier. For this case, we have taken a modular approach in order to evaluate adequately each separated stage and to make any possible correction without interfering with other stages.

We have chosen to design several independents modules prior to the main HPA prototype, namely, we design: \(1 \mathrm{~W}, 3 \mathrm{~W}\) and 5 K modules, in order to get a better way of selecting the final circuit configuration, based on device availability and technological internal support.
inside the magnet generating the main Bo field. These fields are produced by so-called gradient coils. \((1,2)\).

THE NMR IMAGING SYSTEM:

A block diagram of a typical NMR imaging system is shown in Figure 1. At the left the computer related instruments are seen which carry out the image processing. Between the magnet at the right-hand side and the computer the necessary electronic components are indicated: spectrometer consisting of a transmitter and receiver, a multi-kilowatt \(R F\) power amplifier, noise suppression diodes, a transmitter/receiver switch, a kW matching network, low noise preamplifier, RF amplifier etc.

THE MAGNET:

The magnet has to be located inside a shielded room so that nearby radio stations do not, nterfere with the small NMR RF signals. The concept of superconductivity is commercially exploited on a large scale for the first time by most of these NMR magnets. Liquid helium at a temperature of about 4 degree Kelvin (-269 degree centigrade), imbedded in a tank of liquid nitrogen, cools the magnet coll wires so that they become superconductive. Their electrical resistance is zero and a DC current induced by a power supply once will continue to flow after the supply is disconnected generating a strong magnetic static field in the order of magnitude of 0.3 to 2.0 Tesla (3000-20000 Gauss). An important requirement for a whole-body magnet is that the magnetic field is highly homogeneous over a large volume to be imaged. Any inhomogeneity translates into a picture distortion. Therefore, all magnets have shimming coils
in order to homogenize the field. They are fed by the shimming power supply. The trend to higher magnetic fields is dictated by the physics of the NMR experiment which says that the signal-to-noise ratio increases with increasing field strength.

An array of \(x, y\) and \(z\) gradient coils are mounted on a cylinder inside the magnet bore in which a whole-body or a head RF coil is also located. The gradient coil carrying cylinder is covered on its inside by a copper foil shield in order to generate a well-defined electrical environment for the RF coils and for the elimination of any interference between these coils. Resistive and permanent magnets are also used for NMR imaging, but only for lower field strength (0.15-0.3 Tesla). The former require 20 to 40 kilowatts of power and therefore costly cooling systems. (3).

GRADIENT POWER AMPLIFIERS:

In order to generate the gradient fields nocessary for obtaining spatial resolution of the NMR signals \(D C\) pulse currents of 10-30 A must be injected into the gradient coils. They are delivered by the gradient PAs which are 1-2 kilowatt linear audio amplifiers with a frequency range of \(D C\) to 50 kHz . The magnetic forces on the gradient coil wires produce loud acoustic noise Therefore, provisions for acoustic damping must be implemented. The philosophy behind the pulse trains used in different NMR experiments is a science for itself. After this short discussion of the apparatus generating the magnetic field environment necessary for NHR the RF signal path will be followed.

We focused in the 3 module, because in its design and implementation, there are involved both small signal and large signal methods, that could be used in the final design. The following section will be devoted entirely to show the general design methodology, and then we will present some results and possible applications.

\section*{III. OETAILS OF 3 WATT AMPLIFIER MODULE}

This module is intended to provide 3 Watts of output power at the \(1 d B\) galn compression point. In the design of this module, the maln objective is to obtain a good trade-off between linearity, de power consumption and distorsion level.

One of the goals in this design project is to get a strong correlation between computed and measured circuit performance, detecting the possible source of error in its final implementation.

The circuit configuration for this high-gain, high-power amplifier is shown in figure 1 along with the type of GaAsfet devices that will be used in its implementation. This configuration includes one balanced stage in order to increase the power handifig capability of the single medium power Gasfet.

We can see three basic building blocks in this figure, namely, the low-power two-stage block that uses cascade connection of one NET2089 with one NE69489, then there is a medium power block formed with one NE900175 cascade connected with one

Ne800299, and finally there is a single stage high power block that uses one internally matched GaAsFET device that provides 3.5 Watts at 6.4 GHz .

Also of importance are the 3 dB hybrid couplers that should be used in the balanced block and that will be implemented by using branch line quadrature hybrids on the same substrate used for the amplifier stage.

The basic block for the two-stage designs is shown in figure 2 and it will be used as reference in the description of the design steps that follows.

\section*{a) Design of the two-stage low-power block.}

In the structure for this block is necessary to calculate the appropriate matching networks MN1, MN2 and MN3 in order to present the reflection coefficients required at the transistor input and output ports, to get maximum gain at this stage.

Due to the signal level at this polnt the small signal 's' parameters of the GaAsfet can be used in the design. As a first approach, the manufacturer data sheet are used and the individual FETs are first analyzed to check for stability and available gain in the 5.9-6.4 GHz band. The result of such analysis is shown in tables 1 and 2.

The requeriments imposed to the matching networks are as follows, making reference to the results on tables 1 and 2 , and regarding the values of the reflection coefficients for maximum

THE TRANSMITTER:

The pulse sequences necessary for the NHR experiment contain sinx/x or sinc-pulses which are used in order to excite a well-defined slice of the object to be imaged in such a way that the NMR signal is constant across that slice. These sinc-pulses require that the NMR transmitter as well as the RF power amplifier are linear. A block diagram of a NMR transmitter is given in Figure 2. It includes envelope feedback for linearity improvement. The NHR experiment requires the ability to change the phase of the carrier frequency in 90 degree steps which is accomplished by the multiplexer circuit shown.

A disadvantage of NMR imaging is the relatively long time required to take an image (several minutes) compared to \(x\)-ray tomography (seconds). The reason is that the nuclear spins in the samples have a relatively long relaxation time of several hundred milliseconds after excitation. One way to speed up the process is to image additional slices while waiting for the first ones to relax toward equilibrium. By applying a finite bandwidth RF pulse in the presence of a magnetic field gradient, a slice in a plane perpendicular to the gradient is excited. The modulating waveform required to produce an offset slice at a location F1 (frequency) of bandwidth Fo is a single-sideband signal which can be generated by the so-called Weaver method of SSB generation using a quadrature \(\mathrm{I}-\mathrm{Q}\) channel circuit arrangement. The modulating signals, generated by n-bit data words and converted to analog signals via DACs, are sine/cosine functions of the offset frequency F1 modulated by the sinc-function of the bandwidth Fo. They are applied at the corresponding PS-I and PS-Q ports of the SSB transmitter shown in the block diagram of the spectrometer in Figure 3.

THE RF POWER AMPLIFIER:

Most NMR imaging systems, especially at higher fields (1.5 Tesla), use tube power amplifiers because power levels of 5 to 15 kW are required for the excitation of the protons during whole-body imaging of heavy patients. These amplifiers are expensive, have a narrow bandwidth and require a change of the tubes after relatively short time intervals ( \(1-2\) years). Therefore, efforts are under way to replace them with solid-state amplifiers, a challenging task.

Typical pulse widths and duty cycles of NHIR pulse sequences are in the range of \(1-5 \mathrm{msec}\) and \(1-5 \%\) respectively. Therefore, the average power levels stay relatively low. Transistor pulse amplifier design makes good use of the amazing ability of semiconductor devices to handle large power levels for short time intervals. For example a small PIN-diode in a glass package such as the Unitrode device UM-7201B has a power dissipation rating of 1.5 Watt in free air, but can handle a 20 kW pulse for 1 wicrosecond! Fortunately, a new technology has also arrived: The RE power MOSFET. Only this device was used because of its larger safe operating area and its higher input impedance compared to bipolar transistors.

Figure 4 shows the circuit diagram for a push-pull MOSFET power amplifier output stage for a 0.15 Tesla resistive magnet NMR system operating at 6.4 MHz . Transmission line BALUNs and 4:1 transformers have been used at input and output. With two low-cost MTM-15N45 MOSFETs ( 450 Volt, \(15 \mathrm{~A}, 60 \mathrm{~A}\) peak) RF pulse power levels of \(5-6 \mathrm{~kW}\) have been obtained in the 6 MHz frequency range with a power gain of 18 dB at 200 Vdc . In Figure 5 the output power as a function of the battery voltage is shown. These transistors (in a T0-3 can) produced still
gain at 6.2 GHz:
1) MN1 must match the 50 ohms source impedance, to the impedance corresponding to \(\Gamma \mathrm{g}=(\Gamma \mathrm{in}, 1)^{*}=\Gamma \mathrm{ms}, 1=0.73 / \underline{150^{\circ}}\) ( \(8.3+j 13\) Ohms) .
2) MN2 must match \(\Gamma 1 n, 2=(\Gamma \text { out, } 1)^{*}=\Gamma m 1,1=0.601 / \underline{148}\) \((13.4+j 13.2\) ohms \()\), torout, \(2=(\Gamma 1 n, 3)=\Gamma \mathrm{ms}, 2=0.803 / \underline{134.7}\) \((6.2+j 20.6\) (hms),
3) MN3 must transform the impedance corresponding to \(\Gamma 1=\) ( 「out, 3)* \(=\Gamma \mathrm{m} 1.2=0.887 / 70.8(8.9+j 69.6\) ohms \()\), to the 50 Ohms load impedance.

Based on previous results, the circuit topology selected for MN1, MN2 and MN3 is formed by the cascade connection of short lenght transmission lines, whose electrical characteristics as well as the number of elements in the network are determined with the following equations (1):
\[
\begin{equation*}
Z c^{2}=\frac{R 1 / Z 2 /^{2}-R 2 / Z g /^{2}}{R 2-R 1} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\theta c=\tan ^{-1} \frac{Z c(R 2-R 1)}{R 2 \times 1+R 1 \times 2} \tag{2}
\end{equation*}
\]
where \(Z 1=R 1+j X 1, Z 2=R 2+j X 2\), and \(\theta c\), are shown schematically in figure 3 . Obviously, if \(Z c^{2}\) is negative the fmpedance transformation is not possible with only one matching element, so more elements must be added. This can be acomplished by first transforming to an intermediate impedance (arbitrary) and then using the given equations and repeat this process until the right transformation is found. When this transformation is
possible, then:.
\[
\begin{equation*}
z e=z c \frac{z 1+j z c \tanh \left(y^{\ell}\right)}{z c+j z 1 \tanh (\gamma \ell)} \tag{3}
\end{equation*}
\]
where, \(\ell\) is the physical line lenght, \(\gamma=\alpha+j B\) is the propagation constant with a being the attenuation constant and \(\beta\) the phase constant.

Following this method, the two-stage low power design is shown in table 3 along with the microstrip dimensions for low Er substrate. The physical implementation is shown in figure 4 and its measured response appears in figure 5 . This response is in agreement with the NE69489 data sheet that shows an output power of 19 dBm at the 1 dB compression polnt. From this figure we can see that the measured gain is around 3 dB below the calculated one and by making some tuning after construction it was possible to add 2 dB more gain with flat response. The type of tuning elements required to get this improvement suggests that in the fabrication process some errors could arise causing this discrepancy in the performance. This will be discussed later.
b) Design of the two-stage medium power block.

In this block, we use small signal 'S' parameters to calculate the matching networks for linear output power in the first stage, and the load and source impedances for maximum output power are used in the second stage.

For the NE900175 the manufacturer's data are shown in table 4

2 kW at 13 MHz , the frequency of a 0.3 Tesla NHR system, and 1 kW at 22 MHz ( 0.5 T). The conclusion is that even MOSFETs designed for low-frequency applications such as switching type power supplies etc. are able to produce a lot of RF pulse power up to frequencies in the 20 MHz range.

The feasibility of kilowatt RF pulse generation for high field applications (20-85 MHz) was also explored. Figure 6 shows the circuit diagram of a 1.5-2 kW RF pulse power amplifier module using four MRF-150 MOSFETs. Combining four such modules with 4 -way splitting and summing hybrids such as the one given in Figure 7 a \(5-6 \mathrm{~kW}\) PA is obtained: PA-4. The output versus input power curve of Figure 8 demonstrates reasonably good linearity up to \(4-5 \mathrm{~kW}\) at a frequency of 62 MHz . Figure 9 demonstrates a great advantage of transistor amplifiers compared to tube circuits; a much larger instantaneous bandwidth without retuning can be obtained. The \(5-\mathrm{kW}\) bandwidth extended from 40 to 70 MHz in this case. An interesting feature of the 4 -way combiner hybrid of Figure 7 is the fact that the two input ports are operating in the push-pull mode providing all its known advantages. (Patent pending).

The number of components can be reduced drastically with the new Motorola RF power MOSFET MRF-154 which at present is expensive. A unique in-circuit combining technique was used in a 4 -transistor amplifier: PA-1. Figure 10 shows the output power versus battery voltage curve demonstrating the generation of 5-6 kilowatt pulses at 62 MHz with only four transistors. This circuit delivered even 1 and 2 kW at voltages as 1 w as 30 and 40 Vdc , a feature no tube circuit can perform. At each voltage the amplifier was driven into saturation. The same basic circuit produced \(6-8 \mathrm{~kW}\) at lower frequencies ( \(21 \mathrm{MHz}, 12 \mathrm{MHz}\) ) with only
minor changes in the input matching network and the drain-drain capacity. (Figure 11).

DIODE CIRCUITS:

High-gain wideband power amplifiers generate noise which disturbs the NMR experiment during the receiving time. In order to solve this problem the PAs are normally gated off after the end of the transmit pulse. In addition so-called noise suppression diodes can be inserted in the power cable connecting the PA to the NMR-coil. Diodes in both directions are put in parallel and series as shown in Figure 12. Their lead inductance has to be compensated by small capacitors parallel to input and output in order to avoid a power reflecting mismatch. As long as the noise voltages are less than the combined threshold voltages of these diodes the PA noise is suppressed.

If the NMR experiment is carried out in a single-coil system a transmitter/receiver \(T / R-s w i t c h\) is required. Such a circuit can be obtained by adding a parallel output connector to the arrangement of Figure 12. In order to handle the high power pulses one uses low on-resistance PIN diodes in combination with high-speed signal diodes. The third port of the T/R-switch is connected with a lambda/4 \(50-\mathrm{Ohm}\) cable to the diode protection circuit necessary at the input of the low-noise preamplifier. This network simulates the cascade of two lambda/4 transmission lines with two CLC sections. (Figure 13). The input diodes are turned on at the beginning of a high-power RF pulse and their low impedance is then transformed into a very high impedance at the T/R-switch by the quarter wavelength transmission line. The same happens with the CLC sections.
along with its corresponding stability and gain analysis. To evaluate the NE800299 stability and liner gain capabilities, the 's' parameters were also used giving the results shown in table 5, while for this same transistor (NE8002g9) load-pull measurements were made in order to obtain input and output reflection coefficients at the 1 dB gain compression point. This information is shown in table 6.

With a similar approach to that of the low-power case, the matching networks in this design were determined by using the data shown in tables 4 and 5 , with the following conditions at the 6.2 GHz point:
1) MN1 is designed to match the 50 ohms source, to the impedance corresponding to \(\Gamma \mathrm{g}=(\Gamma \mathrm{in}, 1)^{*}=\Gamma \mathrm{ms}, 1=0.917 / \underline{160^{\circ}}\) (22 +j 8.8 Ohms),
2) MN2 has to match the reflection coefficient \(\Gamma i n, 2\) = ( \(\Gamma\) out,1)* \(=0.730 / 104^{\circ}(12.4+j 37.4\) Ohms) to the measured input reflection coefficient [meas,1=0.731/-11.2*,
3) MN3 is designed in order to transform from the measured load impedance corresponding to rmeas,2 \(=0.507 / 110^{\circ}\) to the 50 Ohms load impedance.

For the cascade connection, the circuit topology and element values, its computed response using an internal small signal circuit analysis program, and their physical dimensions on microstrip transmission lines with high Er substrate appear in table 7.

Two units with similar characteristics are needed to conform
the balanced stage, so, ' \(A\) ' and ' \(B\) ' medium power modules were constructed and tested individually giving the results shown in figure 6. Discussion of these results will be made in a following section.
c) Design of the high-power block.

As mentioned above, in this block we use an internally matched device that requires only, 50 Ohm 1 ines at the input and output ports, to provide 3.5 watts at 6.4 GHz . With sifghtuning adjustment, it can be possible to get an adequate performance across the frequency band. This module is shown in figure 7 and its performance appears infigure 8.

\section*{Discussion of results.}

We have found in the experimental work, that some deviations between the calculated and measured responses of both the low-power and the medium-power blocks have ocurred. In order to analyze 1 n more detafl the possible causes of that discrepancies, in what follows, we take as an example the medium-power design.

The first cause of error, could arise during the characterization of the NE800299 transistor in order to obtain its load and source impedances for maximum output power. We found for one hand, atrong frequency and input power dependence on transistor impedances, and for the other hand, we have taken the reflection coefficients of the transistor at the input and output

The design of NMR coils is again a science in itself. The main problem to be solved is the generation of a very homogeneous RF magnetic Bl-field orthogonal to the main direct Bo-field produced by the powerful superconductive magnet in a volume as large as nacessary for whole-body imaging. Another problem occurs if one goes to higher field strengths in order to get better signal-to-noise ratios and therefore to higher frequencies where more conventional design of a large whole-body coil becomes impossible due to self-resonance effects of the coil. The coils are normally forming a resonance circuit with some capacitors at the Larmor frequency ( 64 MHz for 1.5 Tes 1 a ) so that one obtains a well-defined real load impedance for the RF power amplifier after some impedance transformation. This impedance is usually 50 hm .

Since the dimensions of a whole-body or head coil are relatively large their inductance and therefore also their resonance impedance becomes very high too. This results in interferenca and detrimental coupling effects with the environment, especially the magnet and its many shimming and gradient coils. At high fields the self-resonance frequency of a coil may be even much lower than the NMR operating frequency. A solution to these problems has been found by splitting up the coil-wire in short pieces and connecting them with capacitors in such a way that each capacitor forms a series resonance circuit with its corresponding inductance piece. The conventional way to make an NMR transmit/receive antenna generating the orthogonal bl field is to put a so-called saddle-coil pair with the associated capacitors on a plastic former which should have a low dissipation factor. A head coil has been made using this concept for carbon C-13 spectroscopy tuned to the Larmor frequency of 15.7 MHz .

In order to enhance the very weak carbon signal the hydrogen protons are also excited. For this purpose a second saddle coil tuned to the frequency of 62.45 MHz was placed on the same former but mechanically shifted by 90 degrees so that its Bl-field is orthogonal to that of the carbon coil. Figure 14 shows the circuit configuration of this double-coil and its matching networks. But saddle coils are not producing a magnetic field homogenity good enough for good imaging. More elaborate coil designs are described in the literature.(4).

The most important design parameter of a tuned NMR coil is its quality factor \(Q\) in the unloaded condition. It should be as high as possible, especially high compared to the loaded \(Q\) with a patient's body inside the coil. In other words, the coil losses should be determined by the unavoidable losses induced by the head or body to be imaged and not by those of the inductors and capacitors. The latter decrease drastically the signal-to-noise ratio of the NMR receiver system. Unloaded Q-factors of 300-600 have been obtained at low and high NMR frequencies. The ratio of unloaded to loaded \(Q\) is about 1.5 at 6.4 MHz and 4-6 at 64 MHz because induced body losses increase with frequency. The necessary high \(Q\) factors can be achieved by the selection of capacitors with very low dissipation factors. Teflon PC-boards have been used to implement successfully such capacitors which also must have a high breakdown voltage because RF pulses of many kilowat ts are applied. Low-loss inductors are best implemented by \(1 / 8^{\prime \prime}\) copper tubes. The signal-to-noise ratio can be improved drastically by using so-called surface coils for receiving the NMR-signal whereas the head or body coil is employed as transmitter for better bl-field homogenity. These surface coils are adaptively formed for different body parts and are located directly over the organ to be imaged, e.g. the eye, spine, knee etc.
connector of the test fixture, and then we tried to compensate the transmission line lenght, and also the SMA connector to microstrip Interface, during the Network Analyzer calibration procedure. That could bring out some errors due to the lack of precision in the setting of the reference planes.

We will use in future works to evaluate the large signal impedances of the transistor, by first optimally match the transistor in the test fixture to get maximum output power,then disassemble the test fixture, and measure the complex conjugate input and output impedances of the transistor, in the precise reference planes, by taking out the tansistor mount and measuring the complete input and output matching network that includes bias tee, tuner and connectors, as shown in figure 9 . We are starting a program just to determine how well this could be used with certain degree of confidence.

The second problem we face, consists in the errors involved during the photolitographic process. This is best illustrated in Table 8 and 9 , where the actual circuit dimensions are compared agalnst the calculated ones. We found that the sources of great errors are in the high impedance elements (narrower line), so, in the matching impedance procedure, could be better to look for low impedance matching 1 ines, or to improve the technological aspects involred.

\section*{IV. RESULTS AND APPLICATIONS}

Following the methods described in section lll, we designed and built the 5 Watt prototype shown in figure 10 , whose
performance at 6.2 GHz appears in figure 11
The solf state power modules described in this article were originally intended for applications in earth stations transmitters using the Morelos Mexican Satellite system. Link calculations between Ensenada, Baja Calfornia and Mexico city were performed to define the especific applications of the 1,3 , and 5 Watt modules. Table (A) shows the results of such calculations using the following Satellite Characteristics:

\section*{Satellite Characteristics \\ Channel 9M, Morelos}
\[
0 s=-8953 \frac{d b w}{m^{2}}
\]

Satellite location \(113.5^{\circ} \mathrm{W}\)
Saturation flux density
\[
B 0=6 d B
\]
\[
\frac{G}{T}=3.1 \mathrm{~dB} / \mathrm{oK}
\]

Output Backoff

Satellite figure of Merit
EIRP \(_{\text {Sat }}=36.33 \mathrm{dw} \quad\) B1 \(=11 \mathrm{~dB}\)
Electric isotropic radiated power
of Morelos in Ensenada

TABLEA
\begin{tabular}{cccccc} 
PHPA Watts & GTxdB & GRx dB & G/T RES db/OK & Eb/No dB & RBW \\
1 Watt & 50 & 40 & 19.31 & 5.3 & 30 MHz \\
3 Watt & 50 & 40 & 19.31 & 6.3 & 30 MHz \\
5 Watt & 50 & 40 & 19.31 & 10 & 30 MHz
\end{tabular}

Since the coil impedance is changing for different patients it is sometimes useful to place a matching network between power amplifier and coil. A LCL-circuit with a variable parallel capacitor and two stub-tuned series transmission line inductors was employed. It permits impedance matching over a large range. These RF circuits must be able to handle \(1-15 \mathrm{~kW}\) pulses at 64 MHz . (Figure 15).

THE PREAMPLIFIER:

The NMR signals induced in the receive coils by the moving magnetic moment vectors are relatively small. Therefore low-noise preamplifiers are required which must be protected from the multi-kilowatt RF pulses by the protection circuits already discussed. Figure 16 shows a cascode circuit with two junction field-effect transistors at the input stage and a feedback damping arrangement for a low-field ( 0.12 Tesla, 5.1 MHz ) NMR research system. The optimum source impedance was about 800 Ohm . This preamplifier was connected directly to the receive coil of a 2 -coil \(T / R\) arrangement. The input impedance of the antenna was tuned to 800 Ohm . The noise figure as a function of the source resistance is shown in Figure 17 and as a function of the source admittance phase angle in Figure 18. A noise figure of \(0.5-0.6 \mathrm{~dB}\) was obtained as minimum. The concept of feedback damping which was applied reduces the input impedance of the preamplifier so that the coil bandwidth is increased without increasing the noise considerably. This feature is not required at high fields where the body damping is much more pronounced.

The noise figure measurements have been carried out with the low-cost liquid-nitrogen method which is suprisingly accurate and permits measurements at source resistances different from 50 Ohm . The receiver output noise voltage is measured for the source resistor at room and then at liquid \(N 2\) temperature ( 77 degree \(K\) ). The noise voltage ratio can be related directly to noise figure in \(d B\) with the curve of Figure 20. (Courtesy Dr.H.Hart, GE-CRD). This method has slso the advantage that it can easily be applied to a whole system as well as for source resistances differing from 50 Ohm. For high-field systems preamplifiers with bipolar transistors have been designed in order to obtain a larger bandwidth. The design starts with the selection of a low-noise transistor which must have very high current gain, a large gain-bandwidth product and a low base bulk resistance. The optimum source resistsnce, the most important design parameter, can easily be determined by measuring with a receiver the relstive output noise voltage for the conditions of short- and open- circuit at the preamplifier input. The ratio of the two noise voltages (short-over open-circuit voltage) multiplied with the input impedance of the input stage gives the optimum source impedance. In the frequency range of interest that impedance was about 100 Ohm. A noise matching network which degrades the noise figure can be avoided by paralleling two input transistors. This has also the beneficial effect of reducing the base resistance. A preamplifier designed with this procedure has a noise figure over a large frequency range of well below 1.0 dB and reaching 0.5 dB at some frequencies. Figure 19. (6,7).

NMR RECEIVER:

The preamplifier which may have a bandpass filter at its input in order to increase system stability is followed in the signal path by a variable gain

PHAPA = Solid state power amplifier output
GRx = Receiving antenna Gain
GTx = Transmitter antenna Gain;
G/TREC = Figure of Merit of receiving antena
Eb/No = Energy bit per noise
RBW = Reference Bandwidth

It can be seen from Table (A) that the 5 Watt power module would provide the best characteristics of a thin route satellite Communcations link. The improvement of the Eb/No for the 1 Watt or 3 watt module would imply the use of bigger antenna and the reduction of the reference bandwith and hence the transmission rate.

Another possible application of the 5 Watt amplifier would be in tererestrial microwave line-of-sight links as TWTA's replacement.

\section*{Y. CONCLUSIOMS}

We have described the methodology for obtaining low-power and medium-power modules, and we have combined them in order to get a 5 Watt module whose possible applications are in satellite communications and also in terrestrial links. We will continue in the technological development of these microwave subsystems, and In this way present additional alternatives for the Mexican Telecommunications System.

\section*{ACKMOWLEDGEMENTS}

We thank Mr. Humberto flores from CONTEL SCT and Mr Benjamin Ramirez for their participation in the link calculations of the example described in the paper.

We also thank Mr. Ricardo Chavez for their work on the measurements and circuit fabrication.

\section*{REFEREMCES}
(1) Przedpelski, A. B.,"simple transmission Line Matching Circuits"; R. F. Design, June 1980.


Figure 1. Circuit Configuration

RF amplifier made with a Plessey IC SL-1550. It has a gain range of 10 to 36 dB. A block diagram of the receiver itself is shown in Figure 2l. It uses the 2ERO-IF I-Q channel quadrature detection concept due to the fact that the complex analog NMR signals have to be converted to the digital format by two A/D converters in ordar to permit image reconstruction by a computer. High frequency \(A / D\) converters are not available, certainly not at a low cost.

The RF-amplifier signal is split and fed to two quadrature mixers. Their low-frequency output signal are band-limited after amplification by two low-pass filters which have a variable bandwidth. \((8,16,32 \mathrm{kHz})\). The main design challenge is the front-end mixer pair which must provide a large dynamic range as well as good linearity. The maximum overall gain of the recelver is about 70 dB .

QUADRATURE EXCITATION AND RECEPTION:

Normally the Bl RF-field in the transmit head or body coll is linearily polarized. Due to the fact that the human body is electrically conducting eddy currents are generated inside the body parts which increase with frequencies. These unwanted eddy currents cause image artifacts and distortions. Their detrimental influence can be eliminated or drastically reduced by producing a rotating RF Bl-field. This is done by feeding a specially designed circular RF coil on two points wich are geometrically 90 degrees epart by two equal, but 90 degrees phase-shifted signals.(5). A 11nearly polarized field can be generated by the superposition of two rotating fields. One of these is now interacting with the magnetic moments and spins of the protons according to the physics of the NMR experiment. Therefore, only half the RF power is required
using a rotating field compared to the case of a linear one. Figure 22 shows an RF block diagram of such a system with two power amplifiers. If only one big tube PA is available one can use a quadrature power splitter made with two lambda/8 50 Ohm transmission lines and two crosscoupling capacitors which must have a reactance of 50 Ohm at the operating frequency. The quadrature coil arrangement can also be used to increase the signal-to-noise ratio by a factor of 1.4 during the receive mode of operation. (5).

\section*{RESULTS:}

The results obtained by such a NMR system with its many RF eircuits are images of the inside of the human body in all possible cross-sections with a discrimination not available with other means.

\section*{ACKNOWLEDGEMENT}

The authors thank Dr. R.W. Redington, Manager of the Medical Diagnostics Systems Branch, for his support of this work and Dr. H.Hart for many helpful discussions as well as for the curve of Figure 20. The cooperation of Mr. G. Brower and Mr. R. Giaquinto is gratefully acknowledged.

\section*{REFERENCES:}
1. Edelstein, W.A.; Hutchinson, J.; Johnson, G.: "Spin-Warp NMR Imaging and Applications to Whole Body Imaging."
Phys. Med. Biol., Vol. 25, pp. 751-756, 1980.
2. Bottomley, P.A.: "Nuclear Magnetic Resonance: Beyond Physical Imaging"


Figure 2. Basic Two-stage Amplifier


Figure 3. Impedance Transformation with Short length Transmission Line


Figure 4. Photograph of Two-Stage Amplifier


Figure 5. Muasured Response of Two-Stage Amplifier at 6.26 Hz

IEEE Spectrum, Februsry 1983, pp.32-38.
3. R.E. Gordon, W.E. Timms: "Magnet Systems Used in Medical NMR" Computerized Radiology, Vol. 8, No.5, pp.245-261, 1984
4. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O. Mueller, M. Eash: "An Efficient, Highly Homogeneous RF-Coil for Whole-Body NMR Imaging at 1.5 T ". Journal of Magnetic Resonance, 63, pp.622-628, (1985).
5. G.H. Glover, C.E. Hayes, N.J. Pelc, W.A. Edelstein, O. Mueller, H.R. Hart, C.J. Hardy, M. O Donnell, W.D. Barber: "Comparison of Linear and Circular Polarization for Magnetic Resonance Imaging". Journal of Magnetic Resonance, Vol. 64, 255-270, 1985.
6. W.A. Edelstein, P.A. Bottomley, H.R. Hart, L.S. Smith: "Signal, Noise and Contrast in NMR Imaging". Journal of Computer Assisted Tomography, 7(3): 391-401, June 1983.
7. H.R. Hart, P.A, Bottomley, W.A. Edelstein, S.G. Karr, W.M. Leue, O. Mueller, R.W. Redington, J.F. Schenck, L.S. Smith, D. Vatis: "Nuclear Magnetic Resonance Imaging: Contrast-to-Noise Ratio as a Function of Strength of Magnetic Field". Amarican Journal of Roentgenology, Vol. 141, 1195-1201, Dec. 1983.

figure 1


Figure 6. Measured response of Medium-Power Block


8. Measured Response of the High_Power Module


Figura g. Source and Load Large Signal Characterization

figure 2


SPECTROMETER BLOCK DIAGRAM
FOR MULTISECTION MR IMAGING
FIGURE 3


4 KW NMR RF POWER AMPLIFIER: 8.4 MHz ( 0.15 T)
FIGURE 4


FIGURE 5


Figura 10. Circuit Topology for the 5 Watt Module


Figure 11. Measured Response of the 5 Watt module at 6.2 GHz

TABLE 1
**** NE7208 GAASFET ANALTSIS *......
S-parameters in 50.0 ogm sistem device gain-stability data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{FREQ GHZ} & \multicolumn{2}{|r|}{S11} & \multicolumn{2}{|c|}{\$12} & \multicolumn{2}{|c|}{S21} & \multicolumn{2}{|r|}{S22} & S21 & K & delta \\
\hline & HAg & ANG & ILAG & ANG & MAG & ANG & hag & ANG & DB & FACT & mag \\
\hline 5.9 & 0.608 & 172. & 0.099 & -9. & 2.410 & 41. & 0.390 & -103. & 7.6 & 1.0 & 0.149 \\
\hline 6.0 & 0.597 & -162. & 0.100 & -10. & 2.310 & 36. & 0.390 & -117. & 7.3 & 1.2 & 0.216 \\
\hline 6.1 & 0.595 & -151. & 0.100 & -10. & 2.280 & 33. & 0.390 & -120. & 7.2 & 1.2 & 0.252 \\
\hline 6.2 & 0.592 & -141. & 0.100 & -10. & 2.270 & 33. & 0.390 & -125. & 7.1 & 1.3 & 0.268 \\
\hline 6.3 & 0.588 & -115. & 0.100 & -10. & 2.230 & 30. & 0.390 & -130. & 7.0 & 1.4 & 0.334 \\
\hline 6.4 & 0.584 & -102. & 0.101 & -10. & 2.200 & 29. & 0.390 & -139. & 6.8 & 1.4 & 0.345 \\
\hline
\end{tabular}

Stability circle locations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & IN PUT & PLANE & & & OUTPUT & Plane & \\
\hline FREQ & nag & ang & Rad & Stable & mag & ang & RAD & Stable \\
\hline 5.90 & 1.706 & -166.7 & 0.69 & OUTS IDE & 2.866 & 116.4 & 1.84 & OUTS IDE \\
\hline 6.00 & 1.815 & 169.6 & 0.75 & OUTS IDE & 3.305 & 136.1 & 2.19 & OUTS IDE \\
\hline 6.10 & 1.879 & 159.6 & 0.78 & OUTS IDE & 3.724 & 142.1 & 2.57 & OUTS IDE \\
\hline 6.20 & 1.924 & 150.0 & 0.81 & OUTS IDE & 4.002 & 148.3 & 2.82 & OUTS IDE \\
\hline 6.30 & 2.128 & 125.0 & 0.95 & OUTS IDE & 6.815 & 158.2 & 5.50 & OUTS IDE \\
\hline 6.40 & 2.197 & 112.1 & 1.00 & OUTS IDE & 8.132 & 167.2 & 6.78 & OUTS IDE \\
\hline * table & REGION & OU & TSE & OR & INSIDE & the stabi & ILIty CIR & CLE** \\
\hline
\end{tabular}

REFLECTION COEFFICIENTS FOR HAXIMUM STABLE GAIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{3}{*}{GAMBIA MAG} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { INPUT } \\
\mathbf{S} \\
\text { ANG }
\end{gathered}
\]} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{PLANE
IMPEDAN CE
OR
IS}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- ----- output}} & \multirow[t]{3}{*}{PLaNe} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{IMPEDAN CE OH MS}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { GAIN } \\
& \text { DB }
\end{aligned}
\]} \\
\hline FREQ & & & & & & & & & & & \\
\hline GHZ & & & & & & Mag & ANG & & & & \\
\hline 5.90 & 0.881 & -166.7 & 3.2 & + \({ }^{(1)}\) & -5.8) & 0.818 & 116.4 & 6.9 & + & \(30.6)\) & 12.5 \\
\hline 6.00 & 0.784 & 169.6 & 6.1 & + J ( & 4.5) & 0.679 & 136.1 & 11.0 & \(+\mathrm{J}(\) & 19.3) & 11.2 \\
\hline 6.10 & 0.749 & 159.6 & 7.4 & +J ( & 8.8) & 0.627 & 142.1 & 12.7 & +J ( & 16.2) & 10.7 \\
\hline 6.20 & 0.730 & 150.0 & 8.3 & + J ( & 13.0) & 0.601 & 148.3 & 13.4 & + J ( & 13.2) & 10.5 \\
\hline 6.30 & 0.663 & 125.0 & 12.7 & +J( & 24.7) & 0.495 & 158.2 & 17.5 & +J( & 8.5) & 9.8 \\
\hline 6.40 & 0.645 & 112.1 & 15.4 & + \({ }^{\text {( }}\) & 31.4) & 0.470 & 167.2 & 18.2 & +J( & 4.9 & . \\
\hline
\end{tabular}
-0* UNCONDITIONALLY STABLE TRANSISTOR
GPHAX \(10.53075 D B \quad\) FREQ \(=\quad\) 6. 200
CONSTANT OPERATING POMER GAIN CIRCLES

\begin{tabular}{rlll}
2.50000 & 0.87554 & 0.10820 & 148.29657 \\
4.50000 & 0.80376 & 0.16881 & 148.29657 \\
6.50000 & 0.69037 & 0.26110 & 148.29657 \\
8.50000 & 0.50575 & 0.39861 & 148.29657 \\
10.50000 & 0.06207 & 0.59697 & 148.29657
\end{tabular}

figure 6

igure 7

figure 8


FIGURE 9

TABLE 2
**** NE6948 GAASFET ANALYS IS
-PARAMETERS IN 50.0 OHM SYSTEM
design of tae lom-power block
L0 : 5.90 GBZ FRE CENTRAL : 6.20 GBZ FREQ UPP : 6.40 GBZ ATtENOATION: 0.10 DB/LAMBDA NUMBER OF ELEMENTS : 13
 \(\begin{array}{llllllllllll}5.9 & 0.805-116 & 0.039 & 24 . & 1.620 & 65 & 0.820 & -70 . & 4.2 & 0.9 & 0.659\end{array}\) \begin{tabular}{llllllllll}
6.0 & \(0.800-117\). & 0.040 & 23. & 1.610 & 63. & 0.820 & -71. & 4.1 & 0.9 \\
6.1 & \(0.795-118\). & 0.041 & 22. & 1.601 & 61. & 0.820 & -72. & 4.1 & 0.9 \\
\hline .655
\end{tabular} \(\begin{array}{lllllllllll}6.1 & 0.795 & -118 . & 0.041 & 22 . & 1.601 & 61 . & 0.820 & -72 . & 4.1 & 0.9 \\ 6.2 & 0.790 & -119 . & 0.042 & 22 . & 1.594 & 60 . & 0.819 & -73 . & 4.0 & 0.9 \\ 6.3\end{array}\) \(\begin{array}{lllllllllll}6.2 & 0.790 & -119 . & 0.042 & 22 . & 1.594 & 60 . & 0.819 & -73 . & 4.0 & 0.9 \\ 6.3 & 0.785 & -120 . & 0.043 & 21 . & 1.587 & 58 . & 0.818 & -73 . & 4.0 & 0^{\circ} .9 \\ 6.42 .641\end{array}\)

Stability Circle locations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & *---- & IN PUT & plane & ------* & ----- & OUTPUT & PLANE & \\
\hline FReq & Mag & ANG & RAD & Stable & mag & ANG & RA D & Stable \\
\hline 5.90 & 1.272 & 126.7 & 0.30 & OUTS IDE & 1.244 & 80.0 & 0.27 & OUTS IDB \\
\hline 6.00 & 1.282 & 128.2 & 0.30 & OUTS IDE & 1.244 & 80.8 & 0.26 & OUTS IDE \\
\hline 6.10 & 1.292 & 129.7 & 0.31 & OUTS IDE & 1.244 & 81.5 & 0.26 & OUTS IDE \\
\hline 6.20 & 1.303 & 131.0 & 0.32 & OUTS IDE & 1.246 & 82.2 & 0.26 & OUTS IDE \\
\hline 6.30 & 1.315 & 132.4 & 0.34 & OUTS IDE & 1.249 & 82.9 & 0.27 & OUTS IDE \\
\hline 6.40 & 1.327 & 133.7 & 0.35 & OUTS IDE & 1.251 & 83.6 & 0.27 & OUTS IDE \\
\hline - \({ }^{\text {Stable }}\) & REGION & OUT & S IDE & OR & IDE & ST & ILITY CIR & CLE* \\
\hline
\end{tabular}

REFLECTION COEffiCIENTS FOR MAXIMUM STABLE GAIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{3}{*}{GAMRA MAG} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { IN PUT } \\
\mathbf{S} \\
\text { ANC }
\end{gathered}
\]} & \multirow[t]{3}{*}{Plane} & \multirow[t]{3}{*}{IMPEDAN CE OH NS} & \multicolumn{6}{|l|}{------ output plane ---------**} \\
\hline GHZ & & & & & \multirow[t]{2}{*}{GAMMA MAG} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\stackrel{L}{\text { ANG }}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IMPE DAN CE
OH LS}} & \multirow[t]{2}{*}{\begin{tabular}{l}
GAIN \\
DB
\end{tabular}} \\
\hline & & & & & & & & & & \\
\hline 5.90 & 0.820 & 129.7 & 76.0 & +J( 23.2 ) & 0.879 & 68.2 & 10.2 & + J ( & 72.9) & 13.8 \\
\hline 6.00 & 0.816 & 131.4 & 46.1 & +J( 22.3 ) & 0.881 & 69.1 & 9.7 & +J( & 71.71 & 13.6 \\
\hline 6.10 & 0.812 & 133.1 & 16.1 & +J( 21.4 ) & 0.884 & 70.0 & 9.3 & +J( & 70.6) & 13.4 \\
\hline 6.20 & 0.808 & 134.7 & 76.2 & +J( 20.6 ) & 0.887 & 70.8 & 8.9 & + j ( & 69.6) & 13.3 \\
\hline 6.30 & 0.805 & 136.4 & 46.3 & +J( 19.7) & 0.889 & 71.5 & 8.5 & +J ( & 68.7) & 13.1 \\
\hline 6.40 & 0.801 & 138.0 & 06.3 & + J ( 18.9) & 0.891 & 72.2 & 8.2 & +J( & 67.9) & 13.0 \\
\hline & & *** & POTENTIAL & lly unstable & transisto & R & ** & & & \\
\hline & & & MSG \(=15\) & 5.79157 DB & FREQ \(=\) & 6. & & & & \\
\hline & & & CONSTAN & NT OPERATING & power gai & N CIR & ES & & & \\
\hline & & & AIN (DB) & Radil & CENTER. & mag & CENTE & . Anc & & \\
\hline & & & 5.75000 & 0.66179 & 0.340 & & 82.1 & 690 & & \\
\hline & & & 7.75000 & 0.53835 & 0.464 & & 82.1 & 690 & & \\
\hline & & & 9.75000 & 0.40082 & 0.604 & & 82.1 & 690 & & \\
\hline & & & 1.75000 & 0.26401 & 0.746 & & 82.1 & 690 & & \\
\hline & & & 3.75000 & 0.14742 & 0.876 & & 82.1 & 690 & & \\
\hline & & & 5.75000 & 0.08622 & 0.983 & & 82.1 & 690 & & \\
\hline
\end{tabular}


PA.I: OUTPUT POWER VS SUPPLY VOLTAGE IDC)
figure 10



PREAMPLIFIER PROTECTION CIRCUIT
figure 13


FIGURE 14
table 4
*** NE9001 GAASFET ANALYSIS ****
S-PARAMETERS IN 50.0 ofn SYSTEM DEVICE GAIN-STABILITY dATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FREQ } \\
& \text { GHZ }
\end{aligned}
\]} & \multicolumn{2}{|r|}{S11} & \multicolumn{2}{|c|}{S12} & \multicolumn{2}{|c|}{521} & \multicolumn{2}{|r|}{S22} & \multirow[t]{2}{*}{\[
\begin{array}{r}
521 \\
\text { DB }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\stackrel{\mathbf{R}}{\text { FACT }}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { DELTA } \\
\text { MAG }
\end{array}
\]} \\
\hline & MAG & ANG & Mag & ANG & Mag & ANG & hag & ANG & & & \\
\hline 5.9 & 0.890 & -153. & 0.051 & -6. & 1.328 & 44. & 0.576 & -107. & 2.5 & 0.8 & 0.486 \\
\hline 6.0 & 0.890 & -154. & 0.050 & -7. & 1.310 & 42. & 0.580 & -108. & 2.3 & 0.9 & 0.490 \\
\hline 6.1 & 0.889 & -155. & 0.050 & -7. & 1.304 & 41. & 0.583 & -109. & 2.3 & 0.9 & 0.492 \\
\hline 6.2 & 0.888 & -155. & 0.050 & -7. & 1.298 & 40. & 0.586 & -109. & 2.3 & 0.9 & 0.494 \\
\hline 6.3 & 0.887 & -156. & 0.050 & -7. & 1.292 & 38. & 0.589 & -110. & 2.2 & 0.9 & 0.497 \\
\hline 6.4 & 0.886 & -156. & 0.050 & -7. & 1.286 & 37. & 0.592 & -111. & 2.2 & 0.9 & 0.499 \\
\hline
\end{tabular}

Stability circle locations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{IN PUT
ANG} & \multirow[t]{2}{*}{PLANE RAD} & \multirow[b]{2}{*}{STABLE} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { OOTPUT } \\
& \text { ANG }
\end{aligned}
\]} & \multirow[t]{2}{*}{Plane
RAd} & \\
\hline Freq & & & & & & & & Stab \\
\hline 5.90 & 1.103 & 156.2 & 0.12 & OUTS IDB & 1.635 & 126.7 & 0.71 & OUTS IDE \\
\hline 6.00 & 1.103 & 157.2 & 0.12 & OUTS IDE & 1.619 & 127.5 & 0.68 & OUTS IDE \\
\hline 6.10 & 1.104 & 157.8 & 0.12 & OUTS IDE & 1.610 & 127.8 & 0.67 & OUTS IDE \\
\hline 6.20 & 1.105 & 158.4 & 0.12 & OUTS IDE & 1.602 & 128.1 & 0.66 & OUTS IDE \\
\hline 6.30 & 1.106 & 159.1 & 0.12 & OUTS IDE & 1.594 & 128.5 & 0.64 & OUTS IDE \\
\hline 6.40 & 1.107 & 159.7 & 0.12 & OUTS IDE & 1.586 & 128.9 & 0.63 & OUTS I \\
\hline
\end{tabular}
reflection coefficients for mayimum stable gain


TABLE 6
*...* NE8002 GAASFET ANALYSIS ****。

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Freq & \multicolumn{2}{|r|}{\$11} & \multicolumn{2}{|c|}{S12} & \multicolumn{2}{|c|}{521} & \multicolumn{2}{|r|}{S22} & S21 & Y & DELTA \\
\hline GHZ & MAG & ang & Hug & ANG & bug & ANG & mag & ANG & DB & FACT & Hag \\
\hline 5.9 & 0.834 & 140. & 0.066 & 16. & 1.302 & -29. & 0.555 & 161. & 2.3 & 0.9 & 0.408 \\
\hline 6.0 & 0.830 & 138. & 0.070 & 15. & 1.300 & -31. & 0.560 & 160. & 2.3 & 0.9 & 0.407 \\
\hline 6.1 & 0.825 & 136. & 0.074 & 13. & 1.299 & -33. & 0.564 & 159. & 2.3 & 0.9 & 0.404 \\
\hline 6.2 & 0.822 & 133. & 0.078 & 10. & 1.296 & -36. & 0.572 & 157. & 2.3 & 0.8 & 0.404 \\
\hline 6.3 & 0.816 & 132. & 0.082 & 10. & 1.298 & -37. & 0.573 & 156. & 2.3 & 0.8 & 0.400 \\
\hline 6.4 & 0.810 & 126 & 0.090 & & 1.290 & -43. & 0.590 & 152. & 2.2 & 0.7 & 0.403 \\
\hline
\end{tabular}

STABILITY CIRCLE LOCATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & IN PUT & Plane & & & 00 TPUT & PLANE & \\
\hline FREQ & HAG & ANG & RAD & STABLE & HAg & ang & RAD & Stable \\
\hline 5.90 & 1.155 & -143.0 & 0.16 & OUTS IDE & 1.587 & -174.7 & 0.61 & OU TS IDE \\
\hline 6.00 & 1.158 & -141.5 & 0.17 & OUTS IDE & 1.575 & -173.9 & 0.61 & OUTS IDE \\
\hline 6.10 & \(1 .: 63\) & -139.7 & 0.19 & outs ide & 1.566 & -172.2 & 0.62 & OUTS IDE \\
\hline 6.20 & 1.163 & -137.2 & 0.20 & OUTS IDE & 1.538 & -170.1 & 0.62 & OUTS IDE \\
\hline 6.30 & 1.171 & -136.1 & 0.21 & OUTS IDE & 1.543 & -169.6 & 0.63 & OUTS IDE \\
\hline 6.40 & 1.172 & -130.7 & 0.23 & OUTS IDE & 1.496 & -165.6 & 0.62 & OUTS IDE \\
\hline -stable & region & & S IDE & OR & INSIDE & the Stab & ILITY CIR & CLe* \\
\hline
\end{tabular}
reflection coefficients for haxibum stable gain
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{FREQ
G 12} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{*----- IN PUT}} & \multirow[t]{3}{*}{plane} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { I MPE DAN CE } \\
& \text { OH HS }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{------ ovtrut plane}} & \multirow[t]{3}{*}{IMPEDANCE OR MS} & \multirow[b]{3}{*}{GAIN
DB} \\
\hline & & & & & & & & & \\
\hline & hag & ang & & & MAg & ANG & & & \\
\hline 5.90 & 0.880 & -144.7 & 3.5 & +J(-15.9) & 0.648 & -152.4 & 11.3 & + \(\mathrm{J}(-11.7)\) & 10.4 \\
\hline 6.00 & 0.879 & -143.3 & 3.6 & \(+\mathrm{J}(-16.5)\) & 0.653 & -150.7 & 11.2 & +J(-12.5) & 10.4 \\
\hline 6.10 & 0.877 & -141.7 & 3.7 & +J(-17.3) & 0.656 & -149.0 & 11.1 & \(+\mathrm{J}(-13.2)\) & 10.4 \\
\hline 6.20 & 0.879 & -139.3 & 3.7 & \(+\mathrm{j}(-18.5)\) & 0.658 & -146.8 & 11.2 & +J(-14.2) & 10.5 \\
\hline 6.30 & 0.875 & -138.3 & 3.8 & \(+\mathrm{J}(-18.9\) ) & 0.661 & -145.8 & 11.1 & +J(-14.7) & 10.4 \\
\hline 6.40 & 0.878 & -133.2 & 3.9 & \(+\mathrm{J}(-21.5)\) & 0.667 & -141.5 & 11.1 & +J(-16.7) & 10.7 \\
\hline
\end{tabular}


\section*{RF POWER MATCHING NETWORK}


FIGURE 15: POWER MATCHING NETWORK


figure 17


NOISE FIGURE AS A FUNCTION OF THE SOURCE ADMITTANCE PHASE ANGLE
figure 18

TABLE 7
DESIGN OF THE

FREQ. LOW : 5.90 GHZ FREQ. CENTRAL: 6.20 GRZ FREQ. UPP: 6.40 GHZ MI CROSTRIP ATTENUATION : 0.10 dB NUPBER OF ELEMENTS : 16



LIQUID NITROGEN METHOD:
NOISE FIGURE AS A FUNCTION OF THE NOISE VOLTAGE RATIO \(V_{2} / V_{1}\).

FIGURE 20



FIGURE 21: RECEIVER CIRCUIT FOR NMR

\title{
Peter E Chadwick \\ Principal Applications Engineer \\ Plessey Semiconductors \\ Cheney Manor \\ Swindon \\ England
}

The radio receiver lives and works in a non-benign environsent. It needs to pick out a very weak wanted signal from a background of noise at the same time as it rejecta a large number of much stronger unwanted signals. These may be present either fortuitously, aa in the case of the overcrowded radio spectrum, or because of deliberate action, as in the case of Electronic Warfare. In either case, the use of suitable devices may considerably influence the job of the equipment designer.

Dynanic range is a "catch all" tera, applied to linitations of intermodulation or phase noise: it has many definitions depending upon the application. Firstly, however, it is advisable to define those terms which liait the dynamic range of a receiver.

\section*{Intermodulation}

This is described as the "result of a non linear transfer characteristic". The mathematics have been exhaustively treated, and Ref. is recomended for those interested.

The effects of interaodulation are siailar to those produced by mixing and harmonic production, insofar as the application of two signals of frequencles \(f_{1}\) and \(f_{2}\) produce outputs of \(2 f_{2}-f_{1}, 2 f_{1}-f_{2}, 2 f_{1}, 2 f_{2}\) etc. The levels of these signals are dependent upon the actual transfer function of the device and thus vary with device type. For example, a truly square law device, such as a perfect \(\operatorname{FET}\), produces no third order products ( \(2 \mathrm{f}_{2}-\mathrm{f}_{1}\), \(2 f_{1}-f_{2}\) ). Intermodulation products are additional to the harmonics \(2 f_{1}\), \(2 f_{2}, 3 f_{1}, 3 f_{2}\) etc. Fig. 1 shows intermodulation producta diagramatically.

The effects of intermodulation are to produce unwanted signals, and these degrade the effective signal to noise ratio of the wanted signal. Consider firstly the discrete case of a weak wanted signal on 7.010 MHz and two large unwanted signals on 7.020 and 7.030 MHz . A third order product ( \(2 x\) 7.02 - 7.03) falls on the wanted signal, and may completely drown it out. Fig. 2 shows the toal HF spectrum from 1.5 to 41.5 MHz and Fig. 3 shows the integrated power at the front end of a receiver tuned to 7 MHz . It may be seen that just as white light is made up fromall the colours of the spectrum, so the total power produced by so many aignals approxiates to a large wide band noise signal. Now, it has already been shown that 2 signals, \(f_{1}\) and \(f_{2}\), produce third order intermodulation products of \(2 f_{1}-f_{2}\) and \(2 f_{2}-f_{1}\). The signals will produce third order products somewhat greater in number, viz: \(2 f_{1}-f_{2}, 2 f_{1}-f_{3}, 2 f_{2}-f_{1}, 2 f-f_{3}, 2 f-f_{1}\) and \(2 f_{3}-f_{2}\). An increase in the number of input signals will multiply greatly the effects of intermodulation, and will manifest itaelf as a rise in the noise floor of the receiver.

The amplitude relationships of the third order intermodulation products and the fundamental tones may be derived from Ref. 1 , where it is show that the intermodulation product amplitude is proportional to the cube of the input signal level. Thus an increase of 3 dB in input level will produce an increase of 9 dB in the levels of the internodulation products. Fig. 4 shows this in graphic fors, and the point where the graphs of fundanental power and intermodulation power cross is the THIRD ORDER INTERCEPT POINT.


FIGURE 22

The third order intercept point 18, however, a purely theoretical concept. This is because the worat possible intermodulation ratio is 13 dB (Ref. 2), so that in fact the two graphs never cross. In addition, the finite output power capability of the device leads to GAIN COMPRESSION.

Thus, it is apparent that the intermodulation produced noise floor in a receiver is related to the intercept point, and Figs. 5, 6 and 7 show the noise floor produced by various intercept points, in a receiver fed from an antenna - a realistic teat Fig. 5 ahows that a large number of aignals are below the nolse floor and are thus lost; this representa a OdBu intercept point. Fig. 7 shows a +20 dBa intercept point noise floor, and it is obvious that many more signals may be recelved.

Becauae of the rate at which intermodulation products increase with input level ( 3 dB on the I.P. for 1 dB on the fundamental), the addition of an attenuator at the front end can improve the signal to nolse ratio, aa an increase in attenuation of 3 dB will reduce the wanted signal by 3 dB , but the intermodulation will decrease by 9dB. However, it is a fair coment that aerial attenuators are an admiasion of defeat, as suitable dealgn does not require itl

The concept of dynamic range ia often used when discuasing intermodulation. Fig. 8 shows total recelver dynamic range, which 18 defined as the spurious Free Dynanic Range. Obviously an intermodulation product lying below the receiver nolse floor may be ignored. Thus the uable dynaic range is that input range between the noise floor and the input level at which the intermodulation product reaches the nolse floor. In fact
equation (1)
\[
\text { D.R. }=\frac{2}{3}\left(I_{3}-N . \text { F. }\right)
\]

Where D.R. is the dynamic range in \(d B\)
\(I_{3}\) is the interuodulation input intercept point in dBM N.F. is the noise floor in dBM .

Note that in any particular recelver, the noise floor is related to the bandwidth; dynamic range ia sinilarly so related.

HF receivers will often require input intercept points of +20 dBa or aore. The usable notse factor of \(H F\) receivers is normally 10-12dB: exceptionally 7 or 8 dB may be required when mall whip antennaa are used. An SSB bandwidth would have a dynamic range of 105.3 dB . The same receiver with a 100 Hz C.W. bandwidth would have a dynamic range of 114.6 dB and thua dynamic range is quite often a confusing and imprecise term.

VAF recelvers require noise figures of 1 or 2 dB for moat critical applicationa, and where co-aited transuitters are concerned, signals at 0 dBa or more are not uncommon. However, such algnals are usually aeparated by at least \(5 \%\) in frequency and filters can be provided. Close in signals at levels of \(-20 d B a\) are not uncommon, and dynailc rangea in SSB bandwidtha of about 98 dB are required.

The achievement of high input intercept points and low noiae factors is not neceaarily easy. The uaual superhet architecture follows the mixer with some sort of filter, frequently a cryatal filter, and the performance of this fllter aay well limit the performance. Crystal filters are not the linear reciprocal two part networks that theory suggesta, being neither linear or reciprocal. It has been suggested that the IMD is produced by ferrite cored transformers, but experiments have shown that ladder filtera with no transformers suffer similarly. Thus, although ferrite cored tranaforaers can contribute, other aechaniana dominate in theae coaponents. The nost probable is the fallure of the plezo-electric material to follow Hook's Law at high input levels, and possibly the use of cryatal cuta other than \(A T\) could help insofar as the relative mechanical cryatal distortion ia reduced. The use of \(S A H\) filters is attractive, since they are not bulk wave devicea and do not suffer to such an extent from IMD; however, it ia neceaaary to use a resonant SAW to achieve the neceasary bandwidtha and low insertion loasea.

\section*{THE Q FACTOR OF MICROSTRIP MATCHING NETWORK}
in rf class c amplifier desicn
P. GONORD, S. KAN and J.P. RUAUD

Institut d'Electronique Fondamentale
Université Paris-Sud
Bátiment 220, 91405 ORSAY CEDEX, FRANCE

\section*{ARSTRACT}

The \(Q\) foctor of on impedonce motching netwark incorporoting microstrips as inductances has a bounded volue. This poper shaws how strip lengths os a function of \(Q\) ore evaluoted numerically with greoter occuracy compared to using grophical construction on a Smith chart. An example of o 162 MHz 100-wott closs C amplifier is also given.

\section*{introduction}

Microstrip has iong been associated with microwave passive or active circuit design since at such frequencies a certain length of strip can be made to behave as a capacitance or inductance according to its physical dimension with respect to the electrical wavelength ( \(\lambda\) ). When designed as a transmission line, it can also be used for impedance transformation or matching between an active device and its source and load impedances.

The expressions relating impedance variation along a line terminated by a load other than \(Z_{O}\), its characteristic impedance are rather simple. But their numerical evaluation requires complex hyperbolic or circular function manipulations which are still performed graphically.

Now that pocket computers incorporated with high level programming facilities such as the BASIC Language are available, the time has come for every circuit designer to do the calculations by machine with greater accuracy and less time consuming effort.

In RF Class \(C\) power power amplifier design, one often encounters low input and output transistor impedances. The simple method using 2-element L. C components to match them to the \(50 \Omega\) source and load impedances results in poor harmonic rejection and power efficiency (Fig. 1a). General practice consists of increasing the \(Q\) of the matching network by adding an inductance in series with the transistor's input/output impedances as shown in Fig. ib.

In high frequency operation, the required inductance is rather small and its precise value hecomes difficult to achieve using a conventional coil. For this reason, most practical VIIF, UHF amplifiers anopt microstrip in replace this lumped constant.

In the literature \({ }^{(1-4)}\), the designers often choose a certain length of trip and then try to match the transistor to the source or load with the

The design of active coaponenta such as amplifiers is relatively straightforward. Amplifiers of low noise and high dynamic range are fairly easy to produce, especially with transforaer feedback, although where high reverse isolation is required, care must be taken. Mixers are however, another matter.

Probably the most popular wixer is the diode ring (Fig. 9). Although popular, this mixer does have some drawbacks, which have been well documented. These are:-

Insertion loss (nornally about 7 dB )
high L.O. drive power (up to +27 dBm )
termination sensitive (needs a wideband 50 ohms)
poor interport isolation (40dB)

The insertion loss is a paraneter which may be classed merely as annoying, although it does liait the overall nolse figure of the receiving system. The high L.O. drive power means a large amount of D.C. is required, affecting power budgets in a disastrous way, whlle termination sensitivity may mean the full potential of the mixer cannot be realised.

For the diode ring to perform adequately, a good termination "from D.C. to daylight" is required: definitely at the image frequency (LOt sig. freq.) and preferably at the harmonics as well. Finally, interport isolation of 40 dB with a +27 dBm LO still leaves - 13dBa of LO radiation to be filtered or otherwise suppressed for reaching the antenna.

A further problem with the siaple diode ring of this form is that the "OFP" diodes are only off by the forward voltage drop of the ON diodes. Thus the application of an input which exceeds this OFF voltage leads to the diodes trying to turn \(O N\), giving gain compression and reduced IMD performance.

Fig. 10 shows a variation of this in which series resistors are added. The current flow through these resistors increases the reverse bias on the OFF diodes which gives a higher gain compression point: such a uixer can give +36 dBm intercept points with a +30 dBm of LO drive. Nevertheleas, as is common to all conmutative mixers, the intermodulation performance is related to the termination, and the Lo radiation frow the input port is relatively high.

Variations of this form of mixer include the Rafuse Quad MOSFET mixer of Fig. 11, which suffers with aany of the same problems. Fig. 12 shows a dual \(\operatorname{VMOS}\) mixer capable of good performance, but requiring a lare amount of D.C. power and with limited isolation of the Lo injection.

Many advantages accrue to the choice of the transistor tree type of approach (Fig. 13). Here the input signal produces a current in the collectors of the lower transistors and this current is commutated by the upper set of switching transistors. Because the current is to a first order approximation independent of collector voltage, the transistor tree does not exhibit the sensitivity to load impedance that the diode ring does, and indeed, by the use of suitable load impedances, gain may be achieved. The non linearity of the voltage to current conversion in the base ealtter junction of the bottom transistors is the major cause of intermodulation, but by using suitably large transistors and enitter degeneration, very high performances ( \(+32 d\) Bu input intercept) can be achieved. The Plessey SL6440 has been described (Refs. 3, 4, 5) and uses these techniques to achieve a high standard of perfornance. (See Fig. 16).
aid of the Smith chart. This method is rather empirical and the \(Q\) of the network is either undefined or cannot be determined accurately. The following shows how the quality factor is related to the circuit parameters as well as strip lengths in a practical design.

\section*{DESIGN PROCEDURE}

With reference to Fig. 1c, let the microstrip of length \(\ell\) and characteristic impedance \(Z_{C}\) replace the lumped constant of reactance \(X_{L}\) of Fig. \(1 b\). From the general low loss line equation, the normalized input impedance of the microstrip is :
\[
\begin{aligned}
& z_{\text {in }}=\frac{z_{T}+j \tau}{T+j z^{\gamma}}=r_{i n}+j x_{i n} \\
& \text { where } T=\text { tan } \beta, \quad \beta=2 \pi / \lambda \text { and } z_{T}=\left(R_{T}+j X_{T}\right) / Z_{O} \\
& \text { Py definition. } \\
& 0=x_{i n} / r_{i n} .
\end{aligned}
\]

We can then deduce the strip length as a function of \(x, r\) and \(Q\), giving
\[
\begin{gathered}
\imath=\frac{1}{-} \arctan \left(1-x^{2}-r^{2}\right) \pm\left[\left(1-x^{2}-r^{2}\right)^{2}-4\left(Q^{2} r^{2}-x^{2}\right)\right]^{1 / 2}(2 \\
2(r Q+x)
\end{gathered}
\]

Since \(\ell\) is real, the expression under the square root must be positive, leading to the relation :
\[
\begin{equation*}
Q^{2}<\left[(r-1)^{2}+x^{2}\right]\left[(r+1)^{2}+x^{2}\right] / 4 r^{2} \tag{3}
\end{equation*}
\]
or \(\left.\quad Q_{\text {max }}^{2}=l(r-1)^{2}+x^{2}\right]\left[(r+1)^{2}+x^{2}\right] / 4 r^{2}\)

From the above expression it can be seen that the \(Q\) of a network using transmission lines as inductances has an upper bounded value. in practice, the input and output networks of a Class \(C\) power amplifier require a 0 of the order of 10 . This condition can generally be niet without any difficulty.

\section*{AMPLIFIER DESICN}

The following example is taken from the design of a 100 Watt Class \(C\) amplifier operating at 162 MHz for \({ }^{31} \mathrm{P}\) NMR in-vivo imaging experiments. The power transistor MRF 317 has the following impedances at the rated output power :
\[
\begin{aligned}
& z_{T}=0.77+j 1.4 \Omega \text { (input) } \\
& z_{T}=1.77-j 1.0 \Omega \text { (output) }
\end{aligned}
\]

By choosing strip widths equal to that of the transistor base and collector leads, respectively 5.2 mm and 3.955 mm , and using a copper clad Teflon glass PC board with the following characteristics :
\[
\begin{aligned}
& \text { Dielectric constant } \varepsilon_{r}=2.55 \\
& \text { substrate thickıess } h=1.52 \mathrm{~mm} \text { and } \\
& \text { Copper thickness } t=35 \mu
\end{aligned}
\]
\(Z_{0}\) was first caiculated as a function of the strip widths \({ }^{(6,7)}\) then strip lengtiss vs \(\cap\) as determined by relatin (2) were tabulated as shown in Tables 1 and 11 . For our amplifier. choosing \(Q=13\) for both the injput and output networks led to strip lengths of 4.2 and 11.4 cm , respectively. The latter were etched on a PC hoard which was designed to accommodate the power transistor as well as the matching capacitors \({ }^{(8)}\) [Fig. 27.

The mixing process for the superhet receiver is ahown in Fig. 14, where an incoaing signal aixes with the local oscillator (lo) to product the intermediate frequency (IF). Fig. 15 shows the effect of noise modulation on the LO, where the noise sidebands of the \(L 0\) mix with a atrong, off channel signal to produce the IF. This means that the phase noise performance of the \(L 0\) affects the capability of the receiver to reject off channel signals, and thus the receiver selectivity is not necessarily defined by the aignal path filters.

This phenomena is referred to as RECIPROCAL MIXING, and haa tended to become more proainent with the increased use of frequency synthesisers in equipments.

The performance level requirements of receivers is dependent upon the application. Some European mobile radio apecifications call for 70 dB of adjacent channel rejection equating to some \(-122 \mathrm{dBc} / \mathrm{Hz}\), while an HP receiver requiring 60 dB rejection in the adjacent sideband needs \(-94 \mathrm{dBc} / \mathrm{Hz}\) at a 500 Hz offact. The use of extremely high performance filters in the receiver can be completely negated if the phase noise is poor. Por example, a receiver using a RVG XF9B filter with a rejection in the unwanted sideband of 80 dB at 1.2 KHz , would require a local oscillator with \(-114 \mathrm{dBc} / \mathrm{Hz}\) phase noise at 1.2 KHz if the filter performance was not to be degraded.

To put theae levels in perspective, relatively few aignal generators are adequate to the task of being the \(L 0\) in such a syatem. For example, "Induatry Standards" like the HP8640B are not specified to be good enough: neither are the HP8642, Marconi 2017/2018, or Racal 9082, all of which are modern, high performance aignal generatora.

All this suggests that is ia very easy to over-apecify a receiver in terma of selectivity, and simple aynthesisers are not necessarily ideal in all aituations.

The ability of the receiver to receive weak wanted signala in the presence of strong unwanted aignals is therefore deterained not only by the intermodulation capabilities of the receiver, but by phase noise and filter selectivity.

The usual approach to high perforance antheais has used multiple loops for good cloae in performance. Notable exceptions are thoae equipaents using factional \(N\) techniques with a single loop. Nevertheless, such equipments not generally specified as highly aa multi-loop synthesisers. A vital part of the ayathesisers is atill the low noise vco, for which aany approachea are possible. This vCO performance should not be degraded by the addition of the synthesiser: careful choice of technologies is therefore essential. For example, Gallium Arsenide dividers are nuch worse in phase noise production than silicon, and amongst the silicon technologies, TTL is better than ECL.

From equation (1)
D.R. \(\frac{2}{3}\left(\mathrm{I}_{\mathrm{p} 3}-\right.\) N.F. \() \mathrm{dB}\)
where \(I_{p 3}\) - input intercept point \(d B a\)
NF - nolse floor dBa

The phase noise governed dynamic range is given by \(D R_{i}=P_{n}+10 \log 10^{B}\) \(\mathrm{Db}-\mathrm{tq} \mathbf{q}^{2}\)

Where \(P_{n}\) is the phase noise spectral density in \(d B C / H z\) at any offset \(B\) is the IF bandwidth in Hz.
(N.B. This is not quite correct if B is large enough such that noise floor is not effectively flat inside the IF bandwidth).

Ideally the ratio \(\mathrm{DR}_{\mathrm{IM}}\) should be 1
\(\overline{\text { DR }}\)

\section*{RESULTS AND DISCUSSION}

The Class \(C\) amplifier constructed has a power gain of 10 dB at 100 watts output and about 7 dB at 127 watts. The measured 3 dB bandwidth \(\Delta F\) was 8.0 MHz , which is in very good agreement with the theoretical value of 8.1 MHz evaluated from the formula
\[
\Delta F=F(\sqrt{2}-1)^{1 / 2} / Q^{(9)}
\]
where \(F\) is the operating frequency. The second solution for the strip length \(\left(\ell_{2}\right)\) was discarded due to its Impractical dimension. One means of reducing the required strip length consists in increasing \(\mathbf{Z}_{0}\), which implies the reduction of the strip width. As an example, halving the ouptput strip width leads to a required strip length of only 6.8 cm instead of the actual 11.4 cm . This can be achieved in detriment to the current handling capacity of the strip.

\section*{REFERENCES}
(1) Kurt p. SCHWAN

Microwaves. p 58. Dec. 1975.
(2) Harlan FALLER

Microwaves, p 48, Jan. 1974.
(3) H.C. LEE AND G. HODOWANEC

AN-4025 RCA Solid State Division. Sommerville, N.J., I.S.A.
(4) Dick BRUBAKER

AN-419 Motorola semiconductor Products Inc.. Phoenix. Arizona, U.S.A.
(5) Di-Clad 527. Type FL-GXN

Manufacturer : Keene Corporation, Chase-Foster Division, Newark.
Del. 19711, U.S.A.
(6) H.A. WHEELER I.E.E.E. Trans. M.T.T., p 280, May 1964.
(7) H. SOBOL Electronics. p 112. March 20. 1967.
(8) Midget Trimmer type 422 and Standard Trimmer type 463. ARCO Electronics, Commack, New-York 11725, U.S.A.
(9) F. TERMAN

Electronis and Radio Engineering. Chapter 12. Section 12-2. McGraw-Hill Book Company Inc.

In a well designed receiver - i.e., the dynamic range limited by phase noise is equal to the dynamic range limited by intermodulation.

Certain aspects of low noise synthesiser design have been touched upon and Ref. 6 provides further information.

The performance of a receiver in teras of its capabilities to handle input signals widely ranging in input level is dependent upon the receiver capability in terms of intermodulation and phase noise. Neglect of either of these parameters leads to performance degradation, and it has been shown that specifications are not only often difficult to meet, but sometinea contradictory in their requirementa.

Ref. 1 Broadband Amplifiers Application Notes Appendix 3.
Plessey Semiconductors, Cheney Manor, Swindon, England.

Ref. 2 Ideal Limiting Part 1 (George S.F. and Wood 3.W., Waahington D.C.: U.S. Naval Research Laboratory AD266069, 2nd October, 1961.

Ref. 3 The SL6440 High Performance Mixer, P.E. Chadwick, Wescon Proceedings Session 24, Mixers for High Performance Radio Published by Electronic Convention Inc, 999 North Sepulveda Blvd. El Segundo, Ca., 90245.

Ref. 4 High Perforance Integrated Circuit Mixers, P.E. Chadwick. Clark Maxwell Comemorative Conference on Radio Receivers and Associated Syotems, Leeds 1981. Published by I.E.R.E., 99 Gower Street, London, WCle 6AZ. Conf. Pub. 49.

Ref. 5 The SL6440 High Performance Mixer, P.E. Chadwick. R.F. Design, June 1980.

Ref6. Frequency Synthesisers. Vadin Manassewitsch, Wiley \& Sons, 1980 ISBN 0-471-07917-0.

fig 2


Figure 1. Basic network using \(X_{1}, X_{2}\) to match the input/output impedance \(Z_{T}\) of a transistor to \(50 \Omega\) (a). Matching network incorporating an inductance to reduce harmonic frequencies (b). Inductance replaced by a microstripline with \(a\) well defined \(Q\) at high frequencies.

Figure 2. Typical Class C amplifier incorporating microstripline in the input and output matching network. Matching canacitors \(C\) are functions of the chosen \(O\) of the network as tabulated in Tables 1 and \(11 . R_{1}(1812)\) was inserted to improve transient response. It can be emitted for CW operation.

fig 3


fig 7

\begin{tabular}{cccccc}
\hline Q & \(\mathrm{I}_{1}(\mathrm{~cm})\) & \(\mathrm{C}_{1}(\mathrm{pF})\) & \(\mathrm{C}_{2}(\mathrm{pF})\) & \(\mathrm{R}_{\mathrm{in}}\) & \(\mathrm{X}_{\mathrm{in}}\) \\
\hline \(28{ }_{\text {max }}\) & 15.2 & 18.8 & 4.1 & 1.53 & 43.30 \\
20 & 7.3 & 47.5 & 7.9 & 0.90 & 18.05 \\
13 & 4.2 & 82.7 & 14.8 & 0.81 & 10.59 \\
10 & 3.0 & 112.8 & 25.2 & 0.79 & 7.95 \\
\hline & & \(1_{2}(\mathrm{~cm})\) & & & \\
\hline 10 & 23.1 & 6.4 & 3.1 & 5.2 & 103.7 \\
10 & 26.2 & 2.7 & 2.9 & 13.6 & 176.1 \\
& 27.4 & 1.3 & 2.9 & 23.4 & 233.8 \\
\hline
\end{tabular}

Tahle 1. Transistor Base Lead Width \(=5.2 \mathrm{~mm}, Z_{\mathrm{O}}=43 \Omega\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q & \(\ell_{1}(\mathrm{~cm})\) & \(C_{1}(\mathrm{pF})\) & \(\mathrm{C}_{2}(\mathrm{pF})\) & \[
R_{i n}
\] & \(x_{\text {in }}\) \\
\hline \[
15_{\text {max }}
\] & 16.4 & 14.0 & 5.2 & 3.53 & 52 \\
\hline 13 & 11.4 & 24.8 & 7.3 & 2.4 & 31.3 \\
\hline 12 & 10.1 & 29.2 & 8.4 & 2.2 & 26.9 \\
\hline \multirow[t]{2}{*}{10} & 8.0 & 39.2 & 11.1 & 2.0 & 20.0 \\
\hline & & \(\ell_{2}(\mathrm{~cm})\) & & & \\
\hline 13 & 21.3 & 7.3 & 4.2 & 6.6 & 86.3 \\
\hline 12 & 22.6 & 5.8 & 4.1 & 8.4 & 100.4 \\
\hline 10 & 24.7 & 3.6 & 3.9 & 13.2 & 131.8 \\
\hline
\end{tabular}

Table 11. Transistor Base Lead Width \(=3.935 \mathrm{~mm},{ }^{Z} \mathrm{O}=52 \Omega\)

CAPTION. Tables 1 and II
Microstrip lengths \(\left(\ell_{1}, \ell_{2}\right)\) as a function of \(Q\). \(R_{i n}\) and \(X_{\text {in }}\) are the real and imaginary parts of the line input impedance. For 0 less that \(Q_{\text {max }}\) there existe two values of \(P\). \(P_{\text {in }}\) and \(X_{i n}, C_{1}\) and \(C_{2}\) we the corresponding matching capacitances required to match \(R_{i n}\) ands \(x_{\text {in }}\) to the 50 § source or load impedance.


\section*{INTERMODULATION}

Intermodulation is caused by odd order curvature in the transfer characteristic of a device. If two signals \(F_{1}\) and \(F_{2}\) are applied to a device with third order term in its transfer characteristic, the products are given by:
\(\left(\operatorname{Cos} F_{1}+\operatorname{Cos} F_{2}\right)^{3}=\operatorname{Cos} 3 F_{1}+3 \operatorname{Cos}^{2} F_{1} \operatorname{Cos}_{2}+3 \operatorname{Cos}^{2} F_{2} \operatorname{Cos} F_{1}+\operatorname{Cos}^{3} F_{2}\)
from the trig identities \(\cos ^{3} \mathrm{~A}, \operatorname{Cos}^{2} \mathrm{~A}\) and \(\operatorname{Cos} \mathrm{A} \operatorname{Cos} \mathrm{B}\), this is
\(t \operatorname{Cos}^{3} \mathrm{~F}_{1}+4 \operatorname{Cos}_{1}+3 / 2 \operatorname{Cos}^{2} \mathrm{~F}_{1} \operatorname{Cos}_{2}+3 / 2 \operatorname{Cos} \mathrm{~F}_{1} \operatorname{Cos}^{2} \mathrm{~F}_{2}+4 \operatorname{Cos} \mathrm{~F}_{2}+4 \operatorname{Cos}^{3} \mathrm{~F}_{2}+4 \operatorname{Cos} \mathrm{~F}_{2}\)
(where \(F_{1}=A\) and \(F_{2}=8\) ) Neglecting coefficients, the terms \(\operatorname{Cos} 2 F_{1} \operatorname{Cos} F_{2}\) and \(\operatorname{Cos} F_{1} \operatorname{Cos}^{2} F_{2}\) are equal to
\(\operatorname{Cos}\left(2 F_{1}+F_{2}\right)+\operatorname{Cos}\left(2 F_{1}-F_{2}\right)\) and
\(\operatorname{Cos}\left(2 F_{2}+F_{1}\right)+\operatorname{Cos}\left(2 F_{2}-F_{1}\right)\)

By inspection, it may be seen that frequencies of \(f_{1}, F_{2}, 3 F_{1}, 3 F_{2},\left(2 F_{1}+F_{2}\right)\) and \(\left(2 f_{2} \pm F_{1}\right)\) are present in the output. Of these, only \(2 F_{2}-F_{1}\), and \(2 F_{1}-F_{2}\) are close to wanted frequencies \(F_{1}\) and \(F_{2}\).

