In this issue—

Television Sound Receiver
Instability in Apparatus
A Small Recording Studio
Model 315 Signal Generator. Designed down to the most minute detail for highest accuracy, greatest stability, minimum leakage, and good waveform...

Model 305 Tube Tester. Tests all tubes. Provides for filament voltages from .5 volts to and including 120 volts. Spare sockets for future tube developments...

Model 260 High Sensitivity Set Tester. 20,000 ohms per volt. D.C. Voltage ranges to 5,000 volts A.C. and D.C. Resistance ranges to 20 megohms. Current ranges to 500 milliamperes...

$67.35

This Simpson “Big 3”

... gives servicemen a real profit-making set-up

- The successful radio serviceman today must have the finest in test instruments for a very practical reason—that’s his only hope of present and continued profits. To meet the tremendous volume of business available he must be able to “trouble-shoot” fast and accurately every time. Only thus can he correct trouble speedily, with satisfaction to the customers.

Simpson offers you, in three basic test instruments, the accuracy and advanced electronic engineering which have given Simpson the proudest name in the industry. They are tried-and-tested examples of the kind of instruments Simpson has always built. Their use will demonstrate that from Simpson alone can you expect “instruments that stay accurate” with construction and design that lead the field.

To dealer and to serviceman alike, Simpson offers today the assurance of continued profits that only quality can give. No Simpson instrument is ever marketed, or ever will be, unless its makers feel that, of its kind, nothing finer can be produced.

Simpson ELECTRIC COMPANY
5200-5218 West Kinzie Street, Chicago 44
I WILL TRAIN YOU TO START
A SPARE TIME OR FULL TIME
RADIO SERVICE BUSINESS
WITHOUT CAPITAL

You Build These and Many Other Radio Circuits with Big Kits of Parts I Supply

By the time you've conducted 60 sets of Experiments with Radio Parts I supply, you'll have valuable PRACTICAL Radio experience for a good full or part-time Radio job!

SAMPLE LESSON FREE
I will send you a FREE Lesson, "Getting Acquainted with Receiver Servicing," to show you how practical it is to train for Radio in spare time. It's a valuable lesson. Study it—keep it—use it—without obligation! Tell how Superheterodyne Circuits work, gives hints on Receiver Servicing, Locating Defects, Repair of Loudspeaker, I. F. Transformer, Gang Tuning, Condenser, etc. 81 illustrations.

The men at the right are just a few of many I have trained, at home in their spare time, to be Radio Technicians. They are now operating their own successful spare-time or full-time Radio businesses. Hundreds of other men I trained hold good jobs in practically every branch of Radio. Don't let this PROVE my "64-65 method" of home training give you the impression that Radio is a free campfire pastime. It isn't! A thorough knowledge of Radio principles and the PRACTICAL experience you need to help you make more money in the fast-growing Radio business! Let me send you facts about opportunities in the busy Radio field. See how knowing Radio can give you security, a prosperous future... lead to jobs connected in Television, Electronics. Send coupon NOW for FREE Sample Lesson and 64-page, illustrated book. Read how NRI trains you at home in spare time. Read how you practice building, testing, repairing Radios with HIG KITS! Radio parts I send you draw a FREE JOB SHEETS.

Many Beginners Soon Make Extra Money in Spare Time While Learning

The day you complete your training sends an EXTRA MONEY JOB SHEETS. You learn Radio principles from my illustrated, understanded, illustrated lessons—PRACTICE what you learn by building, testing and experimenting with parts I send—USE IT to make EXTRA Radio money fixing neighbors' Radios in spare time while still learning! From here it's a short step to your own full-time Radio Shop or a good Radio job!

Future for Trained Men is Bright in Radio, Television, Electronics

It's probably easier to get started in Radio now than ever before, because the Radio Repair Business is booming. Trained Radio Technicians also find profitable opportunities in Police, Aviation, Marine Radio, Broadcasting, Radio Manufacturing. Public Service jobs are plentiful. Think of the greater opportunities as Television, FM, and sound. Modern-developed Electronic devices become available to the public. Soon, these will bring new equipment to install, operate, maintain and repair than ever before in all history! Get the facts on all these opportunities and send for FREE books now! Many Radio Technicians don't know how to get started. Read the details about my Course. Read letters from men I trained, telling what they are doing. Earn. You're sure to know exactly how quickly you can get started. No obligation! Just MAIL COUPON NOW in an envelope or it will be a penny postcard to J. E. SMITH, President, Dept. 783, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

Mail Coupon for Sample Lesson, "Getting Acquainted with Receiver Servicing," and my FREE 64-page book. It's packed with facts about Radio's opportunities for you. Read the details about my Course. Read letters from men I trained, telling what they are doing, earning. See how quickly, easily you can get started. No obligation! Just MAIL COUPON NOW in an envelope or it will be a penny postcard. J. E. SMITH, President, Dept. 783, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

Approved for Training Under GI Bill

You build the SUPERHETERO-DYNE CIRCUIT above containing a preselector oscillator-mixer-detector stage, i. f. stage, detector stage and audio stage. It will bring in local and distant stations. Get the thrill of hearing at home in spare time while you're learning in a fascinating field!

Good for Both 64 PAGE BOOK Sample Lesson FREE

Good For Both 64 PAGE BOOK Sample Lesson FREE

I Trained These Men

"I have a spare time Radio and Electronics business of my own. I trained my job and I trained it on radio. J. E. SMITH, teacher, told me how."

Perry B. GRIFFITH, Raley & New-

I Trained These Men

"I was doing radio work in my spare time and I certainly was!"

Sam ROBERTS, Washington, D. C.

Many Beginners Soon Make Extra Money in Spare Time While Learning

The day you complete your training sends an EXTRA MONEY JOB SHEETS. You learn Radio principles from my illustrated, understanded, illustrated lessons—PRACTICE what you learn by building, testing and experimenting with parts I send—USE IT to make EXTRA Radio money fixing neighbors' Radios in spare time while still learning! From here it's a short step to your own full-time Radio Shop or a good Radio job!

Future for Trained Men is Bright in Radio, Television, Electronics

It's probably easier to get started in Radio now than ever before, because the Radio Repair Business is booming. Trained Radio Technicians also find profitable opportunities in Police, Aviation, Marine Radio, Broadcasting, Radio Manufacturing. Public Service jobs are plentiful. Think of the greater opportunities as Television, FM, and sound. Modern-developed Electronic devices become available to the public. Soon, these will bring new equipment to install, operate, maintain and repair than ever before in all history! Get the facts on all these opportunities and send for FREE books now! Many Radio Technicians don't know how to get started. Read the details about my Course. Read letters from men I trained, telling what they are doing, earning. You're sure to know exactly how quickly, easily you can get started. No obligation! Just MAIL COUPON NOW in an envelope or it will be a penny postcard to J. E. SMITH, President, Dept. 783, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

Mail Coupon for Sample Lesson, "Getting Acquainted with Receiver Servicing," and my FREE 64-page book. It's packed with facts about Radio's opportunities for you. Read the details about my Course. Read letters from men I trained, telling what they are doing, earning. See how quickly, easily you can get started. No obligation! Just MAIL COUPON NOW in an envelope or it will be a penny postcard. J. E. SMITH, President, Dept. 783, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

Approved for Training Under GI Bill

You build the SUPERHETERO-DYNE CIRCUIT above containing a preselector oscillator-mixer-detector stage, i. f. stage, detector stage and audio stage. It will bring in local and distant stations. Get the thrill of hearing at home in spare time while you're learning in a fascinating field!

Good for Both 64 PAGE BOOK Sample Lesson FREE
Here it is at last! The radio line thousands of service engineers have been waiting for—yes, the radio that has everything the service trade needs to cash-in on today's big pent-up new set demand.

And who else but National Union could provide a merchandising plan for radio sets—so perfectly fitted to the service engineer's special needs?

For over 15 years National Union products, plans and policies have been shaped for the exclusive benefit of service dealers.

And now N.U. RADIO SETS are here—for the same service men who have so long known and used other N.U. products—and have found the N.U. way of doing business a better, more profitable one for their special type of operations.

THE LINE—5 models, of which one 5-tube and one 6-tube model are now ready; three others available in 90 days.

THE PRODUCT—Top quality throughout; precision-built chassis; beautiful cabinets in modern designs.

PERFORMANCE—Thoroughly up-to-the-minute; N.U. sets compare with the best in their class.

PRICES—Competitive with established brands.

VOLUME REQUIREMENTS—None! N.U. sets are not sold on a franchise basis. Order whatever quantity you need.

DISTRIBUTION—Sold only through N.U. Distributors and Service Dealers.

Here, for the first time, is a practical post-war radio line for the service engineer to handle—a group of fine modern radio sets—but above all a proven merchandising plan which fits. Ask your N.U. Distributor for the complete facts today!

NATIONAL UNION RADIO CORPORATION, NEWARK 2, N. J.

COMPANION MODEL No. 571. 5 Tubes. AC-DC. Superheterodyne Circuit. Built-in Antenna. Automatic Volume Control. 2-Gang Air Condenstor Tuning. Illuminated Slide-Rule Dial. Standard American Broadcasts. Walnut Veneer All-Wood Table Cabinet, 13½" x 7½" x 8½".

OTHER MODELS NOW BEING PLANNED
• A 3-Way (AC-DC-Battery) Portable Model.
• A Combination Table Model Radio-Phonograph with Automatic Record Changer.
• A 6-Tube Battery-Powered Form Radio Table Model.
PHOTOFACT FOLDERS analyze all post-war RECORD CHANGERS!

Post-war radio is barely a year old, but already there are 40 different record changers on the market. Do you know who makes them? How they operate? How to service them in case of breakdown? Do you know where you can get up-to-the-minute results of life tests that are now being run?

This vital information now becomes a PHOTOFACT FOLDER Service at no Extra Cost to You! Clear-cut photographs, exclusive big line drawings, parts lists, operation details, trouble-cause-and-remedy charts, tell you everything you need to know to do a workmanlike job—help you do twice as many repair jobs a day.

PHOTOFACT FOLDERS save valuable time in many other ways. They make it easy to diagnose trouble, hunt defective parts, make adequate replacements in all the latest radios, phonographs, record changers, recorders, communication systems and power amplifiers. Data and photographs are made from actual examinations of instruments—not from reprinted or copied information.

The cost? Only $1.50 for each set of 40 folders. Actually they cost you nothing, for they pay for themselves over and over again in time saved. Over 25,000 radio service engineers now use and depend upon PHOTOFACT FOLDERS. Why let service problems stump you? PHOTOFACT FOLDERS help you lick every one of them! See your nearest distributor or use the convenient coupon.
No matter what part of ELECTRONICS-RADIO TELEVISION work you plan to enter, a knowledge of basic fundamentals is absolutely essential. Ghirardi's world-famous 972-page RADIO PHYSICS COURSE gives exactly the training you need—at a price you can afford to pay! It brooks into "course" form and sent as monthly lessons, you regard it as a hobby at $5 or more! Instead, you buy it for only $5—and you progress as fast as spare reading time permits. Many have completed it in only a few weeks! Actually, this big, 4 lb. book has given more beginning students their start in Radio-Electronics than any other book or course!

Ghirardi's RADIO PHYSICS COURSE starts your training at the very beginning—with Basic Electricity. Then it takes you step by step through the entire field of RADIO-ELECTRONICS TELEVISION to the most modern developments. Nothing is omitted or condemned. Everything is explained as simply as A-B-C. You can understand every word of it without previous radio training of any kind. Ask any Radio-Electronic man. He'll know the book—because he probably trained from it himself! Get started now in Radio! Get started right! Our 6-DAY, MONEY-BACK GUARANTEE is your absolute Protection. If you don't like RADIO PHYSICS COURSE you don't need to keep it. You cannot lose!

NO PREVIOUS TRAINING NEEDED
36 Big Courses in One
Here are a few of the things about which RADIO PHYSICS COURSE teaches you:

- Sound, Speech, Music
- Electric Theory
- Electric Current
- Electric Circuits
- Resistances
- Batteries
- Electromagnets
- Electronics—Induction
- Electromechanical Devices
- Semiconductors
- Alternating Currents
- Transformers
- Filters
- Measuring Instruments
- Radio Waves
- Vacuum Tube

RADIO PHYSICS COURSE is more widely used for home study and was more widely used for Signal Corps and Navy wartime training than any other book of its kind.

LEARN ELECTRIC MOTOR REPAIR!
Train for Big Pay In Field That Isn't Crowded—
Just the Thing for Radio Men

There's big money in motor repair work! Prices are good. The field is not crowded. The home appliance repair business is a vast one and motor service is a huge important part of it. Here's an easy way to learn it. The book that will train you easily and quickly—(for only $5 complete!)

ELECTRIC MOTOR REPAIR Explains every detail of motor principle, testing, repairing, and rewinding. Covers a-c and d-c motors, synchronous motors and generators and both mechanical and electrical control systems. Quick-reference guides and illustrations tell how to load and maintain a motor.

Based on what can be learned from this big book alone, you can train yourself quickly for PROFITABLE motor repair service. Ideal for beginners. Distilled in actual repair work in busy stores. Every type of work illustrated and explained VISUALLY. No mechanical diagrams. Thoroughly illustrated and documented. Complete. Illustrated text and every illustration will be seen AT THE SAME TIME. Line given flat on the bench while you work. Contains 580 Pages. Only $5 complete.

Send coupon now. Practice from ELECTRIC MOTOR REPAIR for 5 full days. Then, if not more than $100, return book to us and your money will be cheerfully refunded.

NEW - DIFFERENT - EASY TO UNDERSTAND

GHIRARDI TRAINING TO SAVE YOU LEARN EASIER, BETTER, FASTER...
This 4 1/2 lb. handbook shows exactly how to repair over 4,800 receiver models

A definite, dependable guide for diagnosing, locating and repairing the common troubles in almost every receiver ever made

Ghirardi tells you what to do—exactly how to do it

Whether you repair radios for a living or work on them only occasionally, Ghirardi’s RADIO TROUBLESHOOTER’S HANDBOOK will help you do the jobs better AND TWICE AS FAST. Eliminates useless testing! Saves time—helps you make more money! When a receiver comes in for repairs, simply turn to the 404-page Case History section. Look up the notes on that make and model. Chances are you’ll find an ABC in information you require. The Handbook tells what the trouble is—how to remedy it. Ideal for training and speeding up the work of new service helpers—helping those who work in the usual time—repairing cheap sets rapidly.

NOT A “STUDY” BOOK

The tabulations on hundreds of additional pages give you valuable data on Color Coils, Tubes, I.F. alignment and transformer troubles, tube substitutions, charts and the literally dozens of charts, graphs, diagrams, data and helpful hints will save you money every day you use them!

“Thanks to Ghirardi’s Handbook, I repaired my radio in one hour after it had been returned as ‘unrepairable’ from a local shop,” writes J. L. Fissell, Kansas City, Mo.

“I would not take ten times the price my Handbook cost me,” says G. E. Daniels of Florida.

“ Started to work for me the first day I bought it. The Case History section you right to the trouble and save hours and hours of testing,” says Julius Blake, Jettis Bay, Maryland.

“Ghirardi’s big Handbook weighs 4 lbs., contains 774 full manual-size pages. Only $5 complete—on our 2-Day Money-Back Guarantee offer!”

STOP GUESSING MISTER!

Don’t waste time! Don’t use guess work! Turn to Ghirardi’s big Radio Troubleshooter’s Handbook—and it tells you what to do and how to do it.

A. A. Ghirardi’s MODERN RADIO SERVICING is the finest, most complete instruction book on Radio-Electronic service work for either the service or the professional serviceman—bar none! Actually, it gives a COMPLETE MODERN EDUCATION in the truly professional service work of the kind that will be your “Open Sesame” to the real opportunities in Radio-Electronic servicing springing up on every side. Here is why:

The call is now for HIGHLY TRAINED men having a broad knowledge of modern test equipment and testing techniques—NOT for “screwdriver” mechanics of limited technical understanding!

Read from the beginning, MODERN RADIO SERVICING is a complete servicing course from A to Z. Used for reference, it is an invaluable refresher course on any type of work that puzzles you. Explains all types of test instruments used in Radio-Electronic service work also how, when, why and where to use each one; how to make preliminary trouble checks and perform circuit analysis; how to repair or replace parts or make substitutions—and literally hundreds of additional subjects, including: How to Start and Operate a Successful Service Business of Your Own.

1500 pages, 706 clear illustrations, 720 self-test review questions.

Get a complete modern professional service training at home without an instructor

START A SERVICE BUSINESS... OR, GET A BETTER-PAYING JOB!

There’s a real future for you in servicing—and A. A. Ghirardi’s MODERN RADIO SERVICING is just the book to start you on it without delay. And remember: Radio itself only represents the beginning of this big book’s usefulness to you. What it teaches you about Radio Servicing, Test, Instruments and Modern Scientific Technical Procedure is exactly the training you need to fit you to "grow up" with the fast-expanding Electronics profession in all of its servicing phases.

The amount of Radio and Electronic equipment that will be manufactured and sold to both industry and the public within the next few years will be tremendous. All of it must be serviced—and there’ll be rich rewards for competently trained men who can fill the bill!

MODERN RADIO SERVICING gives you real Professional service training—complete in every respect—easy to understand—and priced at only $5 complete!

TIME & MONEY

Mail coupon now!

MONEY-SAVING COMBINATION

Only $5 complete
(See money-saving offer in coupon)
Three big stores, each carrying tremendous stocks, are ready to serve you with tools, replacement parts, test equipment, sets or anything else you need. Wire, write or telephone if you can't visit one of our stores. If you can visit with us you'll find our trained staff of tremendous help to you.

SERVICE

Mail orders are shipped the same day they are received. You don't have to wait when you buy from Newark. On special inquiries, we give you full information, prices and delivery dates promptly. Newark will give you service that will help you serve your customers better.

No matter what your public address needs may be, Newark has the outfit that will do the job for you. All the well known, standard makes are carried in stock. Delivery is fast and dependable...in New York and Chicago we maintain our own delivery system...for out-of-town customers we ship orders the same day they are received.

All our stores are staffed by trained men who know public address needs and can help you select the outfit that will best serve your purpose. If your needs are unusual, they know how to make up special combinations to satisfy them efficiently.

If you can visit one of our stores. If you can't come to see us, write, phone or telegraph and your inquiry will be answered promptly and fully. Newark has the stock, Newark has the 'know how', Newark can help you.

FOR GOOD BUYS AND A GOOD TIME VISIT OUR BIG BARGAIN COUNTERS

These big bargain counters in all our stores, are loaded down with special items available in quantities too small to advertise. Marvelous war-time sets, new small gadgets you can have fun with...all sorts of new parts and special things you'll want to see. Come in, look around and ask all the questions you wish. Come in often you'll have a wonderful time.

MAIL ORDERS FILLED FROM EITHER N. Y. OR CHICAGO

Magazines are printed months before you read them, stocks change, new things are developed and made, so we give you the very latest news about the very newest things in radio and electronics in our Big Bargain Bulletin. Send for your copy today and know all about the latest equipment first. When writing address Dept. F-4
Radio servicemen now can use the new Sylvania Poly (MULTI-PURPOSE) Meter type 134 to facilitate a multitude of electronic measurements and tests.

This product of Sylvania Research is stabilized against errors due to voltage variations or gas current in tubes. All accessories included. See your Sylvania Distributor.

CHARACTERISTICS AND SPECIAL FEATURES

Tests audio, A.C. and R.F. voltages from 20 cps to 300 mc through use of proximity fuze-type tube built into handy probe. Full scale range of 3, 10, 30, 100, 300.

Measures D.C. from .1 to 1,000 volts in full scale ranges of 3, 10, 30, 100, 300, 1,000.

Measures D.C. current from .1 milliamperes to 10 amperes in full scale ranges of 3, 10, 30, 100, 300, 1,000 milliamperes and 10 amperes.

Measures resistance from 1/2 ohm to 1,000 megohms in full scale ranges of 1,000, 10,000, 100,000 ohms and 1, 10, 1,000 megohms.

Ohms ±6% to the left of 1/2 scale; ±13% to the left of 1/4 scale. Current ±3% of full scale on all but 10 amperes scale which provides ±5% of full scale.

INPUT IMPEDANCES

R.F. ranges—2.7 megohms resistance shunted by approximately 3 mmf. capacity. A.C. ranges—2.7 megohms resistance shunted by approximately 40 mmf. capacity. D.C. ranges—16 megohms resistance.

Remember the Sylvania Poly (MULTI-PURPOSE) Meter type 134 is beautifully styled, compactly designed and easily read.
HERSHEL'S
MONEY SAVING VALUES
on Radio and Electronic Equipment

1 KW. MODULATION TRANS.
We have a real value in a modulation trans-
former. This item, made by RCA in broadcast-
specifications, is conservatively rated at 350 W.
We can bare the cost of the cost. Primary
impedance for class B tubes is up to 10,000
watts at 250 mA. Secondary rated at 450
watts, 1:1 ratio. Third winding modules rates
up to 80 W. current.

Really rugged construction, with brush-
over gaps on a dielectric terminal board. Due to the
five limitations, this transformer will
not turn back at 1 KW. Weight:
40 lbs.

1000 V PLATE SUPPLY
Thordarson plate transformer T6710S, 1185 V in each side of
center at 200 MA. Tapped at 300 V each side of center, and
primary terminals have 5% in color; gray, CRT
base case. 199.5

Western Electric, 4" round, zero-center, 0.1-50 MA
each side. 2 for 13.5

Washinghouse meter, 0-1 MA, movement, 2 round
case, scale calibrated 0-100 and 0-500, includes
mounting hardware. 12.5

PHOTO FLASH TUBE
High speed photo flash tubes, 12,000,000 flashes
light output. Stops all action. Ignition coil included
on back of bulb; 10,000 flashes. Diagrams furnished
on request. Your cost only...

$18.5

R. L. T. TUBE TESTER

$49.5

Hot Spot Specials

368AS tube. A real buy in a HV note knob tube
that will take 30 W input on all frequencies up to
1300 MC. No socket re-
quired. Fitted at small fraction
of original cost...........

$14.95

Write for Free Bulletin

HERSHEL RADIO CO.
5249 GRAND RIVER DETROIT 8, MICHIGAN

1947
NOW SPRAYBERRY RADIO TRAINING GIVES YOU

8 BIG KITS OF RADIO EQUIPMENT WITH A COMPLETE 6 TUBE SUPER-HETERODYNE RECEIVER

YOU LEARN RADIO SERVICING THROUGH INTENSIVE "SHOP-BENCH" PRACTICE

HERE'S THE LATEST, SIMPLEST WAY TO TRAIN AT HOME for a GOOD LIVING in RADIO-ELECTRONICS & TELEVISION

I train your mind by putting you to work with your hands on a big 6-Tube Superheterodyne Receiver. And, believe me, when you get busy with real Radio Parts — 8 big Kits of Parts — you really LEARN Radio and earn it RIGHT! You get the practical stuff you need to be useful in Radio, and that's what it takes to make money. You don't have to worry about what to do with these 8 Kits of Parts. Step by step, I show you how to build circuits, fix, experiment, trouble-shoot. And you don't need any previous experience. The Sprayberry Course starts right at the beginning of Radio! You can't get fast Simplified lessons, coupled with real "Shop" practice, makes every subject plain and easy to understand and remember.

A BUSINESS OF YOUR OWN ... OR A GOOD RADIO JOB

Soon after you begin Sprayberry Training, I'll send you my sensational BUSINESS BUILDERS. You'll find out how to get and do neighborhood Radio repair jobs for nice profits and rich experience while learning. This sort of work can easily pave the way for a Radio Service business of your own. But with Sprayberry Training, you're not limited. You can swing into any one of the swiftly expanding branches of Radio-Electronics INCLUDING Radio, Television, FM, Radar, Industrial Electronics. Be wise! Decide now to become a fully qualified RADIO-ELECTRONICIAN. Get full details about my Training at once! Mail coupon below for my 2 big FREE Books.

SPRAYBERRY ACADEMY OF RADIO
F. L. Sprayberry, President, Room 2037, Pueblo, Colorado
Please rush my FREE copies of "How to MAKE MONEY in RADIO, ELECTRONICS and TELEVISION," and "HOW to READ RADIO DIAGRAMS and SYMBOLS."

Name .. Age ..
Address ..
City .. State ..

(Mail in envelope or paste on penny postcard)

MAIL COUPON TODAY!

RADIO-CRAFT for FEBRUARY, 1947
FEBRUARY • 1947

Editorial: Radio Progress is Slow .. Hugo Gernsback 17
Radio-Electronics Monthly Review 18, 19
The Radio Pen in Europe ... 71

Electronics
High Speed Photo Flash ... Lyman E. Greenlee 22
Teleguided Missiles .. James A. Niland 24
Television for Today, Part IX—D.C. Reinsertion and Image Synchronization .. Milton S. Kiver 31
Antenna Principles, Part III—Directional Arrays and Radiation Fields by I. Queen, W2OUX 33
Radio Frequency Lamp ... 46

Amateur Radio
250-300 Mc Radiophone (Cover Story) R. F. Scott, W2PWG 20
Simple Frequency Monitor .. I. Queen, W2OUX 21
Ham Station from Surplus .. Merrill Lindley 30

Servicing
Problems of Instability ... Ted Powell 25
Radio Date Sheet 344 (National Union Model G-619) 34
The Probe Tracer .. Hubert L. Bailey 45
Transformer Winder ... 48

Sound
Small Recording Studio, Part I—Microphone, Recorder, Turntable and Pickup ... J. C. Hoadley 26
Sound Engineering—No. 27 .. A. C. Shanesy 36

Construction
Building a Telesizer, Part II—The Sound Section Is a Good FM Receiver .. Roy Freeland 28
Simple Modulation Meter ... A. B. Kaufman 32
Detector for the Oscilloscope .. Kenneth C. Dike 74

Departments
Transatlantic News ... Ralph W. Hallows 35
World-Wide Station List ... Elmer R. Fuller 37
Radio-Electronic Circuits .. 38
Try This One .. 40
Why Not? .. 44
The Question Box .. 50
Technotes .. 54
New Radio-Electronic Patents .. I. Queen 70
Communications ... 76
Book Reviews .. 79

HUGO GERNSBACK
Editor-In-Chief

FRED SHUNAMAN
Managing Editor

M. HARVEY GERNSBACK
Consulting Editor

ROBERT F. SCOTT, W2PWG
Technical Editor

I. QUEEN, W2OUX
Editorial Associate

ELMER FULLER
Shortwave Editor

ANGIE PASCALE
Production Manager

G. ALIQUO
Circulation Manager

JOHN J. LAMSON
Advertising Director

ALFRED STERN
Promotion Manager

On THE COVER:

Directional Radiophone built by the Japanese in imitation of American amateur equipment.
Selected as one of the Nation's Foremost

RADIO-ELECTRONICS courses of DeForest's Training, Inc. recommended by the New York Museum of Science and Industry

DeForest's Training Inc. wins Museum's Certificate of Merit for Home Study and Residence courses...First school of its kind to be so honored

Enjoy Real Movies at Home

Through the courses of DeForest's Training, Inc., you not only learn-by-doing and reading, but you also have the use of a motion picture projector and 12 reels of film. No other course affords this opportunity to learn important Radio fundamentals faster and easier at home. DeForest's Training, Inc., also includes instruction in Motion Picture Sound Equipment, FM Radio and Television.

Says Course Is Worth Many Times Cost

"I think the visual training part of your course is 'tops'! I think your course is worth many times more than what you actually charge for it. I truly believe this is the field to get into for any man interested in a real future and the welfare of his family's peace and security."

HAROLD J. ELLIOTT,
701 Miller Avenue, Ann Arbor, Michigan

DeForest's Training, Inc. wins Museum's Certificate of Merit for Home Study and Residence courses...First school of its kind to be so honored

Nationally Known Radio Engineer Endorses DeForest's Training, Inc.

"The Home Study course of DeForest's Training, Inc., is a short cut to the fascinating and profitable field of Radio and Electronics," says Ellery L. Plotts, nationally known radio station consulting engineer and former special research associate at Harvard University's Radio Research Laboratories.

"Now is the time...to prepare to enter the field of Radio and Electronics...No greater opportunity is afforded the high school student...the war veteran...or the man who wants to make more money," says Ellery L. Plotts, nationally known radio station consulting engineer and former special research associate at Harvard University's Radio Research Laboratories.

Investigation reveals that these DeForest's Training, Inc., courses are as modern as they are thorough. Each home study student has the use of a motion picture projector, which gives advantages heretofore unknown in home study training. The comprehensive kits of Radio parts are unusually valuable inasmuch as they enable a man to get practical, on-the-job experience in his own home. Further study enables me to highly recommend either the home study or resident course," says Ellery L. Plotts.

Choose This Selected Course for Radio-Electronic Training

DeForest's Training, Inc., only, gets you off to a brighter future by supplying "ALL 4" of these major training benefits at home... (1) Learn-By-Seeing Movies, (2) Illustrated Loose-Leaf Lessons, (3) Learn-By-Doing Radio Equipment and (4) Employment Service.

8 Kits of quality Radio parts provide the practical experience you need... enabling you to build and operate SEVEN different Radio Receivers, a Radio Telephone, Wireless Microphone, Photo Electric Cell Devices and dozens of other marvels in this Electric Age.

Get the complete facts now and see how quickly YOU may get started toward this field of outstanding opportunity. Mail the coupon today.

WRITE TODAY FOR FREE INFORMATION

DeFOREST'S TRAINING, INC.
2933-41 N. Ashland Ave., Dept. RC-D2
Chicago 14, Illinois, U.S.A.

Send me your big book "VICTORY FOR YOU," showing how I may make my start in Radio-Electronics with your modern home training plan. No obligation.

Name: ...Age:
Address: ...Apt.:
City: ...Zone:State:

[] If under 16, check here for special information.
[] If a discharged veteran of World War II, check here.

RADIO-CRAFT for FEBRUARY, 1947

11
ILE WATT COMPONENTS

RA-58-A Hi-Voltage Power Supply

Ideal for breakdown insulation testing, or as a source of power for a power transmitter. This unit supplies continuously variable voltages between 500 and 12,000 volts. It contains two high frequency power tubes.

Price: $116

New SGR-274N Transmitters

Price: $25.50

New Arc-5 Superhet Receivers

Price: $16.00

SONAR DETECTION UNIT!!

Ideal for detecting underwater sounds, such as fish extending in schools with 15'-20' of water. It is a miniature circuit, which is about 600 times more sensitive than that of a typical submarine. The unit is transistored on a 60 cycle transformer. It can be submerged in a solid rubber sound. This sound detector was originally designed for use in harbor defense. Coupled to an audio amplifier, it can be found to have many valuable applications. Price: $9.95

TUBE SPECIALS

Price: 25.00

NETELEMACER!! 285A (Cat. No. 2103) is designed for 10 cm. operation. Rated 800 kV peak power. Complete information supplied. Brand new. Price: $7.75

Price: 10.00

Price: 6.50

Price: 2.80

Price: 2.85

Price: 6.75

Price: 0.65

Price: 0.65

Price: 4.00

Price: 0.75

CIC Design revised. Price: $7.75

Price: 15.00

Price: 0.65

Price: 2.75

Price: 0.65

Price: 0.65

Price: 0.65

SILVER BUTTON MICA CONDENSERS

Price: 7.75

Selsyn Motors

Price: 10.00

P2000 watt unit. Price: 15.00

P1000 watt unit. Price: 7.75

OIL FILLED CONDENSERS

Price: 4.95

Price: 4.00

Price: 3.75

Price: 0.65

Price: 0.65

Price: 1.25

Price: 0.65

Price: 0.65
Grasp the NEW OPPORTUNITIES in

Modern Radio — FM Broadcast and Reception — Television — Industrial Electronics; Power, Control, Communications — new equipment and methods demand new technical ability and experience. Keep up to date with the latest.

Shop Method Home Training

By a Real Established Resident School with its own FM Studios, Shops and Laboratories.

TRAIN WITH ADVANCED TECHNIQUE

The good jobs in Radio Electronics now go to the men who are equipped to handle them. It takes training and experience. National Schools, one of the oldest and largest trade schools in the country, have prepared thousands of men for jobs in Radio Electronics. You can get this training right in your own home IN YOUR SPARE TIME.

National indicates modern resident training studios, shops and laboratories where instructors and engineers are working constantly to improve training methods. SHOP METHOD HOME TRAINING is a radical elevation of this practical system.

A FREE lesson that shows you how practical and advantageous this new training method will be to you without obligation. You may keep and use this lesson to prove to yourself just how practical home training can be.

Get one of the many NEW JOBS that demand new techniques and methods in Modern Radio. Get your share of the NEW BUSINESS that servicing the new sets and equipment demands. Many experts agree that Radio, Television and Electronics present opportunities much greater than ever before!

Radio is expanding with far-reaching improvements in reception. You have known just how great the television market will be. Electronics will bring it to life in homes and in the home.

TURN YOUR INTEREST IN RADIO INTO A CAREER THAT WILL ASSURE YOU SUCCESS AND SECURITY.

