Developments in Electronic Music — Circuit Features of New Test Units
New! — The "Audio Expressor" for P. A. Systems — Radio Waves Control Set!

8,000-VOLT RECTIFIER!
See Page 670
NEW! - AN A. C. OSCILLATOR THAT HOLDS ITS ACCURACY

(Individually hand calibrated dials)

ACCURATE frequency calibration assured by large 330° fully visible hand calibrated dial. (Not troublesome trimmers or padders used.)

UNIFORM output level regardless of frequency assured by new WESTON A.C. circuit. Tuning oscillator or shifting frequency band does not increase or decrease signal strength.

CONSTANT signal free from drift or shift in frequency assured by A.C. circuit which automatically regulates mutual conductance of oscillator tube.

COMPLETE attenuation of signal on all bands assured by new WESTON design, thorough double shielding, and elimination of line feedback.

The above 4 features, heretofore available only in high priced laboratory oscillators...yet recognized as essential for thorough radio servicing...now are available for the first time in a practical service oscillator, at a serviceman's price. The new WESTON Model 776 Oscillator gives you all "four," plus 12 additional features and refinements. In addition, it has been styled to match other recent and widely popular instruments in the WESTON line. You will want all the facts on Model 776...a serviceman's oscillator that fully meets WESTON's high standards of accuracy and durability. The coupon will bring you complete literature.

Weston Electrical Instrument Corp.,
599 Frelinghuysen Ave., Newark, N. J.

Send data on Model 776 Oscillator.

Name...
Address..
City...
State..
I will train you
To start a spare time or full time radio service business without capital.

Here are a few examples of the kind of money I train my men to make:

$200 TO $300 A MONTH IN OWN BUSINESS

"For the last 10 months I have been in business for myself, making between $200 and $300 a month. I have N.R.I. to thank for my success in this field."—V.BAY, Fernrock, 224 W. Texas Ave., Gordo, Texas.

OVER $1,000 BEFORE GRADUATING

"Before completing half the N.R.I. Course I was servicing sets, and I made $1,000 to $2,000 before graduating. I am doing Radio service work for myself now."—ASHLEY C. ALDRIDGE, 1223 Shepherd St., Petersberg, Va.

CHIEF OPERATOR BROADCASTING STATION

"When I completed 20 lessons, I obtained my Radio Broadcaster's license and immediately joined Station WMFE, where I am now Chief Operator."—HULLAY P. HAYES, 83 Madison St., Sapulpa, Okla.

EARNINGS TRIPLED BY N.R.I. TRAINING

"I have been doing steadily, thanks to the N.R.I. Training. I am now servicing sets, and my earnings are about three times what they were before I took the Course. I consider N.R.I. training the finest."—ED. OWST, 81 Kent St., Brooklyn, N.Y.

Get My Lesson on Radio Servicing Tips Free

I'll prove that my Training gives practical, money-making information, that it is easy to understand—that it is just what you need to master Radio. My sample lesson text, "Radio Receiver Troubles—Their Cause and Remedy" covers a long list of receiver troubles in A.C. and D.C. types, all-wave, and other types of sets. And a cross reference system gives you the probable cause and a quick way to locate and remedy those troubles. A special section is devoted to receiver check-up, alignment, balancing, neutralizing, testing. You can get this lesson Free by mailing the coupon.

MAIL COUPON NOW

The Tested Way to Better Pay

Do you want to make more money? The world-wide use of Radio has made many opportunities for you to have a spare time or full time Radio service business of your own. Three out of every four homes in the United States have Radio sets which require repairs, servicing, new tubes, etc. Servicemen can earn good commissions selling new sets to owners of old models. I will train you at home in your spare time to sell, install, service, all types of Radio sets to start your own Radio business and build it up on money you make in your spare time while learning. Mail coupon for my 64-page book. It's Free—it shows what I have done for others—what I am ready to do for you.

Many Make $5, $10, $25, $50 a Week Extra

In Spare Time While Learning

Almost every neighborhood needs a good spare time serviceman. The way to start is with Mail! Start sending you Extra Money Job Sheets. They show you how to do radio repairs and how to cash in quickly. Throughout your training I send you plans and ideas that have made good spare time revenue—from $200 to $500 a year—for hundreds of fellows. I send you special Radio equipment and show you how to conduct experiments and build circuits which illustrate important Radio principles. You get PRACTICAL EXPERIENCE while learning.

The Future Outlook in Radio

Radio already gives jobs to more than 300,000 people. And in 1925, Radio enjoyed one of its most prosperous years. More than $600,000,000 worth of sets, tubes and accessories were bought—an increase of more than 60% over 1923. Over a million Auto Radios alone were sold in 1925. More than 24,000,000 homes now have one or more Radio sets, and more than 4,000,000 more are being added to our homes each year. Thousands of these sets go out of date and are replaced with newer models. More millions need servicing, new tubes, repairs, etc. A few hundred $50, $100, $150 a week jobs have grown to thousands in 20 years. And Radio is still a new industry—growing fast!

Get Ready Now for Your Own Radio Business

and for Jobs Like These

Radio broadcasting stations employ engineers, operators, station managers and pay up to $5,000 a year. Spare time Radio set servicing pays as much as $200 to $500 a year—full time jobs with Radio jobbers, manufacturers and dealers, as much as $30, $40, $50 a week. Many Radio experts own and operate their own full time or part time Radio sales and service businesses. Radio manufacturers and jobbers employ testers, inspectors, foremen, engineers, servicemen, paying up to $6,000 a year. Radio operators on ships get good pay, see the world besides. Automobile, police, aviation, commercial Radio, loud speaker systems are newer fields offering good opportunities. Television promises to open many new job opportunities as well. Men I have trained are holding good jobs in these branches of Radio. Read their statements in my 64-page book. Mail the coupon.

I GIVE YOU A PROFESSIONAL SERVICING INSTRUMENT

Here is the Instrument every Radio expert needs. This N.R.I. Servicing Instrument is needed by every Radio serviceman to measure A.C. and D.C. voltages and currents, test tubes, resistance, adjust and align any set, old or new. It satisfies your needs for professional equipment at a low cost. I mail it to you when you make extra money servicing sets while training.

Save Money—Learn At Home

Money Back Agreement Protects You

I am sure I can train you at home successfully. I will agree in writing to refund every penny you pay me if you are not satisfied with my Lessons and Instruction Service when you finish my Course. I will send you a copy of this agreement with my book.

Find Out What Radio Offers You
Get My 64-Page Book Free Now

Art Today! Mail the coupon now for my Free Lesson and my book, "Riche Rewards in Radio." Both are free to anyone over 16 years old. My book tells you how to land a spare time and full time opportunities and those coming in Television; tells about my Training in Radio and Television; shows you letters from men I have trained, telling what they are doing. Find out what Radio offers YOU! Mail the Coupon as an envelope, or paste it on a penny post card—NOW!

J. E. SMITH, President, National Radio Institute

20 Creston, Washington, D. C.

Good for Both

64 PAGE BOOK SAMPLE LESSON FREE

MAIL COUPON NOW

Please say that you saw it in Radio-Craft.
HUGO GERNSBACK, Editor-in-Chief
N. H. LESSEM ROBERT EICHBERG
Associate Editor Associate Editor
R. D. WASHBURN, Managing Editor

CONTENTS—APRIL 1938, Issue
Volume IX Number 10

Editorial: Electronic Wonders.......................... Hugo Gernsback 661
The Radio Month in Review.. 662
Radio in Pictures.. 664
American Technique in the Television Studio...................... 665
Recent Developments in Electronic Music.......................... 666
Outstanding Circuit Features of 1937 and '38 Service Instruments... 668
India’s New Network of Radio Broadcasting.......................... 670
New “Amplified” D.C. Meter... 671
It’s Easy to Build This “Browning-83” 4-Band Superhet.................. 672
New! The Du Mont Television System............................... 674
New! Audio “Expressor” for Sound Systems......................... 676
International Radio Review.. 677
New Circuits in Modern Radio Receivers—No. 7..................... 678
Radio Waves Used to Completely Control Remote Receiver........ 679
A Direct-Reading Electronic “Flux” Meter.......................... 680
Short-Cuts in Radio.. 681
Servicing Questions & Answers.................................... 682
Operating Notes... 682

FOREIGN AGENTS:
Paris—Massoneries Dawson, 4 Rue Faubourg, Poissonniere, France.
Melbourne—McGill’s Agency, 179 Elizabeth St., Australia.
Dunedin—James Johnston, Ltd., New Zealand.

4-Tube “Pee-Wee” T. R. F. Receiver................................ 683
Television Students Learn by Making Cathode-Ray Tubes—Part V.............................. U. A. Sanabria 683
Radio-Craft’s Information Bureau.................................. 684
Build This Simplified, Neon-Type Test Unit.......................... 685
Canada’s “Interference Detectives”—Part I........................... 686
"Learn-by-Experimenting" Beginners’ Practical Radio Course—Experiment No. 58............ Sol D. Frensky 688
The Latest Radio Equipment.. 689
RADIO SERVICE DATA SHEETS:
No. 223—RCA Model 15U Radio-Phonograph........................ 690
No. 224—Ditto (continuation)....................................... 691
No. 225—Ditto (continuation)....................................... 693
Readers’ Department.. 692
A “Handy” P.A. Amplifier... 694
Radio Wittiquiz.. 694
Book Reviews... 704
Radio Interference Now International Problem.......................... 714

IN MAY RADIO-CRAFT—ANNUAL PUBLIC-ADDRESS NUMBER

New developments in public address, sound recording, installations and servicing, and other activities of importance to the sound specialist will receive special consideration in the forthcoming issue. Other articles scheduled for this issue are of exceptional interest to radio Service Men, electronic specialists, radio set builders and experimenters.

Ask your newsdealer to reserve for you a copy of the forthcoming May issue (Annual Public-Address Number) of Radio-Craft.

RADIO-CRAFT is published monthly, on the first of the month preceding that of date; subscription price is $2.50 per year in U. S. and Canada. (In foreign countries, $3.00 a year to cover additional postage.) Entered at the post office at Springfield as second-class matter under the act of March 3, 1879.

Text and illustrations of this magazine are copyright and must not be reproduced without permission of the copyright owners.

Copyright 1938 Radcraft Publications, Inc.
TRAIN FOR RADIO IN 12 WEEKS
BY MY QUICK, EASY "LEARN BY DOING" METHOD

Prepare today to enter a real money-making field by my quick, easy way to learn Radio. Here in my school you are trained in 12 weeks for your start for a better job and a real future. You do actual work on a great outlay of Radio equipment. The remarkable "Learn-By-Doing" methods used in the great Coyne Shops train you in Radio, Television and sound equipment servicing. Not by books... Not by Correspondence... But all under the individual guidance of skilled instructors, and only on similar kind of work you will meet out on a real job. My methods make it easy to learn — First you are told how to do a thing — then you are shown how to do it — then you do the work yourself. WHERE ELSE CAN YOU FIND SO QUICK AND EASY A WAY TO GET PRACTICAL TRAINING IN THIS GIANT INDUSTRY?

I'LL FINANCE YOUR TRAINING

DON'T LET LACK OF MONEY keep you from sending in the Coupon TODAY. Learn how you can get training first and take more than a year to pay for it after graduation. Make your first payment 60 days after your regular 12 weeks' training period ends. Then take over a year to pay the balance of your tuition in easy monthly payments. Hundreds of ambitious fellows have used this method to get Coyne Training. Fill in the Coupon and Mail IT TODAY. It will bring you the details of this amazingly quick and easy way to get your start towards a good pay job.

Radio — Television — Sound Equipment

Your training at Coyne is in wonderful, modern daylight shops on the finest kind of RADIO, TELEVISION and SOUND EQUIPMENT. Television is sure to come as a commercial industry, whether this year or next. Talking Picture and Public Address Systems offer opportunities for the trained man. Everything possible has been done to make your stay at Coyne happy and healthful as well as profitable.

Electric Refrigeration Training Included at No Extra Cost

This combination Training (Radio and Refrigeration) can be of great value to you. Whether you go into business for yourself or get a job working for a Radio Sales and Service organization, the fact that you are trained in servicing Electric Refrigerators should be profitable to you. Many Radio Manufacturers also make Electric Refrigerators and men with this combination training are much more valuable to those employers. You can NOW get this training without extra cost.

No Advanced Education or Previous Experience Needed

If you can read and write simple English and are ambitious you can be trained the Coyne way — by actual experience on a wide variety of up-to-date Superheterodyne sets, oscillators, analyzers, and test instruments. You learn how to operate television receiving and transmitting equipment and how to install, test and service public address systems and sound picture equipment. Coyne training also helps prepare you to qualify for a government license examination as Amateur Broadcast or Telegraph Radio Operator and to know Code and Department of Commerce rules. Send coupon for all details.

H. C. LEWIS, President RADIO DIVISION Founded 1899 COYNE ELECTRICAL SCHOOL 500 S. Paulina St., Dept. 48-8H Chicago, Ill.

Please Say That You Saw It in RADIO-CRAFT
KNOWLEDGE—
AT A PRICE!

Here is knowledge which strains neither the purse nor the mind! Easily digestible, simply written, completely illustrated with photographs and explanatory diagrams... yet entirely authoritative and complete in scope... that is what we offer in this library of books! Practically every phase and subject connected with radio and its allied fields of refrigeration and air conditioning is covered.

The experience and insight which comes only with many years of publishing radio magazines, books and other literature (we started in 1908) is inevitably reflected in the contents and style of these books. Undeniable proof of these facts is the excellent reputation and popularity which they have achieved. Not too technical, yet technical enough to be authoritative... not too expensive so that anyone at all interested in radio can have access to them. Ranging in price from 50c to $12, every serviceman, experimenter and radio fan can become the proud owner of these books, if not at once, then in easy stages.

Your local dealer and mail order house carries a complete stock of these books. See him today for further information or drop us a post card.

RADCRAFT PUBLICATIONS, INC.
99 HUDSON STREET
NEW YORK, NEW YORK
PrACTICALLY all electronic devices which should come under this heading are those which generate within themselves an electronic stream which puts electrons to work in one way or another.

For this reason, strictly speaking, such devices are really tubes of one kind or another. We thus have radio tubes, photoelectric cells, telegraphy tubes, multiplier tubes, all of which make use of actual electrons within the tube. Of course a host of other devices erroneously called "electronic" are coupled with these tubes in order to produce the effect desired. Thus, a radio vacuum tube is not of much use by itself unless we use inductances, condensers, resistors and other components, in order to operate our radio sets. But if it were not for the radio tube and its electronic stream, we would not have radio. The same is true of photoelectric cells, television tubes, etc., but the key to all electronic activity is always such an electronic generator, regardless of what we call it or how it is shaped.

It is often said, and quite truthfully, that the electron tube will probably be the one agency which will revolutionize most of our human activities during the next two generations. As yet, we are still considerably in the dark as to the true functioning of electronic tubes. While we have certain theories, a great deal of research remains to be done to give us a better insight into their actual electronic action. The general workings of electronic tubes are known to us and we have a fairly good picture of what goes on, but many new discoveries are being made constantly to make our tubes ever more efficient and sensitive, although such improvements have resulted in more complicated structures of the tube elements.

Considering the improvements and refinements that have been made since the time Edison discovered the famous Edison effect in an electron tube, and which have taken years to accomplish, the present-day stage of development gives a rough approximation of what will be done in the future. In radio tubes for instance, continued research has made it possible to use less and less filament current and yet increase the electron output. It is possible today to operate tubes efficiently with the filaments (or heaters) just barely red. This then brings us to the stage of development where filaments will be dispensed with entirely. At the present time, the filament or heater is necessary to generate electrons, but the day is not far distant when filaments and heaters will not be required at all. In other words, we will have absolutely cold tubes that will give us an electron output much greater than any we know of today.

Electrons are not dependent on large amounts of physical heat at all. If we rub a stick of sealing wax with a piece of felt, we generate a huge charge on electrons. The ordinary drycell or battery is also a generator of an electron charge where no heat is used. Then we also have such powerful and natural electron-charge generators as radium, uranium and other elements which constantly give off streams of electrons with no outside heat whatsoever being used. So far, no satisfactory electron tube has been evolved where a heating element in one form or another is not used, but this does not mean to say that we will not have the "cold tube" in the future.

The advent of such "cold tubes" will immediately revolutionize the entire radio industry and by that time the power required to operate a radio set will be infinitesimal compared to the power needed today. It is quite possible that future electronic tubes of this "cold" type will probably be "voltage operated." In other words, minute values of current at high tension will be sufficient to create a stream of electrons, in connection with some other device within the tube. This will make the operation of radio sets and other devices highly economical and efficient.

It is usually the heating effect in modern vacuum tubes such as television tubes, photoelectric cells, etc., which necessitate the comparatively large dimensions and cut down the useful life of these tubes. The heaters give off a billion-fold greater electron stream than is actually required and this surplus stream of electrons raises havoc within the tube, not only by blackening and making the inside surface of the glass conductive, but by changing the vacuum in the tube continuously until it becomes what X-ray technicians call a "hard" tube, meaning thereby that the vacuum has increased beyond the required, normal amount.

During the latter part of January of this year, the entire world was treated to one of the most magnificent electronic spectacles man could ever witness. I refer of course to the Aurora Borealis or Northern Lights which flared up over the northern part of the globe because of the electronic bombardment of the earth by the sun on which appeared tremendous sunspots. Remember, that the electrons traveled 93 million miles through an almost perfect vacuum in order to reach the earth, and yet they caused such magnetic effects. It also shows how little we really know of the practical utilization of electrons that have as yet not been harnessed.

Sooner or later we will learn how to tap this tremendous solar electronic emission, a power so vast that if we knew how to harness it, a small fraction of the energy would be sufficient to drive all our machinery, railroads and light up our homes, factories and offices throughout the entire world.
THE RADIO MONTH

SUN SPOTS AND STATIC

In January, the sun came down with a bad case of spots, visible to the naked eye. These resulted in magnetic storms, a lovely Aurora Borealis and gobs of static, the latter audible to the naked ear.

To view the spots, one peered at the sun through heavily smoked glasses. The spot, when seen, was disappointing, and would have gotten nowhere in the Crossley reports; Hollywood could have done it better. It merely looked as though the sun were a trifle mildewed.

The Aurora was much better done. As the magnetic storms swept through the stratosphere, gases at that level glowed like mammoth neon signs, breaking the hearts of sponsors because they did not advertise anything.

The static was a complete success, for it disrupted short-wave communications as though it were putting its whole soul into the job.

PROPAGANDA FOR PROPER GEES

Every nation in the world has its own political, social and economic philosophy. Like gossipy old women, nothing suffices the world's nations but to convert other nations to their way of thinking.

Radio is of great service along these lines, and a continuous bombardment of propaganda hurries through the cringing ether to assault the ears of various nationals.

Italy has been disseminating anti-British broadcasts of such nature as to provoke Lieut. Comdr. Fletcher to remark, "Italy... has now become the poison pen of Europe, and poisons the whole of the world of international relations."

Britain, keeping her other cheek untouched, announced plans to strike back, with counter-propaganda programs in Arabic, Spanish and Portuguese. One such series, aimed at listeners to Italian broadcasts directed at Jerusalem, is given by an Arab prince, son of the King of Yemen.

Japan broadcasts attacks upon the militaristic Chinese Communists; Russia assails Hitler and Mussolini in language which would set fire to a cake of ice; Italy justifies its conquest of Ethiopia and assails Moscow; Germany fires verbal shots at Stalin, which are heard 'round the world, and coyly snuggles up to German-Americans; et cetera.

America, off to a late start, is putting her best foot forward, with some dozen privately-owned high-power short-wave...
stations doing their best to spread the American idea to this naughty world. Unlike most of the foreign programs, those sent from the United States are of the "good will" type, designed to foster international amity rather than to attack any nation or national leader. Most of our directional broadcasts are aimed at our Latin-American neighbors; for example, of the two new aerials at W8XX, Saxonburg, Pa., one is beamed directly on Buenos Aires for Brazil, Argentina and the other South and Central American countries, the other on London to cover England and continental Europe.

A new G.E. station is being readied on our Pacific coast, for regular broadcasts to the Orient. Many such programs will be announced in Chinese and Japanese, and it is believed that some people who speak and understand these languages will have survived to hear them.

RADIOOFFICIAL REPERCUSSIONS

MAE WEST'S original interpretation of Eve, as portrayed in a Sunday night broadcast, may go down in history with even more of a bang than the first flareback indicated. The furiously voiced movie star spoke lines which many found offensive, many inoffensive, many mildly amusing and a few tiresome.

Those who came under the first category grew vocal; protested violently. As a consequence, the program broadcast an apology the following week; the network barred Miss West and all mention of her name from its waves. (Broadcasters may say "damn"—they may not say "Mae West"! Isn't radio wonderful?)

In the meantime, F.C. Commissioner McNinch had written N.B.C. proxy Lohr a letter demanding full information as to responsibility for the broadcast, mentioning that "obscene, indecent, or profane" language on the air was against the law. The fact that stations operate under Federal licensing provisions was also mentioned.

When transcriptions were supplied the Commission, its verdict was that the broadcast was "far below even the minimum standards", and that the "incident" would be considered when license renewal applications were filed.

Had the matter ended there, all would be pretty good, but on January 15, three sequels reached the press:

1. That Sen. Herring, of Idaho, was preparing a bill to "clean up radio" (i.e., censor it);
2. That the F.C.C. was planning "to raise the moral standard" of radio, and copped a copped eye at crime dramas. While it has no power to censor programs, it can exercise a strong hand through its licensing power;
3. That a motion was placed before the Massachusetts legislature for local control of intrastate broadcasting.

No mention was made of what would

(Continued on page 696)

IN REVIEW

Radio is now such a vast and diversified art it becomes necessary to make a general survey of important monthly developments. RADIO-CRAFT analyzes these developments and here presents them in review.
ELECTRONIC MUSIC now so rapidly coming to the fore is in truth not a very new idea. While the results we see and hear today seem to the layman to be startlingly new, the principles by which these results are secured are rather old.

ELECTRONIC-MUSIC PIONEERS

For example, in 1885, E. Lorenz of Germany made a dozen electric buzzers vibrate at frequencies of an octave of the musical scale. He did not stop there with the direct acoustic tones so produced; he mounted these buzzers in an evacuated chamber, fed the interrupted currents to a reproducing telephone. The buzzers, therefore, acted as separate sources of musical tone currents which, when controlled by keyboard switches, could be used to produce music by electrical means!

Later Duddell, an Englishman, demonstrated his talking and singing arc. This also produced the musical scale of tones when tuned circuits, having natural periods of electrical vibration equal to those of the musical scale, were connected by key switches across the arc circuit.

Thaddeus Cahill, beginning about 1885, developed a very pretentious electrical organ called the Telharmonium. This apparatus was actually set up in New York to broadcast, over telephone wires, the musical tone currents it generated. Since amplifiers were then not available, and since Cahill wished to supply innumerable locations with his electrically-generated organ music, he had to use powerful generators. His apparatus actually required 30 freight cars for its transport and, when set up, looked like a central power plant.

All of these plans came to naught. They were proposed at too early a time, when all the aids and advances of modern electronics were for the most part unknown.

Through the intervening years there have been a great many developments in this art, and these have gradually evolved into the modern electronic musical instruments of today. It is not possible, short of a rather large book, even to review these many interesting attempts at musical tone production by electrical means. Indeed, many of them have already been reviewed in the pages of Radio-Craft and other technical periodicals.

But dozens of instruments, which have passed through all the evolutionary stages, are now on the market and are swiftly coming into use.

MODERN ELECTRONIC MUSICAL INSTRUMENTS—ORGANS

One of these utilizes a series of minute inductor alternators, all driven by one induction motor through gearing, to develop the frequencies of the musical scale. Each of these has a number of output circuits so that their particular frequencies can be used in several places simultaneously. That is to say, a given frequency may be used as the fundamental or first partial tone...
IN ELECTRONIC MUSIC

BENJAMIN F. MIESSNER

The production of music by electronic means, though a 50-year-old study, is but now approaching perfection. In this article, the leading proponent discusses this new and growing art—Electronic Music.

of one pitch of the scale and also for the 2nd or 3rd or 4th, etc., of other lower fundamental frequency pitches of the scale. In this instrument as many as 8 separate partials may be used, and in any desired amplitude ratios for producing synthetically a great variety of musical tone qualities. The keyboard keys have multipolar switches beneath them, each one of which serves for a particular partial. Pre-set or manually adjustable stops permit the operator to mix these partials together in the amplitude ratios required for particular tone qualities; an amplifier and loudspeaker complete the arrangement.