The application of three signals \(F_{1}, F_{2}\) and \(F_{3}\), produces a similar answer, in that the resulting products are:
\(3 F_{1}, 3 F_{2}, 3 F_{3}, F_{1}+F_{2}+F_{3}, F_{1}+F_{2}-F_{3}, F_{1}-F_{2}+F_{3}, F_{1}-F_{2}-F_{3}, F_{2}-F_{1}+F_{3}, F_{2}-F_{1}-F_{3},-F_{1}-F_{2}-F_{3},-F_{1}-F_{2}+F_{3}\) in addition to the products
\(2 F_{1} \pm F_{2}, 2 F_{\mathbf{2}} \pm F_{1}, 2 F_{2} \pm F_{3}, 2 F_{\mathbf{3}} \pm F_{\mathbf{2}}, \mathbf{2} F_{1} \pm F_{\mathbf{3}}, \mathbf{2} F_{\mathbf{3}} \pm F_{1}\)
if a greater number of signals are applied such that the input may be represented by :
\(\operatorname{Cos} \mathrm{F}_{1}+\operatorname{Cos} \mathrm{F}_{2}+\operatorname{CosF}_{3}+\operatorname{Cos} \mathrm{F}_{4} \ldots \operatorname{Cos} \mathrm{~F}_{\mathrm{n}}\)

The results of third order curvature can be calculated from
\(\left(\operatorname{Cos} F_{1}+\operatorname{Cos} F_{2}+\operatorname{Cos} F_{3}+\operatorname{CosF}_{4} \ldots \operatorname{Cos}_{n}\right)^{3}\)

This expansion produces terms of
\(\operatorname{Cos}\left(F_{1} \pm F_{2} \pm F_{3}\right), \operatorname{Cos}\left(F_{1} \pm F_{2} \pm F_{a}\right), \operatorname{Cos}\left(F_{1} \pm F_{2} \pm F_{n}\right)\) etc from which it can be seen that the total number of products is:
\(\frac{n!}{3!(n-3)!} \quad=4 \times 1 / 6 n(n-1)(n-2)\)
(The factor of 4 appears because each term has four possible sign configurations i.e. \(\operatorname{Cos}\left(F_{1}+F_{2}+F_{3}\right), \operatorname{Cos}\left(F_{1}+F_{2}-F_{3}\right)\) etc) This agrees with RefAl.

By a similar reasoning, n signals produce:
\(2 n(n-1)\) products of the form \(\left(2 F_{1} \pm F_{2}\right)\left(2 F_{2} \pm F_{1}\right)\) etc and \(n\) 3rd harmonics

Thus the total number of intermodulation products produced by third order distortion is
\(n+2 n(n-1)+2 / 3 n(n-i)(n-2)\)

Reduction of the input bandwidth of the receiver modifies this. Consider, for example, a receiver with sub-octave filters, rather than the "wide-open" situation analysed above. In this case, the third harmonics produced by any input signals will not fall within the tune band, as will some of the products such as \(F_{1}+F_{2}+F_{3}, F_{1}-F_{2}-F_{3}\), etc. In this case, the total number of intermodulation products is reduced. There are only three possible sets of products of the form \(F_{1} \pm F_{2} \pm F_{3}\). i.e \(F_{1}+F_{2}-F_{3}, F_{1}-F_{2}+F_{3}\) and \(F_{3}-F_{1}-F_{2}\) which can give products within the band. Note that for products to be considered, they must have an effective input frequency at the receiver mixer equivalent to an on-tune desired signal. In addition, products of the form \(2 F_{1}+F_{2}, 2 F_{2}+F_{1}\) etc are again out of band. Thus half of the \(2 n(n-1)\) products of this class are not able to cause problems and the total number of products to be considered is now:-
\(n(n-1)+\frac{1 n}{}(n-1)(n-2)\)
(2)

This result does not agree with Barrs (Ref A2) who uses the results in (1). The results in (2) are an absolute worst case, insofar as a number of the intermodulation products are out of band.
(For the purposes of this analysis, IMD in a mixer is assumed to produce an "on tune" signal. Thuis not all the possible intermodulation frequencies appearing in a half octave bandwidth will be able to interfere)

The same arguments apply to narrower front end bandwidths. However, the narrower the front end bandwidth, the higher is the probability that the distribution of signals will produce I.M.D

\section*{SORF - AN RF LOW POWER SMD ALTERNATIVE PACKAGE}

\section*{A Paper for RF Technology Expo 86}
by
Harry J. Swanson
Motorola Semiconductors

\section*{INTRODUCTION}

This paper introduces the SORFTM (Small Outline RF) package which has the same mechanical case outline as the familiar SOIC SO8 (see Figure 1 ). In this paper the SORF package is described and its performance is compared to the Macro-X TM package. Thermal performance is presented emphasizing the performance in a still air \(25^{\circ} \mathrm{C}\) ambient environment. Specific characteristics of the SORF package are discussed. These outstanding package characteristics offer the RF design engineer an alternative to the conventional RF packages (such as the TO39, TO-92, SOT89 and Macro-X) and provide a true SMT package for RF low power transistors.

\section*{PACKAGE DESCRIPTION}

The SORF transistar is composed of the leadframe, the transistor die, the interconnect wires and the epoxy molded body (see Figure 2). The SORF leadirame is copper and it is designed to provide an excellent RF package. In order

\footnotetext{
SORF and Macro-X are trademarks of Motorola, Inc.
}
to enhance the RF gain and broadband performance, the corner leads are internally connected through the leadframe to provide low common lead inductance and to reduce package parasitics. On one side of the package the two middle leads are the input leads and on the opposite side the two middle leads are the output leads which extend to the collector pad of the leadframe where the transistor die is mounted by forming a gold-silicon eutectic die bond. The die is connected to the base and emitter leads using 1.5 mils diameter gold wire.

Symmetry of the layout allows for parallel wirebonding and for equal length base and emitter wires. To enhance the RF performance the wire loop lengths and loop heights are minimized. The leadirame strip is then epoxy molded to fully encapsulate each individual leadframe on the strip. After the mold process, the leadframe is tin plated. Next, the individual RF transistors are trimmed from the leadframe strip and the leads are formed in the gull wing format. Figure 1 details the SORF package dimensions and mechanical tolerances.
products outside the band. For example, a receiver with \(\pm 2.5 \%\) front end bandwidth tuned to 10 MHz will accept signals in a band from 9.75 to 10.25 MHz . Signals capable of producing a product of the form \(2 F_{1}-F_{2}\) must have one of the signals ( \(F_{1}\) or \(F_{2}\) ) in the band \(9.875-10.25\) for a product to appear on tune. Thus the two signal apparent bandwidth is less than would be expected. Similar constraints apply to the \(f_{1}+f_{2}-F_{3}\) product.

Similar arguments apply to other orders of curvature. Second order curvature, for example, will not produce any products in band for input bandwidths of less than 2:1 in frequency ratio.

The actual levels of intermodulation produced can be predicted from reference A1. In practice, the situation is that the input signals to a receiver are rarely all of equal unvarying amplitude and assumptions are made from the input intercept points and the input signal density.

If a series of amplitude cells are established for given frequency ranges, such as that in table 1 then a prediction of the number of intermodulation products for any given number of input signals and amplitudes may be obtained, either from equation 1 or 2 (as applicable) or from RefAl (for higher orders). Where the input bandwidth of the receiver is deliberately minimised. the maximum cell size in the frequency domain should be equal to the input bandwidth.

The total input power in each cell is
\(n\) Pav
where n is the number of signals and Pav is the average power of each signal.

A worst case situation is to assume that all signals in the cell are equal to the cell upper power limit boundary, e.g. if the cell amplitude range is from -40 to -30 dBm , then an assumption that all signals in this cell are at -3008 m is a worst case.

If, however, it is assumed that signals will have a Gaussian distribution of input levels within a cell, then the total input power becomes:

\section*{\(\mathrm{Pt}=0.55 \mathrm{n} \mathrm{P}\)}

\section*{where Pt is the total powe}
\(n\) is the number of signals
\(P\) is the power level at the upper boundary of the cell

Because the total IMD power is the sum of all the IMD powers, the average input power is

\section*{Pav \(=\frac{0.55 n P}{n}\)}

The IMD power produced by third order curvature is:
\(10 \log _{10}\left[\mathrm{fn}\left(2 \mathrm{n}^{2}+1\right)\right]\) Antilog \(1 / 10\left[\mathrm{Pav}-3\left(\mathrm{I}_{3} \cdot \mathrm{Pav}\right)\right] \mathrm{dBm}\) where \(P_{\mathrm{im}}\) is the total power of the intermodulation product
\(I_{3}\) is the third order input intercept point

Because the coefficients of the amplitudes of the intermodulation products are (depending on product)
\(a^{3}, a^{2} b, a b 2, a b c, b^{3}\)
where \(a, b\) and \(c\) are approximately equal, the use of \(a^{3}\) as the general coefficient is justified.

Erom equations 1 or 2 and 3, the total \(\mathrm{I}_{\mathrm{MD}}\) power and number of products may be calculated. A " \(n\) " increases in number, the number of products will mean that the resultant lmo tends more to a noise floor increase in the receiver, thus reducing the effective sensitivity

The amount of this degradation is such that the noise floor is:
f(n.0.55P) \({ }^{3} \quad I_{3} \quad \Delta \quad \Delta\)
\(I_{3} \quad \overline{(f m a x-f m i n)}\)
where (fmax-fmin) is the bandwidth prior to the first intermodulating stage, \(\Delta f\) is signa bandwidth in a linear system

The Gaussian factor of 0.55 is somewhat arbitrary, since errors in this assumption are cubed.

The intermodulation Limited Dynamic Range is
\(f\left(1_{3}+174-\right.\) 10log \(_{10} \Delta f-N F\)
where NF is the Noise Figure in dB

The effects of Reciprocal Mixing are similar, except that signals may be taken one at a time. The performance is affected by the frequency separation between an "off-tune" interfering signal

figure 1 - SORF CASE OUTLINE DRAWING


FIGURE 2 - CUTAWAY VIEW OF THE SORF TRANSISTOR

\section*{RECENT SORF INTRODUCTIONS}

Two RF transistors introduced in 1086 are (1) the MRF8372, a \(750 \mathrm{~mW}, 12.5 \mathrm{Vdc}\), 10 dB gain UHF/800 MHz Class C predriver amplifier and (2) the MRF5812, a 10 Vdc \(V_{C E}, 50 \mathrm{~mA} \mathrm{I}_{\mathrm{C}} .15 \mathrm{~dB} \mathrm{G}_{\mathrm{NF}}\) (typical), 2.0 dB NF (typical), 500 MHz Class A low noise amplifier. These transistors' counterparts in the Macro-X are, respectively, the MRF837 and the MRF581. Table । compares the two transistors' performances in the SORF and the Macro-X packages. Note that the SORF package offers comparable performance to its Macro-X counterpart.

TABLE I - COMPARISON OF THE SORF TO THE MACRO-X
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
MRFs372 (SORF) VS MRFs37 (MACRO-X) \\
POWER DISSIPATION Pout Gpemin Gpetyp Ncmin Netyp \\
MRF 8372 ( \(\mathrm{TC}=75^{\circ} \mathrm{C}\), DERATE ABOVE \(75^{\circ} \mathrm{C} \quad(1=870 \mathrm{MHz}, \mathrm{VCC}=12.5 \mathrm{Vdc})\) \\
MRFE37 © TC \(=50^{\circ} \mathrm{C}\), DERATE ABOVE \(50^{\circ} \mathrm{C}\)
\end{tabular}}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & Whis & & & & \% & \\
\hline MRF5372 & 1.5 & 750 & 8.0 & 10 & 50 & 60 \\
\hline MRF637 & 2.5 & 750 & 8.0 & 10 & 50 & 60 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline & WATTS & CHz & dB & dB & d \({ }^{\text {d }}\) & dE \\
\hline MRF5812 & 1.5 & 6.0 & 13 & 16 & 3.0 & 1.9 \\
\hline MRF581 & 2.5 & 5.0 & 13 & 16 & 3.0 & 1.9 \\
\hline
\end{tabular}
and an "on-tune" wanted signal unless the separation is such that the oscillator noise floor has been reached. Here again, reduction of front end bandwidth reduces the number of signals.

Generally speaking, the effects of reciprocal mixing are limited to close in effects - say within \(\pm 50 \mathrm{KHz}\), unless very poor synthesisers are used.

The response at some separation \(f_{0}\) from the tune frequency is: \((\mathrm{L}-10 \log 10 \Delta f) \mathrm{dB}\)
where L is phase noise spectral density in \(\mathrm{dB} / \mathrm{Hz}\) and \(\Delta f\) is the \(\operatorname{lf}\) bandwidth.

This assumes that the spectral density does not change within the receiver bandwidth: Ref1 shows this to be generally applicable for narrow bandwidths.

The intermodulation free dynamic range is defined as:
\(f\left(l_{3}-\right.\) noise floor \()=f\left(l_{3}+174-10_{\log } 10 \Delta f-N F\right) d B\)
where \(\mathrm{I}_{3}\) is the input 3rd order intercept point in dBm
NF is the noise figure in dB
\(\Delta f\) is the If bandwidth in Hz

It has been claimed (Ref A3) that there is \(\mathbf{6 d B}\) rejection of phase noise in diode commutative mixers. Thus the relationship between IMD and phase noise can be expressed as:

IMD dynamic range \(=\) phase noise dynamic range +6 dB
\(=\left(L-10_{\log 10} \Delta f\right)+6 d B\)

Thus at any offset, it is important to ensure that the two dynamic ranges are approximately equal if performance is not to be compromised.

A receiver for example with an input intercept point of +20 dBm and input signals of -30 dBm will will produce an IMD product at -130dBm which, for an Hf receiver with a noise factor of 8 dB , will be just above the noise floor, in an \(5 S 8\) bandwidth. The noise floor of the L.O. will need to be such that the noise is at -133 dBm if degradation is not be occur, and this will be produced by a noise floor of \(-137 \mathrm{dBC} / \mathrm{Hz}\) in the synthesiser at the frequency separation of the signals in question. Thus the high intermodulation performance may well be compromised by poor phase noise.

\section*{REFERENCES}

A Table of Intermodulation Products
JIEE (London) Part III
31-39 (Jan 1948) C.A.A. Wass.

A Re-appraisal of H.f. Receiver Selectivity
R.A. Barrs

Clerk Maxwell Commemorative Conference in Radio Receivers and Associated Systems, Leeds 1981. pp 213-226, Published by IERE, 99 Gower Street, LONDON, WCIE 6AZ.
Conference Publication no. 50 ISBN 0903748452

\section*{MRF5812}

The MRF5812 is fully characterized in a manner similar to the MRF581. The Transistor is RF guaranteed for 13 dB GNFmin (minimum gain at noise figure) and 3.0 dB NFmax (maximum noise figure) at 500 MHz . The transistor is characterized for S parameters and noise figure versus frequency and noise figure versus \(I_{C}\) (collector current). Typical noise figure performance and typical S parameters are listed in the transistor data sheet. These parameters are almost identical to the those of the MRF581.

\section*{MRF8372}

The MRF8372 is tested to guaranteed RF performance at 870 MHz for 750 mW Pout (power output), 8 dB Gpe (common emitter power gain), and \(50 \% \mathrm{Nc}\) (collector efficiency) in a fixed tuned broadband test fixture which is pictured in the data sheet (see Figure 3 for the corresponding circuit schematic). Typical RF performance in the broadband test fixture is plotted in Figure 4. The test fixture demonstrates the ability to use the transistor in broadband applications with excellent performance. The MRF8372 is fully characterized in a manner similar to the MRF837 for typical performance and device impedance in the 800 MHz band (see Table II). Input and output impedance parameters show excellent low \(Q\) which enhances the ability to match the device for broadband operation.


FIGURE 3 - 800/900 MHz BROADBAND CIRCUIT SCHEMATIC


> P. E. Chadwick
> Pleasey Seai conductors
> Cheney Manor
> Swindon
> SN2 2Qw

Single Chip Frequency Synthesiaers using Bipolar Technology have been avallable for some years. Introduced originally for T.V. tuning, devices for broadcast radio were rapidly provided and Ref. 1 provides information on the earliest of these TV devices. Developaents have now pushed the upper operating frequency to over 2 GHz , but, nevertheless, these devices have hiatorically been limited to the consumer market for a number of reasons. These are:-
1. Power Consumption (150-200 mW)
2. Phase Comparison Frequency

In T.V. applications, the use of a 62.5 KHz step size for fine tuning allows the use of a fixed prescaler at the front end of the chip - Fig. 1. To achieve the small channel step size used in comunications, the phase comparison frequency must be reduced to a few hundred hertz, and thus the device is no longer attractive. Nevertheless, the well tried technology of an ECL prescaler and \(I^{2} L\) low frequency logic has certain merits, making integration onto one chip feasible and attractive. However, existing iC processes demand current levels such that CMOS technology becomes attractive if the frequency response performance can be achieved, and recent advances have now made thia possible.

The 2 micron technology introduced by Plessey has been used to introduce a new fanily of frequency synthesiser parts operating at VBF, with every promise of extension to the UAF band. Before describing this new family in detail, some review of existing practice is justified.

As is widely known, it is desirable to keep the reference frequency in a single loop synthesiser as high as possible consistent with multiplied reference phase noise. The use of fixed prescaling (Fig. 2) is therefore liaited to wide channel spacings or narrow loop bandwidths, while alternative methods of aixing (Fig. 3) or multi-modulus division (Fig. 4) provide the majority of answers to this problem. Where multi-modulus division is used, the choice of modulus is dependent upon a number of constraints, viz:
1. Minimum divide ratio is \(N^{2}-N\), where moduli are \(N, N+1\)
2. Loop delay must not exceed \(\mathbb{N}\)

\section*{Fin}
3. Fin must be less than the maxiaum count frequency of the control
circuit counters \(A\) and \(M\)

In addition, the choice of various values for \(N\) can make the programming of the aynthesiser easier, insofar as, for example, the use of a \(40 / 41\) divider provides "nice" programing for a 25 KHz spacing system. The increasing use of serial data bus control with microprocessors has produced some changes in outlook here, however, as even the simplest radios now seen to have a aicroprocessor included.

It is in the case of the hand held radio that power consumption is especially important. Thus the pressure has been placed on seaiconductor manufacturers to reduce the current drains of ICs and in the case of the VHF synthesiser, it is practicable to build a complete synthesiser drawing some \(10-12\) wh at 5 Volts. This is shown schematically in Fig. 5 , where the power consumptions are about 4 wn each for the bipolar prescaler and the MMOS control chip.

The advances in small geometry cMOS technology have made it practical to integrate a CMOS prescaler with the CMOS control chip - Fig. 6. Amongst the advantages that accrue are the fact that there are no logic level output swings at the divider output frequency to be considered, which can require relatively large amounts of current - some 0.5 mA or so just to charge and discharge the capacitance of the transistor, bond pad, package and a gate input.

TABLE II- \(Z_{I N}\) AND \(Z_{\text {OL }}\) VERSUS COLLECTOR VOLTAGE, INPUT POWER AND OUTPUT POWER
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { fámer } \\
\text { FREOUEWCY } \\
\text { MHz }
\end{gathered}
\]} & \multicolumn{2}{|c|}{2 m Owns} & \multicolumn{2}{|c|}{201. Onms} \\
\hline & \(\mathrm{vcc}=7.5 \mathrm{v}\) & \(\mathrm{vcc}=12.5 \mathrm{v}\) & \(\mathrm{Vcc}=7.5 \mathrm{~V}\) & \(\mathrm{VCC}=12.5 \mathrm{~V}\) \\
\hline & \(P_{m}=150 \mathrm{~mm}\) & \(P_{\text {ln }}=100 \mathrm{~mm}\) & \begin{tabular}{l}
Pout 008 MHz \(=920 \mathrm{~mm}\) \\
Pont tro mhz \(=835 \mathrm{~mm}\) \\
Pout \(560 \mathrm{mbz}=530 \mathrm{~mm}\)
\end{tabular} & \begin{tabular}{l}
Pout \(008 \mathrm{mmz}=1.05 \mathrm{w}\) \\
Pout \(070 \mathrm{mmz}=855 \mathrm{~mm}\) \\
Pout \(540 \mathrm{mmz}=500 \mathrm{~mm}\)
\end{tabular} \\
\hline 100 & \(0.0+11.0\) & \(4.0+11.2\) & 24.7 - 118.2 & 20.9 - 31.0 \\
\hline 070 & \(5.2+13.5\) & 0.0 + 11.0 & 36.0 - 20.5 & 32.1 - 128.0 \\
\hline 30 & c. \(0+\mu .0\) & 3.1-8.5 & 30.3 - 110.5 & 38.3-125.7 \\
\hline
\end{tabular}
'ZOL = COMNUGATE OF THE OPTMUM LOAD MPPEDANCE WTO WHCH THE DEVICE OUTMUT OPERATES AT A OUVEN OUTPUT POWEA, VOLTAGE. AND FREOUENCY.

\section*{SORF THERMAL PERFORMANCE}

The SORF package offers excellent thermal performance. Thermal analysis determined that the thermal resistance of the SORF package is almost as low as that of the Macro-X package. The IR scans are performed under RF operating conditions and mounted in a manner similar to a surface mount application in which a heatsink is not employed and no considerations are made to provide a good case to heatsink interlace. The transistor sustains up to 1.5 watts \(P_{D}\), power dissipation which raises the \(T_{J}\), die junction temperature to \(150^{\circ} \mathrm{C}\) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{Summary of IR Scan Analysis}

Table III shows that the \(\theta_{\mathrm{JL}}\) ranges from 43.4 to \(47.1^{\circ} \mathrm{C} W\) and \(\theta_{\mathrm{JA}}\) ranges from 82.8 to \(87.7^{\circ} \mathrm{C} W\) at \(P_{D} \sim 1.5\) watts, \(T_{L}=80^{\circ} \mathrm{C}\), and \(T_{A}=25^{\circ} \mathrm{C}\).

TABLE III - SUMMARY OF SORF IR SCAN ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{or scan oEscription} & \multicolumn{13}{|c|}{Frequency = \%To mhz; SEE RF Functional cmatit schematic} \\
\hline & Pout & Pm & vcc & \(1 c\) & Po & TJ ms & TJ av & TL & \(\mathrm{T}_{\mathrm{A}}\) & 0x ms & Or m & 93a me & oun av \\
\hline & w & mw & vac & mA & w & \({ }^{*}\) & \({ }^{*}\) & * & \({ }^{*}\) & \({ }^{\circ} \mathrm{Crw}\) & * \({ }^{\text {c/w }}\) & - \(\mathrm{c} / \mathrm{w}\) & \({ }^{\bullet} \mathrm{CN}\) \\
\hline \[
\begin{aligned}
& \text { SCAN "2 } \\
& \text { ECAS CONO. } \\
& 3
\end{aligned}
\] & 1.1 & 405 & 15 & 135 & 1.33 & 142 & 139.7 & \(\pi\) & 25 & 48.9 & 47.1 & 68 & 86.2 \\
\hline \[
\begin{aligned}
& \text { Scan } \mathbf{H}_{2} \\
& \text { BMAS CONO. } \\
& 4
\end{aligned}
\] & 1.18 & 480 & 15 & 148 & 1.47 & 159.5 & 150.8 & 82 & 25 & 48.6 & 48.4 & 07.4 & 85.6 \\
\hline \[
\begin{aligned}
& \text { scan :3 } \\
& \text { EAAS CONO. } \\
& 2
\end{aligned}
\] & 1.11 & 415 & 15 & 135 & 1.33 & 144 & 14.7 & 4 & 25 & 45.1 & 43.4 & 09.5 & 87.7 \\
\hline \[
\begin{aligned}
& \text { SCAN RA } \\
& \text { BAAS COND. } \\
& \mathbf{t}
\end{aligned}
\] & 1.14 & 410 & 15 & 142 & 1.4 & 147 & 146.3 & 03 & 25 & 45.7 & 45.2 & 87.1 & 86.6 \\
\hline SCAN 15 BAS CONO. & 1.13 & 415 & 15 & 142 & 1.42 & 142 & 141.5 & 80 & 24 & 43.7 & 43.4 & 83.1 & 82.8 \\
\hline
\end{tabular}

The following thermal resistances can be justified for the SORF transistor:
\(\theta_{\mathrm{JL}}=45^{\circ} \mathrm{C} / \mathrm{W}\) at \(\mathrm{T}_{\mathrm{L}}=80^{\circ} \mathrm{C}\)
\(\theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}\) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
where \(P_{D}=1.5\) watts and \(T_{J}=150^{\circ} \mathrm{C}\).
Power derating curves are shown for \(\theta_{\mathrm{JL}}\) and \(\theta_{\mathrm{JA}}\), respectively (see Figures 5 and 6 ).

The Plessey Semiconductors NJ88C30 family represent a new generation of CMOS synthesiser parts. The prescaler is integrated onto the chip, and operation to 200 MHz is guaranteed in the NJ88C30. Other menbers of the family have been optiaised for broadcast radio use (the NJ88C31) and here arrangements have been made to bypasa the internal 2 modulus prescaler when operating in the medium wave ( \(520-1600 \mathrm{KHz}\) ) band, (Figs. 6 and 7).

These devices employ serial data programing; the comercial demand for full parallel programing is now limited to applications requiring fast frequency changing, and, in any case, in single loop syathesisers, loop dynamics are generally the largest part of the lock-up time when low (< 50 KHz ) phase comparison frequencies are uaed.

The NJ88C30 consists of an input amplifier, 2 modulus divider (15/16 division) \(A\) and \(M\) counters and a reference oacillator and divider chain. The reference divider chain is not fully programable, but provides number of reference frequency possibilities dependent upon the crystal oscillator frequency. In common with other CMOS oscillators using invertors, the atability is adequate for the majority of commercial applications, but is not in the highest class: typically, some 1 ppm of drift over the temperature range can be attributed to change in phase shift through the device when operating at 10 MHz . The divider chains feed the digital phase detector with outputs suitable for use in a standard charge pump low pass filter. As mentioned earlier, and shown in Fig. 7, the NJ88C3I has sose changes to make it wore applicable to broadcast radio applications.

In these applications, the upper frequency limit of the input divider need only be some 120 MHz , while the number of reference frequency division ratios is limited, spacings of \(4.5,5,9,10,12.5\) and 25 KHz sufficing for the MF and VHF broadcast bands. The provision of a 4.5 MHz output to drive a microprocessor clock input, and a standby current of under 2 aA ainiaise power drain requirements when the radio is switched off, even though the crystal oscillator is still required for the clock function in some radio receivers.

Although the use of analogue phase detectors has been advised for some years in order to remove the effects of the dead zone in digital phase detectors, this has not proved necessary in many synthesisers, adequate performance being obtained from the classical "charge puap" detector. An area in which the L.F. phase noise introduced by the charge puap detector is in the reception of AM stereo signals, especially on the Motorola CQAM system. However, calculations show that the spurious phase modulation introduced is about 0.03 degrees - far enough down to produce inaudibility. Note that aignal to noise ratios in car radios are often subject to "specmanship" - not even a Rolla-Royce will allow the use of a 70 dB signal to noise ratiot In any case, the phase variation produces only "wandering" of the atereo lage.

The difficulty in the use of the analogue phase detector lies in addressing the requirements of a transmitter synthesiser. Where the synthesiser is directly modulated, the effects of modulation at a frequency outside the loop bandwidth is to exercise the phase detector by an amount dependent upon the deviation. When large ( \(50-75 \mathrm{kHz}\) ) deviations are required, a high gain analogue phase detector may well be driven into limiting, and the production of spurious outputs at the reference frequency increased.

Sonarbuoys have such modulation requirements: the reproduction of an audio band from 5 Hz to 50 KHz with such deviations is desirable, and the use of an analogue phase detector is not desirable in such a synthesiser, unless a wuch higher reference frequency is used. Performance of analogue integrated phase detectors at this wuch higher frequency ( 375 KHz ) leaves much to be desired: the 2 micron CMOS geometry is still capable of providing adequate performance, while the warket size (some 750,000 p.a. in the Western World) is attractive.

\section*{IR Scan Setup}

\section*{The IR scan setup consisted of the following:}
1. Radiometric Microscope Model RM-2A, Barnes Engineering,
2. Regulated Power Supply Model LK 342A FM,
3. Voltmeters and Current Meters to monitor bias conditions,
4. Doric Trendicator 400 Type \(\mathrm{J} /{ }^{\circ} \mathrm{C}\),
5. RF Functional System (see Figure 7).


FIGURE 7 - RF FUNCTIONAL TEST SYSTEM BLOCK DIAGRAM

The provision of access to the aignal input of the phase detector is useful, insofar as trouble-shooting and test is concerned. It also allows the use of an external phase detector if this is desirable, although some care may be necessary to miniaise the generation of spurious aidebands by direct pick up of the logic aignals on the VCO control line. The use of open drain outputs provides aome reduction in noise when the outputs are not used, compared with the use of full logic awings: nevertheless, it is probably better to esrth these pins when not used. The simplicity of the synthesiser system aay be seen by inspection of Fig. 8, where the use of a programable operational amplifier in the charge pump adds an extra dimension of flexibility in terms of power conaumption. The system does require, however, that the comm mode rejection ratio of the operational amplifier be good, as it is this parameter which provides most of the reference frequency rejection. offset in the device auat be suall, as must noise, and the loop filter design should take into account the open loop response of the amplifier in performing loop stability analyses.

It has been shown that the application of new semiconductor technologies to existing device architecturea can produce a significant power and cost saving. It grows more and more imposaible to predict the limits of high frequency performance of semiconductors - already, silicon bipolar technology has reached levels which only a few years ago would have been belleved impossible for any solid state technology other than Gallium Arsenide. Obviously, the next stage in the development of single chip frequency synthaisers muat be operation at higher frequencies, with 512 mHz being the next logical breakpoint. Meanwhile, the size, complexity and power consumption of the \(V A F\) synthesised radio can be reduced, while multiplication to the URF bands is not impoasible, on grounds of phase noise, power consumption or both. For more detalls on the overall phase nolse benefits of multiplying see Ref. 2. Synthesiser design has come a long way in the last twenty gears, and the int roduction of single chip low power VHF and UHF synthesisers will provide equipment designers with a new weapon in the fight to cut cost, size and power consumption.

Ref. 1 A 1 GHz Single Chip PLL for TV, Lawton R, Gaussen P, Cowley N, IEEE-CE Digest of Technical Papers pp 122-123, June, 1982.

Ref. 2 Design Compromise in Single Loop Frequency Synthesisers. P.E. Chadwick, R.F. Technology Expo 1985, Anaheim, Cal. Proceedings published by R.F. Design, 6530 S. Yoseaite St., Englewood, Co. 80111 U.S.A.



Fig. 2 Use of a Fixed Prescaler

\section*{Preparation of Samples for IR Scan}

The devices are decapsulated using a Jet Etch machine. Details on this machine can be found in AN938 (Motorola, Inc. Application Note). The epoxy mold is removed to expose the surface of the transistor die while the wires and package leads are kept intact and not disturbed. The package is soldered into the RF functional circuit. The circuit schematic and parts list are shown in Figure 8. The circuit employs a 2 inch \(\times 2\) inch piece of 31 mil Glass TeflonTM printed circuit board. The samples are mounted to the PC board as a surface mounted component. In other words, no heat sink is used and the board is subject to free air heat transfer.

\[
\text { FIGURE } 8 \text { - IR SCAN } 870 \text { MHz CIRCUIT SCHEMATIC }
\]

Glass Teflon is a trademark of Dupont Corporation.

The collector leads are painted with flat black paint to provide a good emissivity surface. A reference line is marked on the collector leads to indicate the place where they contact the PC board on the collector microstrip line. The ability to identify this reference point is essential in acquiring accurate and consistent \(T_{L}\) data.

\section*{Measurement Techniques}

The measurement techniques and considerations are outlined below:
\(T_{L}\) is measured at a point on the collector lead where it first contacts the printed circuit board closest to the package. The \(T_{J}\) measurements are made at three points on the active area of the die. \(T_{J} A V\), die junction temperature average and \(T_{J} H S\), die junction temperature hot spot are recorded in Table III. In all cases, the temperatures across the die active area are uniform (i.e. no significant hot spotling was found which indicates good die bonds and proper RF operation of the die in the SORF package). The total power dissipation of the device under steady state operating conditions is defined in the equation below:
\[
P_{D}=P_{I N}+\left(V_{C C}\right)\left(I_{C}\right) \cdot P_{\text {OUT }}
\]


Fig. 3 Mixing in the Loop


Fig. 4 Two modulus divider



Fig. 6- N/88C30 Single Chip 200MHz


The input return loss is greater than 20 dB ; thus, it is omitted from the power dissipation equation. The data for the above parameters is in Table III. The thermal scans were done in free air or, in other words, with no forced air over the part and the printed circuit board.

\section*{Conclusions}

The data demonstrates that the SORF package has nearly equivalent thermal performance to the Macro-X package. The surface mounted technique utilized in this thermal analysis makes convection and radiation the predominant heat transier mechanisms. In a more comprehensive thermal study of surface mounted techniques, it would be desirable to evaluate the effects of air flow on the heat transfer mechanisms of convection and radiation. In a further study it would be beneficial to also evaluate the heat transfer mechanism of conductivity via a good case to heatsink interface at the collector leads.

\section*{Characteristics of the SORF Package}

The preceding discussion has demonstrated that the SORF package has excellent RF properties and is a proven surface mount component (SMC) with power dissipation capability of 1.5 watts. When RF performance and a SMC is mandatory, the SORF package offers an excellent alternative to the Macro-X, TO-39, TO-92 and the TO-89.

In Table IV the RF and thermal characteristics and other noteworthy characteristics are summarized. The SORF package offers other specific characteristics which provide a more versatile package. Allowing for a maximum die size of 40 mils \(\times 60\) mils the SORF package can accomodate die that fit only in other larger and more conventional non-SM packages. This will provide the RF design engineer with an RF SMD to utilize in new designs or to upgrade to SMT in older designs.

In addition, the SORF package has an additional leadframe style in which the collector and the base pads are split; thus, it provides a package in which there are isolated collector and base pinouts. This modification of the SORF leadframe makes it feasible to assemble more than one transistor die in the same package. With an eight pin leadframe layout various applications are possible such as, complementary push-pull, push-pull (using separate but similar geometries), differential and cascade -cascode amplifiers.


Fig. 8 - Typical VHF Synthesiser

TABLE IV - SORF PACKAGE CHARACTERISTICS
Exceilent RF Properties:
Low Common Lead Inductance and Package Parasitics
Symmetrical Leadirame Layout
Copper Leadirame for Excellent Conductivity
Excellent Thermal Properties:
Copper Leadirame for excellent Thermal Conductivity
Symmetrical Leadirame Layout
Large Collector Pad
Relativity Large Package Molded Periphery Around the Collector Pad
Accomodate Large Translstor Die that Fit in Other Larger Conventional Packages
Wide Common Lead Bridge for Mos Input Matching Capaclior
Modifled Leadframe Available with Split Collector and Base Pads
Ior Special Appilcations Utilzing Multiple Die
Excellent RF Properties:
    Low Common Lead Inductance and Package Parasitics
    Symmetrical Leadirame Layoul
    Copper Leadirame for Excellent Conductivity
Excellent Thermal Properties:
    Copper Leadirame for exceltent Thermal Conductivity
    Large Collector Pad
    Relativity Large Package Molded Periphery Around the Collector Pad
Ior Special appilications Utilizing Multiple Die

Another characteristic of the SORF which has creative and somewhat tantalizing possibilities is that the portion of the leadframe which interconnects the corner leads of the package is wide enough to accomodate a MOS capacior for input CQ matching (means Control Q - a terminology defined by Motorola, Inc.). Input CQ matching is accomplished by selecting the proper shunt MOS capacitor value and series inductance interconnect wire loops to raise the device's input impedance to a higher real part while minimizing the device's input circuit \(Q\). This aids broadband matching by reducing the number of external circuit components necessary to achieve a desired broadband performance.

\section*{Summary}

The SORF package offers an excelient alternative to the many low power packages that are now being used in RF applications which are not SMC. Not only is this package a popular SM package but it also has excellent RF and thermal performance comparable to the Macro-X package. The newly introduced MRF8372 and MRF5812 are excellent examples of the capabilities of this RF low power plastic SMD. The SORF package will lead the way as SMD replaces the more conventional RF low power packages of the past and adds exciting new dimensions to RF SMT.

\section*{UNEGUAL POWER SPLIT HYBRID COUPLER}
S. pal, S. K. saini, v. S. rao, A. bhaskaranarayana

COMMUNICATION SYSTEMS DIVISION ISRO SATELLITE CENTRE, AIRPORT ROAD BANGALORE 560017 - INDIA

\section*{ABSTRACT}

Presented in this paper are the design techniques for unequal power splitting hybrid branch line couplers. Nomograms are presented for different output coupling levels. The typical application of these devices is in the realisation of UOPSK modulators for high-bit-rate data transmitters.

\section*{INTRODUCTION}

Branch line quadrature hybrids are familiar for their simplicity and multiuse. These hybrids are suitable as power splitters and combiners while maintaining isolation and matching at the input/output ports.

When a 3 ds quadrature hybrid 13 powered at input port 1 (Fig.1) and the output ports 3 6 4 are terminated in identical reflection type devices, power is delivered at isolated port 2. This property eliminates the requirement of a circulator for applications like PIN diode phase shifters and diode amplifiers (e.g. trapatt and tunnel diode amplifiers).


Fig. 1 Quadrature hybrid

In general, hybrids for the above applications are 3 di quadrature type, where power fed at port 1 will be divided equally with \(90^{\circ}\) phase shift. A typical example utilising the property is a balanced QPSK modulator.

\section*{hF/VHF/UHF}

Power Static Induction Transistor Performance

\title{
R. Regan, S. Butker, E. Bulat, A. Varallo, M. Abdollahian, F. Rock
}

\author{
GTE Laboratories Incorporated \\ 40 Sylvan Road \\ Waltham, MA 02254
}

\section*{Introduction}

A new class of JFET, the static induction transistor (SIT), is autracting a great deal of attention [1-6] because of its exceptional high-performance in the HF, VHF, and UHF frequency ranges. SITs are verical devices, designed with very short conducting channels fabricated with low carrier concentration semiconductor material. The channel is, therefore, depleted of carriers even at low gate bias voltage Ievels. Conduction in this channel is controlled by inducing electrostatic fields from the gate and the drain. This explains, to some extent, the name "static induction uransistor" given to these devices by Jun-ichi Nishizawa, who first demonstrated SIT operation [7]. The mechod of current control in an SIT is fundamentally different from that in a JFET. In a JFET, the high series resistance of the neutral channel region and the weak electric field penetration from drain to source result in saturated, pentode-like dc I-V characteristics. In an SIT the field-controlled potential barrier results in exponential dc I-V characteristics.

In addition to describing generally how SITs operate, this paper will show that SITs are extremely well suited for cw and pulsed power, high-frequency applications, especially in the HF, VHF, and UFF range; experimental single-ended devices have thus far shown very high cw and pulsed UHF power levels comparable to or higher than BJTs, MOSFETs, ISOFETs, or JFETs and push-pull balanced STTs have demonstrated high-power, high-gain, broad-band HF/VHF frequency performance. SITs are relatively easy to build and are highly reproducible. They will be used in applications where no other semiconductor devices have proved satisfactory, for example, in very efficient phased-array antenna systems, as replacements for bulky and expensive magnetrons in microwave ovens, in AM and FM radio broadcasting power amplifiers; and in high power and broadband HF/NHF/NHF power amplifiers for military applications.

At lower frequencies, very high-power SITs have already been used in ultrasonic cleaners, in low-distortion audio amplifiers having kilowatt output power capability [8] and as fast switches in a high-voltage thyristor form [9]. Fast solid state relays, dc/dc converters, laser modulators, radio transmitters, and switching power supplies are presenuly under consideration. The SIT has thus become an important new class of power semiconductor device.

\section*{SIT Operation}

STTs are a new class of uransistors having a short-channel JFET structure in which the current, flowing vertically between the source and drain, is controlled by the height of an electrostatically induced potential energy barrier under the source. This barrier develops when the channel is depleted of mobile charge carriers by reverse biasing the gate junction. The height of the barrier is influenced by both the applied gate and drain bias potentials. A two-dimensional drawing of an elementary SIT cell is shown in Figure 1a. Figure lb shows the corresponding potential distribution along the path of electron flow in the center of the channel when gate and drain bias voltages are applied. Figure ic is a more graphic illustration of this potential barrier and the path of electron flow. If the drain potential, \(\mathrm{V}_{\mathrm{d}}\), is kept constant and the gate potential, \(\mathrm{V}_{\mathrm{g}}\), is varied, the barrier height changes, producing a significant change in the drain current. The SIT differs from long-channel devices such as conventional JFETs o MESFETs because, in addition to the gate bias voltage, the drain voltage also has a substantial influence on the current, through changes in the potential energy barrier height (Figure lb). Thus, the SIT has unsaturated (triode-like) current-voltage characteristics rather than the saturated (pentode-like) characteristic of a conventional JFET or MESFET. A set of typical SIT dc current-voltage characteristic curves is shown in Figure 2.

The SIT is a majority carrier device, therefore, its speed is not limited by minority carrier stored charge as is the case in a BJT. In addition, since electron velocities are higher than hole velocities, the channel regions are generally fabricated using n-type epitaxial material. Because, for SIT operation, these channel regions must be depleted of charge carriers at low gate bias voltages, relatively high resistivity n-type material must be used. This results in a device which exhibits high breakdown voltages. Since in silicon , electrons reach saturation velocity at high elecuric fields, this allows device operation at high frequencies while operating alt relatively high bias voltage levels.

Electron mobility decreases with increasing temperature in a majority carrier device, thus, the SIT channel is thermally stable. High-power devices may be fabricated in the conventional manner by paralieling low-power cells, but without using ballast resistors. Ballast resistors, which prevent thermal runaway in power BJTs, increase the fabrication complexity of these devices relative to SITs. The current distribution is also different in an SIT than in a BIT. Due to the "emituer crowding" effect in bipolars, the current density is maximum at the edge of the emitter periphery (Figure 3a) This is due to the transverse voitage drop in the base. In an SIT, the current density is more uniform in a source finger of equivalent width (Figure 3b). This means that the active source area is used more efliciently in an SIT than the emitter area in a BJT. In addition, the fact that the current flows through the semiconductor bulk in an SIT and not along the semiconductor surface, such as in a MOSFET, makes the SIT less sensitive to oxide and interface defects which contributes to reliability and high radiation hardness levels.

\section*{DESCRIPTION:}

When data rates of the two streams modulating the carrier in the OPSK modulator are different, the carrier power levels are unbalanced so as to maintain equal \(\mathrm{E} / \mathrm{N}\) / of the two orthogonal carrier componente for effective use of \(R F\) power. An attenuator and phase shifter to compensate for the phase introduced by the attenuator are used in the two output branches respectively as shown in Fig. 2.


This arrangement increases the complexity of the circuit and is not desirable for space applicatbons. A hybrid with unequal power division properties is a valuable tool in such applications.

The design of an unequal quadrature power divider is explained in the following paragraphs.

The normalised voltage scattering matrix of ideal lossless hybrid with unequal power outputs, maintaining the \(90^{\circ}\) phase difference, can be represented by equation 1 , where ports 1 and 2 are input and 1solated ports respectively.
\[
[s]=\left[\begin{array}{cccc}
0 & 0 & -j x_{3} & -x_{4} \\
0 & 0 & -x_{4} & -j k_{3} \\
-j x_{3} & -x_{4} & 0 & 0 \\
-x_{4} & -j x_{3} & 0 & 0
\end{array}\right]
\]
.......... 1
\(K_{3}\) and \(K_{4}\) are the normalised voltages available at ports 3 and 4 respectively, such that power available at port 3 is
\[
P_{3}=K_{3}^{2}
\]
......... 2
and power available at port 4 is
\[
P_{4}=x_{4}^{2}
\]
ror a lossless hybrid
\[
x_{3}^{2}+x_{4}^{2}=1
\]
\(\qquad\)

SIT Power Perfurmance
Power HF/VHF/UHF (1 MHz to 1200 MHz ) SITs have been developed and characterized and their performance demonstrated by GTE Laboratories. Devices of various sizes have been fabricated and tests have been performed under various operating conditions. Amplifiers have also been designed and rested.

Previous publications [2,3,5] have provided information about GTE SIT performance at the higher UHF frequencies. Significant advances have been made recenty, however, in the performance of SITs in the lower UHF frequency range. To date, the largest cw power static induction transistor fabricated is the 12 -cell \(\left(\mathrm{W}_{\mathrm{s}}=24 \mathrm{~cm}\right), 7 . \mu \mathrm{mm}\) pitch SIT shown in the pictorial, Figure 4a. As shown in Figure 4b, this transistor has been exercised to demonstrate up 10215 W cw at 225 MHz , with 7-dB gain and \(70 \%\) drain efficiency :The terminal impedance of high-voltage power UHF SITs is comfortably high compared to more conventional transistors. This 12 -cell SIT exhibits the 215-W power level while working into a \(6+j 6 \mathrm{ohm}\) load impedance, approximately a factor of 5 higher than a more conventional, comparably powered transistor. We therefore expect to build single-ended SITs capable of much higher output power before we reach the limiting low impedance kevels of present-day power transistors. Having reached the highest practical single-ended transistor power level, we may then consider building a balanced STT to provide another factor of 2 increase in output power performance. Of course, innovative package designs will be necessary to realize this performance in view of the very high power dissipation levels and the electrical phase length to be accommodated.

Peak pulse power performance at \(\mathbf{4 0 0} \mathrm{MHz}\) for a single-ended SGSIT using our 3-cell chip design has been demonsurated at levels up to 325 W (Figure 5a). This new device, shown in Figure 5b, with 20 cells connected ( \(W_{s}\) \(=40 \mathrm{~cm}\) ) was operated in our test system at a \(78-\mathrm{V}\) power supply level in a Class AB mode with a \(10 \mu \mathrm{sec}\) on time and \(10 \%\) duty cycle, pulsed drive. As indicated in Figure 5a, the terminal impedances of this device are still quite manageable. In fact, increasing the total gate width of the device by a factor of 2 , to provide enough capacity for a 600 -W transistor, would still result in manageable impedance levels (approx. I ohm).

Most of our single-ended power STTs, both for cw and pulsed operation, have been set up in the common-gate configuration. Although common-source operation promises higher gain and potentially higher output power, the drain-gate feedback capacitance results in less stable operation. Nevertheless, performance results with new SITs operated in a common-source, push-pull configuration with cross neutralization [1] have shown a high degree of stability with very attractive broad-band frequency operation and with high-gain and high-output power levels

These experimental cross-neutralized SITs were fabricated using two 4 -cell, \(7-\mu \mathrm{m}\) pitch SGSITs connected in a single, balanced transistor package along with a pair of 18 -pf chip capacitors mounted inside the package to provide uhe neutralization. The photograph in Figure 6 shows one of these cross-neutralized common-source balanced power SITs. An amplifier was designed and fabricated using coaxial \(4: 1\) transformers and baluns loaded with high-permeability ferrite material (Figure 7). Large signal power tests were conducted with this amplifier at frequencies over the \(1-\) to \(200-\mathrm{MHz}\) band. Figure 8 illusurates the measured gain, output power and efficiency for the test amplifier. As shown on this figure an output power level of approximately 100 W with greater than 13 dB powes gain has been observed from 1 - to \(100-\mathrm{MHz}\). The output power performance rolls off to 60 W from \(100-\) to \(200 \cdot \mathrm{MHz}\), however, the gain remains relatively flat. Swept measurements have confirmed this data and show no anomalous inflections in the response. With transistor package and amplifier modifications, output power levels in excess of 100 W are expected to be achieved across the band with his design.

\section*{Conclusio}

This new device, the static induction transistor, is proving to be extremely atractive for applications which require f power amplification. It has been shown to demonstrate high output power, high-gain, high-efficiency, and broad-band frequency operation. Additionally, it exhibits high-voltage breakdown characteristics, high terminal impedance and preliminary tests indicate a high tolerance to radiation. Coupled with a straightforward processing lechnology, the SIT has a high potential to advance the performance of future if power systems.

\section*{acknowledgmen}

The authors gratefully acknowledge Marguerite Delaney and Peter Palermo for their work in device packaging: Brian Devlin, Charles Herrick, Steve Rose and Maureen Sullivan for their work in device processing and Paul Haugsjaa Harry Lockwood, and Les Riseberg for their general support during the program,

This work was supported, in pant, by the U.S. Air Force Systems Command under Contract No. F33615-82.C-1702 and by the U.S. Army Communications Electronics Command under Contract No. DAAL02-85-C-0160.

\section*{References}
I. S. Buter and R. Regan, "High Voltage HF/VHF power Static Induction Transistor Ariplifiers", Proceedings of RF Technology Expo 86, Anaheim, CA, January 1986, pp. 365-367
2. I. Bencuya, A. Cogan, S. Buter,and R. Regan, "Static Induction Transistors Optimized for High Voltage Operation and Microwave Power Output", IEEE Trans. Electron Devices ED-32 [7], pp. 1321-1327, July 1985
3. R. Regan, I. Bencuya, S. Butler, F. Stites, W. Harrison, " New UHF Power Transistor Operates at High Vollage", Microwaves \& RF, April 1985
4. R. Regan, S. Buter, "High-Voltage High-Power UHF Static Induction Transistors", Proceedings of the RF Technology EXPO 85, Anahcim, CA, January 1985, pp. 81-84
5. R. Regan, A. Cogan, I. Bencuya, S. Buter, P. Haugsjaa, " Improved Performance of High Voltage Microwave Power Static Induction Transistors", Proceedings of the 14山 European Microwave Conference, Liege, Belgium, September 1984
6. M. Kane and R. Frey, " The PSIFET Emerges as a New Contender", MSN, September 1984
7. J. Nishizawa, T. Teraski, and J. Shibata : IEE Transactions on Electron Devices, ED-22 (1985) p. 185
8. T. Ohmi , J. Nishizawa and M. Tatsuta : Technical Digest of the 1979 IEDM, Washington , DC 1979, p. 84
9. J. Nishizawa and K. Nakamura, "Characteristics of New Thytistors", Proceedings of the 8th Conference on Solid State Devices, Tokyo, 1976

All the four branches/lines are quarter wavelength, whose impedance/admittance values are derived from the scattering matrix (1).

The admittance matrix for this unequal power split quadrature hybrid can be obtained using the transformation hown in equation 5 .
\[
[y]=([1]-[8])([1]+[s])^{-1} \quad \ldots \ldots .5
\]

By substituting s-matrix and solving equation 5
we get the admittance matrix as
\([Y]=\left[\begin{array}{cccc}0 & j x_{4} / K_{3} & j 2 x_{3} & 0 \\ j x_{4} / x_{3} & 0 & 0 & j 2 / x_{3} \\ j 2 / x_{3} & 0 & 0 & j K_{4} / K_{3} \\ 0 & j 4 / x_{3} & j x_{4} / K_{3} & 0\end{array}\right] \ldots 6\)

The voltage ratios shown in equation 6 can be
expressed in terms of power ratios as
\[
x=P_{4} / P_{3}=x_{4}^{2} / x_{3}^{2}
\]

The admittance matrix is expressed in terms of power ratios as
\([y]=\left[\begin{array}{lccc}0 & j \sqrt{x} & j \sqrt{1+x} & 0 \\ j \sqrt{x} & 0 & 0 & j \sqrt{1+r} \\ j \sqrt{1+x} & 0 & 0 & j \sqrt{r} \\ 0 & j \sqrt{1+r} & j \sqrt{x} & 0\end{array}\right]\)
...... . 7

The hybrid constructed from equation 7 divides the power fed at port 1 into the required proportions at port 3 \& 4.

The nomograms constructed from equation 7 for obtaining the impedances of series and shunt quarter wavalength of the hybrid in an easy way are given in Fig. 3.

\section*{PROCEDURE TO USE NOMOGRAMS:}

The impedances obtained for a 50 ohn hybrid with +2 dB imbalance in output power levels using the nomograms is explained to illustrate the procedure for the use of the nomograms.

Mark the characteristic impedance of 50 ohms on the centre scale zo (point A). For calculation of shunt am impedance, make point \(B\) on the left \(r\) scale at +2 dB . Intersection point \(C\) of the \(z_{p}\) scale with the line



(a) BJT

Figure 3. Current density distribution BJT vs SIT.
Figure 1. Elementary SGSIT cell (a), and corresponding potential distribution in center of channel along path of electron flow (b), graphic illustration of potential barrier (c).


Figure 2. SGSIT DC I-V characteristics \(\left(W_{S}=24 \mathrm{~cm}\right)\).

\section*{225 MHZ CW POWER PERFORMANCE}


Figure 4. Performance of 12 cell \(\left(W_{\mathrm{s}}=24 \mathrm{~cm}\right)\) SGSIT.
joining points AB gives the shunt impedance. The same procedure is followed for finding series arm impedance with the right \(r\) scale.

The values obtained for \(z_{p}\) and \(z_{s}\) are 39.7 and 31.1 ohms respectively.

\section*{CONCLUSION:}

A set of nomograms are presented for finding series and shunt impedances directly. A hybrid with different output power levels is constructed from these nomograms and verified practically. The necessity of an unegual power divider maintaining \(90^{\circ}\) phase is explained.

\section*{ACKNOWLEDGEMENT}

The authors gratefully acknowledge the encouragement from Col. N. Pant, Director, I.S.R.O. Satellite Centre and Dr.S. P. Kosta, Dy. Director (Spacecraft Electronics Group) I.S.R.O. Satellite Centre and thank other colleagues for their valuable suggestions.



Figure 5(a). 400 MHz peak pulsed power SGSIT performance.


Figure 5 (b). 325 W 400 MHz peak pulse power SGSIT.


Figure 6. Cross-neuralized common-source push-pull SIT.


Figure 7. HF/VHF cross neutralized SIT amplifier schematic.

Figure 8. Broadband SIT amplifier performance.
\(\begin{array}{ll}\begin{array}{l}8-c e l i s \\ V d=50 \mathrm{~V}\end{array} & \mathrm{ldg}=500 \mathrm{~cm} \\ \mathrm{Vd}\end{array}\)


OUTPUT POWER (W) FREQUENCY (MHz)
- DRAIN EFFICIENCY (\%)
- POWER GAIN (dB)

\section*{SPHERICAL DIELECTRIC ANTENNA}

\author{
S. PAL \\ COMMUNICATION SYSTEMS DIVISION \\ 18RO SATELLITE CENTRE - AIRPORT ROAD BANGALORE-560 017 - INDIA
}

\section*{ABSTRACT}

Presented in this paper is a study of near field and far field characteristics of \(s\) dielectric sphere antenna excited by a circular cylindrical metal waveguide operating in its dominant \(\mathrm{TE}_{11}\) mode. Many interesting results as a outcome of this study are included. The system can be used as a microwave applicator, a spotbeam antenna and as a feed for a cassegrain reflector.

Dielectric antennas are an important class of microwave antennas. These are quite small and capable of giving directive radiations. Various forms of dielectric antennas like the solid rods, hollow tubes, horns and spherical antennas have been studied (in parts) by many researchers. Dielectric spherea in particular have been of great interest to many researchers [1,2,3, \(4,5,6 \& 8]\), owing to the simplicity of the shape and many practical applications. Most of the researchers have examined the subject with approximete near field or far field theoretical analysis and tried to compare the results with experimental ones. This paper is an outcome of an extensive theoretical study as well as experimental studies carried out on a dielectric sphere excited by a circular cylindrical metal waveguide operating in its \(\mathrm{TE}_{11}\) mode. The subject is divided into two categories, namely:
(1) THE SOURCE FIELD OR NEAR FIELD
(2) THE FAR FIELD OR RADIATION FIELD
1.0 SOURCE FIELD STUDIES:

The far field radiation characteristics of an antenna can be deduced from the knowledge of source field distribution. The source fleld can be determined by solving the electromagnetic boundary value problems over the antenna. The spherical dielectric antenna considered is made of a homogeneous lossless dielectric material and

A HIgh Performance SAM Filterbank Ach leves 80 dB Rejection
C. Lanzl, W. Ossmann and R. Bernardo

Andersen Laborator les, Inc
1280 Blue Hilis Avenue
. Introduction
This filter bank was designed as part of a general-purpose recelver system, which was to be able to isolate signals of differling center frequencies and bandwidths, to separate these signals from the surrounding spectrum and then to demodulate these signals. The features of the fllterbank which were essential to this system were: excellent rejection, good control of bandwidth, fliter selectivity, good amplltude and phase ripple and equal noise power in each channel. Surface wave filters meet these primary requirements nicely while malntalning a small outline and requirling llttle power

This paper wlli present the speciflc requirements for a fliterbank requiring 80dB of stopband rejection, followed by a discussion of both the electronic circuit and surface wave fliter design. Results from production filters will be presented, followed by indications of Improvenents to these sorts of fllterbanks
11. The Requirements

The detalled specifications for this filterbank are presented in Appendix 1 . The essence of the filterbank is presented in the schematic shown in figure 1. An input signal passes through a wideband roofing filter and a low-nolse amplifler and then through one of nine channels


Figure 1

Is excited by the \(\mathrm{TE}_{11}\) mode fields of a circular cylindrical metal waveguide [7]. In order to ensure some degree of matching between the antenna and the wavegulde and also to suppress the generation of higher order modes (to the extent possible), the interior of the circular cylindrical metal waveguide is filled over a short distance by the dielectric of which the sphere is composed. The generator end of the circular cylindrical dielectric rod thus formed inside the waveguide is conically tapered to a point (as 1llustrated in Fig.1) to take care of the matching between the waveguide and the dielectric structure (It has been experimentally seen that such a tapering [ 10 ] does improve the return losses). However, for the theoretical analysis and to simplify the analysis for the first degree of approximation, the higher order mode generation at the end of the waveguide is neglected and the propagating mode inside the waveguide is assumed to be only TE 112 . The theoretical analysis for the source field components over the ephere 1 is done by \([6,10]\) expressing the \(\mathrm{TE}_{11}\) mode components of the cylindrical waveguide in epherical co-ordinates at the interface between the waveguide and the spherical geometry of the antenna, keeping the sense of ' \(\phi\) ' co-ordinate the same. These field components are further expressed in terms of spherical hamonics. Their respective amplitude-coefficients at the interface are determined using "Fourier Legendre Series" [6. 9. 10]. and the TE \({ }_{11}\) field components are oxpressed in a spherical coordinate system.

These fields at the interface are assumed to be the 1 mpressed fieldsin the sphere due to the waveguide excitation.

The fielda internal to the sphere will consist of the fields due to the waveguide and the fields internal to the sphere obtained by solving the source free Vector wave equations [straton-8].

The boundary conditions are matched at the surface of the sphere (rea) for the field components internal to the sphere and the external field components obtained by solving the source free Vector wave equation [Straton-8] external to the sphere.

It is seen that during the various field matchings over the surface of the aphere (at \(r=a\) ) on both sides of the equations, terms containing constants of
\[
\left(m, n^{t h} \text { order) and } \frac{p_{n}^{m}(\cos \theta)}{\sin \theta} \text { and } p_{n}^{m}(\cos \theta)\right. \text { do }
\]
appear. Here \(p_{n}^{m}(\cos \theta)\) is the Associated Legendre's polynomial of first kind of degree ' \(n\) ' and order ' \(m\) '. It is observed that for the six field components, six simulataneous equations are obtained.

Froin the six equations we see that the lowest \([8,10]\)
field mode which can exist is \(m=n\), while for a given \(m\),
having bandwldths from 0.1 MHz (channel 1) to 12.0 MHz (channel 8) and 25 Mhz (channel 9, direct). All channels had a common center frequency (70 MHz ) and were required to have equal noise powers (for wite noise, the power levels in each channel were supposed to be the same), so the Insertion losses varied from 29 dB for channel \(1(0.1 \mathrm{MHz}\) ) to 50 dB for channel 8 ( 12.0 MHz ) and 53 dB for channel 9 (direct).

The most strenuous speciflcation was the requirement for 80 dB of rejection for each channel. This rejection had to be malntained from 5 MHz to 400 MHz outside seven 3 dB bandwidths from the center frequency and drove most of the design, as wlll be discussed in section lll. The next most important specification was the requirement for 50dB of insertion loss for channel 8, which put a severe constralint on the nolse floor for the fliterbank. These two specifications forced most of the interesting design decisions.

The requirements for precisely controlled bandwidth and shape is common to most surface acoustic wave fliter designs. Since an enormous number of transmission zeros can be designed in a very small space, surface wave filters can provide excellent selectivity which is essentially independent of matching and insertion loss. Also, manlpulation of these zeros can compensate for second order distortions which affect filter symmetry. The requirements of less than one dB of amplitude ripple and less than ten degrees of phase error in each channel, as well as the differential phase error specification, are also straightformard and easily satisfled with surface wave devices.

The entire operating fliterbank had to meet a series of mechanical and
environmental conditions including vibration and shock as well as a powered burnoin.

\section*{111. The Design Approach}
A. General Considerations

The requirements for this filterbank specifled nine channels, one of which was a direct channel and one of which had a 0.1 MHz bandwidth. Early analyses of channel \(1(0.1 \mathrm{MHz})\) showed that surface wave filters for this bandwldth would be much too large, so the customer agreed to supply a bulk erystal filter which met their requirements. The direct channel also needed no filter lother than an overall roofing filter to reject out-ofband nolse). Probably the most Important specification ltems were the combination of 80 dB of rejection with a required 50 dB insertion loss on channel 8; for an input signal at \(0 \mathrm{~dB} m\), this puts a requirement on the nolse floor to be at -130 dBm . This really stems from the customer's desire to have equal nolse power in each channel, so the insertion loss of the widest channel had to be considerably higher than that of the narrowest channel. Proper grounding and shlelding and overall control of the nolse in the circuit board was by far the most difficult aspect of the development of the fliterbank.

\section*{B. Electronics}

The requirement for 80 dB of stopband rejection regardiess of the channel selected forced the cholce of dual PIN diode switches for each of the nine channels in the filterbank. These switches did not have to be
there are 12 field amplitude coefficients of \((m, n),(m, n+1)\) \((m, n-1)^{\text {th }}\) order, which indicates that the boundary conditions are satisfied not for a single value of \(n\) but for \(n-1\), and \(n+1\) combined together. This shows that for any particular value of 'm", the electric and magnetic field components consist of an infinite number of terms for values of ' \(n\) ' varying from \(m\) tooo, thus indicating that for each value of \(m\), there exist many corresponding hybrid modes.

However, the boundary conditions are matched for \(n=n, n=n-1, n+2\) and a total of 16 equations are obtained for internal field amplitude coefficients. The coefficients are of \((m, n),(m, n-1)(m, n+1)\) and \((m, n+2)\) order. Sixteen simultaneous equations are solved for the 16 amplitude coefficients, which are in general complex. Knowing the \(m, n^{\text {th }}\) order amplitude coefficients one can determine the internal and external (surface) source fields, which are used for far field computations. Fron the above treatment, it is inferred that a homogeneous dielectric sphere axcited by a circular cylindifical metallic waveguide operating in its dominant \(\mathrm{TE}_{11}\) mode can support an infinite number of hybrid modes which have all the six components of EM field, namely Er, EO, Ed. Hr, He \& Ho. Representative near field patterns are given in Figs. 2-1 to 2-4.
2.0 FAR FIELD STUDIES:

Having obtained the source field atsibution, the radiation or far field of the spherical dielectric antenna excited by a circular cylindrical metal waveguide is obtained using the femous - Schelkunoff's Equivalence principle. An analyais of the radiation pattern and gain as a function of various parametera, viz. diameter of the ephere, frequency of excitation and relative permittivity of the material has been done. The studies are limited to \(X\)-band for experimental verification purposes.
3.0 NUMERICAL COMPUTATION \& OBSERVATIONS:

\section*{SOURCE FIELD:}

The source field components have been evaluated [6, 10]. The computation has been done for different diameters and relative permittivities of the dielectric sphere for various frequencies of excitation at \(X\)-band, for a lossless homogeneous sphere. The computations have been carried out for the first seven primary modes 1.e. \(m=1\) to 7 and \(n=1\) to 7 (except \(m>n\) ). While normalizing with respect to the maximum value of the mode out of a large number of \(m, n\) combinations, the amplitudes of the coefficients and field components for
quick because the bandwidth selection was to be by mechanical thumbwhee switches, so the diodes were chosen to give a switching time of about one mlcrosecond at 70 MHz . Each serles-shunt dlode swltch has an on-tomoff ratlo of 54 dB at 70 MHz for a combined isolation of 108 dB for a single channel all by itself. Since all nine channels were bussed In parallel, with all channels selected off, the isolation from bus to bus was 89 dB , a 9 dB margin on the 80 dB specification.

The requirement of 50dB of loss for channel 8 (12.0 MHz) conblned with 80 dB of rejection meant that the incoming signal level had to be high enough that the 80 dB rejection level was at or above thermel nolse. This was accomplished by driving the SAM devices at about +20 dBm with an amplifier. Additional LC roofing fliters at Input and output were necessary to keep the nolse floor below the rejection level for channel 8 and also served to suppress SAM harmonic responses, as will be discussed below.

\section*{C. The SAW Fliters}

This filterbank has filters whose center frequency is 70 MHz and whose channel bandwidths range from 0.1 MHz to 400 MHz . As discussed in section IIIA, channels 2 through 8 were implemented with SAW fllters whose percentage bandwidth (3dB bandwidth normallzed to the center frequency) varled from about 0.4 (channel 2) to about 178 (channel 8). Since the maximum achievable bandwidth for a plezoelectric surface wave materlal is a function of its electromechanical coupling constant [1], different SAW substrate materlals were used for different channels. Specifically. ST-X
quartz was usad for channels 2, 3 and \(4(0.3,0.5\) and 0.75 MHz\(), Y \mathrm{X}\) quartz was used for channel \(5(1.5 \mathrm{MHZ})\) and \(Y Z\) lithlum nlobate was used for channels 6,7 and \(8(4.0,6.0\) and 12.0 MHz ). These materlals all have different temperature coefficients, but this flitorbank is used in an environment whose temperature does not vary much and in a system that can adapt to differing center frequency shifts due to temperature, so the different substrate materlals for each channel was not a problem

The requirement for 80 dB of stopband rejection cannot be met on narrowband quartz materials due to the presence of surface wave diffraction on these substrates; \(45-50 \mathrm{~dB}\) of stopband rejection is about the best that can be achieved with filter shape factors of around 2.5 on quartz. This means that all of the quartz SAM fllters had to be implemented as cascaded pairs. The substrate materlal used for other channels, YZ lithlum nlobate, happens to be autocollimating; surface waves exhibit almost no diffraction on this materlal. Thls means that it may be posslble to achleve the 80dB rejection requirement in a single fliter, and indeed, the design simulat lons predicted that channel 8 ( 12.0 MHz ) could be built as a single filter. Channels 6 and 7 , however, had design sidelobes higher than 80 dB and so these channels were designed as cascaded palrs.

Surface acoustic wave bandpass fliters generally exhlbit two kinds of frequency domain spurlous, harmonic responses and bulkwave responses [2, 3]. The harmonic response is governed by the choice of the number of lectrodes per wavelength (for example, 3 electrodes per wavelength supports the second harmonic and 4 electrodes per wavelength supports the third harmonic) and generally only the first harmonic response above the
the orders \(m=2\) and mor for all values of ' \(n\) ' are almost two orders less in magnitude than those of m=1. Hence, the computation for further processing was restricted for \(m=1\). ard \(n=1\) to 7. From the computation results, it is observed that:
(a) For all modes the external field componenta Er, W0, Ho show a cosine variation and \(\mathrm{E}_{\phi 0} \mathrm{Hr}\), and \(\mathrm{H}_{6}\) show a sine variation with respect to ' \(\phi\) ' for ' \(\phi\) ' varying between \(\pm 180^{\circ}\). This behaviour is independent of sphere diameter, frequency of excitation and dielectric constant.
(b) The varlation with respect to "e" for a fixed ' \(\sigma\) ' shows that for \(|E r| \&|H r|\) there exists a null at - = 0, i.e. no axial radial component of E\& H Eields exists.

For other field components it is observed that all the modes except ( 1,1 ) show an oscillatory behaviour. \(|s e|\) is the etrongest component.

\subsection*{3.2 RADIATION FIELD:}

The radiation Eleld pattems, directivity and gain have been computed for the dielectric sphere antenna using the source field components, since from the source field studies [10] it is clear that no single mode will charac-
terise the complete source field components. Hence, the far field calculation have been carried out for the vectorial summation of even, odd and all modos of the source fields. Calculations have seen done for spheres of 100,75 \& 50 mm diameters at x-band for \(\mathcal{E}_{\mathbf{z}}=2.1,5,7,10 \& 15\). For all mode combinations of the source field, the radiation patterns for representative cases are given in Pigs. 3(a), (b) and (c).
4.0 EXPERIMENTAL STUDIES:

The experimental investigations have been undertaken in order to validate the theoretical studies. The experimental work is extended to investigate some of the practical applications of the dielectric sphere antenna under investigation. The investigation has been carried out mainly for X -band frequencies ( 8.2 GHz ) and sphere diameters: \(30,50,75\) and 100 mm and the \(\varepsilon_{z}=2.1\).

The source field components at the surface of the sphere have been measured using near field pickup probes. The variation of these source field components as a function of \(\theta\) co-ordinates is reported. The radiation field patterns have been plotted for both EdiH planes. The results are reported as \(\left|E_{T}\right|\) \& \(\left|E_{P}\right|\) patterns as a function of ' \(\theta\) ' co-ordinate. Gain measure-
fundamentai is large enough to be a problem. Bulkwave responses can be caused by a number of different acoustic modes generated by the transducer In addition to the surface wave. On quartz, these bulk modes generally manlfest at about twice the center frequency and can be very troublesome. On lithium nlobate or any other high-coupling material, a multi-strip coupler structure can be used between the transducers to el iminate bulkwave spurious. For the quartz filters, the bulk and harmonic responses were eliminated by designing one transducer to operate at 70 MHz at its second harmonic and designing the other transducer to operate at 70 MHz at its third harmonic. No other harmonic responses colncided, so the spurlous responses were ellminated. The lithium nlobate fliters were designed to operate at 70 MHz at the fundamental using a multi-strip coupler to suppress bulkwave spurlous and relled on the LC roofing filters to suppress the harmonic response.

A significant advantage of surface wave filters is the flexibility the designer has to meet specific spectral shape requirements. This filterbank required control over the minimum and maximum 3 dB bandwidth, the maximum 60 and 70 dB bandwidths, the symmetry of the passband and the specific value of the insertion loss for each channel. These requirements are typical of almost any surface wave bandpass filter and can be fulfilled in a straightforward manner. In addition, the choice of cascaded filters allowed the designers to implement a time doma in spurlous suppression trick that reduced both amplitude and phase ripple across the passband (the specifications did not require this, but it cost nothing to design in and It Improves the performance.)

This filterbank has been in production for some time and the need to design the filters and their matching networks for minimal handing in a production environment was recognized from the start of the design. Accordingly, each fllter design was subjected to a matching network sensitivity analysis for standard component tolerances. Only designs that were tolerant of the component varlatlons expected were used to cut down on production line alignment and tuning time. Also, procedures were developed to keep the alignment process from beconing tedious and to streamline assembly.

\section*{1V. The Results}

Figures 2-14 present data from a representative fliterbank from a production run. Spectra for channels 1 through 9 are shown, and the rejection of the worst filter (channel 8) is presented from 5 MHz to 400 MHz . Notice that the filters uniformly achleve 80 dB of rejection well Inside seven 3 dB bandwidths from the center frequency; in fact, most achleve 80 dB on the monotonic skirts. This clean shape is a direct consequence of the cholce of cascaded fliters to achleve the rejection. Compare the narrower channels with channel 8 , which was implemented with a single filter. Channel 8 showed some close-In spurlous at about 72 dB , but achleved 80 dB within seven 3dB bandwldths. Also, Figure 12 shows the passband response of a representative filter, (channel 4). Figures 13 and 14 show the difference between two identical fliter channels, one not employing the triple travel canceling scheme and the other utilizing it. All production filterbanks met the specifications outilined in section 11
ment have been done using standard gain antenne substitution method, and axial ratio studies using a rotating dipole for a circularly polarized wave excited sphere antenna have also been carried out. The return lose or VSWR measurements of the antenna system is done over 7-12 GHz frequencies, using an HP8410 network analyzer. The near and far field test setups are shown in Figa. \(4(a) \& 4(b)\). The circular polarization is achieved using a septrum polarizer [10, 11].

\subsection*{5.0 DESIGN \& CONPIGURATION OP THE ANTENNA:}

A dielectric sphere of diameter \(>30 \mathrm{~mm}\) (at \(X\)-band) is excited by a circular cylindrical metallic waveguide operating in its dominant \(T E_{11}\) mode. The mode generation is achieved by two methods: (a) a coaxial to waveguide adapter changes TEM mode to TE 10 mode. The rectangular to cylindrical wavegude gradual transition changes the \(\mathrm{TE}_{10}\) mode to \(\mathrm{TE}_{11}\) mode, (b) the other method of exciting \(\mathrm{TE}_{11}\) mode inside the circular cylindrical weveguide ia to adjust the depth of a coaxial connector centre pin mounted on a circular cylindrical metal waveguide and adjust the close end of the guide with a short circuit plunger such that the input VSWR is less than 1.1. One can measure the field configuration at the open end to make sure of the existence of the \(T E_{11}\) mode.

In both systems, the waveguide at the open end is loaded with a dielectric sphere. In order to have a smooth transition between the waveguide and the sphere, at one end of the sphere there is a dielectric cylindrical rod (the same material as that of the mhere). tapered at the end, with its outer diameter equal to the internal diameter of the circular cylindrical waveguide. The length of the rod is experimentally adjusted such that no high VSWR is abserved. The cylindrical dielectric rod length is less than \(\lambda\). The tapered portion \(18 \approx 0.68 \lambda\). This configuration is almost analogous to the situation where the waveguide is filled with the dielectric material of which the sphere is made, such that the dominant mode is \(\mathrm{TE}_{11}\) and there are no discontinuities due to dielectric mismatches.

The near field studies have been conducted using small pickup probes [10, 12], a monopole for |Er \(\mid\) a small dipole for \(E \subset \& E_{0}\) and a small magnetic loop for H-components. The far-field radiation studies have been conducted under the normal far field conditions. The gain is determined by comparing with a standard gain antenna while the axial ratio studies have been done using a rotating dipole. The circular polarization is achieved using a septum polarizer \([10,11]\). The effect of a corrugated flange at the back of the antenna has

REJECTION SPECTRUM OF CHANNEL 1
0.100 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\) Horizontal: 60 MHz to 80 mHz linear Flgure 2

REJECTION SPECTRUM OF CHANNEL 2
0.300 MHz


Yertical: \(10 \mathrm{~dB} / \mathrm{cm}\)
Horlzontal: 60 MHz to 80 MHz IInear Figure 3

REJECTION SPECTRUM OF CHANNEL 3
0.500 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\)
Horlzontal: 60 MHz to 80 MHz IInear Figure 4

REJECTION SPECTRUM OF CHANNEL 4
0.75 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\) Horizontal: 40 MHz to 100 MHz IInear FIgure 5

REJECTION SPECTRLM OF CHANNEL 5
1.5 MHz


REJECTION SPECTRUM OF CHANNEL 6
4.0 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\)
Horizontal: 40 MHz to 100 MHz linear Figure 7
been studied for gain and axial ratio properties. Some of the experimental resulta compared with the theoretical results for near field as well as far field are shown in Figs.(5) \& (6), while far field axperimental Curves for various diameter apherea for pattern as well as axial ratio studies are shown in Figs.(7) \& (8). A derived gain \(V / S\) diameter/ \(\lambda\) curve is also given in P1g.9.
6.0 CONCLUSIONS AND POTENTIAL APPLICATIONS:

Prom the theoretical analysia the following observations can be mades

\subsection*{6.1 SOURCE FIELD:}

It is possible to solve the boundary value problem for a dielectric aphere excited by a circular cylindrical metal waveguide operating in \(\mathrm{TE}_{11}\) - mode. The theory evolved out here can be used for other popular cases, such as a dielectric sphere excited by a etructure having \(\mathrm{HE}_{12}\) - mode. The same method can be used for solving boundary value problems in ferrite opheres.

A dielectric aphere excited by a circular cylindri-
cal metal waveguide operating in ita dominant mode can sutain an infinite number of hybrid modes over its surface.

The relative amplitude and phases of the modes will be different depending upon the sphere diameter, dielectric constant and frequency of excitation.

Prom the numerical calculations it is inferred that higher order modes are negligible in amplitude as compared to the first few primary modes.

The six source field components over the surface of the sphere show a sinusoidal variation with respect
 Hø show sine variation. All the field components and their different modes except mode (1,1) show an oscillatory behaviour with respect to 0 .