FIND OUT WHAT NATIONAL TRAINING CAN DO FOR YOU

Where do you stand today in modern industrial progress? What does the future hold for you? You owe it to yourself to investigate this opportunity. With National Training YOU MAY AHEAD FARTHER than you may have done into a position where start a business of your own with little capital. Before you complete your National Course, fit yourself for a career of independence, good earnings, success and security in one of the fastest growing fields in industry. For full information, just send your name and address on the coupon and mail it TODAY.

Get This Book FREE

This 500 page book presents the facts about the field of Electronics and your opportunities in it together with full information about the advanced National Training. Read it and make up your own mind that National Training will assist you for a great future. No obligation. Mail coupon and number.

NATIONAL SCHOOLS

LOS ANGELES, CALIFORNIA EST. 1905

MAIL OPPORTUNITY COUPON FOR QUICK ACTION

(Full in envelope or post on money order)

National Schools, Dept. 2-8C

400 South Figueroa Street, Los Angeles 2, California

Mail me FREE the two books mentioned in your ad including a sample lesson of your course. I understand no salesman will call on me.

NAME

ADDRESS

CITY

STATE

□ Check here if veteran of World War II

□ Check here if you are a veteran of World War II

RADIO-CRAFT for FEBRUARY, 1947

13
SC-312 100-1156 Mc. RECEIVER AND TRANSMITTER
One of the most interesting and useful pieces of surplus equipment. Designed to pipe and ground stationery, this is an all solid state, all transistored receiver and transmitter which covers all regular amateur bands. Excellent selectivity and signal
noise ratio. Covers 1.5 Mc. to 30 Mc. and is self-contained. Transistorized frequencies in the spectrum of 100-1156 Mc. This receiver serves as a match for similar sets, comes complete with tubes, and is a piece of equipment that will see service in the h.f. band (144-145 Mc). Sold Radio News for radio
work for converting the SC-312 receiver section. BC-248.
Price Guaranteed satisfactory

put transformer to a metal 6” case.

This spectrum controlled receiver and transmitter section offers remote control of equipment. One of the
most interesting designs available today. SCR-512

SCR-512 6-12567. SCR-512

Dynamotor Price

MOM/ mo her power supply. Control

and control. railroad.

This spectrum controlled unit offers remote control of equipment. One of the most interesting designs available today. SCR-512

Price

LS-3 LOUDSPEAKER
6” PM type, housed in heavy metal case. For use on BC-348 Receiver. Self-contained output transformer to match 4,000 ohm impedance. Used but guaranteed satisfactory.

Price

$7.50 each

BC-348 COMMUNICATIONS RECEIVER
Excellent selectivity, sensitivity and stability make this the most outstanding of any receiver yet available from government surplus. This receiver will give outstanding performance whether used. Built 8 withstand vibration and features gear driven 100-115 V a.c. variable tuning control. 5x bands—125-500 Kc. and 1.5-18 Mc. Two stages IF, 3 stages RF, BFO crystal filter, manual or AVC. Complete with tubes and 24 V. DC dynamotor. Easily converted to 110 V. AC operation. These receivers used, but can hardly be told from new. Guaranteed operation. Models N, M, P, and Q available—please specify.

Price

$44.75 each

ESSE Specials!

TELRAD MODEL 18-A FREQUENCY STANDARD
Measures signals 100 Kc.—45,000 Kc., with check points at 10, 100, and 1,000 Kc. with a high degree of accuracy. Power supply is self-contained for operation from 110, 130, 150, 220, and 250 V. 25-60 cycles AC.

Complete with tubes, dual crystals, and instruction book.

Brand new, in original carton

$24.95

BC-375-E GENERAL ELECTRIC MOPA TRANSMITTER

Used as liaison transmitter in bombers and ground stations. Frequency range of 200-500 Kc. and 1,500-12,500 Kc. is covered by means of 7 plug-in tuning units furnished. By slight modification operation on 10 and 20 meters is possible. Oscillator is self-excited temperature compensated type. Power amp. is neutralized class “C” using 211 tube and is equipped with antenna coupling circuit to match practically any antenna. Modulator is class “B” using two 211 tubes. Power supply is 24 V. DC dynamotor which furnishes 1,000 V. at 350 M. A.

However, transmitter shown on this page is ideal for construction of 110 V. AC power supply. Transmitter output conservatively rated at 42.5 watts, phone 75 watts CW, but may be pushed to 150 watts. Complete as shown with tubes, dynamotor, seven tuning units, and cable connector plugs. Removed from bombers but checked and guaranteed.

Price complete

Weight, approximately 150 lbs.

$36.95

3-10 Hz, 750 ma. Swinging Choke for filtering of power. 5,000 V. insulation. Size

6½” x 7¼”

8”

Weight, 38 lbs.

Brand new...

$7.50 each

H. V. PLATE POWER TRANSFORMER

1425-0-1425 sec. at 750 ma. Pri. 110-115 V. 60-cycle, tapped for low and high power. These transformers were made for RCA equipment. Size, 10½” x 10” x 8”. Weight, 81 lbs.

Brand new...

$17.50 each

TERMS:

DASH with ORDER or 25%

BALANCE C.O.D.

All Items Shipped Collect

Radio Company

130 W. New York St. • Indianapolis 4, Ind.

www.americanradiohistory.com
AN/PR5-1 MINE DETECTOR

For detecting metallic and non-metallic substances by oral or visual indication. Used for locating pipes, treasure, etc. Complete kit shown with spare tubes, carrying case and ready to operate by connection of batteries not included. Shipped in original overseas moisture-proof container.

Price, brand new $14.95
Weight, packed for shipment. 10 lbs.

KITS FOR THE RADIO AMATEUR, EXPERIMENTER OR SERVICE MAN

Available in kit form at a small fraction of their original cost—all brand new.

KIT 1: TWELVE FREQUENCY CRYSTALS $3.85
Contains assorted frequencies between 3,000 Kc. and 8,000 Kc. in FT 243 crystal holders. We pick at random from mixed supply and cannot select frequencies.
Complete Kit of 12 Crystals $3.85

KIT 2: 25 RESISTOR MOUNTING STRIPS AND TERMINAL LUGS $0.95
Contains 9 bakelite resistor strips for mounting 2, 4, 9, 23, and 28 resistors which may be cut apart for any requirement. Also contains sixteen 1, 2, 3, and 5 lug terminal strips.
Complete Kit $0.95

KITS FOR THE RADIO AMATEUR, EXPERIMENTER OR SERVICE MAN

Available in kit form at a small fraction of their original cost—all brand new.

KIT 3: 24 TUBE SOCKETS $1.85
Contains the following new Ceramic lossless sockets: 2- Acorn, 6 octal Amphenol, 4-6 prong Millen, 4-6 prong wafer, 6-4 prong wafer, 2 molded bushing, 2 octal female plugs and 2-7 prong tube tester sockets with center socket for checking pilot lamps.
Complete Kit of 24 Tube Sockets $1.85

KIT 4: 6 ROTARY TAP SWITCHES $1.85
Contains: 1-3 pole 11 position non-shorting; 1-2 pole 5 position non-shorting; 1-6 pole 4 position non-shorting; 1-3 pole 9 position non-shorting power tap; 1 ceramic insulated special; 1-6 pole 4 position with double contact wipers on 4 poles and 2 positions on 5th pole.
Complete Kit of 6 Switches $1.85

KIT 5: 10 POTENTIOMETERS
Contains 3-5 meg. carbon with 1/4" length shaft, 2-3500 ohm carbon 1/4" shaft, 1-1000 ohm wire wound 1/4" shaft, 1-dual 25.000 ohm wire wound with 1/4" shaft, 1-dual 30.000 ohm wire wound with 1/4" shaft, 2-100 ohm wire wound with screw driver adjustment.
Complete Kit of 10 Potentiometers $2.85

CARBON THROAT MICROPHONE
Ideal for plane, portable, or mobile operation, also for construction of be detectors, toys, etc. You can't afford to be without a few at the price. Adjustable elastic strap fits any neck. Works into 200 ohm impedance input circuit. Used, but in good condition.
Price $0.25 each

RADIO-CRAFT for FEBRUARY, 1947

ESSE Specials!

Radio Company
130 W. New York St. - Indianapolis 4, Ind.
SPRAGUE TRADING POST

SWAP - BUY - SELL

WANTED - Trifid models 1241 and 132X. A good condition. Have Weston SWL, 9th A. A. and 2501 ma. etc. Never used. Also Sater CT-106. Filad 92B, RCA 38B3C, etc. Write for trade operating condition. Jesse Morris, Box 245B, Oxford, Ohio.

SWAP OR SELL - Ocularsomes, oscilloscopes (RF and APL), Prototype meter, Measure-lope, cleve, etc. Will trade or sell. 315 and 3554 tubes, diode-sections of many kinds included in many parts. 180 tubes and 8 tubes and 12. Want tube equipment and riders 3 and 1. Want H.T. Radio Service, 10 Fountain St., Newport, R. I.

FOR SALE - Alexander 125-9 transmitter with filter and extra parts and Ray line receiver. Have extra service parts to sell. Write for list. Not what you need. Wavelin Service, Brooklyn, N. Y.

WILL SWAP - model airplane engine, airplane prop and all necessary parts worth $40 for surplus SCR-284 or BC-65A-A Receiver-Transmitter or other useful equipment. Want cash. Write for B. Kostiuk, 2710 W. 33rd St., Chicago, Ill.

SWAP OR SELL - 40 new FLT 745. If, 45° all germanium tubes from Humann Back Super-Flat. Last 14-84. cash. Will swap for suitable old generator. Horton M. Rusk, 140 E. 10 St., Chicago, Ill.

FOR SALE - 1941 Scott Short-Wave Receiver, model BC-6. U.S. Navy surplus. $50 in. We'll take any surplus sold in Portland, Oregon. J. L. Hartson, 135 N. Boudin St., Baltimore 7, Md.

WANTED - Cash for broken down radios. Write to Edward C. Post, 392 Market St., Brooklyn 1, N. Y.

FOR SALE - Abbott T94 5 meter tee receiver with dual power supply, tubes and hand microphone. Power supplies are 3.5 volt, 250 milliam. and 150 volt AC input. 200 volt, 50 mill amp. output. Ed. Frank J. Hignite, 5238 East Drive, Holland, Ohio.

FOR SALE - NEC 1000 ohms-per-meter multistore AC-DC, portable type in good condition. Wraps Wadsworth, 135-034 Ave., Flushing, L. I., N. Y.

FOR SALE - Components from Russian tank transmitter, oscilloscope, de- modulator, wave analyzer, 257 Green St., Schenectady, N. Y.

FOR SALE - Western Electric RC-612-A oscilloscope. 135, or what have you in trade. 900 9th, 1058 B. Broadway, Dayton 8, Ohio.

SELL OR TRADE - Cymatic Instrument no. 8435 power Y-O-3M (two now) complete with instructions and test leads. Also Brookes 0-1 milliammeter. Need 3-0-3 meter, sig. generator or what have you? Tom Kron, 3735 Milwaukee Ave., Chicago 31, Ill.

WANTED - Any kind of test cigs., (s) including books and manuals. Need full specifications and F. R. model sets, 3 to 15 volts. Box 187, Green-Weath, Conn.

WANTED - Copy of TM 13-1147 or similar manual on RC 1312 superhet transmitter; also manual on 1312-WAP-11 indicator and A3-3-PAP-4 scope control unit. Jerry J. Donavan, Box 206, Coventry, Ohio.

WANTED - All kinds of test cigs., (s) including books and manuals. Need full specifications and F. R. model sets, 3 to 15 volts. Box 187, Green-Weath, Conn.

WANT TO TRADE - For generator, free condition. 100X, 388 B. C. 202X. 120 vac. or DC. Volts 500, 5000 watts. L. B. Williams, 21-12 37th Ave., Flushing, N. Y.

FOR SALE - Harken 15% sig generator, free condition. 100X, 388 B. C. 202X. 120 volt, 5000 watts. Volts 500, good for rig. Also Sprague Type RW. 855. Harken, 1st met. (435), 300 E. 175th St., Bronx, N. Y.

FOR SALE - Supreme $53 sig generator and freq. mod. 450. Bakora 3500B speaker. $685. Borden, 1st met. (435), 300 E. 175th St., Bronx, N. Y.

FOR SALE - Used 1215 multimeter with two meters and function switches, complete. RCA Radio Service, F. O. Box 211, Morriston, Ky.

FOR SALE - Beckett model 5000 tube tester and counter. 25,000 count per outlet meter sensitivity. Like new. Also old model Jouve multimeter with two meters and function switches, complete. RCA Radio Service, F. O. Box 211, Morriston, Ky.

FOR SALE - Homemade Superho 5028 tube tester and counter. 25,000 count per outlet meter sensitivity. Like new. Also old model Jouve multimeter with two meters and function switches, complete. RCA Radio Service, F. O. Box 211, Morriston, Ky.

WANTED - Copy of TM 13-1147 or similar manual on RC 1312 superhet transmitter; also manual on 1312-WAP-11 indicator and A3-3-PAP-4 scope control unit. Jerry J. Donavan, Box 206, Coventry, Ohio.

FOR SALE - Standard type 6600 tube tester and counter. 25,000 count per outlet meter sensitivity. Like new. Also old model Jouve multimeter with two meters and function switches, complete. RCA Radio Service, F. O. Box 211, Morriston, Ky.

FOR SALE - Standard type 6600 tube tester and counter. 25,000 count per outlet meter sensitivity. Like new. Also old model Jouve multimeter with two meters and function switches, complete. RCA Radio Service, F. O. Box 211, Morriston, Ky.

FOR SALE - Battery chargers 6-90 Volts, medium size, condition, used only about 2 months, Wilburn Wright, Box 205, Ladiesville, Ky.

FOR SALE - Rectifying tubes, boxed, 60%. 00 off list, condenser, resistors, pressure transformers, speakers, etc. For the lot. $20. Sinclair, 510 Soth St., Oak Park, Ill. Wanted-Used test equipment in fair or good working condition. Cash, give full details and price. Fritz Duber, Ballston, Rutland, Vt.

FOR SALE - Howard 435 RTR Juni re- conditioned and serviced. Arranged for use as one of two generators. For sale. Write for list. V. Howard, 193 Harmony Ave., Harmony, Ohio.

FOR SALE - Miller-Walker communications receiver RS-32. 2 tubes. $6.40. $5.00.场 Supremo tube tester: 3 tubes, $6.40. Two tubes with sim- pler equipment. $4.00. Westmore 214-15 Park Ave., Weehawken, N. J.

WANTED - All kinds of test cigs., (s) including books and manuals. Need full specifications and F. R. model sets, 3 to 15 volts. Box 187, Green-Weath, Conn.

REPLACE WET ELECTROLYTICS WITH SPRAGUE TYPE RW

When replacing wet electrolytic capacitors, use Sprague Type RW. They're not substitutable! They're dry electrolytics of very high voltage formation specifically designed for use as wet replacements or for other difficult applications. Due to their extremely low power factor, lower capacity values give you better filtering. For instance, Type RW-15 rated at 25 mfd. is at least the equivalent of a 40 mfd. wet electrolytic. They'll stand high peak surges. They'll handle a-c ripple and fit the standard mounting holes. Ask your jobber for Sprague Type RW.

Write for the complete Sprague Catalog listing Capacitors and *Koolohm Resisters* for every radio service, machine and experimental need. Address Ads to: Dept. RC-27

SPRAGUE TRADING POST

SPRAGUE PRODUCTS COMPANY

Jobbing Distributing Organization for Products of the Sprague Electric Co.

YOUR OWN AD RUN HERE FREE!

Sprague will gladly run your own TRADING POST ad free of charge. Fill in the available space of the six radio magazines in which this feature appears, WRITE CAREFULLY or print. Hold it to 40 words or less and confine it to radio subjects. Sprague reserves the right to rewrite ads, as necessary, or to reject any that do not in our estimation fit in with the spirit of this service.

ASK FOR SPRAGUE CAPACITORS and 'KOOLOHM RESISTORS by name!

Radio Progress Is Slow

Radio Progress Is Evolutionary as Is Any Normal Growth

Radio-Craft continuously receives letters from readers who deplore the slow general progress in radio. Many correspondents lament that the promised and gloriously advertised radio wartime inventions so far have not materialized in our peace economy.

They ask: Where are the radar applications for autos, private planes, and motorboats? What about the proximity fuse's miniature radio device—why don't we have it in our pocket sets? What about those "printed" radio circuits doing away with most of the present-day wired radio sets? And a host of other similar questions.

We had occasion to speak of this some months ago. Because of the continuing interest, we present a number of further pertinent facts on the problem:

Radio progress is certainly not slower than progress in any other field. It may even be said that it has advanced at a rather fast rate, if we wish to draw parallels with other arts.

Robert Fulton built his first steamship, the Clermont, which became known as "Fulton's Folly," in 1807. Yet many decades elapsed before commercial steamships became a reality. The incandescent lamp was first demonstrated by Edison in the year 1877, but it was not till about 1883 that electric lights were first used in private homes—extensively not until about 1890.

The Diesel engine was invented by Diesel in the year 1892, but Diesel locomotives came into use only in 1924.

You can make a long list of similar inventions and you will find that from the demonstration of the early model to the successful commercial use of the device there is always a time lag that may cover a number of decades.

Radio's most important invention—the audion, the three-element vacuum tube—was invented by de Forest in 1907. Yet in 1920-22 we were still using crystal sets, and it was over 19 years from 1906 to 1926-27 before vacuum-tube sets were produced on a mass basis. Nor is the audion an exception.

Modern broadcasting itself was first demonstrated by Lee de Forest in the year 1907. It did not become a reality until the Pittsburgh Westinghouse station KDKA started regular broadcasts in the year 1920. Similar delays are true of all radio inventions and developments. There is usually a lag from 10 to 20 years before the early model is translated into a full-fledged commercial reality.

The reader may well ask the reasons for this seemingly slow progress in radio. They are simple once the great difficulties of pioneer inventions are understood.

In reality, there is nothing wrong with radio—or other inventions for that matter—it is always the human beings who are slow to grasp new things. Nor is it the layman who is slow. Quite the contrary—usually the public is far ahead of the technician. Manufacturers, engineers, and those others who are really supposed to know, are slow and put obstacles in the way of every new invention and forward-looking device.

Just to mention one case, note that when Dr. Lee de Forest first presented his audion to the Navy—which certainly had excellent radio people—he was given a long list of reasons why the audion or vacuum tube was no good and should not work!

It is a fact that, when confronted with something of a revolutionary nature, technicians immediately begin to find fault and see reasons (probably good ones at the time) why the device is not practical. Here the engineer is probably right, because a crude model of an invention is full of faults, has an extraordinary amount of "bugs," all of which must be eliminated. This is usually a long-winded, heart-breaking process. The manufacturer, too, knows that an early model—or even a semi-perfected one is usually an invitation to spend fortunes over many years before the article can be sold commercially. The manufacturer knows only too well that what works well in a laboratory may fail completely in the home or in the hands of the public. Books have been written on this phase alone. Many manufacturers have gone bankrupt in backing an invention which was theoretically sound, but which had not been developed sufficiently to be placed in the hands of the public.

All this, however, is only one phase. There are other more important ones. Chief of these are patent questions. Few patents may be termed "basic." Only a few such patents come along during the year. Even if they are as basic as the audion, there is still trouble. While de Forest had many patents on the audion, that did not prevent others from suing him in connection with special manufacturing processes and the internal structure of the vacuum tube.

An invention, no matter how good, is of no value at all if you do not have the machinery to build it. Often such machinery is more important than the device itself. As an example of this let us point out only one.

The slide-fastener, popularly called the zipper, was a basic invention. Yet this invention was quite useless without the highly complex machinery necessary for mass production. In this instance the machine to produce the device was really the heart of the invention. Many similar parallels can be cited.

There are still other phases of equal importance. These are purely economic in nature. It is most difficult in many instances to secure capital for new and unproved inventions. Bankers and capitalists are extremely hesitant about investing money in them. They know from (Continued on page 51)
SINGING COMMERCIALS are banned from the Argentinian ether waves by an ingenious regulation, an American advertising man just back from Buenos Aires reported last month. Hearing no musical advertisements during a three-day stop in the Argentine, he investigated, and found that commercial jingles and ditties had been introduced into the country in the old days. They had cluttered up the pampas airwaves to such an extent that protests of music lovers prodded the Direction de Radiodifusion into action. Unable to discriminate against the singing as opposed to the spoken commercial, the Argentine version of the FCC simply clamped down a rule against all recorded commercials. Now every advertising word has to come directly from the announcer's lips. And without recordings, singing commercials are impractical.

THE BLUE BOOK of the Federal Communications Commission, which became the center of an ethereal storm immediately upon publication, has become so popular—or the reverse—as to necessitate another printing, a last month Washington report states. The book "Public Service Responsibility of Broadcasting Licensees" dealt with the type of service the Commission felt listeners had a right to expect from their broadcast stations. Issued originally in an edition of only 5,000 and priced at 26 cents, it sold out rapidly, as did another edition of 6,000 published by the National Association of Broadcasters. The Commission accordingly had to make arrangements for reprinting several thousand more copies at the same price with the Superintendent of Documents of the Government Printing Office, who is also in charge of sales of the book.

RADAR WAVES from 1.2 to 1.6 centimeters in length have found a new use in microwave spectroscopy developed for the analysis of chemical substances. Identification of whole molecules is accomplished by beaming microwaves through the vapor of the substance to be analyzed. Certain wavelengths of these microwaves are absorbed by those molecules which they cause to rotate in resonance. Molecules of different substances absorb distinct series of wavelengths. Thus for each substance there is a characteristic pattern of absorption lines which when projected electronically on a screen present an easily identifiable "fingerprint" of the vapor under investigation.

The basic elements of the microwave spectroscopy as developed by Drs. William E. Good, Donald K. Coles and T. W. Dakin of the Westinghouse Research Laboratories are an oscillator tube or radar tube, waveguide, crystal detector, oscilloscope and sweep generator. Microwaves emitted by the oscillator tube are directed through a rectangular waveguide which contains the sample gas or vapor to be analyzed in a gas cell section that is sealed off with plastic tape. At the far end they are picked up by a sensitive crystal detector which passes the impulse received on to the oscilloscope. For each frequency of the absorption lines the vapor in the gas cell are held to a pressure of about 0.1 mm of mercury. The oscillator tubes used to obtain microwaves in wavelengths varying from 1.2 cm to 1.6 cm are reflex klystrons, tuned by changing the size of the resonant cavity. Several tubes are used to cover the band required.

The frequency of the oscillator tube, or klystron, is swept in synchronism with the horizontal sweep of the oscilloscope tube, and the output of the crystal detector is applied directly to the vertical plates of the oscilloscope so that absorption at particular frequency will be recorded as a vertical deflection of the oscilloscope trace.

Ammonia has been found to have a pattern of 30 distinct absorption lines in this region. Other compounds that have been tagged by this method are water vapor, acetone, cyanogen bromide and carbonyl sulfide. The limitations of the microwave spectroscopy are not yet known, but it promises to be a very valuable tool in the study of novel and even of the atomic nuclei within the molecule.

RADAR SAVED two radarless steamships from head-on collision during a blinding snowstorm on Lake Superior last month when an officer aboard a third ship perceived the danger on his ship's radar indicator and took action by radio to change course, according to Charles J. Pannill, president of Radio-Marine Corporation of America.

First Mate Tom Hermansen of the ore carrier A. H. Ferbert, aboard which Radiomarine recently installed a new type of three-centimeter merchant marine radar, was watching the radar just before dawn on November 28 when he observed that the luminous "pips" representing two other ships on the radar image were rapidly converging from opposite directions.

Realizing that lookouts on neither vessel could see the other ship in the snowstorm, Hermansen immediately contacted the two ships by radio, warned them of their danger, and directed each on a change of course which averted the collision.

It was reported that the two vessels were the SS J. H. Shadle and the SS Sascatu, and that the officers of both vessels had been unaware of their danger until they were warned by Hermansen.

GROUND CONTROLLED approach (GCA) will be in operation at 66 airbases in this country and overseas by midsummer, the Army Air Forces reported last month. Every major AAF installation in the country could be equipped with this important blind-landing device if sufficient trained personnel were available, the Army reports.

The Mark II production model of GCA, used in all theaters of operations by the AAF, requires from three to five operators, or controllers, on each eight-hour shift. This means that a minimum of nine trained controllers are needed to keep one Mark II GCA unit in operation 24 hours, or a total minimum of 1,170 controllers to have the Army's stock of stored GCA units functioning.

The Mark III and IV, the 1946 model, requires only one controller on a shift. However, these new models will not become available to the AAF for some time due to shortages of critical parts and the present high cost of production.

RADIO TUBE PRODUCTION for December, 1946, hit a peak 40 percent above the former all-time high figures of 1941, stated M. F. Balcom, vice-president of Sylvania Electric Products, last month.

Since the number of types made was much smaller than in 1941, increases in production of standard tubes is much greater than the overall figures indicate.

The recently-developed microwave radar-spectroscope in operation.
RADIO ITEMS OF THE MONTH

RADIO is now being used to detect
meteors, a recent bulletin of the Na-
tional Bureau of Standards announces.
The Bureau believes that continued
study of meteors will reveal informa-
tion on the effect of meteors on radio
waves which may be important in con-
nection with FM and other v.h.f.
broadcasting.

One way in which meteors may af-
fect radio waves is to cause the "bursts"
on long-distance stations interfering with
local station performance) on FM channels. Some
scientists, such as J. A. Pierce of Cruff
Laboratory, Harvard University,
believe that a large part of the ioniza-
tion of the E layer of the ionosphere
may be caused by meteors. A knowledge
of the behavior of the E layer is of pri-
mary importance since it controls radio
propagation on many of the frequencies
used for radio communication and radio
navigation.

Supporting evidence for these con-
tenations was the fact that interference
encountered on the old frequency mod-
ulation broadcasting frequencies in the
form of "bursts" had been found to co-
cide with the appearance of meteors.
Further, it had been reported that
during the war radar operators tracking
V2 rockets had been confused by re-
flections from meteors. Other radar ob-
servers, such as O. P. Ferrell, working
in an unofficial capacity in India, had
actually made observations which coin-
cided with the visual observations of
meteors.

AMERICAN RADIO TRANSMIT-
TERS will make Munich the voice of
democracy, redeeming that old city
from the associations of appeasement
and treachery which have sprung up
around its name, according to a report
from the State Department last month.
Three transmitters, each of 85 kilo-
waits power, were placed in service in
December to relay Voice of America
broadcasts to Eastern Europe.

Special attention was attracted to the
prospect of beaming Russian-language
broadcasts from the United States into
the Soviet Union. Programs are also
directed to Czechoslovakia, Yugoslavia,
Rumania, Poland, Bulgaria, Hungary,
Austria and France.

A NEW FM CONVERTER, to enable
old FM sets to pick up the new band,
requires no tubes. It was described last
month by Henry R. Kaiser, chief en-
geer of WWSV and its FM affiliate
WMOT. Mr. Kaiser said:

"After converting our FM transmitter
for operation on the new band, approxi-
ately 6,000 owners of the pre-war
FM receivers in the Pittsburgh area ob-
viously could no longer receive our FM
station WMOT. We did not feel justified
in advising our FM listeners to junk
their sets and buy new ones when they
become available. Ignoring these sets as
far as FM is concerned would have
done anything but further the interest
among enthusiasts who invested in FM
receivers just a few years ago. The ob-
vious answer to our problem was a
converter to adapt a receiver to the new
band."

While experimenting with a single-
tube quartz crystal controlled converter
at a location approximately fifteen
miles from the transmitter (operating
at the time with an estimated effective
radiated power of not over 100 watts)
the oscillator in the converter acciden-
tially failed. Much to our surprise
and gratification we could pick up the
station on 84.5 megacycles at another
spot on the dial of the receiver while
trying to find a signal from the crystal
oscillator. We then found that the
converter oscillator was longer func-
tioning. The part of the circuit remain-
ing consisted of two tuned circuits and
a detector crystal—this became the
tubeless converter shown in the sche-
matic.

This unit is merely connected in series
with the new high-frequency antenna's
transmission line near the receiver. No
other connections are necessary. The in-
put circuit is tuned to the transmitter
frequency and the output is tuned to a
frequency in the old band. This latter
frequency is the result of radiation
from the local oscillator in the receiver
mixing with the transmitter frequency
and producing a converter output signal
which is fed to the crystals in the old
band. In the case of WMOT which is
on 94.5 mc, several types of receivers
which we have tried tuned in the sta-
tion when the receiver dial was adjusted
to hear the high end of the band.

The coils were easily wound for the
job. All are self-supporting and space-
wise wound, 7/16-inch in diameter. L1 is
two turns of No. 18 insulated hook-up wire
interwound with L2. L2 and L3 are of
No. 10 solid enamel wire, L2 having
3 turns and L3 10 turns. L4 is 3 turns
of the same wire as L1, and is interwound
with L3. We had only three components
to purchase for our converter. The two
8-pole air-core trimmer condensers
C1 and C2 cost 35 cents each and the
Sylvania 1N34 crystal was $1.60. Sur-
plus radar crystals could be used in
place of the 1N34 but although they
can be had for as low as 39 cents, some
of these crystals are probably rejects.
In addition, small static electron
waves on the antenna circuit may impair
operation of some of these crystals whereas the
1N34 appears to have a greater current
carrying capacity. Our converter cost
$2.95. (The nine cents covers the four
screws and wire.)
250-300 MC RADIOPHONE

A Well-Engineered Portable Directional Transceiver

The radiotelephone—i.e., the transceiver shown on our cover was captured from the Japanese in the Pacific Theater. Resembling ham equipment in many respects—even down to the use of American tubes—some of its features may prove interesting to American amateurs.

The antenna reflector system consists of nine dipoles tuned to the middle of the tuning range (272.7 mc). The driven element is a pair of adjustable dipoles screwed into the sides of the high-frequency unit. Telescopic adjustments permit these elements to be tuned precisely to the operating frequency. Fig. 1 shows the directional characteristics of the array. Maximum signal radiation is in a beam of 72 degrees.

Photo B is a close-up of the control panel located on the left side of the low-frequency unit. The large wheel in the center of the panel is coupled to the tuning condenser in the high-frequency unit through a length of flexible shafting. The regeneration control knob, below and to the right of the tuning wheel, adjusts the modulation voltage on the plate of the triode section of the 6F7 when it is used as a quench oscillator. The quench-oscillator coupling knob is used to vary the coupling between the pickup coil and the oscillator plate coil. The lever-operated modulation switch is below the control knobs.

How It Operates

The modulation switch (the several sections of which are shown ganged in Fig. 2) has three positions; the center position is off and no plate or filament voltages are applied to the tubes. When the lever is moved away from the operator, the circuit is set up for reception of voice and interrupted-continuous-wave signals. If the send-receive button is pressed while the modulation switch is in this position, the circuit becomes a transmitter operative for voice transmission only. When the modulation switch is thrown toward the operator, the set becomes a transmitter for tone-modulated c.w.

When the set is used for receiving, the incoming signal is concentrated on the dipole by the reflectors and coupled to the grid of the 955 through the tank coil L1. At the plate, the signal is mixed with the quenching voltage from the triode section of the 6F7 so that the 955 becomes a separately quenched super-regenerative detector. The a.f. signal at the plate is coupled through transform-

Photo A—The Mark 7, assembled for operation.

Photo B—Operating controls are on left side. Transformer T1 couples the pentode section of the 6F7. Transformer T2 couples the plate circuit to the headphones.

The quenching voltage is generated in coils L4 and L5 and the triode 6F7. Coupling to the detector is controlled by the position of L6.

To transmit voice, the modulation switch is moved away from the operator. Pressing the send-receive switch shifts relays Ry-a and Ry-B to the transmit position. This removes the plate voltage from the triode section of the 6F7 by opening contacts 7-8. The output of the microphone is impressed on the low-impedance primary of T1. The secondary voltage of the input transformer feeds the grid of the pentode section which has become the modulator stage. The plate current of the 955 passes through the secondary of T2, through contacts 1-2 to the plate of the oscillator. The output of this modulator fully modulates the plate current of the 955.
Sidetone for monitoring is secured by coupling the headphones to the secondary of T2 through a 0.5-uf blocking condenser. The insertion of a 500,000-ohm resistor in the ground side of the phones through contacts 4-5 reduces the sidetone to a comfortable level when transmitting. Ry-b connects L3 to the ground end of the tank coil. (The purpose of L3 and C1 could not be determined during the tests because there was no apparent change in frequency or quality when either was omitted from the circuit. It is possible that the designers felt that added inductance was desirable while transmitting and more capacity when receiving. This might account for the action of Ry-b.)

Tone-modulated transmissions are made with the modulation switch in the i.c.w. transmission position. Contacts 15-16 and 1-2 are closed, making the triode section of the 6F7 an audio oscillator using the primary and secondary windings of T1 to supply the necessary grid-to-plate coupling. Contacts 9-10 are opened so that plate voltage is applied to the pentode section only when the key is closed. The signal from the a.f. oscillator is amplified by the pentode section which functions as a modulator just as it does during voice transmissions.

