TELEVISION "FINDER"

DYNAMIC PICKUP

TALKING LIGHTBEAM

FREQUENCY MODULATOR

PARACHUTE-PRACTICE
BROADCAST

See Page 138

REPAIRING METERS • HOW TO USE 2 LOUDSPEAKERS • 10-WATT AMPLIFIER
F.M. SERVICE • A.F. OSCILLATOR USES • ISOLATING DEFECTIVE STAGES
It's HARRISON for hallicrafters!

FREE 10 DAY TRIAL
to convince yourself how good these new receivers are!

New 1941 Super Skyrider Model SX-28. Sets a new high in quality performance. 15 tubes; two stages preselection; 10/40/20/10 meter amateur bands calibrated; 6 step wide range variable selectivity; calibrated bandspread inertia controlled; frequency coverage 550 kc. to 42 mc. With crystal and tubes $159.50

HIGHEST TRADE-IN ALLOWANCES
Plus a 100% square deal

PROMPT DELIVERY of practically all models

The 1941 Sky Champion (Model S-20R) Represents the best value in the communications field. 9 tubes; 4 bands; covers 540 kc. to 44 mc.; separate electrical bandspread; battery-vibrapack D.C. operation socket $495.00

The Sky Traveler (Model S-29). A universal receiver, you can take it with you anywhere. Operates on 110 volt A.C.-D.C. or from self-contained batteries. 9 tubes. Covers from 540 kc. to 30.5 mc. (9.8 to 93.8 meters) on 4 bands. Self-contained telescoping antenna. Weight, including batteries, 18 lbs. $595.00

DEALERS - SERVICEMEN!
Try our quick, dependable service the next time you need replacement parts in a hurry. Order from any catalog or advertisement.

Transformers Vibrators
Condensers Controls
PORTABLE BATTERIES, etc.

Lowest Dealer Prices on Quality Merchandise

Complete stock of modern TEST EQUIPMENT

HARRISON RADIO COMPANY
12 West Broadway
New York City

hallicrafters receivers +Harrison Service
= Your complete satisfaction
I will send you a Lesson on Radio Servicing Tips FREE
TO SHOW HOW PRACTICAL IT IS TO TRAIN AT HOME FOR GOOD JOBS IN RADIO

Every man who works on a Radio Receiver, either professionally or as a hobby, should have a copy of my Free Sample Lesson, "Radio Receiver Troubles—Their Causes and Remedy." I will send you your copy without obligation if you mail the Coupon below. It will show you how practical and widely useful your training will be. There is a large and growing demand for trained men in the Radio Industry.

Why Many Radio Technicians I Train Make $10, $40, $50 a Week

N.B.I. trained Radio Technicians hold good positions in broadcasting stations, police departments, hospitals, movie palaces, radio repair shops, television stations, service departments of manufacturing companies and large department stores. Many of them are self-employed in their own station or ship Radio Technicians, flying, service Radio and Television Appliances, and also teaching others how to earn a good living in the Industry.

Our Course is thorough and practical. I give you the same training in Radio Theory and Practice that the larger Radio Engineering Schools give to students who are paying hundreds of dollars for instruction. You will learn the entire A-to-Z of Radio Servicing from the simplest types to the most advanced. You will be thoroughly prepared to fix a few common faults and make a few simple adjustments. That's why using our lessons results in so many successful technicians. You will learn how to fix almost any fault from a bad battery to a blown fuse or from a broken wire to a short circuit. Being both thorough and practical, our lessons are both valuable and easy to learn.

Beginners Quickly Learn to Earn $5 to $30 a Week Extra In Spare Time

Nearly every neighborhood offers opportunities for Radio Servicing work. In most cases you can work by the hour, and during the busy hours of the year—Saturday night and Sunday morning—radio work is constant. There are no strikes in the Radio Industry. You can work at home, or at the Radio repair shops. In practically every town there is a good market for Radio Technicians. The Buyer wants a man who is thoroughly trained. Let me show you how to find the best paying Radio jobs at home or out of town.

MAIL THE COUPON for my Sample Lesson and 64-page Book "Rich Rewards in Radio." It explains how to get started in the interesting and lucrative Radio Business. It gives you the facts and the figures that will enable you to decide whether Radio Work is the kind of life you want to make your career. It also shows you where to get further Radio Training at the lowest cost. I'll send you the Lesson and Book. It costs nothing. It is your privilege to see how much you can earn in Radio. It is your privilege to be taught how to be a Radio Technician. I'll send it to you FREE.

J. E. SMITH, President, Dept. I.U.X.
National Radio Institute
Washington, D. C.

Name
Address
City
State
Age

RADIO-CRAFT for SEPTEMBER 1941

Marshal L. Martin, President
National Radio Institute, Washington, D. C.
Contents

VOLUME XIII -- NUMBER 3

Mailbag 131
Editorial: "64% of the Radio Servicemen are Gyps!" Hugo Gernsback 137
The Radio Month in Review 138

SERVICING

Simplified Set Conversion Steve Kusen 140
Operating Notes Bertram M. Freed 143
Isolating the Defective Stage Wm. Franklin Cook 148
RADIO SERVICE DATA SHEETS:
No. 314-General Electric Model LB-530 Rechargeable-Battery (A.C./Battery), Portable 154
No. 315-Knight (Allied Radio Corp.) A10800 155
New Circuits in Modern Radio Receivers—No. 48 F. L. Sprayberry 156

F. M.

F.M. Service—Part I, Antenna Installation and Service Bertram M. Freed 157

SOUND

2 Speakers are Better Than 1 F. M. Dezettel 164
Construction Details of a Modern 10-Watt A.F. Amplifier 166
Sound Engineering—No. 21 Conducted by A. C. Shaney 168

TEST INSTRUMENTS

Emergency Repair of Test Instruments John Charles Banks 170
How to Build and Use a Practical Frequency Modulator Marion Amos 172

TELEVISION

Construction Details for a Practical Car-Television Receiver—Part I Wm. B. Still 175
Commercial Television Inaugurated July 1 176
Television Broadcast Stations—A Listing 177

ENGINEERING

Applications of the A.F. Test Oscillator 179

DEPARTMENTS, ETC.

Mailbag 131
The Radio Month in Review 138
Operating Notes 145
RADIO SERVICE DATA SHEETS (See Servicing) 154, 155
New Circuits in Modern Radio Receivers—No. 48 F. L. Sprayberry 156
Sound Engineering—No. 21 Conducted by A. C. Shaney 168
Latest Radio Apparatus 184
Classified Radio Directory—Section VI (Revised) 186
Shop Notes, Kinks, Circuits 191
Book Reviews 192

RADIO-CRAFT is published monthly, on the first of the month preceding that of date; subscription price is $2.50 per year to cover postage; Canada, 50c additional per year to cover postage; Canada, 50c additional.) Entered at the post office at Springfield as second-class matter under the act of March 3, 1879. All communications about subscriptions should be addressed to: Director of Circulation, 20 Vesey Street, New York, N. Y.

Foreign Agents:
Paris—Messageries Dawson, 4 Rue Feubourg, Poissonniere, France.
Melbourne—McGill’s Agency, 179 Elizabeth St., Australia.
Dunedin—James Johnston, Ltd., New Zealand.

Test and illustrations of this magazine are copyright and must not be reproduced without permission of the copyright owners.

Copyright 1941 Radcraft Publications, Inc.
SOUR GRAPES FOR THE RADIO MAN (?) BUCK

Dear Editor:

Bravo, Mr. Billard Moody! You have ably expressed the thoughts of the great majority of competent Servicemen after reading Mr. Buck’s masterpiece on alignment by guess and by gosh. In the words of a cleverer one than I, “I wouldn’t even ignore it!”

It honestly seemed to me that the whole affair was an attempt to vindicate to himself, his employer, and his fellow-employees, the ability to use it. Let’s ask one simple question of Mr. Buck: “What happens when you put a set out to run and find no signal through to make an image?”

Where would one start, without an oscillator? Moreover, the received signal from a broadcast station varies constantly in amplitude, and is obviously impossible to follow by ear as closely as the steady note of an oscillator. The only accurate way of aligning on a broadcast station would be with a V.T. voltmeter tied in the A.V.C. bus. Incidentally, my own pet alignment method is with both oscillator and V.T. voltmeter (a Voltamylth).

Granting, of course, the advisability of having the columns of our favorite (this) magazine open to all for controversial subjects, it nevertheless does seem that there should be some closer check on the technical side as well as the editorial side. Suppose that all articles and circuits submitted by other than recognized experts be turned over to a voluntary checking staff for actual trial before publication.

Surely there would be plenty of men each anxious to have a turn at trying out something new, and reporting the results. I’m sure you would find enough willing to serve without any recognition, and perhaps a very slight subsidy whenever some particularly expensive job came up. This would do away with the impression that there was too much to be accomplished for such a short time.

The article on sound which I most enjoyed in recent issues was "Independent Power Supplies" by Joel Julie (March, ’41). Now, there is the sort of article that is usable. Two of Mr. Julie’s circuits, however, have the same fatal error for general use, that is, the chassis must be connected to one side of the line. That is all right for small A.C./D.C. sets in wooden cabinets, well enclosed, with insulated knobs and recessed set-screws, but for an amplifier in an all-metal chassis exposed to the world... Uh, uh.

The solution is absurdly simple however—just use a bridge circuit such as the very ingenious one shown in Fig. 3 of Steve Kuznetzoff’s article in the January, ’41 issue, in which the line does not go to either side. Of course, in some cases it may be practicable to return all ground connections to a common point isolated from the metallic chassis except for a paper condenser, but this would usually be a terrific amount of work, in my opinion.

Congratulations on the splendid work you are doing, and keep it up. The above is of course too long-winded, but you may find some of it usable. Thanks again.

Yours truly
Mr. Buck gets a Signalyst,
Arthur Bertram, Jr.,
Southern Radio Co.,
Augusta, Ga.

On more than one point, an interesting letter. Whether that idea of a staff of double-checkers could be worked out... well... that’s a poser.—Editor

HOW BRITISH SERVICEMEN OPERATE

Dear Editor:

I read with great interest the letter by Vincent Gorrea in your Sept. 1940 issue. (Sorry I’m a bit late in writing, but I didn’t get the magazine until a month ago and have been too busy to write.) He complains of a lot of things which evidently happen to Servicemen in America, and I would like your readers to compare his 14 complaints with the conditions British Servicemen work under. You will have to refer back to the issue in question to compare the differences. Here goes:

(1) While Servicemen here do not dress as doctors, they do have organization certificates, and what is also a union.
(2) A charge is made for looking over the radio, whether it is repaired or not. Charge varies from 2/6 or 4/6 (65c to $1.10) approximately.
(3) All tubes tested by Servicemen are charged-for, usually 3 pence or about 6c; this is refund if the new tube is bought at the store.
(4) This question is answered by 1, 2 and 3.
(5) This is answered by 2.
(6) This does happen here occasionally, if the repair job is small.
(7) See No. 1 about Union of Servicemen.
(8) No radio magazines here ally themselves to any one branch of radio.
(9) Answered in No. 7.
(10) Answered in No. 7.
(11) A “locking over” charge is taken for granted here; nobody “kicks.”
(12) See above.
(13) Does not happen here.
(14) The same here.

I should like to print this because I should like to hear from a friend of mine in Center Moriches, New York. Let’s hear from you Van at my *new address if you see this.

G. Y. Burage,
Middlesex, England

We’ll forward correspondence.—EDITOR

ON RADIO PROGRAMS

Dear Editor:

As to the radio program advertising that Mr. Harold Davis of Jackson, Miss. (April R.-C.), is so bold as to express the opinion that at least we Servicemen in the smaller towns would be very glad to ease his pain. Seems that Mr. Davis has forgotten the fact that many a national movement has started in a very small way and is thus that this desire of his can be accomplished for there is many a Serviceman who would give his eyes-teeth to get ahold of some advertising that would improve his status with the public he serves.

Mr. Davis can think of my way of doing this than to run a daily listing of programs to be heard on the networks with the Service-man’s signature (byline) at the column head. To be one of the many stations will have to be provided for accurate compilation of these programs in advance of their time. As to the expense, some of it can be shared by the Serviceman, and his local position will kill the foreign rates. Then tube company or radio manufacturer could run a
MAILBAG

The Code-Practice Oscillator described on this page by M. J. Callaghan.

line or two for his part of the expense and if further reduction be necessary the newspaper could give an additional discount on the space consumed as it would be an additional feature for the newspaper's reader interest, and therefore other advertising would profit by its presence on the same page.

Let's keep this in the family however, and on a share-all basis, starting in the small towns where more competition exists between the Serviceman and his local paper. Recognition will soon be granted by the larger papers and such institutions in this district are already publishing this information gratis. Though such an indirect assistance is appreciated and helps the Serviceman as well as the rest of the radio industry, I believe the more direct method as suggested would do more people more good at less expense per unit.

MANNFORD BLACK, Henryetta, Okla.

P.S.—I take this means to advise you that any publication or other trouble will be unnecessary on your part in connection with a problem sent in by me to Mr. Shaney concerning an A.V.C. installation in an old Majestic 21. This has already been worked out by proud me, and my pride is quickly lost due to the fact that the answers are too easy once you know them.

Thank you very much for the Bass-Booster in the April issue and I for one will be very grateful for any further modernizing information you can publish. The money gained by such service-work amounts to little as compared to the confidence it builds in your customers!

M. B.

CODE-PRACTICE OSCILLATOR

Dear Editor:

Building the code-practice oscillator has always been something of a problem, and very often an awkward and expensive one.

However, recent tube developments have simplified all this to a great extent, and all the bulky batteries and "B" units of a few years ago are eliminated.

The highly efficient and simple unit described in this article utilizes only one tube, a type 11L7GT. This tube functions as an oscillator and rectifier, and as its heater operates directly off the 115-volt lines, either A.C. or D.C., all bulky and expensive power supplies and ballasts or resistance cords are eliminated.

This is a neat outfit for the beginner, amateur, or even the technician, and is ideal for school or camp, or any place where code is taught to groups of students, as the signal is clear and well-defined, and of ample volume.

The parts required are few and inexpensive and are of standard values, readily found on every experimenter's bench. The P.M. speaker is perhaps the only essential item of the kit, as a dynamic speaker no matter how small its field will not operate satisfactorily in this circuit.

In addition to the P.M. speaker, a midget universal output transformer; 2 resistors, one of 1,000 ohms, 2-watt rating, and one of 0.5-megohm, high size; two 8 mf. filter condensers; and one 500 mmf. bypass are required. Signal pitch may be determined to suit the listener's ear by substituting various condenser values across screen-grid and plate elements of the tube, or a switch arrangement may be worked out to change the tone from base to alto at will; however, for all practical purposes a 0.005-mf. or 0.006-mf. condenser, either paper or mica, will give excellent results.

The oscillator shown in the photograph was built on a base 5 x ¼ x 3 ins., and the key itself is wired permanently on the subpanel. The more experienced operator will want to use his key separately, and may therefore reduce the size of the chassis to the exact size of tie loudspeaker, and a simple jack to accommodate the key may be mounted on the chassis.

The physical layout is not at all critical and this unit may be constructed in any manner to suit the parts at hand, or the immediate convenience of the constructor.

The diagram is simple and self-explanatory and no difficulty should be encountered by anybody in its construction. Total cost should not exceed $3.50.

M. J. CALLAGHAN, New York, N. Y.

HEARING-AIDS AGAIN

Dear Editor:

Mr. Cisin's article in the March, 1941, issue of Radio-Craft, under "Hearing-Aids" might not be "A gem of stupidity," but it does prove that the best of minds "go native" when reputation is at stake. The articles in Radio-Craft, by the above author, have been interestingly educational and very well suited as answers to various problems that we would otherwise have to solve.

The design of a hearing-aid that will work successfully into any deafened ear is, at present, an impossibility, just because there is a lack of patience on the part of the designer, the technologist, and the manufacturer.

The ears of those who are in the class with Mr. Russell and myself (call us stone deaf, or deaf, "kinda hard of hearing or a little hard of hearing" are subject to so many different pains, noises and frequency discriminations that our reactions to sound cannot be predicted by anyone. Mr. Cisin makes the mistake of using himself as a subject. He does not consider the fact that his ears can stand more abuse, in the form of loud sounds, and that he can hear conversation without any equipment. We, who are not able to hear, can make a sensation of ability to rapidly piece together words with only vowels and a few hisses to work with.

I'm quite sure that Mr. Russell, like myself, would much rather hear the "watch tick a foot away" with Mr. Cisin's amplifier than slam all the sound engineers in America. The trouble is, if Mr. Russell, "Earl to H.B.C." could do that he would have ears like Mr. Cisin's. Much like the instructor who, in addressing his new class, opened with, "Will all those who cannot hear put up a hand." Mr. Cisin's test of his amplifier on normal ears, will be rather amusing even to himself, if he gets "it." He still has another laugh at his attempt at "leading himself astray" with his words on voltage amplification. A few attempts at making me shout, would not cause him to that it takes more than volts from his battery. There must be power consumed, even in Mr. Cisin's earpiece.

Mr. Russell's pet amplifier may not be modern as to "mike," earpiece, and size but it does have what its owner calls "it." Just what "it" is Mr. Russell has never told me yet. Foolproof engineering. The ability to automatically limit the input to the capacity of the output with an earpiece that can pass "volts or watts" when the magnetic lave. Mr. Russell has something simple in "limiters," guess what—the hiss in his carbon mike.

Mr. Cisin's test was on a weak watch tick, and he does not seem to remember that the same gain must be there for any sound that enters the microphone. There is no one "riding gain" to a hearing-aid for street cars, traffic cops' whistlers, and bosses who just dish it out as they feel, and the ear-aid must "take it."

The crystal mike is sensitive and quiet, but high-gain circuits are necessary and I have never yet seen a home-made amplifier that didn't whine, stutter, or break down for lack of shielding. This same sensitivity leads men like Mr. Cisin to put too much voltage amplification ahead of a small output tube that can deliver more voltage than crystal earpieces can handle.

New for a crack at those "Medical Makers" who have been lowering our ears with clocks and prescribing hot boracic acid baths one day and calling them dangerous the next—a few we were water logged. Doctors Ford, LeRoy and the mayonnaise farmers, are never the-less few and far between. We would hardly expect to find them "helping turns on" by possessing .0001% profit sales on glorified "Skinderwiken Buttons." No, even the Medical profession, as an organization, turned thumbs down on fitting hearing-aids in the Carbon-Ball Era. The American Medical Association has too many
skeletons in its own closet to risk protecting the deaf against the unfair practices of modern sales promotion and advertising. The television tube housing-aides are useful at times but the super-colossal performance is usually in the colorful folders, and I'm lest many a designer's face gets red when he happens to read one.

RALPH L. BROWN, Minneapolis, Minn.

P.S.—Would it be possible for you to forward the address of Mr. Russell mentioned in this letter, and if so, the name of J. G. Gear of Los Angeles who signs an article on page 536 of Radio-Craft for March, 1941? I have needed some like this but merely wish to correspond with men of like interests.

Sorry, we don't give out the addresses of contributors, but we've called your letter to the attention of those you mention, and have asked them to write directly to you.—Editor

HAS TROUBLE WITH OLSON'S SIGNAL TRACER UNIT

Dear Editor:

I have built your "Signal Tracer Test Unit" out of a Zenith and the radio section works perfectly but the R.F. section seems very weak. Will you answer some further questions for me? I am enclosing some sketches for ready reference.

According to July Radio-Craft, your diagram and list of parts do not seem to correspond. In the list of parts you list "Two IRC resistors, 60,000 ohms, 1/2-W. R1, R3" but in the diagram there are "three 60,000-ohm resistors used. Then the list of parts given show R10 for 400 ohms whereas W. R2." The diagram does not show any "R2." Also, R10 is given in the list of parts as 25,000 ohms and on the diagram as 0.8-meg. Which is correct? Are your grid leads to the 76 and 6D6 shielded? Must the R.F.-I.F. input lead be kept away from other parts as much as possible? What type of phone should you use and how sensitive are the ones you use?

The way my Tracer is now, I am unable to drive any but the highest attainable signal and I cannot use a signal-generator through the Tracer. If I cut the signal down from 1,000 to 100 or to 10 it will not come through at all.

HAROLD O. RENNER, Renner Radio Repair, Madison, S. Dak.

This letter was sent to the author whose reply follows.

Dear Mr. Renner:

I am more than pleased to answer your questions in regard to the Signal Tracer described in the July issue of Radio-Craft. You are right, the drawing and the parts list do not correspond. This error is due to typographical errors in the drawing. The parts list is correct. The cathode resistor for the 6D6 should be R2—400 ohms. This leaves only 2—60,000 ohm resistors required. Resister R10 should be 25,000 ohms as indicated in the list of Parts. Can you get the grid lead to the 76D is left unshielded. However it should be kept away from other parts. If coaxial cable is used for the R.F. lead it should be connected as close as possible to the 6D6 control-grid. The type 76 tube grid lead is shielded. The phones I use are 2,000 ohms.

Do not use a signal generator directly connected to this unit for testing. Hold the R.F. test probe on the grid or plate of the tube in the tube to be tested and tune the radio set for a signal. Due to the capacity the instrument will detune the stage under test. In R.F. stages there will be very little difference; in R.F. stages the detuning will be considerable.

After a little experimenting you will learn what to expect from the instrument. I have found mine very useful.

If you have any further difficulties do not hesitate to write to me.

R. B. OLSON, Rockford, Ill.

LICENSE SERVICEMEN?

Dear Editor:

Upon reading the open letter in Radio-Craft magazine of June, 1941—an article written by Mr. James H. Hanley which states that Servicemen be licensed by the government, so that the industry could be cleaned up and it would have finer technicians to do the work—may I say that I have an unlicensed electrician for many years, and have been experimenting with radio since 1918, but could not earn enough money to make a living in the radio industry. I took a post-graduate course in radio, television and refrigeration, and have been doing radio, electrical and refrigeration service.

As an electrician, I made a fine living under union conditions only, but this too, was badly handled in union organizations, because it is still not under the supervision of the government. However, as licensed electricians only, they try to compete with each other and starve to death.

I was watching several radio men trying to repair a radio receiver for about an hour, and charging as little as 60¢ for their services.

I would suggest that radio technicians be licensed by the government and join in a union under the supervision of the government. This would be the only cure for the radio-technical man. Under the government both departments would do the best for its members.

SAMUEL STERN, Stern Bros., New York, N. Y.

P.S.—You can have this letter open for discussion, for the benefit of "R.C.T." readers.

S. S.

THANKS TO A. C. SHANEY

Dear Mr. Shaney:

I am writing to thank you for your interest in the radio work of my son, Jerome Fowler, who is a patient in the State Hospital.

Before his illness began he was more interested in radio than in anything else. For a good while after his illness he seemed to have lost that interest. Now it has come back; he is so anxious to get a set with phones so that he can listen-in to just what he wants. He has in mind also to get something that will make it possible for all the other patients to have the same kind of radio.

It would mean so much to all of them, if it could be worked out.

With best wishes, I am

LUTHER FOWLER, Columbia, Ala.

Jerome Fowler's problem was discussed in the Sound Engineering Dept. of Radio-Craft, July 1941, Puge 28. Have any of your readers any other ideas on "Hospital Sound" they'd like to pass along to Jerome?

RADIO-CRAFT DIAGNOSED

Dear Editor:

I enjoy your publication although I feel that the scope of the articles is in not as broad as could be desired. Too many of them are elementary, or deal with subjects familiar or old. Construction articles, generally are too simple to be of general inter-

RADIO TRAINING

Established in 1909

PORT ARTHUR COLLEGE, a non-profit educational institution, offers a practical radio operator course at the lowest tuition price in history. Each radio graduate receives a 2-months actual operating experience at the college's commercial broadcasting station KPAC. This station is equipped with the latest high fidelity studios, and a complete set of transmitting facilities.

A great many colleges offer a course for student radio operators, but it is impossible to supply everything. Authorized to teach RCA tests. If interested, write for Bulletin 411.

PORT ARTHUR COLLEGE
PORT ARTHUR (World-Known Port) TEXAS

EASY — SIMPLIFIED — PRACTICAL

Here is a book for the beginner who wants to learn electrical and radio fundamentals. No diagrams, no equations, no mathematics. Well written in clear, positive and definite language, the author combines the maximum of educational value with the minimum of technical jargon. Perfect for the beginner, it will also help the student or the man who wants to achieve practical and durable know-how in radio.

Eastern Chapter on Special Mathemataics for the Radio Technician

CONTENTS OF BOOK

Chapter 1. Arithmetic—Addition—Subtraction—Multiplication—Division
Chapter 2. Fractions—Decimals—Percentage—Ratio and Proportion
Chapter 3. The Magnetic Scale
Chapter 4. How to Measure Surfaces and Capacitance
Chapter 5. Mathematics

Addenda: Wires and Insulation—Boots and Socks

Only

50c

POSTPAID

CHAPIN, W., Wiltzle and Schoben

Send check, cash or money order.

"Elementary Mathematics for the Radio Technician"

TECHNIFAX

1917 S. State St., RC-941, Chicago, ill.

ELECTRICAL ENGINEERING
every FRIDAY Night—Present Scientifically

RADIO ENGINEERING

Exciting talk given by Dr. William G. P. Bean. Every Monday except holidays.

FREE

Grif copies of radio catalogues, manuals and similar items on the Radio and Electronic Equipment field.

LINDON COLLEGE SCHOOL, 401-423 LINCOLN N Burr.

www.americanradiohistory.com
Another thing I'd like to point out is that a customer appreciates good radio service. One amusing incident, which was also profitable, happened not so long ago: I was on a week-end vacation several miles from home during the last election when Mrs. Mabel Whittacker Housemaster of Williams Hamilton (a girls' school), who lived next door where I was staying, came rushing across the connecting lawn between the two homes. Although I had never met Mrs. Mabel Whittacker, etc., she came directly to the company truck in which I was sitting and introduced herself. She explained that her radio was not working and since it was vital that she heard the election returns, asked whether I wouldn't please repair the set.

After I entered the spacious living room where the antique battery set was, I immediately set to work and soon located the trouble. Evidently the Serviceman, who had hooked the "B" batteries to the filaments of the tubes and failed to check the set before putting it away. It was an inexcusable stunt, but I tried to do the best I could and explained that all the tubes were burned out. I noticed that the house was recently rewired and suggested that inasmuch as I didn't carry a complete set of tubes with me, that I lend her a

HOW THE MAILBAG GROWS!

By leaps and bounds—from 2 columns to 2 columns—the Mailbag Department just keeps growing. And it's a good, healthy sign, too. I'm sure the indication is that the family of Radio-Craft readers are taking an increasingly large interest in their magazine. This is the only way that Radio-Craft can continue to improve!

Keep up the good work fellers! Also, let's hear from those who merely run across the Department—those silent members of our family. This is the one place in the magazine where you can write and say your say—freely—and don't mince any words!

Speak Up Brothers and Ye Shall Be Heard!

MAIL

To: Too little space is devoted to high-grade, all-wave receivers.

To me, it seems you cater too much to the beginner. I'm a radio Serviceman, and I find that a large percentage of your readers are men old in the trade, who would prefer articles dealing with design and research. No popular publication, so far as I know, has ever given its Servicemen comprehensive articles covering the problems encountered in developing new or specialized equipment or parts. I'm sure others would find these as interesting as I would.

Having been active in the trade for over 20 years, many of the problems confronting Servicemen daily could be made less forbidding if these men had even a slight knowledge of design principles and operating conditions from the mathematical viewpoint.

I know hundreds of Servicemen who have difficulty handling Ohm's Law. Anything more complex than this leaves them gasping. A series of articles dealing with this subject, that is, teaching rudimentary math, and giving very simple formulas for a working knowledge of the parts and circuits themselves would undoubtedly be greeted with open arms and receptive minds. For I know many, many, many, of these Servicemen, who are finding X or Xe and then placing either in relation to the capacitor or inductor under observation is something better left to the engineers. Likewise, for any formulas other than Ohm's Law. Very few men, I'm afraid, if confronted with the necessity of designing, say, an I.F. transformer, would know how to proceed. Yet there are many, many, times when an exact replacement is not immediately available; here, by knowing how, a coil could be constructed which would serve as well as the original. Even better in some instances.

Why not your readers for their opinion on this subject? I'm sure the response will be surprising.

A. P. LAUNBAG, Michigan City, Indiana.

Well, readers, there you have it. What do you say? You articles on coils, the monthly check-up on audio circuit designs, Shaney's analyses of new developments in audio circuits—how else would Servicemen treated what else would you like to see in your Radio-Craft—Editor?

Servicemen Make Good Salesmen

Dear Editor:

Someone said not so long ago, "Every one must have the ability to sell in order to live." To my mind, nothing truer could be said. Let's assume that you are a lawyer. You must sell your services to the public, in the same way as a dealer in refrigeration and "Radio" sells his merchandise to the public.

In bygone days Servicemen of radios, refrigerators, other appliances, and what not hung out their shingles for serving only. Little did they realize, as they do today, that many sales come from service. When a radio Serviceman, for instance, sets up a business of his own today, he not only repairs "radios," but he also sells them. He knows, from the radio set beyond the repairing stage, this same customer becomes a prospect for a new radio receiver, and through the sale of a radio set, many other appliances are sold to the customer.

Since I have been the radio Serviceman for the oldest radio and appliance store in the city in which I live, I have been able to make sales which otherwise would have been very difficult for anyone other than a Serviceman to make.

D. M. LINTON, Bakerstown, Pa.

Articulates on Radio Mathematics

Dear Editor:

I would like to make a suggestion regarding a series of articles I would like to see published. There are a great many of us who can fix a radio set but are entirely lost when it comes to the higher mathematical problems involved in problems of radio design. We can't all become expert designers but I feel sure that hundreds of your Servicemen- readers are also experts in other fields and would be interested in a series of educational articles involving radio mathematics. Will you ask for comments?

I have noted some controversy in the "Mailbag" about a suggestion to license Servicemen. I think an examination for Servicemen would be a good thing as a protection to the public from tinkers who know nothing about a radio receiver but are afraid to say they don't (and charge like they do). I have run across some of this in my community and it makes it tough for the real radio man. Licensing could be divided into several classes so that it would in- spire the beginner to continue his study. However it should not include a large fee which would tend to crowd out the small Serviceman and the part-time man. I fall into the latter class simply because I have not yet developed my business to the point where it can pay. There are many others like myself who are searching for a steady job in radio and who would benefit from their chosen pro- fession simply because their love of radio will require them to work elsewhere than in radio part of the time. They are not all "amateurs" as they have been called and I feel the radio service profession should continue to hold a place for them.

Harold Eisenbeis, Lenark, Ill.

P.S.—In addition I want to compliment www.americanradiohistory.com
MOODY vs. PACE

Dear Editor:
I wish to correct an apparent misunderstanding which Mr. Pace expresses in your columns of July Radio Craft.

The point I want to make is that a Serviceman should have all of the education he may possibly be fortunate enough to get; no more than a grammar school education, plus some special study in algebra and trigonometry, as well as radio theory, will enable him to understand servicing and do a good job.

I am interested in keeping out of radio some of the men who—and I know from first-hand experience—can't write their name so that you can read it without effort. Mr. Pace, a high school grad, is above average. There are some college men in radio who don't know a capacitor from a condenser, and charge for an overhaul on the same basis as a Doctor charges for a physical check-up, instead of charging 15c for a condenser, and 50c for labor, etc., I believe we would all make a comfortable living.

