

RIDAR MANUALS MEAN SUCGESSFUL SERVICING

JOHN F. RIDER, PUBLISHER, Inc., 404 Fourth Avenue, N. Y. 16 Export Agent: Rocke International Corp., 13 E. 40 Hh Si., N.Y.C. Cable ARLAB

NOTE: The Mollory Radio Service Encyclopedio, bth edition, makes reference to only one source of radio receiver schemotics-Rider Manuals.
ANOTHER NOTE: The C.D Capacitor Manual for Rodio Servicing, 1948 edition No. 4, mokes reference to only one source of receiver schemotics - Rider Monvals.

HaveYou Met the Little Fellow

with the BIG

Advantages?

The All New
 Mallory Midgetrol

Offers These BIG Advantages...

BIGGER MARKET

SIMPLER INSTALLATION

SIMPLER STOCKING

The small size of the Mallory Midgetrol lets you service purtables, auto radios and small $1\left(:-D C\right.$ receivers which requite $15 / 16^{\prime \prime}$ controls.

The unigue shatt design of the Mallory Midgeted saves installation time with all types of hootes.

Electrical characteristies let sou we the Mallory Midgetrol to replace $11 / 8^{\prime \prime}$ ats well as $15 / 16^{\prime \prime}$ controls. Stochs are fimther reduced berause no sprecial shatts are needed.

The Mallory Mideetrol is monsually quiel, beth mechanically and rlectrically -and tests prove it suas quiet. In addition, the Mallory Midgedrol has nine all new features.

- NEW SIZE	- NEW ELEMENT
- NEW DESIGN	- NEW CONTACT
- NEW SHAFT	- NEW TERMINAL
- NEW EXTENSION	- NEW TWO-POINT
- NEW SWITCH	SUSPENSION

It's the NEW Standard in Carbon Comtrols. Sce vour Mallory distributor.

HETM Lo Roc Ramar scales into position as you select the range.

SIMPSON MODEL 221 ROTO-RANGER HIGH-SENSITIVITY A.C.-D.C. VOLT-OHM-MILLIAMMETER

Here is the only multiple scale test instrument of its kind in the world. It definitely reduces the possibitity of errors by provining a single uscale for each range of this finest of voltohm-milliammeters. As the selector switch is moved to the range desired, an ingenious gearing mechanism rotates a drum, bringing into place behind the meter window the proper scale for that range. Here is the equivalent of 25 separate iunstruments combined in one sturdy and compact unit. ($\mathbf{(1 8}$ scales; 7 additional direct reading ranges through use of high voläge and outpirt jacks.) The patented Roto-Ranger principle eliminates the confusion of numerous readings on one scale, and the multiplying factors common to ordinary multi-range resters, by providing a separate scale for each range. There are no cramped calibrations in these full sized RotoRanger scales. Each is designed as it would be for a separate instrument.

SIMPSON ELECTRIC COMPANY

5200-5218 W. Kinzie St.g Chicago 44, Ill.

In ECanada: Bach-Simpson, lid. Lonidŏ̃, Ontorio

Ranges

20.000 Ohms per Volt D.C., 1,000 Ohms per Volt A.C.
Volfs, A.C.: 2 5, 10, 50, 250, 1000, 5000
Volts, D.C.: $25,10,50,300,1000,5000$
Milliamperes, D.C.: 10, 100, 500
Microomperes, D.C.: 100
Amperes, D.C.: 10
Output: 2.5, 10, 50, 250, 1000
Ohms: $0-2000$ (12 ohms center), $0-200,000$ (1200 ohms center), 0-20 megohms (120,000 ohms center).
Size: $123 / 4^{\prime \prime} \times 101 / 6^{\prime \prime} \times 53 / 8^{\prime \prime}$
Weight: 8 lbs. 902.
Price, complete with test leads and 28-Page Operator's Manual................................... \$69.85

High voltage probe (25,000 volls)
for TV, radar, x-ray and other high voltage tests, also available.

Ask your Jobber, or write for complete descriptive literature

A separare scale for every rangeautomatically!

Llarge $51 / 2 "$ mefer, with 18 separate, full length scales!

RELAYS FOREVERYPURPOSE Over a Million in Stock!

INDISTRIAL ELECTRONICS REFERENCE
BOOK, by Electronics EnEineers of the west inghouse Electric Corp. Puhlished by John Wiley ne Sons. 9×12 inches. 680 payes. Price

This is a large book, physically, and it covers a large subject. The coverage is thorough, begimning with the physical background of electronios-the atomic theory. Much of the material is on subjects of interest to the communication engineer as well as the industrial designer, because the two fields overlap considerably. There are chapters on emission, conduction in gases. vacuum tubes, phototubes, C-R tubes, tuned cireuits, and allied topics. Sections which apply especially to industry are those dealing with industrial control, power rectifiers, r.f. heating, industrial X-ray work, and several others.

Each of the 36 chapters has been written by a different author, each evidently, a specialist in his subject. The information is complete and detailed, profusely illustrated with diagrams and tables. The treatment is not wholly mathematical, but the necessary formulas are given. While the text deals with principles and design rather than with descriptions of specific pieces of apparatus, the engineer will find the book a valuable reference source in almost any sort of industrial work.-R. H. D.

THE PHYSICAI PRINCIPLES OF WAVE GUIDE TRANSMISSION AND ANTENNA Oxford Ciniversity. Press. $61 / 2 \times 91 / 2$ inchen, 207 pages. Price $\$ 7.00$.

The writer of this volume, a professor of mathematics at the University of Saskatchewan, has covered thoroughly all types of wave guides and the currently known methods of using them.

The book was written to acquaint physicists and engineers with the mul-tiple-propagation characteristics of microwaves. The subject is approached from an entirely theoretical angle, and the treatment is mathematical throughout.

The material will be of most use to
those interested in the principles of microwave transmission, for whom it will provide a complete theoretical background. It is not intended to be an engineering guide.-R.H.D.

RCA Triple Pindex. Base diagrams of 475 tube lypen. Price tanc .

The book is composed of three separate base-diagram booklets, each with 212×312-inch pages, joined below each other in a single cover with a spiral wire binding which permits the pares to lie flat. This triple feature permits the repairman to have three separate hase diagrams before him at all times without flipping pages from one to the other.

ANTENNAE, An Introduction to Their Theory

 by J. Aharoni. Published by Oxford Universit Press, $61 / 4 \times 91 / 2$ inches, 265 pages. Price $\$ 8.50$A completely mathematical treatment of the subject, this book is divided into three parts, Antennae and BoundaryValue Problems, Antennac and Integral Equations and Antennae as Wave Guides. A number of references-both books and papers-are given at the end of the text.

FREQUENCY MODULATION, VOL. I, edited hy Alfred N. Gioldsmith. Arthur F. Van Dyck. Rohert S. Burnap, Paward T- Dickey, an 6×9 inches, 515 pages. Price $\$ 2.50$.

A collection of 45 papers delivered by RCA engineers at various meetings or published in technical journals, this is the seventh volume of the RCA technical series. Due to the large number of papers, the FM art is covered-though possibly somewhat spottily - almost completely. The papers deal with problems in both FM reception and trans mission.

There are two appendices-a bibliog raphy of technical papers by RCA authors from 1936 to 1947 and a guide to a series of articles in Broadcast Neus on FM station placement and field survey techniques.

Well, Students, did I make myself clear?"

Earn the big pay of an expert radioman

This self-study
BASIC RADIO COURSE trains you at home

EXPLAINS the principles of operation of vacuum sentials of radio

PROVIDES

$\substack{\text { she } \\ \text { have }}$
FILLS IN the radio and efectrical mathematics you need, taking you in easy steps from
simple fractions to logarithms

- Let this self-study course prepare you riyh at home for a successful future in the RADIO field. It contains all the information you need radio - celectrical - mathematical - to handte al tvies of radiu sets, test equipment and electronic devices, Explains everything from time delay cir cuits to the most recent advances in the fidd mochanical and wire recording sound systemsfrauency modnlation -multiunit and mul tielectrode tubes, etc.

A 3-Way Set!

Exen as you learn the fun damentals of ralin work you ahsorth the practical tectricils and cetrlal there nal tou sim men. And as you so alonk the set fill In the mathenatics you must knom . . . Rivers yen the essentials of algebra, geometry. trizomontetrs.

This basic course includes 1. ESSENTIALS OF Slurzberg and William Os. 2 ELECTRICALES. 2. ELECTRICAL ES. DIO by M . Slurzberg and W. Osterheid 3. MATHEMATICS ESTRICITY AND TO ELEC. Nelson Cooke and Joseph Orlean Over 1,000 illustrations: 1953 pages ! 29 appendizes

McGRAW.HILL BOOK CO., 330 W 42 St., NYC 18 Somil me your 3-volume course in RASIC RADIO - batil s1\%,4, or return the books jwstpaja.

- Name

nadrea

compan
I'osdition . HC - $11-48$

Come to the Great SHOPS OF COYNE Lean i A D O THLAVSION F.M.ELECTRONICS

PRACTICAL SHOP TRAINING-

 NOT HOME STUDYTrained Radio men needed now. Get Radio-Television training and be ready for a real future. Learn on actual equipment at Coyne. 49 years of training experience. Not "Home Study". Free employment service to graduates. Many earn while learning. If you are short of money, ask about Student Finance Plan. G.I. Approved. Coupon brings special plan for men of draftage.
SEND COUPON FOR FREE BOOK
B. W. COOKE President RADIO SCHOOL

500 S . Pautina St., Dept. 88.8H. Chicago 12 . Sond Bis Free Radio-Television Bouk, also your apecial man for men of draft ase

NAME.
ADDRESS.

ANY BOOK IN PRINT

TELEVISION RECEIVER-\$1.00

Complete histruetions for milding your own television
 insiructions, viltage de reslstance tallus annl iromble

CERTIFIED TELEVISION IABORATORIES Dept. C, 5507-13th Aye Brooklyn 19, N. Y

PEN-OSCIL-LITE

 infom in cost - Ueed by Signal conse w
GENERAL TEST EQUIPMENT
38 Argyle Ave.
Buffalo 9, N. Y.

Index To Advertisers

RADIO SCHOOL DIRECTORY

American Radio (Pages 94, 95)
American Radio Institute
Baltimore Technical Instit
Baltimore Tachnical Institu
Cook's Radio School
Commercial Radio Institute
Don Martin School of Radio Arts
Lincoln Engineering School
Milwaukes School of Engineering RCA Institutes
Radio Television Institute
Radio Training Association of America
Tri-State College
YMCA Trade \& Technical Schools
Howard W. Sams \& Company, Inc.
Senco Radio, Inc
N. Silverstine Company

Simpson Electric Company........Inside Back Cover
Solar Manufacturing Corporation
South River Metal Products
Sprague Products Company,
Sprayberry Academy of Radia
Sprayberry Academy of Radio
Superior Instruments Company
Supreme Publications
Syivania Electric Products. Inc
Tab
Technical Radio Parts Company
Triplett Electrical Instrument Company
Warner Electric Co
Wells Sales, Inc.
Wright, Inc.

WANTS SERVICE LICENSES

Dear Editor

Federal licensing of radio servicing technicians would have the following beneficial results:
Give the serviceman new prestige and promote public confidence in him.

Eliminate the incompetents who give the trade a bad name and destroy confidence in servicemen.
Give the federal government a bona fide roster of qualified servicemen which would be useful in the event of war.
Restrict the entrance of unqualified newcomers. The amateur, tinkerer, and radio school product would be forced to serve a suitable apprenticeship instead of depressing wage levels through cheap competition with the higher priced but more competent individual.

Benefit the public through better, more competent servicing of radio receivers.

Attract better men to the trade through better conditions.

Organization has heen tried in the past and it has not worked because of the lack of a common interest or bond. Federal licensing would go a long way toward assuring a common interest in servicing, both in getting and renewing such licenses. The development of a national organization would put power in the hands of the servicemen to fight unethical conduct as well as incompetence in the industry. Such an organization would be stimulated by federal licensing. It could improve both knowledge and working conditions.

Willard R. Moody,
Service Manager, Sanbran Co.,
Washington, D. C.

RADIO and TELEVISION

Thurangh Training in All
APPROVED FOR VETERANS DAVS-EVENINGS WEEKLY, WATES

RCA GRADUATES ARE IN DEMAND

A Service of Radio Corporation of America 350 WEST 4TH STREET NEW YDRK 14, N. Y.

