How to Stage a Home Broadcast — Making a Simple 4-Tube Radio Receiver
One Antenna for Simultaneous 2-Way Radio — More About Volume Expansion

OVER 50,000 RADIO MEN READ RADIO-CRAFT MONTHLY
Once in a Lifetime
WE CELEBRATE
RADIO'S GOLDEN JUBILEE

50 Years of Radio Progress

Will Be Depicted in
MARCH '38 RADIO-CRAFT——
JUBILEE SOUVENIR NUMBER

Here are the highlights:
- Story of Amateur Radio
- Progress of Radio Receivers
- Grand Old Men of Radio
- Radio Parts of Yesteryear
- Early Forecasts and Their Fulfillment
- Car-Radio Sets—From 1901
- Chronological History of Radio
- Reminiscences of Old-Timers
- From Fleming Valve and Up
- Good Old Set-Building Days
- Famous Circuits in Radio History
- Famous Radio Stations
- Special Old Timers' Page
- Feature Radio Articles
- and many more sensational articles to bring fond memories——

And here are more features:
- MORE THAN DOUBLE THE USUAL NUMBER OF PAGES
- COVER ATTRACTIVELY PRINTED IN FOUR COLORS AND GOLD
- SPECIAL, NEW COVER AND BODY PAPER
- HUNDREDS OF OLD-TIME DIAGRAMS, CIRCUITS, PHOTOS — EQUIPMENT YOU'VE NEVER SEEN BEFORE
- EVERY NEW ADVERTISEMENT WILL BE ACCOMPANIED BY THE REPRODUCTION OF AN OLD ONE — GREATEST THING YOU EVER SAW!
- DIFFERENT FROM ANYTHING EVER PUBLISHED IN A RADIO MAGAZINE
- NEWSSTAND PRICE — 50¢ A COPY

No Additional Cost to Regular Mail Subscribers

Look for the GOLD COVER on the
JUBILEE SOUVENIR NUMBER

MARCH, 1938 RADIO-CRAFT — ON NEWSSTANDS FEBRUARY 5TH

www.americanradiohistory.com
I jumped from $18 a week to $50
- a Free Book started me toward this
GOOD PAY IN RADIO

HERE’S HOW IT HAPPENED

by S. J. E.
(NAME AND ADDRESS SENT UPON REQUEST)

"When I finished training, I accepted a job as serviceman with a Radio store..."

"Eight months later N. R. I. Employment Department sent me to Station WJZ as a Radio operator. Now I am Radio Engineer at Station WJR. I am also connected with Television Station WJW.

"The training National Radio Institute gave me was so practical, I was soon ready to make $5. $10. $15 a week in spare time servicing Radio sets."

"The President, Dept. 88X, National Radio Institute, Washington, D.C.

Find Out What Radio Offers You
Mail the coupon now for my book, "Rich Rewards in Radio," and a sample lesson. They’re free to any fellow over 16 years old. My book points out Radio’s spare time and full time opportunities. Also those coming in Television; tells about my training in Radio and Television; where you’ll find letters from men I trained, showing what they’re doing now. Address MAIL COUPON in an envelope, or paste on reply post card—NOW!

J. E. SMITH, President, Dept. 88X, National Radio Institute, Washington, D.C.

Find out today how I Train You at Home to BE A RADIO EXPERT

Many Make $50, $50, $75 a Week
Do you too want a better job? Do you too want to make more money? Radio offers many spare time and full time opportunities for good pay.

Get Ready Now For Jobs Like These
Broadcasting stations employ engineers, operators, station managers, and pay up to $8,000 a year. Spare time Radio sets paying $200 to $500 a year—full time servicing jobs pay many $80, $80, $75 a week. Many Radio Experts are operating full or part time Radio businesses. Radio manufacturers and jobbers employ testers, inspectors, foremen, engineers, servicemen, paying up to $6,000 a year. Radio operators and ship repairmen get good pay, see the world. Automobile, police, aviation, commercial radio, loud speaker systems offer good opportunities now and for the future. Television promises good jobs soon. Men I trained have good jobs in these branches of Radio.

Many Make $5, $10, $15 a Week Extra in Spare Time While Learning
The day you enroll I start sending you Extra Money Job Sheets. They show you how to do Radio repair jobs, how to cash in quickly. Throughout your training I send plans and ideas that make good spare time money—from $200 to $500 a year—for hundreds of fellows. I send special Radio equipment, give you practical Radio experience—show how to conduct experiments, build circuits illustrating important Radio principles.

J. E. SMITH, President, Dept. 88X
National Radio Institute, Washington, D.C.

Dear Mr. Smith: Without obligation, send me free a Sample Lesson and your radio, 'Rich Toys in Radio'—telling about spare time and full time Radio opportunities, and how you can train them at home in spare time. (Please write plainly.)

Name ___________________________ Age ___________________________
Address __________________________
City ___________________________ State ___________________________

Please Say That You Saw It in RADIO-CRAFT
IMPORTANT!! MARCH RADIO-CRAFT JUBILEE SOUVENIR NUMBER

The forthcoming March issue of Radio-Craft will absolutely be the most outstanding since the inception of this publication. It will contain more than double the usual number of pages. "50 Years of Radio" will be covered by this special edition and such subjects as "Famous Old Radio Circuits," "Reminiscences of Old-Timers," "A Chronological History of Radio," "Old Radio Receivers" and "Radio Parts," as well as the regular material dealing with the latest in Servicing, Public Address, etc.

We know that all old-timers, as well as the comparatively new men in radio, will be greatly interested in this special edition. Its contents will always bring forth fond memories, and will be cherished through the years to come.

Radio-Craft is published monthly, on the first of the month preceding that of date; subscription price is $2.50 per year in U. S. and Canada. (In foreign countries, $3.00 a year to cover additional postage.) Entered at the post office at Springfield as second-class matter under the act of March 3, 1879.

Text and illustrations of this magazine are copyright and must not be reproduced without permission of the copyright owners.

Copyright 1938 Radcraft Publications, Inc.
TRAIN FOR RADIO IN 12 WEEKS

BY MY QUICK, EASY "LEARN BY DOING" METHOD

Prepare today to enter a real money-making field by my quick, easy way to learn Radio. Here in my school you are trained in 12 weeks for your start for a better job and a real future. You do actual work on a great outlay of Radio equipment. The remarkable "Learn-By-Doing" methods used in the great Coyne Shops train you in Radio, Television and sound equipment servicing. Not by books. Not by Correspondence. But all under the individual guidance of skilled instructors, and only on similar kind of work you will meet out on a real job. My methods make it easy to learn—First you are told how to do a thing —then you are shown how to do it—then you do the work yourself. WHERE ELSE CAN YOU FIND SO QUICK AND EASY A WAY TO GET PRACTICAL TRAINING IN THIS GIANT INDUSTRY?

I'LL FINANCE YOUR TRAINING

DON'T LET LACK OF MONEY keep you from sending in the Coupon TODAY. Learn how you can get training first and take more than a year to pay for it after graduation. Make your first payment 60 days after your regular 12 weeks' training period ends. Then take over a year to pay the balance of your tuition in easy monthly payments. Hundreds of ambitious fellows have used this method to get Coyne Training. Fill in THE COUPON AND MAIL IT TODAY. It will bring you the details of this amazingly quick and easy way to get your start towards a good pay job.

Radio—Television—Sound Equipment

Your training at Coyne is in wonderful, modern daytime shops on the finest kind of RADIO, TELEVISION and SOUND EQUIPMENT. Television is sure to come as a commercial industry, whether this year or next. Talking Picture and Public Address Systems offer opportunities for the trained man. Everything possible has been done to make your stay at Coyne happy and healthful as well as profitable.

Electric Refrigeration Training Included at No Extra Cost

This combination Training (Radio and Refrigeration) can be of great value to you. Whether you go into business for yourself or get a job working for a Radio Sales and Service organization, the fact that you are trained in servicing Electric Refrigerators should be profitable to you. Many Radio Manufacturers also make Electric Refrigerators and men with this combination training are much more valuable to these employers. You can NOW get this training without extra cost.

No Advanced Education or Previous Experience Needed

If you can read and write simple English and are ambitious you can be trained the Coyne way—by actual experience on a wide variety of up-to-date Superintendence sets, oscillators, analyzers, and test instruments. You learn how to operate television receiving and transmitting equipment and how to install, test and service public address systems and sound picture equipment. Coyne training also helps prepare you to qualify for a government license examination as Amateur Broadcast or Telegraph Radio Operator and to know Code and Department of Commerce rules. Send coupon for all details.

H. C. LEWIS, President
RADIO DIVISION
COYNE ELECTRICAL SCHOOL
500 S. Paulina St., Dept. 28-8H, Chicago, Ill.

Mail Coupon Today
I'll Send You All the Facts

Get the new "Coyne Opportunity Catalog," giving all facts about Coyne Training. Photographs of Shops showing students at work on modern radio equipment under the personal supervision of Coyne Expert Instructors. Also details of my Part-Time Employment Offer. Pay After Graduation Plan and Graduate Employment Service. Yours without cost. Simply Mail the Coupon.

H. C. LEWIS, President,
Radio Division, Coyne Electrical School,
500 S. Paulina St., Dept. 28-8H, Chicago, Ill.

Send me your big FREE book about Coyne Training and give me all details regarding your "Part-Time Employment Offer" and "Pay After Graduation Plan" of easy, monthly payments.

NAME________________________AGE__________
ADDRESS__________________________
CITY_______________________________STATE________

Please Say That You Saw It in RADIO-CRAFT
Here is a NEW FREE book
Which Every Radio Man Can Use to Advantage!

An Extended Opportunity to Get This Book!
Final Offer Expires January 31, 1938.

RADIO REFERENCE ANNUAL
Published by Radio Craft
New York, N.Y.

6 x 9 INCHES

OVER 125 ILLUSTRATIONS

THE Editors of RADIO-CRAFT have prepared a
special book for you. This book—the RADIO
REFERENCE ANNUAL—is not for sale, but avail-
able only to subscribers, both new and old, with a
Seven Months' Subscription to RADIO-CRAFT. If
your subscription expires shortly, you have the privi-
lege of extending your subscription for seven months,
and still receive the FREE premium. The price of
this Special Offer is only One Dollar ($1.00)—and as
an additional saving, the book is mailed to you post-
paid, just as the magazine is each month.
Carefully outlined at the top right column is the con-
tents of this book: it contains information which
every radio man needs. The book contains 94 pages,
size 6 x 9, and is replete with illustrations.

MAIL COUPON TODAY!

RADIO-CRAFT, 99 Hudson St., New York, N.Y.

Gentlemen: Enclosed you will find my remittance of One Dollar ($1.00) for
which enter my subscription to RADIO-CRAFT Magazine for Seven Months.
Send me ABSOLUTELY FREE and POSTPAID, my copy of the RADIO
REFERENCE ANNUAL. (This Offer Is Good Only in U.S.A. and Canada—
Foreign $1.50.)

Name ____________________________
Address ____________________________
City ____________________________ State ____________________________

(Send remittance by check or money order. Register your letter if you send
cash or unused U.S. Postage Stamps.)

Please Say That You Saw It in RADIO-CRAFT!

www.americanradiohistory.com
WHILE visual broadcasting—television—has not as yet "arrived" for the general public, the time is constantly drawing nearer when this promise will be fulfilled. As is well known, formidable difficulties are still to be overcome before visual broadcasting becomes a reality. The chief obstacles, at the present time, may be summed as follows:

(1) Present television receivers, so far as cost is concerned, are out of reach of the public. There are almost 30,000,000 radio receivers in use in the United States at the present time, the average cost of each to the public being less than $40. The present cost of a television receiver—$100, or more—is an impossible economic obstacle in the path of visual broadcasting.

(2) Technical deficiencies of present television receivers, such as low luminous intensity (reception must be in semi-darkness), image view from only one point, instead of from every direction in the room, are also important factors in the progress of television. Further, present-day television receivers are not well enough perfected so that a non-technical individual can operate one at all times. Finally, a good television-image or video receiver must have 10 times the fidelity of a modern "hi-fi" radio receiver.

(3) The present high cost of visual broadcasting presentations in television studios.

(4) The staggering cost of linking broadcasting stations by coaxial cables into a national network.

There are other difficulties yet to be overcome, but those cited are the chief barriers which are holding back television or visual broadcasting. And let no one run away with the often-voiced chestnut, current in lay circles, that "the 'Radio Trust' is purposely holding television back." Nothing could be further from the truth; and such a contention, in view of the above-mentioned difficulties, becomes more or less ridiculous.

But let us suppose that all of these obstacles have been overcome, at some time in the future. Let us now look into the television studio of a big visual broadcasting key station, and let us see wherein visual broadcasting in the future differs from present-day broadcasting.

At the present time, when a sponsor broadcasts, let us say, a condensed version of Grand Opera it is, of course, not necessary to construct a stage with all the paraphernalia which accompany it, as on the Metropolitan Opera House stage. As a rule, a few singers group themselves around a microphone, and sing against a musical background. With visual broadcasting, this obviously can no longer be done. In other words, when radio adds sight to present sound, it will become necessary to go the limit for presentation purposes; and that means future visual broadcasting stations must indeed become not merely theatres, Grand Opera houses, or motion picture studios, but all three combined.

The technical resources, required to put on a visual show, are so complex and so tremendous that, up to now, it has usually frightened broadcast interests; because they could not see how any sponsor can possibly foot the huge costs which a big broadcast would entail.

Fortunately, it may not be as formidable as all this when visual broadcasting finally arrives. There are all sorts of tricks in every trade and, just as the technicians in present broadcasting studios deceive the ear by synthetically creating noise, ranging from a roaring throng of 5,000 baseball fans, to the roar of wild animals (and usually produced from phonograph records), so in the future your eyes will be deceived by the most marvelous scenery which will be devised especially for the visual broadcasting studios.

This trick of creating scenic backgrounds of the most impressive types, is already well advanced in the motion picture field, where unheard-of effects are produced so cheaply that no one would have thought them possible, a few years back.

Nowadays, when, let us say, a moving background of New York skyscrapers is needed, the moving picture company does not have to travel to New York with its equipment. Instead, a studio camera man goes alone to New York and takes whatever motion pictures are required of the New York skyscrapers, with the river, and the steamships or ferryboats plying about Manhattan Island. The film is then developed in Hollywood, and projected against the back of a translucent screen. The actors now stand in front of this screen, and are photographed by another cameraman. The resulting picture shows the actors disporting themselves against a moving background of New York City skyscrapers! That this, and similar technique, will be used in visual broadcasting is certain. The cost of production will be cut down enormously as the art progresses, yet will give to the public most enjoyable presentations.

As time goes on, other similar new inventions will be added to television broadcasting technique and, indeed, the cost of visual broadcasting, except under unusual circumstances, will then not be larger than presentations of our present-day audible broadcasts. After all, the human element will still be the important factor: and when it comes to outdoor "spot" (outside pick-up) visual broadcasting—such as the transmission of a baseball game, a fire, or an inauguration of the President—the actual cost to video broadcast interests will compare favorably with presentation costs of audio broadcasts today. Another advantage is that, although sound effects often must be faked in regular broadcasts in order to create an illusion of reality, in putting on a television spot broadcast a wider sound range is available which makes it possible to utilize many natural sound effects.
THE RADIO MONTH

ON SHORTWAVES AND LONGER ONES

10 to 25 miles is the commonly estimated range of television and hi-fi systems on ultra-shortwaves with which experimental work is increasingly carried on. Still, W2XOY, the G.E. 7.3-meter station on the N.Y. state office building, Albany, intended for local work, received its first reception letter last month from Phoenix, Ariz., 2,000 miles away!

Code ringing, by remote control, is part of the design of the 10-meter radio-phone system between California Tech. and the Mount Palomar Observatory, Austin Bailey reported last month in the Bell Laboratories Record. The 20 miles was spanned, with an 18-db. loss due to a mountain range between, with 5-watt transmitters; but to overcome ignition interference, 40 watts was added to the power. In the system, a metal water tower serves as a reflector to strengthen a directional beam.

Incidents in peaceful China compelled U.S. action last month when the F.C.C. authorized changeover of communication licenses because of the destruction of the Chenju receiving station. And the Manchuria T. & T. Co. announced in Japan that it will put up broadcast stations in North China next year.

For police and municipal use, 29 frequencies above 30,000 kc. were made available last month by the F.C.C., with rules to be formulated later.

Anti-police transmitters are a problem of European authorities, according to a report from Paris in Reynolds News (London) last month. Crooks, it is asserted, carry pocket receivers to get code messages, on frequently changed wavelengths.

With official acknowledgement that American radio must keep up with the march of foreign propaganda, the F.C.C. last month took under advisement distribution of channels for Latin-American broadcasts. General Electric announced a series of strictly U.S. news broadcasts from W2XAD and W2XAF. Westinghouse announced new "rhombic" directional antennas for W8XK to step up beam signals from 25 to 50 times, gain being greatest at high frequencies.

Recognizing the right of every nation to use every broadcast channel, as a matter of sovereignty, the Inter-American radio conference at Havana last month called for agreements between neighboring countries to prevent interference. Encouragement of aviation radio, and of radio exchange of weather reports was urged.

TELEVISION LIGHTS AND SHADOWS

A S King George VI stood at attention before the Cenotaph at the Armistice observance last month, a demented person broke into the assembly; and the incident was unexpectedly televised, as well as broadcast, to all England’s lookers-in—perhaps 3,000! On the same day, the first broadcast of a complete, full-length play (“Tyrone’s End”) by sight and sound was carried out, from B.B.C. studios at Alexandra Palace. It took 80 minutes.

“Television is here,” President H. H. Beverage told the I.R.E. last month, “the ‘catch’ is cost alone, and that is why every radio-minded citizen fails to have a television receiver in his home.” In England, reports come, owners of radio sets are asking why their licence money (every set must pay $2.50 a year) should go into television experiments, which they cannot receive, rather than programs which they can?
IN REVIEW

News reports announced "first reception of television at sea" aboard the liner Britannic in the English Channel last month. News reports 10 years ago announced first reception of Baird's early television transmissions at sea; but requirements were much less exacting then. In those days, a 30-line image was remarkable.

RADIOCCURRENCES OF LATE DATE

INKING of the Greek ship Teemno Chandra off stormy Cape Hatteras last month adds one more to the list of radio operators lost at their posts, and brings up again responsibility of captains who delay SOS with loss of life to crew and, perhaps, passengers, in gambling to save ships without salvage liability. News story, that an officer with drawn weapon compelled operator to send call without waiting captain's orders, was later denied.

First broadcast from submerged sub, without cable connection was announced last month. Sounds of torpedoes being fired from U.S.S. R-14 were heard from New London harbor over NBC, as well as voices of officers and crew. A short antenna attached to the periscope is said to have made it possible.

Danger of having power apparatus too close to water system was again proved last month when Edward G. Gillig, Jr., of Buffalo, N. Y., stepped from a shower beside his basement short-wave outfit and accidentally touched a high-tension electrode, with fatal results.

Public-address amplifier found new use last month when Mrs. Leo J. Heer of Jamestown, N. Y., toured the countryside in a police car, calling her 3-year-old son Timothy, who had disappeared from home. Unfortunately, the youngster was evidently beyond the range of apparatus.

Conflict between law and medicine was renewed in Los Altos, Calif., last month when police detected that interference on their radio wavelength was due to electric apparatus operated by the health department for germ culture. The "bugs" were removed from the radio, but not from the incubator.

In Uganda, Africa, stated correspondence of Pearson's Weekly (London) last month, the price of a wife has gone up to the level of a radio set; for a first-class maiden, a phonograph may be required, instead of the herd of oxen which was once standard. And good, up-to-date sets are still scarce in that region, to the dismay of impecunious bachelors.

Dedicating new home of N. Y. City-owned WNYC last month, militant Mayor-reelect La Guardia denounced restrictions on S. W. relays, by which he hopes to form a chain with other public-owned transmitters. He declared that the F. C. C. is not yield on the point, he will seek action from Congress. The new transmitter location (shown by map further on) is central as regards the Greater City, and gives excellent coverage with its 1,800 watts. The 804-foot, ½-wave towers are space-phased ¾-wavelength, and time-phased ¼-period apart; power is fed to them

(Continued on page 503)

Meet the Trailing Service Shop, also the home of the Flying Service Man and Mrs. S. M. The Supreme-equipped shop, built into the 19-foot trailer as pictured, has its own power system and is prepared to tackle any radio problem. Several of these installations will be on the roads this year.

Radio is now such a vast and diversified art it becomes necessary to make a general survey of important monthly developments. RADIO-CRAFT analyzes these developments and presents a review of those items which interest all.

Radio tower and transmitter of New York City-owned WNYC. The building, opposite downtown Manhattan, mounts on 99 piles.
PREVIEW OF 1938 FASHIONS

When the fashions of 1938 went on parade, last month, improvements in high-definition television technique had at last made it possible to reproduce colors in almost their natural tones of light and dark; and without recourse to the exaggerated coloring so necessary in the earlier days of television. Images were viewed on 7 1/2" x 10" screens.

A well-known New York department store, by means of a 34-page ad. (reproduced above) in the New York Times, helped publicize an epochal event in television. The Times' daily circulation is about 600,000 copies.
SUCCESSFULLY TELEVISED!

On November 18th, 1937, about 300 persons — stylists, fashion writers, designers, executives — witnessed the first all-fashion television show on this continent.

THE FASHION SHOW of the future was heralded by an NBC television demonstration staged this winter.

In it, radiant models, arrayed in attractive gowns, paraded with stately steps before the cold, grim eye of the television camera — and the more appreciative eyes of the engineering staff. At some 20 receivers (on the 62nd floor of the RCA building), observers watched — and saw even such fine details as the grain of the leather in luggage accessories.

THE GAMUT OF THE SHOW

The new high-definition pick-ups and reproducers (44-line cathode-ray scanning) were able to show details hitherto considered too fine for the medium. In the tests, broad stripes, large patterns and other showy details were omitted. The models wore practical travel, sports, evening and negligee costumes. A hairdresser demonstrated a new "stardust" evening coiffure in the process of creation, and then rearranged it for daytime wear. There were also closeups of jewelry, handbags, evening sandals, handkerchiefs and similar small accessories.

Although the demonstration had been publicised in advance as being about to prove the practicality of television for spot news pick-ups, such was not the case. Advance statements emanating from a prominent motion picture make-up man indicated that television would eschew the purple lipstick, green rouge and blue powder generally believed necessary. While it may do so in the future, it did not do so at the fashion broadcast. The expert had said, "Television performers will wear natural make-up, and probably less of it than the average New York woman uses for street wear." Yet in the fashion broadcast a succession of short scenes showed that the usual orange shades of lipstick were too light to be effective; dark reddish brown or dark purplish red had to be used. Similarly standard eye shadows failed to reproduce correctly and brown had to be applied over it. The make-up is not altogether unlike that used for motion picture work. However it is only fair to state that the expert who made the make-up predictions may have been envisioning a day in the more remote future.

CONCLUSIONS

The demonstration was, nevertheless, an unqualified success. It proved that television carries images with sufficient detail to enable fashion features to be seen clearly in the receiving apparatus. Lookers-in saw negligees which ranged from one-color silk and satin robes to dark plaid and plain color wool, and found that they could distinguish patterns easily, materials not so readily. They saw furs and could distinguish many types, silver fox being especially striking. They saw sports dresses and noted the decorative details. A running commentary was given by NBC's "fashion editor" and an announcer.

"Eventually," remarked Lenox R. Lohr, president of (Continued on page 490)

LET'S PEEK IN AT TELEVISION WITH TWO OF ITS LEADERS

Problems of American television are discussed by Dr. Goldsmith, RCA consultant. British and American television systems are compared by the president of RCA.

By DR. ALFRED N. GOLDSMITH

RESIDENTS of New Jersey will have front row seats in the "theatre of the air" when television becomes a public service.

In the northern part of the state particularly, experimental field tests have shown reception conditions often as good as those met with in many parts of metropolitan New York, where the RCA transmitting station is located, in the Empire State Building. New York presents problems in television transmission that are unique, because of the effect of tall steel structures on the ultra-short radio waves employed in the new art. However, communities in northern New Jersey are said to be lucky in that so many points are in direct air line with the television transmitting antenna on top of the Empire State Tower, because this is the ideal condition for reception of ultra-short waves. (Continued on page 496)

By DAVID SARNOFF

URING MY 5 WEEKS stay abroad, I studied the latest developments of television in Europe. While interest is shown everywhere in this new branch of the radio art, greater progress has been made in England, than elsewhere in Europe.

Nevertheless, the experience to date with television in England, has only served to emphasize the formidable nature of the problems which must be solved before a satisfactory service of television to the public can be rendered, and a new industry soundly established.

AMERICAN VERSUS BRITISH TELEVISION

The question is often asked: "Is England ahead of the United States in television?" I shall try to answer this question by stating the facts as I have now observed them on both sides of the Atlantic. (Continued on page 495)
Twirling a dial to tune stations is definitely on the way out;—making way for automatic push-button tuning systems here described.

N. H. LESSEM

EVER SINCE the introduction of “single-dial tuning” more than a decade ago, manufacturers, experimenters and engineers have endeavored to develop systems for automatically tuning radio receivers. A number of years ago several manufacturers actually placed on the market “remote tuning” receivers, the mechanisms of which were almost identical with that of some of the modern pushbutton automatic tuning receivers illustrated on these pages. A small electric motor, in conjunction with a 2-segment commutator switch, was utilized to rotate the ganged variable tuning condenser. In order to tune a station one had to press (and keep depressed) one of several pushbuttons which were pre-set and marked for a given station, until that station was heard; or instead of pushbuttons, other systems would require a selector switch to be rotated to the desired station (indicated on the head of the remote control unit).

The only trouble was that the stations were hardly ever tuned-in exactly right, due to the fact that the motor (for any given station) would never stop at the same identical spot twice. This of course impaired the tone quality appreciably. Had automatic frequency control been known and utilized at that time, these systems would have worked fine and dandy, since then, slight detuning of the ganged condenser would automatically have been compensated for (in superheterodynes) by a shift in frequency of the local oscillation.

Today's pushbutton automatic tuning receivers employ one of 2 separate systems. One, as mentioned above, using a motor-driven variable condenser with A.F.C. compensation; and, the other using trimmer-condensers, in place of variable gang condenser tuning, switched into the circuit by means of pushbutton switches. This latter system does not require A.F.C. compensation although this is a desirable feature.

Inidentally, even trimmer-condenser tuning systems are by no means new. As far back as October, 1935 the writer wrote an article in Radio-Craft on the construction of a “Lazyman 4 Receiver,” in which toggle switches were used in place of pushbuttons to tune-in separate stations. In this receiver, 6 pairs of trimmers (after being pre-set for definite stations) could be “cut” into the circuit by means of these toggle switches.

Following are the characteristics of the modern pushbutton tuning receivers illustrated on these pages. The numbers
REPLACES DIAL TWISTING

preceeding each description correspond with the numbers on the illustrations.

1. G. E. "Touch-Tuning" System. Employs 6 pairs of selector trimmers to tune the antenna and oscillator circuits to 6 different stations in the broadcast band. The gang condenser must be set to a station not tuned by the selector trimmers. Pressing any one of the buttons releases any other button which may have been depressed. Each button covers a definite frequency range and any station within that range may be set to be tuned by that button. Touch-tuning is instantaneous. An A.F.C. circuit compensates for slight misalignment of the selector trimmers.

2. Howard Radio Company Pushbutton Tuning. Two systems employed, namely, one whereby individual trimmer condensers are "cut" into the circuit by the pushbutton (entirely replacing the gang condenser); and another in which a motor is used to turn the variable condenser. Eight buttons are available for 8 pre-set stations, each button covering a definite frequency range. Note that no tuning dial whatever is used in this model. An interesting feature of the receiver is that one of the buttons may be used for any police band station. The motor-tuned receiver is illustrated in photo No. 7. In these models the dial pointer travels directly to the station desired. It does not (as with some of the other systems) move across the entire dial to a reversing point and then travel back to the point of the chosen station.