Fig. 2—A.F. section (above) and r.f. section (right) of the Mark 7. An ultradion oscillator is used and many other points of similarity to regular amateur v.h.f. circuits will be noted.

The 420-mc coil has only one turn and its diameter is varied slightly to hit the band. The tuning condenser may be a Cardwell ZV-5-6-TS which is designed for u.h.f. circuits. Its stator is divided into two segments. The capacity range is from 1.5 µf to 8 µf.

Technical material and drawings for this article on the Mark 7 were made available to us through the courtesy of the Department of Commerce.

SIMPLE FREQUENCY MONITOR

In these days of VFO, frequency multiplication and antenna-coupling networks, the wavemeter is a most indispensable item. Wavemeters and frequency meters are used to measure the same units but they meet different requirements. A wavemeter uses a simple tuned circuit which absorbs power from an oscillator under measurement. The indication is definite as to wave band but it is relatively broad. A frequency meter, as the term is generally used, is based upon an oscillating circuit which generates its own signal to beat with another. Although its frequency indication is sharp, the order of harmonic must be determined by some other method. Both types of meters are useful in adjusting a transmitter.

A wavemeter can be used in several ways. Coupled to an oscillator, it absorbs maximum power from it when both are in resonance. Monitoring the output of the oscillator will show a slight change in intensity or frequency.
HIGH SPEED PHOTO FLASH

A Portable Battery-Operated Unit Which Can Take 10,000 Pictures with One Bulb

standard parts obtainable from hardware stores and radio parts jobbers. While the weight of the equipment is objectionable for some applications, the results have been very satisfactory. The units have been rebuilt a couple of times for greater operating efficiency and reduction in weight. Fig. 1 is the schematic.

An Electroflash bulb operates through the discharge of a high-capacity condenser which is charged to a voltage between 1,600 and 2,500. The capacity of this condenser may vary from 15 µf to 100 µf, depending on the size of bulb and the light output desired. The power unit consists of the large condenser, a power supply to charge the condenser, and associated relays to trip or trigger the flash in synchronization with the camera shutter.

Using a 9-volt battery, the power unit delivers 500 volts d.c. to charge 50 µf of electrolytic filter condensers which are charged in parallel and discharged in series. Discharge voltage is between 2,000 and 2,500 volts, while the charge voltage is 475 to 600 volts. These may be regarded as peak ratings which are not to be exceeded because the electrolytics are 100 µf units with 525-volt peak rating. Some question might be raised as to the life of electrolytics when used for this type of service. So far, after about 10,000 cycles, on two different and separate units, there has been no sign of capacitor failure, and a check shows that the capacity of individual units has increased slightly. Of course, for use in a series-parallel circuit, the capacities of individual units must be selected to match, although they do not have to be.

Any particular value; the important point is that all must have the same capacity (within about 10 percent). Otherwise an excessive peak voltage might be built up across one or more sections during discharge.

The series-parallel discharge circuit has certain definite advantages for photoflash work. It permits the concentration of a great deal of capacity in a small space with light weight. Standard components in a low-voltage power supply can be used. Since voltages are lower, the safety factor is greater and there is much less chance of getting a serious shock from any part of the circuit. The only time a voltage of 2,500 is present is at the instant of discharge of the series-parallel capacitor bank. At all other times the peak voltage will not exceed 600 volts. The operating range for successful pictures is between 400 and 600 volts. Since the camera shutter is tripped by a magnetic relay, camera and flash bulb may be operated by remote control to take pictures otherwise difficult, dangerous, or impossible to get.

Battery drain averages 4.5 amp. Drain starts at 9 amperes and tapers rapidly during the 10-second charge interval to about 2 amperes. With care, as many as 2,000 pictures can be taken with a single set of batteries. The bat-
tery used for these tests was made up of six Burgess 4PH “Little Six” cells as shown in Photo B. Other batteries would work, but this particular type fits the case very nicely and has given excellent results. As the batteries get older and weaker recovery time is slower (it may exceed 20 or 30 seconds), and therefore 1,000 pictures is set as an average. For the first 1,000 pictures the recovery time will not exceed 15 seconds if proper care is used and the power unit turned off quickly when not in use.

The unit was built into a standard 7x8 x12-inch metal portable carrying case, obtainable from any radio parts jobber. As shown in Photo C the parts fit into this case without overcrowding and with little wasted space. Since some of the parts used were salvaged from other equipment, no dimensions or chassis layout will be given other than that shown in the photographs. However, those who may wish to construct a similar unit should have no trouble in working out their own dimensions if the general parts layout shown in the various photographs is followed.

Connections are shown on the wiring diagram for the power unit, the camera mechanism and a separate a.c. power supply to replace the batteries. This power supply permits use of the unit where a.c. is available by merely pulling out the shorting plug on the front and plugging in the a.c. power unit which will then supply power in place of the batteries. The batteries need not be removed from the case. Use of such a power supply saves batteries for use where a.c. is unavailable.

While a standard auto-radio power transformer and vibrator are used, it will be noted that a type 12-A tube is used with grid and plate connected together as a half-wave rectifier. Either a 12-A or 71-A may be used, but the 12-A gives slightly higher output voltage. The 12-A was chosen for its low filament current and quick heating characteristics, and also because it is so construct-
ed that it will withstand the operating voltages applied. The vibrator is the standard four-prong variety of 4- to 6-amp. capacity. Not all types of power transformers will work in this circuit as some of them will not supply sufficient output voltage, while others may be too heavy and bulky to fit the space. Note that a 6-ohm resistor is in series with the filament of the 12-A rectifier. This resistor is necessary with the 9 volts of battery as otherwise the filament of the tube would burn out.

The battery voltage was chosen because it took 9 volts to get sufficient output with the particular power transformer used. Some transformers will work with 6 or 7.5 volts; and if such a transformer is available, battery voltage may be adjusted accordingly.

Switching Arrangement

The main control switch consists of three sections. Each section is really four separate s.p.d.t. units. In addition, there is an Off position in which all contacts are broken. This position is not shown in the diagram. There are two live switch positions. The upper switch position is Off with all units disconnect-
ed; the middle (as shown in the wiring diagram) is the Charge position, in which the capacitors are charged in para-
allel; and the lower is the Discharge position. When the switch is in the lower position the capacitors are dis-
charged in series through the flash lamp.

The flash is fired through the action of two separate relays. See Fig. 2. The shutter relay mounted on the reflector housing the flash bulb first trips the camera shutter, then the shutter trips the firing relay. This synchronizes light and shutter so that the flash occurs with the shutter wide open. The firing relay is mounted on top of the power transformer on a small piece of Lucite, as can be seen in the Photo C, to insure adequate insulation.

The switch used to achieve the rather complicated result outlined above was assembled from Mallory sections taken from two other switches. See Fig. 3. This is not a stock item, but a two-gang switch having similar characteristics is available. Two of these units may be assembled into one three-gang switch by sawing off the spacing washers and spacing the sections closer to-
gether. It is very important to note the particular sequence to be followed in wiring each section of this switch to keep the potential differences between adjacent contacts to a minimum. Since only ten sections of the switch are used in series-parallel condenser transfer, this leaves two sections unused. One of these is used as a power switch in the primary (battery) circuit, while the other is used to switch the meter ranges from 0-15 to 0-600 volts by shifting be-
tween the two multipliers R1 and R2.

The meter thus reads plate voltage when the capaci-
 tors are being charged, and filament voltage when the switch is in the firing position. The meter used is a war surplus item designed for aircraft use and has a luminous scale which permits operation in total darkness. This gives an indication of battery condition at all times and also serves as a warning not to leave the power switch in either the middle or lower position, which would result in rapid exhaustion of the batteries. The meter is mounted on top of the case for easy visibility, in one model.

A fuse has been included in the pri-
mary circuit. It could be omitted with-
out affecting the operation of the unit, but it is desirable to protect the rest of the circuit in case the vibrator points should stick. About 15 amperes is the correct value.

A modelling light is built into the flash reflector to permit focusing the camera in darkness. This light is controlled by an on-off switch on the front panel of the power unit. It will be noted that it burns only when the main switch is in the Charge position. A small 6-cp minia-

(Continued on page 83)
TELEGUIDED MISSILES

An example of American technical ingenuity is more spectacular than aircraft remote control. Being a plaything, it has been perfected by wartime research and now as a weapon of war it may greatly revise tactical and theoretical military thought. In common with other inventions developed primarily for war, it also will have valuable civilian use.

The use of radio-controlled airplanes early interested the Army Air Forces because of their suitability as targets. Sleeve targets towed behind other aircraft only partially performed their function: they were unrealistic and presented a hazard to the pilot of the towing aircraft, often at the mercy of an unskilled marksman.

A target aircraft, on the other hand, realistic in every detail and controlled by a pilot in another plane hovering at a safe distance, could create the proper illusion. It could supply to the airborne machine gunner, as well as the anti-aircraft gunner on the ground, with a maneuvering target to spur him on to his best efforts.

The flight-testing of new aircraft too often has seen a plane go into a power dive out of which the pilot was unable to level off. Crashing to earth the life of the pilot was not the only loss suffered. The reason for the crash often remained a mystery, concealed in the shattered fragments of the plane and the dead brain of the pilot.

Today, plans can be test-flown without pilots aboard. The most difficult flight maneuvers are accomplished by radio direction, with the reactions of the plane telemetered to the ground as they occur. If the airplane crashes, the reason is no longer secret. Valuable data has been gathered and recorded and serves as the basis for improvements in subsequent models.

During the war the Army Air Forces loaded war-weary B-17 Flying Fortresses with high explosives and purposely crashed them into high-priority German targets. Naturally no pilots were aboard. The pilotless American Kamikazes were radio-directed to their destinations by other B-17's. At that time the remote control system was not developed sufficiently to get the planes off the ground by radio. Token crews took the planes up and parachuted to safety as soon as the control planes took over.

The airplanes that flew through the atomic cloud at Bikini were controlled entirely by radio; and the data their instruments gathered has contributed to scientific knowledge of radiation. Later, two of the planes that were used at Bikini were flown 2,600 over-water miles from Hawaii to California. Arriving off Santa Rosa Island, one of the planes dropped a smoke bomb. The flight of these two B-17's was radio-controlled from start to finish.

The various setups in which remote control may be applied to aircraft are basically similar. The channel of communication between the controlled and controlling airplanes, known as the drone and mother respectively, is a specially designed transmitter and receiver system. Controls on the drone are operated by servo motors either through the airplane's automatic pilot or directly from the transmitter. The servo motors are activated by radio impulses in accordance with the desires of the controlling pilot. Practically any maneuver within the capabilities of the plane may thus be accomplished.

A two-view television set in the drone is trained both on the aircraft's instrument panel and the outside atmosphere. By flipping a switch the controlling pilot may visually examine important dials and gauges, as if he were actually in the pilot's seat of the drone. The brains of the radio control system are incorporated in an ingenious five-pound box, known as the beeper, because of the bird-like sounds it emits when in

Model of a projected supersonic rocket-propelled radio-controlled plane of the future. See illustration in "Radio Target Planes," RADIO-CRAFT, January, 1945. Levers on the box allow for any combination of plane functions, such as throttle control, raising and lowering flaps, etc.

While the range of control varies with conditions affecting radio reception, control can be achieved up to a distance of 75 miles. Usually the take-off of the drone is supervised by an operator in a jeep-installed ground station. After the drone is airborne and has climbed to an altitude of about 400 feet the mother plane takes over.

Under normal circumstances the drone's altitude is automatically controlled by altimeter equipment specially installed for that purpose. However, the altimeter setting may be over-ridden, when necessary, by a special relay box. The receiver-selector in the drone includes an eight-channel audio filter selector circuit to discriminate between the various tones received. A relay unit passes control voltages to the automatic pilot from the receiver output.

(Continued on page 56)
PROBLEMS OF INSTABILITY

By TED POWELL

ONE of the perplexing problems encountered in radio and sound work by servicemen is circuit instability which sometimes develops in equipment which has apparently been serviced properly.

Circuit stability is governed by either of two circuit conditions, positive feedback (regeneration) or negative feedback (degeneration). Regeneration is often deliberately introduced into r.f. or i.f. amplifier circuits in controlled amounts to increase the available gain and sharpness of tuning. Similarly, degradation may be introduced into circuits—in controlled amounts to reduce hum and certain types of distortion and to suppress oscillation tendencies.

Under certain conditions, regenerative and degenerative coupling effects may exactly cancel each other out at a certain frequency or frequency range to produce extremely stable circuit operation.

Four Kinds of Coupling

Regeneration or degradation effects may be brought about by any of four circuit coupling factors—conduction or electron coupling; inductive or magnetic coupling; capacitative or electrostatic coupling (in the case of hyper-frequency circuits, by radiation or electromagnetic coupling) and various combinations of these coupling factors.

Conduction coupling may take place via common amplifier-tube electrode voltage-supply circuits, common grid-bias cathode-resistor circuits, common chassis ground returns, common ground bus leads, and in rare cases, via dielectric leakage paths. Although the d.c. ohmic resistances of chassis and wiring runs are measured in extremely small fractions of one ohm, their a.c. impedances are considerably greater, especially at radio frequencies.

Inductive coupling by magnetic fields around transformers, chokes and current-carrying conductors can cause considerable instability trouble in high-gain amplifiers and inadequately shielded circuits. Capacity coupling becomes rapidly more severe with increase in signal frequency. At microwave frequencies, two wire ends facing each other serve as an effective capacitance. (Two polished parallel No. 10 conductor wire ends separated by 1/10th inch, have a very small capacitance of about .00018 micromicrofarad, but at a hyper-frequency range of 30,000 mc have a capacitative reactance [a.c. impedance] of only about 3000 ohms.)

Certain design factors in electronic control, industrial process, communication, television, navigational and radar equipment are too complex to be predicted in advance or too difficult for theoretical solution with the mathematical tools available. These complex unpredictables constitute the well-known "bugs," generally more readily handled by means of trial-and-error models and graphical methods than by pure calculation.

Persistent circuit instability results as much from mechanical arrangement and resulting-stray-coupling factors as from the principal circuit constants themselves. In such cases, the usual and obvious by-pass filtering, shielding, lowering of amplifier tube electrode voltages result only in a change of overall oscillation frequency. The final alternative is to re-arrange the wiring, components and shielding on the chassis in a trial-and-error routine till the greatest freedom from stray coupling is determined experimentally.

A few simple alternatives may successfully eliminate the perplexing and involved instability "bug" when it crops up under certain favorable conditions. In multi-stage high gain r.f. or i.f. amplifiers, oscillation can sometimes be suppressed by altering the power factor of one or two of the amplifier tube plate or screen-grid voltage supply circuits. This can be done by inserting an r.f. choke or by eliminating or changing an isolating resistor or by-pass condenser; introducing cathode degeneration by lowering or omitting the cathode resistor by-pass condenser or inserting an r.f. choke in one or two of the cathode circuits; adding or omitting some of the shielding in one or two stages; re-arranging some of the wiring, components or shielding in some of the stages; inserting r.f. chokes in series with the voltage supply busses to one or two of the amplifier stages. The power factor of the grid or plate coil or resistor load circuits of one or two of the stages may be altered by shunting them with choke, condenser and resistor networks; inserting small damping (Continued on page 66)
SMALL RECORDING STUDIO

Part I — Microphone, Recorder, Turntable and Pickup

It is entirely feasible to equip a recording studio without the expenditure of a small fortune. When we reduce the prospective studio to its bare essentials, we find that we need the necessary equipment to make and play back a good recording or transcription. These essentials would be, in the order of their importance:

1. A 16-inch dual-speed motor and turntable assembly.
2. Rugged leadscrew assembly, preferably of the overhead type, and a good cutting head.
3. High-fidelity, low-distortion amplifier with adequate power capabilities not only for recording, but also for playback.
4. High-quality playback pickup.
5. Playback speaker system, preferably of the dual-speaker type.
6. One or more high-quality microphones and an acoustically treated room for the actual recording.
7. A second turntable and playback pickup for re-recording and dubbing purposes.
8. An all-wave AM receiver and an FM receiver are desirable.

It is assumed that adequate space is already available, preferably with three rooms. The recording equipment should preferably be placed in a room by itself, to insulate the recording artist from the distraction of watching the business of making a record and to insure that the attendant noises will not mar the recording.

The second space consists of the actual studio. It should contain several microphone outlets to reduce the possibility of tripping over the cord. A piano is a must, if musical recording is contemplated. The studio should be partially lined with absorbent material. One end of the studio might be so lined and the other end left reflective. This would provide a versatile arrangement where the acoustics of a large hall or outdoors may be simulated.

The third space is the reception and waiting room. There has to be a space where the clerical business of a recording studio can be conducted without interfering with either the recordist or the artist. It would be highly desirable to provide a receptionist or secretary to meet customers.

We are, in this article, primarily concerned with the equipment necessary to make a good recording.

For this we must first have a turntable and motor assembly. The selection of this item deserves our deepest consideration. It is possible to cut corners nearly everywhere else, but we cannot turn out good recordings with a poor turntable. It must neither introduce wow (which is a change of speed within one revolution) nor slow down under the pressure of the cutting head. Both of these deficiencies will be noticeable to even the most uncritical customer. Wow is greatly reduced in a turntable that has great mass. Sixteen-inch tables usually are made of cast iron and weigh from twenty to fifty pounds. The drive motor should have adequate power, so as not to slow under the load of the cutter, and should have a continuous-duty rating of at least 1/30 horsepower.

Fig. 1, left: Velocity microphone and typical field pattern. Right—Cardioid field pattern with representative microphone of this type. Top photo—Non-directional sound cell microphone; bottom—standard dynamic type.
The high-quality playback speaker in a good baffle is a necessity to do justice to the playing of your best recordings. An extended-range eight-inch speaker in a bass-reflex baffle is offered by at least one large manufacturer for less than twenty-five dollars, although the more expensive coaxial types would be more desirable. The minimum requirement of the speaker system is that it be reasonably flat from 50 to 8000 cycles, and it would be desirable to have the range flat from 40 to 12,000 cycles per second.

It would be desirable to provide a duplicate 16-inch turntable and overhead system so that continuous recordings could be made. In the event that the cost is prohibitive, a good 12-inch dual speed turntable, together with a pickup suitable for playing 16-inch records, can be used for dubbing and copying. It is essential that this turntable be free of wow and speed variations.

We will need several microphones. The types selected will depend upon their intended use. For music, a velocity type is considered good. Superb, also, are the several cardioid types and the sound-cell crystals. For voice recording, the crystal and dynamic types are preferable. The crystal types are the most inexpensive in original cost.

Several different pickup patterns are available in the different types and the microphones should be chosen with this pattern in mind. Fig. 1 shows the pick-

(Continued on page 62)
BUILDING A TELEVISER

Part II—The Sound Section Is a Good FM Receiver

This receiver is the sound section of the televiser described in last month's issue. Full winding data for all tuning coils as well as audio and video i.f. transformers are given in this article. The set may be used as a straight FM receiver on the new channels if slightly modified. Notes on winding coils to cover these channels are included here.

No. 14 wire. A piece of spaghetti tubing is slipped over each coil, and they are coupled as closely as possible.

The oscillator coils L10, L11, and L12 are wound with No. 14 enamel wire as follows: L10, 6 turns; L11, 4 turns; and L12, 1 turn.

All the coils are self-supporting, ½-inch in diameter, and spaced as required to hit the desired band.

The mixer grid circuit coils are wound as shown in Fig. 2. Winding data follows:

<table>
<thead>
<tr>
<th>Coils</th>
<th>Turns</th>
<th>Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA (L1, L4, L7)</td>
<td>1</td>
<td>No. 14 enamel</td>
</tr>
<tr>
<td>LB (L2, L5)</td>
<td>4</td>
<td>No. 26 enamel</td>
</tr>
<tr>
<td>LC (L3)</td>
<td>2</td>
<td>No. 26 enamel</td>
</tr>
<tr>
<td>LC (L9)</td>
<td>3</td>
<td>No. 26 enamel</td>
</tr>
</tbody>
</table>

Coil LA is center-tapped.

Position 1 of SW2 covers channels 1 and 2; position 2, channels 3 and 4; position 3, channels 5 and 6.

Construction of the video and sound i.f. transformers is perhaps the biggest task in building the set. The second, third, and fourth video i.f. transformers are constructed and wired as shown in Fig. 3-a. The windings and condenser values are:

- LA (L18, L21, L24): 23.5 turns, No. 30 enamel
- LB (L19, L22, L25): 41 turns, No. 30 enamel
- LC (L20, L23, L26): same as LA
- CB (C18, C25, C33): 3-25 µµf variable
- CC (C19, C27, C34): 3-25 µµf variable

The mixture grid coils are wound as shown in Fig. 3-b. The coil winding data are:

<table>
<thead>
<tr>
<th>Coils</th>
<th>Turns</th>
<th>Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA (L16, L29, L32)</td>
<td>21</td>
<td>No. 28 enamel</td>
</tr>
<tr>
<td>LB (L15, L27, L30)</td>
<td>29</td>
<td>No. 32 enamel</td>
</tr>
<tr>
<td>LC (L17, L28, L31)</td>
<td>23</td>
<td>No. 32 enamel</td>
</tr>
</tbody>
</table>

Fig. 2—Winding details of mixer grid coils.

The first, fifth, and sixth video i.f. transformers are constructed as shown in Fig. 3-b. The coil winding data are:

<table>
<thead>
<tr>
<th>Coils</th>
<th>Turns</th>
<th>Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA (L16, L29, L32)</td>
<td>21</td>
<td>No. 28 enamel</td>
</tr>
<tr>
<td>LB (L15, L27, L30)</td>
<td>29</td>
<td>No. 32 enamel</td>
</tr>
<tr>
<td>LC (L17, L28, L31)</td>
<td>23</td>
<td>No. 32 enamel</td>
</tr>
</tbody>
</table>

Fig. 1—Complete sound section of the television receiver, including the mixer section which was also printed in last month's figure.

28 RADIO-CRAFT for FEBRUARY, 1947

www.americanradiohistory.com
The construction and placement of T1 and T2 are shown in Photo A.

The sound i.f. and discriminator transformers are wound on 3/4-inch forms with the windings spaced as shown in Fig. 3-c. The primary windings L38, L40, and L42, and the secondary windings L39, L41, and L43 are all wound with 23 turns of No. 32 enamel wire. L43, the secondary of the discriminator transformer T11, is center-tapped. All of the video and audio i.f. transformers are mounted in standard, shielded i.f. transformer cans.

Air trimmers are recommended for these i.f. and discriminator transformers; however, mica trimmers may be used if desired.

The peaking coils L33, L34, L35, L36, and L37 for the detector and video amplifier circuits may be purchased commercially in the proper value, or they may be wound. The coils are wound as follows: L33 and L35, 280 turns; L34, 165 turns; L36, 230 turns; and L37, 110 turns. All coils are wound on 3/4-inch bakelite forms with No. 38 enamelled wire. To insure wide-band operation, remove the video detector and amplifier stages, the lead capacitance should be kept to a minimum.

The vertical oscillator transformer T7 is wound on an iron core salvaged from a small a.f. transformer or a.c.-d.c. filter choke. The outside of the core measures approximately 1 1/4 inch on each side. The center leg is about 3/8 x 3/8 x 3/8 inch. Both windings are wound in the same direction with No. 32 enamel wire. The primary has 100 turns and the secondary has 200 turns. Wiring connections are shown in Fig. 4.

Alignment of the Sound Receiver

The alignment of the receiver is somewhat difficult and, for accurate results, requires equipment not readily available to the average builder. The alignment method described here is long and tedious but yields good results.

The following equipment will be required: a calibrated r.f. signal generator capable of covering the range from 8 to 20 mc; if possible, an r.f. signal generator to cover the range from 44 to 88 mc; a 0-1 milliammeter; and an oscilloscope or v.t.v.m. for output measurements. Both signal generators should have provision for modulation of the signal (about 400 cycles), and the output should remain substantially constant over the frequency range to be covered.

The sound unit should be aligned first, since it will be used later in the final adjustment of the receiver. Insert the milliammeter between the lower end of the limiter grid resistor R211 and ground. Feed an 8.25-mc r.f. signal into the grid circuit of V20 through a 60-muf capacitor. Adjust the trimmers on transformers T9 and T10 for maximum output indication on the meter. Throughout the alignment always use the minimum output from the signal generator that will give a readable signal on the output indicator. Rock the signal generator 100 kc each side of 8.25 mc, and note the reading on the meter. The output of the sound unit should remain fairly constant over the 200-ke bandwidth. If it does not, adjust the trimmers on the transformers while rocking the signal generator through the 200 kc until a fairly constant output is obtained over the tuning range.

Remove the meter and reconnect R211. Remove the signal generator and connect the sound unit to the main receiver chassis (i.f. coaxial line). Connect the output of the sound unit to an (Continued on page 62)

T9—V20
V21—V23
T10—V22

Photo B—Construction of i.f. transformers.

Wiring Notes

When wiring the i.f. stages, all ground connections for one stage should be returned to a common point. Care should be taken to isolate each stage. Good quality carbon resistors should be used and the resistor connections should be well soldered to keep circuit noise to a minimum. Noise developed in the video circuits will make the picture appear grainy.

Precautions should be taken to keep 60-cycles and 120-cycle hum out of the picture by placing wires carefully. Hum picked up in the video circuits will appear as black bars across the picture, while hum picked up in the sweep circuits will cause a very vague pattern. The grid lead to the picture tube should be as short as possible. A lead 10 to 12 inches long, if properly isolated from magnetic fields, should give no hum pickup.

Construction details for the sound unit i.f. and discriminator transformers are shown in the photograph of the sound unit (Photo B). The sound i.f. signal is fed from the mixer to the sound unit through a length of 72-ohm co-axial cable. The audio output from the sound unit is sufficient to drive the phonograph input circuit of any average broadcast receiver. If desired, the builder can add his own audio stages.

To 8.25 mc and adjust the trimmers on transformer T11 for resonance which will be indicated by zero reading on the meter. Next set the signal generator to about 8.35 mc, and note the meter reading. The two readings should be the same. If they are not, readjust the primary trimmer C214. After readjusting C214 check to see that the meter reading is zero at 8.25 mc. In general, C215 will affect the zero response frequency while C214 will affect the symmetry of the discriminator peaks. A cut-and-try adjustment of both trimmers will produce a satisfactory curve similar to Fig. 5.

Remove the meter and reconnect R211. Remove the signal generator and connect the sound unit to the main receiver chassis (i.f. co-axial line). Connect the output of the sound unit to an (Continued on page 62)
HAM STATION FROM SURPLUS

How to Convert the No. 19, Mark II, to A.C. Operation

The No. 19, Mark II, receiver and transmitter set, a popular piece of radio equipment among experimenters and amateurs, is readily available on surplus radio markets. It was built for use in Russian and British tanks (dial and panel markings are in Russian and English) and is designed to be powered from a 12-volt vehicular storage battery. The entire unit may be obtained complete with microphones, headphones, diagrams, and other accessories. The purchaser should be especially sure to obtain the schematics—they are too large to reproduce here. By constructing suitable a.c. power supplies, the owner of the Mark II may adapt it for fixed station operation if he desires.

The Mark II is essentially three units in one. Set A is a complete 2- to 8-mc voice and c.w. transmitting and receiving station covering the 80- and 40-meter amateur bands. The transmitter has a power output of 30 watts c.w. and 5 watts voice. The transmitter uses a m.o.p.a. circuit with the frequency control ganged to the tuning control of a 5-tube superheterodyne receiver. Set B is a 4-tube transceiver tuning from 230 to 240 mc, thus covering the 235- to 240-mc amateur bands. Set C is a 2-tube interphone amplifier using a 6K7-G and a 6V6-G.

The transmitter of Set A uses the hexode section of a 6K8-G, V2B, as a variable-frequency oscillator working into an EF560 buffer amplifier. The final amplifier is an 807. The 6H6 is used as an automatic drive control rectifier and meter rectifier. The receiver uses a 6K7-G r.f. amplifier, 6K8-G oscillator-mixer followed by two 6K7-G i.f. stages and a 6B8-G detector, a.v.c. and a.f. amplifier. The pentode section of the 688-G is the modulator for radiotelephone transmission and as the tone oscillator-modulator for m.c.w. The triode section of V2B is the b.f.o. when receiving c.w.

Set B consists of an E1148 high-frequency triode, two 6K7-G’s, and a 6V6-G. When transmitting, the E1148 is a v.h.f. oscillator modulated by the output of the 6V6-G. The 6K7-G, V1E, is used as the microphone preamplifier. When receiving, the E1148 is supplied with a 158- to 228-kc quench voltage generated by the 6K7-G, VID. The 6K7-G and 6V6-G are a.f. amplifier and power amplifiers, respectively.

The interphone amplifier (Set C) has a 6K7-G speech amplifier driving a 6V6-G power amplifier.

The set may be operated from 117-volt a.c. lines by using three small power supplies and making two minor changes in the control circuits. The power supply in Fig. 1 delivers 275 volts at 110 ma to operate all tubes except the 807 power amplifier of the transmitter. Two 6.3-volt 4-ampere filament transformers are connected in series-aiding to provide 12 volts a.c. for the tube filaments. Regulation of the high-voltage section of this supply must be good because the stability of the variable-frequency oscillators depends upon constant voltage.

The power-amplifier plate supply is shown in Fig. 2. It delivers 600 volts with a load of 60 ma. Since the current required is comparatively low, regulation may be improved by using a heavy bleeder across the high-voltage output.

The circuits are switched from receive to transmit by control relays L18A and L19B in Sets A and B, respectively. These relays must be operated from a 12-volt d.c. supply. The a.c.-d.c. supply shown in Fig. 3 uses a 117/26 in a half-wave rectifier circuit. Its output is tapped to supply 12 and 60 ma for the relays. (This supply may be replaced by two 6-volt Hot-Shot batteries connected in series. They will last for months. The current drain is only 120 ma.)

Circuit Alterations

- The blue wire, connected between relay L14A and the filament pin of the 807, V4A, is disconnected at the socket.

Fig. 2—Power supply for the amplifier stage.

The blue lead with black tracer is disconnected from the No. 7 pin of the 6K7-G, V1E. These loose ends are soldered together and brought out to a binding post on the front panel. The positive side of the 12-volt d.c. supply is connected to the binding post.

The negative side of the d.c. supply is connected to the chassis of the set. (This supply should be polarized so that the grounded side of the d.c. line is always connected to the chassis of the set.)

- The receiver section may be improved for amateur operation by providing manual r.f. gain control and including a switch to ground the a.v.c. line when receiving c.w. signals. These changes may be made by comparing Fig. 4 with the original schematic that accompanies the set. The cathode resistors of V1A and V1B are disconnected from ground and tied to the arm of a 20,000-ohm potentiometer. One leg of the control is connected to ground so that the r.f. gain increases as the control knob is turned clockwise. The a.v.c. line may be grounded by connecting a switch between the junction of L10A and R5B and ground. When the switch is open, (Continued on page 80)
TELEVISION FOR TODAY

Part IX — D. C. Reinsertion and Image Synchronization

Analysis of the video signal (in a preceding article) indicated that it consists of two parts: an a.c. and a d.c. component. The a.c. component governs the variation in detail from point to point, whereas the d.c. component governs the over-all background illumination of the received image. We may look upon this latter component as an over-all intensity control, automatic in the receiver, but adjustable at the broadcast studio according to the dictates of the production manager. The transmitted and received signals contain this d.c. component and it is only in the output of the second detector when the r.f. has been removed that we need give it special attention. This becomes evident when we consider the nature of the video amplifiers that follow the video detector and the form of the video signal.

Video amplifiers are coupled by means of condensers. The d.c. component is automatically eliminated in passage. Fig. 1 compares the forms of the video signal with and without the d.c. component. In one instance, Fig. 1-a, the synchronizing pulses are on one level and the three degrees of intensity (white, grey, and dark) are properly oriented with reference to the topmost or black level. In the second illustration, Fig. 1-b, the d.c. component has been removed and the synchronizing pedestals are no longer aligned to one level. Without the d.c., the wave adjusts itself so that the areas above and below the zero reference line are equal, this being true of all a.c. waves.

What would be the effect of a missing d.c. component upon the final image? First, there would be no exact way of determining what the true average background brightness is, since this is a direct function of the d.c. component. Imagine two studio scenes, alike in every detail except the over-all lighting. Assume that one scene is strongly illuminated while the general illumination on the other is low. Examination of the resulting video signal would reveal that they differed substantially only in the amount of d.c. component contained in each. The illustration in Fig. 2, might very well present this situation.

With no d.c. component, both the above signals produce essentially the same image, with an average back-ground illumination based primarily upon the various shades of the people, their clothing, and the objects in the image.

As a general statement, the d.c. component controls the image sensation more in the regions of high brightness, while the a.c. component produces a greater effect in the low intensity region. Hence, removal of the d.c. component will produce a darker image.