MORT'S—For Better Buys HF10 TRUSOUND AMPLIFIER

FEATURES
Inputs: Mismist peak ups:; for high Cain for variable reluctance pick FMiAm tunern and high output pickups.
Selector switch for rapid changeover.

- Hum level 70 do below 12 watts

Tone compensation. Separate
riabie base and treble controls.
Treble-from plus 100 b to min
Easn-from plus 10 db to minus 15 do at 50 cps Easn-from plus 10 do to minus 15 do at 50 eps
Notentered.
Output impedance 2, 4, 3, 16 and 500 ohms Siraight Ac for 110.120 V 50.60 cycien fused. ,6en-6st7, 6sc7, 2 6ve. 5v3.
Chassis and shield silver gray hammerioid finish. Complete with tubes and cover. $\$ 29.95$

METAL CAN AEROVOX REPLACEMENT FILTER CONDEMSERS

2 TUBE WIRELESS PHONO OSCILLATOR

 This tine :here of eyulpment is belug solul at almost luantily lasts. Each. 3.25Writo for our new FREE 1949 catalog.
TERMS: Minimum Order $\$ 3.00 .25 \%$ deposit Balance C.O.D.. F.O.B. Chicago.
MORT'S RADIO SHACK
Dept. RC 1. 630 West Randolph Street Chicago 6. Illinois

FREE! sent tot out
 Reno Bine gine
 a camplete and diversified lint-up of:
 - electronic aquipment
 - sourd sjstems
 - recordiag tquipment
 - amateur tear
 - television compenents and lits
 - replateneat parts
 - laboratory ant servict test tquipmest
 Save time and money - buy direct from distribuicrif Conseur aic buyng zue-pheked listing of 20,000 essenbisis for expett semcemen, enginters, houbbyists, amateurs:
 24 HOUR SERVICE ON ALL ORDERS Frea techmital adrisery service

Inst mat tus coopan to cit youn cathasie Nowark Electric Co., Inc., Dept. H 242 West 55th St., New York 19 Please send me the fREE Newark Buying Guide of fine radio equipment.

Name
Address
City
State

N EWARK moor navyou

mall omara amsions

Radio - Television -Electronic Parts \& Equipment Specials
television-cathode ray high voltage
2000 volt D.C. Power Supply
For an unbelievably low price, we can supply a completely filtered television or cathode ray 2000 volt D.C. power supply. Why hother with bulky and dangerous 60 cycle supplies or expensive R.F. power supplies when you can purchase a complete 2000 volt D.C. unit (not a kit) ready toplux into the 110 volt A.C. power line. The ridiculously tow price has been made possible by a fortunate purchane or brand new, completely tested and guaranteed.

Price $\$ 7.95$
4000 -6000 VOLT TELEVISION SUPPLY
Similar to the unit above, but has a much higher ID.C. output voltage suitable for use PRICE the new ${ }^{\text {7" }}$ and $10^{\prime \prime}$ television t.................................50
RADIO NOISE FILTERS
exeminates extremely noisy radio recention due to power line disturbances caused by lights. refrigerators. washing machines. vacuum eleaners. elevators. of
burners. diathermy mathines. ete. the broadcast. short.
Fiiters ouf man. made noi ses in wave. and ultra-high frequency bands.
Designed for all radios. apuliances., and electrical oquipment consuming up to 1300 watts (12 amperes)
 lth male and female line conne PRICE

ONLY $\$ 1.95$ Industrial Type Radio Noise Filter-Will handie up
to 50 amperes. Housed in shieldell case $31 / 4^{\pi} \times 3^{3 / 1 / 4^{\prime} \times} \times 2$ PRICE

EASILY ASSEMBLED RADIO KITS
5 Tube AC-DC superhet kit furnished in a
rown plastic cabillet of artistic desion cab
inet size (9"x5"x6")
Variable condenser tuned; with 2 double tuned
Tubes use
(12Ses used: 1-12SA7, 1-12SQ7, 1-12SK7 PRICE 1.501 .6
PRICE S 11.95 standard tube
6 TUBE 3 WAY PORTABLE KIT

- For operation on 110 volt AC or DC and battery
- Surerheterodyne circuit
- Full vision dial
- High gain loop
- Cahinet of Blue Aeroplane cloth finish,

Tubes used 1A7, 1H5, 3Q5, 1177.6 and
PRICE
6 TUBE 2 EAD SUPERHET MTT
6 TUBE, 2 BAND SUPERHET KIT
Bands covered BC 550.1600 KC and 6.18 MC
Power supply lial
Full vision dial
Fariable condenser tuned. with two double tuned
Wathut veneer Meod ficine $\$ 15.75$
A SCIENTIFICALLY DESIGNED PHONO SCRATCH FILTER
Resonated at approximately 4500 cycles effectively
 ing the billiancy of reproduction.
Contains a
HI.Q SERIES resona
 by means of an audio oscillator and an oscilloseope
go give 22 db. attenuation with very low signal loss. Attenuation may be regulated by means of a SPECIAL MINIATUEE gain controi.

THREE TUBE PHONO AMPLIFIER An assembled unit ready for instaliation using tone
and
cord orlume control and six feet of rubber
$\mathbf{\$ 2 . 9 5}$ with Complete Set of Tubes. Tubes)

> PHONO OSCILLATOR
 radio without wires. Can also be used as an intercomm
by uninf P. mi. sieaker is mike. Price $\$ \mathbf{2 . 9 5}$ with Complete set of Tubes
SPECJAL! SPECIAL!
Mammoth assortment of radio and electrnnic parts. not less than TEN POUNDS of new rannormers, chokes, condensers, resistors, huy for experimenters. service: $\$ 1.25$
men. and amateurs for only
men. and amateurs for only
Satisfaction quaranteed on all merchandise.
waite F.0.B. New Vork City
RADOO DEALERS SUPPIY CO.
I 35 Liberty St.

RADIO SCHOOL DIRECTORY

Become a Radio and
 TELEVISION

 TECHNICIAN
 IN 18 MONTHS:

Here is the opportunity you have been waiting for. Now you can get in on the ground floor of the nation's fastest growing industry-TELEVISION.
LOOK AT THIS RECORD - In 1946 only 6,500 television sets were manufactured - in 1947 this skyrocketed to 175,000 - already in the first four months of 1948 over 160,000 sets have been produced. This means hundreds of new jobs are being created every month.
msoe now adds television - The Milwaukee School of Engineering now provides complete, practical, technical training in television as well as Radio in its laboratories. This is not just a serviceman's course. The special 18 month's residence course includes complete training in radio as well as television - qualifies you for a successful career as a technician in all phases, AM, FM, TV Receivers and Transmitters and Radio Communications.

This Technician Course Prepares You For Any Of These Jobs: Rodio Sorvicing - AM and FM
TV receiver servicing
Eroodcast Station Operating
Ioctronic Parts Sales
Rodio and TV soles

> Police, Taxicob and kailrood fransmitters operating ond reseiver servicing Supervising and festing in radio end IY manufocturing Shep monaging

COURSES

SERVICE
6 to 12 Months

- Proctical Electricity
- Welding
- Refrigeration
- Heating

TECHNICIAN
12 to 24 Month

- Eloctrofochnics
- Radio ond Television
- Electronics
- Refrigerotion, Heating and Air Conditioning

PROFESSIONAL
36 Month:

- Electrical Engineering Bachelor of Science Degree
Mojor in Machinery or Electronies

Terms start January, April, July, Sept.

Electrical Engineering Bachelor of Science Degree in 2 additional years Majoring in ELECTRONICS

LEARN RADIO!

IN ONLY 10 MONTHS
PREPARE FOR A GOOD JOB! COMMERCIAL OPERATOR (CODE) BROADCAST ENGINEER RADIO SERVICEMAN
Television Servicing- 15 Month
Veterans get $\$ 130.00$ Eruipment SEND FOR FREE LITERATURE BALTIMORE TECHNICAL INSTITUTE
1425 Eutaw Place. Dept. C, Baltimore 17, Md

RAOIO Enginefring
 Complete Radio Engineering
 Course. Bachelor of Science $D e$ gree. Courses also in Civil. Elec
 trical, Mechanical. Chemical, Aeronautical Engi neering: Business Administration, Accounting, Secretarial Science. Graduates successful. 65th yewr. Enter Sept., Jan., March, June. Write for catalog.


```
MILWAUKEE SCHOOL OF ENGINEERING,
N. Broakery and E, State, Milwauket, Wis
    N. Broadway and E. Stafe, Milwaukee, Wis.
    Without obligotion send me free booklos ".Coreer
    Bulding" ond more details on course in Radio and
    Tolovision or,...................................coerne.
    Nome.....................................................
    Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
    City. . . . . . . . . . . . . . . . . . . . . . . . . . . State . . . . . .rCl 1481
```


WANTED:
 men and women to Fill TOP RADIO JOBS

in AM-FM-Television

If you are looking for a career with a future, why not
 Schuol of liaitio Arts now surcosafully embloyed In the
rasto induatry. The demand is preat for dualithed radio industry. The demand is errat for dualitted
radio prrsonnel in AM-FM-Televisiom. Train now to be an athnouncer, scrint writer, disk jockey, news. casser, or radlo technician. Complete day and night rlasses . the latest edutoment. free plarement
sersice. Approved for veterans. Write for free booklet.

Don Martin School of Radio Arts
1655 North Cherokee St. Hollywood 28. Calif.

LEARN then EARN in RADIO

COURSES OFFERED IN
Broodcost Engineering
Commerciol Oper. (Code)
Frequency Modulotion Television Announcing

100\% PLACEMENT SERVICE APPROVED FOR VETERANS
WRITE FOR FREE BULLETIN

Cook's Radio School
 dept. rc

2933 NORTH STATE ST..
JACKSON. MISSISSIPPI
TELEVISION 1948!!
Traln at an Insititute that ploneared In TELEVISION TRAINING stnce 1938. Morning, Afternoon or Evening Sessions in laboratory and theoretical inatruction, under suidance of experts, quency Modulation Telerision Freto opportunities in Induatry Broad. casting or own Business. Licensed by N. Y. State. Approved for Vatarams. ENROLL NOW FOR NEW CLASSES Visit, Wrife or Phome
RADIO-TELEVISION INSTITUTE
480 Loxington Are., M. Y. 17 (46th St.)
Plaze 3-4585 2 bloch frem Grand Central

RADIO COURSES

- RADIO OPERATING CODE
RADIO SERVICING ELECTRONICS - mefilg. television
- REFRIGERATION SERVICING

Writo for Catalog and Picture Brochure
Y.M.C.A. TRADE \& TECHNICAL SCHOOLS

15 W. 63rd St. (N'r E'way) Now York City

FM INTERFERENCE

Wear Edilow
I have just read Mr. Zarattaro's letter in the August issue and want to suggest to him and others that the solution to the automobile interference prob)lem seems to be either spark-plug suppressors or the new resistor spark plugs (sce the September issue, page 86).

Also, I would like to advise fellow readers to beware of induction-type suppressors. They are likely to arc between turns of the coil, which consists of fine wire scramble-wound. The arcing makes matters worse.
R. J. Fiedier.

Baltimoner, Md.

SUPPRESSORS STOP NOISE

Iocor Editor:
I read with interest Mr. Zarattaro's letter in the August issue on ignition interference on $F M$. He is certainly right. Many listeners in suburbs or rural areas are plagued by the noise of cars going by right in the middle of an FM program.

However, I have found that cars with proper suppression will not cause this racket. A simple distribut or resistor of 10,000 or 15,000 ohms will do wonders, as will resistor spark plugs.

An active campaign is necessary to get car owners to install these simple but effective suppressors. Would it be possible to get the FCC to do something? If an amateur causes interference, he gets into trouble. Isn't a spark plug really a little transmitter".

Charles C. Bofince,
Los (iutos, Culif.

ADVISES GOOD ANTENNA

Derre Editor

I do not sec why Mr. Zarattaro should be so troubled by ignition noises. Perhaps either his receiver or antenna is not adequate.

I ans located in an area with high ignition noise. With an ordinary dipole on the roof, enough noise was present to make an annoying clatter and mar the otherwise perfect reception from ny Pilotuner. When I installed a double dipole with reflectors, the annoyance decreased until it is barely noticeable on even weak stations. I believe that additional antenna gain will solve the problem entirely. A friend tried the sane cure with similar good results.

William Bandes. Jr.,
Nescopecti, I'r.