Mr. Gernsback certainly had an important message (May 1941).—Editor

Servicemen render many important jobs. Perhaps it will be a better idea to try for legislation to get radio some definite status, such as that enjoyed by licensed radio operators who take examinations to prove knowledge and ability.

WILLARD MOODY,
New York, N. Y.

AGREES WITH EDITOR

Dear Editor:
I agree with you, Mr. Editor, when in the article by Mr. J. Vette of Colorado you asked: Why not sell 'em the new set?
I had quite a good laugh, because all old sets of any value had good bass response, and without that, we can buy for $3 apiece. Why build a $10 bass control?

W. F. ONDER,
Kinnimock, Mo.

Mr. Vette's letter appeared in April Radio-Craft, Page 630.—Editor

ALIGNMENT BUG

Dear Editor:
You will notice from the Operating Notes I enclose, (published in a previous issue—Ed.) that I am a bug on alignment. I have a good reason to be. I have had some sets on my bench that had already been serviced unsuccessfully by my competitors, and a careful check on the alignment has straightened them out. They seem to think that as long as the set plays fairly well, the alignment is OK.

To my surprise, incidently, I have had over a dozen requests from different parts of the country for constructional information on my Amplifier, as it appeared in my shop photo, in “R.-C.” for April, 1941. I do not feel like making a dozen or so drawings of it, but if you care to publish a description and a schematic of it, I will be glad to draw it out and send you a close-up photo of it also.

Congratulations on the article in May Radio-Craft for September, 1941.

—R.-C. on Audio Amplifiers, by Ted Ladd, I was looking for something like that. How will you put ‘em up?—Russell in the ring, 16 rounds to a decision? Hi! All jokin' aside, I read every word of their articles, and am soaking-up all the information from them that I can digest. I want to build one for myself, as I have about 75% loss of hearing, and I lose a lot of business from it. Correct, Mr. Russell, give us a chance to soak the M.D. for "Professional Services Rendered," in fitting them up with a hearing-aid.

Personally, I believe the Radio Servicing Profession should be elevated to a higher plane—for the good of all.

If we would all conduct ourselves as Technicians, keep our shops as clean and businesslike as an M.D.'s office, and charge for an overhaul on the same basis as a Doctor charges for a physical check-up, instead of charging 15c for a condenser, and 50c for labor, etc., I believe we would all make a comfortable living.

Mr. Gernsback certainly had an important message (May 1941).—Editor

AGREES

Servicemen render many important jobs. Perhaps it will be a better idea to try for legislation to get radio some definite status, such as that enjoyed by licensed radio operators who take examinations to prove knowledge and ability.

WILLARD MOODY,
New York, N. Y.

THANKS

Thanks very much for your opinion that Radio-Craft is the leading radio magazine "today." Every vote counts. As to "tomorrow"—well, we'll be in there battling—an occasional homer, we hope.—Editor

SHANEY'S ARTICLES OK

Dear Editor:
I have built Mr. Shaney's 23-Watt High-Fidelity Amplifier as described in March, 1940, Radio-Craft. The results were highly satisfactory.

Until recently I was using crystal microphones, which gave me plenty of gain. I recently purchased a Hi-Fi velocity and I find that the amplifier could use a bit more gain, especially on dialogue and solo musical instruments.

How about publishing a schematic diagram of a Hi-Fi preamplifier with high-impedance input and high-impedance output, to be used as a separate unit, but in conjunction with this amplifier?

The following phrase is probably old stuff to you, but I have a great deal from Mr. Shaney, and the other features of Radio-Craft. Keep it up.

ALEXANDER NADEL,
Astoria, L. I.

The amplifier you mention of course was not designed for the typical home phonophone you now desire to use. However a number of high-gain input stages have been described in past issues of Radio-Craft and may be now well equipped. Excellent readers of Practical Home Schools Radio course who have bought a few of the 3 high-gain input channels shown in Fig. 1, Page 531 of the March issue from which you built the 23-watt job.—Editor

MAILBAG

MAKING A QUICK DEMO

Editor

For the benefit of your readers who may be interested in the various kinds of Demo's that are made, the following may be of interest:

1. Short Wave Radio: This kind of Demo is made for those who are interested in the reception of the many stations that can be received on this kind of equipment. The Demo is made up of a small box which contains the necessary parts to make a quick and easy assembly. The box is made of wood and the parts are purchased from the local radio supply house.

2. AM/FM Radio: This kind of Demo is made for those who are interested in the reception of both AM and FM stations. The Demo is made up of a small box which contains the necessary parts to make a quick and easy assembly. The box is made of wood and the parts are purchased from the local radio supply house.

3. TV Receiver: This kind of Demo is made for those who are interested in the reception of television signals. The Demo is made up of a small box which contains the necessary parts to make a quick and easy assembly. The box is made of wood and the parts are purchased from the local radio supply house.

4. Computer: This kind of Demo is made for those who are interested in the use of computers in their work. The Demo is made up of a small box which contains the necessary parts to make a quick and easy assembly. The box is made of wood and the parts are purchased from the local radio supply house.

I hope this information is of some interest to your readers.

Sincerely,

[Signature]

Address:

Radio Institute

COMMERICAL RADIO INSTITUTE

Dept. D, 38 East Biddle Street, Baltimore, Md.

RADIO COURSES

Start September

RADIO OPERATING—BROADCASTING
RADIO ENGINEERING—a practical course
RADIO AMATEUR CODE
TELEVISION

MAILBAG

Are You The Man For The Job?

Every radioamateur has the opportunity today to advance himself to a better radio job. With widespread expansion programs comes a need for men with modern training. GHSI home study training is the proven way to more skill and advancement. WRITE FOR FREE BOOKLET CAPITOL RADIO ENGINEERING INSTITUTE. Dept. RC-9, 2224 16th St. N.W. Washington, D.C.
Order your copy NOW—the only P.A. HANDBOOK

AMPLIFIER HANDBOOK
AND PUBLIC ADDRESS GUIDE

A MATCHLESS VOLUME
As complete as you would expect to find any engineer-
ing handbook to your own home or P.A. man
and how the AMPLIFIER HANDBOOK AND PUBLIC AD-
doing. With special emphasis on the latest amplifiers,
and circuits. This handbook is published in the
and public address system. This handbook is

CONTENTS
To include: Amplifiers, microphone systems, micro-

Order Your Copy NOW—
Clip Coupon and
Mail Today!

(6) DIGITAL
(6) LITERATURE
(6) P.A.
(6) PUBLIC
(6) ADDRESS
(6) GUIDE
(6) VOLUME
(6) AMPLIFIERS
(6) PUBLIC
(6) ADDRESS
(6) GUIDE
(6) P.A.
(6) HANDBOOK
(6) PUBLIC
(6) ADDRESS
(6) GUIDE
(6) PUBLIC
(6) ADDRESS
(6) GUID

Chambers of Commerce the liaison between consumers and honest radio Servicemen?

F

OR over 10 years now Radio-Craft editorially and otherwise has preached the sermon that the radio servicing business is what it is due mainly to the fact that a large percentage of the radio serviceemen are taking advantage of their customers, but in many cases are downright dishonest. We have spoken a number of times of the fact that it is the dishonest Serviceman who gives a black eye to the entire servicing trade—all to no avail. As time went on the situation instead of improving steadily became worse. It has become so bad that the largest-circulation magazine in this country, Readers Digest, with over 3,000,000 readers a month in the United States, in a series article entitled The Radio Repairman Will Gyp You If You Don't Watch Out.

Readers Digest took upon itself to send two investigators across the country in order to investigate radio repairmen. It may be said that they did a thorough and comprehensive job, the results of which, we are sorry to admit, show up the radio servicing industry in its worst light.

The two investigators used a very simple system. Traveling from one end of the country to the other, they had with them brand-new portable radio sets of two nationally-known makes, the sets being in flawless condition. Wherever they stopped they first unsnapped one of the wires inside of the set which are generally connected by means of snap-fasteners, or they pulled up a tube so it did not make contact. The set was then closed and presented to the radio repairman. The results make interesting reading not only for the layman but particularly for the Radio Industry.

The investigators visited 304 radio repair shops and found that 64 out of 100 cheated. It is significant to note that in localities under 10,000 population only 51% were dishonest, but in the larger centers 66% were found to be dishonest. In New York and its metropolitan area the tremendous dishonesty proportion of 17 out of 19 downtown shops that lied and cheated was recorded. The first 36 shops visited in eastern towns sold the investigators 32 new sets when, as a matter of fact, not a single tube was needed—all the tubes in the investigators' sets being brand new and perfect!

The article goes extensively into the entire situation and gives not only facts and figures, but case records in various cities. A particularly flagrant case was reported from Lincoln, Illinois. A repairman demanded $23.36 for a burned-out tube which did not exist. He tested the investigators' tube but by manipulation of his testing board made it appear that the tube was short-circuited. The investigator told the repairman that he thought the tube was all right and proved it by putting it right back into the set, which played perfectly. Nevertheless, the Serviceman had the effrontery to ask for a $1.00 service charge. The investigator came back with "What service? For telling me my good tube was blown?"

At this the repairman got angry, rushed at the investigator and landed a terrific kick on his thigh.

The investigators had a grand time catching the dishonest repairman red-handed. They used a simple system in doing this. Practically all standard tubes are marked, "Made in U.S.A." By scratching off the periods of the "U.S.A." this then appeared as "U.S." Thus was possible to spot the dishonest repairman who charged for new tubes when they had not even changed any. Frequently they took out the set's new tubes and installed inferior kinds; at other times they deliberately burned-out the tubes in fictitious "tests."

All of this of course is news to the radio service trade. There are hundreds of tricks as to how a radio-set owner can be tricked and cheated by so Servicemen—even the honest one; now we know what these tricks are because they are well-known throughout the trade.

What we have always feared now has become a fact. When the largest and most widely-distributed magazine in the United States shows up the radio servicing trade in such an unfavorable light, and when every radio-set owner who has read the article will tell those who have not read it, it is quite certain the radio servicing from now on will no longer be a picnic.

"Let the Buyer Beware"—will now be the watch-word of every radio-set owner with few exceptions.

This is most unfortunate because with a little sense the Industry could easily have policed itself, but now it seems it will have to pay dearly for it.

The investigators of the Readers Digest, as a remedy for the situation recommend that the chamber house for the radio-set owner, if he does not wish to be cheated, is to acquire an elementary knowledge of how a radio set works. This we do not believe is the answer, because too few people will take the trouble to study radio just because they own a set and even if they did, they still might not be able to master the rudiments of radio. Another piece of advice given by the investigators is to seek the advice of a friendly radio repairman and there is good sense in this recommendation, but we do not believe that the radio manufacturers will or can do this. The main reason is the great expense involved. Of course, it could be done if all of the radio-set manufacturers were to form an association which would pay for the expenses of traveling investigators, who would visit radio repair shops constantly year in and year out. This could be done at an expense not too great for the individual radio manufacturer, but frankly we doubt if the radio set makers as a body will ever do it. In the past it has been found that it is difficult for radio manufacturers to get together on a cooperative plan of this type and scope. The main reason why they would block the attempt would probably be suspicion that investigators would pull wires playing one manufacturer against another.

To our mind a much simpler and better way in rehabilitating the radio servicing industry would be the following:

Practically every locality of any size has a Chamber of Commerce. It could send out investigators from time to time and find out quickly who is honest and who is not. The Chamber of Commerce usually has enough power through the Mayor's office or through the Police Department to publicly black-list any dishonest repairman or servicing firm.

The point however is that this might never come about if every Serviceman in town knew that the Chamber of Commerce was making frequent investigations. Few Servicemen and few service firms would ever be black-listed. They would all reform so fast and they would change their methods of doing business so radically that it would not take much time to lift this pall which hovers over every community. To be sure it would require eternal vigilance, but it would pay every Chamber of Commerce to do the investigating, which after all is not expensive for a locality. There is no question that the members of the Chamber of Commerce and the honest Serviceman would be only too happy to support such a movement, because it would benefit everyone. Incidentally, in the long run, the entire servicing industry would profit, while at present no one benefits, chiefly because of so many customers who have been burned in the past.

By the Editor — HUGO GERNSBACK
The "radio news" paper for busy radio men. An illustrated digest of the important happenings of the month in every branch of the radio field.

BROADCASTING

Two interesting items headlined the first page of an issue of Broadcasting and Broadcast Advertising magazine, last month. One: "M-Day Plans Place Radio in Vital Role", the other: "WLW Seeks to Use 650 k.w.; KSL and WSM Ask 500 k.w." The former item disclosed that radio's plans for Mobilization Day—the moment the United States becomes a belligerent in the 2nd World War—call for little change from present operation of broadcast networks, but do provide for creation of a new post, to assure that plans of the Army, Navy and the Defense Communications Board will be met, viz.: Coordinator of Communications. The second item discloses that superpower station WLW, Cincinnati, which the F.C.C. some time ago compelled to take 450 k.w. of its original 500 k.w. off the air during regular broadcast hours, has asked permission to return to the air, during regular broadcast hours, with 650 k.w., and has in fact been on the air experimentally, using the call W8XO, during the morning hours between midnight and 6 A.M., with the rated maximum capacity of the station, 750,000 watts. The Salt Lake City and Nashville stations, also now 50 kilowatts, are content to up their output only 10 times.

Radio Broadcasting awoke one day last month to learn that one of the alphabetical departments of the Government had included it among 26 industries placed on a limited priority basis. This move by O.P.A. does not mean that manufacturers will be able to get, for example, aluminum. It does mean however that the Office of Price Administration and Civilian Supply has made it possible for manufacturers to obtain deliveries of other materials for which shortages are less acute. Television and Frequency Modulation, until now in the doldrums for want of sufficient supplies to assure delivery of transmitters and receivers, can now get rolling.

The letter V—3 dots and a dash (- - -) of the Continental and American Morse telegraph codex, last month became inter-medium prominent when British leaders of "underground" activities against the Nazis adopted it in a new "V for Victory" campaign. Letter symbol or its dot-dash equivalent sprang up magically, in Nazi-occupied territories, in thousands of unexpected places and hundreds of different forms, including theinking of horns, etc.

The C.B.S. network last month garnered the University of Georgia's annual "Peabody Award," given for "outstanding meritorious public service." Congrats, C.B.S.

Emerson Radio Corp. last month announced that redesign of its radio set line reduced its aluminum requirements 90%.

Station WQXR, only Metropolitan New York-area station of the 4 high-fidelity stations in the United States, last month received the F.C.C.'s blessings on doubling its power to 10 k.w., and going full-time (7 A.M., to midnight, weekdays; 8:30 to midnight, Sundays).

Now that WOR is on the air 24 hours a day, 7 days a week, house radio sets at the Waldorf Astoria in New York City are not shut off at 2 A.M., but remain in service around the clock, day and night. The F.C.C. has recognized that the accelerated Defense Program has resulted in several million Americans radically changing their schedules of work, sleep and play.

Credit station WHO, Des Moines, Iowa, with having made to radio broadcasting the most outstanding contribution since the advent of Wide-Band Frequency Modulation. The F.C.C. last month gave the station permission to air its 150,000-watt "Polyphase Transmitter." Hailed as a "new method of transmission," like F.M. it is old in principle; what new "angles" it may have, like wide-band F.M., we have yet to find out. A total of 5 antennas are fed by the transmitter; the home radio set perceives the change in transmission only as increased signal strength, and reduced fading and distortion. The station saves 65% in power; no change in existing receivers is required.

ELECTRONICS

Fluorescent lighting, the new activity for many radio servicemen and servicemen-dealers, has rated an entire new building by Hygrade Sylvania Corp. Estimated cost is $600,000 for 100,000 sq. ft. The new building is being erected in Danvers, Mass.

In the NBC Network program "Radio Magic," Dr. Orestes H. Caldwell last month described how "black light" may soon aid American defense if we apply recent developments in England. Curbstones, for example, if painted with fluorescent powder will luminesce when irradiated with invisible
TELEVISION FINDER

This device when fastened to the television camera provides an accurate view finder which in effect "monitors" the scene being scanned by the camera. The camera man therefore knows precisely what he is passing on to his seeing audience. The illustration shows the electronic view finder with cover removed to show the working details. Note particularly the S-in.-squared type of cathode-ray tube used in this new development by Allen B. Du Mont Labs, Fossace, N.J.

ultra-violet beams from automobiles, buses, etc. This soft light is ideal illumination during blackouts.

Uncle Sam can use YOU—if you are an electronic music specialist. Army camps throughout the United States will soon be equipped with one of the 555 electronic organs ordered from Hammond Instrument Company by the U. S. War Department. Their reverberation control unit (see June, 1940, Radio-Craft), offsets the sound-absorbing characteristics of the Army chapels.

TELEVISION

FIRST rate card to be issued in the history of Television was released last month by the National Broadcasting Co., which means that "telly" has really gone commercial. The per-hour rate for regular evening broadcasts on weekdays, over WNBT, is $120. "Service" spots for televised news, weather, time, etc., is $8 per minute, nighttime; $4, daytime. Use of the mobile transmitter on "remotes" rates $75 more per hour; studio facilities are charged-for at rates of $75 (small studio) and $160 (main studio in Radio City). Production costs involving talent, effects men, musicians, etc., are billed extra. The regular television service at present runs 15 or more hours per week, with several advertisers now lined-up.

Zenith Radio Corp., in its Annual Report to stockholders last month, announced that it not only is continuing its black/white experimental television transmissins but, defense work permitting, plans soon to air a color television system developed by its engineers.

Sample of a complete television program over WNBT one week last month (with test pattern shown for an hour before each afternoon and evening broadcast):

Mon., 9:00 P.M., WNBT mobile unit pick-up of amateur boxing from Jamaica Arena.
Tues., 2:30 P.M., film "Condemned to Live"; 9:00 P.M., film of glider meet in progress at Elmira, N. Y.; The Revuers, vaudeville artists; 10:00 P.M., News.
Wed., 2:30 P.M., "Columbus," a "Chronicles of America" film; 9:00 P.M., "Stars of Tomorrow," variety show Carveth Wells, commentator, with film, "Bermuda, America's Sentinel in the Atlantic"; 10:00 P.M., News.
Thurs., 2:30 P.M., Water Circus at Astoria Pool; 9:00 P.M., film, "Easy Money"; 10:00 P.M., News.
Fri., 2:30 P.M., Baseball, Dodgers vs. Cincinnati, at Ebbets Field, Bill Collings, sports announcer; 9:00 P.M., "Minuet," dramatic sketch by Louis Parker, with Ned Weaver and Helen Claire; 10:00 P.M., News.
Sat., 2:30 P.M., Metropolitan A.A.U. basketball at Manhattan Beach.

DYNAMIC PICKUP

From Britain comes this fully-developed electrodynamic phono pickup fitted with a vertical sapphire needle. Its moving-coil winding is long and narrow, giving an extremely low moment of inertia which, coupled with the low downward pressure (about 3/4-ounce), insures minimum sapphire wear. It was designed by P. A. H. Vought, well-known British acoustics specialist.

RADIO-CRAFT for SEPTEMBER, 1941

MOSCOW—NEW YORK RADIOPHOTO

Successful reception of the first radio pictures from Moscow has inspired engineers of RCA Communications, Inc., to continue with the tests, the outcome of which, it is hoped, will lead to the establishment of a regular commercial radio-photo service between the United States and Russia—a circuit of 4,415 miles. Illustrated is one of the first photos received. The Russian caption reads: "This crew during one of the enemy air raids brought down 3 German planes."

The photo below shows the receiving equipment. Incoming radio impulses modulate a pen-point of light, which reproduces on a negative in a light-dark box, each line of the transmitted image. In 30 minutes a negative developed and ready for printing is completed. The pictures from Moscow, 4,415 miles away, are received at "Radio Center," Riverhead, L. I., and relayed to 66 Broad St., N. Y. C., where the machine shown below is located.

Receiving end of the Moscow-New York radio-photo experiments. The pictures from Moscow are received at "Radio Center," Riverhead, L. I., and relayed to 66 Broad St., N. Y. C., where the machine shown above is located. Its picture cylinder turns at exactly the same rate as the one in the U.S.S.R.
SIMPLIFIED SET CONVERSION

Such perennial questions as "How can I rewire my A.C. radio set for operation on D.C.?" (or vice-versa, as the case may be), "...on 32 volts?", "...on A.C. and/or D.C.?, "...on batteries?", etc., are answered by Mr. Kusen, who finds conversion jobs an additional source of income for his Metropolitan New York service shop.

STEVE KUSEN

The author who has talked with many men in the radio service field finds that in many cases converting radio sets from alternating current to direct current, or vice versa, puzzles them most. In the following article, the author will show some short-cuts on how to convert such receivers.

In order to condense this article as much as possible the author will divide it into 6 sections:

(1) Things You Ought to Know Before You Start Converting Radio Receivers;

(2) How to Change Direct Current Sets to Work Universally;

(3) How to Change Alternating Current Radio Sets to Work on Direct Current;

(4) Special Circuits and Short-Cuts;

(5) Converting Battery Radio Sets to Work on Universal Current; and,

Things You Ought to Know Before You Start Converting Radio Receivers.—In order to know how to convert a radio set we must first acquaint ourselves with the fact that all radio sets require direct current (D.C.) on the plates, anode, and grid electrodes of the tubes, in order to operate properly. We must know that a filament tube is usually found to require D.C. to heat its cathode (electron emitter), whereas the heater-type tube can use either D.C. or A.C. to heat its cathode. The reason for this is, because in the heater-type tubes, the filament, which is separate from the cathode, is used only to heat the cathode (thus it gets its name "heater"), whereas in the filament-type tube, the filament is the cathode and only in cases where the filament is very thick will it be able to operate on A.C. properly.

The cathode of a tube is the electrode which emits electrons to the plate and since the plate has a plus voltage on it, the cathode must have a minus voltage on it in order that the circuit be completed. Should the voltage on the cathode vary, this will cause a variation in the current flowing to the plate so whenever a filament-type tube is used on A.C., we will always find that the negative side of the plate circuit connects to a nodal point in the cathode (filament); this is obtained by connecting a center-tap resistor between the 2 legs of a filament and connecting the negative side of the plate to the center-tap. We must also remember that a transformer will not operate on D.C. It must also be remembered that the field coil on the speaker also requires a direct current to energize it.

(2) How to Change Direct-Current Sets to Work Universally.—In Fig. 1A, you see a diagram of a typical direct-current set using filament-type tubes. In this set we have to rectify and filter all the voltage and current being drawn by the set if we want it to operate properly on alternating current (or change the tubes and rewire the set).
At B we see a very simple and inexpensive unit which will make any D.C. radio set drawing 600 milliamperes or less (90 watts on the voltage, D.C.), operate properly universally, with no trace of hum. We can readily see that should more current be needed, we can easily add more rectifier tubes and condensers; we might also have to change the choke or put 2 chokes in parallel (this depends on the current drain of set).

Some readers might think that due to the high current drawn there will be a high voltage drop in the tubes but this is not so. In fact the more tubes put in parallel the less will be the voltage drop in the tubes because (considering the tube as a resistance) the ratio the number of "resistances" (tubes) in parallel smaller the total resistance of the circuit.

To attach this unit to the radio set disconnect the wires from the main switch, short-circuiting them, and tape them up; in their place we connect the switch wires from the rectifying unit. We then plug the set into the unit and plug the unit into an A.C. or D.C. power outlet, and the set is ready to operate. Note that the reason that only a switch in the unit is needed is because the set draws no current until the tubes in the unit are heated.

Since the filament of the tubes draw 75% of the current flowing into the set, we can thus easily see that by substituting tubes whose filaments will work on A.C. or D.C. we would then only have to rectify 25% of the current flowing into the set and thus be able to use a smaller power supply. But changing the tubes would call for a rewiring of the set (mainly filament and grid-bias voltages). As a Serviceman's main idea is to do a good job as fast as possible and make a large profit I find that the unit described in Fig. 1B will do the job best.

Many times we come across a D.C. set which has heater tubes. Now in sets like these which draw 60 watts or less, it is suggested the unit described in Fig. 1B be used, but should the set draw more power in watts then it is suggested that a rectifying circuit be inserted in the "B" line and the bias circuits be changed accordingly. Note: This is only possible if heater-type tubes are used in the set.

At A in Fig. 2 we see a typical D.C. set using heater-type tubes. Note that the bias for the set tube is obtained from a tap in the filament circuit (then note the change in Fig. 2B). In Fig. 2B we see the set shown in Fig. 2A changed to work universally.

In Figs. 2C and 2D we see how a voltage doubler or a voltage quadrupler can be connected so as to give the tubes a higher plate voltage thereby operating the tubes at their maximum efficiency. Note that, in Fig. 2D, the speaker field is connected in series with the load. This is because we have more voltage here than we need and make good use of it by dissipating it across the speaker. Also note that on D.C. sets which have their speaker field in series with the heaters we have to change the speaker for one with a higher value of field resistance to connect it as shown in Figs. 2B, 2C, or 2D.

(3) How to Change Alternating-Current Sets to Work on Direct Current.—In Fig. 3A, we see in the set a typical alternating-current radio receiver using filament-type tubes. Now we know that a transformer or rectifier will not work on D.C. We also know that any tube that operates on A.C. will operate on D.C. so all we have to do is eliminate the transformer and rewire the set so that tube with be able to draw current from a 115-volt D.C. supply.

In Fig. 3B, we see the circuit in Fig. 3A, rewired so as to operate on D.C. Note that the bias for the output tube and driver tube is secured from a "C" battery and the bias for the rest of the tubes is obtained from the filament circuit. The author advises the use of a "C" battery in cases where the output tube requires a high bias such as a 45 tube otherwise all bias voltages may be obtained from the filament circuit. Also note that all plate voltages are secured directly from the line except in the detector tube where it is obtained through a series rectifier.

Sets using filament-type tubes of high current drain cannot be satisfactorily changed to work universally and so I suggest that they either be wired for A.C. or D.C., but not for both.

In Fig. 4A we see a circuit of a typical A.C. set using heater-type tubes. Now in a circuit of this sort we also have to eliminate the transformer and rewire the set but here we see that the bias circuit need not be rewired because all the tubes will attainally get their bias from a self-bias resistor. See Figs. 6A, 6B and 6C for various bias circuits which may be used on A.C. or D.C.

In Fig. 4B, we see the circuit described in Fig. 4A, rewired so as to work on D.C. Note that all the plate and screen-grid voltages are obtained through a series resistor. Should the output tubes require a high biasing voltage then I would suggest a "C" battery be used.

In changing A.C. sets to operate on 115-volt D.C. line supplies I always advise that the filter choke be connected in a negative lead. If this is done we are then able to get our bias voltage from the voltage drop across the choke thereby making full use of all the voltage available.

(4) Special Circuits and Short-Cuts.—Many times the Serviceman will come across a transformerless midget radio set that will operate on A.C. only. Figures 5A and 5C show such a circuit. Here we see 2 typical circuits used in midget "radios" which utilize a voltage doubler circuit, to secure "B" power for the set, instead of the usual half-wave rectifier.

Figure 5A shows a circuit using a push-pull voltage doubler circuit, while Fig. 5C shows a circuit using a cascade voltage doubler circuit. In Fig. 5B we see how these circuits can be rewired so as to operate universally. Note that the field is connected right across the output of the half-wave rectifier, and in place of the field we connect a 1,000-ohm resistor.
When these circuits are changed to work universally there will naturally result a slight loss of volume due to the fact that the advantage of the voltage doubler no longer exists. Whenever a voltage doubler, tripler or a quadrupler is used, and considerable hum is experienced, then the detector and the 1st A.F. tube should be connected nearest the minus (negative) leg of the "B" circuit in the following manner: The detector tube we connect at the extreme positive side of the line. This is followed by the output tubes, which in turn are followed by the 1st A.F. and the 2nd and 1st R.F., respectively. The detector tube is gridless biased and is also a cathode-type tube. It therefore can be connected any place in the filament circuit but because of its higher current drain we find it more convenient to place it at the positive side of the line. When using a filament-type detector, it shall always be placed at the positive side of the line because large A.F. voltage variation between the cathodes (filaments) of the output tubes and the ground in the filament circuit would cause, this tube circuit to oscillate or hum if placed elsewhere.

Since the output tubes and the 1st A.F. tube require a high bias voltage, we therefore connect them after the detector so as to retain a high positive voltage on their respective cathodes (filaments), and this will naturally tend to make the voltage on their grid-returns (which are connected to the ground) highly negative in respect to their cathodes. This voltage will thus add to the voltage impressed upon their grids from the "C" battery.

Sometimes this voltage is sufficient to bias the tubes (depending upon the tubes being used) and therefore no "C" battery need be used. See Fig. 1A. In cases where louder volume is desired the desired battery can be used to an advantage by impressing upon the output tubes a very high bias voltage and thus operate them in a class B high push-pull arrangement. The 1st and 2nd R.F. tubes receive their bias voltage the same way as the output tubes except they do not have a "C" battery to boost this voltage. Note that the bias on these tubes is lower than it should be; better performance of the set will result if one or two of the new high bias voltages were connected in the grid-returns or if preferable a "C" battery. The filaments of all the tubes must be adequately bypassed in order to prevent A.F. or R.F. oscillation.

Ohm's Law states that in a series circuit the voltage will distribute itself evenly throughout the circuit or is the sum of all the voltages involved. The current in a series circuit is the same throughout the entire circuit as is being drawn by the smallest current drawing load in the circuit. The voltage in a parallel circuit is the same throughout the entire circuit as is the highest voltage in the circuit. The current in a parallel circuit will distribute itself evenly throughout the entire circuit or is the sum of all the currents in the circuit.

Since, therefore, the type 26 tube draws 1.05 A., type 46, 1.5 A., and type 27, 1.75 A., we must cause the circuit involving the type 26 tubes to draw a current of 0.7-A. more.
which is needed to supply the highest-current-draw tube. This we do by connecting a resistor in parallel with the circuit, which according to Ohm's Law, is

\[
E = V = 6.4 \text{ (volts)}.
\]

\[
I = 0.25 \text{ (amps)}.
\]

Now we come to the circuit involving the type 45 tubes. This circuit draws 1.5 A. Thus we need 0.25 A more to supply the needs of the whole circuit, and therefore, resorting to Ohm's Law, we find:

\[
E = V = 20 \text{ (volts)}.
\]

\[
I = 0.25 \text{ (amps)}.
\]

The total voltage demand of the circuit is 12 volts (this we get by adding the voltages demanded by all the tubes); the total current requirement of the circuit is 1.75 A. Since we have 110 volts (line voltages, today, average about 117.5 V) we therefore have to compute a resistor which will drop 98 volts when a current of 1.75 A is flowing through it:

\[
E = V = 98 \text{ (volts)}.
\]

\[
I = 0.25 \text{ (amps)}.
\]

\[
R = \frac{E}{I} = \frac{98}{0.25} = 392 \text{ (ohms)}.
\]

The same resistor can be used in the parallel circuit to obtain a 115-volt A.C. or D.C. power supply, which have to be changed to work on 115 V A.C. or D.C., we find that all that need be done is to put a resistor in series with the set and the rectifying unit shown in Fig. 1B. This can be calculated by the simple formula

\[
68 = \frac{E}{I} = \frac{115}{0.25} = 460 \text{ (ohms, to be connected in series with the whole circuit)}.
\]

This method should be used in computing all such problems. Sometimes in place of a resistor we can connect a tube having the same voltage as the circuit, across the circuit, in order to make the circuit draw more current. See Fig. 4B. Even a pilot light may be used.