3. Clarion Corporation "Flash-Tuning". Trimmer condenser tuning system permits 6 stations to be chosen. Depressing the buttons "cuts" pre-set trimmer condenser into the tuning circuit, in place of the usual variable condenser. In the rear of the receiver 2 sets of buttons for each station adjust these trimmers for any of the stations within the prescribed frequency range of each tuning button.

4. Knight (Selectronic) Pushbutton Tuning. This system uses a motor-driven variable condenser. An A.F.C. circuit compensates for slight off-tune settings. Nine favorite stations may be pre-set and selected at will by merely pressing their respective buttons. Another system uses 7 pushbuttons with corresponding trimmer condensers in place of the variable condenser; A.F.C. is used.

5. Majestic Radio and Television Company. Motor-driven automatic tuning with A.F.C. compensation. Provides for 12 stations which may be easily pre-set from the front panel.

6. Detrola Radio and Television Corporation. Motor-driven automatic tuning with provision for 10 stations. A special feature is that manual tuning can be had without the necessity of throwing any switches.

(Continued on page 498)
THE RADIO CLUB CHAIR!

1 SOLITAIRE WITH ALL THE TRIMMINGS!—cigarettes, radio, telephone, overhead lighting, everything the heart desires,—close to hand. This Radio Club Chair, which contains everything but the kitchen sink, is so made you won’t have to get up from the chair once you have sat down.

2 NOW IT’S COCKTAIL HOUR!—and still you don’t have to get up. The left side of the chair opens to reveal all the necessary paraphernalia for mixing drinks. A loudspeaker hidden in the back of the chair affords the musical accompaniment.

3 SHAVE, MISTER?—Reach into the left-hand arm compartment for electric razor and mirror, and plug the former into the convenient outlet mounted in back of the chair. Notice the magazine rack built into the side of the chair. A fellow can make a career of sitting in this chair.

4 THE VOICE OF COMFORT! Rear view of the “radio club chair” showing the loudspeaker installation and the convenient electric outlet. Notice the clever arrangement of the overhead light, which can be adjusted to any desired height. The cover is easily removable for convenient servicing. Imagine staying a sit-down strike in this chair!

5 THE LAZY MAN’S THRONE! Would you think, merely by looking at it, that this chair contains, in its various hidden compartments, all the necessary paraphernalia for putting on a sitting endurance contest? If only it had hot and cold running water and a bathtub it would be complete.

6 LITTLE THINGS FOR BIG COMFORT! Electric razor and curling iron, cigarettes, electric cigar lighter, pipe and tobacco, mirror, thermometer, manicure outfit, playing cards—practically nothing missing for which anyone would bother to get up—all contained in the left-hand arm compartment. Inventor George Turney hails from Houston, Tex.

7 MORE CONVENIENCES!—this in the right-hand arm compartment. Telephone, electric clock, conventional midget receiver and what appears to be either a tobacco humidor or a huge powder box. Everything seems to be designed to make the lazy individual even lazier. What is there left to induce a man to vacate such a chair?
NEW CONDENSERLESS TUNING SYSTEM DEMONSTRATED!

An old system of tuning, but with the refinements of modern discoveries and technique—this system shows signs of being universally adopted in place of "variable-condenser" tuning.

W. E. SHRAGE

A N OLDTIMER of radio communication, Paul Ware, demonstrated last month at a meeting of the Radio Club of America a modified tuning system—equipped with coils of variable inductivity—which he believes will cause great changes in present all-wave receiver design.

"FIXED C/VARIABLE L" TUNING

Modern radio engineers consider it old-fashioned to design tuning circuits with a fixed condenser but with a variable inductance, that is, with "fixed C/variable L". Instead, it is customary, today, when developing new circuits, to think in terms of (a) variable capacity and (b) a fixed inductance; that is, variable C/fixed L.

Although it is true that the fixed C/variable L method of tuning is exceedingly ancient, having been known almost since the beginning of radio communication, it should not be considered as being a tuning system having poor electrical efficiency. In fact, the contrary is true. The electrical qualities of this design are often much better than those of present-day tuning circuits—operating with a variable condenser but a fixed coil—and the main attraction of this "old-fashioned" method of tuning is the well-known fact that it permits covering large frequency bands without need of switching.

Nevertheless, any time the problem comes up to use variable contacts on coils (in order to vary the inductance value), many a radio engineer is inclined to discard this idea, and tends to achieve the effect desired by means of a variable condenser.

However, these designers forget that metallurgists and chemists have made great strides in the past few years in achieving new alloys, and in the treating of metallic surfaces. This new knowledge about metals permits the manufacture of switches and contacts, which not only operate noiselessly, but also provides perfect contact over long periods of use.

FUNDAMENTAL PRINCIPLES

It does not need mention that the ultimate trick of Mr. Ware's new tuning device lies with the ingeniously designed method of contact. Before going deeper into the matter of contact, let us first look at Fig. 1B which presents the fundamental circuit utilized. The variable coil Lc (which may be rotated in either direction) is connected with the end-coil Le and with a padding condenser P which is used to align the coils if a set of them is used. The small end-coil Le has been applied in order to shift the dangerzone of natural frequency of the tuning coil Lc—outside the tuning range.

All that is required to tune this circuit is to move the contact Ct, and this contact Ct will short-circuit (in accordance to its position) a more or less large part of the main coil Lc.

TROLLEY CONTACT REPLACES SLIDER

Now let us see how the important problem with the perfect contact has been solved. The familiar type of slider-contact (uniformly used in the dear old days of detector-reception) has of course been discarded. Instead of the earlier type of (Continued on page 491)

RADIO-CRAFT for FEBRUARY, 1938

Fig. 1. Fundamental detail sketches and circuits of the "variable-inductance" tuning system. Although the underlying principle is old, the present system of application may prove revolutionary.
O ESKIMOS who like almost everyone else, heard their first radio broadcasts from KDKA, those call letters still are synonymous with broadcasting itself. Recently, radio listeners in every clime shared the Eskimos' sentiments, for the entire radio industry joined to celebrate the 17th anniversary of that pioneer broadcasting station. (See January Radio-Craft, pg. 391, "New Antenna to Multiply Field.")

NEW 3/4-WAVE "CLOUDSCRAPER"

Significantly enough, the high point of the ceremonies was the dedication of what is claimed to be the world's most modern and efficient antenna, a 718 ft. steel "cloudscraper" located at Saxonburg, Pennsylvania, which is now giving primary service for an area 10 times greater than that formerly provided with strong clear signals.

The new antenna, like the other modern equipment in KDKA's present spacious quarters, signalizes the amazing advances made by radio in 17 brief years. It was November 2, 1920 that the original KDKA, housed—studio, sending equipment, technicians and talent, altogether—in one big room at the Westinghouse Headquarters Works in East Pittsburgh, flashed to the owners of the few amateur receiving sets then in existence the news of Warren G. Harding's election. That daring venture inaugurated a daily program which marked the beginning of commercial radio broadcasting.

In 17 years, broadcasting stations have multiplied the original one into

(Continued on page 493)

60 TONS OF ANTENNA

The world's tallest of slim-welded structures is completely insulated from the earth. Nevertheless lightning crashes to ground from it without affecting broadcast programs!

TELEVISION STUDENTS LEARN BY MAKING CATHODE-RAY TUBES

PART IV

Reader of Radio-Craft have exhibited exceptional interest in this series of articles—published here for the first time in any popular radio magazine—on constructing experimental C.-R. tubes for television.

CONSTRUCTION OF THE ELECTRON GUN

A nickel sleeve is tipped with a mixture of barium and strontium carbonate (made by a well-known chemical firm and called "Radio Mixture No. 1"). Anycanthate is used as a binder material together with a very small amount of colloid.

Only the end of this cylinder, which is short, is coated with this mixture. When the sleeve is heated to a bright red heat the mixture combines with the nickel to form what is known as an oxide filament. This combination constitutes a very copious emitter of electrons and is far better for this purpose than either tungsten or thoriated tungsten.

In the center of this sleeve is placed a tungsten heater element (A, in Fig. 3). The tungsten heater is the filament which heats up the nickel sleeve (B) or cathode. Over this

(Continued on page 492)
"Single-sideband" image-transmission, over the New York to Philadelphia coaxial cable, affords better than 240-line fidelity, states Mr. Jewett, President of Bell Telephone Labs., in a release (reproduced below).

FRANK B. JEWETT

RECENTLY, in the Bell Telephone Laboratories in New York, a sound-picture film was run through a transmitter and the film's two records — sound and scene — now converted into electric currents, were "piped" (transmitted) over the new "coaxial cable" to Philadelphia. (See Radio-Craft, April 1935, page 583; and August 1935, page 70.) There, the picture was reproduced on the screen of a cathode-ray tube, large enough for a group of 10 people to see easily while the accompanying sound came from a loudspeaker. The sound pictures described, by voice and animated diagrams, the coaxial cable system (in which one conductor, in the form of a tube, completely surrounds a second conductor) and explained briefly the operation of the picture transmitter and receiver. Some films, typical of the newsreel theatre, were also transmitted.—Editor

In order properly to appraise this demonstration of television pictures transmitted (as images) over the coaxial cable, it is necessary to understand just what the demonstration was designed to show; what it was and was not; and what was new and an advance over the preceding art.

The demonstration was not the first transmission of television-image currents for long distances over wires. The first such demonstration was made by the Bell System in 1927 when television image currents were transmitted from Washington to Bell Telephone Laboratories in New York and there reproduced. In that demonstration transmission was over specially-conditioned telephone circuits of ordinary construction. The characteristics of such circuits were sufficiently good for the poor grade of television picture then attainable by the equipment for scanning and reproducing (50 lines, corresponding to a frequency bandwidth of approximately 22,500 cycles).

The demonstration was not one designed to show an improved television per se. In fact the images (240 lines) were inferior in grain to those produced by the most modern television equipment (441 lines or better). This was not due to any limitation imposed by the scanning or reproducing apparatus but to the limitations imposed by the experimental terminal and repeater equipment now on the New York-Philadelphia cable. This equipment limits the top frequency of the transmitted current to approximately 1,000,000 cycles so that a 240-line picture is about the finest-grain image that can be transmitted. (Continued on page 497)
VOLUME EXPANSION

Problems of (1) microphonics, (2) fidelity and (3) adequate expansion, and their recent solutions are discussed by a well-known specialist in the Public Address field. Certain disc recordings having special significance for testing purposes are mentioned.

CLIFFORD E. DENTON

THE VOLUME EXPANDER was introduced in 1935 as a means of improving electrical phonograph reproduction. Due, however, to either a lack of appreciation of its possibilities or lack of interest on the part of the public in recordings, the development of this interesting device was confined to the work of a few designers. The year 1935 saw the phonograph record business soar to new highs in sales and with this favorable impulse the interest in expansion increased just when it had been threatened with oblivion.

The original circuit was described by RCA and is shown in Fig. 1. In operation the 6L7 is used as an audio amplifier whose gain can be controlled by variation of the injector-grid bias. A separate amplifier and rectifier supply this control voltage.

FIDELITY INCREASES WITH EXPANSION

A study of the curves in Fig. 2 will show how the gain of the tube can be varied as the voltage on the injector-grid (G3) is changed. While the curves in the figure are only relative it is interesting to note that the distortion is greatest at low percentages of expansion; and decreases as the expansion is increased.

The control-grid of the 6L7 is biased through the voltage divider. This section of the tube has a remote cut-off characteristic and for this reason some means of limiting the signal input to this grid must be used if distortion is to be avoided. The injector-grid is biased more negatively by means of the potentiometer. This makes the injector-grid more negative than the cathode with the result that the gain (plate transconductance) is low. See Fig. 2. The same signal is fed to the control-grid of the 6L7 and to the control-grid of the 6C5 expander amplifier. The output of the 6C5 is rectified by the 6L6 and this voltage is applied to the injector-grid (G3) in such a manner that the high starting negative bias is reduced with a resulting increase in transconductance or gain. This increase in gain is approximately proportional to the rectified voltage developed by the diode so that any increase in signal amplitude from the record will proportionately expand the output.

Volume expansion has a definite place in audio work. Let us see just how it can work for us to advantage.

TESTING FOR EXPANSION

A milliammeter placed in series with the plate load resistor will indicate the change in tube dynamic characteristics when expanding. With the starting current set for 0.14-ma. (no signal) by adjustment of the bias on G3, play a record and note that the plate current will rise to 0.5- to 0.7-ma. on loud record passages. In fact, the meter pointer will vary along with the reproduction and will indicate the presence of expansion without listening to the loudspeaker. The inclusion of a 0-1. ma. meter in the expander amplifier is a convenience as it simplifies the selection of 6L7 tubes for satisfactory performance and permits the accurate setting of the 6L7's plate current for operation as an expander without expansion. When the tube is used as a straight amplifier set the plate current to 0.3-ma. and then turn the moving arm of the expander amplifier potentiometer to the ground side. This will set the gain of the 6L7 at a higher level than that used with expansion and will block off any signal through the expander amplifier.

Those who have built amplifiers using this circuit have found that 6L7 is very critical and subject to microphonics. The divider method of obtaining the various tube voltages required high values of capacity to prevent inter-coupling between the following stages of the amplifier. In the attempt to "cure" microphonics the tube has been slung on floating sockets and in some cases completely enclosed in heavy shields to minimize acoustic coupling between the tube and the loudspeaker. Most of the methods of floating and shielding were ineffective to say the least; so, a new electrical system of the circuit was developed. This circuit—WHICH HELPED SOLVE THE "MICROPHONICS" PROBLEM—is shown in Fig. 3.

REDUCING MICROPHONICS

This refinement of the 6L7 expander includes the use of a 6C8G, one of the newer dual triode tubes as a combination expander amplifier and rectifier tube. The diode anode consists of the grid and plate of one of the tube sections connected together.

The plate load of the 6L7 is 20.000 ohms and while the gain from the stage is lowered there is a great improvement in performance, particularly as far as microphonics

Fig. 1. By utilizing a type 6C8G tube the problem of microphonics is solved.

www.americanradiohistory.com
are concerned. The screen-grid voltage dropping resistor is of the series type which is more satisfactory from the standpoint of increased fidelity and helps to decouple the screen-grid circuit from the rest of the amplifier. A cathode biasing resistor makes the tube self-regulating as far as concerns plate and screen-grid current and does away with "hand picking" of the tubes.

The amplifier section of the expander using one of the sections of the 6C8G provides higher gain than the 6C5, with the result that the injector-grid (G3) of the 6L7 can be operated through a greater range. This permits the expansion range to be extended to 30 db or more.

Constants are also given in Fig. 3 for the remaining portions of a suitable amplifier for home reproduction of records. This makes a low-cost amplifier with a 6EG8 as the phase inverter and voltage stage feeding a pair of 6L6 tubes in class A operation at the 250-volt condition. The output is 10 watts with an expansion range of approximately 30 db, with a low percentage of overall distortion.

When building expander amplifiers, have the expander amplifier volume control placed close to the master volume control so that the percentage of expansion can be changed at will. After playing several hundred records of every type it was noted that no two records could be played to the best advantage with the same degree of expansion. (1) This can be traced to (1) the ever varying compression ratios used in making records, (2) the level of reproduction, and (3) the characteristics of the equipment used.

USING A VARIABLE-MU TUBE

A circuit that is of more than passing interest was suggested to the author by George Connors of Hygrade Sylvania and involves the use of the remote cut-off characteristics of the 6D6 tube. The circuit of this system is shown in Fig. 1. The schematic of the rest of the amplifier is similar to Fig. 3 and was included because the curves of Fig. 5 and the distortion data covered later were made with this set-up.

The performance of an expander amplifier using the 6D6 as the expander tube is shown in the curves of Fig. 5. It will be noted that the expansion capability of the 6D6 is limited as the cathode bias is reduced and that the use of more than 20 volts positive on the cathode of the tube may cause rectification to take place under conditions of no expansion.

In order that the maximum expansion capabilities of the tube are to be realized it is necessary to vary the voltage on the control-grid and the suppressor-grid at the same time. In operation, the varying voltage from the diode rectifier applied to the suppressor-grid and control-grid varies the plate impedance and the transconductance at the same time. How effective this action is can be checked by examination of the curves in Fig. 5.

The harmonic distortion in the expander stage was measured with the following results:

<table>
<thead>
<tr>
<th>6D6 Cathode EXPAN</th>
<th>% Distortion</th>
<th>6L6 Bias</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Volts 0 to Full</td>
<td>None</td>
<td>10 W.</td>
<td></td>
</tr>
<tr>
<td>17 Volts Full</td>
<td>1.11</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>20 Volts Full</td>
<td>1.49</td>
<td>10.2</td>
<td></td>
</tr>
</tbody>
</table>

Average 6D6 tubes work well and are free from microphonics. Other tubes having similar characteristics were tried in the same circuit and performed as well. The 6K7 for example.

The inclusion of a plate milliammeter is very desirable and the cathode bias control resistance should be mounted in a convenient place for adjustment. In operating the 6D6 as an expander amplifier, set the plate current to a low value, i.e., 0.15 ma., and when using the tube as a straight amplifier, adjust the plate current to 0.75 ma. These current (Continued on page 504)

Fig. 2. This illustration shows the control characteristics of the 6L7 amplifier shown in Fig. 1. Note that distortion is greatest at low percentages of expansion and decreases as the expansion is increased. The output of the 6D6 is rectified by the 6k6 and this voltage is applied to injector-grid G3; thus, amplification of the circuit is increased proportionately with increasing phono-record signal amplitude.

Fig. 5. Performance characteristics of the expander amplifier (using a 6D6 as the expander tube) shown schematically in Fig. 4. Rectification occurs, under conditions of no-expansion, at cathode biases over 20 V. positive.

Fig. 4. This circuit, suggested by George Connors of Hygrade Sylvania, incorporates the 6D6 circuit shown in more detail in Fig. 3.
HOW TO STAGE A HOME BROADCAST

LISTENING TO A BROADCAST probably ranks third in respect to fun, as far as the BCL (broadcast listener) is concerned. Second, is being a member of the studio audience; and first, is being an actual participant in the performance.

You can give your guests all 3 thrills by the use of a home broadcasting "mike," a few sound effects and—a little ingenuity!

TECHNICAL PRELIMINARIES

The microphone, or "mike," may be one of the sort that can be bought in most radio stores for 25c to $2.50. These normally come with instructions for connection to average types of radio sets. Failing that, the "mike" may be a loud-speaker or crystal type. It is ordinarily connected between the grid of the detector tube (2nd-detector, in a superhet) and the ground, as shown in Fig. 7. (The set-chassis usually is ground.) Connecting a short wire (with a condenser of about 0.006-mf. capacity in series) from the antenna post of the set to the chassis will usually keep the regular radio stations from competing with you when you stage your own program.

Probably your set will howl like a soul in purgatory when you first try this out. Don't let it bother you; it is a good sign, showing that you have ample "gain," or amplification. You can overcome the howl by placing the mike well off to one side of the set, and slightly to the rear of it. Sometimes it may be necessary to put a box-top draped with a Turkish towel near the mike, between it and the set, to screen out the sound waves which result in feedback. See Fig. 1.

If your friends are talented instrumentalists, or if the party has reached the "Sweet Ad-o-line, My Ad-o-line" stage, there will not be much to staging your own amateur hour, provided the accompanist has brought his piano. But far more fun is had by putting on a dramatic program, which gives almost everybody a turn at doing a little plain and fancy emoting. It is especially amusing if the program is based upon some standard broadcast, burlesquing it a bit. You might even combine 3 or 4 popular programs; suggestions on how to do this will be given further on in this article.

Having everything in readiness, you are ready to begin. Someone (and it had better be you) will have to act as program manager, studio director and production man. Arrange the seats as you want them, type out the parts for your cast, and let them all sit right in the "studio". They can leap from their seats to take part in the show, returning

(Continued on page 489)

Fig. 1. The "stage" set-up for putting on the home broadcast program. The "mike" and sound-effects table may be located in another room if desired.

Latent talent for broadcasting may be discovered by staging your own programs. Here you learn, via a burlesqued home-broadcast, the rudiments of "getting on the air."

ROBERT EICHBERG

Fig. 2. With the aid of simple, easily-obtainable apparatus, sound effects which are quite realistic may be obtained. Read text for other effects.

WATER
AIRPLANE
FOOTSTEPS
BOMB
CLOCK STRIKING
BOAT WHISTLE
FIRE
CRASH

RADIO-CRAFT for FEBRUARY, 1938

www.americanradiohistory.com
By permission of the British Broadcasting Corporation, Radio-Craft reproduces and describes views in the B.B.C. Effects Studio. U.S. effects, too, are mentioned.

SOUND EFFECTS
—THE BRITISH WAY

GHOSTS WALK, WHILE BANSHEES SHRILL AND SOUND-EFFECTS MEN PERSPIRE, for here they are at the sound-effects table, giving British listeners all the thrills of a haunted house. The clacking chains are seen manipulated in the hands of the very-much-alive gentleman at the right, while his fellow-spoak holds a piece of scrunching brass against a whirling grindstone. Another good goblin gadget, not shown, is the huffhaver, made by fastening a rawhide thong to the bottom of a small drum, and pulling the thong through a resined chamois skin. The throaty howls emitted may be as terrifying as one likes, and are frequently used inside the "Wild Man's" tent, to coten the suckers into thinking they will really see something, and thus persuading them to part with their slapance. An American ghost, if he has become a radio performer, also uses the chains, but adds the refinement of rattling his bones, too, as he wafts around the studio. He does not rattle the bones as in a dicing man (creps to you) but has a special effect, consisting of a number of small hardwood pegs, loosely string together, so that they rattle when shaken. However, the only time the ghost walks around most American studios is on payday. United States listeners having an inherent disability to respect a specter, and a habit of confounding ghosts with goats.

A SIREN OF THE SEAS, NEITHER A MERMAID NOR A CRUISE PASSENGER, is the effect for which this young man is striving. Above and at the center of the cluster of compressed-air tanks he has a steam whistle, connected by a tube to the tank which he is manipulating. He pulls the lever twice slowly, twice rapidly and the siren whistle emits a loud Who-who-who-who, after which he can go home to his tea and crumpets. The tanks behind the one he is using are spares, but the two at the left are ready to use for other effects. The one at the left rear is a whistle of higher pitch; the one at the left front bears a 3-toned whistle. Much easier is the system generally adopted by many major United States stations, which use recordings. The apparatus is more compact; there is room for a wider variety of effects in the studio and in the "props" room where effects are stored. Instead of having to have a half-dozen tanks with an assortment of whistles, like our British brethren, American sound-effects men simply pull the right record from the rack, put it on the turntable and place the pickup as needad. Many records carry several sections each, so that one may have the sort of whistle a boat emits when departing, when arriving, when calling for a pilot, when fog-bound (ah, there, London), or when warning a fishermen to look out.

HEAVEN HELP THE SAILORS ON A NIGHT LIKE THIS, when 5 sound-effects technicians unite their efforts to make life miserable for the fc'c'l hands on a windjammer. The man at the right are not holding a bass drum; it is a tightly stretched membrane, however, that is much like a half bass drum. The man in the foreground is gathering up a handful of sand, which he will hurl upon the tissue paper in the basket before him—that sounds like a smoker of spay coming over the good ship "Flying-Wow's" bow. The murmur of the surf will be imitated by rocking the half-drum, causing the sand on the membrane to slide back and forth in a rhythmic fashion. The potatoes, piled on the membrane, will give the rumble of the storm. The two men holding the long canvas will snap it, to give the effect of the wind slating the canvas of the sails, and the white paper with cloth can be used to augment it when a sharper snap is necessary, or to wipe the brows of the sweating technicians—for this is real work. The only man who may remain still enough to wear a jacket in comfort is the sound-effects supervisor, holding the script at the left as he stands beside the wind machine. An excellent wind machine of American type consists of a slatted cylinder. A strip of canvas wrapped around it and fastened to its frame chafes it windily when it is turned.

ROWING IN THE RAIN is easily indicated. The board in the tub simulates the sound of an oar plashing in a placid pool; the surfact, fastened to the tub's edge may be left uniled to squeak realistically, or may be silent, clanking but occasionally when the oar is clumsily manipulated—on purpose. The shower head on the right-hand nozzle gives the effect of raindrops striking the water's surface, while the steady flow from the left-hand faucet indicates that the boat is approaching a waterfall. Closely placed, the microphone picks up all these sounds, Notice that both the sound-effects men wear headphones, so that each may judge with what volume to create his effect, Notice also the overflow pipe at the left rear of the tub; it must be soundless so taat it does not gurgle when carrying off the "rain" and "Niagara Falls"; it must be efficient, lest the tub overflow. Many water effects are used in the United States as well, the most famed of which was that of the fake lamanted Shuokeed, which used a tank only a fraction the size of that employed by the Britishes. For that effect, a paddle wheel was turned in the small tank, motive power being the sound-effects man's good right arm. The boat's whistle was a 2-tone pipe, lamp-operated. Is it any wonder that sound-effects technicians are frequent sufferers from heavy colds?
HOW TO MAKE THE RADIO CRAFT SUPER-DELUXE 30-TUBE SET

In this next to last chapter on constructing the Radio-Craft 30-Tube Radio Set is described the final chassis required to complete the actual receiver; the concluding Part, next month, will describe the loudspeaker complement and the rack construction.

CHASSIS No. 4

The POWER SUPPLY for the Radio-Craft 30-Tube Radio Set has been designed to give years of dependable service. For this reason all the components are oversized, so that the receiver may be operated hour after hour without overheating. But—and to many people this will be an equally important feature—filament voltage is held to 6.1 volts for increased tube life and lowered operating cost (an appreciable item in a receiver of this size).

Because of the heavy-duty requirements of the parallel push-pull 6L6's a separate source of plate current supply was found to be absolutely necessary for good regulation. The plate current alone of the four 6L6's is 207 milliampere with no signal applied to the control-grids. This plate current will rise to 301 milliampere at full output of 60 watts. The measured plate voltage at zero signal was 407 volts and at full output 401 volts, or a drop of only 6 volts between minimum and maximum requirements.

As can be seen, the regulation of current versus voltage is close to being perfect. A further advantage of the separate plate supply is that the 6L6 screen-grid voltage is not affected by the plate current variations. Because the screen-grid voltage remains constant, the fixed-bias for the 6L6 grids is obtained through this supply from a tapped voltage divider arrangement.

As will be noted from the schematic, shown in Fig. 15C, 3 power transformers are required. The filament transformer, P.T.2, supplies 5 volts at 3 amperes for the type 83 rectifier filament, and also 3.6 amperes at 6 volts for the four 6L6 filaments.

The plate current transformer P.T.1 supplies up to 400 milliampere at 400 volts with choke input. The remaining power transformers supplies plate, screen-grid and filament power to several tubes, besides being the source of fixed-bias for the 6L6's.

The plate current supply utilizes only one choke to smooth out A.C. ripple to a level below 1 per cent. This choke is of the swinging type and is capable of passing 400 ma. continuously and still have an inductance of 8 henries. At 200 milliampere, the inductance is over 20 henries. It is a brute for size and weighs over 13 pounds.

The remainder of the plate supply consists of two 600 volt, 8 mf. electrolytics in parallel and a 50,000-ohm bleeder resistor to protect the condensers on the starting surge. The combination plate and filament transformer, P.T.3, uses 2 filter chokes capable of passing 175 milliampere at 20 henries each. A total current of 125 milliampere flows continuously through the voltage divider. This transformer supplies filament power for the 523 rectifier and 14 metal tubes on chassis No. 2 and No. 3.