NOISE TOO MUCH FOR HIM

Denr Eillito

I agree with Mr. Zarattaro's lotter (Communications. August. 1948, page 82) that automobile ignition systems ruin FM. I have two FM sets, an 11 -tule RCA 711 V 3 and a Pilotuner, both using folded dipoles with reflectors located 50 to 100 feet from the street. When the traffic is heavy, I have had to turn off FM stations and listen to programs on AM to avoid ignition noise.

Philip J. Brassington,
Euston, Pa,

FACTORY SPEAKER REPAIRS Since 1927

EXPERIMENTAL TU日ES- LINAdy Aventment if All Mlament lestert …........... 20 for $\$ 2.00$
 5 for $\$ 1.00_{0}^{2}$

 PERMALLOY LAMINATIONS Gur comatucting

 MYFLUX EECORDING TAPE Rerommended hy HIMH
ALNICO ERASE MAGNET fur TMP: or WHBE SCR-2TA-ARC. 5 TRANSMITTER FA. COILS-

SOMETHING FOR EVERYBODY

 WRITE TOOAY FOR ANY OF: THESE TRADIO EARELECTRONC COMMONENT

TERRIFIC TURE VALUES STOCK UP NOW at UP to 80% oft list. perrect condition. Unsealed cartons
Most types in stock. ALL CUARANTEED FOR 90

 TUBE CARTONS: Plain White

HANDY RADIO PARTS KITS

No. 1-R.F. ANTENNA \& OSC. COILS
II. 3 MOULDED BAKELITE CONDEN
NE SERS TU WLDI ODUW 1 CONDEN No. S ELECTROLYTICS
\qquad No. 10-VOLTAGE DIVIDERS No. 11-SHIEID CHS


```
\$.98 2.95
``` No. SHELD CHNS ILE I Flutol No. 15 -WIAE-WOUND RESISTORS 1 1.49 .25 1.98 98
98 98
-98

\section*{Min. order \$2.00. 2000 Deposit Req. on C.O.D.'s}

\section*{LEDTINE RADIO CO.}
65.67 Dey St., New York 7, N. Y

WOrth 2.0284

\section*{THIS SIMPLE BENGH TEST}

proves you're right
Remove the cover from an IRC control. and from any other reputable control. Youll immediately see the supuerior IRC construction. Features that insure long dependable performance. Point ly point. compare IRC's desien to that of any other control and you'll know you're right when you ask for IRC :
Notice-the torminals are riveted assuring. prositice electrical contart. Gliding " \({ }^{5}\).finger" contactor provides smooth gradation of volume. Silimt Spiral Spring connector climinates principal source of eontrol noise. Resistance material bonded to bakelite base gives an even, long wearing element.

Add simesating convenience to the other features of IRC controls by buving a practical stock in this hand. some all-metal cabinet. With this minimum investment of 18 Type D Controls plus switches and special shafts the sturdy cabinct is furnished at no extra chare. You pay only the standard net price of the merelandise. Fast moving control stock in this IRC calinet services \(90 \%\) of the Howard Sams RED BOOK listings.

INTERNATIONAL resistance co.

401 N. Broad St., Phila, 8, Penna.
In Canado:Internationol Resistance Co., Ltd.

\section*{SUPER VALUES from MID-AMERICA! \\ Stromberg-Carlson DYNATENNA}

PERMEABILITYTUNER Build a really lloT 5 or xitube AC.DC superhet receiver!
Takes place of oldocity

\section*{SPECIAL AUDIO TRANSFORMERS}

\section*{Exceptionally high-quality universal out put transformer for
un to 12
speakers. Rateilat 12 watts. Matches any gingle.} push-pull or parallel tubety to fi-com voice coll tion on chassis or speakur. Complete withinstryc- 1 . 9
tions for matching tube impedances. MA-1205
 lineophonid 35 Lti e ete. 13. high on \(21 /\)

\section*{Heavy Duły Noise Filters}

Filter for mobile power suphlies. Kated 10 amps, \(6 \cdot 30\) VDC. Hag additional 2 mfl l(i) VDC condenser. 2 high. \(5 \mathbf{g} \boldsymbol{q}\)
\(2^{2}\) square. MA-216s.

\section*{SPEAKER SPECIALS}

All with Heavy ALNICO 5 Slugs
\(31 / 2 "\) PM MA-2062 . \(\$ 1.39 \quad 4 \times 60\) val PM MA-2187 \(\$ 1.39\) \(5^{\circ}\) PM MA. 2071 .. \(\$ 1.396^{\circ}\) PM MA-2189 . . \(\$ 1.95\)
ORDER FROM THIS AD!
Quantities are limited, so ret your order in now: Minimum
order slipned
 GAIN BULLAHINS hat tist latest, greatest buys in radio

\section*{MID*AMERICA CO. Inc.}

2412 S. Michigan Avenus Chicago 16, III.

NOW! CASH IN on TELEVISION

FM and TELEVISION SWEEP SIGNAL GENERATOR \(\$ 34.95\)
A must for progressive service shops-a bu!f at this sensationally low price! Accurate? - Aligns F 3 and televisian receivers. Frequency ramge 2-2.27 M(: () ut put modulated of unmorlulated. High frequency insulation throurhout. huilt-in mower line filter and spectal Millint cat bacity tuning condenser. Easy to operate -use it to adjust to new TV channels. A(" only. Exceptional opportunity to purchase instrument of this kind direct from manufacturer at a trensendous saving!

\section*{For Pleasure or Profit}

Simply press a button and begin recori-ing-anything you can hear, it will record and play back! You can make a bormanent record. ur with the monces

 TABI, that pays stamdaril 10 and \(12{ }^{\prime \prime}\)
rlises! It's al \(3-i n-1\) machine-amal simdiscs! It's a 3 -ith-1 machine-amal sim-
plicity itself to operate! Nicrophone has table stand attachment-lets you record programs without use of microphosergets improved quality. Operates unt Af. Beautiful luggage-typo ("arrying case. All Items Backed by ECA with RMA Guarantee Enclosed find theck (or money order) \(\sqsupset\) in full 20\% deposit, bal. COO for the followinn
Send me FREE ECA Bargain Bulletin Send me FRE Generalor \(\$ 3.95\).
Wire Retorder \(\$ 109.00\).

\section*{Name}

Address
electronic COrp. of america
353 W. 48th St. \(\qquad\)

Dear Editor:
I shall continue to buy Radio-Craft no matter what the name or cover. I buy it for what is inside.

The name "Radio-Craft" does not cover the entire contents of the magazine, but no title will, unless you put the whole table of contents on the front cover, like the digest magazines.
Old readers, too, will stick with the magazine regardless of the title. But don't forget to leave some "eraft" in the contents for the boys who are just coming into radio. They would never get started with television and u.h.f. in the leginning. Another thing: many people like to read about the new and up-to-the-minute gear, even though they never expect to own it.

Don't change the inside of the magazine. It's good as it is.

> J. W. Bell,
> Coatesville, Pa.

\section*{LIKES NEW FORMAT}

\section*{Dear Editor:
I wish to commend you for the many} improvements in the magazine in the past months. Reading it has always been an interesting, educational experience; however, your new format and the consolidation of each article into one continuous unit have made reading a genuine pleasure. Further, your expanded coverage of the entire radio-electronies field makes Radio-Electronics a factual journal of the entire electronics industry.
K. E. Forsberg,

Sank Centre, Mim.

\section*{CARS ARE TRANSMITTERS}

\section*{Dear Editor:}

Mr. Zarattaro sure spoke a parable in his letter on page 82 of the August issue.
I have a G-E XFM-1 receiver, with antenna 20 feet high located 90 feet from a highway and parallel thereto. A passing truck can be heard from the time it gets within 400 feet until it is the same distance in the opposite direction. At a speed of 30 miles per hour that takes about 20 seconds. This interference is certainly the bane of FM reception.

Cars equipped with radios have spark suppressors that render them perfectly quict. This suggests the only angle from which this problem can be tackled. The law should require that all cars be equipped with spark suppressors and subject them to inspection the same as buakes and lights.

Even with the laws as they are now, I don't see why the FCC can't arrest and fine truck drivers or owners for transmitting without a license and causing intolerable interference.
Fll has come to stay. Ignition noise must go!

Frederick E. Ward, Catallmet, Mass.
\begin{tabular}{|c|c|c|}
\hline Freq． & Station & Location and Schedule \\
\hline 15.450 & GRO & LONDON．ENGLAND： 010110 0500： \\
\hline 15.590 & F21 & BRAZZAVILLE，FRENCH EQUA． TORIAL AfRICA：UHtic lor（lisill： \\
\hline 17.440 & HVs & VATICAN CITY：NETS lo nS \\
\hline 17．530 & F21 & BRAZZAVILLE．FRENCH EQUA－
TORIAL AFRICA： \\
\hline 17.700 & GVP & LONDON，＂ENGLAND： \\
\hline & & 1二1III（1）1ant \\
\hline 17.710 & GRA & \\
\hline 17.730 & gVa & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 17.750 & WRUW & BOSTON．MASSACHUSETTS： 1110 \\
\hline 17.750 & WRUX & BOSTON．MASSACHUSETTS： \(1: 2\) \\
\hline 17.760 & Kwlo & SAN FRANCISCO．CALIFORNIA： \\
\hline 17.760 & & \begin{tabular}{l}
19011 tu ゴゴ？ \\
PARIS．FRANCE：Haton to mJon：H140
\end{tabular} \\
\hline 17 & & LEOPOLOVILLE，BELGIAN CONGO： \\
\hline & & \\
\hline 17.770 & SEAC & \\
\hline 17.780 & WN81 & NEW YORK CITY： 1 ！ 1.7 lı 171.5 ： 19 mm \\
\hline 17.780 & KGEX & SAN FRANCISCO．CALIFORNIA： \\
\hline 17.790 & GSG & LONDON，ENGLAND；wilit 0 （1）815： \\
\hline & & \\
\hline 17.800 & KRHO & HONOLULU．HAWAH： \\
\hline 17.800 & \(01 \times 5\) & LAHTI．FINLAND： \(11: 山 \|\) ln \\
\hline & & \\
\hline 17.800 & WL & CINCINNATI．OHIO： 140016 \\
\hline 17.810 & GSV & LONDON．ENGLAND：M13 1＂0300： \\
\hline 17.820 & CKNC & MONTREAL．CANADA： \\
\hline & & \\
\hline 17.830 & WCBX & NEW YORK CITY： 11011 lo 1 183in： \\
\hline 17.830 & VUDIO & \\
\hline 17.850 & KCBF & DELANO．CALIFORNIA： \\
\hline & & SAN FRANCISCO．CALIfornia \\
\hline 17.880 & KGEX & SAN FRANCI \\
\hline 17.880 & WGEX & SCHENECTADY．NEW YORK： 1100 \\
\hline 18.020 & GRO & LONDON．ENGLAND： \(1110 \%\) lo nưluo \\
\hline 18.080 & & \\
\hline 18.130 & PMC & BATAVIA．NETHERLAND INDIES： \\
\hline 18.160 20.000 & \[
\begin{aligned}
& \text { WRII } \\
& \text { WW }
\end{aligned}
\] & NEW YORK CITY：Ms．ा \(1 \times 1 \mathrm{~L}\) WASHINGTON DC：\＆lillld！ \\
\hline & & ＊tandul \\
\hline 21.470 & GSH & \\
\hline & & \\
\hline 21.460 & KNBA & NEW YORK CITY： \(101 / \mathrm{l}\) \\
\hline 21.500
21.530 & \[
\begin{aligned}
& \text { W00w } \\
& \text { GSI }
\end{aligned}
\] & \\
\hline 21.550 & GSt & LONDON．ENGLAND： 11411 \\
\hline 21.570 & WCRC & NEW YORK CITY： 11110 le lyisu： \\
\hline 21.590 & WGEA & HENECTADY．NEW YORK：11： \\
\hline & & NEW llillt \\
\hline 21.610
21.640 & WNRA
GRZ & \begin{tabular}{l}
NEW YORK CITY：EM\＆the linul \\

\end{tabular} \\
\hline 21.640 & & \\
\hline 21.650 & WLWSI & CINCINNATI．OHIO：It：all then tiol \(1!6111\) to \(10{ }^{2} 311\) \\
\hline \[
\begin{aligned}
& 21.690 \\
& 21.730
\end{aligned}
\] & WLWLI WNRX & CINCINNATI．OH1O： 11 ull th li3ll NEW YORK CITY： \(111\|11017\|\) \\
\hline 21.750 & GVT & 1030 in 11115： 110110 11311 \\
\hline 25.000 & WwV & WASHINGTON．D．C．：re．I：ntrall of stathetath：unatibuentaly day anti \\
\hline \[
\begin{aligned}
& 26.100 \\
& 30.000
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSK } \\
& \text { ww }
\end{aligned}
\] & \begin{tabular}{l}
LONDON．ENGLAND： \(116 i 1 \%\) in \(1=1 \cdots\) WASHINGTON，D．C．： \(\mathfrak{r}^{\circ}\) ．s．Isurcan \\