In another electronic organ, tuned mechanical reeds as used in the familiar reed-organ or harmonium, are selectively vibrated by air suction through key-operated air valves. These reeds are each fitted with electrostatic pick-up screws near their free tips; the reeds are supplied with adjustable polarizing voltage and the pick-up screws are connected to the control-grid (input) of a high-gain audio amplifier feeding a loudspeaker. Several ranks of reeds are used, the vibrations of which may be reproduced singly or in various combinations for different tone qualities.

Another commercial type of electronic organ uses a separate audio oscillator tube for each note of the musical scale.

Some of these instruments have 15 or 20 such series of oscillators, each series having its own amplifier and loudspeaker. The separate oscillator-amplifier-reproducer ranks use somewhat different circuits so that each such outfit produces a different tone quality through its pitch range. This arrangement is much like pipe organ practice, where many ranks of pipes are used, each rank (ordinarily 61 notes) giving a different tone quality. These ranks, as before, may be played singly or in various combinations through electric or pneumatic actions operated by the keyboard keys.

One of the most recent organs in Germany utilizes gas discharge tubes with reactive discharge circuits. From these may be obtained the familiar sawtooth discharge waveforms, rich in buzzy harmonics; almost pure sine waves may be obtained also.

The chief difficulty with both audio oscillator and neon tube generators is pitch instability. With many hundreds of such oscillators in an organ it becomes almost impossible to keep them in tune. Pipe organs experience some difficulty of this type but to no such degree.

ELECTRICAL FRETTED INSTRUMENTS—MAGNETIC VS. ELECTROSTATIC PICK-UP

Electrical fretted instruments such as guitars, ukuleles and violins have been on the market for several years and daily grow in popularity. At least a dozen manufacturers are producing them. Practically every important dance orchestra uses one.

These instruments use steel strings (Continued on page 712)
The circuit features of modern test instruments which make them different from previous designs are described.

(1) ELECTROLYTIC CONDENSER LEAKAGE TEST

Supreme Model 502 Tube Tester. The test for leakage of electrolytic condensers, which this versatile tube checker provides, is accomplished in a very interesting way. The circuit, see Fig. 1A, is based on the fact that a main filter condenser in service can have a leakage as high as 1 milliampere per microfarad before it is considered unfit for service.

To check the condenser, the 502 has a built-in power pack with filter condenser C1 and bleeder R1, as shown. This pack supplies high A.C. voltage (properly polarized) to the condenser under test, which is connected to pin-jacks JJ. In series with the condenser is a milliammeter M having a "Good-Bad" scale divided in the middle, and a tapped range shunt RS which is in 7 sections as shown, and marked on the panel in the capacity of the condenser to be tested (that is, 1, 2, 4, 6, 8, 10 and 12 mfd.). The action of the circuit is as follows:

Let us assume an 8 mfd. electrolytic condenser is to be tested for leakage. The Capacity Selector switch is turned to the "g" position. This automatically adjusts the shunt resistance RS across the meter to the proper value so that when the circuit across jacks JJ is completed, the meter will read 16 milliamperes full-scale, and 8 ma. half-scale. Now, the 8 mfd. electrolytic condenser to be checked is connected to the pin-jacks JJ in proper polarity and current passes through the condenser and meter circuit, causing the meter to deflect.

If the leakage is not greater than allowable—which in this case is 8 milliamperes—the meter will deflect somewhere between zero and mid-scale (mid-scale being 8 milliamperes). This part of the scale is in GREEN. If the leakage of the condenser is greater than 1 milliampere per microfarad, the meter will deflect beyond center into the RED or "Bad", section of the scale, indicating that there is a total leakage of more than 8 milliamperes. A safety switch SS of the self-returning toggle type is included in the circuit leading to one of the pin-jacks, so that voltage is not applied to the condenser until it is properly connected; also, in case the condenser is defective ("bad"), the instant release of this switch will take the load off the meter and thus protect it. The ring shunt around the meter is designed so that the meter circuit will withstand an instantaneous overload of approximately 10 times the normal load—or, in this case, a total of 160 milliamperes—before any damage can be done. Of course, this is only an instantaneous overload, and should not be kept on for any length of time.

(2) "NO-CURRENT" POTENTIOMETER-TYPE VOLT-METER

Hickok Model 4900-S Analyzer. As every Service Man knows, modern receivers with high-fidelity audio circuits, effective automatic volume control, automatic frequency control and silencing circuits, make use of numerous networks of high resistance in which, at times, currents of only a few microamperes flow. If an attempt is made to determine voltage in portions of these networks with a conventional voltmeter, not only is the voltage observed incorrect, but in too many cases the act of connecting the voltmeter so disturbs conditions within the circuit as to make all observations of voltage or current valueless. To avoid this, the "4900-S" set analyzer has (in addition to its regular A.C. and D.C. volt ranges of 1,000-ohms/volt) a separate and
CIRCUIT FEATURES

SERVCE INSTRUMENTS

The author of "Radio Physics Course," "Modern Radio Servicing," and other books for Service Men, analyzes modern test circuits. Every technician should familiarize himself with these new developments.

ALFRED A. GHIRARDI

unique 0 to 250-volt D.C. voltage measuring section which draws absolutely no current from the circuit to be measured—and does this without resorting to complicated vacuum-tube voltmeter circuits, etc.

Figure 2A shows a diagram of an elementary circuit which will aid in making the system easily understood. Resistor R1 is an adjustable potentiometer resistor in the analyzer. The voltage drop (E1) across it is applied with the proper polarity (positive to positive) so as to "buck" the voltage E2 which is to be measured. A voltmeter V and a "zero-center" galvanometer G are also connected as shown.

The operation is as follows: when the unknown voltage E2 to be checked is applied to terminals A-B of the instrument, either R2 or the poten-
tiometer E1 across the potentiometer will be the higher. This difference of potential will cause a current to flow through the galvanometer G and cause it to indicate. If the voltage E2 to be measured is higher than E1, the current flow will be from A around through the galvanometer and circuit to B and will so indicated on the galvanometer. If the voltage E2 is lower than E1, the current will flow in the reverse direction and the galvanometer will so indicate. If the arm of the potentiometer is adjusted so that these two voltages are exactly equal, they will buck and neutralize each other, and no current will flow through the galvanometer. The voltmeter V, will then give an indirect but exact reading of the potential E2 across A-B—without drawing any current from the circuit under measure-
ment (the current for operating the voltmeter is furnished by the power source connected to R1). In practice, the potentiometer is varied until G shows no indication, the unknown voltage is then read on the voltmeter V.

By providing the voltmeter V with several ranges, and also making the voltmeter E1 variable to cover all these ranges, the system is equally accurate, and presents an infinite resistance to the voltage being measured on all of these ranges. This system (1) draws no current on any range, (2) is unaffected by variations of line voltage and (3) the calibration is not disturbed by changing tubes. In the actual instrument, a simple switching arrangement makes one meter serve as both the galvanometer and the voltmeter, which is a great convenience in operating it.

In Fig. 2A, a simple battery is shown as the voltage source in order to simplify the diagram. In the actual instrument, however, power for the zero-
current voltmeter (as well as for the capacity meter and the highest range of the ohmmeter provided in the analyzer) is obtained from a built-in power supply consisting of a conventional power transformer, rectifier and filter system.

(3) SMOOTH-CONTROL STEPLESS ATTENUATOR

Clough-Brengle OCA Oscillator. The exceptionally smooth control of high radio-frequency output which is provided in this test oscillator is accomplished by the novel attenuator circuit arrangement shown in Fig. 2B.

The variable, non-inductive controls, R2 and R3, are low in resistance value as compared with the series fixed resistor R1 which connects to the output of the oscillator tube. Impedance changes in R2 and R3, therefore, have a negligible effect on the tuned circuit, maintaining stability and frequency accuracy at a high level.

In normal operation arm A gives a coarse adjustment of R.F. output, while arm B acts as a vernier.

On the higher frequencies arm A is moved to the point D, which is maintained at "ground" potential. The only R.F. voltage appearing across R3 then comes from whatever distributed capacity exists between the circuit elements (represented by C1). Adjustment of arm B gives very smooth control of the R.F. output of the oscillator.

(4) INDEPENDENT HOT-CATHODE LEAKAGE AND INTER-ELEMENT LEAKAGE TESTS

Radio City Model 306 "Dependable" Tube Tester. The value of adequate hot-
cathode and inter-element leakage tests on modern vacuum tubes is too well known to need explanation here. The use of sensitive neon lamps as visual indicators for these leakage tests has become almost universal practice in the design of tube testers. However, an interesting variation of this arrangement is used in the tube tester considered here.

In this tester a sensitive neon lamp which indicates inter-element leakages (Continued on page 716)
INDIA'S NEW NETWORK OF RADIO BROADCASTING

A new radio system, with broadcast band and short-wave transmitters and time clock operated, pre-tuned receivers in key villages, furthers India's plan for eventual complete coverage. An unusual feature of this new All-India Radio system is that the pre-tuned receivers are dial-less and padlocked; and that the 8,000-volt power-supply tubes use mica "lamshades" to reduce possibility of "backfire."

THe technical problem that now confronts the Broadcasting Department of the Government of India, All-India Radio, is that of providing a service over an area of nearly 2,000,000 square miles with the limited funds available, official announcements state.

In the development of broadcasting in India it has been accepted by All-India Radio as a fundamental precept that a satisfactory broadcasting system must provide a measure of service to the whole country. This immediately determines the principle of operating transmitting stations on the short wavelengths. At the same time, it is admitted that this is not a final solution. Simultaneously with the provision of a short-wave or "second-grade" service to the whole area, a medium-wave or "first-grade" service is necessary for the large towns. The basic principle of broadcasting development in India, therefore, is to provide a short-wave service to the whole country and to support this by a continual expansion of the area served by medium-wave stations as funds become available.

10 TRANSMITTERS ORDERED

To this end 10 transmitters have been ordered. Four short-wave "key" stations will be established at Delhi, Bombay, Calcutta, and Madras, and will be of 10-kw. (aerial) power. A second short-wave transmitter of 5-kw. power is also to be provided at Delhi for special purposes. The development program does not envisage any future increase in the number of short-wave stations. These short-wave stations will provide a "second-grade" service to the whole of India.

At the same time, 5 medium-wave stations have been ordered, and will be situated at Lahore, Lucknow, Trichinopoly, Dacca, and Madras, the first 4 stations having a power of 5 kw. The Madras medium-wave station will have a power of 250 watts, and will service the city only, as Madras will also be provided with a 10-kw. short-wave transmitter. With these stations, and the existing medium-wave stations at Delhi, Bombay, Calcutta, and Peshawar, All-India Radio will have in operation 5 short-wave stations and 9 medium-wave stations. Two of the new stations are expected to be in operation by the end of the year: the 10-kw. short-wave station at Delhi and the 5-kw. medium-wave station at Lahore.

CHOICE OF SHORT WAVELENGTHS

It is expected that the Indian short-wave stations will normally operate in the daytime on the 30-meter and 40-meter bands and at night principally on the new 60-meter and 90-meter bands for broadcasting which will be proposed at the forthcoming Cairo Conference.

It is considered that there should be no interference between the Indian short-wave stations operating an internal service and the European and the other short-wave stations operating an international service, as the Indian day wavelengths are the European night wavelengths, and the Indian night wavelengths are not used by the...

(Continued on page 698)
A revolutionary new meter, devised by Dr. V. K. Zworykin of RCA electronic research laboratory, has a "negative-feedback" amplifier to gain "galvanometer" sensitivity.

The ultra-sensitive meter illustrated in Fig. A was developed for accurate measurements of ionic and electronic currents, employing a new electronic circuit which operates with unusual stability and amazing accuracy, even approaching that of the average reflecting galvanometer. For an instrument of its extreme sensitivity it is amazingly rugged. It cannot be easily damaged or burned-out by overload currents.

In current measurements the new meter provides for 12 scale ranges for measurement of 10,000 microamperes, the lowest full scale reading being .02 microamperes. For voltage measurements, 8 other scale ranges are available from .1 volts to 500 volts, with a meter resistance of 5 megohms. For resistance measurements, 2 scale ranges are provided for measurements of from 1 to 100 megohms, and from 20 to 1000 megohms, with less than .05 volts across resistance. With 90 volts in series, up to 250,000 megohms can be measured. Conversion of the meter for the 3 forms of operation is accomplished by means of a selector switch.

The Ultra-Sensitive D.C. Meter is a self-contained, battery operated (see Fig. B) precision instrument, utilizing three type 1B4 tubes. No external resistances or shunts are required.

The overall accuracy for all ranges of current or voltage measurements is plus or minus 2% of full scale at ambient temperatures of 50 to 100° F. and normal humidity. For resistance measurements the maximum deflection error is plus or minus 0.1 inches at mid-scale. This error is less at other points of the scale approaching zero at the ends.

THEORY OF OPERATION

The Ultra-Sensitive D.C. Meter essentially consists of a group of input circuits, a D.C. feed-back amplifier, and an indicating meter. The principle of operation is easily grasped by referring to the block diagram, which shows a D.C. amplifier with its output connected in series with its input. It should be assumed to contain an odd number of stages so as to produce negative feed-back. When such an amplifier is connected in this manner, it will "lock-in" at what may be called its equilibrium condition which represents a certain voltage on each plate and grid in the amplifier (with respect to cathode) and a certain feed-back voltage (developed across R) returned to the input. The system will tend to hold to these values with a tenacity proportional to the gain "G". Any tendency toward oscillation is prevented by the shunt capacitor. It may be assumed further that the amplifier is internally adjusted so that the equilibrium feedback voltage is just equal to "E" so that the voltmeter (V.M.) will show no deflection.

(Continued on page 700)
HIGHLIGHTS OF THE "BROWNING-83" 4-BAND SUPERHET. RECEIVER

Complete 4-band tuner assembled, wired and prealined;
4-band range, 0.54- to 22 megacycles;
10 tubes employed, viz: 26RK-1, 6A8, 6H6, 1AD5, 6C5, 2AF6's, 1R0, 1G6G.
All tuning circuits individually shielded;
Large high-ratio vernier dial, accurately calibrated in megacycles for each band (4 scales on the dial);
Non-critical, straightforward superheterodyne circuit;
High signal-to-noise ratio;
Diode detection;
Automatic volume control;
Resistance-capacity coupled audio channel;
Push-pull AF output with phase inversion;
Triple-tuned I.F. circuits with variable gain controllable from front of panel;
Visual tuning indicator;
High-quality speaker to match receiver.

Succeeding Parts will contain curves, chassis layouts, test voltages, and a picture diagram.
HERE IS THE HIT SET OF 1938!

Fig. A. The author, checking the completed receiver which is described in this article.

IT'S EASY TO BUILD THIS "BROWNING-83" 4-BAND SUPERHET.

GLEN H. BROWNING

THERE are, and always will be, experimenters in all scientific fields for not only is experimenting an interesting hobby but often contributes materially to our scientific knowledge. Many inventions have been made by individuals, especially in the field of radio, independently of commercial interests. The American amateur and experimenter has continually paved the way in the transmission and reception of radio signals ever since the day of wireless, and is today exploring new frequency spectrums, new circuits, new antenna arrays and new problems.

The writer, who was an experimenter in the early days of wireless, has always been interested in designing kit receivers for this group. Three years ago, when it was proposed to bring out an all-wave kit receiver, it was predicted that there were relatively few who would consider building such a set. However, the "Browning-83" was so well received and so enthusiastic were the reports on its performance that the writer was encouraged to re-design the kit incorporating new worthwhile features. This re-design was started about 6 months ago and has now been completed.

DESIGN FEATURES

The new "Browning-83" kit receiver is much more flexible, and thus permits more leeway for experimentation. The heart of the new receiver is an all-wave tuning catacomb embodying the coils, tuning condensers, padding and trimming condensers for a sharply-tuned antenna stage, a stage of radio-frequency amplification on all bands, and the oscillator circuit for the 4 bands covered. The tuning ranges are changed by means of a band-switch with low contact-resistance which so operates as to short-circuit all coils not actually in use. Three shield compartments are provided, each of which houses a single stage for all bands. The trimming condensers are rigidly mounted on the coils, so that they are easily accessible for alignment purposes and are connected to the coils and switch units with heavy leads, thus insuring permanence in alignment. The band-switch is of the multi-deck type, so that all stages are switched simultaneously by means of a single control. The main 3-gang tuning condenser is mounted on the top of the chassis which houses the coil assemblies, and is completely shielded by means of demountable shields which may be removed easily to provide complete accessibility. Connection is made to the rotor plates by means of heavy braid leads, which connect directly to the low-potential end of the associated coils, rather than through the medium of the tuner chassis. This tends to eliminate chassis currents which might otherwise produce undesirable effects such as degeneration, regeneration, oscillation, etc.

The tuning catacomb, covering a frequency spectrum from 0.54- to 22 mega-
cycles, is completely wired, tracked and aligned when you get it. This insures correct tracking and alignment of the various circuits involved and assures frequency coverage in accordance with the dial calibration. A great deal of work has been done on this tuning catacomb to obtain as high a signal-to-noise ratio as possible. This is accomplished by a careful design of the coils and the elimination of chassis currents. The tuning catacomb is grounded to the main chassis at one point only. This is important. The isolation of the tuning catacomb from the main chassis at the points of mechanical support is accomplished by means of soft-rubber grommets which serve a number of purposes. One of these is the cushioning effect which tends to reduce acoustical vibration in the unit itself; another is to eliminate entirely the possibility of any circulating currents (which may be set up in the main chassis) from entering the tuning assembly; another is to reduce direct conductive heat transfer from the main chassis into the tuning catacomb, thus tending to some extent to reduce oscillator drift.

EASILY BUILT BY AVERAGE EXPERIMENTER

In the design of a kit receiver, it is desirable that the circuit employed shall be so basic and so straightforward that the set may be easily constructed by the average experimenter. The chassis layout should be such that there is little chance for encountering oscillation and other troubles in the intermediate-frequency amplifier. At the same time the layout should be flexible enough to allow individual experimentation in such circuits as the intermediate-frequency amplifier, the audio-frequency amplifier and such additional circuits as noise suppression, automatic frequency control, etc. In this kit set, additional space and tube/socket holes have been purposely included. Thus provision has been made for the addition of various circuits which will be presented to the experimenter from time to time.

The basic superheterodyne circuit is shown in Fig. 1 and, as will be noted, employs a sharply-tuned antenna circuit, a stage of radio-frequency amplification on all bands, and an oscillator circuit with a 6A8 tube used as a pentagrid converter. Numerous types of intermediate-frequency amplifiers have been experimented with from the standpoint of ease of construction, selectivity, and high audio fidelity, and it has been found that the triple-tuned band-pass circuit is outstanding.

From the standpoint of the experimenter, the link circuit in the band-pass filter arrangement, which is factory-aligned to the intermediate frequency of 456 kc, acts as a key, as the only connection to this circuit is a ground lead and, consequently, the frequency to which it is tuned is not altered by lead or tube capacity. Thus, this circuit assures that, when the I.F. amplifier is finally aligned, the proper intermediate frequency is obtained. This is very important if the dial calibration of the receiver is to be accurate. Another function of this link circuit is to broaden the nose of the response curve of the intermediate-frequency amplifier, which results in improved audio quality. It would be expected that broadening the nose of the response curve would result in poor overall selectivity; however such

(Continued on page 707)

LIST OF PARTS

One Browning tuner, model No. 1:
One Browning dial and escutcheon
One Browning band-switch escutcheon
One Browning bakelite dial strip
One Browning drilled black crinkle panel
One Browning drilled cadmium plated chassis fuse
One Browning intermediate frequency amplifier.

Fig. 8. All waves, continuously from 0.55 to 22 megacycles, are available in this kit receiver, which uses 10 tubes, including a phase inverter and a "tuning eye" indicator.

RADIO-CRAFT for APRIL, 1938

673

AT LAST!

Here, Mr. Communications Amateur, is the superhet you long have wanted. It combines all the essential elements of an efficient 0.54- to 22 megacycles communications receiver, yet employs only the optimum number of tubes.

Here, Mr. Radio Experimenter, is a 13.6 to 555 meter ultra-modern radio set. Its kit-type construction and the use of a factory-pre-aligned catacomb makes building this set "apple-pie."

*One power and filament transformer with static shield.
*One Browning special etched and engraved wood.
*One I.R.C. resistor, 230 ohms, 0.5 W., R25;
*One I.R.C. resistor, 250 ohms, 0.5 W., R4;
*One R.I.C. resistor, 400 ohms, 0.5 W., R2;
*One I.R.C. resistor, 0.5 W., R27;
*Two I.R.C. resistors, 1000 ohms, 0.5 W., R5;
*Two I.R.C. resistors, 2000 ohms, 0.5 W., R8;
*One I.R.C. resistor, 20,000 ohms, 0.5 W., R9;
*Two I.R.C. resistors, 20,000 ohms, 0.5 W. (5% tolerance), R20, R22;
*One I.R.C. resistor, 25,000 ohms, 1.0 W., R26;
*One I.R.C. resistor, 50,000 ohms, 0.5 W., R7;
*Three I.R.C. resistors, 0.1 megs., 0.5 W., R10, R14;
*One I.R.C. resistor, 8,1 mfgs., 0.5 W., R16;
*One I.R.C. resistors, 0.5 megs., 0.5 W., R13, R19, R23;
*Three I.R.C. resistors 1.0 megs., 0.2 W., R104, R17;
*One paper cond., 0.01 mf., 400 V., C11;
*Seven paper condensers, 0.05 mf., 600 V., C6, C8, C12, C14, C23, C24;
Six paper condensers, 0.1 mf., 400 V., C1, C3, C7, C13, C18, C22;
Two tubular electrolytic condensers, with clamp, 475 V. working, 600 V. peak, 8 mf., C13, C14, C19;
Three tubular electrolytic condensers, 50 V. working, 75 V. peak, 10 mf., C10, C16, C19;
One mica condenser, 0.002 mf., C2;
Two mica condensers, 0.001 mf., C3, C9;
Three mica condensers, 0.0001 mf., C20, C21, C25;
One Centrafil resistor, 500 ohms fixed, 10,000 ohms variable potential, right-hand taper, R6;
One Centrafil variable potential resistor, 0.5 megs., left-hand taper, R11;
One Centrafil variable potential resistor, 0.5 megs., right-hand taper, with A.C.
switch, R15;
One Wright-Decoster loudspeaker, BL 1100, 1,200-ohm field.

Two RCA type 6H7 tubes:
One RCA type 6A8 tube;
One RCA type 6H6 tube;
One RCA type 6G5 tube;
One RCA type 6D5 tube;
Two RCA type 6P6 tube;
One RCA type 81 tube;
One RCA type 6G6 tube;
Eleven wafer sockets for tubes and loudspeaker.

*Most Radio mail order houses can supply this item if phoned in with title of article, issue (month) of Radio-
Craft and year.
THE Du MONT TELEVISION SYSTEM

TELEVISION TAKES A BIG STEP FORWARD! Ingenious new circuit arrangement makes reception—of various numbers of lines per frame and frames per second—possible with simplified television receiving set. A "Phasmajector" demonstrates principles involved.

ALLEN B. Du MONT

TELEVISION systems now being used commercially in Europe and experimentally in this country are basically the same. A photoelectric mosaic tube, scanned by a cathode-ray beam, is used for picking up the images at the transmitter; a cathode-ray tube with a fluorescent screen for reproducing the picture is used at the receiver. Sweep circuits are employed at the transmitter to scan the picture. The video signals from the pick-up tube are transmitted by the video transmitter, as well as complicated synchronizing and blanking pulses. At the receiver the video signal is used to modulate the cathode-ray beam, the synchronizing pulses are used to hold the picture steady and the blanking pulses eliminate the undesired portion of the sweep trace.

PRESENT SYSTEMS VS. Du MONT SYSTEM

The present systems have a number of disadvantages which, in some measure, have held back their use on a large a scale as sound broadcasting. For one thing the receivers are costly because of the necessity of providing local sweep circuits and separators. Second, a very wide frequency band is necessary for transmission, and, third, receivers can only receive pictures having a given number of lines per picture and pictures per second. There are numerous other disadvantages among which are fussy adjustments at the receiver and the necessity of using ultrashort waves for transmission which limit the distance the pictures can be sent.

The Du Mont Television System, on which patents are pending, eliminates all these disadvantages and for the first time provides a practical, simple, low-cost television system of high definition. The basic difference between this and the present systems is that, instead of having local sweep oscillators at the transmitter and receiver, the sweep voltages themselves are transmitted. This in itself seems a simple change—and it is, but a large number of details had to be worked out in order to accomplish this. Considerable work toward this end has been carried out for the past several years at our laboratory, and well over a year ago permission to transmit using this system was requested from the F.C.C., but to date, due to the usual red tape, no decision has been made on the application. Regardless of this, our tests in the laboratory conclusively prove the advantages gained by this system, which are obvious to technicians when the following facts are considered.