(8) Converting Battery Radio Sets to Work on Universal Current.—There are many people who own battery "radios" and sooner or later they will come to you to have their sets changed so as to work on universal current (A.C./D.C.). Or they just want the set repaired and you may not have the batteries on hand to test the set. Well, by closing the battery switch on the unit illustrated by diagram in Fig. 1A we will be able to operate any battery portable on 115 V, A.C. or D.C.

Should the set need higher voltages for the filaments of the tubes in the set then all that need be done is move the voltage control from left to right. The voltage control should always be on the left side and after the battery radio set is connected to the unit, and the unit is made to operate the control should be moved slowly to the left until the desired voltage is obtained as measured by a voltmeter connected across the filaments of the tubes. Note the way the bias for the output is obtained, simply by having a separate terminal for the "B+" lead and having a difference of 6 V between the "B+" and "A-" leads.

There are a few A.C. sets on the market which have a separate copper-oxide rectifier to rectify the current for the speaker field. In sets of this sort, when changed to work on direct current, the speaker should be changed; or, disconnected from the rectifying unit and be connected through a suitable resistor, across a 115 volt field.
THE FINEST RADIO BOOK
WE EVER OFFERED:--
the 1940-41 Radio-Television Reference Annual
With $1.00 subscription to RADIO - CRAFT

THE 1940 RADIO-TELEVISION REFERENCE ANNUAL contains a collection of the best and most important articles. Covering as they do nearly every branch of radio, they form a handy reference works. In addition, many time and labor-saving devices, circuits and wrinkles, tested and tested by practicing Servicemen, experimenters and radio fans have been included. This book cannot be bought anywhere at any price. Yet it is yours by merely subscribing. Use the convenient coupon below.

BEGINNER'S SIMPLE INEXPENSIVE CONSTRUCTION ARTICLES

MORE ADVANCED SET CONSTRUCTION

The High-Freq. 1-Tube Broadcast Loop Radio--How to Build a 6-Tube 1-4-Volt Broadcast Set--Building the "Ham" Broadcast Receiver--Building a 5-Tube Short-Wave Set--Making an All-Wave Radio for C.0. Operation--An Easily Built 2-Tube Broad Band Superheterodyne Receiver.

THE SERVICEMEN'S SECTION

TEST INSTRUMENTS

A Useful Neon Lamp Tester--An Insensitive Output Meter--Making Milliammeter Multipliers--Home Made Frequency Modulator--The Busy Servicemen's V.T.S.

PUBLIC ADDRESS AND AMPLIFIERS

Built-in Combination A.C.-D.C. Radio and Inter-Communication--Speaker Placement in P. A. Work--The Design and Construction of an Inexpensive A.M. Public Address Amplifier--Observe Sources of Hum in High-Gain Amplifiers--How to Build a High-Fidelity 5-Watt Versatile Amplifier.

"HAM" SECTION

TELEVISION

MISCELLANEOUS

Simple Phone-Cell Relay Hot-Set--Making a Linear Amplifier to Build A.C.-D.C. Capacitor Return--How to Make a Modern Radio Treasure Locator.

USEFUL KINKS, CIRCUITS AND WRINKLES

Making a Possible Couple--A Two-Tone Chime--A Simple Portable Article--An Improved Non-Slip Self-Righter.

THE 1940 Radio-Television Reference Annual contents appear at the front of each issue. Illustrations.

Read the summary of contents in this FREE BOOK!

Send me my copy of 1940 RADIO-TELEVISION REFERENCE ANNUAL--at Least-Built 2-Tube Broad Band Superheterodyne Receiver.

NOTE:

The 1940 RADIO-TELEVISION REFERENCE ANNUAL has 68 PAGES and nearly 170 ILLUSTRATIONS.
OPERATING NOTES

Because the Notes printed below are exceptionally good, submitted by a top-notch Service Engineer of recognized repute, this month's entire "Operating Notes" department has been devoted to them.

BERTRAM M. FREED

SERVICEMEN—

What faults have you encountered in late-modal radio sets? Note that Radio-Craft will consider your Operating Notes (these must be illustrated) provided they relate to CHARACTERISTIC (repeatedly encountered) faults of a given set model and must be made after publication of the Operating Notes.

TECHNICAL INFORMATION—

When located in the vicinity of one or more powerful broadcast stations, this model, a phono - radio combination, develops the complaint of distorted, unstable operation at station resonance at any volume level. In most cases, the Local-Distance switch must be placed in the Local position to obtain reception. This condition is caused by an open-circuited cathode section of the voltage divider as shown in Fig. 1. A 2-watt, 15,000-ohm resistor may be employed for replacement purposes with assurance of future trouble-free operation upon this score. A later series of these receivers dispensed with the A.V.C. voltage divider, and secured cathode voltage for the A.V.C. tube by a tap on the main voltage divider.

A low, steady hum heard as a background to reception and even with the volume control turned to minimum position, is due to insufficient filtering in the power supply unit. This condition may be remedied by installing a filter choke in the high-voltage secondary before the speaker field, which is employed also as a filter choke in the high-voltage secondary-return. An 8-mf. electrolytic condenser with a 460-volt D.C. working voltage is connected from rectifier filament to the high-voltage secondary side of the choke as shown in Fig. 2. Shunting additional filter condensers across the 2 electrolytic units in the power unit is ineffective.

When the 3 shortwave bands of these models are inoperative and all voltages are found correct, check the trap trimmer in the plate circuit of the shortwave 1st-detector for a short-circuited condition. Because of a coupling condenser in the plate circuit of this stage, the failure of the trap-circuit trimmer will not produce a voltage discrepancy, although the plate voltage on the shortwave detector is very low in any event.

This trimmer is mounted upon the front side wall of the chassis near the shortwave 1st-detector socket. Usually, loosening the adjustment screw now more than a quarter-turn will clear the short-circuit. Where this does not overcome the difficulty, a new mica trap-circuit trimmer must be installed. Should the latter be necessary, then the trimmer must be re-adjusted for maximum output as read on an output meter, with a test signal applied. Necessary, the trimmer must be re-adjusted for maximum output as read on an output meter, with a test signal applied.

Robert W. Chamberlain

RADIO-CRAFT for SEPTEMBER, 1941

145

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

www.americanradiohistory.com
Stewart-Warner 125-129

Intermittent reception, or total inopera-
tion on the broadcast band only, may be
traced to an open-circuiting oscillator coil
to this band. The open-circuit consists of areak of either the 0.04-mf. coil leads at the
lug of a postage-stamp condenser. This condenser is connected. It is unnecessary to
remove the coil to remedy this condition.
The insulation at the lead end is damaged or
be removed with a small penknife and the
lead resoldered to the lug which extends into
the coil form.

Noisy operation on these models, which
are often attributed to loose element triodes,
is likely to be caused by poor internal con-
tact-within the model. Dual 000-mf. diode
load 1-P, by-pass condenser, also
postage-stamp type. The value of these con-
densers is not critical and they may be re-
placed with either 250 or 100-mf. units.

A noisy volume control is a common com-
plain, resulting from usual contact resist-
ance. This condition is overcome without
the necessity of replacement, in most cases,
by isolating the volume control which is
employed as part of the diode load circuit.

Since a tap on the control serves to
supply a low load current only to the con-
trol-grid of the 1st-detector tube, as shown
in Fig. 3A, 2 resistors should be installed in
place of the volume control. A 0.15-meg.,
and a 0.35-meg. capacity valve will work well,
with the lower value unit connected in the
ground and the lead connected to the tap
of the volume control being detached and
soldered to the junction of these 2 resis-
tors. A 0.05-mf. coupling condenser is con-
nected between the "high" side of the 0.35-
meg. resistor and the high side of the
volume control as shown in Fig. 3B.

When these receivers are serviced for a
strong motor approaching oscillation on all
bands, with the receiver otherwise in-
operative, replace the 0.25-mf. screen-grid
by-pass condenser described in the screen-
grid terminal of the 1-P. tube socket
to chassis.

Should the symptom of distortion at
resonance on powerful stations only, be
encountered, try replacing the type 6CD1
1st-detector with a type 77 tube. In the
event this part fails to clear the
traction, replace the 77 with a type 78 remote
cut-off tube. This latter tube will decrease
signal strength only slightly on the broad-
cast band, but in loss in sensitivity on the
shortwave bands will be noted.

Very weak reception on the 3rd short-
wave band with several dead spots may be
overcome by removing the oscillator plate
resistor with a lower value unit. A 15,000-
ohm resistor usually turns the trick.

When the complaint of distortion at
any volume level or on any station is encoun-
tered, look for a leaky or short-circuited
0.1-mf. grid filter condenser for the triode
section of the 75 tube as shown in Fig. 3.
This failure lowers the negative bias upon
the grid and produces the condition de-
scribed.

Stewart-Warner 125-129

Intermittent reception or inability to
receive a signal or complete reception
between the broadcast and shortwave bands,
has almost always been traced to the wave-band
switch. This switch cannot be cleaned un-
less dismantled, but it is unnecessary to
remove the entire unit from the chassis, or
to use any of the connecting leads. The
small horseshoe washer holding the
semiconductor to the wave-band
switch is quickly removed by spreading.
The shaft and short-
ning plate is then pushed back. The
contacts should be bent up so that increased
contact tension will result when the
switch is reassembled. Apply Lubripate
to the contacts.

Stewart-Warner 125-129

Intermittent reception, or total inopera-
tion on the broadcast band only, may be
traced to an open-circuiting oscillator coil
to this band. The open-circuit consists of a
break of either the 0.04-mf. coil leads at the
lug of a postage-stamp condenser. This condenser is connected. It is unnecessary to
remove the coil to remedy this condition.
The insulation at the lead end is damaged or
be removed with a small penknife and the
lead resoldered to the lug which extends into
the coil form.

Noisy operation on these models, which
are often attributed to loose element triodes,
is likely to be caused by poor internal con-
tact-within the model. Dual 000-mf. diode
load 1-P, by-pass condenser, also
postage-stamp type. The value of these con-
densers is not critical and they may be re-
placed with either 250 or 100-mf. units.

A noisy volume control is a common com-
pain, resulting from usual contact resist-
ance. This condition is overcome without
the necessity of replacement, in most cases,
by isolating the volume control which is
employed as part of the diode load circuit.

Since a tap on the control serves to
supply a low load current only to the con-
trol-grid of the 1st-detector tube, as shown
in Fig. 3A, 2 resistors should be installed in
place of the volume control. A 0.15-meg.,
and a 0.35-meg. capacity valve will work well,
with the lower value unit connected in the
ground and the lead connected to the tap
of the volume control being detached and
soldered to the junction of these 2 resis-
tors. A 0.05-mf. coupling condenser is con-
nected between the "high" side of the 0.35-
meg. resistor and the high side of the
volume control as shown in Fig. 3B.

When these receivers are serviced for a
strong motor approaching oscillation on all
bands, with the receiver otherwise in-
operative, replace the 0.25-mf. screen-grid
by-pass condenser described in the screen-
grid terminal of the 1-P. tube socket
to chassis.

Should the symptom of distortion at
resonance on powerful stations only, be
encountered, try replacing the type 6CD1
1st-detector with a type 77 tube. In the
event this part fails to clear the
traction, replace the 77 with a type 78 remote
cut-off tube. This latter tube will decrease
signal strength only slightly on the broad-
cast band, but in loss in sensitivity on the
shortwave bands will be noted.

Very weak reception on the 3rd short-
wave band with several dead spots may be
overcome by removing the oscillator plate
resistor with a lower value unit. A 15,000-
ohm resistor usually turns the trick.

When the complaint of distortion at
any volume level or on any station is encoun-
tered, look for a leaky or short-circuited
0.1-mf. grid filter condenser for the triode
section of the 75 tube as shown in Fig. 3.
This failure lowers the negative bias upon
the grid and produces the condition de-
scribed.
ERS FIND IT INCONVENIENT TO MOVE THE CABINET IN ORDER TO GAIN ACCESS TO THE SWITCH. A METHOD WHICH HAS BEEN EMPLOYED WITH NO LITTLE SUCCESS, IS THAT OF INSTALLING A 6-PRONG ADAPTOR, WHICH CATHODE CIRCUIT IS OPEN UNDER THE TYPE 57 SILENCING TUBE. IT WILL BE NECESSARY, OF COURSE, TO REMOVE THE SHIELD. A SWITCH IS INSTALLED ON THE FRONT PANEL OF THE CHASSIS OR PLACED WITHIN EASY REACH. THE SWITCH TERMINALS BEING CONNECTED ACROSS THE OPEN CATHODE CIRCUIT OF THE ADAPTER. IN THIS MANNER, WHERE A CIRCUIT IN THE RADIO OF THE CHASSIS MAY BE LEFT UP OR OFF AT ALL TIMES, WITH THE FRONT SWITCH SERVING THE FUNCTION OF CUTTING THE SILENCING TUBE IN AND OUT OF THE CIRCUIT AT WILL.

STROMBERG-CARLSON 55, 56

In these models, the complaint of intermittent reception accompanied by loud popping noises has frequently been traced to intermittent operation of the trimmer condensers. In order to remedy this condition, it is necessary to dismantle the F.P. transformer assembly and renew the mica insulation.

When the receiver does not operate when the on-off switch is pressed to the “on” position, check the relay mounted under the power unit. The shorting contact may have become frozen or may bind in such a manner as to interfere with normal operation of the relay. The relay will disclose the nature of the mechanical trouble which is easily rectified.

STROMBERG-CARLSON 60

One of the most frequent complaints with this model is that of noisy reception, the cause of which lies with the primary of the push-pull input transformer. This fact may be readily checked by turning the volume control completely off, or by measuring any variation in the voltage drop across the primary with a sensitive voltmeter. In many cases the unit was replaced, but the same condition developed, so an original factory replacement was employed.

To obviate the necessity for constant attention and to avoid unnecessary service calls of the same nature, the new transformers were installed in a parallel plate feed circuit so that the D.C. could be kept out of the primary windings. The only additional parts required for this change are a 50,000-ohm carbon resistor and 0.25-mf. condenser. No noticeable variation in any of the normal operation in tone quality was experienced with this circuit change as indicated in Fig. 5.

Should noise still be present when the volume control is turned completely off, and the primary of the push-pull input transformer tests perfectly, attention should be directed toward a leaky 0.2-mf. tone control condenser located in a common bypass block—whose internal connections are shown in Fig. 6—mounted directly behind the gang control.

Many of the first series of this model were serviced because of the complaint of hum, whose cause was traced to poor grounding of the triple section electrolytic filter condenser unit. Scraping the paint from the chassis over that portion upon which the sets are riveted and tightening the mounting nut corrected the difficulty. In the new series, the electrolytic filters are seated in a riveted to the can for grounding purposes.

The symptoms of fading, distorted reproduction, and severe oscillation are occasioned by poor grounding of the 6B7 shield, in which the mounting rivets of the shield base are not making proper electrical contact to the chassis through the cracked paint finish. Although the rivets may be hammered down to effect a repair, soldering short pigtales between rivets and chassis more effectively accomplishes the purpose. Since the pentode portion of the 6B7 serves as the I.F. amplifier, perfect shielding is essential.

When the receiver is tuned to short waves but the entire band is found dead, look immediately to an open-circuited shortwave oscillator coil. This coil is located within the shield of the 6A7 tube to gether with the broadcast coil. The open circuit has always been found at the coil terminal lug and is easily re-soldered.

Strong oscillation on the entire short wave band, but no signals, has been remedied by turning the screw adjustment of the 2nd I.F. transformer slightly one way or the other.

STROMBERG-CARLSON 64

One of the most common complaints with this model is that of an inoperative receiver with the plates of the 629 rectifier burning up, thereby causing blown fuse and the blowing of the line fuse. In some cases, the receiver may be found inoperative because of a burned-out fuse. When the fuse is renewed, the receiver will operate normally. After a few hours or a few days, the fuse will again burn out. These troubles are due to the breakdown of the 1.5-mf. input filter condenser which is located within the push-pull input transformer assembly and identified by the 2 green leads emerging from the block. The short-circuited condenser should be disconnected from the circuit and replaced with any good-quality 2 mf., 600-volt paper condenser, or with the external replacements in a metal container supplied by the manufacturer to be installed upon the top of the chassis. The usual 8-mf. dry electrolytic condenser unit generally employed for replacement purposes should not be used here because of high rectifier output peaks during the breakdown of the condenser. The unit should be connected in series across two 100,000-ohm resistors as shown in Fig. 7.

With the model 60 receiver, this model has been corrected by interposing a single electrolytic condenser, which is identified by the red and blue leads emerging from the block. The rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated. This rectifier output is then divided equally between the two sections of the condenser, thereby reducing the effective breakdown voltage of the condenser to a point where the problem of punch-out is eliminated.
SERVICING

ISOLATING THE DEFECTIVE STAGE

The following article reprinted from “National Radio News” is a forthright analysis of the 6 basic methods of servicing radio receivers and the manner in which these various methods are applied in everyday work. The author, a technical consultant of National Radio Institute, is to be complimented upon his exceptionally “meaty” article.

WM. FRANKLIN COOK

WHAT DO YOU KNOW—about the 6 basic methods of servicing radio receivers?

The accompanying article answers many questions which have been puzzling Servicemen concerning one or more of the test procedures now current. Many Servicemen have come to consider certain of these test procedures as “pet” methods, failing to realize the full value of important things embodied in the remaining procedures; all are listed below:

1. The set analyzer. (1) The set analyzer.
2. Point-to-point voltage and resistance measurements. (2) Point-to-point voltage and resistance measurements.
3. Signal tracing in the forward manner. (3) Signal tracing in the forward manner.
4. Signal substitution in the reverse manner. (4) Signal substitution in the reverse manner.
6. Stage muting or stage elimination tests. (6) Stage muting or stage elimination tests.

Let’s briefly cover the equipment necessary for each of these methods; take up some typical service problems and see just which methods will work the best in each case and then, how we can develop a combination which will quickly locate any trouble.

1. The Set Analyzer Method. This method of servicing requires a plug-in analyzer. Due to the great number of different tube socket combinations, a number of adapters are necessary to plug the analyzer into different tubes. The adapter is a plug, which is placed in the tube socket. The tube is then placed in the analyzer and the various plate, grid and other operating voltages are checked; this method is therefore limited to checking supply paths and parts. In the early days of radio, when circuits were extremely simple, this method of analysis was favored a great deal. Modern complex circuits and the upset in the circuits caused by analyser cable capacitances has resulted in this time-wasting method becoming less and less favored by service experts.

2. Point-to-Point Measurements. In the point-to-point voltage and resistance method, we require only a voltmeter and an ohmmeter. Voltages are measured at certain strategic points and then resistances are checked in those circuits where the voltages are found to be abnormal. This method is quite a time saver over the set analyzer method and for certain troubles results in quick diagnosis.

3. Signal Tracing. Signal tracing in the forward manner requires either some type of channel analyzer or a vacuum-tube voltmeter. For some of these tests, a signal generator is necessary. That is, the analyzer circuit follows the signal from the antenna to the output, so we call it the forward method.

4. Signal Substitution. We start at the output of the radio set using this method, and work back toward the input instead of going in the other direction as in the forward manner. Instead of checking the signal of the radio receiver, providing the circuits at that point and the loudspeaker are in good condition, it is possible to pass the output working backward toward the input, we can quickly localize the defective stage in a dead receiver.

Incidentally, while talking about the circuit disturbance test, just how would you apply it to the “radio” shown in Fig. 17? Some of the tubes are local types and they have no top caps. The local feature of the socket prevents the tube being readily pulled out of its socket. The socket is mounted on a panel which can be removed without disturbing the radio set. At the socket you can turn to apply a short circuit to the grid temporarily to the set chassis. Every time you make and break the connection, you should hear a pop or thud in the output, since you are removing the “C” bias voltage. This bias is obtained by a voltage drop across the 27- ohm section of resistor 52. Removal of the bias causes a sudden and rapid change in the plate current, creating a signal pulse which is reproduced by the loudspeaker as a thump, pop or thud.

When we come to the 2nd, a 7BT, I.F. tube, short-circuiting the control-grid to ground would not have any effect on the output because no bias change is involved. However, if we short-circuit the cathode to the set chassis, this again removes the bias and we will get noise in the output. With the 1st I.F. tube, we can short the grid to the set chassis again because we have a bias coming from the power supply. With the 1st detector, we can short-circuit the control-grid to the set chassis also.

The only important thing to remember about this is we must change the bias to make the plate current change and our short-circuiting wire or test lead must be touched to the proper points to cause this bias change. As a general rule, short the control-grid to the set chassis when the bias comes from the power supply, and short the cathode to the set chassis when self-bias is used.

It is of course necessary that we properly identify the control-grid, cathode and other elements for this purpose. A tube chart will help in this identification procedure.

5. Stage Elimination or Muting. Although the circuit disturbance test is limited mostly to locating a “dead” stage, it is possible to isolate a noisy or hum-producing stage with no test equipment by using a similar procedure. This time, instead of listening for a thud, we listen for the noise or hum that disappears. Then pull out one tube at a time, starting at the input of the receiver. When we pull out the tube in the defective stage, the noise or hum will disappear, thus indicating where the trouble is.

PUTTING THE METHODS TO WORK

Now, let’s take a typical radio trouble and see which method would locate the cause of this trouble the quickest. Figure 1 shows a diagram of a typical modern set, so let us consider in turn 3 different defects which would cause weak reception, for instance.
(1) Open Input Filter Condenser. First, suppose the input filter condenser, No. 55 on the diagram is open. From your study of radio you know that an open input filter condenser results in low operating voltages so the set will be weak, or if the voltages are too low, the oscillator might stop and the set would be completely dead. In this instance, however, let's suppose that the signals come through weakly.

The set-analyzer Serviceman would plug the analyzer in each tube socket and measure all the operating voltages throughout the set. He would find that all the voltages are below normal thus indicating a power supply trouble.

The point-to-point Servicemen would make one or two voltage measurements between "B+" and the set chassis and find this voltage lower than he expected, thus indicating a power supply defect.

Using signal tracing in the forward manner, we would start at the input of the radio set and follow the signals through to the output with a vacuum-tube voltmeter or channel analyzer. Each stage would show some gain in signal, but it would be weak throughout. If we happen to have some stage gain figures from the manufacturer or know about what the gain should be in each stage, we would find the gain in each stage to be below normal, which would cause us to measure the operating voltages with a volt-

In the reverse (signal substitution) procedure, we would start at the output and listen to the signal, as our source is moved back toward the input. Again we would find that each stage contributes some gain, thus indicating that there is no particular stage defect but that the trouble is an overall trouble, indicating the power supply.

Finally, the circuit disturbance test could be tried although this test is of greatest use in a dead receiver. In fact, without a great deal of experience, we couldn't tell very much about a weak receiver with the circuit disturbance test. The fact that a signal comes through indicates that all of the voltages are functioning after a fashion, any-

The circuit elimination method is of no value for this trouble, as no appreciable noise or hum will usually be present.

Now, it is obvious that the point-to-point Serviceman found this particular trouble the quickest. The least amount of time was spent because he only made one or two voltage measurements and almost immedi-

Note that the fellow using the set analyzer discovered the same results, but he spent too much time taking measurements throughout the radio receiver. Some of the smarter set-analyzer Servicemen would make a measurement first of the output tube supply voltage and, if this voltage was below normal, they would know from their understand-

In the reverse (signal substitution) procedure, we would start at the output and listen to the signal, as our source is moved back toward the input. Again we would find that each stage contributes some gain, thus indicating that there is no particular stage defect but that the trouble is an overall trouble, indicating the power supply.
BRAND 150 SERVICING MD1:1)-CAPS

Coin. tue fis Sun Bum Cosmetics:

"PRECISION-BUILT"

R- Wender Radio age, IPROM Making:
in ALWAY Si for your MFG.

AALWAYS USE Mehssner PRECISION - BUILT PRODUCTS
Progressively Engineered for the Servicemen Radio Amateur Sound Engineer and Experimenter

Write for Free 46-page Catalog DEPT. C-P

"PRECISION- BUILT PRODUCTS"

BRAND INVALUABLE! NEW!

only 25¢ copy

1500 FORMULAS & RECIPES

MAKES IN RECIPES TUBE & TOSTER PROCESSES PRACTICAL SIMPLIFIED FORMULAS FOR HOME, FACTORY & WORKSHOP

Petrol, Making, Photographic Processes, Preservatives, Exclusives and Flavours, Plants, Refining Salt, Circuits, Poleholders, Preservation, Painting Solvent, Cements, Glue, Adhesives, Illinois Spin Burn Creams and Lotional Wash & Shampoos; Waxes and Cold Proofing; Motor-field & Transformer varnishes; Buffers, Enamels, Paste, Strong and Dielectrics for Insulation. Dry Cell Compound & Pat/'/ E.M.T. Elements, Table Electrolyte and Standard Batteries.

TEST METAL, TESTER, FUSIBLE, FUSES

The greatest, most complete formula book ever compiled. Every trouble, every process, every formula, every chemical, every recipe and workable for all troubles, and every published known idea. But the wfi.E.E. for making Glazes. Contains Compound, Oil, Dyes, Compounds, Oils, Dyers, Elements, Patents, Table Electrolytes, Standards Batteries. 25¢ a copy, sent postpaid anywhere. Send money order, checks, unused U.S. stamps or coin.

NATIONAL PLANS INSTITUTE

246 R. Fifth Avenue New York, N. Y.

TROUBLE-MAKING PARTS

Before taking up equipment and basic service procedures, let's consider the troubles encountered by a Serviceman. He may find defects in either the loudspeaker or output transformer. He may find hum, distortion, oscillation, intermit
tent reception or any combination of these. What are parts most generally found defective? From practical experience, I would list them in order: tubes, condensers (bypass and filter), resistors and coils. Tubes top the list as they can and do cause any and all of the troubles mentioned above and likewise, they are "weak links in the radio chain." Hence, tubes must be checked. Notice a"

some Servicemen make the preliminary trouble-isolating tests first, starting the tube test with that one in the particular defective stage, while others may test all of the tubes before testing anything else. Either method may be used, but all of the tubes should be checked, for no other rea

son than that the customer expects it. That is, the customer knows that there are tubes in the radio set and he undoubtedly hopes that the trouble will be "just a bad tube." However, the tube is only in the tubes. By checking the tubes, you can at least satisfy the customer on this score.

Condensers are next, both bypass and filter units being frequently found bad. Variable condensers and trimmers are not often found defective, but must be remem

bered if the forward test procedure leads to a circuit containing them.

Now, which condensers in the set are the probable ones to break down? Generally, the condenser that breaks down will be one that is under an electrical strain, so we can concentrate our initial tests on such condensers as are connected to the plate and screen-grid circuits. This would of course include the filter condensers. Thus a con
denser break-down usually causes improper operating voltages.

In intermittent cases, of course, the offending condenser could be any one in the radio set, particularly if the indications are for open condensers. Watch out particularly for open grid-return, bypass and coupling units.

In modern radio receivers, we will seldom find resistors defective, except the voltage divider, where one is used. Some types of voltage dividers, such as the metal housed type, may develop a poor contact at one of the terminals. Most of the other resistors have practically an indefinite life and will only fail due to overheating. A break down in a tube or condenser has re
tulted in an excess current flow through the resistors. For instance, if plate bypass con

zc-ductor breaks down, then resistor 26 would pass excess current and probably would burn out.

Do you ever find coils, transformers, chokes and the speaker field all being devices containing a number of turns of wire. We do sometimes have trouble with the coils. We might have short-circuited turns, corroded contacts causing an open-circuit, or in a few instances the coil might be completely burned out. You can test through it from some other breakdown. However, when we are considering the usual causes for a radio-set breakdown we must include them in approximately the same way. We finally left with tubes, condensers, resistors, and finally, coils.

TEST EQUIPMENT NEEDED

Now, notice that the order of usually de

fective parts indicates the basic equipment necessary. A good Multimeter which has voltmeter and ohmmeter ranges is an absolute essential, regardless of the method of testing you follow. A Signal Generator is also a neces
sity because you must align receivers and by making full use of the signal generator and output meter, it is possible to follow the reverse method of signal substitution. In addition to these 2 basic instru
ments, you will of course need a Tube Tester when your business is established.

The only system requiring any additional equipment is the signal tracing method by the forward series of tests, which does re
cuire some type of Channel or Stage Ana

lyzer or Vacuum-Tube Voltmeter. Notice that, if you can show up the trouble that can be shown

by the forward method can be discovered by the reverse method of signal tracing. Hence, the forward signal tracing procedure

would be a time saver if you do enough business to make it worthwhile, but otherwise you can get along very well with the basic equip

Assuming you have this basic equipment, you are probably wondering how you would

www.americanradiohistory.com
know which procedure to follow. It is possible to adapt a combination of these testing procedures which will quickly localize the trouble and thus have a basic service procedure which can be used, regardless of the trouble.

BASIC SERVICING TECHNIQUE

Consider an average radio set such as the one in Fig. 1. We have a power supply, an audio amplifier, a 2nd-detector, an intermediate frequency amplifier, a 1st-detector and an oscillator stage.

The 2nd-detector is the separation point between the R.F.—I.F. system and the audio system. Hence, if we make some type of a disturbance test or signal tracing test at the connection of the 1st-audio tube, we can immediately determine whether the trouble is in the audio amplifier or ahead of that point. If the set had a tuning indicator, it could be used to give this indication—if it works normally, the trouble must be in the audio section, and vice-versa. Also, a measurement of the "B+" voltage at the output of the power supply will determine if that section is working properly.

Hence, 2 tests allow us to determine the condition of the power supply or whether the trouble is in the audio or radio frequency portion of the set. Then, one or two more tests in the defective section of the receiver will usually localize the trouble definitely to a particular stage or tube, where we can concentrate our testing efforts.

It is important that this basic procedure be learned, because it can be used regardless of the trouble and is a basis of the effect-to-cause method of diagnosing.

EFFECT-TO-CAUSE REASONING

This effect-to-cause system is simple—you just let the operation of the "radio" tell you where the trouble is! Then you can automatically choose the proper service procedure for that trouble. The method is just one of reasoning out the possible trouble from the action of the radio set, plus the results of a test or two.

Reasoning in this manner is the important habit developed by the truly successful serviceman. An apprentice would have trouble trying to follow such a procedure. Two improperly-operating sets could be brought in and placed before an expert who would quickly locate the trouble. To a beginner, the indications may appear to be almost the same and he may be quite puzzled by the procedure followed by the experienced man.

Just why a particular procedure would be adopted in each case depends upon the experience of that individual. He may have had the same trouble come up many times in the past in that particular model radio set, and thus from practical experience he may go right to the trouble, he may just have a "hunch."

This hunch is not just a wild guess, it is the result of his brain automatically sorting out indications and arriving at a probable solution of the case. That is, something about the output of the set may tell him definitely that the trouble is in a particular section of the radio set and arrive at a probable diagnosis. From one or two tests, he can then follow the method of locating which will most quickly localize the defective item. In many instances, this process may be so automatic that he would have difficulty explaining why he followed the particular procedure in preference to another.