Secondly, with the removal of the d.c. component, the blanking and synchronizing pulses are no longer aligned to the same level. The purpose of the blanking pulses is to drive the control grid of the cathode-ray tube to cut-off. However, with the pulses at various levels, it becomes necessary to bias the cathode-ray tube (with the brightness control) to such a value that most blanking pulses, in their new position, cause cut-off.

Finally, every cathode-ray tube has a characteristic curve. For a definite input voltage, a certain beam current is obtained and a related amount of light appears on the screen. To obtain repeated appearances of any one shade of requires the injection of the same voltage each time. This is not possible unless one reference level is used throughout. It is here that the d.c. component is useful. By reinserting the voltage, all blanking and synchronizing pulses are maintained at the same level and the associated image detail is likewise oriented correctly.

Reinserting the D.C.

The d.c. component may be reinserted, if it has been removed, because removal of this component does not alter the shape of the video signal, but merely its reference level. Re-examine Fig. 1.

If we could somehow raise each synchronizing pulse of the a.c. video signal back to the same level, then the video detail electrically associated with that pulse would likewise readjust itself.

Two methods are in common use for d.c. reinsertion. Both develop a variable bias which, when placed in series with the video signal, replaces the previously lost d.c. component. The simplest circuit is shown in Fig. 3. The d.c. reinsertion (required only in the final video amplifier) is obtained from the combination of zero cathode potential plus grid-peak bias.

The signal applied to the grid of this last amplifier is in the negative picture phase of proper orientation with the cathode-ray tube. In this form each synchronizing pulse possesses the most positive potential of its line. This is very important, for on it depends the operation of the d.c. reinsertion network, Rg and Cc. The tube has no bias other than that which appears across Rg, and the voltage at Rg is directly dependent upon the synchronizing pulses. At each pulse, the grid draws current and charges Cc. The condenser then discharges through R at a rate dependent on the time constant $T = Rg \times Cc$. By designing the network with a time constant equal to or slightly greater than one horizontal line, we can force

(Continued on page 72)
SIMPLE MODULATION METER

A Simple Method for Obtaining Diverse Information

ANY modulation indicators have been designed, but few have the overall simplicity and accuracy of the cathode-ray tube for discerning waveform, percentage of modulation, or deficient operation.

The simplest modulation indicators employ either a diode tube, meter, or neon lamp. These systems generally indicate over-modulation only. Special meter circuits may be employed to read in percentage, but these are generally expensive.

The use of a cathode-ray oscilloscope to check percentage of modulation is not new, many texts describing the familiar trapezoidal patterns produced when the r.f. and audio signals are combined properly in the instrument.

The equipment required for these modulation tests is any standard cathode-ray oscilloscope and a plain antenna or t.r.f. shortwave receiving coil. Where a commercial oscilloscope is not available, it is possible to build a simple modulation oscilloscope for relatively little expense. Such an oscilloscope is shown schematically with this article (Fig. 1). Only three radio tubes plus the cathode-ray tube are required. Power supply requirements are simplified by the use of one conventional grid radio power transformer. Half-wave rectification is used to supply the high voltage for the cathode-ray tube. Use of half the transformer to supply the high-voltage d.c. for the sweep circuit is a novel innovation, but perfectly satisfactory and free of ripple where sufficient filtering is used. The sweep circuit employs a high-vacuum tube which is inexpensive as compared with any of the gas-filled tubes normally used in these circuits. The connection between the sweep circuit and the cathode-ray tube control grid is to eliminate the flyback sweep trace on the face of the cathode-ray tube. Normally synchronism of the sweep is not required, but input connections are shown on the drawing, indicating where part of the audio signal may be fed if sync is desired.

Positioning controls are not required for centering the trace. Manufacturing tolerances center the beam within a short distance of the screen center. If the trace is not centered properly, look first for a leaky coupling condenser between the sweep circuit and the deflection plate. This condenser must show 20 megohms or higher, and for this reason it is often wise to use a micro condenser in this section of the circuit. A loudspeaker too close to the cathode ray tube may deflect the cathode-ray beam magnetically. To check these troubles, short the deflection plates to ground; if this clears up the trouble, it is in the circuit, probably due to application of a d.c. potential (as through a leaky condenser) to the deflection plates. Where this does not clear up the trouble suspect magnetic fields. Check the surrounding area with a small compass. Iron panels or the very deflection plates in the cathode ray tube may be magnetized. These may be demagnetized by placing in a strong a.c. field and slowly removing.

There may be focusing difficulties. If so, rotate the focus control towards the sharpest focus point. Then at the other electrical end of the focus potentiometer add a 50,000-ohm resistor so that more voltage will be available in this direction. Follow up by backing off the control until focus is obtained.

The primary side of the r.f. pickup coil is connected to the antenna post of the transmitter. Normally the loading resistor of the antenna is connected to the other (unconnected) side of the primary coil so that it is in series, effectively, with the antenna lead coming from the transmitter. This primary coil should not be at a current node, but the exact location is not critical, there being nothing to balance or adjust to cause the indicator to show the correct percentage of modulation. Where the transmitter power is high, the primary winding may be connected through a small isolating condenser from the antenna post to ground.

The secondary of the coil should be connected directly to the vertical deflection plates of the cathode-ray tube, with all else (including the positioning control) disconnected. If the oscilloscope tube is five inches or over, pushpull deflection (to be preferred) will be available. Where the secondary of the coil is center-tapped (not critical) with the outside connections going directly to the deflection plates and the center tap to ground. It may be found impossible to use the three-inch oscilloscope (because of a grounded deflection plate) except with single-ended transmitters. It is imperative when using the five-inch or larger cathode-ray tube to use pushpull deflection as previously mentioned; failure to do so will result in a Keystone pattern with possible indications of unsymmetrical operation although it does not exist.

There are two reasons for connecting the secondary of the r.f. pickup coil directly to the deflection plates. The vertical deflection amplifier in standard oscilloscopes does not amplify much over 200 kc and thus is incapable of amplifying the radio-frequency signal. It is advisable to disconnect the oscilloscope amplifier output tube from the deflection plates to reduce tube and wire capacities to ground. Modern oscilloscopes have disconnect links exposed on the back of the unit for direct connection into the deflection plates, making wiring changes unnecessary. When hooking directly into the deflection plates, the vertical positioning control is inoperative. If the beam trace is too far from the center of the tube with this control disconnected, it is possible in some cases to reconnect it and unwire the output tube connections to the deflection plates. Where positioning is obtained through the output tube by control of plate current, this is not possible.

(Continued on page 58)

RADIO-CRAFT for FEBRUARY, 1947
ANTENNA PRINCIPLES

Part III—Directional Arrays and Radiation Fields

Previous articles described the operation of simple antenna systems suitable for broadcast reception and amateur operation. More elaborate designs are used for commercial communication and broadcast transmission.

All practical antenna systems and arrays are directional to some extent. They may be grouped in accordance with their characteristics as follows:

1. Those designed to receive or transmit along one or a few narrow beams only. In other directions the system is relatively ineffective.

2. Those producing an irregular pattern.

3. Arrays having circular patterns in the horizontal plane. Actually these types are directional with little propagation upward or downward, but they are commonly termed nondirectional.

Beam Arrays

For point-to-point communication there are many advantages in using an antenna which concentrates power in desired directions only. Secrecy is maintained and very high efficiency is possible. Interference with and from other transmissions is reduced to a minimum. Sharp beams become practical at the higher frequencies because the radiating systems can be constructed within a reasonable area.

The Amphenol broadside array is an example of a well-designed communication antenna for the 162-162 mc band. These frequencies are assigned to fire departments, police, press, and railroads. The same array also can be used (with slightly lower efficiency) in the neighboring amateur and government bands which extend from 144-198 mc. Its excellent directional characteristics recommend it for fixed or mobile point-to-point service.

The electrical design of the Amphenol broadside array is illustrated in Fig. 1. Four half-wave dipoles are spaced by one-half wavelength and fed at their centers. The feeder system from the array may use RG8U or (for very long lines) RG17U co-axial cable.

The large-diameter tubing lowers the inductance and raises the capacitance of each dipole. The low Q broadens the response curve and accounts for the very wide band over which the antenna is effective. Use of low-impedance cable eliminates difficulty with voltage loops and leakage. Note that the outer dipoles are fed through cables which are one full wavelength longer than the cables which feed the inner ones. Therefore each dipole is fed in phase.

Power is propagated only broadside to the array. Assume that a wave starts out at some instant from one dipole. It reaches the next dipole one-half cycle later because of the half-wave spacing. At this later instant the second dipole tends to radiate a field which is out of phase with that which has just reached it from the other. The two opposite fields cancel out along either direction of the array. A receiving antenna located broadside to the array intercepts equal power from each of the four dipoles since in this case all currents are in phase. The total gain in the second case is 7 db over that of a single radiator.

The narrow fields which are possible with the broadside array are shown in Figs. 2-a and 2-b. The first is a cross-sectional view as it might be seen by an observer standing on a level with the array (if radio waves were visible). Little power is lost through upward propagation. The second figure is a view looking down on the antenna. A sharper beam can be transmitted by using a still more complex array.

Photo A shows such a system. This particular antenna is erected above the forty-third story of the building which houses WOR's FM station WBAM, more than 500 feet above street level in the heart of New York City. It has an effective gain of 60! This array is beamed toward Washington, D.C., and can be used for transmitting at 47.1 or 106.5 mc. The interesting antenna is of the same type as...

(Continued on page 55)
Preliminary.

(a) Adjust the DIAL POINTER along the dial cord to the position opposite the first right-hand punch mark on the dial backing-plate, with the tuning condenser fully set to MINIMUM capacity (Fig. 1). Low side to B—

(b) Set VOLUME CONTROL to the FULL ON position;

(c) Maintain SIGNAL GENERATOR output at MINIMUM consistent with a readable Output Meter indication;

(d) OUTPUT METER across voice coil;

(e) Follow sequence indicated below.

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>DUMMY ANTENNA</th>
<th>DIAL SETTING</th>
<th>SIGNAL GENERATOR CONNECTIONS</th>
<th>SIGNAL GENERATOR SETTING</th>
<th>ADJUST TRIMMERS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.01 mfd.</td>
<td>At HIGH frequency end of scale; (Min. Capacity)</td>
<td>High side to 'loop lug of CON.'</td>
<td>455 K.C.</td>
<td>Tlb</td>
<td>Tlb (Fig. 1)</td>
</tr>
<tr>
<td>2</td>
<td>3 turn coil of 218 or 238 insulated wire on 7/8 or 8 diameter L O O S E L Y Coupled to loop Antenna in chassis</td>
<td>Pointer at extreme HAND END of dial scale (Min. Capacity). Pointer will be in line with FIRST punch mark at right</td>
<td>Across Dummy Antenna</td>
<td>1700 K.C.</td>
<td>Tlb (Fig. 1)</td>
<td>Adjust Trimmer for MAX. output reading</td>
</tr>
<tr>
<td>3</td>
<td>Same as in 2 above</td>
<td>Pointer—Ta line with punch mark SECOND from right</td>
<td>Same as in 2 above</td>
<td>1520 K.C.</td>
<td>Ta (Fig. 1)</td>
<td>Adjust Trimmer for MAX. output reading</td>
</tr>
<tr>
<td>4</td>
<td>Same as in 2 above</td>
<td>At LOW frequency end of scale (Max. Capacity)</td>
<td>Same as in 2 above</td>
<td>530 K.C.</td>
<td>None</td>
<td>530 K.C. Signal should be placed up or near this dial setting. Check operation in Sec. 3 if signal is not placed up</td>
</tr>
</tbody>
</table>

Reinstalling Chassis (After Alignment):

(a) With chassis still on the bench, set dial pointer at the minimum capacity end of travel.

(b) Slide chassis into cabinet and adjust its position so that the dial pointer is opposite and in line with the FIRST calibration mark at the right-hand end of the GLASS DIAL SCALE.

(c) Tighten the chassis hold-down screws.

(d) Tuning should now track so that peak signal is attained at the proper frequency calibration on the glass dial scale.

Service Notes

Hum Modulation:

On Early Production runs Condenser C-18 consisted of two — .05 µf units. One ground terminal was connected to CHASSIS, the other to B—. Disconnect the CHASSIS terminal of the .05 Condenser now connected to Pin No. 1 of the 12SA7GT tube and connect this lead to Pin No. 5 of either of the 12SK7GTs or to any other convenient B— point. This effectively by-passes the a.c. modulation hum to B— instead of to chassis.

Oscillation:

Remove one side of Resistor R-2 (in grid circuit of 12SA7GT) now connected to a.c. bus and reconnect to cathode No. 5 pin) of i.f.—12SK7GT.
TRANSLATLANTIC NEWS

From our European Correspondent, Major Ralph Hallows

There has been no small amount of disappointment that the post-war radios so far offered for sale here have failed to show the wonderful improvements which the ordinary man and woman had been led to expect. Having read a thousand times that spectacular advances in radio technique were made during the war, they can't detect any evidence of their application in the new radios in the shops. Most of these look (and sound) to them very much like the same old pre-war works in very much the same old boxes! And I am sorry to have to confess that the impressions formed by Mr. and Mrs. Broadcast Listener are too often not very far from the truth! We are woefully short of raw materials—insulated wire, stampings for transformer cores and metal for loud-speaker magnets in particular. This, combined with labor shortages, has led manufacturers to concentrate mainly on the small superhet receiver, containing four or five tubes in addition to the main rectifier.

Now there are not many changes that you can ring on such combinations of tubes. Nor can you introduce much in the way of frills when component manufacturers quote delays of anything from twelve to thirty-six months for the delivery of any but the most ordinary of small parts. Those are some of the chief reasons why the majority of our present-day radios differ so little from the receivers of seven years ago (remember that the war began for us in 1939.) Nevertheless, some firms have managed to produce real novelties—novelties of genuine value, and not mere flat-catching stunts. One of these is the Murphy A184 receiver, the design of which strikes out in an entirely new line. The basic idea? To get rid of the "boxiness" and "boominess" which are the almost inevitable results of making a smallish cabinet act as the baffle for the loud-speaker. Every reader of RADIO-CRAFT knows that if a flat baffle is used better reproduction is obtainable than with the loud-speaker cooped up in a cabinet. Much of the thudding base we know is put to cabinet resonances. The trouble is to know how to find a convenient place for a flat baffle.

In this Murphy set the problem is solved ingeniously by, so to speak, hang-ing the receiver on to a 24 by 18-inch baffle. The illustration shows how this is done. The receiver itself is long and narrow with almost a straight-line layout from antenna to output terminals. In use it should stand on a hard surface, which becomes an extension of the baffle.

This is something more than just an idea. It really works. The reproduction is so much better than that obtainable with box-type cabinets that readers may care to try out designs of their own on the same lines.

Far-East Transmissions

Short-wave fans may have been puzzled over the location of a station broadcasting in English on 7.185 mc., and announcing itself as Radio SEAC. This is the British Army 100-kw transmitter in Ceylon, which sends out daily entertainment programmes from 1330-1400 EST. These programmes are broadcast simultaneously by a 15-kw transmitter on 15.12 mc.

Carrier-Current Broadcasting

In England a large and prosperous system of relaying broadcast programmes was in being before the war and it is now growing vigorously. To understand what is popular you must realize that in all Britain there are only 16 broadcasting stations, all run by the BBC. These transmit between them two programmes, the regional and the national. In most places both programmes are receivable with good strength and quality. But there are places where reception is none too good; it may be that the field strength is insufficient, or it may be that man-made static spoils things.

Here is how relaying has been worked hitherto. A corporation, having obtained the necessary authorization, sets up a large receiving station at an interference-free spot and offers to any who will sign on for a small weekly subscription a "piped" programme service, guaranteed free from fading and interference. The subscription is about 35 cents a week. In return the relay company runs wires to the subscriber's house, supplies him with a small amplifier and a loudspeaker and gives him a choice of two programmes at all times.

A week or two ago an entirely new type of relay system was inaugurated at Rugby. In this carrier-frequency methods are used and the subscriber has the choice of any one of six available programmes, though only one pair of wires runs to his house. The receiving equipment consists of a tetrode unit, provided with a selector switch and a volume control. It is planned to extend the carrier-frequency system to other localities in the near future.

Popularity Meter

Incidentally, the relay services supply an infallible method of determining not only whether a particular programme item is liked or not, but also just how much it is liked or disliked. The engineers at each main relay station have meters in the output circuits of their equipment and they can tell instantly, by glancing at the loads registered on their dials, what proportion of the subscribers are listening at any moment, for the load is naturally heavy when there are many and light when there are few. Some of the most interesting

Side-pieces hold the baffle clear of the wall. Hours that I have ever spent were at such a relay station, watching the dials of the output load meters and observing their continuous record of listeners' reactions to the various programme items.

Anti-fading Antenna

A novel type of anti-fading vertical radiator has just been brought into use by the BBC in connection with one of the 100-kw transmitters at Brookman's Park, near London. The 500-foot lattice mast is divided into two sections by means of three low-capacity insulators, each 3 feet high and 9 inches in diameter.

(Continued on page 38)
SOUND ENGINEERING — No. 27

This department is conducted for the benefit of all Radio-Craft readers. All design, engineering, or theoretical questions of general interest on PA installation, sound equipment, and audio amplifier design will be answered in this section. No circuit diagrams can be supplied by mail, all answers being printed in order of their receipt.

(Note: when questions refer to circuit diagrams published in past issues of technical literature, the original, or a copy of the circuit should be supplied in order to facilitate reply.)

RECORDING AMPLIFIER

The Question:
I am desirous of building first-rate recording equipment. I have been searching for a suitable diagram for some time and have not been able to find one. I was wondering if you could furnish me one with the following specifications:
1. Crystal recording head to be used.
2. Playback (crystal pickup) to be included.
3. Usable as a small PA system.
4. Volume-level indicator of some kind, either meter or a cathode tube, incorporated.
5. High-fidelity—with inverse feedback.
Can you supply me with such a diagram? I will greatly appreciate any help you can give me.

John G. Sjoblom, Anderson, Indiana.

The Answer:
A circuit diagram of the type you request is given in Fig. 1. You will note that a voltage doubler is used in the rectifier supply and a combination isolation and filament transformer is used to isolate the circuit from the 117-volt a.c. power line. This circuit has been successfully used on a number of commercial recording amplifiers.

A specific circuit for the crystal recording head has not been given as manufacturers' recommendations should be followed for the particular recording head employed. Connections to crystal cutters are usually made directly from the plate circuit of the push-pull output stage, through condenser and resistor networks as recommended by the manufacturer. The high-voltage secondary in the isolation transformer is approximately 125 volts, rated at about 150 mils.

ELECTRONIC TREMOLO

The Question:
I have built several amplifiers for electric guitars and sold them, but I want to make an improvement on them. About a year ago, I saw one that had a feature that I would like to add, but as yet I have had no success with it.

This amplifier had something in it that, when you threw a switch, gave a solid note a quivering or tremolo effect somewhat similar to a vibrating pulsation of a Hawaiian guitar.

The Answer:
My amplifier is of the conventional design consisting of a 67, 56, and two 2A3's in push-pull. I would appreciate it very much if you could give me some idea on how to construct this unit.—Walter G. Brady, Turtle Creek, Pa.

The volume-changing tremolo (or vibrato) is considered colorless and monotonous by many musicians. This effect, however, can more easily be produced in an amplifier by simply arranging for a rapid and fluctuating change in the gain of an amplifier tube. A rough idea of how this can be added to any amplifier, follows:

Set up a controlled sine-wave low-frequency oscillator (which will determine the rate of the vibrato). The output of the oscillator is then fed into one of the grids in a variable-mu tube so that a vibrating change of gain in the vibrator tube will produce a vibrating change of level at the output of an amplifier, Fig. 2 is the circuit of an electronic volume-changing tremolo which was set up in our laboratory and found to operate exceptionally well.

You will note that the 6SK7 is used as a tremolo variable-mu tube. The oscillator was made variable from 3 to 12 cycles (in our experiments) to control the speed of vibrato. If you prefer, this may be a fixed oscillator.

The amplitude of the vibrato is dependent on the voltage of the oscillator. We found a voltage range from 10 to 55 volts more than adequate.

If you are interested in additional details on the production of tremolo and vibrato effects in synthetic electronic musical instruments, get L. E. Remeef's (Continued on page 59)

Fig. 1—An amplifier designed for recording. Fig. 2—Tremolo unit for musical instrument.

(Continued from page 36)
WORLD-WIDE STATION LIST

We inaugurate in this issue what we believe is a new idea in listing station schedules. The time will henceforth be stated in four figures of a twenty-four hour clock in Eastern Standard Time. Thus midnight will be stated either as 0000 (if a program begins at midnight) or 2400 (if the program ends at midnight); what was formerly 1 am will now be 0100 and 2:16 am will be 0216. Noon will be expressed as 1200 and 6 pm will be given as 1800. Please remember that these times are EST. We think that you will also like this new system when you have used it a few months, as it will eliminate the possibilities of mistaking am and pm and vice versa. It will be greatly appreciated if you will give us your comments in this way when sending in reports to us.

The picture of Eddie Startz, six-language announcer of "The Happy Station" was sent us by North American Philips. We would like more photos of shortwave announcers and stations. You will note several changes to this section. The log, as many stations have changed their frequencies and schedules. The CBC announced the following basic schedule for the balance of the winter; CKNC on 17.8 megacycles from 0930 to 1245; CKCX on 15.19 megacycles from 0930 to 1200; CKCS on 18.32 megacycles from 1200 to 1600; CKOL on 11.72 megacycles from 1300 to 1800; and CKLO on 9.83 megacycles from 1515 to 1800. These are all beamed to Europe; while the following are directed to the Caribbean area: CKRA on 11.76 megacycles from 1820 to 1935 and CKRZ on 6.06 megacycles from 1920 to 1935.

XGOY is being heard on 6.154 megacycles from 0630 to 0745 hours EST, with very good results. This is a good catch for early morning. The Chinese have discontinued use of 9.635 megacycles for the balance of the winter months. A new Ethiopian is now being heard from Addis Ababa on 16.065 megacycles from 1230 to 1800 and from 2015 to 2130. Has not been heard here yet, nor have we any reports of it being heard, but we are looking for it. Have you heard it?

New certificates will be out about the time you are reading this, so if you wish an appointment for the coming year let us hear from you. Regular observers will automatically be re-appointed, but we could use reports from several more.

Send all inquiries to Shortwave Editor, c/o RADIO-CRAFT, 25 West Broadway, New York City 7.

Eddie Startz, of Huisen, Netherland key station, world-famous international announcer.

WEDNESDAY, FEBRUARY 2, 1947

<table>
<thead>
<tr>
<th>Frequence</th>
<th>Station</th>
<th>Location and Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.500</td>
<td>WWV</td>
<td>WASHINGTON, D. C.</td>
</tr>
<tr>
<td>3.180</td>
<td>YVH5</td>
<td>TRUJILLO, VENEZUELA: 17:00 to 20:00</td>
</tr>
<tr>
<td>3.340</td>
<td>YD2S</td>
<td>DELHI, INDIA: 13:00 to 17:45</td>
</tr>
<tr>
<td>3.350</td>
<td>YVR5</td>
<td>MARRAJO, VENEZUELA: 13:00 to 17:30</td>
</tr>
<tr>
<td>3.380</td>
<td>YV8V</td>
<td>MARRACAS, VENEZUELA: 09:00 to 20:00</td>
</tr>
<tr>
<td>3.390</td>
<td>YV4RK</td>
<td>MANACAY, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>3.420</td>
<td>YV4R</td>
<td>COLORADO, CEYLON: 09:00 to 12:00</td>
</tr>
<tr>
<td>3.430</td>
<td>YV4R</td>
<td>COLORADO, CEYLON: 1800 to 2400</td>
</tr>
<tr>
<td>3.460</td>
<td>YV4R</td>
<td>MARRACAY, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>3.480</td>
<td>YV4R</td>
<td>VALENCIA, VENEZUELA: 17:30 to 2400</td>
</tr>
<tr>
<td>3.480</td>
<td>YV4R</td>
<td>PUERTA CABALLO, VENEZUELA: 17:30 to 2400</td>
</tr>
<tr>
<td>3.490</td>
<td>YV4R</td>
<td>BAHIA DE HUAQUIM, VENEZUELA: 16:30 to 2400</td>
</tr>
<tr>
<td>3.500</td>
<td>YV4R</td>
<td>CESAR, VENEZUELA: 09:00 to 20:00</td>
</tr>
<tr>
<td>3.510</td>
<td>YV4R</td>
<td>BAHIA DE HUAQUIM, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>3.520</td>
<td>ZRF</td>
<td>CESAR, VENEZUELA: 09:00 to 20:00</td>
</tr>
<tr>
<td>3.600</td>
<td>ZRF</td>
<td>ZOE, MODERNIA: 1800 to 22:00</td>
</tr>
<tr>
<td>3.930</td>
<td>ZOE</td>
<td>COLOMBIA: December 1800 to 22:00</td>
</tr>
<tr>
<td>3.940</td>
<td>PONTA DEL GADA, AZORES: 17:00 to 2400</td>
<td></td>
</tr>
<tr>
<td>3.940</td>
<td>PONTA DEL GADA, AZORES: 17:00 to 2400</td>
<td></td>
</tr>
<tr>
<td>4.160</td>
<td>HC1B</td>
<td>QUITO, ECUADOR: 15:00 to 2200</td>
</tr>
<tr>
<td>4.750</td>
<td>YVHV</td>
<td>MARRACAY, VENEZUELA: 09:30 to 21:00</td>
</tr>
<tr>
<td>4.770</td>
<td>YVIV</td>
<td>CALI, COLOMBIA: 1800 to 2400</td>
</tr>
<tr>
<td>4.780</td>
<td>YV4R</td>
<td>VALENCIA, VENEZUELA: 16:30 to 2400</td>
</tr>
<tr>
<td>4.780</td>
<td>YV4R</td>
<td>HABANA, MEXICO: 17:00 to 18:30</td>
</tr>
<tr>
<td>4.780</td>
<td>YV4R</td>
<td>BARRANQUILLA, COLOMBIA: 17:00 to 18:30</td>
</tr>
<tr>
<td>4.790</td>
<td>YV4R</td>
<td>BARRANQUILLA, COLOMBIA: 17:00 to 18:30</td>
</tr>
<tr>
<td>4.790</td>
<td>YV4R</td>
<td>BANDOENG, NETHERLAND INDE: 09:00 to 21:00</td>
</tr>
<tr>
<td>4.810</td>
<td>YV1R</td>
<td>MARRACAY, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>4.810</td>
<td>YV1R</td>
<td>MARRACAY, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>4.820</td>
<td>YV1R</td>
<td>CIUDAD, COLOMBIA: 17:00 to 18:30</td>
</tr>
<tr>
<td>4.820</td>
<td>YV1R</td>
<td>CIUDAD, COLOMBIA: 17:00 to 18:30</td>
</tr>
<tr>
<td>4.830</td>
<td>YV2R</td>
<td>CALI, COLOMBIA: 1800 to 2400</td>
</tr>
<tr>
<td>4.840</td>
<td>YV2R</td>
<td>CIUDAD, COLOMBIA: 1800 to 2400</td>
</tr>
<tr>
<td>4.850</td>
<td>YV2R</td>
<td>BAHIA CHRISTOPH, VENEZUELA: 1800 to 2400</td>
</tr>
<tr>
<td>4.860</td>
<td>YV2R</td>
<td>BELEM, BRASIL: 09:00 to 13:00</td>
</tr>
</tbody>
</table>
NOVEL RECEIVER

This is a sensitive superregenerative receiver. It uses the new 6AK5 high-frequency pentode and standard plug-in coils. The a.f. amplifier is a 6X6. A small power supply using a 6X5 supplies 200 volts for the plates of the tubes. If the voltage on the plate of the 6AK5 exceeds 180 volts, a resistor should be inserted between the B-plus lead and the 500-henry choke to drop the voltage to the desired value (See Fig. 1).

The power supply should be turned off when changing coils to avoid the risk of receiving a shock and to prevent operating the detector without plate voltage.

JOHN JUSTIN, Cicero, Ill.

PHONO AMPLIFIER

Here is a phono amplifier that has given good service for over a year. It uses push-pull throughout and has a very low hum level. Inverse feed-back tends to flatten the response curve. An Astatic HP 16 Pickup, with an output of 0.85 volt, is used to drive the voltage amplifier stage. A 12-inch PM speaker, housed in a bass-reflex cabinet, is used with the amplifier (See Fig. 2).

JOHN KWIETNINSKA, Duquesne, Penna.

UNIVERSAL ANTENNA

This circuit contains practically all of the condensers and resistors that may be specified by set manufacturers, as dummy antennas for aligning their receivers. The components are mounted in a 2 x 6 x 1 1/4-inch metal box which provides sturdy connections and adequate shielding against radiation.

In use, the signal generator is connected to one side of the desired component and the receiver antenna post to the other. If the manufacturer of the set does not specify the type of dummy antenna to be used, the I.R.E. universal antenna may be used by connecting the signal generator to pin No. 1 and the set antenna to pin No. 2.

Ralph J. Walsh, Alhaden, Calif.

TONE CONTROL

I constructed an amplifier using a tone-control circuit similar to that shown in Fig. 2, page 763, of the August issue, and found that there was interference between the controls and motorboating when the bass control was advanced beyond the mid-point. By changing the circuit to that shown here, I have improved the bass response and stopped interaction and motorboating.

JOHN KWIETNINSKA, Duquesne, Penna.

DUPLEX DETECTOR

Here is a circuit that I use on my receiver to permit me to use either a diode or infinite-impedance detector at will. A p.d.t. switch connects the plate of the detector to B-plus or to the cathode, depending on the circuit in use. As a diode detector, the 20,000- and 100,000-ohm resistors form the load resistor with the audio output taken off at the junction of the resistors. As triode infinite-impedance detector, a.f. voltage is taken off of the cathode load resistors. Signal voltage is taken from the plate of the i.f. or r.f. amplifier and rectified by a 1N34 crystal diode. This rectified voltage is applied in series with 1 to 3 volts of fixed bias which provides delayed a.c. The bias voltage may be obtained from batteries, bias cells or a tap on the bleeder resistor.

H. M. Harvey, Scotia Plains, N. J.

COMPACT INTERCOM

Here is a circuit of a compact instant-heating intercommunicator. A 1N6-G drives a 3Q5-GT power amplifier.

Small PM speakers are used at the master and remote stations where they serve either as speakers or microphones. Talk-listening switching is done with a d.p.d.t. lever switch.

The power supply uses a Federal selenium rectifier to supply high voltage for the plates and screen grids and 4.5 volts for the series-connected filaments.

The speaker voice coils are matched to the IN5-G grid with a voice-coil-to-grid transformer designed for use in intercom units. An 8,000-ohm output transformer matches the plate of the 3Q5-GT to the voice coils. If it is not necessary for the remote station to initiate a call, the unit may be turned off until the master makes a call.

F. C. Hoffman, W9VVU, Appleton, Wis.
Now you can SEE and HEAR The Signal with the new CA-12 SIGNAL TRACER

Always ready with cable. No self-contained.

THE MODEL CA-12 comes complete with Detector Probe, test leads, self-contained batteries and instructions. Comes housed in a rugged, rotatable cabinet. Complete with coaxial cable, leads and instructions.

The New Model 670 SUPER METER
A Combination VOLT - OHM MILLIAMPERE plus CAPACITY REACTANCE, INDUCTANCE and DECIBLE MEASUREMENTS

SPECIFICATIONS:
- D.C. VOLTS: 0 to 7.5, 15, 25, 150, 75, 100/1500 volts
- A.C. VOLTS: 0 to 150, 250, 500, 750, 1000, 1500, 2000, 2500 volts
- OUTPUT VOLT: 0 to 15, 30, 60, 120, 240, 360, 480, 600, 750, 1000, 1500, 2000 volts
- CAPACITY: 0 to 2, 10, 25, 40, 100, 250, 400, 1000, 2500, 4000, 10000 farads
- VOLTAGE BALANCE: 10 - 100, 0.1 to 1.5 microamperes
- FREQUENCY: 750 to 7000 ohms, 15000 ohms
- INDUCTANCE: 0.5 to 5, 5 to 50, 50 to 500, 500 to 5000 microhenrys
- RESISTANCE: 0 to 2000, 1000 to 10000, 10000 to 100000, 100000 to 1000000 ohms
- BUDDERER: 10 to 20, 20 to 40, 40 to 80, 80 to 160
- The Model 670 is housed in a rugged, robust cabinet. Complete with test leads and operating instructions.

$34.85

The New Model 650 SIGNAL GENERATOR
RANGES:
- Kilocycles: 10, 25, 50, 100, 250, 1000
- Megacycles: 0 to 10, 25, 50, 75, 100, 250
- RF obtainable separately or modulated by the Audio Frequency.
- Audio Modulating Frequency: 400 cycles pure sine wave—less than 2% distortion.
- Attenuation: 10 steps ladder type of attenuator (7 pad).
- Uses Hartley Excited Oscillator with a Buffer Amplifier, and Meter; also an audio oscillator and rectifier.