CONSTRUCTION

The parts should be laid out just as shown in the photographs, Figs. K and L, to avoid hum pick-up. No parts should be permanently fastened to the chassis until all the required holes have been drilled. The sockets should be mounted first. Either rivets or screws and nuts may be used. The light parts should be mounted next and finally the 3 heavy units, that is the 2 large power transformers and the swinging choke. The wiring of the power pack is next. Use only high-grade hookup wire or else use spaghetti tubing over ordinary wire. The rubber-covered line cord should be of No. 16 gauge wire and not the usual No. 18 or No. 20, as these wire sizes get

Fig. K. The extra-heavy-duty power supply for the 30-Tube Set. Note the cores of the power transformers and chokes are mounted at right-angles.

Fig. 16. In A are shown the trimmers to be adjusted in numerical order; in B, the method of connecting output meter or oscilloscope for alignment purposes; in C, the recommended antenna to be used.
Radio-Craft offers a copy of the "Official Radio Service Handbook," by J. T. Bernsley, to the set builder who submits a glossy photograph of the Radio-Craft Super Deluxe 30-Tube Set which in the opinion of the Editors appears to be the best job. The photograph must be at least 4 x 5 ins., or larger; it is desirable but not essential that the loudspeakers and rack construction be included in the view. This offer closes February 15, 1938. In view of (1) the step-by-step construction, (2) the independent serviceability of each chassis, (3) the simplicity of the fundamental design, and (4) the availability of Radio-Craft testing facilities in the event of trouble, we feel that many very fine jobs will have been turned out by our readers.

THE POWER SUPPLY

PART V

Fig. 1. Under-chassis view of the power supply unit, Chassis No. 4.

warmed when a current of 3 amperes flows through them.

Another point to look out for is the A.C. toggle switch. The ordinary size used for receivers won't do because the contacts are too small and would soon burn out. Use the 10-A. switch recommended in the parts list. A final point to remember is the aging of the 83 rectifier. These tubes contain mercury and should be aged for 15 minutes when brand new, before actually using them in the set. Simply apply 5 volts to the filament for 15 minutes. No voltage should be applied to the plates during this time.

A table of plate and screen-grid voltages for the entire set is given in this installment, to aid the builders in trouble-shooting. All voltages are measured from socket contact to chassis with a 1,000 ohms/volt meter on the 500-volt range.

ALIGNMENT PROCEDURE

Due to the fact that all of the R.F. and I.F. transformers used in this set have been pre-tuned at the factory, the alignment procedure is greatly simplified because in the majority of cases it will be necessary only to touch a trimmer here and there to bring out the peak power.

However, in the event that a set might at some future time be tampered with or thrown completely out of alignment, the following procedure should be closely adhered to.

PRELIMINARY STEPS

The Multi-wave Tuner that serves as the basic unit in this receiver has detailed alignment instructions packed in the carton, so we will not repeat them here. Plug all 4 chassis together, see that all tubes are plugged into their proper sockets and before turning the set on, connect either an oscilloscope or an output meter across the demodulator load resistor, from the junction of R28 and R29 to the chassis. See Fig. 16B.

We wish to point out that while the set can be aligned very well with the old-style output meter and oscillator, it is only fair to state that a much finer job of alignment can be done by using a frequency-modulated signal generator and an oscilloscope, preferably of the 3-inch type. In either case you must use instruments. Do not attempt to align the set by ear or guess-work.

FIRST STEP: Set the signal generator at 175 kc. and let it run for 5 minutes before using it. Remove the grid lead from the cap of the 6L7 (V13), 2nd I.F. tube. Connect the leads from the signal generator to the cap of this tube and chassis. Before adjusting any trimmers, set the knobs on chassis No. 2 as follows: I.F. sensitivity, on full; Bandwidth switch, on Sharp; Noise Silencer on Minimum; A.V.C. Level on Minimum; DX-Local switch on DX; A.V.C.-B.F.O. switch should be set to the A.V.C. on-B.F.O. off, position. The Bass and Fidelity controls need not be set to any point in particular during the alignment.

(Continued on page 494)
"BIMETALLIC CONDENSER" AIDES TUNING!

Automatically-tuned radio receivers at last have become practicable only through the application of precision tuning methods. A novel idea that maintains this precision during a set's warming-up period is described.

ONE OF THE interesting trends in present radio engineering is the attempt to gain frequency control of automatically-tuned receivers, not only by means of A.F.C. circuits, but also through the application of temperature-compensated tuning elements. Indeed, modern pushbutton-controlled all-wave receivers do not use A.F.C. circuits at all, but are caused to operate by the application of temperature compensation only.

At first glance this information seems about as enlightening as would be a notice in the papers that "the famous British naturalist, W. W. Pyrcraft, distinguishes between two kinds of germ plasm; the heredity plasm, which possesses on from parents to progeny, and the zonato or body plasm, of which the genes mold men, trees, anything that lives."

Let us forget all about this highbrow-sounding stuff and look at a simplified but practical explanation, as presented in Fig. 1A. We see a coil, the physical dimensions of which increase under the influence of heat. Despite the "well-known fact" that attempts have been made to use some of the lower-priced midget receivers for cooking and baking, one is hardly willing to believe that the average receiver of conservative design becomes so warm as to cause expansion of its coils exceeding split parts of an inch. One is therefore inclined to conclude from this calculation that the expansion of the coil as caused by heat is of negligible influence upon the proper functioning of the receiver.

CAUSES OF RESONANCE DRIFT

Unfortunately, this conclusion is not correct. Every Service Man and amateur knows that 100% tracking on an average superhet (one without automatic tuning) is one of those day-dreams which seldom comes true. The reason for this trouble is well known and simple: (1) Improper design of the paddding condenser; and (2) Shift in the frequency of the local oscillator under the influence of heat, etc.

We know by calculation that a variable condenser with a maximum capacity of 25,884 mfd., and an inductance of exactly 167,846 mhy., are necessary for the oscillator circuit, in order to obtain an I.F. of 460 kc. in the broadcast band (540 to 1600 kc.). See Fig. 1D. Every small decrease in inductance in either the R.F. or oscillator coil will naturally cause frequency shift, with consequently mediocre reproduction of speech and music. If both coils are affected, it will cause detuning of the receiver during operation. This characteristic in a set which is supposed to be automatically tuned is, of course, intolerable.

This fault can be avoided when a trimmer condenser of a design similar to the one shown in Fig. 1B is used. The upper plate of such a condenser is, as indicated, made of bimetal, a special metalurgical product which bends under the influence of heat, forming the arm of a circle, as shown in Fig. 1C, and thus causing an increase in the capacity of the associated circuits. In other words, the decrease of inductance in the coil (caused by the expansion due to heat) is neutralized or balanced out by the increase in capacity of the small bimetallic trimmer condenser.

(Continued on page 496)

RADIO-CRAFT for FEBRUARY, 1938
NEW EQUIPMENT
FOR ALL-WAVE RADIO

Experimenters in wavelength ranges both inside and outside the usual broadcast band will find on this page several new items of interest.

Chairside Phono-Radio. It is a hard fight, but radio manufacturers are gradually getting away from technical appearances. To this end one manufacturer now offers an all-wave, 13.3 to 550 meter receiver with drop-leaves that cover-over both the phonograph and the radio control mechanisms. As shown in Fig. A only the decorative loudspeaker grille is seen normally (both lids down). (1558)

3-Gang Midget Condenser. Experimenters long have wanted a condenser gang for short-wave transmitters and receivers. A representative new unit of this type is shown in Fig. B. Gangs are now available with maximum capacities per section as follows: 20, 55, 100 and 140 mmf. (1559)

All-Wave Armchair Radio Set with Automatic Tuning. Even automatic tuning has successfully stormed the realm of armchair radio sets, as Fig. C illustrates; 10 favorite stations are available at the touch of a button; shelves for books and brick-a-brac add further utility to the instrument. Wave-length range is 16 to 550 meters. (Allied Radio Corp.)

Load Coils and Wavetraps for the All-Wave Set. In Fig. D is shown, at A, a loading coil which permits improved operation (reduction of whistles, etc.) on the broadcast band of an all-wave receiver without affecting short-wave sensitivity, an attenuation ratio of 10 to 1 may be obtained. The coil connects in shunt with the set's antenna coil primary. The wavetrap shown at B is adjustable to interfering frequencies, at R.F. or L.F., that cause whistles, and other types of resonant interference. Attenuation ratios up to 500 to 1 may be obtained without affecting the short-wave ranges. The coil connects in series with the primary or secondary circuit of the antenna coil. (1560)

Radio-Tuning Motor. Automatic tuning may be accomplished by means of the reversible motor shown in Fig. E. The use of balanced, differentially-connected shading coils (for automatic starting) results in inherently quiet operation. A contact of course is required in the radio set; and an A.F.C. circuit ordinarily must be utilized. (1561)

Directional-Loop Antenna. Although designed primarily for use with a particular type of radio receiver, the loop antenna shown in Fig. F is applicable to other types. This item is of special interest to owners of boats and planes; weather and other reports on wavelengths 550 meters may be tuned-in. The loop is shielded. It is rotated by means of the control unit shown; a 264 to 1 gear ratio affords accurate loop adjustment, and indicates by a needle on the scale. (1562)

Radio and Power Outlet. Service Men and owners of all-wave radio sets should study the merits of the outlet shown in Fig. G. It provides for wall-socket plug-in connection of the radio set to the power line and to a doublet antenna installation. It is impossible to accidentally interchange the two plugs. A dividing plate serves to isolate the two sections of the outlet. (1563) (Continued on page 490)

Names and address of any manufacturer will be sent on receipt of self-addressed, stamped envelope. Kindly give (number) in above description of device.

Fig. A. Chairside set. (Lower-left, leaves raised.)

Fig. B. Ganged S.-W. condenser.

Fig. C. Pushbutton-tuning set.

Fig. D. New coil units.

Fig. E. Motor

Fig. F. Directional loop.

Fig. G. Newest wall outlet.

Fig. H. Variable condenser for small sets.

RADIO-CRAFT for FEBRUARY, 1938

471
HOW TO MAKE A SIMPLE 4-TUBE REGENERATIVE A.C.-D.C. SUPERHET.

A nifty little job for beginners! Regenerative 2nd-detector adds plenty of "wallop". As the picture diagram shows, a 5th or ballast tube is used. This set is very selective.

M. N. BEITMAN

Many different circuits have been designed around 4 tubes. Many of these use unusual arrangements of parts, others feature multi-purpose tubes. Let us see just what can be accomplished with single-function, modern tubes in a conventional circuit.

If the set is to be used on A.C. and D.C., and is also economical from the standpoint of first cost, the modern 0.3-ampere-type tubes must be used, connected in series. A rectifier is needed; and, to stick to late metal tubes, we are going to use a type 25L6 connected as a half-wave rectifier. Working from the back end, we turn next to the power output tube. The tube takes care of a 25-volt drop in the filament circuit. The power output of the 25L6 is 2 watts and this is more than plenty for all requirements. By placing the choke in the negative-return of the power supply, we can use part of the voltage drop created there to bias the power tube. The plate supply for the 25L6 need not be exceptionally well filtered.

The ordinary 4-tube midget is a T.R.F. job and lacks selectivity. A single stage of I.F. with a carefully-adjusted, high-gain I.F. transformer runs circles around the gain obtained with a T.R.F. stage. By employing a pentagrid converter (type 6A8 tube) we combine the function of oscillator and mixer, and have the antenna coil to act as a preselector.

Next comes the I.F. transformer, coupling the 6A8 to the 6J7 detector. The gain is plenty, but to give the set the extra something, we included regeneration (feed-back). Notice in the circuit diagram (Fig. 1a) how the plate is coupled back to the second half of the secondary through the 5-50 mmf. condenser. The 10,000-ohm resistor is in the plate circuit also to prevent oscillation. There are also numerous condensers for complete filtering.

The set can be easily wired and gives really good selectivity and tone quality. The fully-wired receiver, rear view, is shown in Fig. A. Note that the circuit ground is not connected in any manner to the outside ground. This will prevent possible short-circuits common to certain types of A.C.-D.C. sets.

The set may be aligned by listening to stations at about 600 and 1,200 kc., but a signal generator will give you better results. Connect the signal generator to primary of the I.F. transformer. Set the signal generator to produce 465 kc. and adjust I.F. transformer trimmers for maximum signal. Next connect generator to antenna circuit, set it to produce 600 and 1,200 kc. and adjust variable condenser trimmers for maximum signal. In most cases very little adjustment will be needed as the parts have been pre-adjusted at the factory.

The regeneration control, while the adjustments are going on, is left loose, i.e., with the very minimum of capacity. After alignment is completed, it is adjusted for maximum signal.

If you want to obtain the most out of 4 tubes in straight-forward circuit, this is the radio set you should build.

LIST OF PARTS

* One 2-gang condenser, 356 mmf., C1, C2;
* One antenna coil, L1;
* One oscillator coil, 465 kc., L1;
* One trimmer condenser, 5-50 mmf.;

(Continued on page 499)
2-WAY POLICE RADIO OVER 1 ANTENNA!

Simultaneous transmit/receive operation over a single antenna is made possible, by means of a newly-developed filter unit (with one wire inside the other) and a well-designed receiver, at 7 meters.

C. W. PALMER

A NEW TYPE OF FILTER for use in simultaneous transmission and reception on ultra-high frequencies for police-radio systems, has just been developed by engineers of the G.E. Co. This filter which can be used for both "station" and "mobile" police installations has several novel features that make it interesting to the radio technician. (This system was mentioned—in a general way—in the article, "Short-wave Radio Marches On!", in the December 1937 issue of Radio-Craft—Editor)

This new filter permits SIMULTANEOUS "talking" and "listening" in the 30 to 42 megacycle (10 to 7 meters, respectively) police-radio band, from a single antenna. This provides the excellent reception required by the transmitting police, without the expense of erecting costly headquarters receiving antennas in addition to the transmitting antenna. Also, in the case of all-steel-top cars in mobile installations, the filter is the means for providing a very efficient receiving antenna by utilizing the transmitting aerial.

The filter has very high attenuation at the "elimination" or resonant frequency and very little or no attenuation to the band of adjacent frequencies. Therefore, neither the filter nor the receiver absorbs power from the transmitter. When used with well-designed receivers, this filter can be used to receive, without inter-action, signals differing in frequency by only 4 per cent from the transmitter frequency.

PRINCIPLE OF NEW "HIGH-Q" FILTER UNIT

The principles under which this new high-frequency type of wave filter operate were described originally at the 1937

Fig. A. The concentric-line band-elimination filter used in connection with ultra-high-frequency police communication systems.

Convenience of the I.R.E., in New York. It is a well-known fact that although common practice always demands "lumped" inductance and capacity in resonant (tuned) circuits, in the form of coils and condensers, similar resonant conditions can be obtained by spreading out or distributing the inductance and capacity over a given circuit.

A common example of this effect is in the flat-top aerial which consists of a straight horizontal wire, yet has a definite inductance capacity and resonant frequency just as though it contained a coil and condenser.

On long wavelengths it is not feasible to use this "distributed" inductance and capacity for tuning because of the large physical proportions that the tuned circuit would assume. However, on ultra-high frequencies it becomes a relatively easy matter to "fold up" the short length of tubing required for a distributed inductance and capacity tuned circuit. Moreover on ultra-high frequencies such a tuned circuit displays a marked improvement over lumped inductance and capacity circuits, permitting Q factors of large magnitude to be obtained. (The Q, or efficiency figure, obtained with lumped coil and condenser circuits drops off rapidly with increase in frequency and is almost unity in the 2- to 3-meter band.)

An examination of the circuit in Fig. 1A will show just how this distributed-constant tuned circuit is used as a band cut-off filter tuned to the frequency of the transmitter, preventing signals of that particular frequency from passing to the receiver yet allowing signals of other frequencies to reach the receiving unit of the mobile or station-house police installation.

CONCENTRIC-LINE FILTER

In any "concentric transmission line"—i.e., a line in which one of the two conductors is contained inside the tubular, second conductor—(which is another way of describing this distributed inductance and capacity tuned circuit), "standing waves" are built up over the length of the line at the resonant frequency, so that at certain points in the line, the voltage is zero. See Fig. 1B. It is at one of these zero points that the lead-in for the receiver is connected, which explains why no signals are picked up at the frequency of the transmitter (resonant frequency) yet signals of other frequencies pass through unobstructed.

The utilization of this effect permits the receiver to pick up signals of any other frequency, in the band to which it will tune, except the actual frequency of the transmitter which is connected to the same aerial as the receiver. At the actual frequency of the transmitter the receiver has a "deadspot" and no signals can be heard.

There is no doubt that this system of simultaneous 2-way conversation will find many other applications in ultra-short wave communication—its economics and flexibility making it a particularly suitable system for many different services.
ENGLISH HI-FIDELITY DYNAMIC

This unusual loudspeaker, shown in Fig. A, was clipped from a recent ad in the *Wireless Retailer and Broadcaster* (London). Contrary to appearance, the center cone is not moveable (see May '36 Radio-Craft for similar idea with moving cone), since it is a hollow cone of hard material that does not form a part of the moving cone material. This center cone serves as a distributor of high frequencies, and thus results in more even distribution of the high frequencies.

MODERN PLASTIC PORTABLE

The attractive, modern radio receiver shown in Fig. B was displayed at a recent Berlin Radio Exhibition. It is made by a German concern—Siemens & Halske—and due to its construction makes an ideal portable or home set. The cabinet is made of plastic material, a practice which is now becoming popular in this country, and includes closing front-doors. The net result is an all-wave chassis with a resplendent front and case which sets a new "high" in portable design.

NEW ENGLISH SET WITH CALIBRATION PROJECTOR

At the Radiolympia show in England the receiver shown in Fig. C attracted considerable, deserving attention. It is manufactured by Ferranti, and includes, as a feature, a "magnascope" dial, which is shown in detail in Fig. D. This device operates to advantage on short-waves, since its construction permits projection and enlarging of the calibration figures on a screen on the front dial, thus permitting finer and more accurate tuning. An idea of the operation of the "magnascope" dial may be obtained by referring to Fig. D, which shows the course of the light from a lamp (A), through a lens (B), through the dial scale with its figures (C), then to an enlarging lens (D), to a mirror (E) from which it reflects back to a celluloid or other translucent-material screen. The location of this screen is on the larger tuning dial.

DANISH 3-TUBE REFLEX SUPERHET

REFLEX CIRCUITS are still extensively used in Europe, although now practically unheard-of in the U.S.A. The Danish magazine *Popularer Radio*, in a recent issue, described the construction of an interesting 3-tube reflexed superheterodyne receiver, the diagram of which is shown in Fig. 1. Here we find that the 3 tubes function as follows: tube V1—is termed an octode, the American equivalent of which probably is the 6A7 or 6A8, and which functions as a combination 1st detector and oscillator; V2—is a duodiode-pentode (American equivalent—6B7 or 6B8) which functions as the 1st I.F. amplifier, 2nd-detector, A.V.C., and A.F. amplifier stage. The 3rd tube is a simple cathode-type half-wave rectifier (1V or 1223) which supplies "B" power from either 110 volts A.C. or D.C. The multiple functions obtained from V2 are obtained through reflexing, since the pentode section of the tube functions as both the I.F. and A.F. amplifier. The diode sections operate as 2nd-detector and A.V.C., each function being assigned to a diode-plate.

It should be noted by those who intend constructing this receiver that the values given in the diagram are those calculated to give best results with European tubes. Consequently, some slight changes or experimenting with values may be necessary with the American tubes before proper efficiency is obtained.

In the European version this receiver requires a switching system, A-B-C-D, to permit covering a longwave band above the top wavelength of 545 meters used in the U.S.

RADIO-CRAFT receives hundreds of magazines from all parts of the world. Since the cost of subscribing to each of these would be prohibitive for most radio men, we have arranged with technical translators to prepare reviews for our readers.
HOW RADIO HANDLED THE ELECTIONS!

Back in 1920, presidential election returns (radioed from one station to a few thousand listeners) helped inaugurate broadcasting as we know it today. In '37, the reporting of election returns (via hundreds of stations, to millions of listeners-in), last month, reached new heights of network broadcasting studio and "NEMO" (remote pick-up) technique; for instance (in at least one set-up), remote pick-up points were contacted instantly by dialing.

WITH NEW YORK CITY staging its most fiercely-contested majority campaign in years, the major stations bent every effort toward providing complete coverage for radio listeners. Each had its own idea of the perfect set-up—spared no expense, no effort. All achieved good results.

What each station did in order to ensure the fullest information reaching its listeners with a minimum of delay makes a fascinating story of radio's inner workings; a story which would have been impossible 15 years ago.

The city station, WNYC, had set-ups at 6 remote points and in 2 studios, all of which were linked by interconnected private lines to the master control room, to provide instantaneous switchover facilities. At Police Headquarters, tabulations were read from the official bulletin board; at Times Square, members of the election crowds were interviewed, and bulletins from the New York Times on elections in various parts of the country were interpolated.

Further data were secured from county watchers and reporters of the American Labor, Democratic and Republican parties, and statistical information came from the station's own Studio B, lulls being filled-in with music played in Studio C.

The set-up for WOR, key station of (Continued on page 505)

RADIO-CRAFT for FEBRUARY, 1938

475
SERVICING INSTRUMENTS FOR 1938

Reviewing the newest test instruments we observe that manufacturers have increased their figure of sensitivity. Also further progress has been effected towards securing speed and flexibility under practical working conditions. These improvements, in the final analysis, mean increased profits for the Service Man.

UP-TO-DATE Service Men will be exceptionally interested in the 6 new instruments illustrated on this page; and in noting the appreciable advance in test-equipment design over the period dating from the October 1937 special Test Equipment Number of Radio-Craft. (Incidentally, 7 servicing instruments were described in the October issue in the article "Latest Test Apparatus for the Service Man"; and, 6 service units were shown in the article "Test Equipment for the Service Man," in the July 1937 issue).

"Super-Flexible" Tube and Set Tester. Combining the model 321 tube and multimeter (December 1937 Radio-Craft, item No. 1502) with the model 503 analyzer unit (November 1936, item No. 1199) makes available a "super-flexible" method of set testing. A different plug-in method of analyzing radio receivers, amplifiers, etc., at the socket is obtained without sacrificing the complete independence of either unit and without increasing size or bulkiness of (1) the basic tube unit or, (2) the multi-test unit. (1530)

(Radio City Products Co., Inc.)

Alignment and Servicing Oscilloscope. Add a good frequency-modulated service oscilloscope to this 3-in. oscilloscope and you have a complete set-up for visual alignment and service. Note that mounting the tube at an angle has put the screen at eye level. One sweep circuit is variable from 3 cycles to over 150,000 cycles; a 60-cycle sinusoidal sweep for simplification of visual alignment is also available. (1531)

A 10,000 Ohms/Volt Set Analyzer. This new model has a resistance of 10,000 ohms/volt. D.C. Its current drain of 100 microamperes is low enough to assure extremely accurate measurements of A.F.C., diode balancing circuits, grid currents of oscillator tubes and power tubes, bias of power detectors, and a wide range of unusual conditions that cannot be checked by conventional servicing instruments. A 12-position range selector switch automatically brings corresponding scales into view. Maximum ranges are: 1,000 V. D.C. (10,000); 1,000 V. A.C. (1,000 ohms/volt); 20 meg.; and 100 microamperes. (1532)

Signal Generator and Frequency Modulator with 8-ft. Scale. In order to eliminate parallel (wrong alignment of pointer and scale-indication) a hairline indicator showing shadow-tuner is utilized, to spot-light the individual range desired, on this newest modulated oscillator. The 310-degree dial has an actual scale length of over 8 ft. Excellent for use with an oscilloscope for visual alignment, since it emits: (1) unmodulated R.F., (2) 400-cycle amplitude modulated R.F., (3) 30-ke. band-wooble over I.F.-R.F. range, (4) fixed 400-cycle A.F., (5) variable 0 to 10,000-cycle A.F., (6) 120 kc. to 60 mc. R.F.-I.F. range. (1533)

(Supreme Instruments Corp.)

25,000 Ohms/Volt Set Tester has Illuminated Meter. A commendable step forward in test equipment has been inaugurated with the advent of this unit which utilizes a front-illuminated indicating instrument; this feature reduces the possibilities for error by making the scale indications independent of room lighting. Instrument incorporates a condenser tester, free-point tester and decibel meter. Range (Continued on page 494)

Name and address of any manufacturer will be sent on receipt of self-addressed, stamped envelope. Kindly give (number) in above or following description of device.
NEW CIRCUITS IN MODERN RADIO RECEIVERS

The details of the modern radio receiver circuits that make them "different" from previous designs are illustrated and described each month by a well-known technician.

F. L. SPRAYBERRY

(1) UNTUNED R.F. AND FIRST-DETECTOR IN MODERN SUPERHETERODYNE

RCA Model 813K. For tuning all of the short-wave bands, the only variable tuning used is that of the oscillator. Ganged to the main tuner is a small variable condenser which makes a total capacity change of the oscillator circuit of only slightly more than 9.2% in covering the lowest frequency short-wave band. It makes a smaller total capacity change for the other short-wave bands.

Throughout these very small bands where the best broadcasts are concentrated no R.F. or 1st-detector tuning is used as the loss, due to off-resonant tuning is negligible, and the difficulty introduced by tuning would not be justified. This may be better understood by an inspection of the very small bands that are tuned. Following is a list of the approximate percentage frequency change from minimum to maximum for each band:

<table>
<thead>
<tr>
<th>Band</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast band</td>
<td>324%</td>
</tr>
<tr>
<td>49-meter band</td>
<td>4.5%</td>
</tr>
<tr>
<td>31-meter band</td>
<td>3%</td>
</tr>
<tr>
<td>25-meter band</td>
<td>2%</td>
</tr>
<tr>
<td>19-meter band</td>
<td>2%</td>
</tr>
</tbody>
</table>

The circuit is shown in Fig. 1A in the 19-meter position of the wave-band switch.

(2) GREATLY SIMPLIFIED A.V.C. DELAY CIRCUIT

Philco Model 286A. A separate A.V.C. circuit using an ordinary 6S7G triode makes for considerable simplicity. The 2nd I.F. control-grid and suppressor-grid, and the R.F. and 1st I.F. suppressors are permanently biased at -3 volts. This is shown in Fig. 1B. The -3-volt bias is also applied to the A.V.C. control-grid through a 1-meg. resistor. As the signal voltage drop across the lower section of the plate coil of the 2nd I.F. amplifier exceeds a 3-volt peak, rectification starts in the A.V.C. tube making the control-grid become charged negative by the amount of the average carrier peak. This A.V.C. voltage controls the R.F. and 1st I.F. tubes by the conventional control-grid action.

With this A.V.C. system the A.F.C. circuit need not carry the A.V.C. potential and the detector circuit is separated for its best performance.

Any system or circuit which must perform a number of functions is improved by isolation from other circuits as far as possible. This circuit shows just another step in this direction.

(3) NON-DEGENERATIVE BIAS FOR FIRST-AUDIO

Stewart-Warner Models 1911 to 1915. Since a fixed bias is always desirable for amplifiers both from the viewpoint of output and fidelity these receivers make use of a bias cell in series with the volume control as in Fig. 1C.

This direct, series grid connection of the bias cell marks a new application of it. It offers very little reactance or resistance to the signal supplied through it and is placed for the minimum possible signal current flow. Its use permits grounding directly the cathode and suppressor-grid of the 1st-stage audio amplifier 6S7G.

(Continued on page 498)

Radio-Craft for February, 1938
THE LATEST RADIO EQUIPMENT

CONSTANT-IMPEDANCE HEADPHONE CONTROL (1537)
[Centralab]
A WELL-KNOWN volume control unit designed for mounting on the headphone cord has been modernized. It now utilizes a constant-impedance "L"-pad attenuator circuit that eliminates loading mismatch. A worthwhile improvement in tone quality is thus obtained. (Circuit on continuation page.)