In practically every instance, the experienced man will make measurements which yield the most useful information. Just why would a measurement of the screen-grid and plate voltage of the output tube be a fair indication of the condition of the power supply, in preference to some other point? Look at the diagram in Fig. 1. Notice that the connection which is made directly and through the least amount of resistance from the power supply is that of the screen-grid of the output tube. The plate of the output tube is connected through the output transformer which has low resistance. Hence, if these voltages are normal, then the output from the power supply must be normal. If these voltages are quite low, then something is the matter with the power supply or else there is quite an overload on it. This overload could be in the output tube itself, which would mean that this output tube is either gassy or has a lack of bias. In turn, this lack of bias condition could be caused by a leaky coupling condenser.

Notice that if we tried to measure the plate voltage on any other tube in the set we would have additional resistance in the circuit. With a high-sensitivity meter (5,000 ohms/volt or higher) this additional resistance would not be much of a handicap as long as the various bypass condensers were in good condition. However, as a practical case, look at condenser 20 which is an 8 mf. electrolyte. This condenser could be leaky so that the plate voltage on the 1st-detector and oscillator tubes, as well as the screen-grid voltage on the 2nd frequency tube, is way below normal. Because of the 4,700-ohm resistor 32, however, the plate voltages on the remaining tubes may be almost normal. Hence, a quick check of the output shows that the power supply is OK, and as this leaky condenser would cause weak reception or maybe a dead set, we would localize our trouble to the input. A quick check of the operating potential here would show it to be much below normal, which would lead us back to this condenser.

(Continued on following page)
Examples of Effect-to-Cause Reasoning

(1) Dead Receiver. As an example of effect-to-cause reasoning, consider a "dead" receiver. Repairs to the cause of the receiver being dead, the circuit disturbance test is the logical procedure to follow. This permits the trouble to be localized to some particular section of the set as quickly as possible, even without connecting up the test equipment.

For instance, if we don't get a click when we pull out the tube, the trouble is obviously in the stage, in the speaker or in the power supply. A quick voltage measurement for plate and screen-grid voltages would determine whether the trouble was in the power supply or not. If both plate and screen-grid voltages are present, the trouble must be in the output transformer or the speaker. Of these 3 items, the tube would be the next most logical item to test, and finally the output transformer and the speaker.

Remember when we measured the plate voltage, we automatically checked continuity through the output transformer primary winding and also found other connections.

An oscilloscope may help here. Pairing or short-circuiting 49 was not short-circuited. If the transformer was open or this condenser short-circuited, we wouldn't have had plate voltage. Voltage measurement is not only a test showing how much voltage is present, but even more important, this test shows whether or not proper continuity exists.

For instance, a very frequent trouble resulting in a dead receiver is a lack of screen-grid voltage on the I.P. tubes. If our circuit disturbance test leads us back to the 2nd I.P. tube, a quick check of plate and screen-grid voltage may show a lack of screen-grid voltage. Now, an ohmmeter between screen-grid and set chassis would probably show that condenser 33 is broken down. Resistor 25 can then be opened, which could be checked with an ohmmeter back to the "B+" circuit, but notice that I made the check from screen-grid to chassis. Why? Because the bypass condenser checks the "B+" circuit and is the more common of the two troubles.

If our circuit disturbance test leads us to the 1st I.P. stage instead of the 2nd, you might think that you have a lack of screen-grid or plate voltage. However, notice from the circuit that any trouble that would remove these voltages from the first tube would also remove them from the second except for an open in intermediate frequency transformer 29. Hence, a lack of plate voltage on the 1st I.P. stage would probably mean that this transformer is open. A measurement of correct voltage at the 2nd I.P. plate, would prove we were right.

Of course, if you wish, you could follow the signal tracing procedure instead of the circuit disturbance test. This is certainly permissible, but it takes more time to do it. If the trouble is near the output, the reverse method would show it more quickly than the forward method, and vice-versa. Therefore, since the method depending mostly upon the equipment you have, you might happen to be following the wrong procedure for yourself, which means that you have practically an even chance of spending more time than necessary in locating the trouble.

(2) Distortion. Consideration as another trouble, which probably results in the fact that this distortion is an audio trouble or is caused by the output filter condenser. The voltages are usually, but not always affected.

For instance, a leaky coupling condenser 47 could cause distortion and voltage measurements would show this up, because this would make the grid positive, causing the output tube to draw high current, thus causing the low plate voltage to appear. This would amount of the control-grid voltage on this tube would show up this leaky condenser, because the grid would be positive or there would be a voltage drop across the grid condenser, where we would not expect to find one.

On the other hand, an open output filter condenser will cause a loud hum, loss of low frequencies, which results in distortion. This would perhaps result in weak reception by causing inaudible oscillation in some stage. This would not be shown up by an analyzer, but would show up as a point-by-point voltage measurement mean anything, because the voltages would not be affected. Here is a case where observations of the set action are important. Notice the defective output filter condenser causes hum, oscillation and weak reception as well as distortion, and the point-by-point voltage measurement with the distortion, we should check the condenser first.

(3) Noise. A noisy set or one with hum in one of the stages may be found. The circuit disturbance test is quite logical for finding the defect, as removing the tube in the defective stage stops the noise or hum.

What causes noise anyway? Any sudden or sharp change in current causes noise in the output. Hence, the contact in any circuit carrying current results in noise. Notice that this contact can be anywhere in the circuit and can be in one of the parts, such as in a tube, resistor, condenser, coil or a connection. In coils particularly, it is caused by electrolysis (corrosion).

Suppose we pull out a tube and the noise stops. How can we tell if it is in the plate or screen grid circuit? If it is a feeding contact, trouble, it would show up whenever current flows. So, remove the tube, then connect a resistor between the plate terminal of the tube socket and the cathode socket terminal, so current can flow through the plate circuit parts. Use about a 10,000-ohm, 10-watt resistor as a power output stage or about a 50,000-ohm, 1-watt resistor in other stages. (This test does not apply to a rectifier tube — the filter condensers would be ruined.)

If the noise is caused by plate circuit trouble, it will now show up, and we can insert the tube and short-circuit the control-grid signal input circuit. If the noise is still there, then the tube or one of the other circuits (screen-grid, cathode or filament) is at fault. Incidentally, don't short-circuit the bias supply when you make this grid circuit short. For instance, a short-circuit across the resistor 48 in Fig. 1 will kill the signal input circuit of the output stage, but does not affect the bias for the 41 output tube along with the distortion, we should check the condenser first.

A similar circuit elimination or circuit mutating procedure can be followed to locate hum.

(4) Intermittent reception. An intermittent condition is sometimes the hardest to find, but signal tracing usually helps you to locate the defective section quickly. You can leave your signal tracer connected to the defective section, for instance, and watch to see if the trouble is ahead of this point. That is, if the signal fades in your indicator as well as in the output, then it is between the antenna and this point. This helps between the signal tracer connection and the loudspeaker. Now, you can move the signal tracer to the close points toward the location of the trouble, until you pass through the defective stage. The signal substitution method can also be used for intermittent receivers if the set was not damaged.
is very intermittent. This method is not so good where the trouble only shows up once in a while, however, particularly with battery-operated sets, as you may have to leave the signal generator on so long that its batteries are run down. Unless the set goes dead and stays dead, the circuit disturbance or stage elimination tests could not be followed, because pulling a tube will generally shock the set back into operation.

With a sensitive voltmeter, it is possible to make a number of practical tests for intermittent trouble. With a voltmeter having a sensitivity of 6,000 ohms/volt or more, you can leave the meter connected across the automatic volume control circuit of the set. If the intermittent condition is between the antenna and 2nd-detector, then the A.V.C. voltage will change, thus indicating the defective section. (Watch the tuning indicator if one is used.) Also, if you suspect the trouble is in a power supply circuit, you can leave a voltmeter connected temporarily across the power supply circuit. If the voltage changes, this will be indicated by the voltmeter.

Intermittent fading is just a case of weak reception which occurs at intervals. If you know what can cause weak reception in the definite section, you will have an important clue as to the trouble. Be particularly suspicious of by-pass condensers opening up. The test is just to touch the condenser or its leads, or give a twist with the fingers to check this, as the open usually is at the terminals. Also, a wooden dowel or rod can be used as a probe to move wires and parts. Don't be afraid to pull on leads. If you can cause the trouble to appear with any of these tests, then replace that part regardless of how it tests, and again try out the set.

CONCLUSION

Now, in conclusion, several points should be remembered. Don't get in a rut and try to service by only one of the 6 basic methods; use a combination of these methods which will locate the defective stage in the quickest possible manner. Don't be afraid to experiment with methods, try them all. Adapt them to your, particular equipment and personal preferences.

Remember to deal with probabilities, that is, to learn to go directly to the most probable defective item first, then proceed to localize the defective stage if your first thought is wrong.

Each fault has its own characteristic sound which cannot be described, but can be recognized and distinguished a few times. You can soon learn the difference between a leaky coupling condenser sound and a voice coil rubbing on a fast pole. They both cause distortion, but they certainly sound different.

The teaching plan for gaining practical experience, described in at least one school course, is very important as it helps to give you the experience of actually hearing the sound produced by various defects. If you carry out this plan faithfully, you will introduce various defects in a receiver and listen to its output. Then you can try all of the service methods and see which one will tune the receiver properly.

Of course, we are not trying to help you service quickly, just to astonish your customers. The quicker you can service a set, the more "radios" you can repair in a given length of time, and hence the greater can be your earning capacity. This is true whether you operate a spare time or a full-time business. The man who has to test every part in a radio receiver before he finds its trouble certainly cannot earn very much because he cannot handle enough receivers a day. Of course, when you are just starting out, you are bound to encounter a few unusual troubles which will take you hours or days to tune up. However, as your practical experience increases, you will find that even the most difficult troubles may be located quickly.

OPERATING NOTES (Continued from page 147)

For an inductor coil to work in oscillators, it must contain a core (usually a soft iron core). In this oscillator, the core is a short-circuited 0.2-mf. inductor coil. The inductor coil is wound on an adjustable core of iron. The core is adjusted to the optimum point by means of a calibrated scale on the oscillator. The core is then locked in place by a set screw. The oscillator is then ready for use.

The oscillator is then ready for use.

But what of tomorrow?

"All-out" production to meet today's pyramiding orders does not mean that Triplet has lost sight of the broader requirements of tomorrow. Instead, research and engineering programs actually have been "stepped-up" to assure constant improvements in products and processes, in addition to needed developments in new fields.

Today's demands are important, but the needs of tomorrow cannot be slighted—and are anticipated in never flagging engineering and research developments. You have assurance that in the months and years to come, new Triplet products will serve in expanded fields, where they will merit values and savings for every dollar spent in their purchase.

THE TRIPLETT ELECTRICAL INSTRUMENT CO.
Bluffton, Ohio

Free!

HAMMARLUND MFG. CO., INC.
424-438 West 33rd Street, New York City

www.americanradiohistory.com
I.F. ALIGNMENT
Connect an output meter across the voice coil. Turn up volume control to maximum. Set test oscillator to 455 kc. and keep oscillator output at 1 volt. Tune receiver so that output of oscillator is maximum.

Apply signal to 1AT7G converter grid through 0.06-mfd. condenser and adjust progressively the trimmers in the 2nd and 1st I.F. transformers.

R.F. ALIGNMENT
Adjust the signal generator to 1,780 kc. and loosely connect a wire from the output terminal of the signal generator so that the receiver loop will pick up the signal. Set the gain condenser to minimum capacity and adjust the oscillator volume, CIA, to receive the signal. After this has been done, set the signal generator to 455 kc. and tune the receiver until this signal is tuned-in. Adjust the R.F. trimmer, TA, for maximum output. In case of bent plates in the condenser, set generator and set to 400 kc. and bend plates for max. output.

SPECIAL SERVICE INFORMATION
The following service information will be very useful in servicing receivers if a vacuum tube voltmeter, or equivalent, is available.

(1) Static Gain, ± 10%.
Short A.V.C. to chassis ground. 1AT7 grid to 1st IF grid, 40 at 1,000 kc. 1AT7 grid to 1st IF grid, 87 at 455 kc. 2nd IF grid to 1H16GT diode plate, 8.5 at 455 kc.

(2) Audio Gain ± 10%.
9.08-volt, 400-cyc. signal across volume control with control set at maximum, will give 20-ma. speaker output.

(3) D.C. developed across oscillator grid returns the collected charge to plate of condenser, CIA.
If a 1-k. ohm meter is weakened when the plugs of External Window Antenna are inserted, reverse the plugs, to correct the phasing. In the position of the set, after this operation, may require re-phasing.

CHARGER CHARACTERISTICS
Replace fuse only with a 15-amp. G.E. Cat. No. 2548 fuse or its equivalent.
If one or more of the copper-oxide discs of the rectifier unit are defective, the charger will not operate properly. To test the rectifier unit operation, proceed as follows: Remove the 2 black leads from the negative terminal of the battery and connect a D.C. ammeter which will read 2 amperes, in series with these leads to the negative terminal of the battery. Plug the power cord into an A.C. supply, and turn the power selector switch to the "Charge" position. With the A.C. line voltage at 117 volts, the average charging current should read about 1.35 amperes at 2.1 volts battery. If line voltage is greater or battery voltage is lower than 2.1 volts the charging current will be greater. If the current is much less than this value at the rated line of 117 volts, one or more of the copper-oxide discs may be defective.

To check individual discs, the following tests are suggested: In the conducting direction, the rectifier disc should have 0.5-ampere or more when 100 volts is impressed across the disc. Note: The copper-oxide rectifier disc conducts when the positive potential is applied to the copper-oxide surface. The copper-oxide is a dark blue coating, plated with nickel to afford good surface contact to the oxide.
If a D.C. ammeter is not available for measuring currents as high as 0.5-ampere, the circuit shown in Fig. 1 can be used for this check. This method requires that the resistance of 2.75 ohms be made fairly accurate and in series with the rectifier disc and placed across the 2-volt storage battery. The voltage should always exceed 0.5 volt or less; if the voltage exceeds 0.6 volt across the disc in this circuit, it indicates a defective disc.

The reverse current flow is as important as the above test and is made as follows: Reverse the battery polarity in the above test circuit and place the ammeter that was used to read 10 milliamperes, in series with a lead to one of the battery terminals. This reversed current should not exceed 2½ ma. at the applied voltage of 2 volts. If the current is considerably above this value the disc should be discarded. Precaution—A suitable metal fuse should be used in series with the milliammeter to prevent damage to the meter in case the disc under test is shorted. A rough check, if a milliammeter is not available, is to measure the resistance of the disc in the non-conducting direction on the low-resistance scale of the milliammeter. The resistance should measure at least 760 ohms.

Cell must be installed before set is used in any position of the Power Selector Switch.
ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of 455, 690, 1,400 and 1,750 kc. and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the A.V.C. from operating and giving false readings.

CORRECT ALIGNMENT PROCEDURE. The intermediate frequency stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.

I.F. ALIGNMENT. With the gang condenser set at minimum, adjust the test oscillator at 1,400 kc. and tune-in the signal on the gang condenser. Adjust the antenna trimmer (or 1,400-kc. trimmer) for maximum signal. Next set the test oscillator at 690 kc. and tune-in a signal on condenser to check alignment of coils.

OPERATING VOLTAGES. Voltages shown on the circuit diagram are from socket terminals to chassis base. In measuring voltages use a voltmeter having a resistance of at least 1,000 ohms/volt. Allowances should be made for variations in line voltage.

ADJUSTMENT OF AUTOMATIC TUNING. All adjustments are simply made from the front of the cabinet using an ordinary screw driver.

To make adjustments remove all 4 buttons which pull off readily. The center buttons should be removed first since by depressing the adjacent buttons with thumb and finger a firm grip may be secured on either center button. The side buttons can then be easily removed.

Loosen the screw of the desired button and with the manual tuning knob turn to any desired station. Hold the manual tuning knob in position and depress the button shaft as far as possible. When the button fully depressed tighten the screw firmly. Be sure the pushbutton knob is held down in position while being tightened.

After the stations are adjusted it is advisable to check each button to assure sufficient tightening.

To assure accurate adjustment, the volume control should be set at a moderate level and the station tuned in slowly to a point of maximum volume and clarity. It is not necessary to follow any particular sequence of stations since each button is adjustable to any station.

With each button definitely set and securely tightened the properly selected station, the tuner is ready for operation.

OPERATION. With the set turned on to a moderate level of volume, the automatic tuner is operated by merely pressing a button set to the desired station.

Station selection may be made automatically or manually at will since the manual tuning control operates free and independent of the automatic unit.

RADIO SERVICE DATA SHEET

KNIGHT (ALLIED RADIO CORP.) MODEL A 10800

Five-Tube Superhet; Extended Broadcast Band [535 to 1,720 kc., including Police Channel]; Automatic Volume Control; Mechanical Automatic Pushbutton Tuning for 4 Stations; Phono (and Television-Sound) Connection; Built-in Loop Antenna; A.C./D.C. operation.

Knight Model A 10800 A.C./D.C. Receiver.

Radio Service Data Sheet

RADIO-CRAFT for SEPTEMBER, 1941

155

[Image of Knight Model A 10800 A.C./D.C. Receiver.]

[Link to American Radio History website: www.americanradiohistory.com]
NEW CIRCUITS IN MODERN RADIO RECEIVERS

In this series, a well-known technician analyzes each new improvement in radio receiver circuits. A veritable compendium of modern radio engineering developments.

F. L. SPRAYBERRY

No. 48

(Fig. 1) STORAGE CELL SUPPLIES ALL POWER FOR PORTABLE SET

GENERAL ELECTRIC LB-530.—A single 4-volt lead cell of 20 ampere-hour capacity operates five 1.4-volt filaments directly and powers a synchronous vibrator for high voltage, and is chargeable from an A.C. line either during operation or when the set is out of use. A simplified circuit in which the operating selector switch has been indicated as separate switches, is shown in Fig. 1. The cell is charged by means of a step-down transformer operating a full-wave, double-section, back-to-back dry-disc rectifier at about 1.4 amperes. The charge may be continued while the set is in operation, the storage cell acting as a filter due to its constant voltage and low internal resistance properties. The charging rate just barely exceeds the total set drain so that in use the battery will remain at full charge. The set may be used for about 15 hours as a completely portable set; the storage cell is non-spillable, and uses “pill-type” specific gravity indicators.

(Fig. 2) FILAMENT PROTECTIVE RELAY FOR A.C./D.C.-SET PILOTS

RCA 28X.—The pilot light circuit remains shorted until the filaments of the set proper, near operating temperature. The relay is of the thermal type so that the pilot circuits (see Fig. 2) will remain shorted until the other filaments nearly reach operating temperature. A satisfactory time delay is acquired by designing the relay so that for the usual filament current, the proper heat will develop in this time to open the pilot circuit.

The reason why the pilot lights will frequently burn-out otherwise is that they carry less current than the entire filament circuit (each being shunted by fixed resistors to carry the balance of the current) and reach full brilliance almost immediately. In this condition their resistance is maximum, a characteristic of tungsten filaments, while the other filaments have relatively low resistance until properly heated. This means that an excessive voltage will remain across the pilot lights until the other tubes reach operating temperature. Many of them will not stand up under the excessive voltage. The thermal relay thus permits more rapid heating of the regular filaments due to greater applied voltage and impresses voltage across the pilot filaments only when it will be of the correct value.

(Fig. 3) FM "WIRELESS" RECORD PLAYER USES SIMPLIFIED CIRCUIT

GENERAL ELECTRIC JM-31.—A simple re-actance-tube input modulator is used with an U.-H.F. oscillator for record playing by direct pick-up on any Frequency Modulation receiver. The main oscillator coil, Fig. 3, is per-
F.M. SERVICE

Entirely new problems daily face radio Servicemen called upon to install and maintain Frequency Modulation receivers. A well-known radio technician calls upon his wealth of practical experience to here present the answers to many of these servicing puzzlers. This initial article presents practical information on F.M. signal pick-up problems; a following article will deal with the actual F.M. receivers.

BERTRAM M. FREED

PART I

Antenna Installation and Service

THE advent and increasing popularity of Frequency Modulation receivers have presented new problems to the radio technician. Frequency Modulated receivers require installation and service adjustments somewhat different from standard procedures. Knowledge of these differences is essential to develop and apply these new techniques.

From a standpoint of design and circuit arrangement, there are similarities to those with which we are already familiar. It is the fact that F.M. receivers operate on ultra-high frequencies, that new considerations are introduced, considerations involving antenna installation, receiver alignment, oscillator stability, and insulation leakage. To facilitate discussion of the subject, the material herein is presented in 2 installments, Part I—Antenna Installation and Service, and Part II—Receiver Service.

RECEPTION CONDITIONS ON F.M. BAND

To understand and appreciate the importance of a suitable antenna and its proper installation, a brief explanation of transmission and reception conditions on the 42-50 megacycle band is of consequence.

The sky waves travel at a level and distance to those with which we are already familiar. It is the fact that F.M. receivers operate on ultra-high frequencies, that new considerations are introduced, considerations involving antenna installation, receiver alignment, oscillator stability, and insulation leakage. To facilitate discussion of the subject, the material herein is presented in 2 installments, Part I—Antenna Installation and Service, and Part II—Receiver Service.

The surface wave follows the curvature of the earth and is absorbed by the earth, metallic deposits, steel buildings, hills, trees, and bodies of water. However, the surface wave is steady and reliable in that it travels an equal distance both day and night. When waves of a high frequency are transmitted, less of the radiated energy is transformed into surface waves (possibly because it is absorbed faster by the earth) and more of the energy is changed into the sky wave. The sky wave does not follow the surface of the earth, but travels in straight lines and behaves much like light and radiant-heat waves.

The sky waves travel out from the earth in all directions and are thought to encounter layers of ionized gas in the earth's atmosphere or ionosphere. These layers of gas reflect and bend a portion of the sky wave back to earth, so that signals may be received at considerable distances far beyond the range of the surface wave. Part of the sky wave is also absorbed or passes directly through into the ionosphere. The amount of reflection and absorption of the sky wave is dependent upon the density and ionization of the gas layers, caused by ultra-violet radiation from the sun, which ionizes the gas molecules and produces free electrons. Since the degree of radiation from the sun and its influence is a variable factor changing with the time of day and season, the density and height of the "ionized layers" above the earth is altered. For this reason, the amount of energy reflected or refracted to earth and the angle to which the waves are bent is likewise a variable factor.

The degree of reflection of the sky wave also depends upon the frequency. The higher the frequency of a propagated radio wave, the farther it penetrates the ionosphere and the less it tends to be bent and reflected to earth. At frequencies as high as 42-50 megacycles, the F.M. transmission band in which we are interested, radio waves are bent so slightly that they seldom return to earth.

Thus, it can be seen that reliable, consistent, and dependable reception of signals in the F.M. band during both day and night, because of their ultra-high-frequency nature, is limited to the surface wave, or line-of-sight propagation. For all practical purposes, the surface waves may be likened to beams of light traveling straight out from the transmitting antenna to the horizon and beyond into space. To receive these waves, the receiving antenna must be within "line-of-sight" distance of the transmitter. The nearer the distance of the transmitting and receiving antennas, the greater the horizon range or area over which dependable signals may be received. Although reception of ultra-high frequencies beyond the horizon range of a transmitter is not impossible and is frequently reported, strength of signals is not constant, and thus unreliable.

F.M. ANTENNA REQUIREMENTS

Probably the 2 greatest advantages possessed by F.M. receivers, when compared with those of conventional standard design, are (1) the substantial freedom from natural static and "man-made" interference, and (2) extended fidelity and dynamic range of reproduction. Most listeners are more concerned with these aspects of F.M. receiver superiority than with other claims. To derive these benefits, only one requirement must be satisfied, that of adequate signal pick-up, to operate the limiter stage of the receiver. Without sufficient signal to saturate the limiter tube, elimination or clipping of signal peaks will be incomplete, and recep-

Radiocraft for September, 1941
tion will be generally unsatisfactory, as a result of its amplificatory and distortion.

To assure adequate signal pickup, attention must be directed to the antenna system. Of all factors contributing to strong signal pickup at U.H.F. because of lossy materials which reduce, as much as possible, all noise pickup by the antenna system. The principal sources of interference are diathermy and X-ray machines, automotive ignition, sign flashers, neon signs, oil burners, high-voltage power transmission lines, electric lighting and power receptacles, and all the electrical apparatus of a high-frequency nature. This interference may be picked up by both direct and indirect radiation.

Locating the aerial in a noise-free area and utilizing a balanced transmission line to conduct signal voltage to the receiver, is the general approach toward solution of this problem. Increasing the height of the antenna is generally considered a method of increasing signal strength, but aids in lowering the noise level.

LOSES

At ultra-high-frequencies, the matter of insulation is of considerable importance. Materials such as unglazed porcelain and molded bakelite, which are satisfactory at powerline and broadcast frequencies, are relatively unfit at U.H.F. because of lossy results from high power factor and absorption. This is particularly true of the cheap rubber, impregnated-cotton insulated twisted-pair wire so often mistakenly used for transmission lines. Only insulated wire, insulated terminals, and terminal blocks of the highest quality should be considered in the installation of an F.M. antenna to avoid all possible losses and consequent reduction in signal strength.

Fortunately, the current and voltage distribution on a half-wave doublet or dipole antenna, which is the most effective and popular type employed for F.M. reception, is such that the voltage at the center of the dipole is theoretically zero. This is shown at Fig. 1. For this reason, and since the 2 sections of the antenna are generally supported at the center, it is not absolutely essential that extremely-low-loss insulators or supports be used for this purpose.

Losses in a twisted-pair transmission line may be high due to high carbon content of the rubber insulation, and absorption of moisture by outer coating material. Only lines that are sufficiently weather-proofed and storm-proofed, and use a high grade of rubber, are acceptable. Ordinary latex cord is definitely "out" because of lack of weather-proofing. Some manufacturers supply transmission line cable especially suitable for F.M. Most of these are high percentage pure latex rubber insulation on each wire and an outer covering of the same material. Where transmission line is 14 gauge, it usually involves 200 feet, losses become prohibitively high. In such cases, concentric or coaxial line cables are desirable and essential. Concentric cables consist of an inner or central conductor, rubber insulated, enclosed in a copper braided shield, with over-all weather-proofed cotton insulation. Coaxial cable is similar with the exception that insulated or spacers are used to maintain a fixed clearance between the solid conductor and conducting shield of the two, coaxial cable possesses lower losses per foot, but is decidedly more expensive.

IMPEDEANCE MATCHING

When a manufacturer's antenna kit is used, the question of impedance matching is usually present. Those kits are available complete with dipole, transmission line, insulators, and matching transformer. The importance of impedance matching between dipole, transmission line and receiver input cannot be over-emphasized. The advantages gained by locating the antenna high in a clear area may be minimized through losses resulting from mismatch.

The impedance at the center of a half-wave antenna in free space is 73 ohms. However, because of the presence of insulators and dielectric material in the vicinity of the antenna, and the antenna above a conducting ground as well as the efficiency of the ground, this value is altered considerably. As a result of these factors, the impedance of an average half-wave antenna may be taken at approximately 100 ohms.

The surge impedance per unit of length of a transmission line consisting of 2 parallel conductors, depends upon the size and spacing of the conductors, and the dielectric constant of the insulation between the conductors. The larger the conductor and the closer the spacing, the lower is the surge impedance. For example, the impedance of a twisted-pair line consisting of No. 14 rubber-covered, cotton-braid insulated wire, similar to that used in house wiring, is approximately 100 ohms. This type of wire, when suitably weather-proofed and connected to a maximum voltage induced in it. Some few stations employ vertical polarization, thus making a vertical receiving antenna necessary for maximum performance.

The horizontal half-wave antenna is more widely used because of an advantage insofar as noise pickup is concerned. Since noise originates from nearby sources, and a good part of it, especially automotive ignition interference, is vertically polarized, less of this noise voltage is induced in a horizontally polarized antenna than in one that is vertically polarized.

On the other hand, the horizontal half-wave antenna is directional, the greatest signal voltage being induced when the length of the antenna is placed in a position which is broadside or at right-angles to the signal source. Antenna polarization is important at distances relatively close to the transmitter. At farther distances, the plane of polarization of U.H.F. waves has been known to
change as much as 90°, so that correct polar- ity of the received signals is a matter of experiment to provide best signal pick-up. Tilting the dipole at various angles from the horizontal to the vertical position, and changing the length of these changes, will determine which position is best. When an antenna for an F.M. receiver is installed in areas close to several transmitters, one of which may radiate vertically polarized waves, it may be necessary to utilize both a vertical and horizontal dipole to receive all the transmitted waves without signal reinforcement. Or a compromise may be effected whereby one dipole is used at some angle between a horizontal and vertical plane.

One type of antenna, such as the half-wave dipole, possesses marked frequency discrimination by which signals at other than the resonant frequency of the antenna are sharply attenuated. Since the F.M. band of transmission covers a wide range of frequencies, from 42-50 megacycles, this frequency discrimination would prove undesirable were it not for the fact that the loading of the transmission line produces a broad frequency response. It is customary to design or select the half-wave antenna to resonate at the center of the F.M. band, at approximately 46 megacycles. It may be varied as much as line loss decreases, losses increase with an increase in frequency, to resonate the antenna at 47, or possibly 48 megacycles to compensate for these losses.

DIRECTIVITY

Because of the fact that the horizontal half-wave antenna is bi-directional, this discrimination may prove undesirable when the signals of widely separated transmitters must be received at one location. The director type of a horizontal half-wave antenna is illustrated in A of Fig. 2. As a general rule, this situation proves troublesome in urban areas or close to a number of antennas which lie in various directions, one or more of which may be outside the directional pattern of the antenna. No such problem is presented when the receiver is far removed from this area. As a matter of fact, in the latter instance, attempts are usually made to increase the directivity of the horizontal antenna. One solution to this bi-directional effect is the use of a vertical half-wave antenna, which has a loss of vertical signal strength and an increase in noise pick-up. In some cases, an antenna designed to resonate at a frequency equal to twice the normal resonant frequency, is employed to overcome the bi-directional effect of a horizontal half-wave antenna. The changes in the directional pattern from that of a half-wave are shown at B and C of Fig. 2.

It can be seen that the angle of the null points is decreased thus producing less directional effects, but the maximum signal voltage possible to be induced into the antenna are also less. In addition, the resistance of such an antenna increases considerably, from 25 to 35%, necessitating a transmission line of higher impedance and further impedance matching for best results.

Another method is that of orientating the horizontal half-wave antenna in some compromise position whereby adequate signals may be received from all directions. As mentioned previously, the half-wave dipole antenna is usually designed to resonate at a frequency in the center of the F.M. band. As the length of the dipole is increased, that of a half-wave antenna, it must be remembered that the physical length usually averages from 15 to 20 percent longer than the electrical length, due to end effects occasioned by the presence of insulators, and the fact that the antenna has resistance. A simple conversion formula, which considers these end and resistive effects, for computing the physical length of a half-wave antenna, is the formula: L = A / 0.47 (0.4 or 0.68 which is accurate enough), divided by the desired resonant frequency of the antenna. The figure obtained is the length of the entire antenna in feet. Each half of the dipole for doublet should therefore be cut to half this amount. An antenna with each half of the dipole cut to 5 feet, 1 inch, has been found satisfactory for the reception of signals in the F.M. band.