Referring to the various disadvantages of the present system we note that the receivers are costly because in addition to having the usual radio receiver, local sweep circuits with their complicated separator circuits must be provided. With the Du Mont System, the receiver needs no local sweep circuits and is practically the same as the present-day sound receiver, except that it has the higher frequency response necessary for high-definition pictures. Furthermore, no provision has to be made for interlacing which, together with synchronizing, causes considerable trouble in the present system. To sum up, the Du Mont receiver is practically the same as a modern sound receiver, no local sweeps, synchronizing or interlacing controls or circuits being necessary.

WORLD-WIDE TELEVISION NOW PRACTICABLE!

Taking up the point that a very wide frequency band is now necessary, the fact that in the Du Mont System a higher interlace ratio can be employed permits much higher definition pictures with the same frequency band, or allows the same definition picture to be transmitted on a much

RADIO-CRAFT for APRIL, 1938
narrower frequency band. The reason for this is that, because of the difficulty of synchronizing and interfacing with the present system, it is impossible to use a higher ratio than 2.

In the Du Mont System, because if cannot possibly be out of synchronization, there is no limit to the interlace ratio. Hence the saving in both the radio spectrum and the receiver is considerable. With present systems a 6 megacycle band is necessary for 441 lines, 60 fields per second and an interlace ratio of 2.

Our tests have shown that, with the same number of lines and frames per second, we can use an interlace ratio of 4, requiring a frequency band of only 3.0 megacycles. This means that two transmitters can be used where only one can now be used.

Furthermore, a longer wave band can be used, allowing world-wide transmission. Taking this from another angle, if we decide to use the full 6 megacycle band we can transmit pictures of 882 lines, which is comparable to the finest motion pictures now available. In addition the receiver will have only the same frequency requirements as at present.

A QUESTION OF ECONOMICS—ANSWERED

The point to be discussed is, that with the present system receivers can only receive pictures having a given number of lines per picture and pictures per second, is important because the greatest reason for holding back commercial television, in the opinion of the writer, has been this consideration. No company will assume the responsibility of bringing out sets with a certain definition (number of lines) and have them become obsolete in a year or so because of advances in the art. Yet, with the present system, this holds true. Changes have been made in the past seven years, raising the number of lines from 48 to 60 to 120 to 180 to 210 to 343 and now to 441. The present detail is fairly good, but nowhere near the ultimate, and it is certainly not desirable to make sets useless when further changes occur or to decide now on a standard which later on would be undesirable. With the Du Mont receiver a picture of any number of lines can be received, up to 882, providing the receiver has amplifiers at least as good as those necessary for present 441-line transmission. A person buying a receiver using this principle can see pictures from transmitters using various numbers of lines and, when the transmitters increase the detail (number of lines), his receiver does not become obsolete.

In this new system the video transmitter does not have any synchronizing or blanking pulses inserted in the video signal, so the full power is available for picture signals (instead of only 80% with the present system, due to 20% of the power being necessary to transmit the synchronizing and blanking pulses).

The line and frame sweep voltages have been transmitted with satisfactory results by several different methods. In one method these voltages are transmitted over the audio carrier. The line frequency is above the audio range and a simple filter keeps this frequency out of the loudspeaker. The frame frequency is also transmitted and means are

(Continued on page 708)

Du MONT DIGEST

PRESENT SYSTEMS

1. Framing circuits in receiver.
2. Scanning circuits in receiver.
3. Blanking circuits in receiver.
4. Wide frequency band (6 mc.) needed for transmission.
5. Receiver set for one number of lines per frame and frames per second.

Du MONT SYSTEM

1. Framing impulses transmitted.
2. Scanning impulses transmitted.
3. Blanking impulses transmitted. (May be done on sound channel.)
4. Narrower frequency band (3 mc.) needed for transmission.
5. Receiver can reproduce any number of lines per frame and frames per second.

The author, a television and tube designer of many years' experience, brings to the field of cathode-ray television a number of new ideas, which appear to offer the following advantages:

1. Lower cost of receiver construction.
2. Possibility of putting more stations on the air in the channels allocated.
3. Interlacing is done automatically, through the transmitted signal.
4. Detail of 882 lines may be transmitted on a channel no wider than those now used to carry 441 lines.
5. Standardization of detail unnecessary, as receivers using Du Mont Systems can tune to any number of lines and/or frames, when same transmission is used.
6. Signal strength 20% greater, as impulses need not be carried with video signal (may be with audio).
NEW!

AUDIO "EXPRESSOR"
FOR SOUND SYSTEMS

You add this unit to your existing sound system. It (1) properly corrects the dynamic range of recordings; and (2) corrects for changing volume as the orator changes his position with respect to the microphone.

A. C. SHANEY

The present trend towards high and higher fidelity has virtually necessitated the development of the new "add-on" unit illustrated in Fig. A. This device, known as an expander (which combines the words expander and compressor into one unit) has been specifically designed for extreme simplicity of operation and maximum performance.

The "expander" is basically capable of 2 functions, i.e., (1) expansion, and (2) suppression. These may be accomplished in various degrees by adjustment of the expander control (R1). A flick of a switch (S1) changes it from an expander into a compressor, and vice-versa. Although expanding circuits are not new, the particular type employed in this expander is different, not only in its simplicity of circuit elements, but in its stability as well. Before delving into the operating principles employed, it might be advisable (for the benefit of the layman) to review the major advantages derived from the use of an expander.

WHY AN EXPANDER SHOULD BE USED

In producing musical recordings (particularly of classical selections), some passages may be so low as to be barely audible, while other portions of the same selection may be loud enough to vibrate the walls of a building. These loud passages cannot be properly impressed onto a record because the largest amount of volume that can be carried on a record is definitely limited to the width of the sound wave which the stylus or needle cuts on the soft wax record from which the master record is made. Too much volume will cause the stylus to break down the walls of the groove and jump into the next track. If this happens, the mold record is ruined. In order to avoid this condition, the music is carefully "monitored" (kept below this dangerous level). In other words, the very loud passages are made lower.

Conversely, very low passages make practically no impression on the wax "master." In fact, sound intensities below some fixed level are lost in the needle scratch. In order to remedy this condition, the very low levels are "built up" so as to definitely activate the cutting stylus.

The overall result of this recording procedure is to "condense" the dynamic range of sound intensities. Although most musical instruments can be subjected to this treatment without undue effect, the recorded version of a symphony orchestra selection is greatly affected.

(Continued on page 710)
INTERNATIONAL RADIO REVIEW

BRITAIN'S "TUNING EYE"

A BRITISH version of the familiar American visual tuning indicator (as advertised in Wireless Weekly, London) is the "Electron Star" now being included in Philips sets. Instead of a single band of black narrowing as the set is brought to resonance, it makes use of 4 evenly-spaced electron beams which broaden when the set is in tune. (See Fig. A.) While it serves the same purpose as the "eye", it is somewhat more decorative.

PHONO-RADIO DESK

A 6-TUBE, 5-band receiver, together with a phonograph incorporating an automatic record changer, all housed in a desk and produced by H.M.V. of Britain was recently advertised in Wireless Retailer and Broadcaster (London). The price is 50 guineas (about $275). A panel at the right (see Fig. B) of the desk carries the dial and control; turntable and record magazine are exposed in an open center compartment, for convenience.

CHAIN-DRIVE DIAL

A NEW German reduced-speed dial drive makes use of an endless chain and sprocket wheel. Its unique feature is that it does not need to be directly in front of the tuning unit it controls. The dial (see Fig. C) may be centered on the panel and the condenser set to one side, if chassis dimensions so require. This is a great convenience for home set-builders as well as commercial designers.

RECEIVER "IMPROVEMENT"

AN interesting idea is expressed in a patent (reproduced in Fig. D) recently granted Emile Devienne, of Fleurieu-sur-Saône, France. He brings a bared segment of the set's ground lead into close relation with a coil formed in the A.C. power lead, the distance being micrometrically variable by means of a knob and screw. It is claimed that this arrangement increases both selectivity and sensitivity. (N.B.: This device has not been tested by Radio-Craft, and the Editors are not yet convinced that it will perform as claimed.)

MONOKNOB SIMPLIFIES CONTROL

CONTROLS are centralized in the "Monoknob", a tuning control produced by Philips and popular in Germany. The accompanying illustration (Fig. E) taken from Popular Radio (Copenhagen) adds detail to that shown (Continued on page 695)
NEW CIRCUITS IN MODERN RADIO RECEIVERS

The details of the modern radio receiver circuits that make them "different" from previous designs are illustrated and described each month by a well-known technician.

F. L. SPRAYBERRY

(1) STEWART WARNER MODEL 1861 TO 1869.
Stewart Warner Model 1851 to 1859. Coupling of the 1st audio stage with the power amplifier stage is accomplished by a single, center-tapped choke as in Fig. 1A. The two halves of the choke are identical in inductance value and number of turns, and the coupling between them is very nearly unity as it is equipped with a closed iron core. The voltage induced in the lower-half of the coil, due to current flow in the upper-half is, therefore, within a fraction of a percent of the voltage applied to the upper-half. Because of the connection, the voltages are of opposite phase suitable for the control-grids of the beam tubes.

(2) POWER SUPPLY FILTER USING NO CHOKE.
G.E. Models FD-62 and FD-625. Resistors are used instead of one or more choke coils in the filter system of these models, as shown in Fig. 1B. To compensate for the less-effective filter action, the filter condensers C22 and C23 values are made higher than usual. They have values of 60 mfd, each. The resistance values of R11 and R12 are chosen to give the correct bias voltages. A magnetic-type speaker is used and thus there is no field coil to use as a filter choke.

(3) SIMPLIFIED PUSHBUTTON TUNING.
RCA Victor Model 87K1. For a medium-size set such as this one, it is most practical to employ the fixed-value circuit switching type of pushbutton tuning. A "first position" counter-clockwise setting of the wave-band switch completely disconnects the main gang tuning condensers from the R.F. and oscillator circuits, but connects the antenna and oscillator coils connected in Fig. 1C for the broadcast band. Substituted for the main tuning condenser in the R.F. grid circuit are 6 adjustable condensers, each capable of adjustment over about 1/3 of the band. In this way, any 3 stations may be pre-set so that when the individual push-button switch is used the circuit will be tuned exactly to the desired predetermined signal. The oscillator tuning circuit is similarly tuned, but with one of the "magnetite" core (radio-frequency iron) coils shunting the special fixed coil for this switch connection. Each oscillator core may be adjusted over 1/3 of the oscillator band and corresponding numbered condensers are switched in with these magnetite coils. The control switches interlock so that each one pressed in succession will open the former one pressed. Through the use of a temperate-compensating condenser in the oscillator circuit the tuning adjustment is maintained to a very accurate degree. The band switch connections for pushbutton tuning only are shown in Fig. 1C.

(4) "BLOCKING VOLTAGE" PHONO. CUT-OUT "SWITCH!"
Emerson Models 152, 158, 156, 158, 167. A method is used in Fig. 1D by which the grid of the R.F. and I.F. amplifier systems are effectively blocked without breaking their circuits. Breaking of circuits is always attended by bothersome noises and transient circuit disturbances. This method applies the full "B+" voltage directly to the signal rectifier diode and to the A.V.C. line through R5. All of the grids ordinarily A.V.C. controlled now become slightly positive although most of the voltage drop occurs across R5. The 1st-detector and I.F. tubes have greatly decreased gain and the diode is considerably beyond its current saturation

(Continued on page 698)

Fig. 1. Heavy lines in the circuits accentuate the points discussed in the text.
Radio Waves Used to Completely Control Remote Receiver

W. E. Shrage

Radio dynamics, or control of remote devices by means of radio waves, received a long-due impetus, last month, when attendees at the I.R.E. Rochester Convention learned of a system that obsolesces control tubes (in the remote device) which require being constantly connected to the power line in order to be operable when the control impulses arrive.

No cables, no "always on"

The remote-control system to be described requires neither bothersome extension cables nor must the receiver be constantly connected with the power line. The new device is absolutely automatic in operation. Radio signals switch the set on and off, tune in any station desired, and adjust the volume of the speaker to any level desired.

The fundamental trick lies in the application of a new type of radio tube. This tube, shown in Fig. A, is known under the name "gas-switch-tube" or "thyatron"-type 313A. It is connected, as Fig. 1A explains, on one side with a potentiometer (capacitative voltage divider) consisting of the condensers C3 and C4. At first nothing of special importance seems to be attached to the function of this potentiometer. But as we shall see this is not the case. By varying condenser C4 one can adjust the voltage across the electrodes A and B to any level desired. Let us examine what this adjustment involves. Any gas-filled tube, such as a neon glow-discharge lamp, has a certain breakdown voltage; i.e., the voltage at which a current starts to flow between the electrodes of the tube. For the particular tube applied, the critical voltage is approximately 70 volts.

Now, if we adjust C4 until a voltage of 60 volts exists between the electrodes A and B no ionization will take place in the gap between them, and despite the fact that only 10 volts are lacking to the required breakdown voltage of 70 volts no current will flow through the tube.

Keeping that in mind, let us examine condenser C1 and coil L1. Experienced readers will recognize at once this condenser and coil are the units of a tuning circuit; and, we may add, this circuit is tuned to 300 kc. Everything else is simple. Let us assume a radio signal of 300 kc. is picked up by this tuning circuit whereby the home power line acts as antenna. What will happen? A radio potential will form across L1. This additional voltage added to the existing 60 volts already across the gap between A and B will cause the ionization of the space between the two electrodes, and a current will start to flow. However, and this is of importance, the current will not only flow between A and B but also between A and C.

The current flowing over electrode C causes relay No. 1 to close, and the receiver, until then "dead as a doornail," starts to operate. It is apparent that by application of a number of tubes of this type, each of them equipped with (Continued on page 719)
A DIRECT-READING ELECTRONIC "FLUX" METER

From Germany comes this interesting story of a new method for measuring the magnetic permeability of iron and other substances by means of vacuum-tube circuits. Proper design of A.F. transformers and permanent-magnet loudspeakers depend upon such measurements of the flux.

HEINZ BOUKE

The ultimate reason for having at present at our disposal excellent A.F. transformers which have an amazingly straight frequency-response curve is the painstaking research concerning the permeability of iron and iron-alloys. Similarly, the modern permanent-magnet dynamic speakers, which have solved a number of intricate problems in public address work, are also the product of magnetic research. When one knows these facts, this heretofore underestimated line of radio research wins great interest.

But this is not all that makes the new method of magnetic measurements, to be described, so interesting. There is also the fact that the new method of measuring would be impossible without the help of the radio tube. And this smoothing of its own way to progress as done by the radio tube is significant of what we may expect in the future, when this trend is more widely utilized than at the present time.

The ultimate trick of the new method of measuring magnetic effects consists of the application of an extremely small test coil equipped with a modern R.F.-iron core. A customary form of such a coil, with the dimension of 1 x 6 millimeters (3/64 x ¼-inch), is shown in Fig. 1. The turns S of this coil are arranged in toroid form. Item R is the finely-divided iron core and A is an electric shield, which also serves the purpose of safeguarding the minute coil against deformation, etc. The extremely small dimensions of this coil have been chosen in order to make measurements inside the smallest gaps possible. For example in the air gap of a dynamic speaker, etc.

This tiny test coil when connected with a circuit as shown in Fig. 2 permits the identification of variation of magnetic flux. Variations as small as 0.01-per cent and even less are measurable. What this extreme sensitivity involves will not only amaze the test engineer in the laboratory, but will probably pay high dividends to every man in the radio field in the form of much improved speakers and transformers.

Now, a few words about the circuit applied. We see, in Fig. 2, two R.F. oscillators (or generators), V1 and V4, which operate on a frequency of about 7.5 megacycles. Both oscillators feed their energy into a kind of potentiometer consisting of the tubes, V2 and V3, and the variable coil, Lr. Oscillator G2 is crystal controlled, and produces an absolutely constant frequency. Oscillator V1 is tuned to the same frequency, but a part of its tank coil is shunted by the tiny toroid coil, Lr. In other words, one oscillator, V4, operates with absolutely constant frequency output, but the second, V1, oscillator changes its frequency when the tiny test coil LE is under the influence of a magnetic field.

In order to simplify the matter, no gap of a loudspeaker is shown, but the (Continued on page 701)

Fig. 1. Greatly enlarged view of the exploring coil, constructed of an R.F.-iron core, toroidal winding and protective metal covering and shield. The actual size, as shown, is ¼-in. wide and 3/64-in. thick.

Fig. 2. Fundamental circuit of flux meter using 5 tubes. V1 is the crystal-controlled oscillator and V1 the variable oscillator the frequency of which is governed by the conditions in exploring coil LE. A "beat" note manifests itself as a reading on a meter with a "gauss" scale.

Fig. 3. The simplified circuit of the flux meter using only 2 tubes. Here only one oscillator is used (V1). Coupled to this is a V.T. voltmeter. A change in frequency in the oscillator is reflected in the V.T. voltmeter circuit—the difference being read on a calibrated scale.

RADIO-CRAFT for APRIL, 1938
SHORT-CUTS IN RADIO

FIRST PRIZE—$10
AN INEXPENSIVE A.C.-D.C. VISUAL OUTPUT INDICATOR. A visual output indicator can be made with nothing more than a 6E5 visual tuning indicator tube and socket, a 30-watt electric light bulb and socket, a line plug, a 0.1-meghm fixed resistor, and 3 battery clips. The 6-prong socket and the ten-cent-store light socket may be screwed to a small baseboard. The connections (see Fig. 1) are as follows:—

One side of the line plug is connected to the filament and cathode prongs of the tube socket; the other side to one terminal of the light socket and the plate prong of the tube socket. The remaining terminal of the light socket connects to the other filament prong of the tube socket. A large battery clip for grounding the unit is connected to the cathode through the fixed condenser; 2 small battery clips are directly connected to the control-grid and cathode terminals of the socket. These two clips connect to the output transformer of the receiver, in place of the voice coil. The tube's base is placed in its socket and the 30-watt bulb (preferably painted black to avoid glare) is screwed in, and the unit is ready to operate. In some cases it works better if a 1-meg resistor is externally connected between the plate and target prongs of the socket.

The unit may be used on A.C. or D.C., and if care is taken to make sure the cathode side of the plug is always on the grounded side of the line, the fixed condenser may be omitted.

F. J. DONNEAU

SECOND PRIZE—$5
MIRROR "TILTS" METER WITHOUT INTRODUCING ERROR. In many meters, the counterweight on the needle is not sufficiently well balanced to afford an accurate reading when a meter designed for horizontal use is tilted for easier reading. This may be avoided by fastening a small mirror, such as women carry in their handbags, over the instrument. It may be propped up temporarily, affixed to the cover of the meter case, or slipped into clips best from stiff copper or steel wire, as Fig. 2 shows. Of course the reading will be reversed, but, with a little practice, one can read much more accurately this way than by tilting the meter.

HERMANN JENSEN

THIRD PRIZE—$5
NOVEL IMPROVED DESK STAND FOR MIKE. The inexpensive desk stand for a velocity mike, as shown in Fig. 3, can be made by using a discarded cast-iron or heavy brass light fixture canopy for the base and an 18-inch piece of pipe thread to fit the coupling of the mike. The canopy and the pipe should be painted a dull black and, if necessary, the base can be weighted by using a mixture of scrap metal and sealing compound or lead. A piece of felt to cover the bottom of base unit should be cemented on.

Experience will show that a "desk" or "bouquet" mike-stand should be of a predetermined fixed height to avoid the trouble and embarrassment caused by nervous speakers trying to steady themselves by adjusting the height of the stand and thereby causing funny noises to come out of the loudspeaker units. See Fig. 3.

LEO J. DRAUS

HONORABLE MENTION
MULTIPLE HEADPHONE CONNECTION. When several people wish to listen-in on phones, a new type of pin-jack can be improvised. If desired to be a permanent part of the short-wave set or radio practice oscillator, it is quickly made.

(Continued on page 699)
ANALYSES of RADIO RECEIVER SYMPTOMS OPERATING NOTES

Philco Model 70. This model had two common complaints. That of a bad, low-pitched hum and intermittent reception wherein the volume drops to about onehalf of its original level at any setting of the volume control. The usual sounds of hum were examined without discovering the cause of the complaint. As a last resort a new condenser was bridged across each condenser in the set in turn, starting with the first stage of the set and ending in the output circuit.

This definitely traced the trouble to a condenser in the plate circuit of the 2nd-detector. This 0.25-mf. condenser (Fig. 1A) is connected at the junction of the two resistors, used in series with the plate of the 24A-type 2nd-detector tube and the high-voltage lead, and the chassis. Replacing this cured the hum trouble.

The usual source of intermittent reception in these sets is the audio coupling condenser between the plate of the 2nd-detector tube and the grid of the 47-type output tube. This unit proved to be in good condition so a thorough examination of every part in the receiver was undertaken. The buffer condensers connected between the power line and ground were found to be the cause of the intermittent reception. Replacing these brought the receiver back to normal operation. These condensers are shown in Fig. 1B. In the early model 70 Philco receivers and similar ones where the volume control is connected in the antenna circuit, an increase in volume can be obtained without harming the control of the volume by placing a jumper between the lug of the control connected to the antenna lead and the lug connected to the 1st radio-frequency coil, the center lug of the control.

WALTER R. WHITCOMB

RCA Victor 118, 211. Intermittent reception on these models, or partial operation, is frequently the result of an intermittently open-circuiting 10,000-ohm screen-grid voltage drop resistor, a wire-wound unit mounted on the terminal strip located below the power transformer. In many cases, reception can be obtained when the chassis is struck smartly with some suitable instrument. The open-circuited condition, will, of course, be disclosed with a socket analysis by the lack of screen voltage on all but the 41 output tube.

The symptom of choked reproduction may almost always be traced to a short—

(Continued on page 714)

INTERMITTENT LOW-FREQUENCY RESPONSE

(44) A. L. Tucker, Donaldsville, La.

(Q.) I have in my shop an RCA Victor model 262 for repair which intermittently loses most of its low-frequency response at low- and medium-volume levels. Otherwise, reception is satisfactory. When the receiver was new, at low-volume settings, with the bass control adjusted for maximum bass reproduction and the treble control set for maximum "highs", the bass tones predominated. Now, on the same setting, the highs seem to stand out.

This trouble is not constant, as the set suddenly flares back to normal at times, or by snapping the power or wave-band switch, reception is made normal. The tubes are OK. The speaker, output transformer, volume control and compensation resistor and condenser have been replaced. All components in the tone control circuit have checked OK. Can you suggest a remedy to overcome this trouble?

(A.) The condition which you describe was not an uncommon fault with the RCA Victor model 262. Only one of the two chassis turned out under this model number, however, had this difficulty. You state that when the wave-band switch is rotated, reception, at times, becomes normal. Possibly, your receiver employs a fidelity change with band changes. The front section of the wave-band switch attenuates the low-frequency response when the short-wave bands are employed. In the "X" and "A" band positions, the low frequencies are boosted or normal. Check this section of the wave-band switch, as well as the green common lead of the electrolytic bypass block, which is (or should be) grounded to the same chassis lug as one terminal of the tone-control reactor. An intermittent 1st audio plate filter condenser, a 0.25-mf. unit, will cause trouble. See Fig. Q.44.

"NO RECEPTION" ON COLONIAL 31 A.C.

(45) P. Pappas, Brooklyn, N. Y.

(Q.) I have a Colonial 31 A.C. receiver in my shop for repair. When the antenna is touched to the plate terminal (Continued on page 720)
4-TUBE "PEE WEE"
T. R. F. RECEIVER

The superlative performance of this "electric" set— one of the smallest in America— enables it to meet special requirements.

There seem to be two trends in modern radio receiver design;— the one towards the large, comparatively expensive console or "main" home receiver, and the other towards the ultra-midget or "personal" receiver. The "Pee-Wee" receiver illustrated in Fig. A falls in the latter class and is outstanding in that it is one of the smallest receivers manufactured which has the stability and performance of its larger brethren in the midget family. In fact, tests by Radio-Craft indicate that for its size really remarkable results have been achieved in obtaining acceptable tone quality.