SERVICING-TYPE PHONO TURNTABLE (1538)
[RCA Manufacturing Co., Inc.]
TWO HIGH-QUALITY automatic record-changing mechanisms and a crystal pickup (impedance 800 ohms) are at prices which open up a highly profitable phonograph replacement and modernization market for service engineers. Models have been made available. The deft unit is illustrated. Needle is top-load and automatically indexing to proper playing position; pressure is adjustable. "Plays" eight 10-in. or seven 12-in. records automatically.

CAPACITY-OPERATED APPROACH ALARM (1539)
A CAPACITY-OPERATED relay that closes a circuit whenever anyone approaches the "antenna"—which may be a wire, metal plate, screen, or other metal object—is available, which affords a novel attraction. This A.C.-D.C. device may be used for advertising displays, announcing callers, protecting valuables, and generally controlling electrically-operated devices (up to 800 W. rating) without actuating contact. Unit is available with time delay, limited time delay, and coded selection.

BIAS-VOLTAGE TRANSFORMERS (1540)
A NEW LINE of transformers, designed especially to furnish 50 to 500 V. D.C. for "C"-bias in radio transmitters has been announced. A viết filter filament winding is included. The unit illustrated covers only a portion of this range.

MARINE LOUDSPEAKER IS WATERPROOF (1541)
THE MARINE-TYPE P.M. dynamic, metal-pot horn speaker here shown is designed to operate under severe weather conditions such as in ocean-going ship service. Immersion in salt water does not damage the instrument! Bell measures 14.5" ins.; has a "folding back" action to which an air column length of 30 in. is obtained; frequency response: 200 to 5,000 cycles.

HIGH-POWER P.M. DYNAMIC UNIT (1542)
HRRR IS A dynamic horn unit, with permanent-magnet field, capable of continuous operation at 20 W.; sensitivity is sufficient to produce high output at low-input levels. Bass and/or treble, of different units, undergoes an electrochemical process to prevent corrosion; and is conveniently replaceable.

FLASHLIGHT SCREWDRIVER (1543)
ILLUMINATED screwdrivers have been described in past issues of Radio-Craft but the newest type is so small it clips into your pocket. Tool is furnished with standard battery and bell. Tip of tempered steel in machine-ground to size; and rustproofed. Recommended for radio, refrigerator, automotive and oil-handler Service Men. Handle is "folding back" design. The small size of the tool is illustrated by the pencil alongside it; in fact, it's small enough to meet most alignment requirements.

60-W. AMPLIFIER FEATURED VISUAL MONITORING (1544)
BOTH overload and output-level indication are obtained on indicator points in the new monaural amplifier illustrated. The entire rated output of 60 W. may be used in outdoor work; where music reproduction is paramount as in dance-hall use operation at a lower power level affords tremendous reserve power to handle peaks without distortion. The frequency range is 150 to 150,000 cycles (not considering speaker distribution network). Microphone gain, 50 db.; phonograph gain, 61 db. Dimensions, 16% x 9% x 17 ins. long; weight, 51 lbs. Tube complement: 5-497's, 1-ER7, 1-6F9, 2-6LS5, 2-6L6's, 1-524A, 1-80. (Continued on page 50b.)

EXTRA CARBONS
New patented-feature "Iron" solves problems. (1546)

ARMORED CAPILLARY GAGE THERMOMETER BULB
An aid to radio men servicing refrigerators. (1547)
"PLUGGIN" ELECTROLYTICS [1548]

A RADIO SET manufacturer has just brought out a radio set incorporating a type of electrolytic condenser equipped with a 2-prong ("Pluggin"-trade mark) base. This feature is great for servicing convenience. Incidentally this condenser design enables experimenters and builders of original equipment to design and incorporate in their chassis a construction that requires no servicing of the condenser installation for the life of the equipment.

RADIO-TYPE 2-VOLT CELL [1549]

CAPACITY ratings of 100 and 100 ampere hours are available in a new line of storage cells designed for radio use. They are rated according to E.M.A. standards. The radio-type terminals have non-interchangeable marked caps.

ULTRA-COMPACT WET ELECTROLYTICS [1550]

(Solar Manufacturing Corp.)

A NEW LINE of exceptionally compact, non-evaporating wet electrolytic condensers has been announced. Capacity range is 8 mf. at 580 V. peak to 30 mf. at 100 V. peak. This unit will operate perfectly at -40° C., whereas most electrolytics become inoperative at slightly below freezing point or zero-degrees C. (82° F.). A new formation process which produces a highly stabilized film on the anode surface makes it possible to shelf these condensers for a year or more without leakage problems. The new electrolyte of course has a low freezing point; full etching and a novel adaptation of the cylindrical fluted type of anode have helped achieve compactness.

VELOCITY MIKE HAS ACOUSTIC COMPENSATOR [1551]

(Ampertite Company)

SINCE tone controls are not conveniently adaptable to all P.A. systems a new microphone has been introduced which incorporates an "acoustic compensator." By a slight motion of the finger a shutter on the back of the microphone may be moved up or down in order to adjust the pitch of the system to the particular room’s speaker, etc. In effect an acoustic baffle is produced which absorbs some of the lower frequencies and thus reduces the tendency toward peak response.

COAXIAL CABLE FOR HI-FI PUBLIC ADDRESS [1552]

A MANY-USE coaxial cable has been designed which overcomes the limitations of earlier types and meets many needs in Radio, Public Address and Electronics. The central conductor is insulated from the flexible outside tubular conductor by means of elongated beads of a plastic known as anhydros (almost as good as quartz), which are strong on the central conductor like beads on a string.

Use this new coaxial cable for: high-fidelity public address voice-transmission lines; antenna leads; transmitting antennas, transmission lines and feeders; lines between photoelectric cells and galvanometers; measuring instruments where high-frequency losses or conductivity losses must be reduced to a minimum; galvanometers and electrometers: aircraft antenna leads; etc. In short, use it wherever freedom from disturbances or from pick-up, or where good shielding or low capacity are desired.

AUTOMATIC PHONO-RADIO PORTABLE [1553]

SOMETHING NEW in radio is this combination automatic phonograph and radio reproducer which plays eight 10-in. or seven 15-in. records automatically, while the lid open or closed. O erates on 110 V. A.C. (A more rugged D.C. model is also available.) The receiver is a 2-band superhet utilizing 7 metal tubes.

DELAYED-ACTION FUSE WIRE [1554]

A MOMENTARY short-circuit or a surge often causes a fuse to "blow" unnecessarily. A fuse has recently been introduced however which does not operate unless the short or surge is maintained. This obviates the need (and attendant danger of equipment burn-outs) for using too-heavy fuses. Ordinary metals do not have this "lag" property. The problem was solved, however, by using a non-oxidizing filament of high-melting-point (nickel) wire, and mounting on it a tiny explosive blob of powdered magnesium held in a suitable binder. The melting point of the nickel is some 1,450° C., but the flash point of the magnesium is only 650° C., and on burning it instantly generates a short, or 4,000° C. Thus an overload of appreciable duration heats the blob of magnesium to its flash point, and on burning, melts the nickel filament and clears the fuse. High overloads of short duration, however, do not create sufficient heat to raise the blox of magnesium to the flash point. The result is that one of these new "mag-nickel" fuses of 1/2 amp. rating will withstand the same surge as a 1 amp., conventional radio cartridge fuse, and yet will blow on a 15 per cent overload if the overload persists for one second. This should at last remove all risk of burned-out radio sets.

PORTABLE SOUND SYSTEM [1555]

HERE IS A 10-W. sound system utilizing two 10-in. P.M. dynamic reproducers and a crystal microphone that will meet all the ordinary needs, indoors or out, that can be covered by a portable P.A. system having this power rating. Note the versatility of the collapsible microphone stand.

The amplifier unit is shown about midway between the two loudspeakers. In this main photo the microphone stand is shown extended to full-length (for orchestra use, etc.); the action-view insert at upper-left shows it completely collapsed (for use as a hand-mike); insert at center shows it in super-center stands (it partly extended as banquet-mike).

METAL LATHE FOR THE SMALL PARTS WORKER [1556]

SHOP SERVICE MEN will be interested in a new 16-speed metal working lathe only 12 in. between working centers. It is thus convenient for the clever workman to make, at low cost, replacement parts that often cannot be

(Continued on page 867)
EXPERIMENT NO. 5A

TESTING RADIO PARTS

A—CONTINUITY TESTING

Each of the methods of testing parts for defects like "open circuits" and "short-circuits," and this method of testing is usually known as **continuity testing**. The other part of this experiment (to be numbered 5B) will deal with **resistance testing**, in which method a meter is used to find the actual resistance of part being tested.

Continuity Testing. A very desirable method for testing any part in an assembled unit is to substitute a replacement part for the one being tested. This method, though very simple and definite, is not the most practical, as a full set of replacements is not usually available, and for any one of a number of other reasons, very often cannot be used. It is therefore necessary to be able to test each part separately, and it is with such methods that this Experiment is concerned. Beginners just starting in this Series, may find it desirable to refer to preceding Parts, in the event that any of the terms used here are not clear. All terms used here for the first time are italicized.

PRINCIPLES INVOLVED

The general idea in parts testing is to send a current through the part, and observe how the part acts. This idea is the basis of the "old reliable" battery and phone test shown in Fig. A. When the 2 test leads are applied to a part, and a click is heard in the phone, it is then apparent that there are no breaks in the wire, that is, no open-circuit. Since this simple method determines whether the wiring is continuous and unbroken, it is called **continuity testing**. This method will test all parts which call for continuous circuits such as resistors, coils, transformers, etc. The 1½-volt cell indicated here, should give an audible click with parts having a resistance up to about 1 megohm (1 million ohms). For higher resistances correspondingly higher voltages should be used.

Condensers may also be tested for an open-circuit, even though they do not have a continuous internal circuit. An audible click will result when the test leads are applied because of the charging current drawn by a good-size condenser. After the first contact or tap has been made to charge the condenser, **successive taps should not give a click** of the same loudness; otherwise a short-circuit is indicated. With a 1½-volt cell an audible click can be obtained on the first contact of the test leads with capacities as low as about 0.0005-mf. (or about 500 mmmf). Although doubling the voltage to 3 volts will allow the testing of condensers having only half the above capacity (0.00025-mf. or 250 mmmf), it is not practical to try to test any condensers much smaller than this, by this method. Also this method should not be used for electrolytic condensers, because, inherently, they have a comparatively high leakage.

TESTING FOR SHORT CIRCUITS

When testing parts having low resistance values, it will be practically impossible to distinguish between a part that is OK and one that is short-circuited, or, as it is usually termed by the practical radio man, "shorted". By the term **short-circuit** is meant a condition where the current can take an undesired path that has little, or practically no resistance. This term is one that is very widely used (and just as widely misused) in electrical work, and it is well to note that a "short"-circuit is so-called because of the low resistance of its path and not because of its short length. On testing of a low-resistance part that has this short-circuit condition, the click that is obtained in the phones will be just about as loud as that obtained with a good part (since the good part has a low resistance anyway) and so, in such cases, the "short" does not show up.

For this reason, a method for testing **shorts** is also given. This method uses the same drycell and a low-voltage bulb of the flashlight type. See Fig. B.

Continued on page 488
SERVICE MEN MAY write, requesting answers to specific service questions. Address inquiries to Service Editor. For questions answered by mail, a service fee of 25c per question is made. Only questions of wide interest can be published. In view of the "rush" character of most service calls an effort is made to maintain 48-hour service on mail inquiries. Let us help you solve your service problems.

Note: Test all tubes before writing to this department concerning a given servicing problem. All questions must contain complete information regarding symptoms, and tests to date, so that an adequate answer may be given.

NOISE IN CAR-RADIO

(39) Robert E. Alfonare (Q) I am forced to call for aid relative to...1:00 am. Chokes in "A" and had no effect on noise reduction. Another receiver was temporarily installed in the car but with little improvement in noise reduction. An "over-the-top" antenna is used. Tests show this aerial to be responsible for little noise. Suppressors do not help. What do you think is responsible for the tremendous amount of noise pick-up? How could the circuit be changed to introduce inter-station noise suppression?

(40) A very pick-up on the Atwater Kent model 756 automotive receiver in your car is probably due to 5 causes, any one or all of which will produce the symptoms outlined. A well-shielded receiver for automotive service has long been a requisite for satisfactory operation.

An Arvin 1937 Auto Radio Sets. Any vibrator which may have caused a noise level to an unbearable level after a period of operation of an Arvin car set may be corrected by the following procedure:

1. Warm up the radio set by playing for 20 to 30 minutes. Tighten the 1 screws which hold the power transformer to the radio chassis. This will effectively eliminate most cases of vibrator noise.

2. An additional remedy for R.F. interference is to cut the grounding braid connecting the tuning condenser to the radio chassis. The particular grounding braid is located closest to the point of entry of the tubing flexible shaft. Do not cut any other ground wire on the tuning condenser as this might introduce motor noise.

Stewart-Warner Models 3041 to 3049. Some of the model 3041, 3042, or 3043 receiver circuits may oscillate or "grew" especially when tuned to weak stations or between stations. We have found that this oscillation can always be eliminated by connecting a ground to the receiver. However, if a set is to be used without a ground, the circuit can be kept from oscillating by connecting a buffer condenser from one side of the power line to the chassis within the set. The condenser should have a capacitance of 10-11uf., and a voltage rating of 1,000 V. or more. If a shielded type is used, it can be soldered to the chassis under the loud speaker.

In connecting the buffer condenser, first solder one terminal to the chassis under the speaker. Turn on the set, then touch the other terminal to one wire of the line cord and note whether the hum increases or decreases. If the hum increases, touch the condenser terminal to the other wire in the line cord. Then connect the condenser to the line cord wire which causes a decrease in the hum. This will usually be the line cord wire which connects to the twisted wire from the on-off switch.

Stewart-Warner Corp.

Not Always the Volume Control's Fault. I was called in to change a volume control on a standard type of modern receiver, with dynamic speaker, and proceeded to do so, but the second volume control behaved in exactly the same manner. I noticed that I was silent about half-way and that came on suddenly. I took the chassis to my bench and tried another one, with the same control, same result, and through checking of associated circuit disclosed nothing, so I went ahead with the centering of the voice coil. I had noticed a very slight fuzz in the tone. When I tried to set again the volume control worked perfectly, and I can see no other reason for its behavior than the voice coil sticking at a certain point and requiring a certain strength of volume to loosen it.

As this might happen in any modern receiver I am sending it along in case it is worth printing.

A. S. Mason

Kingston, Ont., Canada

OPERATING NOTES

ANALYSES OF RADIO RECEIVER SYMPTOMS

RADIO-CRAFT for FEBRUARY, 1938

481

Note that, effective with this issue, Radio-Craft will include special servicing data regarding late models, as released by manufacturers, inasmuch as these bulletins are not received by many Service Men. Service Men are requested to submit only well illustrated, CHARACTERISTIC TROUBLE- BLES of radio sets; payment is made after publication.

Weak Volume

(49) J. C. Triddle, Charles City, Iowa

(1) We are having trouble with a Coronado model 310x, a 4-tube, 2-volt battery set by Kingstone. Weakness is main trouble. When the radio is removed, volume increases slightly. The low frequencies are received very poorly. Tubes batteries have all been replaced, as have been the univar, antenna and oscillator coils. The alignment has been checked several times. The transformer and antennas seem peak OK, but the high-frequency trimmers are rather tight. Can you help us on this problem?

Unfortunately, no information on the Coronado model 310x is available. However, the symptoms described in your letter point toward trouble in the upper portion of the circuit, where the oscillator frequency is below received frequency. Sugest that alignment of oscillator be checked again, remembering that the correct adjustment for the oscillator shunt trimmer is at the.

(Continued on page 500)

Later production receivers are being built with such a line buffer condenser to prevent any oscillation. Sets using the condenser can be identified by the letter "S" on the back of the chassis also on the outside of the carton near the serial number.

Condensers will be supplied without charge if you wish to install them in any of the sets you have already have which are oscillating. No-charge orders will be honored only if serial numbers of the receivers are listed.

Stewart-Warner Corp.

Stromberg-Carlson Labrinhis Models. Distortion and rackets in these receivers may be traced to the usual sources, such as:

(1) Foreign particles in speaker; (2) damaged or defective speaker cone; (3) loose voice coil; (4) voice coil off-center; (5) loose grille cloth.

In addition, check the following:

(6) Foreign particles on top of labyrinth, or between labyrinth and cabinet; (7) loose screen over labyrinth exhaust in bottom of cabinet; (8) warped sound-transmitting vanes striking speaker cone or grille.

If the screen is loose in the bottom of the cabinet, tack it down so it won't rattle. Its purpose is to keep noise, etc., from resting in the radio cabinet.

In the presence of warped sound-transmitting vanes, it has been determined that this is caused by faulty handling or storage before the vanes were

www.americanradiohistory.com
NEW RADIO ITEMS FOR CAR OWNERS

Read about these new car-radio devices:

1. Retractable Car-Antenna
2. Built-in Instrument-Panel Loudspeaker
3. Compressed-Air Volume Control for High Driving Speeds
4. Sound-Directing Louvers
5. Dual-Wave Set for Trailers
6. Long-Wave Converter for Car-Radio Sets

Most of these items were released at New York City's Automobile Show last month.

R. D. WASHBURN

MANY, but not all, of the devices here described were shown at the Automobile Show in New York City, last month. However, each of these items will have appeal for some of the readers of Radio-Craft. The first item on our list, for example, is rapidly increasing in popularity.

Retractable Antenna. It is an antenna that must be fitted right into the car, but once it's installed you have only to shove it 2 feet into the air, or retract it almost flush with the top of the car, to suit reception conditions or other needs. See Fig. A, which shows the antenna pictorially and schematically. (For m'tr, mention No. 1565.)

Instrument Panel Speaker-Grille. We find in both the 1938 de luxe and standard Ford V-8 cars an instrument panel designed to accommodate the radio-set controls and the loudspeaker. As shown in Fig. B, a grille is provided, behind which may be placed the loudspeaker; and, too, the set. Each year the car makers think up something new to intrigue the car-radio fan.

Compressed-Air Volume Control for High Driving Speeds. An amazingly ingenious device is available in the 1938 de luxe Pontiacs. See Fig. C, which shows this "Automatic Leveler," as Pontiac calls it. The purpose of the device is to increase the volume of the radio set as the speed of the car reaches a point where the noise created by the high-speed operation of the car makes a higher volume of the radio set necessary for its enjoyment. Since this device is like no other radio instrument we will delve a little space to describing its method of operation; and servicing procedure.

The volume-control circuit is controlled by an air switch which is mounted on the front end of the cylinder head and is operated by the force of the air flow through the radiator. When the car reaches a speed of 50 to 60 miles per hour, the contacts close, grounding the lead from the receiver and increasing the volume; and when the speed is reduced to 45 or 55 miles per hour the contacts open and return the receiver to the original volume setting.

This speed range may be adjusted by removing the cover of the air switch and adjusting the tension on the coil spring around the paddle.

(Continued on page 500)

Fig. A. New propell-repel, 22-in. antenna drops to roof-top for city use.

Fig. B. The set and loudspeaker are on the panel.

Fig. C. The faster you drive, the louder the music!

Fig. D. Louvers direct sound from driver.

Fig. E. Dual-wave trailer radio set.

Fig. I. Schematic of new long-wave converter for car-radio set... and photo of converter.

RADIO-CRAFT for FEBRUARY, 1938
2,000 PARTS MAKE 1 MODERN RADIO SET!

A MODERN, powerful radio set, capable of world-wide reception on all 6 wave-hand, is a delicate and complicated machine. Yet it must be put together without mistakes. Hundreds of minute parts must be fitted perfectly, and the final assembly must be a sturdy job. The average automobile contains in the neighborhood of 2,000 separate parts, but its assembly is child's play as compared with the production of a radio set! An automobile can go through the factory and roll out on its own power in less than a day. But it is a far bigger job to put together a radio receiver that will operate under today's requirements of long-distance reception.

Checking on the equipment used in a 20-tube receiver, engineers at a well-known factory got out their slide rules and did some figuring. The stock department laid out, as shown in the illustration, the equipment that goes into the 20-tube set. THERE ARE EXACTLY 987 UNITS!

But this is only part of the story. Each of the 20 tubes is counted as a unit, but each is in itself a delicate assembly of many parts. The power transformer, again considered but one of 987 units, is a complicated, finished product of

(Continued on page 506)

A NEW V.-T. VOLTOMETER

Here is a vacuum-tube voltmeter which permits accurate measurement of "control" voltages. It incorporates a Reverse-Current Control and a Condenser-Diode Rectifier.

MACK STIER

J OHNNY Q. SERVICEMAN is a very much confused individual when it comes to servicing the latest radio receivers. As a matter of fact, the "Q" stands for the "question-mark" in his mind when he attempts, with average test equipment, to localize defects in any portion of an A.F.C., A.V.C., noise suppression, volume expander or other similar stage of a modern set! It just isn't done so easily, and that goes for any 20,000-ohms-per-volt voltmeter, too.

HOW TO MEASURE "CONTROL" VOLTAGES

The reason, of course, is that con-

(Continued on page 499)
PHILCO MODEL 38-116; CODE 125

(See Data Sheet 222 for additional data)
PHILCO MODEL 38-116; CODE 125

I5-tube A.C. superhet; automatic tuning; bass compensation; automatic volume control; 5 bands [530 kc.-18.2 mc.]; push-pull 6L6G output; variable I.F. selectivity; 15-W. output.

(See Data Sheet 221 for schematic circuit)

INTERMEDIATE-FREQUENCY CIRCUIT

1. Viewing each instrument from the front, set the receiver and Signal Generator controls as follows: (a) Selectivity-Fidelity control (clockwise). (b) Volume Control at maximum (clockwise). (c) Magnetic Tuning Switch (off). (d) Bass Compensation Switch, first position from "off." (e) Range Switch, position 3 (broadcast). (f) Receiver Dial at 580 kc. (g) Signal generator indicator set at 470 kc. and the "Attenuator" control for maximum output.

2. Connect the Signal Generator output cable through a 0.1-mf. condenser to the control-grid of the 2nd 6K7G I.F. tube. Then adjust the F. compensation 52B by tuning to the extreme clock-wise position, then pad compensator 52A for maximum output. Now readjust compensator 52B for maximum output. (b) Connect the Signal Generator output load through the 0.1-mf. condenser to the control-grid of the 6ARG mixer tube, and adjust the following compensators for maximum output: (a) Condenser 51D, 51B, 51A. (f) Repad 52A (see Note A), check for 2 equal peaks. Trouble-Selectivity control in expanded position (counter-clockwise).

RADIO-FREQUENCY CIRCUIT

1. Connect the Signal Generator output cable to the "Red" and "Black" terminals in the serial panel (rear of chassis). The ground connection of the cable should be connected to the "Black" terminal. Set the controls as given under "Intermediate-Frequency Circuit" (a.b-c.d) and set the Range Switch, Signal Generator and Receiver Dials as given in the following procedure.

2. Set the controls and adjust the compensators for maximum output as follows:

RANGE SWITCH SIGNAL GENERATOR COMPENSATORS

Position and Receiver Dials in Order

1 1,550 kc. 36, 180, 18A
2 580 kc. 34, 18B, 18A
3 1,550 kc. 35, 18B, 18A
4 18 mc. 36A
5 18 mc. 25, 6, roll tuning condenser
6 11 mc. 36B
7 7 mc. 36C
8 4.3 mc. 36A
9 18 mc. 36C
10 18 mc. 25. 6, roll tuning condenser

MAGNETIC TUNING CIRCUIT ADJUSTMENT

(a) Set the Magnetic Tuning Switch in the "left" position (counter-clockwise). (b) Volume Control maximum (extreme clockwise). (c) Turn Trouble-Selectivity control to the Selective position (extreme clockwise). (d) Now turn the signal generator indicator to the 1,000-kc. mark and adjust the "Attenuator" control for a weak signal. Then adjust the receiver dial for maximum output at this frequency.

NOTE: The receiver dial MUST be tuned very accurately to the 1,000-kc. signal in order to make the following adjustments correctly.

(e) After adjusting the receiver dial, turn the Magnetic Tuning Switch "on." (f) Now turn compensator 52B slightly to the right or left (about 1/4-turn) and proceed with adjustment "g." (g) Adjust compensator 53A primary of the discriminator transformer minimum output; then readjust compensator 51B secondary of discriminator transformer for maximum output.

The above adjustments are now checked for accuracy as follows:

FREQUENCY TEST

With the 1,000-kc. signal tuned for maximum output turn the Magnetic Tuning Control back and forth; that is, from the "out" to "in" position. The reading of the output meter should not change in either position. If the output meter readings change, magnetic tuning control adjustments should be repeated.

A further check on the magnetic tuning adjustment is to very carefully tune in a broadcasting station and then turn the Magnetic Tuning Switch from the "out" to the "in" position. With the switch in either position, the tune of the station should not change. If a change of tune or hum develops repeat the above Magnetic Tuning Adjustments.

Sensitivity Test

(1) To check the magnetic tuning circuit for sensitivity, turn the Magnetic Tuning Switch to the "off" position, and tune in the 1,000-kc. signal. Then adjust the "attenuator" control of the signal generator for a good audible signal—approximately 20 V. on the output meter.

(2) Now defeat the signal (first above and then below the 1,000-kc. mark) to a point at which the signal is weakly heard. At each point turn the magnetic tuning control "on." When the control is turned "on" the signal should return to normal output strength. If the magnetic tuned circuit does not pull the signal into resonance, the primary compensator 53A should be carefully readjusted.

NOTE A—Slowly shift signal generator indicator between 460 and 450 kc. As the indicator is turned, 2 peaks will be noted on the output meter: one about 465 kc. and the other about 475 kc. These peaks should give the same indication or reading on the output meter. If the peaks are unequal, compensator 52A must be slightly readjusted to the right or left (not more than 1/4 of a turn) until the peaks are equalized.
ARE YOU FOR OR AGAINST?

THE QUESTION: Is Radio Servicing Merely a Stepping-Stone to Higher Positions In the Industry?

In the November, 1937, issue of Radio-Craft Mr. J. P. Kennedy, who is well known in the radio field, stated that "Radio servicing is not a goal but a stepping-stone to engineering or merchandising. As a permanent occupation it is probably the most difficult way you could choose to make a living." In a box appended to this article, the editors invited Service Men actively engaged in their profession, to comment upon this statement. Did they agree or disagree with the viewpoints which Mr. Kennedy disclosed in his article? The 5 best letters received before October 15, 1937, were awarded a 2-year subscription to Radio-Craft. These as well as 3 additional letters, receiving Honorable Mention, are reprinted below. Additional comments from readers will be welcomed.

HERE ARE THE ANSWERS:

AWARD

Dear Sirs: I have read with deep interest an article by J. P. Kennedy, entitled "Is Radio Your Vocation?", in the November number of your magazine.

Mr. Kennedy, whom I recall as a contributor to Radio-Craft when he himself was engaged in service work, knows whereof he speaks, and I agree fully with his views.

Even so, there is nothing in Mr. Kennedy's article to deter the prospective Service Man from entering the field of his choice. Radio repair work alone is, in many cases, not sufficient to ensure a good income, but the intelligent, ambitious, and adequately-trained Service Man, possessed of sufficient working capital, will soon bridge the gap between the Service Man and the merchant, and will branch out into the radio and appliance sales, public address, and industrial electronics fields, or possibly into the parts distribution business. In Mr. Kennedy's own words "Thus you become a merchant selling not only your services but the products which you have learned to present to people in the most favorable light."

No normally ambitious man, starting out in any trade or profession, considers spending his life working at the bottom of the ladder, and in the radio field servicing is undoubtedly the bottom rung of that oft-mentioned ladder. No Service Man possessing a modicum of what it takes will remain such. It won't happen in a day, the transition may be gradual, but he will in time advance to a managerial or executive position in the merchandising field, or if his study has prepared him for it, to a responsible position in the engineering end of Radio.