It is difficult to draw a general conclusion. However, it is seen that the dielectric sphere antenna excited by a circular cylindrical metal waveguide operating in \(T E_{11}\) - mode, will sustain an infinite number of hybrid modes. The relative amplitudes and phases of these modes will be diffarent depending upon the sphere diameter, dielectric constant and frequency of excitation.
6.2 RADIATION FIELD:

From the radiation field studies it is observed that the dielectric sphere loading increases the gain

REJECTION SPECTRUM OF CHANNEL 7
6.0 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\) Horlzontal: 40 MHz to 100 MHz Flgure 8

REJECTION SPECTRUM OF CHANNEL 8
12.0 MHz


Vertical: 10dB/cm
Horizontal: 40 MHz to 100 MHz ||near Figure 9

REJECTION OF CHANNEL 8 ( 12.0 MHz BANDWIDTH)
FROM 5 MHz TO 400 MHz


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\)
Horlzontal: 5 MHz to 400 MHz IInear Floure 10

REJECTION SPECTRUM OF CHANNEL 9
OIRECT


Vertical: \(10 \mathrm{~dB} / \mathrm{cm}\)
Horlzontal: 5 MHz to 400 MHz IInear Figure 11

\section*{of a simple cylindrical waveguide and provides an}

\section*{E and H - plane pattern symmetry with a circular beam} cross section. With increse in dielectric constant the main lobe width increases and the directivity reduces. It is seen that for a given sphere diameter and frequency of excitation there is an optimum dielectric constant for which maximum gain is obtained. Just as with increase in dielectric constant or relative pemittivity, the directivity does not increase.ror \(\frac{d}{x} \geq 2\) to 2.1. for maximum directivity the \(\varepsilon_{r}\) should be \(\simeq 2.1\) - to 5.0, beyond which the main lobe width will start increasing. The aphere for a given diameter shows a resonance phenomena. The increase in frequency does not increase the gain proportionately.

\subsection*{6.3 EXPERIMENTAL STUDIES:}

From the experimental investigations the following was found:

\subsection*{6.3.1 SOURCE FIELD:}

Over the surface of the sphere all six EM - field components exist. All six source field components show
a sinuaoidal dependance on (PIG.10).

There is a good agreement between the theoretical and experimental source field plots for epheres of
diameters \(>2 \mathrm{X}\) waveguide diameter. The agreement is for a combination of certain modes and not for an individual mode. The agreement appears to be there even without probe compensation.

\subsection*{6.3.2 RADIATICN PIELD}

There is an agreement between the theoretical [Eor all mode combination] and experimentally obtained radiation field plots as far as overmall pattern shape is concerned. The theoretical plots show higher side lobes and slightly wider main lobe compared to the experimental. The theoretical gain is less than the experimental.

From the experimental radiation field plots, it is seen that the main beam has a circular cross section with an approximate E - and H - plane pattem symmetry compared to the waveguide alone. The sphere increases the gain and compresses the beam of the waveguide pattern. Even a hemisphere compresses the waveguide pattern and increases the gain by almost 3 dB . for \(\frac{d}{\lambda}=2.1\) or more the radiation field patterns appear to be Gaussian beam pattern.

It is seen that the dielectric sphere antenna gives 1-3 dB increase in gain over a uniformly illuminated equivalent aperture, depending upon the \(d / \lambda\). optimum

and Appendix 1; more than 100 filterbanks were produced.
v. The Application

As can be seen from Figure 1, the fllterbank was used in conjunction with a low-phase noise oscillator to form the IF section of a general purpose recelver. The operator of this receiver can select the frequency to be analyzed by choosing the syntheslzed oscillator's frequency and then can select the analysls bandwidth by choosing the approprlate filterbank channel. Following this module is a general demodulator module, which allows the operator to select one of a varlety of demiodulation techniques (AM, FM, PM and so forth).

Specifications for both the varlable oscillator and for the fliterbank will be presented, followed by data from the multichannel system. interesting performance parameters will be discussed in depth.

Appendix 1 presents the electrical specifications for the synthesized local oscillator shown in Figure 15 and also the electrical specifications for the filterbank shown inside the dotted line in Figure 1.

Figure 15 presents the schematic of the synthesized local oscillator. It is a single phase locked loop driven by an external, low noise reference oscillator at 10 MHz (supplled by the customer). It was fabricated using microstrip clrcuits and only screened components (resistors, inductors, capacitors, semlconductors) were used. Flgure 16 shows the phase noise for a typical production unlt. All electrical specifications were met over all the environmental conditions; thls includes the random vibration (whose level is about 7G RMS). Units were tested to 10 G RMS for more than four hours with no degradations of any specification (including phase noise and

Figure 14
gain is obtained for \(\frac{d}{\lambda} \simeq 2.1\) to 2.5 [Tables F Fig.9].

There is good VSWR matching for all the spherical antennas studied here over the frequency band \(7-12.4 \mathrm{GHz}\). The VSWR or retum loss shows mome type of resonance phenomena. The minimum VSWR \(\simeq 1.1\) while the maximum \(\simeq 1.6\) (Fig.11).

\section*{The sphere does not disturb but silghtly improves}

\section*{the axial ratio, if excited by a waveguide with a} circularly polarized signal. A choked flange at the back of the sphere reduces the side lobes, increasing the gain. The position of the flange from the open end of the waveguide can be experimentally adjusted for minimum axial ratio and maximum gain.

\section*{POTENTIAL APPLICATIONS:}

The good E - and \(H\) - plane pattern symmetry with circular beam cross section, low side lobes, Gaussian beam, excellent VSWR matching with the excitor, good axial ratio for circular polarized exciting agnal. focusing of the beam, small and compact size make the antenna under discussion a potential candidate for many applications as a primary antenna, secondary antenna and also a microwave applicator. A few of the applications are:

\section*{SPOT/GLOBAL BEAM ANTENNA FOR COMMUNICATION SATELLITES}

The antenna can be used to provide spot and global beams for geosyncronous communication satellites, with good axial ratio and low cross polar component with Eand H-plane pattern symmetry. With the use of a proper septum the antenna can be used for orthogonal polarization tranamisaion/reception of signals with isolation better than ori 30 dB . This would be a typical example of the antenna being used as a primary antenna. The small size of the antenna makes it quite attractive, especially for dual polarized global beam coverage, for \(\mathcal{E}_{r}=2.1, \frac{d}{\lambda} \simeq\) 2.5 is suitable for a global beam.

\section*{SHAPED WIDE BEAM ANTENNA:}

The inherent E- and H- plane pattern symmetry, good axial ratio for circularly polarized signal and excellent VSWR matching with the exciting structure properties of the dielectric phere antenna, are used in achieving a wide beam antenna with a dip in the centre of the pattern and geins at the beam edge. The pattem \(1 s\) such that for a 900 KMS orbiting spacecraft the antenna gain compensates for the path loss variations. Such an antenna has been developed for onboard use on the Indian Remote Sensing Satellite for tranamitting data at

SYNTHESIZED VARIABLE LOCAL OSCILLATOR


Figure 15

SYNTHESIZED OSCILLATOR PHASE NOISE


Figure 16
spur lous level).

\section*{VI. The Future}

The slze of the fllterbank presented here was 8.63 inches long by 6.5 Inches wide and 0.81 inches deep. The area occupled by four of the PIN diode switches was 2.5 inches by 2.0 Inches. Since the time that thls fliterbank was designed and built, Andersen has produced a hybridized version of the PIN diode switches that occuples an area of 1.25 inches by 0.75 inches and achleves better uniformity in a package that is less than half the slze of the discrete unit. These switches were used in a four channel fliterbank that measured 3.0 Inches by 2.0 Inches by .05 Inches.

In the filterbank descrlbed here, the matchling networks for the surface wave filters was external to the filter package. Since then, Andersen has produced filters with 60 dB of rejection where the matching networks were hybridized and internal to the surface wave filter package. The trend toward future systems is for higher frequencles, smaller slzes and improved performances. Hybridized fliterbanks achleving 80dB or more rejection at frequencies up to 1 GHz are realizable now and can be arranged to be screened to space quallification levels if desired. The combination of surface wave filters, with their abllity to do complex signal processing in small sizes, and hybridized switching and amplifying networks makes small, rugged and rellable modules for the next generation of communicatlons, radar and electronlc warfare systems.

X-band. The antenna developed is a dielectric sphere (hemisphere) excited in two orthogonal circular polarizations generated using a septum polarizer. on the dielectric sphere antenna six metallic diffraction strips have been symmetrically placed. The width of the strips is experimentally adjusted such that we get around \(\pm 65^{\circ}\) beam width with maximum gain \(\simeq+5\) dBi at \(\simeq{ }^{+}-65^{\circ}\) and a null at the centre \((\simeq-7 \mathrm{~dB})\). A corrugated reflector flange has been used to shape the beam at the edges. The diffraction strips widen the beam and give a null at the centre and gain at \(\pm 65^{\circ}\). The dielectric sphere maintains the E - and H plane pattern symmetry. since the strips are ymetrically placed the circular polarization remains unchanged. The antenna has been successfully developed. The practical antenna alongwith the pattem and the IRS Spacecraft is shom in Pig. 12.

DIELECTRIC SPHERE ANTENNA AS A PEED FOR A REFLECTOR:
The antenna under discussion can be used as a prime focus feed for reflector or feed for a Cassegrain reflector antenna. The dielectric sphere antenna, with its good axial ratio, E - and H - plane pattem symmetry and low aide lobes, can easily replace the conventional horn feed for Cassegrain reflectors.

The other applications of the dielectric sphere antenna can ba as a feed for a Compact Range Reflector and probes for near field measurements.

\section*{AS MICROWAVE APPLICATORS FOR MEDICAL USES:}

Since the dielectric sphere antenna provides a focussed beam of circular cross-section with side lobes suppressed, the system can be used effectively as a microwave applicator for clinical/medical uses. A few of the applications ares
1) Applicator for diathermy (non-contact type) the clinical technique used to achieve "deep heating'. that is inducing heat in tissues beneath the skin and subcutaneous fatty layers.
2) The system can be easily used for selective heating (re-warming) of cancer tumors in deeply cooled animals to enhance the effectiveness of tumor chemotherapy treatment. This technique is called differential hyperthermia.
3) These antennas can also be used for diagnosing and monitoring pathological cardio - pulmonary conditions.

The antenna system can be very effectively used in
cases where focusing of electromagnetic energy for

\section*{REFERENCES}

APPENOIX 1
[1] G. Hartmann. D. Bell and R. Rosenfeld, "Impulse Model Design of Acoustic Surface Wave Filters," IEEE Transact Ions on Mlerowave Theory and Techniques, vol. MTT-21, number 4, P. 171 (1973).
[2] S. Datta, Surface Acoustic Have Devices, Prentice-Hall, P. 12, section 1.2.3 (1986).
[3] D. Morgan, Surface Mave Devices for Slonal Processing, Elsevier, p. 66 (1985).

FILTER BANK SPECIFICATIONS
70 MHz nominal center frequency
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Channel Number & \[
\begin{gathered}
3 \mathrm{~dB} \mathrm{BW} \\
(\mathrm{MHz})^{1}
\end{gathered}
\] & \[
\begin{aligned}
& 1 L^{2} \\
& (\mathrm{~dB})
\end{aligned}
\] & \begin{tabular}{l}
Phase \\
Linear Ity \({ }^{3}\) max. ( deg.)
\end{tabular} & Passband Ripple max. (dB) & \[
\begin{aligned}
& \text { Fo } \\
& (\mathrm{KHz})
\end{aligned}
\] & Passband 5 Symmetry \\
\hline 1 & 0.1 & 29 & \(\pm 5\) & \(\pm 0.5\) & NA & \(\pm 58\) \\
\hline 2 & 0.3 & 34 & \(\pm 5\) & \(\pm 0.5\) & \(\pm 8.5\) & \(\pm 8 \%\) \\
\hline 3 & 0.5 & 36 & \(\pm 5\) & \(\pm 0.5\) & \(\pm 8.5\) & \(\pm 5 \%\) \\
\hline 4 & 0.75 & 38 & \(\pm 5\) & \(\pm 0.5\) & \(\pm 160\) & 55\% \\
\hline 5 & 1.5 & 41 & \(\pm 5\) & \(\pm 0.5\) & \(\pm 160\) & \(\pm 5 \%\) \\
\hline 6 & 4.0 & 45 & \(\pm 4\) & \(\pm 0.5\) & \(\pm 200\) & \(\pm 58\) \\
\hline 7 & 6.0 & 47 & \(\pm 4\) & \(\pm 0.5\) & \(\pm 250\) & \(\pm 5 \%\) \\
\hline 8 & 12.0 & 50 & \(\pm 4\) & \(\pm 0.5\) & \(\pm 500\) & \(\pm 5 \%\) \\
\hline
\end{tabular}
1. 3 dB BW tolerance \(= \pm 5 \%\), max.
2. IL tolerance \(= \pm 1 \mathrm{~dB}\), max
3. Phase ilinearity is the phase deviation from the best Ifnear fit over 80\% of the 3 dB BN.
4. Passband ripple is the amplitude rlpple over 80\% of the 3 dB BW Passband ripple is the amplatict the minlmum loss point.
excluding monotonic roll off from
5. Passband symmetry calculated at \(25^{\circ} \mathrm{C}\) by the following formula:

irradiation of biological organs is required. The comparative small size of the antenna makes it an excellent microwave applicator for clinical uses.

\section*{REPERENCES}
1. Kiely, D.G.. 'Dielectric Aerials', Methuen Monographs, 1953.
2. Watson, R.B. \& Horton, C.W.. 'The Radiation Pattern of Dielectric rods - Experiments \& Theory: Journ. Appl. Phys.. Vol.19, pp-661-670. Jsn - 1948.
3. Bekefi, G. G Farwell, G. W., 'A homogeneous dielectric sphere as microwave lens*. Can. J. Phys., Vol. 34, pp-790-803. Aug - 1956.
4. Chatterjee, J.S. \& Crosswall, W. F.. 'Waveguide Excited Dielectric Spheres as Feeds', IEEE Trans. Vol. Ap-20, pp-206-208, March 1972.
5. P.S. Neelakantazwamy \& D.K. Banerjee, 'Radiation Characteristics of a waveguide excited eielctric sphere backed by a metallic hemisphere*. IEEE Trans. AP-73. May pp-384-385.
6. Chatterjee, R.. 'Electromagnetic Boundary Value Problem of the Dielectric Sphere excited by adelta Function Electric \& Magnetic Sources', Journal of I.I.Sc.. Vol.55, Jan \(1973 \mathrm{pp}-16\)-31.
7. Ghosh, R.N.. 'Microwave Circuit Theory Ge Analysis'. Mc.Graw Hill, New York - 1963.
8. Stratton, J.A., 'Electromagnetic Theory', MC-Graw Hill Book Co.. Inc.. New York, 1941 pp-555-557.
9. Harrington, R.F.. 'Time Harmonic EM Fields', Mc-Graw H111 Book Co.. New York - 2961, pp-273-276.
10. PAL, S.. 'spheric Dielectric Antennas'. Ph.D.. Thesis Nov - 1984, Indian Institute of science, Bangalore.
11. Chen, M.H. \& Tsandoulass'. 'A wide band square waveguide array polarizer', IEEE Trans. AP - May 1973. pp-389-391.
\(\mathrm{mm} /-\)

\section*{FILTER BANK SPECIFICATIONS}

Rejection

Shape Factor
(all channels except 1 and 9 )

VSWR
(Input and output)
Two Tone, Third Order
Intermodulation
Input RF Power

Operating Temperatures
Channel Selection

> 80 dB , minimum on all channels from 5 MHz to 400 MHz outside seven 3 dB bandwidths from center frequency.

\section*{60 dB By \(=25, \max\).}

Frequency Control

Accuracy

Harmon ics
Spurlous
Phase Stablilty

Custome Supplied Source
\begin{tabular}{cc}
\begin{tabular}{c} 
Offset from \\
Carrler \\
( Hz\()\)
\end{tabular} & \begin{tabular}{c} 
Phase Noise" \\
\((\mathrm{dBC} / \mathrm{Hz})\)
\end{tabular} \\
10 & -98 \\
100 & -98 \\
1,000 & -120 \\
10,000 & -135 \\
above 10,000 & -145
\end{tabular}

Synthesize
Output
\begin{tabular}{cc}
\begin{tabular}{c} 
Offset from \\
Carrier \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Phase Nolse" \\
\((\mathrm{dBc} / \mathrm{Hz})\)
\end{tabular} \\
10 & -55 \\
100 & -55 \\
1,000 & -60 \\
10,000 & -80 \\
100,000 & -95 \\
\(1,000,000\) & -105 \\
\(2,000,000\) & -115 \\
above 2 MHz & \(<-120\)
\end{tabular}
* Single sideband phase noise in 1 Hz bandwidth.


FIG. 1 ANTENNA GEOMETRY

environental conditions (operating): synthesizer and filter bank
\begin{tabular}{|c|c|}
\hline Altitude: & Sea level to 15,000 feet \\
\hline Humldity: & MIL-STD-810, Method 507, Procedure I \\
\hline \multirow[t]{2}{*}{Vibration:} & MIL-STD-810, Method 514, Procedure IA, 514.2-2 \\
\hline & \[
\left(W_{0}=0.06 \mathrm{G}^{2} / \mathrm{Hz} \text { from } 15 \text { to } 2000 \mathrm{~Hz}\right)
\] \\
\hline Sand and Dust: & MIL-STD-810, Mathod 510, Procedure I \\
\hline Shock: & MIL-STD-810, Method 516, Procedure V \\
\hline
\end{tabular}



\title{
bandpass and bandstop filters in the 100 TO 1000 MHz FREQUENCY RANGE
}
or, "THE SEARCH FOR Q"

\section*{by}
R.v.Snyder

S Microwave Co.. Inc November 12. 1986

\section*{1.0}

Introduction

The frequency range between 100 and 1000 MHz has always posed special problems for the designer. Lumped element techniques are difficult to apply using conventional circuits because component values are of the order of parasitic levels, while distributed networks are too large for many applications.

Constructing networks which achieve economic and technical goals requires a compromise between size and \(Q\). Certain approaches place greater constraints upon the quality of capacitive elements while others demand higher \(Q\) inductive elements. In this frequency range much can be accomplished by combining lumped and distributed components in one structure, taking the best of both. In order to do this, it is necessary to characterize inductive and capacitive elements. Surprisingly, capacitors are more of a problem than inductors, insofar as \(Q\) is concerned. Thus, some circuits employ lumped inductances combined with distributed capacitors. The
"surprise" mentioned above is due to the lack of availability of high \(Q\) commercial lumped capacitors, contrary to what is indicated in the catalog of every capacitor manufacturer. of course, some designs use lumped capacitors and distributed inductors.

In this paper we will discuss lumped minimum phase bandpass filters with essentially symmetrical skirts. These filters are interesting because most such bandpass filters require "extra" low pass or high pass elements to increase the slope of one side of the stop band or must be overdesigned with the shortcomings of the less steep skirt kept in mind.

We will discuss bandstop filters which are lumped "analogues" of distributed circuits, which would be too large for general use in the frequency range under discussion.

Examples of the various networks will be given.

\subsection*{2.0 Lumped Bandpass Filters}

In this section, we will cover the following topics:
a. "Dumbell" or tubular types, semi-low pass
b. Capacitively coupled, semi-high pass (a la Cohn)
c. Alternating L-C for symmetrical response
d. Wide-band, i.e. greater than an octave
1. Conventional
2. Generalized Chebychev (for sharper skirts, smaller size, less loss)


Figure 1 presents typical schematics and response characteristics for (a)-(c), above. The symmetrical response of (c) results from the alternation of the series \(L\) and \(C\) elements. Contrast the conventional network shown in Figure 2. This network is actually semi-high pass in nature, resulting in an upper stopband slope not as steep as the lower. In similar fashion, the tubular network is semi-low pass, with consequent degradation of the lower slope. The alternating approach achieves slope symmetry and thus avoids the necessity of overdesigning for a less steep characteristic on one side of the passband. Figure 3 describes the approach used for the more interesting and innovative network of (d)-2. These generalized Chebychev filters offer a small range of element impedances combined with the sharp skirts resultant from the finite frequency transmission zeroes located near the passband. Thus, these filters offer the realization advantages of conventional chebychev filters with the sharp response of Elliptic Function designs. By realization advantage we mean that this design avoids the problem associated with a very large inductor coupled to a very small capacitor, or viceversa. The transmission zeroes are "scientific" traps which cause great attenuation near the passband but with little effect on the passband. Figures 4 to 6 show the circuit and response characteristics for two different examples of generalized Chebychev low-pass high-pass cascades connected to
achieve bandpass response. In these figures, the high attenuation near the passband edge is evident, as is the rippled nature of the stopband region. Power levels for filters of these types are relatively low, i.e. less than 10 watts for small units, somewhat higher if size can grow. Peak power levels can go to \(\mathrm{a} k\) of so. \(Q\) values range from 80 for the ferrite loaded low frequency units to 500 or more for units operating in the 500 to 1000 MHz range.

\subsection*{3.0 Distributed element types}

In this section, we will discuss the various types of distributed element (i.e. non-lumped element) filters that commonly are built. Our discussion will include:
a. Inductive, capacitive and iris couplings
b. Cavity filters-max bandwidth 10\%, low loss,large
c. Helical resonators-small, inductively coupled
d. Printed quarter wave types.

\section*{Inductively coupled filters are typified by the} helical resonator structures. Here, the resonant elements are wound coils which may be contained in a cavity. These coils have the electrical properties of a foreshortened quarter wavelength open circuited line. If the cavity encloses most of the coil, coupling from resonator to resonator occurs through an iris hole, and the inductively coupled design degenerates to an iris coupled one. Similarly, real capacitors may be used to couple the sections. As discussed in Section 2.0, inductive.



FIG. NO. 5 b
or capacitive coupling result in filters with non-symmetrical skirts. Proper iris configurations tend to achieve results similar to the alternating L-C design. Filters of this type are quite compact, but display \(Q\) values of only 200 to 500 . This \(Q\) value is dependent upon the size of the confining cavity; however, this is limited by the incidence of unwanted or spurious modes of resonance if the size is too great.

If the resonators are effectively quarter wavelength open circuited lengths of coaxial line, and the line is constrained within a cavity, the resultant resonant cavities can be conveniently coupled with irises. Filters of this type are relatively large, but achieve unloaded \(Q\) values of 1000 to 2000. Therefore, the insertion loss of filters built using this approach is usually quite low. Also, this approach my be easily tuned by using a variable length for the center coaxial section.

A very interesting approach is the use of printed quarter wave lines in variety of configurations. Figures 7 and 8 illustrate the design approach and response of such a filter. Although a printed design employs distributed line lengths, the dielectric loading reduces the physical size of such filters, at a cost of insertion loss. Unloaded \(Q\) levels of about 300 can be obtained. There are a wide variety of implementations available, including balanced suspended substrate, dielectric stripline, unbalanced microstrip,
confined microstrip, etc. This is a study in itself. Suffice it to say that application of the technique is not indicated if the application is for a narrow band, temperature stable design or if the skirts are required to display monotonicity below 40 or 50 db .
4.0 Lumped-Distributed types

It is possible to construct filters using a combination of lumped and distributed elements. Although no general synthesis exists as a closed form design, combinations of the response characteristics of lumped and distributed elements results in compact and efficient filters. We will discuss two examples: evanescent mode and it's close relative, the comb line.

A simple comparison of the two approaches will
explain why our discussion will really center on the evanescent design. The comb line filter employs coupled lines, with each line open circuit connected to a capacitor, which is in turn grounded. The equivalent electrical length of the linecapacitor combination is 90 degrees, resulting in a band pass filter response. The equivalent coupling network is derived using the assumption that a TEM wave is propagating in a slowwave meander-line fashion through the filter. Thus, the \(Q\) of the structure is calculated from TEM assumptions and the consequent performance of the filter is based upon that calculation. Evanescent (GR. "Decaying Spirit") mode filters


FREQ. 8.2 GHz DIA \(=75 \quad\) Eps \(=2.1\)

\[
\begin{aligned}
& \text { - E - PLANE EXPERIMENTAL } \quad \text {-... E - PLANE THEORETICAL } \\
& \text { - H - PLANE }
\end{aligned}
\]

FIG. G(d)FAR FIELD RADIATION PATTERN - EXPERIMENTAL / THEORETICAL

\[
\begin{aligned}
& \text { —— E - PLANE EXPERIMENTAL } \\
& \text {..... E - PLANE THEORETICAL } \\
& \text { - - H - PLANE }
\end{aligned}
\]

FIJ. G(b) FAR FIELD RADIATION PATTERN - EXPERIMENTAL / THEORETICAL.
utilize the scattering of waves from obstactles placed in below-cutoff waveguide to form high \(Q\) inductively coupled bandpass filters. A waveguide structure has a normally high pass frequency characteristic. By this is meant that frequencies lower than the cut-off frequency cannot normally proceed from one end of the waveguide to the other. The waves encounter a high impedance proportional to the dimensions of the waveguide. Note that any empty tube is a waveguide structure with cut-off dependent upon the cross-sectional dimensions of the tube. The tube can be of any geometric closed shape, including rectangular, circular, etc. We can represent the high-impedance properties by a simple circuit. This is shown in Figure 9. This "Pi" of inductors contains three elements. The shunt inductors are proportional to the cut-off frequency of the tube, while the series element is proportional to the length of the tube. If we resonate the shunt elements with capacitors and then cascade a numer of these sections, we obtain the illustrated bandpass filter.

Well, so what? How does this help us to achieve superior filters? Let us look further at the properties of a rectangular waveguide. The dominant mode (lowest possible frequency of operation) propagates through the waveguide in a very low loss manner. We can say that the losses associated with resonance are very low. As we decrease the frequency
below cut-off, the losses increase, but they were low to start with. Thus, although the evanescent filter operates below cutoff, the associated losses are low-as the computed \(Q\) started with a dominant waveguide mode assumption, not a TEM one. Further, the waveguide will not allow non-resonated frequencies to propagate through until a frequency well above cut-off is reached. By building the filter in a waveguide small enough (i.e. operating far below cut-off), one can build low loss filters with very high stopband to passband width ratios. In short, the evansecent filter can have very wide stopbands and is thus suited to wide spectrum applications. Such filters may be built with waveguide, connectors, pins or with combinations. Many such filters handle high power. The technique is applicable from 10 MHz to at least 40 GHz , for bandwidths from \(1 \%\) to \(80 \%\) Examples of both comb and evanescent filters will be given. Power levels can be as great as a few hundred watts with proper design of the resonators and loading capacitors. Q values can be 300 to 1000 for compact filters over the entire frequency range.

\subsection*{5.0 Equalizers}

The section on bandstop filters (Sec. 6.0)
will discuss amplitude equalization. Here, we will cover delay equalization of bandpass filters. We will show a slide in


WAVEGUIDE


30 DIA HEMISPHERE


50 DIA SPHERE

E PLANE -
H PLANE ----


FIG.NO. 7 (a) FAR FIELD RADIATION PATTERNS EXPERIMENTAL
FREQ \(=8.2 \mathrm{GHz}\) Eps=2.1


FREQ. 7.2 GHz .


FREQ. 8.2 GHz.


FREO 9.2 GHz

E PLANE -
H PLANE ----


FṘEQ. 10.2 GHz
FIG. NO. 7(b) FAR FIELD RADIATION PATTERNS ~ EXPERIMENTAL
which a bridged-tee lumped all-pass network is hooked in series with a Chebycher bandpass filter. The all-pass network adds "bumps" to the group delay characteristic of the combination without affecting the amplitude shape. A 100 MHz equalized filter will be shown and discussed.

\subsection*{6.0 Bandstop filters.}

In this section we will cover:
a. Distributed parallel coupled and capacitively coupled filters
b. Lumped bandstop filters, using low pass and high pass sections as inverters between resonators.
Figure 9A presents the schematics for both distributed and lumped bandstop filters. Figures 10 through 12 present the response characteristics for filters of this type. The 1 umped analogues have very similar characteristics to the distríibuted prototype units. Figure 13 shows a transformation from the simple open circuit case to an easier-to-build version using short circuited capacitors to foreshorten the resonators, in the same way that comb-line bandpass filters are achieved. A slide will be shown in which the basic distributed circuit is realized as a parallel-coupled air-strip line structure. This latter approach is useful when high power (several Kw ) is a requirement.

If the \(Q\) of the bandstop filter is intentionally reduced, the ultimate attenuation of the bandsop filter is reduced. As well, the stopband becomes nonreflective as the low \(Q\) circuit absorbs the energy, rather than reflecting it. This phenomena is useful for building amplitude equalizers. In this application, it is desired to have a shaped amplitude characteristic without sacrificing VSWR. Several examples will be given.
7.0 Conclusions

We have tried to show that diversity is the name of the game in the 100 to 1000 MHz range. Many problems are faced in achieving small size and low loss. Element \(Q\) values are critical, and commercial capacitive elements are just not compatible with the impedance levels required within the filters. Ohmic losses within the capacitors are worsened due to the low filter impedances, in some applications. A variety of techniques have been presented which should enable the budding designer to "leap" into the field, hopefully with new ideas.


(zH 5 S'8 'Oヨy

\(F / 6.2\)

TABLE - I
\begin{tabular}{|c|c|c|c|c|c|}
\hline S1.No. & DESCRIPTION & 7.2 GHz & 8.2 GHz & 9.2 GHz & 10.2 GHz \\
\hline 1. & \begin{tabular}{l}
WAVEGUIDE - GAIN IN DB \\
a) MEASURED \\
b) UNIFORM APERTURE
\end{tabular} & \[
\begin{aligned}
& 6.7 \\
& 7.08
\end{aligned}
\] & \[
\begin{gathered}
10.2 \\
8.24
\end{gathered}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.2
\end{aligned}
\] & \[
\begin{aligned}
& 10.6 \\
& 10.1
\end{aligned}
\] \\
\hline 2. & \begin{tabular}{l}
30 mm dia - GAIN IN DB \\
a) MEASURED \\
b) OPTIMISED \\
c) UNIFORM APERTURE \\
d) THEORETICAL
\end{tabular} & \[
\begin{gathered}
10.7 \\
11.7 \\
7.08 \\
.
\end{gathered}
\] & \[
\begin{array}{r}
13.4 \\
14.6 \\
8.24 \\
14.48
\end{array}
\] & \[
\begin{gathered}
10.5 \\
- \\
9.2
\end{gathered}
\] & \[
\begin{gathered}
12.3 \\
- \\
10.1
\end{gathered}
\] \\
\hline 3. & \begin{tabular}{l}
50 mm Hia - GAIN IN DB \\
a) MEASURED \(\qquad\) \\
b) OPTIMISED \\
c) UNIFORM APERTURE \\
d) THEORETICAL
\end{tabular} & \[
\begin{gathered}
12.5 \\
14.5 \\
11.5 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 14.4 \\
& 16.4 \\
& 12.7 \\
& 13.25
\end{aligned}
\] & \[
\begin{aligned}
& 14.8 \\
& 15.4 \\
& 13.7
\end{aligned}
\] & \[
\begin{aligned}
& 12.6 \\
& 13.7 \\
& 14.6
\end{aligned}
\] \\
\hline 4. & \begin{tabular}{l}
75 mm dia - GAIN IN DB \\
a) MEASURED \\
b) OPTIMISED \\
c) UNIFORM APERTURE \\
d) THEORETICAL
\end{tabular} & \[
\begin{gathered}
16.0 \\
16.7 \\
15.0 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 17.6 \\
& 18.3 \\
& 16.2 \\
& 14.28
\end{aligned}
\] & \[
\begin{gathered}
18.0 \\
18.6 \\
17.2 \\
-
\end{gathered}
\] & \[
\begin{aligned}
& 16.3 \\
& 17.0 \\
& 18.9
\end{aligned}
\] \\
\hline 5. & \begin{tabular}{l}
100 mm dia - GAIN IN DB \\
a) MEASURED \\
b) OPTIMISED \\
c) UNIFORM APERTURE \\
d) THEORETICAL
\end{tabular} & \[
\begin{aligned}
& 16.5 \\
& 18.9 \\
& 17.5
\end{aligned}
\] & \[
\begin{aligned}
& 17.3 \\
& 17.7 \\
& 18.7 \\
& 16.89
\end{aligned}
\] & \[
\begin{aligned}
& 16.8 \\
& 17.9 \\
& 19.6
\end{aligned}
\] & \[
\begin{aligned}
& 16.3 \\
& 16.6 \\
& 20.6
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sl. No.} & \multirow[b]{2}{*}{SPHERE DIAMETER} & \multicolumn{2}{|l|}{AXIAL RATIO :IN dB} & \multicolumn{2}{|r|}{GAIN IN dB} \\
\hline & & WAVEGUIDE \& SPHERE & \begin{tabular}{l}
WAVEGUIDE \\
CHOKE \& SPHERE
\end{tabular} & \begin{tabular}{l}
SPHERE \\
© W/G
\end{tabular} & W/G + SPHERE \& CHOKE POSITION OPTIMISED \\
\hline 1. & 30 mm dia & 1.5 & 1.0 & 13.4 & 14.8 \\
\hline 2. & 50 mm dia & 1.0 & 0.8 & 14.4 & 16.9 \\
\hline 3. & 75 mm dia & 1.0 & 0.5 & 17.6 & 18.6 \\
\hline 4. & 100 mm dia & 2.0 & 1.8 & 17.3 & 17.9 \\
\hline
\end{tabular}


bercre concamitzation

FEDIFRD PASSAND: 20 TO 480 ME
inermion loss: 2.5 do nax
SHOPAN: 60 d min at 10 Mtz and 560 Mt , up to 1200 Mtz
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
5NOE 2/17/86 \\

\end{tabular}} \\
\hline a & 50 & \\
\hline 2 & 3. \(¢-07\) & \\
\hline \multirow[t]{2}{*}{59} & . 5 & \\
\hline & 100 & \\
\hline 5 & 1.28E-10 & \\
\hline \multirow[t]{2}{*}{5:LCD} & R= . \(5 \mathrm{~L}=2.72 \mathrm{E}-07\) & C= 6. \(21 \mathrm{E}-10\) \\
\hline & 6.21E-10 & \\
\hline \multirow[t]{2}{*}{\(5 R\)} & . 5 & \\
\hline & 100 & \\
\hline SC & 1.28E-10 & \\
\hline SRLCP & \[
\begin{aligned}
& R=.5 L=2.72 E-07 \\
& 6.21 E-10
\end{aligned}
\] & \(C=6.21 E-10\) \\
\hline \multirow[t]{2}{*}{58} & . 5 & \\
\hline & 110 & \\
\hline SC & 1.28E-10 & \\
\hline \(x\) & 3. \(\mathrm{E}-07\) & \\
\hline oc & 6. 15-12 & \\
\hline \multirow[t]{2}{*}{5 S} & . 5 & \\
\hline & 100 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { s. } \\
& \text { sicico }
\end{aligned}
\]} & 1.6E-A & \\
\hline & \[
\begin{aligned}
& A=.5 L=1.1 T \mathrm{~T}-00 \\
& 0 . E-12
\end{aligned}
\] & \[
c=6.18-12
\] \\
\hline \multirow[t]{2}{*}{53} & . 5 & \\
\hline & 100 & \\
\hline 5. & 1.6E-08 & \\
\hline sem & \[
\begin{aligned}
& A=.5 L=9.8 E-09 \\
& 7.2 E-12
\end{aligned}
\] & C= 7.2E-12 \\
\hline \multirow[t]{2}{*}{57} & . 5 & \\
\hline & 100 & \\
\hline & 1.6E-(18) & \\
\hline \multirow[t]{2}{*}{\[
5:
\]} & A= . \(5 \mathrm{~L}=9.8 \mathrm{E}-09\) & C: \(7.23-12\) \\
\hline & 7.2E-12 & \\
\hline \multirow[t]{2}{*}{\(5{ }^{\text {R }}\)} & . 5 & \\
\hline & 100 & \\
\hline \multirow[t]{2}{*}{s. 5 5.5} & 1. \(6 E-06\) & \\
\hline & \[
\begin{aligned}
& 9=.5 L=1.17 E-98 \\
& 6.1 E-12
\end{aligned}
\] & \(C=6.1 E-12\) \\
\hline \multirow[t]{2}{*}{5 S} & . 5 & \\
\hline & 103 & \\
\hline 3 & 1. \(6=-\) ce & 15 \\
\hline 3 & 6. 1E-13 & \\
\hline 25 & 50 & \\
\hline
\end{tabular}
(HI)
(HI) 1. \(00000 E+07\)
2.0000E +07 2.0000E 007
3.0000E +07 4. \(0000 \mathrm{E}+07\)
5. \(0000 \mathrm{E}+07\)
6.0000E+07 7.0000E 07 8. 0000 +07 9. \(00006+07\) \(1.0000 E+08\)
\(1.1000 E+08\) 1. \(1000 \mathrm{E}+00 \mathrm{O}\)
1. \(2000 \mathrm{E}+08\) 1. \(3000 \mathrm{E} E+08\) \(1.4000 E+008\)
\(1.5000 E+00\)

\section*{1. \(6000 E+08\)}







2. 70006 E 08
2. \(90000 \mathrm{E}+508\)
3. \(0000 \mathrm{E}+0 \mathrm{~B}\)
\(3.1000 E+08\)


FIG. IO VARIATION OF SOURCE FIELO COMPONENTS WITH \(\phi\)

(20.

FREQUEMCY W 6 Hz
FIG.II RETURN LOSS OF THE ANTENNA SYSTEM




ADD CAPACITIVE PINS:

RESULT:
INDUCTIVELY
COUPLED
BAND PASS FILTERS
WITHOUT SPURIOUS
UNTIL \(f>f c\)


EVANESCENT MODE PRINCIPLE
F16.9

\(N=3\) D/STR/BUTED
BAND STOP FHLTER


NOB LUMPEO LQUIVALENT BAND STOP F/LTER
PI CIRCUITS USEO A5 90' INVERTERS PAS5BAND MANTAINED TO AOOUT \(1.4 \omega_{0}\) (H/GHER ORDER INNFRTERS PROVIOD WIDER ASSSEAND) (APAC/TIVE AI (HIGH AH5S) MAINTAINS PA55AANS DOWN TO \(0.7 \omega_{0}\) BUT up TO 2 \(\omega_{0}\) ar \(3 \omega_{0}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
；OXE DISTR：BTED ROWOSTOD FILER
\end{tabular}}} \\
\hline & & & & & & \\
\hline & \multicolumn{6}{|c|}{50} \\
\hline ！ & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Jil}} & \multicolumn{4}{|l|}{20＝ 145.1 Lemit 7.5 Velacity factora 1} \\
\hline ＂ & & & \multicolumn{4}{|l|}{1} \\
\hline \(\vdots\) & \multicolumn{2}{|l|}{：2} & \multicolumn{4}{|l|}{\(15+09\)} \\
\hline 0 & & & \multicolumn{4}{|l|}{500} \\
\hline 3 & \(5 \pi\) & & \multicolumn{4}{|l|}{10＝ 76.3 Lewgit 7.5 VELCITY Factione 1} \\
\hline 0 & & & \multicolumn{4}{|l|}{1 ，} \\
\hline 4 & 2r． & & \multicolumn{4}{|l|}{IO \(=85.5\) Levathe 7.5 VELOCITY FACTOR＝ 1} \\
\hline \(\bigcirc\) & & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\frac{1}{1 E+09}
\]}} \\
\hline 5 & TR & & & & & \\
\hline 0 & & & \multicolumn{4}{|l|}{500} \\
\hline \％ & 5 L & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{20＝ 76.3 LEgTh 7.5 velocity Factop \(=1\)}} \\
\hline \({ }^{\prime \prime}\) & & & & & & \\
\hline 7 & J & & \multicolumn{4}{|l|}{20＝ 145.1 Lengite 7.5 Velcity faction 1} \\
\hline 0 & & & \multicolumn{4}{|l|}{1} \\
\hline \(s\) & \％ & & \multicolumn{4}{|l|}{\(15+09\)} \\
\hline \multirow[t]{2}{*}{0} & & & \multicolumn{4}{|l|}{500} \\
\hline & \％ 3 & & 50 & & & \\
\hline Frearncy & \multicolumn{3}{|l|}{insertion loss} & \multicolumn{2}{|l|}{Retuen loss} & imar Impenace \\
\hline （ HL ） & （DB）PNGL & & （98） maz & HEAL & JIfact） & \\
\hline 5．5000＋ 5 ＋08 & \[
-0.11+
\] & 136.3
+154.2 & \[
\begin{aligned}
& -16.44 \\
& -16.97
\end{aligned}
\] & \[
\begin{aligned}
& +133.2 \\
& +115.9
\end{aligned}
\] & 59.8 & \[
\begin{aligned}
& -13.45 \\
& -14.22
\end{aligned}
\] \\
\hline \(6.0000 E+18\) & －0．08 & －173．7 & －19．25 & ＊\％． 5 & 50．05 & －10．98 \\
\hline 6．5000e＋08 & －0．04 & ＋196．8 & －30．\(\%\) & ＋76．0 & 49.19 & －2． 69 \\
\hline 7．0000E +08 & －0． 16 & ＋ c 26.8 & －16． 30 & －137．7 & 61.26 & 12.93 \\
\hline 7．5000e＋18 & －．． 35 & ＋c68． 7 & －6．07 & －179．4 & 148．94 & 1.88 \\
\hline 8． \(\mathrm{OOCO}+\mathrm{CB}\) & －5． 84 & ＋319．1 & －1．45 & ＋130．1 & 22.65 & －103 34 \\
\hline 5．54ike \({ }^{\text {a }}\) & －16．14 & ＋1．8 & －0． 26 & ＋87．2 & 1.45 & －47．60 \\
\hline S．0MO．08 & －-5.78 & －34． 2 & －0．09 & ＋54．2 & 0.33 & －25． 58 \\
\hline  & －44．65 & ＋60．7 & －0．08 & ＋26．0 & 0.23 & －11．55 \\
\hline 1．WOOE 09 & －140．91 & ＋78．5 & －0．00 & －0．4 & 0.23 & 0.16 \\
\hline  & －43．94 & \(+300.5\) & －0．09 & －26．8 & 0.27 & 11.90 \\
\hline  & －ç5．42 & ＋327．0 & －0． 12 & \(-53.0\) & 0.42 & 26.03 \\
\hline 1． \(15006+09\) & －13．90 & ＋359．7 & －0．31 & －88．2 & 1.73 & 48.4 \\
\hline  & －5．72 & ＊ 2.5 & －1．57 & －131．3 & 25.55 & 105.38 \\
\hline －． \(5005 \mathrm{c}+09\) & －1．34 & ＊2． 7 & －6． 32 & ＋178．4 & 143．17 & －4．89 \\
\hline 1． 3000 COP & \(-0.19\) & －134．2 & －16．76 & ＋137．4 & 60.64 & －12．17 \\
\hline －． \(3500 \div \times 19\) & －0．07 & ＋163．9 & －30．04 & －76．8 & 49.20 & 3.02 \\
\hline 1．4030以 & 20．11 & 186.9 & －19．17 & －97．3 & 50.19 & 11.09 \\
\hline
\end{tabular}



量
霊掌





（11M1M1


 



客






Average Efficiency of Power Amplifiers

\section*{Frederick H. Raab, Ph.D.}

Green Mountain Radio Research Company Vermont Avenue, Fort Ethan Allen Winooski, Vermont 05404

\section*{ABSTRACT}

Accurate prediction of the heat dissipation and power consumption of power amplifiers and transmitters requires knowledge of their average efficiency. Since the instantaneous efficiency of a PA depends upon the signal amplitude relative to the peak-envelope power (PEP), the average efficiency depends upon hoth the type of power amplifler and the type of signal being amplified. This paper relates average power input, power output, and efficlency to the characteristics of the PA and the probability-density functions (p.d.f.s) of the signal. The p.d.f.s for variety of commonly used signals, including twotone SSB/SC, single-tone AM, Uniform, QAM, Rayleigh, Laplacian, Gaussian, Gaussian AM, and Laplacian AM are presented. The average efficiencies of class-A, -B, and -D PAs are then derived for two-tone and Rayleigh-envelope signals.

\section*{1. INTRODUCTION}

Accurate prediction of the average efficiency and/or power consumption of a power amplifier (PA) or transmitter is required in many applications. Some
examples of radio-system components and parameters that depend upon the efficlency and power consumption are:
- Battery life,
- Solar-cell, battery, or generator capacity,
- Heat-sink size and weight,
- Ancillary cooling requirements, and
- Operating costs.

Knowledge of the average-efficlency characteristics allows the designer to make intelligent decisions based upon the costs and benefits of different system approaches. For example, class-D RF PAs and class-S AM modulators have better efficiencies than do class-C RF PAs and class-B series-pass AM modulators, but are also more complex and expensive \([1,2]\). Knowledge of the aver-age-efficiency characteristics of class-G PAs, envelope-tracking systems, outphasing systems, and Doherty systems is necessary to set their parameters for maximum-efficiency operation.

The efficiency of a \(P A\) generally vartes with the amplitude of the signal, and usually increases to a maximum value at the peak envelope power (PEP) or maximum signal voltage. Efficiency curves for typical class-A, \(-B\), and \(-D P A s\) are shown in figure 1a.

Since FM and CW signals have only one amplitude level, knowledge of the efficiency and input power at PEP is sufficient. Inspection of the curves in Figure ia shows that modest improvements in efficiency are achieved by changing the class of amplification.

In contrast, amplitude-modulated signals (including SSB, television, and


PESOWATOR SLOPE
PARAMIETER \(=X_{J i}=\frac{\pi}{4} Z_{S i}\)


LENGTH NOT INCL CAPACITOR

APPENDIX:
EQUIVALENCE OF \(\lambda / 4\) OPEN CIRCUIT (O.C.) STUR
FILTER TO SHORT CIRCUITED, CAPACITIVELY COUPLED STUB FILTER WITH EQUIVALENT STUB LENGTH PLUS CAPACITOR PHASE SHIFT TOTALING \(\lambda / 4\).
SEE EQS (1) - (A)
(1) \(x_{J i}=\frac{\pi}{4} z_{s i}\)
(2) \(F\left(\phi_{i}\right)=\phi_{i} \sec ^{2} \phi_{i}+\tan \phi_{i}\)
(3) \(F\left(\phi_{i}\right)=\frac{2 x_{J i}}{Z_{i}}\)
(4) \(\omega_{0} C_{i}=\frac{1}{Z_{i} \tan \phi_{i}}\)
\[
F 16.13
\]


Figure 1. Efficiency and p.d.f. Curves.
multicarrier relay) and wideband signals contain a variety of different amplitudes that produce a variety of different instantaneous efficiencies. The p.d.f. for a typical multitone SSB or multicarrier envelope (Figure lb) shows that low- and middle-level amplitudes are far more prevalent than amplitudes near PEP. At the most likely amplitude, the efficiencies of the class-A, \(-B\), and -n PAs of Figure la differ considerably, hence significant improvements in the average efficiency can be expected by changing the class of amplification.

It would be natural to define average efficiency as the average of the Instantaneous PA effictency. However, average efficiency thus defined is an Interesting indicator of PA performance but otherwise useless. A preferable definition is the ratio of the average output and average input powers; that is
\[
\begin{equation*}
\eta_{\text {AVG }}=\frac{P_{\text {oAVG }}}{P_{i A V G}} \tag{1}
\end{equation*}
\]

Inspection of the amplifier-efficiency and signal-p.d.f. curves of Figure 1 shows that average efficiency depends upon both PA characteristics and signal characteristics. This paper develops the relationships that can be used to predict average efficiency, and gives the p.d.f.s for a variety of commonly used signals. Example calculations are performed for class \(-\mathrm{A},-8\), and -0 PAs.

\section*{2. CHARACTERISTICS OF SIGMALS}

Signals can be classifted as either wideband or narrowband. Instantane-

FIGURE 14
LUMPED ELEMENT BANDPASS

ous PA efficiency and input power are generally related to the instantaneous amplitude (voltage) of a wideband signal, or to the instantaneous envelope of a narrowband signal [1].

The statistical characteristics of the signal amplitude are described by its probability-density function (p.d.f.). Integration of a p.d.f. over a particular range of amplitudes gives the probability that the signal amplitude is within that range [5]; i.e..
\[
\begin{equation*}
P\left(v_{1} \leqslant v<v_{2}\right)=\int_{v_{1}}^{v_{2}} p(v) d v . \tag{2}
\end{equation*}
\]

The relationship of the p.d.f. to a signal voltage or envelope is illustrated in Figure 2. The full-wave rectified sinewave is, of course, a deterministic (rather than random) signal. Nonetheless, the p.d.f. Is an appropriate means of describing the amount of time spent at each amplitude.

The p.d.f. can be derived from the waveform or envelope by using the definition of the p.d.f. to equate corresponding areas under the two curves, as illustrated in Figure 2. The "probability" of the angular-time variable o being in an interval of width \(d \theta\) is \(d \theta / 2 \pi\). If only one of the points at which the waveform has voltage \(V\) is considered, then
\[
\begin{equation*}
p(V) d v \cong d \theta / 2 \pi \tag{3}
\end{equation*}
\]

Taking the limit as \(d \theta * 0\) and rearranging produce
\[
\begin{equation*}
p(V)=|d \theta / d V| / 2 \pi . \tag{4}
\end{equation*}
\]


Figure 2. Derivation of p.d.f. from waveform.

\section*{a phase lock loop that horks - almost}

PART 1
michael f. black

\section*{semior member technical staff \\ texas instruments \\ defense systems and electronics group}

A Phase Lock Loop That Works - Almost Part 1.

So the system phase lock loop has been built. All the study and calculations are finished. The natural frequency and damping ratios have been set. The long awaited VCD is installed, and now the loop is closed.

Just as anticipated, it works. Hell maybe it almost works. A few adjustments and it will be fine. Many adjustments and lots of frustrating hours later it still almost works.

Ooes this sound at all familiar? There seems to be a lot of phase lock loops that never fully meet the expectations of their creators. Some may have never worked at all or work only after an application of "black magic". In this article some of basic problems that keep a phase lock loop from working correctly will be examined.

\section*{Basics of Loop Problem Analysis}

It is important to keep in mind that a phase lock loop is a phase/frequency domain system. The loop may be buried deep in a totally digital IC board and used to generate computer clocks for timing but it remains a phase/frequency domain system. Thus frequency measurement techniques must be employed to properly verify the operation.

Designers with a digital logic background frequently rely on clock jitter measurements observed on an oscilloscope as a primary trouble shooting tool. Unfortunately in most cases time domain observations tell only a small part of the whole story To understand and analyze the loop operation prepare to move into the frequency domain.

Three rules of experience can be used to guide loop trouble shooting and verification. These may seem at first to be almost trivial but a rigorous adherance will almost guarantee the expected PLL performance.

The first rule is that all components of the loop must work by themselves as intended. Not only must parts like the VCO and phase detector work as described in the spec sheets but they must work correctly when mounted in place on the circuit board. Most of these parts are sensitive analog components and require a bit of consideration. A phase lock loop running from a five volt logic bus surrounded by many watts of TTL or ECL circuits is in trouble already.

The second rule is that the components when connected together open loop must work perfectly. More about this later but suffice to say without perfect open loop operation, there is little hope for the closed loop.

The third rule applies in cases of modulated or pulsed signals. The loop must work as predicted for CH inputs or again there is small hope for operation with modulation.

If it can be accepted that these levels of perfection are required at each step, the PLL designer will have much higher success ratio and fewer of the almost loops.

> Beginning Trouble Shooting

Phase lock loop circuits often have other extra circuits attached to them. Frequency search circuits and phase lock indicators are cases in point. These must be separated out early to get the loop down to its basics. Before a search circuit can be properly evaluated it has to be shown that the loop will

The full-wave rectified sinusold is represented by
\[
\begin{equation*}
V(\theta)=|\sin \theta| \tag{5}
\end{equation*}
\]
hence
\[
\begin{equation*}
\theta= \pm \arcsin V \pm n \pi / 2, \tag{6}
\end{equation*}
\]
and
\[
\begin{equation*}
|d \theta / d v|=\left(1-v^{2}\right)^{-1 / 2} \tag{7}
\end{equation*}
\]

Since there are four intervals in \(\theta\) that make equal contributions to \(p(\eta\). the p.d.f. is
\[
\begin{equation*}
p(\eta)=(2 / \pi)\left(1-v^{2}\right)^{-1 / 2} \tag{8}
\end{equation*}
\]

The average values of desired parameters are computed by integrating the product of the parameter and the p.d.f. of the signal envelope or voltage over the appropriate range. The average input power is therefore given by
\[
\begin{equation*}
P_{i A V G}=\int_{0}^{V_{\text {max }}} P_{i}(v) p(v) d v, \tag{9}
\end{equation*}
\]
where \(P_{i}(V)\) is the instantaneous input power. In the absence of an analytical form for input power, interpolation in a table of measurements can be used.

Power output is proportional to the square of the instantaneous voltage or envelope. The average power output with a wideband signal is therefore
\[
\begin{equation*}
P_{\text {OAVG }}=\int_{0}^{V_{\max }} V^{2} p(V) d V . \tag{10}
\end{equation*}
\]

Since the envelope of a narrowband signal modulates a sinusoidal carrier, and integration of the square of that carrier over one cycle produces a factor of 1/2, the average power output with a narrowband signal is
\[
\begin{equation*}
P_{\text {oAVG }}=\frac{1}{2} \int_{0}^{V_{\max }} V^{2} p(V) d V \tag{11}
\end{equation*}
\]
3. PROBABILITY-DENSITY FUNCTIONS

This section presents a number of p.d.f.s that are useful in the analysis of the average effictenctes of power amplifiers. As discussed subsequently, a particular p.d.f. may apply to the instantaneous voltage of a wideband signal, the envelope of narrowband signal, or both.

The p.d.f.s presented below are hased upon the normalization
\[
\begin{equation*}
V=V_{o m} / V_{o m P E P} \tag{12}
\end{equation*}
\]
for narrowband signals or
\[
\begin{equation*}
V=\left|v_{o}\right| / v_{\text {omax }} \tag{13}
\end{equation*}
\]
for wideband signals. These normalizations conventently limit the range of
phase lock once the VCO and reference are brought within range.
A quick analysis of whatever problems the loop exhibits may point out a course of action. But a good place to start most trouble shooting is with the camponents.

The three essential components of any PLL are the phase detector, the foop filter and the vCO. Usually the VCO is the most difficult hardware design of these components. The loop filter may require the most analytical work but in terms of the required parts it is usually very simple. A good phase detector is somewhere in between. The design requires a mixture of analytical effort and hardware effort to meet the PLL requirements.

\section*{What Makes a Good VCO}

For most considerations in a PLL, the actual operating frequency of the vco is not a factor. Divider delays and very high fractional ratio loop band widths may require the loop frequency in the calculations. For the average loop these are not a problem. But these are second order effects. So the vCO is considered as a loop element with an input/output transfer function.

Most literature advocates taking three or four frequency measurements by changing the control voltage and from this deriving a gain factor Kv . Kv for most loop analysis is in rad/sec/volt so any frequency change/voltage change ratios must be multiplied by \(2 \pi\) to convert \(\Delta, H z / \Delta\) volts to the value required for loop formard gain.

The few points usually recommended for frequency measurements are not enough to guarantee a design. Computer controlled measurement equipment now makes a hundred point sweep with a high resolution graph a job that can easily be done in less than a minute. The sweep should extend to the voltage limits that
could ever possibly be expected in loop operation.
The graph should be examined very carefully for slope changes, flat spots or at worst slope inversions. The trace without exception must be smooth and monotonic over all input voltages. The oscillator power supply should be varied over its extremes and the graph rerun. If operation over temperature is required the graph should again be repeated.

Over the enviromental extremes a simple lateral shift of the control curve can usually be corrected by the loop. Slight slope changes can usually also be handled. But extreme changes in either cannot be tolerated.

A spectrum analyzer is almost essential at this point for any serious investigation. Using a low If bandwidth and narrow frequency sweep, the VCO output should be closely tracked across the control voltage range. Harmonicaly related spectral lines are to be expected. But lines that come and go that are not a multiple of main output should be looked into. Output variations with power supply and temperature extremes should also be checked. An oscillator does not have a little parasitic oscillation. Either it is clean or it has a problem. Any parasitic oscillation must be eliminated before using the VCO.

The VCO should also be checked over its full range for affects on the output by the load. Driving into any reasonable load the tuning must remain smooth with no breaks or discontinuities. Any tendency towards load pulling demands more isolation on the oscillator output. With a TTL output device this is as simple as adding another gate in series with the oscillator. Linear waveform units will require a pad or isolation amplifier.

Oscillator phase jitter is a parameter that is often ignored unt il it is too late. Logic clocks seem to exhibit a particular lack of concern. If the
values to
\[
0<v<1 .
\]

The second normalization requires the effictency of wideband PAs to be expressed in terms of the absolute value of the instantaneous output voltage.

The first and second moments are defined by
\[
\begin{equation*}
\mu_{1}=\int_{0}^{1} V p(V) d V \tag{15}
\end{equation*}
\]
and
\[
\begin{equation*}
\mu_{2}=\int_{0}^{1} V^{2} p(V) d V \tag{16}
\end{equation*}
\]

These quantities are the average voltage and average squared voltage, and appear frequently in average-efficiency analyses.

The peak-to-average ratio \(\xi\) is defined as the ratto of the peak output power or peak envelope power (PEP) to the average output power. For both wideband and narrowband signals, the normalizations produce
\[
\begin{equation*}
\xi=P_{o \text { max }} / P_{o A V G}=1 / \mu_{2} . \tag{17}
\end{equation*}
\]

For full-carrier amplitude-modulated (AM) signals, the modulation peak-to-average ratio is also of interest. Since the normalized modulating voltage is 1 imited by (11) to \(1 / 2\) (for a carrier level of \(1 / 2\) ), \(P_{\text {max }}=1 / 4\) and
\[
\begin{equation*}
\xi_{m}=P_{\text {max }} / P_{m \mathrm{mVG}}=1 /\left(4 P_{m \mathrm{AVG}}\right) . \tag{18}
\end{equation*}
\]

\section*{Two-Tone Envelope}

The full-wave rectified sinewave given by (4) and shown in Figure 2 occurs for
- Wideband amplification of a constant-amplitude sinusoid,
- Marrowband amplification of DSB/SC signal with single-tone modulation,
- Narrowband amplification of an SSB/SC signal resulting from two equal-amplitude tones, and
- Certain types of data signals employing two-tone AFSK modulation. The third case is the commonly used two-tone test signal, as is eastly shown by trigonometric substitutions.

The p.d.f. of the two-tone envelope is given by (7) and shown in Figures 2 and 3. It is apparent that the amplitudes near PEP are more likely than those near zero. For deterministic signals such as this, most calculations are more easily performed in the time domaln. However, the p.d.f. is useful for inclusion in numerical-evaluation programs that incorporate other p.d.f.s. Time-domain integration ylelds \(\mu_{1}=2 / \pi\) and \(\mu_{2}=1 / 2\), hence the peak-to-average ratto is
\[
\begin{equation*}
\xi=1 / \mu_{2}=2+3 d B . \tag{19}
\end{equation*}
\]
frequency is right, the PLL must be right seens to be the rule But this is not the entire story. Phase noise specifications may be derived fram involved statistical processes but the effects of a noisy loop are obvious. Television pictures from a noisy sync scan are fuzzy on the edges. Clock gates that are supposed to arrive at a particular time occasionally don't make it. These are direct time domain examples of phase noise

A PLL will attempt to clean up a VCO output and make it look like a replica of the input reference. But this action can only function inside the loop bandwidth. Outside the loop bandwidth, the VCO spectral output is basically unchanged. It looks like the free running output noise. A simple solution might seen to be to make the loop bandwidth as wide as possible and eliminate all noise. For a multitude of reasons this is not the solution.

The only solution that produces results is to use a VCO with the least possible noise that will fit the loop needs. At different frequency ranges, different oscillators are optimum. At a few Mz, typically current tuned RC oscillators are the noisest, \(L C\) varactor tuned oscillators are a big improvement and valtage controlled crystal oscillators are among the quietest. Figure l contrasts the spectral noise output of a standard current tuned RC DIP oscillator and a simple TTL varactor tuned LC oscillator. Although the observed spectral noise has AM and FM noise components, the overwelming majority of the noise power is concentrated in phase noise. The difference between the two oscillator output is obvious. The 40 dB more noise from the RC oscillator was more than enough to keep a major computer system clock generator on hold until it was replaced with the LC oscillator.

Phase noise can only be properly evaluated with a spectrum analyzer. observing time domain jitter on a clock edge for instance with an oscilloscope is a very subjective measurement. Differences between oscillator performance that can only be guessed at with an oscilloscope become as clear as the contrasting traces in Figure 1.

One last VCO characteristic that affects the loop operation is the modulation frequency response roll off. As previously mentioned the VCO is simply a block in a PLL. The output frequency is not a concern. The gain factor Ky is the DC gain factor for this block. The information that is missing is the poles and zeroes of the transfer function. This is not necessarily the same as the modulation bandwidth specifications. There does not seem to be wide spread industry agreement on the meaning and measurement of modulation bandwidth. There is virtually no information available on the actual VCO transfer function nor is there a recognized measurement method. In lieu of this the best choice is to specify a modulation bandwidth several times higher than the widest loop bandwidth anticipated. This will be disccussed in more detail later on

A VCO must be constructed with special consideration. As mentioned, tight voltage regulation and output isolation are musts. It should be separated from digital circuits. Digital clock circuit paths should not cross the VCO layout area. Only with this type of special attention can a VCO be expected to perform as required

A Phase Detector Check

The phase detector serves as the loop error detector providing error information for loop control. Two types of detectors are in frequent use; the balanced mixer


Figure 3. P.d.f.s for two-tone envelope and single-tone AM.


Figure 4. P.d.f.s for uniform and QAM envelopes.

\section*{Single-Tone \(A M\)}

A full-carrier AM signal with 100 -percent modulation by a single tone is described by
\[
\begin{equation*}
V(\theta)=(1 / 2)(1+\sin \theta) \tag{20}
\end{equation*}
\]
hence application of the method of Section 2 produces
\[
\begin{equation*}
p(V)=(2 / \pi)\left[1-(2 V-1)^{2}\right]^{-1 / 2} \tag{21}
\end{equation*}
\]

Time-domain integration of \((20)\) yields \(\mu_{1}=1 / 2\) and \(\mu_{2}=3 / 8\), hence the peak-to-average ratio
\[
\begin{equation*}
\xi=1 / \mu_{2}=8 / 3+4.3 d B \tag{22}
\end{equation*}
\]

\section*{Uniform}

When all signal amplitudes are equally likely, they are said to be uniformly distributed and have the p.d.f.
\[
\begin{equation*}
p(v)=1 . \tag{23}
\end{equation*}
\]
which is shown in Figure 4. This p.d.f. occurs for
- The limiting case for certain amplitude companders,
- Full-carrier AM with triangular or sawtooth modulation, and
- Wideband amplification of triangular or sawtooth waveforms.

Integrals (15) and (16) yield \(\mu_{1}=1 / 2\) and \(\mu_{2}=1 / 3\), hence the relatively
and the logic level frequency/phase detector. Each has distinct advantages and problems.

For any detector the phase conversion function should be verified. At and near the point of intended operation the input phase differential versus output voltage graph must be smooth and linear. The graph must be monotonic and free of any hint of flat spots or slope inversions. This point is a particular problem with logic level frequency/phase detectors

Figure 2 is a simplified version of the logic level MC4344 type of detector Recent articles have discussed in detail sampling delays through these devices However Figure 2 will illustrate a more major problem. Figure 2 shows two negative edge triggered flip flops with a NAND gate for feedback to a common clear line. When both \(Q\) outputs go high the gate will clear the flip flops. When both inputs are at the same frequency and the falling edges line up the detector op amp output should declare zero phase. However, the time delay through the gate and through the flip flop clear produces some curious results Since the time delay is fixed it represents a greater phase ambiguity at higher requencies. Thus the 4344 type detector that works well at 100 KHz is in real rouble at 10 MHz . Phase flat spots at zero phase produce a zero gain slope. Some units have been observed to produce a reverse gain slope across a small region. This results in positive loop feedback and a loop oscillation in the positive feedback region. The vCO output will have a seemingly incurable jitter in this situation. The phase detector is being used beyond the maximum input frequency.

The mixer phase detector does not normally display crossover flat spots. It is likely to be used for tracking filters with analog inputs and most applications
above 50 HHz . Since this phase detector is not a frequency discriminator, an external search loop of some sort is usually employed. To evaluate the phase detector or the PLL, this search loop should be disabled and a manual method used to establish frequency proximity. This prevents one loop from interfering with the other.

As a loop element, the phase detector's DC transfer function is the slope \(K_{0}\) \(\Delta\) volts/ \(\Delta\) phase evaluated at the intended operating point. With a mixer type phase detector this is shown to be \(A\) volts/rad when the beat note output is a sine wave of peak amplitude \(A\) volts. If the output is not sinusoidal, a spectrum analyzer will provide the fourier series coefficients. For a waveform with \(V=A \sin -8 \sin 39+C \sin 50-\ldots\) reference 2 shows the slope \(K_{0}\) at zero volts to be \(K_{0}=A-3 B+5 C\) \(\qquad\) volts/rad.

This allows accurate slope determination for any waveform. However, the slope will change if the loop does not hold at crossover or if mixer of fsets cause zero volts output to not represent \(90^{\circ}\) or \(7 / 2\) radians. In either case the phase detector gain is reduced as the loop operating moves away from \(90^{\circ}\).

Neglecting any cross-over problems, the frequency/phase detector has a more constant slope \(\mathrm{Ko}_{0}\) over its range. This is a big advantage in extending acquisition bandwidth and in demodulation schemes. The output as shown is balanced. To provide a distinct point that can be labeled as the phase detector utput a differential input op amp may be used. The input low pass network is used to roll off fast logic edges that are beyond the bandwidth capabilities of the following op amp.
low peak-to-average ratio
\[
\begin{equation*}
\xi=1 / u_{2}=3 * 4.8 \mathrm{~dB} \tag{24}
\end{equation*}
\]

Because the uniform p.d.f. is often amenable to analytical evaluation of averages, it can be a useful means of checking for proper operation of numericalevaluation programs.

\section*{Quadrature-Amplitude Modulation}

Quadrature-amplitude modulation (QAM) is an efficient means of maximizing data-transmission capability by separate amplitude modulation of the \(I\) and \(Q\) components of the signal. For example, sixteen-symbol QAM transmits four bits of information per data symbol.

In contrast to FSK, PSK, and QPSK, QAM produces a number of different signal amplitudes. For a small number of symbols, the average power and efficiency are easily evaluated by determining the specific amplitudes and their probabilities. Results for 16-, 64-, and 256-symbol QAM are given in [6].

As the number of symbols in QAM increases, the signal space becomes a uniformly filled rectangle with the peak-envelope power occuring at the corners of the rectangle. The p.d.f. (Figure 4), of this infinitely packed QAM signal is
\[
P(V)= \begin{cases}\pi V & , 0<v<1 / 2^{1 / 2}  \tag{25}\\ \pi V-4 V \arctan \left(2 v^{2}-1\right)^{1 / 2}, 1 / 2^{1 / 2}<v<1 .\end{cases}
\]

The first and second moments of this p.d.f. are (from numerical integration)
\(\mu_{1} \cong 0.5411\) and \(\mu_{2} \cong 0.3333\). The peak-to-average ratio is therefore
\[
\begin{equation*}
\xi=1 / \mu_{2}=3 * 4.8 \mathrm{~dB} . \tag{26}
\end{equation*}
\]

\section*{Gaussian}

The sum of a large number of well behaved, independent random variables tends to have Gaussian p.d.f. [5]. Broadcast sound [7], certain radar and sonar pulses [7], music [8], and other signals can be assumed to be Gaussian in the absence of other statistical data. The envelope of a DSB/SC signal modulated by such sounds is also Gaussian.

Since most PAs are characterized in terms of the absolute value of the instantaneous output voltage or the envelope, it is convenient to use the sin-gle-sided Gaussian p.d.f. If the small area above \(V=1\) is ignored (which is reasonable for \(\xi>5 \mathrm{~dB}\) ), the average output power for a wideband signal is \(\sigma^{2}=\mu_{2}\), hence
\[
\begin{equation*}
\xi=1 / \sigma^{2} \tag{27}
\end{equation*}
\]

The p.d.f. can now be written as
\[
\begin{equation*}
p(V)=(2 \xi / \pi)^{1 / 2} \exp \left(-V^{2} \xi / 2\right) . \tag{28}
\end{equation*}
\]

The integral (14) is evaluated by converting \(2 V d V\) into \(d V^{2}\), which produces
\[
\begin{equation*}
u_{1}=(2 / \pi)^{1 / 2} \sigma=(2 \xi / \pi)^{1 / 2} \tag{29}
\end{equation*}
\]

As shown in Figure 5, increasing the peak-to-average ratio makes low ampli-

Thus higher order mixer products are reduced before they can appear as side bands on the VCO output. This input rolloff along with any poles contributed by the op amp combine with Kv to form the complete phase detector block transfer function. In most cases these poles are inconsequential but in a wide band loop they may begin to nibble away at the phase margin.

The op amp could be eliminated and the double ended detector outputs be connected to a differential input loop filter. This has the advantage of saving parts but as will later be discussed some valuable trouble shooting and loop verification aids are greatly reduced.

Phase detectors of either type are fairly simple circuits. Their correct operation as loop building block must again be carefully checked. A smooth, monotonic transfer curve is essential. This is the loop error detector. The loop can only correct with the degree of accuracy that this element can provide.

\section*{Loop Filter}

The selection of loop filter values has been the subject of many excellent books and articles. Most of these deal with idealistic situations in which all loop parameters are available and well defined. References 3,4 and 5 are the exception in that many real world problems are clearly pointed out. The loop filter will contribute an additional pole at the origin to determine the loop type, but the order and in large part the phase margin are set by factors beyond the designer's immediate control. Through the combination of op amp poles and VCO modulation poles a type two second order loop is shown to quickly evolve to a fifth or higher order loop.

The loop filter is about the only part of the loop over which a designer has a great deal of control. Through a combination of analysis and measurement, the
higher order effects may be accounted for and in many cases the loop bandwidth and phase margin re-established.

The loop filter remains though an op amp and just a few resistors and capacitors. Selection of appropriate amplifier is important. PLL's above 25 KHz in bandwidth normally will require a wide band op amp. An open loop DC gain of loods or more with a first breakpoint no lower than 1 XHz will keep loop phase margin degradation to minimum. Narrower bandwidth loops do not require such wide band op amps.

The tradeoff from using a wide band op amp usually comes from its inability to provide exacting \(D C\) balance and low leakages and offsets.

Leakage currents restrict the magnitude of input resistors that may be considered. With higher leakage currents and if the input resistor value becomes to large, the resultant voltage drop can move the desired loop phase set point. Lower bandwidth amplifiers usually have much lower leakages and thus do not present a problem.

Another problem that may appear on a finished printed wiring board is bulk mode leakage through the board material. This can be a particular nuisance in a board with all the parts mounted in plated through holes. Tiny leakage currents from power supplies and other sources can combine at the op amp input and force the phase detector output to provide a balancing current. This current is produced by the phase detector output moving off ground with a resultant input/output phase offset. This problem is usually noticed when a breadboard loop filter built in some casual fashion works well with little


Figure 5. Gaussian p.d.f.s.


Figure 6. Rayleigh p.d.f.s.
tudes more likely. Peak-to-average ratios in the range of 10 to 15 dB are typical [b].

\section*{Rayleigh}

Independent Gaussian \(I\) and \(Q\) components of equal power produce a Ray-leigh-distributed envelope and a uniformily-distributed phase. The sum of independent Rayleigh phasors is itself a Rayleigh phasor, and the sum of a large number of well behaved independent phasors tends toward a Rayleigh phasor [5]. The Rayleigh p.d.f. is therefore appropriate [1, 6, 9] for the envelope of a narrowband signal in applications such as
- SSB/SC signals resulting from notse-like modulation,
- Multiple-carrier relay signals, and
- Independent-sideband (ISB) transmissions.
it is convenient to write the p.d.f. as
\[
\begin{equation*}
p(v)=2 v \xi \exp \left(-v^{2} \xi\right) \tag{30}
\end{equation*}
\]

If the area above \(V=1\) is included, integration produces \(\omega_{2}=1 / 5\). From [5] or standard integral tables,
\[
\begin{equation*}
\mu_{1}=(\Sigma a)^{1 / 2 / 2}=(\pi / 4 \xi)^{1 / 2} . \tag{31}
\end{equation*}
\]

The effect of the peak-to-average ratio upon the p.d.f. is shown in Figure 6. In multicarrier-relay applications, \(\xi\) is easily related to the amplitudes and/or number of the carriers [1]. The average output power is simply the sum of the powers of the individual carriers, since they are of different
of fset, but the finished product shows a phase skew.
The offset and resultant shift can be severly affected by temperature, humidity and the manufacturing processes to which the board is subjected. It can be a nuisance in a CW PLL and a disater in a pulsed or bandwidth switching loop. Leakage can also reduce the apparent DC gain. Without a pole at the origin, the loop is reduced to a high gain type one system. The phase error then shifts with frequency. Keeping the input resistors as low as possible will minimize the problem. Mounting critical elements with clinched leads in unsupported holes will also help.

As with the other loop elements the loop filter must work by itself as an integrator before including it in a PLL. Simple voltage step inputs to observe the ramp voltage, \(D C\) leakage tests for output drift and input offset measurements will verify the hardware.

In evaluating problems in a PLL remember changing filter values is probably the simplest thing that can be done. For most loops a designer does not need to retreat deep into system analysis to find the problem. If the hardware is functioning properly and the loop still doesn't work, there is probably a unknown pole or delay. Change the filter values. Drop the bandwidth and try it again. A stable bandwidth will come out of this where the loop will lock. Theory and measurement will meet. The simplicity of the loop filter provides the design slack to back the loop bandwidth down then carefully bring it back up while cataloging unkown disturbances along the way.

End Part 1 Phase Lock Loop Components

figure 2 - Functional illustration of logic LEVEL FREQUENCY PHASE DETECTOR
frequenctes and therefore mutually orthogonal. However, the peak power is proportional to the square of the sum of the peak voltages, since at some point in time all carriers add in phase. Given \(N\) carriers of equal amplitudes, the peak-to-average ratio is therefore
\[
\begin{equation*}
\xi=P_{\text {OPEP }} / P_{\text {OAVG }}=N^{2} / N=N \tag{32}
\end{equation*}
\]

\section*{Flat-Topped Rayleigh}

The probability of flat topping by a signal with a Rayleigh-distributed envelope is
\[
\begin{equation*}
P_{F T}=\int_{i}^{\infty} p_{R}(V) d V=\exp \left(-\xi_{R}\right) \tag{33}
\end{equation*}
\]
where \(p_{R}\) and \(\xi_{R}\) represent the p.d.f. and peak-to-average ratio, respectively, of the original signal. The probability of flat topping is only \(\mathbf{4 . 2}\) percent for \(\xi_{R}=5 \mathrm{~dB}\), and drops rapidly to 0.005 percent at \(\xi_{R}=10 \mathrm{~dB}\).

In most applications, satisfactory accuracy can be obtained by using the standard Rayleigh p.d.f. and ignoring the small contributions due to \(V>1\). However, when the peak-to-average ratio is very low the effects of flat topping cannot be ignored. A flat-topped Rayleigh p.d.f. [10] can then be formed from the standard Raylelgh p.d.f. and the Dirac delta function:
\[
\begin{equation*}
P_{P}(v)=P_{R}(V)+P_{F T} \delta(V-1) \tag{34}
\end{equation*}
\]

The moments of this p.d.f. must be computed numerically. In addition, special
handling of this p.d.f. is required in numerical-evaluation programs to ensure accurate accommodation of the contributions of the delta function.

\section*{Laplactan}

The Laplacian (also called one-sided exponential) p.d.f. (Figure 7) applies to
- Speech waveforms [11] and
- SSB/SC envelopes produced by speech modulation [9].

The gamma p.d.f. is sald to be a better approximation to the true p.d.f. of speech [12], but its additional complexity is not warranted for PA averageeffictency analysis.

The Laplacian p.d.f. has the form
\[
\begin{equation*}
p(V)=(2 \xi)^{1 / 2} \exp \left[(2 \xi)^{1 / 2} v\right], \tag{35}
\end{equation*}
\]
which produces \(\mu_{2}=1 / \xi\) if the area above \(V=1\) is included. The first moment is then
\[
\begin{equation*}
\mu_{1}=\sigma / 2^{1 / 2}=(2 / \xi)^{1 / 2} . \tag{36}
\end{equation*}
\]

\section*{Gaussian AM}

Full-carrier amplitude modulation by a Gaussian signal produces an RF signal with a Gaussian-AM envelope. The envelope p.d.f. is a Gaussian p.d.f. whose mean is the amplitude of the unmodulated carrier. By analogy to (28),

\section*{VCO Tests}

A Design Example

As part of a design example illustrating the techniques of this article, the problems and test data for a 1 MHz type two second order phase lock loop will be traced from the component test through the final closed loop data. The first item for test is the VCO.

The VCO is a varactor tuned circuit built expressly for illustrating various problems. The graphs and pictures represent actual measured data encountered during laboratory tests. Computer controlled test equipment has been extensively employed to create accurate, repeatable high resolution plots.

Figure A plots the frequency variation around 1 MHz versus the input control voltage for the VCO. This graphs seems to show a wide range of fairly constant slope from volts to +10 volts.

However, a slope analysis using a small moving window for a least squares linear regression curve fit produces the results of Figure B. This graph plots the slope of the curve in figure \(A\) versus the input control voltage. A careful examination of Figure \(A\) will show small flat spots at about 0 , 7.5 and 9.5 volts. These are dramatically pointed out in figure \(B\) where the slope changes drastically at these points. The slope graph highlights what might easily be missed in figure A. Clearly this is not acceptable. A spectral examination did in fact show the presence of parasitic oscillations at these points.

After the VCO circuit problems were corrected, the data for Figure \(C\) was recorded. The corresponding slope graph figure \(D\) shows the slope is fairly
constant between 4 volts and 8 volts. Figure \(E\) is new data for high resolution frequency at 1 MHz ( 0 Hz delta frequency). This plot still seems smooth and completely monotonic. Figure \(F\) bares this out. The slope data shows an almost constant slope from 5.5 volts to 7.5 volts. This will nicely center the VCO at 6.5 volts for 1 miz operation with a slope \(\mathrm{Kv}=2660 \mathrm{~Hz} /\) volt.