$48.75

The New Model 650 TCP SET TESTER
A NEW COMBINATION TUBE TESTER AND MULTI-METER
A complete testing laboratory all in one unit. Reads A.C. Volt, D.C. Volt, D.C. Current, Resistance and Decibels.

TUBE TESTER SPECIFICATIONS:
- Tube identification——by newly designed rotary selector switch.
- Tests all tubes up to 117 volts.
- Tests shorts and leaks up to 3 Megohms in all tubes.
- Tests leakage and shorts of any one element against all elements in all tubes.
- Tests both plate and rectifier tubes.
- Tests individual sections such as diode, triode, pentode, etc., in multimeter tubes.
- New type line voltage selector.

MULTI-METER SPECIFICATIONS:
- D.C. VOLTS: 0 to 25, 50, 100, 200, 250, 500, 1000 volts.
- A.C. VOLTS: 0 to 315, 630, 1250, 2500 volts.
- FREQUENCY: 750 to 7000 ohms.
- RESISTANCE: 0 to 2000, 2000 to 20000, 20000 to 100000, 100000 to 1000000 ohms.
- BUDDERER: 10 to 18, 18 to 36, 36 to 72, 72 to 144

$62.50

The New Model 400 ELECTRONIC MULTI-METER
A COMPLETE VACUUM-TUBE VOLTMETER AND VOLT-OHM MILLIAMPERE PLUS GAUGE, INDUCTANCE, REACTANCE AND DECIBLE MEASUREMENTS

SPECIFICATIONS:
- D.C. V.T.V.M.: 0 to 15, 30, 150, 300, 1500 volts.
- A.C. VOLT: 0 to 150, 300, 1500, 3000 volts.
- FREQUENCY: 750 to 7000 ohms.
- RESISTANCE: 0 to 2000, 2000 to 20000, 20000 to 100000, 100000 to 1000000 ohms.
- BUDDERER: 10 to 36, 36 to 72, 72 to 144

$52.50
BUY FROM RESCO AND SAVE

WIRE

- 22 gauge stranded rubber-covered lead-in wire $.04 10 for $.35
- 22 gauge stranded rubber-covered wire $.05 10 for $.50
- 18 gauge stranded plastic-covered, cloth-covered wire all hook-up wire available in yellow, green, brown $.50 hundred ft. $ 5 thousand ft.
- 18 gauge stranded plastic-covered wire $.50 hundred ft. $ 5 thousand ft.
- 22 gauge stranded rubber-covered lead-in wire $.10 10 for $.90
- 22 gauge stranded rubber-covered wire $.15 10 for $ 1.50
- 18 gauge stranded plastic-covered wire $.18 10 for $ 1.80
- 18 gauge stranded plastic-covered wire $.25 10 for $ 2.50
- 18 gauge stranded plastic-covered wire $.35 10 for $ 3.50
- 18 gauge stranded plastic-covered wire $.45 10 for $ 4.50
- 18 gauge stranded plastic-covered wire $.50 10 for $ 5.00

CONDENSER SPECIALS

MICACONDENSERS, high voltages Assorted at 10 for $ 1.00
- 6 mfd 475 WDC 4 prong plug-in can condenser .04 10 for $.40
- 8 mfd 600 VDC metal tubular .05 10 for $.50
- .01 mfd 400 VDC metal tubular .05 10 for $.05
- .02 mfd 600 VDC metal tubular .10 10 for $.10
- .005 mfd 600 VDC metal tubular .15 10 for $.15
- 8 mfd 500 WDC F. P. type .60 10 for $ 6.00
- 16 mfd 500 WDC F. P. type .69 10 for $ 6.90
- 10/10 mfd 200 VDC-inverted can .39 10 for $ 3.90
- 25 mfd 300 VDC-inverted can .39 10 for $ 3.90
- 30 mfd 450 VDC-inverted can .52 10 for $ 5.20

SPECIAL BULLETIN OF VALUES ON RADIO PARTS AND EQUIPMENT

Send for Yours Today!

Radio Electric Service Co. of Penna., Inc.
7TH AND ARCH STREETS, PHILA., PENNA.
Branches: 1321 Market St. and 313 N. Broad St. In Phila.
Also in Wilmington, Del., Easton, Pa., Allentown, Pa., Camden, N. J.

TRY THIS ONE

ANTENNA STATIC
A continuous roar and crackle of static in an automobile radio may often be traced to a missing discharge knob from the top of a whip-type antenna. Although these knobs often appear in gay colors, they are not put on the antenna for a decorative effect. The round plastic knob is useful in reducing or eliminating corona or static electricity discharges from the body of the car.

Small bakelite screw-on battery terminals may be filed to a globular shape and soldered to the tip of the antenna. Do not use hard rubber knobs as they will melt during the soldering.

JACK SAMUELS, Olympia, Wash.

DATA FILE
Many valuable charts, reference tables and graphs are printed in the various radio magazines and books that the serviceman accumulates during his career. Much of this material is misplaced and forgotten unless there is some form of index to tell just where to find it when needed.

Such a convenient index may be compiled by using 3 x 5 inch cards and cataloging all tables and reference data. Use a different heading for each card, for example. Abbreviations, Ballast Resistors, Condenser Codes, etc. On the appropriate cards, list the material by title of chart, book and page number.

YVON JOHNSON, San Francisco, Calif.

VOLUME CONTROL REPAIRS
When the shaft of a volume control is clamped in a vise for cutting or milling, the slightest pressure to either side will cause the shaft to move and wobble between the jaws of the vise. To prevent this annoying condition, try placing another piece of control shaft in the opposite side of the vise. When the jaws are clamped tightly, the shaft may be cut or milled without any trouble.

GERALD EVANS, Ola, Ark.

DIAL CORDS
The dial drive drum on many radios is made of thin sheet metal that has a tendency to cut the dial cord at the point where it enters the drum. To remedy this condition and lengthen the life of the cord, enlarge the hole with a drill or reamer and insert a piece of spaghetti tubing into the hole.

WILLIAM A. HOME, Petiotiode, N. B., Canada

SPEAKER MATCHING
I have my home radio wired so that it may be used with a remote loudspeaker.

The receiver was equipped with an 8-ohm speaker. I replaced the output transformer with a multiframe transformer and purchased another 8-ohm speaker for the remote position.

A two-gang circuit-selector switch is wired so that either speaker may be used alone by connecting it across the 8-ohm winding of the transformer. When the switch is in the third position, the speakers are paralleled across the 4-ohm top.

This arrangement may be used for any speaker impedances as long as the speaker impedances are matched when used alone or when paralleled.

Sgt. A. W. ADAY, North Bay, Ontario

ALIGNING RECEIVERS
On a large number of radios, the frequency calibration is marked on a dial that is permanently fastened to the cabinet. This makes it impossible to ascertain the dial setting after the chassis has been removed.

OTTO WOOLEY, Colorado Springs, Colo.

RADIO-CRAFT for FEBRUARY, 1947

www.americanradiohistory.com
WHAT SERVICEMAN COULDN'T MAKE MORE MONEY THIS WAY?

The business-like way to make money is to keep plugging ahead at your bench. If your stock is lean and you have to run to the distributor every time you need a volume control, you're frittering away your valuable "bench time" and income. Stock up too high on "special" volume controls and you may wind up behind an inventory 8-ball.

HERE'S THE RIGHT ANSWER 9 OUT OF 10 TIMES

The sensible solution to your volume control replacements is the IRC Century Line. Over 90% (by actual analysis) of all jobs can be taken care of by these 112 types of volume controls. As a matter of fact, you don't even need the entire 112; a selection of only 70 Type D IRC Volume Controls and 11 Tap-In Shafts may handle most of your work. So see your IRC Distributor right away and save your bench time, patience, and money with IRC.

THE IRC CENTURY LINE

The 112 Volume Controls and 5 Switches That Solve Over 90% of Your Replacement Problems.

70 Universal Type D Controls with 11 easily installed Tap-in Shafts.
16 Popular Type Controls with Fixed Shafts
8 Clutch Type Controls with Fixed Shafts
4 Dual Controls with Fixed Shafts
9 Controls for Specific Service Uses with Fixed Shafts
2 Special Controls for Power Requirements with Tap-in Shafts
5 Switches

All IRC Volume Controls have the famous IRC permanently bonded Resistance Element, the Five-Finger "Knee Action" Contactor, the Silent Spiral Spring Contactor, and the Steel Coil Spring Thrust Washer.

Bring yourself up to date with the new No. 4 Edition of this amazingly popular and useful manual. Contains detailed replacement information on nearly all models up to 1946. Complete listing of 1941-42 models... the ones now coming in for repair. 136 pages. 25¢ at your IRC Distributor.

INTERNATIONAL RESISTANCE COMPANY

WHEREEVER THE CIRCUIT SAYS IRC

401 N. BROAD ST., PHILADELPHIA 8, PA.

IN CANADA: INTERNATIONAL RESISTANCE CO., LTD., TORONTO, LICENSEE

RADIO-CRAFT for FEBRUARY, 1947
Build a Television

To stimulate its radio and television training programs, this famous resident radio and television school is offering men interested in television this unusual opportunity.

If you are unable to leave home to go to a resident school, N.Y.T.I. of N.J. can supply you with parts to build a television chassis in your own home. You will be supplied with the same instructions and directions with which the school’s resident students are equipped, when they reach the stage in their training that calls for television set construction. If you already have a sound radio background, with experience in building radio receivers, you will be surprised to find how much you can learn about television by building this set.

N.Y.T.I. of N.J. is one of America’s leading resident schools for men seeking dependable, thorough, up-to-the-minute training in the various fields of radio and television.

The schooling offered by N.Y.T.I. of N.J. is particularly useful to those who recognize the high-earning possibilities of technical training in radio and television and are willing to tackle the class and laboratory work offered, regardless of their previous education.

No high-school diplomas are needed for entrance. But N.Y.T.I. of N.J. requires that a student be earnest, sincere, and radio-minded. Students without proper mathematical backgrounds are taught the radio and

You can build a direct viewing television chassis similar to the one pictured above, either in your own home or in the magnificently equipped shops and laboratories of this famous television school, located square in the HEART of America’s television manufacturing and broadcasting industry. Mail the coupon at the right to get full details.

www.americanradiohistory.com
television mathematics they need. Several students with only grammar school educations have successfully com-
pleted advanced technical television courses.

A considerable number of out-of-state students attend the school because of its excellent, practical type of radio
and television courses, so difficult to get anywhere else in
the world today. Living quarters are obtainable by single
students.

You Put Into Practice Everything You Learn

Students at N.Y.T.I. of N.J. particularly like the way
the school puts into practice what it teaches. You may
actually build a 17-tube television chassis. You also help
build as many as 7 radio receivers of different types, a
total of 75 electronic educational devices. Class study, and
laboratory study, in the proper combination, increase in-
terest—and your hands get as smart as your head.

A 17-tube, experimental, television chassis may be
built by all resident students of television, and may be
kept as their own property, if they so choose.

Located in the Heart of the Electronic Industry

The New York Technical Institute of New Jersey is in
Newark, N.J., just across the river from New York City
(only 20 minutes from Broadway by subway or train).
The school is located in the heart of America's great radio
and electronics industry. Such leading television, radio
and electronics manufacturers as R.C.A., Western Electric,
Du Mont, Federal and Edison are nearby. This means that
the school offers numerous advantages, as it is in touch
with the most recent developments in radio and television.

Highly qualified television and radio instructors are
here in abundance. Equipment is easier to get. Television
students are offered exceptional advantages in this great
electronic center.

MAIL THE COUPON TO GET FULL INFORMATION . . . FREE

The school issues a special Bulletin which illustrates
and describes its truly exceptional facilities and equip-
ment. This Bulletin also describes classes that may be
attended, housing conditions, costs, hours, etc. If you are
interested in Television—you will want to read this Bulle-
tin. You can have it free, merely by mailing the coupon
at right.

The school will also be happy to send you complete in-
formation about the television kits and directions which
are now available to you if you desire to build your own
television chassis at home.

Just fill out the coupon at right and mail it NOW to:
New York Technical Institute of New Jersey, Dept. 42,
158 Market Street, Newark, N.J.

RADIO-CRAFT for FEBRUARY, 1947
BE CONFIDENT WITH A MICROPHONE BY TURNER

Whether it's a general purpose unit for voice and music, or a unit for a specialized application you'll always be confident of accurate pickup and faithful reproduction when your microphone is a Turner. Turner Microphones are proving their superiority in design and manufacture to new users every day.

Illustrated is the Turner Model 33—a high fidelity all purpose microphone that combines high output with smooth response over a wide frequency range. Its matched acoustic design results in crisp, clear speech reproduction...music is full and round with tonal qualities faithfully retained. Furnished in a choice of high quality crystal or rugged dynamic circuits. It is recommended for studio recording, remote control broadcast, orchestra pickups, paging, dispatching and call systems, public address and communications work.

MODEL 33X CRYSTAL
Response: Flat within ±5db from 30-10,000 cycles.
Output Level: 52db below 1 volt/dyne/sq. cm.
Impedance: High impedance.
Crystal: High quality moisture sealed crystal.
Cable: 20 ft. removable cable set.

MODEL 33 DYNAMIC
Response: Flat within ±5db from 40-10,000 cycles.
Output Level: 52db below 1 volt/dyne/sq. cm.
Impedance: 50 ohms/250 ohms/500 ohms/high impedance.
Magnetic circuit: Heavy duty dynamic cartridge.
Cable: 20 ft. removable cable set.

THE TURNER COMPANY
902 17th Street N. E., Cedar Rapids, Iowa

?? WHY NOT ??

Why not have the telephone companies devise a telephone that can be used from a distance of two or more feet away? This would make it unnecessary to hold a receiver in your hand. It would enable a woman to chat and do some mending at the same time.

EIZABETH REHM,
St. Albans, N. Y.

(Your idea has merit and if there is a sufficient demand for such a device the telephone people will provide it. We were interested enough to interview one of the telephone technical officials, who expressed this view too. For the record, loud-speaking telephones are not a novelty. Indeed, Alexander Graham Bell, himself, in the late 70's used a loud-speaking telephone to demonstrate the telephone. There were many other loud-speaking 'phones in the past—but this was before the day of amplifiers. In the above suggestion if you want to talk back this would mean an amplifier device. Then the phone could be laid on the table and a conversation could be held several feet away from the phone. Technically, the idea is quite feasible.—Editor)

Why not design a crystal phono pickup with a universal transformer to match the most commonly used line impedances? It can serve a dual purpose as it can be so mounted as to provide a counterbalance for the tone arm.

FC. JOHN R. SIMPSON,
Miami, Fla.

Why not have all autos equipped with a small 1- or 2-tube receiver that delivers its output to a relay which could be used to control the speed of the car. Signals from small transmitters located at busy intersections, schools and rail-road crossings, etc. would be used to actuate the control relay.

JOSEPH B. BROOKS,
Vallejo, Calif.

Why not have headphones with a good flexible rubber cord? Cloth covered cords kink, fray and short. Rubber cords wear well, seldom kink and are easily cleaned.

PAUL WEISENBACH,
Cleveland, Ohio

(They were specified in most Army equipment.—Editor)

Why not have radios with built-in line filters? This would eliminate the filters that sometimes have to be inserted between the outlet and the receiver.

TROY BLAND,
Gilmer, Texas

Why not offer an efficient preselector stage as optional equipment on the better class of home receivers? DX and short wave fans should be willing to pay a premium for top performance.

OTTO WOOLLEY,
Coso, Springs, Colo.
THE PROBE-TRACER

THE description of the Dynamic Handful Signal Tracer in RADIO-Craft, November 1945, interested me greatly. You might like to know about a less elaborate one which I devised early in 1946 and have used successfully ever since. Due to lack of radio servicemen in Australia, the authorities licensed a number of experienced amateur radio constructors and others to carry out radio servicing on a part-time basis. As a holder of a part-time license only, and with no intention of taking up servicing as a permanent occupation, I did not want to buy or make too many items of expensive equipment; and with the help of a good multimeter, an oscillator and a tube tester, this simple Signal Tracer carried out all my servicing.

Amateur constructors who have made two or three receivers or amplifiers usually have sufficient practical knowledge to service their own sets and those of their friends. The most common methods used are voltage measurements, with condenser and headphones.

The device shown in the sketch should appeal to many constructors because of its simplicity, low cost and effectiveness. The instrument is easy to build, and the diagrams will give a fair idea of the compact form, though each constructor will probably design a shape to suit the materials available.

It is a hand-held tool having a probe for introduction into the chassis under test, and two leads, one going to headphones. The probe may be applied to r.f., i.f. or audio circuits. The tracer can be used to listen to the signal at any point. Distortion, hum or noise can be traced to the stage at which it first occurs. The tracer will indicate filtering hum, at the output of the filter if that unit is defective. If screen and cathode by-passes are effective, no signals or very weak signals will be found at cathodes or screen-grids.

The tracer is so sensitive that it need only be brought close to the grid or plate lead of any high level stage. Oscillation of the mixer tube is readily determined, as a signal is obtained from the oscillator grid or plate, which differs from the output signal by the intermediate frequency (that is, if a broadcast of sufficient strength, at the oscillator frequency, is receivable by the set). Signals may be detected at the aerial coil with the tracer volume control well advanced.

Batteries are used because of the simplicity and cheapness of the method. The batteries are wired to a tube socket and the cable from the tracer terminals in a plug which is pushed in the socket when required. No switch is then needed.

From my conversations with many constructors I believe this instrument fills a need. With the addition of a coil, condenser and aerial it becomes a one-tube radio. --Hubert L. Bailey.

RADIO-CRAFT for FEBRUARY, 1947

FREE Gift-of-the-Month Club

Do you want the MOST for your money? Do you insist on getting GOOD radio parts? Then the Olson Gift-of-the-Month Club is your dish!

HERE'S HOW YOU JOIN: Just fill out the Application below, mail it, and you're a member. NO DUES -- WE PAY THE GIFT-BILL!

Paste This Application on a Postcard and Mail Today!

OLSON RADIO WAREHOUSE
73 E. MILL ST., DEPT. 67, AKRON, OHIO

Application: Please enroll me in Olson's Gift-of-the-Month Club. I am interested in getting more value for my money. Membership will cost me nothing.

NAME
ADDRESS
CITY STATE

HERE'S HOW IT WORKS: (1) Each month you will get a list of Olson Radio Bargains, with a coupon good for the Gift-of-the-Month. (2) Enclose the gift coupon with your order for a low minimum or more, and we will send you the gift FREE. (3) No obligation. You can order or not, as you please, any time.
Just off the press—48 exciting pages of radio parts, equipment, and supplies for dealers, servicemen, amateurs, maintenance, testing, building and experimenting—Thousands of items NOW IN STOCK and ready for IMMEDIATE SHIPMENT! Big feature sections of Radio Sets, Communication Receivers, Amplifiers, Ham Gear, Record Players and Portables, Record Changers and complete Sound Systems. Page after page of bargains and special values in top-quality standard-make radio and electronic parts.

Mail Coupon NOW for FREE COPY
Mail coupon below TODAY for your FREE COPY of this latest Concord Buying Guide and Bargain Catalog of Radio and Electronic needs you can order for SAME DAY SHIPMENT from complete stocks in Chicago and Atlanta.

CONCORD RADIO CORPORATION
CHICAGO 7, ILL. ATLANTA 3, GA.
901 W. Jackson Blvd. 365 Peachtree St.

Mail Coupon

Name..............................
Address...........................
City............................... State

Fig. 1—Power supply for ultra-violet lamp.

Since the beginning of the century, ultra-violet rays have been applied in many widely diversified industries and occupations ranging from crime detection and interior decoration to physiotherapy and germinicidal purposes.

Common man-made sources of these rays are carbon-arc and mercury-vapor lamps. The carbon-arc generator gives off considerable heat and is inconvenient because the electrodes constantly wear away and require frequent adjustment of the spacing between their tips. The mercury lamp has metal electrodes sealed in the ends of a quartz tube containing mercury vapor. An electric current is passed between the electrodes and the vapor ionized, releasing quantities of ultra-violet rays. The main difficulty with these tubes was the gradual breakdown of the electrodes with subsequent reduction in the ultra-violet output. There was no way of determining the useful output of the lamps and they were often used long after their useful life had expired.

This handicap to users of ultra-violet ray equipment has been overcome by use of a special quartz tube and an r.f. oscillator. This tube has been produced in several sizes and for industrial and therapeutic purposes. The smaller sizes are available as "sun lamps" for the homes. Photo below shows one of the lamps. This lamp uses a quartz tube that has been exhausted to a high vacuum and filled with argon, neon or other inert gas, along with a small globule of mercury. When the tube is placed in a strong radio frequency field, some of...
the mercury vaporizes and the tube conducts current. The resulting ionization is a source of ultra-violet rays.

A simple 1-tube r.f. generator, shown just below, is used to excite the lamp. It is small enough to be housed in the base, thus eliminating bulky high frequency induction coils and power supplies.

This generator, Fig. 1, uses a single 117L7GT tube as rectifier and r.f. oscillator. The circuit is a series-fed Hartley operating between 16 and 20 mc. The coil consists of 12 turns of No. 18 wire wound to a diameter of 1/4-inch and spaced to about 1 1/8 inches. The coil is tapped four turns from the grid end. The quartz lamp fits into clips connected across the coil with 250-muf mica condensers at each end to prevent d.c. voltage from reaching the lamp.

When more r.f. voltage is required, the circuit in Fig. 2 may be used. In this instance, push-pull 35L6's are used in the same basic circuit with the plate voltage supplied by a 45Z5-GT rectifier. The available r.f. voltage from this circuit is twice that produced by any single-ended oscillator using the same plate voltage. The coil in this circuit uses 11 turns of No. 18 bare-tinned copper wound to a diameter of 3/4-inch and spaced to 1 1/4-inch. Taps are connected 2 turns each side of center.

A small timing switch is built into the base of the sun lamps so that the operating time may be pre-set to prevent over-exposure to the ultra-violet rays.

Cigarette paper absolutely free of leaks is made by a process developed by General Electric. The paper acts as insulator between two conducting rolls with high voltage between them. An air-hole or piece of foreign matter of lower resistance than the paper causes a flash-over, which is indicated by an alarm bell or lamp.

Underchassis view of single 117Z6 oscillator.

REPAIRING CRACKED CRYSTALS

Electrically and mechanically, the most fragile component of a radio transmitter is its frequency-controlling crystal element. When used to control a high-power oscillator, it heats up and eventually may crack. We have some which have given way after many years of satisfactory operation in numerous experimental as well as conventional hookups.

We find that ordinarily a cracked crystal ceases to oscillate. However, a broken crystal whose surface is otherwise unmarrred can continue to oscillate if mounted under rather light pressure. For example, we have one small fragment (about 1/8 by 1/4-inch) of a 40-meter crystal which cannot be made to oscillate when mounted in the new-style (octal-socket) holder which uses heavy pressure. When placed in an old-type round Billey holder, however, it operates almost as well as did the one-inch crystal of which it formed a part. This Billey holder has an adjustable pressure, an important feature for our purpose.

Maximum output and most stable performance is obtained by decreasing the adjustable pressure against the crystal until the oscillator output is greatest. Then the pressure is increased slightly to keep the crystal from moving about. It may be necessary to round off any jagged corners or edges.

—I. Queen
TRANSFORMER WINDER

When it comes to a show-down any-one mechanically inclined can duplicate almost any gadget or machine from junk parts that clutter up his shop. This electric coil winder was built entirely from scrap bits by the radio repairmen of the 3124th Signal Service Co. when they were stationed in Ghent, Belgium, during the war. It came in handy when burned-out transformers weren’t replaceable and impedance-matching transformers were needed to balance off-color foreign equipment with our own "standard" apparatus.

In Europe burned-out transformers were the biggest problem. Most cities had so many different voltages that it was impossible to use any equipment without first knowing what commercial voltage was used. Antwerp, Belgium, was the best example with six: 110 volts, 220 volts and 240 volts, on both a.c. and three d.c. People who moved from one part of the city to another (sometimes only across the street) had to exchange their electrical appliances for those of the new voltage. Some buildings had both a.c. and d.c. outlet plugs—you could never be sure.

The electric coil winder helped over the rough spots and cut down the working hours per job tremendously. It was made from odds and ends of military equipment but a civilian shop has comparable junk. The winder was powered with an old phonograph motor geared down with gears taken from a burned-out hand generator from an army EE-8. A field telephone. The number of turns was counted with a Veeder counter from a radio transmitter dial taken from a sunken Liberty ship that went down in the English Channel.

Those are purely the mechanical winding parts, the level wind guide is something else. It permits winding each layer on straight and close. As shown in the illustration, the operator sits by as the coil is being wound. His right hand is on a crank (taken from the same field telephone generator) which he must turn to achieve the level wind. What he actually turns is a threaded shaft, a rod that has been threaded its entire length. Over this fits a little threaded slider that screws on the threaded shaft so that when he turns the crank in one direction or the other the slider moves up or down along the shaft.

In the illustration the threaded shaft is the one above, the one attached to the crank. The lower shaft, which is the same size, merely acts as a guide and keeps the slider, which is the piece half way between the two uprights, from rotating with the upper shaft.

The slider has a small grooved pulley attached to it over which the wire runs just before it winds onto the transformer. Thus by turning the crank at the proper speed and in the proper direction, the wire moves along the coil surface and level wind is achieved with surprising ease.

The reason the level wind guide is hand-operated is that too many sizes of wire were used. Had the winder been mechanically fed each size would require a new gear system to move the wire along at a different speed. Had hundreds of coils been needed, it could have been mechanically operated, but for the few dozen required it did the work of a factory winder, at a slightly lower speed.
Where Will YOU Be
10 Years from Now
RADIO-ELECTRONICS
SERVICING Will
Advance Unbelievably
During the Next Decade!

Will You
be a Trained Radio-
Electronics Technician holding a
highly-skilled, well-
paid position? . . .

Or Will You
be just another
serviceman who "muffed" his
BIG opportunity
back in '47.

Foresighted radio servicemen are looking ahead to
the future. A future that has unlimited opportunities
and real profits for those who have the "Know-How" to
SERVICE television, FM, industrial electronic equip-
ment, and the many other new radio developments.

Join the many professional servicemen who are stud-
ying at home, the new developments, the new tech-
niques, with CREI... protecting their future jobs, their
businesses by acquiring the new "Know-How," NOW!

CREI's reputation for some study training has been
proved over 19 years. Important new developments
have been included in our present course. Trained in-
structors give you personalized attention and guid-
ance all the way.

Find out for yourself how CREI can help you to
greater security and prosperity. Send in the coupon
now! Actually see what CREI has to
offer.

(VETERANS! CREI training is approved under the G.J. Bill)

Capitol Radio Engineering Institute
An Accredited Technical Institute
Dept. RC-2, 16th and Park Road, N. W., Washington 10, D. C.
Branch Offices:
New York (7): 170 Broadway
San Francisco (2): 760 Market St.

If you have had professional or
amateur radio experience and
want to make more money, let us
prove to you we have the training
you need to qualify for a better
radio job. To help us intelligently
answer your inquiry—PLEASE
STATE BRIEFLY YOUR BACK-
GROUND OF EXPERIENCE, EDUCATION
AND PRESENT POSITION.

MAIL COUPON
FOR FREE
36-PAGE
BOOKLET

RADIO-CRAFT for FEBRUARY, 1947
INTRUDER ALARM

Please print a diagram of a burglar alarm using OA4-G gas triodes, in a capacity-operated circuit. The capacity antennas are to be placed at the windows and doors of your home to sound an alarm when anyone approaches from the outside.—J.O.H., San Diego, Calif.

A. Here is a diagram of a capacity-operated alarm drawn to your specifications. A capacity wire of screen is placed in the area to be protected. A grounded metal shield or baffle may be mounted about 6 inches from one side to reduce sensitivity from one direction. These tubes have a photo-electric characteristic and should be shielded from light. After relay, Ry-1 has been tripped, the alarm will ring until Sw2 is opened to reset Ry-2.

Ry-1 is a 5000-ohm plate relay and Ry-2 is a small 6-volt d.c. relay.

SIMPLE TUBE TESTER

Please print a diagram of a simple tube tester showing the socket wiring connections for testing all types of tubes.—L.P., Long Island, N. Y.

A. Here is a complete diagram of a tube checker showing the connections for all commonly used sockets and for all switches.

To test any tube, it is necessary that you refer to a tube manual to get the socket connections. Filament voltages are selected by Sw-11. The tube is plugged into the socket and filament voltage applied by throwing the proper switches to connect the filament leads to busses A and B. If there is a cathode, it is also connected to bus B. For emission tests, all other elements are connected to bus C. In testing full-wave rectifier tubes and duo-diodes, each plate is tested in turn by connecting it to bus C.

The check is calibrated by testing tubes of known quality and recording the dial readings and setting of R2.

Further operating and calibrating instructions may be found on page 35 of Home-Made Radio Test Instruments and on page 26 of the July 1940 issue of RADIO-CRAFT.

V.T.V.M. CIRCUIT

I am planning to build the Multi-Purpose Tester described on page 52 of the May issue. I would like to have a diagram showing how I may use a 0-200 microampere meter in a vacuum-tube voltmeter circuit.—J. B., Newark, N. J.

A. A vacuum-tube voltmeter may be added to the tester. A 6Q7 is used. Plate voltage is obtained by tapping the power positive lead at J9 on the tester. R2 is adjusted so that there will be 250 volts on the plate of the 6Q7. It may be necessary to experiment with the value of R1 to obtain initial calibration.

From this point on, the Calibration Adjust control will be used for corrections of the calibration.

The meter is connected so that it may be used with a zero-center scale so that measurements may be made without regard to test lead polarity.

A.C.-D.C. POWER SUPPLY

Please print a diagram of an a.c.-d.c. power supply for use with small audio amplifiers.—V.P.B., Lyndonville, N. Y.

A. The circuit of a half-wave voltage doubler is shown. This circuit, using a 25Z5 or 25Z6, will supply 200 volts at 100 ma. The total current drawn by the 6P6 and 6SJ7 will seldom exceed 40 ma, so the output voltage will be about 240 volts.

RADIO-CRAFT for FEBRUARY, 1947
experience that it will take many years to develop a new device and that in the process all or most of the original capital may be lost if further capital is not forthcoming. There are many cases on record where initial investments of $50,000 grew to over a million dollars before the device finally appeared on the market. During that process the original investors were forced to give up most of their share in the device, if they were not to lose everything. Often the first investors did lose everything and the original company went into bankruptcy. Subsequent investors then stepped in, bought the assets, and financed the project until the device was finally placed on the market. Pioneers thus more often than not lose out only to have others who are better capitalized take over and market the invention. All of this is normal evolution typical not only of radio, but also of any other endeavors. It is a rare device in which the original investor reaps the fruits of his labor.

The above facts should be kept in mind when you wonder why new radio inventions that should have been on the market long ago have not materialized.

Take just one—the vest pocket miniature radio sets—promised now for several years by some radio manufacturers. Technically we seem to have all the requirements to build these receivers. Practically and economically, however, it may take some time before they will be on the market. There are still a great many "bugs" to be ironed out. Miniature radio tubes still have to become smaller and more efficient and sensitive. Different circuits must be evolved. Miniature variable condensers are yet to be perfected. Moreover, normal radio set manufacturing processes are not applicable to vest pocket sets. They cannot be produced like regulation radio receivers simply because they are too small. Assembling them becomes more or less a watchmaker's endeavor. New workers must be trained for an entirely new kind of assembling job which never existed before. There is also a cost angle in connection with this item, because no one is going to pay $50.00 or more for a vest pocket set. In order to bring the cost down a slow evolutionary process must be gone through. All these problems will be solved eventually, but it always takes time.
Lafayette's latest, greatest
RADIO CATALOG

Yes, here it is at last—the most complete catalog ever offered by Lafayette—the world's largest radio supply house. And what a catalog it is! Its pages are brimming with an amazing display, of top-quality radio and electronic equipment—such items as radio parts, complete sets, build-it-yourself kits, amplifiers, microphones, automatic record changers, ham gear, test equipment—as well as hundreds of other items.

144 PAGES—HANDSOMELY ILLUSTRATED
All the tried-and-tested standard equipment is listed—also many items so recently developed that they're shown here for the first time. And everything is in stock—ready for super-speed delivery—economy priced. Be among the first to get your copy of America's greatest radio catalog—FREE.

mail coupon below

Lafayette Radio
RADIO WIRE TELEVISION INC.
100 SIXTH AVENUE * NEW YORK 13, N. Y.
110 FEDERAL STREET * BOSTON 10, MASS.
24 CENTRAL AVENUE * NEWARK 2, N. J.

LAFAYETTE RADIO, Dept. 18-7
100 Sixth Avenue, New York 13, N. Y.

Please send FREE CATALOG at once for:

Typical Lafayette Bargains

Heavy-Duty Filament Transformer—Two secondary windings—Two 5-volt or 13 amp. CT and 7.5-volt or 2.5 amp. CT. Size 3 1/8 x 5 x 7 1/4. Only a few available at this low price. Order NOW from your Lafayette Dealer—Your cost only $2.95

Famous Leach Relay—Type 1197C5—All-metallic insulation—DPDT with separate SPD contacts for break-in, ideal for antenna changeover, 115-volt, 60-cycle coil. Once HR 120—Now Relay—Your cost only $1.95

SMALL RECORDING STUDIO
(Continued from page 27)
up patterns of the most common types.