Therein lies the enviable future, the gold in the Radio hills.

Ralph L. Green, Valparaiso, Ind.

AWARD

Dear Sirs: I certainly do not agree with Mr. Kennedy's statement that radio servicing is merely a stepping-stone to a better job or position and nothing more. Such a defeatist attitude toward the business of radio servicing is as pernicious as it is fallacious.

A Service Man who looks upon his work as merely a transitory stage with merchandising, engineering, or manufacturing as a final goal is certain not to put the enthusiasm and concentration into his business that it deserves and requires if it is to be given a fighting chance in the fierce competition of today.

Too much of this sort of thing is behind the present low estate of servicing. Almost invariably, radio servicing is combined with some other form of business activity. Perhaps it is selling radio sets; it may be a side line for a general electric shop; or it may be a spare time way of picking up a few extra dollars for a person who is regularly employed in some entirely disassociated business. In only a very few shops has radio servicing as a pure and undeterred business been given a fair trial.

I firmly believe that if a man is willing to give the same amount of thought and effort to the building up of a radio servicing business that he would be required to put forth in any other business, he can build up an enterprise that will be just as large and just as remunerative as his business ability warrants. A man who intends to make servicing his life work will be constantly alert to new ways of improving his business. He will keep himself abreast of the most modern methods of servicing and advertising his business. He will be sure to take advantage of modern equipment in order to do faster, better servicing. Knowing that any permanent business must depend upon satisfied, repeating customers, he will see to it that his work is of the best quality and his relations with his customers are pleasant and business-like.

He will set aside a portion of his income for advertising and for new equipment. He will keep his eye on the growth of his business and will expand that business as rapidly as, but no more rapidly than, conditions warrant. He will augment his income from the actual repair of radios with other sources of income that are open to him as a Service Man: modernizing old receivers; installation of special antenna systems; installation of record-playing attachments; writing of technical articles for radio publications, etc.

He will do all these things, for he has cast his lot with radio servicing for better or worse, and he is determined that it shall be "for better." He is not stumbling along with his eye fixed upon a distant star; he is watching carefully every step he takes as he moves steadily forward in an interesting, rapidly growing, remunerative business.

John T. Frye, Logansport, Ind.

AWARD

Editor, Radio-Craft: Have read and re-read the article in the November, 1937 issue of Radio-Craft several times, entitled "Is Radio Your Vocation?".

In a great many ways Mr. J. P. Kennedy is correct. In many more ways Mr. Kennedy either supposes a lot, is familiar only with the progressive radio Service Man, or is familiar only with the larger city Service Men. Radio is worth studying. There is a future for servicing. A man can make a good living in...
ALLIED OFFERS RADIO'S GREATEST VALUES!

Everything IN RADIO at LOWEST PRICES!

DOZENS OF KITS—OVER 12,000 PARTS!
Radio's largest selection of Kits—from beginner's One-Tube to 11 Tube Superhet, and over 12,000 exact duplicate and replacement parts for building or repairing any circuit—all shown in ALLIED'S great Catalog.

P.A. SYSTEMS
KNIGHT Integrated Sound Systems for every P.A. need—8 to 60 Watts—Portable, Mobile and Permanent—and Inter-Com Systems—2 way, Selective and Super-Selective.

TEST EQUIPMENT
Testers of every type—Analyzers, Tube Checkers, Set-Testers, Meters, Signal Generators—all nationally known brands. See them at lowest prices in ALLIED'S 1938 Catalog.

KNIGHT PUSH-BUTTON TUNING MODELS AT STARTLING LOW PRICES!

KNIGHT Radios bring youPush-Button Tuning and every newest feature at prices that fit EVERYBODY'S purse. Here are radio's supreme values! The beautiful 6 Tube AC 2-Band Superhet shown above—offers an R.C.A. and Hazeltine licensed circuit with Push-Button Tuning, new Slide-Rule Type Dial, Electric Eye, Tone Control, A.V.C., Electro Dynamic Speaker, and 3 Watts power output—all for only $23.95. In the 60 other KNIGHT models, you'll find values equally astonishing—made possible only by ALLIED'S volume and low distribution costs—prices that make the KNIGHT Radio's Greatest Value, offering biggest profits for you. 61 KNIGHTS to choose from—a set for every purpose—5 to 16 tubes, for AC, AC-DC, 6 Volt, 32 Volt, Battery, and Auto operation. See all 61 models in ALLIED'S Catalog. Send coupon now.

DEALERS! • SERVICE MEN! • SOUND MEN! • AMATEURS! • SET BUILDERS!

You all need ALLIED'S Catalog. Everything in radio in one great book, at lowest prices—164 pages of Sets, Parts, Kits, Sound Systems, Amateur Gear, Test Equipment, Books, Tools, etc.—every Radio requirement at your finger-tips for instant reference—easy to use and profitable to order from. For ALLIED'S low prices save you money. Send coupon today for ALLIED'S free 1938 Catalog—radio's complete supply guide!

ALLIED RADIO CORP.
833 WEST JACKSON BLVD., CHICAGO
Dept. 2-B8

Send your Free 1938 Catalog
Send Free Parts Lists for

Name
Address
City State

Please Say That You Saw It in RADIO-CRAFT
WHENEVER a short is suspected, this method will indicate such a condition by the lighting of the bulb. The use of a low-voltage bulb is specified here, but so much to preserve the life of the dry-cell tin is not properly a battery" until 2 or more cells are used, as to make the bulb test very flexible. Any resistance of less than about 30 ohms will cause this bulb to show some light, as it draws only 60 milliamperes at full brilliance. Thus the bulb will be seen even when the short is not a perfect one, as is the most common case.

In using the bulb test on coils, it is necessary to keep in mind that coils having a few turns will, and should, cause the bulb to light brightly. This is as it should be, because the resistance of such coils (like short wave coils), when good, is extremely low. On the other hand, a coil for the broadcast band can be tested, if care is used, as it has a greater resistance. After some experience with observing the brightness of the bulb, it will be found to be a simple matter for the experimenter to recognize the difference in the brightness produced by a good broadcast coil winding and by a shorted one. Moreover, this difference in brightness will also prove useful in distinguishing between low-resistance resistors, like the 4 and 20 ohm variety, that are usually hard to recognize on resistance tests using a meter, such as will be described in the next installment (Exp. 5b).

PART A-CONTINUITY TESTING

Procedure and Results

(1) Open-Circuit Test with Phones. The pair of head-phones should be connected as shown in Fig. 1A, using shafflecocks or binding posts to facilitate connection to the phone terminals. (Note: The polarity of the battery does not matter). A fairly long pair of test leads (about 2 to 3 ft. long) ending in spring clips will be found convenient. Tap the two ends of the test-lead clips together to get a click in the phonest.

(a) High- and Low-Resistance Test

Test the primary of an audio-frequency coil (or, as it is often called, just "audio") transformer. Primary winding is, in effect, equivalent to a resistance of the order of a thousand ohms.) Clip one test lead to the terminal of the primary and tap the other lead to the other primary terminal. Observe the brightness of the bulb, indicating a continuous circuit.

Test the secondary of an audio transformer. (Notes: Transformers, like ordinary windings, are in effect, equivalent to a resistance of the order of ten thousand ohms.) Observe if the click for the secondary is weaker than it is for the primary.

(b) Condenser Test

Test a fixed condenser. (This may be a mil or paper condenser having a capacity of 0.0005-mfd., or preferably, higher.) Note any clicks heard after the first few tests. If such evidence of a continuous circuit is found in this type of condenser, the part is to be rejected as unsatisfactory.

(2) Short-Circuit Test with Bulb. The bulb and dry-cell are connected as shown in Fig. 1B, and the test leads are attached as before. Touch the test leads together and observe the brightness of the bulb.

(a) "Short" Test

Test a variable condenser by rotating its shaft and observe if the bulb lights. If it does, it is an indication of a short-circuit (in this case, because the plates touch).

(b) Testing An Unknown Part

Test some part of the condition of which is unknown, to determine whether it is (a) open-circuited, (b) short-circuited or (c) good. Suspect applying to classes or club groups:

Let the teacher select 2 parts as unknowns, choosing, if possible, one having (a) an open-circuit, one having (b) a short-circuit, and one (c) good part, and labeling these simply as Unknowns 1, 2 and 3. The student then tests each part (1) open and short-circuits and records the results by a check in the table below:

CONCLUSION

An open-circuit may be detected by the absence of a click when the part is connected in series with a dry-cell and phones. A short-circuit may be detected by the lighting of a bulb when the part is placed in series with it and a battery.

QUESTIONS

1. A short-circuit is so called because the current path offered by it is: (short in length; low in resistance; or, not continuous).

2. In the continuity test with phones, does the primary or secondary of an audio transformer give the louder click?

3. In the above test, if no click is obtained, is it an indication that the circuit is: (definitely shorted; definitely continuous; or, definitely open).

4. In the above (continuity) test, a condenser is shorted if we obtain: (no click; a click on only the first contact and no clicks thereafter; or, repeated clicks).

5. In using the short-circuit test with a bulb, on a high-resistance unit (in this case anything between 100 and 1,000,000 ohms), if the bulb lights, it is an indication that the circuit is: (definitely shorted; definitely open; or, definitely good).

Answers to these questions appear on page 494. Teachers of radio classes and club groups are invited to write to the Editors concerning the use of reprints of parts of these Experiments in quantities for school use.

LIST OF PARTS

1. One 1.5-volt dry-cell (the intermediate size is convenient).
2. One Ph—pair of headphones, 2,000 ohms ;
3. One pair of test leads (or 2-color pair), 3 ft. long, with spade lugs and alligator spring clips (any convenient)
4. One B—bulb, flash-lit type, 2 volt, 60 ma.
5. One miniature socket for above with screw terminals, porcelain.
6. Parts to be tested, such as audio transformer, fixed condenser (any capacity above 0.0005-mfd.), and variable condenser; and any parts of unknown condition if available. (Suggestion for such unknowns for school groups: open resistor, shorted volume control, good transformer.)

Parts so marked were used in preceding Experiments.

TABULATE YOUR RESULTS HERE

<table>
<thead>
<tr>
<th>Part</th>
<th>Open</th>
<th>Shorted</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HOW TO STAGE A HOME BROADCAST

(CONTINUED FROM PAGE 466)

when they have finished, so that they get a chance to participate in the fun passively as well as actively.

SOUND EFFECTS FOR THE AMATEUR PROGRAM

One thing that certainly shouldn't stump you in the sound effects and the more of these, the merrier. It is untiring amusing to realize what crude apparatus is used to produce the realistic sounds. Of course, you can have elaborate apparatus, too. Many good sounds are obtainable on phonograph records, and these are widely used by commercial stations. For example, there is a recording of locomotive effects—starting, running, and stopping. There are traffic effects, ambulance effects, and crowd noise. One disc bearing the letter is to be run at 78 r.p.m., and if you run it at 33 r.p.m. instead, there are apt to be some red faces at a mixed party, for the words become intelligible at the slower speed.

Now refer to Fig. 2, which illustrates the particular group of 11 effects incorporated in the amateur-program script appearing at the end of this article; and also refer to the word description, immediately following, of these effects.

AIRPLANE—Water gives an excellent imitation of water. To imitate the sound of splashing water, simply splash water. If you wrap a bunch around the water, as illustrated, it will hold together better than if you just try to stand the water into the tank with nothing around it. Water is very difficult to pile up.

FOOTSTEPS—Footsteps sound more like footsteps than anything else except footsteps. Have someone close your feet as you, wearing shoes with leather soles, walk on a bare floor. If nobody will carry the mike, carry it yourself, as illustrated.

RADIO-CRAFT

RAYTHEON MEETS EXACTING STANDARDS OF More THAN ANY OTHER TUBE!

RAYTHEON makes tubes for the majority of licensed set manufacturers in the United States! For that reason, RAYTHEON tubes not only meet the exacting standards of more Chief Engineers than any other—but they must perform in more diversified circuits than any other type.

Your RAYTHEON jobber gives you these same standard tubes in sealed cartons for exact replacement in any receiver!

Order RAYTHEON for greater permanent tube profits.

Please Say That You Saw It in RADIO-CRAFT

1938
PAY TUITION AFTER GRADUATION
I'll Finance Your Training

Mail coupon today for details of my "Pay after graduation plan" and famous Coyne "Learn by Doing" method of practical shop training for your start for success in this big-pay field. Age or lack of money need not hold you back... Get training first; then take 18 months to complete small monthly tuition payments--2 months after you begin training.

LEARN WHILE DOING IN 3 WEEKS IN COYNE SHOPS
Coyne Training is practical, thorough, easy to grasp... you learn quickly by doing actual jobs on real electrical machinery in training. Not busy work books—not a correspondence or a home study course—you are trained right here in my big Chicago training shops. You don't need previous experience or a lot of book learning. Expert instructors guide you every step of the way. Start any time.

EARN WHILE LEARNING Job Help After Graduation
Big things ahead in Electricity mean steady jobs, good pay, and a real future for the trained man. You'll find "Electricity" is an industry. Thousands of opportunities. Rush the coupon TODAY for Big Free Booklet of photos and details of great Coyne Shops in Chicago—Opportunities in Electricity—how we train you for your big future and let you pay tuition after graduation in easy monthly payments. If you need part time work to help out with living expenses my employment department will help you get it. After graduation you will be given free lifetime employment service.

DIESEL, ELECTRIC REFRIGERATION AND AIR CONDITIONING TRAINING
Now included at no extra cost. Take advantage of this training to increase your earning capacity.

GET MY STORY
I have a mighty interesting story to tell about my school that you should know about... mail coupon today and mail it to me and you'll get my big FREE Catalog and all the facts.

H. C. LEWIS
President, Coyne Electric Schools
500 S. Paulina St., Dept. 28-78 Chicago, Ill.

(Continued from preceding page)

WHERE'LL YOU GO?
SOUND EFFECT-FOOTSTEPS APPROACHING
AMOUS: Here he comes now. SOUNDS EFFECT-BUMBLE-BEE
MANDY: The idiot! He's lost the place. He's one effect slow.
AMOUS: Don't tell him. You'll make him nervous. Get on with the script.
MANDY: Oh yes. Here we are. I'll pick it up. What you plan to do.

AMOUS: I plan to be de head honie in de taxicab racket. I got de boys started now. In two days they're de main force on the Alsumugamad Taxicab company. Listen.

SOUND EFFECT-STRIKE 3 TIMES, AS OF A CLOCK
MANDY: Boy, what an explosion. And timed to the minute. The clock was just right to strike it. SOUNDS EFFECT-FOOTSTEPS
AMOUS: Right o'clock to the minute. That's a sound.

MANDY: Shh-h, Shut your big mouth. There's a man walking over to our table.

SOUND EFFECT-BOAT WHISTLE
AMOUS: Hello, Mr. Who is you?
MANDY: NARY LAUGH, AFTER WHICH HE SPEAKS IN AN EFFEMINATE VOICE.

SOUND EFFECT-AMUSE: Eight clock to the minute, that's a sound.

MANDY: I don't sound to me like he knows much.

This sort of thing can continue as long as you desire and that your audience holds out. You can write it by the yard. But sooner or later, like all ordeals, it must come to an end. So that you don't just give it hanging in mid-air, here's a suggestion.

MANDY: I smell something burning.
MANDY: That's the audience; they're burning up.

SOUND EFFECT-CRACKLE OF FLAMES
AMOUS: And I'm gonna make it awful hot.
MANDY: It's about time this program hot.

SOUND EFFECT-FLAMES NERER
AMOUS: Ooooh, Mandy. I see fire. We'll be killed.
MANDY: Then you'll see more flames.

SOUND EFFECT-FLAMES, BUT GOOD AND LOUD
AMOUS: Mandy! Mandy! Save me! Get me out of here!
MANDY: I'll shut your mouth. Just blow that fire out.

SOUND EFFECT-SNAP OF THE FLAMES
AMOUS: Mandy! It's too big—-I mean the fire. I can't blow it out.
MANDY: Do what I tell you. Blow at it.

SOUND EFFECT-GONG, HIT A BIG POT-

SOUND EFFECT-SNAP OF THE FLAMES
AMOUS: All right, all right. You were just a little nervous that time. Come back and try it again sometime to night. I intend to return to the list. There are 5,907,653 votes for Amous, 5,907,653 votes for Mandy—and 51 votes for Underwood! Good night, everybody, and goodburn.

ANNOUNCER SIGNALS AUDIENCE (holds aloft a little card on which is written "APPLAUSE") FOR WILD APPLAUSE.

NEW EQUIPMENT FOR ALL-WAVE RADIO

(Continued from page 411)

Ultra-Midget Broadcast-Band Variable Con-

denser. A variable condenser has a capacity range sufficient for tuning across the entire broadcast band, yet having enough dimensions for tuning to provide a tuning range not obtainable by comparison, in Fig. II, is now available.

By removing plates from the condenser lower wavelengths may be received. The rotor plates interleave with the stator plates, in the usual manner. Both the stator and rotor plates are bakel-

ite (or some similar material), in the form of thin washers. Set builders who go in for the "ultraly" will welcome this hour-wanted tuning unit. (161)

Please Say That You Saw It in Radio-Craft}

PREVIEW OF 1938 FASHIONS—SUCCESSFULLY TELEVISIONED!

(Continued from page 457)

National Broadcasting Company, prior to the demonstration, "we feel sure television will be able to reach every at home."

After the demonstration, the audience agreed. This 1938 show by television—"the most ambitious production ever given on television"—"the easiest easy chair, made easy by air"—had as honor guests of NBC the group of stylists who 4 days before their television-previewed styles in "the flesh" at The Fashion Group's annual style show at lohnson's. Thousands of international audience at the Waldorf-Astoria.

Images sent from RCA Building's (Radio City) 30th-floor television studio, by coaxial to Empire State, were received via radio on the 42nd floor.

www.americanradiohistory.com
NEW CONDENSERLESS TUNING SYSTEM DEMONSTRATED!

(Continued from page 481)

The slider contact a little 2-wheeled “trolley” car design (as shown in Fig. 1C and E) is used. The “car” carries, half-way between the wheels, the contact, which is made of a specially alloy of phosphor-bronze. A guide rod (see Fig. 1A) is installed parallel with the main coil, presses the trolley car against only 1 turn of the winding or coil (which is wound on a rotatable cylinder), and passes the phosphor-bronze contact against the spaced turns of the rotating coil, which is wound with heavily silver-plated copper wire.

Another interesting detail of design is revealed in Fig. 1E. The side walls of the 2 little bakelite wheels of the trolley car extend into the narrow space between adjacent turns. In short, the turns are used as shown in Fig. 1F to guide and to move the trolley car back and forth along the coil, turn by turn.

THE “INDUCTANCE-TUNED” CIRCUIT

Everything else is simple. We see in Fig. 1F a standard tuning circuit with fixed inductivity but variable capacitance, and as comparison an inductance-tuned circuit. The padder condenser is shown in Fig. 1B has been omitted in order to simplify the circuit. Methods for coupling the circuit with this type of tuning circuit are shown in Figs. 1G and 1H. The use of an inductance-tuned circuit for interstage coupling is shown in Fig. 11. Similar circuits for the converter stage of a superhet receiver are available.

It is, unfortunately, the condenser shown fixed, in Fig. 1F, should have been shown variable.

RANGE: 545 METERS TO 175 METERS

Finally, a word about the wavering range covered. As the designer explains, one is able to cover with a single coil the entire broadcast and police range (545 meters to about 175 meters). By application of 2 variable tuning coils for stage (see arrangement of Fig. 1D) and the use of a waveband switch one is able to cover the quite extensive range from about 550 kilocycles to 6 megacycles.

A receiver with such a large wavering range, as demonstrated at the lecture, is shown in Fig. 12 and 1J. One sees in the center of the chassis the shielded set of coils which are of similar design as those shown in Fig. 1A. The only difference is that 2 tuning coils have been installed in every compartment. It may be of interest to notice that the 2 tuning coils are installed parallel to each other (as shown in Fig. 1D) and are tapped by the same trolley car. This car is of course equipped with 2 separate phosphor-bronze contacts.

20-FOOT SCALE ELIMINATES A.F.C.

Of especial interest is the extremely large tuning scale (see Figs. 12 and 1J) designed in the form of a spiral having a length of approximately 29 feet. A dial window which moves automatically up and down is used to simplify the reading of the scale.

The extensive length of the tuning scale is of great interest for discrimination of “electric tuned” receivers, because it provides possibilities to obtain splitband tuning without the use of the troublesome A.F.C. circuits!

It is known that customary motors will stop within a range of plus or minus 1/10 inch. Although 1/16-inch seems not much to talk about, it means nevertheless 3° to 5° on the usual tuning dial—or when expressed in terms of frequency—tuning deviation of 2,000 to 6,000 cycles. Now let us compare 1/16-inch in relation to a scale of about 20 feet. Expressed in frequencies this 1/16-inch now means hardly more than 0.00-0.005 cycles, and a better adjustment can hardly be obtained with the average A.F.C. circuit.

There remains only one fact to be mentioned, the price of the new tuning device which is, according to Mr. Warren, about the same as that asked for a set of tuning circuits for the range from 510 kc. to 650 kc., but equipped with fixed coils and a variable condenser.

Be on the look-out for the March issue—the Jubilee Souvenir Number!

A TREMENDOUS OVATION FROM FAMOUS MEN IN RADIO ENGINEERING!

Eminent men in radio engineering, used to testing instruments costing thousands of dollars, have given their unqualified approval to SUPREME instruments. Such a tremendous ovation from the men who know, is a mighty tribute to SUPREME quality and laboratory-like accuracy! Such an enthusiastic reception means only one thing—SUPREME instruments must be good!

Your parts jobber is now showing the entire new 1938 SUPREME line. Go see him. You’ll find an array of SUPREME instruments you’ll be proud to own—and easy to buy on SUPREME S. I. C. terms—the world’s easiest installment terms.

JUST OFF THE PRESS! FREE Illustrated 1938 Catalog. Write for it!

FREE “Adequately Equipped Shop” Certificate
Send for the free booklet explaining how you can qualify for a “Supreme” Adequately Equipped Shop Certificate.

“Supreme is to be congratulated on the fine instrument they have built in the Model 501 Tube Tester.”

“Supreme is the most complete, perfectiion of such an instrument that I have ever seen.”

“We are now using these meters in all of our test work.”

“In my various experiments, I have found that the Supreme Model 546 Osciliscope is one of the most easy, accurate, perfectly engineered service instruments I have ever used.”

Once in a Lifetime! - Turn NOW to the advertisement which appears on the inside front cover—you’ll find out what the mystery is all about—it happens only once in a lifetime.

Ask your JOBBER for the new STANCOR “HAMANUAL”}

New Tubes . . . New Circuits
16 NEW TRANSMITTERS 5 WATTS TO 1000 WATTS
STANDARD TRANSFORMER CORPORATION 830 BLACKHAWK STREET, CHICAGO

Please Say That You Saw It in RADIO-CRAFT

www.americanradiohistory.com
TELEVISION STUDENTS LEARN
BY MAKING CATHODE-RAY TUBES

(Continued from page 102)

cathode now is placed another cylinder (C), the end of which has a hole which is smaller than the emitter-end of the cathode. Again, in front of this second cylinder is placed the first anode (D) which has a hole in its center smaller than that in the second cylinder. The other electrode is of course the graphite coating (described in a preceding installment) on the inside surface of the tube.

It is very important that the holes in these electrodes be properly aligned with respect to the cathode if any suitable spot of good intensity is to be obtained upon completion of the tube. Furthermore, unless the electrodes are very rigidly mounted they will be warped out of alignment during the subsequent "bombarding" procedure in the process of evacuation later on. The insulating material used to properly align the electrodes and hold them firmly in place is insulating. Although this material has considerable gas combined in its structure it was found that, by prolonging the heating process when dagging the tube later on, all gas could be driven off. Glass supports are used wherever possible and the design of the electrodes so arranged that the metal wires require a minimum amount of insulating structural material to help keep the parts of the gun in line.

EVACUATING THE TUBE

We found that the cathode-ray tube had to be exhaustd more carefully than nearly any other tube with which we have worked. The magnitude of this problem was surprising. The metals comprising the electron gun had to be heated close to the melting point if they were to be made to give up their gases readily. The same was true of the glass envelope as well as the insulating material supporting the structure of the gun. The process required simultaneous sustained heating and pumping; and the use of mercury vapor and liquid air to remove all traces of air and other gases. The entire setup is shown diagrammatically in Fig. 2.

The evacuating system, which after considerable experimentation we found to be suitable, consists of an oil pump "in series" with a mercury-vapor pump or aspirator as it is called. The operation of the system is as follows:

The oil pump, by means of suction, draws as much air as possible out of the cathode-ray tube. Yet, by its best possible action, it cannot create a vacuum sufficiently good for television work. Therefore, to aid the oil pump the mercury aspirator is used. Both pumps work simultaneously.

The mercury (which in its natural state is a liquid metal) in chamber A (Fig. 2) is heated by an electric heater until it boils-off into a vapor. The mercury molecules in their gaseous state are in a state of vigorous vibration due to the heat with which they have absorbed from the electric heater. By virtue of their intense vibration, they collide with the air molecules, carrying them along up toward the evacuation tube (C) of the oil pump.

As both gases (mercury vapor and air) rise into chamber B, the mercury vapor is condensed by means of the cold water circulation in the water jacket. The air molecules, however, due to the tremendous momentum, imparted to them by the action of the mercury vapor molecules, are carried up into the suction tube of the oil pump and hence removed from the system—and from the cathode-ray tube.

The overall effect of the mercury aspirator, therefore, is to aid the work of the oil pump by increasing the velocity of the air molecules, thereby permitting a more complete evacuation of the cathode-ray tube.

THE LIQUID AIR "COLD-TRAP"

During the operation of the mercury aspirator it is inevitable that some of the mercury vapor should "kick back" or diffuse through the system and eventually find their way into the cathode-ray tube—or until it is caught in some manner. To prevent such a condition, a cold-trap is incorporated in the set-up to ensnare the mercury vapor by condensing it into liquid form. The cooling medium used for this purpose is liquid air.

THE HIGH-FREQUENCY OVEN

While this pump action is in progress, both the glass envelope of the cathode-ray and the electron gun are being heated to close to their respective melting points. It is necessary to drive off any gas which may be imbedded in their structures. While it is easy enough to drive off the gaseous state of the metal by simply heating the internal metals constituting the electron gun was solved by using high-frequency currents.

A coil of wire carrying these currents is placed around the outside of the electron gun. Due to eddy currents and hysteresis in the metal, they become heated. All gases thus liberated are drawn off by the vacuum pumps.

After the tube had been pumped for the first half-hour, the filament (and hence the cathode) was heated, both giving off large volumes of gas. The uranium and strontium carbonate together with the binding material also drive off large quantities of gas, specifically carbon.

After another half-hour, the first cylinder was charged with a small positive potential so that the electrons emitted by the cathode were attracted to it, developing a thermionic or electron current. The positive potential on this electrode was gradually increased until the filament current started to show an increase without further increase in the positive potential on the anode. It was then allowed to remain at this potential until no further increase in current was evident over a period of several minutes.

The next cylinder or anode was then charged positively and a stream of cathode-rays projected on the screen, yielding a bright green.

Fig. 3. Showing construction of the electron "gun": A is the tungsten filament; B is the electron emitter; C and D, focusing electrodes. The graphite coating (60 feet) is also an electrode.

Please Say That You Saw It in RADIO-CRAFT

CARTER PARTS

PRICED SO YOU CAN MAKE MONEY
DESIGNED TO SAVE YOUR TIME

VELVET ACTION

Volume Controls
Bueholf and Potentiometer types. Carbon and wirewound. Values to cover all requirements.