F.M. ANTENNA TYPES AND INSTALLATION

At locations close to F.M. transmitters and where there is no problem of adequate signal pick-up and noise pick-up does not exist, any short length of wire will serve as the F.M. antenna. When operating conditions favor the use of a short dipole-L type antenna of 20-100 feet will provide satisfactory reception of F.M. signals. Upon several occasions, an antenna comprising a 20-foot length of wire extending downward from a window was found sufficient to obtain good reception on an F.M. receiver located 25 miles from a number of transmitters. Operating conditions were ideal, however, the noise level being particularly low with the receiver in a home built on a basement, with a concrete floor. The distance from a transmitter such as an antenna, or one of the inverted-L variety, will provide a signal of sufficient intensity and high signal-to-noise ratio, in a matter of conjecture and must be left to trial. In most instances, an antenna efficient at U.H.F. must be installed.

The most satisfactory antenna for F.M. reception is the horizontal half-wave dipole. Essentially, this antenna consists of 2 metal tubular rods 6 inches long placed in line with each other, as shown in Fig. 3. The metal rods may be either copper or aluminum, as desired. Solid copper is recommended. To obtain the requisite rigidity, only wire of a heavy gauge, either No. 10 or No. 12, should be used, supported by low-loss insulators. The transmission line must be run at right-angles to the dipole for at least a 2 wavelength, at least 5 feet, before any bends in the line are made.

ROOF MOUNTINGS

Various methods have been devised to support the dipole arms. These are merely mechanical and with the exception of a bearing upon electrical efficiency. The only requirement is substantial construction. Several of these arrangements are shown in Fig. 4.

At A, a 2-piece cast aluminum bracket assembled by means of a number of bolts and nuts, is used to couple the dipole supporting arms and standard. A center supporting insulator of ribbed construction is bolted to the bracket. Glazed porcelain screw-eye insulators serve to support the dipole rods at the far end of the supporting arms. The rods are threaded onto screws engaging 36 threads per inch, and center supporting insulator. The transmission line is connected to these screws internally. Laminated fiber or hardrubber blocks are used to anchor the dipole rods in position in the arrangement illustrated at B; and, an egg-shaped wood form is employed for the same purpose as shown in C.

In manufactured kits, the standards are supplied in 5 to 6 foot lengths of straight-grained knot-free material, and more than adequate. When using the kit form antenna as a half-wave antenna, it must be remembered that the physical length usually averages 15 to 20 percent longer than the electrical length of the dipole due to end effects occasioned by the presence of insulators, and the fact that the antenna has resistance. A simple conversion formula, which considers these end and resistive effects, for computing the length of a half-wave antenna, is the formula: L = A / 0.47 (0.4 or 0.68 which is accurate enough), divided by the desired resonant frequency of the antenna. The figure obtained is the length of the entire antenna in feet. Each half of the dipole for doublet should therefore be cut to half this amount. An antenna with each half of the dipole cut to 5 feet, 1 inch, has been found satisfactory for the reception of signals in the F.M. band.

On apartment buildings and private homes, the dipole may be erected as in Fig. 6. The wood blocks are held in position with lag bolts which are fastened in expansion plugs snugly fitted into holes or openings in the brick, stone, or cement, made by a "star" drill and hammer. The standard for the dipole is mounted by straps and lag bolts. When brick or stone chimneys serve as the "foundation" for the antenna, it is essential that the construction be solid and substantial. Too often, loose bricks and cement prevent firm insertion of the expansion plugs. Also, use of the hammer and "star" drill may dislodge bricks and cement and so weaken the chimney that solid anchoring of the antenna is impossible. The danger of a weak chimney further burdened by the weight and stress of an antenna in the wind are apparent. When such chimneys offer the only available means of support for the antenna, the construction shown in Fig. 7 has proved safe and substantial, provided suitable guys are employed. It may be seen that lengths of 2 x 4 in., or 2 x 3 in. lumber are held in position by long bolts and nuts. These bolts are procurable from large hardware supply stores or may be ordered from the local blacksmith or iron-works. The dipole standard is held erect by straps and lag bolts. The problem of installing the dipole on homes with peaked sloping roofs often presents itself. When access to the chimney may be gained without danger of slipping or falling, the construction already shown in Fig. 7 is recommended. Alternative metho-
E-

THE.

THE OLD TYPE MANUALS—Bulky, heavy, hard to handle, space consuming, less useful data despite greater number of pages.

OUR NEW MANUAL—Lighter, compact, easy to handle, takes half as much room on the shelf, more useful information despite fewer number of pages.

MANUALS NOW READY!

RADCRAFT PUBLICATIONS, INC., 20 Vesey St., New York, N. Y.

Gentlemen: Enclosed find my remittance of $10.00, for which send me, POSTPAID, my copy of the RADIO CIRCUIT MANUAL—1941.

Name
Address
City __________ State __________ RC-941

(Send remittance in form of check or money order; register your letter if you send cash.)

A "CUSTOM-TAILORED" MANUAL FOR SERVICE ENGINEER

Here, at last, is a Service Manual deliberately PLANNED for the Service Engineer of today, instead of a mere hodge-podge collection of service data, as manuals have been in the past. This RADIO CIRCUIT MANUAL is an orderly compilation of essential and service information, carefully edited and uniformly presented for the convenience of the busy Service Engineer. All time-consuming, non-essential weeded out, and the remaining information, vitally important to the servicing of modern radio receivers, has been laid out in a logical, which cuts time from the day's work. Because of this and other features evident upon first observation, it has been possible to list all information given model on a single page.

In 736 pages this Manual presents essential service data on over 1800 more than any other existing service manual on the market!

ONLY ONE MANUAL PER YEAR

The new technique used in compiling this RADIO CIRCUIT MANUAL makes it possible to include in a single book all the new receiver models which can produce in a single year. This factor alone represents an impo
n SEE TO IT THAT YOUR MANUFACTURER SENDS YOU THIS MANUAL—NOW!

ORDER YOUR MANUAL IMMEDIATELY—NOW!

Get your copy directly from us by filling out and mailing the convenient coupon shown at left, or get it directly from your favorite distributor.

736 pages; size 13 5/8 x 10 1/4 x 2 in. thick; loose leaf, leatheroid-covered stiff binder; net weight 6 3/4 lbs.

ONLY $10.00

This Radio Craft is a SPECIAL EDITION and is only available at the price shown above. Special price good only while stocks last.

RADCRAFT PUBLICATIONS
20 VESEY ST.

RAD-CRAFT for SEPTEMBER, 1941
The value of a service manual is measured not by the number of pages but by the amount of useful information. Thus, in only 736 pages this Radio Circuit Manual covers over 200 receiver models MORE than does any other competitive manual in twice the number of pages.

By increasing the size of our page; by discarding non-essential data and editing the balance; by listing only those receivers which the Service Engineer will definitely have to repair (no communications or export receivers, no shortwave sets or amplifiers, no electronic devices, etc.); by many months of hard work based on a definite plan of procedure and a clear understanding of the actual requirements of the Service Engineer. There is no "dead weight" information to add bulk to this Manual. Every word counts. Every minute of reading time is well spent.

PERMANENT INSTITUTION

Circuit Manual—1941 is NOT a one-shot. Next year there will be a Radio Manual—1942, the following year, 1943, indefinitely—each Manual better than the previous one, now new methods are worked out for simplifying the work of the Service Engineer.
FLIGHT
THE PICTORIAL FLYING REVIEW
Brings you all the phases of world aviation and automobile in a non-technical but educational manner by the fundamentals of flying and all related activities.

FLIGHT leaves you unaware of all the major developments in an easily digestible manner. FLIGHT will keep you informed of all items which interest you, just as you do not wish to miss any of the latest developments in your field. You need not "sit tight." Stop! Look! and Fly!

Full Contents of Sept. Issue:
Reading 20-Page, 40-Illustrated Section.

FLIGHT Magazine 20.8 Varsity St., New York, N. Y.

ods of mounting the dipole are illustrated in Fig. 8. When the coves of the building do not jut out beyond the vertical side walls, the standard for the dipole may be secured directly to the wall. Otherwise, it is necessary to build up or pile up sufficient number of wood blocks, securely fastened to the wall and the dipole standard so that the standard may clear the coves and be erected vertically.

Another method of installing the dipole employs a steel bracket or wood block which serves as the base for the dipole. This is shown at Fig. 5. The bracket is bolted to the roof and the dipole standard is held to steel cross-bars by means of threaded U-bolts. The wood block which is a 12-18 ft. length of 2 x 4 in. lumber, is secured with bricks. The dipole is mounted in a hole or socket made in the wood block. In the latter method, guy wires are absolutely essential, since this is the only means of holding the dipole erect and steady. The methods and manner of erecting the dipole antenna herein described are by no means the only possible arrangements. Others will suggest themselves.

TOWERS
Dipoles which "tower" or rise more than 5 ft. into the air usually must be supported rigidly to prevent swaying. This is done not only to assure good reception but to prevent weakening of supports and excessive straining of mooring bolts and plugs. For use as guy and supporting wires, No. 10 solid or stranded galvanized wire "ropes" should always be employed to effect a "permanent" installation.

Anchoring of the guy wires may take any number of means. Probably the simplest of all methods is the use of large eye-screws fastened securely to any solid wood mooring or to expansion plugs inserted into brick walls. Turnbuckles should be employed to take up the slack in long cables when the wires cannot be tightened otherwise by hand. Of particular importance at this point is the necessity of breaking up the guy wires by insertion of strain insulators of the "egg" variety to avoid possible resonance effects at the receiving frequency. For our purpose, guy-wire lengths should always be less than 10 feet. This is illustrated at Fig. 10. Although any system which will support the dipole is suitable, the 3-guy wire arrangement has proved most satisfactory. In any case, the guy wires must be kept out of the field of the dipole.

The generous use of tar compounds and synthetic resins is recommended for weather-proofing lag bolts, straps, supports and dipole standards. When a steel or wood base assembly is bolted to the roof, application of a tar compound is essential to avoid leaks and seepage in inclement weather. This material is available from many supply sources.

TRANSMISSION LINE
The transmission line must be run at right-angles to the dipole for at least 6 ft. Avoid right-angle or all unnecessary bends, and doubling back of the transmission line. Tape up the line where the insulation is slit to make connection to the antenna to prevent entrance of moisture. Although it is best to keep the transmission line in one piece from antenna to receiver, when it is necessary to extend the line, solder and tape the length. The correct length of the connections as shown in Fig. 11. Only high-grade rubber tape may be used at any point in an F.M. installation. Ordinary friction tape is employed in connection with high-frequency cables. Every means must be employed to reduce this possibility of leakage.

Anchoring of the line should be accomplished without danger of snapping. Protect the line from abrasion at all points of contact. Use standoff insulators wherever possible to keep the line clear. Insulators of the "nail-it" knob type should be avoided, since they will interfere with the transmission of the line. The transmission line may be brought into the building in various manners. The porcelain "feed through" type insulator is drizzed in the window casement or frame for the line or feed insulator, it should be drilled downward from inside of building to prevent entrance of moisture. The common lead-in strip should also be avoided as the insulation is usually inadequate and the transmission losses large.

Lightning protection and installation as prescribed by National and local Boards of Fire Underwriters in accordance with local fire and building department codes, are essential. Technicians should familiarize themselves with these regulations, such as, height of antennas above building, type of lightning arrestor and type of ground.

The ground connection for the receiver is important. Although in A.C.-operated receivers, the "ground" through the line bypass condenser or capacity of the power transformer windings, reliance upon this grounding effect as the sole ground connection of a good ground connection often spells the difference between good satisfactory reception and noisy operation.

ANTENNA SERVICE POINTERS
After the F.M. installation is complete and reception is found satisfactory, no further thought of F.M. antenna requirements is necessary. When operation of the receiver is generally poor and it is known that the receiver is not at fault at the time of installation, we must look to the antenna installation.

The cause for unsatisfactory F.M. reception may be attributed to many factors: inadequate signal pick-up, excessive noise pick-up, incorrect polarization and directivity of dipole, and losses due to impedance mismatch and poor insulation, any or all of which tend to produce weak, noisy and distorted reception.

In areas close to transmitters, the question of adequate signal pick-up does not exist. At remote locations, this consideration is of importance. It is possible that the dipole was erected as high as possible in the first place. The method generally employed to increase signal pick-up in this case is by the use of a reflector.

This is a metal rod, similar to that of the dipole itself, but slightly longer, placed parallel with the dipole from 2 to 6 feet behind it, as shown in Fig. 12. This procedure not only greatly increases signal pick-up from one direction, but increases the directivity of the antenna, since signals approaching from the rear are greatly attenuated. This latter result is especially advantageous when it is desired to reduce noise pick-up from a nearby source. The reflector is used as only as often to obtain this effect as to increase signal level. No electrical connection exists between dipole and reflector. In instances where it is necessary to obtain a further increase in signal strength, a director is used.

The director is a metal rod slightly smaller in length than the dipole, and placed above or below is 5 ft. in front of the dipole as shown in Fig. 13. Approximate lengths and distances are given. Before installing a reflector and then a director, it is common to change the directivity of the dipole to change its directivity, although it may have been positioned properly (at least in the transmitter, in order to increase signal pick-up). INTERPHONE

When 2 men are engaged in the installation of the antenna, a telephone or other
MAPPING TRANSFORMER

Another cause for loss in signal level is due to mismatch between the transmission line and the receiver input circuit. One method used to effect correct matching of the 2 impedances at this point is through the use of a matching transformer or auto-transformer. The construction of such device is basically simple.

A total of 28 turns of No. 18 enamel- or cotton-insulated wire is wound on a 1-in. form, and tapped every 2nd turn. Then the tapped coil is connected in parallel to the receiver. Referring to all taps with respect to the center-tap, there are 7 pairs of taps which may be used. The use of these taps is illustrated in the diagram. In other words, taps No. 1 are both 2 turns from center-tap, taps No. 2 are both 4 turns from center-tap, etc. By suitable connecting the transmission line and the balanced receiver input to the coupling coil, a correct impedance step-up or step-down match may be obtained.

When the transmission line is of lower impedance than the receiver input, it may be connected across a fewer number of turns than the winding by which the receiver input is connected, to provide the step-up ratio. When the line impedance is higher than that of the receiver input, the receiver input is connected across fewer turns than the line. Once the correct impedance ratio is found, the coil may be enclosed in a suitable shield and installed to the center-taps. The nature of the autotransformer requires a balanced receiver input, wherein no potential is developed to the center-taps. The autotransformer is essentially the same as that of the transformer, except that the secondary has been reversed. The autotransformer is used in systems where the polarity of the signal is important.

REDUCING CAPACITY COUPLING

Two methods may be employed to reduce this capacity coupling. One involves the use of an auxiliary transformer in which grounded Faraday electrostatic shield is interposed between primary and secondary windings of the transformer. This transformer is connected between the transmission line and the receiver, and it is unimportant whether one side of the receiver input is grounded or not. The second method, and one which has been employed with success is the use of a center-tapped coil, such as the impedance matching autotransformer described, connected between the transmission line and receiver. The center-tap of the coil is grounded. The pair of taps to which the receiver input and lines are connected is best determined by trial. In any event the receiver input must be balanced or unbalanced.

Probably the most frequent cause for low signal pickup is the unwarranted use of transmission line with low-grade rubber insulation. The losses and leakage at U.H.F. of this type of wire are great enough to practically short-circuit the line and therefore the signal voltage. The use of line with good rubber insulation must be stressed. General transmission line rubber insulation which possesses good elasticity and standing "plenty of stretch," may be considered high grade as long as the line is in an ultra-high-frequency antenna system. Wire with rubber insulation which can be torn or peeled easily without stretching is "dead" rubber and usually presents high losses.

Although there is no doubt that the comparative bulk of good transmission line is unsightly from an artistic point of view when used in the interior of a building, twisted or parallel lamp cord, which is certainly not appealing, should never be used to continue the transmission line from the window to the receiver. Ordinary twin lamp cord connector offers high losses at F.M. frequencies.

There is much to be written of F.M. installation and service, more than space limitations will permit, but an effort has been made to include most essential requirements and considerations. To sum up briefly, the F.M. antenna insulation system should possess the following characteristics:

(1) Dipole as high as possible.
(2) Good low-loss insulation.
(3) High-grade transmission line.
(4) Proper directivity and polarization.
(5) Correct impedance matching.
(6) Balanced line and receiver input.
2 SPEAKERS ARE BETTER THAN 1

Modern considerations in the simultaneous use of dual loudspeakers to achieve increased fidelity in the reproduction of sound, as demanded by modern sound systems, Frequency Modulation equipment, etc., are discussed in this article. The use of "woofer" and "tweeter" units in such assemblies entails problems of frequency cross-over, impedance matching and directional characteristics with which everyone interested in high-fidelity reproduction should be familiar.

L. M. DEZETTEL

To get off on the right foot, let us clarify the title of this article. We are not referring to the usual 2-speaker installation normally found in P.A. set-ups, where 2 or more loudspeakers are connected to the output of an amplifier either in series or parallel. In this article we are concerned with acoustic frequency response. We want to reproduce all of the frequencies that the sound amplifier or radio set is capable of passing.

Since the advent of Frequency Modulation broadcasting many loudspeaker manufacturers have improved the frequency response of single speakers by more careful design, especially of the cone, than hitherto. Single speakers are available with an extended high-frequency range not realized in previous years. But there is a limit to the range that a single cone is capable of handling.

Large-size speakers, as you already know, are able to do a swell job with the lower frequencies. When both low frequencies and high frequencies are forced upon the same cone, there is a tendency for the cone to "break up" under the strain, so to speak. This is due in part to a phase cancellation in the ripples that move from the apex to the rim of the cone at higher frequencies. Have you ever listened to the distortion occurring from the reproduction of a large number of high-frequency instruments, such as occurs in symphonic music reproduction? That was the result of the inability of the speaker to handle all of the ranges being played.

DUAL LOUDSPEAKERS

The answer to the condition mentioned above is the use of 2 speakers—one to handle the lower frequencies and one to handle the higher frequencies. These constitute what are known as "woofer" and "tweeter" speaker combinations. The "woofer" speaker is usually around 12 ins. or 15 ins. in diameter and an ideal set-up handles only those frequencies below about 400 cycles-per-second.

The "tweeter" speaker is generally between 6 ins. and 6 ins. in diameter, and handles all frequencies above about 400 cycles/second.

CROSS-OVER

A filter dividing network, operating at voice coil impedances or 500 ohms or a combination of both, is used to divide the amplifier output frequency into the 2 parts. The dividing frequency (the figure 400 just used) is called the "cross-over" frequency. Although the ideal "cross-over" frequency is around 400 cycles, most manufacturers, for reasons of economy of component parts, use from 1,500 cycles to 2,000 cycles and sometimes higher. Figure 1 illustrates an ideal response curve for a 2-speaker set-up such as we are describing. The "cross-over" frequency is 1,000 cycles with a 12 db. per octave attenuation beyond the cutoff frequency. This graph represents an ideal situation which actually never exists, insofar as the sharpness of the cutoff point is concerned.

Let us look into the dividing network used to supply each of the speakers. The circuit in Fig. 2 is that of a parallel constant resistance (constant K) filter system that is commonly used. The values of inductances and capacities are for a 500-ohm input and output to speaker and have a 12 db. per octave attenuation each side of 400 c.p.s. The circuit will be recognized as two individual filters—one being a high-pass filter and the other being a low-pass filter.

Figure 3 is a circuit of a more ideal set-up of the "m" derived-type dividing network. The working impedance for the value shown is 10 ohms. The cutoff frequency is sharper, and the attenuation is about 18 db. per octave. While it is a more ideal circuit, the values of the capacities required are extremely costly to manufacture.

Figures 2 and 3 represent laboratory-type filter networks, and because of the odd values used for constants, are not recommended for home construction. Actually the speaker manufacturers have devised circuits of their own engineering, which not only produce the desired results, but permit the speaker and dividing network combination to be sold at a reasonable price.

Figure 4 is a circuit diagram of a Jensen JHP-61 dual loudspeaker, in which the inductances of the matching transformer are used in the filter system. Jensen’s circuits (not shown here) as used in their JAP-60 and JHP-62 speakers, shown in Fig. A, also incorporate a variable attenuator for the high frequencies. The dividing network system is an integral part of the speaker, and supplied with it. The "cross-over" frequency used is 4,000 cycles, and an attenuation of from 10 to 12 db. per octave is obtained.

Figure B is Cinaxialgraph’s FM-12 Cinaxial speaker using a "cross-over" frequency of 1,500 cycles. The circuit diagram of the filter network is shown in Fig. 5.

Utah is soon to come out with a concentric speaker which will be called the "Duo-tone." The woofer will be 15 ins. in diameter and the tweeter 6 ins. in diameter. The construction of their speaker will include a reflector plate just back of the high-frequency speaker which, they say, will widen the "beam" of the high frequencies.

H. F. BEAM

Speaking of the "beam" of the high fre-
frequencies brings us to one disadvantage in the use of a "tweeter." The higher frequencies radiate from any speaker over quite a narrow beam. The angle of this beam is usually around 10% which, as you can see, requires that you practically stand in front of the speaker to fully appreciate its reproduction. Try it sometime on your own speaker. In general, the smaller the cone the wider the beam, which is why many "tweeters" have an extremely small cone.

A more ideal set-up where expense is no object is the use of several speakers for the high-frequency range mounted at various angles from the direction of the low-frequency speaker, so that complete coverage is obtained. In large installations such as for theatres and auditoriums, the "cellular" type of speaker is used to fully cover the auditorium. In the cellular speakers, a horn-type driver unit is used, the throat of the speaker horn becomes gradually larger and is divided into individual small sections (therefore the term cellular). See Fig. C.

The coaxial or concentric speakers shown here have found wide favor with the public as they can directly replace existing single speakers easily. Servicemen and dealers should look into the money-making possibilities by suggesting replacements for customers already owning one of the better type radio receivers.

This article has been prepared from data supplied by courtesy of Allied Radio Corp.

SERVICEMEN
Don't fail to read pages 160 and 161—an announcement of great importance to you.
Construction Details of a MODERN 10-WATT A.F. AMPLIFIER

The amplifier described here offers the advantages of economy and small dimensions for an undistorted output of 10 W. The completed amplifier may be used for high-quality phonograph reproduction or in small P.A. systems. Provision is made for high-impedance microphone inputs and a high-impedance phono input; a low-pass type of tone control is incorporated in the circuit.

This audio amplifier is an economical unit, physically small with a good 10 watts of undistorted output and excellent frequency response. As all components operate well within their ratings, dependable audio output is assured at all times. The amplifier is ideal as a high-quality phonograph reproducer or small P.A. system.

CIRCUIT

The tube line-up is as follows: One 6SJ7 input voltage amplifier, one 6C5 or 6N7 intermediate amplifier, two 6L6 beam pentodes in push-pull class A and a type 80 plate voltage rectifier. The option of using either 6C5 or 6N7 allows a choice of performance desired. The 6C5 gives the better frequency response while the 6N7 gives a greater gain by approximately 3 db.

Two high-impedance inputs are brought out on the front of the panel to cable connectors. A crystal microphone of high-output type should be connected to the 6277 input. Other microphones, such as the dynamic or velocity may be used provided the output is as high as the crystal. The high-impedance phono-input feeds into the intermediate amplifier. Through this input the frequency response is even better than that shown in the curve.

The volume control is unique in that it may be used for fading from phono to microphone input. This is accomplished with a center-tapped potentiometer. Zero signal is at mid-scale setting and rotation on one side regulates the volume of one channel while rotation on the other side regulates the volume of the other channel.

Circuit design is such as to provide the most gain for a good frequency response at rated output. The 6S7T permits the use of a short, well- shielded grid input.

The intermediate stage makes use of the plate condenser and audio transformer in a resonant circuit to boost the bass response. Besides offering higher gain the transformer provides proper coupling to the push-pull output stage. The 6L6s are operated with cathode bias in class A to give quality performance. The low-pass tone control makes it possible to reduce high frequencies, thus assuring a desirable response.

A triple binding post output strip allows the connection of one or more speakers. The secondary winding of the output transformer is tapped to provide impedances of 4, 8 and 15 ohms. Two desired output impedances can be had, by grounding the common output lead to the chassis grounding binding post and connecting the 2 desired output impedances to the remaining binding posts. This arrangement will give the convenient selection of 2 output impedances against the chassis ground.

One or more speakers may be connected to the output of the amplifier as long as the combined voice coil impedances conform closely to those offered by the output transformers. For instance, two 8-ohm permanent-magnet speakers may be connected in parallel across the 4-ohm impedance output or two 15-ohm speakers may be connected in parallel across the 8-ohm output. Any single speaker of 4, 8 or 15 ohms may be directly connected to these respective impedances offered by the output of the amplifier. In the event a 5,000-ohm output is desired, connections may be made through condensers as shown in dotted lines on the diagram.

CONSTRUCTION

The following procedure should be followed in assembling the amplifier. Sockets must be mounted in their proper positions on...
the chassis and oriented to permit short, direct leads.

With the necessary hardware, the transformers and choke are mounted in the positions and the 2- and 5-lug terminal strips are used. Power transformer T13 is mounted on top of the chassis so that its terminals protrude through the knock-out in a manner permitting the high-voltage lugs to face the near side of the chassis. Output transformer T15 is also mounted above the chassis so that its secondary leads come through the chassis slot and the primary leads feed through the 3 provided holes. Interstage transformer T14 faces so that its primary leads come out near the front of the chassis. One of the bolts that secure transformer T15 above the chassis also mounts one side of T14 under the chassis. Filter choke CH9 is mounted below the chassis near the power transformer, but with its leads on the opposite side. The front panel and escutcheon are fastened to the chassis by mounting of the high-gain input cable connector, the 2-channel gain control, the low-gain input cable connector, the tone control, and the pilot light.

Filament leads, which may be wired first, should be twisted and placed close to the chassis, using the push-back wire provided in the kit. For the purpose of minimizing the possibility of hum, it is advisable to use a common grounding lead, which is connected to the chassis at one central point, and to which all grounded components, such as fixed capacitors, resistors and shielded leads, are connected. Shielding braid is used over the lead connecting the high-gain input terminal to the control-grid of the 6SJ7 and also on the lead connecting the rotor of the potentiometer to the control-grid of the 6C5. For all soldered joints, use resincore solder.

Most small parts are self-supported by their leads which connect directly to the proper tube socket terminals. Spare socket terminals make convenient mounting lugs. Two-lug and 5-lug terminal strips are used as junction points for capacitors and resistors. The position of these mounting strips is plainly shown on the bottom-view picture.

Although the photographs are very useful

LIST OF PARTS

RESISTORS
- Two I.R.C., 1 W., carbon, 50,000 ohms, R1;
- One I.R.C., 1/4-W., carbon, 5 megs., R5;
- Two I.R.C., 1 W., carbon, 1/4-meg., R8;
- Two I.R.C., 1/4-W., carbon, 1,000 ohms, R9;
- One I.R.C., c-t. potentiometer, 1 meg., R30;
- One I.R.C., 10 W., wirewound, 125 ohms, R32;
- One I.R.C., potentiometer, with switch, 0.1-meg., R34S;
- One I.R.C., 1 W., carbon, 1 meg., R69.

CONDENSERS
- One Cornell-Dubilier, can electrolytic, 8-8 mf., 450 V., C1;
- One Cornell-Dubilier, tubular electrolytic, 4 mf., 450 V., C3;
- Two Cornell-Dubilier, tubular electrolytic, 10 mf., 25 V., C4;
- Two Cornell-Dubilier, tubular paper, 0.01 mf., 400 V., C16;

Other Parts
- One 6N7, OA30, tube socket, 220-250 volts, 60 cycles, C2, C4-10, CI-8, C2-4, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
- One 6L6, 5A4, tube, 60 cycles, 450 volt, tube.
SOUND

SOUND ENGINEERING

Free Design and Advisory Service
For Radio-Craft Subscribers

Conducted by A. C. SHANEY

This department is being conducted for the benefit of RADIO-CRAFT subscribers. All design, engineering, or theoretical questions relative to P.A. installations, sound equipment, audio amplifier design, etc., will be answered in this section. (Note: when questions refer to circuit diagrams published in past issues of technical literature, the original, or a copy of the circuit should be supplied in order to facilitate reply.)

No. 21

MOTORBOATING AMPLIFIER— AND CURE

The Question . . .

I built a small amplifier using one 6FS, one 6SC7 and two 6Hs, and used the high-gain inverter circuit on page 269 of November, 1939, Radio-Craft. It works swell if we connect a 500,000-ohm resistor from the input plate to the input grid of the 6SC7, but the volume goes down. By placing two 0.05-mf. fixed condensers in the circuit, the volume stays up, but the bass notes lose their fullness.

Without the resistor and condenser it motorboats.

Would you send me a circuit using the same tubes that will not motorboat, or a way to fix the amplifier I already have?

The high voltage is secured from a 6-volt genemotor from a Ford Majestic car radio about 10 or 12 years old.

Herman C. Schmiederbach, Oronville, Minn.

The Answer . . .

The motorboating that you complain of is undoubtedly caused by insufficient filtering in the plate circuit of the 1st stage. Your power supply undoubtedly has high internal resistances which provide for a common coupling in-phase circuit which produces motorboating.

When you first added the resistor from the plate of the 6SC7 to its grid, you placed a positive bias on the grid, decreased the plate voltage of the 1st triode section, upset the inverter, and introduced a form of inverse feedback, which accounts for the decreased gain. When you added the 2 condensers in series with the resistor, you removed the first 3 troublesome conditions, but you introduced a form of frequency discriminating feedback. In other words, only the high frequencies are fed back. This produces a loss of only high frequencies, which accounts for the change in tonal character of the bass notes.

You can probably easily remedy your difficulty by adding an additional resistor (25,000 ohms) in series with the 500,000-ohm plate load of the 6FS5. The junction of both resistors should be bypassed to ground with an 8-mf. condenser. If this does not completely remove the motorboating condition, then a similar resistor-and-condenser network should be added between the "B+" 225 terminal and the junction of the ¼-meg. plate load resistors of the 6SC7.

CALCULATING TRANSFORMER REQUIREMENTS

The Question . . .

I am just a young radio Serviceman, who is in need of some help. The other day I purchased a signal tracer of the type that has a vacuum tube and volume control in a single unit.

Now here is my trouble. In order to use my signal tracer, I have to have an amplifier. A schematic for an amplifier came with the tracer, but being "green" at the game of servicing, I don't know how to buy parts whose values are not marked. I have put an X over the units (see Fig. 2) that have stumped. For instance, the power transformer leads are not marked and since there are so many transformers on the market, I don't know how to buy it. It is the same situation with the other 2 I have marked.

I would like to have such information so that I could buy one in the store.

The Answer . . .

Most circuit diagrams do not give detailed technical data on transformers and chokes, because it is assumed that the readers have sufficient knowledge to know just what type to purchase. Transformer T1, for example, can be purchased by simply requesting an output transformer to match a single 6FS6 to speaker voice coil. (This should be known: the usual range is from 2 to 10 ohms. Actually, the plate impedance of the transformer should be 7,000 ohms.)