Figure \(G\) is a spectral plot of the VCO with assorted parasitic oscillations. If the If bandwidth of the analyzer is too high during a search for unwanted oscillations they inay never be found.

Figure \(H\) is the spectral plot of the finished VCO. Note the lack of any hint of umanted oscillations and the sharp clear center frequency spectral line without wide noise skirts.

\(p(n)\)


Figure 7. Laplacian p.d.f.s.
\(p(n)\)


Figure B. Gaussian-AM p.d.f.s.
\[
\begin{equation*}
p(V)=\left(2 \xi_{m} / \pi\right)^{1 / 2} \exp \left[-2 \xi_{m}(V-1 / 2)^{2}\right] \tag{37}
\end{equation*}
\]

The first moment is simply the carrier level; 1.e.. \(\mu_{1}=1 / 2\).
If the areas for \(v<0\) and \(v>1\) are included, the second moment is easily obtained by sumaing the carrier and modulation powers:
\[
\begin{equation*}
\mu_{2}=1 / 4+1 / 4 \xi_{m^{*}} \tag{38}
\end{equation*}
\]

The RF peak-to-average ratio is therefore related to the modulation peak-toaverage ratio by
\[
\begin{equation*}
\xi=4 \xi_{m} /\left(\xi_{m}+1\right) \tag{39}
\end{equation*}
\]

Gaussian-AM p.d.f.s for several modulation peak-to-average rat los are shown in Figure \(B\).

\section*{Laplacian AM}

Full-carrier amplitude modulation by a Laplacian signal produces an RF signal with a Laplacian-AM envelope. The p.d.f. is, by analogy to (37).
\[
\begin{equation*}
p(V)=\left(2 \xi_{m}\right)^{1 / 2} \exp \left[-2\left(2 \xi_{m}\right)^{1 / 2}|V-1 / 2|\right] \tag{40}
\end{equation*}
\]

Laplacian-AM p.d.f.s for several modulation peak-to-average ratios are shown in Figure 9. The moments and the relationship between \(\xi\) and \(\xi_{m}\) are the same as those for Gaussian AM.


Figure vco-b - slope analysis of 1 miz vco tuning curve

figure vco-d - slope analysis of vco tuning curve after PARASITIC OSCILLATIONS WERE ELIMINATED


CONTROL VOLTAGE VOLTS
figure vco-e - high resolution vco tuning curve after center


Figure 9. Laplacian-AM p.d.f.s.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PA} & \multirow[b]{2}{*}{\(v_{\text {eff }} / v_{C C}\)} & \multicolumn{4}{|c|}{navg} \\
\hline & & cw & two-tome & RAYLEIGH
\[
\xi=10 \mathrm{~dB}
\] & RAYLEIGH
\[
\xi=20 \mathrm{~dB}
\] \\
\hline \multirow{2}{*}{Class A} & 1.0 & 0.500 & 0.250 & 0.050 & 0.005 \\
\hline & 0.9 & 0.450 & 0.225 & 0.045 & 0.004 \\
\hline \multirow{2}{*}{Class B} & 1.0 & 0.785 & 0.617 & 0.280 & 0.089 \\
\hline & 0.9 & 0.707 & 0.555 & 0.252 & 0.080 \\
\hline \multirow{2}{*}{Class D} & 1.0 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline & 0.9 & 0.900 & 0.887 & 0.781 & 0.530 \\
\hline
\end{tabular}

Table 1. Average efficiencles.

\section*{4. AVERAGE-EFFICIENCY CALCULATIONS}

The theory and probability-density functions derived in the preceding sections are now used to calculate average-efficiency for several cases of interest. The examples include
- Class-A,
- Class-B, and
- Class-D

\section*{power amplifiers, with}
- Two-tone test signal,
- Rayleigh-envelope with \(\xi=10 \mathrm{~dB}\), and
- Rayleigh-envelope with \(\xi=20 \mathrm{~dB}\).

Similar approaches can be used to calculate the average efficiency with other PAs and/or other signals.

The method used here is to relate the average input and output power to the peak-envelope output power. The average output power is independent of the PA and is obtained from (17). The results are summarized in Table 1.

\section*{Class A}

In class-A PAs, the transistors are biased so that the collector current(s) are positive at all times. The quiescent current (hence dc input current) must therefore be at least as equal to the maximum output current at PEP. In addition, the true supply voltage \(V_{C C}\) is reduced to an effective supply voltage \(V_{\text {eff }}\) by the saturation voltage \(V_{\text {eat }}\) of the transistor(s). For a

\section*{Phase Detector Tests}

A double balanced diode mixer will work well as a phase detector. Figure A plots the output of a TO-5 50 ohm unit with 1 MHz inputs. The response is a smooth cosine wave with a zero crossing at 90 degrees. Figure B plots the slope of the data in Figure \(A\) using a linear regression least squares fit. It is important to note that the peak slope in volts/radian at 90 degrees from Figure \(B\) is equal to the peak voltage output at zero degrees from Figure \(A\). Figure C provides a high resolution look at the zero crossing area. Figure \(D\) plots the phase slope for the same region. Note that the slope is constant but with some curious dips. These dips would cause an open loop gain increase of about ten percent. Most closed loops could tolerate this without serious impact.

Figure \(E\) provides a wide phase sweep of a TTL frequency/phase detector constructed of 54500 series gates with a differential input op amp.

Figure \(F\) shows the slope is constant at 2 volts/radian over \(\pm 150\) degrees except for the dip around zero degrees.

Figure \(G\) provides an expanded high resolution of the crossover region. Some of the problems caused by gate delays become apparent. These delays cause the rough, bumpy appearance of the trace. Figure \(H\) shows that the slope is indeed erratic around crossover. The slope at crossover is observed to be 3 volts/radian, a substantial increase over the wide sweep value of 2 volts/ radian. This 50 percent increase in phase slope would cause a corresponding increase in open loop gain. Such an increase would sertously reduce the phase margin and stability of most loops if not properly accounted for. The slope
data from the high resolution graph should be used in any closed loop component or stability calculations. This phase detector with a phase slope of 2.954 volts/radian will be used for this example

Figure I illustrates the results from another version of the TTL detector that is currently in wide use. Note the flat spot between 0 and +2 degrees. In this region the phase gain is zero or slightly positive. A loop using this detector might lock but would oscillate within this 2 degree window. If this probler. had not been discovered the output from a PLL using this detector would shake and no amount of loop bandwidth adjustment would help.

\section*{References}
. Floyd M. Gardner, "Phase Lock Techniques", 2nd Edition, John Wiley and sons, NY, 1979.
2. , "Phase Noise Measurements Techniques", Hewlett Packard, May 1982.
3. A.B. Przedpelski, "PLL Primer Part I", Rf Design, March/April, 1983.
4. A.B. Przedpelski, "PLL Primer Part II", RF Design, May/June 1983.
5. A.B. Przedpelski, "PLL Primer Part III", RF Design, July/August, 1983.
push-pull PA,
\[
\begin{equation*}
v_{e f f}=v_{C C}-v_{e a t} \tag{41}
\end{equation*}
\]

For a complementary PA, \(V_{\text {eat }}\) is multiplied by 2. The dc input power and instantaneous efficiency are therefore [1, Chapter 12]
\[
\begin{equation*}
P_{i}=v_{C C} I_{o m P E P}=\frac{v_{C C}}{v_{e f f}} \cdot 2 P_{o P E P} \tag{42}
\end{equation*}
\]
and
\[
\begin{equation*}
n=\frac{v_{o f f}}{v_{c c}} \frac{v_{o m}^{2}}{v_{o m P E P}} \tag{43}
\end{equation*}
\]

The parabolic efficiency curve is shown in Figure 1 . The effects of \(F E T\) on resistance can similarly be reduced to a ratio of \(V_{e f f} / V_{D D}\).

The dc input current is constant, hence \(P_{i A V G}=P_{i}\). The average efficiency is therefore
\[
\begin{equation*}
n_{A V G}=\frac{1}{2 \xi} \cdot \frac{v_{\text {eff }}}{v_{C C}} \tag{44}
\end{equation*}
\]

Insertion of \(\xi=2\) for the two-tone envelope gives a maximum effictency of 25 percent, which is reduced by the ratio \(V_{\text {eff }} / V_{C C}\). Similarly, signals with Rayletgh envelopes and 10- and 20-dB peak-to-average ratios are amplified by class-A PAs with maximum average efficiencies of 5.0 and 0.5 percent, respec-
tively.

\section*{Class B}

In class-B PAs, the transistors are blased so that each conducts current for approximately half of the time. The dc input current is \(2 / \pi t\) tmes the maximum instantaneous output current [1]; the instantaneous efficiency is therefore proportional to output voltage, as shown in Figure 1 . As in a class-A PA, saturation voltage produces an effective supply voltage that is lower than the true supply voltage. The Instantaneous dc input power is therefore
\[
\begin{equation*}
P_{i}=-\frac{v_{C C}}{v_{e f f}} \frac{v_{o m}}{v_{o m P E P}} P_{o P E P} \tag{45}
\end{equation*}
\]

The ratio \(V_{o m} / V_{\text {ompep }}\) is the normalized output voltage \(V\) deffned in (11) and used throughout this paper. Consequently,
\[
\begin{equation*}
P_{i A V G}=-\frac{4}{v_{c C}} \mu_{1} P_{\text {eff }} \tag{46}
\end{equation*}
\]
and
\[
\begin{equation*}
n_{A V G}=\frac{4}{\mu_{1} \xi} \cdot \frac{v_{e f f}}{v_{C C}} \tag{47}
\end{equation*}
\]

Substitution of \(\mu_{1}\) and \(\xi\) for the two-tone signal ytelds


figure phase detector-b - slope analysis of double balanced mixer phase transfer curve

figure phase detector-d - slope analysis of double balanced mixer at zero voltage crossing

figure phase detector-f - slope analysis of til phase detector TRANSFER CURVE
\[
\begin{equation*}
n_{A V G, T w o-T o n e}=\frac{n^{2}}{16} \frac{v_{e f f}}{v_{c C}} \cong 0.617 \frac{v_{e f f}}{v_{C C}} . \tag{48}
\end{equation*}
\]

A substitution from (30) for the Rayleigh envelope similarly yields
\[
\begin{equation*}
n_{A V G, R a y l e i g h}=\left(\frac{\pi}{4 \xi}\right)^{1 / 2} \cdot \frac{v_{\text {eff }}}{V_{C C}} . \tag{49}
\end{equation*}
\]

For peak-to-average ratios of 10 and 20 dB , the average efficiencles of an ideal class-B PA ( \(V_{\text {sat }}=0\) ) are only 28 and 8.9 percent, respectively. While these represent considerable improvements over those of the class-A PA, they are nonetheless considerably smaller than the 78.5-percent efficiency at PEP.

\section*{Class 0}

Class-D PAs employ a pair of transistors that are driven to switch at the carrier frequency [1], followed by a series-tuned tank circuit to produce a sinusoldal output. The efficiency of an ideal class-D PA is 100 percent; however, saturation voltage, saturation resistance, and charging of the collector or drain capacitance reduce the efficiency.

The power expended in charging linear shunt capacitance is proportional to the output power and therefore reduces both PEP and average efficiencies by the same factor. The power required to charge voltage-dependent capacitance results in a power-input function [13] that must be averaged numerically.

The supply voltage of a class-D PA must be varied to produce amplitude-
modulated RF signals. The effects of the BJT saturation-voltage drop are overcome by increasing the modulator output at all levels by a fixed voltage. The instantaneous Input power of an amplitude-modulated class-D PA is therefore
\[
\begin{equation*}
P_{i}=P_{o}+\frac{2 V_{s a t} V_{o m}}{w R} \tag{50}
\end{equation*}
\]
hence its instantaneous efficiency is
\[
\begin{equation*}
n=\frac{v_{o m}}{v_{o m}+(4 / \pi) v_{s a t}} \tag{51}
\end{equation*}
\]

It is convenient to rewrite the instantaneous input power as
\[
\begin{equation*}
P_{i}=P_{o}+V P_{o P E P} \tag{52}
\end{equation*}
\]
where
\[
s=\left\{\begin{array}{l}
v_{\text {eat }} / V_{\text {effPEP, }} \text { push-pull PA }  \tag{53}\\
2 v_{\text {eat }} / V_{\text {effPEP, }}, \text { complementary PA }
\end{array}\right.
\]
represents the saturation-power-loss factor. The average input power is then
\[
\begin{equation*}
P_{i A V G}=P_{\text {oAVG }}+e \mu_{1} P_{\text {oPEP }} \tag{54}
\end{equation*}
\]
and the average efficiency is

figure phase detector-g - til phase detector transfer curve at zero voltage crossing
 at zero voltage crossing

figure phase detector-1 - phase transfer curve of another til phase detector
\[
\begin{equation*}
\pi_{A V G}=\frac{1}{1+\mu_{1} \xi} . \tag{55}
\end{equation*}
\]

Substitution of \(u_{1}\) and \(\xi\) for the two-t one envelope yields
\[
\begin{equation*}
\eta_{\text {AVG, Two-tone }}=\frac{1}{1+(4 / \pi)} \text {, } \tag{56}
\end{equation*}
\]
hence \(\eta_{\text {AVG }}=0.887\) for \(=0.1\). Substitution of \(\mu_{1}\) from (30) yields
\[
\begin{equation*}
n_{\text {AVG, Rayleigh }}=\frac{1}{1+\varepsilon(\pi \xi / 4)^{1 / 2}} \tag{57}
\end{equation*}
\]
for Rayleigh-envelope signals, hence average efficiencies of 0.781 and 0.530 for \(\varepsilon=0.1\) and \(\xi=10\) and 20 dB , respectively. These efficiencies represent considerable improvements over those of class-8 PAs.

\section*{5. REFERENCES}
1. H. L. Krauss, C. H. Bostian, and F. H. Raab, Solid State Radio Bngineering. New York: John Wiley and Sons, 1980.
2. F. H. Raab, "High efficiency amplification techniques," IESE Circuits and sfatema Journal, vol. 7. no. 10, pp. 3-11. December 1975.
3. T. Sampel, S. Ohashi, Y. Ohta, and S. Inoue, "Highest efficiency and super quality audio amplifier using MOS power FETs in class 6 operation," IEBE Traneaction on Conelamer Electronies, vol. CE-24, no. 3, pp. 300
307, August 1978.
4. F. H. Raab, "Efficiency of outphasing power-amplifier systems," IEEE Transactions on Communications, vol. COM-33, no. 10, pp. 1094. 1099, October 1985.
5. P. Reckmann, Probability in Commmieation Bnginesring, Mew York: Har-
court. Brace \& Morld. Inc., 1967.
6. A. A. M. Saleh and D. C. Cox, "Improving the power-added effictency of FET amplifiers operating with varying-envelope signals," IEEF "raneactions on Miorowave Theory and Techniquas. vol. 31, no. 1, pp. 51-55. January 1983.
7. 1. I. Livshits, "Influence of the type of transmitted information on the energy parameters of an amplifier." Telecommunications and Radio Engineenergy parameters of an amplifier," Telecommanications
ering, part 2, vol. 28, no. 4, pp. 91-95, April 1973.
8. T. Sampel and S. Ohashi, "High efficiency and high fidelity class-E audio amplifier," Imanecations of Institute of Electronto Commmications Enginamplifier," Inanecotione of Institute of ELectronio Commu
cering (IBCE) of Japan, vol. 75, no. 231 (EA75-70), 1976.
9. V. M. Rozov, "Measurement of the average efficiency of high-frequency power amplifiers." Telecommications and Aadio Bnginearing, vol. 31, no. 7. part 1. pp. 45-49, July 1977.
10. J. King, "Skylink readies its 'thin-route' mobile satellite service." Mierowaves \& RP, vol. 23, no. B, pp. 39-61. August 1984.
11. F. Baert, "The design of power amplifiers driven by signals with known probability density functions," Intemational Joumal of Electronios (GB), vol. 39. no. 2. pp. 219-227. August 1975.
12. L. R. Rabiner and R. W. Schafer, Digital Procesaing of Speech Fignals, New Jersey: Prentice-Hall. Inc., 1978.
13. F. H. Raab, "Class-D power-amplifier load impedance for maximum efficiency." Proceedinge of RP Technology Expo, Anaheim, CA, pp. 287-295, January \(23-25,1985\).

\title{
A 405 MHz Phased Array Antenna for Atmospheric Wind Measurement
}

\section*{by}

\section*{Daniel C. Law \\ NOAA \\ Wave Propagation Laboratory Boulder, Colorado}

The Wave Propagation Laboratory has completed the design and construction of a phased array antenna for use at 405 MHz for atmospheric wind profiling. The steering geometry of the sequentially switched beams is shown in Fig.
Transmitted signals are backscattered by temperature or molsture related gradients in the radio refractive index of scales equal to one-half the transmitted wavelength. These signals are Doppler processed to extract radial air mass velocities. The measurement geometry of Fig. 1 allow horizontal velocities at heights up to 15 kilometers to be calculated. These radars are known as Wind Profiling Radars.

The 126 5-element Yagi-Uda antennas are arranged on a square grid whose axes are \(45^{\circ}\) with respect to the cardinal steering directions. For a given steering angle this arrangement allows element spacing \(\sqrt{2}\) larger than that required for broadside steered array. This feature helps minimize element interaction and reduces the number of element aperture. This geometry is shown in Fig. 2

By constraining the phase difference between rows of identically phased elements to an even, integral sub-aultiple of \(360^{\circ}\), symmetrics appear in the phasing maps which reduce the switching hardware. In this design, the element spacing \(\sqrt{2} \times\) in Fig. 2, \(18.91 \lambda\) and \(\Delta \phi\) is \(60^{\circ}\) resulting in an oblique beam direction of \(15^{\circ}\) from vertical. Only 15 RF coaxial transfer switches are used West anthesize the required 18 phase combinations for North, East, South, and teering. These 18 signals are labeled A through R in Fig. 3

The vertical beam is generated by awitching around the four beam circuitry of fig. 3 resulting in identical phasing on all of the elements. Requiring 36 RF coaxial SPDT switches, the vertical beam is more expensive than the four cardinal beams.

After the 18 aignals are synthesized they are split and distributed about the array while maintaining proper phasing because of the symmetries. Uneven power splitter/combiners are used for amplitude tapering. A schematic of the whole antenna is shown in Fig. 4, and a map of the quasi-circular array of Fig. 5 shows the placement of 7 each of the 18 phasea.

Computer simulationa were employed in the design process. For any position in spherical coordinate space the radiation pattern of an array of isotropic radiators may be calculated from the Equation: [Tang \& Burna, 1984]
\(E\left(\cos \alpha_{x}, \cos a_{y}\right)=M_{m=0}^{M} \sum_{n=0}^{N} \sum_{n=0}^{1} A_{m n} e^{j 2 \pi\left(\frac{y m n}{360}+\operatorname{mdx} \cos \alpha_{x}+n d y \cos a_{y} \cdot\right)}\)

This "array factor" pattern is multiplied by the pattern of the individual Yagi elements to obtain the antenna pattern of the phased array. This pattern was projected into \(X-Y\) planar coordinatea and processed for display on a color graphics workstation. These simulations allowed optimization of element spacing, phaing, and amplitude tapering. These calculations were repeated after the array was constructed using amplitudes and phases measured on each of the 126 elements. The measured patterns are shown in Fig. 6.

Table 1 summarizes the antenna characteristics.

\section*{REPERENCES}

Tang, R. and R. Burns (1984): Phased arrays. Chapter 20 from Antenna Engineering Handbook, 2nd Edition, Johnson, R. and H. Jasik, editors.
\[
605 \text { whe Pheoed Artay Antenna }
\]

Number of steering difections: s
oblique beea directions:
Az1muth: \(\quad 0^{\circ}\)

Elevation: 75
Gain: \(\quad 30\) d
ore-way 3 dz beawidth: 6
effective aperture: 64 -
pask power
60.000 v

Average power:
6.000 v

Technology :

126 s-element Yagi-Ude radiators
SI R.P. coarial autchee with indicatora
1:18 high power reactive aplitter/conbiner
18 1:7 uneven reactive mplitter/conbinern
low lone foen diactibution cables

\title{
CONSTRUCTION TIPS AND ENVIRONMENT FOR DIELECTRIC PESONATOR CIRCUITS
}

Dr. Lynn Carpenter

\section*{Pennsylvània State University Microwave/Technical Ceramics Group} August 18, 1986

This article is directed to the design engineer who wishes to use dielectric resonators in microwave circuit applications. The resonance cavity is first discussed and then some tips on environment on the electrical parameters of the dielectric resonator is developed. This is followed by a description of temperature variation and performance. The article concludes b describing a program disk for the IBM PC that is menu driven and helps the designer choose the appropriate dielectric resonator for his or her application.

\section*{METALLIC ENCLOSURE:}

The concept of a resonator is a fundamental one of physics and applies to electric circuit performance as a function o frequency. A tuned circuit provides an impedance that changes with frequency but can be described as resonant at some frequency. This means that an electric circuit has some maximum or minimum impedance; this impedance can be in series or parallel (shunt). A metal resonant cavity has a precise resonance (actually a series of resonance modes) that is due to the modes that propagate in the cavity which satisfy the boundary conditions provided by the metal walls (Reference l).

The metal resonant cavity, like a dielectric resonator, has an infinite number of resonances (modes) that depends on the diameter ( \(D\) ) as shown in Figure 1 similar resonant modes exist in aielectric resonator but the boundary condition for the dielectric resonator is the dual of the metal cavity

The electromagnetic waves are confined to the metal container and satisfy the boundary conditions at the walls for perfect electrical conductor and are such that the tangentia satisfy this boundary condition, the resonant cavity confines the electric field in a mode that is normal to the wall surface Modes of the resonant cavity are field descriptions that are known to satisfy this boundary condition (Reference l).

The boundary condition for the metal cavity where the tangential electric field vanishes may be considered a SHORT for an electric wall. A dielectric resonator has modes that satisfy the dual condition thought of as a magnetic wall where the tangential magnetic field vanishes and may be considered an OPEN.

These resonant modes are best understood by visualizing the resonant cavity shown in Figure 1 as a cylindrical waveguide of diameter \(D\) which has a length \(L\). Thus, propagation in a metal aveguide is first developed in terms oe odes such as he end boundary condition requires that multiple petween the end walls This provides that the third subscript such as EO11 is understood to be the TEOl cylindrical mode propagating ouch equal to the length \(L\)

Metal waveguides can propagate electromagnetic energy above some cutoff frequency in one or more modes that satisfy the boundary conditions at the walls of the waveguide. from cutoff is used as the frequency band for a particular dimension wavequide. Circular waveguide is an appropriate starting description for the dielectric resonator because the ratios of the different modes are similar to that of dielectric resonators. A better model is a cylindrical aielectric waveguide that ropagates energy through a dielectric with fields inside the dielectric as well as outside, but the fielis outside must vanish at infinity. This allows the resonant modes to be specifiec for some length \(L\) as if almost all of the energy were propagating along a dielectric waveguide.

\section*{BOUNDARY CONDITIONS}

A microwave dielectric waveguide, like optical fiber, propagates energy along the guice vith nearly all the fields confined within. Any fielids outside the waveguide satisfy the boundary conditior that fielcs co to zero at infinity These fielas are similar to a cy-inarical metal waveguide and the mok (E) and magnetic field (H) of the TEOL transurs eloct imeter n the direction and magnetic field ( \(H\) ) is in the r direction

Assuming the energy in an infinite dielectric waveguide in Figure 2 is propagating in the \(z\) direction along the cylinder as shown in Figure 1, this TE0l mode (transverse electric) has no component of electric field but must have an \(H\) component in the direction of propagation. The two ends of the cylinder are considered an open circuit which reflects most of the energy in


405 MHz PHASED ARRAY
FIG 1


FIG 2
the dielectric waveguide back such that the fields add constructively. This happens when the length is a approximate multiple of half wavelength in the dielectric waveguide.

The perfect magnetic boundary condition is an approximation that applies to the dielectric resonator for this particular fin structure. \(H_{r}\) lectric field ef tangential at the surface and . The continuous across this boundary.

The permeability \(\mu_{r}\) of the dielectric resonator is the same as the free space value \(\mu_{0}\). However, the approximation of a perfect mannetic conductor considers a very large permeability \(\mu\) the boundary. It is applied to the dielectric resonator mode because the symmetry of the magnetic field requires that \(\mathrm{H}_{r}\) and \(\mathrm{H}_{2}\) are normal to the surface for the cylindrical geometry.

A typical configuration for the electric and magnetic field is shown in Figure 3. This is consistent with the electric field in the odirection and the magnetic field in the radial direction shown explicitly in figure 2. The magnetic field outside the dielectric resonator is somewhat dipole like as with a large component in the \(z\) direction which would be along the length of the cylinder \(L\) shown in Figure 1 . The \(E_{0}\) and \(H_{r}\) component along the 2 axis of the cylinder are nearly zero so that a cylindrical hole of dimension \(D_{1}\) has little affect on the field structure.

Thus, a dielectric resonator is a high dielectric material that has resonances inside the low loss ceramic material that stores the energy in a specific mode. A simple application is which has a magnetic field propagating around the conductor and chances directions every half wavelenth and the conductor and microstrip is coupled into the delelctric resonator en from the magnetic field. For \(\in=38\), about 70 of the magnetic energy is stored in the dielectric resonator and nearly all of energy is stored inside the dieletric resonator (over 90 ).

The TE0ld mode has a field stricture similar to a magnetic dipole as shown in Figure 3 where the magnetic field lines are directed along the axis of the dielectric resonator and couple primarily into the top and bottom of the dielectric resonator. once the energy is coupled into the dielectric resonator, much of it is confined to the dielectric resonator in the TE018 resonant mode. The TEOl反 is usually but not always the Eundamental mode; under certain conditions it may be the second or third mode.

The magnetic field can couple into the top and bottom of the dielectric resonator providing an \(\mathrm{H}_{2}\) component. Consider the field shown in Figure 5 for the \(T E_{01 \delta}\) mode where the length of
the resonant cavity (L) is some multiple \(\delta\) of half wavelengths The fields are drawn in a plane through the midele of th dielectric resonator as shown by \(00^{\circ}\) in Figure 2. \(\mathrm{H}_{\mathrm{r}}\) and \(\mathrm{H}_{2}\) are perpendicular to the boundary and \(E_{d}\) is parallel to the boundary The dielectric resonator has a soft boundary condition, i.e. the tangential component of electric field \(E_{\phi}\) and magnetic field \(H_{r}\) and \(H_{r}\) nearly vanishes at the boundary. The magnetic field \(H_{z}\) is normal to the surface at the end of the boundary of the cylinder

\section*{DIELEECTRIC RESONATOR ON MICROSTRIP:}

As the fields move down the microstrip as shown in figure and interact with the cielectric resonator, the resonator stores energy in the ceramic material at the resonant frequency an causes a deep notch in the transmission coefficient as shown in Figure 6(a). The reflection coefficient on the other hand peak at this resonant frequency because the energy stored in the dielectric resonator couples back into the microstrip but trave in the opposite direction as shown in Figure 6(b) (Reference 3).

Assuming a lossless case the sum of the complex reflection (Reference 3)
\[
S_{11}+S_{21}=1
\]
(1)

The real quantities representing the reflection coefficient Sil and transmission coefficients \(\mathrm{S}_{210}\) at the resonant frequency of the dielectric resonator can be used to determine the coupling of the dielectric resonator to the microstrip by:
\[
\beta=s_{110} / s_{210}=R / 2 Z_{0}
\]
(2)
and the width of the peak at half value is \(\Delta f\) which relates to the unloaded quality factor ( \(2_{U}\) ) of the entire system by:
\[
Q_{U}=f_{0} / \Delta f
\]

\section*{(3)}

The coupling factor \(\beta\) depends on the distance \(d\) of the dielectric resonator from the microstrip line and the location of the dielectric resonator along the microstrip as shown in figure \(7(a)\). As the distance \(d\) is increased, \(\beta\) decreases. Changing the length 2 , causes a rotation on a Smith chart of the input reflection coefficient sil into the microstrip. Thus, by elation and \(l\) of the dielectric resonator location with into the microstrip at the generator. This allows a matching circuit of any value to be generated by a dielectric resonator along a half wavelength microstrip line (Reference 3).


equivalent circuit shown in Figure \(7(b)\). A parallel resistance \(R\), inductance \(L\) and capacitance \(C\) can be used to model the dielectric resonator coupled to the microstrip of characteristic impedance \(Z_{0}\). Microwave analysis programs such as Touchstone, Super-Compact and Microwave SPICE have the capability to use parallel the designer must determine the values an (3)

The boundary conditions at the edge of the dielectric resonator do not completely control the resonant frequency because there is energy stored in the field outside of the dielectric resonator. Thus the interface with the substrate is important to the coupling of energy into the dielectric becomes part of the resonant circuit and affects the resonant frequency of the dielectric resonator. A dielectric resonator in free snace will have a lower resonant frequency than the same material enclosed in a metallic box. In particular, the top and cottor: of the cylinder have a large effect if the metallic plate is nearty because the enercy cannot couple into the top and bottom of the dielectric resonator.

The support is shown in Figure 8 that holds the dielectric resonator away from the bottom. Ideally, the resonator is equally spaced in the middle of the metal enclosure and the enclosure is as large as possible. Some tuning can be accomplished by moving the dielectric in the metal enclosure and the dimensions of the cavity become more important in the calculations of the resonant frequency.

The quality factor of the resonator \(Q\) is affected by the metallic enclosure because energy is absorbed by currents in the non-iceal conducting walls (Reference 4). The amount of surface current in the walls depends on the field structure that the better conductivity of the walls, the higher the 0 and the the better conductin the ceramic material generates a higher 0 .

\section*{MOUNTING:}

Mounting the dielectric resonator on the substrate, the type and thickness of the substrates affects the resonant frequency and the loaded \(Q\) the same way the metal container and support affected the resonant frequency. The boundary condition is considered a dielectric constant of \(\epsilon_{0}\) outside of the ceramic material so setting the dielectric resonator on the substrate changes the boundary conditions at the substrate resonator interface. In addition, since the substrate is usually thin \((20\) to 50 thousandths of an inch), the boundary conditions are changed considerably by the metal ground at the base of the microstrip. In particular, this affects the amount of coupled magnetic field that exists in the microstrip substrate coupling into the bottom of the resonator (see Figure 4).

The boundary conditions at a metal wall demand that the tangential electric field vanish, but the dielectfic wall boundary conditions require the tangential magnetic field to be vanishingly small; a dual condition. Thus, the metal wall in close proximity to the top of a dielectric cylinder causes drastic changes in the resonant frequency. This condition of ten comes into effect when a dielectric resonator is placed on a thin substrate. This is the one reason that the dielectric support is used to couple the magnetic field into the dielectric resonator; the other reason is the \(Q\) of the system is affected. Since the currents in the metal enclosure cause loss and the dielectric resonator is best placed equally the system, the dielectric reso
distant from the metal conductors.

Figure \(g(a)\) shows the usual mounting method of dielectric resonators for Microwave Integrated Circuit (MIC) applications. The dielecric resonator od is be kept to a minimum. In this merting method the unloaded quality factor, Qu, of the device a function of the of the dielectric respnator cavity and ubstrate:
\[
\begin{equation*}
\frac{1}{\bar{Q}_{u}}=\frac{1}{\bar{Q}_{d}}+\frac{1}{\bar{Q}_{c}}+\frac{1}{Q_{s}} \tag{4}
\end{equation*}
\]

Another way of mounting the dielectric resonator is shown in Figure \(9(b)\) which uses a support and a plastic screw. Sometimes the screw is not used and the epoxy resin fastens the dielectric resonator anc support to the substrate. The configuration shown in Figure \(9(b)\) raises the resonator above the substrate and allows for better coupling through the ends for the magnetic field generated by the microstrip. This method provides the highest unloaded \(Q_{u}\) that is approximately equal to that of the dielectric resonator:
\[
\begin{equation*}
Q_{u}=Q_{\mathrm{d}} \tag{5}
\end{equation*}
\]

\section*{TUTABILITY}

The dielectric resonator has an inherent resonant frequency that is determined in \(\dot{a}\) test chamber and is provided by the manufacturer as in Table l. The ratio of the Length (Lr) to Dameter ( \(r_{r}\), is kept hearly performance considerations. The cosint frequency ranges are about 88 for each of MuRata Erie's part Numbers listed in the table. The resonators are supplied to the lowest frequency of this range. The frequency is measured by the lowest frequency of this range. The frequency is measured by have a different resonant frequency for the same dielectric resonator.


FIG 5


In Figure lo, the resonant frequency and unloaded 0 are Shown as a function of \(L_{o} / L_{r}\). It is seen that for \(L_{o} / L_{r}\) greater than 3 the frequency ranges between 5.0 and 5.2 GHz and the \(\mathrm{O}_{\mathrm{u}}\) between 8300 and 9300 . For ratios of frequency \(L_{o} / L_{r}\) less than rapidly down to 2000 . This possible but the 0 deteriorates rapidly down to 2000. This is due conductivity losses in the
cavity walls.

Several methods to adjust the resonant frequency are as
(1) Change the boundary conditions
a) Change cavity dimensions
(2) Change length \(L_{r}\) of the dielectric resonator.

The most typical approach is to purchase a dielectric resonator from the manufacturer that is pretuned at the lowest
frequency as those shown in Table 1 .
tuning stub as shown in Figure ll. Typically 3 b the use of a as shown in Figure lo.

A second method of tuning is accomplished by moving th dielectric resonator along the microstrip by a distance \(\ell\) or moving it perpendicular to the microstrip a distance das shown in Figure 7. In general, walls that are more than 3 times the dimensions of the resonator (Lr for height and \(D_{r}\) for radial

A third method is to
resonator \(\mathrm{L}_{\mathrm{r}}\) physically by grinding. then of the dielectric requency and can be accomplished by This increases the dielectric resonators manufacturer (MuRata Erie N. A.) can supply In this case resonators custom machined to the actual dimension In this case a correlation test cavity should be provided by the
end user.

\section*{TEMPERATURE COMPENSATION:}

The manufacturer can supply a variety of temperature coefficients within material to compensate for any variance of structural changes will change the due to temperature. These system. By adjustment of the TC of the resonator can comper of the can compensate for these effects so the resonator, the designer with respect to temperature.

The designer usually starts out with a 0 TC dielectric the desired temperature range the variation of the system through be changed to compensate for any variances. resonator can then

\section*{CORCLUSION}

In this article, the physical operation of the dielectric besonator particularly on microstrip inside a metal container has been examined. The resonant frequency is slightly tunable by the icrostrip. The size of the container and its pect to the seen to be dielectric resonator, microstrip and substrate with determine what particular dielectric res. How does a designer
stores the particuram has been developed for the IBM PC that from MuRata Erie N. A rectric resonator dimensions available has routines availabi or the designer to choose. This program configuration from the characteristic the eigenvalues for a an approximation from Reference 5. 5 equation (Reference 4) by and asks the designer for the 5. The program is menu driven substrate thickness and dielectric constant of the cavity, the the resonant value for this configuration and It then calculates resonator from available values for this and picks a dielectric

The designer will stil
in a circuit to generate a matching use the dielectric resonator filter, but he or she now matching network for an oscillator or compensation a particular frequency range. The temperat is temperature coefficient done for the system starting with ature temperature variation of frequency and determining the temperature coefficient of then compensate for it by varying the the dielectric resonator offers thelectric resonator. In short, circuits that have a known respons unique component in microwave little affect below that frequency at a particular frequency but have very high 0 so there is resonator even at the resonant frequency in the dielectric available to adjust for variations in fer fome tuning is values. The resonator is mechanically stable or other component with time. Many possible uses are available does not change circuits. It is up to the designers are available in microwave use this unique component.

\section*{ACKNOWLEDGEMENT:}

The author wishes to thank T. Nishikawa, J. Fijedziuszko, \(R\) paper. T. Sucho, J. Alberici and my thical evaluations of this State University \({ }^{\text {P. Alberici and my students at the Pennsylvanis }}\) information needed by design engineers.

Practical Considerations for Modulating or Pulling The Frequency of a Quartz Crystal Oscillator

\section*{by}

John B. Fisher
Standard Crystal Corporation
990 Baldwin Place

\section*{ABSTRACT}

The quartz crystal for frequency control is a high \(Q\) device. This is another way of saying it doesn't like to have its natural frequency changed by external influences. Yet this is exactly what is attempted in voltage controlled crystal oscillators (YCXO's) or frequency modulated crystal oscillators.

There are parameters in both the oscillator circuit and the cyrstal that must be considered when designing a pullable oscillator. This paper will point out these parameters and try to tell the circuit designer how best to use them.

\section*{INTRODUCTION}

Two factors must be considered in designing a pullable crystal oscillator. The first is the frequency deviation required and the second the linearity of the deviation. The frequency deviation is generally expressed as parts per million of the operating frequency or total Hertz from nominal frequency. The linearity can be described as the deviation from a straight line of the frequency curve versus the parameter that is controlling it. A secondary effect of the linearity is the amount the frequency is changed in either direction from some center frequency.

\section*{Examples of this are shown in Figure 1 A and 18.}

The oscillator circuit as well as the crystal is important in the control of these two factors. So let's first look at the oscillator circuit design.

\section*{THE OSCILLATOR CIRCUIT}

I've selected the Pierce Oscillator Circuit because it is the easiest to explain and the most tolerant of errors. The basic circuit is as shown in Figure 2.

In this circuit the collector to emitter (Cce) and base to emitter (Cbe) capacitances are necessary to sustain oscillation. However, their capacitances are very temperature dependent, are not controlled by the manufacturer, and are resistive. Therefore, the performance of the circuit in Figure 2 is marginal. We can improve the performance greatly by placing fixed capacitors in parallel with these junction capacitances. The new Pierce Oscillator will now be as shown in Figure 3.

Resistors R1, R2 and Re provide for the DC bias of the transistor. Re raises the ewitter off of ground potential which improves the linearity. Ce bypasses the emitter which must be at RF ground.

We can now replace the transistor with its small signal equivalent circuit. The Pierce oscillator will now appear as in Figure 4.

To simplify the circuit a few assumption can be made. First is that R1 // R2 >> hie and \(1 /\) hoe // RL >> XC2. The simplified circuit now appears as in Figure 5.

For the circuit to oscillate, 8arkhausen's criteria for oscillation must

\section*{REFERENCES}
1) Gardiol, Fred E. "Introduction to Microwaves", Artec House, Dedham, MA, 1984
(2) Kajfez, D. "Model Field Patterns in Dielectric Rod Waveguide", Microwave Journal. May, 1983.
(3) Soares, R., J. Graffeuil and J. Obregon "Applications of Gais MESFETs", Artech House, Dedham, MA, 1983.
(4) Kajfez, D. and P. Guillon, Editors "Dielectric Resonators", Artech House, Dedham, MA, 1986.
5) Itoh, T. and R. S. Rudokas "New Method for Computing the Resonant Frequencies of Dielectric Resonators", IEEF Trans. Microwave Theory Techn., MTT-25, January, 1977, pp. 52-54.

Dimensions and Frequency Range
TABLE 1
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{c|}{ TABLE 1 } \\
\hline \begin{tabular}{c} 
Dr \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c} 
Lr \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c} 
Frequency \\
Range
\end{tabular} \\
\hline 4.65 & 2.06 & \(11.46-12.45\) \\
\hline 5.06 & 2.24 & \(10.54-11.45\) \\
\hline 5.50 & 2.44 & \(9.69-10.53\) \\
\hline 5.98 & 2.65 & \(8.91-9.68\) \\
\hline 6.50 & 2.88 & \(8.20-8.90\) \\
\hline 7.07 & 3.14 & \(7.54-8.19\) \\
\hline 7.69 & 3.41 & \(6.93-7.53\) \\
\hline 8.35 & 3.71 & \(6.36-6.92\) \\
\hline 9.09 & 4.03 & \(5.87-6.37\) \\
\hline 9.88 & 4.38 & \(5.40-5.86\) \\
\hline 10.75 & 4.77 & \(4.96-5.39\) \\
\hline 11.68 & 5.18 & \(4.56-4.95\) \\
\hline 12.70 & 5.63 & \(4.20-4.55\) \\
\hline 13.81 & 6.13 & \(3.86-4.19\) \\
\hline 15.02 & 6.66 & \(3.55-3.85\) \\
\hline 16.33 & 7.24 & \(3.27-3.54\) \\
\hline 17.76 & 7.88 & \(3.00-3.26\) \\
\hline 19.31 & 8.56 & \(2.76-2.99\) \\
\hline 21.00 & 9.31 & \(2.54-2.75\) \\
\hline 22.83 & 10.13 & \(2.34-2.53\) \\
\hline 24.82 & 11.01 & \(2.15-2.33\) \\
\hline 26.99 & 11.97 & \(1.98-2.14\) \\
\hline 29.35 & 13.02 & \(1.82-1.97\) \\
\hline 31.91 & 14.15 & \(1.67-1.81\) \\
\hline 34.70 & 15.39 & \(1.54-1.66\) \\
\hline
\end{tabular}

\footnotetext{
* Frequency is measured under the condition: Lr/Lo \(=0.33\)
}

\section*{ADDENDUM}

\section*{ypical ADplications}

Typical applications of dielectric resonators are dielectric filter and dielectric resonator oscillators. The following references are papers presented by Murata Manufacturing Co.. LTD. regarding dielectric resonators.
(a) K. Wakino, K. Minai and H. Tamura, *ircrowave Characteristics of \((\mathrm{Zn}, \mathrm{Sn}) \mathrm{TiO}_{4}\) And \(\mathrm{BaO}-\mathrm{PbO}-\mathrm{Na}_{3}-\mathrm{TiO}_{2}\) Dielectric Resonators", J. Amer. Cer. Soc., 67, No. 4, pp. 278-281 (1984).
(b) H. Tamura, T. Konoike, Y. Sakabe and K. Wakino, "Improved High-Q Dielectric Resonator with Complex Perovskite Structure", Comm. Amer. Cer. Soc., 67, No. 4, C-59-61 (1984).
(c) K. Wakino, T. Nishikawa and Y. Ishikawa, 8800 MHz Band Channel Dropping Filter Using TM 10 Mode Dielectric Resonator" IEEE MTT-S International Microwave Symposium, IEEE Cat. No. 84CH2034-7, PP. 199-201 (1984).
(d) K. Wakino, T. Nishikawa, S. Tamura and H. Tamura, "An X-Band GaAs FET Oscillators Using A Dielectric Pesonator", GaAs Fer print.)
(e) K. Wakino, T. Nishikawa, H. Matsumoto and Y. Ishikawa "Quarter Wave Dielectric Transmission Line Duplexer For Land Mobile Communications", IEEE MTT-S International Microwave Symposium, IEEE Cat. No. 79CH1439-9, pp. 278 280 (1979).
(f) K. Wakino, T. Nishikawa, H. Matsumoto and Y. Ishikawa Miniaturized Bandpass Filters using Half wave Dielectric Resonator With Improved Spurious Response". IEEE MTT-S International Microwave Symposium, IEEE Cat No. 78CH1279-5, pp. 230-232 (1978).
be met. Barkhausen states that the product of the gains around the loop must be greater than or equal to one. He also states that the phase shift around the loop, at the frequency of oscillation be \(n\left(360^{\circ}\right)\) wheren is any integer.

To analyze this further, let's remove the crystal and look into the two terminals that it is connected to. We see this as a two terminal circuit shown in Figure 6.

The impedance seen, looking into the crystal terminals \(A\) and \(B\), is a negative resistance ( \(-e\) ) and an equivalent capacitance \(\left(C_{t}\right)\) which is the series combination of \(C_{1}\) and \(C_{2}\). We can draw this new circuit as shown in Figrue 7.

We now put the crystal back and we have the circuit shown in Figure 8.
A negative resistance corresponds to a gain. Assuming lel > crystal resistance, then the first constant of Barkhausen's Criteria is met. In order to have the phase shift around the loop be \(n\left(360^{\circ}\right)\) the crystal must be inductive to cancel the effect of \(C_{t}\).

Oscillation starts by the noise generated in the transistor. This noise is fed back to the input of the transistor, in phase, and is further amplified. The crystal, which is in the feedback path, acts as a very narrow band pass filter. The filter allows only the noise to be fed back that is in the pass band of the crystal and controls the frequency of oscillation. This is the natural crystal frequency using \(C_{t}\) as a load. THE CRYSTAL CIRCUIT

The equivalent circuit of the crystal in the feedback loop is shown in

Figure 9, with the formulas for series resonance and parallel resonance added.

The plot of reactance vs. frequency for the fundamental mode is shown in Figure 10. Since the crystal operates inductively in the oscillator circuit, it's reactance would be somewhere between fr and fa .

Pullability and linearity are increased if we operate the crystal at close to series resonance. A good way to do this is to tune out Co with an inductor an add another inductor in series. The revised crystal equivalent circuit would then appear as in Figure 11. If we now plot the reactance vs. frequency curve it would look like Figure 12. Fa has been pulled further away from Fr which allows for more pullability along the inductive region of the curve.

Most crystals are pulled by a capacitor in series with the crystal.
This is usually a varactor that can be varied by an external voltage as shown in Figure 13. As the capacitor gets smaller, the frequency of the crystal is shifted upward towards Fa.

The frequency from resonance may be calculated from the equation:

The pulling sensitivity can be calculated from the equation:
\(S=\frac{-C_{m} \times 10^{-6}}{2\left(C_{0}+C_{L}\right)^{2}} \quad \quad \mathrm{ppm} / \mathrm{pf}\)
Another useful equation is:
\(\mathrm{fa}-\mathrm{fs} \cong \frac{\mathrm{fr}_{r}}{2 \mathrm{co} / \mathrm{cm}_{\mathrm{m}}}\)
\(=\mathrm{fs}\)
Note the use of the \(\frac{C_{0}}{C_{m}}\) ratio. This is a popular expression used by the crystal industry. You want this ratio to be as low as possible to get


Figure l. Cylinarical Waveguide
of length r. .



Figure 3. Typical Configuration Electric s Magnetic Fields

Figure 2. Transverse filectric Ficld (f.) and Maqnetic Field (II) for Ttiol Mode for infinite dielectric waveguide.


Figure 4. Fielis Proparating Along Microstrip with Dielectric Resnnator Nearby.


Figure 5. Approximate Field structure for TE0ls Mode in Free Space.
the greatest pullability. Typical values of this ratio for quartz crystals are 250 for fundamental mode crystals, 2500 for third overtones and 6500 for fifth overtones.

\section*{SUMMARY}

We have seen how the crystal and oscillator interface and how one affects the other. The circuit should have ample gain to make certain that it oscillates when the crystal is operated in its reactive or inductive mode. The more the crystal is pulled away from series resonance, the higher is the reactance of the crystal.

For best linearity, and greatest pullability, the circuit should tune out the Co or shunt capacity of the crystal. This can be done with an inductor that resonates with Co at the series resonant frequency of the crystal.

The \(\mathrm{Co} / \mathrm{Cm}\) ration should be as low as possible. For greatest pullability, fundamental mode crystals should be specified. Generally, frequencies in the 8 to 25 Mhz range are preferred.

\section*{BIBLIOGRAPHY}
1. Virgil Bottom Ph. D, "Introduction to Quartz Crystal Unit Design", Van Nostrand Reinhold Co.
2. Marvine E. Frerking, "Crystal Oscillator Design and Temperature Compensation", Van Nostrand Reinhold Co.
3. Cathodeon Crystals, "Quartz Crystal Parameter Calculator".
4. Darrel E. Newell Ph.D, Northern Illinois University, Private Communication.


FIG. 1A


Basic Pierce Oscillator

FIG. 2


Difference in Pulling
Range
FIG, 1 B


FIG. 3

(a)



Figure 6 . (a) Transmission coefficient (b) Reflection Coefficient for Dielectric Resonator coupled to microstrip.


Figure 7. Microstrip of characteristic impedance \(\%_{0}\) coupled to dielectric resonator (a) and its equivalent circuit (b).


Figure 8 . Tent Sel-up for Dielectic Resonator in Cavity

(b)



Figure 10. Illustration of the fiffects of the Roundary Conditions on \(\mathrm{F}_{\mathrm{g}}\), Oo for \(U\) Material Resonators \(\left(\epsilon_{r}=3 A\right)\).


Figure 11. Dielectric Resonator on Substrate with Tuning Stub

Figure 9. Mounting systems for dielectric resonator on microstrip


FIG. 4


FIG. 5


Measuring Bin
FIG. 6

\[
-p=\frac{h f_{e}}{h e_{e}} \frac{1}{w^{2} c_{1} c_{2}}
\]
cirever Further Simplified FIG. 7


Peeve Oscillator Reduced to Basics
\[
\text { FIG. } 8
\]

\[
f_{r}=\frac{1}{2 \pi \sqrt{L_{m} C_{m}}} \begin{aligned}
& \text { crystal Equivalent Ciriout }
\end{aligned} \quad f_{a}=\frac{1}{2 \pi \sqrt{L_{m} \frac{c_{m} C_{0}}{c_{m}+C_{0}}}}
\]

FIG. 9


\section*{NON-LINEARITY BFFECTS IN RF CIRCUITS}
\[
\begin{gathered}
\text { by } \\
\text { David Leisa and Lynne Olsen } \\
\text { Senior Engineers } \\
\text { Besser Associates, Inc. } \\
\text { 3975 Bast Bayshore Road } \\
\text { Palo Alto, Ca. } 94043
\end{gathered}
\]

\section*{Abstract}

This paper illustratea how to derive a model and evaluate key non-linearitiea for an anplifier and a voltage controlled oscillator (VCO), using a comercially available non-linear Computer-Aided Design (CAD) progran called mwSICBrm. Introduction

RF and microwave oircuit performance can be aimulated and accurately predicted using linear analyais prograns, provided that the circuit elementa are fairly linear. Non-linear elementa such as bipolar or field effect transistors are usually modeled in a linear analyais program using saall signal S-parameters, which assume the device is operating over a Parly linear region.

These linear prograns do not, however, take into account the effects of temperature, harmonica (either generated by the device or introduced into the device), bias supply variations, gain compression or distortion. Some of these effecta can be estimated with linear analysis prograns but they are atrictly done by linear approximation.

This paper focuses on how to use mwSPICB for two different devices, an amplifier and an osillator, and evaluate device non-
linearities. First, amplifier non-linearities which are evident by evaluating the power handling capabilities of a device are presented. Second, critical vco characteristics auch as atart up transients, settling time, and frequency versus voltage response are evaluated to insure that ateady state oscillation occurs as expected, and that the vCO is operating over a Parly linear range.

Amplifier Design
In this example we've designed a 400 MHZ to 1000 MHZ 16 DB Gain Amplifier as shown in Figure 1.


\section*{4-1GHZ 16DB GAIN AMPLIFIER}

FGGure 1

The amplifier uses a NBC02135 bipolar transistor biased at VCE \(=10 \mathrm{Volts}\) and IC=20ma. As with any linear analysia progran, the data for the transistor comes from the manufacturer's data sheet s-parameters. The gain response is shown in Figure 2 and the input and output match is in Figure 3.
- Touchatone - 08/18/86 - 13857:14 - NE02135F


EEsof - Touchstone - 08/18/B6 - 13:58:24 - NE02135F
- 511 AMP
\(+\mathbf{S 2 2}\) AMP
f1: 0.100000
f2:
1.58000


FGURE 3

\section*{S-BAND BUTLER MATRIX FEED NETWORK}

\author{
V.K.LAKSHMEESHA, ARVIND AGARWAL, L.NICHOLAS, S.pAL \\ COMUNICATION SYSTEM DIVISION \\ ISRO SATELITTE CENTRE, A ARPORT ROAD BANGALORE - 560017. \\ --- \\ \section*{ABSTRACT}
}

This paper presents the development of a compact microstrip Butler Feed Network at S-band for an elght element linear array. The feed network is developed on a high dieelectric constant soft substrate incorporating the entire feed network on a \(10^{\prime \prime} \times 10^{\prime \prime}\) sheet. The network features the incorporetion of broad band hybrids and phase shifters.

\section*{INTRODUCTIONB}

Butler Matrix ( \(1,2,3,4\) ) is a passive and theoretically lossless feeding network. This network feeds an array antenna with uniform distribution and constant phase difference between elements. This matrix consists of N inputs and an equal number of output ports. A signal introduced at one input produces equal amplitude excitation at all outputs but with a constant phase different between them, resulting in radiation at a certain angle in space. If the signal is introduced at an other input we will get the radiation at a different angle from the first one.

The network consists of 3 dB hybrids with phase delays in the interconnecting lines. The network has \(N=2^{n}\) inputs and an equal number of output ports, where \(n\) is an integer.

A sketch of an 8 element Butler Matrix is shown in Figol. Initially a single plece of broad band coupler and a single piece of broad band phase shifters of values \(22.5^{\circ} 45^{\circ}\) and \(67.5^{\circ}\) were fabricated, tested and optimized before integerating the whole layout. This S-band Butler Feed Network was designed at centre frequency 2.15 GHz with 300 MHz bandwidth on R.T. Duriod 6010.50 .05 ( \(\mathrm{Er}=+10.5 \pm .25\) ). The measured results obtained were close to theoretical values. This network was also fed to an eight element microstrip linear array to compare the theoretical and practical perfor mance of the beam direction.

\section*{Development of Butler Feed Network}

The eisht element Butler Feed Networ without any crosse overs is shown in Fig.2. Eight terminals are in middle and the other eight terminals are located on the four sides as shown in Fig.2. The substrate can be grooved in the middle for connections from the sides. We can put the connectors at the back also to avoid grooves in the middle. We can see that the outputs of antenna ports are in horizontal line and the inputs or beam ports are in the vertical line. The \(3 \mathrm{~dB} 90^{\circ}\) hybrid was made broadband using G.P. Riblet \(s(5)\) technique. The output characteristics, isolation and return loss of this coupler are shown in Fig. 3 and Fig. 4 respectively.


This circuit file will allow the circuit to be analyzed either in Touchstone or mwSice. The Model section is added to characterize the device parameters for MWSpice. Also biasing must now be included along with a signal source.

The first non-linear response measured is a standard curve tracer response, Figure 5 , of collector ourrent versus collector voltage as determined by base current. In this case base current was varied from 0 to 1 illiamp in .1 milliamp steps. Also plotted is the DC load line for this circuit and the maximum limita based on the manufacturer's data sheet. The maximum vCB is listed as 12V; the maximua colleotor current is 70 milliamps, and the maximum power dissipation for this package style is 290 illiwatts at 25 degrees centigrade. A point of interest is that the data sheet lists \(S\)-paranaters for bias condition of VCE=10V and IC=30ma for this package which is outside of their own power disaipation limits at 25 degrees centigrade, to say nothing of 85 or 125 degrees.

If we were planning to use this amplifier with a 0 dbs input signal and expecting to get 16 DB gain, think again. Figure 6 shows that as the input power in dbm (the \(X\) axis) is increased, the gain decreases from about 16 DB at -40 DBm in, down to 11.5 DB gain with 0 DBbe in. Figure 7 shows a time domain analyais of the output waveform with 1 -milliwatt ( 0 DBm ) input. As you can see there is a significant amount of diatortion on the waveform.

FIGURE 4

The phase response of this coupler is shown in Fig.5. A broad band phase shifter was designed on the basis of techniques given by Darko Kajfez(6). One-piece phase shifters of value \(22.5^{\circ}, 45^{\circ}\) and \(67.5^{\circ}\) were fabricated and tested. Their response are shown in Pigures (6), (7), and (8). We can see that in the case of the coupler the imbalance is within 0.3 dB throughout the frenuency band. The phase is also within \(92^{\circ}\), fith slightiy more variation in the lower side of the frequency. The isolation and the return loss are greater than 25 dB throughout the band. The variation of the phase values in \(67.5^{\circ}, 45^{\circ}\) and \(22.5^{\circ}\) phase shifters in the 300 MHz band are \(+0.5^{\circ} \pm 1.5^{\circ} \pm 3^{\circ}\). The actual layout of the coupler and phase shifter is shown in Fig.9(a) and 9(b). Using the coupler and phase shifters a compact integrated layout was made to fit within \(10^{\prime \prime} \times 10^{\prime \prime}\) sheet of R.T. Duroid 6010.5 dielectric. The layout is shown in Fig. (10).

\section*{Experimental Results on Butler Feed Network}

The S-band Butler Peed network connected to the eight element microstrip linear array is shown in the photograph. The photograph also shows the far field pattern of this antenna fed by the Butler Matrix. Connectors to the elght inputs and eight outputs are made from the bottom.

The insertion loss of the matrix is of the order of 2.0 dB . The matrix provides a uniform illumination of the array.

However, variations in the coupling ratios of the \(90^{\circ} \mathrm{hybrid}\) couplers and difference in the insertion loss between the reference line and coupled lines of the phase shifter cause amplitude errors in the illuminations. The worst amplitude error 181.8 dB . Phase errors in the array illuminations average \(\pm 6^{\circ}\) for all beams. The maximum phase variation \(1 s 12^{\circ}\). The return loss of input port 3 L is given in Pig. 11 . In the 300 NHz band the average return loss is 22dB. The average isolation is 25 dB with the lowest value of 18 dB . The antenna terminals of the matrix are isolated from each other in the same manner. The average isolation is 23 dB .

\section*{POSITION OF BEAM PEAKS}

We know that the normalized magnitude of the field intensity in the far field of a incar array of a isotropic sources is given by
\(|E|=\frac{\sin (n \psi / 2)}{n \times \sin (\psi / 2)}\)
where \(\psi=\frac{2 \pi \frac{d}{\lambda} \sin (\alpha)-\delta,}{} \sin (\psi / 2)\)
\(d=\) elemant spacing \(=0.52 \lambda\) in our case
\(\lambda\) - Wave length
\(\alpha=\) angle from the array normal
and \(\delta=\frac{\text { lement to element phase shift }}{(2 p-1)}\)
\(=-\frac{(2 p-1)}{n}--\frac{\pi}{2}\)


EEsof - mwSPICE - 8/6/86 - 13:44122 - Ci\SPICE\AFEXPO\NE0213SF

\(p=\) beam numbers \(= \pm 1, \pm 2, \pm 3\), and \(\pm 4\) (in our case)
i.e. the position of the beam peaks are given by
\[
\sin ^{-1}\left(-\frac{\lambda}{n} a^{-}(n q+p-1 / 2)\right)
\]

The theoretical beam angles are \(7^{\circ}, 21^{\circ}, 37^{\circ}\), and \(57^{\circ}\) on each side from the broad side direction.

The position of the main beam is show in the Fig. 12 which is very close to the predicted value. We also see that beas cross-over level is about -3 dB which is also close to theoretical value -3.86 dB . The small variation may be due to deviation from the uniform illumination.

The first side level is -12.5 dB compared to -13.2 dB . The difference is due to error in phase values from the theoretical phases in the outputs.

\section*{CORCLUSIONS}

This reed network can work well up to 300 MHz about the 2.15 CHz centre irequency. The response of the feed networks deviate a bit at the band edges due to increased amplitude imbalance and deviation of phase from \(90^{\circ}\) between the outputs of the coupler. The phase shifter also introw duces phase error, though small at band edges. Slight phase error was also introduced wile mounting the connectors.

Taking proper care in developaemt and mounting, the evarnge insertion loss and the phase variation can still be reduced from 2.2 dB and \(\pm 6^{\circ}\). The band width of the matrix can be still further increased to 500 MHz by increasing the bandwidth of the coupler. The designed phase shifters can work well upto 500 MHz about 2.15 GHz .

\section*{REFERENCES:}
1. J.Butler and R.Lowe : Beans forming Matrix simplifies design of electrically scanned antennas, Electronic Deaign, April, 1961, pp.170-173.
2. J.P.Shilton and K.S.Kelleher : Multiple bean to linear arrays , IRE-T and AP pp. 154-161, March 1961.
3. W.P.Delaney : An RF multiple beams forming technique, IRR, T-Military Elactronics, pp. 179-186, April 1968.
4. H.J. Moody : The systematic design of the Butler Matrix IEEE - I on AP Nov.1964, pp. 786-788.
5. G.P.Riblet : A directional coupler with very flat coupling , IEEE, I-MTT, Feb. 1978, pp. 70-74, correction in Sept. 1978 pp. 691.
6. Derko Kajfej : Flatten the response of phase shifters, Microwaves Dec.1978, pp.64-68.

And as you'd expect a fourier analysis reveals the second
harmonic is only about 14 DB below the fundamental as ahown below
**: FOURIER ANALYSIS
TEMPBRATURE \(=27.000\) DEG C

EEsof - mwSPICE - 8/18/86 - 20:21:51 - DTA
AMP
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(50)
DC COMPONENT \(=4.244 \mathrm{D}-02\)
\begin{tabular}{cccrr} 
HARMONIC & FREQURNCY & FOURIER & NORMALIZED & DB BELOW \\
NO & \((H Z)\) & COMPONENT & COMPONENT & CARRIER \\
1 & \(7.000 \mathrm{D}+08\) & \(9.541 \mathrm{D}-01\) & 1.000000 & \\
2 & \(1.400 \mathrm{D}+09\) & \(1.929 \mathrm{D}-01\) & .202218 & -13.89 \\
3 & \(2.100 \mathrm{D}+09\) & \(1.017 \mathrm{D}-01\) & .106567 & -19.45 \\
4 & \(2.800 \mathrm{D}+09\) & \(8.223 \mathrm{D}-03\) & .008619 & -41.29 \\
5 & \(3.500 \mathrm{D}+09\) & \(2.324 \mathrm{D}-02\) & .024357 & -32.27 \\
6 & \(4.200 \mathrm{D}+09\) & \(1.263 \mathrm{D}-02\) & .013239 & -37.56 \\
7 & \(4.900 \mathrm{D}+09\) & \(3.082 \mathrm{D}-03\) & .003230 & -49.82 \\
8 & \(5.600 \mathrm{D}+09\) & \(5.324 \mathrm{D}-03\) & .005580 & -45.07 \\
9 & \(6.300 \mathrm{D}+09\) & \(2.091 \mathrm{D}-03\) & .002192 & -53.18
\end{tabular}

TOTAL HARMONIC DISTORTION \(=\quad 23.051669\) PERCBNT

In Figure 8 the performance of the amplifier was analyzed at 9.000 \(-55,25\), and 125 degrees centigrade. It can be seen that gain varies about \(+/-.5\) DB over that temperature range. Different biasing methods could be quickly tried if temperature stability is a concern.
. GAIN
MAG-DE


FIGURE 8
In this quick overview you can see that ignoring non-
linearities can result in unpleasant surprises when the actual circuits are built. By using a non-linear design tool such as mwipice we can analjze effects that would have required a considerable amount of time and equipment to bench test.

\section*{ANTENN ELEMENTS}

rig. 1 Eight element Butler beam forming matrix


P1g. 2 Butler Feed Network without Cross-overs

\section*{Voltare Controlled Oscillator, VCO}

Linear analysis programs have been used in the past for oscillator design. Typically, the deaign procedure ia to maximize the small aignal S-parameters, \(511^{\prime}\) or \(322^{\prime}\), so that the real part of the devioe reflection coefficient becomea negative. Linear analysia programs use optinization algorithms to maxisize S11' or S22', as deterained by the design. So, to design an oscillator using a linear analysis progran requirea device mall signal s-parameters to characterize the active device.

With non-linear analysis programs auch as awSPICB, device characterization consista of supplying AC and DC parameters, as well as proper biasing conditions as shown in figure 9.


FIGURE 9 VCO Schematic

The idea of the VCO is to vary the tuning voltage applied to diode D1 which will change the Junction capacitance of the diode (the diode, when used for it's variable capacitanoe properties ia referred to as a varactor). This will in turn, change the resonant frequency of the equivalent resonant \(A C\) network consisting of the series inductance, the internal diode capacitance, and the transistor internal capacitance. The complete circuit description is hown in Figure 10.
```

DIM

```

FREQ MHZ
CAP PF
IND UH
IND UH
\(C B=1000\) RFC \(=100\) CKT

CAP CBP1 10 C^CB
ND_L1 \(14 \mathrm{~L}=4.56\)
IND_LRFC1 420 L"RFC
CAP_CBP2 \(200 C^{4}\) CB
SIPA_D1 5 [MODRL=DIODB]
IND_LRFC2 50 L^RFC
S2PAR-Q1 5 6 7 [MODEL=T2N918]
IND_LRFC3 730 L"RFC
CAP_CBP3 \(70 C^{\wedge} \mathrm{CB}\)
RED_LN \(36 \mathrm{~L}=3.82\)
RES R2 6 R \(\quad\) =1510
AAP 2 O
CAP CBPL \(37 \mathrm{C}=1000\)
CAP-CBPC \(20 \mathrm{C}=1000\)
DBF1P-7 OSC
MODEL
T2N918 NPN( \(\mathrm{BF}=69.47 \mathrm{C} 2=39.3 \mathrm{NB}=1.5 \quad \mathrm{IK}=0.025\)
(IS=1.55B-15 VA=100.0 VB=20.0 \(\quad \mathrm{BR}=0.573 \quad \mathrm{C} 4=0.0 \quad \mathrm{NC}=1.5 \quad \mathrm{IKR}=0.025\)
\(+\mathrm{CJC}=1.75 \mathrm{~B}-12 \mathrm{MC}=0.120 \quad \mathrm{PC}=0.800 \mathrm{CJB}=2.22 \mathrm{~B}-12 \mathrm{MB}=0.150 \mathrm{~PB}=0.500\)
\(+\mathrm{RC}=11.500 \mathrm{RB}=12.000 \mathrm{RB}=8.50 \mathrm{TF}=2.14 \mathrm{~B}-10 \mathrm{TR}=3.27 \mathrm{~B}-08\) )
SOURCE


IIG. 3 RESPONSE OF COUPLTD AND DIRECT PORTS OF BROADBAND COUPLER


FIG. 4 RESPONSE OF ISOLATION AND RETURN LOSS OF BROADRAND COUPLER


FIG. 5 RESPONSE OP PHASE AND I/L OF 3 DB COUPLEER





The Gummel-Poon model for 2 N 918 bipolar junction transistor is used in this example, with the paraseters indicated in Figure 11.

\section*{\(\mathrm{BF}=59.47\) \\ \(\mathrm{C} 2=39.3 \mathrm{pl}\)}
\(\mathrm{NE}=1.5\)
\(\mathrm{IK}=0.025\)
\(1 \mathrm{~S}=1.55 \mathrm{z}-15\)
\(V A=100.0\)
\(\begin{array}{ll}V B=20.0 \\ B R & =0.573\end{array}\)
\(\mathrm{BR}=0.57\)
\(\mathrm{NC}=1.5\)
\(\mathrm{N} C=1.5\)
IKR \(=0.025\)
CJC \(=1.75 \mathrm{~B}-12\)
CJC \(=1.75 \mathrm{~B}-12\)
\(M C=0.120\)
\(P C=0.800\)
CJE=2.22B-12
\(\mathrm{MB}=0.150\)
\(\mathrm{ME}=0.150\)
\(\mathrm{PE}=0.500\)
\(\mathrm{PE}=11.500\)
\(\mathrm{RC}=11.500\)
\(\mathrm{RB}=12.000\)
\(\mathrm{RE}=8.50\)
\(\mathrm{TF}=2.14 \mathrm{E}-10\)
\(T R=3.278-08\)

Ideal maximum forward beta
B-B leadage aturation current
\(B-B\) leaksge emission coefficient Forward knee current
Transport gaturation current
Forward early voltage
Forward early voltage
Ideal maximu reverse beta
\(B-C\) leakage enission coefficient
Reverse knee current
Reverse bias B-C junction capacitance B-C grading coefficient
B-C junction built-in potential
Zero-bias B-B juntion capacitance
B-E grading coefficient
B-B junction potential
Collector resistance
Base resistance
Emitter resistance
Forward transit tine
Reverse transit tiae

Figure 11. BJT parameters

The initial transient solution for the vco, shown in figure 12, indicates sustained oscillation after approximately 8 nanoseconds. Start-up transients don't seen to be a problem.





Shvas mhora ITV so sagot yonik any yomw \(2 T^{\circ} 01 d\)

Another parameter of concern to oscillator designers is the output power versus frequency as shown in Figure 13. By varjing the tuning voltage, we can predict the output power for different frequencies of oscillation.

Figure 13. Output power veraus frequency


A reaponse of the collector current versus output power, shown in Figure 14, is useful to evaluate the sensitivity of the oscillator to variations in supply current. Although mwspice doesn't really have a "tune" mode, alternately gaving sparameters at different collector currents allow the required data to be graphically evaluated on a single plot.

Figure 14. Oscillator power versus collector ourrent

\section*{Pout(dem)}
\(\square\)

P.C.MOUNTABLE MINLATLTE HELICAL FILTER

\section*{by}
V.K.LAKSIMEESIIA G.S.SEETHA RAMAN AND S.PAL ISRO SATELLITE CENTRE, VIMANAPURA POST,

BANGALCRE - INDIA
PIN CCDE 560017

\section*{ABSTRACT}

This paper presents the development of a miniature P C board mountable helical filter in the VHF/UHF range. The specific development was for application in a spaceborne \(S\)-Band transponder. The unit size is \(45 \times 14 \times 14 \mathrm{~mm}^{3}\) having a 3 pole Butterworth response, giving an insertion loss of about 1.5 dB with 0.5 dB flatness of about 10 MHz and 50 dB rejection bandwidth of 150 MHz at fo \(=375 \mathrm{MHz}\). This unit is tunable fro 250 MHz to 400 MHz and weighs approximately 25 gms.

INTRODUCTION: In the THF/URF range helical resonators can be extensively used where high \(Q\) and practical size is realisable compared to other conventional types. The helix is enclosed in a highly conductive shield of square cross section. One end of the helix is grounded and the other \(1 s\) left open.

DESIGN CRITERIA: The main aim of this design is to realise a unit miniature in size and yet reliable.

Size reduction has been achieved primarily by the following methods:
a) By optimising the volume of the rectangular cavity and coil size.
b) Eliminating input/output RF connectors by using P C solderable R F feed-through pins.
c) By using an alignment procedure which can obviate the need of tuning screws.

DESIGN REQUIREPENTS: The following specifications need to be realised.
\begin{tabular}{lll} 
fo & - & 375 MHz \\
BN \(^{\prime} 1 \mathrm{~dB}\) & \(=\) & 17 MHz \\
BN 50 dB & \(=\) & 150 MHz
\end{tabular}

Design:- Helical Resonator with square cross section:


\section*{Sumbary}

This is a summary of the non-linear analyais techniques that can help the RF design engineer more exactly predict circuit performance, thus reducing design time, costs and frustration. References
1. Gary Franklin, "Oscillator Design Using the Device Line Method and Load Pull Method:, RFEXPO 86 Proceedings, pp. 251-259.
2. Hewlett-Packard Application Note 994, "A 2OHz Power Oscillator Using the HXTR-4103 Bipolar Transistor".
3. EEsof
4. Compact Software
\(\mathrm{H}=\mathrm{Height}\) of the cavity in inches
\(S=\) Length of one side of the square
\(d=\) The mean \({ }^{\text {diameter of coil in inches }}\)
\(b=\) Height of coil in inches
do \(=\) diameter of wire in inches
\(T=\) Pitch of the winding in inches.

The following set of equations are given with these notations for a square cross section (1)

\section*{Table - 1}
1) Qun \(=60 \mathrm{~s} \sqrt{\text { fo }}\)
2) \(\mathrm{N}=\frac{1600}{\mathrm{~S} .10}\) the number of turns
3) \(n\) - \(\frac{i}{T}=\frac{1600}{s^{2} f o}\) the number of turns per inch
4) \(\mathrm{d}=0.66 \mathrm{~s}\) for \(\frac{\mathrm{d}}{1.2 \mathrm{~S}}=0.55\)
5) b \(\quad\) a for \(\frac{b}{c}=1.5\)
6) \(\mathrm{H} \quad-\quad 1.6 \mathrm{~S}\)

It is found that a 3-pole Butterworth filter will satisfy the requirements.

Next Qmin \(=\) qmin \(\frac{\text { EO }}{3 \mathrm{~dB}}=37.5\)
In order to have high \(Q\), the Qun \(>10\) Qmin
- . Qun should be at least 375

By using the set of equations in sable 1 and taking into consideration the faorication difficilties involved, and also keeping in view miniaturisation without deviatind much from the electrical specification requirements, the following dimensions are arrived at for practical purposes.
\(H=21.7 \mathrm{~mm} / \mathrm{S}=14 \mathrm{~mm} / \mathrm{d}=8.5 \mathrm{~mm} / \mathrm{o}=6 \mathrm{~mm} /\)
\(\mathrm{N}=6.5\) turns approx. \(/ \mathrm{n}=32 \mathrm{TPI} / \mathrm{T}=0.3 \mathrm{~mm} /\)
do \(=0.3 \mathrm{~mm}\) approx.
The insertion loss is calculated by I.L. \(=20 \log \frac{U}{U-I}\)
Where U
- Qunloaded

In this case, Qun \(\quad 375\) at least.
Qmin \(=37.5\). . I.L. \(=20 \log \frac{10}{10-1}=1 \mathrm{~dB}\) approx.
The input and output of the resonator are through loops of less than a turn of 22 SWG wire and are placed perpendicular to the helix on the last turn such that loose coupling is maintained.

CONSTRUCTION: - The formers are made of Tefion in which square threads are cut to accom odate the helix coil of 30 SWG enameled copper wire. One end of the coil is grounded and the other is left open. The loops are made from 22 SWG wire. The helix and loops are bonded with

Epotek H-54 low loss dielectric compound. The entire cavity is soldered along the sides to the base plate efter tuning is completed. Then, the entire unit is conformally coated to prevent any seepage of alcohol during further P.c. card assembly operations, cleanine, etc. The mechanical configuration is shown in Pig.l.

\section*{ALIGNME:TT PROCEDURE:}

The filter is aligned using return loss phase characteristics.

Initially all resonators are short circuited, including the output port. Initial phase reference is noted. Each resonator is tuned sequentially by closely changing the number of turns to achieve resonance of each resonator.

RESULTS:- The filter response showing the transmission and return loss characteristics, is shown in Fig. 2 \& Fig. 3. Measured insertion loss is about 1.5 dB , weight 22 gms , size \(45 \times 14 \times 14 \mathrm{~mm}^{3}\).

\section*{CONCLUSIONS:}
1) The same configuration holds good for different frequencies in the range 250 MHz to 400 MHz , and with a slight increase in cavity and resonator height it can be
made even up to 150 MHz .
2) This filter has passed rigorous tests according to MIL-STD-202F。
3) This has been used in ah S-Band TTC Transponder aboard Indian remote sensing satellites, etc.

\section*{ACKNOWLEDGEMENT:}

We sincerely acknowledge the encouragement provided by COL. N. PANT, DIRECTOR, ISRO SATELLITE CENTRS, BARJGALORE, for this work. Also sincere thanks are due to Mr. U. PRABHAKARAN and to Mr. R. RAMASIBRAMANYAM for useful coments.

\section*{REFERENCES:-}
1. Handbook of filter synthesis: Anatol I. Zverov. CHAPTERR 9 P.NO. 499
2. Microwave Filters, Impedance matching Networks, and coupling structures. SEC 11-05 by GEORGE. L. MATTILAEI. et. al.

A CRYSTAL CONTROLLED FREQUENCY AND AMPLITUDE CALIBRATOR
\[
\begin{gathered}
\text { by } \\
\text { Dan Baker } \\
\text { Tektronix, Inc }
\end{gathered}
\]

The motivation for creating this circuit was to provide a calibrator for both amplitude and frequency over a reasonable range of the HF band. Most modern receivers use frequency synthesis and would receive little benefit from a frequency calibrator. However, older receivers and spectrum analyzers need frequency calibration and virtually all receivers would benefit from a broadband amplitude reference. This circuit accoaplishes these goals with a simple design that is fundamentally accurate requiring no adjustments.

The design is based on narrow-width pulses with 1 MHZ and 100 MHz repetition rate. For a theoretical analysis, consider the following time function:


The double-sided Fourier coefficients for this function are:
\[
\begin{aligned}
& F_{n}=\frac{2 A}{\omega_{00 \pi}}\left[\sin \left(\frac{\omega_{0} n T}{2}\right)\right]=\frac{A_{T}}{T}\left[\begin{array}{r}
\sin \left(\frac{\omega_{0} n_{T}}{2}\right) \\
-\left(\frac{\omega_{0} n T}{2}\right)
\end{array}\right]
\end{aligned}
\]

This is of the general form:
\[
\begin{aligned}
& \text { Fn }=\frac{A_{T}}{T}\left[\frac{\sin (X)}{(X)}\right] \\
& \text { where } \left.X=\frac{\omega_{0} n T}{2}\right]
\end{aligned}
\]

The familiar \([\sin (x)] / x\) function is show below:


The function is zero at integral eultiples of \(\pi\). The first zero occurs at:
\[
\begin{aligned}
& X=n=\pi n F_{0} T \\
& n F_{0}=\frac{1}{\tau}=\text { first null hequency }
\end{aligned}
\]

A spectrum analyzer or receiver measures the magnitude of \(\boldsymbol{F}_{\mathrm{w}}\). The frequency response \(\left|F_{(\omega)}\right|\) for a rectangular pulse train is a series of impulses in the frequency domain as follows:
\[
\begin{aligned}
& \left|F_{(\omega)}\right|=\sum_{n=1}^{0}\left|2 A_{i} F_{0}\left[\frac{\sin x}{x}\right]\right| d\left(\omega-n 2 \pi F_{\alpha}\right) \\
& \text { where } x=\pi F_{0} n T \\
& F_{0}=1 n=\text { the pulse repesition rate. }
\end{aligned}
\]

The envelope of the frequency response is dependent only on the pulse shape and not the pulse repetition rate \(\left(F_{0}\right)\). If the pulse is rectangular and of short duration, the resulting response may be quite flat over a portion of the frequency band before the firat zero.

The circuit shown in Figure 1 generates a pulse of approximately 8 nsec in duration. The pulse duration is loosely controlled by the propagation delay through the inverter and \(D\) flip-flop. A more consistent pulse width could be obtained with a 74 SO instead of the 74LS04. However, as will be show, this is not necessary to meet the design goals.