Note that this radio set is of the A.C.-D.C. type. This factor plus its small and rugged design makes it an instrument which is particularly suited to services in which the ordinary or larger, and more complicated and expensive receiver is not so readily adaptable. This set, for instance, may be tucked into the corner of the traveling case and used wherever a 110-V. supply, either A.C. or D.C., is available; for antenna no additional wire other than the flexible lead supplied with the set is required. The Pee-Wee also may be recommended for the children's room. In this connection it has exceptional entertainment and educational value. This compact set also lends itself to use in hospital wards. Service Men will do well to look into the possibilities of renting this (Continued on page 705)

Readers of Radio-Craft have exhibited exceptional interest in this series of articles— published here for the first time in any popular radio magazine — on constructing experimental C.-R. tubes for television.

PART V

Television Students Learn by Making Cathode-Ray Tubes

U. A. Sanabria

Last month we described our early experiments on the construction of the electron gun and the process for the evacuation of the cathode-ray tube. This month we continue with our experiments with an improved type of gun.

The design of the electron gun was not a pleasant type of task, because the elements were not adjustable during experimentation due to the fact that the elements of the gun were inside of a vacuum tube where they could not be physically reached for adjustment. An ordinary light optical system using lenses can be set up on an optical bench, and the best conditions can be readily found. When the electron optical system is inside an evacuated vessel, obstacles in experimenting occur. For example, you can readily see that a shift of a few thousandths of an inch for one of the electrodes will produce the desired results; yet, you are unable to change the position of an element without rebuilding the whole tube.

Since every part of the tube affects the operation of all the other parts in final performance, it is sometimes difficult to locate the exact source of trouble. At first, this has to be accomplished with a combination of intuition and plodding isolation. It did not take long to find that it was much better to make every part so good in the first place that trouble was unlikely to occur with the exception of those points where you were making your investigations. Learning dimensions and adjustments in cathode-ray tubes consists of making a number of them having different adjustments while taking great care to keep other parts constant in dimensions (Continued on page 708)
"SERVICE MAN'S AUDIO OSCILLATOR"

(350) C. J. White, Woodruff, Wisc.

(Q.) I went to great pains and no little expense to build the "Service Man's Audio Oscillator" described in the June, 1937, issue of Radio-Craft. This oscillator works, but has these two faults: It is not stable, and the output does not produce a good, even wave on the "scope. Can you give me any further tips on connections as shown in the wiring diagram? All of my equipment is of the best quality, and I would like this unit also to be A-1.

(A.) Judging from the above, the trouble is probably caused by one or more of the following: (1) no shielding of the leads emerging from the 2.1 F. transformers; (2) no "humble" top cup shield; (3) open filter or bypass condensers; (4) plate leads too close to other wiring; (5) tubes that are not sufficiently stable; (6) omission of R.F. rectifier; (7) omission of plate bypass on 6FS; (8) poor ground return on chassis. The waveform is not sine at low frequency because of the beat between the 2 oscillators.

"MAGIC EYE OUTPUT INDICATOR"

(391) Edward W. Bayard, Houston, Tex.

(Q.) I have just completed construction of the "Magic Eye Output Indicator," as described in your magazine for April, 1938. Although the actual physical construction differs from the illustration of your unit, the circuit is intrinsically the same as your design. Mine has a pilot light, feeding from the heater winding that supplies the 6FS and 665 tubes, and I am using the common grid circuit from an Audio-Tone model R "B" Power Unit. It therefore has choke and output filter, with the filter condenser connected to the choke center-tap.

After completion, I turned the instrument "on" and allowed the tubes to warm up. The rectifier output was checked at 300 volts. In a few seconds the tuning eye glowed a bright green with the 60-degree shadow. I connected the positive terminal of a 4.5-volt "C" battery to the grid-jack and its negative terminal to the "LO" tips-and-the shadow closed approximately half-way; with a lesser voltage (3 volts) the closure was not as green. I then tried 60-cycle A.C. supplied from a small toy transformer with variable taps. Beginning with 1½ volts, the movement was scarcely perceptible. From 3 to 16 volts r.m.s., a slight decrease in shadow width was noted, accompanied by a faint fuzziness of the shadow edge, but it was not clear-cut and bore small resemblance to the illustration in your article.

I then tried various voltages, both A.C. and D.C., with the tip-jack in the "HI" position. Here the movements were even less perceptible than in the "LO" position. The wiring was checked a dozen times, and although I have adhered strictly to the part values as shown and assembled the apparatus in as neat and faultless manner as possible, thoroughly in keeping with good radio and instrument practice, the unit seems to have an appalling lack of sensitivity. As a last resort I tried it under "Application and Uses," using a Stromberg-Carlson 642 receiver in good condition. The indicator showed very little, if any, response. Finally by removing the speaker voice coil leads and connecting the indicator ("HI" side) directly to the voice coil winding of the output transformer and having the volume control advanced to the maximum, and tuned to a local station, I was able to observe the varying shadow width as the signal was being modulated. However, the movements were weak and sluggish and had no snap, pep or sensitivity. This result was obtained on one of the three receivers operated at full power. It wouldn't do, then, for aligning a receiver with A.V.C., or detecting minute variations of signal strength, or gain in successive R.F. stages.

Thinking the voltage impressed on the tubes might be too high, I reduced it to 250 volts, but the results were the same. I have come to the conclusion that something must be wrong; probably, some part shows wrong value, due to typographical error, or the wiring is shown in error. Amongst the highest quality and have been tested and retested and are okay.

(A.) You state in your letter that you use choke input and choke output with a condenser between the 2 choke.

Please notice carefully that the schematic circuit shows a 4 mf. electrolytic condenser, connected after the filter choke. This condenser is absolutely essential to the operation of the unit. Its omission will cause all the troubles you mention.

In addition, if you light living-like action of the shadow, just omit the 0.5-meg. resistor and 6.1-mf. condenser which are connected to the 6ES grid.

Incidentally, the editors of Radio-Craft are particularly interested in your letter as a "horrible example." You used excellent parts and constructed your apparatus with skill, yet, because you did not follow the diagram, the unit failed to function correctly. Sometimes errors do creep into diagrams, but this does not occur often. Readers—all readers—are therefore urged to build their apparatus according to instructions. If they must try some variations, and if as a result the unit fails to operate, they are advised to change it to be in accordance with the diagrams. They may waste time and trouble to check and recheck the components.

A.C. FROM BATTERY

(392) D. L. White, North Emporia, Va.

(Q.) I am a repairman on battery sets and live in the country. There is no A.C. where I live and I want to enlarge my home workshop so that I can do too. Primarily I would like to advise how I can make a cheap rig to test A.C. receivers with a storage battery and "B" battery.

(A.) You cannot properly test an A.C. set with storage "A" and drycell "B" batteries. To give but one reason, such tests could not show up defects in the power pack. However, there are two solutions to your problem. The first and best is to buy or build a 60-cycle 110-volt A.C. generator, to operate from storage cells. The second is to use "inverters" which is a vibrator-type power supply operating from a storage battery and generating 110-V, 60-cy. A.C. This latter unit is much less expensive to purchase than the generator mentioned above. However, you will need to contact SPECIAL SERVICE department, and furnish them COMPLETE specifications of desired information and available parts.

CRYSTAL SET

(393) Geo. M. Fricke, Chapin, S. C.

(Q.) I am searching for plans and instructions for building one of the best and most efficient crystal sets. The set is owned by the Proprietor of one of the old radio stations in my area. I can't find any plans or instructions, and would like to build a repeater on a separate paper when needed to explain your meaning; use only one side of the paper. List each question. Be SURE to sign your name and address. Enclose only a STAMPED and self-addressed envelope for names and address of manufacturers; or, in connection with correspondence concerning questions to articles, as this information is gratis.

Incidentally, I would like to have a SPECIAL service department, and furnishing COMPLETE specifications of desired information and available parts.

I-TUBE ALL-WAVE SET

(394) Robert C. Wing, Minneapolis, Minn.

(Q.) A short time ago, I found the enclosed diagram of a simple receiver. No instructions (Continued on page 19).
BUILD THIS SIMPLIFIED NEON-TYPE TEST UNIT

An amateur radio operator tells how $4 worth of apparatus can be used to construct a simple unit which may be used as a set tester, A.F. oscillator, code practice set, keying monitor for transmitters, etc. A nifty little unit to have around the shop or laboratory.

KENNETH L. HUNTLEY, W8PQP

THE APPARATUS to be described is a very economical and versatile tester and audio-frequency oscillator which should be in the possession of every radio operator and radio Service Man. The component parts will usually be found in the “junk” box. If all the parts are purchased, however, the cost will not be over $4 and the apparatus easily pays for itself in one or two service jobs.

THE SERVICES IT PERFORMS

This unit may be used as a sensitive continuity tester for point-to-point testing and also for the testing of the component parts of a receiver or transmitter such as: condensers (mica, paper or electrolytic), transformers, coils, resistors, chokes, etc.

The oscillator may be used as a code practice set, keying monitor or audio oscillator. The frequency of the oscillator is variable from 50 to 10,000 cycles/second. When used as a monitor the unit does not monitor the signal of the transmitter but it does furnish a swell means of checking one’s keying and the tone may be adjusted to suit the individual operator.

The component parts are connected as shown in the diagram, Fig. 1. The photograph, Figs. A and B, show the unit which was built by the author, but other designs will probably suggest themselves to the builder as being equally suitable for their particular needs.

HOW IT’S USED

For point-to-point testing and as a continuity tester a 90-V. D.C. supply is connected to the terminals marked “D.C. INPUT”. (This supply may be taken from “B” batteries, “B” eliminator or other 90-V. D.C. supply). Sw. 1 is thrown to the “OFF” position. The apparatus to be tested is connected to flash once when connected or at regular intervals; if the rate of flash is not over 15 times per second the condenser is satisfactory. Condensers which flash more often are leaky and will cause trouble sooner or later. Condensers which do not flash intermittently but cause a partial glow of the neon lamp are leaky and should not be used. A shorted condenser will cause a bright glow of the neon lamp and failure of the lamp to glow indicates an open condenser.

(Continued on page 699)
Man-Made Static

One of radio's greatest problems is the suppression of man-made interference. Its two principal branches are (a) the location of sources of such disturbances and (b) ending the cause or suppressing radiation.

In order to do full justice to this important subject, Radio-Craft is publishing a series of articles, of which this is the first, telling in detail how the Canadian Government is attacking the problem.

The Radio Branch of the Department of Marine, in Canada, maintains a radio interference elimination service that is serving as a model for governments and radio trade bodies throughout the world.

Since the publication of the first Government pamphlet on the subject, in May, 1927, the service has been useful in more than 50,000 cases, resulting in great savings to power companies and in greatly improved reception for radio set owners.

The "Interference Detectives" travel about with loop-equipped cars, in localities from which complaints have been received. The interior of such a car is shown in Figure C. Figure A shows a portable loop set being used to check-up interference from a (building) elevator-control relay bank.

Once the interference is located, means are taken to keep it from getting onto power lines and spreading throughout a territory. This is not difficult on stationary machines, but is a greater problem on such mobile units as trolley cars. The Canadians solved it with filters installed on top of the cars at the base of the trolley pole.

Figure 1 shows the wiring of the standard model of Canadian Government apparatus, designed to be used in conjunction with a converted auto-radio receiver. It can be connected to the regular car antenna for multi-directional ("vertical") reception; to the loop (rotatable through 360 degrees) for bi-lateral ("Figure 8") reception; or to both. The latter combination connection affords "sense" (or uni-directional) reception when the variable resistance (Res.) and variometer (L1) (shown in heavy line in the diagram) are correctly adjusted.

The following description of the adaptation of a standard automobile receiver and use of the Inductive Interference Indicator is taken from Canadian Government specifications:

"The standard automobile receiver is fitted with two extra input terminals marked on diagram (Figure 1) 'Grid' and 'Coil'. The connection from one end of input coil to grid of first tube is broken and the two ends connected respectively to the above-named terminals.

"The loop is mounted on the roof of the car and may be rotated through 360° by means of a handle within the car. The loop, pronged for attachment to a frame of hardwood 7/8 by 1 1/2 ins. long and 25 ins. and 17 ins. high. The wiring consists of 12 turns and is embedded in slots milled in each side of the frame. Six slots are milled on each side 1/16-inch wide by 3/16-inch deep, spaced 3/16-inch apart. Enamed wire is inserted and the slots are then filled with plaster, which will form weather-resistant insulation. The completed loop is given 3 coats of black insulating paint. The center-tap of the loop is used for 'vertical' and the wire net antenna in the roof of the car may be connected to the loop center-tap if more 'vertical' is required.

"The condensers C1 are ganged and are balanced by trimmers C2 after the receiver is installed in the car and connected to the loop. By means of these trimmers the electrical center of the loop circuit can be accurately adjusted to compensate for any unbalance in the loop or car wiring.

"The value of the variable inductance, L, found necessary depends largely on the electrical characteristics of the loop.
on the car.

"The variable resistance Res. has a maximum value of 500 ohms and a zero minimum. It is desirable to have the beginning of this resistor tapered so as to give a slow increase in resistance as it will be found that small values will generally be used and the taper assists in rapidly obtaining the correct value.

"The probe transformer consists of a primary, center-tapped, and a secondary wound on a fibre tube 1 inch in diameter. The primary has 20 turns and a secondary sufficient turns to permit one half of the ganged condenser to tune it to resonance throughout the broadcast band."

The probe is a 3-inch antenna at the end of a 10 or 15-foot non-conductive rod. It is located adjacent to an antenna probe transformer which connects to a probe transformer in the set through a 100-foot radio-frequency transmission line. This R.F. transmission line has low-impedance characteristics to eliminate the possibility of noise entering the receiver through that source. The antenna probe transformer matches the high-impedance probing antenna to that of the line, while, at the set, the low-impedance line is matched into the high-impedance input of the receiver by another transformer which is identical in design with that of the antenna transformer. The probe unit is insulated for 20,000 volts (since it is used in close proximity to high tension power lines), but (WARNING) must, nevertheless, be used with the utmost care, and never when headphones are worn.

The probe transformers are as follows:—Aerial primary coil, double layer, 200 turns; secondary, single layer, c.t., 30-30 turns. Set primary coil, single layer c.t., 30-30 turns; secondary, double layer 125 turns. Single layer coils are wound on %-ins. diameter forms, wrapped with 2 layers of friction tape, and the secondaries wound over them. No. 30 silk covered wire is used. A 8-turn coil is removable connected to the potential probe, being in series with the probe primary, when the "detector" wishes to explore for R.F. current instead of R.F. voltage.

Figure 2 is the fundamental antenna circuit of the interference locator with all switches removed for simplicity.

An output voltmeter is connected across the output of the modified automobile receiver.

OPERATING INSTRUCTIONS

The arrangement described provides:

(A) Non-directional reception;
(B) "Figure 8" reception;
(C) "Heart-shaped" reception; and,
(D) Probe reception.

(A) "Non-directional" reception:
Non-directional reception is obtained by throwing the D.P.D.T. switch SW. 4 to the "aerial" side. This connects the car roof antenna to the receiver in the normal way. It will be noted that this operation is entirely independent of the position of the remaining switches. In this position the tuning dial on the receiver only is required to be adjusted.

(B) "Figure 8" or "bilateral" reception:
The D.P.D.T. switch SW. 4 is closed on the "loop" side.

The switch SW. 3 is closed on the "Figure 8" side.

(Continued on page 703)
EXPERIMENT No. 5B

TESTING RADIO PARTS
(B) RESISTANCE TESTING

New way of learning radio! — You learn basic principles while building useful radio units. The lessons are directed by a man well fitted for the task ... a radio instructor. This is the second part of Experiment No. 5.

CONDUCTED BY

SOL D. PRENSKY

EXPERIMENT No. 5, viz. TESTING RADIO PARTS is divided into 2 sections. The first section, CONTINUITY TESTING, was considered in the last installment (Exp. 5A in the February issue), and showed a method of testing with headphones and a battery to determine whether the part in question was continuous, that is, that there was no break in its circuit.

The second installment, Exp. 5B (and appearing in this April issue), is called RESISTANCE TESTING; and a meter is used to determine the actual resistance of the part in question. This method not only shows the condition of the part, in so far as open- or short-circuits are concerned, but gives the value for the amount of resistance, measured in ohms. When used in this way, the meter is called an ohmmeter.

PRINCIPLES INVOLVED

The general principle in testing parts is to observe the result when we send a current through the part being tested. In this case, a low-voltage battery is used, and the amount of current flowing through the part is indicated on the meter. Since we are more interested in the value of the resistance than in the amount of current, the circuit is so arranged that the meter is marked off or calibrated in ohms, rather than in milliamperes. Basically, the meter is a milliammeter rather than an ohmmeter, but the term ohmmeter is the accepted name in practice, since the meter is direct-reading in ohms.

In selecting which one of the two types of meters is to be used as an ohmmeter, it is important to first decide what type of service is to be expected from it. For the beginner, to whom this will be the first work with meters, it is best to use an elementary type of meter, which will enable him to get a general idea of the resistance of the part, that is, whether it is open, high-

resistance, low-resistance or shorted.

This type of meter is the vane-type meter where the swing of the needle is determined by the amount of attraction between a pivoted vane made of soft iron and a fixed coil through which current flows.

Fig. A. The "roll-your-own" ohmmeter (left) and the alternative (more sensitive) moving-coil ohmmeter (right).

Fig. 1. Showing the internal construction of (A) moving-coil and (B) a vane-type meter; (C) full-size "make-your-own" scale for vane-type meter.

Fig. 2. Schematic diagram of (A) vane-type voltmeter and (B) moving-coil-type ohmmeter.

RADIO-CRAFT for APRIL, 1938
Technicians use this department to keep posted on the newer and better apparatus for use by specialists in Radio, Electronics, and Public Address.

THE LATEST RADIO EQUIPMENT

SPEECH INPUT CONSOLETT (1571)

PROGRESS in studio equipment design is well-represented in the modernistic 2-studio console-type 8-watt (output) speech input system here shown. Controls 6 microphone inputs plus 6 line inputs at high-fidelity. Provides studio talkback with automatic speaker cut-off; and, cueing for both studios and booth.

POLICE RADIO TRANSmitter (1572)

NEWEST in police radio transmitters is the modernistic, hi-fi installation here illustrated. Delivers 38 W., on 30 to 42 megaehes. This transmitter is the first to appear incorporating the new “signal-boosting amplifying circuit” which permits operation at an unusually high percentage of modulation without risk of exceeding the predetermined maximum on peaks.

A NEW SERVICE TOOL—RESISTANCE ANALYZER AND INDICATOR (1573)

A GENERAL-UTILITY instrument useful to Service Men, engineers, experimenters and amateurs. Among its many uses are: voltmeter multiplier; resistance or volume control analyzer; volume or tone control; etc. Section No. 1, 0/30,000 ohms (wire-wound); No. 2, 30,000 ohms/1 meg. (metallized). Both sections controlled by single knob.

MATCHED-PANEL CLOCK-AND-RADIO SET (1574)

HERE is a 4-tube radio set which at last offers a T.R.F. radio receiver combined with the utility of a clock; and both presented in an instrument of matched design. The electric clock at left, in general appearance, matches the tuning dial at right. Finished in ivory with characters in turquoise blue.

NEW 4-WATT 100-MC. OSCILLATOR (1575)

HERE is a complete, stable oscillator consisting of tank circuit and vacuum tube, only 7 ins. high. The “secret” of the design lies in the use of the new type 316A tube and a “lumped concentric-element tank circuit.” The completed device meets the following

(Continued on page 685)
ALIGNMENT PROCEDURE

There are 17 adjustments required for the alignment of the oscillator, 1st-detector, and antenna-tuned circuits; 1 adjustment for the wave trap, and 6 adjustments for the I.F. system. Fifteen of these adjustments are made with plunger-type air trimming condensers and require the use of an RCA stock No. 12636 adjusting tool. Each of these condensers has a lock-nut for securing the plunger in place after adjustment. The remaining 9 adjustments are made by means of screws attached to (Continued on Data Sheet 224)
molded magnetite cores. These cores change the inductance of the particular coils in which they are inserted to provide exact alignment. All adjustments must be made accurately during manufacture and should remain in proper alignment unless affected by abnormal conditions of climate or improper handling. For servicing, or unless altered by other means, loss of sensitivity, improper tone quality, and poor selectivity are the usual indications of improper alignment. Such conditions are avoided simultaneously correct performance of this receiver can only be obtained when these adjustments have been made by a skilled service engineer with the use of adequate and reliable test equipment.

Two methods of alignment may be used; one requires use of the cathode-ray oscilloscope, and the other requires a voltmeter or glow-type indicator. The cathode-ray alignment method is advantageous in that the indication produced takes the form of a waveform which represents the resonant characteristics of the circuit being tuned. This method is preferred because of the I.F. characteristics of these receivers.

I.F. ADJUSTMENTS

(a) Set "Fidelity" control to counterclockwise position. "Radio-Phono" switch to "Radio." Turn the antenna pickup to the strongest broadcast station. Connect the "Ant." output of the test oscillator to the control-grid cap of the 6SK7 second I.F. tube (with grid lead in place) through a .001-mf. condenser, with "Gain" control, receiver chassis. Tune the test oscillator to 400 kc. and place its modulation switch to "On" and its output switch to "Hi." (b) Turn detector and test oscillator, increase the output of the test oscillator until a deflection is noticeable on the oscilloscope screen. The figures obtained represent several waves of the detected signal, the amplitude of which may be observed as an indication of output. Cause the wave-image formed (400-cycle waves) to be spread completely across the screen by adjusting the "Horizontal Gain" control. The image should be synchronized and made to remain motionless by adjusting the "Sync." and "Focus," control.

(c) Adjust the 2 magnetite core screws L25 and L26 (see Figs. 4 and 5) of the 3rd I.F. transformer to the 6SK7 grid and output terminals near the 400-kc. maximum on the horizontal deflection of the oscilloscope image. This adjustment will place the transformer in exact resonance with the 400-kc. signal.

(d) The sweeping operation should follow using the frequency modulator. Shift the oscilloscope "Timing" switch to "Ext." Insert plug of frequency-modulator cable in test-oscillator jack. Turn the test-oscillator modulation switch to "Off." Turn on the frequency modulator and place its sweep-range switch to "Hi." (e) Increase the frequency of the test oscillator by slowly turning its tuning control until 2 separate, distinct, and similar waves appear on the screen. If only 1 wave appears, increase the "Tone" control of the test oscillator to obtain 2 waves. These waves will be identical in shape, totally disconnected, and appear in reversed positions. They will have a common base line, which is discontinuous. Adjust the "Freq." and "Sync." controls of the oscilloscope to make them remain motionless on the screen. Continue increasing the test oscillator frequency until these forward and reverse curves move together and overlap, their highest points exactly coincident. This condition will be obtained when test-oscillator setting of approximately 575 kc. If the wave images established as in (e) are ar'adjust the 2 magnetite core screws L25 and L26 on the 3rd I.F. transformer so that the forward and reverse curves will become exactly coincident throughout their length and have maximum amplitude.

(e) Check the adjustments of the apparatus, shift the "Ant." output of the test oscillator to the grid cap of the 6SK7 1st I.F. tube (with grid lead in place), through a .001-mf. condenser. Regulate the test-oscillator output so that the amplitude of the oscilloscope image is approximately the same as used for adjustment (e). Increase the 2nd I.F. transformer magnetite core screws L27 and L28 (one on top and one on bottom) so that they cause the forward and reverse curves to become coincident throughout their length and have maximum amplitude. (f) Without altering the adjustments of the apparatus, shift the "Ant." output of the test oscillator to the input of the I.F. system, i.e. to the grid of the 6L7 1st-detector (with grid lead in place), through a .001-mf. condenser. Regulate the test-oscillator output so that the amplitude of the oscilloscope image is approximately the same as used for adjustment (e) above.

(g) The 2 1st I.F. transformer magnetite core screws L25 and L26 (one on top and one on bottom) should then be adjusted so that they cause the forward and reverse waves to become coincident throughout their lengths and have maximum amplitude.

R.F. ADJUSTMENTS

"Ultra Short-Wave" Band

(b) Connect the "Ant." output of the test oscillator to the antenna terminal "A1" of the receiver through a 300-ohm resistor. Set the receiver range selector to its "Ultra shortwave" position and its dial pointer to 7,800 kc. Adjust the test oscillator to 19,000 kc. The 3rd harmonic of 19,000 kc. is used for this adjustment.