SWITCHES JACKS-PLUGS

Uniformly tempered springs retain proper tension permanently. Positive, non-corrosion contacts.

VITREOUS ENAMEL RESISTORS

Entire unit precision-wound. Carefully wound for long life and true values. Sizes from 10 to 200 watts.

It's EASY to get parts that give complete satisfaction with less expense. Just say "UTAH" to your yardman. Address department RC-2 for catalog on parts that simplify replacement service.

CARTER DIVISION

UTAH RADIO PRODUCTS CO.
CHICAGO, U. S. A.

"16 YEARS OF LEADERSHIP"

RADIO ENGINEERING,
broadcasting, ariation and police radio servicing, marine radio servicing, and telegraphy. More than 200 years experience.

RADIO DIVISION

RADIOS..SAVE UP TO 50%

JUBILEE SOUVENIR NUMBER
MARCH, 1938 RADIO-CRAFT

See Inside Cover for Details

www.americanradiohistory.com
Radio is 50 years old!

How far back can you remember? See the March JUBILEE SOUVENIR NUMBER.

Please Say That You Saw It in RADIO-CRAFT
HOW TO MAKE THE RADIO-CRAFT SUPER-DELUXE 30-TUBE SET

(Continued from page 460)

alignment. Adjust trimmers No. 1 to No. 6 (see Fig. 16A) for maximum reading or height on the screen, in numerical order. Reduce signal generator output as required if reading goes off-scale.

SECOND STEP. Leave all connections as they were, but change the setting of the signal generator to 456 kc. Adjust trimmer No. 1 for maximum reading.

THIRD STEP. Remove signal generator leads from 2nd I.F. tube and replace grid cap. Connect signal generator to each of V2 (V1, minus on Chassis No. 1). Be sure to remove the variable condenser grid lead from the cap of this tube. With the signal generator set at 456 kc., adjust, in numerical order, trimmers No. 8-9-10 and 11 for maximum reading. (Refer to Fig. 2A) It may be necessary to reduce the output of the signal generator several times during alignment and in any case use the weakest signal obtainable that will produce a visible reading.

FOURTH STEP. Trimmer No. 12 should be adjusted to give a minimum reading at 10 kc. However, this trimmer requires the use of an audio frequency oscillator, which should be connected from the grid of the 1st A.F. tube 6C5 (V18), to chassis. If this oscillator is not available, simply turn the trimmer screw all the way out, so that the metal plates are tightly pressed against the housing.

The knob (No. 13 trimmer) on the U.F.O. transformer is adjusted to produce a noise of about 1,000 cycles.

Due to the extreme sensitivity of the set, it is possible that overload may occur in the I.F. or I.F. stages when tuning in nearby stations.

HAMMARLUND MFG. CO., INC. RC 3-38 424-438 W. 31 St., N. Y. C.

Please send me "38" catalog.

Name

Address

City State

Save Money on everything you buy...

The New BARGAIN BULLETIN

Your Guide to Hundreds of Outstanding Values-

FREE Write today for this outstanding new Bargain Bulletin—there is no obligation on your part. High quality merchandise at sensational prices! Radio Sets, Parts, Sporting Goods, Watches, Clocks, Typewriters, Cameras, Novelties and many other items at real savings to you. Fair Dealing—Prompt and Courteous Service, always. Send for your Free Bargain Bulletin now, try us, and be convinced of our superior values and service.

RADIO CIRCULAR CO., INC.

915 Broadway

New York, N. Y.

ANSWERS TO QUESTIONS ON EXPERIMENT 5A—See page 488

1. A short-circuit is so called because the current path offered by it is: (four in resistors).

2. In the continuity test with phones, the primary of an audio transformer gives the louder click.

3. In the above test, if no click is obtained, it is an indication that the circuit is: (definitely open).

4. In the above test, a condenser is shorted if we obtain: (four in resistors).

5. In using the short-circuit test with a bulb, on a high resistance (in this case anything between 100 and 1,000,000 ohms), if the bulb lights, it is an indication that the circuit is: (definitely shorted).

Please Say That You Saw It in Radio-Craft

SERVICING INSTRUMENTS FOR 1938

(Continued from page 476)

maximums are as follows: 2,000 V. D.C. (25,000 ohms/volt); 2,000 V. A.C. (1,000 ohms/volt); 2,000 milliamperes D.C. to 20 amperes; 0-5000 low-ohms (bakeup circuit), to 20 ma.; 0.001- to 50 mf.; to 100; free-point series and parallel meter connections. (1034)

(The Triplet Electrical Instrument Co.)

5,000 Ohms/Volt Multirange Meter. The low drain of the meter, often less than 50 microamperes, permits accurate determination of resistance, in a new multirange unit designed for the radio and electrical appliance trade. Maximum ranges are 600 V. A.C. and D.C.; 15 ma. D.C.; 1½ meg., with self-contained battery and up to 15 meg. with external battery. (1033)
LET'S PEEK IN AT TELEVISION WITH TWO OF ITS LEADERS

(Continued from page 457)

The B.B.C. (British Broadcasting Corporation) has been operating its television transmitter, located at Alexandra Palace in London, for about a year. The range of the transmitter is more than 25 miles and covers all of London and its immediate vicinity. The equipment employed is known abroad as the Marconi E.M.I. Television System which is fundamentally based on the RCA Television System first developed in the RCA Laboratories in the United States. Under an exchange of patents license, the British Company may use RCA patents in England and in turn, RCA and the American licensees may use British Patents in the United States.

Each side is therefore in a position to benefit from developments and improvements made by the other.

For nearly one year the B.B.C. has been broadcasting television programs to the public on a regular daily schedule of one hour in the afternoon and one hour in the evening.

Some 15 British radio manufacturers have been selling television receiving sets to the public at prices ranging between $200 and $200 each. At the Olympia Show which I visited while in London, all the manufacturers exhibited their latest television sets and the B.B.C. arranged special programs so that the public could view the actual operations of television while visiting the radio show. From a technical standpoint the equipment was considered far superior. The public filled the television booths and showed great interest. But while hundreds of thousands of ordinary broadcast receivers were sold during the show the public bought less than 100 television receivers in the first six months.

During one year's operations of a public television service in England, less than 2,000 receivers have been sold to the trade and less than 1,000 are actually in the hands of the public. There is but one television transmitter in London, and it was informed that it will probably be 2 years more before a second transmitter is erected in any other part of England.

U. S. AND BRITISH PROBLEMS SITUATION SIMILAR

The foregoing represents the present status of television in England despite the fact that geographically its problem is simple compared with the vast area to be served by a television service in the United States. Also it is to be noted that in England the costs of erecting a television station, the establishment of a special organization, and the furnishing of television programs have been paid for by the Government, other than license fees paid by the public annually for the privilege of listening or viewing by radio. To erect a television station similar to the Empire State Building in New York City, is approximately the same as that of the B.B.C. station in London. The transmitter, antennas, and control equipment are all installed in our expert, who have been carrying on field tests during the past year, are likewise of the same order of performance as those in use in England.

The major problem of television, in both countries, is to provide a program for the home that will meet public requirements and maintain public interest. To place television on a commercial basis in the United States, it is necessary to establish a sufficient number of sending stations, that must be interconnected and able to furnish a regular service at least to the population residing within the principal market areas of our country. The erection of such stations, the provision of necessary interconnecting facilities, and the establishment of a regular program service that would meet public requirements and hold public interest, call for far greater expenditures than at present, so far any returns can be reasonably expected. I firmly believe in the American System of private enterprise, rather than Government subsidy; of free radio to the home, rather than license fees paid to the Government by owners of receiving sets; and I have no doubt that in due time we shall find practical answers to the practical problems that now beset the difficult road of the pioneer in television. The road calls for faith and perseverance as well as ingenuity and enterprise but it is a road that holds great promise for the public, for artists and performers, and for the radio industry.

WILL YOU TAKE THIS PORTABLE RADIO SERVICE LABORATORY as a GIFT from NATIONAL UNION?

(Special Offer Expires February 15th)

If you bought it you'd pay $59.00 but you can have it FREE* with N. U. Tube and Condenser purchases!

Ruggedly constructed to Simpson quality standards. Own a Test Master the easy N.U. way.

FOR SET TESTS

6 AC-DC Voltage Ranges
4 Current Ranges
6 Decibel Ranges
1 Ampere Range for automobile test work.

Here in this 12-pound, compact, high-efficiency unit are all the features the Service Engineer needs to test tubes and analyze radios in the home.

*You deposit only $29.75 during SPECIAL — SAVE! ACT NOW

QUALITY! NATIONAL UNION'S BYWORD

So many thousands of Radio Service Engineers have proved National Union quality in the field that it is taken for granted. Due credit however should be given a staff of research engineers who are constantly at work in the National Union Laboratories striving to improve N. U. Products and develop new and finer merchandise. The N. U. research staff is your assurance that National Union Products will never let you down.

RADIO-CRAFT for FEBRUARY, 1938

95

THE NEW SImpSON "TEST MASTER"
MODEL 410

If you bought it you'd pay $59.00 but you can have it FREE* with N. U. Tube and Condenser purchases!

Ruggedly constructed to Simpson quality standards. Own a Test Master the easy N.U. way.

FOR SET TESTS

6 AC-DC Voltage Ranges
4 Current Ranges
6 Decibel Ranges
1 Ampere Range for automobile test work.

Here in this 12-pound, compact, high-efficiency unit are all the features the Service Engineer needs to test tubes and analyze radios in the home.

*You deposit only $29.75 during SPECIAL — SAVE! ACT NOW

QUALITY! NATIONAL UNION'S BYWORD

So many thousands of Radio Service Engineers have proved National Union quality in the field that it is taken for granted. Due credit however should be given a staff of research engineers who are constantly at work in the National Union Laboratories striving to improve N. U. Products and develop new and finer merchandise. The N. U. research staff is your assurance that National Union Products will never let you down.

SPECIAL RADIO OFFER IMPERIAL EASY-TO-BUILD RADIO KIT All parts ready to wire for immediate use.

PRICES REDUCED on two Brush microphones — BR2S and B-1. If your jobber can't supply you, write us.

THE BRUSH DEVELOPMENT CO.
3111 Perkins Ave., Cleveland, Ohio
"LET ME TRAIN YOU at home for a GOOD RADIO JOB"

A. G. Mehlstedt

"Get in Line for Big Money"

"LEARN AT HOME"

Most radio manufacturers want skilled technicians to service their sets in all parts of the country. You can be one of the men who can take the service business away from the old-time radio tinker.

No Experience Needed

Don't Put it Off—Send Coupon Now

RADIO TRAINING ASSOCIATION of AMERICA

4525 Ravenswood Ave., Dept. RC-28, Chicago, Ill.

RADIO TRAINING assn. of America

4525 Ravenswood Ave., Dept. RC-28, Chicago, Ill.

Write for details of your enrollment plan and instructions on how to learn by mail, and work on a home record.

MODEL CP $13.95 NET

Direct orders require name and address of your employer.

MILLION TUBE TESTER

FEATURES

1. Complete
2. Direct Reading
3. Leakage Test
4. Diode Test
5. Condensers
6. Diodes
7. Resistors
8. Meters

MODEL TM $16.95 Has 3" square meter and continuous line voltage adjustment.

TRADE-IN your old TEST EQUIPMENT

Liberal allowance against the purchase of any new standard make equipment. Write for full details—mention make and model of your old equipment and the new equipment you desire.

D.ALE RADIO CO., Inc.

25 Warren St., New York, N. Y.

LET'S PEEK IN AT TELEVISION

WITH TWO OF ITS LEADERS

[Dr. Alfred N. Goldsmith]

(Continued from page 457)

"BIMETALLIC CONDENSER"

AIDS TUNING!

(Continued from page 170)

This reduces the error in alignment, not so apparent to the average set owner, which makes it necessary for most set manufacturers to warn the Service Men to "leave the set turned on" for about 15 minutes, in order to enable the chassis to reach normal operating temperature, before starting to make any alignment adjustments.

The design of temperature-compensated tuning circuits as described above is, of course, quite a complicated matter, and not always solved by the application of such means as is shown by the example in Figs. 1B and 1C. However, one of the major problems involved in the design of temperature-compensated tuning circuits may be solved by similar applications of bimetallic parts in a non-conspicuous form, as shown in the figures last mentioned.

Finally, there remains but one question to answer: What is bimetal?

WHAT IS "BIMETAL"?

Bimetal consists of 2 thin layers of different metals permanently bonded together throughout their surface of contact. The metals used in the two layers have differing rates of thermal expansion in certain temperature ranges, and this difference in expansion causes the strip of metal to bend as its temperature changes. The particular portion of the temperature range, in which the type of bimetal known as "standard" is employed in radio receiving units, utilized by the bimetallic condenser is shown in the graph, below.

An exact manner in which the new bimetallic trimming condenser is applied to one make of commercial receivers is illustrated in Fig. 1E, which is taken from the set manufacturer's schematic diagram. Here condenser C15 is the bimetallic unit. It is in shunt with the regular circuit trimmer C14, for the broadcast-band coil C1. (Condensers C12 and C13 are ordinary— not bimetallic—trimmers, contained inside the coil assembly. They function as paddles for the broadcast-band coil. Condenser C11, which also appears in the photograph, is the police-band coil trimmer."

RADIO -CRAFT for FEBRUARY, 1938

Please Say That You Saw it in RADIO-CRAFT

wood $100 to $30,000 to produce a minute's worth of usable "feature" film for a total of 600 hours of entertainment a year. Present sound broadcast- ing networks render service for upwards of 27 hours each day.

Television must develop its own program technique. If we may summarize the ultimate characteristics of such programs in a word, it should be quasivisually. Television must capture images of the world in action.

Television network of stations comparable to those existing in sound broadcasting must await the development of either: (1) the coaxial cable or (2) a special radio relay stations.

Meanwhile, if public service should be inaugurated, the individual station has recourse to 2 qualifications of program material: (1) local talent, (2) motion picture film, and (3) sound apparatus of live radio transmitting from studio to studio. In the instance of the last, "radio companies" would face the necessity of developing is the "cable in" makeup technique. The television camera does not "see" its images in the same values of color and tone as does the eye or motion picture camera.

Upwards of 10 million dollars probably have been expended on the development of television to date, by all experimenters, and current research appropriations may total between 1 and 2 million dollars a year.

www.americanradiohistory.com
TELEVISION "PIPED" 100 MILES
(Continued from page 463)

ECONOMICAL USE OF COAXIAL CABLE

What the demonstration did show for the first
time is the unique and economical utilization for television currents of the frequency band of
a long coaxial cable.

Instead of transmitting the television currents by the
double-sideband method common to
radio broadcasting, a method for single-sideband trans-
mision was developed, thus utilizing to the fullest the frequency range for which the cable system was equipped.

The double-sideband method has been used in
Europe for transmission of 19-line images over coaxial cable. In that transmission each side-
band occupied only about 1/3 of the transmission range of the cable system, amounting to the
use of the available frequency range at only 33 per cent efficiency.

In the method which has just been demonstrated
at Philadelphia a single sideband is ob-
tained by (1) double modulation and (2) precise filtering; and this sideband is placed to avoid the
great 100 kilocycle range of the frequency range of the cable system where transmission is unsat-
sactory and the various components cannot easily be amplified (see Fig. 1). There was also
introduced compensation for the different veloc-
ties of transmission (phase delay, see Fig. 2) of
different frequency components. The result is
the delivery of an essentially perfect replica of
the almost infinitely complex current produced at the sending end by the scanning equipment.

NEXT STEP—350-LINE IMAGES

These are results never before obtained. As
soon as the present experiments are completed (the experimental 1,000,000-cycle repeater as a
portion of the cable are to be replaced by experi-
mental 2,000,000-cycle repeaters), as the next
entity step in the development of equipment which will give a coaxial cable system capable of
accommodating the maximum number of tele-
phone channels which it is economical to handle on such a cable or the widest band of frequen-
cies which the best television scanning and repro-
ducing apparatus can handle.

As stated above, a 1,000,000-cycle band will
accommodate television currents corresponding to about 210-line images. It will also admit
cables for about 240 simultaneous high-grade telephone channels. A 2,000,000-cycle system will
accommodate about 400 telephone channels or ac-
modate television currents corresponding to about 350-line images.

AT THE TRANSMITTER

Motion picture film was used since it provides a
means of transmitting both a transmitting and a
receiving image or picture simultaneously, that is, for the purpose of the demonstration.

The film moved uniformly past a picture area where lenses in a large rotating disk swept across it a
light beam 3/1,000,000 inch square. The resulting
longitude contained frequencies between zero and
about 800 kc. Before transmission, it was raised by
modulation about 100 kc. higher. See Fig. 1.

(NOTE—Sharpeness of detail in a picture for
"frame") implies a rapid change from light to
dark, and vice versa. That, in turn, means a
current from the photographic device that changes
rapidly from weak to strong. A chang-
ing current can be assumed to be a group of
alternating currents whose frequencies reach
higher values as the change becomes more rapid.
Conversely, if a current contains a group of
frequencies the current will seem to change more slowly. That in turn means blurring
television detail. Hence the system is designed to handle high frequencies.

AT THE RECEIVER

At the receiving terminal, in a cathode-ray
tube, the current was supplied to a set of plates so
arranged that the current could enter the bright spot on the filament of the electron stream on an aperture 1/100-inch square. For
least brightness, the beam did not center on the
aperture and fewer electrons were passed. The
stream then passed two more pairs of plates, one of which swept it back and forth 5,760 times a second; the other swept it up and
down 24 times a second.

To permit the use of standard sound film in the
transmitter, the system was designed to send 24 "frames" a second. The scanning disk contained 240 lenses and ran at 24 revolutions-
per-second, thus scanning 5,760 lines a second. Similarly, the scanning tube was scanned horizontally by the electron stream at the rate of 3.75 times a second. That is, 210 lines for each of the 24 frames which were transmitted each second.

The frequency limits of transmission are not
inherent in the cable itself, but in whatever
terminal or intermediate amplifying equipment
may be associated with the system. Hence the New
York demonstration and unattended
intermediate repeater stations were used. To prevent
the finer details (higher frequencies) of the
image apparent losing synchronism between
scanning disk and cathode beam, due to the
lowest frequencies traveling over the cable
slowly, delay equalizers were developed which
permit all the component frequencies to arrive at
the receiving terminal simultaneously.

DEHYDRATED CONTROL-
ROOM WINDOWS

For a long time, the glass-paned control
rooms from which radio programs are monitored
in the studio have been the source of some difficul-
ties, due to the fact that the sound-proof layers of
windows became clouded by the moisture existing between them.

In the new WXCA studios this nuisance has been
eliminated by a new patented method of
observation glass installation. The windows con-
sist of 3 separate layers of varying thicknesses.
First there is a half-inch layer, then a three-
eigh-

Fig. 2. Phase delay curves of the N.Y.C. to Phi-
delphia coaxial television circuit.
inches-thick and finally a quarter-inch strip.
These layers are embedded in rubber rubber
as so to vibrate with sound and prevent its
leakage between the layers, the air is dehydrated by a
permanent system, the moisture is
and thereby prevents clouding of the layers.

Please Say That You Saw It in Radio-Craft

SUCCESS STORY

He is a serviceman
and today he's sitting pretty. He got that way
selling service — service you can't beat —
WHOLESALE service. It wasn't long ago that
he was just another serviceman. Getting by —
that's about all. Then he sent for the
Whole-
Sale Radio catalog, and things began to hap-
pen. For wish that catalog he was able to quote prices that left competition out in the
cold. He gave delivery dates (and met them)
that surprised his customers. He put on one
assistant and then another. He became the
most sought after man in town. The Whole-
Sale Radio Catalog is FREE! Have you sent
for your copy?

Here is a sample of what the Wholesale radio-
catcing owners and how you too can profit.

PUBLIC ADDRESS: fifteen catalog pages
devoted to Lafayette P.A.-distinguished,
lower-priced sound equipment. Ideas for
selling sound, fields unexplored of yester-
day. How to make money as a dealer or
in spare time selling, renting, installing this
fast-moving, world famous LAFAYETTE line.

RADIO: the great new line of Lafayette
receivers for 1938. Complete models, that have
what it takes to bring out the check books of
your "Park Avenue" customers. Powerful little unit beginning as low as $8.95. Show them these LAFAYETTES.

PARTS: test instruments—the greatest as-
ssemblage of radio parts—pictures, priced and
accurately described—that has ever been
offered, even by Wholesale. Obsolete re-
placements or the latest item of the foremost
manufacturers, Wholesale has it for you.

DON'T PUT IT OFF—Mail the coupon
now for your copy of this
copy of this money-making bestseller—the
greatest catalog in radio.

MAIL COUPON NOW

WHOLESALE RADIO SERVICE CO., INC.
100 SIXTH AVENUE, NEW YORK, N. Y.

Name: ____________________________

Address: __________________________

City: __________________ State: ______

Rush FREE 1938 Catalog No. 67-188

POSTAGE PAID ON PENNY POST CARD

WHOLESALE RADIO SERVICE CO., INC.

NEW YORK, N. Y. — CHICAGO, ILL. — ATLANTA, GA.

100 SIXTH AVENUE, N. Y., N. Y. — CHICAGO, ILL.

RUSH FREE 1938 CATALOG NO. 67-188

POSTAGE PAID ON PENNY POST CARD

www.americanradiohistory.com
PUSH-BUTTON TUNING—REPLACES DIAL TWISTING
(Continued from page 459)

7 Motor-driven tuning system, described more fully under section 2 above, on which the stations were preset. Provisions for 8 stations.
8 Sparken (Serialtron) Pushbutton tuning, a trimmer condenser tuning system. Depressing any button connects a set of 3 pre-aligned trimmer condensers into the tuning circuits of the receiver. Provisions are made for 6 favorite stations; A.F.C. is used.
9 Motorola, Galvin Manufacturing Corp., a motor-driven pushbutton automatic tuning system. Provisions made for presetting and choosing 30 favorite stations. An additional button allows for manual tuning. A.F.C. is employed to compensate for any drifts of the dial indication (depending upon where it happens to be set) will either move directly to the station chosen or will first travel to either end of the dial, automatically reverse itself, and come back to the chosen point.
10 Lafayette Pushbutton Tuning. A motor-driven pushbutton tuning system. Provisions for 8 favorite stations. The process of setting these stations is extremely simple and may be done entirely from the front of the cabinet, no tools being required.
11 Belmont Belt-Move Station Selector. This automatic station selector system is entirely mechanical. The bank of selector keys shown in the illustration are linked to an equal number of adjustable centering cams on the tuning condenser shaft. To tune a station, the proper key is depressed. The action is simple, as well as automatically bringing the variable condenser to that portion of the dial on which that station is obtained. Again, automatic knowing tuning is always available without the use of changeover switches. The station settings may be easily changed within minutes. Adjusting one key does not affect the settings of the remaining keys. Provisions are made for tuning 8 station numbers and 6 stations on others.
12 Stewart Warner "Magic Keyboard" Pushbutton Tuning. A motor-driven automatic pushbutton tuning system which makes provisions for 18 stations. As a button is in, the indicator dial pointer does not "scan" across the dial, but moves by the most direct route to the desired station. A.F.C. compensates for minor drifts. Pushing another button releases the preceding one automatically. The stations are preset from the front of the radio set without tools.
13 Trave-Radio and Television Corp. A purely mechanical system for rotating the variable condenser to the station desired. After the stations have been set up (easily done from the front of the radio) you merely press the button of the desired station and swing it around to the bottom of the dial until it can no longer move—there is your station. The preciseness to which the stations are tuned depends entirely upon the precision with which the stations were preset. Provisions for 8 stations.
14 Croley Pushbutton Tuning System. Motor-driven, automatic tuning system for 8 favorite stations. The setting up of stations must be done on the chassis in the rear of the receiver and by means of a special key which comes with the set.
15 Westinghouse Automatic Tuning. Motor-driven pushbutton tuning system for 23 favorite stations. Manual tuning may be had by pressing a 14th button at the bottom of the dial.
16 Any one of six buttons starts a motor which turns the variable condenser to the approximate position of the station desired. Automatic frequency control then adjusts the frequency of the oscillator in order to bring the station exactly in your copy now! The huge "cash register" dial which affords excellent band spreading on the shortwave bands. The dial is known as "overseas" dial.
17 Pacific Radio Corporation "Crusader." A pushbutton automatic tuning receiver with the exception of the one illustrated in photo No. 2. The receiver is automatically operated by merely pushing a button on the receiver. In some, a switch must be thrown or an additional attenuator must be set to the proper position. Some are preset and marked for one of the most popular stations. A.F.C. and a pushbutton are used, one or low-ratio tuning dial to swing the dial pointer around rapidly to the approximate position of the desired station. The buttons may be used for automatic frequency control or be turned off and used as a vernier for fine tuning. The Stromberg-Carlson job uses a rotatory selector switch for instantaneous selection of any one of 7 preset stations.

All these automatic tuning receivers (with the exception of the one illustrated in photo No. 2) may be obtained from any reputable radio dealer, or direct from the manufacturers. If some may be obtained from the manufacturers. If you care to have a reliable receiver, you may be on your way to this group of "cash register" dials could be the answer to your requirements.

NEW CIRCUITS IN MODERN RADIO RECEIVERS
(Continued from page 471)

1) DIRECT-COUPLED AMPLIFIED A.V.C. Motorola Models 12Y and 12Y-1. A very unusual and inexpensive method of obtaining amplified A.V.C. as used by Galvin Mfr. Corp. (shown in Fig. 11). The upper diode plate is biased with respect to ground at a few volts negative, while the cathode is some 50 volts positive with respect to plate (flow). The lower diode plate, however, is not biased because accidental grid leakage (1/4- to 1/2-volt). Rectification starts with the lower diode plate when the signal reaches this peak value. The rectified output is fed to the control grid as a negative bias and as this advances, the plate current is reduced very rapidly. Only a few volts on the control-grid will reduce the plate current and cathode voltage materially. When the signal peak bias becomes high enough to start rectification by the upper diode the A.V.C. is inoperative. The signal peak bias being practically the same on both diodes, the falling cathode-voltage voltage meets the rising signal peak, starting A.V.C. action with the upper diode plate. Any signal in excess of this "croossing point" will produce the conventional A.V.C. voltage, and it may be seen that this is quite an "improved" circuit. A.V.C. often ranges from 15 to 3.5 volt bias in the controlled tubes.

2) NEW REACTANCE DIMMER CIRCUIT Mid-Western Model receivers use a reactivity dimmer from the plate circuits of the A.V.C. controlled tubes permits a flexible, easily adapted circuit. No caution need be taken to balance or filter out the induced voltages, because the reactivity dimmer is not in any way connected to the signal circuit.

As the circuit Fig. 1E indicates, the primary of the transformer is in series with the pilot field coil, and the zero-balance condition is shunted by the plate circuit of a 6CS triode. The secondary, of course, is the larger winding, with the usual several turns of fine wire, while the primary is a relatively short winding.

Now the primary will draw current and light the ammeter according to the load on the secondary, or current drawn through the secondary. When a few volts of the triode grid is at zero potential, as for no incoming signal, the current drawn by the tube is maximum and hence the primary current is minimum, as shown in Fig. 1E. When the grid is quite negative due to conventional A.V.C. action tending to reduce or cut-off the current of the triode, the current in the primary assists the little current and the pilot light will become quite dim.

The circuit is used as a tuning indicator, instead of the electric eye, meter, or neon method.

Hot Diggity!
What a magazine! Check out the search JUBILEE SOUVENIR NUMBERS!—twice the number of pages—covering 50 years of Radio. Reserve your copy now!
one having 20,000 ohms/volt sensitivity, we might get a reading of some sort, but one which is far from precise. The reasons for this are two-fold.

First, since the current which flows in the resistor is extremely small, the current drain of the meter upsets the voltage drop across this resistor.