Now that we have an idea of what we need as a minimum for our studio, let us see how those items are coordinated by studying an actual setup which was assembled by the author.

After much shopping around, a two-speed 16-inch Rek-O-Cut model D-16 turntable was purchased. This model comprises a heavy cast-iron turntable, rim driven through heavy rubber idlers by a 1/20 horsepower induction motor. The speed-change knob is conveniently located and easily operated without stopping the turntable. The rumble is very low and there is negligible speed change under cutting load.

The turntable assembly was rigidly bolted to the top of a wooden Sears & Roebuck sink cabinet. It is not good practice to float the table in rubber, but rather it is desirable to fasten it solidly to a rigid base. The attendant damping is valuable in removing the motor vibration.

There were not a great variety of overhead assemblies available, so a second-hand 12-inch Universal overhead was acquired and modified for 16-inch duty. The modification included turning new longer lead screws for inside-out and outside-in operation, and a long support bar. The method of overhead drive was changed also. By now a good overhead system can be purchased for $150.00 or less, and at least one is advertised for less than $50.00, including cutter.

There is usually quite a lineup problem in adapting an overhead to a turntable. This problem was simplified by using a single ball bearing as the resting place for the overhead on the turntable center pin. The overhead is driven by an arm which is contacted by the drive pin in the turntable. It is impossible for a slight mal-alignment to cause binding and the annoying attendant wow.

In the interest of cost, a Brush RC-20 crystal cutter was used. It was attached to the carriage by a 1/4-inch stainless steel bracket. There was a tendency toward bouncing of the head, so a visco-lord damper was added, together with an eight ounce weight, to lower the resonant frequency of the carriage. The photo shows the drive mechanism and the finished cutter assembly.

Because we chose a crystal cutter, we also chose a crystal pickup. A Brush PL-20 is a very well constructed pickup. Its response is good to beyond 10,000 cycles per second. It is of the low-pressure permanent sapphire type, with a spring counterbalanced arm. It was supplied with an equalizer which corrects for commercial modified constant-velocity recordings.

An amplifier on hand was modified to provide the necessary characteristics for recording. The modified am-
(Continued on page 77)
Photo-F—Undercrash view shows power socket.

While not particularly dangerous when in the Charge position, the output from the condensers is positively not to be tripped with when in the series or discharge position. Hence, all testing must be done with due caution to avoid getting a serious, perhaps fatal, shock.

The main switch should always be returned to the Off position or to the Charge position before removing the unit from the case or touching any part of the internal mechanism.

The 117-volt power unit (Fig. 4) furnishes 500 volts for charging the capacitors, and about 8 or 10 volts for tripping the relays. It would be easily possible to make a unit to deliver only the low voltage, but it was thought desirable to include the high-voltage output to save wear and tear on the vibrator power supply. Another important consideration in the bulk of a unit designed to furnish the 9-10 amp required at 9 volts. Note that the transformer secondary (high voltage) is connected to an 80 tube for half-wave rectification. With a small 4-tube transformer, voltage should be about correct with the two filament windings in series and using all the high-voltage plate winding.

Should the plate voltage be excessive a series resistor or voltage dividing network may be required. Output plate voltage must not exceed 600.

The low-voltage rectifier may be of the type used in a battery charger, or it may be of one of the types found on an old loudspeaker since current drain is low. Usually it will be of the full-wave type, so connections may be altered accordingly if necessary. With the large capacity (2,000 volts) the rectifier output may be very small, since the capacity of the condenser is sufficient to trip the relays.

The note of connecting the power unit through a 6-prong plug so that batteries may be connected when the shorting plug is removed and the power unit plugged in.
General Electronic Distributing Company

IMMEDIATE SHIPMENT!

SEE and HEAR the Signal
with the NEW CA-12
SIGNAL TRACER

FEATURES:
* Comparative intensity of the signal is read directly
 from the meter—Quality of the signal is heard
 by the speaker
* Simple to operate—Only one connecting cable
* No turner controls

The New Model 450
TUBE TESTER

The New Model B-45 SIGNAL GENERATOR

$34.85
$39.50

The Nation's Headquarters
FOR ELECTRONIC EQUIPMENT!

The New Model 670
SUPER METER

A Combination Volt-Ohm, Milliammeter
plus Capacity Reactance Inductance
and Decibel Measurements.

The sensitive meter is equipped with
automatically operated relay
for opening circuit of
high intensity signals
when detector is
used with test leads.

$28.40

Our Policy
MAIL TODAY FOR FREE
COMPLETE TEST EQUIPMENT CATALOG

Post-war design and construction at pre-war unexcelled price is
the result of mounting the demand for "VOMAX", the fine
Silver Introduced to the Radio Field is now available.

You can
Measure every type and kind of voltage in receiver
design and servicing. "VOMAX" increases your
efficiency and profits by
equipping you to measure
r.f., i.f., a.c., and d.c. voltages
input resistance is so
ordinarily high you can
measure directly even in the
highest resistance circuits.
"VOMAX" is also your
output of amplifier
measured current up to
12 A, amp. auto set range;
resistance up to
2,000 megohms.

Send postcard for new catalog
of measuring instruments, commu-
nication receivers, transmis-
sion, kits, and parts, to
your favorite jobber.

TECHNOTES

-. HUDSON MODEL SA-39
Weak and erratic reception, par-
ticularly at each end of the dial, can be
to be traced to the 9,500-ohm resistor in
the cathode lead of the 6J7-G oscillator mixer. The resistance of this component often increases to the point
where local oscillations are weak or
The positive voltage placed on the grid by
the defective condenser makes the tube
draw excess current which often causes
in a gassy. Under these conditions,
distortion will still continue after the
condenser has been replaced.

-. COUPLING CONDENSERS
Whenever leaky or shorted coupling condensers are found preceding a power amplifier, the tube should be replaced at the same time as the condenser. The positive voltage placed on the grid by the defective condenser makes the tube
draw excess current which often causes
to go gassy. Under these conditions,
distortion will still continue after the
condenser has been replaced.

-. INTERMITTENT NOISE
Intermittent noises that develop when a
set is tapped or jarred can often be
traced to a pilot lamp making poor con-
tact in its socket. This condition may
exist even when the lamp does not
flicker. A sure cure is to build up the
center contact in the socket with solder
so that the lamp will fit tighter.

OVER 35 YEARS OF RADIO ENGINEERING ACHIEVEMENT
M. Mundo Silver Co., Inc.
1240 Main St., Hartford 3, Connecticut

RADIO-CRAFT for FEBRUARY, 1947

54

54
that which warned its GI attendant of the oncoming Japanese attack on Pearl Harbor. It is also similar to the array used in 1946 to contact the moon by radar.

Irregular Patterns

To properly serve two or more populated centers and to avoid possible interference with nearby transmitters, it is often necessary to design a broadcast antenna so that it radiates an irregular

Prepare NOW for a Better Job in RADIO ENGINEERING

ADD TECHNICAL TRAINING TO YOUR PRACTICAL EXPERIENCE.

CLEVELAND INSTITUTE COURSES OFFER COMPLETE TECHNICAL TRAINING RANGING FROM LOW-LEVEL TO COLLEGE-LEVEL.

C. Specialized Television Engineering. Including post-war Television Techniques.

Don't Delay—Write Today!

All Courses Include

The Remarkable Workbooks of Instructional Aids, prepared by the instructing staff of Cleveland Institute.

Choose the course best suited to your needs—Start with the section you are qualified to enter—Use the economical CIRE "Pay-As-You-Go Plan."

You may enroll for individual sections for highly specialized training. Study any one or more of the following sections if you do not require a complete course:

1. Mathematics of Radio
2. Fundamentals of DC and AC Theory
3. Essentials of Radio Communication

Write for descriptive folder * No obligation

CLEVELAND INSTITUTE OF RADIO ELECTRONICS

Contractors to the Canadian Broadcasting Corporation

Successors to

NILSON RADIO SCHOOL

Founded 1929

SMITH PRACTICAL RADIO INSTITUTE

Founded 1934

RC-2 TERMINAL TOWER, CLEVELAND 13, OHIO

Approved for Veteran Training Under "G-I Bill of Rights"

(MAIL THIS COUPON)

Cleveland Institute of Radio Electronics, RC-2 Terminal Tower, Cleveland 13, Ohio.

Confess: Please send information about your home study courses in Radio Electronics.

NAME: ____________________________

ADDRESS: ____________________________

CITY: ____________________________

ZONE: STATE: ____________________________

I desire training in:

[] I have had experience in broadcasting [] servicing

[] operating [] mg. [] CAA [] Army-Navy

[] amateur [] other

[] I am a High School Grad [] College Degree

[] Check here for Veteran Enrollment Information.

magnitude and phase of each tower current and the position of each tower. Because of the many variables concerned, direct mathematical calculations become quite involved and consume a great deal of time. Several instruments are available for easing the problem, however. At least one mechanical device* has been designed for antenna calculations.

A still more modern and convenient instrument is the RCA Antennalyzer. An oscilloscope is used to give instantly the field pattern which results from the use of up to five antenna towers. Sixteen dials control the Antennalyzer, four for each tower. Since one tower

* RADIO-CRAFT, August 1945, p. 602.
* RADIO-CRAFT, May, 1946, p. 86.

NONDIRECTIONAL RADIATION

Many large and small manufacturers are doing research in the design of high-frequency broadcast antenna systems because of the widespread and

(Continued on page 60)
TELEGUIDED MISSILES
(Continued from page 24)

Electronics is also playing an ever-increasing part in both jet-propelled and glide missiles.

February, 1943, saw the first practical test of glide bombs (an ordinary bomb fitted with wing surfaces) against a target in warfare, 58 B-17's launched 116 GB-1 glide bombs over Cologne.

Colonel Harvey T. Alness and his 7th Bomb Group used this bomb during the spring of 1945 to knock out the Japanese supply railroad running between Burma and Siam.

Another electronic missile, designated Felix, had a heat-sensitive electronic unit located in its nose, which by electrical impulses operating on the tail surfaces guided the missile in its free fall to a target that was emitting heat—such as a steel mill or a blast furnace.

The B-17 "buzz-bomb" under the wing can be radio-controlled for a flight of 150 miles.

Germany. They were released several miles from the target and guided to their destination by radio impulses sent out from the releasing planes. The glide bombs were thus directed to the target without the necessity of the bombers getting into the danger zone of anti-aircraft fire.

Improvements constantly were made in radio-controlled glide bombs. Drop bombs were fitted also with a special tail assembly that contained a built-in radio unit which through servo units could control the angle of free fall of these bombs by varying the slipstream over the rudder surfaces. This free-falling bomb was called the Azon bomb, indicating it was controllable in azimuth only.

The J8-2 "buzz-bomb" under the wing can be radio-controlled for a flight of 150 miles.

The J8-2 "buzz-bomb" under the wing can be radio-controlled for a flight of 150 miles.

...
General Electric RT-1248 15-Tube Transmitter-Receiver
TRANSMITTER 185-500 Kc. PROJECT IF & SUPERTUNER CRYSTALS. HANDSET, REMOTELY EXTRACTED, SINGLE ENVELOPE. EFFICIENT, MODERN, PRACTICALLY FLEXIBLE, THROUGHOUT. EIGHT PRINCIPAL TUBES. TRANSMITTER RATING-100 WATTS P.M. 185-500 Kc. 25-100 WATTS P.M. 500-1500 Kc. "ROCKET" CRYSTALS. 15 TUBES. TRANSMITTER MOUNTED, DIRECTLY, WITHOUT TRANSFORMERS. $595.00 NET. UNIT TESTED.$650.00 NET.

BENDIX SCR-522

Very High Frequency Voice Transmitter-Receiver. THIS JOB WAS GOOD ENOUGH FOR BENDIX, JOINT CONTRACT TO MAKE IT STANDARD EQUIPMENT FOR AAF. LATEST AUTOMATIC ELECTRONIC CONTROL. TO OPERATE TO 18,000 FEET. 40 WATTS P.M. 500-1500 Kc. 75 TUBES, 17 TRANSISTORS. $750.00 NET.

Famous Collins Autotune Transmitter

This is the well known unit used in Army and Navy planes that features automatic motor tuning of any of 11 front-panel projected frequencies up to 18,100 Kc., as well as manual tuning at any time. The transmitter operates on voice, CW, and MCW on all frequencies. This beautifully designed unit uses an $813 final, and push-pull 817's as modulator, measures 23 1/2 x 13 1/4 x 11, and weighs 70 lbs. Estimated average power output is 150 Watts. Price including installation $815.00. Write for literature describing any units you wish for more information on.

BUFFALO RADIO SUPPLY • 219-221 Genesee St., Dept. 2C • Buffalo 3, N.Y.

aling the bombardier to guide Roc to its target by means of radio impulses. Differing from all other free-falling missiles, Roc utilizes a circular airfoil which may be tipped at different angles by radio impulses, thus changing the angle of fall.

In the field of radio-controlled jet-propelled missiles the German V-2 rocket, which was used large scale in the latter months of World War II in Europe for attacks on England, Belgium, and Holland. This missile has a complicated electronic control: there are radio-controlled rudder defectors at the mouth of the rocket engine which control the blast angle during take-off and acceleration, and rudders located at the end of the four stabilizing vanes guide the rocket after the jet motor has ceased to function, which is 65 seconds after ignition.

There is no field of either free-falling drop missiles or jet-propelled missiles in which electronics does not play an ever-increasing and important part, and one can see with considerable merit the need of this field to exhaustive evaluation.

...is interesting to note that a completely remote-controlled plane incorporating television was proposed by Hugo Gernsback more than twenty years ago in his magazine, The Experimenter, November, 1924. The illustration reproduced with this article is from a book dealing with that issue. Camera tubes were to be pointed in the six cardinal directions, each transmitting the picture that it picked up to the control headquarters, where all the images were to be projected on a single screen, giving the command officer a complete view of the whole scene of action. Television reconnaissance planes were actually used to some extent in the Pacific theater, and demonstration of Block and Ring airborne reconnaissance and television was given at Washington last year. [Radio-Craft, May, 1946]. Television was also used on the Roc to transmit the scene ahead of it and thus permit the control operator to guide it accurately to its target...
The observed pattern is very simple to interpret. There are no set of patterns to memorize. With no r.f. signal there will be a single horizontal line. With the carrier turned on, same modulation, a horizontal rectangle of light will appear on the cathode-ray tube. This corresponds to pattern A in Fig. 2. Regardless of the horizontal sweep frequency selected it will be found impossible to see the individual alternating waves of the carrier because their frequency exceeds the available sweep frequency by a large amount.

With sinusoidal modulation and correct operation of the modulated stage, pattern B in Fig. 2 will be observed. Here the horizontal sweep frequency selector and fine control should be adjusted to observe the audio waveform upon the carrier, the same as if observing straightforward audio from an amplifier. With voice modulation clear curves will not be seen, but the peaks and minima may be observed for approximate modulation percentage. It is possible to whistle into the microphone and hold a pure sine-wave audio pattern long enough for close measurements, when it is desired to check the overall audio gain and modulation characterstics.

Percentage of modulation is found by the formula

\[M = \frac{2P}{Q} \times 100 \]

P is the unmodulated height of carrier signal as viewed on the scope tube. Q is one-half the peak-to-peak vertical signal produced by modulation. N is one-half of the node-to-node signal produced by modulation. These figures are clearly shown on pattern B in Fig. 2.

As the formula indicates, 100 percent modulation occurs when the minima or nodes come in to just touch each other, while the peak-to-peak signals swell out to twice the unmodulated value. At 50 percent modulation these peaks and minima increase and decrease the unmodulated carrier waveform by that percentage. Thus by adjusting the sweep rate to make the audio waveform visible, it is possible to approximate the percentage of modulation at a glance.

Unsymmetrical modulation is indicated by any difference in the percentage of increase of the peak-to-peak signal versus the node-to-node signal. Simply stated, if the negative audio cycle reduces the carrier pattern by one inch and the positive alternation increases it by only three-quarters of an inch unsymmetrical modulation exists. In this case, with more negative signal than positive, there would be a downward shift of average carrier power under modulation. Incorrect bias in the speech amplifier or modulator, poorly regulated plate supply to the final, or incorrect r.f. excitation of the final could cause these symptoms. This could be excessive in the case of fixed bias, insufficient in the case of grid-leak bias.

Failure to bypass the cathode bias resistor in the final for the audio as well as the r.f. component may produce this undesirable result. Where unsymmetrical modulation causes an upward shift of average carrier power, it can usually be attributed to improper operation of the audio system or incorrect r.f. excitation. With suppressor-grid or grid-bias modulation, these symptoms may indicate incorrect biasing of the modulating grid, or poor stability of the r.f. exciting source to the final stage.

Pattern C in Fig. 2 indicates down-ward modulation only. This can indicate failure of one of the tubes in a push-pull class-B modulator stage, single-ended class-B modulation, incorrect bias of a class-A modulator, or incorrect operation of the final modulated r.f. stage. Incorrect biasing of the modulated grid in either suppressor-grid or grid-bias service may produce this result. Where the final r.f. tube is operated with an incorrect plate current load, saturation may prevent a rise of plate current and only the negative modulation cycle which reduces this plate current may be visible. This can
The Answer

The trouble you are experiencing may be caused by any one of the following:

1. Overload at low frequencies.
2. Improper mounting of magnetic pickup.
3. Mechanical rattles caused by loose hardware, speaker cone hitting cabinet, or acoustical resonance at some low frequency.

It will be necessary to determine which of these are causing most of the trouble. I therefore suggest that you have the amplifier checked for its power-handling capacity at low frequencies.

Distortion at low frequencies can be approximated by using a reasonably good audio frequency oscillator and one's oscilloscope. Watch the audio form at low frequencies when the amplifier is properly loaded. If the strings are not vibrating in a homogeneous magnetic field, distortion will be apparent, particularly at the higher peaks.

To check for mechanical rattle, an oscillator should be connected into the amplifier and its frequency slowly changed throughout the audio spectrum. Any rattles will be easily detected. Once the causes are found, corrective measures will suggest themselves to you.

Radar tracking of "rocketsondes" will enable the U. S. Navy to study weather heights from 3,000 to 500,000 feet, thereby securing data of great value to aviation, according to Lt. Commander Daniel F. Rex, of the Navy’s Office of Research and Investigation.
Low Cost
FEILER TS-1
Signal Tracer
Saves Time & Guesswork
On All Radio Repair Work

MODEL TS-1
ONLY
$9.85

Complete with vacuum tube (less batteries)

Easy to Use! Pays for Itself!
GETS TO THE HEART OF RADIO TROUBLE IN A FLASH!
Locates Causes of:
- Noisy Sets
- Low Sensitivity
- Parts Failure
- Distorted Tone
- Mistracking
- Intermittent Sets

Servicemen! Experimenters! Here's an absolutely dependable Signal Tracing Analyzer at the lowest price ever quoted for such an instrument! Enables you to test any radio or amplifier just by touching the Analyzer probe to any portion of the circuit—the signal you hear in the phones permits you to isolate and locate the trouble in just minutes. Easy to use—no special skill needed. Works with any magnetic headset, 1000 ohms or higher. Requires only one 12V battery and one No. 2 flashlight cell. Self-contained in compact 6 x 4 x 3/4" brown metal case; with snap-lock cover and battery compartment. Compact bakelite probe houses miniature vacuum tube and circuit components; has 3 ft. cable. With excellent step-by-step instruction repair guide. An invaluable instrument that pays for itself quickly!

IMMEDIATE DELIVERY! Place your order for the TS-1 Signal Tracing Analyzer with your regular parts Jobber. If he cannot supply you, write for name of nearest Jobber stocking TS-1.

NAME

ADDRESS

CITY

STATE

Zip

FSR 79

ANTENNA PRINCIPLES
(Continued from page 55)

Increasing importance of FM and television. Requirements for high-frequency broadcasting present very special problems. First there is the consideration of distance coverage (Fig. 4). Because of the line-of-sight limit, large population centers can be properly served only by locating the transmitting antenna in the heart of a city and high enough so that it overlooks most obstructions. FM,

Fig. 3—Field pattern of WMAL, Washington, television, and multiple communication require very wide modulation-frequency bands, and consequently special antenna designs. As the carrier frequency increases, the length of a resonant conductor becomes smaller, and as the modulation band increases, the cross section must be made greater. Many high-frequency antenna systems now in operation take on odd shapes and sizes, often named for the objects they resemble (cloverleaf, turnstile, rocket). Each is designed for circular radiation at low angles, a wide modulation band, and small mounting area.

All these commercial antennas are designed according to the fundamental principles already set forth. They have, however, many interesting special features, arising in most cases out of using different methods of solving the same problem. A description of these antennas is worth an article in itself, and the next number in this series will cover a number of them.

FIELD SURVEYS
By mathematical calculations and by the use of precision mechanical computing devices and such instruments as the Antenalyzer, it is possible to de-

Fig. 4—Antenna height and broadcasting range.
termine accurately the field radiated by any antenna. However, the actual field intensity at any point is known only when ideal conditions exist. Especially at the higher frequencies, field strength and contour are determined not only by the radiation characteristics but also by the height of the antenna and the obstructions.

Broadcast stations must supply actual field measurements to the FCC so that possible interference between stations can be eliminated and maximum population coverage provided.

The Federal Communications Commission requires the use of accurate receiving and continuous recording equipment for the survey. Generally the chart may be driven by the same mechanism which actuates the speedometer of the automobile or truck which holds the equipment. Recording is made along eight radials extending from the transmitter, each spaced by about 45 degrees. Highways spaced so conveniently do not generally exist, but it is usually possible to choose streets or roads which run approximately parallel to such radials.

The survey must continue past the points which indicate 1,000 microvolts per meter of field strength so that the required 1,000-microvolt contour may be drawn. A 500-microvolt contour around the station is required also, but due to difficulty with fading at such low field strength it is usually computed from the data for the stronger field. A typical recording is shown in Fig. 5.

Fig. 5-A typical radio contour map, showing 1,000 and 500 microvolt-per-meter coverage.

FIX ANY RADIO

Amazing New Invention

Find radio faults with a new simplified method. Repair all radios in minutes instead of hours. Revolutionary, different Comparison technique permits you to do expert work almost immediately. Most repairs can be made without test equipment. Simplified point-to-point, cross-reference, circuit suggestions locate faults quickly and easily.

CHARTS, BLUE-PRINTS, TESTS, PICTURES, HINTS, JOB-SHEETS

Learn time-saving trouble-shooting short-cuts; find any radio fault with ease. Follow the tests shown on 24 large circuit blueprints. Over 1,000 practical repair hints. For all types of radios. Hundreds of simplified tests using a 6c resistor and any filter condenser. Introductory material for beginners and to serve as review for experienced radio men. Several chapters on test equipment. Complete plan in manual form, 64 job sheets, data on all tubes, large size: 8½ x 11 inches. Schematics, pictures, charts. Sold on no-risk trial. Use coupon to order.

NO RISK TRIAL ORDER COUPON

SUPREME PUBLICATIONS

9 S. Kedzie Ave., Chicago 12, Illinois

Ship postpaid the new complete Simplified Radio Servicing by Comparison Method manual for 10 days' examination. I am enclosing $1.50, full price. I must be entirely satisfied or you will refund any total remittance.

NAME: ____________________________

ADDRESS: ________________________

Radio Craft for February, 1947
Cast aluminum box held together by 11 banana plugs; 2 jacks, 1 single and 1 double circuit, potentiometer, and double deck hand switch. Single unit 5½. Lots of 10 45c. Lots of 100 38c.

VIDEO SECTION

<table>
<thead>
<tr>
<th>Resistance (ohms)</th>
<th>Value (µf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 – 65 ohms</td>
<td>2500</td>
</tr>
<tr>
<td>R2, R7 – 600 ohms</td>
<td>1000</td>
</tr>
<tr>
<td>R3 – 2500 ohms</td>
<td>47,000</td>
</tr>
<tr>
<td>R4 – 25,000 ohms</td>
<td>3300</td>
</tr>
<tr>
<td>R6 – 450 ohms</td>
<td>679</td>
</tr>
<tr>
<td>R10, R11, R12, R20, R34 – 6000 ohms</td>
<td>3300</td>
</tr>
<tr>
<td>R8, R31, R32, R35, R36 = 2500 ohms</td>
<td>3300</td>
</tr>
<tr>
<td>R13 – 25 ohms</td>
<td>1.1 µfd</td>
</tr>
</tbody>
</table>

BUILDING A TELEVISER

- **A Straight FM Receiver**
 - The signal channels of the television may be converted into an experimental receiver for the new FM sound channel by making the following changes in the tuning components of the mixer and oscillator stages.
 - Change switch SW2 and coils L1 through L6 as outlined. L5, L3, and L4 are retained. Continuously variable tuning is required to cover the FM channels and a tuning condenser must be added to the mixer circuit.
 - The conversion uses only two coils in a conventional antenna circuit. The new coils are wound as follows:
 - Coil
 - Turns: 2
 - Wire size: Length (inches)
 - Length: 18
 - Coax: 0.75
 - The mixer and oscillator circuits are tuned by two 16-pf condensers, cut down to approximately 6 µuf, shunted by 25-pf air trimmers. The oscillator trimmer is adjusted so that the oscillator will cover from 88.25 to 116.25 mc.
 - This may be checked with a calibrated regeneration receiver or by Lecher wires. The mixer is tuned with the oscillator by adjustment of the trimmer and by varying the spacing between turns of the grid coil without changing the distance between the ends. After the circuits have

LIST OF PARTS

- **AUDIO SECTION**
 - R108 – 50,000 ohms
 - R201, 500 ohms
 - R202, 2000 ohms
 - R304, 150,000 ohms
 - R401, 250,000 ohms
 - R502, 300,000 ohms
 - R601, 600,000 ohms
 - R701, 1,000,000 ohms
 - R801, 2,000,000 ohms
 - R901, 3,000,000 ohms
 - R1001, 5,000,000 ohms
 - R1101, 7,000,000 ohms
 - R1201, 10,000,000 ohms
 - R1301, 15,000,000 ohms
 - R1401, 20,000,000 ohms
 - R1501, 30,000,000 ohms
 - R1601, 50,000,000 ohms
 - R1701, 75,000,000 ohms
 - R1801, 100,000,000 ohms

- **PHOTO**
 - Photo C – Placement of the undershield coils, been tracked, ganged coupling may be used on the two condensers. The circuits will work most efficiently when they resonate with the trimmers at approximately minimum capacity. – **Technical Sound**, Radio News, 117, 2, 1947.

BUILDING A TELEVISER

- This series on constructing a television will be concluded next month with a discussion on how to select the video receiver and select and install a suitable antenna.
TRANSLANTIC NEWS
(Continued from page 35)
eter, inserted at the 400-ft. level. At the top of the mast is a new kind of adjustable capacity loading unit. This consists of four jointed radial booms, each 30 feet in length, with wires joining their extremities. At the 400-foot level there is a platform carrying a large variable inductor, which can be so adjusted that the greatest possible non-fading range is obtained. Previously, severe fading was liable to occur in districts of Kent, Surrey and Sussex, lying to the south-west of London. The new radiator is proving highly successful, providing fading-free reception in these districts.

Blind Landings

Britain, as a good many G.I.'s discovered when they were over here, is liable to fog in autumn and winter. For that reason the problem of blind landings at civil aerodromes is a particular one. At present there is no international agreement on standardizing radio and radar systems of blind approach and landing at passenger and commercial aerodromes. It seems that it may be some time before the committee now considering the subject is able to come to decisions. Our authorities felt that something had to be done quickly. Rather than wait, they have gone ahead with the installation of a blind landing system. The one adopted is the American "talk-you-down" GCA. As an aid to blind navigation the Decca company has been authorised to operate its hyperbolic system, which makes use of very low-frequency continuous waves. This does not mean that we have washed our hands of the international committee. If they decide on different systems, we'll adopt them.

Insured Radio Maintenance

Radio servicemen will be interested in a scheme for the guaranteed maintenance of receiving sets which has been launched in this country and is proving popular with customers. It is working well from the dealer's point of view, since it assures him both a steady income and a steady flow of work. Briefly the scheme is this: when he purchases a new radio the customer is offered a complete insurance against defects and breakdowns of every kind. In return for the annual payment the dealer undertakes to make a thorough check-up each year as a matter of routine; to do any trouble-shooting, adjustments or repair work that may be required; to replace free of charge any tubes or components that become faulty. Average terms are 75 cents per year for each tube the set contains. Higher premiums are charged as the radio advances in age. The charges—$3.75 for a 5-tube, or $4.50 for a 6-tube—are considered in connection with the fact that tubes (which are the most likely parts to need replacement) cost a great deal more than in the United States.

JUST PUBLISHED!

Here are two brand-new books, just off the press—both important additions to RADIO-CRAFT'S 1946-7 NEW MODERN LIBRARY SERIES. Last month five other fresh titles were announced (see list to the right). Watch this page for further titles each month.

EASY-TO-READ, EASY-TO-GRASP, EASY-TO-APPLY— is the best way to describe the books in this popular series. Let them be your working tools to a better understanding of radio— to help you achieve higher goals. You will like the handy size, the fresh up-to-date type, the good clear typeface, the carefully drawn schematics, and the flexible covers in attractive modern dress. 64 pages. Price $0.50 each, postpaid.

NO. 33 AMPLIFIER BUILDER'S GUIDE
A valuable book for the designer and constructor of sound equipment. Theory and construction of audio amplifiers are treated in separate parts. The theory section contains an unusually wide range of technical information on such subjects as r-c amplifiers, phase inverters, equilizing phonograph pickups and volume expansion.

NO. 37 ELEMENTARY RADIO SERVICING
A book for the radio man who knows little about radio repair. It shows how to get started and keep going. A wide range of essentials is covered in logical sequence; Planning and Equipping the Shop, Systematic Circuit Checks, Signal Tracking Methods, Servicing Midget Receivers and other fundamental servicing topics.

SEE YOUR DEALER.
IF HE CAN'T SUPPLY YOU, USE COUPON.