Some of the specifications for the power transformer are also obvious. For example, the 6.3-volt winding should be able to handle one 6FG6, and one 6J7GT. Both of these tubes require a total of 6.3 volts at 1 amperes. Inasmuch as the plate and screen-grid requirements of the amplifier are approximately 60 ma., the secondary of the transformer should be capable of delivering this current. If the plate and screen of the 6FG6 operate at 250 volts, the high-voltage A.C. operate should be approximately 240 volts r.m.s. from each side of the center-tap. Naturally, a standard transformer should be selected which comes close to the actual requirements. A 250-volt transformer may be employed. If the output voltage is
excessive, it may be reduced by incorporating a series resistor or a shunt choke.

The inductance of the choke is determined by the degree of hum attenuation desired. A 5- or 6-heavy choke will cut the ripple down to about 5%, which should be adequate. However, a larger inductance should be used if lower hum is desired. The current requirement of the filter is determined by the total current consumed by the amplifier, which as previously stated, should be approximately 60 ma.

DIRECT-COUPLED 6A3 AMPLIFIER

The Question . . .

I would appreciate it very much if you could redesign your Direct-Coupled F.M. Amplifier circuit in the December, 1940, and January and February, 1941, issues of Radio-Craft, to use 6A3s in the final instead of the 6L6s. I wish to use it for recording purposes, and so I will not need nearly the output as afforded by the 6L6s. I wonder if you would show a few circuit voltages, also.

DANIEL DAWSON,
Hq. & Hq. Technical School Squadron,
Chanute Field, Rantoul, Ill.

The Answer . . .

A circuit diagram somewhat similar to the type you desire, appeared in the July, 1941, issue of Radio-Craft. This circuit can be redesigned in accordance with design data given in the July, 1938, issue of Radio-Craft, and adjusted to your particular requirements. All voltages can be calculated from the design data referred to.

OPERATING NOTES

(Continued from page 183)

part of the tone control, has been snapped on, and the tubes reach their normal operating temperature, or after a period of operation. In some instances, the hum may be reduced by snipping the line switch several times. In any event, when the above symptoms are noticed, check the tone control line switch. The shorting contact shunt switch, will be found contacting the heavy bus-bar terminal lead within the unit. Bending the lead up or out, away from the switch contact shunt will correct the difficulty.

Where only a loud hum is heard and the receiver is otherwise inoperative, check for a grounded push-pull output transformer primary. The primary winding occasionally short-circuits to the laminations of the transformer which is of course grounded to the chassis, thus producing the difficulty. A loud hum, which is heard above low signal levels, however may be traced to anodes of the plug-in type electrolytic filter block which have lost capacity.

In cases where the hum is accompanied by distorted reproduction, the trouble may be due to leakage between sections of the block. This is usually caused by the formation of salt deposits at the base of the 8-hole socket, which filter block also filters between the 8-hole socket. The salt deposit which is of a low-resistance nature, is the result of leakage in the electrolytic condenser, whose internal connections are the same as the ones employed in the model 6G.

When these receivers are serviced for the complaint of no control of volume with attendant distortion at resonance, no tuning meter action with needle off-scale to the left, the A.V.C. I.F. transformer, whose

INTRODUCING A NEW TYPE OF MULTI-WAVE TUNER

A domestic frequency range of 520 kHz to 1500 kHz, 10 domestic broadcast stations, 16 foreign broadcast stations, 3000 ft. stereo broadcast stations, 2000 ft. stereo broadcast stations, 1000 ft. stereo broadcast stations, 500 ft. stereo broadcast stations, and 100 ft. stereo broadcast stations, are all this by means of Bush Sound. Work in stereo broadcast reception is simulated. In fact, this will permit a complete program of previously unrecorded broadcasts. In switching to the domestic broadcast band, you only need a 16A6, 736 k.c. A.C. circuit, a 6L6G, 6A4^ tuner, a meter, and a loud speaker. Below is as afforded by the manufacturer.

MODEL 142 as illustrated above for super-astronomical circuit—645 kc. wired and tested—complete with instructions, circuit diagrams, parts and necessary data. Send for information. This was accomplished by the simple expediency of editing all material. (To our knowledge this is the very first edited radio service manual ever to be published.) All non-essential data have been deleted as have been data and diagrams on communications and export receivers, amplifiers, and other such allied apparatus which the serviceman seldom, if ever, is called upon to repair. Other features include a larger page permitting the assimilation of the entire text, and with a definite text sequence. The manual measures 8" x 10", only 634 pounds and is only 2" thick. (See page 160 and 161 for further details.)

A New Type of Radio Service Manual!

JUST OFF THE PRESS is a new type of radio service manual known as "Radio Circuit Manual—1941." It is a complete directory of radio receivers manufactured in 1940 and up to June 1941. The outstanding achievement of this manual is that all the service data and diagrams covering over this period—some 1,500 receiver models—have been condensed into a book of only 788 pages! This was accomplished by the simple expediency of editing all material. (To our knowledge this is the very first edited radio service manual ever to be published.) All non-essential data have been deleted as have been data and diagrams on communications and export receivers, amplifiers, and other such allied apparatus which the serviceman seldom, if ever, is called upon to repair. Other features include a larger page permitting the assimilation of the entire text, and with a definite text sequence. The manual measures 8" x 10", only 634 pounds and is only 2" thick. (See page 160 and 161 for further details.)

Write With This Time-Tested Pen

Read This Proof Of Its Durability and Quality

Laughlin Mfg. Co.,
Detroit, Mich.

Gentlemen:

Enclosed find money order for $1.50 for your ink pen.

May interest you to know that over 25 years ago I bought one of your fine fountain pens.

Our Sunday Visitor, I sent it for 15 years and then gave it to my brother, who lost it the pen was splendid up to the time it was lost.

Yours truly,

(along) B. F. Connery

An actual letter received from a satisfied customer of years ago who buys again.

YOUR CHOICE

SOUND $1.00 PPAID

Try either or both items for ten days at your risk. If not entirely satisfactory and we represent return it and we will refund purchase price.

Please enclose your Fountain Pen or the ink writing, stamped, guaranteed, written instruction.

The safety self-filling fountain pen is fitted with a 14 Kt. solid gold tip of the finest quality. The safety self-filling ink writing pen has a 14 Kt. solid gold tip of the finest quality. Both pens are entirely satisfactory.

DE LUXE GIFT OF BOTH IN BOX FOR $2.00

Splendid for School—for Boys in Training Camps—for Christmas

Here's writing satisfaction! Both items in satin lined gift box—$2.00 postpaid. Excellent for school—for boys in training (does meet military regulations)—for birthday and Christmas gifts. Order today.

LAUGHLIN MFG. CO.

962 Majestic Bldg., Detroit, Mich.

Please send the following for which payment of $1.00 is enclosed:

Safety Self-Filling Fountain Pen $1.00 postpaid.

Safety Self-Filling Ink Writing Pencil $1.00 postpaid.

De Luxe Sets of Fountain Pen and Ink Writing Pencil $2.00 postpaid.

Name

Address

City State

ILLUSTRATIONS 2-3 ACTUAL SIZE
EMERGENCY REPAIR OF TEST METERS

The present inability to obtain on short notice many repair parts, and the inability to obtain quick replacements of complete units, are 2 important reasons why the following article will have exceptional value at this time to many owners of meters. It tells how the radio technician may obtain service from meters which due to any one of the number of common mechanical and electrical faults described by Mr. Banks might otherwise be temporarily out of service.

JOHN CHARLES BANKS

Probably the most common of all instrument defects is "sticking." By that we mean the pointer is halted in its travel over the scale when current is applied, or when it does not return to zero after it has been moved.

To attempt to eliminate sticking, the first move is to remove the instrument cover. Due to the multiplicity of sizes and makes, it would be impossible to give directions. A medium or small diametrical needle, and some sort of magnifying glass are essential, especially if foreign matter is in the air-gap of the D.C. meter.

Sticking may be caused by one or more of several things. A tiny piece of fuzz or hair may be in the path of the pointer, either on the scale, or down at the movable coil where it interferes with its motion, or obstructing the free movement of the top or bottom hair spring. Look for this trouble near the tail of the pointer. These hairs are best removed by tweezers.

While many of the small panel-mounting, or small portable meters have etched dials, some have paper scales mounted on brass plates. If this paper is rough at some point, often a tiny piece will partially loosen itself from the scale and stop the pointer in its travel. This obstruction can best be removed by tweezers or the point of a knife. Erasing on scales should be done only when necessary, for this often breaks the paper surface and stops the pointer.

In the D.C. meter, foreign matter gets in the air-gap, that space between the core and the pole-pieces where the coil moves. This matter often is magnetic. At this point let us caution one against having an open meter near where there is dirt, especially iron filings or worse yet, pieces of steel-wool. A permanent magnet will attract these particles, and there will be no end of trouble. To locate the obstruction, connect the instrument to a current source, or to its part of the circuit by leads, and vary the current until the stoppage point is found. This procedure is also helpful when locating fuzz. If a piece is seen in the air-gap, remove with needle, withdrawing the latter slowly. Sometimes a non-magnetic piece will not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be caused friction and not adhere, therefore it must be pushed to the bottom. A thin strip from a visiting card is also helpful for this work. Again, the particle may be ca...
movable iron parts. Sometimes these parts are in the damper box as in Fig. 2, while others may be outside in full view.

Dull pivots may be detected by applying current so that full-scale deflection is obtained, and slowly decreasing this current to zero. Then tap the instrument gently with the finger to see if it changes its position to a lower value. There is no remedy for dull pivots other than having them sharpened or replaced by one well versed in the art.

A small hair may be on the inside of the case, and this will often interfere with the pointer travel. Look for trouble here if there is sticking.

Sometimes the pointer will fail to be on zero, or return to it after current has been applied. This can be caused by one of the spring convolutions jumping over the support, and can be rectified by removing with the needle or similar tool. Always examine the bottom spring as well as the top for this trouble.

Electrical Troubles

Some of the most common troubles are:

- Open-circuit in movable or field coil, or series resistance. Short-circuit in or around movable coil. Broken lead on ammeter with external shunt.

Of course there is always the possibility of an open- or short-circuit in any meter if it fails to give an indication. In the A.C. or D.C. meter if a voltmeter, the series resistance may be open-circuited. Then again in the former, the field coil, or in the latter the movable coil may be open or even shorted. Test for this trouble with another meter in series with a current source and a limiting resistor if necessary. This resistance or current source must be such as not to give more than full-scale deflection on the test meter when the test leads are touched together. Test the separate parts of the defective meter resistance, thus locating the portion giving trouble.

If the series resistance does not show any "opens," test the movable coil (in the case of a D.C. meter). An open-circuit may not necessarily be in the coil itself. Examine the leads connected to the movement. Some systems have one side grounded with the magnet, and if the other lead should make contact with any metal portion of the movement, a short will result. If the bottom spring support is insulated, this may be turned in such a way that it makes contact on the grounded part. Loosen the bottom lock-nut and turn slightly to clear. Changing the bottom spring setting will alter the zero setting of the pointer, but this can be re-set by the zero adjuster.

The A.C. meter may have an open-circuit in the field coil. If one of the lead wires to or from the coil is broken, this may be repaired. It may be possible to take one of the inside, or outside turn off for contact to the lead wire, and one turn would not make enough error in the meter if it is not an instrument guaranteed to an accuracy better than 1%. The field coil is omitted in Fig. 2, but fits around the shaft of the movement and the damper box.

Another cause of open circuit is in leads. In addition to the test leads furnished with meters, ammeters with external shunts have leads which after hard usage often develop breaks, with the result that the meter does not give a deflection. If this break is very near one of the terminals, a repair will not affect the resistance enough to change calibration of the instrument; and, if the break is an another part of the cable, it can be spliced at this point. Should it be necessary to replace a lead, be sure to do so with one of the same size and length, or one of equal resistance. The meter portion of the ammeter circuit is usually of low order, and considerable altering of lead resistance will change the calibration.

New Circuits in Modern Radio Receivers

(Continued from page 156)

much more independent in their operation, and permits separation of frequencies in the transformers where each can be designed to favor its own group or spectrum.

The output circuit is shown in Fig. 5. Note that half of the primary of T1 is in series with half of the primary of T2. The high-frequency section of the group is in T1 and the impedance or bypassing of T2 cannot possibly influence the passage of high frequencies in T1 materially. The voice coils are entirely separate there being no filter required either for the purpose of frequency discrimination or for favorable impedance matching at various frequencies. A parallel-

Test Instruments

Service Men have bought Over 100,000 Supreme Testers

Could there be more convincing proof of Supreme quality, accuracy, dependability and fair price than the fact that servicemen who know their test equipment have invested over $5,000,000.00 in over 100,000 Supreme testers?

Model 504-A

Tube and Set Tester

Our experience has equipped us to put even more value in the second 100,000 Supreme instruments than in the first. Write Dept. RC-6 for full information on 1942's Top line of testing equipment.

Supreme

Greenwood, Mississippi, U.S.A.

Save up to 50% Factory-to-you

9 Bands (on 6 dial scales)

(For use in foreign service)

Supreme

19 times better foreign tuning with four band Spero dial! PUT THIS CHASSIS IN YOUR PRESENT CABINET!

Up & 50% OFF 2RD-III

Complete

$19

FULL MEASURE

WRITE for free FREE catalog. Name, address, 5th Ave., Chicago, Ill.

Midwest Radio Corporation

Cincinnati, Ohio

push-pull arrangement is used in the output circuit although the output transformers are equally suited to a single push-pull circuit.

RAdio-Craft for September, 1941

171
How to Build and Use a Practical FREQUENCY MODULATOR

MARION AMOS

THE author having constructed an oscilloscope using a Thorodarson kit and the extra parts needed found himself in possession of a fairly good instrument but without any means of using it for resonance alignment and the study of radio frequency circuits.

Various types of frequency modulators were studied in an effort to find a single type that could be constructed from parts easily obtainable and still give satisfactory results.

"WOBBLE" FUNDAMENTALS

Fundamentally a frequency modulator is a mechanical or electrical device causing the output of a radio-frequency oscillator to vary in frequency across a predetermined band of frequencies.

For example if the frequency of an R.F. generator is "wobbled" over a band from 440 to 470 kc. by connecting a small rotating condenser across its main condenser without varying the amplitude, and this signal is applied to a circuit whose acceptance is 455 kc., the result will be that the 455 kc. circuit will accept only a portion of the incoming signal. Likewise the output of the 455 kc. circuit will only contain that part of the 440 to 470 kc. signal that the circuit accepts or passes. If these variations in frequency, without a change in amplitude, are made at a speed of 3,000 r.p.m. for the rotating condenser which is 60 r.p.m. a second, it will be at a speed in the audio frequency range or 60 cycles a second. However since the rotating condenser in the circuit moves 15 kc. each side of the 455 kc. center frequency twice every revolution, the rate of sweep is 120 times a second or in audio frequency, 120 cycles a second.

With this in mind the next step is to apply such a signal to an oscilloscope to obtain a "picture." In order to do this, it is necessary to rectify the frequency output of the 455 kc. circuit under test. In the ordinary receiver this is accomplished by the diode 2nd-detector in a superheterodyne or by the detector in a T.R.F. receiver.

In order to correlate the foregoing a restatement of the various facts that have been brought out in the example are in order.

HORIZONTAL & VERTICAL F.M. SWEEPS

The output of the modulated signal generator varies in frequency from 440 to 470 kc. at a rate of 120 times a second or 120 cycles.

The amplitude or signal strength does not vary.

The 455 kc. circuit accepts only that part of the incoming signal which conforms to the design or resonance features of the circuit.

The output of the 455 kc. circuit has only that portion of the original signal in it that conforms to the resonance characteristics of the circuit.

Due to the rate of speed with which the frequency modulation takes place, i.e., 120 cycles a second the output of the 455 kc. circuit is rectified and an audio frequency voltage of 120 cycles results.

This A.F. voltage of 120 cycles is applied to the vertical plates of the oscilloscope.

Thus when the acceptance of the 455 kc. circuit is very sharp or peaked the incoming signal will cause the beam of the oscilloscope to be deflected vertically only when the condenser reaches that point in its rotation between 440 and 470 kc. when the signal is 455 kc. and would result in only a vertical straight line on the oscilloscope.

However to date there has not been any circuit developed with such peaked characteristics as it is necessary, in order to obtain a true picture of the resonance characteristics of the circuit, to apply a voltage to the horizontal plates of the oscilloscope.

This is done by using the "internal sweep circuit" of the oscilloscope.

In this particular case, since the speed as noted above, of the frequency variation between 440 and 470 kc. is 120 cycles, then 120 cycles is applied to the horizontal plates of the oscilloscope causing the beam to be deflected horizontally back and forth in synchronism with the rotation of the condenser.

Thus when the signal going to the 455 kc. circuit is 440 kc. the oscilloscope beam is...
on the left-hand side of the screen, the condenser is at the beginning of its rotation at minimum capacity, the output of the 455 kc. circuit is minimum and the vertical deflection of the beam is zero.

Since the beam in the oscilloscope is being moved horizontally in synchronism with the rotation of the condenser, then as the beam moves the rotation of the condenser causes the frequency to vary, too. Thus as the beam moves horizontally towards the center of the screen, the signal generator frequency output is beginning to approach 455 kc. Since this R.F. signal is being fed through the 470 kc. circuit to the vertical plates a vertical deflection of the oscilloscope beam will be caused reaching maximum at 455 kc. As the beam moves horizontally to the right beyond the center of the screen the frequency approaches 470 kc. and the vertical displacement falls off until it reaches a minimum on the extreme right-hand of the screen.

FIGURES

Thus the curve shown in Fig. 1 will result. With perfect resonance there will be only one curve traced on the screen. However since the condenser plates in their rotation make one frequency excursion from 440 kc. to 470 kc. they make a frequency change from 470 kc. to 440 kc. as they change from maximum to minimum capacity. As a result there will actually be 2 resonance curves or traces on the oscilloscope screen as shown in Fig. 2.

By adjustment of the trimmers of the 455 kc. circuit the 2 curves are made to conform as nearly as possible in shape and height.

In order to lock the 2 traces on the screen it is necessary to feed an A.C. voltage to the oscilloscope in such a manner that the voltage will be developed at the same speed that the frequency modulating condenser is turning. In order to do this a small A.C. generator is built on the same shaft as the rotating condenser.

Usually this consists of 2 small coils or a pair of coils with rotating contacts connected on the end of the condenser so that the coils rotate in the field of a U-shaped permanent magnet. In this design a very simple expedient is used: the magnet is revolved and the coils are held stationary doing away with revolving contacts and making balance easier.

DESCRIPTION OF PARTS

The motor is of the small "tea power" type, squirrel-cage induction, and operating from 115 volts A.C. at 60 cycles with a speed of 3,600 r.p.m.

The condenser is a small dual condenser with 25 mmf. per section and shaft projecting at both ends. It is not in its original form but rebuilt so the rotors are on opposite sides of the shaft for balance, and the stationary plates shifted likewise. It is imperative that a steel shaft with brass bushings provided with facilities for oiling be used because of the high rotative speed. These can be made at a machine shop at small cost, using the original parts for models. Before disassembling the condenser, inspect the shaft for through pins.

The synchronizing pulse generator, which is usually complicated and the hardest part to make, is relatively simple.

A small permanent magnet is inserted in a piece of fiber as shown. The fiber is bored for a tight fit on the projecting shaft of the condenser. The magnet can be found in novelty shops and can be of square or round cross-section.

This magnet revolves between two 16 millihenry R.F. chokes connected "series aiding" which are mounted on a steel frame with steel bolts.

As the magnet revolves, the magnetic lines of force existing around it cut through the turns of the R.F. choke coils; the voltage induced thereby is used for the synchronizing pulse for locking the images on the oscilloscope screen.

The coupling is made from a National coupling with the fiber removed and 3/10-in.-thick leather disc substituted therefor. The leather disc is not permanently attached but floats between the 2 parts of the coupling.

The condenser is attached to the motor with a small bracket at one end and attached to the case with another at the other end. All holding-down bolts have rubber grommets inserted between them and the case.

For proper synchronization the magnet should be in a horizontal position between the coils when the plates of the condenser are fully closed.

Balancing of the condenser and magnet is comparatively simple and easily accomplished. If the condenser plates are properly positioned, the magnet properly inserted in the fiber and the condenser shaft properly aligned the combination will operate with an appreciable vibration. Set-screws should not be used because they will cause unbalance.

For connections of the frequency modulating condenser to the main signal generator see Fig. 3.

For synchronizing voltage connections see Fig. 4.

The 20,000-ohm volume control acts as a voltage divider making it possible to obtain most any voltage needed for synchronization and gives a very fine adjustment for locking the images on the screen of the oscilloscope.

These 2 controls are shown mounted on the case of the oscillator.

I would recommend reading some detailed books on the use of the oscilloscope. This will be an aid in realizing the full possibilities of the modulator.

APPLICATIONS

However, a brief résumé of the manner in which it is used is given herewith.

The output of the signal generator is connected to the stage in the receiver to be aligned. The vertical terminals of the oscilloscope are connected across the diode load resistor.

An amplitude-modulated signal is fed into the stage at the correct frequency with modulator switch on position 1. Set the horizontal gain of the oscilloscope amplifier at zero and advance the vertical gain until there is a thin vertical line on the oscilloscope. Adjust the circuit, being aligned, for maximum length of line with the lowest
The stage is now aligned very closely on an amplitude-modulated signal. Shift the switch to position 2. This will put one section of the frequency modulator condenser in parallel with the signal generator condenser. Connect the synchronizing voltage to the oscilloscope. Increase the horizontal gain control. Turn off the amplitude modulation leaving the R.F. signal undisturbed. Start the motor of the frequency modulator. Set the oscilloscope horizontal sweep control to 190 cycles and the synchronizing voltage control at mid position. Now due to the capacity added to the signal generator condenser by the frequency modulator condenser the signal generator will have to be reset to a higher frequency to get any images on the screen of the oscilloscope.

Increasing the signal generator frequency slowly, 2 curves as shown in Fig. 2 will appear. Increase the frequency of the signal generator until they coincide as in Fig. 1. If these images do not remain stationary adjust the oscilloscope vernier horizontal sweep adjustment until they do. If there is deformation of the curve, lower the synchronizing voltage. If the image will then not stay stationary, adjustment of both of these controls must be made.

If no image appears increase the output of the signal generator.

With the 2 images in coincidence a note should be made, for future reference, of the dial setting.

In the specific model shown in the pictures, a swing of 521 kilocycles corresponded to an output of 456 kilocycles, frequency-modulated over a 30-kilocycle band.

If the second half of a condenser is put in the circuit by shifting to position 3 on the frequency switch, a new higher frequency setting of the signal generator must be made.

The second half of the condenser will very rarely be needed except at low frequencies and for aligning broad-band circuits, such as F.M. I.F. amplifiers.

With the 2 images in coincidence the component parts of the circuit being aligned can be adjusted for the desired effect such as peaked with a narrow resonance curve or broadened out for widened response and band-pass effect.
Construction Details for a Practical

CAR-TELEVISION RECEIVER

An entirely new market for the construction, installation and service of television receivers is opened-up with the following "How to Make It" article on a 25-tube television receiver for the family automobile. With commercial television having been inaugurated July 1, it is especially timely. Every effort will be made to answer in this multi-part article all the questions any average constructor would be likely to ask.

WILLIAM B. STILL

ANYONE might wonder: could it be possible to build a practical Television set for the family automobile? and, how long would it be before the car was in the "junk yards"—plus the driver in the hospital—on the result of looking at "picture" while driving? But as we are about to prescribe a practical television receiver for the car, we can say here that the set does not work while the car is in motion.

POWER REQUIREMENTS

Whereas the receiver to be described in this article differs in many respects from the construction of a house receiver that can be easily understood because of the power supply requirements and taking into consideration the set can be used in many different locations; and as it is to be used in any number of locations and at many different signal strengths, the set must be designed with sufficient gain and a suitable type of aerial to give a satisfactory picture (image).

The receiver is a 6-volt type, operating entirely from the storage battery in the car. It requires about 25 amperes, assuming there may be 5½ volts on the generator and vibrator terminals. The chassis utilizes 25 tubes in all.

A 6-volt motor-generator supplies the low voltage to all the tubes, except the image tube. For the high voltage necessary to operate this tube we use a vibrator supply with a special transformer. As this transformer is not available, we shall describe how to add the special winding necessary for automobile operation. The power supply is derived from the receiver proper, in order to make the tuning unit compact enough to fit in the average car.

The number of controls have been cut to a minimum. They are as follows: Brightness, Contrast, Tuning, Channel, and Volume. As the synchronizing circuits are very stable their controls do not necessarily have to be brought out to the front panel.

In order to compensate for fading we have incorporated an automatic gain control circuit which will hold the image level constant over a wide range of signal variations. This circuit requires triode tubes for operation and in order to save space we use a double triode type tube (6FAG) for this purpose. As you can readily see from the diagram this is a simple D.C. amplifier circuit and works well with this set.

As we have said before, this receiver requires 25 amperes at 6 volts for operation. This may seem like a lot of current from a car battery but all cars from 1935 models have automatic generators, therefore it is possible to use this television set for an hour or more without affecting the starting of the car. After a short run the battery will usually be recharged to its normal gravity.

However the owners of some cars might be particular, so an extra generator can be used to charge a separate 6-volt battery.

A generator of this type can be bought from any automobile junk yard for a dollar or so and can be easily installed by mounting it on the motor block and driving it with the fan belt. The extra battery necessary can be installed in the trunk or under the hood. It isn't necessary to have better than a 15-plate battery. The battery leads do not necessarily have to be of the heavy type but
they should be heavy enough so that the voltage doesn't drop more than ½ volt with the load.

We recommend No. 8 wire for a distance run of 8 ft. from set to battery.

BLOCK DIAGRAM

It can easily be seen from the block diagram in sequence of events, how to follow the signal from the antenna to the image tube and loudspeaker, the circuit operation is as follows:

The special antenna required (to be described) is fed through a suitable matching network and into the control-grid of an 1852-type tube as the R.F. amplifier; this is followed by the 1st-detector tube which is also a type 1852. A 6JS is used as the oscillator in an electron-coupled circuit. The output of the 1802 is fed into a frequency doubling network to separate the sound and image signals. This is simply an I.F. transformer tuned to the 2 different frequencies, that is, 8½ and 12½ megacycles.

The sound I.F. is amplified in 2 stages using 6SK7-type tubes. This raises the signal level to an audible intensity to operate the limiter tube, even if the signal is very weak; the limiter tube is a type 6S87. This circuit is followed by the F.M. discriminator, and the 6S6E is used as the audio amplifier.

The audio frequency amplifier is conventional, using a 6FS 1st audio and a 6K6 to operate the loudspeaker sufficient to operate the limiter tube. The "picture" frequency, 12½ megacycles, is amplified in 3 stages using 1852-type tubes. Following the 3rd I.F. amplifier is the video detector which will constitute a type 6H6 tube. Part of the video signal is fed to one-half of a 6N7-type tube in the automatic gain control (or A.G.C.) circuit. The other nishf of this tube and a D.C. amplifier to control the grid-plates of the 3 video I.F. amplifier tubes. The main video signal is fed to the control-grid of the 1805-P 2-C.R. tube. Also locked to the control-grid of the C.R. tube is the other half of the 6H6 tube. This is the D.C. restorer. The synchronizing signal is also taken from the output of the above detector, the synchronizing signal is amplified in one-half of the 6P7 tube, that is the triode section. The pentode section of the 6P7 is used as a sync. separator. The output of the 6P7 is fed directly to the vertical and horizontal sweep oscillators. Two 6NT tubes are used in a conventional discharge oscillator circuit. A 6N7 tube is used as an audio amplifier for the 60-cycle sweep. This is connected to the vertical plates of the "picture" tube. A 6FSG amplifies the horizontal scan sweep, and the horizontal output tube is fed to the horizontal plates of the image tube.

The high-voltage power supply for all tubes except the C.R. tube is derived from the motor-generator. The latter tube gets its voltage from the 879 tube. The high-voltage necessary is obtained by using a vibrator and a special transformer.

COMMERCIAL TELEVISION INAUGURATED JULY 1

JULY 1, Television inaugurated its visual broadcast service on a full-fledged commercial basis. Two television stations in New York began this new public service immediately. Three more stations—Los Angeles, Chicago, and Philadelphia—are expected to make the transition from experimental to commercial operation in short order, and 17 other stations in various parts of the country signify their intention of going commercial as soon as it is possible for them to do so.

The National Broadcasting Company's television station should soon stop the Empire State Building, New York, has received the first license for commercial operation, and is expected to go on the air this summer. Among the prominent stations to be inaugurated in early 1941 are those in New York, Los Angeles and Philadelphia, and the ABC network will soon have a dozen stations scattered all over the country.

Columbia Broadcasting System, Inc., was authorized to begin program tests over its New York station identified by the call signal W2XB, the same day. Don Lee Broadcasting System, W6XAO, Los Angeles; Zenith Radio Corporation, W6XV, Chicago, and the Philco Television Corporation, W3XE, Philadelphia, will continue to transmit scheduled programs over their respective stations pending the formation of shifting from experimental to commercial operation at the earliest date possible.

Allan B. DuMont Laboratories propose to begin commercial operation at its New York station, W2XWW, W2XWW, within a month. This same company is also preparing to go on the air from the Empire State Building. Another station, W2XWT, so that out of New York, too, can go on the air quickly.

As of this writing, the Columbia Broadcasting Company intends to proceed promptly with construction of its Washington station, W2XMB, with the prospect of test programs in the capital city by November 1. It anticipates that its Philadelphia station, W3XPF, will be completed and in operation by July 1 of next year.

Of the 17 other commercial stations are likewise arranging to go commercial in ensuing months. Their locations are:

- **ALBANY**—W2XB, General Electric Co.
- **CHICAGO**—W6XBB, Balaban & Katz Co.
- **CINCINNATI**—W6XCB, Columbia Broadcasting System.
- **LOS ANGELES**—W6XAA, Earl C. Anthony
- **W6XHH, Hughes Productions, Hughes Tool Co.**
- **MILWAUKEE**—W6XW, WJAR, Inc., Broadcasting Produc-
- **NEW YORK**—W6XNJ, The Journal Co.
- **PHILADELPHIA**—W6XLU, W2XMT, Metropolitan Television.
- **SAN FRANCISCO**—W6XDL, Don Lee Broadcast-
- **W6XIT, Hughes Productions, Hughes Tool Co.**

Television stations licensed on a commercial basis are required to furnish at least 16 hours of program service a week, which may include Sunday, and on each day, except Sunday, "there shall be at least 2 hours' program transmission between 2 P.M. and 11 P.M., including at least 1 hour of program transmission on 5 weekdays between 7:30 P.M. and 10:30 P.M."

Persons within the reception areas of commercial television stations will be able to see on their receivers, with accompanying sound, studio productions with live talent, motion pictures, "slide presentations" of special events outside of the studio, such as news happenings, sports, parades, etc. In making spot news visible, as well as furnishing visual entertainment and entertainment, this new broadcast medium expects to speedily develop popularity and interest. As a result of tests with television projection on large screens, a New York theatre is already being so equipped. Lightweight portable "pick-up" equipment has been developed, and a special type of studio production is being evolved. The existing coaxial cable between New York and Philadelphia is useful for the exchange of television audio signals between those cities. A similar cable is being laid between Baltimore and Washington. When the link between Baltimore and Philadelphia is added, all 3 cities will have outlets for television programs originating in either city. A television radio relay system is also being worked on for future service.