Secondly, if we were to take the case of a 1-meg. lead resistor (which is the usual value employed) in an A.V.C. circuit, and attempt to measure the voltage across it, we obtain a value of 20,000 ohms/volt set at, for example, the 25-V. scale, we really shunt a 0.5-megohm resistance to the 1-meg. lead resistor. The Lead resistance value is thus changed to a value one-third of the original—with a consequent change in the amount of A.V.C. voltage which is developed. Actually, what happens with a voltmeter having 20,000 ohms/volt sensitivity, is far more seriously encountered with voltmeters having a lower sensitivity. And, what is true of automatic frequency control circuits is also true in automatic frequency control, volume expander, noise suppressor and other trigger-action circuits.

NO-CURRENT OR **"V.-T."** VOLTMETER

The answer to this problem, then, is a "no-current" or negligible-current-drawn type of instrument, utilizing the variable-resistance (or "V.-T.") voltmeter.

This instrument employs a tube with a current-indicating meter in the plate circuit. The grid bias is then adjusted so that noise or very little "reverse" current passes through the meter, with provision for a "reverse" current to permit cancelling out any remaining bias current and thus insure a true zero reading.

Since the grid of this tube draws no or negligible current, by connecting the meter in reverse order to the grid of the plate, the plate-current cancelling effect of the bias is overcome and plate current flows once more through the meter. The meter is then calibrated, so that various potentials applied to the grid produce corresponding plate-current readings of the meter. As a rule, the construction and calibration of an efficient V.-T. voltmeter is quite a problem.

A SERVICING-TYPE V.-T. VOLTMETER

A very useful unit with several features for servicing demands is that shown in Fig. 1. It is exceedingly stable in operation; is well calibrated; operates from either 110 V. A.C. or D.C. and measures both A.C. and D.C. potentials. The wiring diagram is shown in Fig. 1, and as will be noted, 3 tubes are employed.

The first tube, a 6J7, is used as a "condenser-dial rectifier", for rectification of any A.C. potential to be measured. The second tube is the V.-T. meter stage; and the third tube, another 6J7, serves as the power rectifier tube operating from either a 110-V. A.C. or D.C. line. The sensitivity of the unit may be controlled by the "reverse-current" controlling resistor (which serves to deflect the indicator beyond zero) the more reverse current applied the greater the sensitivity.

NOVEL VOLTAGE DIVIDER

Attention is called to the novel voltage divider arrangement employed across the A.C. and D.C. voltage input terminals. This divider consists of a series connection of very high resistances which enable several ranges of A.C. and D.C. potentials to be measured by the voltmeter stage.

The conventional method is to employ an arrangement of resistors in the plate circuit of the tube to permit changing the amount of plate voltage, thus reducing or increasing the sensitivity of the tube to various ranges of applied potentials.

In this new method, instead, the input resistance is fixed by what voltages are applied to the plate circuit of the tube the meter is applied to. In the instrument referred to, the input resistance is increased as the voltage range is increased (the applied voltage to the V.-T. tube is constant), and consequently, the instrument load is more uniform.

The ranges thus obtained are 0-5, 15, and 100 V. on A.C. and 0-6, 20, and 60 V. on D.C. For conventional D.C. measurements, no special pains are necessary, though the leads should not be too long or close together when checking D.C. voltages employing R.L. circuits. For A.C. measurements, precautions necessary will vary with the frequency being measured. For frequencies above 400 cycles, shielded cable should be employed as employed for shielded antenna lead-in connections to a car-radio set should be employed; or else the ordinary leads should be kept as short and as far apart as possible.

Concerning the various applications of a V.-T. voltmeter, the writer has too little spare time available to go into its multitude of uses. Besides, up-to-date data has been given in recent issues of Radio-Craft (See the March, April and June 1937 issues of Radio-Craft.)

This article has been prepared from data supplied by courtesy of Superior Instruments Co.
THERE'S all in the New FREE 1938 Catalog

Standard Make Radio Sets

MODELL-U. Dept. D-9
58 Cortlandt St.
New York, N. Y.

Send free your 16-page 1938 catalog of
modeled, all makes and models.
NAME
ADDRESS
CITY
STATE

RADIO-CRAFT for FEBRUARY, 1938

SERVICING Q. & A.

(Continued from page 481)

VIBRATOR HASH

(43) Herman E. Pianc, Fonda, N. Y.

I am writing about a United Motors radio set, D2.V-
D.C. model 4049. This set has excessive vibrator noise
which can be tuned in from 650 to 800 kc. It is more
noticeable during the day. I tried another vibrator but
the noise was the same. Poor volume during the day is
experienced during the day from 650 to 850 kc. New
tubes did not help. Will you please help me in this
problem?

(44) The noise pickup on the United Motors
D2.V. D.C. receiver, model 4011, heard primarily
from 510 to 800 kc, may be reduced or eliminated
by following one or all of the following methods:

(a) Pictorially essential that the vibrator case be securely
grounded to the receiver and a good ground
connection made to the receiver. Replace the input
filter condenser of the "B" supply. Check and/or
replace the vibrator buffer condenser. Use only
an exact replacement for the buffer condenser
if found necessary.

(b) Erect a good long antenna as far as possible
from the voltage supply for the receiver. Should
these suggestions fail, realign the receiver completely,
adjusting the paddler carefully.

NEW RADIO ITEMS FOR CAR OWNERS

(continued from page 48)

Please Say That You Saw It in Radio-Craft

shaft. Increasing the tension raises the speed at
which the contacts will close and reducing the
tension lowers it.

To test for proper operation tune the receiver
to a local station and adjust the volume to an
outdoor level approximately 1 unit. When the
paddle on the air switch is swung back against
its stop the volume should be increased to 1.5
times the original setting. There should be no
change in volume disconnection of the lead from
the air switch and ground to the cylinder head.
If grounding this lead increases the volume, check
the contact points in the switch to see that they
are not sticking or dirty. If grounding this lead
does not change the volume check the lead where
it enters the receiver for open or loose
connection.

Diffusion-Louver Car Radio Set. In place of
the usual cloth or metal screen over the loud-
speaker, the new Firestone outdoor-radio sets for
1938 utilize louvers or vanes that slant down-
ward, as shown in Fig. D. We herebychristen
this set "Diehout's invention." For it is kind to
the driver; the louvers tend to direct the sounds
from the loudspeaker toward the rear of the
car, instead of nearly blasting the driver out of
his seat, when the volume is brought up to

minimum-circuit setting so that the oscillator
will track 450 kc, above frequency of tuned sig-
nal. There are usually 2 settings of the oscillator
high-frequency trimmer. The one of minimum
capacity is correct.

OSCIILATION

(41) Abe Engle, Riverdale, N. Y.

Q. I have an A.C.-D.C. American Bunchonino
receiver which is providing a great deal of noise
and replaced most condensers. Can you inform
me as to what the trouble is?

A. A whipping condition in the receiver
mentioned in your inquiry may be due to one
of several causes. You do not state whether the
whistle or oscillation is present over the
entire broadcast band, when tuning any station
to resonance, or only upon certain stations.
Oscillation over the entire band in these
receivers is generally due to a loss in capacity
of either or both filter condensers. Try abashing
a 0.1-mf. 400-V. paper condenser across the
second grid, should you find that replacement
of either or both filter condensers fails to relieve
the difficulty.

A whistle heard when tuning any station to
resonance may be due to an aerial that is much
too long. A whistle only upon certain stations
at the low-frequency end of the broadcast band
most likely is image-frequency interference
and may be corrected by shifting the intermediate
frequency to a higher frequency. This
measures the use of a signal generator and recalibration
of the dial by adjustment of oscillator
trimmers.

CHANGING POSITION OF VOLUME CONTROL

(42) C. A. Anderson, Harrow, Ont., Canada.

Q. I have difficulty with a Zenith Radio
model 91-92. The A.V.C. system does not work
very steadily and is distorted. Could you give
me the value of the volume control which, in
the first series of this radio line, was in the A.V.C.
circuit? the second series used the volume con-
trol in the audio circuit. Please let me know the
value of the resistor used to replace the volume control
in the A.V.C. when it is moved to the audio
control.

A. The value of the volume control for the
early Zenith model 91-92 is 4500 ohms, and
is used in the cathode circuit of the A.V.C. 24
tube. The control for audio regulation in
the second series with a 2000 to 4500 ohms
is connected as shown in Fig. 42. In replacing
the former system with the latter type use
a resistor that is variable from approximately zero
4500 ohms and at least a 20-W. unit for
current dissipation.

Fig. Q39A. Cables on A.K. 756 must be shielded.

Fig. Q42. Location of defective volume control
RADIO-CRAFT for FEBRUARY, 1938

RADIO SERVICING MERELY A STEPPING STONE TO HIGHER POSITIONS IN THE INDUSTRY? (Continued from page 486)

A personal opinion toward "Radio as a vocation." I firmly believe many things that Mr. Kennedy said; it is very true that most Service Men live mostly on their vocation. A true reader of RadioCraft I come from Decatur, Ill., and am only visiting here in Wellington. In Decatur, a population of 60,000, only 3 out of 25 to 30 Service Men make a decent living or a wage of $25 a week.

The others live on their imagination; even those with a business hardly get along. I know of one house who, on an average of 200 sets a month, won't pay them $12 a week, and after you have worked there for six months, you would have to pay them $16 to $18, but on top of that you still must furnish your own tools and equipment. What you think of that?

I might say further that in some larger cities you might get more, but oh! your living expenses! I also firmly believe that service is a very good stepping-stone to other fields such as dealers, radio manufactory, engineers, etc., and by some other ability they may find forward to greater success.

I also think you must like your work, in this way you are willing to put in many hours in study, research and also in experimentation: in this way we learn many things that we wouldn't know otherwise. You have to like a certain thing before we can make a success of it.

It is very true that servicing brings us face-to-face with all problems of life; also the ways of the people. In order to sell well, you must have your own sympathy of a certain merchantide that he wants, and also his attitude. The best salesman is the one who can place his customer the minute he steps into the store. (But after all no matter how good you are at anything it just seems like you have to pull a get to there.)

After all, in my experience, most all dealers I have spoken to and whose business I have looked over, radio is just a sideline to over 80 per cent of the dealers.

They place radio together with electrical, refrigerator, keys, bicycles, and many other forms. We all have; no matter how we work it out, our aim is to make a living.

KENNETH HABE
Decatur, Ill. (Wellington, Tex.)

RACO CRASHES THROUGH WITH NEW S-W VALUES

You fans who want DX must have a RACO SHORT-WAVE RECEIVER. Any of the many RACO sets pulls in stations from far corners of the globe.

AWARD
Editor, RADIO-CRAFT: My personal opinions toward "Radio as a vocation." I firmly believe many things that Mr. Kennedy said; it is very true that most Service Men live mostly on their vocation. A true reader of RadioCraft I come from Decatur, Ill., and am only visiting here in Wellington. In Decatur, a population of 60,000, only 3 out of 25 to 30 Service Men make a decent living or a wage of $25 a week.

The others live on their imagination; even those with a business hardly get along. I know of one house who, on an average of 200 sets a month, won't pay them $12 a week, and after you have worked there for six months, you would have to pay them $16 to $18, but on top of that you still must furnish your own tools and equipment. What you think of that?

I might say further that in some larger cities you might get more, but oh! your living expenses! I also firmly believe that service is a very good stepping-stone to other fields such as dealers, radio manufactory, engineers, etc., and by some other ability they may find forward to greater success.

I also think you must like your work, in this way you are willing to put in many hours in study, research and also in experimentation: in this way we learn many things that we wouldn't know otherwise. You have to like a certain thing before we can make a success of it.

It is very true that servicing brings us face-to-face with all problems of life; also the ways of the people. In order to sell well, you must have your own sympathy of a certain merchantide that he wants, and also his attitude. The best salesman is the one who can place his customer the minute he steps into the store. (But after all no matter how good you are at anything it just seems like you have to pull a get to there.)

After all, in my experience, most all dealers I have spoken to and whose business I have looked over, radio is just a sideline to over 80 per cent of the dealers.

They place radio together with electrical, refrigerator, keys, bicycles, and many other forms. We all have; no matter how we work it out, our aim is to make a living.

KENNETH HABE
Decatur, Ill. (Wellington, Tex.)

AWARD
Editor, RADIO-CRAFT: I can very easily agree with Mr. Kennedy's statements in the November issue of RadioCraft. The past 4 years ago I was a radio Service Man with a small piece of business in New York City. I had gone through 2 years and studied radio repair. Upon graduation I had borrowed some $300 and opened a radio repair and sales business. Having things didn't work out as planned and my hopes and ambitions were shattered.

Somehow all was not dark for me. I took a Civil Service position with the U.S. Government as a clerk and for 4 years I worked as a public servant in radio and radio servicing were far from my mind. I felt that it was a field that was overgrown, a field that could not amount to much. But the old blood boiled in me. I had that passion for radio and DX and a DX short-wave set was a must.

Find out why (Continued on following page)

Please Say That You Saw It in Radio-Craft
Men!

HERE IS THE MODERN MIRACLE WATER PEN—

WHEREVER there's water, there's ink—for the MIRACLE PEN. There's a tiny ink cartridge in the barrel of the pen—two or three lifts of the suction lever and the pen is completely filled. One small ink cartridge keeps this modern pen supplied with ink for many months.

All parts of MIRACLE WATER PEN are acid "corrosion" proof. Nibs are 14-karat gold-plated. Air-tight inner cap keeps pen moist at all times. The ordinary fluid capacity is almost twice other pens. Five additional ink cartridges are carefully hidden in a reserve chamber. MIRACLE WATER PENS carry a life-time guarantee.

Order your MIRACLE PEN today—by mail, send POSTPAID anywhere upon receipt of check, money order or cash for $1.50. Regular $4.00 value.

GRENPAR COMPANY
1229 Park Row Bldg., New York, N. Y.

GRENPAR COMPANY
1229 Park Row Bldg., New York, N. Y.
Gentlemen: Enclosed you will find my remittance of

[Price and details]

I am interested in your MIRACLE WATER PEN—rite to the pen's proven value. (If price not given, please send me the pen postpaid.) (No U. S. Address)

Name
Address
City State

(Hand remittances by check, money order, unused U. S. Postage Stamps. Shipment letter if you send cash with order)

HONORABLE MENTION
Editor, RADIO-CRAFT:
In response to the article "Is Radio Your Vocation?" in the November issue of Radio-Craft, I believe that the training and actual experience acquired by a good Service Man would be a valuable asset to any management who is planning to extend his operations in the radio and television field. A Service Man is an expert who actually has operated his own equipment, and he is often called upon to service the equipment of others. He is familiar with the various types of equipment and their difficulties, and he can quickly diagnose the problem and take the necessary steps to repair it. His knowledge of the equipment and its operation makes him an invaluable asset to any radio or television company.

HARRY HIGGINS
Washington, D. C.

MAIL COUPON TODAY!

RADCAST PUBLICATIONS, INC.
99 Hudson St., New York, N. Y.

Have you filled in the coupon that accompanies each issue? If not or if you want to place an order, fill in the coupon here and mail it now. You will receive a free volume of RADCAST LIBRARY at the special price of $5.00.

MAIL COUPON TODAY!

Send Orders for RADCAST LIBRARY Series to:

RADCAST PUBLICATIONS, INC.
99 Hudson St., New York, N. Y.

Please say that you saw it in Radio-Craft.
HONORABLE MENTION

Dear Sir:

Yes, I quite agree with Mr. Kennedy when he says that radio service work is just a stepping-stone to better radio positions. I know this from my own experience as well as that of several friends. I am a Service Man in a small town, being the only one in the business. I do this work in my spare time as I have not as yet found it possible to make enough money to warrant giving up a permanent position. This of course is true of the construction and up-to-date equipment that is necessary.

Two of my very personal friends started in the service field just last month. They have now each obtained good positions with two of the larger radio manufacturing companies, due to what they learned while doing service work.

There will never be any more for any Service Man until the field has been cleaned of the "types" and "chiselers" in the game. This, and standard price scale, will make service work both pleasant and profitable for the honest and efficient Service Man.

Very truly yours,

Malcolm Cofts

Groveland, Mass.

THE RADIO MONTH IN REVIEW
(Continued from page 455)

by a concentric transmission line through gunnerometer and line-branching unit, splitting power equally to each tower tuning unit. Each 21-ton tower rests on 100 tons of concrete over piles, and is hurricane-proof. The station is marked for aviators, being centrally among 5 New York airports, not so high that they cannot be sighted.

First award of the Armstrong medal of the Radio Club of America was made to Dr. Louis A. Hazeltine, neutron radar inventor, at the club's annual dinner last month.

RADIO'S TIMELY PROBLEMS

EXPLAINING why U. S. manufacturers cannot sell radios in Australia, the American Department of State told the R.M.A. last month that the Australian Government owns 51% of stock in radio factories down under. The reply of the Australians has not arrived.

Federal Trade Commission cracked down last month on "tuba performance" as a slogan for sets without 5 tubes. If used, it must be preceded by "5 tubes" or what it has.

Phillips of Philadelphia announced production of its 10,000th set last month. This was presented to about veteran veterans at Walter Reed Hospital, Washington, on Armistice Day, while duplicates were given to other veterans' hospitals: commentators flocker cutters making the steech for the color, and War Secretary Woodring accepting.

47,016 commercial scripts were filed by radio stations with F.T.C. during year, that commission reported last month, of that number, 3,514 were set aside for examination on their contents to determine whether advertising might be false or misleading.

In England, B.B.C. will use a strictly direction mike for pick-up broadcasts; it responds only to lips held close to it, and cuts off when the holder's grip is relaxed. Not only noise and background noise are cut off, Resonade last month, but it will prevent recurrence of "butting in" by the public, which became a recognized sport, if not crime.

NHC, having cut Gen. "Trampas" Hugh Johnson off the air last month, because of "lack of opiniion as to discussion of "social" (venereal) diseases, was reported threatened with F.C.C. action, of attempt to censor campaign started by U. S. Public Health Service. No official confirmation; but NHC made amends by calling Dr. Morris Fishbein, voice of American Medical Association, to speak on subject in "authoritative" manner.

In connection with physical "gits" campaign in Britain, R.B.C. last month objected that early morning setting-up broadcasts will cost $25,000 to $55,000 yearly, because another shift of engineers would be needed. Physical culturist yell: "Hang the expense. We pay for service!"

Campaign against "gyp" dealers in N. Y. City last month resulted in numerous fines, and 6 warehouse sentences, for owners or employees convicted of selling inferior merchandise under well-known brands which had been imitated.

Amalgamation of several groups of servicemen on a national basis as R.A.S (Radio Service-man of America) was undertaken last month, and temporary officers elected under proposed setup, local chapters will be autonomous. Headquarters are 301 S. Dearborn St., Chicago.

OPERATING NOTES
(Continued from page 481)

installed in a Phono facade, and that ample clearance has been allowed for vases initially in good condition.

Stromberg-Carlson Models 130 and 140. The sensitivity control is a knob on the back of the chassis, to limit the sensitivity on broadcast reception so that the most powerful nearby broadcast station will not cause rectification in the R.F. tube and thus "blanket" the dial. It also is effective on "tweets". Remember to turn this knob clockwise if a newly-installed receiver appears to lack sensitivity.

Stromberg-Carlson Models 145, 150, 160 and 180. Normal setting of the fidelity-base control is at the middle—half red, half white. All red (High Fidelity) broadens the tuning and should not be used for distance reception. All white (Low Fidelity or Tone Control fully operated) causes muted tone and reduced volume. A definite "bump" when passing from "Normal", shown that the selectivity is maximum and Tone Control is set for Standard Fidelity.

Stromberg-Carlson Solid Nuggets

Grumman Models 700, 701. After replacing the 2nd I.F. transformer, wasansson by complaints of interference from an airport station. The trouble was finally remedied by removing the 2nd I.F. transformer from their cans and connecting the secondary in series with the antenna lead in the set. The primaries were cut off.

By tuning this homemade wavemeter, the interference was eliminated.

K. W. Howard

Please Say That You Saw It in RADIO-CRAFT
VOLUME EXPANSION—MODERNIZED

(Continued from page 465)

values will vary with different tubes and only direct tests will enable the user to note the proper plate currents for the best operating conditions.

DIODE TIMING IS IMPORTANT

The other factor that is very important is using any form of volume expansion, is proper timing of the diode voltage on C1. The diode and condenser marked E1 and C1 in Figs. 3 and 4 form the timing circuit; and for average speech and music reproductions the values marked in the diagrams are satisfactory. If the time constant is too short, speech will sound unnatural; and if too long, parts of speech will be carried over and music will drag. This type of distortion is very noticeable when using high percentage volume expansion.

An interesting example of time distortion can be studied by listening to Victor record No. 11932, the "Vesuvius." Here the timing circuit should be speeded up if a high percentage of expansion is to be used. Both records reproduce well with a time constant of about 1/10-second.

A satisfactory determination of the time constant when resistance and capacity are employed can be made as follows (Where time [T] is expressed in seconds, Resistance in megohms and capacity in microfarads): where $T = R \times C$

and if the desired time constant is known, then:

$$T = \frac{R}{C}\quad \text{or}\quad C = \frac{R}{T}$$

This method of solution is really "rule of the thumb," but will be close enough to enable the constructor to build a switchable, a switch of different capacity changes are to be made; or to select a rheostat of the proper value. For example, a rheostat having a range of 0.010 ohms to 0.010 megohm used in conjunction with a capacity of 8.5-mfd., will give a time constant in the range of .0025- to 9.25-second. Such a control will cover all of the ordinary conditions and if the resistor were to be increased the range would then be extended to 1/10-second. This timing would be slow for speech or music but is a given to show the range covered with a single condenser and variable carbon-type rheostat.

Such a control is preferably placed for adjustment and calibrated so that the timing for different records can be pre-set before playing. The author knows many record enthusiasts who have catalogued their records and before playing check the Volume Setting, Per Cent Expansion and the Time Constant. Of course, this seems like a lot of trouble, but, if realism is desired then somebody has to make the pre-liminary adjustments.

An attempt is being made in the newer recordings to increase the volume range of the record. The Victor record No. 11932, National-Danger Dunce, is an excellent example. This record can be played without expansion and the effect is very satisfactory. However, expansion brings out some of the crescendo passages in a manner that is unnatural.

A word of warning! Just because we know that records are compressed in recording is no reason that they should be over-expanded in reproduction. Always use the expander as a means of creating an auditory illusion.

HOW TO RUN A LATHE

The 3rd edition of the well-known morhitz's manual, "How to Run a Lathe," has recently been announced by its publisher, The South Bend Lathe Works. This new edition contains 168 pages of fundamentals and practical instructions on every detail of lathe work, in easily understandable language, accompanied by more than 300 illustrations.

Please Say That You Saw It in Radio-Craft
HOW RADIO HANDLED THE ELECTIONS!
(Continued from page 175)

the Mutual chain, was even more elaborate. There were "remotes" from the headquarters of La Gallina, the re-elected mayor of Malboro, his opponent, of Dewey and Hughes, the candidate for the office of District Attorney, from the mansion of the Hotel Actor in Times Square and from Trans-Radio News Service, all in New York. These were supplemented by additional spot-picks in the headquarters of Senator Moore and from the studio in which Senator Wagner, his rival candidate for the governorship of New York delivered a last-minute broadcast. Editorial Room of the Network News—a total of one and one half hours.

WMCA, key of the InterCity Network, went even further afield with remote stations with WMCA. Reports on the election returns from Philadelphia and Boston, respectively. In addition to covering the 2 majorcity headquarters in Times Square, it had microphones at the Savoy Ballroom in Harlem (New York's negro dance), another in downtown Brooklyn, and 2 others in night clubs, for celebrations and musical interludes. There was still another set-up for a special annoucer and a commentator in the studio. As shown in the block diagram, all the pick-ups were coordinated from Studio B. The order wire was utilized as a "core" system, and announcer, engineer and contact man at remote points were tied-in with earphones. Note that all political headquarters were feeding into the line amplifier stabilizer, together with Studio B, and one de-cue pick-up; in a special release to Radio-Craft, WMCA requests that A DIAL SYSTEM FOR PICKING AIRD LI NEs ELIMNATED PATCH-CORD OPERATION!

Fifty-old men at 6 locations handled the elections for CBS, about half of them being on outside duty. These locations, of course, were the major city headquarters of radio department, but the most interesting work was done in the CBS Building at 455 Madison Ave. At WABC's polling place, the votes were taken by phone to the nearest police precinct houses, whence tabulations were phoned to Headquarters on the third floor. There, a comptometer or operator made tabulations, turning their results over to the City News Association, which served 7 local newspapers and WABC via telegraph. Within 2 minutes after WABC received the data from its precinct house, A. Tubs was tabulated. In addition to these city results, CBS put on the nationwide returns as gathered by the Press Radio Bureau from A.P., U.P. and L.N.S. Broadcasters were made from two to three times every 15 minutes during the evening.

NBC likewise gave complete coverage, using the Press-Radio Bureau, with additional sets-ups in the headquarters of the important candidates, at Police Headquarters and in its own truck. Mobile Unit No. 1, which cruised Times Square, radiating "color" to the studio via the short waves. It employed its own crew of tabulators, as did the other large stations.

Thus, within a few moments after the polls closed, radio listeners were made aware of the results of the people's choice—a far cry from the days when our system of elections was begun, when days or weeks elapsed before the returns of the few precints could travel across the country—when even the candidates themselves often did not learn for some days whether they had won to triumph or sunk in the ignorancy of defeat.

RADIO, COPPER AND BRASS

Approximately $5,000,000 lbs. of copper and its alloys are used annually in the manufacture of radio receiving sets in this country, exclusive of automobile and ground wire, etc. In one plant alone more than 18 billion feet of copper wire was used; this is enough to make 5 complete earthcraters encircling the earth and the moon. In this same plant nearly 2,000,000 lbs. of wire went into radio speakers and coils. 104,000 lbs. in hook-up wire and 4,000 lbs. in the set cord, or plug-in cord. The output transformer and power transformer also contain copper.

In addition a considerable amount of brass goes into the average set. Last year it was reported that brass received 1,500,000 automobile radio sets and 96,300,000 tubes were sold in this country. It is expected that sales this year will be substantially increased.

(COPPER & BRASS BULLETIN)
THE LATEST RADIO EQUIPMENT
(Continued from page 479)

obtained quickly or conveniently. Incidentally, this accurate lecky bus additional interest for the hobbyist and for small-part engineers, model makers, inventors, jewelers and home-crafters. This screw cutting lathe is back-gouged to facilitate such operations as turning, filing, threading, tapering, boring, knurling, cutting-off, and inner undercutting.

WIRE-TYPE INTERPHONE (1557)
(The Turner Co.)

Although only the master unit of this A.C.-D.C. "F.D.Q." system, as it is called, incorporates an amplifier, the remote unit may incorporate, or call and connect to the master. The volume is controlled only from the master station. The amplifier incorporates 1-6C6, 1-43, and 1-2D25. Finished in silk white.

"PIE-WOUND" PRECISION RESISTORS (1568)
Here is vital information for the technician to whom the word "precision" is of importance.

Just announced, is a 1-mill "Riteohm B1" resistor, precise to within 1 per cent, which is ideally suited to the exacting requirements of vibration transformers, laboratory equipment, radio and electrical test sets, and in many other applications.

The "vacuum impregnation" process used consists of placing the wound unit in a sealed chamber which is then highly evacuated, withdrawing all the air between the turns, and permitting the insulating and moisture-sealing compound to completely saturate the winding. This results in a hermetically-sealed winding permanently protected against moisture, and as solid as to transfer heat more rapidly than buss windings. The process also produces exceptionally high insulation resistance against voltage breakdown.

A non-inductive winding, on a non-hygroscopic ceramic core, is obtained by reversing the direction of winding of alternate "pie" sections. This construction also reduces distributed capacity, and also permits a negligible value even at high radio frequencies. The unit (illustrated) is about 2 inches long.