RADIO-CRAFT PUBLICATIONS

25 W. Broadway, New York 7, N. Y.

Here Are Five Other Recent Titles
#29 HANDY KINKS AND SHORT CUTS
#30 UNUSUAL PATENTED CIRCUITS 1944-1946
#32 ADVANCED SERVICE TECHNIQUE
#36 RADIO TEST INSTRUMENTS
#38 HOW TO BUILD RADIO RECEIVERS

43

www.americanradiohistory.com
LEEDS

SPECIAL
BC-645A Brand New. Complete with tubes, including W. E. 316A "Door Knob"-450-400 MC. Can be converted to the 120-450 MC Ham Band. Detailed conversion & diagrams. Reduced $14.95

ARMY RADIO PHONES

They're perfect and were O.K. 'd by Signal Corps inspection. For battery less phone or recordings, etc. Complete dynamic hand mike, 2 earphones, head- band, cord set and special collaborating cord. A real special. ONLY $345

Laboratory Precision Variable Condenser
54-1500 muf designed for use in general radio 605-B Signal Generator Special $5.00
CARDWELL XE 240 XS 30-240 muf Variable .100 Airgap Mycalex insulated. $2.55

Aerovox 0.1 mfd 750 vdc Oil Condenser $1.00
C-D 2 mfd 2000 vdc $2.25
C-D 4 mfd 2000 vdc $3.50
Aerovox 8000 muf 1950 vdc $4.45
Cornell Dubilier 2mfd 10,000 VDC Oil Special $12.95

Westinghouse 2" Bake Case 0-20 ma $2.45
Weston 2" 0-1 ma 500 V Scale $3.50

Heinemann 315 Volt 5 Amp Magnetic Circuit Breaker $5.95

In Stock: New Type General Radio Co. Variswift
Type V-5 115V input 0.135V output @ 5 Amps 800 Watt...$18.15
Type 200 B 115V input 0.135V output @ 1 Amp 170 Watt...$12.45

If not rated 25% with order, balance C.O.D.
All prices F.O.B. our warehouse New York.
No order under $2.00
We ship to any part of the globe

LEEDS RADIO CO.
75 Vesey St., Dept. 45
COrland 7-2612
New York City 7

WORLD-WIDE STATION LIST
(Continued from page 87)

FREQ. COUNTRY
6.160 CBXR VANCOUVER, CANADA: 0900 to 1200 SUN.
6.160 HMC3 PORT-AU-PRINCE, HAITI: 0000 to 0530, 1000 to 1200, 1330 to 1530.
6.150 MEXS BOSTON, USA: 0300 to 1100, 1200 to 1400, 1700 to 1930.
6.230 WBCD 1000 to 1700.
6.240 HHN CIUDAD TRUJILLO, DOMINICAN REPUBLIC: 1100 to 1200, 1230 to 1730.
6.120 HGIV QUITO, ECUADOR: 0500 to 0800.
6.160 HNIA RIO DE JANEIRO, BRAZIL: 0900 to 1000.
6.200 MICT BOSCA, SEN. GUAYAQUIL, ECUADOR: 1100 to 1400.
6.100 YEBR CAYMAN ISLANDS, WEST INDIES: 0900 to 1000.
6.310 HNIZ CIUDAD TRUJILLO, DOMINICAN REPUBLIC: 0900 to 1000.
6.340 MWZ BEIRUT, LIBAN: 1900 to 2100.
6.360 HPWI SAN PEDRO SULA, HONDURAS: 1100 to 1200.
6.370 CEM LEBANON, LIBAN: 1300 to 1400.
6.450 CHN SANTA CLARA, CUBA: 0700 to 0900.
6.480 HNIT MONTSERRAT NOUEL, DOMINICAN REPUBLIC: 0500 to 0600.
6.510 CP40 COCHABAMBA, BOLIVIA: 1000 to 1100.
6.530 TGWB GUATEMALA CITY, GUATEMALA: 0600 to 1000.
6.620 TGZ Quito, ECUADOR: 0500 to 0800.
6.710 ZT7 WELLINGTON, NEW ZEALAND: 0500 to 0600.
6.720 PMA BANDUNG, NETHERLAND IN- DIES: 0700 to 1000.
6.750 EYV TAHITI: 0600 to 0900.
6.750 YNDS MANAGUA, NICARAGUA: 0600 to 1000.
6.770 CP40 LA PAZ, BOLIVIA: 0700 to 0900, 1000 to 2200.
6.770 SINGAPORE, MALAYA: 0230 to 0700.
6.850 YNQ MANAGUA, NICARAGUA: 0800 to 1000.
6.910 YNQ MANAGUA, NICARAGUA: 1400 to 1600.
7.010 XPSA KOWLOON, CHINA: 0200 to 0300.
7.100 BISAI, PORTUGUESE GUIANA: 1700 to 2100.
7.120 GRM LONDON, ENGLAND: 1145 to 1215.
7.150 XGQ CHUNGKING, CHINA: 0330 to 1330.
7.150 XGQ VIENNA, AUSTRIA: 0600 to 1000; 1000 to 1100.
7.170 JCPA CAIRO, EGYPT: 0200 to 0300; 1400 to 1700, 2200 to 2300.
7.200 FSY DAR ES SALAM, TANGANYIKA: 0700.
7.210 FSY DAR ES SALAM, TANGANYIKA: 0700.
7.210 LGQ BRISBANE, AUSTRALIA: 0230 to 0300.
7.220 JCKW JERUSALEM, PALESTINE: 2320 to 2345.
7.290 GSW SINGAPORE, MALAYA: 0230 to 0300.
7.280 GSW SINGAPORE, MALAYA: 0300 to 0400.
7.280 LGQ BRISBANE, AUSTRALIA: 1500 to 1600.
7.250 PICI WILLEMSTAD, CURAÇAO: 1230 to 1300.
7.280 CPQ LONDON, ENGLAND: 0500 to 1000.
7.280 CSU LONDON, ENGLAND: 1000 to 1300.

The Patent Office reports an 81% increase in patent applications awaiting action during the past year. Pending applications in the radio field more than doubled during the year.

Get Started in Radio

10 "HOW-TO-DO-IT" BOOKS

For the radio hobbyist who is interested to learn how to build, test, and repair radio receivers and transmitters, contains over 50,000 words on radio, radio circuits, the wealth of information packed into these handy little books is the envy of professional engineers. Your money likely if not satisfied.

6 BOOKS FOR 50c
10 BOOKS FOR $1.00

Send 50c, No. 3 Postpaid

No. 1—How to Make Free Mic. Caps. (Labored Text)
No. 2—How to Repair Your Late Model Radio
No. 3—How to Make a Battery Sav (Labored Text)
No. 4—How to Read Radio Guides (Labored Text)
No. 5—How to Make a Rate Meter (Labored Text)
No. 6—How to Make a Speaker (Labored Text)
No. 7—How to Make a High Gain Regenerator (Labored Text)
No. 8—How to Make a Miniature Signal Indicator (Labored Text)
No. 9—How to Build a High Power Regenerator (Labored Text)
No. 10—How to Make a High Impedance Meter (Labored Text)

RADIO PUBLICATIONS, 28A West 84th, New York (7)
as the wavemeter is tuned through resonance, or a meter in the grid or plate circuits of the oscillator will deflect at resonance. Another method is to measure the power absorbed in the wavemeter itself. This can be done with a pilot bulb or other r.f. indicator.

One of the important uses of a wavemeter is in aiding VFO design. Coupling the meter shows at once whether the oscillator is above or below the desired frequency, thus simplifying the work and saving time. Many transmitters use high-sensitivity pentodes and frequency multiplication. In such cases it is altogether too easy to mistake one harmonic for another. Here the wavemeter is almost indispensable to keep from going out-of-band. It is also necessary when using the popular pi-network and similar antenna coupling systems. In such cases, a change in the tuning condenser is accompanied by an op-

Commercial type made for high frequencies.

posite change in the coupling condenser.

Thus, it is possible to have a variety of condenser settings for the same band, and, in turn, the same tuning settings may apply to more than one band. The wavemeter gives a positive indication in all cases.

Since the wavemeter does not require precise calibration or special low-loss construction, many hams prefer to construct their own unit, incorporating whatever special features they require.

One home-made job is shown in the photo. It is made up of parts available in any shack. The condenser is a double-unit broadcast type (two 365 µuf sections in parallel). The wide capacitance range makes it possible to cover the 20, 40 and 20 meter bands without plug-in or switching troubles. The coil is wound on a 2½-inch long, ½-inch diameter lucite rod extending from the rear of the condenser. There are 18 turns of No. 20 wire closely-spaced in the coil, which is wound at the further end of the rod. This makes it possible to insert the coil practically any size and shape of tuned circuit for measurement. A No. 47 pilot bulb is soldered directly to a condenser lug.

Calibration is simple. The 80-meter band is found by using an 80-meter crystal and tuning to the lowest frequency of the transmitting oscillator. In this case the coil was designed by pushing the 80-meter calibration as far as possible towards the high-capacitance setting so that ample room would be available for 20 meters and below at the other end. The 40-meter point is found both by using a 40-meter crystal and tuning in the second harmonic of 80. This serves as a double check against using the wrong harmonic. Similarly, the 20-meter point is found by using the second harmonic of 40 and the fourth of 80.

To make a measurement, simply insert the wavemeter into an oscillating coil and tune the wavemeter for maximum brilliance. Then read the calibration. It is well to proceed cautiously at first unless there are plenty of bulbs on hand. Even 20 watts input to an oscillator or amplifier can easily burn out the wavemeter bulb. For more accurate indication, withdraw the wavemeter until the filament just barely glows.—W2O UX.
In New Jersey...it's VARIETY...

SUPERIOR Model 670 Super-Meter A Combination Volt-Omm Milliammeter plus Capacity Reactance Inductance and Decibel Measurements. Complete with test leads and instructions $28.40

RADIO KITS by "EASY BUILT"

Model No. 2 Kit

AC-DC Electric Battery Kit with Cabinet complete with Tube, Special Variable Condenser, Batteries, Decibel meter, Wonder Tunes, and Complete Wired Tube Socket. Includes Mounting, Base, Ready Cut and Drilled. $5.01 each

Model No. 2B Battery operated, easy tuning, attractive wood finish cabinet. Complete with Tube, Volt Battery, Headphones, Head-
ers and Base. List Price $4.33 Special $3.33

Federal Teleco SELENIUM RECTIFIER Kit No. 1 Kit No. 1X $2.15

PHONO MOTOR—with TURNTABLE

60 Cycles 115 Volts $3.95

Suitable for every phonograph instrument where low cost and dependable performance are required.

$3.95

Famous Brand VOLUME CONTROLS with SWITCH

75c each 10 for $6.90

500, 1,000, 2,000, 5,000, 10,000, 15,000, 25,000. 1 meg, 5 meg, 10 meg, 50 meg, 100 meg, 1 meg. 10 meg 500 meg, 10 meg. Outside dim 1½" shaft height 3", flat, 4. 5/8" di.

RESISTOR CABINETS—All wood con-

struction 62 shelf, 6 compartments $3.89

R.C.A.—765 CABINET

Packet in original carton. Beautiful built veneer with grill cloth. Speaker baffle for 3½ speaker. Rubber feet.

$4.95 each. Three for $14

Bargain! Guaranteed! 100 Assorted Bypass Condensers

10—601—600V. 10—92—600V. 15—60—500V. 10—60—400V. 10—250—500V. 15—60—600V. 10—5—200V. 10—6—600V. Value $11.00 Special $6.95

SPECIAL! 20 x 20 150 W. Electrolytic con-
densers. FRESH STOCK guaranteed.

Value $.75 Special $4.95

Write Dept. C-2 for our FLYER. 2% Discount with order receipt. Please add sufficient freight. Excess will be refunded.

Variety ELECTRIC CO., Inc.
601 Broad St., Newark 2, N. J.

PROBLEMS OF INSTABILITY
(Continued from page 25)

resistors in series with the amplifier grid and/or plate leads; rearranging the chassis ground-return and voltage supply connections; etc.

Such minor circuit design alterations change the more or less unpredictable stray and conduction coupling factors and may counteract regenerative effects with sufficient degeneration to stabilize the circuits.

At times, the instability problem may lie in uni-stage oscillation or parasitic oscillation in a single amplifier stage, because of stray grid-to-plate coupling effects. This type of circuit instability is rather infrequent in the case of modern tubes.

An obscure source of circuit instability is the resistance-reflexification connection problem caused by corroded or defective riveted, bolted, soldered, spot-welded or sliding-contact junctions in radio or sound amplifier circuits. Such non-linear resistance connections may not only cause oscillation but also loss in signal strength, hum and distortion effects which are at times difficult to track down.

Service and Repair Notes

In repairing a piece of equipment, the original wiring should not be disturbed, to avoid changing the original stray circuit coupling factors. Similarly, when replacing defective circuit components, the exact replacement part or an equivalent should be used and replaced in exactly the same position.

If an amplifier tube shield, by-pass condenser, isolating resistor or choke or circuit shield has apparently been "omitted" in one or two of the amplifier stages, do not insert one in an attempt to correct the "error." It may eliminate a stray coupling factor which was deliberately inserted to introduce a controlled amount of degeneration to suppress oscillation tendencies. Or it may have created a small amount of regeneration to increase gain and peak the tuning.

If a peculiar circuit design or arrangement or unorthodox wiring location is noted in the wiring diagram or in the equipment itself, it should not be "fixed up" by eliminating it or altering it to standard circuit design. Again, intentional stray coupling factors may be disturbed and satisfactory circuit operation upset.

Chassis ground return or voltage supply connections made anywhere on the chassis or at any point in the voltage supply bus wiring are not always the "same thing." At radio frequency levels, a few inches of chassis or wiring has appreciable impedance and inductive and capacitative coupling effects. Instability troubles may crop up if these original wiring connections are juggled about.

Some receivers develop oscillation or excessively peaked tuning tendencies when all the r.f. or i.f. stages are lined up too accurately with signal generators and c.r. oscilloscopes or output meters. Such receivers perform more satisfac-
torily on an alternately staggered slightly off-tuned basis, and represent an exception to the general rule "a job well done pays off in the end."

At times, defective corroded connections develop in a circuit to produce operational troubles. Such non-linear resistance connections may be tracked down with a low-range ohmmeter, re-

RADIO TERM ILLUSTRATED

Suggested by T. P. Bohannon
Houston, Texas

www.americanradiohistory.com
Modernization Notes
Care must be exercised in altering tube types in a piece of equipment, especially when shifting to higher-mu tubes.

In the old receivers using triodes in the r.f. or i.f. stages, the neutralizer stabilizing circuits have been designed for a specific set of tube and circuit stray capacitances and inductances. When such tube types are altered, some trial-and-error modifications of the neutralizer circuits may be necessary to prevent unstage oscillation.

When considerably higher-mu tubes are inserted into amplifier stages, the resultant higher signal voltage levels may increase the inter-stage coupling, causing oscillation and hum pick-up. Increased circuit shielding, rearrangement of wiring and components, increased bypass filtering and omission of one amplifier stage may be necessary to eliminate the instability.

In substituting diode detectors for grid or plate detectors, it should be remembered that although diodes are "non-amplifying," it is quite possible for them to develop oscillation effects when a tuned r.f.-circuit is present in the diode stage. Oscillation and hum pick-up may take place if inadequate shielding and excessively long wiring leads exist in the high-fidelity diode detector stage.

In wiring up new power amplifier stages, precautions must be taken against parasitic oscillation, especially in push-pull-parallel stages where an electronic "hunt" type of h.f. oscillation apparently takes place. Cases have been known in transmitter installations where about a dozen varieties of parasitics have been successively developed by power amplifiers with each circuit modification before being finally suppressed.

Such parasitics may result in hums, birdies, whistles, distortion, loss in output, excessive plate currents and overheated tubes which sometimes cause a radioman to pull apart all of a transmitter's circuits except the one actually causing the trouble.

In radio receivers, grounding the speaker chassis and voice coil, shielding the speaker leads, inserting mica shunt condensers in the power amplifier grid or plate circuits, inserting non-inductive low-resistance series resistors in the amplifier grid circuits, arranging the power amplifier stage components to produce the shortest and most direct wiring leads, keeping the wiring out in the clear from other wiring and components, shielding the power amplifier tubes with roomy and well-ventilated shields, etc., are some of the methods which can be employed to suppress parasitics, if and when they crop up.

Receiver power amplifier parasitics can be checked by removing the detector tube. If the trouble is in the r.f. or i.f. stages, the whistles and hums will cease, and it is obviously parasitics in the power stage. The trouble-making stage can be checked effectively with a sine-wave or square-wave signal generator and a cathode-ray scope. A sine-wave audio signal sent through the power amplifier stage will show up as a sine-wave modulated by a fuzzy r.f. ripple when the scope's "V" and "H" amplifier gain is turned up. A square-wave signal will show a small "pip" close to the leading corner which indicates a h.f. oscillatory transient condition of the circuit.

A simple and practical test is to touch the power amplifier grid circuits with a tool held in the bare hand or else to shunt the grid or plate circuits to ground through small mica condensers. This will result in clicks and shifts in the oscillation noise in the speaker or a complete cessation of oscillation. If no change is noted in the birdies or hums, the trouble is obviously in the r.f. or i.f. stages.

Minor circuit alterations which obviously do not, as a rule, result in instability problems, are: increasing the power supply hum filters, replacing glass-envelope amplifier tubes with metal-envelope types, replacing old type audio transformers with new high-fidelity types, substituting impedance coupling for transformer coupling between audio amplifier stages (with moderate-sized coupling condensers), replacing old speakers with modern types, replacing grid-leak detectors with biased detectors, replacing two or three low-mu audio amplifier stages with one or two medium-mu or high-mu amplifier stages (respectively), in-

(Continued on page 68)

CRESCENT

Automatic Record Changer

Model C-100
- Physical Size: 15¾" x 12½"
- Plays Twelve 10" or Ten 12" Records
- Noiiless
- Child-proof Mechanism
- Crystal Cartridge
- Reject Button
- Finished in Neutral Beige Crackle

RECORD CHANGER ONLY $1950
Your Cost Each

LEATHERETTE BASE AS ILLUSTRATED
Above—Model H-100 Brown Finish, Made to Fit
Model C-100 Record Changer. $4.25 ea.

Orders are now being accepted for immediate delivery—no waiting. Terms: 2% cash with order. Or 25% deposit, balance express C.O.D.

PM SPEAKERS
4" Alnico (5) PM Speaker, $1.39 ea.
5" Alnico (5) PM Speaker, $1.49 ea.
6" Alnico (5) PM Speaker, $1.89 ea.

PHONO AMPLIFIERS
1-Tube Phon. Amplifier, $2.25 ea.
3-Tube Phon. Amplifier, $4.50 ea.

TUBULAR ELECTROLYTICS
100-MFD-25 V. $.22 ea. 100 MFD-450 V. $.29 ea.
25-MFD-25 V. $.22 ea. 16 MF D-450 V. $.39 ea.
20-MFD-150 V. $.22 ea. 160-10 MF D-450 V. $.39 ea.
30-MFD-150 V. $.29 ea. 20-20 MF D-150 V. $.29 ea.
40-MFD-150 V. $.39 ea. 30-20 MF D-150 V. $.39 ea.
50-MFD-150 V. $.45 ea. 40-30 MF D-150 V. $.45 ea.
8-MFD-450 V. $.25 ea. 50-30 MF D-150 V. $.39 ea.

Motion Picture Speakers
3 Power Speakers
5 Phono Speakers

RADIO PARTS
SOUND SYSTEMS
ELECTRONIC APPARATUS

Depend on RADOLEK

Radolek's big Free Profit Guide Catalog and Profit Bulletin supplements keep you abreast of the rapidly changing radio situation. Buying from Radolek means greater values, better service and more profits. Make Radolek your buying headquarters.

Large Stocks Fast Service

SEND TODAY!

RADIO CRAFT for FEBRUARY, 1947

HOLLANDER RADIO SUPPLY CO.
549 West Randolph Street
Chicago 6, Illinois

RADIO PARTS
SOUND SYSTEMS
FREE CATALOG

RADIO PARTS
GUIDE CATALOG

RADIO DEPARTMENT
ORDERS ARE NOW BEING ACCEPTED FOR IMMEDIATE DELIVERY—NO WAITING. TERMS: 2% CASH WITH ORDER. OR 25% DEPOSIT, BALANCE EXPRESS C.O.D.

PM SPEAKERS
4" ALNICO (5) PM SPEAKER, $1.39 EA.
5" ALNICO (5) PM SPEAKER, $1.49 EA.
6" ALNICO (5) PM SPEAKER, $1.89 EA.

PHONO AMPLIFIERS
1-TUBE PHON. AMPLIFIER, $2.25 EA.
3-TUBE PHON. AMPLIFIER, $4.50 EA.

TUBULAR ELECTROLYTICS

100-MFD-25 V. $.22 EA. 100 MFD-450 V. $.29 EA.
25-MFD-25 V. $.22 EA. 16 MF D-450 V. $.39 EA.
20-MFD-150 V. $.22 EA. 160-10 MF D-450 V. $.39 EA.
30-MFD-150 V. $.29 EA. 20-20 MF D-150 V. $.29 EA.
40-MFD-150 V. $.39 EA. 30-20 MF D-150 V. $.39 EA.
50-MFD-150 V. $.45 EA. 40-30 MF D-150 V. $.45 EA.
8-MFD-450 V. $.25 EA. 50-30 MF D-150 V. $.39 EA.

PHONO AMPLIFIERS

1-TUBE PHON. AMPLIFIER, $2.25 EA.
3-TUBE PHON. AMPLIFIER, $4.50 EA.

STOP (CONTINUED ON PAGE 68)
A Complete Business System

The "Radio Service Standard Rate Book"
Price: $1.00

A comprehensive pricing system and Code of Ethics designed to establish fair and equitable prices for the servicing of radios.
The book is divided into six sections, covering: Auto radios, A.C.-D.C. battery portable consoles, radio, tape, motion picture, record players and record chassis and record changer procedures for each type of set and lists standard rates for various types of repair services.
Parts prices and tube prices are conveniently listed, plus suggested standard rates for labor, service calls, pickup and delivery, estimates and alignment.
Includes Crystal Cartridge Digest, showing illustrations, voltages, pressures and list prices.
Also includes registry of electronic manufacturers of radio and appliance items.

The "Radio Service Work Sheet"
Price: 60c (50-sheet pad)

Complete servicing and pricing form for tailoring on-your-service rates. Service rates are outlined on the Radio Service Work Sheet side by side with your method of pricing.
Rates for service calls, labor, etc., are listed and explained.
A space is provided for the dealer to insert his name with rubber stamp.
A valuable asset to gain customer confidence and good will and a reputation for fair dealing.

The "Radio Service Record"
Price: $1.25 (100-sheet book)

Provides comprehensive record system of every repair job, showing all materials used, labor, time, etc.
The "Radio Service Record" is ring-bound and contains consecutively-numbered job tickets designed as a file card, customer's claim check (with space for dealer's rubber stamp), and radio registration card.
A convenient way to order: 500 lots (16 books), with numbers running consecutively. Price $6.25.

Available at your Radio Parts Jobber
Oelrich Publications
1827 South Keeler Avenue Chicago 23, Ill.

PROBLEMS OF INSTABILITY
(Continued from page 67)
serting r.f. filtering in the power line and power supply circuits, etc., etc.
Under certain conditions, altering existing equipment circuits may result in such serious oscillation instability that all the usual safe methods will fail to stabilize it. Only a major reshuffling and trial-and-error rearrangement of circuit components, wiring and shielding on a new chassis may result in sufficient reduction of circuit coupling to result in stable circuit operation. Construction Notes

A new or untried design should not be built in a permanent form but rather as a rough experimental model, especially where multi-frequency high-gain circuits or inadequately shielded or portable equipment is involved. This will allow elimination of instability and operational "bugs" by trial-and-error.

Generally speaking, the more shielding employed, the easier the circuit operation and the lower the stray signal and hum pick-up effects. Under certain conditions, increased shielding may increase rather than decrease circuit instability. Shielding alone cannot suppress oscillation tendencies if other stray circuit coupling effects are favorable to oscillation.

In constructing resistance or impedance-coupled audio amplifier stages, large inter-stage coupling condensers should not be employed in an attempt to extend low-frequency response. The heavy long time-constant condensers will set up a circuit condition wherein the audio amplifier stages will take off in a low-frequency "motor-boat" type of multi- vibrator square-wave oscillation which cannot be controlled.

The table of grid and plate load resistances or impedances, increasing the capacitance value of the coupling condensers beyond a certain maximum value results in little increase in low frequency response. Special low-frequency compensation circuits do this much more effectively. Resistance-coupled amplifier circuit component charts should be consulted for suitable coupling-condenser values.

Too many audio amplifier stages should be avoided in straight radio receivers. This will reduce audio circuit instability and achieve higher fidelity and a better signal-to-noise ratio. One driver is usually adequate to obtain full output from the power stage.

The oscillation problem is sometimes particularly troublesome when a new t.r.f. receiver is constructed, particularly where the above factors are involved. Some of the usual methods applied to prevent excessive instability are: careful shielding of the r.f. coils, glass-enameled amplifier tubes, tuning condensers, by-pass condensers and r.f. chokes. Filter circuit components are installed on the common plate and screen grid voltage supply and cathode chassis ground return circuits; separation of cathode bias resistors; omitting or adding some shielding in one or two of the amplifier stages; altering the by-pass condenser or inserting r.f. chokes in the cathode circuits of one or two of the r.f. stages or often more effective than shielding. Altering the plate or grid voltage supply circuits of one or two of the r.f. stages by changing the by-pass condensers or adding r.f. chokes or omitting isolating resistors; by concentrating the voltage supply bus leads of each stage at that stage; by concentrating the chassis ground return leads of each stage at that stage; altering the amplifier plate or grid load circuits of one or two stages by adding shunt networks of resistors and condensers.

WAR SURPLUS SALES

RADIO-ELECTRICAL-ELECTRONIC EQUIPMENT - PARTS - SUPPLIES

NEW Navy RBL 3 Low Frequency Radio Receiver

T R.F. type receiver employing a regenerative detector designed to cover 6 bands frequency range of 15 to 600 kc; uses various types of voice, MCW, ICW, and CW signals. Operates at 1.5, 2.5, 5.6, 10.5 and 50 kc. Complete. Only new or UNTRIED.

Price: $19.95

SIGNAL CORPS DRY RECTIFIER CONDENSERS: stages down AC. input from 600 to 1250 volts, 50-60 cycles; 24 to 36 volts. Each.

Price: $2.95

SUPERIOR 2 KVA Power Stages; input 115 volt AC, 50-60 cycles single phase; output voltage range 0-135 volt; maximum rated output current 16 amp available over entire range of output voltages; weight 29.50 lbs.

Price: $2.90

SUPERIOR 2 KVA 3 KW power stages; 2 in tandem, each 115 volt AC single phase. Same as above but twice the input and output voltage. Complete 5000 GO condensers, etc., etc.

Price: $12.25

PHILCO T8 TWIN TUNED 300-watt, copper foil, dark grey finish; 12 feet long. In 3 sections; weight 18 lb. 6-1/4", 16", 18", etc.

Price: $1.95

Standard rack of 300-watt power stages; 2 per rack, 116" high, 15" wide, 51/4" deep.

Price: $98

MICHAEL STAHL, INC.
35 RFC VESEY ST.
Tel. O'Connell 7-5886
New York 7, N. Y.

PREPAID ASSORTMENTS

GUARANTEED FIRST QUALITY

100 1/3 Watt Resistors All Translated. $9.90

100 Watt Resistors All Translated. $19.90

100 1 Watt Resistors All Translated. $24.90

100 1/2 Watt Resistors All Translated. $17.90

100 1/4 Watt Resistors All Translated. $14.90

100 1/8 Watt Resistors All Translated. $12.90

100 1/4 Watt Resistors All Translated. $18.90

100 1 Watt Resistors All Translated. $29.90

100 1/16 Watt Resistors All Translated. $22.90

100 1/32 Watt Resistors All Translated. $18.90

5000 Ceramic Auditors. $9.90

5000 Ceramic Auditors. $14.90

5000 Ceramic Auditors. $19.90

5000 Ceramic Auditors. $24.90

5000 Ceramic Auditors. $29.90

5000 Ceramic Auditors. $34.90

5000 Ceramic Auditors. $39.90

5000 Ceramic Auditors. $44.90

5000 Ceramic Auditors. $49.90

5000 Ceramic Auditors. $54.90

5000 Ceramic Auditors. $59.90

5000 Ceramic Auditors. $64.90

5000 Ceramic Auditors. $69.90

5000 Ceramic Auditors. $74.90

5000 Ceramic Auditors. $79.90

5000 Ceramic Auditors. $84.90

5000 Ceramic Auditors. $89.90

5000 Ceramic Auditors. $94.90

5000 Ceramic Auditors. $99.90

5000 Ceramic Auditors. $104.90

5000 Ceramic Auditors. $109.90

5000 Ceramic Auditors. $114.90

5000 Ceramic Auditors. $119.90

5000 Ceramic Auditors. $124.90

5000 Ceramic Auditors. $129.90

5000 Ceramic Auditors. $134.90

5000 Ceramic Auditors. $139.90

5000 Ceramic Auditors. $144.90

5000 Ceramic Auditors. $149.90

5000 Ceramic Auditors. $154.90

5000 Ceramic Auditors. $159.90

5000 Ceramic Auditors. $164.90

5000 Ceramic Auditors. $169.90

5000 Ceramic Auditors. $174.90

5000 Ceramic Auditors. $179.90

5000 Ceramic Auditors. $184.90

5000 Ceramic Auditors. $189.90

5000 Ceramic Auditors. $194.90

5000 Ceramic Auditors. $199.90

5000 Ceramic Auditors. $204.90

5000 Ceramic Auditors. $209.90

5000 Ceramic Auditors. $214.90

5000 Ceramic Auditors. $219.90

5000 Ceramic Auditors. $224.90

5000 Ceramic Auditors. $229.90

5000 Ceramic Auditors. $234.90

5000 Ceramic Auditors. $239.90

5000 Ceramic Auditors. $244.90

5000 Ceramic Auditors. $249.90

5000 Ceramic Auditors. $254.90

5000 Ceramic Auditors. $259.90

5000 Ceramic Auditors. $264.90

5000 Ceramic Auditors. $269.90

5000 Ceramic Auditors. $274.90

5000 Ceramic Auditors. $279.90

5000 Ceramic Auditors. $284.90

5000 Ceramic Auditors. $289.90

5000 Ceramic Auditors. $294.90

5000 Ceramic Auditors. $299.90
If It's a CANNON-BALL
It is a GOOD HEADSET

C. F. CANNON COMPANY
SPRINGWATER, N. Y.

ELECTRIFY your LAWNMOWER
Battery Operated! Self-Contained - Self-Propelled
We show you how to convert your own lawnmower for use with a car battery. Save energy, labor and time with this self-propelled unit.
Our simplified plans make it easy.
LEIAE MFG. CO., 225 Lesy Ave, Minneapolis 8, Minn.

BUILD 15 RADIOS—
Absolutely No Knowledge of Radio Necessary—You Need No Additional Parts or Tools
You will Start with a 1-Tube Receiver—Before You are Done With This Kit You Will Have Built 11 Receivers, 1 Public Address System and 3 Transmitters.
The PROGRESSIVE RADIO KIT is THE ONLY COMPLETE KIT—Contains Everything You Need!
Instruction Book, Metal Chassis, Tubes, Radio Parts, Soldering Iron, Pliers and Cutters, Screwdriver.
Price $19.75

PROGRESSIVE ELECTRONICS GO.
22 Hawley st., Brooklyn 11, N. Y.

Phono-Bargains

1 TUBE PHONO OSCILLATOR $3.95
uses 117NT GT tube (lost tube)
WEBSTER "56" RECORD CHANGER automatically stops after last rec. $26.60
ord is played.

AC-DC PHONO-AMPLIFIERS
completely wired
1 TUBE uses 117LT $2.06
2 TUBE uses 50L6 & 3SZS $2.94
3 TUBE uses 50L6-12J5-3SZS $3.53
4 TUBE uses 125L7-35ZS-35L6-3SL6 $5.29
(take tube, speaker and volume control)

PHONO MALLERY WITH TURNTABLES
2 POST V.M. RECORD CHANGER $17.95
3 for $27.00

PORTABLE PHONOGRAPH CASE
Two-tone Leatherette finish dimensions 15%"L X 14%"W X 8"H
PORTABLE AUTOMATIC PHONOGRAPH RECORDEXCHANGE CASE $14.95

TEST EQUIPMENT
McMURDO SILVER "VOMAX" $59.50
vanometer
McMURDO MODEL 905 "SPARKX" $39.90
signal tracer
All items subject to prior sale
20% with order, balance C.O.D. We pay way express on $50.00 orders in U.B.A. Write for catalog
Electronics Parts, Inc., Dept. C2
622 W. Randolph St,
Chicago 6, Ill.

JOBBERS-DEALERS-
AND SERVICEMEN!
Your Tube Worries Are Over!
IF YOU NEED TUBES—WE'VE GOT 'EM!

We seek your exclusive tube business. Send us a trial order [in quantity preferred]. This will convince you we merit your patronage, based on low prices, quick delivery and guaranteed merchandise.
Only Radios Tubes in our business. The following is a sample of our tubes always in stock:

ALL OTHER TUBE STOCK AT SIMILAR LOW PRICES
WRITE, WIRE OR PHONE FOR OUR SPECIAL PRICES
25% deposit on all orders. Balance C.O.D.
F.O.B. New York

SENCO RADIO, Inc.
(EXCLUSIVELY RADIO TUBES)
96 E. 53rd st., New York 22, N. Y.
TTL. CORINTHIAN 7-6800

SPECIAL OFFER TO SERVICEMEN

1 IN 1 COMBINATION
Saves you over 25% on total cost
1 pk. plastic radio tubes (the best)
1 pk. glass radio tubes (the best)
1 pk. glass 5-microfarad condenser 5 uF 5/16" dia. 3.50 each
1 pk. glass 5-microfarad condenser 5 uF 3/8" dia. 3.50 each
1 pk. glass 10-microfarad condenser 10 uF 3/8" dia. 6.00 each
1 pk. glass 20-microfarad condenser 20 uF 3/8" dia. 6.50 each
1 pk. glass 50-microfarad condenser 50 uF 3/8" dia. 10.00 each
1 pk. glass 100-microfarad condenser 100 uF 3/8" dia. 12.00 each
1 pk. glass 300-microfarad condenser 300 uF 3/8" dia. 24.00 each
1 pk. glass 500-microfarad condenser 500 uF 3/8" dia. 50.00 each
1 pk. glass 1000-microfarad condenser 1000 uF 3/8" dia. 100.00 each

Each item may be purchased separately at above prices.

RADIO DEALERS SUPPLY COMPANY
135 LIBERTY ST., NEW YORK 6, N. Y.
NEW RADIO-ELECTRONIC PATENTS
By I. QUEEN

CRYSTAL PRESELECTOR
Gleneth F. Collar and Richard C. Young
Seattle, Wash.
Patent No. 2,405,999
This invention aids in eliminating interference due to atmospheres and from adjacent channel signals. It is especially useful where only a few frequencies are to be tuned in since two crystals are required for each incoming frequency.

Ordinarily, a crystal filter is too sharply tuned to permit speech without distortion because of the high Q. In many circuits, the coupling circuitry is added to reduce the Q as desired. The components are contained in a metal box with three shielded compartments. The first contains a wavetrap and the antenna coil. The wavetrap may be tuned to a persistently interfering signal. The second compartment contains the high-Q crystal circuit. X is resonant to an adjacent channel frequency and acts as a short-circuit to bypass the undesired signal. Y is ground for the desired frequency. The signal passes through X and through the auxiliary circuit in the third compartment. C is adjusted to equal the capacitance of the Y crystal holder. If current of other than the desired frequency flows through the holder capacitance, it is opposed by the current through C, and canceled out.