FIG. 1 meChanical details


Figure 1. \(1 \mathrm{MHz} / 100 \mathrm{kHz}\) Amplitude/Frequency Calibrator circuit diagram.

An 8 nsec pulse width would provide the following flatness error at 50 mHz .
\[
\text { Error }=20 \log \left[\frac{\sin \left(\frac{50}{125}\right)}{\left(\frac{50}{125} \pi\right)}\right]=-2.4 \mathrm{~dB}
\]

This is actually a worst case since 1) the pulse is typically narrower and the first zero greater than 125 MHz , reducing the error at 50 MHz , and 2) the \(D\) flop-flop is not capable of generating a very narrow rectangular pulse. The pulse is rounded and, due to slew rate limiting, better approximated by a triangular pulse. This spectrum is flatter than the \((\sin x) / x\) frequency response and this effect further reduces the amplitude flatness error at 50 MHz. The measured error of the prototype circuit was \(<2 \mathrm{~dB}\).

\section*{CIRCUIT description}

To provide markers at 1 MHz and 100 kHz , two programable synchronous counters are used. Crystals at 12 MHz are readily available and most work well in the TTL inverter oscillator shown. The trimmer capacitor is adjusted to calibrate the oscillator to a frequency standard.

The first counter divides by 12 and the second by 10 . The two \(D\) flipflops generate the 8 nsec pulses so that 1 MHz and 100 kHz markers can be generated simultaneously or separately. The 12 MHz oscillator synchronously clocks the two D flip-flops as well as the counters. This allows the 100 kHz pulses to occur precisely coincident with every tenth 1 MHz pulse. This is necessary for proper in-phase addition of the two spectra when both 1 MHz and 100 kHz markers are to be generated.

The desired output power for the calibrator is -60 dBm for the 100 kHz markers and -50 dBe for the 1 MHz markers (Figure 2.)


Figure 2. Output spectrum

\section*{S-BAND HIGH PERFORMANCE COMBLITE FILTER}
V.K.LAKShmeesha, U.prabhhKaran, and s.pal

COMMUNICATION SYSTEMS DIVISION ISRO SATELLLTE CENTRE, ATRORT ROAD BANGALORE-560017 - INDIA

\section*{ABSTRACT}

This paper presents the development of an improved high performance combline filter at S-band for input/out applications of a transponder. The unit features reduced siza and weight optimised with a minimum number of elements resulting in the following characteristics:

Typa Eight pole Chebyschev 0.1 dB ripple.
Rejection R. \(\mathrm{K}_{\mathrm{E}}\) : \(\mathrm{I}_{\mathrm{O}} \pm 180 \mathrm{MHz}-110 \mathrm{~dB}\)
I.L. \(\quad 1.0 \mathrm{~dB}\)

Ripple B.\&. : 100 MHz
Sizes : \(183 \times 37 \times 60 \mathrm{~mm}\)
Weight : 165 GMS.
The unit is tunable from 2 to 2.4 GHz . The unit is qualified for space borne applications for 1 Watt RF power through low pressure to vaccum.

INTRODUCTION:

A high perfornance combline filter has been developed at S-bsind for applications in spacecraft telemetry. The unit features light weight, high rejection on the order of 100 dB and 40 dB down spurious response up to 18 GHz . The unit was tested for 1 Watt RF power from low pressure to vacuum. It was found to be free from RF discharges like corona and multipscting. The unit can be tuned easily to any frequency in the band 2 to 2.4 GHz used for spacecraft telemetry. The filter was constructed from two milled pieces of aluminium joined with screws. This construction makes the unit rugied enough to withstand the severe vibrational requirements of a launch pad. The thermal drift of this unit from 0 to \(50^{\circ} \mathrm{C}\) is less than 5 MHz. A special surface polishing technique was developed to give a bright mirror-like surface finish to the aluminium blocks. This improved the RF conductivity of the surface and brought down the insertion loss to less than 1 dB .

\section*{DESS.IG.N:}

The electrical circuit of the combline filter is shown in Fig.1. The circuit consists of coupled transmission lines of electrical length \(\theta\) shorted at one end and loaded by a lumped capacitor at the other end. These coupled transmission lines are characterised by the self impedance of each resonator, \(C 1\), and mutual capacitance of each resonator with its nearest

This is rather high for most narrowband receivers and the output way need padding for " S " meter calibration. For the 100 kHz spectral components, the required output into 50 ohms is:
\[
\begin{aligned}
& -60 \mathrm{dBm}=20 \log \frac{V_{\mathrm{fo}_{0}}}{224 \mathrm{mV}} \\
& V_{\mathrm{fo}}=224 \mu V_{\text {fus }}=317 \mu \mathrm{~V} \text { peak }
\end{aligned}
\]

This requires an attenuator on the output of the TTL flip-flop. The valuea are then calculated as shown in Figure 3a. It la desired that the 1 MHz markers be 10 dB above the 100 kHz marker amplitudes. The attenuator for the 1 MHz markers is shown in Figure 3b.


Figure 3. Determination of attenuator reaistor values.

Note that when both markers are present, the 1 MHz markers will be 3.3 dB higher than the amplitude when generated alone. This is due to the in-phase addition of the 1 MHz components of both spectra.

\section*{PROTOTYPE RESULTS}

Figures 4 through 8 illustrate the measured results of the prototype. Figure 4 is the double sided (sin \(x\) )/x magnitude response. Note that the first zero is slightly higher than 125 MHz indicating the pulse width is slightly less than 8 nsec.

Figure 5 shows the first 50 MHz of the spectrum and illustrates the predicted flatness error of about 2 dB . Note that the 12 MHz component is too high. This is probably due to crosstalk in the hex inverter. A separate XTAL oscillator would probably elianate this error at the expense of more parts.

Figures 6, 7 and 8 ahow a 5 MHz aegment of the first 30 MHz . Figures 3 and 4 show the 100 kHz and the 1 MHz markers when selected separately. Figure 5 shows the composite calibrator output. Note that the marker amplitudes are about \(10 d B\) different, as predicted. Also note that the 1 Miz markers are about 3dB lower (Figure 7) when selected individually, as was also predicted.

One note of caution is in order. Receivers have a limited voltage dyriamic range at their inputs. Pulses much larger than the ones used in this design can overload a receiver input. If very fine resolution markers are desired using this technique, it would be prudent to consider a chirp or other more complex technique to obtain a flat apectrum with good signal-to-noise ratio.

This circuit provides a cheap, yet quite accurate calibrator of both amplitude and frequency over the 30 MHz HF band. It can serve as a general purpose reference for a general cover recelver or spectrum analyzer.
neighbours, CiJ. The values of Cij were calculated from the prototype given by Mathaie et.al (1). Finally, the physical parameters of the coupled lines were calculated using graphs provided by (2).

The prototype filter along with its element values are given in Fig.2. The value of self impedance and mutual impedance of each resonator is calculated using Mathaie's for mule (1). The terminating inpedance \(I a=50\), ohms impedance of each resonator is taken as 75 ohms and electrical length \(\theta=\) pie/4. This gave the value of self and mutual capacitance ast
\begin{tabular}{ll} 
Self Capacitances & Mutual Capacitance \\
\(C 0=C 9=6.175\) & \(C 1=C 89=1.358\) \\
\(C 1=C 8=3.764\) & \(C 12=C 78=0.223\) \\
\(C 2=C 7=4.710\) & \(C 23=C 67=0.167\) \\
\(C 3=C 6=4.775\) & \(C 34=C 56=0.158\) \\
\(C 4=C 5=4.786\) & \(C 45\)
\end{tabular}

Finally, reactangular bars were used to construct the coupled line structure. Ground plane spacing was taken as 15 ma . and \(t / b\) value was taken as 0.3 . The cross section of the structure is given in Fig.3. The value of \(w / b\) and \(s / b\) were calculated using the data given (2). The lumped capacitance, Cs , was realised using a parallel plate capacitor with air as the dielectric. The physical dimensions of the capacitor were calculated using the formulas
where \(\quad\)\begin{tabular}{rl}
\(c_{s}\) & \(=E A / d\) \\
\(A\) & \(=\) Area of the plate \\
\(d\) & \(=\) Separation between them
\end{tabular}

\section*{MECHANICAL FABRICATION AND SURFACE POLISHING}

The filter was fabricated in two pleces. One piece consists of transmission lines coupled with one plate of the capacitance. The other piece is a cover which forins the two ground planes for the coupled lines and a ground plane for the lumped capacitance. Both pieces were milled from blocks of aluminium. They were joined to each other using M-3 screws. The launching pieces which couple the electrical energy into the combline structure were fabricated separately and fixed to the cover plate using M-2 steel screws. The structures were chemically polished. The attached photographs show the internal construction and assembly of the filter.

\section*{FILTER ALIGMMENT AND TESTING:}

The centre frequency of the filter can be tuned to the desired value by adjusting the resonant frequency of the resonators. Since for a small range of tuning frequency the counling is indepedent of frequency, the pass band will not tet distorted by tuning. Each resonator centre frequency is tuned to the desired value by varying the capacitance, Cs. This is achieved by a tuning screw fixed on the cover plate, one for


Figure 4. Double-sided \((\sin x) / x\) spectrum of the calibrator.


Figure 5. 0-50 MHz markers, showing approximately 2 dB flatness error at 50 Nㅓㅇ.

Figure 6.


Figure 6. 100 kHz markers, from \(0-5 \mathrm{MHz}\) at -60 dBa


Figure 7. 1 MHz markers, from \(1-6 \mathrm{MHz}\). Note level at about 3 dB below -50 dBm .


Figure 8. Both marker combined, \(0-5 \mathrm{MHz}\), showing accuracy of amplitude.
for each resonator. The resonators were brought to the desired frequency by monitoring the phase of the input impedance of the filter on a network analyzer. However, minor adjustments on the launcher position give good return loss as the filter is tuned to different frequencies. The responses are shown in Fig.4. Also, the unit was tested up to 2 Watts in vacuum for power handinf capability. No increase in insertion loss was observed throughout the vacoum range from atmosphere to hard vacuum.

\section*{RESULTS:}

The insertion loss of the filters was measured on the network analyzer and found to be 0.9 dB . The rejection at * 180 MHz away from the centre frequency was measured using a high power source and spectrum analyzer. The measured isolation was 110 dB . The return loss at the desired band was 20 dB . The overall size is \(168 \times 32 \times 30 \mathrm{~mm}\) and the measured weight is 165 gms . The photo of the filter along with a similar filter provided by \(\mathrm{M} / \mathrm{s}\). Delta Microwave for a similar application is given. It can be seen that a substantial reduction in overall size and weight has been achieved. The unit is found to be free from RF discharges like corona and multipacting in the vacuum range starting froia atmospheric to hard vacuum for all the required operational power levels.

\section*{A CKNOWLEDGEMENT}

We sincerely acknowledge the encouragement provided by Col, N.Pant, Director, I.S.R.O. Satellite Centre, Rangalore, for this work. Also, sincere thanks are due to Shri.Seetharaman and Ramasubramaniam for useful comments. We are also thankful to Shri.C.Suresh of P.C.B. Lab for his help in chemical polishing of the filter.

\section*{REEERENCES:}
1. Microwave filters impedance matching networks and coupling structures by G.L.Mathae1, Leo Yong and E.M.T. Jones.
2. Coupled rectangular bars between parallel rlates by W.J.Getsinger, I.R.E. Trans on M T T Jan-1962 p =65-72.



10504 WHEATLEY STREET. KENSINGTON, MARYLANO 20895-2695 (301) 946-1800 TWX: 710-828-0521

\section*{January 15, 1986}

GENERAL PRICE DEIERMMNANIS
for R.F. \& Microwave Filters

\section*{by Dr. R. A. Wainmright, Chief Scientist}

Cir-p-Tel, Inc. 24 S ( 6186

\footnotetext{
Abstract: Prudent selection of an r.f. or microwave filter in general requires a great deal of forethought.
Price is usually not an insignificant consideration. Function, however, must necessarily take precedence - it is worthwhile for anyone who must necessarily select system components to give substantial consideration to those devices that shape their system's selectivity as to frequency and/or time domain performance. Given tractable specifications then, one can corrsider price - it goes without saying that one may over- or under-specify the systen's filtering-functional responses - both are expensive in many respects. Rational corpranises are usually necessary. The following list of items has been generated as a "General Guide" for systems/subsystems engineers. Please retain this list as a "thought jogger" whenever you find it necessary to consider the use of and/or specify selective devices - filters for use in systens. It is hoped that by reviewing this list you may be reminded of essentially all of the considerations you must weigh as a responsible engineer as you imagine/conceive/engineer/document and pass off to mamufacturing "your design" for use and review by your custoners. Like it or not, your name, pride, ego and reputation is inextricably connected to every device you pass on for use by others.
If this list will help you through the maze, then perhaps in sane way Cir-Q-Tel will have been of good service to you - we certainly hope so. please review this list frequently. The factors listed here are very important.
}

LIST OF GENTRAL PRICE DETERMINNNTS FOR FILTERS Not Necessarily in Their Order of Importance and not Necessarily All
For Lowpass, Highpass, Bandpass and Band Reject Filters

1. Topology, i.e., the general network form for realization as might relate to schematic/type of network, i.e., Lowpass, Highpass, Bandpass, Band Reject, Diplexer, Multiplexer, Reflective or Absorptive Filter, etc.
2. fo or fc and tolerances
3. Bandwidth or \(\& \mathrm{EW}\) and tolerances
4. Camplexity or \(n\), sametimes called "degree"
5. ZO
6. Connectors or connections for input and output
7. Terperature, range and stability
8. Vibration and shock envirorment
9. Relative humidity, salt spray, corrosion protection, mold growth, etc.
10. Altitude or pressure requirements
11. Power: peak and average, cooling provisions: conduction, convection, forced air, etc., e.g. fundamental power, hanmonics and power levels of hamonics
12. Load and source impedance conditions
13. Minimm expected life of perfomance (MIBF)
14. Plating or finishes required
15. Mounting requirenents
16. Physical form of network and container shape size of network: filter
17. If tunable then: range, how tuned, range of tuning, control of parameters over tuning range
18. Quantity
19. Delivery: time and method
20. Warranties
21. Inspections: source, destination, qualification, sampling, etc.
22. Documentation: class, level, detail
23. Time (group delay) and phase requirements - frequency damain
24. Step and impulse requirements - time domain
25. Amplitude-Frequency requirements, including moding: absorptive loss, selectivity
26. YSWR: Return Loss-frequency requirements
(continued)


FIG. 4 TRANSMISSION/REFLECTION CHARACTERISTIC OF THE FILTER.

Price Deteminants (continued)
27. Leakage of r.f. energy requirements
28. Competitive marketplace influences
2. EMP specifications
30. General class of filter: Butterworth, Chebishev, Elliptic, Gaussian, etc.
31. Switching, if switching is to be used: Electranechanical/Electronic/ Mechanical
32. Ultimate rejection, necessary reject band levels and frequency "width" (s) of reject band(s)
33. Functional elements: (a) materials: metals, ceramic, plastics, (b) type of resonators, interdigitated, camb line, waveguide ceramic, (possibly) SAN, etc. or for lowpass and highpass, the physical nanifestation of the schematic circuit(s).
(c) coupling means
(d) coupling and element tolerances required; generally tolerances required may be estimated fram:
\(\pm\) tolerances: \(\pm T(\mathrm{~L}, \mathrm{H}):\) Lowpass Highpass
\(\pm\) T (B, R): Bandpass, Band Reject
\([1] \pm T(L, H) \sim 15 / n\)
\([2] \pm T(B, R) \sim 15 / 2 n\)
Where ' \(n\) ' is the number of elements/resonators: the "degree" of the network - understandably scme tuning and tweaking mechanisms/ means may necessarily need to be included in the device design to coupensate for unavoidable element/coupling variations.
As an aside: one must be fully aware of other methods of construction ceramic resonators vs. waveguide resonators for example. In general a well constructed narrow band filter using ceranic resonators may well be superior in performance and lower in cost than a waveguide filter that may be suitable for the same application or a SAW filter (in quantity) may be, and usually is, substantially lower in cost and has superior time damain properties over an equivalent helical resonator filter, etc.

\section*{Noise Measurement Instrumentation}
by
George Peter, Director of Lab Operations Willian Genter, Research Support Specialist

National Aatronomy and ionosphere center
Cornell Univeraity
Induatrial Research Park
61 Brown Road
Ithaca, NY 14850

\section*{INTRODUCTION}

The National Science Foundation funds Cornell University to support the National Astronony and Ionosphere Center (N.A.I.C.). The major facility of the center is the world's largest ingle dish, radio telescope located near Arecibo, Puerto Rico (figure l). Receiver and antenna syatema for that installation are developed at a research and developaent lab located at Reaearch Park, Ithaca, New York.

Most of the front ends for the receiver systems used at the observatory are cryogenically cooled GaABFBT amplifiers. Sone masers are in use at "S" band. The expection is that the next generation receivers will be cryogenically cooled amplifiera using modulation doped GaAsFBTs (MODFBTS). These are referred to also as high electon mobility transistors (HRMTS). They are in the developaent stage. Conercial units have been promised for early or mid 1986 . (1) The forecant is that receiver astem noise emperature will approach or equal the performance of masers at
very much reduced cost and coaplexity. A receiver equivalent flange temperature of \(4^{\circ} \mathrm{K}\) at " \(S^{\prime \prime}\) band is a design goal.

Buen with present GaAsfit front ends receiver performances achieve \(10^{\circ} \mathrm{K}\) at " \(\mathrm{L}^{\prime}\) band, \(15^{\circ} \mathrm{K}\) at " \(\mathrm{S}^{\prime \prime}\) band, and \(22^{\circ} \mathrm{K}\) at " C " band when cooled to \({ }^{\sim} 16^{\circ} \mathrm{K}\) with a closed cycle helium refrigergtor.

Bfforts have been ade to test ach low noise devices using comercially available noise measurement test equipsent. A typical sytem is the \(H . P\). B970A.(2) The manacturer quotes noise figure instrumentation uncertainty of \(\pm 0.1 \mathrm{~dB}\). This is noise temperature uncertainty of \(14^{\circ} \mathrm{K}\). Obviously, better resolution is required to measure receivers whose noise contribution may be very ach lesa than the instrumentation uncertainty. It was decided to develop our own conputer-aided automatic noise measurement test facility. It is described herewith.

\section*{FUNCTION}

An instrumentation astem for the development of low noise receivers should provide for the measurement and ploting of receiver noise temperature vs. frequency. It is useful to measure and plot receiver gain vs. frequency, also. In order to optimize receiver performance these measurements need to be made for various bias and tuning conditions. Speed and accuracy are important factors.

A New Double-Balanced Mixer of High Dynamic Range Improves System Performance

\section*{by \\ Aubrey Jaffer}

Senior Engineer, Bertronics
84 Pleasant St.
Wakefield, MA 01880

ABSTRACT: A new mixer technology which offers low distortions for both inputs enables system designers to significantly improve wideband system performance.

A new mixer technology (patent applied for) has been developed by Bertronics in which each input port has low distortion that is largely independent of the other port signal. This property offers the system designer significant possibilities for improving performance of high performance designs.

To utilize these advantages, this new mixer requires different operating conditions from conventional diode mixers. In order to illustrate how these conditions can be met and how this mixer can be used to advantage, we will illustrate its use in receiving and signal analysis applications.

Figure A shows a schematic for a bridge attenuator. If \(R 2 * R 1=Z * Z\), then both ports are matched to \(Z\) and the attenuation is

\section*{\(V 2 / V 1=(R 1-R 2) /(R 1+R 2+2 * Z)=(R 1-Z) /(R 1+Z)\).}

A perfect mixer would have V2/V1 proportional to another input voltage. However, synthesizing R1 and R2 to meet the above conditions would be difficult.

Figure B shows a solution to this problem. If port 2 is terminated in 0 ohms and \(R 1|\mid R 2=2 / 2\), then port 1 is matched to 2 and the attenuation is
\(I 2 / V 1=(1 / R 1-1 / R 2) / 2\)
\(I 2 / I 1=(2 / R 1-2 / R 2) / 2\).

If V2 is a voltage source and port 1 is terminated in \(Z\), then \(\mathrm{V} 2 / \mathrm{V} 1=(\mathrm{Z} / \mathrm{R} 1-\mathrm{Z} / \mathrm{R} 2) / 4\).

It is not difficult to make the conductance of circuit elements vary in proportion to a voltage. Hence, a mixer with linearity in both inputs can be constructed.

Since the minimum R1 and R2 is \(2 / 2\), the minimum losses are \(I 2 / V 1=1 / Z\), \(I 2 / I 1=1\), and \(V 2 / V 1=1 / 2\). There are hidden sources of loss in linear mixers. In addition to the 3 dB image loss, there is an additional 3 dB loss due to the fact that the local

\section*{BASIC SYSTEM}

A major part of such a seten is receiver back end (B.B.). A block diagram of a typical B. B. is shown in Figure 2. A hot and cold load standard are also required. Typically, a cold load ( \(T_{c}\) ) consists of a 50 ohm termination bathed in \(L N_{2}\) which is contained in a vacuum dewar. A atandard hot load (Tr) usually is a 60 ohm termination located in an oven at \(100^{\circ} \mathrm{c}\). Hence \(\mathrm{T}_{\mathrm{c}}=\) \(77.3^{\circ} \mathrm{K}\) and \(\mathrm{T}_{\mathrm{m}}=373.2^{\circ} \mathrm{K}\). Manufacturers provide a plot of the deviation from \(77.3^{\circ} \mathrm{K}\) and \(373.2^{\circ} \mathrm{K}\) ( \(\mathrm{Tc}_{\mathrm{c}}\) and \(\mathrm{T}_{\mathrm{K}}\) ) va. frequency for their particular hot/cold etandard. This information defines the effect of tranmision line losses in order to determine the real Tc and Th.(3)
I. A procedure for measuring noise temperature for given A procedure for measuring noise temperature for given
frequency is as followa (uee block diagran of Figure 2 for the receiver back end):
1. Connect the Device Under Test (DUT) to the input of a Receiver B. B.
2. Set L.o. to frequency of interest.
3. Connect the input of the DUT to Tc and read Vout (Firat set variable If attenuator so that vouti is within reasonable dynamic range of receiver back end).
4. Connect the input of the dut to \(T_{n}\) and read vouta.
6. Celculate \(y\) fector \(=\frac{\text { Vout }}{\text { Vout }_{1}}\)
6. Calculate asten temperature: \(\mathrm{Ts}_{\mathrm{ys}}=\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{yT} \mathrm{C}}{\mathrm{y}-1}\)
7. Calculate TDUT \(=\frac{\text { Tsys }-T B E T}{\text { GUT }}\)
a.) Tig for each frequency of interest wist first be obtained by the sane steps outlined in 2 through 6 above except that (in Steps \(3 \& 4\) ) connections to \(T_{c}\) and \(T\) are made directly to the post RFamplifier instead of to the DUT. In Step 6 aubstitute Tar for inste
b.) The gain of the DUT (GDUT) is obtained as follows:
(1) Connect the Receiver B.B. to a reference load.
(2) Read vout.
(3) Insert the DUT between the receiver B.E. and the reference load
(4) Add attenuation until vout \(=\) the ame as previous reading for vout
(5) The added attenuation \(=\) GDut

These steps, (1) through (5), must be made for each frequency of intereat. above are:
1. The connecting and disconnecting of the Device Under Test is an exacting busineas. Brrors result from imperfect connections.
2. The time to conduct all of the steps for all of the frequen cies of interest is prohibitive.
3. Receiver drift over such a long period can cause errors in the reaults.
4. Standard hot/cold load values ( \(\mathrm{T}_{\mathrm{c}}=77.3^{\circ} \mathrm{K}\) and \(\mathrm{T}_{\mathrm{H}}=373.2^{\circ} \mathrm{K}\) ) are too high for obtaining accurate noise measurements of a are too high for obtaining accurate noise measurements of a K .
oscillator input would be driven with a sine wave and the RMS value is .707 of the peak value. Notice that there are no intrinsic limitations on the conversion loss from the port controlling the conductance of the circuit elements.

\section*{THE MIXER}

Figure \(C\) shows the connection diagram and preliminary specifications for the Bertronics FD50 Mixer. The bias terminals should be biased at about -20 volts (relative to the port 3 pins) to provide an impedance for ports 2 and 3 of 50 ohms. Adjustment of the bias voltages adjusts the port impedance; the greater the voltage, the lower the port impedance. Adjustment of the voltage between the bias terminals (less than 50 millivolts) provides a fine adjustment of Port 2 to Port 3 isolation. The substrate should be connected to approximately +10 volts. Both the substrate and the bias pins are high impedance inputs, and should not be subjected to static charges.

Port 1 of the FD50 mixer is an input with approximately 5 pF of input capacitance and several hundred ohms of parallel input resistance. Port 2 is an isolated winding with an impedance of 50 ohms (as adjusted by the bias voltage). Port 3 should be
balanced with respect to the bias and substrate pins. It has an impedance of 50 ohms.

Ports 2 and 3 are similar in that if one is deliberately mismatched to a low impedance, then the other is resistive (VSWR < 1.5). Port 3 has response down to \(D C\) but port 2 does not. If the mismatched port impedance is not relatively low, then the nonvermion lose and noise performance auffer and VSWR is sensitive to port 1 signal level.

One input's distortion products are largely independent of the other input. Hence, the mixer can be modeled as two nonlinear functions of the inputs followed by a perfect multiplier (Figure D). That is why there are two sets of distortion specifications. Port 1 presents a problem for input intercept specification because this input is mostly capacitive. Therefore, we have expressed this number in volts.

Instead of conversion loss we specify a transmission constant and equation relating input and output voltages and mixer impedance. This equation demonstrates the programmability of the mixer. The conversion loss between two ports is proportional to the signal level of the third. Conversion loss is not a meaningful specification, however, as only one port is terminated resistively in normal operation.

One technique to minime the time for masuring and plotting receiver noise va. frequency and receiver gain vs. frequency is to use apectrum analyzer as a substitute for a receiver back end. The spectrum analyzer can drive an \(X-Y\) plotter to produce reasonable results. This arrangement does not address problems outlined in II-I and II-4 above. Also more sophisticated techniques are needed to provide for modifying bias and tuning parameters between tests.

\section*{THB COMPUTBR-AIDED AUTOMATED SYSTBM}

To answer nost of the needs for fast and accurate noise and gain measurements, computer-aided instrumentation system was developed. An Apple II \(E\) computer and an ISAAC 91-A \(A^{n}\) interface system were procured.(4) Rather than develop our own analog to digital input-output system, we chose to elect commercially available interface. The important thing was to get on line in the shortest possible tiae and to have a system that requires minimal effort for modification. The ISAAC 9l-A by the Cyborg Company seems to be a good choice. It is designed especially for the Apple II E. Another ISAAC unit is compatible with the IBM PC. 1ts "Labsoft" \({ }^{\prime}\) software package simplifies commincations with the computer. Specifications are given in the appendix. A block diagram of the control and data
acquisition system is shown in Figure 3. Figures 4 and 5 are flow charts of the "Tsys" program and the "noise teap" program respectively.

A test dewar/refrigerator was assembled to provide rapid cool down and warm up times and for rapid installation of various amplifiers at the \(16^{\circ} \mathrm{K}\) station of the dewar (see Figurea 6 and 7). A receiver back end was developed which includes awitchable range low pass filter, amplifiers, adjustable attenuators and a voltage to frequency converter (V/F) output (see Figures 8 through 11). The \(V / F\) output is fed to a counter input channel of the ISAAC interface. The advantage of this technique is that it allows for rapid dumping of sampled signal levele between frequency settings. Also the \(V / F\) technique effectively averages voltage fluctuations over a specified length of sample time.

The hot load reference is provided by driving an H.P. \(346 B(5)\) noise diode through a directional coupler ( -20 dB). When the diode is on, this results in a nominal noise temp. of \(\sim 100^{\circ} \mathrm{K}\). The cold load consists of a 50 ohm termination located at the \(16^{\circ} \mathrm{K}\) tation of ateat dewar, hence the cold temperature is ~ \(16^{\circ} \mathrm{K}\). However, transmission line losses, directional coupler insertion loss and ~ \(3^{\circ} \mathrm{K}\) from hot load port of the coupler (when noise diode is off) result in a total \(\mathrm{T}_{\mathrm{c}}\) of \({ }^{\circ} 30^{\circ} \mathrm{K}\). Likewise actual \(\mathrm{T}_{\mathrm{H}}=\sim 100^{\circ}\)

\section*{INTERFACING}

Although these port impedances may seem difficult to work with at first, they can actually be used to advantage in some designs. For lower frequency applications, Port 1's high input impedance allows high signal voltage levels to be reached with little input power. For hieher frequency applications, it is desirable to resonate this capacitance in order to reduce the aignal power requirements.

Both ports 2 and 3 present 50 ohms and, although one of them is deliberately mismatched, the amplifiers should be designed for good noise performance at 50 ohms. Figure E shows an example of a broadband design. This circuit will have optimum noise performance if biased at the same current as one optimized for common emitter noise performance. FETs can also be used.

\section*{SIGNAL RECEPTION / ANALYSIS}

Port 1 of the mixer can be used to advantage in receiver applications. For lower frequency \(R F\) inputs, the signal can be transformed up, enabling the mixer to have conversion gain (Figure F). This can eliminate the need for RF amplification and enable the system to have a low overall noise figure. The
disadvantage of this configuration is that substantial Lo power is required.

In heterodyne applications, the low levels of harmonics for both inputs to the mixer reduce the spurious responses of the receiver. If the IF is high, it can be matched to the amplifier with a quarter wave length transmission line (Figure G). The parallel inductor and capacitor are used to short the port at all other frequencies.

Use in direct conversion is where the mixer offers the greatest improvement over conventional mixers. The low level of harmonics of both ports (if the LO has low harmonic content) means that harmonic mixing is ereatly reduced. Low level amplification at 50 ohms at baseband can present problems also. Ficure \(H\) shows a practical circuit for low noise, low impedance amplification. The circuit uses very low noise transistors (PMI MAT-02) in a feedback circuit to lower the input impedance to . 04 ohms. Compensation is provided by the shunt input capacitor. This compensation also lowers the input impedance at higher frequencies. Op amps could be used with a penalty in noise performance (Figure I). Here again, compensation is provided by the shunt input capacitor. This pole should be located much lower than any poles in the Op amp transfer function in order to ensure stability.
\(K\) (when diode is on) plus ( \(\mathrm{Tc}_{\mathrm{c}} \mathrm{-} \sim 3^{\circ} \mathrm{K}\) ) \(\sim 127^{\circ} \mathrm{K}\). These values mast be calculated or measured in advance for each frequency of interest and placed in memory by the computer program.

After initialization is made the computer ateps are:
1. Read the anbient temperature \(=\left(T_{A}\right)\)

Read \(16^{\circ} \mathrm{K}\) etation temp. in dewar \(=\left(T_{0}\right)\)
These readings are taken from voltage v3. temp. of a nonlinear diode (computer uses look up table from manufacturer's data). (B)
2. Read Ttronainioion line lower + Tnoise diode (off)
fron a look up table. Add to To. This equals Tc for from a look up table. Add to To. This equala Tc for each freq. of interest.
3. Read (from look up table) Tnosse diode (on) and add \(T_{c}\) fron above reading. Subtract Tnoise dode (off). This \(=T_{M}\) for each freq. of intereat.
4. Read output of \(V / F=V_{2}\) (first adjust "IF" attenuator for a reasonable dynamic range region of receiver B.B.).
5. Turn on noise diode (TTL noise diode drive \(=1\) ).
6. Read output of \(V / F=V_{2}\).
7. Calculate y factor \(=\frac{V_{2}}{V_{1}}\)
8. Calculate \(\mathrm{T}_{\mathrm{A}} \mathrm{C}=\frac{\mathrm{T}_{\mathrm{n}}-\mathrm{y}_{\mathrm{c}}}{\mathrm{y}-\mathrm{l}}\) for thit particular freq.
9. Increment Yig oscillator ( \(=\) L.O.) from predetermined teps.
10. Repeat steps 2 through 9 for 50 frequencies in 20 MHz increments.
11. Calculate Tout for each freq. \(=\frac{T_{R e c}-T_{B E}}{G_{D U T}}\)
V. Tge and Gout must be obtained in advance for these steps and included as information during the initialization process.
1. Tbe is obtained in the same way as in Steps IV - 2 through 10 except that the DUT is bypassed and the results in Step IV - \(8=T_{B E}\) instead of Thec.
2. The gain of dut (GDut) is obtained as follows:
a.) Connect receiver B.B. to a reference load and record in memory vout \(\mathrm{v}_{\mathrm{s}}\). frequency.
b.) Connect DUT between B.B. and same reference load.
c.) Add fixed attenuator to bring \(V^{2}\) det. output to within reasonable region of the dynamic range of the B.E.
d.) Record Voutz vs. frequency.
e.) Calculate Gout \(=\) added attenuation \(+10 \log \frac{V_{2}}{V_{2}}\) for esch freq. of interest.

For DUT optimization:
1. a.) Program computer to change \(I_{0}\).
b.) Run test data IV - 2 through 10.
c.) Compare with previous run.
d.) Repeat for optimum performance.
2. a.) Program computer to change Vo.
b.) Repeat Steps VI - 1-b through l-d.
3. During Runs 1 and 2 compare Gout vs. freq. as well as noise tenps. vs. freq.
4. Compromise minimum noise temp. and optimum flatness and gain of DUT.
5. If provisions are msde for external tuning of DUT,

The independence of the distortion functions of the inputs can be used to advantage in a unique AGC circuit. In a conventional diode DBM, reduction of the LO level results in drastic reduction of the third order input intercept point. This degradation in performance does not occur with the new mixer. Hence, we can reduce the gain of the mixer without affecting impedances or other parameters. Ficure \(J\) shows a system with a PIN diode attenuator interponed between the local owolllator mad the mixer input. If the attenuator were on the RF or IF side, noise and distortion performance would suffer. The performance of the circuit in Figure \(J\) is limited by the mixer and the IF amplifier. The amplifier can be designed for fixed gain, for instance using feedback. This allows higher performance than could be achieved with a voltage controlled amplifier.

\section*{PHASE COMPARISON}

The low DC offset of the mixer suits it to use as a phase comparator. If used with a sine wave phase reference, the mixer can be used to lock onto low level signals with greatly reduced risk of harmonic locking due to its low distortion. In synthesis applications, the reduced levels of harmonics enables spectral purity to be achieved with less filtering.

We have introduced Bertronics' new mixer technology. The dimmipative mixer mhould be considered as a new component in order to exploit its advantages for hich performance system deaign. It offers a degree of linearity to RF and Microwave desiens which was previously available only below 1 MHz .
repeat Steps 1 through 4 above for each change in uning until optimum performance is achieved.
VII. A ampleplot of an optinized receiver is hown in Figure 12. Gain va. frequency and noise temp. vis. frequency are plotted. This receiver was teated while operating at room temperature.(7)

Other lese aphisticated programs are included. A
syaten temperature measuring technique in for a more rapid measurement. An long as \(T\) gs is known and the gain of the device under teat is obtained (from e.g., a swopt amplitude network analyzer), the Tbut can be calculated readily. In many cases the \(T\) er contribution ay be negligible and hence the Tout approaches the value of \(T\) yrs. The hot and cold levele used during the \(T s y\) teating can be those used in the Eore sophisticated testing or can be atandard \(77.3^{\circ} \mathrm{K}\) cold load and a tandard room temperature load with a thermoneter.

\section*{CONCLUSION}

The syetem allows for relatively rapid testing and plotting of various noise temperatures va. frequency. It saves countless hours in the optimization of anplifier.

Figure 13 shows a plot of typical cryogenically cooled GaAaFET amplifier asten temperature va. frequency. This test can be made
in less than five minutes using the computer-aided automatic noise temperature instrumentation system.(e) The conventional method would require a ubstantial increase in testing and conputing time.

The ISAAC 91-A interface syateminimizes the time for developing the test facility.

\section*{ACKNOWLEDGEMENTS}

Acknowledgenent ig given to Dr. Sander Weinreb of the Netional Radio Astronomy Obervatory. Many of the ideas for this syetem were borrowed from a imilar geten used by the NRAO at Charlottesille, VA. (o) A discussion with Dr. Weinreb and his associates led to the developeent of this test facility. His group provided the low lose input tranemisaion lines.

Mr. Andrew Ingram, graduate student in Blectrical Bngineering at Cornell Univeraity, developed the software to be compatible with the ISAAC interface and the Apple IIE computer. Pierson C. Mosher developed the cryogenic systen. Kurt Kabelac and David Vanwinkle asaisted in wiring and machining. Lynn Baker provided consultation.
cf
Apple is registered trademark of Apple Computer, inc. ISAAC it registered trademark of Cyborg Corporation. labsoft is a registered trademark of Cybors Corporation.

Bertronios
Model MFDEO
Preliminary Preliminary Preliminary Preliminary Preliminary

\section*{_---_-_-Doubie Belanced Miser}

\section*{peatures}

O Hide Bandwidth
o High Power Capability
- Low Distortion


MAXIMUM RATINGS (Voltages relative port 3 common mode voltage)
Bias Terminals -40 port \(v\)
Port 1 Voltage
Port 2 Voltage
Port 2 Current
Port 3 Voltage
Port 3 Current
Power Dissipation 250 C
Derate Above 250C


OPERATING CHARACTERISTICS (.5-500MHz)
Port 1 Capacitance:
Port 2, 3 VSWR e 50 Ohms (Port 1=0V)
Isolation, Port 2 to Port 1 :
solation, Port 2 to Port 3
Transmission Constant \(T\)
5 pF
1.5
40 dB
30 dB
40 dB
.8
Transmission Constant T
I \(3=T * V 1 * V 2 / 23 /(V B I A S-2.5 V)\)
Two-Tone Third Order Input Intercept Point:
Port 2 or Port 3 - 30 MHz
Port 1 30MHz
+39 dBm
25 VRMS
Current, Bias Pins
10 UA
Current, Port 3 Pins to case
Specifications apply with Bias pins -20 V and case +10 V

Figure C.


Figure B. Bridge Attenuator with low impedance port


\section*{SYMBOL GLOSSARY}
\begin{tabular}{|c|c|}
\hline Symbol & Bxplanation \\
\hline DUT & Device Under Test \\
\hline Gdut & Gain of Device Under Test \\
\hline 15 & Intermediate Frequency \\
\hline \(\mathrm{LN}_{2}\) & Liquid Nitrogen \\
\hline L. 0. & Local Oacillator \\
\hline Rec. E & Receiver Back End \\
\hline TA & Anbient Temperature \\
\hline Te & Cold Load Temperature \\
\hline TD & Dewar Temperature at \(16^{\circ} \mathrm{K}\) station \\
\hline Tout & Noise Contribution of DUT \\
\hline TH & Hot Load Temperature \\
\hline Trec & Noise Contribution of Total System \\
\hline V/F & Voltase to Frequency Converter \\
\hline Vout \({ }^{\text {a }}\) & Square Law Detected Output when Rec. is connected to Tc \\
\hline Vout2 & Square Law Detected output when Rec. is connected to Tn \\
\hline \(Y\) Factor & Ratio of \(\frac{\text { Youta }}{\text { Vout }}\) \\
\hline
\end{tabular}

\section*{RBFBRBNCBS}

1 - Toshiba S 8900 Preliainary Data Sheet
2 - H. P. B970A Noise Figure Meter Technical Date
3 - Maurey Microwave MT 7118-47 Cryogenic Teraination Data Manuel

4 - ISAAC 91-A by Cyborg Co., Newton, MA 02158
5-H.P. 346B Noise Source Operating Service Manual
6 - Lakeshore Cryotronics Inc. DT-500-DRC D Voltage-Temperature Characteriotica
7 - NAIC Report: Dual Ghannel 6cn Cooled GaAaFET Recaiver March 1984, Georse Peter, et al.

8 - Naic Report: Computer-aided Noise Measurement Inetrumentation Manual 4-84. George Peter, et al

9 - NRAO Rlectronics Division. Internal Report \(\boldsymbol{z}_{2} 12\) - The Adios Analog - oigital Input output systen for Apple Computer - G. Weinreb S. Weinreb.


Figure E. Transimpedancos Amplifiars


Figure G. Cuartel wave matohed Amplifier


Figure H. Baseband Amplifier


Figure J. Mixer with AGC

\section*{FIGURE}

\section*{DESCRIPTION}

Picture of Radio Telescope
Block Diagram Back Bnd
block Diagram Control Date Acquiaition Syatem
Flow Chart Tgys Progran
Flow Chart Noise Temp. Progran
Test Dewar - Top view
Test Dewar - With Refrigerator Asseably

Receiver Rack
Receiver, Peripheral Rack, and Teat Dewar

Receiver with Computer and Interface
oirectional Coupler, J Line and Noize Diode

Sample Plot Gain Noise Temp. ve. Freq.

Plot of Cooled Receiver Noise Temp. vs. Freq.

the tactical miniature crystal oscillator (tmxo)
```

T.S. Payne and R.E. Lowell
Plezo Technology, Inc.
Orlando, FL

```

The Tactical Miniature Crybtal Oscillator (TMXO), Figure 1 , is a highperformance frequency standard intended for use in a wide range of advanced military commitations, navigation, and position-determining systems. Key advantages of the TMXO are
\begin{tabular}{|c|c|}
\hline Low Power & \[
\begin{aligned}
& -150 \mathrm{~mW} \text { typical at } 25^{\circ} \mathrm{C} \\
& 250 \mathrm{mb} \text { max. }\left(-55^{\circ} \text { to }+75^{\circ} \mathrm{C}\right)
\end{aligned}
\] \\
\hline Small Size & - 1.25 in . diameter \(\times 1.55 \mathrm{in}\), height \\
\hline Low Weight & - 1.75 oz. nax. \\
\hline Pagt Warm-Up & - 4 milmutes max. (from \(-55^{\circ} \mathrm{C}\) ) \\
\hline \begin{tabular}{l}
Frequency \\
Accuracy
\end{tabular} & - \(\pm 3 \times 10^{-8} / \mathrm{yr} .\), all causes \\
\hline
\end{tabular}

Standard TMXO frequencles are 10 MHz and 10.23 MHz .

While the TMXO is an ovenized crystal oscillator, it uses a radically different mechanical design approach to achieve an order of magnitude reduction in power and size coopared to conventional ovenized oscillators. In a conventional oscillator, most of the power required is used by the oven. Reduction in power is achieved by more insulation -- and therefore a bigger oscillator.

This is fine for many applications, but it does not fit the tactical military environment.

The mXO takes a different approach. First, the gize of the electronics package is wifimized by hybridization. The small size makes it easier to reduce the heat loss. A special ceramic package for the cyrstal resonator gives additional size reduction. Second, a high degree of thermal insulation is provided by an evacuated enclosure. The \(T M \times O\) is the first production obcillator to use this technique.

Motivated by projected tactical requirements, the present mXO was developed at Bendix Communications Division under sponsorship of the U.S. Army Electronic Research and Development Command (now the Laboratory Command) in a series of contracts which began in 1971 [1,2]. Concurrently, its unique ceramic flatpack crystal resonator was under development at General Electric, also under ERADCOM sponsorship [3]. In March, 1985, PTI obtained a commercial license from Bendix for the m mXO , and undertook to manuacture both it and its ceramic-packaged crystal. The first PTI-made TMXO was delivered less than fifteen months later. In this paper, we shall describe the mXO as currently manuactured; then we shall briefly discuss the Improved TMXO (ITMXO), which is being developed under LABCOM sponsorship.


RECEVER BACKEND BLOCK DIAGRAM.
Fig. 2
D.C. = Directiona! Coupler ( 20 dB )
N.D. = Noise Diode (H.P. 3468 )
\(T_{A}=\) Ambient Temperoture Sensor
\(T_{0}=\) Dewar Temperoture Sensor
DUT = Device Under Test


CONTROL AND DATA ACQUISITION BLOCK DIAGRAM.
Fiq. 3

\section*{Applications}

The max is unequalled in providing a precise frequency reference requiring only a modest input power. This combination makes it well-suited for certain battery-powered applications -- for example, a portable tioe transfer unit which can be synchronized from a reference clock (which aight get its time reference from a GPS receiver), and which is used to aet the clock of a remote system.

In a somewhat different application, the mixo has been integrated into an existing cockpit environment, where size and weight are extremely ieportant and where, in addition, the mxO's high stablity and fast werm-up are essential to the mission requirement.

In a third application, developed by LABCOM, the maO is uaed in conjunction with a rubidium secondary frequency standard. Its long-tem stability is on the order of \(i \times 10^{-11}\) per month, while the maO's ia typically \(1 \times 10^{-10}\) per day, but the rubidium's power consumption is 10 to 20 watts. In one veraion, the rubidium is energized from time to time - perhaps once a week or once a month. The maxo is then set to the rubidium frequency, and the rubidium is turned off until the next week or month. This allow even better long-term accuracy than the maxo on its own providea, without the power penalty of the rubidiun. In other veraions, the rubidium atandard ia Installed in a separate equipment and ia used to re-set a number of mXO's.

\section*{Mechanical and Thernal Design}

The mechanical deaign of the maxo sets it apart frow other ovenized oscillators. Figure 2 show the most significant aspects of the overal asseably. Except for an optional output buffer, all of the electronics is realized by a thick-file hybrid contained in a hermetically sealed ceranic and aetal octagonal package, masuring about 1 inch from flat to flat. An SC-cut quartz crystal resonator in a saaller ceranic flatpack, also octagonal, is vacuur-soldered to the underaide of the hybrid, and connected by welded gold ribbons.

This asseably is supported on 6 atiff Inconel wires which extend from the ceranic vacuu header and provide the input/output connections to the hybrid. The output buffer, if used, ia located on the bot tom, exterior face of this header. Lateral support of the crystal/hybrid assembly is provided by 4 polyimide bumpers which press against the inside wall of the outer enclosure.

The entire assembly is evacuated to elininate convective heat tranafer. Theral radiation is made negligible by use of a cup-shaped thermal baffle or heat shield which prevents the outer case from "seeing" the hybrid/cryatal asambly. As a further measure, the shield, and the inner wall of the outer case are electro-polished and gold-plated for low themal emiasivity. As a conaequence of these mesures, alwost all heat lose is due to conduction along the Inconel wirea and the polyinide bumpera. For the former, the themal resistance is approximately \(900 \mathrm{~K} / \mathrm{W}\); for the latter, an exact figure ia not


Fig. 4


Fig. 5
easily calculated, due to sall but highly significant dimensional uncertainties; however, the Inconel wires are the primary heat transfer path.

In order that gaseous heat conduction be negligible, pressure in the maxo aust reain below \(10^{-3}\) to \(10^{-4}\) Torr. This is assured by a nuaber of processing steps. First, the hybrid and crystal packages are tested for hermeticity. Second, they are joined by reflow soldering in vacuua to elininate trapped gas, wich could, over time, leak into the mXO cavity causing an increase in preasure. Third, all components are cleaned in an elaborate series of procedures. In the last stage before seal, the mXo is outgassed in a vacuumbake cycle. In this process, the muxo is evacuated wia its tubulation to a pressure of about \(10^{-8}\) Torr while being aintained at a teaperature of \(150^{\circ} \mathrm{C}\) with a wrap-around heater and proportional controller.

In addition to these masures, the mixo contains a non-evaporable, refirable getter located just above the vacuun header. The getter's purpose is to adsorb any gases liberated after seal. The getter is activated by an initial firing just prior to seal. During firing, the getter reaches temperatures up to \(800^{\circ} \mathrm{C}\). A heat shield between it and the header protects the latter, while the cryatal and hybrid are protected by their heat shield. Hydrogen is liberated by the getter during activation, and puaping continues until this is completely removed. Finally, the OPHC tubulation is pinched off, coapleting the sealing cycle. All of the assembly processes are carried out under clean roon conditions. In addition, a number of procedures are used
to control materials and coaponents used, and are just as important as the steps described.

\section*{Electrical Design}

Principal electrical functions are the oscillator, the voltage regulator, the temperature controller and heater, and the optional output buffer. The circuit designs used are for the most part fairly conventional and will be only briefly described.

As noted earlier, all circuitry except the optional buffer is contained in the hybrid circuit module. The buffer, when used, is wounted on the outside face of the ceranic vacum header.

Figure 3 shows the circuit of the oscillator and its voltage regulator. The regulator portion of UI , an M 10 , and \(Q 9\) make up the voltage regulator.

In describing the oscillator, the atandard operating frequency of 10 MHz will be assumed. The oscillator sustaining circuit contains 2 stages of gain, Q1 and Q4. The first atage, Q1, drives the pi-section filter consisting of C2, C7, C13, and L1. The crystal unit has a number of resonances, or modes. The filter aust select the one wich is wanted and reject the others. Thus it mast pass the 3 rd overtone C -mode frequency of 10 MHz while adequately suppressing the 3 rd overtone \(B\)-mode which is about \(9 \pi\) higher in frequency. In

addition, it reject fundamental and fifth overtone modes. At the 3rd overtone C-mode, the phase shift through the filter is \(180^{\circ}\).

The second stage, \(Q 4\), drives the limiter, wich consists of Schottky diodes D3 and D4. The liniter feeds back to the bsse of Q1 to close the loop. The cryatal unit is in the eaiter of Q1. Away from resonance, ealtter degeneration reduces the first stage gain, so that the loop gain is lese than unity. At 10 MHz the series combination of the crystal, blocking cspacitor C12, varactor D1, and the load capacitor is resonant, thus deteraining the frequency of oscillation. The value of the load capacitor is set by grounding some or all of the "Frequency Adjust" points. Varactor Dl allows external frequency adjustant of at least \(\pm 1 \times 10^{-7}\). Oscillstor output is taken from Q8. The resistor R22 and blocking capacitor Cl2 prevent the occurrence of a \(d-c\) bias scross the crystal unit. This is required because the resonant frequency of sc-cut crystals is senaitive to \(d-c\) blas, and because a \(d-c\) bias can cause frequency sing due to diffusion of electrode metal into the quartz body of the resonator.

A current-efficient blas network is used to keep the power disaipation low. D5 is a constant current diode which controls the bias current. D3 and D4 are forward biased, their current ratio being set by resistors RS, R19, and R9. The same current is used to set the operating pointa of oscillator circuit transistors \(Q 1, Q B\), and \(Q 3\), and transistor \(Q 7\) in the tenperature control circuit.

The teaperature controller scheantic, shown in Pigure 4, is a conventional proportional controller with added power liwiting. Temperature is sensed by glass bead thernistor in theatstone bridge arrangement. Bridge arm resistance is 51 R ohms. The unit is set to the crystsi's turnover temperature by selecting the value of the thernistor and an external resistor. Q6 is the heater tranaistor. Gain is provided by the operational auplifier portion of U1. Heater current is sensed as the voltage across R16. The voltage acrose R21 is proportional to the heater voltage. The su of these voltages is used to aintain constant werm-up power for a range of supply voltages by aetting the base voltage of \(Q 7\). When the circuit is firat energized, theraistor RTI is very high in resistance, unbalancing the bridge and driving the current through the heater to high value. Q7 is therefore turned on, liaiting the heater current to approxiantely 1.5 amp and the rate of temperature change to about \(2 \% / \mathrm{sec}\). As final oven teaperature is approached, the theraistor resistance drops rapidly, which acts to reduce the heater current. The base voltage of Q 7 drops, and it cuta off. The bridge cones almost to belance, regulating the heater current to the value required to maintain a stable operating temperature.


\section*{Bybrid C1rcult Module}

Figure 5 shows a completed hybrid circuit module prior to seal. The package is a custom design consisting of a multilayer ceramic base to which a Kovar sidewall is brazed. Connections to the hybrid are via "through" metallization of the ceramic base, teminating at exterior castellations. Pins are brazed to 6 of these. During final assembly, the Inconel support wres will be welded to the pins. The lower surface of the enclosure is metallized to permit subsequent attachment of the resonator package by solder reflow.

The octagonal shape of the hybrid permits linear parallel seam sealing using a stepped Kovar 11d, whlle providing the maximum substrate area. To four side walls are brazed small turrets which hold the polyimide bumpers.

A beryllia heat spreader is bonded to the floor of the hybrid package. The heater transistor is eutectically bonded to a central, metallized pad. This transistor is used to heat the entire hybrid/crystal subassembly; the function of the heat spreader is to reduce lateral themal gradients in the subassembly.

The hybrid substrate is epoxy-bonded to the top surface of the heat spreader. Both the heat spreader and the hybrid substrate are octagonal, but the latter has a central hole to accommodate the heater transistor. Substrate material is \(94 \%\) alumina. Metallization is thick film gold; screened-on resistors use standard, ruthenlum-based inks. Chip devices are epoxy-bonded
to the substrate; connections are made by thermosonic gold ball bonding. Input/output connections are also wire bonded.

\section*{Crystal Resonator}

The crystal unit is a 3 rd overtone \(\operatorname{sC}\)-cut quartz resonator in a special ceramic flatpack. Figure 6 shows the resonator in its package prior to ealing. The package consists of a ceramic frame and two ceramic covers, not hown. Mounts are brazed onto metallized pads, and support the plano-convex blank at four points. The lowest mechanical resonance 1 s above 2 kHz . Gold electrodes are used. External connection is achleved via co-fired through metallization. Sealing surfaces are metallized and gold plated. Gold gaskets are used between covers and frame. The package is sealed by the mo-compression bonding.

The SC-cut is chosen for several reasons. First, in the vicinity of turnover, the frequency vs. temperature curve of the SC-cut is much flatter than that of AT- or BT-cut crystals, reducing the oven temperature control requirements. Second, very fast warm-up can be achleved due to the SC-cut's insensitivity to thermal gradients. Third, the stress compensation inherent in the SC-cut reduces acceleration sensitivity.

Low aging is obtained by a coobination of measures. Electrodes are gold. Mounts are designed for minimum stress. Stringent cleaning procedures are


Fig. 12
\begin{tabular}{lllll} 
FREQ(GHZ) & UHOT(MN) & UCOLD(MN) & Y FACTOR & TSYS(DEG K \\
2.2 & 313.26 & 100.1 & 3.12947053 & 19.6392006 \\
2.21 & 301.97 & 96.18 & 3.13963402 & 19.1592536 \\
2.22 & 302.59 & 95.97 & 3.15296447 & 18.5366238 \\
2.23 & 316.38 & 100.08 & 3.16127099 & 18.1525326 \\
2.24 & 342.4 & 108.33 & 3.16071264 & 18.1782578 \\
2.25 & 371.2 & 117.69 & 3.15404877 & 18.4863177 \\
2.26 & 416.28 & 132.34 & 3.14553423 & 18.8827161 \\
2.27 & 425.43 & 135.24 & 3.1457409 & 18.873057 \\
2.28 & 413.09 & 130.95 & 3.15456281 & 18.4624867 \\
2.29 & 402.78 & 127.79 & 3.15188982 & 18.5865319 \\
2.3 & 415.78 & 132.06 & 3.14841739 & 18.7481376
\end{tabular}

HOT TEMP \(=296.56\) DEG \(K\)
COLD TEMP \(=81.4\) DEG K CHW \(1 / 30 \mathrm{M}\)

employed throughout resonator processing. An extensive vaculn bake is used prior to seal to outgas all resonator components. Figure 7 gives the aging result for one of the first mano resonators fabricated at PTI. The rate at day 30 is less than \(1 \times 10^{-10} /\) day.

\section*{Performance Data}

The complete mxo specification includes a long list of detailed requirements. We wish to discuss the most important of these.

Warm-Up Tiae. An important feature for any applications is fast warm-up. The TMXO has a specified wara-up time, from an amblent temperature of \(-55^{\circ} \mathrm{C}\), of 4 minutes. Table 1 shows the asured wara-up time for 4 units.

Table 1
Warm-Up Time (from \(-55^{\circ} \mathrm{C}\) )
\begin{tabular}{cc} 
Un1t & Time \\
No. & (Minntes) \\
10 & 1.9 \\
15 & 3.0 \\
18 & 2.4 \\
24 & 2.4
\end{tabular}

Power Consumption. The maximus apecified input power, after wara-up, is 250 milliwats, excluding power required for the optional output buffer. Figure 8 shows typical values measured over the operating temperature range. The buffer power requirement depends upon the output required, but is typically 50 m or less.

Prequency v8. Temperature. The total frequency error budget includes half-a-dozen items, of wich this parameter, and long-term aging, are the two largest components. A variation of \(\pm 5 \times 10^{-9}\) is allowed over the operating teaperature range. Pigure 9 show a variation of \(+0.1,-2.0 \times 10^{-9}\), indicatIng that the oven teaperature has been correctly set very nearly to the cryatal's upper turnover point.

Aging. The maximum specified aging rate is \(2 \times 10^{-10}\) per day after 30 days contimous operation. Figure 10 showe frequency change for the first 21 days for maxo No. 10. The aging rate for days 10 to 21 is already silightly better than the specified value at day 30 .

Phase Noise. Figure 11 compares the measured SSB phase noise density, \(\mathcal{L}(f)\), with the specification. It should be noted that measurements are excluaive of the output buffer. In some instances, degradation may occur when logic-level buffers are used.

\section*{appendix : hamdmart spbcifications}

All epecifications typical e \(23^{\circ} \mathrm{C}\).
Storage temperature: \(0-70^{\circ} \mathrm{C}\).
Operating temperature: \(10-40^{\circ} \mathrm{C}\) (30 min. warm up)
A/D Subiystem
Resolution: 12 bit (.025\%)
Channel acquisition time: 100 microseconds
A/D conversion time: 25 micsoseconds
Accusacy: t/-.0s\% of fulliciale
Differential nonlineasity: \(+/-.025 \%\) of full acale
Temperature coefficient: \(+/-75 p p m /{ }^{\circ} \mathrm{C}\)
Common mode sejection (differential mode): 70 dB
Input bias cursent: +/- 100 nenoAmps
Input impedence: < 100 picoferads
\(>100\) megohme
D/A Subsyetem
Resolution: 12 bit (.025\%)
Capacitive load: \(<1000\) picofarads
Accuracy: +/-.oss of full scale
Differeatial aonlinesityt +/-.025s of full ecale
Output cutsent: +/- S milismperes
Overshoore くcofficient tic
Semperinure coefficient: \({ }^{\text {i }}\) - \(30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
Setiling time: < micsoseconds (to < \(2 \pi\) of full acale)

Biaary Input Subeystem
1nput port: 16 bit
lnputsignal: (high)t 2 Voliz/40 microamperes (low) + 0.8 yolis/o.9 mictuamperes
Communications: STROBE, HOLD, and CLEAR TO SEND
Binasy Outpur Subsyere
Output post: 16 bi
Fan out: 4 standard TTL loads (so LS TTLL luads)
Outputignal: (high) + 3.1 Volis/2.6 milliamperes (low) \(+0 . j\) Volis/20 milliamperes
(timaty Ontpet sulajeten (cont.)

\section*{Commaicetioas: STEODE, GATB, CLEAR TO SEND Communications fan outi 4 giandasd TTL loads ( 20 LS TTL loads)}

\section*{Schnize Trisgee Sabsyecm}

Response time: micsoseconds Hysteresiat 20 millivolts

Cosater Device (Chanels 0-6)
Input isgal: (hish) + 2 Volis/20 microamperes Marimum count frequeacy: 10 megaheriz (som duty cycle) Minimum couni frequency: DC

Ceurer Device (Cbanacl 7)
Mazimum input voltage: so Voles (DC + peak AC) Sengitivity: 100 millivolts RMS
Maximum count frequency: 2 megehertz (sos duty cycle) Minimum ceunt fiequeacy: 0.5 Herte (sine weve)

\section*{Timer Subspote}

Accuracy: (dependent on Apple CPU clock)
Reaolution: 1 millisecond

Short-Tera Stability. The short-ters stability is shown in Figure 12, which plots the Allan variance, \(\sigma_{y}(T)\), between 0.1 and 10 sec , and is well within specification.

\section*{Improvement Progran}

Notwithstanding the unequalled conbination of low power, frequency accuracy, and size offered by the maxo, further improvementa are needed for a number of applications. Although not all of the following are needed in ach instance, these areas have been targeted:

\section*{Phase Noise}

Acceleration/Vibration Sensitivity
Nuclear Survivability
Manafacturiag Cost

Work in these areas are being carried out under LABCOM aponsorship of an Improved mixO (imino). This 36 month progran is ill in its initial stage. Taska concern circuit design and hybrid construction, crystal unit design and processing, and overall mechanical design.

\section*{Conclusion}

The present mixo and its unique ceranic flatpack crystal are the result of many years of development by the U.S. Aray and its contractors. Previously, there has been no merchant source for the crystal, wich is essential to the success of the mixo. Now, for the first tiae, the mxO and its resonator are being manufactured in aingle facility and sold commercially.

\section*{Acknowledgment}

We would like to thark Dr. J.R. Vig, Dr. R.L. Filler, V. Rosati, and S. Schodowski of the U.S. Aray Electronic Technology and Devices Laboratory for encouragement and generous support. We would also like to than the staff meabers of Bendix Comenications and General Electric wo provided assistance and the benefit of their experience, eapecially E. Laszio, R. McGill, and D. Brown of Bendix, and T. Wagner and J. Reres of General Electric.

\section*{References}
[1] D. Brown, et al, Manufacturing Methods and Technology for Tactical Miniature Crystal Oscillator," Proc. 38th Annual Symposition on Prequency Control, 1984, pp. 380-386.
[2] H.W. Jackaon, Update on the Tactical Miniature Crystal Oacillator Progran," Proc. 36th Annual Syaposium on Prequency Control, 1982, pp. 492-498.
[3] J.M. Prank, "Vaculu Processing System for Quartz Crystal Resonators," J.M. Prank,
Proc. 3nacuil Processing Ancyal Symposium on Frequency Control, 1981, pp. 40-48.


Figure 2. Simplified TMXO Construction

\section*{TEMPERATURE COMPENSATION CIRCUIT FOR SPACE DATA} TRANSMITTERS
S. PAL, V.S. PAO, N.U.M. RAO, B. PICHAIAH, s. K. SAINI, A. Bhaskaranarayana

COMMUNICATION SYSTEMS DIVISION isRo SATELLITE CENTRE, AIRPORT ROAD BANGALORE-560 017 - INDIA

\section*{ABSTRACT}

\section*{Temperature compensation for data transmitter} used in pacecraft is a long felt requirement to maintain a constant equivalent isotropic radiated power. presented in this paper is a simple and efficient technique which incorporates an automatic gain adjusting circuit associated with temperature sensitive components. The advantages over other types of schemes are explained. The application of this scheme is explained with the help of an \(X\)-band data transmitter qualified for on-board use in the Indian Remote Sensing Satellite.

\section*{INTRODUCTION:}

The design of systems for space applications calls for best efficiency, as DC power is precious for spacecraft. while avoiding thermal stress on components to ensure reliable operation over the wide temperature ranges.
sfficiency and reliability are two vital parameters for a space system design. No compromize on reliability 1s possible in space system design as no scope exists after launching a spacecraft into orbit for repair or replacement of a system. Usage of 100 x screened and tested components with proper derating will ensure that components are reliable and that circuits are designed to avoid additional stress on the components over the severe environment change, as quite a few parameters will vary with temperature. Temperature effects accumulated over all the stages of the system result in unwanted effects in alarming proportion and may even lead to fallure of the system.

\footnotetext{
In an amplifier chain, for example, the drive requirements of an amplifier stage change with temperature, as base emitter voltage (Vbe) and current gain (B) of a transistor change. At low temperatures the amplifier may not have sufficient drive to give required output and at
}


FIGURE 3. Oacillator and Voltage Regulator circuit Diagram


FIGURE 4. Tenperature Controller Circuit Dlagram
high temperature the transistor may be driven into hard saturation resulting in poor efficiency with over dissipation.

In a data transmitter the level at the input of a power amplifier, viz. TWTA, should remain constant over the temperature range to avoid phase shift changes. Power variation in each stage of a transmitter has to be minimized to overcame unvanted effect. This can be achieved by incorporating temperature compensation techniques.

\section*{COMPENSATION TECHNIQUES FOR THE DESIGN OF A TRANSMITTER:}

The basic transwitter to tranmit data from spacecraft uses \(R F\) amplifiers, frequency multipliers to generate microwave signal from the basic crystal oscillator used as a high stability frequency source, a modulator to enable the microwave carrier to carry the data, and final power amplifiers such as TWTA to boost the modulated microwave signal to a sufficient level so the antenna can radiate enough power to enable the ground syatem to capture the aignal to get the data. A typical transmitter schamatic is shown in the Fig.i.

All stages of the transmitter have to be designed in such a way that the level at the input of TWTA remains
fairly constant over the full temperature range and no transistor or diode dissipates,more power than the designed value, even at extreme temperatures. This calls for maintaining the variation in each stage within limits.

To some extent, variation in the passive component values and their effect on gain and power output can be estimated from the available data and can be taken care of in the deaign by providing wider band widths.

To reduce the power and gain variations resulting from various parameter changes due to temperature variation, many methods are available and their merits are discussed in the following paragraphs.

\section*{TEMPERATURE COMFENSATION IN FREQENCY MULTIPLIERS:}

The variation of the power output in frequency multipliers using step recovery diodes can be minimized by compensating for the change of lifetime of the SRD. The bias is directly proportional to the diode lifetime. The rate of change of \(S R D\) 's lifetime is \(+0.5 \%\) to \(0.7 \%\) per \({ }^{\circ} \mathrm{C}\) (1). This is closely matched by the rate of resistance change of a silicon resistor (sensitor).


Figure 5. Hybrid circuit Module Prior to Sealing


FIGURE 6. SC-Cut Resonator Mounted in Its Ceranic Flatpack. Not shown are ceranic top and

\begin{abstract}
The multiplier can be temperature compensated simply by using a sensistor to develop the bias voltage, instead of a resistor. This type of aimple compensation maintains the output variation within 1 dB over a falrly wide temperature range.
\end{abstract}

For further compensation, the power output of the driver amplifier (at input frequency) should be varied to compensate for the variation in the conversion loss of the multiplier with temperature by adjusting the gain of the preceeding stages, using temperature sensitive components in the bias/supply circuitry of the driver amplifier.

\section*{TEMPERATURE COMPENSATION IN AMPLIFIERS:}

A simple and coarse method to reatrict the output variation in an amplifier to some extent is to add a resistor in series to the supply voltage. This method is inefficient and also inaccurate.

The commonly used technique is to operate the power amplifier stages in \(\mathrm{Cl} a s s \mathrm{C}\) and to drive them fully into saturation where decrease in input level will not result in equal reduction in output level. The collector efficiency is reduced as the transistors are operated in the
gain compression region, This carries the disadvantages explained earlier and cannot take care of the variation of preceeding stages totally or the variation of succeeding stages.

Another technique is to use temperature sensitive components like thermistors in the bias network of Class A stages. This cannot take care of the variation of other stages.

Since efficiency is the prime consideration for space ystems, there is a need to look at other methods, such as the leveling loop approach, which is complex.

The standard leveling loops control the gain of the preceeding Class A stages by sensing output power level. Another way is to use an variable attenuator like a PIN diode attenuator to keep the output level at constant value by varying the attenuation automatically depending on output level.

The basic circuit schematics to provide autoleveling are shown in Fig.2. The necessary circuit elements include a directional coupler, detector, feedback amplifier and a PIN diode attenuator in the second approach. The directional coupler samples the \(R F\) output signal which is converted to a


FIGURE 7. Frequency Aging Curve of a maxo Crystal Unit. The unit is aged in a test oscillator prior to use.

figure 8. Input Power vs. Temperature, maxo No. 10
proportionate DC signal which is amplified by the feedback amplifier, the output of which controls the bias current of the transistors to adjust the gain or the bias current through the attenuator diode to adjust the attenuation to keep the output constant. This type of leveling loop technique to keep the output constant by controling the gain or attenuation at low power level, maintains efficiency of the transmitter.

Another simple leveling loop techaique (2) which maintains both efficiency and output of cascaded amplifier stages uses the voltage drop across a resistor connected in series with the collector bias network of the output transistor to control the gain of the preceeding Class \(A\) amplifier stage.

Power output and efficiency of the amplifier using this simple leveling loop are nearly flat against variations of temperature and input drive level. This approach cannot take care of the variations of succeeding stages.

This disadvantage can be overcome by incorporating a temperature sensitive resistor, vix. thermistor, to drive the reference voltage. The schematic of the amplifier circuit used to maintain the output of the final multiplier (1.e. at the input of the TriA shown in Fig.i) is shown in Fig. 3.

The cascaded amplifier section consis ta of one Class A amplifier driving the Class \(C\) amplifier stage. The voltage generated across resistor \(R_{1}\) connected in series to the collector supply of \(Q_{2}\). is compared with the reference level generated by the resistors and thexmistor network by a PNP transistor \(\left(0_{3}\right)\). As the collector current of \(Q_{2}\) changes, the bias voltage supplied to \(a_{1}\) by the comparator/feedback amplifier \(Q_{3}\) changes, resulting in a change in the gain of the Class A amplifier \(Q_{1}\) and thereby the drive level to \(Q_{2}\) which brings the collector current of \(Q_{2}\) back to the initial value. Since output power is nearly proportional to collector current, the output level remains constant.
any change in the drive bbtained from proceeding stages tries to change the current in \(Q_{2}\) and the loop adjusts the gain of \(\rho_{1}\) to maintain the current in \(Q_{2}\), thereby keeping the output level constant. The PNP transistor \(Q_{4}\) connected as a diode in the bias circuit of \(Q_{3}\) compensates for the changes in the enitter base \(j u n c t i o n\) of the transistor \(\rho_{3}\) over the temperature range.

The output power can be adjusted by changing the reference voltage at the base of \(\alpha_{3}\). The themistor network is designed in such a way that the change in the reference voltage due to temperature variation adjusts the output power of the amplifier to compensate the power


FIGURE 9. Frequency va. Teaperature, TMXO No. 10

figure 10. Frequency aging Curve, taxo No. 10
change in the succeeding stages. The temperature compensation network can be selected easily if the power variation in succeeding stages is known, else this can be estimated practically.

\section*{DESIGN GP THE COMPENSATING NETWORKS IN TRANSMITIERS}

\begin{abstract}
In a transmitter like the one show in Fig. 1 it is found that temperature compensation of the SRD frequency multipliers and the two stage amplifier preceeding the final multiplier, by incorporating the autoleveling loop associated with the themistor network, is adequate to keep the power level at the input of the TWTA constant.

The firgt frequency multiplier can be of the order of 2 or 3 using a transistor, as the basic crystal oscillator frequency will be below 100 MHz . The following amplifiers also need not have any special compensation network and even need not be operated in hard saturation. The variation will be taken care of by the autoleveled amplifier following the second frequency multiplier.
\end{abstract}

In the frequency multiplier that uses SRDs, usage of a silicon resistor as the biasing resistor nearly compensates for the changes caused by lifetime variation
with temperature. In spite of this compensation, power loss variation will be on the order of 1 dB over a \(-20^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\) temperature range. This variation has to be taken care of by the proposed compensated leveling loop. The compensated leveling loop should be designed to take care of the variation in input level in various preceeding stages caused by the wide environment change and the loss variation in the succeeding stages. The current sensing resistor \(R_{1}\) should be selected to be a low value (less than 10 ohms) as higher values drop supply voltage to the transistor, thereby reducing the available gain and power.

The Class \(C\) amplifier should be designed to have a higher compression point. 1.e. to give higher power output at room temperature than normally required. In the potential divider network at the base of \(O_{2}\) a potentiometer P2 is used in place of the thermistor network (R3, R4\& R5). Resistor R6 is to limit the base current and in turn the collector current of the Class A amplifier ( \(O_{1}\) ). This value is to be adjusted to limit the collector current within a safe limit when no input is fed and to be the normal operating current with drive at room temperature. It should be noted here that the collector current
of the Class \(A\) amplifier will be maximum at no drive condition. To be on the safe side a high value can be


FIGURE 11. SSB Phase Noise Density
(AVG. of 4 UNITS)


FIGURE 12. Allan Variance
choosen for R6 to start with which can be reduced after adjusting the reference voltage for the required output.

With normal expected drive to \(\Omega_{1}\), the reference voltage at the base of \(Q_{2}\) can be adjusted with the help of potentiometers \(P_{1}\) and \(P_{2}\) to get the required output from the Class C amplifier. The AGC action can be checked by varying the input level. To get a wider range for AGC action, if necessary the \(P_{1}\) and \(P_{2}\) combination may be readjusted by chanding \(R_{1}\), Check for the change in output level of at least \(\pm 1 \mathrm{~dB}\) variation which will be higher than the expected variation in loss in the succeeding stages, by varying the potentiometer \(P_{2}\)

If the loss of the multiplier and modulator at different temperatures is know, the output of the amplifier Chain required to maintain the output of the modulator can be estimated and the corresponding \(P_{2}\) values can be measured. If the variation is not known, or for greater accuracy the whole transmitter up to the modulator can be kept in hot and cold aimulation chambers by bringing the potentiometer \(P_{2}\) outside. The value of \(P_{2}\) needed to keep the output level constant should be measured at different temperatures. A themistor, resistor combination can be
worked out to closely follow the resistance values required at different temperatures.

By using MSC 80064 and MSC 3000 transistors for Class \(A\) and Class \(C\) amplifiers, an amplifier chain is designed at L-band to drive an \(X 5\) frequency multiplier. A compensated leveling loop technique is incorporated in the L-band amplifier chain. The final power output is found to be within \(\pm 0.2 \mathrm{~dB}\) over \(-30^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) againet \(\pm 4 \mathrm{~dB}\) input level variation to the amplifier. An isolator has to be used at the input of the Class A amplifier to take care of the return loss changes.

\section*{CONCLUSION}

Different types of temperature compensation methods that can be used in designing telemetry/data transmitters for space application, where it is essential to maintain the efficiency of the system by avoiding thermal stress on components over the wide environments, are pointed out. A simple but more effective compensated auto leveling loop that controls the gain of a Class A amplifier stage, depending on the current of the final Class C amplifier is presented. The output level is maintained constant against variations in the drive level upto \(\pm 4 \mathrm{ds}\). The reference voltage generated by the potential divider


FIG. 2 a. SCHEMATIC OF RGC CIRCUIT.


FIG. 2 b. SCHEMATIC OF AUTOLEVELLED CIRCUIT.


FIG.3. SCHEMATIC OF DN AWPLIFIER USING COMPENSATED AUTOLEVELLING LOOP CIRCUIT.
dESIGN CONSIDERATIONS FOR SAWR OSCILLATORS

by
Electrical Engineer, Watkins-Johnson Company 700 Quince Orchard Road Gaithersburg, MD 20878

INTRODUCTION
There are three different stages in designing an oscillator circuit using a SAW device: choosing the correct SAW device for the application; apecifing the design parameters for the \(S A \|^{\prime}\) device; and incorporating the SA: device into the oscillator design.

The two types of SAW devices used in oscillator designs are SA: delay lines and SAl resonators. An oscillator circuit using a SAl delay line is capable of being tuned over a frequency range of up to 1 MHz . Larger tuning ranges degrade the tuning linearity, phase noise and temperature stability of the device.[1] An oscillator circuit using a SAW resonator (SAWR) is used for fixed frequency applications. Its tuning range is related to the \(Q\) of the resonator. Increasing the \(Q\) narrows the tuning range. SAWR's typically have a \(Q\) between 5000 and 10,000.[2]

This paper focuses on the specifications for a SAWR device and the design parameters for incorporating the SAwR into an oscillator circuit. Two different oscillator designs are
discribed. Their advantages and disadvantages are discussed along - ith the problems encountered.

\section*{DESIGN SPECIFICATIONS POR SAV RESONATOR}

To purchase sADR from a manfacturer certain specifications must be considered. Some of these parameters are determined by the manufacturer, others must be specified by you, the engineer. Specifications to consider include manufacture's tolerance, temperature drift, turnover temperature, aging, center Irequency, phase shift, insertion loss and spurious rejection. An explanation of these characteristics is given along with some typical ifgures. It is important to understand these conditions because some of them affect the circuit design.

CENTER FREQUENCY: Center frequency is the resonant frequency of the sal device. The useful frequency range of a SAWR is from 250 Mhz to 1.2 Ghz . There are SAll's as low as 50 whz, but the physical size of the package is large and therefore expensive.[3] The upper end of the SAWR range is limited by the photolithographic processes. Greater resolution is required for h1gher prequencies.[4]

Some circuit configurations will not operate very close to the SAWR's center frequency. For this reason, it may be necessary to specify the center frequency at some offset from the operating prequency. SAW oscillator design \({ }^{\prime \prime}\) lon pageilis an example of this type of circuit.
consisting of a themistor network is automatically varied to adjust the output level to compensate the power variation in succeeding stages. An X-band data transmitter designed with this type of temperature compensated leveling loop gave good results and was found to be very useful for space applications. It is found that a compensated leveling loop in the final amplifier Chain preceeding the last multiplier is adequate to take care of all the variations caused by temperature change.

\section*{ACKNOWLEDGEMENTS}

The authors gratefully acknowledge the encouragement from Col. N. Pant, Director, I.S.R.O. Satellite Centre and Dr. S. P. Kosta, Dy. Director (spacecraft Electronics Group) ISRO Satellite Centre and thank other colleagues for their valuable suggestions.

\section*{REFERENCES}
1. Harmonic generation using step recovery diodes and SRD modules - HP application note 920.
2. Leveling loop senses current and seta gain by JIM CURTIS OCTOBER 1981. Microwaves.


MANUFACTURER'S TOLERANCE: The manufacturer's tolerance specifies the maximum amount of deviation from the center frequency allowed by the manufacturer. The larger the manufacturer's tolerance, the better the gield of acceptable devices. A better gield generally means a lower price per component. A typical manufacturer's tolerance for a SAVR device is 200 ppm (parts per million).