Adjust oscillator air-trimmer C33 for maximum (peak) output. Two positions, each producing maximum output, may be found. The position of minimum capacity (plunger near out) should be used. This places the receiver heterodyne oscillator 400 kc. higher in frequency than the incoming signal. Tighten lock-nut. Adjust the detector air-trimmer C23, while slightly rocking the signal tuning condenser back and forth through the signal for maximum (peak) output. Two peaks may be found on this trimmer. The peak of maximum capacity (plunger near in) should be used. Tighten lock-nut. Adjust the antenna air-trimmer C16 for maximum (peak) output while slightly rocking the signal tuning condenser back and forth through the signal. Two peaks may be found on this trimmer which produces maximum output. The peak with maximum capacity (plunger near in) should be used. Tighten lock-nut. Check the video frequency by changing the receiver dial setting to 6,000 kc. If the signal is received at this position, the adjustment of the antenna air-trimmer C33 has been correctly made. No adjustments should be made while checking for the image signal.

(c) Re-tune receiver for maximum response to 87,000 kc. (not image responses) without disturbing test-oscillator adjustment. Change test oscillator to 6,800-14,000 kc. range. Tune test oscillator until signal is heard in speaker (should occur at approximately 14,250 kc., 4th-harmonic of test oscillator used). Two test-oscillator settings (250 kc. apart) will produce a signal at this point. The lower frequency test-oscillator setting should be used, as this places the test-oscillator harmonic 450 kc. below the frequency of the receiver heterodyne oscillator. Tune receiver for maximum response to dial setting of approximately 25,000 kc. (image should tune in at a dial setting approximately 27,500 kc. without meter adjustment. Test-oscillator 2nd-harmonic of 14,250 kc. is used for the following check. Check calibration of receiver dial with a crystal-controlled dial of 25,000 kc. and reverse oscillator adjustment. Test-oscillator 2nd-harmonic of 14,250 kc. is used for the following check. Check calibration of receiver dial with a crystal-controlled dial of 25,000 kc. and reverse oscillator adjustment.

(d) Incorrect curve showing broadening of curve B obtained when fidelity control is rotated fully clockwise.

(e) Correct curve showing broadening of curve B obtained when fidelity control is rotated fully counterclockwise.

(f) Correct curve showing proper alignment of I.F. system caused by one or more parts being slightly dented.

(g) Incorrect curve showing improper alignment of F.O. system caused by one or more parts being slightly dented.

(h) Correct curve showing proper alignment of I.F. system caused by one or more parts being slightly dented.

(i) Incorrect curve showing broadening of curve B obtained when fidelity control is rotated fully clockwise.

(j) Correct curve showing broadening of curve B obtained when fidelity control is rotated fully counterclockwise.

(k) Incorrect curve showing broadening of curve B obtained when fidelity control is rotated fully clockwise.

(l) Correct curve showing broadening of curve B obtained when fidelity control is rotated fully counterclockwise.
READERS' DEPARTMENT

Readers of Radio-Craft are invited to make this page their meeting place for the interchange of ideas and a frank discussion of problems and experiences, particularly those which affect the Service Man. In this issue, an Englishman tells of the problems on the other side of the "big pond," a Canadian describes an improvement in shop-built condenser testers, an American (an Alabaman) outlines the construction of a de luxe service bench. Have you any suggestions to offer others?

HANDBECEH BENCH LAYOUT
Florence, Ala.:
I am enclosing a photograph (see Fig. A) of my radio testing board, in the hope that it will be beneficial to some other Service Man in planning their layouts. Following is a description of the board.
The board is made of Masonite panel, and the bench top is covered with tightly-stretched canvas which is durable and does not scratch cabinets. The indirect lighting effect was obtained by the use of several lights concealed under a piece of gutter tin.
From right to left are the speaker grille of a remote speaker for an interoffice communicating system, the master being located up-stairs (this shop is in the basement of a large store). Directly underneath it is an analyzer which includes A.C. and D.C. voltmeter, ohmmeter, output indicator, oscillator, etc. (The speakers, centered at extreme right and left, hardly show in reproduction.) This is a battery-operated rig and can be slid out of the panel to carry on the job. To the left of this, bottom, is a Supreme model 111 volt-ohmmeter with ranges up to 1,200 volts. This also slides out. Directly above it is an A.C. and D.C. voltmeter, capacity meter, output meter and milliampmeter. Next in line is a signal generator, A.C.-operated and mounted permanently, with frequency range of 115 kc. to 30 mc., all fundamentals. Next is a Supreme model 546 3-inch oscilloscope. Directly above this is a model 529 frequency modulator. These two units take their signal from the signal generator. Next in line is an audio signal generator, giving an audible signal from 60 to 11,000 cycles, and an R.F. signal of 580 kc., modulated by the variable audio frequency circuit.
Next in line is a Supreme model 85 tube checker with adapters for octal-base tubes. On the extreme left is a built-in speaker with variable field coils. As a matter of convenience on the board we also have a plug-in socket for "B" battery sets and 2-volt and 6-volt binding post terminals, an electric clock, and on and off switches for each instrument, with pilot lights in red.
The whole layout gives the radio Service Man a feeling of efficiency as well as being very impressive to the customer who is waiting. We also have, in the same room, 3 nice chairs for the customers to rest on. Other parts of the shop which do not show are filing cabinets for all service manuals, and a steel parts bin to the right of the panel.
D. K. Chapman

NOVEL CONDENSER TESTER
Melfort, Sask.:
I am a constant reader of your magazine and must say I don't know of a finer magazine for the benefit of the service industry. I am particularly well pleased with the series of articles by Jack Grand concerning the business angle of the service game. They are both interesting and instructive. Also of interest are the many other useful and instructive articles.
I am like a great many other Service Men in respect to financial standing. For this reason I find it necessary often to get along with home-constructed instruments wherever these can be made to work. For this reason I have followed up your construction articles with much interest. I also think that if a man can build his equipment, he really has a better understanding of it.
Among other things I have tried different condenser testers and have developed one from articles published in your magazine. I submit herewith diagrams (Figs. 1 and 2) showing its construction. It is the conventional type of tester of its kind but I have added a pushbutton system for both charge and discharge of condenser. I found that it is very difficult in many cases to try to watch the bulb and try to get a set of test prods down in a set at the same time. By using this system, it is possible to clip the leads onto the condenser, then depress the button for a test. The second button provides a means of discharging the condenser back through the neon tube, giving a secondary test.

(Continued on page 719)

Fig. 1. Panel layout of the condenser tester diagrammed at the right. This apparatus is self-powered.

Fig. 2. Schematic diagram of condenser tester with built-in discharge button, for outside tests.
(Continued from Data Sheet 221)

(d) Set the receiver range selector to its "Short wave" position and turn the tuning condenser (CI) clockwise. Tune the receiver to a station of medium power (p.e., 3000 k.c.m.) and adjust the tuning condenser (CI) for the maximum (peak) output. Two peaks may be found with this circuit. The peak near 3000 k.c.m. will be used. Tighten lock-out screw at 3000 k.c.m. for maximum (peak) output. Tune the receiver to a station of medium power (p.e., 3000 k.c.m.) and adjust the tuning condenser (CI) for the maximum (peak) output. Two peaks may be found with this circuit. The peak near 3000 k.c.m. will be used. Tighten lock-out screw at 3000 k.c.m. for maximum (peak) output.

(Continued on page 168)
A "HANDY"
P.A. AMPLIFIER

Small enough to hold in one hand, this A.C.-D.C. amplifier will fill a hall with music! Fine for interphones, too.

GEORGE DAVEJAN

of audio output should be uncomfortably loud in a home. The output of 2 watts, at least, is assured by the use of a 25L6 beam power, output tube. (See Fig. 1.) Sufficient voltage gain to drive this beam tube is obtained through the use of a 6J7 tube used as a voltage amplifier. The 25L6 functions as a rectifier on both 110 volts A.C. and D.C. Since the types mentioned are all of the "all-metal" tube variety, it can be readily understood why the amplifier may be made so compact, since metal tubes are physically much smaller than equivalent glass types.

Concerning the layout and construction of this amplifier, little can be said about the best procedures, inasmuch as its compactness calls for a crowded assembly and a certain nimbleness with the soldering-iron. However, it is reasonably possible for the average constructor to duplicate this unit, consequently a bottom view of the amplifier, showing where important parts are placed, is shown in Fig. B. Since it is desirable to minimize hum pick-up and avoid possibility of audio feedback, it is recommended that all "live" audio (plate and grid) leads that are over 2 inches in length be incased in metal sheathing. Shielding of these leads is sufficient to reduce such detrimental factors.

The operation of the unit is very simple. (Continued on page 700)

RADIO WITTIQUIZ

(52) A bleeder is—
 (a) An ancient barber. (b) A person who bleeds freely. (c) A resistor through which the current flows that does not pass through the radio receiver. (d) A tax collector.
 P. E. CLAYTON

(53) Your dad tells you to bring him a decade box. Does he want—
 (a) A tool box over 10 years old? (b) A cabinet made in 1928? (c) A box containing an assembly of resistors or condensers for obtaining various values? (d) A test box in a state of decline?
 Robert L. Stewart

(54) You have heard of a microphone; is it—
 (a) A thousandth part of a phone? (b) A Greek word meaning a faint sound? (c) An abbreviation for microphonograph; that is, a small portable phonograph? (d) A device which transforms sound waves into electrical impulses? (e) A word which combines "micro" and "cone" and means a thousandth part of one?
 MANDERBAUM

(55) Even you know that phone jack is—
 (a) An interphone installed in a field for the use of检修。. (b) A combination of switch and receptacle for quickly connecting phones to a receiver. (c) A tool used to raise telephones. (d) Money spent in a phone booth.
 E. M. COYLE

(56) Do you realize that a multivibrator is—
 (a) An electrical trip-hammer? (b) A device for power packs that enables two or more audio radio sets to be run at the same time? (c) An electronic arrangement for splitting frequencies? (d) A hub-hub dancer?
 J. M. Young

(57) What would you do with a spider—
 (a) Step on it? (b) Cement it in the center of a speaker cone? (c) Send it to a museum?
 AMB KAMINSKY

(58) A triode is—
 (a) A 3-element vacuum tube? (b) A device to hold a camera steady? (c) An ode of 3 stanzas?
 D. W. Bickstrom

(59) Maybe drucule are—
 (a) Shirved, withered bacteria? (b) Where a chain gang member wanting in a sweatshirt would rather be. (c) A chemical method of generating E.M.F.? (d) A polite name for dandruff?
 S. O. HARRIS

(60) Characteristic curves are—
 (a) Those which you like to see at the beach. (b) What Dizzy Dean fool's "em with. (c) Graphical illustrations of vacuum tube characteristics. (d) Gradual instead of sharp bends in short-wave wiring.
 K. HERMAN

(61) A test prod is—
 (a) What the supervisor gives the operator to watch, to see if he is salting? (b) The part of a test kit you hold in your hand when measuring voltages. (c) The pressure you apply to a relay, to see if it is closing properly. (d) Poking a vacuum tube to see if it is microphonic?
 K. HERMAN

(62) Anyone acquainted with radio knows that an ammeter is—
 (a) A person on Major Bowser's program. (b) The rotor of a generator. (c) An instrument for measuring amperes. (d) A meter used to record the number of times one says "am?"
 W. J. TUCKER

(63) A lug is—
 (a) An unliked, unwanted member of humanity? (b) A form of manual labor. (c) A small metal structure, used for preventing soldering, holding or joining. (d) The mathematical representative equivalent of a number.
 W. McCULLOUGH, M.D.

(64) Is a photoelectric cell—
 (a) A prison cell where condemned men are photographed before electrocution? (b) A cell which meters resistance, used for preventing metal surfaces, holding or joining. (c) A cell which takes photographs electrically?
 D. N. KAY

(Continued on page 701)
THE LATEST
RADIO EQUIPMENT
(Continued from page 689)
requirements: (1) A high degree of frequency stability under varying external conditions, (2) a confined electromagnetic field, (3) ample output for use as a source for high-frequency measurements, and (4) a convenient physical size.

CONVERTER MAKES ANY RADIO SET A "PUSHBUTTON" RECEIVER (1936)

Here is a device of surpassing novelty! Any radio set without any changes in the chassis may be converted into a receiver having pushbutton tuning! Unit incorporates two tubes and 8-station pushbutton tuning.

IMPROVED STORAGE CELLS (1937)

High-power (881-amper) storage cells are now available which nearly double the electric service of wind-electric and engine-power plants by supplying pushbutton during full periods in charging. A built-in hydrometer constantly indicates the degree of charge in the cell; a built-in gauge shows water level.

"11-TUBE" (Including 3 Ballasts) BUTTON-TUNING SET (1938)

Incorporates dual-range frequency bands. Uses the following tubes: 1-6AQ7, 1-6D6, 3-76G, 2-41S, and 1-2S5Z; also, 1-200R, 1-300R4, and 1-250R (these latter 3 are ballast tubes).

AN UNDER-PILLOW CRYSTAL LOUDSPEAKER (1959)

(The Brush Development Co.)

For the sick-bed, or wherever individualization is desired, high-quality reproduction of radio programs may be obtained by using in place of ungainly headphones) the new "Hushitone" crystal loudspeaker which slips under a pillow.

INTERNATIONAL RADIO REVIEW

(Continued from page 677) in a previous issue of Radio-Craft, Major tuning control is through the knurled ring; the inner knob may be swung up, down, left or right as well as used in the central position and thus may be used to control "on-off" tone, volume and wave-band change. Similar centralization of control has been done with push-pull knobs and concentric shafting in sets of American make.

ELECTRONIC ORGAN

The "Orgatron", an air-actuated electric organ, is according to Wireless World (London), London's newest musical instrument. A motor-maintained vacuum vibrates metallic reeds each of which forms an element of a capacity microphone. The organ, shown in Fig. F, is less than 5 feet high and 2 feet deep; its width is 64 inches.

SUPERIOR VALUE IN SUPERIOR INSTRUMENTS MAKES YOU WANT SUPERIOR'S TEST EQUIPMENT!

MR. SERVICEMAN—You can't afford to overlook the values in SUPERIOR'S instrument line. Such outstandingly low prices for equipment that has gained rapid respect among service technicians, that service shops are being equipped with SUPERIOR'S stationary and portable servicing instruments. This advertisement is your buying guide... use it to your advantage!

27 Instruments in 1

THE ALLMETER
1,000 OHMS PER VOLT

27 Instruments in 1

THE ALLMETER
1,000 OHMS PER VOLT

VOLT-OHM-MILLIAMMETER

FREE Catalog!

SUPERIOR INSTRUMENT COMPANY
136 LIBERTY STREET DEPT. PL NEW YORK, N. Y.

Please Say That You Saw It in RADIO-CRAFT
TRAIN FOR ELECTRICITY

BY MY AMAZINGLY QUICK, EASY WAY

PREPARE Today for a Real future

Whether you are 16 or 50 years old Electricitv offers you many jobs and activities for a well paying job or a business of your own. Here in the Coyne Shops you can get a training in 12 weeks that will qualify you for your start in the fascinating field of Sales or Service. Coyne training is practical, "Learn by doing" shop training. You don't need advanced education or previous electrical experience.

Work on Actual Dynamos, Motors, etc.—Only 12 Weeks—

in the Great COYNE Shops

Coyne training is not given by home study. You must come to the Coyne shops to get this training. You learn on real dynamos, motors, generators, etc., in full operation.

I'll Finance Your Training

Get your training first. Then take 12 months to pay for it with easy monthly payments starting 5 months after you start school.

EARN WHILE LEARNING EMPLOYMENT HELP AFTER GRADUATION

Here are the facts to act out for you to make your decision. Earn extra money and save part time work to help you in your expenses while training, and afterwards. Coyne will help you get a part time job. After graduation they will give you free lifetime employment service.

Included NOW — Diesel Engines Refrigeration, Air Conditioning

This extra training with extra cost is included with your regular training if you enroll now.

FREE! Send today for the Big Free Coyne book. With it I'll send you all the facts of Coyne training and special features.

RUSH COUPON FOR FULL FACTS

(Continued from page 663)

THE RADIO MONTH IN REVIEW

be done to a naughty program slipping over the heavily guarded borders from Vermont or Connecticut.

Two weeks later a blast against censorship was released by some persons who accused WMCA of cutting off Rep. Hamilton Fish in the midst of a blast against dictators. Explanation was that Communists in the audience had booted so loudly for Fish that was muted, and that the committee sponsoring the broadcast had requested the cut-off.

At press time, the battle was in full. Miss West seems to have scored top honors in the whole mess. She derived publicity of a sort just prior to the opening of her new picture—and "any publicity is good publicity." Coyne training is practical. "Learn by doing." shop training. You don't need advanced education or previous electrical experience.

view through another of the new control rooms of the Regina (Sask.) station, CKX. Here we see the ultra-modernistic control console and additional transcription tables. All of the studios of this modern station are of the "floating" construction. That is, there is a room within a room, supported on thousands of springs! The entire setup is absolutely vibration-proof.

RADIO LEGAL

The lawmakers pursue radio with their customary assiduity. Not only was there the aftermath of the Affaire West, but here and abroad the Solons proposed more measures.

In Tokio, for example, a new penal offense was defined in a law enacted last month. It consists of "offensively loud playing of the radio, musical instruments, phonographs, and religious drum beating."

In Laramie, Wyoming, the city council passed a law making it unlawful to cause interference to radio reception at any hour of the day or night, according to the Laramie Daily. Offenders will be tracked to their lairs by means of "statio locators."

RADIO MISCELLANY

Radio Parts City will be a feature of the 1938 National Radio Parts Trade Show, to be held in Chicago in June. Five years ago the U. S. Forest Service fire

As described on page 698, St. Vincent's Hospital patients helped make radio history, recently, when they witnessed with gratitude the playing of broadcast script. Here you see the little figures, as the enthralled audience saw them, cavorting as dictated by remote Met Opera voices.

Here we are backstage. And to see how two young ladies, trained in the art of "marionetting", meticulously manipulate the many strings that cause the little figures to act out the parts as instructed by the "reader" at left.
GET YOUR NEW GUIDE TO RADIO! SEE EVERY NEW DEVELOPMENT

ALLIED'S NEW CATALOG

for Spring and Summer

The new RCA model D-1 1,000-watt transmitter used at station CCKX, Sask., Canada. All components are enclosed in modernistic steel cabinets as shown.

Modern to the last detail! This home for the new 1,000-watt transmitter CCKX, it is located on Victoria Plains, 7 miles from the hub of Regina, Sask. A 257-foot antenna tower, built of wood to prevent power leakage, reach to 500 feet. The vertical copper-wire antenna is tower-high. Eight and one-half miles of copper wire was buried in the adjacent soil to serve as an efficient ground system.

Modern receivers with complicated circuit systems have knocked out the old time cut-and-dry radio fixer. Trained men with up-to-the-minute knowledge are needed to service these new sets.

PRACTICAL TRAINING AT HOME

Our home study course is practical "shop and bench" training combined with a thorough set of printed lessons prepared by an experienced radio service engineer. Four working units are included.

MAKE SPARE TIME MONEY

Our training is simple and practical. We show you how to make money almost from the start. The course can easily be followed in its own way. Investigate now, write for free book of details.

WHAT R.T.A. STUDENTS SAY

Norwood, Ohio

J. B. and P. D., Yorkville, Ohio

September, 1937

President, Radio Training Federation, Inc.

Our school is located at 522 E. 53rd St., Chicago, Ill. It is approved by the U.S. Department of Labor. T.A.A. Members, please mention this when writing to them.

RADIO TRAINING ASS'N OF AMERICA

Dept RC-48, 4525 RAVENSWOOD AVE., CHICAGO

Please Say That You Saw It in RADIO-CRAFT
THIRTY DAYS' HOME TRIAL AND Budget Payments anywhere in U.S.A. NOT SOLD THROUGH UGH STORES. Laboratory built on order only. Mail the coupon for special offer during next 30 days.

- SPECIAL LIMITED OFFER!
- MAIL COUPON FOR ALL DETAILS

E. H. SCOTT RADIO LABORATORIES, INC. 4404 Rosedale Ave., Dept. 2048, Chicago, III.

Send all the facts, order blank, and Special Offer. No obligation.

Name
Address
City & State

STUDIOS: NEW YORK, CHICAGO, LOS ANGELES, LONDON

Hear the New Scott Sixteen

A scientific, precision instrument, custom built BY HAND, from the finest materials, in one of the world's foremost radio Research Laboratories. It represents the results of 14 years constant developing, perfecting, inventing years of antenna specialization in producing the finest radio receivers. Sold with a money-back guarantee to outperform mass-produced radios. Yet, this amazing instrument costs no more than many production-type receivers.

COMPARE THESE FEATURES
- Selectivity 10 Kc. at 37 times field strength
- Frequency Range 30 to 7,800 cycles plus or minus 6 db. continuously variable
- Continuously Adjustable Bias Bi-Resistor System which does not impair high frequencies
- Two Automatic Gain Control Systems
- Adjustable Sensitivity Control
- Three Stage I.F. Amplifier (Scott Patents Applied for)
- Sensitivity 0.6 microvolts
- Inverse Feedback System
- Five Wave Guartes
- F. Band-Pass System (Scott Patents Applied for)
- One Stage R.F. Amplification
- High Fidelity Loud Speaker with carved lignum and high frequency sound diffusion
- Finished in permanent mirror-finish aluminum
- Super-aligned Antenna Coupling System (Scott Applied for)
- Figure 1: At A, pictorial view and at B, fundamental circuit of the Phillips 6,000-V. rectifier.

THE RADIO MONTH IN REVIEW

(Continued from page 677)

RADIOODDITIES

JOSEPH DARCY, of East Bethany, Pa., in January 1938, rode his bicycle, row a radio set on his bicycle, to entertain him on a 50-mile ride an evening, Sundays. A monument was erected in his honor near his home.

Leopold Stokowski, now in Hollywood, feels that "truehearted, thoughtful radio" would be "a nice way to hit the screen" and "a nice way to hit the public". He estimates that a weekly average of 150,000 people are eventually employed to control the sound equipment. Walt Disney's Mickey Mouse picture "ruler's Appliance" started its height. Projection-booth monitoring, Mr. Stokowski points out, is "outmoded".

Please Say That You Saw It in Radio-Craft

THE NEWS CIRCUITS IN MODERN RADIO RECEIVERS

(Continued from page 676)

point where signal voltages can cause substantially no diode plate current change.

(5) I.F. SENSITIVITY CONTROL

Garod Model L-311. In addition to the conventional audio control of volume as applied to receivers equipped with A.V.C., this receiver is provided with a sensitivity control in the I.F. circuit. As in Fig. 1B, it is a shunt-type cathode or bias control. The I.F. tube is a super-controlled type so that the wave shape will not be seriously altered by variations in the negative grid section of its characteristic above cutoff. As the mutual conduction of the tube is lowered with increased bias, the differences in the negative grid section become less, and the lag sensitivity range is thus secured. Providing that the maximum gain of the stage is 100, the sensitivity can be controlled by means of a 20- or 25-db. with the control. Its action closely resembles a muting or Q ("quiet") circuit.

(Commitments, either new to Radio-Craft or via "R.C.C." to Mr. Sprawley, considering this important department will be appreciated and of mutual value. Other department be bettered to your advantage?)
BUILD THIS SIMPLIFIED NEON-TYPE TEST UNIT

(Continued from page 685)

AS A KEYING MONITOR.

In using the unit as a code practice set or keying monitor connect a 50-v. D.C. supply to terminals marked "D.C. INPUT", throw switch "Sw. 1" to the "ON" position, connect the head phones to terminals marked "OUTPUT" and key to terminals marked "KEY". Close the circuit by means of the key and adjust resistance R1 until a steady note is obtained, then adjust C1 and Sw. 2 until desired tone is obtained. A relay should be used in place of the key when used as a keying monitor and one must remember that this unit does not monitor the transmitted signal, only the keying.

AS A MODULATOR; SIGNAL GENERATOR.

The unit could also be used as a modulator for a radio-frequency oscillator or "signal generator" and as such would furnish a modulated signal of any frequency within the limits of the audio oscillator. In connection with a vacuum-tube voltmeter a fairly accurate response curve could be run on a radio receiver. The audio frequency should be compared with a known standard or estimated by ear in each case and the voltage at input and output for each frequency measured with the vacuum-tube voltmeter.

The neon tube circuit will oscillate more uniformly if allowed to run for several hours, previous to the test, as twice its rated voltage.

A recommended power supply circuit is shown in Fig. 2. Since almost any well-filtered power supply may be used, however, the requisite components are not included in the following List of Parts; which includes only the components shown in Fig. 1.

LIST OF PARTS

One Centrable variable condenser, 1 meg., R1;
One S.P.S.T. toggle switch, Sw. 1;
One 5-point single-throw contact switch, Sw. 2;
One Solar variable condenser, 500 mmf., C1;
One Solar fixed condenser, 250 mmf., C2;
One Solar fixed condenser, 500 mmf., C3;
One Solar fixed condenser, 0.01 mf., C4;
One Solar fixed condenser, 0.006 mf., C5.