"AUTOMATIC" WIRE-STRIPPER (1569)

The radio man's tool here illustrated was developed to meet the increasing demand for a wire-stripper that would permit stranded wire to be removed from an existing radio and electrical tool (the F.D.Q. Wire-Stripper described in this department, in a past issue of Radio-Craft after it had been stripped and before the return of the jaws. A little slip-bar (arrow) does the trick.

An indispensable, dependable tool for fast work both inside and outside the shop.

VIBRATOR TRANSFORMERS (1570)

The "vibrator" transformers have been added to a well-known line of transformers. They are designed for replacement in automobile receivers, and for use with mobile or portable transmitters and receivers used in amateur work.

Both these transformers are used in conjunction with a vibrator unit and rectifier to operate a 6-volt D.C. source. One unit delivers 245 volts D.C. at 40 ma.; the other delivers 206 volts D.C. at 54 ma. or 210 volts at 61 ma.

THE POCKET
VOLT-OHM-MILLIAMMETER
DOES ALL YOUR D.C. TESTING

ASK YOUR JOBBER TO SHOW YOU THE DIFFERENCE

- Model 735 has a Triplett D'Arsenval type precision instrument with easily readable scales. Ranges are 10-150-330 volts at 3000 ohms per volt; 15-15-150 volts at 3000 ohms per volt; 1-15-150 volts at 1500 ohms per volt; 0.1-10-1000 volts at 1500 ohms per volt; 0.01-1-10000 volts at 1500 ohms per volt; 0.001-0.1-100000 volts at 1500 ohms per volt. Provisions for external batteries for higher resistance measurements; has selector switch for all ranges and individual zero adjustment for resistance measurements. Now with silver and black etched panel.

ASK YOUR JOBBER - WRITE FOR CATALOG

4 Free LESSONS in TELEVISION

What Do You Know About Television?
CAN YOU Q UALIFY?

Television is much closer than you imagine. Already commercial in England... Just a few details remain before it will be announced here. When it is, SAY YOUR JOBBER TO SHOW YOU THE DIFFERENCE.

FREE!

We have compiled what we believe is the most interesting and authentic data on Television you've ever read. It's yours FREE for the asking. Give us your name and address and we'll send it to you. We pay the postage. We don't expect you to buy... we just want to show you what's happening. We think you'll find it interesting.

Address...
City...
State...

NEW!!!

AMERICAN TELEVISION INSTITUTE
433 E. Erie St., Chicago, Ill.
RC299

Get the Difference! Read the difference... and then send for our free illustrated "Where's the Difference map... and tell us if you think it's worth $1.00. If not, send it back and we'll refund your money. You can't lose... you'll either think it's worth $1.00 or have $1.00 refunded.

NAME
ADDRESS
CITY
STATE

READRITE METER WORKS
735 Colfax Ave., Bluffton, Ohio

Without obligation please send me more information on Model 735. I am also interested in

NAME
ADDRESS
CITY
STATE

Please Say That You Saw It in Radio-Craft

MODEL 735
ACCURACY
2%

BATTERY, TEST LEADS AND ACCESSORIES INCLUDED

PRICING BUILT
$10.80

www.americanradiohistory.com
BRINGS YOU ANY ONE OF THESE 4 FAMOUS RADIO BOOKS

Radio fans! Mail yourselves a radio education for the price of 10¢ per book. These books give you a good foundation toward the study of radio and will be prized as the wealth of information contained in them. They are especially written for beginners but are useful review and reference books for all.

Each book contains 32 pages, profusely illustrated with clear, self-explanatory diagrams. They contain over 15,000 words of clear legible type. They are an education in themselves and lay the groundwork for a complete study of radio and electricity.

HOW TO BUILD FOUR DOERLE SHORT-WAVE SETS

Due to a special arrangement with the manufacturers of SHORT WAVE CRAFT, this book contains complete details for building short-wave sets. It is packed with useful information and contains an excellent Power pack if you plan to electricity any of the sets. Contains EVERYTHING that has ever been printed on these famous receivers. There are the famous sets that appeared in SHORT WAVE CRAFT. The receiver described in this book is complete in every detail. The book is printed on durable paper with a beautiful blue cloth cover. The book is sold in sets of 4 for $1.00 each. The first set is No. 1. The others are No. 2, 3, and 4.

ANALYZING & CURRENT FOR BEGINNERS

This book contains a number of useful circuits which have appeared in past issues of RADIO CRAFT. It also contains circuits that have never been published before. The book is printed on durable paper with a beautiful blue cloth cover. The book is sold in sets of 4 for $1.00 each. The first set is No. 1. The others are No. 2, 3, and 4.

THE LATEST RADIO EQUIPMENT

(Continued from page 418)

LINE-NOISE ANALYZER (1545)

[Aerovox Corp.]

This READILY-PORTABLE device comprises various forms of filters thrown into circuits by a selector switch. Unit connects between noise-producing appliance, or set, and line. After adjusting for minimum noise, the analyzer indicates by factory type number the standard type filter to use in duplicating the same setup. When not in use, the attachment cords, plugs and connectors fit into a compartment with hinged cover.

"INSTANTANEOUS HEAT" SOLDERING SYSTEM (1546)

A PATENTED electric soldering outlet, operating on an improvement over the principles described in a past issue of Radio-Craft (July, 1938), employs a small arc for the heat production instead of either the usual live-voltage wire heating unit or the less common direct-contact low-voltage carbon type. Solder heat is applied almost instantaneously. Said to be absolutely safe to use even when standing on a concrete floor. Screw control provides accurate gap adjustment. Switch on side permits control, by the user's thumb, of rapid heating and cooling so that difficult soldering is readily accomplished. Power is used only when soldering depressed; thus in intermittent use, as in the radio and electrical repair fields, monthly power consumption is only a fraction of the usual amount. Kit includes an "iron", transformer, stand, and 3 extra electrodes; shipping weight, 5 lbs.

REFRIGERATION SERVICE THERMOMETER (1547)

M ANY radio Service Men are employed by concerns that handle refrigerators and in whose course of their work these radio men very often are called upon to service the company's refrigerator line. As an aid to speedier servicing there has been developed the "Serviman" refrigeration service thermometer. Unlike previous types of refrigerator thermometers this new instrument incorporates a "recalibrator"—if, following an accident, a thermometer is lost or damaged you simply place the thermometer bulb in a bowl of crushed ice and water and turn recalibrator screw until the pointer registers 32 deg.
ELEMENTARY PROCEDURE FOR SERVICING RADIO SETS

In the past it has been the practice of manufacturers to issue a service manual each time a new model was brought out. Due to similarity of circuits this has resulted in much unnecessary repetition. It is believed that information can be condensed, general enough, to cover all the important phases of servicing past, present and future models.

The Process of Elimination
While the trouble is immediately apparent on some service jobs, in the majority of cases it is necessary to locate the defects by the process of elimination. In comparison with the production problems, the Service Man has a relatively simple problem to face as he traces the radio unit operating properly when shipped from the factory and failure must be due to breakdown of one or more parts in the radio set. In the case of a set which is completely inoperative the tracing should always commence at the rectifier-filter circuits and work back, through the audio circuits, to the I.F., R.F., etc. to the antenna circuit.

"A" AND "B" CIRCUITS
First study the circuit diagram. Notice whether filaments are wired in series or parallel. In series radio grid units used in C-D-C sets, the burn-out of one tube or the opening of the filament series resistor will make all tubes fail to light. If the circuit is a parallel one the burn-out tube will show up at once as the other tubes remain lighted. Absence of "B" voltage may indicate a defective tube, open filter choke or speaker field (if such is used in place of a filter choke), short-circuits or poor connection. A short-circuited filter condenser may have caused the rectifier tube to become inoperative.

Low "B" voltage may indicate a worn out rectifier tube or a partial short-circuit at some location (usually through a resistance or leaky condenser), a filter condenser or incorrect bias caused by faulty resistor.

Other Tests When Set Is "Dead"
If "A" and "B" voltages seem correct but set is "dead," test for open speaker wiring, defective tubes, defective bypass condensers, open connections or wiring shorts. It is advisable to keep a set of "master" tubes which are known to be in good condition, for comparative purposes.

Weak or Poor Sensitivity
These conditions are generally caused by weak tubes, leaky or open bypass condensers, resistors whose values have changed (may also cause overheating), damaged coils, or incorrect adjustment of tunable circuits either R.F. or I.F. methods of testing condensers and resistors, and of adjustable tunable circuits will be given subsequently.

Resistor and Condenser Tests
A continuity meter consisting of a voltmeter and battery may be used for testing resistors. Its usefulness is limited however, to the operator's familiarity with the drop to be expected through various resistances. A simple ohmmeter of the type put out by the better known meter manufacturers is highly recommended. It is one of the most useful pieces of equipment in any service department.

If you want a very simple and useful condenser test, purchase a 2-watt neon lamp from any electrical store. Connect this as you would a voltmeter for continuity test using approximately 90 volts of "H" battery. An "A-B" eliminator may be used in place of the batteries if it is filtered sufficiently so the A.C. component is practically nil.

Condensers should be disconnected before being tested. There should be an instantaneous flash in the neon lamp as the circuit is completed across the condenser. On small condensers this flash will be very small and of short duration. The capacity and distance of the flash are a rough indication of the capacity. The test should be repeated over the period of possibly 1/2-minute. When testing paper or wax condensers there should be no light in the neon lamp other than the initial flash. No flash indicates an open condenser. Sustained or fluttering illumination indicates a leaky condenser which should be replaced. A good electrolytic condenser, due to the leakage through it, will allow a rhythmic flash.

The duration, rapidity and brilliance of the flashes are governed by the capacity of the condenser.

Oscillators and Output Meters
While it is possible to do a certain amount of balancing and aligning without the aid of a signal generator and output meter it is not easy to approach the accuracy that can be obtained with their use. The well-equipped service department should have an oscillator that will generate modulated signals of frequencies suitable for adjusting the I.F. transformer assemblies in superhet models and frequencies useful in aligning the tuning condensers on broadcast and short-wave bands. The harmonics of signals in the broadcast band may often be used in checking and adjusting the short-wave bands if the test oscillator does not cover the whole spectrum desired.

The standard type of A.C. output meter is satisfactory on all models not using A.V.C. When A.V.C. is incorporated in the radio set a microammeter with a convenient range up to 500 microamperes with a 1-megohm variable resistance in series should be used in place of the usual output meter. The variable resistance acts not only to protect the meter but allows adjustment to the most convenient portion of the scale.

In practice, this assembly is connected across the manual volume control and reads A.V.C. voltage developed. Adjustments are made for maximum reading.

An alternative method, when not satisfactory, is to connect a 0-10 ma. D.C. milliammeter in the "I-F" plus lead to the primary of the last I.F. transformer and plate current. Adjustments are made for minimum reading.

Aligning and Balancing
When it is necessary to rebalance or realign the tuning circuits due to damage, tampering or cell changes the procedure will be found similar on all models.

T.R.F. Circuits
Set the signal generator at a frequency near 1,500 kc. Tune the radio set to resonance with this signal and adjust the small trimmer condenser.

(Continued on following page)
(Continued from preceding page)

determ on the tuning condenser for maximum output.

Next set the signal generator at 1,000 kc. Insert a thin bakelite, celluloid or micro foam strip between the plates of the variable condenser to determine whether the circuits are properly matched. The action is this—the dielectric constant of the celluloid foam strip being higher than that of the air it displaces, results in an increase of capacity.

Open the variable condenser just enough to indicate 1 or 2 points below maximum signal. As the foam is inserted the meter reading should indicate increasing signal and then decreasing as the foam is inserted further. This procedure should be followed on all sections. Should the meter fail to show an increase in signal as the strip is inserted in one section this indicates too great a capacity for that section. This may be corrected by bending the outside rotor plates out at the point where they mesh with the stator.

After checking the alignment at 1,000 kc., repeat the settings at 500 kc.

SUPERHETERODYNE CIRCUITS

It is customary to check the adjustment of the I.F. units before aligning the variable condenser. When doing this, the oscillator section of the variable condenser should be short-circuited so no oscillation will be generated in the radio set. The signal generator should be set at the proper intermediate frequency and its output connected to the antenna connection of the radio receiver. The variable adjustments on the I.F. units should then be checked for exact resonance as indicated on the output meter. It is well to go over these adjustments more than once.

When the I.F.'s are properly adjusted, the variable condenser may be balanced and aligned following the directions given for T.R.F. circuits. It is not advisable to bend plates on the oscillator section unless absolutely necessary. The other sections should be aligned to the oscillator section if possible.

In sets having an adjustable oscillator pad it is customary to first adjust trimmer condensers at 1,000 kc. and then go to 500 kc., and adjust the pad. While the condenser is rocked slowly back and forth across the signal the pad is adjusted for maximum output.

In sets incorporating a short-wave band, a vernier tuning condenser is provided so it is not necessary to worry about alignment after the set has been properly aligned on the broadcast band. Where needed, extra trimmer condensers are provided which are to be adjusted at the high-frequency end of the short-wave bands. Instead of bending condenser plates at the low-frequency end, alignment is accomplished by spreading or crowding turns on the short-wave antenna coil.

I.F. INTERFERENCE

In some few sections of the country there are airports or other commercial transmitters operating on or near the intermediate frequency used in the radio receiver. This may result in interference from this station being present at all dial settings of the radio. To overcome this condition it is only necessary to shift the intermediate frequency up or down about 10 kc. This necessitates readjusting the I.F. units and re-balancing and realigning the R.F. circuits.

ALL-WAVE ANTENNA SYSTEMS

There are available on the market, many so-called all-wave antenna systems. These are particularly helpful in locations where there is a great deal of "man made" interference in that the lend-in of such a "balanced" system picks up neither signal nor interference, all pick-up being from the top portion of the antenna. This then, can be placed far enough from the sources of interference to greatly improve results.

(The International kitette General Service Manual)

THE HISTORY OF RADIO

Considerable effort and research have been applied toward the compilation of a chronological history of radio stations in the United States. The history, which is authentic and highly instructive, has been written especially for the March issue of Radio-Craft which is the special Jubilee Souvenir Number. Other features in this issue will be Reminiscences of Old Days Progress of Broadcasters, The Development of Radio Circuits, etc., etc.—all in addition to the regular monthly departments. Reserve your copy of the March issue now; otherwise they may be sold out.
"NOISE ELIMINATOR" FOR WIND-CHARGER GENERATORS

WHILE it has been known that radio interference was reduced in a generator in wind-driven generating equipment, this interference usually was eliminated through the use of fixed condensers, of 0.8-mf. capacity, connected to the positive terminal and the frame. In more stubborn cases, it was found necessary to clean the contact by removing grease and oil that caused excessive arcing of the brushes and resulted in radio interference.

Recent and improved design in such "wind charter" generators has necessitated more thorough filtering and the collection of certain features in order to reduce the radio interference.

Since wind chargers are used quite extensively for charging batteries for 6-volt farm radio sets, it was necessary to design the generator, relay, and other parts so that the service requirements, such as oiling, greasing, etc., were reduced to a minimum. One of the first features to be incorporated in the new models (of one well-known make) was the "Radio-Craft Information Bureau" which will be good to have, and with this, the name and address of manufacturer upon request was the use of double-grease-sealed bearings. This type of bearing never requires any oiling for the entire life of the generator.

Although proving a great boon to the farmer in that the need for hand to climb on top of the roof of his home to oil the generator, another annoyance present and due to the fact that these new type generators created more radio interference. It was a radio interference that was definitely traceable to the generators in question. The interference would increase with the charging rate and speed of the generator. In fact it seemed as though one could almost control the commutator segment passing the brushes.

Filtering with condensers proved entirely futile. Grounding the set, and wind charger together sometimes helped a little but still did not eliminate the situation. After some time, however, it was discovered that by replacing the double-grease-sealed bearings with ordinary bearings, the radio interference was not nearly so great! The reason appeared to be that the double-grease-sealed bearings, due to their construction, partially insulated the armature from the generator frame and as a result, radio frequency currents were created, causing considerable radio interference.

A SIMPLE SOLUTION

It was discovered, however, that this interference could be eliminated by grounding the armature shaft to the frame of the generator. Several methods of doing this were considered. The most practical was found to be the insertion of a wiper contact placed in the end-plate of the commutator and its center portion pressed against the end of the armature shaft. In this manner, the armature was properly grounded to the generator frame. The illustration shows the wiper contact or "noise eliminator," and how it is installed in the generator end-plate. It is merely necessary to loosen the two long bolts holding the two end-plates to the generator frame and then place the wiper contact in the rear plate. Each noise eliminator has its outer portion split so as to be adjustable to any variation in the size of the hub of the shaft.

This method of grounding the armature to the frame is entirely successful and only requires a matter of a few minutes for its installation.

It is through such devices and improvements, slight though they may be at first glance, that wind charging equipment has been able to forgo ahead offering to the world "free electricity."
ADVERTISERS' INDEX

A
Acros Corporation, 594
Allied Radio Corporation, 187
American Telephone, Inc., 606
Amplifier Convention of America, 596
B
The Bristol Development Company, 435
Burtin-Juiteler Union, 449
C
Central Radio Engineering Institute, 534
Central Technical College, 448
Cordier-Cornell-Corporation, 506
Curtis Electrical Supply, 452, 511

D
Daily Radio Co., Inc., 156
Dakota Institute, 493

E
GAI Genuine Magneto Saturator, 493
and Radio Parts Service, 581
GenCorp, 509

H
Hammond Manufacturing Co., 194
Honey Speciality Company, 448
Hudson Corporation, 562

I
Industrial Model 54, 425
International Resistance, 611

K
Kenton Transformer Co., Inc., 198

L
Lancaster, Albin & Basier, 595
Lincoln High School, 596

M
Million Radio & Television Labs, 597
Model, 599

N
National Radio Institute, 490
National Schools, 596
National Union Radio Corp., 495
New Idea Mechanic, 511
New York YMCA Schools, 487

P
Precision Aviation Corporation, 500
Private Secretary Company, 505

R
BPA Industries, Inc. 498
Radio Circular Company, 500
Radio City Products Company, 500
Radio Engineers Guild, 498
Radio Publications, 518
Radio News of America, 500
Radin, 511
Radin, Inc., 512
Radio Sales, 512
Radio Sales and Service, 527
Radio Sales, Inc., 498
Radio Sales, Inc., 500
Radio Sales, Inc., 520
Radio Sales, Inc., 542

S
Solar Manufacturing Co., 458
Strafgift, 493
Standard Transformer Co., 511
Superior Instruments Corp., 491
T
Tavella, 593
Tavella, 593

W
Montgomery Ward & Company, 505
Wellborn-Thirdel Sales, 512
Weston Meter, Instrument Co., 491
Westinghouse, 500

Z
Zephyr Radio Company, 193

BOOK REVIEW

"Poisons, Potions and Profits," like its predecessor, "100,000,000 Guinea Pigs," takes advertisers to task for claims made in their advertising. It differs from "100,000,000 Guinea Pigs," however, in that it limits its attack to radio advertisers only.

The author states that due to the laxity of the radio censorship law manufacturers are permitted to use and totally false claims concerning their products—claims which would not be permitted in print. Actual sales talks as well as advertisements are analyzed and laboratory analyses are given to prove his point.

The effect upon the reader is that he feels that by just listening he is putting himself in the way of danger, which he would not set he is risking his life and health.

(R.F.

The Assistant Professor of Speech at the University of Michigan, and director of a broadcasting service, as well as the holder of several other important technical positions, author Abbot brings to his book many years of practical experience. His book on "How to Broadcast Effectively" is extensive and apparently complete.

The few random chapter headings selected for this review reflect the large contents listing are partially representative of the contents scope of this written, semi-technical volume for the serious radio entertainer.

Chapter I—The Networks, (Definition, Advantages and Disadvantages, Relations with Outlets, Studio Microphones, Control Room, Telephone Transmissions, etc.).

Chapter II—The Broadcasting Station (Local or Outlet Station, License, Radio vacation, Antenna, Director, Antenna, Station Staff).

Chapter III—Electrical Transcriptions (Pickups and Transcriptions. Transcriptions, by the author, has had his laboratory analyses are included. The following additional chapters are treated in equivalent detail: Chapter V—Radio Symphonies; Chapter VIII—Radio Phonograph, Antenna, Propelling Cycle; Chapter IX—Writing Commercial Continuity; Chapter X—Development of a Plot into a Record Play; Chapter XVIII—Broadcasts to Schools; Chapter XXII—The Law as It Affects Broadcasting Assignments (Suggested class assignments; bibliography of periodical articles).

NOT TO BE BROADCAST, by Ruth Brinzer. Published by The Vanguard Press, Size 5 x 8 1/2 ins.; 181 pages. Price, $2.50.

Everyone who listens to a radio program should read Ruth Brinzer's book. It not only takes you to the microphone—but transports you right into the conference room and shows you just what the sponsors, the broadcast stations and the government actually thought and did about past radio programs.

The precedences which have been set by 17 years of broadcast operation are analyzed and much of the hubbub we feel sure exists, from time to time, in a program is analyzed. We reveal, every intelligent radio listener should read this book and only in the interest of wishing to honestly and fully efforts being forth throughout our system of American radio broadcasting.

SERVICING SUPERHETERODYNES, by John F. Rider. Published by John R. Rider, Size 5 x 7 1/2 ins.; 138 pages. Price, $1.60.

Any superheterodyne must mean that does not include "Servicing Superheterodynes" must be considered a must have tool. This new, revised edition contains an entirely new Intermediate Frequency list: an appendix has been added to the book.

This volume is the most complete, practical book on superheterodyne receivers that appears in this review. It has few, if any, false pages. When it is realized that about 95% of all radio sets utilize superheterodyne circuits the importance of this book becomes evident. Chapter headings follow: Introduction; The Principles Underlying the Operation of the Superheterodyne Receiver; The Generation of and Elimination of Interference in Superheterodynes; The Construction of the Different Types of Circuits; Function and Characteristics of Components: Special Circuits and Tube Applications: Troubles and Symptoms: Application of Test Oscillators; Receiver Tests; Radio & Television Receivers.

Please Say That You Saw It in RADIO-CRAFT

This book presents fundamental electrical and radio theory in an easy to understand form. Captain Newman hardly seems to leave even the "A" of the motor theory alphabet; yet, the reader of this interesting volume will find that he has assimilated an amazing amount of basic and essential information on the subject topic.

Chapter titles selected at random convey a general idea of the contents: Chapter I—The Fundamental View; Chapter II—Different Ways to Rotate a Shaft; Electro-Magnets; Polarity; Electro-Magnets; Strength of Field, Chapter II—The Cyclical Rotating Magnetic Field.

Chapter III—The Generator; The Voltage Cycle, Chapter VIII—Power With Lapping Current; Leading Current; Chapter XI—Cascading

Chapter XII—Resistance and Inductance; Capacitors.

This book is essentially non-mathematical in treatment but nevertheless algebraic formulas are more frequent than expected. The author states the justification for this simply that in no other way can information be recorded quite so briefly, clearly, and simply.

EVENSDAY SCIENCE, by A. W. Haslett. Published by Alfred A. Knopf, Inc. Size 5 x 8 1/2 ins., cloth covers, $2.50.

Here is a book that sugar-coats the scientific nuances of modern life. Books of this sort present the sciences under earliest times forward; the author of "Evensday Science," instead, correlates his data under such chapter headings as "King Coal," "Science, Medicine and Crime," "The Problems of Waste.

The book is published in New York, but the English author has indexed it "Radio, see Wires." One out-of-date designation (superseded by international agreement many years ago) our "Foundation Scholar's King of College, Cambridge" (England), correlating the book on the problems of waste, some unusual intersecting figures. For example, he estimates the overall efficiency of radio reception to be less than 1/12,000th of 1 per cent! All in all, an interesting semi-technical science presentation.

PYRO PANTAGRAPH

This electrical outfit is especially designed for use in the design permanent signs in the use of such materials as Leather, Wicker, Wood, Cork, Haslett, etc.

VYDOS

Shipping Wt. 3 lbs.

Plug the Pyro-electric pencil in any 110 volt AC or DC outlet and it is ready to be used. Plug and cord furnished.

Use of the pantograph included in the outfit. Any design may be reproduced either in original or reverse side. Outfit consists of: One Pyro-electric Pencil; One Pantograph; Three hardboard plates; one bottle of Varnish; one brush; one tracing template and four page instruction sheet. Size of box: 12 x 6 x 8 inches.

Outfit will be forwarded by Express Co. if sufficient postage included with your order.

WELLWORTH TRADING CO.

566 W. Washington Blvd., Dept. BC-238, Chicago, Ill.
NEW INSTRUMENTS
BY SUPERIOR...
COMBINATION ALL-WAVE SIGNAL GENERATOR
Plus
A COMPLETE TUBE TESTER
Only $19.90

SUPERIOR VALUE IN SUPERIOR INSTRUMENTS
MAKES YOU WANT SUPERIOR'S TEST EQUIPMENT!

MR. SERVICEMAN—You can't afford to overlook the value in SUPERIOR's instrument line. Such outstandingly low prices for equipment that has gained rapid popularity because of the service shops are being equipped with SUPERIOR'S stationary and portable servicing instruments. This advertisement is your buying guide...use it to your advantage!

27 Instruments in 1
THE ALLMETER
1,000 OHMS PER VOLT
$14.40

THE INFOMETER
AN ACCURATE V. T. VOLTMETER
$14.40

GENEMETER
WITH VARIABLE AUDIO FREQUENCIES
$14.40

MODEL V-45 TUBE TESTER
Emission type perfected tube tester for any and all type receiver tubes, including metal and metal-glass. Tests shorts and leakage. Accurate, simple, sturdy, direct...English—reading
(Bad-Good)
$10.40

FREE Catalog!
SUPERIOR INSTRUMENT COMPANY
136 Liberty Street
NEW YORK, N. Y.

ORDER DIRECT FROM
Ghirardi gives you instant command of servicing essentials in 2 HANDY BOOKS

You've got to know a lot to even just "hold your own" in the radio servicing game today. But you won't need to worry if you have MODERN RADIO SERVICING & RADIO FIELD SERVICE DATA at your elbow. These two great Ghirardi servicing books explain every phase of radio service work and will tell you exactly how to handle every servicing problem you'll ever run up against. The first book tells you HOW and WHAT—the other supplies instantly all the necessary recipes and servicing reference data right WHEN and WHERE you need it on a servicing job—with a regular Supplement Sheet Service to keep it up to date at all times.

A HARD-HITTING COMBINATION!

This "double-barreled combination" will give you both service "backbone" and "theory"—the "117 Essentials" of successful servicing—all clearly explained in easy-to-understand language. You need both of these books on your service bench right away. Together, they give you a total of 1900 pages of process service done with 815 diagrams and illustrations to make everything perfectly clear—all for only $6. You can't lose up this big Combination Offer. Grab it Now! Fill out the coupon below, and Mail it Today! Your Money Back if not completely satisfied. Both books sent Postpaid Anywhere!

1. TEST INSTRUMENTS

2. TROUBLE SHOOTING

3. REPAIR METHODS

4. SPECIALIZED SERVICING

5. CASE HISTORIES

MODERN RADIO SERVICING and RADIO FIELD SERVICE DATA BOOK BOTH BOOKS—Only $6

These Men Were Smart!

They built these two Ghirardi servicing books. Read what they say about them now:

"Data and information in these 2 volumes makes 3-year professional training...

"Had I purchased MODERN RADIO WEATHER service books, I would have put the other book and saved all the money I had to write books with this book. Keep a copy here..." F. C. Minneapolis, Minn.

"This book contains the very best information that is needed service work and will be a tremendous benefit to me..." W. J. Badin, Ind.

Don't Risk a Penny—Money-Back Guarantee Protects Your Mail Coupon Now!