TEMPERATURE DRIFT: Temperature drift is the total amount of frequency deviation from the center frequency over a specified temperature range. The amount of drift is determined by the temperature coefficient of delay and the turnover temperature. Both are related to the type of substrate used to make the device and the type of cut performed on the substrate.

Temperature Coefficient of Delay: Two different substrates are commonly usedin SAll devices: quartzand lithium aiobate. The temperature coefficient of delay for ST-X quartz is less than 3 ppm/deg \(C\) at room temperature. YZ-lithium niobate has a temperature coefficient of delay of \(85 \mathrm{ppm} / \mathrm{deg} C\). Since STX quartz has a smaller temperature coefficient of delay, it is more stable over temperature. Using lithium niobate as a substrate may require an oven for temperature stability.[5]

Turnover Temperature: The turnover temperature is that temperature where the frequency deviation is miniaal. Agraph of frequency deviation verses temperature with a turnover
temperature at +25 deg \(C\) (room temperature) is shown in figure 1. The shape of the response is parabolic with the turnover temperature at the vertex. Notice that the frequency deviation due to temperature is negative.[6]

For this discussion the Fig. 1 Frequency vs. Temperature temperature range of interest will be from 0 deg \(C\) to + 70 deg \(C\).

The turnover point of the parabola can be positioned anywhere between -25 deg \(C\) and +90 deg \(C .[7]\) The placement of this turnover point has a largeaffect on the amount of frequency deviation due to temperature. For example, if the turaover temperature is at +80 deg \(C\), then the frequency deviation between 0 deg \(C\) and +70deg \(C\) is nearly linear as shown in ilgure 2. As temperature decreases, frequency decreases.

The amount of frequency deviation



F1g. 2: Turnover Temp at

TESTING OF NARROWBAND COMMUNICATIONS RECEIVERS - ACSB AND SSB by

> Malcolm Levy Product Manager
> Racal-Dana Instruments Inc.
> Goodyear Street
> Irvine, California 92718

This paper discusses the effects of adjacent channel, reciprocal mixing and intermodulation performance on narrowband Amplitude Compandored Sideband (ACSB) or Single Sideband (SSB) receivers. A test procedure will be given to evaluate this performance and the signal generator specifications will be discussed in relation to the above tests.

\section*{SPECTROM EPFICIENCY}

The Commercial Spectrum.
Over the last few years, the radio frequencies allocated to mobile radio have become very congested. Action now has to be taken to overcome these problems. In the larger metropolitan areas such as Los Angeles there are virtually no frequencies available. So what can be done? First of all, more frequencies can be released for the mobile radio users and this has been done by opening up the \(800 / 900 \mathrm{MHz}\) band, primarily for cellular radio. Other action needs to be taken for such organizations as the police and fire departments, who must have secure radio channels.

The present systems employ \(F M\) in 20 KHz channels. This modulation system was implemented because of its superior
fidelity, better signal to noise performance, and most important of all "hands-off operation". Unfortunately, a price was paid for this...spectrum inefficiency.

A new narrowband technology, for the commercial user, employing audio compandored single sideband techniques has now been approved. ACSB systems offer communications in a bandwidth significantly less than that used in \(F M\) systems. It can be shown that all the information from the human voice can be contained in the frequency range 300 Hz to 3.4 KHz . In fact, in SSB systems, intelligibility is still maintained with a high frequency cut off at 2.4 KHz . Research in the U.S. by Dr. Lusignon and Dr. Fred Cleveland and in the U.K. by Professor W. Gosling and Dr. Joe McGeehan, showed that SSB could meet the needs of the VHF and UHF land mobile users. The FCC is now licensing ACSB radio systems with 5 KHz channel spacing in an attempt to reduce the congestion.

Four new ACSB channels can be introduced where one. FM channel previously resided. See Figure 1.
b. 558 Schame 4 Channels

Figure I
in parts per million due to a specific temperature is calculated using equation 1 shown below.
\[
F(p p \infty)=\frac{(T-T o)^{2}}{(T c)^{2}}
\]
<Equation 1>
 To = Turnover
Tc = Temperature coefficient in deg \(C^{2}\) per parts per
Tc \(\quad\) Temperature
mililion [8],
\(T=\) Temperature of interest in deg C.[9]

For the situation shown in figure 2, the maximum amount of frequency deviation is
\[
F(p p m)=\frac{(70-0)^{2}}{(5.45)^{2}}
\]
\(=165 \mathrm{ppm}\).
Notice that the difference between the two extreme frequencies is substituted in for the quantity "T-To". This substitution is necessary because the turnover temperature is outside the desired temperature range.

The advantage in this example is that the frequency deviation is nearly linear with changes in temperature. This deviation is easily overcome by using a temperature compensating capacitor.

Now look at the example shown in figure 3. The turnover temperatureis at \(\quad+35\) deg \(C\) wich is rightin the middle of the desired temperature range. As temperature decreases from the turnover temperature, frequency decreases. But as temperature
increases from the turnover temperature, frequency again decreases.

In this example, either extreme temperature can be substituted into equation 1 for "T" since the turnover temperature is exactly in the center of the frequency range. The temperature deviation is

\(\frac{\text { Fig 3: Turnover Temp at }}{+35 \operatorname{deg} \mathrm{C}}\)
\[
F(p p m)=\frac{(70-35)^{2}}{(5.45)^{2}}
\]
\(=41 \mathrm{ppm}\).
The advantage in this example is a low frequency deviation which can be handed within the pull range of the circuit.

AGING: Aging is the amount of frequency deviation from the desired frequency over a long period of time (years). This type of frequency change is a logarithmic function of time with most of the drift occurring in the first year.[10] For this reason, many manufacturers will only specify aging for the first year. A typical value for aging is 10 ppm/year maximum for the first year.
pHASE SHIFT: The amount of delay in degrees at the output

The Military Soectrum.
The military have used SSB at HF for many years, as ic lends itself to better power efficiency, communications efficiency, security and reliability. Military systems have been developed to give the ultimate performance from both transmitter and receiver. Specifications for military equipment are more stringent than commercial. For instance. adjacent channel transmitters could be using as much as 1 kw of power while most commercial mobile radio transmitters may use only 10 watts. The military receiver, to handle such large signals, needs to have 20 dB better adjacent channel performance than the commercial equipment. See Table 1.

Table 1
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Minimum FM STO \\
As Oefined by R5204C
\end{tabular} & TYPICAL FM MOBILE SPEC & MILITARY COMMUNICATIONS RECEIVER
2.7KHz B.W. & ACSB MOBILE SPEC \\
\hline Usable Sansitivity 0.3 uV & . 30 V & <0.35uV & \(0.25 u \mathrm{~V}\) \\
\hline \begin{tabular}{l}
Adjacent Channel \\
Selectivity \(\quad>70 \mathrm{~dB}\)
\end{tabular} & 75 dB & 290 dB & 80 dB \\
\hline Intermodulation (In Band) \(\quad 260 \mathrm{~dB}\) & 80 dB & \(>80 \mathrm{~dB}\) & N/S \\
\hline
\end{tabular}

Figure 2 shows an FM spectrum of a carrier fc with 5 KHz of deviation \((\Delta f)\) and a maximum modulating frequency of 3.5 KHz. This results in a modulation index of approximately 1.4. The side frequency pairs can be calculated from Bessel functions. By inspection, the majority of the power is contained in the first two side frequencies resulting in a bandwidth of 14 kHz .


Fig 2 FM Spectrum of a carrier fc. deviation \(\Delta\) ' and maximum modulating frequency fm .

Figure 3a shows an SSB spectrum. The carrier is reduced 60 dB below the speech sideband. (shown as an upper sideband.) The lower sideband is also reduced by at least 60 dB , resulting in the majority of the spectrum power being contained in a 2.2 kHz bandwideh.
of the device as referenced to some point (usually the input of -he device) is the phase shift for the device. SAll resonators are built with either a degrees phase shift or a 180 degrees phase shift (theoretically).

Phase shift for a SAWR can be specified two different ways. It can be specified at the SAl's resonant frequency or at some other frequency. The latter case is used when the circuit configuration requires a certain amount of phase shift at a particular frequency to operate. Then the phase is specified at that frequency instead of at the center frequeacy of the SAFR.

INSERTION LOSS: Insertion loss is the ratio of input power to output power, normally expressed 1 n dB [11] and also related to Q.[12] If the iasertion lose is high, the \(Q\) will be low and the devi , can be pulled farther from its resonant frequency. For a lower insertion loss, the \(Q\) will be higher and the device's pull ratage will be tighter. Typical insertion losses for sall resonators range from 8 dB to 14 dB depending on the center frequency.

SPURIOUS REJECTION: Spurious rejection is a measurement of how far unwanted outputs in the frequency domain are suppressed.[13] Manufacturers usually avertise a miaimum spurious rejection of 7 dB to 10 dB . Typical values are around 12 dB to 16 dB depending on the insertion loss and \(Q\) of the device.[14]

SATR OSCILLATOR DESIGN CONSIDERATIONS
While desigaing a SAW resonator (SAWR) oscillator, several considerations should be kept in miad. The most important of these considerations is the way SAmRismatchedinto a circuit. Oscillator stability, tuning range, and active device selection are all affected by the input and output matching networks.[15]

MATCHING IMPEDANCE: The bulk of the design effort is focused on the laput and output matching elements. The matching elements must place the SAWR in the proper impedance environment, provide the additional phase shift necessary for oscillation, and tune the oscillator to the correct frequency.[16]

If the input and output matching networks present a low impedance to the SAFR device, the loaded \(Q\) of the samr would be relatively high, the insertion loss would be high and the tuning range for the oscillator circuit would be quite narrow. The high insertion loss requires an active device with a high amount of gain to sustain oscillation. The high loaded \(Q\) causes the SAwR device to dominate control of the circuit's frequency whereas other oscillator components have little affect. Because of the SAWR's tight control, the best possible phase noise performance is achieved.[17]

If the matching networks present a high impedance to the SAWR device, the opposite happens. The loaded Q and the insertion loss would be relatively low, and the tuning rage

Figure 3b shows an ACSB spectrum with a slightly greater bandwidth due to the 3.1 KHz tone above band (TAB). Other ACSB merhods have been proposed wich tones in band (IIB) From the above examples, the specrrum efficiency of SSB is clear.

After reducing the bandwidth and implementing essentially an am scheme particular attention must be paid to performance. In fact, the same performance as was achieved in the FM system should be aimed for.

Originally adjacent FM channels were geographically spaced to reduce the chances of adjacent channel inteference. This luxury can no longer be afforded because of spectrum congestion. The same will apply to an ssB or ACsB system, and with channels only 5 KHz apart particular attention must be paid to transmitter and receiver performance.
a. SSB Spactrum

b. ACSB Speetrum


Figure 3

\section*{RECEIVER TESTING}

Emphasis has already been placed on spectrum conservation by the use of SSB schemes. Correct alignment of the eransmitcers is, therefore, always paramount. Nonlinearity in an SSB transmiecer produces the same effect as over-deviation in an \(E M\) transmitter......gross spectrum abuse. Assuming that the transmitters are correctly aligned, receiver performance must be assessed with the equivalent of a good clean radio transmitter. Consideration must, therefore, be given to the signal generator. A phase noise spec 20 kHz from carrier, good enough for present FM channel spacing, is no longer acceptable. Equal performance 5 kHz from carrier must now be sought. As will be shown later, far more stringent tests such as reciprocal mixing on narrowband CW military receivers necessitates low phase noise even closer than 5 kHz . Generator specifications relevant to the test in question will be highlighted.

\section*{on Channel tests}

The most important of these tests, that of sensitivity will be discussed briefly. The sensitivity of the receiver must be established before proceeding to discover how strong off channel signals affect this performance.

Referring to Table 1 the performance for the SSB communications receiver for a \(10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}\) ratio is 0.35 microvolt ( -117 dBm ) or better. To test for this performance. a single tone only is needed. (Unlike the AM or FM receiver. the carrier is of no value.)
would be wider. A lower insertion loss does not require an active device with a high amount of gain to sustain oscillation. Because of a lower loaded \(Q\), variations in the other oscillator components have a noticable affect on the operating frequency. Phase noise performance degrades slightly.[18]

TUNING ADJUSTMENT: Fine tuning of the SAWR oscillator should be limited to one adjustable component.[19]

MAXIMUM POWER: A good rule of thumb is to limit the power dissipated in the SAma device to 20 milliwatts. Larger amounts of power cause strong vibrations to occur inside the SAWR that -ill eventually tear the aluminum transducers from the substrate. Once this separation occurs, the device is ruined.[20]

DC CURRENT: For best reliability, DC (direct current) should be kept off the SAWR device. The SAFR Will operate with DC running through it but reliability degrades.(21)

PULL RANGE: The pull or tuning range is determined by the SAWR's characteristics and by the circuit's requirements. Depending on how wide a pull range is needed determines whether matching networks present a high or low impedance to the SAWR.

The oscillator circuit handles the pull range in two different ways. A course adjustment compensates for the manufacturer's tolerance by pulling the SA\#R onto the desired frequency when the circuit is first built. A ine adjustment compensates for frequency drift due to temperature changes and
aging over time.
If the frequency drift due to temperature is 100 ppm and the overall aging of the sAWR device is 30 ppm, then the minimum amount of ilne tuning needed is 130 ppm . If the oscillator is designed for a pull range (fine tune) of 160 ppm to 200 ppm , then the circuit is guaranteed to satisty the pull range requirement.

PHASE NOISE: Phase noise performance degrades as the deviation from the SAWR's resonant frequency increases. figure 4 is a plot of phase noise measured 10 Khz away from the operating (carrier) irequency versus the distance between the operating frequency and the \(S A W R\) 's resonate frequency of a 674 Mhz oscillator. The data for this plot is shown in Table 1.


\footnotetext{
Fig. 4: Phase Noise Degradation Plot for 674Mhz Oscillator
}

\section*{USABLE SENSITIVITY}


\section*{TEST SETUP}

TEST PROCEDURE
1. Connect audio load and AC voltmeter to receiver under test.
2. Set generator RF to produce a \(1 \mathbf{K H z}( \pm 100 \mathrm{~Hz})\) beat note. Use manual RF gain, if available
(N.B. no modulation is needed on generator.)
3. Set generator output for approximately 1 millivolt and adjust volume for 25 of maximum rated output.
4. Reduce \(R F\) level until ratio of audio output, between signal on and off conditions is 10 dB
5. The signal level to achieve the condition in 4 , is the usable sensitivity.

Arguments have been raised over the definition of "usable sensitivity". This test procedure uses the \(10 \mathrm{~dB} \mathrm{~s} / \mathrm{N}\) standard as it was originally defined by ElA. However, the
paper given by Jim Eaglesen at the 1985 RF Expo defines "usable sensitivity" more accurately.
M.D.S. (Minimum Discernable Signal) is the level where the signal is just detectable. Representing 0 dB SNR, this can only be used for theoretical calculations. SNR (Signal to Noise Ratio) is the level at which a signal just becomes useful. Most manufacturers specify 10 dB SNR.

Other on channel tests are 1) AGC - determines the ability of the receiver to mantain constant audio output level with varying \(R F\) innput levels: 2l A.G.C. time constant. Fast attack times need to be used at VHF to optimize the receiver during fast fade conditions as would be experienced under mobile operation; 3) Spurious performance. Not a true on-channel test, but requires only one input signal. This is the ability of the receiver to prevent single unwanted signals from causing an unwanted response at the output of the receiver, normally caused by discrete spurii from the synthesizer mixing with other signals. SIGNAL GENERATOR PERFORMANCE

For sensitivity testing, the most important aspect of the generator is output level accuracy. As well as the absolute accuracy speçification, typically \(\pm 1 \mathrm{~dB}\) at -120 dBm 。 attention must be made to VSWR. Most modern wideband receiver front ends have VSWRs approaching 2:1 and with signal generator VSWRs of \(1.5: 1\), errors as great as 4 dB can be experienced at the antenna input of the receiver.

The worst case phase noise situation occurs when the device is at one of the extreme ends of the manufacturer's tolerance. To determine this point (in ppm), add together the manufacturer's tolerance, temperature drift, and aging. If the manufacturer's tolerance is 200 ppm , temperature
2. The number of parts in this circuit is kept to a minimum. Fewer parts means better reliability.


Fig. 5: Ckt Configuration for Design MI

\section*{DISADVANTAGES:}
1. DC is allowed to run through the SAWR. This condition reduces the reliability of the device.
2. The circuit only oscillates on one side of the SAWR's resonant frequency.
3. If the oscillator is pulled too close to the SAMR's resonant frequency, the circuit experiences a phase reversal and "jumps" to another frequency.
4. The phase noise performance of this circuit is not as good as a circuit that can pull its operating frequency through the SAWR's resonant irequency.

In order to prevent the oscillator from jumping to another frequency, a safety region between the SAll's resonant frequency

\section*{OPE CHANNEL TESTS}

ADJACENT CHANNEL PERFORMANCE
This is a measure of the receiver's ability to differentiate between a desired signal (on-channel) and signals on adjacent channels. It is primarily a function of the \(I F\) filter response and could also be called a selectivity test. Some test methods do not use an on-channel signal generator and rely on the increase in noise level caused by a high level signal off-channel, this does not test for the true operating conditions. At 5 KHz offsets, as found in SSB receivers, reciprocal mixing tends to mask the selectivity performance.
SIGNAL GENERATOR PERFORMANCE
Care must be taken with the adjacent channel test to ensure that the phase noise of the off channel signal generator does not hide the true adjacent channel performance of the receiver. See figure 4. To establish if a signal generator will meet these requirements, the following facts are needed.
1. What is the adjacent channel offset on the receiver to be tested?
2. What is the IF bandwidth of the receiver?
3. What is the specified adjacent channel performance?

Inserting some typical figures for an \(S S B\) receiver, the results are as follows:
1. Adjacent channel offset \(=5 \mathrm{KHz}\)
2. IF Bandwidth \(=2.7 \mathrm{KHz}\)
3. Adjacent Channel spec \(=80 \mathrm{~dB}\)


TYPICAL REQUIREMENTS:
For 5 KHz channal spacing phase noise should be at least - 130 to \(-140 \mathrm{dBc} / \mathrm{Hz}\) for selectivity measurements of \(\mathbf{0 0} \mathrm{dB}\) and suprious signals should be down greater then 90 dB .
and the frequency determined by the tuning voltage is established. Through experimentation, a safety region of 100 ppm was found to be satisfactory.

\section*{SAVR OSCILLATOR DESIGN "2}

Adifferent oscillator configuration is shown in igure 6 . This design uses an 848 MHz SAl resonator.


\section*{Fig. 6: Ckt Confieuration for Desien 2}

CIRCUIT DESCRIPTION: The biasing network, resistors R1, R2 and R3, set up the necessary conditions for the MRF51 transistor. Note the use of a negative supply. This transistor is a high gain, low noise device withatransitional frequency of 8.0 Ghz at \(50 \mathrm{~mA}[22]\) Capacitors \(C 7\) and \(C 8\) provide an \(A C\) ground to the emitter of the transistor.

L3 is a RF choke which prevents the RF signal from shunting
to ground.
The frequency control voltage is placed between capacitor C1 and varactor diode VR1. VR1 is a U11-3102 varactor diode; a part specially made for Watkins-Johnson Company. Its capacitance changes as the voltage is varied.

The input matching network consists of capacitors C1 and C2, varactor diode VR1, and inductor L1. The output matching network consists of capacitor C3 and inductor L2.

The course tune adjustment is done by varing inductors Li and L2. This adjustment is very critical because it largely affects the circuit's pull range and amplitude response.

The fine tune adjustwent is done by adjusting the frequency control voltage. The varactor diode VR1 together with capacitors C1 and C2 changes the amount of capacitance seen by the SAWR in the input matching network. This change pulls the SAWR through the circuit's tuning range.

PHASE NOISE: The single side-band phase noise performance of the 848 Mhz SAWR oscillator (free-running) is shown in figure 7.

Notice that the offset from the carrier in figure 7 is only shown up to 1.7 Khz . Beyond this offset, the oscillator's phase noise performance approached the limit of the test equipment.

The phase noise performance of the 848 Mhz oscillator at an offset of 10 Khz is about \(-118 \mathrm{dBc} / \mathrm{Hz}\).[23]

The signal generator noise is specified in a 1 Hz bandwidth, but the measurement is made in the receiver's 2.7 KHz IF bandwidth. To find the difference, in dB, use the formula: 10 log IF bandwidth/1 Hz.

For 2.7 KHz , the result is 34 dB .
The required signal generator noise spec can now be calculated at a 5 KHz offset, using the formula: - receiver spec + bandwidth conversion (as above) + 10 dB measurement margin.

From the example; \(80 \mathrm{~dB}+34 \mathrm{~dB}+10 \mathrm{~dB}\)
\(=124 \mathrm{~dB}\) below carrier.
Table 2 gives the required signal generator phase noise performance against narrowband communication bandwidths and their typical 80 dB measurement points. To determine how much better than the 80 dB adjacent channel spec a receiver is, even greater performance is needed from the signal generator. For example, 90 dB adjacent channel performance requires a phase noise spec of -134 dBc , at a 5 KHz offset.

\section*{Table 2}

Signal generator PHASE NOISE in dBc needed to measure 80 dB adjacent channel performance on receivers with the following common bandwidths.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
(1) \\
1 Receiver Bandwidth
\end{tabular} & \begin{tabular}{l}
(2) \\
Made
\end{tabular} & (3) Equivalent Naise Bandwidth & \begin{tabular}{l}
80dB \\
Filter Raspons:
\end{tabular} & \begin{tabular}{l}
2 \\
Signal Generator Performance at the offset in column 4
\end{tabular} \\
\hline 400 Hz & C.w. & 28 d8 & 1500 Hz & -118 \(\mathrm{dBc}^{\text {c }}\) \\
\hline 1200 & RTTY & 31 d8 & 4000 Hz & -121d8c \\
\hline 2700 & SSB & 34 dB & 5000 Hz & -124 dBc \\
\hline 8800 & AM & 38 dB & 15000 Hz & -128 dBc \\
\hline
\end{tabular}

\section*{ADJACENT CHANNEL TEST}


\section*{TEST PROCEDURE}
1. Turn generator number 2 off, set generator number 1 to the receiver frequency +1 KHz . Obtain the condition for usable sensitivity, i.e. \(10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\).
2. Increase the level of the wanted input signal by 3 dB .
3. Turn generator number 2 on and tune it 5 kHz away from generator 1.
4. Increase level of generator number 2 until the \(\mathrm{S} / \mathrm{N}\) ratio falls back to 10 dB .
5. The ratio of the unwanted signal measured in step 4 to the reference sensitivity is the adjacent channel performance.

\section*{Wolldraciohison}


Fig. 7: Frequency V8 Phase Noise plot for an 848Mhz Oscillator ADVANTAGES:
1. The operating frequency can be pulled through the SAwR's resonant frequency. This feature allows the best possible phase nolse response to occur.
2. There is no DC running through the SAWR device.
3. Stray capacitance is tuned out by adjusting inductors Li and L2.
4. This circuit is very reproducible.

\section*{DISADVANTAGES:}
1. More components are needed to bulld this design. The greater number of components reduces the circuit's reliability.
2. The values of the matching network's components are very
critical. Small variations in these values have a great affect on the oscillator's performance.

DETERMINING THE MATCHING NETWORK VALUES: The actual values for the matching networks depend on the circuit lay-out. After the circuit is designed and laid out on a PC board, replace matching capacitors \(C 1, C 2\) and \(C 3\) with adjustable capacitors set at the designed values. Once the circuit's performance is satisfactory, replace the adjustable capacitors one at a time with flxed capacitors; rechecking the circuit's performance after each substitution.

Coupling capacitor ca may also have to be adjustable (initially) since it influences the output matching network.

The matching inductors are refined in the same manner.
If the circuit does not oscillate, use a network analyzer in the feedback path to determine the amount of gain and phase in the loop. Be sure to zero out the cable effects before connecting the network analyzer to the oscillator circuit. Adjust the matching components until the network analyzer displays 0 degrees phase shift and a magnitude greater than 0 dB which represents gain in the loop.

Disconnect the network analyzer and close the feedback loop in the oscillator circuit. Minor adjustments on the matching component values may be necessary to cause the circuit to oscillate.


The input to an If filter consists of two signals, the wanted signal equivalent to -117 dBm at the antenna input and a strong -27 dBm signal 5 KHz higher. The filter offers 80 \(d B\) attenuation at a 5 KHz offser, reducing input 2 to a level of -117 dBm at the output of the filter. The adjacent channel signal will now be at the same level as the wanted signal and will continue through the rest of the receiver, interfering with the wanted signal.

\section*{RECIPROCAL MIXING PERPORMANCE}

Reciprocal mixing is caused by phase noise imperfections on the receiver's local oscillator. Normally the strong local oscillator signal is mixed with a weak wanted signal to produce the IF signal. However, the mixer will perform the same for any other pair of signals separated by the IF. Reciprocal mixing is so named because the role of local oscillator and signal are reversed; a strong unwanted signal off-frequency mixes with the weaker phase noise of the local oscillator. As an example, when a strong signal 5 KHz from the receive frequency mixes with the phase noise 5 kHz from the center of the local oscillator, the result is an IF output with noise proportional to the local oscillator phase noise. See Figure 6. Until the emergence of synthesized local oscillators, with their less than perfect noise sidebands, reciprocal mixing went unrecognized. Crystal oscillators, used at VHF and UHF for frequency stability, had far better noise performance, and reciprocal mixing was well below the adfacent channel performance.

Reciprocal mixing and adjacent channel performance are very closely related. The ultimate performance of the \(I F\) filter can never be realized if the receiver local oscillator is noisy.

\section*{SIGNAL GENERATOR PERFORMANCE}

The close to carrier noise performance of the generator must be at least as good as that for adjacent channel tests. If a measure of the reciever local oscillator phase noise is required, refer to Table 2.

Using the network analyzer prevents a lot of guess work by allowing the engineer to see the effects on amplitude and phase as a component's value increases or decreases.

PROBLEMS ENCOUNTERED: A few problems occurred during the testing of several oscillator circuits. They are mentioned here along with their solutions.

Squegging: Squegging is the oscillator's operating frequency modulated by a low frequency signal. The result is a mass of spurious signals. This squegging problem is solved by bypassing the transistor in such a way that the gain at low frequencies is reduced.

Matching: As mentioned earlier, the values of the matching components are very critical. If the circuit is mismatched, several different problems can occur. These problems are mentioned in the following paragraphs.

Jumping: The phase response around the center frequency of a SAWR is not always linear. The steeper the slope of the phase, the greater the frequency change is per volt. As the voltage changes, the SAWR's phase may pull through one of these nonlinear points and cause a greater frequency change to occur. This frequency change appears as a "jump" in frequency. The size of the jump depends on how much of the phase response has the steeper slope.

The jumping may not always occur at the same operating
frequency or control voltage. For example, take a 674 Mhz oscillator with a SAWR resonate frequency at 674.0281 Mhz . As the frequency control voltage is decreased, the operating frequency jumps from 674.0634 mhz to 633.8751 Mhz (a difference of roughly 40 mbz ). Upon increasing the control voltage, the operating frequency doesn't jump until it reaches 657.297 mbz . Then it jumps to 674.205 Mhz (a difference of about 17 mhz ).

The matching networks can prevent jumping from occurring by presenting a high impedance to the SAmR device. Figures shows a plot of frequency versus voltage of the same 674 Mhz oscillator (mentioned earlier) after its matching networks were changed to present the SAWR With a higher impedance. The data for this plot is shown in table 1 (page 11).


for 674 Mhz Oscillator
Notice that the frequency change from 13 volts to 14 volts

\section*{RECIPROCAL MIXING TEST}


Frequency
RECIPROCAL MIXING
Figura 6


\section*{TEST PROCEDURE}
1. Tune the signal generator to the offset of interest.
2. Monitor the AF output level noise with no input to the receiver.
3. Increase the signal generator until a 3dB increase in noise at the \(A C\) voltmeter is observed.
4. Note the level obtained in 3 and add this to the noise floor of the receiver. Note: the noise floor is 10dB lower than the usable sensitivity figure. Refer to Fig. 6 and table 3.

This test should be repeated at different offsets, to establish the phase noise of the oscillator and therefore, the ultimate adjacent channel performance.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(1) \\
Frequency Offset
\end{tabular} & \begin{tabular}{l}
(2) \\
Input Level
\end{tabular} & \begin{tabular}{l}
(3) \\
Level with Reapect to -127 dBm Noise Floor in 2.7 KHz BW
\end{tabular} & \begin{tabular}{l}
(4) \\
Receiver Oscillator Phase Noise in a 1 Hz BW
\end{tabular} \\
\hline \[
\begin{aligned}
& 5 \mathrm{KHz} \\
& 10 \mathrm{KHz} \\
& 20 \mathrm{KHz} \\
& 100 \mathrm{KHz}
\end{aligned}
\] & \[
\begin{aligned}
& -55 \mathrm{dBm} \\
& -47 \mathrm{dBm} \\
& -38 \mathrm{dBm} \\
& -19 \mathrm{dBm}
\end{aligned}
\] & \[
\begin{aligned}
& 72 \mathrm{~dB} \\
& 60 \mathrm{~dB} \\
& 89 \mathrm{~dB} \\
& 108 \mathrm{~dB}
\end{aligned}
\] & \begin{tabular}{l}
\(-108 \mathrm{dBc}\) \\
\(-114 \mathrm{dBc}\) \\
\(-123 \mathrm{dBc}\) \\
\(-142 \mathrm{dBc}\)
\end{tabular} \\
\hline
\end{tabular}
is larger than the frequency change from 6 volts to 7 volts. If this frequency change (between 13 volts and 14 volts) were even greater, it could appear as a jump in the frequency range.

Amplitude Variations: Sometimes the amplitude of the operating frequency varies over the tuning range of the circuit. For example, a 672 Mhz oscillator has a pull range of 89 khz and an amplitude variation of 21.6 dB . After adjusting the values of the matching elements, the oscillator has a pull range of 313 Khz and an amplitude variation of 11.2 dB . Further adjustments on the matching components produce a tuning range of 122 Khz and an amplitude variation of 0.9 dB .

Frequency Range Variations: As seen from the previous example, the matching components have an effect on the tuning range of the oscillator circuit as well as the aplitude response. If the matching networks present a high impedance to the SAWR, the tuning range of the oscillator circuit will increase.

Loop-back in Tuning Range: Normally, as the control voltage increases, the frequency increases. In a loop-back situation, the frequency begins increasing as the control voltage increases but then it "loops-back" and starts to decrease. This situation is extremely undesirable because it can causes a phase-locked loop to be driven to limits in one direction, and the oscillator will never lock onto the correct frequency.

The solution to these problems is to adjust the matching components. Thematching coils, Lland L2, are the easiest to adjust.

\section*{CONCLUSION}

The type of SAW device used in an oscillator design depends on the requirements of the application. For fired frequency applications, a SAl resonator is recommended. Once the device is selected, careful consideration is given to its characteristics. Center frequency and turnover temperature are two of these characteristics that affect the way the oscillator circuit is designed.

The most difficult part of designing ang SAma oscillator is finding the appropriate matching component values. Once these values are determined, the oscillator demonstrates an excellent phase noise response, an adequate tuning range, and a minimum amount of amplitude variation.

\section*{ENDNOTES}
[1] Handbook of Acoustic Signal Processing (Andersen
[2] C.K. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications (The George Mashington University, Continuing Engineering Education, 1985), p. 9.22.
[3] Robert J. Kansy, Introducing the Quartz Surface Acoustic \(\frac{\text { Wave Resonator }}{\text { p. } 1 .}\) (Application Note: No. 1 , RF Monolithics, Inc.),
[4] Handbook of Acoustic Signal processing, p. 8.

\section*{INTERMODOLATION PERFORMANCE}

In. che stzong signal environment of large aecropolican cities or where many transmicters are operational ar che same time and geographically close, it is not just adjacent channel performance that is critical. Two strong signals spaced at some distance from the adjacent channel, yet within the bandwidth of the roofing filter, can mix in the front end of the receiver and produce intermodoulation products that fall in the IF passband. This test is a measure of the capability of a receiver to inhibit the generation of such in band signals.


Figure 8

\section*{INTERMODULATION TEST}


TEST PROCEDURE (3RD ORDER)
1. Set generator number 1 to \(\mathrm{fc}+20 \mathrm{KHz}\).
2. Set generator number 2 to \(\mathrm{fc}+39 \mathrm{KHz}\).
3. Increase the outputs of the two generators, keeping the amplitudes the same, until the receiver produces a 10 dB S/N.
4. The difference in level between the usable sensitivity (10 dB S/N) and the outputs of the generators to obtain the condition 3 is the intermodulation performance of the receiver.

The above relationship is more often specified as a 3rd order intercept point (I P). This can best be explained by reference to the figure.

Curve A (figure 8) represents the signal level of one of the two fundamental signals. These signals are increased above the noise floor until a point is reached (c) where the 3rd order intermodulation produce (IMP) starts to emerge from
［5］Campbell，pp．1，6－1，8．
［6］Handbook of Acoustic Signal Processing，p． 9.
［7］Resonators ascillators（Brochure，Crystal Technology）．
［8］The temperature coefilicient，Tc，varies from manufacturer to manufacturer．For discussion purposes only， 5.45 will be used to manufacturer．For discussio
［9］Equation obtained through a telephone conversation with awtek Incorporated．
［10］Data sheet for 180 deg quartz SAV resonator（RF Monolithics，Inc．，1984）．
［11］Handbook of Acoustic Sipnal Processing，p． 16.
［12］Q is defined as the center frequency divided by the band idth（usually the 3 dB bandwidth）．

〔13〕 Handbook of Acoustic Sipnal Processing，p． 10.
［14］Based on data sheets obtained from Sawtek，Incorp．
［15］Frank Perkins，Jr．：Designing UHP SAW Resonator Oscillator（Application Note：No．4，RF Monolithics，Inc．，1983）， p． 1.
［16］Perkins，pp．1－2．
［17］Perkins，p．3．
［18］Perkins，p．3．
〔19〕 Perkins，p．3．
［20］Information obtained through a classroom discussion with Dr．C．K．Campbell at the George Washington University．
［21］\(\frac{1 G H z}{}\) SAW Resonator－Application Note（Handwritten， Stantel Corp．， 22 Mar 85）．
\([22]\)
to \(6-161\) Motorola RF Device Data（Motorola，Inc．，1983），pp．6－149 ［23］Extrapolated using data taken from a 1 KHz offset．

\section*{BI BLIOGRAPHY}

1．Campbell，C．K．，Ph．D．，D．Sc．，P．R．S．C．，Surface Acoustic Wave Devices and Their Signal Processing Applications， Washington，DC，The George lashington University School of Engineering and Applied Science， 1985.
2．Handbook of Acoustic Signal Processing，Andersen Labs，1984， Vol．IV．

3．Kansy，Robert J．Introducing the Quartz Surface acoustic Vave Resonator（Application Note：No．1），RFMonolithics， Inc．， 1983 ．
4．Motorole RF Device Data，Motorola，Inc．，1983，pp．6－149 to 6－161．
5．Perkins，Frank，Jr．，Designing UHF SAM Resonator Oscillators （Application Note：No．4），RPMonolithics，Inc．， 1983.
6．Resonators ascillators，Crystal Technology．
7．RFM data sheet for 180 degrees Quartz SAl Resonator， RFMonolithics，Inc．， 1983.
8． 1 Ghz SAW Resonator－Application Note（Handwritten），STANTEL Corp．， 22 Mar 1985.
the receiver noise. When the IMP is 10 dB above the noise floor, it is at the same level as the usable sensitivity. The difference in this level and the fundamental is the value found in 4 of the test procedure. As the fundamental amplitude is increased, so does the IMP, at a rate three times faster. At the theoretical point \(D\) on the graph, the IMP and the fundamental meet. (This is theoretical as the input amplifier of the receiver will go into gain compression well before this point). Point \(D\) is the \(3 r d\) order intercept point. (IP) It can be referred to input or output. The input intercept differs from the output intercept by the small signal power gain of the stage in question. For a more comprehensive study of intermodulation refer to \(3,4\).

\section*{CONCLUSION}

Techniques for testing receivers have not changed significantly over the last 10 years. The introduction of synthesized signal generators in the \(1970^{\prime}\) s by companies such as Racal and Hewlett Packard were a major step forward. Until then, at VHF and UHF, signal generators had to be left on permanently, to ensure they were stable enough to test the crystal controlled receivers. The synthesized signal generator manufacturers were already specifying noise performance capable of handling today's 20 kHz spacings. History is now repeating itself. Todays communication systems are poised on the edge of a technology breakthrough, but the signal generators available are only able to hande the 20 KHz technology. SSB systems have been around for
many years and now are becoming very popular in the commercial field. As in the \(50^{\prime} s\) and \(60^{\prime} s\) the test equipment presently available for such systems testing is not ideal. Racal-Dana and Hewlett Packard again lead the way with their models 9087 and 8662A. The military have actually progressed to even higher technology systems that implement frequency agile and spread spectrum techniques.

Anyone considering measuring todays communications systems must not forget the future; nor should the instrument manufacturers. Signal generators are now needed with good noise performance for narrowband systems, fast switching speed for frequency agile systems and digital modulation capability for spread spectrum.

\section*{BIBLIOGRAPHY}
1. R. Lusignan. "Single Sideband Transmission for Land Mobile Radar". IEEE Spectrum, July 1978.
2. J. McGeehan. "Design and Characterization of a Phase Locked VHF Mobile Radio Receiver". IERE Conference England Nov. 1975.
3. P. Chadwick. "Dynamic Range, Intermodulation and Phase Noise". RSGB Radio Communication March 1984.
4. J. Eagleston. "Basic Receiver Design". R.F. Expo January 1985.
5. Racal-Dana Inc. Applicate Note: 9087-03-T, Signal Generator Specifications - Level Uncertainty.
Thanks to Racal Communcations - Rockville, MD and especially J. Dingley for technical support.

\section*{SIMFLE AFFROACHES TO LIMITING RADIATION FROM} FOIL-SHIELDED COMPUTER CABLES

\section*{b}

\section*{Howard C. Rivenburg}

John Juba Jr.

\section*{Electromagnetic (EM) susceptibility has typically} been a difficult problem in the development of high-reliability communication, navigation, and electronic warfare equipment. The military susceptibility standard, MIL-STD-4618, outlines most qovernment electromaqnetic interference (EMI requirements. This document is augmented by MIL-STD-462 wich describes acceptable testing procedures.

Military EMI requirementa can be ten times more strinoent than commercial standards. These military requirements result from two prime factors. The first is that, in a typical military communications center, the equipment is installed close topether creating a worse-than-normal EM environment. The eecond is to sssure reasonable equipment immunity to potential hostile environment due to electronic countermeasures.

Hesides having to meet the more familiar EMI standards, many of these equipment must also comply with TEMFEST requirenents. The TEMFEST requirements are part of classified U. S. government security program. They deal with controlling the emiseion and detection of energy from communication and data processing equipment which could reveal classified information being processed by the equipment. All too often, TEMFEST guidelines for equipment installation and
interconnection (part of this control of emissions) are considered adverse to typical installation criteria.

MIL-HDEK-419, although not a TEMFEST specification, contains equipment and cable shield grounding recommendations which are highly compatible with the TEMFEST quidelines and represerite more modern approach to facility design. This document clearly states that the only differences in grounding techniques between those employed at facilities processing National Security related information (RED equipments) and any other facility are the proundina confiqurations used to

\section*{Jerry Schappacher}

Harris Hicrowave Semiconductor 1530 MoCarthy Blvd Hilpitas, CA 95035

Honolithic Gallium Arsenide ICs for RF systems have held promise for many years. Yot there has only been a modest list of product offerings of basic functions with relatively high device costs. Using these basic components has impliod oven hicher costs associated with systen insertion due to the noed for oxtornal components and circuitry. This was particularly true of early transistor amplifier products thet required extensive bias circuitry or decoupling components to oparate. The real promise of integrated circuitry lies in reducing the number of components to minimize assembly costs and unit-to-unit variations while improving reliability and overall system performance.

GaAs Technology has now reached the level of maturity where more complex functions can be integrated onto single analog or diaital ICs. With recent advances in the sophistication of technology in materials, processing, design and test, a growing number of firms are capable of designing and building Gais ICs. Foundry, design, and test services are now widely offered. Yet standard product offerings, addressing high volume "eeneric" applications, have been slow to emerge. Harris Hicrowave Semiconductor has introduced its first two products in a line of GaAs RF ICs for receiver/transaitter and signal processine applications. These are broadband amplifiers chips covering 500 MHz to 5.0 GHz and providing eeneral purpose eain. The HMR-10503 is a fully integrated amplifier requiring no external circuitry other then bond wires to connect the RF input, RF output, +Vdd and DC/Sienal eround. The companion HMR-10502 is identical except
terminate cable shields. These configurations are applicable when the equipment involved is referenced to an equipotential ground plane. (MIL-HDEk-419 defines and describes the equipotential ground plane.)

Although the majority of MIL-HDBK-419 deale with desion considerations for new facilities, implementation of recommended installation techniques in exizting facilities is also described. Conerrning the ground systems installed in most existing facilities, this standard states,
"... While these systems oenerally do not meet today's standards and requirements, they will continue to be in use for many years at existing facilities. Information on and description of these systems is therefore included for maintenance purposes only. . . Any major building or facility rehabilitation =hould include uporade of the orounding svetem to include use of the equipotential plane . . . . "

Relating cable shield grounding configurations to the use of a facility equipotential around plane is fundamental to reducing EM radiation from interface
cablina. With this concept in mind, a test setup was desianed to study what staridard approaches to EM radiation reduction could easily be implemented at older communication facilities.

The test configuration was developed with the intent of establishing controlled, easily varied test setup. The approach chosen was to enclose each a line driver unit, a line receiver unit, and system power supply. These would theri be placed in shielded enclosure along with a cable under Etudy. Manual scanning with a receiver system was chosen over a spectrum analvzer*because areater resolution of the E-field radiation profile was desired. Fiopure 1 depicts the general orientation of the cablex, interface units, and test equipment. The line driver and line receiver units were secured to a copper-clad test bench bonded to the walls of the shielded enclozure and elevated one meter above the floor. This test bench acted as the equipotential plane of the test setup. The parameters to be varied durina the course of testing were lithe presence or absence of a line-terminating resistor, 2) the cable shield terminations, and 3)the use of filterfin confectors versus non-filterpin connectors.
that the bias supply decoupling capacitors are not included onchip. These parts offer the RF systems desiener/interrator anow option in systom architecture and implomentation at UBF frequencies and above. By casceding or individualiy distributing these IGs throuchout the aystee, there is now avallable compeot and affordable amplification is to maxinise syatea performance. 8ystom Cost/Performance tarcets can be more easily met though the use of these complete IC gin blocks, with low s/dB of cain, and the relaxed performance apeolfications on other syatom functions that these amplifier ICs allow

The Product

Fundamental in the offering of an effective GaAs IC ia the basic quality of the fabrication process. Rarria Microwave Seniconductor uses its DIGI-1 Procese Technology. Harris has been eanufacturing CaAs (dicital) ICs with thia procese for over three years. DIOI-1 1s a very high performance prooese technology offering the high gain required for analog eircuita and the hich repentibility required for dialtal circults. Repeatibility is the secret for both the low cost and consistency achleved in these RF ICs. This process uses a one micron gate lencth and depletion mode technology with -2 Volt pinchoff. A sumary of the basic procese electrical paranetera is contalned in Table 1.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{eborem merumer:} \\
\hline shommom & 130 cr \\
\hline Oap meen (ma) & 110 ac \\
\hline Orme comer & 1 n \\
\hline Cun mow iomby & -ma \(n=\) \\
\hline \multicolumn{2}{|l|}{Romosione:} \\
\hline - \(\mathrm{V}_{0}\) & 200 mmm \\
\hline \(\mathrm{V}_{0} \mathrm{~N}_{\text {coser }}\) & -19v \\
\hline  & 150 mmm \\
\hline  & iov \\
\hline  & 10V \\
\hline Secore memernor & 002 0 - \\
\hline \multicolumn{2}{|l|}{Nom} \\
\hline c smena & 16 of \(\mathrm{cm}^{2}\) \\
\hline
\end{tabular}

The eircuitry is desiened to exploit the performanoe characteristics of the process technology to produce consistently achleved performance for the systen application. The schenatic of the RMR-10803 is shown in Figure 1. The heart of the IC 1s a \(1 \times 600\) meron GaAs FET "cell". Two of thene cells are isolated from each other by integral MIM capacitors. The source terminala of the RF Transistors and self-biasing implanted resistors, In series with the sources, are decoupled by additional MIM capacitors of approximately 25 pF each. Draln blas on the active RF dovices is provided by additional FITs operatine as current sources. Each of the current sources is shunted by an implanted reaistor to miniaise the bias point eenaitivity to process and temperature variations. Consistent broadband \(R T\) performance 1s the reault of a eeriea reaistor-inductor which is In shunt feedback to the \(R \mathrm{R}_{\mathrm{F}}\) transistor. The two ataces have been deaigned at aystem to minlalse input/output VSWR. manimise caln. and meintain a controlied nolse pleure.

Two computer \(1 / 0\) cables chosen for the study were supplied by a customer as cables typically used in their communications center. The first cable tested (BRAND-REX telephone cable 11 FR-24AWG 200 C ) contained 13 pairs of stranded wire. These wires were not twisted pairs. The cable had only single Eeldfoil shield with a stranded drain wire surrounding the wire conductors. This cable was terminated with ITT connectors (UMS 3475L-16-265) at both ends. The overall length of the cable was 20.5 feet ( 8.7 m ).

The second cable had 27 twisted wire pairs which were each shielded with Eeldfoil and had individual stranded drain wires. In addition, the 27 paire and their shields were collectively shielded by an overall cable shield of Beldfail with an associated stranded drain wire. This cable was also provided by the clistomer and came terminated with Amphenol connectors ("3475L22-55s 0206-2) at both ends. The overall length, of the cable was 29.25 feet ( 0.9 m ).

In order to test the effectiveness of different confiourations of shield terminations, the \(1 / 0\) cable needed to carry digital data of a standard format. For this purpose, a line driver unit and a line receiver unit were constructed in emall RF-tight boxes in such a manner as to assure that emanations detected durino E-field tests were produced strictly by the cable and not either unit. The line drivers and line receivers used mmeet the requirements of EIA Standard RS-422. (Balanced transmiseion of data was chosen because of the qreater noise immunity.) The line driver unit and the line receiver unit were fitted with orie 26-pin connector and one 55-pin connector on an end wall of the hoyes. This permitted connection of either \(1 / 0\) cable to. the units. The two connectors were wired in parallel with correspondinaly lettered pins connected together. dllnused pine on the \(55-n i n\) connectors were left operi in the boses.; With this arrangement, one or several pairs of coriductors could be used for the evaluation if need be.

The lifie receiver ufit was also equipped with a ENC cormector. This comector allowed the receive data to be moritored. The sctieniatic ( \(F\) ialu e 2) showe the elips


Figure 1. HMR-10503 Schematic

As seen in the schematic, two blas point options are readily avallable to the user. In addition to the standard 25x Idss, elther or both of the two stages can be biased to \(50 \%\) of the \(R \mathbb{R}\) transistor Idss with additional wirebonds. Bonding diagrams for two of the four wiring options are shown in Pigure 2.


Figure 2. Wire bond diagram for HMR-10503. Solid Iines are 25\% \(\mathrm{I}_{\text {dea }}\) connections \(\left(V^{0 p}=+8 \mathrm{~V}\right)\). Dashed lines are additional connections for \(50 \%\) \(\mathrm{I}_{\mathrm{dep}}\left(\mathrm{V}_{\mathrm{DO}}=+10 \mathrm{~V}\right)\).

Wide Band Performance
Performance of the typical HMR-10502/HMR-10503 is shown in figure 3. Frequency of operation for the ICs is 500 MHz to 5.0 GHz with extended frequency operation possible at reduced performance level. Power supply limits are from +6.0 Volts to +15.0 Volts although typical applications call for +8.0 Volts or +12.0 Volts for Vdd at 50 mA .


Figure 3. Gain ( \(\mathbf{S 2 1}\) ) vs. frequency, configurations A and 8 . Blas for Conf
\(A: D_{\infty \alpha}=8.0 \mathrm{~V}, \mathrm{I}_{\infty}=50 \mathrm{~mA}\); Blas for Cont. \(8: \mathrm{V}_{\infty}=10.0 \mathrm{~V}, \mathrm{I}_{\infty}=100 \mathrm{~mA}\)
A minimum of 10 dB gain is readily achieved at 8 Volts and 25\% Idss with 12 dB typical, (configuration A). Gain flatness is \(+/-0.75 \mathrm{~dB}\) for the GMR-10502 over the complete 0.5 to 5.0 GHZ frequency range with two 100 pF source decoupling capacitors, one on each source decoupling port. The RMR-10503 has the same +/0.75 db gain flatness over a smaller 1.0 to 5.0 GHz bandwidth without optional source decoupling capacitors. Optional
used and their interconnection. Power wals supplied to the circuit boards in the manner described below.

A requlated supply provided filtered \(+7.3 v,-7.3 v\), and COMMON to the line driver unit fthese voltaces slightly exceed the devices' ratings and were considered to vield "worst-case" results). In addition to connection to the card edoes, these leads were wired to three pin letters. (sin pins) of the multi-pin connectors. Fower was then supplied to the line recelver unit via the \(1 / 0\) cable and multi-pin connectors.

\section*{System Grounding}

Grounding of the system was treated as follows. Inside the line driver unit, three pieces of stranded wire connected the filtered COMMON of the power supply to the inside of the box, to circuit oround or, the board, and to the conductore desionated ae COMMON from the multi-pin connectors. Inside the line receiver unit. : piece of stranded wire connected the COMMON cable conductor lat the card-edoe connectorl to the bo\%. The line driver unit and the line receiver unit were each
placed ori insulating material on top of the test bench. These units were then arounded to the copper test bench by \(0.5-\mathrm{inch}\) ground straps.

The cable shields were to be grounded at the line driver andfor line receiver units' bulkheads. Because of the Eeldfoil shield construction of the cable, drain-wire connections to oround were concidered to be the simplest termination mode available. A 3.5 cm . drain wire length was used as minimum pig-tail termination. The wire termination was then passed through the rear of the backshell to act as the shield around termination. These shields, their drain wires, and the ground-wire connection were insulated with electrical tape so as to be isolated from the overall cable shield. 3.: cm. wires were also used at both ends of the overall cable shield and passed throuph the rear of the backstiells for use as this shield's ground termination. The overall cable shield, its drain wire, and the oround-wire connections were insulated with electrical tape so as to be isolated from the backshellz.
conductive coating.
additional source decoupling capacitors of sreater than 50 pr result in full band flatness for the EMR-10503. The VSWR of the 1nput and output is always better than 2.0:1 and typlcally better than 1.7:1 across the specified frequency band when assombled using nominal wirebond lengths of 15 to 25 m is.

Nolse figure for elther unit at \(25 \%\) Idss is typically 6 db , 7.0 db maximum. When blased at 10 Volts and 50\% Idss (conflguration \(B\) ), the no1se figure 1s less than 10 dB and typlcally less than 8.0 dB . Figure 4 shows the typlcal nolse figure at both blas conditions versus frequency.

\section*{FIGURE 4}


The third order intercept point (IP3) versus frequency for both blas options is shown in Figure 5. The minimum of +18 dBm is achleved at the high end of the frequency band at \(25 \%\) Idss. Typical third order intercept point at \(50 \%\) Idss is ereater than +20 dBa .


Figure 5. Third order Intercept point va. frequency.

Idd variation at elther bias option is consistent unit to unit as well. Typical supply current is 50 mA plus or minus 10 mA at the low blas point for the total unit. DC supply voltage is user defined from 8 to 15 Volts depending on the specific power supply voltage availability, specific output power desired, and temperature range requirements. The basic performance characteristics of cain, VSWR and isolation are relatively independant of power supply voltace. Gain variation of gain of typically 0.03 dB degree \(C\) for this two stage amplifier. Flatness 1s maintained across wide temperature ranges. Figure 8 shows the typical gain performance at \(-20,+25\) and +85 degrees \(C\).

On the 26-1ine cable, the \(\mathbf{3 . 5} \mathrm{cm} .1\) long ground-wires were passed through the rear of the backshells. The shield, drain wire, and ground-wire connections were then insulated with electrical tape and the backshells were replaced. When a cable was to be tested, it was suspended from the screen room ceiling. The cable was looped around the shielded enclosure as nearly to 1 meter from the screanroom walls, floor, ceiling, and test bench as possible. The cable ends were attached to the line-driver unit and line-receiver unit, which were clamped to the test bench.

The shield oround wires were terminated in spade lugs. This permitted the mield terminations to be reconfigured by fastening the appropriate lug to the connector backshells at a cable restraint screw. For the 26-line and the ss-1ine cable shields, tests were performed usina varicus shield termination configurations with and without matching resietor present.

The antenna was positioned approximately 1 meter from the cable and 1 meter from the test bench. Fioure 3 illuetrates the orientation of the cable. antenna. and
interface units within the shielded enclosure. Test data were repeatable, provided that the particular \(1 / 0\) cable under test maintained a constant orientation. If, for example, a series of tests were performed on one of the cables during which eeveral of the parameters under study were changed and then the tests for the first parameter change were repeated, the resulta of the two test would be within 3 dE of each other. If one cable was fully tested and then the other cable was fully tested, any attempts to repeat tests of the first cable would give a somewhat different radiation profile because of the different orientation of the cable with respect to the antenna and shielded enclosure. Even though the radiation profile would be different for the reconfiaured cable, the relative test results remained the same.

Diaital Sional Line Conduction (DSLC) Tests

Two sets of LSLC tests were performed. Eoth sets we.e run at a data rate of \(9.6 \mathrm{kbit} / \mathrm{sec}\). Test parameters were based upon the operating data rate of \(9.6 \mathrm{kbit} / \mathrm{sec}\). For these tests, hioh-pass filter sections were inserted at 10 kHz . 100 kHz .1 Mhz . and 10



\section*{Testing and Quality Assurance}

To insure consistent and reliable performance, the RMR10502 and HMR-10503 are tested and qualified under procedures sifilar to standard FFTs produced by Harris Microwave Semiconductor. Samples from each lot are strenuously tested to qualify the lot for mechanical integrity, electrical performance, and reliability. The flow of the product assurance and lot qualification process shown in fifure 7 results in product that exceeds the Element Evaluation requirenents of MIL-STD-883C, Method 5008 for Class B devices.

pigure 7. Product Assurance Flow

The Applications
With the combination of low cost , repeatibility, reliability and application flexibility, the FMR-10502 and GMR10503 can be offectively inserted into many systel designs. One of the most obvious applications that can use the basic utility gain characteristics of the ICs is in receiver/tranamitter modules. Figure 8 is a block diagram of a typical single channel dual conversion downconverter operating in the 500 MHz to 5.0 GHz frequency range configured with distributed gain in the form of HRR-10503s to maintain noise figure and dynamic range. A significant advantage of using distributed gain is that it
instance, there was qeneral increase (b - 15 dB ) in emanation levels for all but the top decade \(\mathbf{1 3 0}-300\) Mhz) when \(Z\) was omitted. The least sensitive confiouration when filterpins were not used was with the shield grounded only at the source end (Figure 7). Here, the omission of 2 results in additional emanations from 0.010 to 0.050 Mhz and \(4-\mathrm{B}\) dE entancement of frequencies from 3 - 8 Mhz and from \(40-60 \mathrm{MHz}\).

When filterpin connectors were used with the 26-line cable, none of the grounding configurations showed variations beyond 2 Mhz attributable to the presence or absence of 2 . Groundirig the cable shield at both ends seemed to result in the least sensitivity of all configurations (filtered or unfiltered). For this case, the inclusion of \(Z\) prevents enhancement of frequencies between 0.300 and 1.0 MHz as shown in figure B.
ss-Line Cable Fesults, 2

The effect of \(Z\) on the 55-line cable was greatest when rion-filterpin connectors were used. Comparison of the unshielded ER profiles with and without \(Z\) in place
is shown in Figure 9 and reveals a gross increase in emanation levels over fairly wide spread (i.e., 10 25 dE from \(0.010-10 \mathrm{MHz}\) ). The increases were predominantly for frequencies below 10 MHz , with the exception of a 10 dB decrease near 60 MHz and a 15 dB increase near 150 MHz , both attributable to the exclusion of 2 . This confiquration, with all of the shields unterminated and without filterpins, was the most sensitive to the presence or absence of 2 . Of the other confiqurations where filterpina were not used. some were far less sensitive. Even for the least sensitive unfiltered configuration (ree Fiaure 10), large peaks were reduced by the inclusion of \(Z\). In this configuration, the overall cable shieldis open and the individual shields are grounded only at the source end. The frequencies of interest lie throughout the profile, with 10 and 1508 increases near \(5,16,20\), and 60 MHz attributable to the omission of \(z\).

Where filterpin connectors were used with the s5-line cable, the effect of \(Z\) was less obvious. The more dramatic examples are configurations witt, the individual shieldg orounded at both ends and the overall cable shifld operi at one erid. A comparison of these test
results in reduced specification requirements, and therefore cost, for the various subsysten elements such as mixers and filters.


Figure 8. Downconverter Block Diagram

In this example, the input irequency 1s assuned to be 3.0 GHz, the intermediate irequency is 800 MBz , and the output frequency less than 150 Miz . This example converter has a reasonable frequency plan for minimising apurious response from the mixer products. A dual conversion approach may not represent an optimun system, but does serve to 111ustrate the basic elements that affect system performance.

The input limiter is typically a PIN diode assembly for input protection and low insertion loss, noraally a coaxial component or a substrate assembly inside the converter module. Since the insertion loss of this device degrades the system noise figure, it is important that it is appropriately specified and designed. For this example, a 0.5 dB insertion loss is assumed.

The low nolse anplifier (LNA) defines the sensitivity of the recelver subsystem and therefore its speciplcations are hey. In
the typical converter, the output power capability of the first stages of amplification has little impact on system dynamic range due to the relatively low cain. A 2.0 dB noise figure in a module havine 18 dB of eain 1 s achievable at 3.0 GHz . Intermodulation performance \(1 s\) not a critical specification for the first stage.

The band pass filter (BPFi) defines the input bandwidth of the receiver and ellminates the "image band" for the subsequent mixer operation. Rejection of this undesired sideband is a strong contributor to the sensitivity of the recelver. Interference signals collected by the antenna in this undesired sideband must be rejected, or they become noise and distortion on the sigmals of interest. The modest gain levels, before the first mixer, afforded by distributed gain keeps the level of the 1mace band sienals low. Therefore the rejection requirements for the filter are minimized, saving overall subsystem volume (size) and cost. A relatively siaple microstrip structure with 2.0 dB of loss would usually be adequate.

Between the filter and mixer, utility gain in the form of an MRR-10503 is inserted. The gain and intermodulation performance of this IC complement the use of a low cost mixer and the insertion losses of the mixer are overcome by the gain of the HMR-10503. The reverse isolation of the amplifier limits the undesired LO leakage of the mixer. The specified performance of most mixers is with a condition of all ports terminated in broadband 50 ohm loads. Reactive termination of the inputs or the output with a reactive load such as a pilter, can frequently lead to insertion loss ripple and worsened intermodulation distortion.
The low VSWR of the amplifier output properly terminates the
cases is shown in figure 11. For these configurations, the increases were \(6-15 \mathrm{~dB}\) in magnitude and occurred primarily for frequencies from \(0.200-2.0 \mathrm{MHz}\). For the ether configurations where filter-pin connectors were used, the presence or absence of 2 was less critical. The least sensitive of the filtered configurations was with the individual shields qrounded only at the source end and the overall cable shield qrounded at both ends (see Figure 12) where the inclusion of \(Z\) reduced emanatione from 4-9 MHz by \(2-4 \mathrm{~dB}\).

\section*{EFFECT of GROUNDING CONFIGURATION}

The results of groundinq cable shield terminations in various combinations are discussed below. These effects vary between the two cables and between test cases where filterpin and non-filterpin connectors were used. The simpler, 2b-line cable tests are discussed first.

26-Line Cable Results, Shield Termirintion

\section*{Configurations}

For the singly-shielded, 26-1ine cable, the greatest shielding effectiveness resulted from grounding the shield at both ends. When non-filterpin connectors were used, grounding both ends of the shield was most effective for frequencies below 6 MHz compared to the unshielded profile as shown in fiqure 13 . Here. the very lowest decade ( \(0.010-0.100 \mathrm{MHz}\) ) of emanations is completely eliminated. There is some shielding effectiveness bove 10 MHz , but these frequencies are still at unacceptably hiah levels.

When non-filterpin connectors were used with the 2b-line cable, grounding a single end of the cable shield was most effective below 1 MHz . Note the results of these test cases, also shown in Figure 13. There was a loss of shielding effectiveness (as much as 30 dE ) from 1 to 20 MHz when onlv one end of the shield was orounded.

When the 26-1ine cable was connected using
filterpins. the most effective aroundina confiauration using filterpiris was where the cable shield was orounded
input of the mixer to minimize spurious performance. This amplifier would be biased at the \(25 x\) Idss level. At this bias level the HMR-10503 would have 12.0 dB of gain with typically 6.0 db nolse figure.

A mixer is specified to minimize insertion loss and spurious responses. Spurious response is usually a function of the intercept point of the wixer, which is a strong function of the LO drive capability. In addition, the termination of the LO port in particular, and the RF and IF ports in general, affect the level of spurious mixing products. For reasonably broadband signals, optimization of the termination with reactive elements for all the spurious signals is extremely difficult. In addition, most mixers are specified for 50 ohm terminations over a ilmited LO "drive" range. This might be 3 to 6 dB around a reguired Lo drive level of +7 to +10 dBm . An isolator would furnish the appropriate termination and isolation. The use of a buffer amplifier in gain compression, such as the RHR-10503, on the LO port also results in predictable spurious response while providing increased and atable power level to the mixer. A relatively simple low cost mixer is assumed in the block diagram analysis. Such a mixer would likely have 7.0 dB insertion loss with a +17.0 dBa third order intercept point, referenced to its input.

On the output of the mixer would be a buffer amplifier to terminate the mixer IF port and also to furnish isolation from spurious signals from the second conversion stages of the converter. This amplifier also furnishes a stable termination for the bandpass filter (BPF2) assuring minimal VSWR induced ripple
in the insertion loss. This amplifier would also be biased at \(25 \%\) Idss. Since the third order intercept point of the RMR-10503 is ereater than +20.0 dbm referenced to the output at the IF band, the intermodulation performance is sufficient as to not degrade the subsystem dynamic range.

The second Bandpass filter (BPF2) effectively determines the converter bandwidth. This filter is typically as narrow as the desired signal bandwidth will allow. Since insertion loss is a function of bandwidth, this filter specification would have higher loss than the "frontend filter" BPF1. The out-of-band rejection is set by the need of reverse isolation. Since the HMR10503s in the IF path each furnish 30 dB of reverse isolation, the bandwidth and number of "poles" for this filter may be reduced. A loss of 5.0 db could be expected fros this filter using low-cost implementation technology.

Many converters require that gain variation over temperature be minimized. To correct for the gain variations, temperature compensation circuits are used. Usually these are included in the First IF section between the IF filter BPF2 and the second mixer. PIN Diode networks or attenuators comprised of FET "Tee" or "PI" circuits with silicon opamps for drivers are typically used. The insertion loss of this function is dependent on the amount of gain control required. For this example a nominal loss of 6.0 dB is assummed.

The input to the second mixer is buffered for the same reasons as the first mixer. The needs for good termination and isolation on the input port of the mixer is mandatory for predictible performance. Additional specification constraints on
at both ends. Comparison of the graphe of Fiqure 14
shows attenuation as great as 30 ob for frequencies below 7 MHz . This Eliminates the lowest decade 10.010 0.100 MHz ) of emanations, and reduces the levels of the remaining emanations.

\section*{When filterpin connectors were used with the}

26-1ine cable, grounding one end of the cable shield was most effective below 0.200 MHz (Figure 14). It made little difference which end was grounded, but grounding only a single end resulted in a loss of attenuation (as much as 40 dB ) from 0.100 MHz to 10 MHz . In each instance, there was only a narrow band of frequencies from \(0.300-0.600 \mathrm{MHz}\) where mild enhancement (maximum of \(\theta(B)\) over the unshielded profile occurred. However, when these configurations were compared to wimilar configurations where filterpins were not used (Figure 13), they demonstrated a drastic loss of shielding effectivenese from \(0.100-1 \mathrm{MHz}\) when only a single end of the shield was grounded. This effect is apparently not the result of the grounding configuration alone, but of the sensitivity of these configurations to the presence of the filterpins.

55-Line Cable Results, Shield Groundino

\section*{Configurations}

The 55-line cable, having two (setz of) cable shields, realized its greatest shieldino effectiveness when both the overall cable shield and the individual shields were grounded at both ends. Fioure 15 depicts these results. When non-filterpin connectors were used , the unshielded profile extended up throuah 300 MHz . The lowest two decades ( \(0.010-1.6 \mathrm{MHz}\) ) of Emanations were eliminated by grounding all four shield terminationc. Attenuation of the radiation profile at certain frequencies above 10 MHz e:ceeded 20 dE .

If the individual shields are grounded at both ends (non-filterpins still used), opening one end of the overall shield does not drastically reduce the attenuation. In fact, openino both ends of the overall cable shield (Fioure 15) does not result in a oross lose of attenuation, provided that both ende of the individual shields are grounded. However, termination of the individual shields is far more critical. Even when both ends of the overall cable shield were or ounded (and nen-filterpirn were used). opening one end of the
this amplifier are assoclated with output power level as it relates to intermodulation distortion. In this typical system, an MMR-10503 is used with either one or both stages biased at 50x Idss of the RF transistors as described earlier. Its greater than +22.5 dBa third order intercept point is adequate to avoid degradation of the subsysten intermodulation performance. Gain would typically be +13 dB for this stage at the 50\% Idss bias point.

The final mixer down-converts the first IF for distribution in the receiver subsystem. Again the performance of the bixer is dependant on the VSWR of the loads terainating the RT, LO, and IF ports. The use of utility gain blocka also satisfies the subsystem needs for thia second mixer. A low coat bixer is assumed for this function. The +17 dBm third order intercept point of such a mixer is the subsyston limiting intermodulation distortion contribution. The use of a hicher performance mixer would enhance subsystem performance. The RIRR-10503 used as a LO buffer would furnish adequate power drive for a hiaher dynamic range mixer.

The post amplifier function isolatea the mixer output from the converter output and eatablishes the output VSWR. The dynamic range specification requirements for this block are the most stringent of any of the circuits in the converter. A well designed, high intercept point amplifier is needed. This example assumes an amplifier with 12 dB of gain and a noise figure of 6.0 dB.

The example demonstrates the use of distributed gain in nominal 12 dB increments to facilitate the desien of RF converters. The analysis contained on the block diagram, shows that utility eain blocks, and other \(R\) finctions of nominal performance, can result in reasonable overall performance of the subsysten. Each subsysten function, whether it be a filter or mixer, benefits from reduced component performance specifications while maintaining dynamic range. Repeatibility, consistency and compliance to design are more easily achieved with the use of distributed gain ICs and their controlled, predictable interfaces with the other subsystem functions.

The introduction of Barris Microwave Seniconductor's RMRSeries of RF IC products offers subsystem designers a unique opportunity for high performance frequency converters. Key attributes offered by amplifier stages, distributed through a subsyatom desien, can now affordably be inaerted into commication, \(I \mathbb{N}\) and radar systems supplying more functions in amaller packages at lower cost. The pronise of more highly integrated RF IC-based subsystems can now be realized.
individual shields creates problems. Comparison of the graphs of Figure 16 shows a general loss of attenuation (especially from \(1-10 \mathrm{MHz}\) ) and a slight increase in frequency spread. As the overall shield was opened at one end or the other, not only further loes of attenuation was noted, but a drastic increase in frequency spread (greater than 1 decade in lower frequencies) as well. Figure 17 shows the radiation profile which occurs in the absence of any benefit of the overall cable shield (i.e., open at both ends). Grounding only single end of the individual shields resulted in a slight decrease in emanation levels when just the source end was orounded and an increase in emanation levels at higher frequencies when just the load end was grounded. This enhancement of the hioher frequencies occurred from \(22-80 \mathrm{MHz}\) with amplitude levels greater than those of the unshielded profile. Enhancement of emanations was a greater problen when filterpin connectors were used with the ss-line cable.

When the 55-line cable was connected with
filterpins, the unshielded profile (shown in Figure 18) produced a greatly reduced radiation profile which extended only from \(0.010-20 \mathrm{MHz}\). Several arounding
configurations further attenuated these emanatione, while several enhanced the emanations. Thiz enhancement of emanations from 0.200 to 2 MHz is exhibited by some configurations where, at certain frequencies in the range of enhancement, there is an increase in emanation levels as great as \(18-20\) dB above those of the unshielded profile. These configurations were those where a cable shield was arounded at a single end, but neither the overall cable shicld for the individual shields are arounded at both ends. Note the affect on emanation levels. These orounding confiourations were also the least effective from the standpoint of frequency spread. This entiancement does not result from the oroundina confiauration. Comparison of similar configurations where non-filterpir, connectors were used (Fiqure 17) with the unfiltered, unshielded profile reveals that these confiourations should atteriuate emanations from 0.200 to 2 MHz .

Of the remainino confiourations where filterpine were used, qreater attenuation was effected by grounding both ends of the individual shields than by grounding both ends of the overall shield. Comparino the results showed imprevenents for frequerteses below e Pirtz
e::cludina those between 1 and 2 MHz . The best grounding configurations are shown in figure 19. These are the test cases where the individual shielde were arounded at both ends and the overall cable shield was open at both ends or grounded at both ends. In these cases, there was both a large reduction of frequency spread as well as great attenuation of frequencies below 4 MHz (compare these with the unshielded profile). The addition of the overall cable shield resulted in the elimination of emanations between 2 and 4 MHz .

\section*{EFFECT of FILTERFIN CONNECTORS}

Eoth cables were tested using filterpin connectors. The effect of these filterpins upon the ER profiles of the different grounding configurations is seen by comparing a filterpin test with its non-filterpin counterpart. For such comparisons, it is necessary to include certain bandwidth correction factors in order to account for the different bbandwidths used in collecting data. A correction factor of 12 dB should be added to the filterpin results when they are compared to the non-filterpin resulte within the frequency range of \(0.900-30 \mathrm{MHz}\). The tests of the 26-1ine cable will be discussed first.

\section*{26-Lirie Cable Riesulte, Filterpiris}

The most prominent and consistent effect of the filtarpins was general reduction of the overall frequency spread of the ER profiles as can be seen in Figure 20. When the \(26-1\) ine cable was connected with non-filterpins, the ER profile spanned from approximately \(0.010-300 \mathrm{MHz}\). Inclusion of the filterpins reduced this, allowing the profile to extend only to 20 MHz . For this configuration, with the cable shield open at both ende, the filterpins cause a slight entancement (maximum of 9 dB at 500 kHz ) of emanations from \(0.100-2 \mathrm{MHz}\) over the unshielded profile without filterpins. This is far more pronounced for other configurations.

In two instances stiown in Figures 21 and 22 , use of filterpins resulted in a arosentiancement of emanations between \(0.100-2 \mathrm{MHz}\). When the cable ehield was orounded at one end alone, these emanatione were \(10-40\) dE higher (remember to include the bandwidth correction factor) than those of corresponding non-filterpin confiqurations.

When the cable shield was orounded at both ends, the filterpins caused an entancement of the emanations from 0.250-4 MHz (see Figure 23). For this filterpin test case, emanations were first detected at 0.095 MHz versus 0.250 MHz . As in the other cases, the filterpins completely eliminated measurable emanations beyond 20 MHz . Also, the filterpine caused slightly less attenuation of the emanations near 16 MHz (approximately 22 dB) than the other filterpin configurations (28-30 dB). The overall levels near if MHz were about the same in all four cases shown in Figure 14.

\section*{SS-Line Cable Results, Filterpins}

When the S5-line cable was connected with filterpins, there was a large reduction in the frequeney spread of the emanations, as well as frequent enhancement of the remaining emanations over those of corresponding unfiltered profiles. Figure 24 exemplifiess this. When filterpin connectors were not used, the unshielded ER profile spanned from approximatelv \(0.010-300 \mathrm{MHz}\). The filterpin connectore limited the range of emanations to 16 PHz . (The
correction factor of 12 dE must be added to all filterpin results between 0.900 and 30 MHz before comparison with non-filterpin tests.) In the configuration with both the overall shield and the individual shields open at both ends, this filterpin radiation profile was used as the basis of comparisons to determine enhancements attributable to the filterpins for the various permutations of sheild terminations.

The use of filterpins in all these grounding configurations increased emanation levels somewhat over those comparable cases where filterpins were not used. Of those effected, the two configurations which had the least enhancement were those where the individual shields were grounded at both ends and the overall cable shield was either open at both ends or grounded at both ends. (These results are shown in Figure 25 along with the corresponding unfiltered test configuration results.) In these cases, the uee of filterpins resulted in emanations occurrino approximately one-half decade lower in frequency than the unfiltered test setup counterpart

The greatest enhancement of low-frequency
emanations occurred when filterpins were used in a configuration where shields were grounded only at a single end. In these cases, grose enhancement \(10-35\) (dB) of emanations resulted over the decade of \(0.100-1\) MHz . Another point of interest can be made by examining the results of the filterpin test cases shown in Figure 18. The four cases of interest have a peak emanation occurring approximately at 0.250 MHz with levels \(12-15\) dB greater than those at the same frequency for the test case where no filtering and no shielding was used (see Figure 17). The interesting aspect of this is that 0.250 MHz is the frequency corresponding to the transitional rate of the data bits.

For all grounding configurations of the ss-line cable, the filterpin connectore attenuated emanations above 20 MHz so that they were no longer detectable. It may be worth noting that emanations near 16 MHz underwent varying degrees of attenuation. Thiz attenuation ranged in value from 50 dB (Figure 26) to 36 dE (Figure 25). The filterpins have typical insertion losses of \(25-30\) d日 near this frequency.

Use of \(Z\) with the 26-Line Cable

The 26-1ine cable, having wire-pairs of unspecified characteristic impedance, presented potential mismatch at the source end of the cable, as well as at the load end. In every test configuration, inclusion of a 100-ohm matching resistor provided at least a minor reduction of emanation levels. When filterpin connectors were used, the benefits of \(Z\) become less obvious. It is sugaested that the characteristic impedance of the filterpins (10-100 ohms) placed at both ends of the cable predominates in the transmission line parameters by reducing the impedance mismateh at both ends of the cable. However, because there is no certainty that the filterpins will be matched from connector to connector, or line to line, it is recommended that the \(100-\) ohm matching resistor, \(Z\), be connected acrosg the differential pairs of the 26-1ine cable.

Use of 2 with the \(55-L i n e\) Cable

\footnotetext{
The 55-1ine cable, whose wire-pairs are specified as having a 100 -ohm characteristic impedance, presented a potential mismatch at the load end of the cable. Omission of the 100 -ohm matching resistor generally resulted in higher level emanations with no noteworthy increase in frequency spread. When filterpin connnectors were used, improvements arising from the inclusion of 2 were less obvious. Again, it is believed that the characteristic impedance of the filterpins, imposed upon the cable prior to 2 , reduces the impedance mismatch. However, because of the uncertainty of filterpin pairing (line to line and end to end , it i= recommended that a 100 -ohm matching resistor be placed across the differential pairs at the load end of this cable.

INFLUEINCE OF SHIELD GROUISDING CONFIGURATION

\section*{26-Line Cable Shield Termminations}

When using the singly-shielded, 26-1ine cable, it was always best to around the cable shield at both ende.
}
n oreat deal of attenuation was forfeited by grounding only a single end of the shield. Some attenuation was noted at the hiọh frequencies present when non-filterpin connectors were used. However, any appreciable attenuation due to shielding effectivenese extended only to 6 or 7 MHz for the non-filterpin test cases. When filterpin connectors were used, attenuation of emanations by the shields extended only up to 0.300 MHz .

Ss-Line Cable Shield Terminations

The shields of the 55-1ine cable were most
effective when the two shielde were orounded at both ends of the cable. When non-filterpin connectors were used, the influence of different shield grounding configurations were discernable up through 100 MHz . The effectiveness of shield grounding was predominant at frequencies below t MHz. Grounding a single end of the Ehields caused a loss of attenuation. Termination of the individual shields was most crucial. probably due to oreater capacitive coupling between the shields and wire-pairs.

When filterpin conriectors were used with the ss-line cable, shield grounding was especially important. The worst configurations were those where a shield was qrounded at aingle end and neither the overall cable shield, nor the individual shielde were grounded at both ends. These configurations actually resulted in entancement of frequencies (from 0.2-2 \(M H z)\) over the unshielded profile. This entiancement was not noted for similar arounding configuratioris using non-filterpin connectors, and Eeemed attributable to the presence of the filterpins. The effects of grounding configuration were observable only up to 20 MHz because of thic large reduction of frequency epread attributable to the filterpins. The areatest shielding effectiveness resulted from grounding all of the shields at both ends. The improvement of this confiquration over others was discernatle orily to atout 3 MHz .

\section*{EFFECT Of FILTERFIN CONNECTGRS}

\section*{Lowpass filterpin connectore proved to be the} sinale most effective method of reducina unwanted Emafiatione. He corifiauratzon of stiseld termbatione was
nearlv as effective as the filterparis. Even with the shields unarounded, major reduction of enanation levels and overall frequency spread were achieved through the use of filterpin connectors. From the ER shielding perspective, the advantages of this attenuation \(f\) ar outweiah the few disadvantages that surfaced.