Most Radio mail order houses can supply this item if properly identified as to title of article, issue (month) of RADIO-CRAFT and year.

SHORT-CUTS IN RADIO

(Continued from page 681)

mounted on the front or side panel. It has a neat appearance, as it is merely an octal (8-prong) tube socket, connected as shown in Fig. 4. From 1 to 4 pairs of phones may be plugged in; their tips just fit the contacts. Four sets of contacts on each side of the socket are connected together, and the two sets of contacts thus formed are connected to the output of the set or oscillator.

T. E. TAYLOR
Mills River, Alberta, Can.

HONORABLE MENTION

EASILY-MADE REFLECTOR RABIES.

Small dynamic speakers can be easily made into handy, portable P.A. units by equipping them with deflector baffles made as in Fig. 5. The speaker is housed in a small aluminum kettle by mounting it on a circular piece of board. The bell is from an old horn-type speaker. When given a coat of aluminum paint they resemble the large P.A. units.

E. E. YOUNGKIN

HONORABLE MENTION

WATER-PROOFING THE TELESCOPING AUTO ANTENNA. Remembering the disastrous results of telescoping a steel fishing pole without first drying it, I inserted a telescoping antenna on my car, I decided to prevent its corrosion. I achieved this by placing sections of rubber tubing about 2 ins. long over the joints. The tubing must then be the same snugly. The tubing keeps out the rain and acts as a gasket when the antenna is telescoped while wet. One large part of the rubber distributor terminal caps can be used to secure the same results. The sketch in Fig. 6 shows how the tubes are applied.

ROBERT FORREST

THE RCA TUBE TWINS SAY...

"WE'RE THE TUBES YOU CAN COUNT ON--"

FOR FINER PERFORMANCE!

THE best evidence of the quality that's built into every RCA radio tube is the fact that over 300 million of them have been bought by radio users.

For better radio reception, better tone, better volume — ask for RCA radio tubes. Built by the world's foremost radio organization, RCA radio tubes offer you the extra advantages of (1) the unmatched experience of RCA engineers in every phase of radio; (2) the unmatched research and manufacturing facilities of the only company making everything in radio.

No wonder RCA radio tubes are "the tubes of unquestioned quality!" No wonder they'll do a better job for you at low cost!

Ask your distributor, or send 10 cents to Camden, N. J., for a commemorative advertisement on RCA's television tube announcement.

RCA presents the "Magic Key" every Sunday, 2 to 3 p.m., E.S.T. on NBC Blue Network

RADIO-CRAFT for March, 1938 depicts FIFTY YEARS OF RADIO PROGRESS. It is the greatest issue of any radio magazine published. If your newsdealer no longer has copies of this big 144-page issue, send fifteen cents, in cash, check or stamps, to the publishers for your copy.

The New "Clipper" Dynamic

Another American Moving-Coil Microphone, Featuring

• HIGH OUTPUT — SMALL SIZE
• RUGGEDNESS — FIDELITY
• TRIM — EFFICIENT DESIGN
• LONG LIFE — STABILITY

DT-2: High Impedance 10.000
List Price $22.50

DT-2: Low Impedance 20 to 50 Ohms
List Price $20.00

DT and DTT Microphones come complete with 1/2" R/L cable and Amphenol plug. Chrome finish. 1/2" Connector. Overall height, 2 1/2". Diameter, 1/2". Net weight, 8/4 ounces.

Request Catalogue No. 27 for Complete Details.

AMERICAN MICROPHONE CO., INC., Los Angeles, California

Please Say That You Saw It in RADIO-CRAFT
If a voltage \(V_1 \) from an external source is now made to appear across \(R_1 \), a voltage change \(V_1 \) will appear across \(R_1 \), and will be registered on the voltmeter \(V.M. \). In equation form, \(V_1 = V_1 G \), where \(G \) is the voltage gain on the amplifier without the feedback connection. If the gain is made very large, then it is evident from the above equation that the voltage change across \(R_1 \) (indicated by the meter) will be negligible different from that impressed across \(R_1 \). Thus, the system becomes a voltmeter with an input resistance solely determined by \(R_1 \), enabling the use of a scaled indicator \(V.M. \) for high sensitivities. By using a wide range of resistance values for \(R_1 \), the instrument becomes an ammeter with correspondingly wide ranges. Also, by using a standard potential and unknown resistance across \(R_1 \), the system can be calibrated as an ohmmeter.

By referring to the schematic circuit diagram (Fig. 23), it will be observed that the subject instrument is identical in principle to the system just described except for the addition of various controls including a range switch for the various input circuits used in place of \(R_1 \). R-20 corresponds to \(R_1 \) in the combination of M-1 and R-21 is equal to V.M. B-7 is a sensitivity button which changes the meter range from 0.5 to 0.1 volt full-scale. R-20 corresponds to \(E \); and R-15 (with variable taps on B-1) is the zero adjustment for setting the equilibrium feedback voltage equal to that of B-7. R-12 is the milli-scale zero adjustment which, according to the specified procedure, furnishes a standard potential of 0.5 volt for resistance bridge measurements.

The normal voltage gain \(G \) of the instrument amplifier is of the order of 1000, which, in the equation below, shows an error of 0.1% in the matching of the input and output (indicated) voltages. Thus, it is apparent that the gain may vary over fairly wide limits without appreciably affecting the accuracy of the instrument.

The operation of the amplifier is evident from the schematic diagram. The stages are directly coupled by means of the bias batteries B-1, B-2, B-3, the resistors and voltages being chosen to give proper balance over the normal range of tube characteristics and battery voltages.

For the current ranges, the various resistors corresponding to \(R_1 \) are: R-4, R-5, R-6, R-7, R-8, and R-9 (respectively 5 meg., 50,000 ohms, 500 ohms, 50 ohms, and 6,000 ohms). For the voltage ranges, R-2 (50,000 ohms), R-3 (500 ohms), R-5, R-8, and R-9 are used with R-4 to obtain suitable divider circuits. In meg-ohm measurements, R-9 is used as the "standard". The necessary "standard" potential is obtained from battery B-3, as previously explained.

Precision wire-wound resistors are used in these input circuits.

since the power switch is ganged to the volume control. The input connec-
tions, it will be noted, are made directly to the grid of the 6J7 tube, and hence is of high impedance. Consequently, only high-im-
pedance pickups or microphones should be connected to this source; in other cases a suitable matching transformer is obviously necessary.

This article has been prepared from data supplied by courtesy of RCA Manufacturing Company, Inc.

A "HANDY" P.A. AMPLIFIER

(Continued from page 694)
A DIRECT-READING ELECTRONIC "FLUX" METER
(Continued from page 696)

coil rests in the space between the poles of a horseshoe magnet. It is easy to recognize that any change in the field strength within the horseshoe magnet (or loudspeaker gap) will cause a variation of the value of the inductivity of the test coil, LE.

Any variation of the inductivity of the test coil will cause variation of frequency of the oscillator, V1; and thus a heterodyne or beat frequency will be delivered to the grid of the mixer tube, V2. Since the variations of magnetic field strength in which loudspeaker designers are interested are small, the best frequency produced will be in the audio range. This is accomplished by means of an audio-frequency meter which is calibrated in units of magnetic field strength (gauss) instead of the customary calibration in cycles (of the audio-frequency range), direct reading may be obtained, after amplification takes place in audio unit.

Experts, who have made measurements with the previously used and quite clumsy method, will be more than enthusiastic about the simplicity of the new method of magnetic measurements, and, as said before, the entire radio industry will profit by this progress made possible only by the seemingly inexhaustible potentials of application provided by the radio tube.

A simplified design of the test unit, which will perhaps be as popular with Service Men in the near future as tube testers are today, is shown diagrammatically in Fig. 3 and pictorially in A. As the diagram of Fig. 3 indicates, only one oscillator, V1, is applied, working at about 40 megahertz. The tiny test coil, LE, is connected with the tank circuit of this oscillator, and causes changes of frequency. Coupled with this oscillator is a vacuum-tube voltmeter, V2, which is equipped with a tuning condenser, C1. Every change in frequency of the oscillator circuit must be compensated for by adjusting C1 in order to obtain the same indication on galvanometer G. The knob of condenser C1 is equipped with a pointer which is read against a scale calibrated in gauss of magnetic field strength, from which direct readings may be obtained. As Fig. 4 indicates, the "tuning scale" has 3 ranges, and it needs no lengthy explanation to show that the condensers and coils, C1, C2 and C3, in the oscillator circuit, and the similar units, C6, C7 and C8, in the tube voltmeter circuit, V2, are used to adjust both units to the range to be measured. Range I embraces all magnetic field strengths from 100 to 3,000 gausses, Range II from 2,000 to 4,000 gausses, and finally Range III from 5,000 to 25,000.

RADIO WITT QUIZZ (Continued from page 694)

CONTEST RULES
(1) An award of a 1-year subscription to Radio-Craft will be given to each person who submits one or more WITT QUIZZES that the Editors consider suitable for publication in Radio-Craft.
(2) WITT QUIZZES should preferably be typed; use only one side of paper.
(3) Submit as many WITT QUIZZES as you care to—no more than the more chance you have of winning—but each should be good.
(4) Each WITT QUIZ must incorporate humorous elements, and must be based on some topic in radio, pubic address or electronics.
(5) All answers must be grouped, by question number and correct-answer letter, on a separate sheet.
(6) All contributions become the property of Radio-Craft. No contributions can be returned.
(7) This contest is not open to Radio-Craft employees or their relatives.
(8) The contest for a given month closes on the 15th of the third month preceding magazine issue date.

GOOD MEN IN RADIO HAVE GOOD JOBS

Please say that you saw this in Radio-Craft
the current flows. This type of meter, shown, diagrammatically in Fig. 1B, though not very sensitive as the moving-coil type of meter shown in Fig. 1A, has the great advantages of ruggedness and very low cost, which make it well fitted for elementary work.

This type of meter is also suitable for a "roll-your-own" ohmmeter (shown in Fig. A), where the student will make his own ohms scale. Such a scale, shown in Fig. 1C, need not be of a high order of accuracy and will still be practical for a first attempt in the field of resistance. Since the meter also has a great all-around usefulness it will not have to be discarded, if the experimenter should wish to build the more advanced type of unit later.

The principle of the vane-type meter is that of mutual repulsion between two similarly-magnetized pieces of iron. Reference to Fig. 1B shows that both stationary and movable pieces of iron are in the same element. When current flows in the solenoid, the movable metal, being similarly magnetized as the fixed metal, swings on its pivot, carrying the pointer across the face of the dial. A hairspring brings it back to zero when the current ceases.

The other type of meter, called the moving-coil type is the one most used by experienced radio men. In this type the swing of the needle is determined by the amount of attraction between a pivoted coil through which the current flows and a fixed permanent magnet. It is much more sensitive (and correspondingly higher in cost) than the vane-type meter.

The moving-coil-type meter (see Fig. 1A) is in reality a miniature electric motor in which motion is derived from reaction between a magnetic field and a coil of wire carrying electric current. The moving-coil type is supplied by a permanent magnet.

This type of meter lends itself to combining many different types of measurements, such as volts and milliamperes in addition to elementary "general purpose" instrument. It is therefore suitable for more experienced radio students and so will here be called an advanced type of meter. Figure 4 shows this type meter with a laboratory-marked scale reading up to 100,000 ohms. By selecting this meter to be used in the standard range of 0-1 ma. D.C. we will also be able to use it as a general purpose meter. This idea will be carried out in a later Experiment on the general use of meters, and has been provided for here by leaving room in the layout for the later additions.

With either type of meter, provision is made for obtaining full-scale deflection of the meter when the free ends of the test leads are touched together. This is accomplished by the method shown in Fig. 2A and again in Fig. 2B, where an adjustable resistor (or rheostat) is placed in series with the meter and the battery, and adjusted so that the meter reads full-scale for the battery being used, when there is no other resistance in the circuit.

MAKING THE SCALE

In Fig. 2B, this condition occurs when the rheostat R2 is adjusted to about 1,500 ohms. (The exact value depends upon the condition of the battery.) Let us suppose that some part, having a resistance of 1,500 ohms is now connected between the test leads. Since we now have double the resistance in the circuit (or 3,000 ohms), the meter will read 1/2 of full-scale. This reading of the meter can now be marked as 1,500 ohms. It will thus be seen that, by trying a number of accurate, known resistances, the scale of ohms can be built up.

The appearance of a completed home-made scale is shown in Fig. 1C. This was made with a vane-type meter, having a normal range of 0-6 volts, D.C. This range is a very common one (having been widely used to measure filament voltages of battery tubes). If desired, this printed scale can be used as a specimen scale, and by employing the same make of meter as specified, the resulting "roll-your-own" combination will be a very inexpensive volt-ohm-meter of the elementary type.

PART B—RESISTANCE TESTING OF RADIO PARTS

OBJECT: To test radio parts by finding the resistance by means of a meter:
(1) Making a "roll-your-own" ohmmeter with an inexpensive vane-type meter.
(2) Alternative method: Using an ohmmeter of the moving-coil type.

PROCEDURE AND RESULTS

(1) Making a "roll-your-own" ohmmeter with vane-type meter.

The parts are connected as shown in Fig. 2A. In series with the plus (+) terminal of the meter, M1 (vane type; 0-6 volts D.C.), are connected the following: resistor R1 (zero adjuster); battery (4½ V.), observing its polarity; switch (SW.) the two binding posts for the test leads, and then back to the minus (−) terminal of the meter. Turn switch on and connect the free ends of the test leads together. (Note: these may have spring clips attached to them for convenience.) Adjust the resistor so that the meter reads 4½ volts (which is zero ohms on the ohms scale). Separate the two test leads and the ohmmeter is now ready for operation.

(a) Making the Scale—Test a number of known resistances by connecting each between the test leads and note position of the meter needle. Make a rough sketch of the scale.

(b) High- and Low-Resistance Test—Place the primary and secondary of an audio transformer. Observe if the secondary shows an appreciably higher resistance than the primary.

(c) Condenser Test—Test a fixed...
condenser. (This may be a mica or paper condenser having a capacity higher than 0.0005 mF, or 500 mmF.) Note the first movement of the needle due to the current charging the condenser. Continue tapping the condenser and observe if the movements of the needle disappear, showing a good condenser. If a continuous circuit is found in these types of condensers, they are rejected as unsatisfactory.

(d) Testing Unknown Parts—Test some part whose condition is unknown to determine whether it is open-circuited, short-circuited, or good, that is, having approximately the desired resistance.

Suggestion applying to classes or club groups:

Let the teacher select three parts as unknowns; choosing, if possible, one having an open-circuit, one having a short-circuit and one good part. These are labeled simply as Unknowns 1, 2, and 3. The student then records the results for each unknown by stating whether it is open or shorted or stating the value for the resistance obtained for the good part.

(2) Alternative Method—Using an Ohmmeter of the Moving-Coil Type.

The parts are mounted as shown in Fig. A2 and connected as shown in Fig. 2B.

The procedure is the same as given for method (1). In this case, the meter is adjusted to full-scale reading (which is zero ohms) in order to place the ohmmeter in operation.

CONCLUSION

The resistance of a part may be found by connecting it in series with a battery and a meter, and measuring the current flowing. The scale of the meter may be calibrated directly in ohms, in which case, it is known as an ohmmeter.

QUESTIONS

1. When testing various resistances with an ohmmeter, the part having a higher resistance will allow: (more current; less current; or no current) to flow.

2. A part having an open-circuit, as compared with a good part, will allow: (more current; less current; or no current) to flow.

3. A part having a short-circuit, as compared with a good part, will allow: (more current; less current; or no current) to flow.

4. The movingcoil-type meter, as compared with the vane-type meter, is (more sensitive, or more rugged and reliable).

5. The ohmmeter used here measures (impedance; inductance; or D.C. resistance).

Answers to these questions appear on Page 706.

Teachers of radio classes and club groups are invited to write to the editors concerning the use of reprints of parts of these experiments in quantities for school use.

LIST OF PARTS

List for "Roll-Your-Own" Vane-Type Ohmmeter

One M.—Voltmometer (0-6 V. D.C.), Readeite;
One R.—Variable resistor (rheostat) 100 ohms (a potentiometer may also be used by connecting to 2 of its terminals);
One Sw.—Switch, on/off;
One Pair Test Leads (a two color pair, about 3 ft. long, with 2 spade lugs and 2 spring clips is convenient), Radiolab Service;
One 4½ V.-Battery (a "C" battery may be used);
Two binding posts;
One case, with holes punched for mounting parts, Radiolab Service;
Also parts to be tested.

Alternative List for Moving-coil Type Ohmmeter

One M.—Volt-ohm-milliammeter (0-1 ma. D.C., 0-100,000 ohms), Triplett model 326;
One R.—Current-limiting variable resistor, 2,500 ohms tapered, Triplett, type 64;
One 1½ V. drycell, intermediate size;
One case for mounting 2½-in. diameter;
One switch (Sw.), one pair test leads and two binding posts as above.

Most Radio mail order houses can supply these items if properly identified as to title of article, issue (month) of Radio-Craft and year.

Parts so marked were used in previous experiments.

The switch Sw.1 is closed on the "loop" side. The switch Sw.2 is closed either way. It is now necessary to adjust the two-gang condenser marked "Tuning" as well as the tuning dial of the receiver.

(C) "Sense," or "unidirectional" reception: First set switches as for "Figure 8" reception and tune in signal carefully. Turn loop to position of maximum signal. Close Sw.1 to "sense" side and resistor to zero (hard left), and adjust variometer first with Sw.2 on "0" or "L." Note scale decrease and point of variable dial; and increase or decrease when Sw.2 is turned oppositely. Addition of resistor may improve the sense. Log all control for sense at all frequencies.

It will be found in practice that an adjustment of the resistance in the vertical circuit will be required when the loop is in close proximity to power lines to compensate for the relative difference in pick-up on the loop and the aerial. For example, it will probably be found that less resistance is required in the vertical circuit when the loop is under a power line which has a closed ground circuit consisting of a sky-line grounded at the poles at either side of the interference source, as this closed ground circuit increases loop reception.

The circuit is connected in such a way that when switch Sw.2 is closed on the "R" side, the handle of the loop points to the direction from which the signal is received, for loudest signal.

After the apparatus is installed in the car, it may be checked by observing the reception from a broadcast station whose location is known. If the sense indicator is reversed, (Continued on page 711)
JUDGED BY THE NUMBER IN USE... TODAY'S MOST POPULAR TUBE TESTER

- HAS LINE VOLTAGE ADJUSTMENT
- HAS LEAKAGE AND SHORT TEST
- USES TRIPLET DIRECT READING INSTRUMENT (GOOD-BAD) SCALE

Positively Checks All Type Radio Tubes
According to Latest Recommendations of Tube Engineers. Five flush type sockets provide for all tubes. The testing operation is very simple and indicates condition of the tube for dealer and customer on Direct Reading (GOOD-BAD) colored scale of Triplet Direct instrument. Will also test for inter-element shorts and leakage. Complete in attractive, sturdy, quartered-oak case. Sloping etched panel of silver and black. Suitable for portable or counter use.

Model 430 same as 430 except has Readrite (GOOD-BAD) Meter

Dealer Price $19.80

A MODIFIED EMISSION TYPE TESTER
APPROVED CIRCUIT

The author of "The Physics of Electron Tubes" has tried to present the subject from the point of view of a physicist in such a fashion that it would be of interest to engineers and students of physics who have no special training in electronics.

In preparing the second edition of this book the author changed the original plan, namely, to present the fundamental physical phenomena involved in the operation of electron tubes and to disregard external circuit conditions. The scope and the treatment remain essentially the same as in the first edition. Mistakes have been corrected and obscure or ambiguous sections have been clarified and rearranged. In a field such as electronics in which progress has been so rapid there have been many new developments in the past 3 years and it has been necessary to add considerable new material. Sections have been added on topics such as electron optics, secondary-emission multipliers, ignitrons, and positive emission. The discussions of many subjects which were given briefer treatment in the first edition have also been considerably expanded.

"PHONO PICKUPS ON PARADE!"

Clifford E. Denton, well-known sound specialist, presents in this book an abbreviated listing of many special Public Auditory Numbers--of Radio-Craft heretofore unpublished information important to the P.A. man. Here is read his "Phono Pickups on Parade."

Please Say That You Saw It in Radio-Craft
provided so that it does not interfere with the auditory results. As a result of studying and observing the reaction of the neurons and their response to stimuli, it has been found that the direct transmission of sound to the auditory nerves can be achieved by bypassing the middle ear and allowing the sound waves to directly stimulate the auditory nerve fibers.

The results of this study are significant because they could lead to the development of new devices for treating hearing loss and other auditory disorders. By bypassing the middle ear and directly stimulating the auditory nerve fibers, it is possible to bypass the existing inner ear structures and stimulate the auditory nerve fibers directly. This could lead to the development of new devices for treating hearing loss and other auditory disorders.

The results of this study also have implications for the development of new technologies for hearing enhancement. By understanding the interaction between the sound waves and the auditory nerve fibers, it is possible to design new devices that can enhance hearing in different environments. This could lead to the development of new technologies for hearing enhancement that can be used in a variety of situations.

In conclusion, the results of this study are significant because they provide new insights into the interaction between sound waves and the auditory nerve fibers. These results have implications for the development of new devices for treating hearing loss and other auditory disorders and for the development of new technologies for hearing enhancement.
"Stand by Centralab Controls".

RCA-VICTOR MODEL 15U, RADIO-PHONOGRAPHER
DATA SHEETS Nos. 223, 224 and 225
(Continued from page 690)

because of the number of curves and combinations making it possible to give my customers a perfect control at all times*. (JACK VAUGHAN)
Manager Service Dept. Broadway Dept.
Store, Los Angeles, Calif.

PROUD as a peacock Old Man Centralab adds this West Coast testimonial to the hundreds he has received from coast to coast . . . from air lines and men in the tropics. Wherever we are . . . that service job is no longer a problem if you solve it with CENTRALAB Controls and fixed resistors.

Save Money on everything you buy . . .

The New BARGAIN BULLETIN

FREE Write today for this outstanding BARGAIN BULLETIN—there is no obligation on your part. High quality merchandise at sensationally low prices. Radio Parts, Sporting Goods, Watches, Clocks, Typewriters, Cameras, Novelties and many other items at real saving. Prompt and Courteous Service, always. Send for your Free BARGAIN BULLETIN now, try us, and be convinced of our superior values and service.

RADIO CIRCULAR CO., INC.
DEPARTMENT RC
515 Broadway
New York, N. Y.

order that the expanding function may take place in the proper manner. A screwdriver adjustment is accordingly provided to regulate the 6L7 control-grid No. 3 bias to the correct operating value. Two methods of adjustment are possible. Either method requires a normal voltage of 300 volts across the filter output. The simplest method is as follows:

1. Turn power switch off. Place RCA Stock No. 12553 Split-Plate Adapter under the 6L7 audio output transformer and polarize the D.C. milliammeter to the adapter. Turn both of the "Phono graphic" and the "Dynamic amplifier" controls to their extreme counterclockwise positions.

2. Turn on power switch and allow a few minutes for the instrument to become stabilized. Adjust the trimmers inside the receiver for best coincidence and output. The control may be removed by softening its cement with a very light application of acetone, using care not to allow the acetone to flow down into the cabinet. The dust cover should be cemented on with amboord.

AUTOMATIC RECORD EJECTOR

It is important when servicing the automatic mechanism, to have it placed on a level support. If the record is not firmly seated, the mechanism will have a tendency to bind and may be damaged. At the same time, it is important to remove the record from the turntable and place it on a surface that is not level. The automatic mechanism may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.

"Phono graphic" In the simplest manner this being exactly coaxial when properly adjusted. To align the tip, remove the rubber silencer of the turntable assembly, loosen ejector tip, and slide the assembly to the position where it is in true-line with the turntable spindles. This adjustment may be simplified by placing several records on the turntable, depressing the plunger through the top hole and lining up the automatic ejector. To ensure that the ejector plate drops freely, apply a slight amount of oil to the shank of the plate at the point where it is in contact with the ball bearing.
is not the case, as the triple-tuned I.F. circuit has the characteristic of having a very steep-sided response curve, and, consequently, gives exceptionally good selectivity as far as adjacent-channel response is concerned.