\end{tabular} \\
\hline 35.000 & WWV & WASHINGTON．D．C．： \(1^{\circ}\) ． \\
\hline
\end{tabular}

TELEVISION STATION LIST
\begin{tabular}{|c|c|c|}
\hline Station
KDYL-TV & Salt City Late City，Ut．oh & Channel \\
\hline KSD．TV & St．Louis．Mo． & 5 \\
\hline KSTP－TV & St．Paul．Minn． & 5 \\
\hline KTLA & Los Angeles．Calif． & 5 \\
\hline KTSL．W6XAO & Los Angeles．Calit． & 2 \\
\hline WABD & New York，N．Y． & 5 \\
\hline WATV & Nework，N．J． & 13 \\
\hline WBAL－TV & Baltimore．Md． & 11 \\
\hline WBEN－TV & Butalo．N．Y． & 4 \\
\hline WBKB & Chicago，III． & 4 \\
\hline WBZ－TV & Boston，Mass． & 4 \\
\hline WCAU－TV & Philadelphia，Pa． & 10 \\
\hline WCBS－TV & New York，N．Y． & 2 \\
\hline WENR－TV & Chisago．III． & 7 \\
\hline WEWS & Cleveland，Ohio & 5 \\
\hline WFIL－TV & Philadelohia，Pa． & 6 \\
\hline WGN－TV & Chicago．III． & 9 \\
\hline WJZ．TV & New York，N．Y． & 7 \\
\hline WLWT & Cincinnati．Ohio & 4 \\
\hline WMAL－TV & Washington，D．C． & 7 \\
\hline WMAR－TV & Baltimore Md． & 11 \\
\hline WNAC．TV & Boston．Mass． & 7 \\
\hline WNBT & New York．N．Y． & 4 \\
\hline WNBW & Washinaton．D．C． & 4 \\
\hline WNHC．TV & New Haven，Conn． & 6 \\
\hline WPIX & New York，N，Y． & 11 \\
\hline WPTZ & Philadelphia，Pa． & 3 \\
\hline WRGB & Schenecpady，N．Y． & 4 \\
\hline WSB－TV & Atanta Ga． & B \\
\hline WSPD－TV & Toledo，Ohio & 13 \\
\hline WTMJ－TV & Milwaukee，Wisc． & 3 \\
\hline WTTG & Washington．D．C． & 5 \\
\hline WTVR & Richmond．Va． & 6 \\
\hline WW J．TV & Detroit Mich & 4 \\
\hline
\end{tabular}

\section*{It＇s Mutual Help！}

Give Us Your Order and We＇ll Give Low Prices on Your Radio and Elec－ tronic Requirements！
Here are Only a Few Specials！

> Wha SURTMIMS ACT NOW－SAVE BIG MONEY！ beam antenna rotator motor

500 FORMULAS TO SUCCESS

> 66 PAGES． 3200 WOROS IN TEXT

day．Enc lose zse．that＇s allt You won＇t be as
NATMONAM，PIANS ICBIPANT

\section*{MUST VACATE}

WAREHOUSE－ALL PRICES REDUCED FOR CLEARANCE

HRU DC POWER SUPPLY
24－28 V．at 70 amp 2000 watts gasoline engine generator with elec tric starter．Power supply which can be used to operate 24－28 V．equip ment，start airplane engines，charge batteries，as a welding machine， lighting system，or for amateur radio

Weight 115 lbs ．
89.50

REMOTE CONTROLLED COIN INSERT \＆SPEAKER BOX

Made by Personal Music Corp．， Newark，N．J．
Model F
24 Volt operated，fused
Weight \(6^{1 / 2}\) lbs．
Size \(43 / 4 \times 71 / 2 \times 51 / 2 "\) high
Sloping front
PM Speaker 5
Has 2 Pilot Lights for illumination
Finished in chrome metal and grill with red plastic
Accepts 1 to 6 nickels
Each 5c coin gives about two phono records of music
Should be mounted on flat base
Has Haydon Mfg．Co timer
Lock installed in top（with key）
Easily removable coin box，size \(6 \times\) \(31 / 2 \times 1 \frac{1}{2}{ }^{\circ}\)
Requires 4 wires from power unit
A beawtiful piece of equipment that could he built to house coin oper－ ated radio
Worth several times our asking price
Price brand new

\section*{ULTRA－VIOLET FLUORES－ CENT COCKPIT LIGHT ASSEMBLY}

Air Corps type C－5， 28 V．DC oper－ ated．Black plastic case about 1 ＇I dia．x 3＂long．Has adjustable moant ing fange， 3 foot tivo conductor shielded cord and plug Includes bulb．
Brand new 1.00 ea

\section*{CO－AXIAL CABLE VALUES}

Co－Axial cable values that we can only offer to customers who buy min－ imum of 100 foot per type．
RG－8／U cable 52 ohms impedance （unmarked） 2.95 per 100 ft RG－8／U cable 52 ohms impedance （marked） 3.95 per 100 ft

RG－29／U Co－axial 53.5 ohms imped－ ance（marked） 3.95 per 100 ft ．

Telephone LINCOLN 8328
TERMS：CASH WITH OROER
american surplus PRODUCTS CO．
537 N CAPITOL AVE INDIANAPOLIS IND \(\int\) Great New

MODEL A－100
5 Watt AC Phono Amplifier Complete with Tubes，On．Ôf Swlich，＇t linecord，built－ in Output Transtormer，Phono－Ject．
\(\$ 18.75\) List

MODEL A－101
5 Watt AC Phono Amplifier Complete with Tubes，On．Of Switch，©＇linecord，built． in output transformers．Mic．and Phono－ Jecks．Microphone and Phanogreph chan－ nela can be infermixed

MODEL A． 102
8 Watt AC Microphone and Phono Ampll． frer．Built in 6 Impedance Output Trans． fier．8uit in \(\begin{aligned} & \text { impedance Oułput Trans．} \\ & \text { former Mic．and Phono Jack．Hum Level }\end{aligned}\) at Normal Output：－58db．Frequency： 40 to 10.000 c ps．
\＄28．65
List
\(\$ 20.42\)
List
each unit packed in individual cartons with instruction sheets and circuit diagram．

The＂ELMCO＂Amplifiers are de－ signed for highest quality reproduc－ tion of sound，music and speech．These amplifiers used in conjunction with suitable accessories will give the usor most gratifying results．They have beon ongineored to meet oxacting requirements for High Fidelity pick－ ups．FM，AM，Tuners and Mikes．

Choice Territories still available to Mfg．Repre－ sentatives．Write for com－ plete details．

> Dealer inquiries invited． Write for free catalog．

\section*{Elmhurst Sound Equipment Co．}

\section*{GET ON THE BANDWAGON！ HATIONALLY ADVERTISED TUBES}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

20＂，Deposit Required with C．O．D．Orders．
JOYCE RADIO DISTRIBUTING CO．
DON＇T BUY
a Mugnetic TAPE RECORDER
UNTIL
you find out about the remarkable new in． strument that DOUBLES your playing time－ cuts your tape costs in HALF！Write today for fechnical literature．

\section*{Ampurier Corp．or America} 398．10 Broadway New York 13，N．Y．

\begin{tabular}{|c|c|c|}
\hline Freo． & Station & Location and Schedule \\
\hline 11.830 & & \begin{tabular}{l}
CONSTANTINE．ALGERIA：＂II：＂th \\
 11：3 t10 1：＂m
\end{tabular} \\
\hline 13.840 & & PRAGUE．CZEChoslovakia： \(10 ; 1\) 1！，t104：T11．：10 11：30：1201 to 121．5： 121．：10 13 min \\
\hline 11.840 & VLC7 & \begin{tabular}{l}
SHEPPARTON．AUSTRALIA：： 333 \\
to limis：linn to wis：
\end{tabular} \\
\hline 11.840 & & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 11.860 & kwix & SAN FRANCISCO．CALIFORNIA： \\
\hline \[
\begin{aligned}
& 11.870 \\
& 11.880
\end{aligned}
\] & MUNICH & MUNICH．GERMANY：Illll fu 1：（1） MOSCOW．U．S．S．R．： \(18: 0\)（1） \(1: 3311\). \\
\hline \[
\begin{aligned}
& 11.880 \\
& 11.890
\end{aligned}
\] & LRR & ROSARIO．ARGENTINA： 01 HI to 11 llil MANILA．PHILIPPINES： 10400 to \\
\hline 13.900 & KWID & \begin{tabular}{l}
SAN FRANCISCO．CALIFORNIA： \\

\end{tabular} \\
\hline 14.900 & XGOY & \begin{tabular}{l}
CHUNGKING，CHINA：0fllt to 0.330 ； \\

\end{tabular} \\
\hline 11.900 & CXAl0 & MONTEVIDEO．URUGUAY：IV3n to \\
\hline 11.960 & HEK4 & \begin{tabular}{l}
BERNE，SWITZERLAND： \(1 \mathrm{al} . \mathrm{i}\) io \\
1：1＂，＂trell sarurdays
\end{tabular} \\
\hline 11.970 & FZI & \begin{tabular}{l}
BRAZZAVILLE．FRENCHEQUA． TORIAL AFRICA：NOOH 15 H330：＂118 \\
IIO 11xill：0930 to l1330： 1100 to 2022
\end{tabular} \\
\hline 12.000 & CEifibo & 1hilli to tions \\
\hline 12.090 & GR F & LONDON，ENGLAND：2310 to 1 H 15 ： 1：114 T11 ：＂11 \\
\hline \[
\begin{array}{r}
12.210 \\
12.260
\end{array}
\] & TFJ & \begin{tabular}{l}
VIENNA．AUSTRIA：23A，to 1814 REYKJAVIK，ICELAND：Stmdays \\

\end{tabular} \\
\hline 12.500 & нCJB & \begin{tabular}{l}
QUTO．ECUADOR： 1 IIN ॥ \\
11 は1．2．2301 10 24110
\end{tabular} \\
\hline 15.000 & wwv & \begin{tabular}{l}
WASHINGTON，D．C．：U．S．Bureau \\
 \\
 musls das athel lifaht
\end{tabular} \\
\hline 15.100 & HCJB & QUITO，ECUADOR：0500 to 1200 ； \\
\hline 15．110 & GWG & \begin{tabular}{l}
LONDON．ENGLAND ：0too la 1holl \\

\end{tabular} \\
\hline 15.120 & HVJ & VAJICAN CITY：OR30 to 0930： 1101 \\
\hline 15．120 & SEAC & \begin{tabular}{l}
COLOMBO．CEYLON：19：4 10 \＃ֻ（1）： \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 15.130 \\
& 15.130
\end{aligned}
\] & wOOC KCBR & \begin{tabular}{l}
NEW YORK CITY：IIPNO U，1H1： \\
DELANO．CALIFORNIA：I！DUI II \\

\end{tabular} \\
\hline 15.130 & KNBI & （onft Menllays） \\
\hline 15．140 & GSF & LONDON，ENGLAND：060ी ln lifli： 1915 to 1015： 1130 in 120N： 13101 1gillo：1dil：in आlls： 9300 io ulat \\
\hline 15.150 & WRCA & NEW YDRK CITY： 1 SOM 10 10 \(1: 00\) \\
\hline 15.150 & KCBA & DELANO，CALIFDRNIA：221：io （1）3：311 \\
\hline 15．150 & S8T & \\
\hline
\end{tabular}

15．170 TGWA
15.180 GSO
15.190 CKCK
15.190 TAQ
15.200 WRUA
15.210 WBOS
15.210 KGEI
15.220 WRUA
15.230 VLG6
15.230
15.230
15.250 WLWO

KNBX
15.250
15.260
．
5.270 WCBN
5.270
5
15.280 WNRE
15.290 WRUA
15.290 WRUL
15.290 VUDII
15.300 GWR
15.300
15.300
15.310 GSP
15.310 VLC4
15.310 HER6
15.320
15.330 KCBA
15.330 WGEO
15.330