From the systems perspective, the filterpin conrectore are potentially undesirable in a balanced data transmission system where they may contaminate the system grounds with common-made currents. While these Eurrents were not actually measured, they seem to have been responsible for enfancemerit of emaliations in some instances. When filterpin connectors were used with either cable, all shield termination configurations resulted in at least some increase in emanation levele from 0.160 - 1 MHz . Configurations where a shield was terminated at a sinale end were most sensitive. Use of filterpin connectors in these confiaurations resulted in emanation levele dramatically increased (for the above frequency ranael over those of similar corifiauratioris where filterpins were not used. In fact, emanation levele of the morp sensitive configurations with the filterfir, corinectors ::ceeded even those levels in the
O.1-1 MHz range of the test case where no filtering and no shieldina were used. It is believed that these shield termination configurations create an effective E-Field radiator. In so doing, the shields act as an antenna, driven at either end by common-mode currents from the filterpins to ground. This effect, although extremely detremental to shielding effectiveness, can be avoided by orounding all cable shields at both ends.

Aside from the reduction of emanations by
filtering, another advantage of filterpins became apparent when the effects of an impedance matching resistor, 2 , were studied. Emanations resultina from a potential impedance mismatch were reduced by the presence of filterpin connectors. The filterpins are specified as having a characteristic impedance between 10 and 100 ohms. Flacement of this impedance at both ends of the transmission line-pairs tends to reduce the USWR. While they are not likely to be custom-matched from end to end, or line to line, all of the filterpins have a characteristic impedance of the zame order of magnitude \(\left\{\begin{array}{l}\text { la } \\ \text { so coincident with the output impedance of }\end{array}\right.\) the RS-422 line oriver).

In the final analysis, the advantages of filterpin connectors far outweigh the disadvantages. With the proper shield configuration, the inclusion of filterpin connectors results in outstandina attenuation of unwanted emanations. The shielding effectivenese of any of these termination configurations is, however, based on the lise of an equipotential oround plane as suggested in MIL-HDEK-419.

The next obvious step in an evaluation of techniques to reduce radiation from cables is to drive multiple signal lines. For this test situation, rise in radiated field strength is expected with the increase in the number of driven lines. This increase would be attributed to the fact that all the signal lines share a common shield.


Figure 1. (U) Orientation of Cables, I/O Units, and Test Equipmant




- Mensty pe suaction



Figure 2. (U) Representation of Lime Driver and Line Receiver Unit


Fioure 4. Dsac Test. Driver Easebend Output


Figure 3. (u) Test Setup Depicting Relocitive Position of \(1 / 0\) cable



S5-Line Lable
individual
only and the

spua 4
anos
ant
tol

mearerac)
 \(1014=\)
314,
219

mith
lin
over
Fiqure 12.


- 1 -









of the ss-Line Cable. Herct the caseo shown are with lust the line-par micld terminated at both endm (11 and 2) 4 ).


\section*{NEW INSIGHTS INTO 'OLD' NETWORR ANALYSIS TECHNIQUES}

\section*{by}

Lorenzo Freschet
HEWLETT-PACKARD COMPANY
1400 Fountaingrove Pkwy
Santa Rosa, CA

Network Analyzers have been commonly used in the characterization of linear components such as filters, amplifiers, attenuators, switches, semiconductors, transmission lines and antennas over the \(R F\) and microwave frequency range. They measure the energy reflected from and transmitted through the device under teat (DUT). By analyzing the amplitude ratios and phase differences between incident and the reflected and transmitted waves, the complete impedance and transmission characteristics of the DUT can be determined. Network analysis techniques started with slotted lines and gain-phase voltmeters at \(C W\) frequencies, but became popular as swept frequency characterization came about.

A network analyzer will always have four key parts:
1. A swept frequency source that provides the stimulus to the DUT.
2. A signal separation device that samples the incident,
reflected, and transmitted signals to be measured
3. A reciever to measure the amplitude and phase of the separated signals.
4. A display to show the data in rectilinear (Cartesian), polar or Smith Chart format.

See Figure 1. Network Analyzer Diagram

More recent network analyzers combine these elements into integrated packages for better performance and add significant enhancements. The following measurement applications areas are used to illustrate these new capabilities.

Filters

The high performance RF systems being designed are placing significant requirements on filter measurement accuracy.

One of the key elements is the frequency accuracy. Analog swept sources have great difficulty in measuring many modern filters (e.g. crystal and SAW) both because of their frequency accuracy and residual FM. Synthesizer sources are required, but at the expense of speed since they step along at \(C W\) intervals. Other techniques use a frequency counter to help guarantee accurate frequency information. Now network analyzers
incorporate swept synthesizers which offer the convenience of analog sweep and the precision of synthesizers at the same time. SAW filter measurements are particularly difficult. Due to the different paths signals can take in the device, distortion in the frequency domain can occur which is very difficult to detect. These are called spurious time-domain responses. With their inverse Fourier transform ability, network analyzers can measure both the frequency and time-domain responses.

\section*{See Figure 2. SAW Filter Measurement in Frequency and Time Domain}

Group delay measurement is often required to check for distortion. previously, additional equipment was required that passed a modulated signal (FM or AM) through the DUT. Not only was this technique cumbersome, but often of unsuitable accuracy and repeatability from system to system. Deviation from linear phase was rarely used as a distortion parameter since it was almost impossible to equalize out the linear component of phase by simple methods. Now that network anlyzers incorporate a built-in computer, they can determine the DUT's group delay response more precisely from the phase information. This technique is fast and utilizes the accuracy enhanced data for the most accurate and repeatable results. In addition, deviation
from linear phase is simple now with built-in electrical length control to balance virtually any length offset.

See Figure 3. Group Delay and Deviation from Linear Phase

\section*{Transistor s-Parameter Measurements}

High frequency transistors are commonly used by RF engineers in their own designs. For the most part, they rely on manufacturers' measurements on an individual device. Typically, the set of \(S\)-parameter measurements are often incomplete leaving the user to measure his own. For these, the system measurement uncertainty can often be large. The errors due to imperfect couplers and non-ideal mismatches can add significantly. Using fixtures, adapters and cables only compounds the problem. only by analyzing the errors and making worst-case assumptions does the designer know the uncertainties of his measurements. If these errors are large, they force him into designing with unnecessarily large safety margins. This can unnecessarily complicate things and also keep the end product from meeting its performance objectives.

Previously, the only alternative was to reduce the measurement errors by obtaining better hardware and reducing the number of adapters and cables between the measurement instrument
and the device. Generally, this isn't enough. Tuners can be employed at a particular frequency, but not over the wide bandwidths needed. Only until automatic network analyzers, driven by computers, could these uncertainties be further reduced. They offered a calibration technique called vector accuracy enhancement which used external calibration standards (open, short, load) to actually measure the measurement uncertainties and vectorially subtract them from the measurement data for very high accuracy. This was a popular technique with disadvantages of requiring a programable network analyzer, a computer, and quite slow measurements.

Now complete vector accuracy enhancement techniques using short, open, and load calibration standards are built inside network analyzers to provide the low levels of uncertainty needed for the best device characterization. Once integrated inside, the measurement speed increased substantially allowing users the speed to see the measured parameters in real time. This technique also has the advantage of allowing very accurate measurements after adapters and in different connector types.

See Figure 4. Transistor Measurement Before and After Accuracy Enhancement

When measuring antenna gain, match or patterns, extraneous or reflected signals can alter the data, giving erroneous results. This is why anechoic chambers usually are used to attenuate the unwanted signals.

Modern network analyzers now have the ability to transform their frequency domain data into time domain reponses using the inverse Fourier transform. With this, the unwanted reflections can be viewed and analyzed. If a particular portion of the time domain is all that is desired, a GATING function can mathematically filter out the undesired signals in time. This gated response can then be transformed back and allow analysis of the measurement in the frequency domain with the effects of unwanted reflections removed. This technique often can give results comparable to those obtained in anechoic chambers.

See Figure 5. Antenna Measurement in Frequency and Time Domain

See Figure 6. Antenna Measurement After GATING Unwanted Signal in Time and Frequency Domain

Fiber Optic Measurements

Fiber optic media is commonly used to transmit high speed
digital information. To characterize the transmission path and the components, pulse dispersion techniques using high speed pulse generators and high speed oscilloscopes are used.

Now that network analyzers can mathematically transform measured frequency domain information into the time domain, the same network anlyzer can be used to quantify the dispersion of pulses.

In summary, as the need for better network analysis by design engineers grows, so do the techniques available. Only recently have those techniques described here existed inside commercially-available network analyzers. They represent the latest steps in the steady improvement of measurement equipment to assist engineers with their design tasks.


FIGURE 1. NETWORK ANALYZER


Figure 2. SAW filter measurement in frequency amd time oomain




FIGURE 5. ANTENNA MEASURMENT IN FREqUENCY AND TIME DOMAIN

FIGURE 3. GROUP dELAY and deviation from limear phase




Figure 6. Antenna measurement after gating unhanted signals in time and frequency domain

\section*{a broadband luhped element variable attenuator}
by
```

Dr. Rajeswari chattopadhyay I.K.L.N. Murthy Eswarappa
Chief Enginee
I.R.L.N. Murthy Eswarappa
Ex.Engineer Asst.Ex. Engineer
Tranemiseion R \& D
Indian Telephone Industries Limited
Telephone Industries

```

A bridged-T variable attenuator was realized in the 1 MHz to 500 MHz band with an attenuation range of about 13 dB and a minimum return loss of 21 dB . Due to its small size, broadband operation and good match at both the ports a bridged-T attenuator was chosen.

In a bridged-T network (Fig. \(1 . a\) ) the two variable resistors have to satisfy the following condition for a good match at both the ports: \(R_{1} R_{2}=Z_{o}\), where \(Z_{o}=\) characteristic impedance. PIN diodes can be used as current controlled variable resistors with resistance typically varying from 10 K ohms to 1 ohm above 20 Hz . Since the forward current in a diode is an exponential function of the voltage drop across the diode, when PIN diodes are used in the bridged-T circuit the product \(R_{1} R_{2}\) will be an exponential function of ( \(\mathrm{v}_{1}+\mathrm{v}_{2}\) ) [1].
\(R_{1} R_{2}=K_{1} e^{K T /\left(v_{1}+v_{2}\right)}\),
where \(K_{1}\) is a constant.
Hence for good match the sum of the voltage drops across the diodes has to be held constant. The DC circuit achieving
this function is shown in Fig.l (b). A1 is a voltage follower stage which maintains a constant voltage drop across the diodes. \(A_{2}\) and \(A_{3}\) form control voltage stages, which vary the currents through the diodes for changing the attenuation.

Two important \(R F\) considerations in the realization of a broadband variable attenuator are (1) the design of proper layout to reduce parasitics (2) proper design of broadband DC to RF isolation elements. The attenuator was realized as per the layout shown 1 n Fig. 2 on a 31.25 mil thick Teflon fiberglass substrate with 50 ohms input and output microstrip ifnes. In this layout, the size of patches \(P_{1}\) and \(P_{2}\) has been minimised to reduce parasitics. M/S. Salford Electronics Led., core types \(P\) and Klo were used to realize the low frequency ( 1 MHz to 150 MHz ) and high frequency ( 150 MHz to 500 MHz ) chokes. One each of these high and low frequency chokes were used in series to obtaln the broadband (1 MHz to 500 MHz ) RF to DC islotion. Stemens type BA379 PIN diodes were used along with M/S. Johanson Chip capacitors and \(M / S\). Pyrofilm 50 ohms chip resistors, to reduce the size. This atenuator had minimum attenuation range of 0.8 dB to 13.8 dB with \(\leq 1.2 \mathrm{~dB}\) response over 1 MHz to 500 MHz frequency range. It had a minimum return loss of 21 dB over the 1 MHz to 500 MHz band. The measured performance of the attenuator 1 s given in Table I .

Tahle I. Liessured Perforance of the B-Idged-T Attenuator


\(\square\)
\(\square\)
fig. 2. RF circuit of the gridged-t attenuator

\section*{appincation noyigs for bhibi.y rotatri) oliartz, c:rystals}
I.ynn C: Helishman
Applications Eingineer
piezog cirystal. cumpany

summary





and If't:ans. have fren user extensively fnr most oserillater and filler applicar tions. The eles:irical prameneterss and frequency vs temperalure charact|eristic:s of theser cuita are wefl known in the techinicail community.
Revemily hownever, the dnminnaca of the AT cut has benen challenged hy the urwer domtly monimi c:rystal deniges, especially to applications demanding


\section*{INTRODMICTION}

While malaining the noore important advailagese of the \(\Lambda \mathbf{T}\) cul crystal, the doully crintern units have proven to be superior in many ways. The douhly

 loverfa, have also given the doubly motated culs a sigmificant advantage over lie ATr cut.
Mary excerllemit papprs with veluahle dala have been presented in preceding
ycurs. luit the data was usually oblaineed from smail quantity experimental



\section*{vibrational. Sensitivit}

Althungh meveral papuers have proviously mported on the various influances oun vilrational sensilivity, much of this initial work was perfiormed on crystal All of the cryssals unad for this paper were sealed in one of three lypes of





 frum \(2 \times 10^{*} \mathrm{ke} 1 \times 111^{10}\). Thrme diffemivem are prive:ipally due io lie mouneut
of inertia acting upon the elastic cxnefficimils nf the furartz. Consisistoucy in
 have any appreciable effect on mansilivily The nuartz crystal resunator is. In menlity, a mechanical device which. when mounted in a holdqr. is subiber:t to muinting resonaucus. Fiurther, mes:illatio oscillator iteefl. Assumiug in internal resomatr:ss willhin the crvstal. the oscil Iater. ur the syatem, the viluratinn gamina is fat up tio 2 mal liz.
Much of our data is provided in the form of custnnuer feefllurek, and is
 ant ganmina can arise depeudent on whether the memsumpoupula were nf the crystal itsolf, within an oseclliftor. nr within a larger systin.
dalicillation of vibrational. sensitivity gamma

vibrational, sensitivity measirements
FREQIIENCY/MODF/CIIT
H- 35 HOLIDER TYPE.
(x) MHIz/3rd Overtone/S
\({ }^{\text {mi }) ~ M i f z / 3 r d ~ O v e r t o n e / S C ~}\)
\(950 \mathrm{Miz} / 5 \mathrm{~h}\) O Overtome/S
\(100 \mathrm{MH} / \mathrm{z} / 5\) th Overtome/SC
\(100 \mathrm{MHzz} / 3 \mathrm{rl}\) Overtone/S:

135 MHZ/5ih Overtome/TT

\section*{HC-37 HOU.JPER TYPE:}


IC.-4I HOA.DER TYME:
10.anxi Mliz/3ril Overtome/SC:
g.SENSTHVITY
\(3.9 \times 10^{10 / 8}+1.1 .111 \times 10^{10 / 8}\)
\(3.5 \times 10^{1 \mathrm{~m} / \mathrm{g} \text { (warsil axis) }}\)



\(5.5 \times 10^{\circ \prime 2} / 8\)
\(.41 \times 1)^{-1 / g}\)
Mcasumemenls have raugenl Irmu 3 to \(1 \times 110^{\prime \prime \prime}\) gamman to \(1.5 \times 111^{\prime 9}\) gппим
\(1.5 \times 11^{1 / 8}\)
piase noise
The doubly rotated culs demonstrale silli anu her arpa of suppriverity whell ilized in a previkion oscillator: phase mise pand fryuurncy slahility.
 mecier at various levels in all quartz resomatiors. While the memilanisuns whenthy ithis intringit phane indene is gruerated have yon in ber idementified aned
 statistic:al menue.
The phase nuiben of a signal can be masaume only hy a systann which has eplual or botiter noive performaican. Relativelv litite lian theen puillishied on the similar fabrication, due in part to the fect that must crystal manulfa:turrers arr inot equipped in measure the phase moisp nf quartz remonators. As a msult. phane ucime requincomenis appear on vary inw crysial irawings or speetifica. Cions. However, the phase moise of civatal osc:illators is intrimsicially dolerments of the crystal oscillalor cirecults nay be used to examine the phase noise performames of the crystals.
The clone in phone noise of the crysial oncillator ciircuit is implroved thy the cuits may be operated. withoul damage or signifícant degradatinu. at subskantially higher power than the AT cul. therenty directly facililiating a cortrespoweding supppression nf the while moise fiene by approximately 110 di. Hz the iemperature vs frequancy curve at drive levels in the aten of 2 Alw . However. SC: cuts designed for radar. CP2 applicalions operate al \& Aw, nud hove immensely ndded to radar sensitivity.
 than ilinilinaly preppred
cusciltalor appeara below.
phase nolisf mfasitiremen
SMHT 3RLO PHARE NOM. MFASIREMEN
\begin{tabular}{|c|c|}
\hline H\% Prom (inRRIFR &  \\
\hline 5 & 132.5 \\
\hline 10 & 133.5 \\
\hline 20 & 141.5 \\
\hline 100 & 147.5 \\
\hline 1.1 мо & 153.5 \\
\hline 10.1000 & 150.5 \\
\hline 25.1 KMO & 160.5 \\
\hline
\end{tabular}

Figurn 1 shnws a comparison of measurements using 3rd overtowe \(\Lambda \boldsymbol{T}\) culs
 Imerfirmance cincye.

 excaurs within the phase mise purformanere of the S: cat om illaters vs that of min AT cul nesill hitors.

Aging:


 x 11 "'/hav in lesa llaun, 14 days:






\section*{SIIORT TERM STABII.TTY}
 sent sre:coud slahlitily "x 111 "

1 sm:0nm stahilily \(5 \times 10^{\prime \prime}\)

\section*{(xoncitionon}
(Picza) (irysatal Ciomipany has beon investigating the advantagos of doubly coltaterl cats for newe than len ynars, and surcensefully manuffecturing these
 Imus chrvelegped ly limeno Cryslal Cinppany have virtually ell minatred ite pro

 The develcypunint of the douilly motesed cuis has allowed the fromperns:y conofl iurdustry to axpand its previous Jimilations hundredfold. The mecerptanese " Whis "new" Iv:dumongy in the RF world han heon overwhelming. We at
 Im:thical communulity.

\section*{refferenties}

 Hoymuad I riller fuli
 Rors". Prox, Bish Aupual Sympsilum on firmurncy Conlrol. 1982.
 Symurasium in Fimpurivey Contrul. 1!






Prepumey Mar
Figury 1. Comparison of (eff Displayad by
Oacillator Using SCC Cut and AT Cui Unita
Approximately 100 Mliz


Figure 2 (If) Characteriatcs of Third Overione SC
Crystat-Conrothed Oncillators


Most manufacturers today are rapidly turning to use surface-mount components to utilize the full benefits of this relatively new technology. SMT's popularity has been accelerated by the development and availability of small outline semiconductor packages and device availability in these packages. Major manufacturers such as IBM, AT\&T, GM and FORD are making significant investments in SMT.

The advantages and disadvantages between SMT and other technologies are already well known.

The objective of this article is to show the design engineers and other users some of the different aspects of SMT, make them aware of possible trade-offs and help them make the right decision.

Commonly cited advantages of SMT are:
* Space savings allowing smaller PC boards and total system size reduction
- Lower cost in high quantity
- Increased automation capability and wide choice of automated production equipment
* More reliable construction, better shock resistance and less sensitivity to vibrations
* Better high-frequency operation due to shorter lead lengths and interconnections

However, with decreased component and PC board size, an important factor which must be considered is thermal dissipation. Usually, the same die type is used in surface mounted devices as with conventional, "thru-hole" devices. The same bias conditions as used with the conventional devices will result in a higher die operating temperature for surface mount devices.

Consequently, miniaturization leads to thermal concentration.


Fig. 1 Constant temperature zones surrounding SOT-23 transistor mounted on FR-S PC board. Die temperature is \(150^{\circ} \mathrm{C}\).

The trade-off between the increase in component density and the concentration of thermal energy must be evaluated to avoid therinal collapse. Some of the most important information every design engineer needs to know is the thermal resistance of the package. The smaller the package is, the more important the die size consideration becomes. The following graphs, available in Motorola data sheets, describe thermal resistances for two different packages - SOT-23 and SOT-89.


Fig. 2 Thermal resistance \(\theta_{J A}\)


Fig. 3 Therınal Kesistance OJC

All these factors may have an influence on the choice of PCB material, number of layers, and the thickness of the BCB because \(\theta_{J A}\) is influenced by PCB material, thickness, etc.

The heat transfer from the die to the package, from the package to the PC board and then away from the board should be considered very cautiously in the design stage.

Things to be considered before starting are:
- Availability in a particular package.
- Package electrical-thermal consideration, to guarantee electrical and thermal requirements.

For example: If design of oscillator requires minimum \(\mathrm{f} T\) of 7.5 Ghz the designer will probably refer to curve \#18, which meets the requirement at collector current of 50 mA . If \(\mathrm{V}_{\text {ce }}\) is 10 V the device will require power dissipation of 500 mW , obviously SOT-23 or SOT-143 are not suitable due to their power dissipation rating. The designer will have to chose between SOT-89 or TO-92 package.

Regardless of previous application devices like 12, 13, 14 curves will allow the designer to choose any package if electrical requirements are satisfied. Curve \#11 shows that SOT-23 or SOT-143 is the most suitable package because a minimum power dissipation is required.


Fig. 4 Electrical parameter \(\boldsymbol{f}_{\mathrm{T}}\) versus collector current \({ }^{\prime} \mathrm{C}\)

Other factors besides placement system and soldering, methods are post assembly cleaning, visual inspection and test availability.

There are always a number of questions which must be answered in order to determine the optimal solution.

The purpose of this comparison is to find out the relative differences in performance that a particular transistor exhibits when encapsulated in the TO-92, SOT-23, SOT-89 and SOT-143 plastic packages. Package parasitic capacitances, lead frame construction and wire inductances are important factors in determining the ultimate application performance of the encapsulated transistor.

Fig. \(5 \quad \begin{aligned} & \text { TO-92 Internal Construction } \\ & \\ & \\ & \\ & \text { (Maximum die size } 60 \mathrm{mil} \times 60 \mathrm{mil})\end{aligned}\) Fig. \(6 \quad \begin{aligned} & \text { SOT-89 Internal Construction } \\ & \text { (Maximum die size } 60 \mathrm{mil} \times 60 \mathrm{mil})\end{aligned}\)


Fig. 7 SOT-23 Internal Construction Fig. 8 SOT-143 Internal Construction (Maximum die size \(30 \mathrm{mil} \times 30 \mathrm{mil}\) ) (Maxjmum die size \(30 \mathrm{mil} \times 30 \mathrm{mil}\) )


An RF NPN bipolar chip which has relatively high gain and low noise characteristics at RF frequencies was chosen for this investigation. In silicon NPN transistors are usually preferred, since the electron mobility is higher than mobility of holes.

There were wafers selected from two different wafer lots and devices from each wafer were assembled in each of the four package. The intent was to obtain encapsulated transistors which were not only representative of the wafer line but which were similar enough that chip-to-chip variation was not a major question when the results were compared.

After DC testing, these four package groups of ten devices each were subsequently used for RF measurements.

RF transistors are represented by two-port networks and characterized by scattering, also known as S-parameters. S-parameters completely describe the behavior of two-port networks at RF and microwave frequencies. S-parameters are popular because they are easy to measure with modern Network Analyzers, their use in RF and microwave transistor amplifier design is conceptionally simple and they provide meaningful design information. All parameters mentioned in further Consideration are measured in a 50 Ohm system, but a 75 Ohm system can be used as well. Of course, the values obtained using a 75 Ohm system measurement will not be identical to using a 50 Ohm system. It's up to the design engineer what measurement system serves his application.

Statistical processed data can be used for more advanced CAD design. On the other hand, it is very important to keep the parameters consistent over a long period of time, to guarantee the proper operation of circuit which design was based on that information. The reason to keep parameters consistent is the fact that the size of SMT PCB's is getting smaller and less space is left for relatively expensive and space consuming adjustment components.

Today's manufacturers, including Motorola, are implementing new process control methods to guarantee these parameters to full customer satisfaction.

The S-parameters for a transistor are reflection and transmission coefficients describing the input and the output in terms of power.

Transmission coefficients \(S_{12}\) and \(S_{21}\) are commonly called gains or attenuations. Reflection coefficients \(S_{11}\) and \(S_{22}\) relate to return loss, \(S W R\) and impedances.

The \(S_{12}\) parameter is the reverse transmission coefficient. Increasing magnitude of \(S_{12}\) with frequency indicates negative gain or loss due to package parasitics. In other words, \(S_{12}\) represents the output to input feedback of the transistor.

The \(\mathrm{S}_{21}\) parameter is the forward transmission coefficient. As the frequency increases the magnitude of \(\boldsymbol{S}_{21}\) decreases which indicates a decrease of insertion gain.
\(S_{11}\) parameter is the input reflection coefficient. As the magnitude of the reflection coefficient decreases the return loss and SWR improves. \(S_{11}\) indicates how well the input of a transistor matches to particular measurement system impedence. \(\$_{11}\) measured in common emitter configuration is plotted in the reflection coefficient plane at specific bias conditions.
\(S_{22}\) is the output reflection coefficient. \(S_{22}\) is measured and plotted in the same manner as \(\$_{11}\) except the input and the output are interchanged.

Many other parameters can be derived from S-parameters. Two figures of merit are commonly used by manufacturers to describe the transistor performance - Cut off frequency \(\mathrm{f}_{\mathrm{T}}\) and maximum frequency of oscillation \(\mathrm{i}_{\text {max }}\).
\(\mathrm{If}_{\mathrm{T}}\) - Cutofl frequency is the frequency where the short circuit gain \(\mathrm{h}_{\mathrm{f}}(\mathrm{w})\) approximates unity. The \(\mathrm{f} T\) is related to physical structure of a transistor by delay time \(\tau_{\text {ec }}\), which represents the sum of four delays encountered sequentially by the carriers as the flow from the emitter to the collector. Decreasing the base thickness will increase the \(\mathrm{f} T\).

The other possibility to increase \(\mathrm{f} \boldsymbol{T}\) is narrowing the collector region. However, there is always corresponding decrease in breakdown voltage by decreasing the collector width.

Therefore, every transistor is a result of compromise between high frequency operation and high breakdown voltage. The following formula is used to determine the requency:
\[
\mathbf{f}_{\mathrm{T}}=\frac{-2\left|s_{21}\right|}{\left(1-s_{11}\right)\left(1+s_{22}\right)\left(s_{12} s_{21}\right)^{f_{m}}}
\]

S-parameters were obtained at measurement frequency \(\mathrm{f}_{\mathrm{m}}\) usually 100 MHz or 1 GHz .
\(I_{\text {max }}\) - maximum frequency of oscillation. It is a frequency where the maximum available power gain of the transistor \(G_{\text {Amax }}\) is equal to I. GAmax is the maximum power gain that can be realized without external feedback. \(\mathrm{G}_{\text {Amax }}\) and \(\mathrm{I}_{\max }\) are measured by conjugately matching the source to the transistor input and the load to the transistor output impedance.

G Amax - maximum available power gain. GAmax is actually the ratio between power available from network and power available from source and is higher than the transducer gain \(\left|S_{21}\right|^{2}\) because of the matching conditions and stability factors.

The following formula is used to determine GAmax from S-parameters:
\[
G_{A \max }=\frac{\left|s_{21}\right|}{\left|S_{12}\right|}\left(K+\sqrt{K^{2}-1}\right)
\]

A condition that a two-port network can be simultaneously matched with a positive real source and load is:
\(K>1\) or \(C<1\)
\(C=\) Linvill factor
\[
K=\frac{1+|D|^{2}-\left|s_{11}\right|^{2}-\left|s_{22}\right|^{2}}{\phi_{12} s_{21} \mid}
\]
\[
\text { Where } D=S_{11} S_{22}-S_{12} S_{21}
\]

GUmax - maximum unilateral power gain. GUmax is based on the magnitude of \(\mathrm{S}_{21}\) and the contributions of the conjugate matched networks to the input and output of the transistor.
\(G_{U \max }=\frac{\left|s_{21}\right|^{2}}{\left(1-\left|s_{11}\right|^{2}\right)\left(1-\left|s_{22}\right|^{2}\right)}\)
Where \(S_{11} 1\) and \(S_{22} 1\)
or in logarithmic form,


In all these unilateral assumptions, the \(\mathrm{S}_{21}\) is set equal to zero, which makes the design procedure much simpler.

\section*{Three basic considerations are:}
* Gain equal GUmax regardless of noise figure
- Maximum possible gain at minimum \(\mathrm{N}_{\mathrm{F}}\)
* Design of an amplifier covering the frequency band with maximum gain and noise figure less than permissible by specification.

The meaning of \(\mathrm{f}_{\mathrm{T}}, \mathrm{f}_{5}\), and \(\mathrm{f}_{\text {max }}\) is illustrated in the following figure. The gain rolls off at the rate of \(6 \mathrm{~dB} / o c t a v e\).


Figure 9 Frequency characteristics of
\(G_{A \max }\left|S_{21}\right|^{2}\) and \(\left|h_{f e}\right|^{2}\)

Another parameter allowing qualitative comparison between Bipolar Junction Transistors (BJT) is the Noise Figure (NF). Expressed in \(\mathrm{dB}, \mathrm{NF}\) is a measure of the degradation in signal to noise ratio with passage of the signal through a given transistor.

Two sources of noise in a BJT are thermal noise and shot noise.
Thermal noise is caused by the vibration of the carriers in the ohmic resistance of the emitter, base and collector, due to their finite temperature. Some of the vibrations have spectral content within the frequency band and contribute noise to the signal.

Shot noise is a current dependent effect caused by the quantized and random nature of current flow. Current is not continuous but quantized being limited by the smallest unit of charge \(q=1.6 \times 10^{-19} \mathrm{C}\). Particles of charge also flow with random spacing. Shot noise depends upon bias conditions.

From all that has been mentioned to this point, it is evident that right starting material and actual chip design are the most significant factors determing the transistor performance.

For better understanding of RF transistor characteristics it is necessary to use a model including all additional parasitic resistance, inductances and capacitances, which will depending on package, degrade the performance to a certain extent.


Fig. 10 A BJT common emitter model including parasitics

The resistance \(\mathbf{r b b}^{\mathbf{b}}\), represents the base to emitter resistance. The \(\mathrm{C}_{\mathrm{b}}\) e capacitance is due to the junction from base to emitter. Emitter resistance \(\mathbf{R e}_{\mathbf{e}}\) produces an inductive reactance across the base to emitter terminal, with increasing frequency, due to complex \(h_{f e}(w)\). Since resistance associated with each region of transistor affect the various RC charging times, it is important to keep them to a minimum. Therefore, the metallization patterns contacting the emitter and base region must not present significant series resistance. There is always some contact resistance, but for simplicity will be left out of further consideration.

The package capacitance and wire inductance contributes most to coefficients variations at the higher frequencies. The meaning of the parasitic elements
\(\mathrm{L}_{\mathrm{b}}, \mathrm{L}_{e}, \mathrm{~L}_{\mathrm{c}}, \mathrm{C}_{\text {be }}\) and \(\mathrm{C}_{\mathrm{ce}}\) is self-explanatory.
All of them are package dependent and will be determined by:
* size of a package
- material used
- lead frame construction
- lead frame material
* bonding method
- size of bonding wire

The transistor input and output capacitances are figures of merit that are commonly used and are easy to measure. Capacitance is a function of either emitterbase \(C_{i B}\), collector-base \(C_{O B}\), or collector-base with emitter \(A C\) wise shorted \(C_{C B}\) reverse voltages measured at 1 MHz .

All of these paraineters and measurement results are compared and evaluated for all the packages in the following graphs and tables.


FT VS. \(_{\text {I }}\) C

This graph shows the relationship between the current gain-bandwidth product and collector current \(\left(I_{C}\right) @ V_{C E}=5.0 \mathrm{~V}\). The \(F_{T}\) values are calculated from \(S\) parameters measured at 1.0 GHz .

The graph shows that the SOT-23 and SOT-143 packages have the highest \(F_{T}\) values of all the package types and are essentially equal over the entire range of \({ }^{{ }^{\mathrm{C}}} \mathbf{C}\). The curves are basically flat from 30 to 60 mA and have a value of approx. 7.8 GHz @ 50 mA . The slight "roll off" starts after \({ }^{1} \mathrm{C}\) reaches approximatel; 60 mA .

The SOT-89 package shows an intermediate value of \(\mathrm{F}_{\mathrm{T}}\) with a value of approx. 7.2 GHz © 50 mA . The curve "rolls of \(\mathrm{f}^{\prime}\) " or decreases in value with an increase in \({ }^{1} \mathrm{C}\) from 30 to 80 mA . The "roll of f " is generally caused by the decrease of effective base thickness at higher current levels.

The TO-92 package shows the lowest value of \(F_{T}\) as a function of \({ }^{I_{C}}\) with \(F_{T}\) equal to 6 GHz at 50 mA . This is approximately 2 GHz down from the SOT-23 and SOT-143 and approx. 1 GHz down from the SOT-89. The curve is flat from 30 to 80 mA . No rolloff is seen with increasing \(\mathrm{I}^{\mathrm{C}}\), possibly due to package power handling capability.

\section*{Gain at Noise Figure Collector Cu}

(d) SOT. 143 MRF571


\section*{GNF VS. \(^{l_{C}}\)}

These curves show the relationship between the gain obtained at minimum noise figure ( \(\mathrm{G}_{\mathrm{NF}}\) ) as a function of collector current ( \(\mathrm{l}_{\mathrm{C}}\) ) measured at the frequencies of 500 MHz and 1.0 GHz . In general, the curves show that the gain is flat for collector currents greater than 20 mA and that the gain at 500 MHz is obviously higher than the gain at 1.0 GHz for all packages.

Considering the family of curves at 500 MHz , the SOT-143 shows the highest gain with \(G_{N F}\) equal to 19 dB @ 30 mA . The SOT-23 is next in value with a \(G_{N F}\) of 17 dB (d 30 mA . The SOT-89 is next in value with a G \(\mathrm{NF}_{\mathrm{NF}}\) of 15.5 dB @ 30 mA followed closely by the TO-92 which is just under \(15 \mathrm{~dB} @ 30 \mathrm{~mA}\). There is a 4 dB difference between the lowest curves TO-92/SOT-89 and the highest SOT-143, with the intermediate curve SOT-23.

At 1.0 GHz , SOT-143 again shows the highest gain with a \(G_{\mathrm{NF}}\) of approx. 12.5 dB @ 30 mA . SOT-23 is the next highest in value with a \(\mathrm{G}_{\mathrm{NF}}\) of approx. 11.5 dB @ 30 mA. Again, the TO-92 and SOT-89 have the lowest values of \(G_{N F}\) with TO-92 equal to approx. 10 dB and SOT-89 equal to approx. 9.5 dB © 30 mA . It is significant to note that the fannily of curves at 1.0 GHz are more "compressed" than at 500 MHz ; there is a spread of only 2 dB between the lowest and highest valued curves at 1.0 GHz compared to the 5 dB spread at 500 MHz .

Gein at Noise Figure and Noize
Figure versus Frequency


\section*{GNF VS. FREQUENCY AND NF VERSUS FREQUENCY}

Straight LINES in the graphs show the decrease in \(G_{N F}\) with frequency for all four packages with the collector current fixed at 10 mA .

Ai this level of collector current, the SOT-143 shows the highest value of GNF as a function of frequency although the SOT-23 is within approx. 1 dB of the SOT-143 over the range of frequencies measured to 1.5 GHz . The graph shows a value of approx. 12 dB for the SOT-143 and approx. 11 dB for the SOT-23 © 1.0 GHz .

At frequencies less than 500 MHz , the TO-92 shows a slightly higher gain than the SOT-89. These packages reverse relative positions at frequencies greater than 500 MIIz with the TO-92 having a slightly lower gain than the SOT-89. At 1.0 GHz , the SUT-89 show's a value of approx. 10 db while the TO- 92 shows a value of approx. 9 dB . Over the entire range of measured frequencies, all the curves are within a 3 dB band.

CURVES in graphs show the variation of noise figure \(N_{F}\) with frequency for all four packages at a fixed value of collector current \((10 \mathrm{~mA})\). The curves show the expected result that \(N_{F}\) is basically flat for frequencies less than 500 MHz and increases steadily with frequency beyond 500 MHz .

All four package types are within a relatively narrow band of 0.2 dB or less over the measured range of frequencies. From all this it is evident that \(N_{F}\) is determined by wafer process, resistivity of starting material, and is most likely not package dependent.

\(\mathbf{N}_{\mathrm{F}}\) VS. \(\mathbf{I}_{\mathrm{C}}\)

These graphs show the variation of noise figure with collector current for all four packages at the two fixed frequencies of 500 MHz and 1.0 GHz .

This family of curves shows the expected decrease in \(N_{F}\) with increasing \({ }^{1} C\) at relatively low current levels (less than 5 mA ), a minimum in the region of 5 to 10 mA , and a steady increase in \(N_{F}\) with increasing \(I_{C}\) greater than 10 mA . The curves also show the expected result that the transistor \(N_{F}\) is higher at higher frequencies.

At both Irequencies measured, the SOT-89 package appears to have a slightly higher \(N_{F}\) than the other packages. At a given frequency, the packages are within a : naximum of 0.2 dB of each other.

At 500 MHI , the curves show a value of approx. 2 dB with \({ }^{1} \mathrm{C}=10 \mathrm{~mA}\). For 50 mA, the curves show a value of approx. 3 dB for all four packages.

At 1.0 GHz , the curves show a value of approx. 2.6 dB with \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\). For 50 mA , the curves show a value of approx. 3.7 dB .


\section*{GA MAX VS. FREQUENCY}

Maximum available gain \(G_{A M A X}\) is a gain which is calculated from \(S\) paraineters. The defining equation is shown on the graph. The curves show the expected decrease in GAMAX with frequency.

The SOT-143 package shows the highest value of GAMAX over frequency. The curve shows a value of approx. 21 dB © 500 MHz .

The SOT-23 package shows the next highest GAMAX and appears to have a slightly greater slope than the SOT-143. The curve shows a value of approx. 18 di (o) 500 MHz . Over the frequency range actually measured ( 500 MHz to 2.0 GHz ), the SOT-23 is approximately 3 dB down from the SOT-143.

The TO-92 is the next curve down although it is very close to the SOT-89 curve. The curves are 0.8 dB apart. From the curves, the TO-92 has a \(\mathrm{G}_{\mathrm{A}} \mathrm{MAX}\) of approx. 16.5 dB and the SOT-89 approx. 15.3 dB @ 500 MHz . The SOT-23 is approx. 2.5 dB higher than the TO-92 and SOT-89 © 500 MHz , and approx. 1.5 dB higher than the TO92 and SOT-89 at 2 GHz .


I, REOUENCY ICHIA

\section*{\(G_{\text {Umax }}\) VS. FREQUENCY}

Maximum unilateral power gain \(G_{\text {Umax }}\) is slightly lower than maximum available gain GAmax .

Formula defining \(G_{\text {Umax }}\) is simpler compared to \(G_{\text {Amax }}\) because it does not take stability factors into consideration. Compared to \(\left|S_{21}\right|^{2}\) the unilateral gain is higher because input and output mismatches are taken into account deriving this number.

Again, the package performance curves are in the same order as \(\mathrm{G}_{\text {Amax }}\)
SOT-143 package shows the highest value of GUmax over frequency, and value of approximately 20 dB at 500 MHz .

The next is SOT-23 with approximate value of 17.5 dB at 500 MHz followed by TO-92 16.5 dB and SOT-89 approximately 16 dB at 500 MHz . The curves are abut 4 dB apart.


\section*{\(\left|S_{21}\right|^{\mathbf{2}}\) vS. FREQUENCY}

The insertion gain \(\left|s_{21}\right|^{2}\) is a gain parameter calculated from the forward transmission coefficient \(\boldsymbol{S}_{21}\) of the transistor. The quantity is less than \(\mathrm{G}_{\mathrm{A}}\) MAX since the gain (or decrease in loss) of the transistor achieved by input and output matching is not considered. The graph shows the decrease of insertion gain with increasing frequency.

All of the curves are approximately parallel which means that \(\left|\boldsymbol{S}_{2}\right|^{2}\) decreases at a constant rate with frequency for all four package types. The SOT-143 shows the highest value of \(\left|S_{21}\right|^{2}\) followed by SOT-23, TO-92, and SOT-89 in decreasing order.

Considering the SOT-143 curve as a reference, the SOT-23 is approx. 2 dB down, the TO-92 is approx. 2.4 dB down, and the SOT-89 is approx. 2.8 dB down.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditione} & \multirow[b]{2}{*}{Unit} & \multicolumn{4}{|c|}{Peckege} \\
\hline & & & 10.92 & SOT- \({ }^{\text {d }}\) & SOT. 23 & Sor. 143 \\
\hline \(\dagger\) & \(50 \mathrm{~mA} 10 \mathrm{GHz}_{8}\) & GHz & 6.0 & 7.2 & 7.7 & 78 \\
\hline \(\mathrm{G}_{\mathrm{Nf}}\) & \begin{tabular}{l}
\(10 \mathrm{~mA} 500 \mathrm{MHz}_{2}\) \(10 \mathrm{~mA} \cdot 1.0 \mathrm{GHz}\) \(30 \mathrm{~mA} 500 \mathrm{MHz}_{2}\) \\
30 mA 1.0 GHz
\end{tabular} & d8 & \[
\begin{array}{r}
136 \\
94 \\
146 \\
9.9
\end{array}
\] & \[
\begin{array}{r}
149 \\
93 \\
15.4 \\
95
\end{array}
\] & \[
\begin{aligned}
& 164 \\
& 10.6 \\
& 77.0 \\
& 11.3
\end{aligned}
\] & \[
\begin{aligned}
& 178 \\
& 120 \\
& 19.1 \\
& 12.1
\end{aligned}
\] \\
\hline Nf & 10 mA 500 MHz 10 mA 1.0 GHz 30 mA 500 MHz \(30 \mathrm{~mA} 1.0 \mathrm{GHz}_{2}\) & dB & \[
\begin{aligned}
& 20 \\
& 2.6 \\
& 24 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& 27 \\
& 26 \\
& 3.2
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 26 \\
& 24 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 2.7 \\
& 2.3 \\
& 3.1
\end{aligned}
\] \\
\hline \(\mathrm{G}_{\text {A M AX }}\) & \begin{tabular}{l}
\(30 \mathrm{~mA} 500 \mathrm{MH}_{2}\) \\
30 mA 1.0 GHz \\
30 mA 2.0 GHz
\end{tabular} & d8 & \[
\begin{array}{r}
16.1 \\
10.5 \\
5.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
155 \\
102 \\
5.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18.4 \\
119 \\
69
\end{array}
\] & \[
\begin{aligned}
& 208 \\
& 15.5 \\
& 100
\end{aligned}
\] \\
\hline \(\left|S_{21}\right|^{2}\) & \begin{tabular}{l}
\(30 \mathrm{~mA} 500 \mathrm{MHz}_{2}\) \\
30 mA 1.0 GHz \\
30 mA 2.0 GHz
\end{tabular} & d日 & \[
\begin{array}{r}
15.2 \\
9.7 \\
4.6 \\
\hline
\end{array}
\] & \[
\begin{gathered}
14.6 \\
91 \\
4.2
\end{gathered}
\] & \[
\begin{array}{r}
16.0 \\
105 \\
5.3
\end{array}
\] & \[
\begin{array}{r}
175 \\
120 \\
120 \\
6.8
\end{array}
\] \\
\hline \(c_{10}\) & \[
\begin{aligned}
& 1.0 \mathrm{~V} 10 \mathrm{MHz} \\
& 2.0 \mathrm{~V} 10 \mathrm{MHz}
\end{aligned}
\] & pt & \[
\begin{aligned}
& 2.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& 1.6
\end{aligned}
\] \\
\hline \(\mathrm{c}_{\mathrm{cb}}\) & \[
\begin{aligned}
& 5.0 \mathrm{~V} 10 \mathrm{MHz} \\
& 10.0 \mathrm{~V} \cdot 1.0 \mathrm{MHz}
\end{aligned}
\] & p' & \[
\begin{aligned}
& 0.8 \\
& 07
\end{aligned}
\] & \[
\begin{aligned}
& 09 \\
& 08
\end{aligned}
\] & \[
\begin{aligned}
& 09 \\
& 08
\end{aligned}
\] & \[
\begin{aligned}
& 07 \\
& 0.5
\end{aligned}
\] \\
\hline
\end{tabular}

The next series of graphs are S-parameter plots for each of the four packages.
The scattering parameters are plotted as functions of frequency for a collector current value of 30 mA and a collector-emitter voltage of 5 V . S-parameters for every package are listed in table form below the SMITH CHART and Polar Plot.

In the discussion that follows, each of the four S-parameters \(\left(S_{11}, S_{22}, S_{21}, S_{12}\right)\) will be considered separately.
\(s_{11}\)
This parameter is the input reflection coefficient of the transistor. This parameter, along with \(S_{22}\) which is the output reflection coefficient, can be plotted in the reflection coefficient plane as complex impedances known as a SMITH CHART.

An examination of the SMITH CHARTS for all the packages shows that SOT-89 and TO-92 have similar resistance components with a magnitude of 26 to 32 Ohms over the frequency range of 0.2 to 2 GHz . Both devices have capacitive reactance approximately equal in value for frequencies under 500 MHz . At 500 MHz and up, the reactance becomes inductive with the TO-92 increasing at a faster rate than SOT-89. At 2.0 GHz , the TO-92 has a inductive reactance of 46 Ohms while the SOT-89 has a reactance of 31 Ohms.

The SOT-23 has a resistance of 21 to 22 Ohms from 200 MHz to 2.0 GHz . The SOT-23 has a capacitive reactance of 12.5 Ohms @ 200 MHz which decreases in magnitude with frequency becoming zero at just over 500 MHz . At higher frequencies, the inductive reactance of the input impedance increases to a value of 17 ohms @ 2.0 GHz .

The SOT-143 has the lowest value for the resistance of all the packages ranging in magnitude from 11.5 to 13.5 Ohms from 200 MHz to 2.0 GHz . The capacitive reactance with a value of 12 Ohms at 200 MHz decreases in magnitude to zero at just over 500 MHz . As the frequency increases the inductive reactance increases to a value of 18 Ohms @ 2.0 GHz .

The differences in resistive portions of input impedance are very possibly due to bonding wire length (TO-92 vs. SOT-23). Since SOT-143 uses two bonding wires for the emitter leads the resistive portion is even lower than the SOT-23.
\(\mathrm{S}_{22}\)
As mentioned previously, \(S_{22}\) is the output reflection coefficient which can be mapped on to the SMITH CHART as a complex impedance.

The TO-92 has a resistance which decreases in value from 55 to 40 Ohms from 200 MHz to 2.0 GHz . The reactance is capacitive at 200 MHz with a value of 28.5 Ohms and decreases in magnitude reaching zero at just over 1.0 GHz . The reactance increases in inductance with frequency to a value of 22 Ohms @ 2.0 GHz . The TO-92 is the only package of all the package types which shows a positive (inductive) reactance; all other packages remain capacitive to 2.0 GHz .

The SOT-89 has a constant resistance component of approximately 50 Ohms from 200 MHz to 500 MHz . Above 500 MHz , the resistance abruptly decreases in value with frequency reaching a value of 36.5 Ohms © 2.0 GHz . The capacitive reactance is 23 Ohms at 200 MHz and decreases in magnitude to 5.5 Ohms @ 2.0 GHz .

The output impedance of the SOT-23 has a resistance component which decreases in value from 45 Ohms @ 200 MHz to 41 Ohms @ 2.0 GHz . The reactance remains capacitive over the entire frequency range which changes in value from 25 Ohms @ 100 MHz to 3 Ohms @ 2.0 GHz .

The SOT-143 has the lowest resistance of all four package types decreasing in value from 36 Ohms @ 200 MHz to 31.5 Ohms @ 2.0 GHz . The reactance component remains capacitive over the frequency range which change sin value from 27.5 Ohms @ 100 MHz to 6 Ohms @ 2.0 GHz .

\section*{\(s_{21}\)}

The \(S_{21}\) parameter is the forward transmission coefficient of the transistor. The magnitude of \(S_{21}\) as mentioned before decreases with frequency at the rate of 6 dB per octave.

The SOT-143 package has the highest value for the magnitude of \(\mathbf{S}_{\mathbf{2 1}}\) over the entire frequency range. The SOT- 23 is next in value followed by the TO- 92 with the SOT-89 having the lowest value. All the package types show the largest decrease in value from 200 MHz to 500 MHz .

At 1500 MHz , all of the packages have a magnitude for \(S_{21}\) between 2 and 3 . The SOT- 143 has highest value of 2.74 while the SOT-89 has the lowest value of 2.02 . The SOT- 23 has a value of 2.29 and the TO-92 a value of 2.11 .

At 2.0 GHz , the SOT-143 is the only package with a magnitude for \(\$_{21}\) greater than 2 (2.20). SOT-23 shows a value of 1.84 , followed by TO-92 with a value of 1.70 . The SOT-89 is the lowest with a value of 1.62 .

The phase of \(\mathrm{S}_{21}\) decreases for all packages with TO-92 showing the greatest overall change. It changes from 990 @ 200 MHz to 110 @ 2.0 GHz . The TO-92 phase angle is close in value to the SOT-89 for frequencies up to 500 MHz . Above 500 MHz , the phase angle for the TO-92 decreases faster than the SOT-89. Over the entire frequency range, the phase angles for the SOT-23 and the SOT-143 packages stay close together in value.
\(s_{12}\)
The \(\mathrm{S}_{12}\) parameter is the reverse transmission coefficient. Roughly speaking, \(S_{12}\) represents the output to input feedback of the transistor. It is desirable to keep this low value at minimum.

At 200 MHz , all packages show a similarity in magnitude for \(\mathrm{S}_{12}\). The SOT-143 is the lowest with a value of 0.03 followed by SOT-23 which will have a value of 0.04 . Both the TO-92 and SOT-89 have a magnitude of 0.05 .

As the frequency increases to 500 MHz , the magnitudes all increase and begin to diverge in value. Both TO-92 and SOT-89 increase to 0.11 , while the SOT-23 increases to 0.09 . The SOT-143 remains the lowest in value with a magnitude of 0.05 .

Above 500 MHz , the SOT-143 shows the smallest increase in magnitude going \(0.09 @ 1.0 \mathrm{GHz}\) to \(0.16 @ 2.0 \mathrm{GHz}\). The SOT-23 shows the next smallest increase in magnitude going from \(0.16 @ 1.0 \mathrm{GHz}\) to \(0.30 @ 2.0 \mathrm{GHz}\). The TO- 92 and SOT- 89 show the largest increase in magnitude of \(S_{21}\) from 1.0 to 2.0 GHz . They also remain very close in value. Both packages go from 0.21 or \(0.22 @ 1.0 \mathrm{GHz}\) to 0.36 or 0.38 @ 2.0 GHz , with the SOT-89 having the slightly larger magnitude.

Considering the phase of \(\mathrm{S}_{21}\), both SOT-23 and SOT-143 show the pattern of going from an initial low value @ 200 MHz , increasing @ 1.0 GHz , and reaching a lower than the initial value @ 2.0 GHz . The phase of \(S_{21}\) goes from \(54^{\circ}\) @ 200 MHz to \(62^{\circ}\) @ 1.0 GHz to \(52^{\circ}\) @ 2.0 GHz , for the SOT-143. For the SOT-23, the phase goes from \(68^{\circ}\) @ 200 MHz to \(70^{\circ} @ 1.0 \mathrm{GHz}\) to \(60^{\circ} @ 2.0 \mathrm{GHz}\).

The TO-92 and SOT-89 show a different pattern. Both packages show a steady decrease in value for the phase of \(\mathbf{S}_{21}\) as frequency increases with the TO-92 showing the largest decrease of the two. For the SOT-89, the phase of \(\mathbf{S}_{21}\) goes from \(74^{\circ}\) @ 200 MHz to \(66^{\circ}\) @ 1.0 GHz to \(499^{\circ}\) @ 2.0 GHz . For the TO-92, the sequence is 750 @ 200 MHz to \(55^{\circ}\) @ 1.0 GHz to \(23^{\circ}\) @ 2.0 GHz .


COMMON EMITTER S.PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCE } \\
& \text { (Vorta) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\underset{(\mathrm{mA})}{c_{1}^{c}}
\]} & \multirow[t]{2}{*}{\[
\stackrel{1}{1}+\frac{1}{2}
\]} & \multicolumn{2}{|c|}{\({ }^{1} 11\)} & \multicolumn{2}{|c|}{821} & \multicolumn{2}{|c|}{812} & \multicolumn{2}{|c|}{\(3_{22}\)} \\
\hline & & & 18.11 & - & 1821 & - & |818] & c* & \({ }^{18} 821\) & - \\
\hline \multirow[t]{4}{*}{5} & 5 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& \hline 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& 0.40 \\
& 0.49 \\
& 0.04 \\
& 0.09
\end{aligned}
\] & \[
\begin{aligned}
& -80 \\
& -148 \\
& 155 \\
& 112 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 8.22 \\
& 4.52 \\
& 2.51 \\
& 1.88 \\
& 1.50
\end{aligned}
\] & \[
\begin{aligned}
& 122 \\
& 87 \\
& 54 \\
& 32 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 0.09 \\
& 0.11 \\
& 0.16 \\
& 0.23 \\
& 0.31
\end{aligned}
\] & \[
\begin{aligned}
& 56 \\
& 50 \\
& 48 \\
& 42 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.36 \\
& 0.23 \\
& 0.15 \\
& 0.14
\end{aligned}
\] & \[
\begin{gathered}
44 \\
-76 \\
-114 \\
-174 \\
\hline 173
\end{gathered}
\] \\
\hline & 15 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.33 \\
& 0.28 \\
& 0.32 \\
& 0.40 \\
& 0.55
\end{aligned}
\] & \[
\begin{gathered}
121 \\
175 \\
113 \\
117 \\
95
\end{gathered}
\] & \[
\begin{aligned}
& 12.88 \\
& 5.62 \\
& 2.69 \\
& 2.14 \\
& 1.74
\end{aligned}
\] & \[
\begin{aligned}
& 105 \\
& 79 \\
& 73 \\
& 32 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0.10 \\
& 0.19 \\
& 0.27 \\
& 0.35
\end{aligned}
\] & \[
\begin{aligned}
& 67 \\
& 65 \\
& 55 \\
& 42 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 0.37 \\
& 0.18 \\
& 0.08 \\
& 0.07 \\
& 0.196
\end{aligned}
\] & \[
\begin{aligned}
& 59 \\
& -67 \\
& -94 \\
& 171 \\
& 117
\end{aligned}
\] \\
\hline & 30 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.23 \\
& 0.23 \\
& 0.03 \\
& 0.41 \\
& 0.96
\end{aligned}
\] & \[
\begin{aligned}
& -143 \\
& 169 \\
& 130 \\
& 108 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 13.65 \\
& 5.75 \\
& 3.05 \\
& 2.11 \\
& 1.70
\end{aligned}
\] & \[
\begin{aligned}
& 99 \\
& 76 \\
& 70 \\
& 20 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0.11 \\
& 0.21 \\
& 0.29 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 75 \\
& 70 \\
& 55 \\
& 38 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.13 \\
& 0.04 \\
& 0.12 \\
& 0.12
\end{aligned}
\] & \[
\begin{gathered}
62 \\
68 \\
-136 \\
-130 \\
102
\end{gathered}
\] \\
\hline & 50 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& 0.23 \\
& 0.30 \\
& 0.41 \\
& 0.56
\end{aligned}
\] & \[
\begin{aligned}
& 158 \\
& 1182 \\
& 128 \\
& 105 \\
& 84
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{1 3 . 9 6} \\
& 5.02 \\
& 3.09 \\
& 2.11 \\
& 1.70
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 75 \\
& 15 \\
& 29 \\
& 28 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0.11 \\
& 0.21 \\
& 0.29 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 79 \\
& 72 \\
& 56 \\
& 39 \\
& 23
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& 0.11 \\
& 0.03 \\
& 0.12 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& -61 \\
& -66 \\
& -149 \\
& 127 \\
& 100
\end{aligned}
\] \\
\hline
\end{tabular}

INPUT/OUTPUT REELECTION COEFFICIENTS
VOTRIS FREOUENCY Varsus FREQUENCY
\(\mathbf{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{COMMMON EMMITER S.PARAMETERS} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCE } \\
& \text { (Vons) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\underset{(\text { ma }}{I_{i}^{c}}
\]} & \multirow[t]{2}{*}{\[
\ln _{(m+2)}^{\prime}
\]} & \multicolumn{2}{|c|}{811} & \multicolumn{2}{|c|}{\(\mathbf{S}_{21}\)} & \multicolumn{2}{|c|}{812} & \multicolumn{2}{|c|}{\(8_{22}\)} \\
\hline & & & \({ }^{18} 11\) & - & 182.1 & - & |812] & c & \({ }^{1822}\) & - \\
\hline \multirow[t]{20}{*}{5} & \multirow[t]{5}{*}{5} & 200 & 0.60 & -84 & 7.94 & 120 & 0.06 & 56 & 0.58 & 45 \\
\hline & & 500 & 0.39 & - 152 & 4.17 & * & 0.11 & 54 & 034 & 56 \\
\hline & & 1000 & 0.39 & 161 & 2.32 & 62 & 0.19 & 58 & 0.27 & -71 \\
\hline & & 1500 & 0.44 & 132 & 1.64 & 45 & 0.26 & 55 & 025 & \(-90\) \\
\hline & & 2000 & 0.49 & 108 & 1.33 & 31 & 0.32 & 52 & 0.26 & - 106 \\
\hline & \multirow[t]{5}{*}{15} & 200 & 0.33 & 126 & 11.89 & 101 & 0.06 & 67 & 0.32 & 63 \\
\hline & & 500 & 0.29 & 178 & 5.13 & 81 & 0.11 & 69 & 0.18 & 73 \\
\hline & & 1000 & 0.33 & 148 & 2.75 & 62 & 0.22 & 65 & 0.15 & -99 \\
\hline & & 1500 & 037 & 123 & 1.93 & 47 & 030 & 56 & 016 & 118 \\
\hline & & 2000 & 0.42 & 100 & 1.55 & 34 & 0.37 & 49 & 0.17 & - 139 \\
\hline & \multirow[t]{5}{*}{30} & 200 & 0.28 & - 149 & 12.74 & 97 & 0.05 & 74 & 023 & 69 \\
\hline & & 500 & 0.27 & 174 & 5.37 & 79 & 0.11 & 73 & 013 & 82 \\
\hline & & 1000 & 0.32 & 144 & 2.85 & 62 & 0.22 & 66 & 013 & 112 \\
\hline & & 1500 & 0.36 & 120 & 2.02 & 47 & 0.31 & 57 & 015 & - 132 \\
\hline & & 2000 & 0.90 & 98 & 1.62 & 35 & 0.38 & 49 & 0.17 & - 152 \\
\hline & \multirow[t]{5}{*}{50} & 200 & 0.28 & 162 & 13.03 & 94 & 005 & 77 & 018 & 71 \\
\hline & & 500 & 0.27 & 169 & 5.43 & 79 & 0.12 & 75 & 011 & \({ }^{85}\) \\
\hline & & 1000 & 0.32 & 142 & 2.88 & 62 & 022 & 67 & 012 & -117 \\
\hline & & 1500 & 0.36 & 119 & 2.02 & 47 & 0.31 & 57 & 0.15 & -137 \\
\hline & & 2000 & 0.40 & 97 & 1.60 & 35 & 038 & 49 & 0.17 & -155 \\
\hline
\end{tabular}

INPUTIOUTPUT REFLECTION COEFFICIENTS
Versus FREQUENCY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCE } \\
& \text { (Voha) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\underset{(m A)}{c}
\]} & \multirow[t]{2}{*}{\[
{ }_{(m+x)}^{\prime}
\]} & \multicolumn{2}{|c|}{811} & \multicolumn{2}{|c|}{821} & \multicolumn{2}{|c|}{812} & \multicolumn{2}{|c|}{827} \\
\hline & & & 18.11 & \(\angle\) & \(13_{21} \mid\) & < & \({ }^{18121}\) & \(\angle\) & 1822] & \(\angle\) \\
\hline \multirow[t]{4}{*}{5} & 5 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.68 \\
& 0.52 \\
& 0.50 \\
& 0.51 \\
& 0.52 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
82 \\
142 \\
179 \\
161 \\
163
\end{gathered}
\] & \[
\begin{aligned}
& 8.41 \\
& \hline .62 \\
& .2 .57 \\
& 1.02 \\
& 1.48
\end{aligned}
\] & \[
\begin{aligned}
& 126 \\
& 93 \\
& 12 \\
& 57 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 0.07 \\
& 0.10 \\
& 0.14 \\
& 0.19 \\
& 0.24
\end{aligned}
\] & \[
\begin{aligned}
& 53 \\
& 53 \\
& 53 \\
& 58 \\
& 59
\end{aligned}
\] & \[
\begin{aligned}
& 0.61 \\
& 0.35 \\
& 0.36 \\
& 0.24 \\
& 0.22
\end{aligned}
\] & \[
\begin{aligned}
& -45 \\
& -60 \\
& -011 \\
& -77 \\
& -8
\end{aligned}
\] \\
\hline & 15 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.48 \\
& 0.043 \\
& 0.44 \\
& 0.04 \\
& 0.46
\end{aligned}
\] & \[
\begin{gathered}
-125 \\
-169 \\
168 \\
152 \\
137
\end{gathered}
\] & \[
\begin{aligned}
& 13.65 \\
& 6.65 \\
& 3.20 \\
& 2.21 \\
& 1.80
\end{aligned}
\] & \[
\begin{aligned}
& 108 \\
& 66 \\
& 72 \\
& 58 \\
& 48
\end{aligned}
\] & \[
\begin{aligned}
& 0.05 \\
& 0.09 \\
& 0.016 \\
& 0.22 \\
& 0.29
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 86 \\
& 67 \\
& 64 \\
& 59
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.17 \\
& 0.14 \\
& 0.11 \\
& 0.10
\end{aligned}
\] & \[
\begin{gathered}
-73 \\
90 \\
-111 \\
-118 \\
-131
\end{gathered}
\] \\
\hline & 30 & \[
\begin{gathered}
200 \\
5000 \\
1000 \\
1500 \\
2000 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.42 \\
& 0.41 \\
& 0.42 \\
& 0.44 \\
& 0.44
\end{aligned}
\] & \[
\begin{gathered}
148 \\
177 \\
165 \\
165 \\
151 \\
135
\end{gathered}
\] & \[
\begin{aligned}
& 14.79 \\
& 6.31 \\
& 3.35 \\
& 2.29 \\
& \hline 1.84 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 102 \\
& 64 \\
& 71 \\
& 59 \\
& 48
\end{aligned}
\] & \[
\begin{aligned}
& 0.00 \\
& 0.09 \\
& 0.096 \\
& 0.23 \\
& 0.03
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 72 \\
& 70 \\
& 65 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 0.28 \\
& 0.14 \\
& 0.12 \\
& 0.11 \\
& 0.10 \\
& \hline
\end{aligned}
\] & -87
-115
-135
-144
-187 \\
\hline & 50 & \[
\begin{aligned}
& 200 \\
& 500 \\
& 1000 \\
& 1500 \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 0.41 \\
& 0.42 \\
& 0.43 \\
& 0.44 \\
& 0.45
\end{aligned}
\] & \[
\begin{aligned}
& 159 \\
& 179 \\
& 183 \\
& 148 \\
& 134
\end{aligned}
\] & \[
\begin{aligned}
& 15.14 \\
& 6.38 \\
& 3.35 \\
& 2.32 \\
& 1.84
\end{aligned}
\] & 98
83
70
58
48 & \[
\begin{aligned}
& 0.04 \\
& 0.09 \\
& 0.16 \\
& 0.23 \\
& 0.30
\end{aligned}
\] & \[
\begin{aligned}
& 73 \\
& 75 \\
& 71 \\
& 71 \\
& 60 \\
& 60
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& 0.13 \\
& 0.12 \\
& 0.10 \\
& 0.09
\end{aligned}
\] & -98
124
-143
151
151
183 \\
\hline
\end{tabular}
mPUT/OUTPUT REFLECTION COEFFICIENTS
Versus frequency
\(V_{C E}=5 \mathrm{~V} . \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}\)


FORWARIREVERSE TRANSMISSION COEFFICIENTS versus FREQUENCY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VCE } \\
& \text { (Vohs) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\underset{(\text { min }}{c}
\]} & \multirow[t]{2}{*}{\[
\ln _{1}^{1}
\]} & \multicolumn{2}{|c|}{\(8_{11}\)} & \multicolumn{2}{|c|}{\(8_{21}\)} & \multicolumn{2}{|c|}{812} & \multicolumn{2}{|c|}{\(5_{22}\)} \\
\hline & & & \({ }^{18,11}\) & - & \(13_{21} 1\) & - & \({ }^{13} 12 \mid\) & - & \(1322]\) & - \\
\hline \multirow[t]{5}{*}{5} & \multirow[t]{5}{*}{30} & 200 & 0.60 & - 150 & 17.22 & 108 & 0.03 & 54 & 0.34 & -87 \\
\hline & & 500 & 0.62 & -177 & 7.52 & \({ }^{4}\) & 0.06 & 60 & 0.24 & - 130 \\
\hline & & 1000
1500 & \({ }^{0.82}\) & 167
154 & 4 & 72
59 & 0.09 & \({ }_{58}^{62}\) & 0.22 & -144 \\
\hline & & 1500 & 0.84 & 154 & 2.74 & 59 & 0.13 & 56 & 0.24 & -148 \\
\hline & & 2000 & 0.63 & 138 & 2.2 & 46 & 0.16 & 52 & 0.24 & -157 \\
\hline
\end{tabular}


Cib vs. V \({ }_{\text {BE }}\)

These curves show the inverse relation of input capacitance Cib with emitterbase voltage \(V_{B E}\).

TO-92 has the highest input capacitance while SOT-89 has the lowest due to the position of E-B lead frame surfaces which are not facing each other directly as the TO-92. The SOT-143 and the SOT-23 are intermediate in value with the SOT-143 having a greater value of Cib than SOT-23 at any given voltage. The lead frame surfaces are still facing each other, but there is less "common plates" area compared to TO-92, due to lead frame thickness.

At 0.5, the TO-92 is approx. 3 pf , the SOT-143 is approx. 2.6 pf , the SOT-23 is approx. 2.3 pf, and the SOT-89 is approx. 1.6 pf for Cib.

Of all the curves, SOT-89 has the smallest slope changing only 0.5 pf from 0.5 V to 3.0 V . The SOT-143 shows the greatest change in value of 1.2 pf from 0.5 to 3.0 V . Both the TO-92 and SOT-23 show an approximate change of 1.0 pf from 0.5 to 3.0 V .


\section*{Cob VS. Vcb}

This graph shows the inverse relation of output capacitance (Cob) with collectorbase voltage Vcb.

The graph shows that the SOT-89 has the highest value of COb and TO-92 has the lowest at a given value of Vcb. The SOT-23 and SOT-143 show intermediate and essentially identical values of Cob.

At 2 V , the curves show the following values: for SOT-89, approx. 1.5 pf , for SOT-23 and SOT-143, approx. 1.4 pf, for TO-92, approx. 1.1 pf.

Considering the slopes of the curves, the TO-92 shows the least change in value of 0.3 pf from 2 V to 8 V . Both the SOT- 23 and the SOT- 143 show the greatest change in value of 0.45 pf from 2 V to 8 V . The SOT-89 shows an intermediate decrease of 0.35 pf.

All the curves are within a 0.5 pf band.


Ccb VS. Vcb

This graph shows the inverse relation of feedback capacitance Ccb with collector-base voltage Vcb with emitter AC grounded using. I pf capacitor.

The SOT-89 and SOT-23 curves are identical and show the highest value of Ccb of all the packages at any given value of Vcb. The SOT-143 has the lowest valued Ccb curve while the TO-92 curve is intermediate in value.

The SOT- 143 shows the greatest change in value of Ccb of 0.45 pf from 2 to 8 V . The SOT- 23 and SOT- 89 packages show the least change of 0.35 pf . The TO- 92 shows an intermediate change of 0.4 pf from 2 V to 8 V .

All of the curves are within a 0.4 pf band.
All of these parameters \(\mathrm{Cib}, \mathrm{Cob}, \mathrm{Ccb}\) and slope differences are lead frame construction dependent. Refer to figures 5, 6, 7 and 8.

The most significant difference between the four package types is the gain performance. Both as a function of frequency and collector current, the SOT-143 shows the highest gain. The SOT-23 is next in gain performance. The SOT-89 and TO-92 packages show similar but lower gain performance than the SOT-23.

Generally, RF performance is package dependent and is determined by parameters mentioned before such as size of package, lead frame construction, etc.

There are no significant differences in noise figure performance between the package types investigated. The variations measured between the different package types are small and lie within the range of variation that can be reasonably attributed to measurement error.

The input and output capacitances Cib, Cob and Ccb will vary from package to package. These variations are primarily due to internal construction of the device. These parameters are easily measured making them useful for outgoing and incoming inspections.

On the other hand 5 -parameters require a relatively complicated test setup and special fixturing. The S-parameters give the most comprehensive information of package differences most useful for designers. The results of these measurernents can be used to calculate many other useful design parameters.

In spite of the variations in gain noted, all four packages show good RF performance. Other factors, aside from RF performance alone, such as power dissipation, cost, and board layout among others are undoubtedly relevant considerations when faced with the problem of determining which package type is best for a particular application.

\section*{ACKNOWLEDGEMENTS}

I would like to thank Matt Zamora for the invaluable support he has given me by providing the vast number of measurements upon which this investigation was based. I would also like to extend my sincere appreciation to Lance Ulik and Jim Fogle for their advice and technical expertise in helping to complete this paper.

\section*{REFERENCES}

Hewlett-Packard: S-Parameters..., Circuits Analysis and Design Application, Note 95.

Hewlett Packard: S-Parameter Design, App. Note 154.

Hewlett Packard: Fundamentals of RF and Microwave Noise Figure Measurements,
App. Note AN 57-1.

Guillermo Gonzales: Microwave Transistors Amplifiers.

Sze: Physics of Semiconductor Devices.
reliable obstructed path coverage determination by bruce v. ZIEmienski

MANAGER, ELECTRONICS \& COMMUNICATIONS DIVISION CITY OF FRESNO,

2101 G Street
Fresno, California 93706
\[
\text { January 30, } 1986
\]

\section*{abstract}

When the VHF or UHF terminals of a proposed circuit are so widely separated that the line-of-sight conimunication is not possible, the presence of a sharp, rideelike obstruction between the terminale may improve the signal to the point where reliable communication is achieved. The etrength of the received signal resulta from diffraction over the sharp of the circuit terminale the location and elevation of the obstacle, and the shape of the obstacle peak. In many inctances, the strength of the diffracted field exceeds strength of a normal path field and has the added advantag of being essentially free from fading.

This paper will assist in chowing how to determine the best obstructed path coverage when this is a viable alternate means to free path communication.

\section*{general comments}

In the conventional use of VHF radio relay equipment circults have been considered satisfactory only when the path was unobstructed and stations were close enough, or
Under these condited, to be within radio line of Bight thought to be at a maximum. Howover exnerience indicate that satisfactory communication usuaily can take place over range appreclably greater than the radio line of sight, and that both range and rellability niay actually be extended by the existence of an elevated obstacle in the radio path,

\section*{simillar to passive repeaters used in microwave communications}

In situations where a terrain feature, such as a charp mountain ridge of sufficient elevation, lies between the mountain ridge of sufficient elevation, 1108
transmitter and the receiver, improved aignal levels-relatively free from fades-have been observed. This phenomenon is referred to as the knife-edge offect. Circuits near or boyond the radio line of sight can be categorized as follows:
(1) The normal circuit; this may cover all types of intervening terrain, except no single terrain feature predominates. (Figure 1A)
(2) The obstructed circuit: one predominant terrain feature appears as the obstacle in the radio path. (Figure 18)

Techniques of predictions and computation have been developed for used on obstructed radio paths for distance up developed for used on obstructed radio paths for distance up from this extension of the normal 25 to 30 wile range-
(1) No intermediate relay polnte are necessary; thus requirements for equipment and operating personnel are reduced.
(2) Installation and supply problems are alleviated becauso relatively inaccessible mountaintop locations need not be used
(3) High circuit reliablity can be relaized, since properly engineered obstacle gain pathe show a much lower fade rate than comparable line of eleht pathe.
(4) Operational dependability is increased, becuase fower pieces of equipment are required.
(5) Large numbers of completely indopendent
circuits can established over the eame path.
(6) Fewer frequencles are required for operation over long distances.
(7) Decreased chance of interference resulte, because of the directional characteristice of propagational path.

The planning of an obstacle gain path necessarily ontails detailed study of all intervening terrain. The planning and engineering of these pathe is accomplished as follows:
1. Locate the desired terminal areas on suitable topographic charte (Uee Geographic Quads \(1 \times 2\) to start for long paths and 30,15 or 7.5 min . for short paths).
2. Draw a line betwoen the two most desirable pointa selected for the transmitter and receiver locations.
3. Locate the highest point (mountain peak or ridge ilne) in the intervening terrain. This high point should be as close as possible to the line drawn in 2 above.
4. Draw path profiles along the lines that connect the high point selected and each of the two desired terminals. If the profile shows multiple obstacles, repeat steps 2 and 3 above until. by slight shifte in the position of the terminals or by using other hich pointe, only one obstacle intervenes between terminals. Then locate the tentative terminal sites.
5. Dotermine the expected transmiseion loss of the path (Figure 2).
6. From a tabulation of equipmont characteristice, select an equipment combination that satisfies the service requirements as well as the propagational requiremente given in 5 above.
7. Make a radio bignal strength survey in one terminal area.
8. Choose a maximum signal location close to the proposed terminal site and experiment with different antenna helehts to obtain the best signal strength.
9. Install station equipment at the desired site.
10. Repeat 8 and 9 above for other terminal.


FIG 1. NORMAL \& OBSTRUCTED PATHS


FIG 2 PATH COMPONENTS

PRELIMINARY PATH STUDIES
On a topographic map, identify the areas between which communication is desired. This map should have an altitude contour interval of no more than 100 feet. In selecting the terminal areas, consider the accessibility of the site to roads, power bources, and telephone circuite.

Determine whether a mountain peak or ridge exists betwoen the two tentative terminal locations and whether or not it is of higher altitude than the surroundine terrain in the direction of the terminal areas. Several alternate terminal locations should be selected in the two termina areas, such as sites A through \(F\) in Figure 3. If no such ridge or poak existe between any of the tentative sites, it may be necessary to install a relay station, and obstructed path cannot be used effectively.

Draw a lino between the two tentative site locations that appear to be the most desirable. For example. if aites \(B\) and \(E\) were both terminal or relay stations in oxisting comanications networks then they would be the most desirable Dram lines from each terminal location through the peak or ridge which bringe the line as near as poseible to terminal sites tentatively selected at the other end of the circuit. In Figure 3, for example, a line from C to For from \(A\) to \(D\) would not cross the ridge at its sharpest point, while lines from C to D and from A to F do cross the sharp ridge crest. Lines A to \(\mathrm{F}_{\mathrm{i}}\) B to E , and C to D are appropriate tentative pathe for this circuit.

PROFILE PREPARATION

After selectine the path that apparently fulfills the requirements, profile drawings should be made to check the path for obstructions betwoon each terminal and the major by the earth graphic acalo.

Figure 4 is a graphic scale for \(4 / 3\) earth radius. This scale can be used with overlay paper on pathe extending up to


FIG 3 CONTOUR MAP PROBLEM


FIG 4 GRAPHIC SCALE \(200 \mathrm{MI} 4 / 3\) EARTH

200 miles. Paths over 200 miles can be profiled in the same manner as tropospheric scatter paths.

Plot the profile for path B to E, Figure 3. This profile is shown in Figure 5. From this profile drawing, it is determined that the path from terminal aite \(B\) to the the obstacle 18 shielded by on slight rise some 10 miles to the west of terminal E . and that the antenne would have to b olevated approximately 200 feet to use this terminal
location. To move the terminal away from the highway, the 10 wiles necessary for installation on the intervening rise would make the terminal site too inaccessible. Other paths


Plot the profile for path A to F (Figure 6). From this profile, it is determined that the path from \(A\) to the obstacle 18 clear, but that the path from terminal site \(F\) to the obstacle again is shielded by a continuation of the same rise that ahielded terminal E. Howover, in this case, the terminal near the northwest branch of the highway, and the propagational path.

If no possible terminal locations wore acceptable along the straight line path acrose the obstacle, then torminals slightly to one side or the other could be eelected; however the closer they are to the straieht line path, the better the results will be. In the oxample, tentative sites should be selected at points A and X (Figures 3 and 6).

In selectine terminal site locations for single obstacle paths, the terminal sites should not be located too close to the obstacle (Figure 7A). Even though the profile showe only One obstacle, gently rounded obstacles (Figure 7B) attenuate obstacle paths should be avoid if at all poseible aince attenuation 18 much areater and their path predie since the attenuation is much ereater and their path prediction 18 possibly work, Bince the second obstacle is near grazing. But if the obstacle wore only slightly higher, or the point \(Q\) wore slightly lower, the path might not be usable. Where a choice of equally sharp obstacles of different helghte is avellable, the lower obstacle usually produces less attenuation, and is to be preferred.

The shape of the obstacle at right angles to the transmisaion path is unimportant, oxcopt that mountain peak

obstacles produce a more direct offect in the terminal area than do ridge obstacles. Thie offect is caused by the peak offering only one obstacle path, directly over the crest hich is the sharpest point of the obstacle. However, lonela

The obstacle height is the heicht of the obstacle above the average altitude of the two terminal eites. For example, If one terminal site is eituated at an altitude of 300 foet above sea level and other terminal site is at 500 feet above as level, the average alig 2,500 feet above sea level then the ctual offective obstacio hoight is 2,100 feet ( \(2,500-400=2,100 \mathrm{feot}\) ).