Diode circuits have been employed as well as automatic volume control. The audio system is resistance-capacity coupled and comprises a 6F6, a 6SJ7, and two 6SL7 tubes in push-pull. The 6G6 acts as a phase-inverter. A great many circuits of this type were tried out to determine which was the most fool-proof from the standpoint of the experimenter. Many of these circuits utilize a separate tube for phase-inversion. In such a case, the quality of the circuit is dependent upon the amplification of the tube as well as upon the design and construction of the circuit. The circuit shown has the advantage of having only two (20,000-ohm) resistors and two (1.0-mf.) condensers which are all critical. When the values of these component parts are within 2%, practically the same signal in reverse phase is fed to each of the 6F6 power tubes and, consequently, they are operated in a true push-pull manner. Even half the power delivered from this push-pull amplifier is sufficient for all home requirements. Should it be desired to use this amplifier for a public-address system, the 6F6's may be connected to drive 6L6's or 6V6's.

A large variety of tubes and, consequently, a wide selection of tubes will be available for the receiver, especially designed for the circuit requirements by Wright-D'Acaster. A simple bottle or a sound labyrinth is most desirable.

In a subsequent installment, performance curves of the various component systems, as well as sound pressure curves emanating from the sound speaker due to a modulating radio-frequency signal being fed into the antenna circuit; will be given.

EQUIP Your SHOP THE MODERN WAY...

...at almost no cost to you!

The ARCTURUS EQUIPMENT DEAL is unquestionably the easiest, most practical and PROFITABLE plan ever offered whereby you can obtain almost any kind of shop or test equipment...at almost no cost to you. Get the facts! Send the coupon at once. Let us tell how we will modernize your shop under the MODERN-way—how you can make your purchases of Radio's finest tubes mean greater shop efficiency and better profits in all your work.

ARCTURUS BRINGS YOU A "NEW DEAL" IN FREE EQUIPMENT DEALS

Since the beginning of Radio, Arcturus tubes have been first choice of discriminating users. They are better engineered—scientifically constructed for better performance under all conditions. NOW the Arcturus Equipment Deal offers you a double profit from EVERY TUBE you sell by bringing you the finest servicing equipment under the easiest plan yet devised. To get the equipment you need, surprisingly few tubes need be purchased. Why should you equip your shop at all? Moreover, you buy Arcturus tubes at standard prices, less standard discounts. Not one cent has been added!

ARCTURUS

INDEPENDENT TUBES FOR DEALERS WHO DO OWN INDEPENDENT THINKING

OSCILLOSCOPE

Now Available With 3" Tube

ADVANTAGES

This new Triplet Oscilloscope is complete. In addition to its servicing, it has invaluable applications in radio troubleshooting, sound equipment, industrial and educational fields.

The cathode ray tube with exclusive Triplet sweep type mounting can be moved up or down or in either side for mounting. The sweep to an angle allows to direct alignment with the user's line of vision. Adjustable shielding can be pulled out to project behind the screen for easy reading in bright daylight on Model 1014. (Model 1013 has snap-on shield.)

The Oscilloscope incorporates separately controllable resistance coupled vertical and horizontal amplifiers. Vertical and horizontal plane can be either direct coupled with adjustable control, or through amplifiers with amplitude control. Can be used with any type frequency modulated signal generator, 6G Co. A.C. output.

Linear sweep from 15 to 20,000 cycles. Sweep either internal, external or 60 cycles can be used through amplifier or direct with amplitude control. Positive lock. All controls on panel. No internal controls.

The special instructions book furnished with a Triplet is the most complete, every instruction should have been put on the book and everything should have a direct benefit. Nothing like it has been before furnished.

Model 1006 also available in black body, with removable 5½" cover. Dealer Net Price $51.00

THE TRIPLET ELECTRICAL INSTRUMENT CO.

164 Harnett Dr., Bluffton, Ohio

Please send us Catalog on Triplet Deluxe Line.

Please Say That You Saw It in RADIO-CRAFT
TELEVISION STUDENTS LEARN BY MAKING CATHODE-RAY TUBES
(Continued from page 683)

and performance. (While it would be ideal to have adjustable elements in the electron gun, no good solution which can be joined with present vacuum technique has been forthcoming.)

ELECTRON EMISSION
Our experiments on obtaining the most suitable electron emitter included a simple, pure-nickel filament coated with barium and strontium carbonate mixture. This coating was applied with a spray or by dipping in a solution. The solution consisted of 90 parts amyl acetate and 10 parts of collodion with enough powder to form a fast-drying white paint. When the coating was thick and pebbly, like the snow on a refrigerator pipe, the best results were obtained. If the coating was too thin, which we found was recommended by some workers, it would wear away in spots very quickly when in use; on the other hand, if the coating was too thick, it would chip off during operation when the cathode was first heated. We were unable to measure the thickness of a good coating and simply resorted to using 3 spray coatings with a uniform mixture, letting the coating dry between each coat. The thickness of the coating affected the life more than the original emission. Very thin coatings emitted as well as the thick ones during the first few hours. (Emission, in this case, means the current between cathode and plate.)

We found no difference in performance between the direct-heater type of coated filament and the indirect type (described in the preceding installation), but the heater-type emitter was far more durable and is subject to better burn-out. The emitter end was flat while in the case of the direct-heater filament, the shape was not quite so satisfactory. The heater type also has the advantage of having a smaller heating current to distort the cathode ray or electrons leaving the surface. When electrons move from the surface of the heated filament toward a positivelycharged anode and move through a magnetic field, they will follow the 3-fingered "motor rule" for the motion of a conductor passing a current through a magnetic field (only, of course, using the right hand for electron direction instead of the left). If the magnetic field is properly shaped, the electrons will describe a cork-screw type of path and converge at one point called the focus, provided the magnetic field encircles the electron beam coaxially as shown in Fig. 4A. Here, the electron assumes a path of least work and any work done by it is returned to the system. That is, the magnetic field simply alters the motion of the electron, and both the magnetic field and the electron work so that no energy is taken away from either the moving electron or the magnetic field in order to bring about the focusing action. The electron spirals around any line of force which it approaches at an angle when it enters the magnetic field and continues to show this corkscrew motion through it. When it leaves the magnetic field, it travels in a straight path like a ball thrown from a whirling wheel. Obviously, if the magnetic field is not adjusted so as to focus all of the electrons at one point in their corkscrew motion, then, several sections of the corkscrew will be visible on the screen as shown beyond the focus point.

Thus, a magnetic coil may be used to focus the electron stream, but any stray magnetic field not properly shaped will distort the path of the electrons, and if an alternating current through the heater cathode element is permitted to develop a magnetic field it will distort the path of the electrons at the start. A directly-heated filament is more difficult to properly design than the heater type so that the magnetic field does not interfere with the electron path. We were, therefore, not at all pleased to observe that we obtained as much emission from the heater-type emitter as from the directlyheated type of filament.

FORMING THE FILAMENT [EMITTER]
The process of "forming the filament," is important. The gas must be totally exhausted from the vessel as well as possible before forming is started. When the emitter is formed, it is brought up to a temperature higher than normal and then a potential difference of 20 volts is applied between the emitter and the nearest anode which is, of course, charged positively to develop a small electron current. This electron current increases steadily starting from zero, and chemical and thermal combination between the mixture and the metal appears to take place. If any gas is present in the tube, or the voltage is raised high enough to ionize the small volume which is usually present until the pumping operation has been entirely completed, then, the positive molecules will bombard the filament surface and tear away large pieces of the emitter materials.

The life of the filament is greatly reduced and affected if this is permitted. The longest life can be obtained by forming the filament at low potentials and with an absence of gas according to our brief and incomplete observations. However, the same cathodes, once well formed, can handle all electronic currents in the presence of gas up to 20 millimeters or more in pressure and such emitters are used in our powerful glow-discharge lamps. The filament is not badly taxed when the gas is at those extremely low pressures which are low enough to permit cathode rays to be formed and still high enough to form a "glow discharge" where the velocity of the positive molecules is very high. Therefore, small traces of gas in a cathode-ray tube shorten the filament life tremendously.
Even hours os numbers preapring "invisible bombardment" shortens so RADIO -CRAFT can will be life and the filament will emit lower temperature. We can see from these tests why it pays to pump tubes for a long time.

After we concluded a satisfactory number of filament tests, we put a small hole in the plate immediately in front of the emitter and tested the emission. Such a setup is shown in Fig. 4B. We observed that after the gas was removed the electron current was much lower than one without the plate, and it was evident that the remaining electrons were shooting straight through the hole. By placing a fluorescent screen on the end of the tube immediately in front of the aperture, we were pleased to observe a uniform glow over the entire surface indicating the arrival of cathode rays.

FOCUSING THE CATHODE RAY

We then tried placing a magnetic coil around the neck of the tube and observed that the beam focused to a small spot. The spot, however, had considerable distortion and was far from what could be very acceptable for a "television" cathode-ray tube.

We then tried placing 2 discs in front of the emitter with small holes in the center as shown in Fig. 4C. The disc closest to the emitter was varied from zero to a positive or to a negative potential at will, while the disc on the outside was charged to a high positive potential. The magnetic coil was used to focus the image of the aperture or the filament. When the first disc was charged zero, we were able to see an image of the emitter surface. It looked very much like an astronomical photograph of the sun. It had small pits like volcanoes and as the first disc was slightly varied in potential, huge streamers were seen to project from it according to the screen image. It was evident that we were focusing an electron image with electric means very similarly to the way we focused light images with lenses.

Various literature on the subject has compared electric focusing methods—using magnetic or electrostatic fields—to optical practice. We, therefore, searched for a design which followed the best procedure used in projection systems, for it was evident that we were dealing with a problem similar to a projector. A good projection system follows the design shown in Fig. 4D. A reflector is placed immediately behind the source of light—a thin collector lens is used immediately in front of it to work as close as possible to the source and then two other condensing lenses are used to converge the light upon the aperture that is to be projected. If this were a motion picture projector or a magic lantern, the film would be placed at the aperture. A corrected lens is then used to project the image at the aperture on the screen. Thus, the function of the condenser lenses is to direct as much light as possible through the aperture. It is self-evident that equivalent electron designs are desirable.

The RCA Projection Kinescope recently developed has an electric design which follows the best optical procedure in equivalent electric focusing systems. The first aperture appears to act as a reflector and the image is placed immediately in front of it. Thus, any electrons emitted are partially pushed through the first hole. The holes in the discs become successively smaller as the electrons are accelerated and finally converge upon the final aperture and cross and again diverge. They are then focused by a combination of the magnetic coil and the aquadag coating to a point on the end of the screen as shown in Fig. 4E.

In Fig. 4F we show a method tried that is entirely electrostatic. This has the advantage of not requiring any outside focusing coil. The performance of this gun was more satisfactory than all other guns tried and is capable of brilliant performance. At this point, we felt that we had obtained a brilliant and bright enough spot and suitable focusing means for any reasonable television tube. So our next task had to consist of investigating methods whereby the intensity of the beam could be varied uniformly from darkness to maximum brilliancy without obtaining a variation in the size of the spot that was detrimental in order to conclude our first experiments with electron gun design.

The results obtained concerning this work will be published in our next issue.

"LEARN-BY-EXPERIMENTING" BEGINNERS' PRACTICAL RADIO COURSE

ANSWERS TO QUESTIONS ON PAGE 703

1. When testing various resistances with an ohmmeter, the part having a higher resistance will allow: (less current) to flow.

2. A part having an open-circuit, as compared with a good part, will allow: (no current) to flow.

3. A part having a short-circuit, as compared with a good part, will allow: (more current) to flow.

4. The moving-coil-type meter, as compared with the vane-type meter, is (more sensitive).

5. The ohmmeter used here measures (D.C. resistance).

Please Say That You Saw It in RADIO-CRAFT

"RIDER'S..... Out Front Again" Says Service Manager of Leading Set Manufacturer

"That HOW IT WORKS section in RIDER MANUAL Volume VIII, certainly puts Rider out front again! It makes clear the underlying theory you must understand when working on complicated television receivers."

In addition to 64 pages on HOW IT WORKS, plus the 158-page INDEX, Volume VIII includes 1650 pages on external service data on 1175 models of over 100 manufacturers. Yet, the price is the same as last year's Volume—$10.00!

"RIDER BOOKS BANISH Bewilderment"

Radio Technicians get a sure grasp of the underlying theory of modern sets by using up-to-date Rider Books.

AUTOMATIC FREQUENCY CONTROL SYSTEMS

With Automatic Frequency Control Circuits in many new hi-priced models, knowledge of AFC means money in your pocket. Learn the practical facts, from these easy-to-understand explanations. Get your copy today. Cash in on profitable "AFC" work. Hard cover, 144 pp.

$1.00

THE CATHODE-RAY TUBE

Written especially so you can understand the subject. With introduction of new, cheaper Cathode-Ray Tubes, this book is even more indispensable for its complete practical information on Oscillographs, etc. 330 pp. 452 illuminations.

$5.25

SERVICING SUPERHETERODYNES

Changes, changes, changes! That has been the history of the superheterodyne circuit. Make repairs quickly by analyzing the different parts of the circuit quickly. Rider shows you how in this revised edition which has 58% profitably illustrated pages.

$1.00

"AN HOUR A DAY WITH RIDER" BOOKS—69¢ each

ON AUTOMATIC VOLUME CONTROL will speed up your A.V.C. work. 96 pp. 63 Illus.

ON RESONANCE & ALIGNMENT. You need this. 90 pp. 68 Illus.

ON D.C. VOLTAGE DISTRIBUTION IN RADIO RECEIVERS. How do voltages get to tube elements. 90 pp. 69 Illus.

ON ALTERNATING CURRENTS IN RADIO RECEIVERS—with drawings and diagrams.

JOHN F. RIDER, PUBLISHER

3440 Broadway, New York City

YOU NEED ALL 8 Rider MANUALS
NEW! AUDIO "EXPRESSOR" FOR SOUND SYSTEMS
(Continued from page 676)

If a well-monitored symphonic record is played-back on any high-quality standard, or voice amplifier, it cannot sound real, because the loud "peaks" have been depressed and the low "valleys" have been raised. In fact, all symphonic records are characterized by "peaks" in their dynamic range, and therefore sound "flat". It is this "flat" effect that robs the finest symphonic recordings of their realism, and enables the layman to tell the difference between a recording and an actual rendition.

THE VOLUME EXPANDER

Sound engineers have long known the existence of this defect and have labored continuously to rectify this undesirable condition. The problem has evolved itself around the development of a circuit which would "expand" the dynamic range of symphonic recordings so as to neutralize the effect of compressive monitoring. The volume expansion circuit, as finally perfected, actually un-does the monitoring and enables the recorded version to be played back in exact conformity with the original rendition.

What the expander actually does is to raise the "peaks" (make the loud passages louder). This condition produces the effect of lowering the valleys (making the low passages lower), so that rendition is restored to its original fullness. To listen to a volume expander amplifier for the first time is a revelation. In fact, it is only the absence of the orchestra itself that enables the listener to tell the difference between the real and reproduced version of a recorded selection. Expansion circuits as an integral part of an amplifier circuit have been described in past issues of Radio-Craft. In this article, instead, Mr. Shaney tells how to make up an independent or "add-on" expansion [and compression] unit.—Editor

EXPANDER ACTION OF THE EXPRESSOR

A cursory examination of the schematic circuit in Fig. 1 will disclose how the input signal is fed into both the 657G remote plate current cut-off tube and the control amplifier section of the 6C6G.

The control section amplifies the input signal and rectifies it in the diode section. The rectifier voltage which appears across its load resistor (15-meg.) is applied through a time-delay circuit to both the control-grid and the suppressor-grid of the 657G. A time delay circuit is inserted into the control-grid circuit so as to produce a pleasing rate of expansion. The suppressor-grid, however, acts more rapidly (although not as effectively) to preserve expansion of staccato passages. It will be noted that, during expansion, a positive voltage is developed across the rectifier section which lowers the effective bias on the 657G and raises its mutual conductance.

Figure 2 shows how the mutual conduction of the 657G is increased by lowering the control-grid bias and the effective suppressor-grid voltage...

THE COMPRESSOR ACTION OF THE EXPRESSOR

The reversing switch (S1) reverses the rectifier output voltage and causes the negative voltage to be applied to both the control- and suppressor-grids. This effectively reduces the mutual conduction of the tube and lowers the output voltage when high input signals are present. Its action exactly complements the performance of the expander. In fact, reverse expansion actually takes place. By proper adjustment of the expander control, a constant output voltage can be maintained over the wide range of input signal levels so that effective automatic audio volume control will take place.

UNUSUAL APPLICATIONS

The unit has been designed for convenient use with any and all existing type amplifiers. It will be noted (Fig. A) that optional low-impedence input and output transformers are available should it be necessary to match the impedance of any pickup or amplifier input circuit. By inserting the expander into the microphone circuit—plugging mike into expander, and expander into amplifier—either expansion or compression can be applied to voice or musical pick-up. Ordinarily, the expander should not be applied to speech. The expander (in the expander position), however, will add some expression to a monotoned orator.

A striking demonstration of the value of automatic audio volume control can be shown by adjusting the maximum output of the system to identical values with and without compression. The use of the compressor will then result in material increase of power output at reduced input signals. In other words, should the orator turn away from the microphone, the sensitivity of the system will automatically increase, so as to maintain, within very narrow limits, a constant output. This extraordinary effect is highly desirable in installations where performers resent the idea of burying their faces in the microphone.

By inserting the expander into the phono circuit, and plugging the phono pickup into the input jack of the expander, either expansion or compression can be applied to phono recordings. If the maximum output level of the system be adjusted to identical values with and without expansion, the use of the expander will appear to materially reduce scratch. In fact, it can be shown by the actual demonstration that scratch can be completely eliminated from records ordinarily characterized by tolerable scratch. If the low-level passages are adjusted to provide equivalent output with and without expansion, it will be noted that high-level passages will greatly increase the power output.
NEVER BEFORE

300 TESTED MONEY MAKERS

MAIL ORDER PLANS
BUSINESS SECRETS
SUCCESS SCHMES
94 PAGES

10c

Do not fail to send―for America's New
The Radio-Craft Book, just been published. It's sent
JUST IDEAS, but every grain has been tried and
succeeded in. Hand out at 1c or postage stamp.

NATIONAL PLANS INSTITUTE
246R Fifth Avenue
New York City

MODEL 801 VOLT-OHMETER
The Serviceman's Favorite!

A sensational low priced instru-
ment that will prove to be the
most necessary plus its compactness makes it
the number one test tool for servicemen.

The personal type ohmmeter is accurate within 2%. The
resistance scale is calibrated from 0-500 ohms with 50 ohms at
the center of the scale, 25% increments are
permitting accurate resistance readings
up to 100,000 ohms. The high resistance
scale is calibrated from 1 M. for easy
reading of external batteries are
attached. DC voltage up to 1000 can be
determined. Individual leads provided:
0-5, 0-50, 0-500 and 0-1000 volt

MODEL 91A AC-DC Volt-Ohm-Milliammeter

Contains the same characteristics as Model 801 Volt-
Ohmeter, with these added improvements:

Reading Available:
2-5-50-500 and 1000 volts D.C.: 0-5-50-500 and 1000
100 millivolts D.C.: 0-5-50-500 and 1000

Block 91A: SPECIAL PRICED $9.95

TRY-MO RADIO CO., Inc.
85 CORNTLAND STREET
NEW YORK, N. Y.

NEVER BEFORE

over the normal high-level output of the system, and thereby produce a much
desired realistic playback performance. It is of course taken for granted that
the power amplifier will handle this
higher output without introducing un-
desirable distortion.

On the other hand, should phono re-
cordings be used for dance purposes
in large dance halls where a constant
power output is desired, compression
may be applied to the phono circuit
so as to provide a more uniform output
regardless of fluctuations in recording.

UNUSUAL FEATURES OF THE EXPRESOR

It will be noted that the unit employs a
6US cathode-ray indicator to visually
indicate the degree of compression or
expansion present. A number of new
design principles have been used in pro-
ducing the power transformer, chokes,
and input and output transformers. A
dual coil hum-bucking construction is
used throughout, so as to avoid undue
magnetic or inducer pick-up. A 2-stage
filter system is employed to completely
eliminate the plate-circuit hum.

Hum usually produced from heater-
cathode and heater-to-plate emission
has been completely eliminated by
raising the heater 200 volts above
ground so that the heater potential is
higher than any other element in the
6S7G, thereby effectively preventing
emission to the screen-grid, cathode,
and plate circuits. This high "bias" potential
does not affect the performance of the
other tubes in the unit.

The addition of this expression to any
microphone or phono circuit will not
only add considerable flexibility to the
reproducing ability of the amplifier
system, but will also add approximately
20 db. to any input circuit (when volume
control is on full). This will enable
the use of low-level microphones with
amplifiers designed for high-level
inputs. In other words, the unit may
also be used as a preamplifier when
additional gain is desired.

The entire unit when completed
measures 14 ins. long, 6 ins. wide, and
12½ ins. tall. It weighs approximately
full. In all other respects it may be
readily attached to any existing amplifier.
Questions will be gladly answered by
the author. Address him care of Radio-Craft.

CANADA'S "INTERFERENCE DETECTIVES"
(Continued from page 709)

it may be corrected by reversing the outside loop
leads.

(D) Probe Reception:
The probe antenna is connected to the termi-
nal PP and reversed is obtained by closing
the switch (SW.1) on the "probe" side and the
switch (SW.2) on "B", leaving the switch (SW.3)
in the "loop" side. The probe transformer secondary
is now tuned by one-half the gang condenser
marked "Tuning".

Once the source of interference has been
located, steps must be taken to overcome it. This
is done by repairing or replacing defective parts,
repairing poor contacts, removing causes of
leakage, etc. However the procedure for remedying
various sources of noise constitutes the subject
matter of subsequent instalments.

Please Say That You Saw It in RADIO-CRAFT

UTAH VIBRATORS

UTAH Vibrators are TOUGH! Impartial tests prove it. But
UTAH research still goes on.
That's why the UTAH factory is responsible for practically
every major improvement in vibrator design. And the 1936
UTAH Vibrator is the finest
and toughest ever made! Give
your customers the vibrator that
"can take it." Just say UTAH to your jobber.

√ LAST LONGER
√ WORK BETTER
√ COST NO MORE

UTAH Vibrators are TOUGH! Impartial tests prove it. But
UTAH research still goes on. That's why the UTAH factory is responsible for practically
every major improvement in vibrator design. And the 1936
UTAH Vibrator is the finest
and toughest ever made! Give
your customers the vibrator that
"can take it." Just say UTAH to your jobber.

√ Corrosion-free contacts be-cause of patented rubber liner.
√ Longer reed life because bend-
ing strains are evenly dis-
√ Shorter leads reduce interfere-
√ Breakage is practically impos-
√ Tungsten contact points. Self-
√ Lower rubber liner accurately
√ Rubber liner consists of two

Your jobber has UTAH vibra-
tors for all auto and farm radios,
Get the best. Always say "UTAH!"

BUENOS AIRES-UCCA RADIO PRODUCTS CO.
CHICAGO, U. S. A.
"16 YEARS OF LEADERSHIP"
RECENT DEVELOPMENTS IN ELECTRONIC MUSIC
(Continued from page 46)

and magnetic pick-up units for translating the string vibrations into magnetic field fluctuations, then into electronic voltages, and finally into sound, by amplifier and loudspeaker.

A better type of pick-up involves substitution of electrostatic for magnetic pick-up; and adjustable metallic screw is placed near each string.

These electrodes are connected together, and shielded from external electrostatic hum fields by a small metal housing. The hooding shield is connected to the strings, to the shield of a 1-wire shielded cable and to amplifier ground. The central wire is connected to the pick-up electrodes.

Well-filtered polarizing voltage is taken from the amplifier and applied to this wire at the amplifier end through a 10-megohm charging resistance. The pick-up electrodes respect with the grounded strings of the instrument. Such polarizing voltage is kept off the amplifier grid by a blocking condenser.

The amplifier needs more gain than is necessary for the magnetic pick-up but this presents no difficulty whatever. Properly shielded electrostatically, this pick-up will not respond to any stray electrostatic or electromagnetic hum fields. The magnetic pick-up responds to both types and it is very difficult to shield it from the latter.

The electrostatic pick-up is much more linear in its operation than the magnetic, since the capacity change of the plate and not the first power of distance; the magnetic type is governed more nearly on a square law principle and thus itself causes distortion of the string vibration as translated into electrical alternating voltage.

Another advantage of the electrostatic pick-up is that it may be used even with gut strings as in violins, violas, double basses, etc. The strings, from a conductivity point of view, resemble the pick-up electrodes, need only be slightly conducting for perfect over-all sensitivity. Distortion may be given them by penciling them with a lead (graphite) pencil, by liquid squashing, or any other method. With gut strings cut pick-up leads such as two electrodes for each string between and out of which the string vibrates, the string need not even be conducting, as it is a detector of different dielectric constant than air, and its motion in the electrostatic field between the two electrodes sets up an alternating voltage, just as in the case of the conducting string.