In view of the impending demand for television receivers as new localities are opened to television service, the industry is seeking an orderly process with requirements of materials for the national defense. In this respect the Radio Manufacturers Association is rendering continuous and efficient cooperation. It was principally through its efforts that the engineering minds of the industry agreed on basic principles which enabled the Federal Communications Commission, on April 30, to adopt rules and regulations and standards and set the time for 1 visible signal television service. It was to pave the way for this commercialization that the Commission last year specifically licensed some 2-score individuals and firms, which had budgeted $26,000,000 for the purpose, to engage in preparatory experimental operation.

After 6 months of practical tests of the present television standards, the Commission will consider further changes, with particular reference to new developments. Meanwhile, program stations are encouraged to experiment with color television, to guard against monopoly in this new field, and not more than 3 television stations can be under the same control.

Development of frequency modulation makes it possible to use F.M. for the sound accompanying the pictures. And the location of the television frequencies offers an opportunity to make television sets which will also receive F.M. broadcasts, and F.M. sets which will receive the aural part of television broadcasts.

Following is a listing of Television Broadcast Stations dating from Jan. 1, 1941, to the last available date, June 10. These stations are either commercial, under construction, or planned to be constructed.

Classification of omissions. The following figures on pages 171 and 175 refer to the purpose for which the transmissions are used, assuming their modulation or type possible keying to be only in amplitude as follows:

Type A	Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
Type B	Wavemeter. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
Type C	Telegraph. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
Type D	Facsimile. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
Type E	Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.

- **Waves from television broadcast stations; the modulation or keying to be only in amplitude as follows:**
 - Continuous waves
 - Type A: Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type B: Wavemeter. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type C: Telegraph. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type D: Facsimile. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type E: Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.

- **Waves from television broadcast stations; the modulation or keying to be only in amplitude as follows:**
 - Continuous waves
 - Type A: Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type B: Wavemeter. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type C: Telegraph. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type D: Facsimile. Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
 - Type E: Waves resulting from the modulation of a carrier wave by frequency alterations to correspond with the voice or music.
TELEVISION BROADCAST STATIONS

(Continued from preceding page)

Licensee and Location Call Letters Frequency (Mc.) Power Visual Aural Emission
Television Productions, Inc. (Area of Los Angeles) W6XLA 230-280 650W. 1AS (Used with W6XYZ)
(Afterhours and corrections [italics] during February.)
General Television Corp. W1XG S.A. 50-55 300W. A5
Boston, Mass. W2XD 165-168 40W. A5
General Electric Co. Schenectady, N. Y. W6XJJ 260-330 1kw. 1A3 & A5
LeRoy's Jewelers (A partnership, consisting of B. P. Shapiro and H. Shapiro, partners) Los Angeles, Cal. W2XET 165-168 400W. (Used with W2XBY)
Philo Radio & Television Corp. Portable (Area of Philadelphia, Pa.) W2XWB 284-396 10W. 1A3 (Tele Relay with W2XBR)
(Alternations and corrections [italics] during March.)
Babson & Kelly, Corp. Portable-Mobile W2XPR 285-386 10W. 1A5
Area of Chicago, Ill. W1XST 258-270 50W. (Used with W1XBT)
Babson & Kelly, Corp. Chicago, Ill. W1XSTW 290-310 50W. 1A8 (Tele Relay with W2XSN)
(Alternations and corrections [italics] during April.)
Allen B. DuMont Laboratories, Inc. Portable-Mobile W1XKT 285-270 C.P. covered by License 16W. A5 (Used with W2XVT)
(Continued from preceding page)

CURRENT - 1941

FREE!
with $1.00 subscription to RADIO-CRAFT

THE MODERN WEBSTER DICTIONARY
FULL LIBRARY SIZE
MODERN WEBSTER DICTIONARY
416 PAGES

CONTAINS:
22,000 DEFINITIONS
DICTIONARY OF RADIO WORDS AND TERMS
DICTIONARY OF THE AUTOMOBILE
TABLES, TREATISES, ETC.

FILL OUT - MAIL THIS COUPON TODAY!

RADIO-CRAFT, 20 Vesey Street, New York, N. Y.

I want the radio dictionary. Please enter my subscription on RADIO-CRAFT form No. 31 and send me a copy of the modern WEBSTER DICTIONARY.

[Signature]

[Name]
[Address]
[City] [State] [Zip]

NOTE: This offer is good only for those ordering in the U.S. and possessions.

OPERATING NOTES

(Continued from page 169)

primary is in the plate circuit of the 6BT, will be found with leakage or a short-circuit between primary and secondary windings. Primary and secondary are wound together. Repair of the unit does not warrant the time nor labor involved and replacement is advised.

Intermittent reception accompanied by load popping noises as reception cuts in or out, is caused by shorting I.F. trimmers and by loose or poorly soldered connections in the tuner unit. These I.F. trimmers may be repaired by replacing the mica dividing plate.

The unusual condition may be experienced with this model where reception suddenly cuts off. When the volume control is advanced to its Maximum position, it will be found that no reception can be obtained upon frequencies below 350 kc. High-frequency stations which are normally received at 1,300 and 1,500 kc, can be heard with more than 5 times the signal strength at 940 and 1,140 kc, respectively, than on the proper frequency, although these stations are also heard upon their assigned frequencies. The tuning meter will show little or no deflection upon resonance, with the needle of the meter set about half-way on the scale. All 3 short-wave bands will be found completely dead.

These symptoms are the result of a short-circuited oscillator section of the condenser gang, which is caused by grounding of the heavy buss-bar lead connected to the stator of the oscillator tuning section to the heavy flexible copper braid pigtail lead employed for bonding the gang to the chassis, or by the stator lead shorting to another buss-bar lead running to the same section of the wave band switch. Either the stator lead or pigtail should be moved to correct the difficulty. When the buss-bar lead is disturbed, however, it will be found that the calibration will change slightly.

Upon the complaint of weak reception when it is necessary to turn the volume control to maximum position and a socket analysis discloses low screen-grid voltage on the R.F. and 1st detector tubes, with slightly lower plate voltages, look for a leaky 4 mf. electrolytic screen-grid bypass condenser and check the 15,000-ohm screen-grid drop resistor for a carbonized condition.

This receiver has presented a problem in the East which may or may not be experienced in other sections of the country. At any time, WOR and WJZ, both powerful broadcasters, whose assigned frequencies are 710 and 770 kc, respectively, are each received at 3 points. The signal of WOR is not only heard at 710 kc, but also at 680 and 740 kc. Signal strength at these 2 repeat points is fair and the tuning meter will function at all 3 points, with the greater swing at 710 kc. On the other hand WJZ will be heard 20 kc below and above its assigned channel. As with WOR, the tuning meter will operate at all 3 points. This produces a condition whereby both WOR and WJZ are heard almost to the same point lying just between assigned channels. In other cases, a beat frequency signal is heard at the repeat points. Careful alignment is to no avail. It seems that the trouble is due to the choice of 370 kc. as the intermediate frequency, harmonics of which I.F. signal producing the condition. Nothing can be done to rectify the difficulty but to install a new tuner and amplifier chassis which employs I.F. transformers adjusted to 465 kc.

RADIO-CRAFT for SEPTEMBER, 1941
Applications of the

A.F. TEST OSCILLATOR

The Audio Frequency Test Oscillator has many applications ranging from use in audio amplifier measurements to radio receiver tests. Just how to go about making these various tests, to meet everyday demands, is the subject of this article, which is reprinted from The Aerovox Research Worker. The introductory portion discusses audio amplifier tests and measurements; the conclusion completes this discussion, and describes radio receiver tests.

FREQUENCY GENERATION

The variable-frequency audio oscillator, as already pointed out, is primarily a standard-signal audio-frequency generator. As such, it makes available any frequency within the so-called A.F. spectrum; i.e., generally between 20 and 20,000 cycles per second. There are on the market at this writing a few wide-range oscillators that extend the high-frequency end of the range beyond the commonly conceived audio-frequency band—one, at least, to a frequency as high as 50 kc. to meet the demands of various wide-band channels appearing in television and allied equipment. Most standard audio test oscillators do, of course, operate considerably lower in frequency than 20 cycles, but most of the dial markings on these commercial instruments are not graduated far below that frequency.

The voltage delivered to the output circuit is sine-wave in shape, possessing therefore very negligible distortion throughout the frequency range. The output voltage amplitude is controllable, as a general rule, by means of a gain control or attenuator built into the instrument. At any one setting of the amplitude control, the output voltage varies over only a few decibels as the frequency is varied between opposite limits of the audio-frequency spectrum, the maximum variations occurring usually below 100 cycles and above 16,000 cycles. The accuracy of the generated frequencies is sufficient for the exacting laboratory studies requiring this type of instrument, any error being never more than a very few per cent of the stated value.

Suitable flat-characteristic amplifiers are included in the audio test oscillator, and these generally are terminated by an output circuit (transformer in most cases) providing a choice of low- or high-impedance coupling.

As an audio-frequency generator, the oscillator is applied to the various tests requiring inspections of equipment at a number of quickly chosen frequencies, as will be shown in the subsequent paragraphs.

Bridge Generator.—In various A.C. bridge operations requiring an alternating current of good waveform and controllable amplitude, the variable-frequency audio oscillator is particularly adaptable. For example, a certain capacity measurement might require a 1000-cycle test voltage, while another type of bridge inductance measurement might indicate a 400-cycle voltage. The audio test oscillator may be set to either of these, or to any other required frequency, quickly.

Exact-Frequency Source.—The audio test oscillator, as a generator of standard frequencies, finds application in such operations as the testing of motors (particular example, the synchronous motors employed in electronic clocks) that are to run at certain power-line frequencies normally encountered. The oscillator makes possible the simulation of the frequency drifts expected in the service in which the motors are to be used. In applications such as the fore-
FREQUENCY IDENTIFICATION

The variable-frequency audio oscillator, as a standard-frequency generator, is well known for its function in identifying unknown frequencies within its range. A form of comparison between the known and unknown frequencies is employed. One method is illustrated in Fig. 1. Here the signal voltage of unknown frequency is applied to one telephone of a standard headset, while the signal voltage of known adjustable frequency from the oscillator, VFO, is applied to the other telephone.

The operator adjusts the signal amplitude until they are both approximately equal (or of slight inequality, if this arrangement is necessary to accommodate his particular difference in right- and left-hand sensitivity) and carries the frequency of VFO slowly through the audio range. Within a few cycles either side of the unknown frequency from oscillator X, a beat note is noted at a slow speed. This method and waning condition as the exact frequency of X is approached, and disappear- ing entirely in favor of signal reinforcement when both oscillators are set to the same frequency. The frequency of X is read at that point from the dial of the standard oscillator, VFO.

Visual Method.—An alternative method would employ a suitable vacuum-tube mixer circuit with standard voltages applied to separate grids and the beat-note (and zero beat) conditions being indicated by a tube meter or "electric eye" operated in the tube plate circuit. This method is somewhat more accurate, since it eliminates the human error due to natural in- ability to recognize exact zero beat.

Beat-Note Applications.—The same system of frequency identification can be employed to identify the heterodyne beat between 2 radio-frequency oscillators in particular applications to be discussed later.

Identification of Sounds.—Either of the foregoing methods, visual or ear, might be used also to identify actual sound pitch, although this operation may be better carried out with a specialized instrument such as an aural or wave analyzer. If the unknown tone is sufficiently loud to be heard, it may be compared directly to the variable-frequency audio oscillator which is con- nected to feed a loudspeaker or headset. The operator, listening to both sounds—that of the unknown tone and the reproduced VFO signal—adjusts the oscillator to "zero beat" and reads the frequency from the instrument dial.

If the unknown tone is too weak to be compared easily with the VFO signal, it may be fed into an appropriate microphone - amplifier setup terminated by a speaker, headphones, or mixer circuit, as required by the application.

Thus the pitch of musical instruments, automobile horns, single-frequency machine noises, and the like may be determined.

A.F. AMPLIFIER MEASUREMENTS

As pointed out earlier, the variable-frequency audio oscillator is invaluable in all tests and measurements performed on audio amplifying equipment, from the simplest amplifier used in a radio receiver or hearing aid to the mammoth public address systems for outdoor coverage. It is this application that has placed the instrument in the radio serviceman's general equipment category.

To illustrate amplifier tests and measurements, the reader is referred to Fig. 2, which shows a conventional A.F. amplifier with screen-grid, suppressor and cathode circuits of the stage, and all power supply wiring omitted for simplicity.

With the variable-frequency audio oscillator and a suitable vacuum-tube voltmeter, such measurements as those given in individual stages or in the entire amplifier may be made, the response studied, and resonant points located.

Transformer Gain.—The gain of an individual transformer, such as T1, may be checked by connecting the oscillator output to power or ground. The amplifier power is switched off and all oscillator connections are made to a suitable frequency, such as 400 cycles. With the V.T.V.M. connected between 7 and Gnd., the voltage applied to the primary is measured. The V.T.V.M. is then transferred to bridge points 8 and 10 and the voltage reading taken there. If T1 is a step-up transformer, this last voltage reading will be higher than the first by a factor equal to the turns ratio of the transformer. If it is a step-down transformer, the secondary voltage will be lower by the correspond- ing turns ratio.

If the V.T.V.M. is then connected between 8 and 9 or 9 and 10, the voltage reading will indicate the gain in each half of the secondary winding. If the secondary center-tap has been carefully placed, both readings will be identical.

The same operation may be made on transformer T2, here the VFO is connected between 11 and 13 and the V.T.V.M. between 14 and 15. To inspect the exactness of the primary center-tap on this transformer, the VFO may be connected to 14 and 13 and an output voltage reading taken with the V.T.V.M. The meter is then transferred successively to 11-12 and 12-13, and across each of these latter terminal combina- tions the voltage reading should be identical. In both of the foregoing center-tap measurements, the percentage by which the voltages across separate halves of the winding differ is the percentage by which the center-tap is misplaced. The difference between these voltages indicates the primary and secondary in either of the gain measurements is a direct indication of the gain through the transformer. For example: the voltage at the output of the oscillator might be found to be 1 volt r.m.s., while that across the secondary winding is 3 volts. The gain through that transformer would then be 3.

The gain measurements may be repeated at other frequencies than 400, carefully measuring each time the voltage at the primary (output of oscillator) and that of the secondary to determine if gain is falling off or increasing as the frequency is changed.

Tube Gain.—Tube gain may be measured in any of the stages by applying a known voltage from the oscillator to the grid and measuring the A.C. output voltage at the plate of the tube. Here again, the frequency of the signal voltage may be changed to study the frequency-gain characteristics.

As an example, it may be desired to find the actual gain afforded by tube V1. The oscillator is connected between point 2 and Gnd. and the voltage between 2 and Gnd. measured with the V.T.V.M. The meter is then connected between point 2A and Gnd. and a higher reading obtained there. The factor by which the signal voltage from the oscillator must be multiplied to equal the plate output voltage represents the gain afforded by the tube. For example: if the voltage delivered to the grid (point 2) was found to be 0.5 volt and that present at point 2A is 5 volts, then the tube gain is 10.

It must be remembered that in these tube and stage gain measurements, the amplifier must be placed in operation and steps must be taken to prevent any passage of current through the oscillator output circuit from point 2 or through the V.T.V.M. from the high-voltage point 2A. Suitable fixed blocking condensers will in general take care of both of these requirements.

Stage Gain.—The gain of an entire stage may be measured in a similar fashion with the amplifier in operation, but all com- ponents associated with the input and output circuits of the stage must be included. This includes input and output-circuit coupling condensers or transformers. Thus to measure the gain of the second stage, the oscillator is connected between 3 and Gnd., and V.T.V.M. measurements made successively between 3 and Gnd. and 5 and Gnd. In this manner the actual gain through the entire stage is measured by noting the difference between the voltages applied to the grid of V2 and to the grid of V3.

The gain of the last stage may be measured by applying the oscillator signal volt- age between 7 and Gnd. and measuring suc- cessively the voltages across those points and the points 14 and 15. In this manner, both input and output transformers are included to give the true per-stage gain and not just the gain of the tubes or the gain of tubes and 1 transformer.

The gain of each stage or any combina- tion of stages may be investigated at various frequencies. These measurements reveal incorrect or faulty components through the discovery of low gain values.

Overall Gain.—The gain of the entire ampli- fier may then be measured as shown in Figs. 3A and 3B. When a complete ampli- ffer is to be measured this procedure is followed.

The overall gain, or better, the signal voltage required to deliver maximum output pu- can be measured by first determining the power output limit. The simplest way
of doing this is as follows: The amplifier is coupled as in Fig. 3A, with an attenuator and a calibrated potentiometer. The input from the amplifier is varied from zero up. The power output of the amplifier is calculated from E^2/R and plotted against the input voltage. The rated load of an audio amplifier can be found by drawing a straight line from the origin tangent to the voltage curve. At the point from which the voltage curve drops away from the straight line, distortion begins (see Fig. 4), the amount of which being the allowable displacement of the curve. The allowable distortion depends upon the particular use of the amplifier and the corresponding allowable displacement of the curve from a straight line and can be determined from these conditions. Figure 4 shows such a curve for an amplifier whose constants are given in the diagram.

This is a simple manner of approximating the power output of an amplifier without the use of a harmonics and distortion meter. The ratio P/e at the load limit is the sensitivity of the amplifier. P is the total output in watts and e the input voltage required to produce this output. The hum level in db. below maximum output is given by

\[
P_p -10 \log_{10} \frac{P_p}{P}
\]

Pp is rated power output of the amplifier and Py is the power output with zero power input. Actually the curve in Fig. 4 does not go to zero input, but the noise level at an input of 5000 and is so much greater than the noise for the input voltage. This is shown by the flattening of the curve at that point.

If the range of the V-T.V.M. is less than the voltages to be measured, a voltage divider may be used to extend the range of the voltmeter. The load resistance, R in Fig. 3A, is equal to the output impedance of the amplifier.

The arrangement shown in Fig. 3B will prove more satisfactory if the amplifier has low input impedance, such as 500 or 250 ohms. An oscillator and attenuator are used at the input and the voltage measured across the attenuator; Z1 is equal to the input impedance of the amplifier. The input voltage is then:

\[
e_i = \frac{E_i}{Z_1} = \frac{Z_2}{2(R_2 + R_1)}
\]

Then the switch is thrown to B and the voltage is measured across the output load or a portion of the output load. The output voltage is then:

\[
e_v = \frac{E_v}{Z_2} = \frac{E_v}{Z_1} + \frac{Z_2}{Z_1}
\]

In measurements of fidelity, d1 is kept constant while the frequency is varied and readings taken of e2. A curve is drawn of 20 log e2 versus frequency.

Location of Resonant Points.—Resonant points are points of sympathetic vibration appearing in radio loudspeakers, head-phones, cabinets, chassis and shielding. The ability of these mediums to vibrate, when excited by a reproduced note corresponding to their own fundamental periods, causes unpleasant emphasis of certain notes. Resonant points may be located in amplifiers by feeding to the latter a signal from the audio oscillator. With the speaker normally used connected in the output circuit and the amplifier placed into operation, the frequency of the oscillator is slowly varied from zero to maximum. The gain should be set where the output of the speaker will be just audible by the ears and where the differences in output level may be quickly recognized.

As the oscillator frequency is varied, resonant points of vibration in speaker, chassis, shielding, or cabinet will show up as tremendous intensifications. These points are usually rather high in frequency for chassis, tube bases, and the like; low in frequency for speaker cone and cabinet.

Headphones may be checked for resonant points in the earphone diaphragms by connecting them directly to the output terminals of the audio oscillator and varying the frequency until the points of reverberation are detected.

RECEIVER TESTS.

In checking the fidelity of radio receivers, it is generally desirable to inspect the entire overall frequency response which includes the radio-frequency stages as well as the audio stages.

It is customary in this type of test to connect the variable-frequency audio oscillator to the R.F. signal generator in order to modulate the R.F. output at any frequency within the audio range. The method of connection is shown in Fig. 5. The R.F. signal generator is coupled to the receiver and a vacuum tube voltmeter is connected across the output circuit. A test oscillator is then switched into circuit and the loudspeaker modulated by the signal carried throughout the frequency range by adjusting the audio oscillator frequency. The input R.F. voltage is kept constant while the frequency is varied, and readings are taken of the output voltage at various frequencies as indicated by the V-T.V.M. A curve may then be drawn showing 20 log e versus frequency.

The flatness of the curve is an indication of the fidelity of the receiver. The flatter the curve, the higher is the fidelity of the receiver. If it is desired to locate the probable causes of low fidelity, the audio channel may be studied separately, as outlined in the paragraphs on amplifier testing. Then the I.F. channel may be inspected by setting the R.F. signal generator to the intermediate frequency, coupling it into that channel and modulating the I.F. signal throughout the audio spectrum and plotting a curve of the output as above. Finally, the R.F. and detector stages may be studied.

RADIO-FREQUENCY DEVIATION.

Arrangements for the precise measurement of radio frequencies employ systems for comparing an unknown radio frequency with a suitable harmonic of a precision local oscillator - multivibrator system. When the unknown signal frequency coincides with a harmonic of the standard, its value is identical with that of the harmonic frequency. However, this is seldom the case. The unknown frequency generally differs from the harmonic frequency by some number of kilocycles.

Since the standard frequency measuring assemblies employ 10-kc. multivibrators to subdivide the R.F. spectrum into 10-kc. intervals, the unknown unknown signal will set the audio-frequency best note with one of these adjacent subdividing carriers. And the deviation of the unknown frequency may be determined exactly by measuring the frequency of this best note. The exact frequency of the unknown signal may then be determined by adding the audio frequency to the nearest 10-kc. harmonic (when the unknown is observed to be higher in frequency than the harmonic with which it is being) or subtracting 5 kc. from the 10-kc. harmonic when the unknown is observed to be lower in frequency.

As an example, suppose that an unknown R.F. signal, as picked up by a detector circuit or radio receiver along with standard points from a secondary frequency standard, sets up the note 5,010 kc. above the unknown signal frequency. The unknown signal frequency, when added exactly, will produce the best note. 5,010 kc. above the unknown signal frequency is 5,010 kc. than the audio-frequency note, 0.1 kc. The audio-frequency note is located by means of a variable-frequency audio oscillator, as explained in Fig. 1, and found to be 200 cycles. Rotation of the receiver or detector dial shows the signal to lie higher in frequency than the 5,010 kc. harmonic.
BRITAIN'S AIRCRAFT RADILOCATOR

The following exceptionally informative article goes further toward explaining the operation of England's famous Radio Plane-Locator than does anything which has so far come to Radio-Craft's attention. It is reprinted here from the author's department, "Science In The News," in The New York Times, by courtesy of the publishers and of Mr. Kaempfert. Concluding the article is information released to Radio-Craft by the U.S. War Department concerning Uncle Sam's Radiolocator, and the need for trained personnel to operate this new equipment.

WALDERMAR KAEMPFFERT

In operation rooms like this, many feet below ground R.A.F. officers and girl plotters of the Women's Auxiliary Air Force work day and night watching the movements of enemy planes over Britain.

From the gallery, the officers are able to plot the defense against enemy bombers through viewing the map below which gives a continuous record of information supplied by scattered detecting posts, including those equipped with the Radio Plane-Locator described in the accompanying article.

From these subterranean nerve centers, the never-ending aerial battle of Britain is directed.

Photo—British Radiolocating Corp.

A searchlight reveals a shore or a ship by reflected light. Radio waves behave very much like light waves.

It takes time for light waves to reach an object and be reflected in this fashion. Light travels at 186,000 miles a second (radio waves too), so the reflection seems to be instantaneous. Sound, on the other hand, is much slower, so that we see the flash of a gun, fired at a distance of a few miles, long before we hear the sound. Knowing the speed of sound, it is not difficult to measure the distance of the gun merely by noting when the flash appeared and the time when the report arrived. Whether we deal with light, radio waves or sound, timing is therefore of the utmost importance in measuring the distance of an object.

INVENTORS SOLVE PROBLEM

How are we to measure the "echo" of a radio wave which flashes through space at the rate of 186,000 miles a second?

Suppose we send a radio wave into space in the hope of meeting a mountain at night or in a fog. The radio waves will strike the mountain and then be reflected back to the station. But the transmitted and reflected waves will not necessarily be in step, or "in phase."

When the transmitted and reflected waves are in step or in phase they will reinforce each other; when they are out of step or out of phase they will cancel each other. Thus 2 sound waves that are out of step will cancel each other so that silence results. Similarly 2 light waves or 2 radio waves can cancel each other so that we detect nothing.

Radioiloccation was first applied in devising what are called absolute altimeters, which indicate height from the ground. The ordinary altimeter is simply a barometer which indicates only heights above sea-level. Suppose a pilot is soaring over a range 5,000 feet high, and his barometric altimeter registers a height of 6,500 above sea-level. If he should drop only 500 feet in a fog he would crash. The absolute altimeter sends out radio waves which are reflected by the ground, whereupon the pilot follows a spot of light on a screen or the finger of a meter, sees at once that he has only 600 feet to spare and promptly noses up.

PLANE ACTS AS MIRROR

Suppose we direct the radio beam not down against the ground but up into the air. Clearly we have a means of detecting hostile, invisible aircraft. Each plane acts as a little mirror which sends the beam back. And again the spot of light or the indicator shows the distance and location.

It was not by reversing the altimeter that the British hit on this method of locating bombers, but by studying the ionosphere, the name given to a sort of radio mirror in the sky. Without that reflecting ionosphere it would be impossible to send a radio message across the ocean without using excessive transmitting powers.

Like light, radio travels in straight lines, so that we would expect a radio message to shoot off into space. Indeed, when Marconi announced that he had sent the Morse letter "S" across the Atlantic nobody believed him.

When, later, amateurs began to use shorter waves, to cover the same distances with very little power, there was more incredulity. The mathematical physicists Oliver Heaviside in England and A. E. Kennelly in this country did some figuring and decided

RADIO-CRAFT for SEPTEMBER, 1941

NOW that the British have appealed to us for technically trained men who can maintain and repair their radiolocators of aircraft, we have dug into the British literature to discover what has been done by inventors to create artificial sense which will enable us to see through fogs and the inky blackness of moonless nights. In the light of our discoveries, which we here pass on, we cannot see why there has been so much secrecy about principles that have been known at least 10 years.

We begin with radio waves themselves. They are light waves that cannot be seen because of a length that may vary from a few inches, measured from crest to crest, to miles.
that there must be a reflecting layer in the sky. The shorter waves have been reflected back by that layer, then up again and down again and so across the Atlantic.

SEVERAL LAYERS

There are several of these reflecting layers in the earth's atmosphere, V. V. Appleton, the
land's leading authority on the ionosphere, made some measurements of their heights by shooting up radio waves of different lengths for the frequency. It is said that on one occasion the reflected wave, or "echo," came from the wrong direction and at the wrong time, and Appleton dis-
gated. He found that the passenger planes that arrived at Croydon were not on the observed discrepancy. They were little mirages that had sent back his beams.

The inventors of radiocounters have de-
played remarkable ingenuity in juggling the waves so they will be in or out of step or phase. In one type of instrument a phase meter is used, which measures the phase dif-
terences between two waves. In another type the wave is split, part of it going to the ground and part to the receiver on board the plane. The pilot controls the two by means of thumb switches. The transmitted
and the reflected waves are two different waves, then the wave is not detected by the receiver.

When frequency modulation is resorted
which device the radio waves are transmitted and received that is shifted. It
open and close the slats 60 times a second we shall still see a steady light, because the eye is so slow that it cannot follow each opening and closing. Suppose we have an artificial eye also open and shut with a shutter composed of slats. Clearly the receiving shutter must open exactly when the search-
light shutter is open. The artificial eye must then see it. If the receiving shutter and the transmitting shutter are both closed at the same instant nothing is transmitted and nothing is received, yet the shutters are both open something is sent and some-
thing is received. There are moments when the receiving shutter is open and moments when both are closed, or one may be open and the other closed.

If note "C" on a piano is played, suppose the shutter of the searchlight opens 100 times a second. Then the shutter of the receiving eye must also open 100 times a second in unison. This is frequency modula-
tion. It has the great advantage of avoid-
ing interference by spurious radio waves sent out by electric discharges in clouds (static) or by the ionisation systems of automo-
tives and airplanes.

BULLETIN
LOCAL DRAFT BOARDS AUTHORIZED TO
RELEASE TECHNICIANS WHO EN-
ROLL FOR SERVICE IN ENGLAND WITH
BRITISH CIVILIAN TECHNICAL CORPS

National Headquarters of the Selective Service System has authorized all draft boards to release any American civilians abroad with the BRITISH CIVILIAN TECHNICAL CORPS. Draft boards are authorized to put such Americans in Class II-B upon proof that they will be recalled. The Bulletin is dated June 30, 1941, and signed by Lewis B. Hershey, Deputy Director.

An excerpt from the Bulletin follows:
In view of the national policy so clearly defined by these President's proclamations and by the Act of Congress referred to above, a number of the services of the British Civilian Government, depending on the qualifications of Class II-B by the local board, providing the requirements for enlistment are given in Vol. III of the Selective Service Regulations, as noted:

The services referred to above include:
(A) The armed forces of the Canadian and British Commonwealths
(B) The BRITISH CIVILIAN TECHNICAL CORPS
(C) The Royal Medical Corps
(D) The British Emergency Medical Service

Developed entirely independently by the Signal Corps radio engineers at the Signal Corps laboratory, Fort Monmouth, New Jersey, over a period of about 6 years, the U. S. Army aircraft have here-tofore not been equipped with radio equipment.

Details of construction and operation of the detectors are still as closely guarded as those of the Air Corps' famed bomb sight. Signal Corps officers, however, said the equipment operates on the same basic principle used by the British in their de-

gate against bombers.

As part of the expansion program for aircraft warning units, the Army has called for 500 volunteers from the fields of radio engineering and electronics to form a new device and make it a success. Qualifiers will be commissioned Second Lieutenants in the Signal Corps Reserve and ordered to immediate active duty.

Beginning Monday, June 30, Signal Corps officers from Washington began visiting cities and towns, speaking to high schools and colleges, as well as other branches of the Armed Forces, as well as civilians can apply.

Those who are commissioned will be stan-
dardized at Fort Monmouth for a brief period. They will then receive training on equipment used by air-
craft warning units.

In asking for volunteers for service in this new field of military science, Army points to the value such training and ex-
perience may be in civilian aviation after the emergency passes.
A.C./D.C. COMMUNICATIONS RECEIVER
Howard Radio Company
1735 Belmont Ave., Chicago, Ill.

Hi-Fidelity Microphone
American Microphone Co., Ltd.
1915 S. Western Ave., Los Angeles, Calif.

New Cardioid Mike
The Turner Co.
Cedar Rapids, Iowa

10-Watt Amplifier
John Meek Industries
1313 W. Randolph St., Chicago, Ill.

Lightweight Crystal Pickup
Shure Brothers
225 W. Huron St., Chicago, Ill.

Add-A-Unit Speaker Cluster
Vibracord Mfg. Co.
325 Miguel St., San Francisco, Calif.
PORTABLE DISC RECORDER
RCA Manufacturing Co., Inc.
Camden, N. J.