Antenna tower hoichte must be such that the terminal to betacle path has adequate clearance above the average torrain and the antenna must be above any heavy foreground ollowing points should coneldered unen eelecting terinal following points should be considered when selecting torminal sites:
1. Neither terminal should be located closer to the obstacle than approximately two miles per 1,000 feet of obstacle helght.
2. If posisible, avoid terminal to obstacle pathe that are over water.
3. Locste torminals at low points, unless a high olovation can be found that 18 shielded from any reflected pathe (Figure 8). The midpath height should not be excessive.
4. Avoid any foreground obstacles, such as trees, buildinge, steel towers, and guy wires,

Antenna heights must be adjusted to provide free-space clearance between each terminal and the obstacle. Thie clearance is determined by considering the top of the main obstacle to be a broadband relay station. Then the path from considored in to this relay station the criteria for determining free-space path clearance. With

After dotermining the obstacle height and path distance from the profile and contour maps, a porfromance estimate can be mado for the proposed path.

The operating frequency, obstacle height, and path ongth must be known to compute the estimated path lose. The nomogram in Figure 9 can be used to make this estimate.

The nomogram (Figure 9) is used in the following manner:
1. Draw a line connecting the operating frequency on cale \(F\) with the path distance on ecale \(D\).
2. Connect the point where this 11 ne crosese the unscaled line \(X\) with the obstacle height on scale H .
3. Read the estimated path lose at the point where this econd ine intersecte scale L .

This estimated path loss then is compared with the maximum acceptable path loss of the proposed equipement

\section*{EQUIPMENT SELECTION}

Equipment requiremente for obstacle gain pathe are determined by computing the maximum allowable path loss of the particular type of equipment and comparing this result with the expected path lose. If the maximum allowable path lose for the equilpment is larger than the expected path loss, the eystem is good and an operable circult should result.

The first step in computing the equipwent capability is to findtherequired recoiver input. The following formula is used to determine this factor:

\section*{\(I_{R}=N D+N F+F M+T Q\)}

Ir = THE REQUIRED RECEIVER INPUT IN DB BELOW FREE SPACE;
ND= THE EFFECTIVE NOISE INPUT DUE TO THE RECEIVER ACCEPTANCE BANDWITH IN DB

NF= THE RECEIVER NOISE FIGURE IN DE; AND


FIG. 9 ESTMMATED FATH LOSS NOMOGRAPH
ObSTACLE GAIN PATH
FORMULA:
\[
\begin{aligned}
& L=2 O L O G(H)+20 L O G(F)+2 O L O G(D) \\
& D=\text { PATH DISTANCE MI. } \\
& F=\text { FREQ.MHZ } \\
& H=\text { OBSTRUCTION HEIGHT FT. } \\
& L=\text { EST. PATH LOSS }
\end{aligned}
\]

TQ \(=\) THE RECEIVER QUIETING THRESHOLO IN DB.

Noise input. The offective noise input is directly related to the acceptance bandwidth of the receiver, and can be detormined from the nomogram in Figure 10. The actual acceptance bandwidth of the receiver often is not specified and must be approximated from data given in the equipmont speciffications or manual.

For direct FM receivers, the offective acceptance bandwidth can be approximated by the formula:
\[
B=1.25(2 M+2 D)
\]
where:
B= THE EFFECTIVE ACCEPTANCE BANDWIDTH;
m= the highest frequency of the modulating signal: and
D \(=\) THE MAXIMUM DEVIATION OF THE TRANSMITTER.
The factor 1.25 in the formula adds 25 percent to the required minimum acceptance--this 25 percent is an approximation of the safoty factor built into most recelvers to allow for oscillator drift or other circult variations during operation.

In systems using PCM (pulse code modulation) FM, the recelver acceptance bandwidth is computed by the following formula:
\(B=2.5(M)\)
where:
\(m=\) THE bandwidth of the modulating signal.
Noise Figure. A conservative nolse Figure for most ecelvers is 12 dB . Other noise Figures can be found in the equipment manufacturer's manuals or specifications.

Fade Margin. The system fade margin is an arbitrary igure set by the results of many experiments and measurements on operational systoms. Normal VHF and microwave paths usually require a fade margin of


FIG 10 -
EANDWIDTH TO
NOISE LEVEL


FIGII-
POWER TC DBW
approximately 20 dB . But the obstacle gain path exhibit relatively slicht fading, and the necessary margin to protect against fading is only 10 dE.

Quieting threshold. The quieting threshold represents the signal levol which must be maintained to provide a usable signal over the incoming noise. For most recelvers, the threshold indicates an allowance of 12 dB in this formula.

For example a radio recelver has a required receiver Input of -118.5 dB , computed af follows

\section*{I \(\mathrm{B}=\mathrm{ND}+\mathrm{NF}+\mathrm{FM}+\mathrm{TQ}\)}
\(=-153.5+12+10+12\)
\(=-118.5 \mathrm{~dB}\).

\section*{Equipmont combinations.}

Various combinations of equipment in the system will have different values for the maximum allowable loss on the propagational path. The maximum allowable loss with any combination of equipment is computed by the following formula:
\(L M=P T+G P-L X-I R\)

\section*{where:}
\(L_{M}=\) the maximum allowable loss;
PT \(=\) the transmitter power in dB referred to 1 watt (dBw):

GP= the path antenna gain in dB
IR= the required recelver input in \(d B\).

Maximum transmission lose. The maximum allowable transmission loss is the greatest value of attentuation that the particular equipment combinations must overcomo to provide the system with a usable circuit. This value is compared with the estimated path loss to dotermine whether or not the computed equipment combination will provide sufficient gain to overcome the predicted path losses.

Transmitter power. The transmitter power, referred to 1 watt, may be obtained from the nomogram in Figure 11. As an oxample assume a transmitter with a nominal power output of

40 watts. The nomogram shows a value of 16 dBw for this power. If the nomogram does not cover the required power Figure, then the value must be computed by the followine formula:
\[
P T=10 \log P W
\]
where:

\section*{PT= the power gain in dBw; and}

PW= the maximum transmitter output power in watts.
Path Antenna Gain. This expression in the basic formula combines the apparent gains of the transmitting and receivine antennas. For example, two yagl arraye one transmitting has antonn 10 a antenna gain is 15 dB in this case

Tranemiseion line lose. The attenuation of the transmission line at each ond of the system is computed in accordance with criteria given. The total of the losses in the transmitting and recoiving transmiseion lines then is substituted for the factor LX in the formula.

Required Receiver Input. The value of IR. as computed above, is substituted in this formula. Note that the computation in above results in a nogative number of decibols, which must be subracted in the formula for maximum Thls ontails a change of elgn.

SIGNAL STRENGTH SURVEY
After the tentative transmission pathe have been selected and the frequency of operation has been determined a signal strongth eurvey should be conducted on the sites.

The exact location of the tentative terminal site must be determined in the field. If there are prominent landmarke such as road intersections, then the location of the exact site is simplified; otherwise, experience surveyors should locate the tentative site as accurately as possible from the Quads used.

Dotermine the azimuth of the transmission path from one terminal location and install a temporary fixed etation, with directional antenna at this site. This station is used to
tranamit to mobile receiving equipment at the other site Maximum transmittor power should be utilitized during this survey.

The survey can be conducted on the exact or a relatively close frequency within 10 MHz to determine if the path as theorically determined oxists. It has been my experience that in some cases (espocially marginal path to equip pent and a different path does exist most likely to a different terminal site.

\section*{Spectral Shaping of Radio Frequency Waves}

\section*{Jerry J. Morton \\ RF Engineer}

Applied Automation, Inc
Bartlesvilie, OK 74004

\section*{ABSTRACT}

This paper presents a method \({ }^{1}\) of spectrally shaping a Quadrature Phase Shift Keyed, QPSK, signal using baseband techniques applied to an RF signal. This method does not require the use of linear modulators or amplifiers or expensive bandpass crystal filters. It results in a constant amplitude signal allowing the use of Class "C" amplification without spectrum spreading, intermodulation distortion or intersymbol interference. This technique is presently used to transmit 340 K bps of data in a 350 Fg classification. (99\% of the transmitted energy is contained in 350 kHz of bandwidth). This method is applicable to FSK and some forms of PSK when used for digital data transmission.

\footnotetext{
\({ }^{1}\) The theory and techniques described in this paper were developed by Martin H. Beauford and Jerry J. Morton for the OPSEIS 8600 System with patents pending. For more information about this technology or the OPSEIS 8600 System contact Applied Automation, Inc., Geophysical Systems Division, Bartiesville, OK 74004.
}

\section*{INTRODUCTION}
1. Any modulation (changing the carrier) of a R.F. wave spreads the spectrum.
2. The amount of spreading is a function of:
a) the way the carrier is changed; (type of modulation);
b) how much the carrier is changed; (amplitude of modulation)
c) how fast the carrier is changed; (frequency of modulation);
3. Most regulatory agencies have limits on amount of spectrum spreading.
4. Digital modulation, squarewaves, cause excessive spectrum spreading over wat is needed to convey the information.
5. Present methods of spectral shaping largely consist of:
a) filtering the modulating waveform before modulating, (baseband filtering)
b) filtering the RF spectra after modulating. (RF bandpass filtering)
6. Both methods have serious drawbacks because of physical hardware limitations when implementation is attempted.

\section*{Presentation:}

A signal frequency signal with a constant amplitude is called a CW (continuous wave) signal. It occupies zero bandwidth and does not contain any time-variant information. The only information that is carried by this signal is amplitude and frequency both of which are constant with respect to time (by definition). Because the modulation varies the signal with respect to time additional frequencies are generated.

The amount that the spectrum is spread is a function of three variables.
a) The way the carrier is changed, (type of modulation),
b) the amount the carrier is changed, (the amplitude of modulation)
c) the rate the carrier is changed, (the frequency of modulation).

Of these three, the rate at which the carrier is changed, or frequency of modulation has the greatest effect on the amount of spreading. If items \(\mathrm{a} \& \mathrm{~b}\) are held constant, the amount of bandwidth required is essentially directly proportional to the rate.

Essentially, when a CW signal or carrier (fc) is modulated with a single frequency (fm), a pair of sidebands are generated. The frequencies of these sidebands are the carrier frequency plus and minus the modulating frequency (fc \(\pm \mathrm{fm}\) ). Non-linear and/or exponential forms of modulation such as phase and frequency modulation generate additional sidebands at (fc \(\pm\) Mfm ) (and sometimes others). \(N\) is an integer from 1 to infinity.

A complex wave form consists of many frequencies of various amplitudes and phases all of which may be changing with respect to time. Modulating with a complex waveform generates many sidebands of varying amplitudes and frequencies.

Digital modulation (modulation with square waves) causes excessive spectrum spreading over what is needed to actually convey the information, primarily because the harmonics of the squarewave also qenerates sidebands.

Most regulatory agencies (FCC for example) have limits on how much spectrum can be occupied and also some limits on spectral distribution. The FCC defines "occupied bandwidth" as the bandwidth which contains 99\% of all the transmitted power. The reason for this definition is because the FCC is primarily concerned with adjacent channel interference, not how the user actually distributes energy within a given bandwidth (Figure 1). This definition of bandwidth is obviously much wider than the 3 dB or 6 dB bandwidth described or used in most textbooks but occupied bandwidth is probably the most important specification that all of us are concerned with in any design.

The spectral distribution of any signal must be evaluated in terms of occupled bandwidth instead of the "3 dB bandwidth". Therefore, analysis of all factors and specifications is necessary in order to determine the optimum configuration for any given application. It is possible that in some applications, the amount of spectrum used is not a restriction; however, I have never ever experienced the luxury of unlimited bandwidth. Almost every application is somewhat bandwidth limited, that is a lot of information must be crammed in a relative narrow bandwidth. Other factors such as cost, complexity, error rate, acquisition time, etc., may prevent the most efficient bandwidth technique from being employed.

In many applications, a fixed data transfer rate is the primary consideration. In simpler terms; the FCC has allocated "BU" bandwidth and I must cram "BPS" bits per second of data in that bandwidth. The ratio of BW/BPS is what might be called the "bandwidth efficiency factor". If this
factor is a relative large number, \(6-10\) or more, almost any form of modulation will work. It is only when the factor becomes small that circuitry becomes complex. For small factors ( \(F<3\) ) it is necessary to perform some form of spectral shaping to meet FCC specifications.

Figure 2 shows a carrier at 100 MHz , AM modulated \(50 \%\) with a squarewave of 50 kHz representing 100 K BPS data. Observe the occupled bandwidth. The first pair of sidebands contain all the information that is necessary. The additional sidebands are not necessary and only improve the shape of the received signal. If the square wave is passed through a simple RC low pass filter turning it into a triangular wave, we obtain Figure 3. Notice the reduction in occupied bandwidth by this simple shaping. Figure 4 shows modulation by a sinewave (all harmonics removed). Note again the bandwidth reduction over the triangular waveform.

Figures \(5 A, 5 B\) and \(5 C\) show an FM modulation by the 50 kHz squarewave, triangular, and sinewave using a modulation index of 1.0 (deviation divided by modulating frequency equals 1.0 ). Again note the bandwidth reduction by spectrally shaping the modulating waveform before applying it to the modulator.

Figure 6A shows a binary PSK modulated spectrum using same parameters as in Figure 3 (AM) and Figure 5A (FM). Note that the spreading of the spectrum is even worse for PSK than for either FM Or AM. Figure 6B shows how these sidebands don't fall off very much even at 5 MHz away; (only about 40 dB reduction). Obviously shaping the modulating waveform before modulating would show a significant improvement in bandwidth reduction, but this
technique requires a linear modulator. Distortion in the modulator will cause the spectrum to spread similar to the squarewave. Linear modulators are a "PAIN", because nothing is really linear. A linear modulator is only more linear than a non-linear modulator. Feedback around a modulator is sometimes used to improve the linearity. Therefore all "linear modulators" will cause more spectrum spreading than the expected amount.

Another way to reduce spectrum spreading is to filter after modulating. Invariably this technique is more difficult to accomplish because:
a) Very sharp cut-off filters are needed.
b) They must be applied at the RF frequency.
c) They introduce phase distortion (phase is not linear over the pass
d) They usually ring when an impulse is applied. (They cause amplitude distortion.)

Let us now digress for a minute into some of the "other" factors previously mentioned. Most of the time an error rate is specified at a given range, power level or wo-knows-what, requiring the receiver to operate at the minimum signal level. In the application \(I\) will describe later this was the case. A certain receiver-sensitivity/error-rate specification along with a minimum data rate within a predetermined bandwidh had to be met, regardless of complexity or cost. In applications such as this one, PHASE MODULATION (PM) gives the lowest error rate at a given signal level compared to other forms of modulation.

But from the standpoint of occupled bandwidth or spectrum spreading, phase modulation is probably the worst form of modulation. Figures 7A \& 7B show a phase modulated spectrum generated with clocked data from a pseudo-random
data generator (repeating at 255 bits), instead of a \(1 / 0 / 1 / 0 / 1 / 0\) repeating pattern as in figure 6A \& B. The first nulls occur at \(\pm\) clock (or \(\pm\) BPS). All the needed information is contained in the main lobe (between the first nulls). All the other lobes could be elliminated as they are not necessary to convey information. They waste power and clutter up the spectrum. It is easily seen from these pictures why PSK must have some form of spectral shaping to be acceptable to the FCC.

Phase shift keying with binary digital data can use any angle of phase shift ( \(\pm \times\) degrees from 0 degrees carrier). \(\pm 90^{\circ}\) gives the lowest error rate because the carrier is at a null and all of the energy is in the sidebands. It is also the worst spectrally and the most complex to demodulate for precisely the same reason. No carrier exists, and to accomplish demodulation some form of a pseudo carrifer must be generated. The name bi-phase PSK is often used to describe \(\pm 90^{\circ}\) PSK modulation.

Let us consider a different form of bandwidth compression. Assuming we have a serial stream of data being transmitted over an RF link, at " \(B\) " bits per second rate. Instead of transmitting these bits serially one at a time, suppose we take consecutive pairs of bits (182, 384, etc) and store that pair and examine the binary representation for that pair of bits or symbol which will be \((00,01,10,11)\), and then transmit this pair of bits or symbol at one of four levels.

In the case of AM it is one of four amplitude levels; for FM one of four frequencies; or for PSK one of four phases. Because the symbol rate is one half the bit rate, the bandwidth is reduced by a factor of two, there-
fore bandwidth compression. This technique can be extended to eight or 16 or more levels although the complexity of the receiver to detect one of sixteen levels makes it almost impossible to achieve reliable operation. I've heard of 16 level systems but I have never seen one and have no knowledge of how well they perform.

Generally doubling the number of levels of bandwidth reduction results in a net loss of slightly greater than 3 decibels. Most articles explaining these techniques show the same error rate for OPSK as PSK but careful attention should be given to the scales. Note one scale is "Eb/Mo" or Energy per bit divided by noise power density. In a four-level system because the signal is two parallel bit streams, each stream has half the energy per bit as a single strean for the same RMS signal level; wich is a 3 dB loss per bit. Just remember: Mother nature will not let you get something-fornothing. If the transmitter has 10 watts output, half the energy goes to each channel.

A four level PSK is know as QPSK (Quadra Phase Shift Keying) and can transfer twice the amount of data in the same bandwidth as binary PSK.

\section*{The penalties are:}
1. 3 dB loss in receiver sensitivity for the same error rate.
2. Somewhat more complex and costly transmitter,
3. Considerably more complex and costly receiver.

Advantages are:
1. Twice the data rate in the same bandwidth, or
2. \(1 / 2\) the bandwidth for the same data rate.

Essentially QPSK is two (orthogonal) bi-phase PSK signals occupying the same spectrum. Because the channels are orthogonal, their spectral envelopes are identical for random data. Their nulls and peaks occur at the same frequencies. Therefore Figures 7A \& B are the spectra for QPSK and binary PSK. A pseudo-random data pattern (255 bits long) is used as the modulating signal, with both channels clocked at the same rate. It is obvious that spectral shaping will be required in order to meet FCC specifications in most applications.

Because they are orthogonal, the two channels (called the I \& \(Q\) channels) are independent. Different clock and data rates can be used in each channel, in wich case spectrum will be different from Figure 7. If the clock and data rates in the \(I\) and \(Q\) channels are the same, the clock (or data) phases can be different. This condition is called offset or staggered QPSK. Because the channels are independent and orthogonal, the spectrum for staggered (or offset) QPSK is the same as for non-staggered QPSK. Typically the amount of stagger or offset is \(1 / 2\) bit period but the amount of stagger or offset doesn't affect the spectrum. Figure 8 shows a QPSK modulator used for either form. Figure 9 shows how the vector sums are generated.

We will now make a comparison between standard QPSK and offset OPSK with step function changes in data and phase. In OPSK, the transmitted phase can be any one of four phases, \(0^{\circ}, 90^{\circ} 180^{\circ}\) or \(270^{\circ}\). The phase change between adjacent symbols can be any amount because both channels change at the same time. When both bits change at the same time the phase change is \(180^{\circ}\). When neither bit changes, there is no phase change and when only one
bit changes the phase change is efther plus or minus 90 degrees. The \(180^{\circ}\) phase change is a problem. The fastest way to change the phase 180 degrees is to go through zero amplitude. A 180 degree phase change is really an amplitude change from \(+\mathbb{A}\) to \(-A\). As a result QPSK is considered a form of amplitude modulation.

Normally QPSK phase shifts are \(0^{\circ}, 90^{\circ}, 180^{\circ}\) and \(270^{\circ}\) but some other systems advance the phase an additional small amount. However when used With RF links this technique can offset the center frequency which would make the FCC unhappy

This step function change in amplitude (also \(180^{\circ}\) phase) causes all kinds of problems when passing through narrow band filters. The filters tends to ring changing both amplitude and phase. A phase change means the channels are not orthogonal which is interchannel interference. Also because of the amplitude changes, linear amplifiers are required to obtain high power levels.

Offset QPSK (Figure 10B) changes only one bit at a time, and therefore the phase change is either 0 or 90 degrees; never more. As a result the amplitude changes are less. A phase change (or none) occurs at each \(1 / 2\) bit cell. Also note that the rate of change of phase is the same for either form of QPSK, that is the degrees per bit cell is always \(180^{\circ}\) or less and the spectrum for both is the same. These characteristics lead us to a better way of spectral shaping that has many advantages.
modulated output is connected to a tracking PLL. The output from the VCO is the spectrally shaped output. The VCO in the PLL tracks the phase change from the GPSK modulator. The low pass tracking filter bandpass characteristics are tailored, allowing the tracking oscillator to lag the phase change from the modulator, thus the rate of change of phase of the oscillator is carefully controlled to obtain the desired spectrum. The result of this PLL technique is somewhat similar to MSK (minimum shift keying) except the phase vector is allowed to rotate more rapidly in that it has acceleration and deceleration for each shift (MSK has a constant rotational velocity). It must essentially be "stopped" each time a transition comes along. The phase then starts rotating; speeds up, and as it approaches the correct phase it slows down and stops before the next bit change occurs. If the RC time constants are adjusted to give the same rotation velocity as for MSK, (it just gets there in time for the next change), intersymbol errors exist and the main lobe is widened considerably past the first nulls.

Several problems had to be overcome before the oscillator would track at the desired rate without overshoot or too much lag. The first problem is the frequency vs phase response of the transistor amplifier. The transistor finally selected has an cutoff frequency of over 400 MHz . A high cutoff frequency allows a data rate of hundreds of kHz without excessive phase shift that would cause the tracking VCO to hunt. In the tracking mode the PLL acts somewhat similar to a first order loop, acquiring lock immediately on power up. The frequency response of a first order loop is a function of loop gain and as a result the loop gain affects the spectrum, and therefore
the gain must be held constant at the correct value for the filter parameters chosen. Because a level change in either the reference or VCO output could cause phase detector gain variations; a saturating (limiting) isolation amplifier keeps the drive level to the phase detector constant. A temperature and voltage compensated VCO along with regulated supply voltages and temperature compensated bias voltages are used to eliminate other possible sources of gain variations and undesirable frequency drift.

Because all other circuit variations are eliminated, the loop filter becomes the determining factor in the spectral response.

We found some very unusual characteristics to the loop filter. A second order loop filter (figure \(11 \mathrm{~A} \& B\) ) was tried first. As the cut-off frequency was lowered, and damping decreased, the spectral response was improved. However, serious intersymbol and interchannel interference developed. It was found that in order not to have any interference, the main lobe (between the first nulls could not be altered. Decreasing \(R_{2}\) had the greatest effect on spectrum and interference. It soon became apparent that the FCC specifications could not be met without excessive intersymbol and interchannel interference. Various other circuit modifications were tried with no avall until the question was asked "that is really needed in the loop". The answer is of course, reduced loop gain at some discrete frequencies. A series L-R-C circuit from collector to base was tried and is the answer.

This L-R-C will put a notch in the frequency response reducing the gain at that specific frequency thereby putting a notch in the spectrum. It also turns out that several notches can be incorporated and they are all essen. tially independent. After adding the notches, more rolloff at about 2-3 MMz was required so a single small capacitor (C2) was added between base and collector to further reduce gain at higher frequencies. Figure 13A shows the DPSK output at the intermediate frequency of 30 MHz with the maximum single \(R_{1}-R_{2}-C_{1}\) filtering usable without any interference (altering the main lobe). Compare 13A against Figure \(7 A \& B\) to note spectral improvement. Figure 138 is with \(C_{2}\) (High Frequency rolloff) added. Note about 10 dB improvement over 13A at 2-3 MHz.

In Figure 14A the horizontal scale of 1 MHz has been expanded to 500 \(\mathrm{kHz} / \mathrm{division} \mathrm{to} \mathrm{better} \mathrm{observe} \mathrm{the} \mathrm{effects} \mathrm{adding} \mathrm{a} \mathrm{notch}\).Figure 148 shows a single high frequency notch added at the 2nd lobe giving about a 10 dB reduction in the \(2 n d\) lobe.

Figure 15 is the same as Figure 148 except the horizontal scale has been changed (to \(200 \mathrm{kHz} / \mathrm{cm}\) ) to better observe the effects of the law frequency notch.

Figure 16A shows the notch for the lst lobe added but tuned below the first lobe, actually into the main lobe. Note that the main lobe has been slightly widened and the first notches are deepened and spread out from Figure 15. When tuned to the lowest frequency, intersymbol and interchannel interference are generated. In Figure 168 the notch is tuned out near the 2nd lobe reducing it more. The notch is sufficiently wide that it still
reduces the lst lobe somewhat. Lowering the frequency of the notch to the high side of the 1st lobe gives Figure 16 C which is well within the FCC specifications. Actually Figure 15 just barely meets FCC specs but any variations in component values due to production tolerances could make some units not meet the FCC specifications. It was deemed necessary to incorporate the two notches in order that all production units would fully comply without any problens. Figure 17 shows the final shape compared to a clear carrier. Figure 18 shows a before-after picture of the spectrum reduction.

This technique is a powerful technique in certain applications but is somewhat costly to implement. However, it is much cheaper than some other techniques such as the use of crystal filters.

Figure 21 shows the VCO correction voltage during modulation with the two L-R-C circuits disconnected. When connected severe overshoot and ringing occur but the demodulated data has a lower error rate.

Figure 22A shows decoded data with only the RC \& circuits added to the PLL to modify the spectrum. Adding the L-R-C notches adds ringing to the demodulated signal as shown in Figure 22B. The error rate is actually improved slightly by adding the notches.

The offset QPSK eye pattern is considerably diferent than the nonoffset QPSK. Because only \(90^{\circ}\) phase can be changed at any given time, the eye pattern is a square rotated \(45^{\circ}\) (diamond) with the decision points midpoint on each side (Figure 19). Added noise (poorer \(S / N\) ratio) simply smears out the decision points along with the whole pattern. As the noise
gets worse the whole eye starts filling in. No noise gives almost perfect square. The rounded corners are because of bandwidth limiting in the IF amplifier. Intersymbol interference can be detected because the decision points are not on the \(+45^{\circ}\) axis. Differences in \(1 \%\) amplitudes must be resolved before intersymbol interference can be identified.

Ringing causes small circles and loops around the decision points.

\section*{Sumary:}

The purpose of this presentation is to make others aware of some of the problems involved in system analysis and present one solution to excessive spectral spreading. Each system is different, and an analysis is required to correctly delineate all required system performance specifications before system design can be attempted.

Some forms of modulation (transmission of information) are more bandwidth efficient than others. Some forms have lower error rates for the same signal to noise ratio than others. Error rate and bandwidth efficiency are not necessarily exclusive. However, when both are required system complexity and cost will increase. The amount of complexity, cost, error rate, bandwidth efficiency and path loss need to be evaluated and compromises must be made to optimize the system. The actual system configuration wll be a result of the weight given to each parameter when the analysis is performed.

Various users will probably assign different weights to the parameters. Other parameters not mentioned previously will obviously include battery life (power consumption), susceptibility to interference, governmental regulations, number of channels, amount of data to be gathered and others. All of these must be taken into account during the evaluation phase. Often when an analysis is performed, during the analysis the user probably will change priorities or weights assigned to the parameters because much difficulty is experienced in assigning a dollar value to a parameter value. How much is a d8 worth?

The technique described herein allows a maximum data rate QPSK system to be implemented at lower cost, with a better error rate and with less occupled bandwidth than other better known techniques. It is not a cure-all and will probably not be the optimum technique in most applications. I hope this presentation has opened some new doors, given new insight or possibly been of benefit to some of the participants of this conference.

\section*{REFEREMCES}

A "minimum" bibliography is included to give only a place to start. Too many references exist to list more than just a few. The ones listed will refer the reader to additional material if desired.

Information Theory:
C. E Shannon, "Cormunication in the Presence of Noise" P.IRE 37, PP. 10-21 Jan. 1949.
C. E. Shannon, "A Mathematical Theory of Communication", BSTJ, 27, PP. 379-424 and 623-657 - July \& October 1948.

\section*{Error Calculation:}
P. O. Borjesson \& GE. W. Sundburg, "Simple Approximations of the Error Function \(Q(X)\) for Communications Applications", IEEE Transactions on Communications COM-27, PP. 639-643 - March 1979.

Signal Spectra:
W. R. Bennett, "Statistics of Regenerative Digital Transmission, 37, pp 1501-1542 - November 1958.
W. R. Bennett \& S. O. Rice, "Spectral Density and Autocorrelation Functions Associated with Chapter 10.

Filtering:
W. R. Bennett \& J. R. Davey, "Data Transmission", McGraw Hill, New York, 1965.

\section*{Error Performance:}
I. Jacobs, "Comparison of M-ary Modulation Systems", BSTJ 46, PP. 843-864, May/June 1967.
O. Shibmo, R. Fang, and M. Celebiler, "Performance of M-ary PSK Systems in Gaussian Noise and Intersymbol Interferencen, IEEE Trans. IT-19, PP. 44-58, January 1973.

MSK:
S. A. Gronemeyer and A. L. McBride, "MSK and Offset QPSK Modulation", IEEE Trans. on Corm., COM-24, PP. 809-819, August 1976.

\section*{general}

Dr. Floyd M. Gardner, "Course Notes for Transmission of Data Signals", April 1982, Gardner Research Co., 1755 University Ave., Palo Alto, CA 94301


FIGIRF 1


FIGURE 2
100kHz/DIV AM MODULATION 50\% SQUARE WAVE 50 kHz ( 100 KBPS )


FIGURE 3
AM MONULATION 50\%
TRIANGULAR WAVE 50 kHz ( 100 BPS shaped) \(100 \mathrm{kHz} /\) niv


FIGURE 4
AM MODULATION \(50 \%\)
SINEWAVE 50 kHz (FULLY SHAPED) \(100 \mathrm{kHz} / \mathrm{DIV}\)


FIGURE 5A
FM MODULATION MODILLATION INDEX \(=1.0\) 50 kHz SOUAREWAVE
\(100 \mathrm{kHz} / \mathrm{TIV}\)


FIGURE 5B
FM MODULATION (M=1.0)
50 kHz TRIANGULAR NAVE
\(100 \mathrm{kHz} /\) DIV


FIgure 5c
FM MODULATION ( \(M=1.0\) ) 50 kHz SINEWAVE \(100 \mathrm{kHz} / \mathrm{nl}\)

ne. - . anchanditul
\(\begin{aligned} & \text { FIGURE 6A } \\ & \text { RINARY PSK } \\ & 90^{\circ} \quad 50 \mathrm{kHz} \text { S@uare wave }\end{aligned}\) \(100 \mathrm{kHz} / \mathrm{DIV}\)


FIGURE GB
SAME AS 7A EXCEPT 1 MHz/OIV


FIGURE 7A BINARY PSK +90 2 MHz/OIV HORTZONTAL OATA RATE 170 KBPS

\section*{manhum}

FIGURE 7R
BINARY PSK \(+90^{\circ}\)
\(200 \mathrm{kHz} /\) DIV HORIZONTAL
DATA RATE 170 KBPS


FIGURE 8
OPSK MODULATOR



FIGURE 12 A LOOP FILTER RESPONS


Refer to Figure \(1 ?\)
FIGURE 13A
Compare to Figure 7A \& B


FIGURE 138
ADOITION OF C2 REDUCTION OF \(2-3 \mathrm{MHz}\) TRACK


Figure 14A


FIGURE 14R
SAME AS 14A EXCEPT 1 SERIES NOTCH ADOED


FIGURE 15
SAME AS 14 EXCEPT SCALE CHANGE


FIGURE 15A
NOTCH 2 ADOED TO LOOP FILTER


FIGURE 16B
NOTCH TUNED TO HIGHEST FREQ,


FIGURE 16C
NOTCH TUNED TO REDIJCE FIRST LOBE


FIGURE 18
after using spectrim renuction technigue


FIGURE 18 B
REFORF SPEC.TRUM REDUCTION TFCHNTDUE.


FIGURE 21
vCO CORRECTION VOLTAGE


FIGURE 22 (ONE f.HANNEL)
*Data made a change in the other channel during this bit period (?t).


FIGURE 19
EYE PATTERN OFFSET OPSK

\section*{broadband hf antenna testing}

\section*{by}

David L. Faust
Moray B. King
Advanced Systens Research Group
Eyring Research Institute
Provo, Utah 84601

\section*{Abstract}

Evaluating HF (2-30 MHz ) antenna performance has historically been a difficult test problem. In recent years computer modeled approximations have typically been substituted for test data, particularly to define an antenna pattern in terms of directivity and power gain under ideal conditions. These numerical approximations work well for developing a common reference frame to evaluate the relative performance of a majority of common antenna types (monopole, dipole, sloper, vee, rhombic), but are less accurate predictors of how these antennas will perform when they interact with a real ground environment. It is well recognized that current numerical electromagnetic modeling programs are limited in their treatment of ground interactions in the HF region. Therefore, the relative comparison problem is very significant when buried or ground interactive antennas are addressed. In these special cases, antenna comparison by setting modeling conditions to an idealized ground can indicate unrealisthan hard near surface fact, some modeling condition will indicate that the buried fact, sown

To address the requirement of making accurate performance comparisons as well as providing design feedback, a broadband antenna test system (BATS) was developed. The system, at its
current stage of development, supports computer-controlled, integrated test protocols for the evaluation of all basic antenna parameters. The BATS particularly emphasizes pattern profiles, using swept frequency techniques employing fiber-optically isolated aerial platforms as well as single frequency helicopter towed beacons. Typically, \(l\) to 20 full-scale antennas can be measured simultaneously in a pattern test, and then compared to each other or reference standards to produce graphic plots in terms of dBr or traceable dBi. The system reduces the complete measurement period of an antenna from months to a few weeks and provides overall accuracy on the order of \(+/-1 \mathrm{~dB}\).

\section*{selected References}
1. IEEE Standard Test Procedures for Antennas, IEEE Std 1491979, IEEE, Inc., New York, 1979.
2. C. A. Balanis, Antenna Theory Analysis and Design, Harper \& Row, New York, 1982.
3. H. Bruekman, "Helicopter Measures Antenna Patterns," Electronics, Vol. 28, pp 134-136, November, 1955.
4. C. Barnes, Jr. "Transmitter Towed Through the Air Tests Antenna's Radiation Pattern," Electronics, Vol. 38, No. 21, pp 96-101, October 18, 1965.
5. G. E. Barker, "Measurement of the Radiation Patterns of Full-Scale HF and VHF Antennas," IEEE, Transactions on Antennas and Propagation, Vol. Ap-21, No. 4, pp 538-544, July 1973.
6. C. S. L. Keay and R. E. Gray, "A Simple Balloon Technique C. S. L. Keay and R. E. Gray, "A Simple Balloon Technique Electronic Engineering, Vol. 30, pp 322-325, May 1964.
7. J. G. Steele, Measurement of Antenna Radiation Patterns Using a Tethered Balloon," IEEE Transactions on Antennas and Propagation, pp 179-180, January 1965.
8. R. G. FitzGerrell, "Gain Measurements of Vertically Polarized Antennas over Imperfect Ground," IEEE Transactions on Antennas and Propagation, Vol. AP-15, No. 2, pp 211-216, March 1967.
9. R. G. FitzGerrell, "The Gain of Horizontal Half-Wave R. G. FitzGerrell, "The Gain of a Horizontal Half-Wave
Dipole over Ground, " IEEE Transactions on Antennas and Dipole over Ground, IEEE Transactions on Antennas a
Propagation, vol. AP-15, No. 2, pp 569-571, July 1967 .
10. B. Edward, "Radial Systems for Ground Mounted Vertical Antennas," OST, pp 28-30, June 1985.
11. J. W. Ames and W. A. Edson, "Gain, Capture Area, and Transmission Loss for Grounded Monopoles and Elevated Dipoles," RF Design, Part \(I, ~ p p ~ 44-45,47,48,50-55\), Nov/Dec: Part II, pp 12-14, 16', 17, 20, 22, 23', Ján/Feb.
12. Field Antenna Handbook, ECAC-CR-83-200, Department of Defense Electromagnetic Compatibility Analysis Center, Annapolis, Maryland, June 1984.

Selected Figures - Similar or identical to presentation slides and the figures of the paper.

Figure 1 - The broadband antenna test system components are shown in the context of three basic antenna evaluation modes.

A closed-loop, swept frequency mode drives an antenna under test and records its matching characteristics as a function of
frequency. At one or more precisely located points, an electrifrequency. At one or more precisely located points, an electrically small broadband antenna picks up the radiated field from the antenna under test and returns it to the test van via an analog fiber optic link. The field pickup is recorded in a manner that allows direct comparison with matching data. The spectrum analyzer with a tracking generator or a network analyzer with an s-parameter test set.
The open-loop mode evaluates the pattern of an antenna under test by far field illumination at a series of discrete frequencies with a stable beacon transmitter having a well-defined polarizaton scale reference and test HF antennas in operationally realistic environments. The absolute power gain (in dBi) of the antenna under test is tied to the predicted gain of a carefully constructed horizontal \(1 / 2\) wavelength dipole reference antenna. The dipole reference gain in the horizontal plane is transferred to a vertically polarized \(1 / 4\) wavelength monopole reference antenna by rotating the beacon axis 90 degrees and comparing the monopole versus the dipole signal levels (adapted from FitzGerrell 1967).

The open-loop mode also can be used to evaluate signals propagated from distant communications stations. Comparisons can be made between antennas in terms of signal strength and signal-tonoise ratio. If calibrated reference antennas are employed, comparisons of gain can be suggested from the data. Tes antennas can be evaluated in both transmit and receive modes.

Figure 2 - This is a test configuration and a typical raw data set for a closed-loop measurement mode with a 2-to \(32-\mathrm{MHz}\) sweep. The directional coupler located near the feed point of the antenna under test. The SWR trace in the lower plot is calculated from the FWD and REV traces. The third trace (broken line starting at 5.50) is the field strength level received by a broadband, calibrated monopole antenna located 100 meters from the transmitting test antenna's feed point. The monopole is located on the test antenna's main beam axis at ground level (o degrees relative azimuth, 0 degrees elevation).

The antenna under test is a 2-element, low-profile, rapid deployment, broadband tactical HF antenna occupying an area of 25 \(x 200\) feet with a maximum height of 2 feet above ground level. This particular antenna configuration has a usable bandwidth of over 30 MHz with an SWR of 2:l or better.

A full correction to this data set accounts for the errors associated with cable losses, directional coupler calibration factors, and the broadband monopole response. In this example, the FWD trace corrections will produce a flat antenna input power level trace of about 18 dBm . The inflection points and slope of the FIELD trace will also change moderately. The value and units of FIELD will change significantly in converting to a corrected value in \(\mathrm{dBV} / \mathrm{m}\).

Figure 3 - These are typical flight paths for antenna pattern measurements. Three types of overlapping, cross-correlating flight paths are shown. The circular flight paths are flown at flight levels that obtain azimuth patterns for four elevation angles. The slant range from the beacon to the range finder is degrees) and is then corrected to 1 km (e.g.f \({ }^{\circ} 3 \mathrm{~km}\) at centered at the antenna under test. The correction process allows comparisons to other flight levels and paths for the same antenna or between different antennas. The vertical rise and descent columns are flown at three reference points to measure anscent columns are flown at three reference polnts to measure flyover paths are flown at a constant l-km altitude above the ground. These paths complement the vertical column flights by providing pattern information from 30 degrees to 90 degrees (zenith). Each path is flown with from one to three polarization attitudes of the beacon to allow complete response characterization (e.g., azimuth flights are flown with vertical and horizontal beacon attitudes).

Figure 4 - The beacon that is suspended below the helicopter is shown along with its three standard flight attitudes. The beacon design is patterned after the "xeledop" concept developed by Stanford Research Institute (Barnes 1965, Barker 1973). The pattern is that of an ldeal elementary dipole, which allows correction of fight data amplitude as a function of beacon beacon attitudes are described relative to the helicopter's flight path. Therefore, to measure an azimuth pattern with horizontal polarization the beacon would be towed horizontally on azis (HOA) in a circular path. To obtain a continuation of a vertically polarized, vertical ascent elevation pattern, the overlapping flight path would be a flyover with an HOA beacon altitude.

The beacon flight attitudes diagrammed in this figure are shown without a weight harness. In practice, a weight is suspended below the beacon to provide flight stability for towing velocities to in excess of 75 knots.


Principal Components of the Eyring Broectuand Arterna Test System (BATS) V1.6.

Fig - 1


Fig-2


Fig-3

Beacon Mechanical and Flight Attitudes


Iop view


Flight Path Axis
Airborne test terminal basic package and flight modes for three polarization altitudes.

Fig-4

Figure 5 - This is a plot of the azimuth response at a 30 -degree elevation angle of a horizontal dipole illuminated by a 6.17 MHz horizontally polarized beacon flown in a \(2-\mathrm{km}\) circle about the test site location. The \(1 / 2\)-wavelength ( 75.8 feet) dipole is positioned \(2 / 10\) of a wavelength ( 31.9 feet at 6.17 MHz ) above the center of a ground screen ( \(120 \times 148\) feet). approximating an ideal reflecting surface. The predicted power gain for this antenna at 30 degrees is 3.95 dBi (FitzGerrell 1967). The pattern approximates 3 dBi at a 90 -degree azimuth (interpolated value 4.5 dBi and 5 dBi at a 270 -degree azimuth (interpolated taken about every 2.3 degrees. Neludes 163 samples with a point taken about every 2.3 degrees. Note the path overlap between the

Figure 6 - This figure is a complement to Figure 5. The 0-degree elevation position is the 90 -degree azimuth point of figure 5. The gain at a 30 -degree elevation is 4 dBi toward the 90 -degree azimuth point and 6 dBi toward the 270 -degree point. These values are close to the Figure 5 values.


HELICODTEQ 61725 MIZ EAST-WEST MCA
\[
\begin{aligned}
& \text { Freo - } 61725 \text { manz Res - } 3 \mathrm{kMz} \\
& \text { viem Az } 1 \mathrm{~m}=180 \text { deg }
\end{aligned}
\]
elevation ortset

E. 日-61. L52. Mce. F. R-1. A
\(308 / 0 \mathrm{ov}\)


Figure 7 - This is a plot of the azimuth response pattern at a 30 -degree elevation angle for a \(1 / 4\) wavelength monopole constructed with 36 radials 100 feet long (approximately 0.7 wavelength at 6.17 MHz ) and 36 radials 50 feet (approximately 0.35 wavelength). At 6 MHz , the surrounding soil had a conductivity on the order of 0.006 Siemens/meter and a dielectric constant of 12.

Figure 8 - This is a plot of the elevation response pattern from 0 - to 40 -degrees for a \(1 / 4\)-wavelength monopole illuminated by a vertically polarized dipole beacon rising from the 180-degree azimuth position. This pattern suggests a response maximum of 1 dBi over an elevation angle range of 20 to 40 degrees. This is in reasonable agreement with the Numerical Electromagnetic Code modeling predictions of Edward (1985). The measured value is about 1.5 dB lower than the maximum predicted gain for the optimum elevation angle of about 23 degrees. This plot is a complement to and environment

Figure 9 - This is a plot of the vertically polarized azimuth response pattern at a 30-degree elevation angle for a 500-foot long vertical half-rhombic antenna. The rhombic is supported in the center by a 46 -foot steel pole. This is a typical broadband tactical antenna with a 600 -ohm balun feed and a 600-ohm resistive termination. It is similar in construction to the antenna described in the Field Antenna Handbook (ECAC, 1984, pp 57-58). The antenna has a \(2-d B i\) power gain and a beamwidth of 27 degrees and a 14-dB front-to-back ratio.

Figure 10 - This is a plot of the vertically polarized azimuth response pattern at a 30 -degree elevation angle for an 8 -element, low-profile, rapid deployment, broadband tactical antenna. This antenna is less than 2 feet high and is deployed in a \(145 \times 150\) foot area. This configuration has a 2 -dBi power gain, a beamwidth of 25 degrees, and a \(3-d B\) asymetry in its bidírectional pattern. Directional deployment can produce front-to-back ratios in excess of 10 dB .

Figure 11 - This is a plot of the vertically polarized elevation response measured for an ascent column located at the 180 -degree azimuth position. The peak power gain over a 0- to 40-degree elevation range is -2 dBi for this 35 -foot monopole with a high performance tuner.
Figure 12 - This is a plot of the vertically polarized elevation response acquired in the same test as the monopole of Figure 11 . The power gain of this 8-element, low-profile antenna has been power o degrees it exceeds the monopole without a null and with peak gain of -1.5 dBi .



HELICOOTEG 3 I92g mat reat ascent s v

Elevation orsses
wax-or of. D.at -9-61 L9a. v. U. a. 8 .


\[
\text { rres - } 3 \text { 1929 anz a }
\]

Elevatign :-\&qee
 5-61. Lo94 v. U D.: 3 of co:

how to bullo simple
and nol-so-simple
est equipment in youm oun la

By Jim wir
UP Engineering, RSI
Sierra College feculty

\section*{abstraci}

Design dete and teat reculte on 6 pleces or test aquipment intended for "home-brew" Mr meseurement: is given. Construction details and component sources are provided for lom-lavel eryatol dotectore, low-power algnel eplittere, reaistive low-power VSUR bridgee, mierostrip medicm-pomer VSWR bridgee, R \& jx metere, and or rrant-end noice generetora.

\section*{intacouction}
 would mork at 200 miz . In matter of rect, bafore elll and Dave got into the ect, quite orem ri designera hed to first deeign and build their own teat equipment, and then ues this home-mede gear to teat their new producto.

At io also true that of my randoa group of m engineere, over 30 x aill some day atert their oun rompany. A new
 to "roll your own" teat geor. Wille not quite ae protty as atore-boughten teat equipment, these boxee heve sarved their intended function in ay personsl compeny for over 20 years. Aithought the photos (for the mot pert) athow nice nest conatruction, you must remember that theos particular boxes more constructed of easy-to-obta in componente and


Inelly, to those of you offended by my enititedy mimplistic and enechroniotic concepte, 1 comend to you the wisdon of the phillosopher who seld, "thoce or uno to not remember the meys or the peat ore surely condemned to repeat them." those of you who hove been around thie bueiness ror aignificent frection of a century know full will thet these designe are not new. l claim neither invention, advencement of the state of the ort, nor brillient inalght: into these productei 1, like you, - a poor morkedey aluggerd trying to keep the company one atep ahoed of the mol In 1RS elothing. Enjoy.

\section*{The simple crisin deiecton}
 with Junior's dieper pin and noted that all or a wodsen that hie beby got rhyth. Further Invest igation ahowed thet (cstemhisker) good mplitude or envelope detector. In the ensuing yeare, we hove done little other then reline the memufecturing lechniques of the cryatsl diode, and to this day, there is no better generally aveilioble detector then the old roithrul cotentiakar germenium diode.

Admittedy, you cen't really coll a cryatal detector design that uses. diode oveileble In the late 1900 's the cutting edge of tectrology. However, es - isb partner, l mould consider this deelgn os my most-used pilece of tes quard far. (See Schematic 1). NUTHOR'S NOIE -- IN270 and IN34 are interchungechlo in all the desigma in this peper

First, the input is terminated in al othe in order to mork in a 50 oth syates. Yes, if you heve 51 othe in the stockroom, that would be a better match, but ey compony only keeps the \(10 \%\) valuen on the sheir. Be sure that you une - earbon composition or carbon rilm resistor to keep the recetive pert of the resistar to \(. m / \mathrm{mimm}\). I think it it obvioue that ir you nead any other input impedenca, Just chenge the resiat or to ary value you please. The intrinsic lapedence looking into the untermineted input le not measureble essily; the beat 1 cen oey 1 that it is move sk orman (the limits or my equipment.)
 mould heve rediced this cepecit or to 100 of or co. Although at 150 metr the .001 to mell move it 's self r-resoment
 difference.
 and schottky berrier dovices and 1 cmmot get then to do an low a leval of detection ee the good old germenium diodet.
 - leade hee eself-resonence ot coout 250 mitr.). EE cmutious of fooling mith the 10 K - 50 pf time constant. This outhor grubbed what he thought wase 50 pf (ond what turned out to be a minioture, 005 uf) 10 make a detector and then apent Days trying to figure out my his MM trememitter wee both wodio frequency sensitive and would not modulet corth ehtll of been

Photo 1 dhowe the old-risithrul apen-board dealgn. Wile comanat primitive, thie little rascal mae been ay bench compention for over 20 yuere. 1 aill coution you, though, that this open-boerd conatruction bit on the behind couple of yeare ago. 1 men morking on a 20 mett 125 mm . trenemitter, and hed about 30 of peding between the trenemitter output and this detector. One dey the modulotion would look eriep and elean, and the nent day the wole modulation envelope mae gerbage. Arter redetigning the modulator, the output bendpene rilter, the rinal ot age feed
 all the difference in the world. Plecing tinfoil oll around the detector claared up all the diatortiont the high-power RF stege hed boen redieting directly into the dotector diode loede, and the pheoe of the directly redisted algnal combining mith the attemated aignal mase Punction of how for the detector mes from the rimels. Photo 2 mon the soll nobby model

This detector cen be built for lese then is doller in componente for the open-reced verotion and lese then three dollers for the cloged-in varaion (including commectore for the elobed version).

\section*{sIome splitien}
with most transeittar projects, 1 like to look at the swept frequency renponso, the spectrol analyele (for umment ed ifrdie products), end heve - counter on the outpur in case 1 ment to set a soot frequency. without some sort of
 enother.

The type of aplitter I hove found most vaeful is one that is matched ot the input to so ofrim and splite the signel aqually between tmo outpute. I sleo domend that the outputs be leolated from one mother so that ir 1 need to lake one of the test imetrumente off the line for a quick check of some wort that it doee not upoet the other mebsurement The third output 1 heve found to be moat useful is = -20 de . coupling of the input for a frequency counter of
devietion meter. Uavally, 1 hove the tranemitter podded dom to tho +10 dem level by the the it hite thie aplitter so power dissipation is not a real problem.

Phato 3 and Schemetic 2 show the construction of " "uikineon" otyle mybrid splitter conatructed rrom tmo placeo of 75 oh cosisial cable and one belencing resistor. The \(\mathbf{- 2 0}\) de. coupler is comprieed of two reaistors.
 porticulor aplitter man \(125 \mathrm{M} / \mathrm{m}\). , and both input return lose and output faolotion remained within -18 do from 100 to
 to 250 mHz .

\section*{vSL DETECTOR - LOM POMER}
 metciling. Although the resistive coupling limite the input power to \(\operatorname{s}\) helr a mett or so (otwe to the une of quarter-matt resistors), this little boerd hee been in on the deeign of dorene of whe ontemmen and mififiers. (Soe Photo 4). For those of you with eneatnens Fixation, moto 3 thowe the circuit built into a Mobby Sheck" ainibox. the circuit design is given in Schometic 3 , along with a parformence graph. Uning oll new parte, this bridge ean be built for less then a dollor in componente and lese then 35 including commectore.

Those of you ranilior with the litersture on this bridge in the varioue redio anatsur hendbooks mey be bit murprised at the resiator values. Most of the articles in the handbooks ues 30 ate ( 47 am ) resictore throughout the briger the values prasented on the cechemetic heve avolved over the yeare on the best compromise for apen-atort retio
 monsuremento, the 10k - so of time convient oete the upper audio Proquency reaponee 11 mit . If you rind that too much of your rine detall to elioulng from the awap reaponee curve, elther alow the generator ameep apeed domer or reduce
thit time const int.

VSHR DE TECTOR - HICH POKER
When dealing with powar mplifier, it ir nice to be chle to drive a couple of mette into the input and check for metch. Also, \(1 t\) le quite helpful to cole to tome the 10 or 20 matts out of a power emplifler and ctrock the vsum or the enterne or loed that you ore of iving intio.

The vsum detector ahom in Photo 6 vees e microetrip directional coupler deaign (esiled a Monimetch" by com old-timers) that rirst ame the 11 ght or dey eo ecoxial device mode by ineerting e thin pluce of enomiled megnat wire betmeen the brifld and conter insuletor or eplece of coexiol coble. Leter rerinements heve ollomod we to ued

The circult and etching dimensione nicun on Schemetic athould allow the clever onglineor the cepobility of reproducing this bridge for his oun uee. The apen-mort retic ite remorksoly good for a device es eimple ee this one and the bridge hae been ueed from 20 to 200 mb , with axcellont rowults. Since the coupling between min 11 no and coupled Ifine ite on the order of 20 d. . there to very little lose in the min 1 ine, and the bridge will actuelly morl diode bresut minimet (opendent a bit on requency) in the min 11ne. Uppor power lialt is . Fnction or the the min in Ine. Using the perte list given, this bridge cen be built for leas then \(\$ 20\), not ineluding the coat to eteh the pe board
R. JX BRIOGE (RX METER)

Although it ie nice to know the input vsun of your new design, there are timee wen it would be prefardole to knom the input impedence as it actually exista ot the frequency you ectually intend to ues it. For inetence, perhepe the
ata sheet doee not covar the trensictor you ment to weo in the mode you mant to ues it. You must then masoure the ovice under actual operating conditions to charecterize and analyze the little ruscal. Another uee of the RX bridge

 sole to moasure the input impedince under sctuel condiliona.

Nost articies in the hendbooks use aither mer-surplue entemne tuning rapscitors (win II, that is), or on unususl difrerential" cepsecitor membe by the Hockensec Capecitor and Storm Door Compony or Horse Cove, Kentucky -- it is only avalloble from Bill'e berage and Mi-Tet Component otore in East Bumpop, Temesses, and then only on elternete ivesdeys. The one in this article veen one mection of the Mf tuning eapacitor out of any atendard FA pocket readio.

\section*{The resiative bridge fo nothing more than our old Irlend the theetatone, with we much of the atray resctance as
}

The resetence part of the bridge io eleo quite simples it it e perollel resonent circuit comprised of the Forementioned FM redio tuning eapecitor and an inductor mound from tit wire and tapped so that it rould be itct-solected to verioue inductence values.
 axpeneive, but if you happen to put in a little too much of and the bridge is badly unbalanced, you nom heve your ater needie neat ly wrapped around the pag or mat wase your meter. I much prefer to use ogardernepec op-emp and
 agelnat the ir overloodod, but it will not dagtroy iteolr in doing so. Not only that, but your semaitivity is bout 10 time greater with the mplifior then with the etralght meter.

Calibration of the bridge is rather aimple. Input an frignal at moout one allilimit at the lomat frequency for Which rull-ecale CCw rotation or the turing capocitor (maximm capocilence) te nulloole at eome selting or the corbon or this porticulor ame to 2.2 K otime. Then take 20 of . capecitors and colibrate the tuning eapecitor. With the specified capacitor, you wlll be oble to get marke from 20 to 160 pf. et 30 minz .

To cene the bridge, simply input the desirad of signel and plece the bridge tuning capscitor at ald-scale directly o one or the callbration marks. Iune the bridge potentiometor to infinity and adjuat the inductor owitch for beat null. 51ightly odjuat both tuning eapecitor and potent lometer for the drepest null obteineble. Then plece tha unknow loed acrose the loed terninele and edjuat the capacitor and potentioneter for null. the reaistive part of of the loed to the oirfenemce betioen the otarting point on the varichle cupacitor and the final null value. if you
 plcoforada" inductive. (For those of you morking around digitol enginears, juet st ort talking obout induct mine es eing masurad in picoferach end metch the otrenge look: on their reces.)

The bridep repidiy loese sceurscy wove 100 mi .. ithis it due to the rether wide appecing of the front-panel componente (ree fhoto 9) and the rawultent parasitite indictance of the wires necessary to comert the components
 It over becem necesary to incroase the frequency range of the unit, I mould probably do moy with the oultened inductor (the couse of most of the paresitic inductence) and simply build a bridge for asct frequency band of intereet. One rixed inductor with thite ecopucitor ought to be oble to cover an octeve of veerul remge eithout a lot
n NOISC GEMERAIOR

In the design of low-noise pif "Tront ends", the device of choice for Pinel design tweaking it the good old Noine rigure Heter. This is a rather large and expenaive inatrment that uses a vecume tubs (or a emoli expensive instrument that uses sonid-state noise eource) to produce on oxect mount of broestend noive that may be vaed for messurement, but will give you a method of tweaking your fif atage for beat noise performence. Given a very short
 specificstions), the noive (logure may be ensily celculated.

As those of we tho thought we knew hom to design power supplies found out, a diode in reverse breakdown (i.e. "zener") that is unbypeased for ff makes a perfectly merveloue nolee generut or. This nol oo generat or makee uas of the fact that a zener is monderfully noiay and aplifiea that noise in a mideband amplifier to produce about is de of

The old way to vee one of these noise generatore man to set the volume control of the receiver undor teat to e reference level, input the excess noise source, and edjust the input mplifier conditions (bise, tuning, Input metch. ete.) for beat retio of reference level to level with the excese notee input. The only problem was that with input chenges, so chenged the reference level, and thes it becmen an iteretive eort of procese -- set the reference, tume, out the reference, tume, set the reference... . This got very old very quick.

This generator, though, wees on mudio oecilletor to gate the noise source on and off. Now the engineer hae the choice or viewing the output of hie recelver on en ocecllioweope ond be eble to look ot the reference leval and the excess noise level ot the sume time. Nat only thet, but by a Judiciow choice of gate irequency ( 1000 Hz. ), the old

 place of acrmp pc board (see Photo 11).
of course, this generator campot be ueed for aboolute noice-figure maeouremente, but by knowing the benderidth of the receiver and the input signel to produce ogiven aignal-tomolice ratio, the noice figure may be easily celculated.

\section*{comclusion}

This peper wes memit more es on introduction to the fledgling if engineer into the monderful morid of making measurements on elosostring then to the old-timer that hee seen theme circulte being uead for yeara. I do Nol free the the purveyors of kilobuck teat equipmant the right to chuckle. © blt the homespun roughness of the eloth repetie to get your heate on really nice plece of gear.

Aot only that, but it's sort of fun to sea juat how clowe 1 cm come aith one engineer using hackyoeck parts to Bill and Dave's boxes that have mundrede of engineere ueing mil-Spac pleces. Yoo'd be murpritedy try it, you'll like it

\section*{BISL IOCRAPH}
. Widin, "SuR Bridge", them Redio, October 1971, pp 55-5
2. Keen, "A 51 mple 8ridge For Anteme mosourgmente", Han Redio, September 1970, pp 3a-3a
1. Kluge, "Woise Bridge 5implifies Rf Heesuremente", EDN, July 1995, pp 61-62
. Willmar K. Roberts, "A Guide to F.C.C. Equipment authorizetions", publlethed by the wuthor, W.K. Roberta - 4637 Von Kloek Dr. -- New Smyrne Beach FL 32069 .- (904) 427-3612.

3 Helpe 0 . Grenberg, "Linear meplifiera for Mobille Operation", Motorole mpplicatione note AN-762, 1976
6. "The ARRL Hendbook", 42nd Edition (1965), "The Monimatch", pp 356, 357.
. "An M -way Hybrid Power Divider", IRE Irune MII, Erneat wilkInson, Januery 1960, pp 116-118.

\section*{parts sourcts}
1. Movser Corporation, 11433 woodeide Ave., Sentes CA 92071, (619) 449-2222. Supplifere of garmenlum diodea
 for the asking.
2. Calrad Electronice, 019 N. Highlend Ave., Loe Angelee CA 90038, (213) 465-2131. Suppliers of metera, chaseis boxes, Jocks, plugs, binding poste; general cotelog eveileble for the eaking.
3. Radio Shack. Avalleble in your oun hom tomis.
\(-30\).


P1010 1 The beaic, elementary form of the detector. This io 0ld roithful. I've repleced her input resietor e dozen times, her diodas more than once, and ahe juat keape on ehugging. Building this detector on a PC board ecrap akes repsir quite aimple and frequercy remponse excellent peat a00 mits.

phoro 2. When the outside world interferee with the the detector, the only enswer to to shield it. A nickel's worth of brese pravente direct radietion into the diodes.


PHOTO A. The imarde of the momebrem VStan bridge. Dnce ngein, the techniquen of building homehrem circilita on acrmy PC bonrd material are illustrated


PHOTO 5. If the beancountere mant to seo neal, clemen progress, then othow them these elrcuite dolled up in atore-boughten housing.


PHoIO 7 ine iff coupling lines on the beck of the cheasis show how the wierostrip design is implemented. Ihe 39 anm metching resiator to the centrel pert of the photo.


PHOIO A. The Imperimire Aridue will malyze parallel impedmcen from 20 of 10 in otmen


PHOIO, The front panel of the limpedence Bridge ahow the brees ground plare below the frifront pemel component a. All Rf ground connect tions are mede to this brass pleme.


PHOIO 11 The home-brew circuit board of the noide generator. Mote that all cornections are made es anort an poasible, and that the scrap circuit board abistrate is uead to ksep ground leade as athort wasible.


PHOTO 10 the front penel of the if noise gemerator. Note that both contimuove noise, modulated mise, and nolee off con be selected by the front panel sultet.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2－7804접 &  & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} \\
\hline ：\(\times\) & 78 W上 8 ：moo S1N ．000 & & & & \\
\hline －：40 momen &  & & & & \\
\hline d3 \(1117 d 5\) &  & & & & \\
\hline て गレ甘ん3H & H3S &  & \(\left.\frac{5 . \varepsilon}{\frac{5 \%}{2 \%}} \frac{18}{\frac{18}{0.8}} \right\rvert\,\) & \begin{tabular}{r}
50.1 \\
\hline 0.8 \\
\hline 1.1 \\
\hline 8.1 \\
\hline 8.1 \\
\hline \(1: 2.1\) \\
\hline 10.81 \\
100.1
\end{tabular} &  \\
\hline
\end{tabular}






\section*{distributed \(2-20 \mathrm{GHz}\) MONOLITHIC GaAs FET AMPLIFIER DESIGN}

\section*{Gary G. Hawisher, EEsof Incorporated, Westlake Village, CA} Tim Aust, Hughes Aircraft Company, El Segundo, CA

\section*{Introduction}

Distributed or traveling-wave anplifier designs have come into new light with the advent of MMIC technology [1] [2] [3] [4]. The topology of a distributed anplifier, employing several active devices linked in a ladder structure, is practical and desirable to implement with FETs in GaAs MAIC technology. When properly designed, the distributed amplifier will have a gain-bandwidth product which exceed the gain-bandwidth product of the individual FET devices. Considering also that the coupling structure required to tie several FET devices together is broadband, leads to amplifier designs which exceed decade bandwidth. Now with Gans foundries beconing more popular, MMIC design is within reach of many small companies that formerly could not enter the monolithic arena.

Since tuning is generally limited on MAIC prototypes and the cost and time to build test circuits is high, the ability to accurately design and model the performance of a proposad monolithic design is vital. With highly accurate software now available on parsonal computers, many small companiea can now afford the CAD tools available for circuit design which can greatly
speed the design process, drastically reduce the cost of design, and lmprove circult perfornance.

The purpose of this paper is to demonstrate computer-alded design techniques with the design of amolithic distributed amplifier. Although the amplifier described here has never been built, similar designs are being pursued by several major contractors. Touchatone (TM, EEsof Inc.) is used to perform the circuit analysis and optiaization

\section*{Basic Design}

The topology of the distributed amplifier (Figure 1) consists of an input (or gate) line, and an output (or drain) lina, coupled together by several FET dovices.


Figure 1. Basic topology of distributed anplifier showing final circuit values for 2 to 20 GHz amplifier

The gate and drain lines form artificial transmiasion lines, each section loaded by parasitics of a FET device. This is the key to the success of the distributed amplifier. The capacitive parasitics of the FET on both the gate and drain side are absorbed into the low pass structure of the transmission lines. This allows a very broadband natch into the FET as long as the cutoff frequency of the low pass line can be made sufficiently high. The lumped inductors which normally form the series elements of the low-pass line are implemented as electrically short microstrip transalssion lines. For the distributed amplifier to function correctly, the gate and drain linas must have the same phase valocity. This assurea suming of the signals at the output. Requiring that the gate and drain lines have the same cutoff frequency guarantees this. \{2]

\section*{The Constant-K Line}

The conatant-k transmission line model is chosen as the basis for the gate and drain lines. This lumped ladder filter is composed of several LC sections as shown in Figure 2, and exhibits a constant characteristic impedance along the line. The simplified FET model is shown in Figure 3.


Figure 2. A section of constant-K transaisaion line.


Figure 3. Simplified FET model.

If the model is split into gate and drain sections, each section can be incorporated into the gate and drain lines as the shunt capacitive portion of a transission line section. The characteristic impedance and cutoff frequency of the constant-k line are given by (1) and (2) for an ideal line.
\(R=\operatorname{SQRT}(\mathrm{L} / \mathrm{C})\)
\(\mathrm{Fc}=1 /\) (PI*SQRT (L*C))

The gate and drain lines will be lossy due to associated resistances of the FET. As mentioned before, the cutoff frequencies for the gate and drain lines should be the sane, requiring that the \(L C\) product for the gate and drai lines be equal.

\section*{The FET Device}

In designing an amplifier, one of the most important aspects is device characterization. Generally, a test device is developed and S-parameters are measured. These \(S\)-parameters can be used directly in the computer design, or a device model can be developed which behaves like the measured device. It can be very useful to predict the performance of a hypothetical device which is modeled by an equivalent circuit linked to the fabrication process. Computer modeling is used effectively for modification of FET deaign to fit the circuit application. [5] It is a major advantage in MMIC design to be able to tailor active devices to fit the application.

This paper will not explor techniques for modification of the FET design to improve circuit performance except to estinate the effect of changing the gate width of the device. A realistic FET nodel is shown in Figure 4.

This model is reported to match de-embedded S-parameters for a real 0.5 x 250 micron FET over the 1 to 18 GHz range. [1] Changes in the electrical parameters due to changes in gate width are generally understood and can be estimated by simple equations. The computer model to generate S-parameters for an arbitrary gate width FET is shown in Figure 5. The equation capability of Touchstone (TM) is used to relate the device parameters to the gate width.

! Figure 5: This file is used to generate single gate and dual gate FET ! parameters for arbitrary gate width FEI devices. .



I gate width of device
width dependent device parameters

Cgs \(=0.00096\) * GATE
i = 250 / GATE
Cdg \(=0.00008\) * GATE Rds = \(\quad 62500 / \mathrm{GATE}\) Gds \(=0.00024\) * GATE Cdi \(=0.00008\) * GATE
basic FET model structure
CAP \(23 \mathrm{C}^{\text {A }} \mathrm{Cg}\)

\author{
RES 34 R^RI \\ \(\begin{array}{lll}\text { RES } & 4 & 6 \\ \text { R-2 } \\ \text { CAP } & 2 & 5 \\ C^{\wedge} C d\end{array}\) \\ VCCS \(2534 \mathrm{M}^{\wedge} \mathrm{GM}\) A-O R1-0 R2^Rds \(\mathrm{F}=0 \mathrm{~T}=3\) \\ DEF3P 156 FETMOD \\ 1 single gate FET model \\ FETMOD 123 \\ IND 30 L-. 04 \\ CAP 23 c^Cds \\ RES 24 R^Rd \(^{\wedge}\) \\ DEF2P 14 FET1 FET300 I name of FET sparaneter file \\ 1 dual gate FET model \\ FETMOD 123 \\ IND \(30 \mathrm{~L}-04\) \\ CAP \(23 \mathrm{C}^{\wedge} \mathrm{Cds}\) \\ RES 24 R^Rd \\ FETMOD 354 \\ CAP \(45 \mathrm{C}^{\wedge} \mathrm{Cd} 1\) \\ RES 56 R^Rd \\ DEF2P 16 DFET : DFET \\ OUT \\ FETL SPAR \\ 1 DFET
FREQ \\ SWEEP 2241
}

Figure 5. Computer model which generates S-parameters for FET device. The simplified FET model is easily absorbed into the transaission lines, but doss not consider faedback capacitance, which is a major contributor to performance degradation at high frequencies. The presumption here is that effective gate and drain capacitances for the realistic model still allow the desired gate and drain line performance. For some devices this may not be ture, and liaited bandwidth may be required by the gain-bandwidth linitations of the matching network or to maintain stability of the amplifier. If this is
found to be true, an alternative device or design may be required to achieve the desired performance.

One approach to inproving the design is to incorporate dual gate FETs, with the second gate electrically grounded at RF frequencies. This combination behaves as a two-stage cascode device, which exhibits lower equivalent gate and drain capacitances, and thus extra bandwidth. [1] The design approach will demonstrate the use of single gate FETs, then dual gate FETs will be substituted to illustrate the improvenent.

\section*{Observations}

Understanding the factors influencing the performance of the design helps knowing what to expect an the circuit is modeled and analyzed. It also uncovers clues to improving the design. A close look at the theory of distributed amplifiers showa relationships involving time constants at the gate and drain of the FET. [2] These relationships indicate that frequency response of the amplifier is heavily influenced not only by the cutoff frequency of the gate and drain lines, but by the attenuation on the gate line. DC gain, on the other hand, is influenced by the Ge of the FET and attenuation on the drain line. There is also a relationship between optimun gate width and optimum number of FET devices used in the amplifier. [2] This could indicate that there is an optimum total gate periphery for a given distributed amplifier.

The characteristics of the constant-k line deserve some thought also. For instance, the image impedance of the line is resistive below cutoff, and reactive sbove cutoff. Also, it is possible to maintain a constant cutoff frequency by holding the \(L \mathcal{L}\) product of the line constant. These facts help in understanding how to tune the amplifier.

\section*{Forning the Computer Model}

The firat step in modeling the amplifier is to determine the equivalent shunt capacitance at the gate and drain of the FET for the desired operating conditions. This is easy to deturmine if the device is unilateral, or nearly so, since the equivalent capacitances can be read from the model directly.

Most FETs are not unilateral because of the drain-gate feedback capacitance, and in fact this usually causea the device to be conditionally stable. The effective gate and drain capacitances for a non-unilateral device are modified by the "Miller" effect, wher the feedback capacitance is reflected into the gate and drain circuits for a particular load.

When the FET is not unconditionally stable, it is a bit tricky since the equivalent capacitancea cannot be determined from the simultaneous match conditions. In fact, the amplifier must be designed so that a deliberate sismatch occurs at the gate and drain in order to ensure stable operation. This limits the desired perforance of the distributed amplifier since the equivalent capacitances cannot always be totally absorbed into the gate and drain lines.

A look at the general stability of the 250 nicron wide FET indicates some caution is in order. The device is condicionally stable at lower frequencies, but resistive terminations lie in the stable region on both the input and output planes. Using the computer to tune a rough matching circuit helps to vinualize how the FET responds to various aatching elements. Because of the difficulty in matching to the FET, full decade bandwidth will probably not be posaible, at least not with good gain flatness.

The tuning procedure allows a rough estimation of the equivalent capacitances at the gate and drain, 0.275 pF and 0.06 pF respectively. If the goal is a 2 to 20 GHz amplifier, the cutoff frequency of the gate and drain lines must be set higher than that, say to 24 cHz .

To make the design simpler, two additional requirements are aade. First, the image impedance of the gate and drain lines will be held near 50 ohns to facilitate a broadband match to a atandard load.

Second, the series inductance of the lines is held constant, aking all the lumped equivalent transmission lines the same impedance and length. This second restriction requires that the capacitances of the linea also be the same, so shunt capacitors of 0.215 pF must be added to the drains of the FETs. The inductance value of the constant-k line calculates to 0.625 nH . The inductors will actually be implenented as electrically short high impedance transaission lines, say 90 ohas, and the capacitors as electrically short low impedance transmission lines, say 50 ohms. Using the equations for a short and open circuited transaission line iapedances, the electrical length of the
equivalent transmission lines is found to be 1.4 degrees at 1 GHz for the 50 ohn lines and 2.5 degrees at 1 GHz for the 90 ohn lines. Linecalc (TM) is used to verify the reliability of the microstrip lines on 4 mil thick GaAs substrate.

The rough design of a complete amplifier can be put together and optinized for the desired performance. Four FETs are arbitrarily included in the circuit. The optimization criteria are chosen to flatten gain to a reasonable value, maintain a match to 50 ohn source and load, and to require gain rolloff and reflection coefficients less than unity above the band of interest. The schematic for the optimized circuit file is shown if figure 1. The final circuit file description is shown in Figure 6.

\footnotetext{
Figure 6: This circuit file models a single gate FET distributed amplifier | with 4 devices, with device parameters read from file FET250.S2P, 250 micron VAR
\begin{tabular}{|c|c|}
\hline \(\backslash 0.91455\) & ! length of constant-k half section \\
\hline LEN \1.30722 & ! length of drain capacitor \\
\hline \(21 \times 91.05647\) & | impedance of constant-k inductance lin \\
\hline R1 \46.59919 & l terainating impedance of constant-k line \\
\hline
\end{tabular}

EQN
\(\mathrm{L} 2=2\) * L
\(20=21\)
\(R 2=R 1\)
CKT
TLIN 12 2 \(^{\wedge}\) ZI E^L \(\mathrm{F}=\)
2PA 2120 FET250
TLIN 1222 Z-50 EALEN F-
TLIN 2122 Z^ZO E^ム F-1
RES 21 O R^R2
TLIN 23 2^2I E^L2 F-1
S2PA 3130 FET250
TLIN 1323 2-50 E^LEN F-1
}

TLIN \(2223 Z^{\wedge} 20\) E^L2 \(\mathrm{F}-1\)
TLIN 34 2^ \(^{\wedge}\) ZI E^L2 \(\mathrm{F}-1\)
S2PA 4140 FET250
TLIN 1424 2-50 E^LEN F-1
TLIN \(2324 \mathrm{z}^{\wedge} 20\) E^L2 F-1
TLIN 45 2^21 \(^{\text {E }}\) ² \(2 \mathrm{~F}-1\)
S2PA 5150 FET250
TLIN 1525 2-50 E^LEN F=1

TLIN 56 Z^2l \(^{\wedge}\) E^L F=1
RES 60 R^R1
TLIN 2526 Z^20 \(^{\text {® }}\) E F F
DEF2P 126 AMP
OUT
AMP DB[S21] GR1
AMP DB[S11] GRIA
AMP DB[S22] GR1A
FREQ
CRID 224
GRID
\(\begin{array}{llll}\text { GR1 } & 0 & 10 & 1 \\ \text { GRIA } & -20 & 0\end{array}\)
OPT
1 OPT
in band optimization
RANGE 220
AMP DB[S11] <-10
AMP DB[S22] \(<-10\)
: out of band optinization
RANGE 2124
AMP DB[S21] < 710
AMP DB[S11] < 010
AMP DB[S22] < 010

Figure 6. Final circuit file description.
Plots of the optivized results are shown in Figure 7, and a conparison with 3 and 5 FETs is shown in Figure 8. A comparison with 200 and 300 micron wide FETs shown in Figure 9.


Figure 7. Single gate 2 to \(20 \mathrm{GHz}, 250\) aicron design, 4-FET amplifier results


Figure 8. Three-, four-, and five-FET amplifier gain.


Figure 9. 200, 250, and 300 micron FET amplifier gain.

The overall bandwidth and gain flatness are indeed less than desirable. The total gain is low compared to what would be expected with a narrow band single state design, but this is noraal for a distributed anplifier. The narrower bandwidth can be attributed to problens on the gate line. The gain and gain flatness can be attributed to problems on the drain line. There seems to be some tradeoff between improving the gate and drain lines. To achieve more reasonable gain flatness, the bandwidth is reduced to 2 to 14 GHz and the circuit is re-optimized. The results are shown in Figure 10.


2000
12.00

FREO-CHZ
24.00

Figure 10. 2 to 14 GHz single gate amplifier regults.

In an attempt to improve both the gain and flatness, dual gate FET parameters are used in the design. The dual gate FET also has the advantage of gain control by adjusting the bias voltage on the second gate. The FET parameters are generated from an expansion of the single gate FET nodel into a two-stage cascode model. The gate width was reduced to 200 microns to make the device more stable. Since the overall gain and bandwidth were much better, the design goals were set to 9 dB gain and 2 to 24 GHz passband. The optiaized results are shown in Figure 11.


Figure 11. Dual gate amplifier results.

\section*{What About Stability}

Stability is often a very difficult thing to prove. In order to properly prove stability on the amplifiers designed here, each interface of a FET to the gate and drain lines should be examined to deternine the loads that each FET sees looking into the gate and drain lines. These loads can be plotted on the input and output planes for the FET to deternine if they life in stable regions. Looking at the amplifier response, the gain response and reflection coefficients at the input and output seem well-behaved, thus there is not firm reason to expect a near oscillating condition. There would be
cause for worry if there was unusual gain peaking or reflection coefficients greater than 1 at the input or output.

Conclusion
A glimpse has been given into how an engineer can use computer tools to increase the speed of design and quality of circuitry. The techniques shown are applicable to state-of-the-art amplifier designs .. a mere taste of what the powerful tools available in computer-aided design can do for you.

\section*{BIBLIOGRAPHY}
[1] U. Kennan, N. K. Osbrink, "Distributed amplifiers: Their time comes again, Part 2," Micrownes \& RF. PP. 126, Decenber 1984.
[2] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, G. K. Hohenwarter, "MESFET Distributed Amplifier Design Guidelines," IEEE Trans. Microwave Theory Tech., Pp. 268, March 1984.
[3] Y. Ayasli, "Decade Bandwidth Amplification at Microwave Frequencies," Microwave Journal, pp. 71, April 1984.
[4] T. A. Midford, "Solid State, Broadband Power Amplifiers for Electronic Warfare Applications," Microwave Journal, pp. 95, February 1985.
[5] B. D. Geller, J. L. Abita, "A 3.7 to 4.2 GHz Monolithic Medium Power Amplifier." Microwave Journal, Pp. 187, September 1985.
[6] U. C. Johnson, Transmission Lines and Networks, McGraw-Hill, 1950.

```


[^0]: The silicon vertical MOSFET device is very promising for lower frequencies, but higher device capacitances (compared to silicon bipolar) create Eignificant stability, output matching

[^1]: A good indication of the presence of hot spots (and therefore high junction temperaturel is the power droop over the length of each output pulse. A droop of 0.2 dB for 30 degrees

[^2]: Improved Interrupt Handling. CIAO's analysis and optimization maybe interrupted instantly by holding down any key. Execution may be then terminated with a final analysis or continued, as desired.

[^3]: (1) Hewlett-Packard Application Note 936, High Performance PIN Attenuator For Low Cost AGC. Application.