The Electronic Piano

The newest instruments to be introduced commercially are electronic pianos which use conventional piano cases, strings, keys and hammer actions, pedals, etc. However, they have no sound boards. Opposite the strings for each note is a pick-up screw near the bridge end. These screws all connect together, carry polarizing voltage, and feed into the first amplifier grid through a blocking condenser, just as in the case of the guitar. The strings and plate are grounded to the amplifier chassis. The inside of the piano case is painted with squadding (colloidal graphite) to shield out external electrostatic hum fields, as before.

Since each note frequency has an adjustment of pick-up output voltage, by its distance adjustment from the strings, it is here possible to tone regulate, or, if desired, the sound level output separately for each note of the scale, and thus compensate for any irregularities, at particular frequencies, in the amplifier or speaker frequency characteristic. These pick-ups respond in no way to air-borne sound waves, so they offer no means for acoustic feedback. Indeed, 50-watt power amplifiers, and 15-inch, high-efficiency reproducing horns, are being installed in the piano case. These produce output sound levels of as high as 110 db at 10 feet, or more than 5 times the sound of the largest concert grand pianos of conventional types using mechanical sound boards for tone production.

Near the strings ends the high overtones are strong; near the middle these are weak and the lower ones are stronger. The amplifier to the middle only the odd-numbered partials are present; at other positions there is no 2nd or 3rd, or 4th or other partials.

Once pick-up position is determined and fixed in the design, there is still plenty of tone quality variation possible by low-pass, high-pass, or band-pass filters. A volume control attached to the swell pedal enables the electronic pianist to do things like a normal pianist.

Please Say That You Saw It in RADIO-CRAFT
WANTED
YOUR TOUGHEST RESISTOR JOBS!

TRANSMITTING WIRE WOUNDS
They'll stand the overloads. No breakdowns, "open" or "short" joints. No damage by moisture.

For more than five years, IRC has been Coating Power Wire Wound parts to prove their superiority. Today you'll find them in thousands of hard-to-get and difficult-to-get applications.

INTERNATIONAL RESISTANCE COMPANY

• ELEMENTARY MATHEMATICS •
For the Technician and Craftsman

CONTENTS OF BOOK

TECHNIFAX
Division RC-438
50c (Postpaid)

Breaking all Records
FOR PRICE AND PERFORMANCE

MODEL 407
AC-DC Multiflter
$9.95

The lowest priced A.C.-D.C. filter tester on the market, yet incorporating all these features:
- colored dials and ranges. AG voltmete-
- 4-drift integrator. D.C. range 0.2, 1, 2 curr.
- -rent ranges. 4 output ranges. Measures resistance less than 36 ohms.

Write for Catalog C.

1938

RADIO-CRAFT

WANTING-TOURGHES...RESISTOR JOBS!

TRANSMITTING WIRE WOUNDS
They'll stand the overloads. No breakdowns, "open" or "short" joints. No damage by moisture.

For more than five years, IRC has been Coating Power Wire Wound parts to prove their superiority. Today you'll find them in thousands of hard-to-get and difficult-to-get applications.

INTERNATIONAL RESISTANCE COMPANY

• ELEMENTARY MATHEMATICS •
For the Technician and Craftsman

CONTENTS OF BOOK

TECHNIFAX
Division RC-438
50c (Postpaid)

Breaking all Records
FOR PRICE AND PERFORMANCE

MODEL 407
AC-DC Multiflter
$9.95

The lowest priced A.C.-D.C. filter tester on the market, yet incorporating all these features:
- colored dials and ranges. AG voltmete-
- 4-drift integrator. D.C. range 0.2, 1, 2 curr.
- -rent ranges. 4 output ranges. Measures resistance less than 36 ohms.

Write for Catalog C.

1938

RADIO-CRAFT
Radio-Craft magazine takes pleasure in endorsing a truly worthwhile activity inaugurated by Frank L. Carter, of East Rockaway, Long Island, N. Y.

Writing in the February, 1937, issue of this magazine, Mr. Carter detailed some of the causes of man-made static. Even at that time he had organized his National Association for Prevention of Radio Interference (N.A.P.R.I.) and had aroused national interest therein.

When publishing his article, Radio-Craft called attention to the N.A.P.R.I., and suggested that listeners might address it in care of the magazine. Now the editors go a step farther. They reproduce herewith the N.A.P.R.I.'s statement of its purposes and principles, together with a coupon for the use of readers who may wish to share in the good work being done.

The statement, which the N.A.P.R.I. is anxious to have reprinted and distributed in as many localities as possible, in order to secure the large membership which is necessary if action is to be secured, reads as follows:

The purpose of this association is to work for improvement of radio reception throughout the entire spectrum, through elimination by law and in other ways, unreasonable, preventable and unnecessary electrical disturbances which are knowingly and wilfully created and which distort radio signals to the detriment not only of listeners' enjoyment of their radio receivers, but also constitute serious menace to efficient operation of military, police, aviation and general commercial point-to-point radio communication.

Achievement of this purpose will be brought about chiefly through cooperation of manufacturers and users of electrical apparatus, which causes radio interference. This cooperation eventually will result in improvement of such devices so that they no longer will radiate interference.

Inasmuch as it has only been very recently that radio interference has come to be recognized both as a public nuisance and a menace to public safety, very few communities as yet have suitable legislation providing for control of such causing apparatus. One of the primary purposes of the association is to devise and bring about the passage and enforcement of such legislation.

Radio interference is an international as well as a local problem, and should be governed both by local and international law. Associate membership in this association entails no responsibility upon the member for the actions of the association or its financial obligations; there are no dues or other expenses developing upon the member. In becoming an associate member your only obligation is your pledge to support suitable local and international legislation for control of interference and where possible to use only such electrical equipment as has been so designed and constructed that it will not cause interference.

A better radio receiver and a more satisfactorily conducted program can be had through the cooperation of all who listen and whose work will not contribute to the nuisance of others.

Now is the time to receive the excellent articles and articles in this regard. The membership application, printed below, may be sent directly to "N.A.P.R.I."

National Association for Prevention of Radio Interference.
East Rockaway, Long Island, N. Y.

Dear Sirs:

Please enroll me as an associate member of the N.A.P.R.I. I agree to do all in my power to further the purpose of the association in securing passage of adequate legislation for control of preventable radio interference. I also agree that wherever possible I will avoid the use of any electrical apparatus which causes such interference.

Name __________________________
Address _________________________
City & State _______________________

Please Say That You Saw It in RADIO-CRAFT
CIRCUIT FEATURES OF 1937 AND '38 INSTRUMENTS

(Continued from page 669)

while the tube is hot will light up and give a visual indication on leakage resistance up to 500,000 ohms. The circuit arrangement employed is shown in Fig. 1B. The flexible connectors are removed from the neutral plates and placed into the plate bus, one at a time. A permanent glow in the neon tube when this is done with any of the connectors indicates leakage (for a short) in the tube. This set-up is satisfactory for testing inter-element leakages, for a tube having an inter-element leakage under 500,000 ohms will not ordinarily operate satisfactorily. If the same set-up were used for testing hot-cathode leakage it would reject almost all "good" tubes, because all satisfactory tubes have a permissible hot-cathode leakage of this extent. In many tube testers this problem is attacked by reducing the sensitivity of the neon lamp so that good tubes will not be rejected on the hot-cathode leakage test. The resultant disadvantage is, of course, that the less sensitive test set-up will pass OK some faulty tubes which have a higher inter-element leakage than is permissible but which is yet not quite low enough to show up on the reduced-sensitivity neon lamp type set-up. In the "060" tester no compromise is made. Two separate test arrangements are employed. The high-sensitivity neon tube arrangement just described is used for all inter-element leakage tests, and the meter test arrangement shown in Fig. 1C is employed for the hot-cathode leakage test. With the plate connector placed in one of the plate bus jacks and the cathode connector in one of the cathode bus jacks, the cathode bus leakage is normally rejected from the transformer. Then, if the tube has cathode leakage, the leakage between cathode and heater will provide the return circuit for the plate current of the tube to flow back to the transformer, and the meter pointer will show a deflection. Its magnitude depends upon the amount of cathode-heater leakage.

(5) TEMPERATURE COMPENSATION CIRCUIT FOR RECTIFIER-TYPE METERS

Clough-Brengle Model 120 Rectifier Circuit. It is generally well known that, unless special compensating features are built into rectifier-type A.C. meters, changes in temperature may cause relatively large errors in their indications. As the temperature increases, the meter becomes more sensitive and therefore gives higher readings, while the input resistance to the rectifier decreases with a temperature increase. The result of these various changes is to give higher meter readings with a rise in temperature.

To compensate for these "temperature" characteristics of the "120" rectifier meter circuit is arranged as shown in Fig. 2C. It consists of a D.C. meter,
RADIO ENGINEERING

RCA INSTITUTES, Inc.

MODERNIZE YOUR OBSOLETE TUBE CHECKER OR SET ANALYZER with "PRECISION"

Write for details. Mention make and model number of your old instrument.

PRECISION APPARATUS CORP.
351 EAST NEW YORK AV.
BROOKLYN, N. Y.

RADIO IN IT'S ENTIRETY!

"R"-A removes the trade with every used in receiver, r.-m. equipment causing of ca.
truly known radio receivers, public ad.
and other. Read and prices. Out.
does shipped same day received.

COMPLETE CATALOG AVAILABLE
BURSTEIN-APPLEBEE CO.
1422-14 McGEE ST.
KANSAS CITY, MO.

SWAP-UP TUBE SUPERIFIER FOR

RCA-4-2A-2A, AC-4, B-27, AC-4, B-27,
SWAP-UP TUBE SUPERIFIER FOR

RCA-4-2A-2A, AC-4, B-27, AC-4, B-27,
S

SWAP-UP TUBE SUPERIFIER FOR

RCA-4-2A-2A, AC-4, B-27, AC-4, B-27,
S

SWAP-UP TUBE SUPERIFIER FOR

RCA-4-2A-2A, AC-4, B-27, AC-4, B-27,
PYRO PANTAGRAPH

Size of Box:

$2.75

Shipping Wt. 3 lbs

This electrical outfit is especially designed for burning designs permanently on materials such as Leather, Wood, Cork, Bakelite, etc.

Plug the Pyro-electric pencil in any 110 volt AC or DC outlet and it is ready to be used. Plus and curved furnish.

By the use of the Pantagraph included in the outfit, any design may be reproduced literally in original, reduced or enlarged form.

Outfit consists of: one Pyro-electric Pencil; one Pantagraph; one hardwood plaque; one bottle of Varnish; one Brush; one tracing tip and four-page instruction sheet.

Size of box: 12 x 8 1/2 inches.

Outfit will be forwarded by Express Collect if not sufficient postage included with your order.

WELLWORTH TRADING CO.

FACTORY TO YOU

NEW REMINGTON JOISELESS PORTABLE!

Famous Remington Noiseless Portable that speaks in a whisper, only 12 x a day, direct from factory. Standard Red Key. Automatic ribbon in reverse. Variable line spacer and all the conveniences of the finest portable ever built. PLUS the NOISELESS Feature. Act now. Send coupon TODAY for details.

You don't risk a penny.

We send you Remington Noiseless Portable for 10 days Free. If not satisfied, send it back. We pay all shipping charges.

FREE Typing Course and Carrying Case.

You receive FRee, a complete simplified home course in Touch Typing. Also FREE, a handsome, sturdy carrying case. Absolutely no obligation. Mail coupon for full details.

Remington Rand, Dept. 196-4

465 Washington St., Buffalo, N. Y.

Tell me, without obligation, how to get a new Remington Noiseless Portable, PLUS Free Typing Course and Carrying Case, for 10c a day, Send Coupon.

NAME

Address

City State

Better - Quicker - More Profitable Servicing with RADIO CHASSIS CRAFT

RADIO ENGINEERING.

Broadcasting, aviation and police radio, servicing, marine radio, etc. three courses included in this ingenious and this way taught thoroughly. Engineers and radio men must have the business that is enlivened by this course.

Name
done the
day from three years of college radio work. All expense paid. Call and ask School enrollee. Daniel Dodgson's Institute, Hudson St., Valparaiso, Ind.

RADIO CRAFT for APRIL, 1938

(Continued from page 714)

Strong oscillation with weak, choked signals sometimes accompanied by motor-boating has been traced to an open-circuited oscillator plate bypass condenser, the 4 mf. unit mentioned above. This is meant by an "open-circuited condition" that the condenser has lost capacity as a result of excessive temperature, overload or other causes.

Fading and intermittent reception, wherein volume level drops appreciably, and signals may be received with a fair degree of station or resonance hiss, in some cases has been found to be caused by open-circuiting or open-circuited 0.05-mf. 1st-detector—oscillator and L.F. grid filter condenser. The failure may be attributed to poor internal contact of the pigtail leads to the foil.

The complaint frequently encountered with these models is that of a slipping dial. The drive arrangement operates satisfactorily when the tuning knob is pulled out for vernier or slow-speed tuning, but will slip badly when the tuning knob is turned for fast tuning. This condition is caused by the

(Continued on following page)
BRINGS YOU ANY ONE OF THESE 4 FAMOUS RADIO BOOKS

RADIO FANS! Help yourselves to a radio education for the price of 10c per book. These books give you a good foundation towards the study of radio. You'll learn the wealth of information contained in them. They are especially written for beginners but are useful review and reference books for all.

Each book contains 32 pages, profusely illustrated with clear, self-explanatory diagrams. They contain over 15,000 words of clear legible type. They are an education in themselves and lay the groundwork for a complete study of radio and electricity.

(Continued from preceding page) failure of the 3 copper spring clips on the dial drive shaft which are not properly engaging the saw-toothed gear of the reduction drive assembly. Bending each of these spring clips in, slightly, to increase their tension, will not only more positive engagement with the gears possible, is sufficient to effect a repair.

RADIO WAVES USED TO COMPLETELY CONTROL REMOTE RECEIVER

(Continued from page 579) a separate tuning circuit, and every circuit tuned to another frequency, a great number of tricks may be performed.

It may be of interest to notice that only 1 type of tube is employed in the modern system (which has been developed by RCA License Laboratory) and 2 other types* (see note) of standard and cheaper design. Instead of 10 frequencies (Fig. 1D) only 2 are used in actuality, namely A- and B- phasing, but despite the fact that the number of tubes and frequencies has been reduced considerably one can hardly say that the function of the radio remote tuning system has become simpler.

The contrary is the case because we now must send so-called "A", and "B"-phased, modulated-radio impulses over the powerline to the remote radio receiver. Radio Service Men of the future in 10 years or 30 years will have to acquire an engineering degree from an institute of technology in order to understand how to service such a set.

A simplified outline as to how the new system operates is shown in Fig. 1D. A small box containing 2 small oscillator tubes and 10 pushbuttons is plugged into the nearest wall outlet of the house powerline. One of the buttons is pressed and an impulse of 400 or 500 cycles with A- or B- phase modulation is sent to the transmitter of the remote receiver. If one does not care for the station thus tuned-in, another button is pressed. This causes the set to return to the previous station. And finally, if the loudspeaker is too low or too high, a 3rd button accomplishes the necessary alterations. (See Note, below.—Editor)

NOTE: This story of RCA Lab's remote control system has been divided into two major classifications, (1) the gas-switch tube circuit for turning the remote radio set off or on; and (2) the highly ingenious selection system for tuning and volume control, with A- or B-phased modulation is sent to the remote radio receiver. If one does not care for the station thus tuned-in, another button is pressed. This causes the set to return to the previous station. And finally, if the loudspeaker is too low or too high, a 3rd button accomplishes the necessary alterations. (See Note, below.—Editor)

(Continued from previous page)
circuits that feed both these tubes independently; the rectifier sections of the 6L7 develop high voltages for the amplifiers sections of both tubes.

Inside the control box at the remote station are placed not only the control buttons but also a twin-triode tube, a 6N7, with 2 independent oscillating circuits. One triode operates at 200 kc., and the other one at 300 kc., both triodes being fed with raw 60-cycle A.C.

Now we arrive at the subject of "A" and "B" phasing mentioned by the author. These designations refer to operation of the oscillators on either half-cycle of the A.C. supply. (The idea may be clarified by considering theoretically that the A.C. modulation for "A" phasing is derived with the plug in the wall outlet in one position; "B" phasing would then result if the plug position in the socket were to be reversed.)

With this as a starting point we then find that by sending currents modulated in "A"- or "B"-phase at either 200 or 300 kc., and sending them individually or together, over the powerline to the radio receiver it is possible to produce 10 different phase and frequency combinations. Selective circuits at the receiver are then designed to operate the 6N7 and the 68R7 so that these relay-control tubes properly actuate 3 control relays. These relays then perform the previously-mentioned 8 operations of tuning-in either of 6 different stations, and varying the volume to any desired level; the remaining 2 operations are achieved by means of the gas tube and involve turning the set on or off.

READERS' DEPARTMENT

BRITISH SERVICE HARDER

Dover, England:

We have a lot of service work to do in this country on American sets, and we usually find that they are simpler jobs than on our own. To make a valve, you need a 6R7, but you don't need a cheaper 6N7, and the 6N7 is a British-made valve.

Do you mean to say that there are over 200 different types of British tubes, and every maker has his own way of marking? Thus, in your country, and known as the 6N7, in our country, is known as the 6R7.

It's also true that, in Mullard, it's B62; in Marconi, U11; and in those, U12, it's 180,000, 180,000; and so on. Nearly everybody's new model is but a little better.

Personally, I like American stuff. It is so much better finished off than our own, and lasts better too. I have just recently serviced a Majestic which is 8 years old and works better than most of its modern English counterparts.

THOMAS SMITH, JR.

Please Say That You Saw it in RADIO-CRAFT
of the 2nd R.F. tube, some reception may be heard. There is no plate voltage on the 1st R.F. tube, and but 2 volts on the 2nd R.F. tube. Both plate bypass condensers are OK. Where may the trouble be?

(A) With the receiver set up for operation, check the field coil of the reproducer by testing the magnetic "pull" of the field "pot" with a screw driver, or other iron or steel object. A section of the field coil is probably open-circuited, or the tapped load of the field coil has been ripped off. Plate voltage for the 1st and 2nd R.F. tubes is obtained through this tap on the field coil.

"INTERMITTENT" OSCILLATOR
(47) A. A. Guntrum, Rimerburg, Pa.

(Q) I have an Apex model 7A receiver which has been causing trouble for 6 years. The oscillator ceases to function. At times, reception will cut off after 3 hours of operation. Almost every part but the oscillator coil assembly has been replaced in an effort to clear the condition. What do you advise towards remedying the defect?

(A) The receiver in question employs a type 24A tube as an autodyne or composite detector-oscillator, connected in a circuit shown in Fig. Q-47. The I.F. coil and oscillator coil are a composite unit. Failure of the oscillator portion of the receiver, such as you mention, may be due to any one of several causes. Should the upper portion of the tank coil, designated as L4 in the diagram, open-circuit, then oscillations would cease. No operating voltages would be disturbed in this case. A voltage analyser at the 24A socket would disclose normal readings. This is also true of the cathode bypass condenser. An open-circuited portion of the 0.01-mf. condenser would produce the symptoms described without affecting voltages through the tank coil. In some instances, failure of the bypass condenser results in uncontrollable oscillation, only a whistle being heard "over the entire dial" as the receiver is tuned.

The fact that voltages are present at the tube socket proves that L1, the I.F. primary, the oscillator coil primary L3, and the lower tapped portion of L4, are intact. Consequently, the intermittent open-circuiting of the upper portion of the oscillator tank coil L4, or cathode bypass condenser, is probably the cause of your troubles.

Should the composite I.F.-oscillator coil assembly, and cathode bypass condenser be found intact, substitute a 2,000-ohm resistor for the 3,200-ohm unit now in the cathode circuit of the 24A detector-oscillator tube. Try, also, a 0.005-mf. cathode bypass.
TECO MULTIMETER
T-15
Here's a cost you need for rapid, accurate measurements! A 1,000 ohms per volt meter, featuring d'Arsonval movement, and attractive metal panel. A C Current: 0.1, 0.2, 0.5, 0.10, 0.50, 1.00, 5.00, 10.00, 50.00, 100.00. DC Voltage: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0. 60 cycle AC.

3 RESISTANCE RANGES
- 0-600 ohms, 0-300,000 ohms, 0-5 megohms
 HIGH AND LOW CAPACITANCE
- 300,000-1 mfd. and 60-20 mfd.

SPECIFICATIONS
COMPLET: AC AND DC VOLTAGE AND CURRENT RANGES
AC Voltages: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0.
DC Voltages: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 50.0, 100.0.
DC Current: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0.

GUARANTEE: We guarantee each and every instrument manufactured by us to be exactly as described, or your money back! If you are not completely satisfied with our equipment, we will arrange to have it repaired, replaced, or returned at our expense, until you are perfectly satisfied with the performance of your equipment.

GUARANTEE: Our company is so sure of the quality and dependability of our instruments that we are willing to offer this generous guarantee.

SPECIFICATIONS:

TECO MULTIMETER T-15

- 3 resistance ranges:
 - 0-600 ohms, 0-300,000 ohms, 0-5 megohms
- Net price: $13.60

TECO T-10 TUBE TESTER

- Pushbutton operation
- Direct reading of voltages and currents
- 3 resistance ranges
- High and low capacitance ranges
- Complete AC and DC voltage and current ranges
- Net price: $11.75

TECO T-20 SET TESTER

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $21.45

TECO POCK-0-METER

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $8.45

TECO MULTIMETER T-15

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $13.60

TECO T-10 TUBE TESTER

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $11.75

TECO T-20 SET TESTER

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $21.45

TECO POCK-0-METER

- Complete AC and DC voltage and current ranges
- High and low capacitance ranges
- 3 resistance ranges
- Direct reading of voltages and currents
- Net price: $8.45
We Invite All Men to Write to Us

The Tri-Town Radio Amateur Club, WTOJF, of Ridge Park, Chicago, is the only Amateur Club, we believe, that has its own Television Experimental Laboratories. Their television test broadcasts on the air will mark the beginning of local amateur cooperation dedicated to the progress and perfecting of Television. The enthusiasm these "ham" assertions over their A.T.I. Television equipment, and their appreciation of the cooperation A.T.I. Engineers have extended to them is reflected in their statements. We have hundreds of letters from A.T.I. men throughout the nation, expressing their enthusiasm about A.T.I. Equipment and A.T.I.'s new method of learning Television at home, with practical equipment. The American Television Institute cordially invites all men who are interested in Television to write for complete information on the A.T.I. New Method of Television-Radio Training.

A.T.I. Equipment Includes:

Complete television transmitter and receiver, cathode ray tube with large 7" screen, sweep circuits, photo electric cells, gas arc, 50 watt radio transmitter, super-heterodyne receiver, hi-gain transmission amplifier, projector, Mazda lenses, loud speaker, meters, phones, and complete RCA tubes. Large five foot steel rack and panels with separate television receiver. Complete text books and technical manuals. This equipment is sent to you at home, and is yours to keep, and is worth $1,000 to anyone taking this training. You learn by actually doing television work with your own equipment at home under our direction. Television can not be properly learned from texts alone, that's why we give you all this equipment in addition to a full engineering course in Radio, Television and Electronics with final training in our laboratory in Chicago under the direction of internationally famous television engineers. Employment service given to graduates.

You Can Make 350 Experiments . . .

With this A.T.I. Equipment, you can make over 350 amazing, interesting Television and Electronic experiments right in your own home. You can produce your own Television program for a local audience . . . transmitting and receiving the faces of your friends. You can build a complete Television Receiver that picks up any modern 441 line signal . . . Television Transmission and Re-ception Systems, Television Transmitters, Television Pick-ups, Photo-Electric Relays, Light Beam Telephone, Magic Lanterns, Grid-Glow Alarms, Sound Amplifiers, Photo-Elec-tronic Photometers. You can make hundreds of comparison tests that show you Television and Radio in a quick, simple way . . . much easier to understand than mere words in a book. It costs you nothing to thoroughly investigate this opportunity. You cannot afford to pass it up. Send Coupon Now.

4 Free LESSONS in TELEVISION

THIS OFFER GOOD FOR A LIMITED TIME ONLY!

DON'T DELAY! SEND THE COUPON NOW!

AMERICAN TELEVISION INSTITUTE
433 E. Erie St., Dept. RC 438, Chicago, Ill.

I am interested in your special offer of 4 free lessons in Television. Please send literature and complete details. No obligation.

Name

Age

Address

City

State

www.americanradiohistory.com