15．330 WLW82
15.340
\(\$ 15.350\)
15.350 WLWRI

GUATEMALA CITY，GUATEMALA：
 MONTREAL．CANADA：以 1
 BOSTON．MASSACHUSETTS： 111 BOSTON．MASSACHUSETTS： 13 m SAN FRANCISCO．CALIFORNIA： BOSTON．MASSACHUSETTS：1．：3 MELBOURNE，AUSTRALIA：U3\％＂ PRAGUE，CZECHOSLOVAKIA：1× MOSCOW U．S．S．R．： \(1 \times 20\) ， 11010 CINCINNATI．OHIO： 1130 10 10ias
 HONOLULU．HAWA！1：H1H0 100 If0n： LONDON ENGLAND：\(\|\|+1110\) nino NEW YORK CITY：I\％N1 lan 15 NEW YORK CITYY 191110
 BOSTON，MASSACHUSETTS： \(1 \geqslant \mathrm{Mm}\)
 LONDON．ENGLAND：？ 010111315 LONDON ENGEAND： SHEPPARTON，AUSTRALIA： 12.181.
 BERNE，SWITZERLAND：1．：10 TH： MOSCOW U．S．S．R．：Nenn In ezan： DELANO，CALIFORNIA：॥Illu SCHENECTADY，NEW YORK： 111 ： MANILA，PHILIPPINES：\＃23＂

 PARIS．FRANCE：

RADIO．ELECTRONICS for

In connection with the \(\mathbf{F} \mathbf{M}\) station list，we want to remind Ramo－Elfec－ TroNics readers that we we still on the lookout for long－distance \(F \mathbf{M}\) reception reports．There must he a great many of You who have had FM dx reception but who have not woitten to us．Space limits the printing of names but whether yours appears ur nut you are contributing to radio knowledge．
\begin{tabular}{|c|c|c|}
\hline Frea． & station & Location and Schedule \\
\hline 9.600 & GRY & LONDON．ENGLAND： \(2: 301\) to Ullur； \\
\hline 9.610 & 2RL & CAPETOWN．SOUTH AFRICA： 1300 \\
\hline 9.610 & 2YC8 & RIo DE JANEIRO．BRAEIL；150\％to \\
\hline 9.610 & vLC6 & SHEPPARTON．AUSTRALIA：INUO to \\
\hline 9.610 & TIPG & SAN JOSE．COSTA RICA： 1 UT00 to \\
\hline 9.620 & CXA6 & MONTEVIDEO，URUGUAY：1531 to 211．11 \\
\hline 9.620
9.630
9.640 & CWOO & LONDON，ENGLAND； 1830 to 2300 MONTREAL，CANADA： 1 ditll 10 18ihn ONDON ENGLAND： \(11 \|!1111111\). \\
\hline 9.640 & gVz & \begin{tabular}{l}
LONDON，ENGLAND：\(\|l\| d t\) \\

\end{tabular} \\
\hline 9.650 & KNBA & \begin{tabular}{l}
DIXON．CALIFORNIA： \(1230101034 \%\) ： \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 9.650 \\
& 9.670
\end{aligned}
\] & \[
\begin{aligned}
& \text { WCBN } \\
& \text { TGWW }
\end{aligned}
\] & NEW YORK CITY：CIUM，GUATEMALA： \\
\hline 9.670 & wnrx & NEW YORK CITY： 1800 to 1900； 2000 \\
\hline 9.680 & XEQQ & MEXICO CITY．MEXICO：NTİNO to \\
\hline \[
\begin{aligned}
& 9.680 \\
& 9.680
\end{aligned}
\] & \[
\begin{aligned}
& \text { EQC } \\
& \text { LRAA }
\end{aligned}
\] & TEHERAN．IRAN： 12010 to \(113: 10\) BUENOS AIRES．ARGENTINA：HN（I） \\
\hline 9.700 & KCBF & DELANO．CALIFORNIA： 0400 to 0930 \\
\hline 9.700 & & \begin{tabular}{l}
FORT DE FRANCE．MARTINIQUE： \\
\(1 \%: 31111 \times 15:\) and later
\end{tabular} \\
\hline \[
\begin{aligned}
& 9.700 \\
& 9.710
\end{aligned}
\] & wLwS2 & CINCINNATI，OHIO \(1!140\) to \％est MOSCOW，U．S．S．R．：E300（1）Ni3＂ \\
\hline 9.720 & PRL7 & \begin{tabular}{l}
RIO DE JANEIRO，BRAZIL：＂H30 III \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 9.730 \\
& 9.740
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{csw} 7 \\
& 0 T c
\end{aligned}
\] & LISBON．PORTUGAL： 19110 16 2nill LEOPOLDVILLE，BELGIAN CONGO： \\
\hline 9.750 & KNBI & DIXON．CALIFORNIA：NHINCSE－Jap－ \\
\hline 9.670 & TGWA & GUATEMALA CITY．GUATEMALA： \\
\hline \[
\begin{aligned}
& 9.820 \\
& 9.830 \\
& 9.900
\end{aligned}
\] & GRH COBL HCJB & LONDON，ENGLAND；18：J to 23＂0 HAVANA，CUBA：with 10 milt QUITO，ECUADOR；＂e3 to＂300；ex－ \\
\hline 9.990 & 2TJ & JOHANNESBURG，SOUTH AFRICA： \\
\hline 10.000 & wwV & WASHINGTON，D．C．：＂．N．Jurealt Of stannabls：frovuchey．time．armb mustat phach：contimumsly day athl \\
\hline \[
\begin{aligned}
& 10.000 \\
& 10.220
\end{aligned}
\] & \[
\begin{aligned}
& \text { XGOL } \\
& \text { PSH }
\end{aligned}
\] & FOOCHOW．CHINA：040n to 1000 RIO DE JANEIRO．BRAZIL： 1700 to \\
\hline 10.730 & VQ7LO & NAIROBI．KENYA：0－nul to u600； \\
\hline 10.780 & SDB2 & \begin{tabular}{l}
STOCKHOLM．SWEDEN： 1010 to \\

\end{tabular} \\
\hline 11.040 & csw6 & LISBON，PORTUGAL： \(1 \geq 30\) to 1530： 1 tilll to 1810 \\
\hline 11.090 & & PONTA DEL GADA，AZORES： 1500 to 14001 \\
\hline 11.630 & & MOSCOW．U．S．S．R．： 1830 to 11300 ： \\
\hline 11.650 & XTPA & CANTON，CHINA： 0400 to 1830； 2200 \\
\hline \[
\begin{aligned}
& 11.690 \\
& 11.700
\end{aligned}
\] & \[
\begin{aligned}
& \text { XORA } \\
& \text { HP5A }
\end{aligned}
\] & SHANGHAI．CHINA： 0500 to 1000 PANAMA CITY．PANAMA：ITO0 to \\
\hline 111.700 & \[
\begin{aligned}
& \text { GYW } \\
& \text { SBP }
\end{aligned}
\] & LONDON．ENGLANO：2？ \(\mathrm{H}_{1}\) to 11130 STOCKHOLM．SWEDEN： 11411 10 Silm． 1215 to 1110 \\
\hline 11.710 & vLg 3 & MELBOURNE，AUSTRALIA： 0245 to \\
\hline 11.710 & HEI5 & berne，Switzerland：Mon，Tues． Thurs．F゙rl．（12l）ho Me3） \\
\hline 11.710 & WLWRI & CINCINNATI．OHIO； 181410 10100： suntlays． 1910 to dow \\
\hline \[
\begin{aligned}
& 11.720 \\
& 11.720
\end{aligned}
\] & PRL8 & \begin{tabular}{l}
KIEV．U．S．S．R．： \(0: 100\) 10 \(11 \times 1:\) \\
RIO DE JANEIRO．BRAZIL：NIW Io
\end{tabular} \\
\hline \[
\begin{aligned}
& 11.720 \\
& 11.720
\end{aligned}
\] & \[
\begin{aligned}
& \text { CKRXX } \\
& \text { OTC }
\end{aligned}
\] & WINNIPEG，CANADA： \(1 \| l l l \mid 10\) 20lll LEOPOLDVILLE，BELGIAN CONGO： 0．530 10 \(07: 31\) \\
\hline 11.730 & Wruw & BOSTON，MASSACHUSETTS： 1725 \\
\hline 11.730 & KGEX & SAN FRANCISCO．CALIFORNIA： II lin1 in ］lllit \\
\hline 11.730 & Wrul & BOSTON，MASSACHUSETTS：2\｜3n \\
\hline 11.730
11.740
11.740
11.740 & CoCy
CEII
HVI & SINGAPORE，MALAYA：lise： 101200 HAVANA，CUBA；0530 10 233＂ SANTIAGO．CHILE： 1 Z．10 in \(\because 400\) \\
\hline 11.740 & HVJ & \begin{tabular}{l}
VATICAN CITY：（Ith］ 5 to HAl25： 1830 \\

\end{tabular} \\
\hline 11.750 & GSD & LONDON．ENGLANO：2川01 to 03॥0： 1 \(101: 10\) 17： \\
\hline 11.770
11.770
11.780 & KNBI WNRA HP5G & DIXON．CALIFORNIA； \(190 \%\) to 2230 NEW YORK CITY： 17 mm 10 1815 PANAMA CITY，PANAMA：Ilizll 10 \\
\hline 11.780
11.780 & & \begin{tabular}{l}
MOSCOW．U．S．S．R．： 1 （\％ни to \(11 н 10:\) \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 11.790 \\
& 11.790
\end{aligned}
\] & \begin{tabular}{l}
WLWO \\
WRUA
\end{tabular} & CINCINNATI．OHIO： \(2 n l 11\) 10： 1110 BOSTON．MASSACHUSETTS： \(113 / 4118\) \\
\hline \[
\begin{aligned}
& 11.790 \\
& 11.810
\end{aligned}
\] & \[
\begin{aligned}
& K N B X \\
& K C B F
\end{aligned}
\] & DIXON．CALIFORNIA：0ton to 1005 DELANO，CALIFORNIA：voH0 tu \\
\hline 11.810 & wGEA & SCHENECTADY．NEW YORK：בHf \\
\hline 11.820 & GSN & \begin{tabular}{l}
LONDON．ENGLAND：（1）lot to nitoo： \\

\end{tabular} \\
\hline \[
\begin{aligned}
& 11.830 \\
& 11.830
\end{aligned}
\] & wCDA & NEW YORK CITY： 1 linll in 2230 MOSCOW．U．S．S．R．：22nl to 0600； \\
\hline 11.830 & CXA 19 & MONTEVIDEO：URUGUAY：OG00 to 2゙20 \\
\hline
\end{tabular}

\section*{Mr．Radio Serviceman \\ ADDITIONAL \＄\＄\＄\＄FOR YOU EVERY WEEK REPAIR ELECTRICAL APPLIANCES}
 UTILITY TESTER
A NEW KIND OF INSTRUMENT FOR TESTING ALL ELECTRICAL CIRCUITS AND

APPLIANCES SUCH AS－ ranges washers vaclum Cleaners ＊SHAVERS FANS Arle CONDITIONERS HEATERS MOTORS＊REFRIGERATORS ＂HRONEIRS TOASTERS＊SUN LAMI＇S WASHN：MACHINES＊ALL．TYPE MOTORS FROM FRACTIONA1，H．P．TO 2 H．P．
THE MODEL 40 l：THITY TESTEK Wil！Lest Thermustats under ACTUA！，WORKING CONOTHONS：Will measure the ACTUAL CUR－ A．C．OB．C．WHILE THE UNIT IS IN OPRRA－ Tion－reoding will be ，lirect in aniperes－the ap－ bliance or utility may be pluzgeal directly intu font pand receptacle－a special pair of insu－ corporates an ultrasensitive direct－reading re sistance ranke which will aceurately measure all appliance and utility resistances down to a frac－
tion of an ohm：Will test bulls．fuses，condensers field cuils，ete．：Is jdeal trouble shooter as it will inetantly locate opens，shorts and grounds：will locate cause of failure in three way heat control switches；will indicate when one side of an ap－
pliance or mutur nomect to line utader test is ＂erumbled＂：Will indicate excessive loakake be－ tween a moter and a line：Will indicate when a three phase motor is ranning＂rratically due to are is 110 Volts or 220 V Valts．whether the volt－ A．C．or D．C．and if the frequency is 25 cycles A．C．or D．C．and if the frequency is 25 cycles or 60 cycles． 98 PARK PLACE．Dent．R．C．

\title{
Worlal-Wide Station List
}

\author{
By ELMER R. FULLER
}

HC.JB in Quito, Feuador, known the world orer as the "Voice of the Andes" is heard on 12.500 me in English from 00600 to \(0800 ; 1700\) to 1800 ; and 2100 to 2400 . Programs in other languages, 18 in all, are broadeast at other times; and other frequencies in use are \(6.200,9.900\) and 15.100 mc . HCJB was first organized in 1931 and now has six transmitters, both long and short wave. The languages used include Spanish, Fnglish. French, German, Portuguese, Russian, Italian, 1)utch, Swedish, Yiddish, Greek, Lithuanian, Bohemian, Latvian, Czech. Arahic, Urdu, and Quechua. It is also known as the pioneer missionary radio station, and is supported entirely by contributions from its listeners. The signals are anong the strongest received in this country, and are very consistently heard. The station is always silent on Mondays.