THIS new all-purpose, type OR-1 sound
system is ideal for use in mobile, portable
or permanent installations. It is built in 2
units, as shown. The system operates from
105-125 V., 60-cycle powerline or from a
6-V. storage battery. It delivers 15 watts
output and is available with or without turn-
table or pick-up. Either speed 78 or 33 1/3.
The diamond-point cutting stylus has a uni-
form frequency response of from 30 to
10,000 cycles. The playback pickup repro-
duces laterally- and vertically-cut records.
Dimensions: 16 1/4 x 12 x 12 ins. high.

A unique feature is the provision for pre-
venting "flats" in the rubber-tired rim-drive
wheels; the on-off switch also releases both
driver wheels from friction until they are
needed for this service. A switch selects the
desired filter.—Radio-Craft

SELF-CHARGING BATTERY PORTABLE
Stewart-Warner Corp.
1826 Diverey Plway., Chicago, Ill.

ILLUSTRATED is one of a group of 3 self-
charging portable receivers. No special
batteries are required for charging purposes.
The ordinary "A" battery normally used for
battery portables is automatically recharged
by a special built-in charge circuit. Operat-
ing from the A.C. line, ordinarily from 6 to
7 new "A" cells would have to be purchased
each year; whereas, the new battery-cell
charging circuit in these receivers make it
possible to use a single "A" cell for one en-
tire year. It is claimed that a single recharge
is sufficient to operate a portable set for an
total 2 weeks' vacation.—Radio-Craft

AVIATION BATTERY/ELECTRIC PORTABLE AND INTERPHONE
—THE "LEARAVIAN"
Lear Avis, Inc.
30 Rockefeller Plaza, New York, N. Y.

THE "Learavian" provides complete cover-
age of aeronautical and broadcast frequen-
cies in 3 bands, viz.: 126-410 kc. (airways
and marine radio ranges, weather broad-
casts and traffic control); 340-1,560 kc.
(standard broadcast); and 2,000-6,500 kc.
(airways communications, including private
flying, airlines, Coast Guard and Navy aeronautical frequencies).

In addition to a built-in loop antenna for
use on the ground, the instrument also pro-
vides a special plug-in connection for use
with an external antenna on board air-
craft. Provision is also made for using head-
phones when necessary. The set measures
6 1/2 x 12 x 6 ins. deep, and weighs only 14
lbs., 3 oz., including all batteries.
The built-in loudspeaker is cut off when
phones are plugged into a headphone jack.
A microphone may be plugged into another
jack, and with the microphone's press-to-
talk button, interphone communication be-
tween cockpits becomes available. This
portable operates on self-contained drycells
or from an A.C./D.C. powerline. When de-
sired, a simultaneous radio range filter
is available (at a slight additional cost),
to permit selective reception of either
the range signals or the weather broadcasts
and the notices for airmen now being transmit-
ted simultaneously over the majority of the
Federal Airways Range System.—Radio-Craft

VOLT-OMH-MILLIAMMETER
The Hickok Electrical Instrument Co.
10302 Dupont Avenue, Cleveland, Ohio

MODEL 202 is a V-O-M meter which per-
mits measurements while the set is in
operation without danger of damaging the
instrument through overload. It has a self-
contained power supply which operates on
the 115 V. 50-60 cycle A.C. line; line voltage
is regulated by means of a voltage regulator
tube. The large 6-inch is the rectangu-
lar type with a total scale-length of over
17 ins. The ranges of the instrument are:
A.C. Voltage in ranges 5 to 3,000 volts with
input impedance of approximately 2.5 meg-
-ohms; D.C. Voltmeter in ranges 5 to 1,000
megohms; 5 Milliamperes ranges to 1,000
milliamperes.—Radio-Craft

IMPEDEANCE BRIDGE
Rexax Corporation
1733 Milwaukee Ave., Chicago, Ill.

THE impedance-matching bridge shown
three produces a fast and accurate method
of adjusting and checking coil inductances
in production work to insure that all coils
have identical characteristics. Setup con-
sists of an oscillator, an amplifier, a cathode-
ray indicator and the bridge proper. This
assembly requires no auxiliary equipment.
Coiis with inductance values under 1 mi-
crohenry and over 10 millihenries may be
compared to a standard with an accuracy of
3/100 of 1%. Other coils, either in series (con-
ddensers, for example) with impedances be-
tween 1/4-ohm and 5,000 ohms at 100 kc. may
be similarly compared.—Radio-Craft

PORTABLE PROFESSIONAL RADIO - RECORDING - SOUND SYSTEM
Wilcox-Gay Corporation
Charlottesville, Mich.

RERADIO-PRO" is a versatile combi-
nation recorder and phonograph, and
a tuner, of the professional type but designed
for the low-price bracket. It is ideal for
orchestras, musicians, schools, colleges, radio
stations, professional men, etc.
The sectionalized construction of this
equipment makes it easily portable. It is
sold in separate units so that the Master
unit may be used alone or with either or
both of the turntable assemblies, according
to individual needs. Provision is made for
duplicating records, for transferring ma-
terial from 78 r.p.m. to 33 1/3 r.p.m., or
vice versa; and for making recordings by
linking-in from parts of other records or
from new material combined with parts of
other recordings. The use of 2 turntables
affords continuous recording (40 hr. max.),
if desired, without the necessity of inter-
ruptions for changing record discs. The
Master unit includes a 6-watt amplifier, as
well as the 2-band receiver (500 to 1,000
kc.; and 5 to 18 mc.). Terminals provide for
feeding the television sound channel or the
output of an F.M. tuner to the audio sys-
tem. Complete system incorporates 10 tubes;
cutters and pickups are crystal type.—
Radio-Craft

NEW "SUNLIGHT" SWITCH
United Cinephone Corporation
Torrington, Conn.

THIS new light-sensitive relay is used to
control electrical circuits in accordance
with the rise and fall of natural illumina-
tion, including sunlight. The user chooses
the lighting levels at which he wishes the
load switched on and off, and adjusts the
calibrated dials to the corresponding foot-
candle readings. Automatic operation elimi-
ates the necessity for resetting. Control cir-
cuits use a type 93 photo-tube (life expectancy 20,000 hours)
and 2 type 6J5 tubes (life, approx. 5,000 hours). Operates from 110 V., A.C. Case is
weatherproof. Useful in factories, for shed-
ow illumination control, etc.—Radio-Craft

PORTABLE AIRCRAFT RECEIVER
380 2nd Ave., New York, N. Y.

THIS model PR-5 battery portable is de-
signed for the needs of the growing num-
ber of light-plane owners and flyers. Fre-
cquency range of this unit is 200 to 400 kc;
the control tower frequency of 278 kc.
is marked on the dial. Fingertip controls per-
mit quick change from radio range fre-
cuencies to control tower frequencies. Hand-
set receiver. Total wgt., 10 lbs.—Radio-Craft

RADIO-CRAFT for SEPTEMBER, 1941
CLASSIFIED RADIO DIRECTORY

Where to Buy It!

CLASSIFIED RADIO DIRECTORY

Handy Buying Guide, by Products and Companies' Names and Addresses, for the Entire Radio Industry

This Directory is published in sections—one section per month. This method of publication permits the insertion of constantly changing corrections, but all monthly issues are made monthly. All names preceded by an asterisk (*) indicate that they are trade names.

If you cannot find any item or manufacturer in this section or in previously-published sections, just drop us a line for the information. Canadian radio manufacturers are unable to purchase any merchandise from the States. Radio-Craft is advised. Our readers, however, may wish to make Canadian purchases, and hence, current listings are being continued.

Presented here is Section VI of the completely revised Second Edition of the Classified Radio Directory.

While every precaution is taken to insure accuracy, Radio-Craft cannot guarantee against the possibility of occasional errors and omissions in the preparation of this Classified Directory. Manufacturers and readers are urged to report any such corrections at the earliest moment to insure corrections in the very next issue.

TOOLS

<table>
<thead>
<tr>
<th>Name and Description</th>
<th>Manufacturer</th>
<th>Address</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment tools</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benches (and/or stools)</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bench lamps</td>
<td>BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blow torches</td>
<td>OT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis racks & supports</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamps</td>
<td>CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clips (fast & betray)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drills (electric)</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Files (Swiss pattern)</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuses</td>
<td>FN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuser pullers</td>
<td>FP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuses</td>
<td>FS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator servicing kits</td>
<td>GK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grinders</td>
<td>GR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand-drills</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole cutters</td>
<td>HO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotplates</td>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lathes (& equipment)</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricators (graphite)</td>
<td>LG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricators (oil)</td>
<td>LO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting pots</td>
<td>MP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nut-drivers</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliers</td>
<td>PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punches</td>
<td>PU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary huckseys</td>
<td>RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saws</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screwdrivers</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screwdrivers (Phillips)</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shims (speaker)</td>
<td>SH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solder</td>
<td>SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering flux</td>
<td>SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering irons (electric)</td>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering iron stands</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering iron tips</td>
<td>SL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering paste</td>
<td>SO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solder pots</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staple drivers</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test lights (flexible)</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool boxes (wood and/or steel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wax pots</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welders</td>
<td>WD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire strippers</td>
<td>WD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrenches</td>
<td>WR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACRO TOOL & DIE WORKS, 2815 Montrose Ave., Chicago, Ill.—C

CLASSIFIED RADIO DIRECTORY

<table>
<thead>
<tr>
<th>Name and Description</th>
<th>Manufacturer</th>
<th>Address</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAN RADIO HARDWARE CO., INC.</td>
<td>476 Broadway, New York, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMERICAN PACIFIC TOOL CO.</td>
<td>410 Trumbull St., Elizabeth, N. J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRACH MFG. CORP.</td>
<td>1379 Hamilton Ave., Newark, N. J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOW RADIO EQUIPMENT CO.</td>
<td>27 S. Wabash Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. C. ATKINS & COMPANY</td>
<td>1002 W. Jackson Blvd., Indianapolis, Ind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTROHM, INC.</td>
<td>37 S. Wabash Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL CEMENT MFG. CO.</td>
<td>8520 Broadway, New York, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL CEMENT MFG. CO.</td>
<td>725 Seaview Ave., Bridgeport, Conn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARDINER METAL CO</td>
<td>6820 Campbell Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLD-LEVEL TOOL CO.</td>
<td>919 Taylor Ave., Rockford, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEPENDENT PNEUMATIC TOOL CO.</td>
<td>400 Jackson Blvd., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSULINE CORP. OF AMERICA</td>
<td>1208 Northern Blvd., Long Island City, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KELLOGG SWITCHBOARD & SUPPLY CO.</td>
<td>6550 S. Cicero Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAFT & CO., INC.</td>
<td>5818 18th Ave., Newark, N. J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAFAYETTE RADIO CORP.</td>
<td>1006 S. Wabash Ave., New York, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECROITHM, INC.</td>
<td>5133 W. 25th Pl., Cicero, III.—55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LECROITHM MANUFACTURING CO.</td>
<td>140 S. Leake St., Minneapolis, Minn.—GK, WO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEISSNER MANUFACTURING CO.</td>
<td>Mt. Carmel, Ill.—A, HO, PU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MURDOY MANUFACTURING CO.</td>
<td>1709 Sth St., Brooklyn, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTGOMERY WARD & CO., INC.</td>
<td>69 W. Chicago Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL SAFETY DEVICE CO.</td>
<td>812 Hubbard St., Chicago, Ill.—B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFENBACH ELECTRIC CO.</td>
<td>1452 Market St., San Francisco, Calif.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILCO RADIO & TELEVISION CORP.</td>
<td>150 W. 40th St., New York, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILCO RADIO & ELECTRICAL CORP.</td>
<td>150 W. 40th St., New York, N. Y.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADAR & TRANSMITTERS CORP.</td>
<td>1406 W. Jackson Blvd., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYCO RADIO CORPORATION</td>
<td>125 S. Wabash Ave., Chicago, Ill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAYWELL ELECTRIC SERVICE CORP., INC.</td>
<td>102 W. Madison St., Chicago, Ill.—5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RADIO-CRAFT for SEPTEMBER, 1941

SECTION VI (REVISED)

CLASSIFIED RADIO DIRECTORY
The COMBINATION FOR AS LITTLE AS 10¢ A DAY

How easy it is to pay for this combination of desk and Remington Deluxe Noiseless Portable Typewriter! Just imagine, a small good will deposit with terms as low as 10¢ a day to get this combination at once! You will never miss 10¢ a day. Yet this small sum can actually make you immediately the possessor of this amazing office at home combination. You assume no obligations by sending the coupon.

THESE TWO EXTRA FOR YOU

LEARN TYPING FREE
To help you even further, you get free with this special offer a 32-page booklet, prepared by experts, to teach you quickly how to typewrite by the touch method. When you buy a Noiseless you get this free Remington Rand gift that increases the pleasure of using your Remington Noiseless Deluxe Portable. Remember, the touch typing book is sent free while this offer holds.

SPECIAL CARRYING CASE
The Remington Deluxe Noiseless Portable is light in weight, easily carried about. With this offer Remington supplies a sturdy, beautiful carrying case which rivals in beauty and utility the most attractive luggage you can buy.

SPECIFICATIONS
ALL ESSENTIAL FEATURES of large standard office machines appear in the Noiseless Portable—standard 4-row keyboard; back spacer; margin stops and margin release; double shift key and shift lock; two color ribbon and automatic ribbon reverse; variable line spacer; paper fingers; makes as many as seven carbons; takes paper 9.5" wide; writes lines 8.2" wide. There are also extra features like the card writing attachment, black key cards and white letters, touch regulator, rubber cushioned feet. These make typing on a Remington Deluxe Noiseless Portable a distinct pleasure. Thousands of families now using the Remington Deluxe Noiseless Portable know from experience how wonderful it is!

Remington Rand Inc., Dept. 189-9
465 Washington St., Buffalo, N. Y.
Tell me, without obligation, how to get a Free Trial of a new Remington Deluxe Noiseless Portable, including Carrying Case and Free 32-page Typing Instruction Booklet on terms as low as 10¢ a day. Send Catalogue.

Name ..
Address ...
City ..
State ...

RADIO-CRAFT for SEPTEMBER, 1941
I am not able to provide a natural text representation of this document as it appears to be a classified radio directory listing books, receivers, and radio components. The text is not formatted in a way that is easily readable or translatable into plain text. It contains various technical terms and abbreviations specific to the radio and electronics industry, which would require specialized knowledge to interpret accurately.
SHOP NOTES—KINKS—CIRCUITS

DOH RADIO SUPPLY CO., 1759 E. Colorado St., Pasadena, Calif.—A. I., AR, AT, C, CA, HO, I., S.H., SN, W.

DRIVER-HARRIES CO., Harrison, N. J.—Re

EAGLE ELECTRIC MFG. CO., INC., 59 Hall St., Brooklyn, N.Y.

THE ELECTRIC AUTOLITE CO., 2335 N. Western Ave., Division, Calif.—AN, AR, AT, C, CA, HO, I., M, MI, RS, SN, W.

ESSEX WIRE CORP., 1410 Woodward Ave., Detroit, Mich.—A, CA, CC, HO, I., S.H., SN, W.

FISCHER DIST. CO., 220 Main St., New York, N. Y.—AN, AR, AT, C, CA, FC, HO, I., LW, MA, MI, RE, RS, SH, SN, W.

HOLVAST MFG. CORP., 720 Main St., Holyoke, Mass.—A, CA, HO, I., RE, RS, SH, SN, W.

HORNET MFG. CO., 301 S. Olive St., Los Angeles, Calif.—A, CA, HO, I., S.H., SN, W.

HOSKINS MANUFACTURING CO., 4445 Newton Ave., Middlesbrough, Ill., M.-RE.

J. E. JOHNSON COMPANY, Wacasa, Minn.—AN, AR, AT, C, CA, RE, RS, SN, W.

LAFAYETTE RADIO CORP., 100th Ave., New York, N. Y.—AN, AR, AT, C, CA, FC, HO, I., LW, MA, MI, RE, RS, SH, SN, W.

LOWELL INSULATED WIRE CO., 317 Longview St., Lowell, Mass.—A, AN, AR, AT, C, CA, FC, GU, HO, I., LW, MA, MI, RE, RS, SN, W.

MANNY'S SPORTING GOODS, 512 Market St., Philadelphia, Pa.—A, AN, AR, AT, C, CA, FC, GU, HO, I., LW, MA, MI, RE, RS, SN, W.

MEISSNER MANUFACTURING CO., Mt. Carmel, Ill.—LW, MA, MI.

MONTGOMERY WARD & CO., INC, 619 W. Chicago Ave., Chicago, Ill. **Airline**—A, AN, AR, AT, C, CA, HO, I., MA, MI, SH, W.

NEW ENGLAND ELECTRICAL WORKS, Lithon, N. H.—A, LA, LW, MA, MI, MI.

NORTHERN ELECTRIC CO., LTD., 1208 Sherman St., Hamilton, Ont., Canada—AN, AR, AT, C, CA, HC, HO, I., LW, MA, MI, RE, RS, SH, SN, W.

OLSON MANUFACTURING CO., 362 Wooster Ave., Bridgeport, Conn.—M.-Allied Corp.

PHILCO RADIO & TELEVISION CORP., Topeka & 52nd St., Kans., A, CA, HO, I., 66621, W.

RUPPS ASSEMBLING & MFG. WORKS, 2341 Seminary Ave., Cincinnati, Ohio—CA, CA, MI.

TILTON ELECTRIC CORP., 15 E. 26th St., New York, N. Y.—AN.

UNIVERSAL MICROPHONE CO., LTD., 424 Warren Lane, Indianapolis, Ind.—AN.

WHEELOCK INSTRUMENTS CORP., 1933 5th Street, Philadelphia, Pa.—AN, HO, I., LW, MA, MI, RE, RS, SN, W.

WINCHARGER CO., Sioux City, Iowa—GU.

CORDLESS SOLDERING IRON

When my receiver analyzes indicate the probability of condenser failure, I use the prod assembly here illustrated. Both rods were made by fitting bushings in one end of each tube and fitting tips of No. 14 copper wire, in the other ends. One of the rods, however, contains a fixed condenser of 0.01-mf. capacity and 500-W. frequency. The usual capacity test procedure of connecting the (prod) condenser across suspected components is followed, an open or intermittent condenser immediately being indicated (by the radio set starting to function properly) when the prod condenser is connected in short.

CAPACITY PRODS

**WHEN I AM sending you a kink for the Radio
department which I find very handy for the shop and also for calls, as it does away with that kinky cord in the shop and makes use of it on calls. You will find the drawing self-explanatory.**

Wm. A. Beasley, Red Boiling Springs, Tenn.

PHONO NOISE FILTER

I WOULD suggest that some of your readers try the circuit shown here. The usual approach to the solution of noise

Cableless Soldering Iron

**GENERALLY speaking I find the phonograph pickup re-
solves itself into slicing-off the high audio frequencies. In practice this means of redu-
ucing noise seems to work fairly well, but the evidence is not that the noise is in the high frequencies but that it is greater in amplitude above the high-frequency sounds than the low-frequency sounds mask it out. This would offer the conclusion that deliberate over-emphasis of the high notes would mask the noise. That would cause audio distortion to the extent that high-pitched sounds would be disagreeably strong.**

Observing the needle scratch on an oscil-
loSCOPE, I came to the conclusion that the noise is a sound of only one cycle frequency, and that if a high-pass filter were inserted between the crystal pickup and the amplifier the noise would be cut down. Also, static surges in a receiver should similarly be cut down when the response is limited to frequencies above 30 cycles. Inductance L should be 30 henries and have as low a distributed capacity as possible. Condenser C should have a capacity of 0.01-microfarad. These values are for the grid circuit. For the voice coil, C should be 6 mf.; the choke should be 30 henries.

Willard Moody, New York, N. Y.

MORE POWER FROM YOUR POWER SUPPLY

**THE circuit shown here illustrates an idea of increasing the output of your power supply with 2 transformers of different A.C. output. If a transformer has to be bought this idea will present no advan-
tages. If however, one has 2 transformers available it will be found useful. The idea is founded on the use of separate rectification and a common filter. The voltage
values are used only as an example. If the transformers have equal A.C. output, a common rectifier tube can be used.**

J. H. Dobie (Jim) Veh3acc, Ashburn, Ont., Canada.

www.americanradiohistory.com
GEOPHYSICAL-
PROSPECTING PRINTS
(TREASURE FINDERS)

BLUE PRINTS AND INSTRUCTIONS
For Building the Following Treasure
Finders and Prospecting Outfits

Folder No. 1, The "Radioflector Pilot"—consists
of three 3-tube receiver. Principle: radiated wave from
transmitter loop is reflected back to receiver. Emits visual and
aural signals. Folder No. 2, The "Harmonic Frequency Loca-
tor"—transmitter radiates low frequen-
cy wave to receiver, tuned to one of Har-
Emits visual and aural signals. Folder No. 3, The "Best-Note Indicator"—Two oscillators so adjusted as to produce
in-phase and out-of-phase waves. Emits visual and
aural signals. Folder No. 4, The "Radio-Balance Surveyor"—modulated transmitter and very sensi-
tive loop receiver. Principle: Balanced loop. Emits visual and
aural signals. By triangulation, depth of object in ground
can be established. Folder No. 5, The "Variable Inductance Monitor"—a single tube oscillator gen-
erating fixed-modulated signals and receiver
employing two stages R.F. amplifi-
cation. Works on the inductance prin-
ciple. Emits aural signals.
Folder No. 6, The "High and Induction-Bal-
ance Explorer"—a single tube Hartley oscil-
lator transmitter and sensitive 5-tube
Folder No. 7, The "Radiodyne Prospector"—a
completely shielded instrument. Prin-
ciples: tuned resonant circuits; power
transformer and batteries enclosed in steel box. Very large
field of radiation and depth of penetration. Emits aural signals.

With any one of the modern geophysical
methods described in the Blue-Print pat-
ters of instruments can be
constructed to locate metal and ore deposits
(higher the number, the larger the size of
treasure); metal war relics; sun and land mines
and "duds"; mineral deposits: subterranean
water wells; oil deposits (under certain cir-
cumstances); buried gas and water pipes;
tools and other metallic objects sunken in water,
etc., etc.

Each set of blueprints and instructions enclosed in heavy envelope. $9.15 per set.
Blursheets 24", eight-page illustrated 8" x 11" folded
of instructions and construction set.

The complete set of seven folders.
Shipping weight 3 lb. 9 oz. $3.00
including postage anywhere in U.S.A.

TECHNIFAX

1917 S. STATE ST. RC-541 CHICAGO, ILL.

TECHNIFAX
1917 So. State, Chicago Ill.

Enclosed herewith $ for (which mail to
Treasurer Folder No. 1, 2, 3, 4, 5, 6, 7.
Complete set of seven folders.

NAME
ADDRESS
CITY STATE

50c EACH

INDEX TO ADVERTISERS

RADIO ENGINEERING HANDBOOK, 3rd Ed., by Keith Henney (1941). Published by McGraw-Hill. $4.50 x 7 1/4 ins., leatherette covers, 945 pages. Price $5.

The Justly popular reception this "essential" reference book for the professional radio man has received in earlier editions will be accentuated with the publication of this book in its 3rd Edition. "Radio Engineering Handbook" saves time, trouble and money, by presenting charts, tables, circuits, diagrams and formulas covering the most needed subjects for engineers and tech-
nicians from fundamentals to specially appli-
cations. Note that every section is prepared by one of more specialists and embraces a great deal of consolidated material covering all fields and aspects of radio en-
gineering. The new material which makes this 3rd Edition especially valuable includes the follow-
ing data on latest developments: ultra-high frequency apparatus, modulation systems, audio frequency transformer design, vibrator power supplies, long-line oscillators, etc. Completely rewritten sections on aircraft radio, television, detection, loudspeakers, facsimile, oscillators; and, revision of much of the book as useful as modern practice in the profession.

RADIO ANNUAL—1941 (RADIO DAILY). Published by John W. Alden. Size 5 x 7 1/4 ins., white-leather-grain covers, 1,024 pages. Subscription premium of Radio Daily. This trade directory and guide to the broadcast industry contains reference listings for every branch of the business, including stations of Canada and the United States, stations of representatives, radio advertising agencies, radio research firms, radio production firms, radio publications, organiza-
tions dealing in radio matter—Federal Communi-
cations Commission, National Association of Broadcathers, etc.

In addition to these listings, "Radio Annual" presents articles by leaders in every branch of the industry which review the current year and predict the trends of the forthcoming 12 months.

The volume follows no set format but generally is laid out in the following manner: (1) Articles by leading authors; (2) The business side of radio; (3) Radio agencies and networks; (4) F.C.C. and N.A.B. sections; (5) U.S. Census Data Section (1941 volume); (6) National and regional networks; (7) Stations (Canada and U.S.); (8) Production side; (9) Talent listing; (10) Program listing for the year; (11) Program and budgeting; (12) Cultural side; (13) Foreign sta-
tions.

RUBBER AND ITS USES, by Harry L. Fisher (1941). Published by Chemical Publishing Com-

This book, by the Director of Organic Research, U. S. Industry and Air Reduc-
tion Co. and formerly Research Chemist, is based upon the experience of the author
gained during 17 years as a research chemist. It discusses the details of rubber from its his-
tory to its manufacture and use. Synthetic rubber also is given a place in this
book.

With the present exceptional importance of natural and synthetic rubber, both hard and
soft, in all the fields of radio, this compilation of basic information holds interest for advanced
chemists. Note, however, that the electrical characteristics of rubber receive little treatment.

YOUR CAREER IN RADIO, by Norman V. Carlo-

Every so often the radio industry presents its appearance, which has for so advanced the education of the layman that may anticipate making radio its livelihood. "Your Career in Radio" follows this general pattern, but authors Carlisle and Rice have taken care to present in a readable and
palatable to young folks of grammar and high school age the modus operandi, mainly of broadcasting, televi-
sion and Frequency Modulation, and the opportu-
nities for employment presented in these fields. The story is built around the travels of 3 school
boys on a tour of a large broadcast station. The things they see and things they learn make
interesting reading for almost anyone.

INDEX TO ADVERTISERS

PUBLISHERS
Adel Publishers. 135
Beta Print Co. 192
National Press Institute 153
Rudersdorf Publications, Inc. 166, 161, 174
Radio & Technical Pub. Co. 162
Radio Publications 190
Technifax 189, 192

RADIO PARTS

Amperite Co. 163
Hammerrund Mfg. Co. 158
International Resistance Co. 161
Meiser Mfg. Company 159
Solar Mfg. Corp. 164

RADIO RESEARCH

RCA Laboratories. Inside Back Cover

RADIO SETS

Halliercrafts Co. 163
Harrison Radio Co. Inside Front Cover
Jehkishen Radio Products.
Midwest Radio Corporation 171

RADIO SUPPLIES

Allied Radio Corp. 163
Burrstein-Applebee Co. 165
Rodeple Co. 168

SCHOOLS

Caldwell Radio Eng. Inst. 135
Commercial Radio Institute 136
Coney Radio School 131
Lincoln Engineering School 133
National Radio Institute 129
National Schools 136
New York Y.M.C.A. Schools 135
Port Arthur College 135
Radio Training Assoc. 135
RCA Institutes 131
Sprayberry Academy of Radio 131

SOUND & RECORDING EQUIPMENT

Amplifier Co. of America 158
John Wood and Research Co. 160
Universal Microphone Co., Ltd. 156
University Laboratories. 165

TEST EQUIPMENT

National Union Radio Corp. 143
Readrie Meter Works 174
Supreme Instruments Corp. 153
Triplet Electric Instruments Co. 153

TUBES

Hygrade Sylvana Corp. 147

MISCELLANEOUS

Classified Section 177
Flight Magazine 162
Henry Hudson Hotel 162
Lancaster, Allenuve & Rommel 177
Laughlin Mfg. Co. 160
Remington Rand, Inc. 187
Woodstock Typewriter Co. 171

(While every precaution is taken to insure accuracy, we cannot guarantee the possibility of an occasional change or omission in the preparation of this index.)

Printed in the U.S.A.
RCA's sudden success with its experiments for transmitting radiophotos from Moscow surprised the chief photo agencies. Believing radio transmission impossible, they had been rushing elaborate plans for getting pictures by plane.

—Newsweek, July 21

RADIOPHOTOS HURLED ACROSS THE WORLD!

But it would have taken a plane traveling 21,300 miles an hour to match radio's speed of delivery! It takes only 13 minutes for a complete picture to flash across the 4,615-mile curve that has made an invisible picture chute of the Great Circle Route between Russia and New York. It bends over the spinning world across Finland, Sweden, Norway, Iceland, Labrador and on to the United States.

As a result, American newspaper readers have been looking at war photographs soon after they were snapped on the eastern battle fronts. The newspaper credit lines have read, "RCA test transmission radiophoto." The pictures dated July 8 were the first America ever saw from Moscow by radio.

During the first World War there were weeks of delay before Americans saw pictures from the Russian sector. The radiophoto was but a dream of scientists. But they became master of the dream and in 1941, when Russia was ready to put pictures in the air, American apparatus developed by RCA Laboratories was ready on this side of the sea to receive them.

The Russian pictures enter the United States at the antennas of R.C.A. Communications, Inc., at "Radio Central," Riverhead, Long Island. Automatically the impulses are relayed to the radiophoto machines at R.C.A. Communications' headquarters, 66 Broad Street, New York. That is the terminal of the 4,615-mile chute through space.

How is it done? In Russia the picture is wrapped on a cylinder, which as it revolves enables a pinpoint of light to release the lights and shadows of the picture to actuate a short-wave radio transmitter. The radio impulses, therefore, correspond to the shadings of the picture. In New York a similar cylinder is turning, and around it is wrapped a sensitized paper or "negative." It revolves in step with the Russian cylinder and as it does another needle of light, controlled by the incoming picture-carrying impulses, acts as a pen. It reconstructs or "paints" the picture line by line.

New York is the world-center of radiophoto reception, with the picture circuits now extending to London, Berlin, Tokyo, Buenos Aires and Moscow. It is RCA Laboratories apparatus at the headquarters of R.C.A. Communications, Inc., on the tip of Manhattan Island, that puts the pictures back on paper after they are etched electrically in space between the hemispheres.

RCA LABORATORIES
A Service of the Radio Corporation of America

The Services of RCA: • RCA Manufacturing Co., Inc. • Radiomarine Corporation of America • National Broadcasting Co., Inc. • R.C.A. Communications, Inc. • RCA Institutes, Inc.
ONCE again Hallicrafters lead the amateur communications field with quality and performance in one of the greatest values ever offered. The New 1941 15-Tube Super Sky-rider, "the best selling quality communications receiver," gives you all the features, even the ones usually found on higher priced receivers, including electrical band-spread over entire range of the receiver.

Check these points: Rigid girder construction chassis, 15 tubes — 6 Bands—Frequency range 550 kc. to 13 mc.—Large, calibrated main dial—Band-spread dial calibrated for the 10, 20, 40, 80 meter amateur bands also on the International short wave Broadcast Channels—Tone Control—Send-Receive Switch—ANL Switch—RF Gain Switch—AVC-BFO Switch—2 stages preselection — Improved adjustable noise limiter—Beat Frequency Oscillator — antenna trimmer—AF Gain switch—6 position selectivity control—Bass boost switch—Wide Angle "S" meter—Band pass audio filter — Phone jack! Cabinet dimensions: 20½" x 14½" x 9½" — Complete with crystal and tubes. (Hallicrafters - Jensen Bass Reflex Speakers Available.)

THE BEST SELLING Quality RECEIVER