The auxiliary tuned circuit is adjusted for resonance to the desired frequency. It is found that such a circuit with a crystal circuit reduces the Q. The coil is provided with a tap which varies the width of the response curve as required.

FREQUENCY METER
Robert D. Schwartz, Devon, and William West
Moss and Lowell J. Hartery, Bridgeport
(Assignors to General Electric Co.)
Patent No. 2,137,859
Although several types of frequency meters are available, there is a need for a simple circuit which is easily adjusted and which can measure over a wide range. This new circuit uses only two tubes: a pentode and a double-diode tube.

The input voltage may vary over a wide range, for example, 25-150 volts. It is required that the negative peaks cause plate current cutoff and that the positive peaks result in grid current. A resistor R1 is placed in the grid circuit to prevent excessive current flow by producing the necessary grid bias. Depending upon the instantaneous polarity of the Input frequency, therefore, the plate operates either at cut-off or at maximum plate current. In the first case there is no voltage drop across R1, and in the second case the voltage drop across it is practically equal to that of the plate battery. As a result, the condenser C1 charges and discharges periodically. The charging current must flow through D2, and therefore does not affect the microammeter. The discharge current, however, does cause deflection since it must pass through D2.

The triodes may be separate tubes or halves of a twin-triode type.

Because of its connection to the positive terminal of the power supply, B is normally positive and current flows in the plate circuit. Current through the bias resistor causes the first tube to be cut off. When a negative pulse is applied between B and ground, the first grid goes positive and current flows in the grid circuit. The pulse in the latter circuit is transferred through the coupling condenser to the second grid, cutting off this tube and causing a sudden rise in plate voltage which is transferred to the output circuit.

The condenser and resistor in the second grid circuit are so chosen that the negative charge on the grid is required for the desired circuit. The resistor may be adjustable as shown in order to vary the width of the square wave. When the chart looks off, current flow in the second plate circuit, again biasing the first tube to cutoff. The circuit is then ready for the next pulse.

If the input pulses are repetitive, they are applied to terminal A instead of B.
THE RADIO PEN IN EUROPE

In every April issue of Radio-Craft, for many years past, its editor has endeavored to have a little fun with his readers. To this effect he usually cooks up an electronic hoax, which he disguises in such plausible terms that the project looks real. Many an innocent reader, no longer astonished at the latest electronic miracles, may get caught in this scientific hokus-pokus. That is, unless he plows through the entire article and reads to the very end where he finds the words "April 1st." He may then have a good laugh at his own expense, or cuss the editor roundly. Trouble is that most readers do not read the entire article; thus a goodly percentage take the article at its face value.

The interesting part of the joke is, that none of the projects which are published every April are impossible! They are not only feasible, but usually in a decade or more they will become realities. Yet for the time being each remains just an April Fool hoax.

The Radio Pen in the April, 1946, issue was no exception to this. Radio-Craft received the usual quota of letters from readers who wanted to get more information where they could buy either the complete pen or some of the components, etc. But the Radio Pen proved an exception to the usual run of former, similar April jokes, in that a serious technical magazine swallowed the whole article hook, line, and sinker.

In their June, 1946, issue, the French technical radio magazine La Radio Professionelle, of Paris, republished the entire article as a new American invention, without, however, giving any hint that it was a hoax!

This led to quite a few repercussions in France when a number of other French technical magazines let loose an Olympian roar of laughter at the expense of their compatriots, the Parisian confrère. Said the French Toutte La Radio in their July-August issue:

"It happened that a French journalist has taken the article seriously. In a professional radio magazine he dedicated a very elaborate article to the description of the 'Fountain Pen' receiver (but omitted to mention the source of his information). Gernsbach surely never expected such a repercussion of his joke. For our part we found that the subject gives rise to gratifying reflections intermixed with sweet moments of hilarity."

Another French radio magazine of Paris, Le Haut Parleur (The Loud Speaker) comments as follows, in a page-long article, translating the original American text:

"The four-tube Radio Pen is in reality a good joke. Unfortunately, this was not played by a French confrère, who hadn't read the article to the end. He coolly proceeded to reprint a full description in a recent issue of his journal.

"We ourselves reprint the fantasy article just for a bit of amusement. After all, perhaps we deal here only with a simple anticipation."

That, however, was only the beginning. It appears that dire international implications due to the Radio Fountain Pen are in the offing. In their issue of October 2, 1946, Le Travaveur Alpin (communistic newspaper) of Southern France, exostulates:

"A nice little story!"

A 4-TUBE RECEIVER IN A FOUNTAIN PEN

"Such is the promising title in the American Magazine Radio-Craft, which gave full details and a description of this new 'Marvel.'"

"This was also the title of an article in a French magazine informing its readers of the sensational invention without mentioning that this formidable 'Fountain Pen' was nothing but an amusing April Joke!"

"Radio-Craft was, of course, dated April 1, and the end of the article showed that it was only an April Joke (French "April Fish")."

"Our French Fellow-Journalist had not seen this and he was the April Fool. (In French: He swallowed the Fish)."

"But let us not be too much astonished about this. Doesn't the American propaganda try every day to hook us with such jokes? Accepted in a more or less innocent manner by certain (French) newspapers, it showers us ceaselessly with news items, one more sensational than the next. The sense of criticism of more than one reader is being sapped. Some heads have been deeply penetrated by the conviction that (Continued on page 80)"
The CW Receiver is a highly selective crystal controlled superhetodyne unit operating of any fixed frequency in the band of 1900 kc to 16,500 kc. The total band is covered by means of four groups of plug-in coils. Extension of the range above or below the specified range may be had by means of special groups of plug-in coils. Plug connections are provided for 110 volt, 60 cycle AC power source and for connection of receiver output.

- **FIXED FREQUENCY RECEIVER**
- **7 TUBE SUPERHET CIRCUIT**
- **CRYSTAL CONTROLLED LOCAL OSCILLATOR**
- **COILS SUPPLIED COVER 5.6 TO 10 MEGACYCLE BAND**
- **AUDIO AMPLIFIER STAGE CAPABLE OF PRODUCING ZERO LEVEL DB OUTPUT ACROSS A 500 OHM LOAD**
- **TUBE COMPLEMENT**
 - 2-A7K
 - 1-A8K
 - 2-A9BG
 - 1-6SN7
 - 1-80
- **COMPLETE SET OF EXTRA SPARE TUBES**
- **FITS STANDARD 19" RACK, 19" WIDE, 3½" HIGH, 11½" DEEP**
- **GRAY & BLACK FINISH**
- **PACKED IN WOODEN SHIPPING CASE**
- **WEIGHT ONLY 14 LBS., NET**
- **SHIPPING WEIGHT 42 LBS.**
- **COMPLETE WITH INSTRUCTION BOOK, COILS, LESS CRYSTAL**

ONLY $21.95

P.O.B., N.Y.

25% deposit required on C.O.D. shipments

MARITIME SWITCHBOARD

336 CANAL STREET NEW YORK 11, N. Y.
ing the deflecting coils to position the video signals in their proper place on the screen. This is the function of the synchronizing pulses.

There are two types of synchronizing pulses in a video signal, the vertical and the horizontal. Since all pulses have the same amplitude, their separation necessarily must be based upon their frequency difference. Horizontal pulses have a fundamental frequency of 15,750 cycles per second; vertical pulses appear every 1/60 second. In addition to their separation, it must be remembered that at no time should either synchronizing system be permitted to slip out of control.

A block diagram of the entire synchronizing system of a typical television receiver is given in Fig. 5. At some point beyond the detector, a portion of the video signal is applied to a clipper tube which separates the pulses from the rest of the signal. Vertical and horizontal pulses are separated by means of low-pass and high-pass filters. Other names for these units are integrating and differentiating networks, from the similarity of their actions to the same processes in mathematical equations.

The pulses obtained from the filters trigger their respective synchronizing oscillators, locking them in to the pulse frequency. If the two are close in frequency, the lock-in will be sufficiently binding to prevent the oscillator from returning to its free-running state. The synchronizing oscillator controls the charge and discharge of the saw-tooth voltage generator. A saw-tooth wave, applied to the deflecting plates or coils, will place the image properly on the screen. The purpose of the clipper is to separate the synchronizing pulse from the rest of the video signal. In operation, then, it must remain unresponsive to any voltage other than the pulses.

(Continued on page 74)
TELEVISION FOR TODAY
(Continued from page 78)

Perhaps the simplest way of achieving this is to permit the pulse itself to serve as the biasing agent. In Fig. 6-a, the diode clipper uses the time constant of R and C to bias the tube so that all save the synchronizing pulse are eliminated. Condenser C and the resistor R form a low-pass filter with a relatively long time constant, equal to approximately 10 horizontal lines. Therefore, the voltage developed across R (and C) will be determined by the highest voltage applied across the input terminals. This, of course, means the synchronizing pulses. Throughout the remainder of the line, while the video voltage is active, the plate is never driven sufficienfly positive to overcome the positive cathode bias.

A commercial application is shown in Fig. 6-b. One half of a 6H6 is used for picture signal detection (not shown) while the other half is devoted entirely to combined pulse rectification and clipping. R1 and R2 form the pulse detector load. Here the rectified signal is developed. The time constant of the load is set essentially by the resistor R1. If at the application of each pulse to the tube, a short flow of current takes place, recharging CI, and, at the same time, causing the pulse to appear across R2. This voltage is passed on to an 1552 synchronizing pulse amplifier. The series inductance L maintains the response of this network to the higher frequency components of the square-shaped pulses.

Note that the circuit in Fig. 6-b employs a separate diode for pulse rectification and clipping, and in addition a separate amplifier. A more practical arrangement would have resulted if the clipping did not occur until after the first video amplifier. In this way, the additional amplifier would have been unnecessary.

The chief disadvantage of a diode clipper is the loss in amplitude that results. Using a triode or a pentode connected as a pulse clipper, we gain some amplification plus a sharper separation between signal and pulse. Typical circuits are shown in Fig. 7. Each tube is zero-biased in the absence of a signal. When a signal is applied, current flows, charging the coupling condenser. Throughout the remaining portions of the cycle, when grid current is not drawn, Cc discharges through Rg. The result is grid-leak bias. Since this form of bias is determined by the most positive portion of the signal, it works very well in providing sufficient bias to serve as a clipper. To aid clear-cut separation, lowered tube potentials are utilized.

Fig. 7.—Triode and pentode types of clipppers.

It should be noted that the foregoing triode and pentode clipper stages are essentially similar in form to the d.c. insertion network of Fig. 3. Their difference, however, lies in the values of the grid resistors, and the dc operating potentials. In the clipper, Rg is high, generally 1 megohm or more. Further, the operating voltages are low. In the d.c. reinsertion circuit, Rg is much lower in value and the tube voltages are higher. The high grid resistor of the clipper biases the tube to the point where only the pulses cause plate current. The lowered plate voltage aids this action. In the d.c. insertion circuit, the negative bias is less, permitting current to flow throughout the entire video signal. In both instances, however, it is the synchronizing pulse portion of the signal which is effective in setting the bias.

DETECTOR FOR THE OSCILLOSCOPE

Nearly every service shop of respectable size now has an oscilloscope. This is a very handy instrument, with a multitude of uses. A few additions can increase its uses to cover many other things. Most oscilloscopes respond to only a limited range of frequencies, generally not over 100 kc. This range is sufficient for many uses but if you desire to use it as a signal tracer, the higher frequency r.f. is only a blur on the scope. By inserting a detector before the amplifier in the 'scope you can trace a modulated signal from antenna post to speaker. By adding a phone jack or a small 4-inch speaker the signals can be heard as well as seen. This speeds services greatly and many troublesome problems can be solved in a jiffy with this efficient instrument. The detector can be constructed and installed in three or four hours for less than five dollars.

The only item located on the chassis of the detector will vary with the make of the 'scope. I found it best to put the tube on a separate little chassis of its own—approximately one and one-half by two and one-half inches in size—and bolt it directly to the top of the 'scope chassis. The detector should be close to the amplifier already in the 'scope. An infinite-impedance detector was

RADIO-CRAFT for FEBRUARY, 1947

www.americanradiohistory.com
Oscilloscope Foundation Kit
5 in one

Consisting of Case, Chassis, two shelves (right & left), tube shield and bracket, front panel, screen windown frame, handle, plastic window socket, with 5CP1 Cathode Ray tube—Special...

$15.50

2x2 Tube $1.00
Socket for 2x2 Tube .25
H.V. Condenser .5 Mfd 2000 V .95
KIT, without Cathode Ray tube 11.95.
Tube shield and bracket only .1.98

Surplus Tubes at Bargain Prices

All Tubes New and Sold Under New Tube Guarantee

Copy of Monthly Bulletin on request.

Minnow Order on Tubes $2.00
All Prices FOB New York City, N. Y.

Highbridge Radio-Television
and Appliances Co.
540 Canal Street, New York 13, N. Y.

Low-temperature dry cells, developed by the Bureau of Standards during the war, operate excellently at 22 degrees below zero, and can be used at 40 below. One of the new cells is a methylamine hydrochloride-ammonium chloride type, the other works with calcium chloride and ammonium chloride. The latter battery is not the more successful, and is adaptable to many commercial uses.

Radio-Craft, for February, 1947
COMMUNICATIONS

ALWAYS ONE INTERESTING ARTICLE

Dear Editor:

I think RADIO-CRAFT is one of the great magazines; there is always at least one article of interest in it. Take for instance articles like that one on the "Scope in October, that keen article on Improving Sound Equipment in November, and—for a change—the December story on W2IXY was very good.

I get a kick out of reading the Communications Dept, or the Complaint Department, as it sometimes seems to be. I think some of these correspondents are like the gal who married the poor devil to improve him, instead of improving themselves, which is why I read RADIO-CRAFT (from Volume I, No. 1). I don't expect RADIO-CRAFT to be a pure service magazine, and for that reason I take Service, Radio Service Dealer, Radio & Appliance Journal and Radio Maintenance. I don't expect it to talk nothing but Ham lingo, and for that reason the newsdealer sells me QST, the Ham Bible (ARRL Handbook) and CQ.

I believe that RADIO-CRAFT is in a class of its own—a good solid, middle-of-the-road radio and electronics magazine, and by the hand of the Prophet, may it always be thus!

V. H. HERNDON, Odon, Indiana.

(While RADIO-CRAFT is pleased and happy to receive letters like the above, please keep on sending your kicks to our "Complaint Department."—Editor)

SERVICEMEN SHOULD SELL

Dear Editor:

As a new hand at the game, I have the following to offer on the question: "Why does a radio (service) man want to sell sets?"

I opened up shop this year (1946) with the sole idea of service and service only. After turning out 600 sets in three months, I want more than ever to sell radios.

Each salesman has his particular item or product to sell. Also he knows the game and is a qualified (not an "authorized") man in his particular field. A good baker knows bread; a good furniture man knows furniture.

Why shouldn't a good man radio man know radio?

But here's the story I hear every day from set owners: "When I bought that console, I thought I was buying a good radio. Instead I bought a good box."

This is true. If the customer wants a good shortwave radio, the furniture man sells him a large console. A radio man would recommend a communications set, something the furniture man, druggist or other "radio dealer" never heard of.

More than once, after I had picked up a big box, the customer has come in while I had the "works" on the bench, and refused to believe that the midget chassis was his radio. They buy these sets on a basis of: "The bigger the box, the better the receiver," and feel swindled when they see "that little thing on the bench." You can explain to them that the big box acts as a baffle and improves reproduction but they still feel correctly (that a "bigger and better" radio would be even more of a help to get a better output.

It takes a radio man to sell radios. As one radio man to all you others, I say: "Let's stop the 'box' racket and sell the public radios, the kind of radios they need and require!"

OTIS H. WYMAN, Collinsville, Ill.

Come to the famous COYNE TRAINING SHOPS

where you learn by doing

TRAIN FOR RADIO-ELECTRONICS

IN A FEW WEEKS

Prepare For A Good Job Now With A Lifetime Future!

Trained Radio-Electronics men needed now. They will be needed for the years to come. Don't be caught napping. Get a Radio training now and be ready. Learn by Doing. Free employment service for life after graduation. Many earn while learning. If you are short of money, ask about my Student Finance Plan. Now added: Training in Industrial Electronics. Also equipped to train those who qualify under G. I. Bills. Radiation therapists also have facilities for training with physical disabilities whether due to war or other causes. Fill in and mail coupon for details.

SEND COUPON FOR FULL DETAILS

To: B. W. COOKE, Dir., Radio-Electronics Div., COYNE ELECTRICAL SCHOOL

665 S. Paulina St., Dept. 17-111, Chicago 12, Ill.

Send Big Free Book; also details about Coyne Part-time Employment and Student Finance Plan to: Send G. I. Bulletin [] Physical Disability

NAME: [] AGE:

ADDRESS:

CITY: [] STATE:

A GOLD MINE OF SURPLUS PARTS

for RADIO REPAIRMEN

AMATEURS AND EXPERIMENTERS

12 lbs. of RADIO PARTS only $2.00

Relays — Condensers — Resistors — Transformer Cores — Wire, etc., etc.

Send 2.00 cash, check or M.O., today! (Pay small express charges on receipt.) Write for Radio Parts Catalog.

ELECTRONIC PARTS, Inc.

622 W. Randolph St. Dept. C2 Chicago 6, Ill.

www.americanradiohistory.com
SMALL RECORDING STUDIO
(Continued from page 52)

plifier consists of two input circuits ar-
ranged as a mixer, so that individual
signal gain control of each circuit is possible.
The mixer is followed by two voltage
amplifier stages and a push-pull triode
output amplifier. Negative feedback is
applied to the cathode circuit of the
first voltage amplifier stage. See Fig. 2.

Filter networks are no inserted in the
feedback net that the low- and high-
frequency response may be varied inde-
pendently. Note the method of connect-
ing the mixer plate circuits so that the
loading of the tubes on each other is
negligible. The speaker and monitor
phones are driven from the output
transformer, which is of the high-fidel-
ity type. The crystal cutter is driven
through a pair of 2-μ condensers di-
rectly from the plates of the 6B4G’s.
To reduce the hum level to the vanish-
ing point, all the heaters except the
6B4G’s are supplied from a 6-volt d.c.
source. This d.c. is obtained from a
selenium rectifier through a heater fil-
ter circuit consisting of a filament
transformer and two 1000-μf filter con-
densers.

The amplifier gain is approximately
100 db which is adequate for all but the
lowest level microphones. A pre-ampli-
er is used when additional gain is
necessary.

The amplifier is mounted in the cab-
inet, with a sloping metal panel added
to mount the recording controls. These
include the two gain controls, together
with their input selectors. One input is
used for AM, FM recording, and play-
back from either the Brush pickup or
the dynamic pickup, mounted on the
auxiliary 12-inch Presto turntable.
The other input is used for microphone
work and can be switched from a remote
mike to a local one so that the recordist
may make necessary announcements.

The next control group includes the
bass compensation control, the high-fre-
cency selector and the high-frequency
compensation control. There is a wide
choice of high frequency boost points
which allow compensation of the high
loss in recording toward the center at
33 1/3 revolutions per minute. The re-

Our model R-3 is a
3-tube receiver kit
of the regenerative
type. This receiver
is the 110 volt type
and operates at a
frequency of 550
Kc. to 1500 Kc by means of a plug in coil.
The power supply is self-contained in the
receiver thus eliminating the need for a
separate power pack. This kit comes to
you completely disassembled.

ALSO AVAILABLE
KIT MODEL SS...a 5-tube superhetero-
dyne radio kit, comes complete including
heaters, bakelite cabinet and Instructions,
ready for assembly.
KIT MODEL SIX...a 4-tube, 2-band receiver
kit, equipped for either 110 or 220 volts,
AC or DC. covers the following ranges:
550 Kc-1600 Kc, 4-16 Mc. This kit is
furnished complete, ready for assembly.
KIT MODEL RP-55...a combination radio
and phone kit. (5-tube superheterodyne
radio), 5" Alnico V Speaker, Astatic L-72
pickup, beautiful walnut finish cabinet,
ready for assembly.

(A LL KITS SUPPLIED
LESS WIRE & SOLDER)!
Write for Descriptive Catalog M

RADIO KITS COMPANY
120 Cedar St., New York 6, N. Y.

BE YOUR OWN BOSS!
MAKE MORE MONEY

$1.00 IN "CASH" TO
YOU NOW WITH THE
REAL ARTICLE! Make
discs of profitable tested
different commercial, com-
petitive business mater,
ials. Dramatic tested original,
unique, original type.

25¢
40,000 WORDS
IN TEXT

Cash Back Guarantee
NATIONAL PLANS COMPANY
Box 26RF, Ansonia Station
New York 33, N. Y.

THE BIGGEST BARGAIN ON EARTH!

One of the best Vacuum tube Volt-Ohm-Milli-
ammeters ever built. For only $44.85. (Built to
sell for $62.50) (Used on atom Bomb) Further-
more—10 days FREE TRIAL!
0-1000 in six ranges, DC and AC 6% in. probe.
Flat response from 20 cycles to over 20 kcs.
200 meter 4½ inch scale. Reads direct, no
graphs to follow, uses 6SN7-6H6-6X5—Black
crackle case 10 x 8 x 7 made by St. Clair Engi-
neering Corporation.

Take it! . . . Try it! . . . Test it!

RADIO EQUIPMENT COMPANY
LEXINGTON, KENTUCKY

RADIO-CRAFT for FEBRUARY, 1947
77
INDEX TO ADVERTISERS

<table>
<thead>
<tr>
<th>National Radio Institute</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Schools</td>
<td>13</td>
</tr>
<tr>
<td>National Union Radio Corp.</td>
<td>2</td>
</tr>
<tr>
<td>New York Technical Institute of N. J.</td>
<td>42, 43</td>
</tr>
<tr>
<td>Newark Electric Co., Inc.</td>
<td>6</td>
</tr>
<tr>
<td>The Charles Brunelle Co.</td>
<td>71</td>
</tr>
<tr>
<td>Nigro Radio Supply</td>
<td>71</td>
</tr>
<tr>
<td>Burke & Wayburne Advertising Agency</td>
<td>48</td>
</tr>
<tr>
<td>Sanders Rodkin Advertising Agency</td>
<td>48</td>
</tr>
<tr>
<td>Oakland Wireless & Jossip Advertising Company</td>
<td>48</td>
</tr>
<tr>
<td>Opportunity Adv. Agency</td>
<td>78</td>
</tr>
<tr>
<td>Fa-Kette Radio Co.</td>
<td>76</td>
</tr>
<tr>
<td>Progressive Electronics Co.</td>
<td>69</td>
</tr>
<tr>
<td>Redcroft Publications</td>
<td>63</td>
</tr>
<tr>
<td>Radio Dealers' Supply Co.</td>
<td>69</td>
</tr>
<tr>
<td>Burke & Wayburne Advertising Agency</td>
<td>76</td>
</tr>
<tr>
<td>Radio Electric Service Co.</td>
<td>40</td>
</tr>
<tr>
<td>David Libman Adv.</td>
<td>77</td>
</tr>
<tr>
<td>Radio Equipment Co.</td>
<td>77</td>
</tr>
<tr>
<td>Radio Experts</td>
<td>70</td>
</tr>
<tr>
<td>Radio Kits Co.</td>
<td>77</td>
</tr>
<tr>
<td>Hamburger Agency</td>
<td>51</td>
</tr>
<tr>
<td>Radio Parts Co.</td>
<td>51</td>
</tr>
<tr>
<td>Sydney S. Lovitt Adv.</td>
<td>64</td>
</tr>
<tr>
<td>Radio Publications</td>
<td>64</td>
</tr>
<tr>
<td>Radio & Company</td>
<td>55</td>
</tr>
<tr>
<td>Turner Co.</td>
<td>55</td>
</tr>
<tr>
<td>Radio Stores</td>
<td>78</td>
</tr>
<tr>
<td>Reed Manufacturing Co.</td>
<td>79</td>
</tr>
<tr>
<td>Remington</td>
<td>70</td>
</tr>
<tr>
<td>Richard Jorgensen</td>
<td>78</td>
</tr>
</tbody>
</table>

RADIO SCHOOL DIRECTORY—See Page 80

- American Radio Institute
- Sternfeld-Godley, Inc.
- Baltimore Technical Institute
- Camden Radio Institute
- Gunn-Mears Advertising Agency
- Candler System Co.
- Rand-Ries, Adv., Inc.
- Commercial Radio Institute
- Lincoln Engineering School
- Buchanan-Thomas Adv.
- Mahville Radio Institute
- Sandall Adv.
- RCA Institutes
- United Radio Television
- Western Radio Television Institute

<table>
<thead>
<tr>
<th>Y.M.C.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sams & Co., Inc., Howard W.</td>
</tr>
<tr>
<td>Aitken-Kynett Co.</td>
</tr>
<tr>
<td>Sams Radio, Inc.</td>
</tr>
<tr>
<td>Simpson Electric Co.</td>
</tr>
<tr>
<td>Inside Front Cover</td>
</tr>
<tr>
<td>Spreague Products Co.</td>
</tr>
<tr>
<td>Sprayberry Academy of Radio</td>
</tr>
<tr>
<td>Harry P. Bridge Co.</td>
</tr>
<tr>
<td>Simons Hardware</td>
</tr>
<tr>
<td>Bass & Weber Co., Inc.</td>
</tr>
<tr>
<td>Standard Electrical Co.</td>
</tr>
<tr>
<td>Sterling Electric Co.</td>
</tr>
<tr>
<td>Instruments Co.</td>
</tr>
<tr>
<td>Bass & Weber Co., Inc.</td>
</tr>
<tr>
<td>Swift Publications</td>
</tr>
<tr>
<td>Henry H. Tippett, Advertising</td>
</tr>
<tr>
<td>Sydrole Electric Products, Inc.</td>
</tr>
<tr>
<td>News Emmett Co.</td>
</tr>
<tr>
<td>"Radio & Electrical Apparatus" Blrs.</td>
</tr>
<tr>
<td>Bass & Weber Co., Inc.</td>
</tr>
<tr>
<td>Trufone Products Co.</td>
</tr>
<tr>
<td>Julius J. Rowan Company</td>
</tr>
<tr>
<td>Turner Company</td>
</tr>
<tr>
<td>Lyon Co.</td>
</tr>
<tr>
<td>Varity Electric Co.</td>
</tr>
<tr>
<td>Radio & Weber Co., Inc.</td>
</tr>
<tr>
<td>Wright, Inc.</td>
</tr>
<tr>
<td>Advertising Agency</td>
</tr>
<tr>
<td>Xl Radio Laboratories</td>
</tr>
</tbody>
</table>

SCRATCH REMOVER

Plastic materials such as flashlight lenses and radio dials often become scratched and soon take on the appearance of ground glass. The scratches may be removed by buffing the surface with a piece of soft felt that has been coated with a film of jeweler's rouge. The glass may also be polished by this method, but the process is a long and tedious one.

- Harry A. Nickerson, Dorchester, Mass.
BOOK REVIEWS

A compilation of the number of families owning radios in each county in the United States, this book is divided into three sections. The first compares the total number of families with the number of radio families in each county in the United States, and is divided by states. The second index lists all cities of 10,000 or more population, plus all cities of under 10,000 which have a radio station. List is alphabetical by city. The third section shows the population and radio population of metropolitan districts.

A Canadian supplement shows radio ownership by counties, or by census subdivisions where counties do not exist.

Percentages are given in all cases, and show that radio ownership ranges from 9.1 in one county in Massachusetts to 97.1 in one county in Quebec. Although all figures were secured by statistical methods and therefore do not reflect local variations from the general pattern, the overall picture given by these percentages should be very useful not only to the radio advertiser but to the general businessman surveying economic and cultural conditions in any of the areas covered by the report.

This simply written and well-illustrated book is prepared for the layman or student with no previous knowledge of radio or electronic fundamentals—nor is this knowledge required—for the work gives a fairly complete picture of radar that can be understood by elementary students without resorting to mathematics or physics.

Its eight chapters, illustrated with photographs, diagrams, and clever cartoons, utilize simple analogies to explain the fundamentals, development, and applications of radar. Because of the simple presentation, this book will provide interesting reading for the scientifically minded layman.

This book, which can serve equally well as a text, laboratory workbook, or handbook on electrical motor repair, will be useful to motor repairmen as well as students and vocational instructors. Step-by-step servicing and troubleshooting procedure is presented on all types and sizes of a.c. and d.c. motors, (Continued on page 80)
CAREERS in RADIO

INTENSIVE COURSES—Thorough, technical education for progressive men and women.

RADIO TECHNICIAN—The RFI General Correspondence Course includes F.M. & Television. Prepares for FCC broadcast Licenses.

RADIO & TELEVISION SERVICING—Prepares for employment as Repairmen on Sound, and Broadcast, F.M. & Television Receivers.

FUNDAMENTAL RADIO MATHEMATICS—The RFI Preparatory Course. Required pre-training for students lacking a basic mathematical background.

MELVILLE RADIO INSTITUTE
45 W. 45th St., N. Y. 19, BR. 5-5800
"The Radio School Managed by Radio Men"

Radio Men Needed

The Finest in Radio Training

Train for well-paid positions in Radio Engineering, Television, Electronics. Thorough course in theory, practice, math, mechanical drawing, construction, repair, aviation and police systems, sales and service, broadcasting.

APPROVED FOR VETERANS UNDER GI BILL

COL. W. R. WASHBURN Dept. 4 CLOVIS, NEW MEXICO

Benson Radio Institute

RCA INSTITUTES, Inc.

Offer thorough training courses in all technical phases of Radio and Television.

DAYS-EVENINGS WEEKNIGHTS VETERANS: RCA Institutes is approved under U. S. BUN of Rlghts. Write Dept. RC-47

RCA INSTITUTES, Inc.

A Radio Institute of America's Service

75 VARICK STREET

NEW YORK 13, N. Y.

COMMERCIAL RADIO INSTITUTE

A radio training center for sixty-six years.

RESIDENT COURSES ONLY

Broadcast, Receiver-Antennae, Technician and Marine Officer's classes now forming. Literature upon request.

VETERANS: Write Dept. 79, New York City.

LEARN RAPID RADIO SERVICING

Send for Free Information: "9 Ways to Learn Radio." Approved for Training Veterans.

WESTERN RADIO INSTITUTE

1437 Glimmer, Denver 2, Colo.

RADIO COURSES

• RADIO OPERATING
• RADIO SERVICING — ELECTRONICS
• REFRIGERATION SERVICING

Write for Latest Trade & Technical Catalog

T.M.S.I. TRADE & TECHNICAL SCHOOLS

2 W. 44th St., New York City

LEARN THE RADIO PEN IN EUROPE

(Continued from page 71)

America only is capable of making something exceptional, that for many, news from America is as true as words from the Gospel!

"A 4-tube radio in a Fountain Pen! Why not, if the Pen is American! "Paris in a glass Bottle! Why not, if the bottle is American!"

Another technical magazine which joined the ranks of those who were taken in was the Italian technical magazine L'Antenna. In their issue of September, 1946, they reprinted the article and even went to the trouble to redraw the April Fool figure solemnly. L'Antenna started the article by stating that the Radio Pen was manufactured by "Utis Electronic Corporation"—without stopping to think what the word meant. Utis is a character from the old Greek mythology. The word means, literally—Nobody!

Evidently Radio-Craft's April Fool joke has come home to roost!
Ir. Alexander Graham Bell could look at the microwave antenna in the illustration, how quickly his mind would go back to his own experiments, 67 years ago!

For in 1880 the inventor of the telephone had another new idea. Speech could be carried by electric wires, as Bell had demonstrated to the world. Could it be carried also by a light beam?

He got together apparatus—a telephone transmitter, a parabolic reflector, a selenium cell connected to headphones—and “threw” a voice across several hundred yards by waves of visible light, electromagnetic waves of high frequency.

Bell’s early experiment with the parabolic antenna and the use of light beams as carriers was for many years only a scientific novelty. His idea was far ahead of its time.

Sixty years later communication by means of a beam of radiation was achieved in a new form—beamed microwave radio. It was developed by Bell Telephone Laboratories for military communication and found important use in the European theater. In the Bell System it is giving service between places on the mainland and nearby islands and soon such beams will be put to work in the radio relay.

In retrospect, Bell’s experiment illustrates once again the inquiring spirit of the Bell System.
MALLORY PAPER TUBULARS

You want quality in the paper tubulars you buy — of course! Otherwise your replacement work won’t stand up. Mallory gives you the quality you want.

But Mallory gives you quantity, too. Quantity in a wide assortment of ratings and sizes that meet all requirements that come your way.

That’s the story in a nut shell — whether you’re looking for wax impregnated cardboard tubulars or oil impregnated ones. The Mallory Catalog and your Mallory Distributor both prove that —

⇒ You Expect More and Get More... From Mallory

MALLORY
APPROVED PRECISION PRODUCTS
P. R. MALLORY & CO., INC., INDIANAPOLIS 6, INDIANA