The BBC is now being beamed to North America on 11.800 me from 0600 to 0800 ; on 21.550 me from 0800 to 1600 ; and on 15.110 mc from 1400 to 1915 . Also on 11,800 from 1615 to 2215 and on 9.830 mc from \(19: 30\) to 2215 hours. All tines are Eastern Standard.
Advice has been received from the manager of the "Voice of Guiana." ZFY, stating that the station may be heard on Sundays from 0545 to 1145 and 1445 to 1945 hours; and on Wednesdays from 0545 to \(0745 ; 0945\) to 1145 ; and 1445 to 1945 hours. The frequency is 6.000 megacycles. This is the pioneer broadeasting station in the British West Indies and started operation in 1935. At present they carry commercially sponsored programs and soon will have a station operating in the standard broadcast hand. Their signals are heard well in the Guianas. Trinidad, Grenada, and Barbados.

It can be expected that several of the schedules will be changed when the clocks are returned to standard time. but most of them will remain as they have been published. A major change will probably be made in the U. S. schedules and it can generally be figured that all schedules will be moved one hour.

International schedules are never as much affected as those of the stations which hroadcast for local consumption. of course. Remember that this list is "luonys in Eastern Standard Time, and will remain so until and unless the madority of our shortwave listeners prefer another system. Please consider this until new schedules are minted, which will be in the January issue.
Next month we again print an FM Station List, completely revised to date. Many new stations have appeared since our last list was printed in the September issue, so owners of FM receivers will find the new edition very useful.

\section*{CAPACITOR DROPS VOLTAGE}

When the filament-dropping resisto in a transformerless receiver burns out or when a new set is being built, a capacitor can be used instead of the resistor to drop line voltage to a suitable value for the filaments. To calculate the value of the capacitor use the formula
\[
C=\frac{2650}{\sqrt{\mathbb{E}_{14 \mathrm{se}}^{2}-\mathrm{E}_{\mathrm{mi}}^{2}} \mathrm{I}^{2}}
\]
where Eno is the power-line voltage, E a is the total voltage drop across the filaments in series, and 1 is the rated tilament current. This is for a 60 -cycle line.

For instance, to find the proper capac-

itor for a device using two tubes, each with a 12.6 -volt filament drawing 0.15 amp, with a 120 -volt line,

\(=3.4 \mu \mathrm{f}\) approx.
Where the line is 50 cyeles, substitute 3,180 for the 2,650 above the line in the equation; for 25 cycles. use 6,360 . The answer in each case will be in microfarads.

Otto von Gubiricke,
Wieseu. Switzerland

\section*{CORRECTIONS}

In the diagram of the Six-Tube DryCell Superhet, page 51 of the August, 1948, issue of this magazine, the tuning condensers of the r.f. and mixer stages are shown connected to the a.v.c. line through \(220,000-\) ohm decoupling resistors. The rotors of the condensers should the grounded to the chassis and the bottom ends of the secondary coils connected to the a.v.c. decoupling resistors. Connections hetween the resistors and coils should be bypassed to ground with \(.01-\) uf condensers.

\section*{TELEVISION ASSEMBLY PROJECTION TELEVISION 520 Sq. Inches . . . \(20 \times 26^{\prime \prime}\) Screen}

BY TELEVISION ASSEMBLY COMPANY Complete with All Parts Hood and Rack

AUTOMATIC GAIN CONTROL

37 R.C.A. TUBES DUMONT INPUTUNER
12 '" P.M. SPEAKER
Pre-wired \& Pre-tuned
Picture I.F. \& Sound I.F.
Pre-wired 30 KV Tripler Fly Back Power Supply
Eastman Kodak
Projection Screen
Aluminum Coated Top Mirror
Bausch \& Lomb f:1.9 Projection Lens
EXPRESSLY DESIGNED
Metal Rack, Mood and Picture Frame
For realism, clarity, definition and BIG SCREEN Televiewing, the pictures praduced by this unit have no equal!
This screen is absolutely flat, precluding curvature distortion anywhere in the picture. Picture tones are true black, grey and white-high in brilliance, yet absolutely glare-free!
MANUAL OF INSTRUCTIONS AND SCHEMATIC DATA
Prepared and Edited by JOHN F. RIDER PUBLISHER, INC. YOUR LOCAL NATIONAL PARTS DISTRIBUTOR

PHONE
LOmbard
3.9225

509 ARCH ST., PHILA., PENN.
ONLY THE FINEST STANDARD BRAND COMPONENTS USED THROUGHOUT

Send us your name to receive FREE Almo Broadcaster magazine.

BRAND NEW SURPLUS! GUARANTEED! 3/4 RPM, HI-TORQUE ELECTRIC MOTOR \(\$ 2.85\)

Plus
40 c
Pocetane and
Handlin

GOVT. COST. 540
- Onerates on 110 V AC, 60 -cycles.
- Reversible. No Free Swing. auiet.
- With Full Instructions.
- FOR ROTATING HAM. FMM. TELEVISION AN BARGAIN RADIO, Dept. BR-1 249 N. Juanita Los Angeles 4, Californ

\section*{TV INTERFERENCE TO}

TV interference caused by automobile engines will be reduced in the future, according to a statement made last month by P. J. Kent, chief engineer of the electrical division of the Chryster

\section*{TELEVISION TO GO?}

Corporation. Some of the new cars coming off the assembly lines have had changes boilt into their electrical systems which reduce the interfering radiation. Results are good, he said. THE PERFECT GIFT
 A fine playing electric phonorestph in a handsome case Can be easil. alile phonograph will make a wonderful gift for any music lover or record collector.
Note these foratires that make this phonosmoh outstanding:
- Ilandsume laatherette cover.
- losed.
- Large \(5^{\prime \prime}\) Alnico : Sneaker for excellent tome renroduction
- ? Watt Amplifier

Rim drive constant sheed motor. List price
NET PRICE \(\$ 15.95\) Lots of turee...... 14.95

\section*{All new tubes. \(100^{\circ}\) o guaranteed. Individually bored \\ \\ RCA - Kenrad - Sylvania - Tung-Sol - National Union _ Raytheon - Philea - Hytron}

\section*{FRANKLIN-ELLIS CO.}

1313 West Randolph Streeł
Dept. RC-ll Chicago 7, Ulinois

\section*{Signalette \\ MULTI-FREOUENCY GENERATOR} In radio service work. time means money. Locate
trouble faster. handle a much oreater volume trouble faster. handle a much oreater volume of work with the SIGNALETTE. As a trouble slioot-
ing tool. SIGNALETTE has no Equal. Merely plug in any 110 V. AC.DC line. start at speaker end of eircuit and trace back, stage by stage. listening In
set's speaker. Generates RF. IF and AUDIO Freset's speaker. Generates RF. IF and AUD 10 Fre-
guencies. 2500 eycles to 20 Megacycles. Also used quencies. 2500 eycers to 20 Mepacyeles. Also used Tube testing. Wt. 13 oz. Fits pocket or lool kit.
Clippard
DEPT. C. II2S BANK STREET
CINCINNATI I4. OHIO
Quallined jobbers write wire for detalls.

\section*{NEW G.E. WATTHOUR METER \\ (Contimed from page 85)}
effect, a push on one side of the disc without a correspondingly great pull on the other. This tends to thrust the entire shaft to one side or the other. Sidethrust will also occur if the two concentric magnets in the bearing system we not perfectly aligned.

Stainless steel guide pins are fastened to the inside of the fixed cavity to keep the noving system in line. These exterd down into the rotating cylinder through a graphite washer. Any displacement craused by side-thrust would make the guide pin touch the washer. Placement of the damping magnets has been ar. ranged so that there is minimum side thrust.
Since 1941 the magnetic suspension has lieen on accelerated-life tests, showing excellent staliility during tests equivalent to 65 years of ordinary operation.

\section*{CORRECTION}

The line cord resistor of the dual test instrument, page 40 of the March, 1948. issue, is shown as 300 ohms . The correct value for the tube shown is 550 ohms. If a dropping resistor is used, it should have a rating of 20 watts or more.

We thank Mr. David Gnessin of Columbus, Ohio, for this correction.

RADIO-ELECTRONICS for

Fig. I-A mock-up of the suspension system.

\section*{NEW G-E WATTHOUR METER}

THE watthour meters used by electric power companies, to measure consumption have been developed to the point where maintenance needs are very small. However. since the rotating disc rests on bearings, friction eventually makes it necessary to replace the jeweled bearing. A new meter developed by the General Electric Conipany eliminates bearing friction by using magnetic suspension.

Fig. 1 shows the rotating disc and the magnetic-suspension system. The concentric outer and inner cylinders are magnetized axially, with opposite polarity, so that the resulting magnetic field supports the inner magnet with a slight downward displacement, which can be seen in the photograph. Thus the inner nember hangs freely in air-a bearing truly without friction.

Fig. 2 is a detailed view of the upper cylinder and a cavity. The magnets are made of cunico. a highly coercive and easily machined material.

Fig. 2-The shaft is suspended by magnets.
In the usual jewelled hearing, most of the weight of the rotating disc is supported by the lower bearing. The stress is on the order of 100 tons per square inch. With the new magnetic bearings, this pressure is eliminated.

There are, however, side-thrust forces that can cause wear. These are caused by the rotation of the dise and by the damping magnet, which is a part of the clectrical metering stostem. When the dise is made to rotate as power is drawn through the meter, there is, in

\section*{FOR FILIER FM-AM REGEPTION THIS TUNER-AMPLIFIER GOMBINATION}

FM-AM TONERRC: Feature: automatic-frequency control, most revolutionary development in FM design entirely eliminates drift and multiple entirely eliminates drift and multiple ture tuhes plus rectifies include double fimiter and tuned RF stage in both FM and AM. Low-impedance loop, enablin: and AM, Low-impedance loop, enabing: noise AM reception. liear socket provides easy access to \(6.3-\mathrm{vol} \mathrm{AC}\) and exceptionally well-filtered \(\mathbf{1 0 0}\)-volt DC for supplying external pre-amplifiers, additional pilot lights, etc. Controls include separate hass, treble and switch positions for phonograph and television
udio inputs. Polished chrome chassis. Audio cable, escutcheon, decals, antenare, and detaiced installation instruc. tions furnished

MR-FIDELTY AMPLFTER RC•Z Hizh impedance input; 12 watts output amme 65 it uain including invers onedbeck Uniform frequency response from 20 ito 20.000 cycles up to 8 watts output. Hum 65 dh below rated output. Tuphes: hum 65 db below rated outpit. Durahle polished chrome chassis.

Write for Dascribilive Cirealar "J" and Priens

\section*{The RADIO GRAFTSMEN, Ine.}

1341 S. MICHIGAN AVENUE, CHICAGO 5, ILL.

PRECISION APPARATUS COMPANY, Inc. - \(92 \cdot 27\) Horace Hording Blvd., Elmhursp 4, N. \(Y\).

\section*{E.M.C.}

Gives More
Measurement
Value
E.M.C. MODEL 300

Vacuum 'lube Volt-Ohm Capacity Meter - IDC VOLTS—6 ranges to 1000 volts. - AC VOLIS- 5 ranges to 1000 volts. - RESISTANCE-6 ranges to 1000 meg ohms
- CAPACITY-4 ranges (.000025 mfd to \(2(1) \mathrm{mfd})\)
- 11.15 \%ERO CENTER POSITION

> Modnl 3uw. as illusitruted with lemels
\(\$ 39.50\) oflier models also availables WRITE TODAY to Dept. B-9, for NEW, FREE CATALOG

\section*{ELECTRONIC}

MEASUREMENTS
CORPORATION
423 Broome St., New York 13, N. Y.

\section*{Miscellany}

Rado Cbirtp-IFibe Gears Ago
3nesernsbark Dublications
HUGO GERNSBACK
Founder
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Modern Etectrics} & . 1908 \\
\hline \multicolumn{2}{|l|}{Electrical Experimenter} & 1913 \\
\hline Ratio News & & 1919 \\
\hline Science \& Invention & & 1920 \\
\hline Radio-Craft & & 1929 \\
\hline Shert-Wave Craft & & 1930 \\
\hline Wireless Association of & Amerlca & 1908 \\
\hline
\end{tabular}

Some of the larger libraries in the country still have conles of ELECTRICAL EXPERIMENTER on file for interested readers.
In ELECTRICAL EXPERIMENTER November, 1914

A Simply Made Loading Coil by Stuart Sandreuter
Crystal Detectors and Electrothermal Action
by Dr. W. H, Eccles
Making a Hot-Wire Ammeter
Flectrolytic Interrupters and how to use them
by H. Winfield Secor
U. S. Wireless Truck has 800 -Mile Range
Wireless on Delivery Vans

\section*{ELECTRONIC LITERATURE}

Any or all of these catalogs, bulletins, and periodicals are avallable to you if you write to us on your letterhead (do not use postcards) and request them hy number. It is necessary to send only the number of the item you want. We will forward the request to the manufacturers, who in turn will send the literature directly to you. This offer void after si,* months.

II-I-FM AND ANTENNA DATA
A 16-page booklet of information on the Model :300 and Model 100 televisionFM antennas, issued by Tricraft Products Company. Illustrated with drawings, directivity patterns and performance charts on these antenmas. Of interest to owners of FM and television sets.-Grat is

\section*{11-2-TRANSFORMER CATALOG}

Catalog No. 4811, issued hy Merit Coil and Transformer Corb., lists specifications and prices of transformers and chokes for replarement, amateur and electronic application.-Grutis

\section*{11-3-PLASTICS BULLETIN}

Bulletin No. CDP-578 describes and illustrates the design, moldmaking and moldine farilities of the (hemical I) (' partnent of General Electice. It lists applications and general properties of such materials as mpalex, silicone and other plastic materials.-Gratis to imtorestod purties

\section*{11-4-WALSCO CATALOG}

This 15 -pare catalog lists hardware. tools, chemicals and finishing materials, made ly Walter L. Schott Co., for use in assembling and servicing radio and electronic equipment.-Cratis
former mutually repel each other. Hence the appearing divergency in a stream of clectrified effluvia.
"But though the particles of electrical matter do repel each other, they are strongly attracted by all other matter.
"Thus common matter is a kind of sponge to the electrical fluid.
"But in common matter there is (generally) as much of the electrical as it will contain within its sulstance. If more is added, it lies without upon the surface and forms what we call an electrical atmosphere. and then the body is said to be electrified."

Dr. Millikan says, "The opening sentence contains the simple statement of an epoch-making discovery: 'The electrical matter consists of particles After 200 years of rescarch we cannot improve the content of Franklin's conclusion. Its olvious, axiomatic truth may stand forever, but perhaps at the end of another 200 years additional truths may give it a different aspect."

\section*{"SAUNDERCISMS"}

Epigrams from a lecture on television delivered by Albert C. W. Saunders to the Associated Radio Servicemen of New York (City) at their meeting June 9, 1948.
"A serviceman's work consists of nine mental operations to every manual one." "Don't be too technical with the publicyour customer doesn't care whether the dielectric has any specific inductive capacitance or not." "Amplification itself is cheap-it's broad-band amplification that costs money."
"Electricity is the fastest thing in the world-but it's the laziest."

\section*{CORRECTIONS}

Data on the old Philco bakelite-cased bypass condensers is found on page 14 of Volume II (2) of Rider's . Manual instead of Volume 11 as reported in the Technote, Philco Condensers, on page 72 of the July issue.

We thank Mr. John Wohlrab of Buffalo, N. Y., for calling our attention to this error.
There is an error in the diagram of the Wobburated Signal Generator on page 34 of the May 1948 issuc. The plate of the 6J5 cathode follower is shown connected to ground. This should he connected to the B-plus line running from the No. 4 pin of the power input sockit.

We thank Mr. Thomas B. Brook of Twin Bridges, Montana, for this correction.

\section*{DE FOREST BANQUET}

Ibr. Lee de Forest, Father of Radio, was tendered a special hancuet at the (Chicago Railroad Fair on his 7ath birthday. It was spread jointly by the Morse Telegraphers Club of Anerica and Ancrican Television Inc. The banquet was only one of a number of celebrations which marked the great inventor's birthday, the high light of them all being Dr. de Forest's coast-to-coast broadcast on the Mutual Broadcasting Systen network.

\section*{BUILD THE NEW \\ MODEL TV-67 ALL GHANNEL TELEVISION BOOSTER FOR YOUR OWN USE OR FOR RESALE}
 INDUCTOR TUNER Illustrated below.

\section*{only}

INBI'CTOR TUNER comes complete with circuit and instructions for building the TV-67 TELEVISION HOOSTER.
We will also include at no charke basic circuits utilizing the TVbasic circuits utilizing the build 67 Television and F.M. Signal nienerator, a Television Inter ference Eliminatur and front end for Television Receiver.

No need for switching when using the TV-67

\section*{INDUCTOR TUNER}

Designed to Cover All Channels 2 to 13 Inclusive.

\section*{TV-67 Booster Features:}
\(\star\) Permits use of Indoor Installations.
\(\star\) Reduces or eliminates interference including Amateur, F.M., Short Wave and Inter-Channel.
\(\star\) Permits TV reception in fringe areas.
\(\star\) Amplifies weak signals.
\(\star\) Provides brighter and clearer images.

\section*{Specifications:}
\(\star\) The Model TV-67 employs 1-6AK5 as a high gain amplifier; 1-6C4 as an isolation amplifier and \(1-6 \mathrm{C} 4\) as rectifier. Use of these highly efficient miniature tubes in conjunction with INDUCTOR TUNER results in maximum gain on all channels up to channel 13.
\(\star\) The Model TV-67 provides a 6 megacycle band-width reducing Videa detail loss to absolute minimum.
\(\star\) The Model TV-67 is designed to operate with any antenna system indoor or outdoor--any impedance.
\(\star\) New INDUCTOR TUNER covers all television channels, 2 to 13 . inclusive without switching.

INDUCTOR TUNER comes complete with circuit and instructions for building the TV-67 Television Booster. We will also include basic circuits utilizing the TV-67 INDUCTOR TUNER to build a Television and F.M. Signal Generator, a Television Interference Eliminator and front end for Television Receiver.

GENERAL ELECTRONIC DISTRBUUTING CO. 98 PARK PLACE

HEW YORK 7, N. Y.
DEPT. RC-11

\section*{"RANGE MASTER"}

MODEL 10

\section*{" MULTI-TESTER"}

MODEL 30

IIC.C. Curtrent in. \(1 / 1110\) : 14.

 with provie tost hratls and liturs A compleet ser lee
 See your locil dlistribuour. If ant avethable. Write to
Dept.

348 LIVINGSTON STREET BROOKLYN 17. N. Y.

\section*{Headphone BARGAINS} Tyoe HS23-8000. ohm imped.
once, highly sensitive hechelight-
welght only 9 oz. Leather cov.
ered spring steel odiustoble
hoadbond. 12 ci cord with PL54
plug otroched ot side out of
woy, Jock ond rubber cord sup.
plied to extend length to \(51 / 2\)
feet Removoble rubber eor
cushions. Brond New- \(\$ 13.50\)
volue.
Stk. No. 17A37
SPECIAL PER PAIR. \(\$ 2.45\)

5BP4 CATHODE RAY TUBE \(\$ 2.95\) Hos \(5^{\text {s }}\) white screen. Quolity moke individually boxed NO. 367206.
\$2.95
ORDER NOW from this ad-include postage.
FREE—the big NEW B.A Catalog No. 491 . 132 pages of
Oufstonding Volues. Write if you have not received it

\section*{ nawsas ciry c. missount}

\section*{WE'VE MOVED}

More Space-Better Service 3 TUBE PHONO AMPLIFIER
'1.95

COMPLETELY WIRED,
VOLUME AND TONE CONTROLS
Set of 3 tulies: 50L6. 352.5, 12A6...... 51.110
Output trans. 30 L .
1/w Meg. vol. Control with sw.
5." Dm speaker

fixt" pm speaker
\(8^{\prime \prime} \mathrm{pm}\) speaker
Webster Cartridyes 1 -7uA -26A
Astatic Cartridses Turnable
R-E CELEBRATES BIRTHDAY

Hugo Gernsback, founder, editor, and publisher of RADIO-ELECTRONICS, celebrates the start of the magazine's twentieth year of publication by making the first cut in a cake especially baked for the occasion and presented to him by the editorial staff. Titled RADIO-CRAFT for 19 years, the magazine enters upon its twentieth year as RADIO.ELECTRONICS. Old policy of service to all radiomen continues.

\section*{FRANKLIN DISCOVERED}

\section*{ELECTRON}

The actual discovers of the electron was made in the United States by Benjamin Franklin 200 years ago, even though it is usually attributed to the English scientist, J. J. Thomson, a little more than 50 years ago.

Attention is called to the fact of Franklin's prior discovery by Dr. Robert A. Millikan, president of the California Institute of Technology, who was the first to isolate a single electron and make extremely accurate measurements of its properties.

In support of his claim that Franklin should be considered the discoverer of the electron, Dr. Millikan, in a communication to The American Jonmal of Physics, cites Franklin's letter to Peter Collinson.
"The electrical matter," Franklin wrote, "consists of particles extremely subtile. since it can permeate common matter, even the densest metals, with such ease and freedom as not to receive any perceptible resistance.
'Electrical matter differs from common matter in this, that the parts of the latter mutually attract, those of the

-

\section*{2-METER TRANSCEIVER}

Please print a circuit for a very rompact 144-me transceiver:-F.M.S., Mars Hill, Me.
A. The simple circuit shown in the diagram can be constructed in a small case. The 3A4 is used for both transmitting and receiving. Note that its filaments

are paralleled for 1.5 -volt operation. The 1 S 5 is modulator and audio tube. Be sure to keep all wiring as short as possible. Vary the coupling between L1 and L2 for best operation as a superregenerative receiver. The same coupling is satisfactory for transmission.

The coils are self-supporting and can be wound with No. 16 wire. L1 has five turns, \(3 / 8\) inch inside diameter, spaced to occupy \(5 / 8\) inch (adjust to cover band). L2 is one turn of the same diameter placed at the end of L1. L3 and L4 are chokes wound with 50 turns of No. 36 wire on 10 -megohm resistors.

\section*{-}

\section*{ELECTRONIC TIMER}

Please give me a design for an electronic timer adjustable to a maximum. of ubout 2 mimutes.-R. R. K., Vallejo, Calif.
A. The diagram gives the circuit of a timer with a little more than 2 minutes' maximum time. The capacitors connected to the range switch and the 10 megohm potentiometer are the timing

components. The maximum time can be increased somewhat by adding a third position to the range switch, with a 20 to \(40-\mu \mathrm{f}\) paper capacitor.
The control switch normally should be in the charge position. When it is thrown over to TIME, the timing cycle is automatically started and completed.

\section*{Duestion IBon}

\section*{JUST PUBLISHED!} FREQUENCY MODULATION
fundamentals - apparatus
 SERVICING

\section*{BY NATHAN MARCHAND}

Radio and Flectrical ConRadio 3 ad Eecturer on Elec-
sultant, Lecter trical Engineering, Columbia (miversity. fis \(6 \times 9\), over 300
trations. \(\$ 5.00\)
A modern guide to one of radio's fastest.growing derelopments.

\section*{SIMPLIFIES SERVICE ENGINEERING PROBLEMS!}
of takes more than onimary radlo servicing kinwilenge to

 fully Just hux to zet about handitink \(\mathbf{F}\) - M wirk. Wlifl a maninum of mithematles. Dut wath a repilous

 mitlers. meceives ath imphite cauibunent ere fully ex-plainea-and sperial calplusis is phared un up-to-the
 finere zal sour

 jetes. particulat thembion is latil to ant linims the ime

\section*{HERE'S WHAT IT INCLUDES}
1. Fundamentals of Mod 10 .
2. Fidelity of \(B\) and
2. Width Requirements
3. Noise and Interfer
3. ence
4. Direet Irequency
-. Modulation
5. Frequency Control

Dircet
6. Direct FM Transmit.
7. Phase to
8. FM Transmitters Us.
8. ing Phase Mndulation
9. FM Detectors
11. RF Amplifiers. Oseil.

12 Iators. and Converters
12. Intermediate FreCircuits
13. FM Receivers
14. FM Tramsmitting An.
15. \(\mathrm{FM}^{\text {Meceiving An. }}\)
16. Mobile FM Equip.
16. Mobile FM Equip.
17. FM Servieing
18. Phasor Calculations.

\section*{READ IT AT OUR RISK!}

\section*{}

\section*{10 DAY TRIAL COUPON}

I Dept. RC-If8 Murray Hill Books. Inc.*
232 Madison Ave.. New York 16. N. Y.

Namo
Address
Clis. Zone. State
Orrubation

?PHOTOELECTRIC CONTROL
supply. An adjustable pulse-lengthening circuit, R1-C1, assures relay operation with very short interruptions of the beams.
When the slider of \(R 1\) is at \(A\), full effects of the lengthening circuit are had; at B the effect is cut out. Capacitor C2 controls the length of time the indicator is on. Its value may depend on the tension of the relay spring. Experiment with the value of R2 for best results. A \(1: 1\) line isolation transformer may be used if desired.
A. The circuit shows one of the controlling circuits and a common power

My problem requires minc phofoclectric circuits wired in perallel and connected to indicator lamps that light when their controlling beams are interrupted. The indicators must remain on for 10 to 15 secomds. The light betoms are intermpted for about . 00005 secand. W'ill you prepare a diagram of ame of the control circuits?-J.W., Alameda, Calij.

\footnotetext{
\(?\)

\section*{RADIATION MEASUREMENT}

I need a loop amtennu with a pirknp known characteristics.-P. O., Chicago "bout one-half the sigmal fied strength in microrolts per meter. I ectilt to meas"re radiation on 600 kie from wired wiveless systems to makir sure it does wot eseced 15 mirrorolts per meter at a distance equal to \(\lambda / \mathscr{2}\) a.
My recciver (its imput impedence is son ohmes) is already calibruted in microvolts, so the anterme shomld have
A. Close-wind 56 turns of either No. 18 or 20 d.c.ce wire on a 34 -inch-square frame. The signal pickup will be approxinately \(7.9 \mu \mathrm{v}\) in a field of 15 microvolts per meter. The antenna should be located very close to the receiver to avoid the effects of long leads.
}

\section*{\(?\)}

I have built the signal tracer described on pege 8 of the 1946 RadioCraft heference Aumul. I urould like to install an electron-ray thbe as a sig. unt-strength indicator. C'mu you sumply me uith a diagram! - K. V. Z., Hanford, Culif.
A. The 6 E 5 shown in the diagram is inserted in the signal-tracer circuit between the audio input and the grid of the output tube. Some gain is added, because the triode in the 6F.5 is used as an amplifier.

\section*{ANTENNA INSTALLATION}

When installing an antenna on the roof of an apartment house, it is often necessary to place insulators on the outer wall of the house to carry the wires down to the window. It is very easy, when leaning over the parapet, to drop the star drill used to make the necessary holes.

To prevent this, tie a length of waxed wire-lacing twine to the star drill. The wax will keep it from slipping. Tie the other end around your belt. Then, if the drill drops, sou can just pull it up again with no damage to life, drill, or other property.
l.awson Norman,

Los Angeles, Calif.

\section*{CRYSTAL DIODE POLARITY}

To find the polarity of a erystal rec titier, measure its resistance with an ordinary ohmmeter. When the test leads are connected for minimum resistance reading, the polarity of the meter's battery voltage indicates the polarity of the crestal.

\section*{Norris McKamey,}

Davenport, lowa

\section*{TV TUBE SUBSTITUTION}

Recently I built a television receiver using a 7EP4 picture tube. Not satisfied with the nicture because I had to darken the room when viewing, I replaced the 7EP4 with a 7JP4 with very satisfactory results. Since the tube pin arrangements are different for the two kinescopes, the 7JP4 using a 14-pin diheptal socket instead of the 12 -pin one needed for the \(7 \mathrm{EP4}\), the wiring had to be changed. All voltages were left the same.

The table below shows the wiring changes:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tube & \multicolumn{8}{|c|}{Pin numbers} \\
\hline 7EP4 & 1 & 3 & 4 & 6 & 78 & 9 & 10 & 11 \\
\hline 7JP4 & I, 2 & 10 & 5 & 7 & 911 & 8 & 3 & 14 \\
\hline \multicolumn{9}{|c|}{John Urbanowicz, Warren, Mich.} \\
\hline
\end{tabular}

\section*{DIAL SCALES}

To make a precise, commercial-looking hack dial scale with transparent white numbers and markings (to be used with back lighting) draw the scale in normal size. Using this as a model, make a copy five to eight times as large with black India ink on smooth white paper (obtaining at an art goods store). Your local photographer can make a high-contrast negative of this large drawing on sheet film, the negative to he the size of the small original.

This negative is the dial scale. The hackground is black and the lines and numbers are transparent.

> G. P. Brunton,

Kingston, Ontario

\section*{HIGH-VOLTAGE SOURCE}

When a cheap source of high voltage at low current is needed for experiments, use a 5 - or 10 -to- 1 audio coupling transformer. Connect the low-turns side to the 117 -volt line.

Norris McKamey,
Davenport, Iowa

REVOLUTIONARY SOLDERING IRON YRAMSVININ Soldetron
For Easier, Better Soldering-on Anny Job!
- Weighs only 3 ozs., yet can do the job of a 200 watt iron.
- Heats up in twenty seconds from a cold start; saves time.
- Fingertip control: permits soldering without fatigue.

6.8 volt A.C. or D . C . without transformer (from an automobile battery).

Overall size \(9 \% 0^{* *} \times\) i5 \(/ 16^{*}\); ship. wt. approx. 4 Ibs.
- Ideal for fine precision work in "hard-to-reach" places.
- Readily interchangeable tip-heads; no cleaning or filing.
- Retains heat with switch off up to 1 minute; efficient.
- Bakelite handle; cork covering, for comfortable cool grip. PRICE, including transformer and Tip-Head "A \(\mathbf{A}_{*}\) " \(\$ 13.95\) \(5 \%\) higher west of Mississinpi; fair traded.
Ash your distributor, or for further information urite io:
TRANSVISION, INC., Dept. RC, NEW ROCHELLE, N. Y.
In Calif.: Thansision of Cal.. 8.72 Santa Monlea Itved. Ilollywood 46

EASY TO LEARNCODE
It is easy to leatn or increase apeed Wht ans Instructograph Code Teacher. Alralds the quickeat ynd moal precetinners or advanced tudonts.
Arallable \(t\) a Arallable \(t\) a \(D e a\)
alphabet fo fom beginner's shohabet to eypical mesiakes on all
mitujects. Speed rango 5 to 40 WPM . Elajecte. Speed range 5
Alwaya ready-no ORM.
ENDORSED BY THOUSANDS:

 fetrn and mater code tithout fur.
 Write today for conventent rental and purchase plana.
IMSTRUCTOGRAPH COMPANY
4708 Sherldan Rd., Dept. RC. Chieate 40. Ili.

\section*{HOUSE OF A Million Rado Parts}

\section*{The}

\section*{NEW, IMPROVED} Model 7-B-1, engineered

Carefully engineered, and manufactured of the finest materials, the ESPEY Model 7-B-1 is specifically designed to meet the most exacting requirements for a replacement chassis, and will lend itself to any type of installation. This model is drift-compensated, AM/FM, with 10 tubes plus rectifier. Supplied complete, ready to operate.

\section*{Send to DEPT. C-11 TODAY for FREE LITERATURE}

ESPEYmanuFacturing company, Inc.
528 EAST 72NO STREET, NEW YORK 21. N. \(Y\). "ESTABLISNED - 1928

\section*{SOLDERING METAL}

It is often difficult to confine solder to a neat, narrow band when making long seams in sheet metal. A method for overcoming the trouble, suggested by A. J. Richards in the British magazine,

Mechanics, is to use two grease crayons (sometimes sold as "china-marking" pencils).

The crayons are bound together, as the drawing shows, and marks are made on each side of the seam. Because solder will not stick to the grease, there will be no overflow unless an excessive amount of solder is used.

\section*{FUSE INDICATOR}

Plastic night lights, consisting of a neon lamp embedded in a plastic shell, on sale at hardware and department

stores, may be used to indicate blown fuses.

Bend the prongs outward, as the sketch shows, and attach spade lugs to the ends. Slip the spade lugs under the fuse block connection screws. When the fuse opens, the current passing through the neon lamp will make it light but will be too small to cause any damage to circuits.

Richard L. Parmenter, Middleboro, Mass.

\section*{NOISE ANTENNA}

The 6,600 -volt power line passing my house creates a very high noise level in the receiver. I cut down the noise con-

sig.pickup ant Enna
S.
siderably by using the out-of-phase bucking principle.

As the drawing shows, the regular signal-pickup antenna is at right angles to the power line. The noise-pickup antenna, half as long, is parallel to the line. Each antenna is connected to one side of the receiver's antenna coil. The center lead of a co-axial cable is used for the signal antenna, and the shielding for the noise antenna.

The noise picked up by both antennas from the power line is very nearly the same. Since this places both ends of the antenna coil at nearly the same potential (and the same polarity) as far as noise is concerned, the secondary of the coil picks up little noise. Due to the differences in directional orientation and in length, of the two antennas they do not pick up the same radio signals, so signals ale not cancelled to a great degree.
\(250-\mu \mu \mathrm{f}\) variable capacitors in series with each incoming lead would help to balance out the noise more effectively, but it was not necessary here.

Charles C. Coffin,
San de Fiuca, Wash.

\section*{AUDIO TRANSFORMERS}

Audio transformers with a 3 to 1 or \(31 / 2\) to 1 ratio are useful for giving a voltage gain in circuits which originally were R-C-coupled.

The audio sections of some old receivers do not have enough gain to permit a crystal pickup to be used if the usual method of connection is employed. A transformer, hooked up according to the diagram, will increase the effective input to the amplifier.

Where medium- or low-mu triodes in an amplifier do not give enough gain when R-C coupled, two stages can be transformer-coupled. The step-up ratio from primary to secondary will increase

the gain. Other operating conditions, especially the cathode-bias resistor, will have to be changed to accommodate the higher plate current.
G. N. Carter,

Nanaimo, Canude
(While the transformer will step up volume when used with a crystal pickup, it will almost certainly ruin the frequency response.-Editor)

\section*{300-OHM LINE}

The \(300-o h m\) ribbon used as transmission line for \(F M\) and television antennas is insulated with a plastic material that can be melted easily. To seal and weatherproof a connection to this line, cut a strip of insulation from a similar piece and melt it, allowing the material to drip onto the connection. This plastic catches fire easily, so pick a safe place to do the melting.

Albert Loisch,
Darby, Pa.

RADIOMEN'S HEADQUARTERS 1 WORLD WIDE MAIL ORDER SERVICE ! !

 Modef "C"'-stoping front counter case..
Model "P"-hahisome hami-fulitiel poriable case.
luill in-Ioll chatt with either of ilfore \(\$ 5.00\) extra.

\section*{HEAT GUN}

Streamlined pistol grid lieat kin in fivid ipd housing, that delivens a Dowerful 20 C'uble Fit. Der minute blast of hot ir at 1 ful ratirintieil. Orlinary hlowers have small ran

 fust from ratio colid sil:, frifect for blowiuk out watming up carbureturs, quick-ilrying paint. thaning out ralliafors or water vipes, elt. Warning:-Keed this away arnlu it will tho it in luall the time ol her adinary hair diger
 \(\$ 12.95\). Satinfaction kilazanterel of mones. retutuletl it returned porpaid witho 5 days.

GENERAL ELECTRIC 150 WATT TRANSMITTER
Cost the Government \(\$ 1800.00\) - Cost to You-BRAND NEW——\$100.00

HR.AN1) N世W
MC-2Z1 FREQUENCY METERS with ealolorating Crystal and calihration charts. A precieion frequency alandard that is uaeful for innumerable apulica. tionm for laboratory technician. mervice man, amateur, and experimenter at the give away urice ur only \(\begin{gathered}\text { ars.00. }\end{gathered}\)
RT1711 Ifrand New 12 Tule, 110 Volt Receiver-Indi-cator-Oscilluscope cumploto with all tubes and power supply. Has telesonbing hood wer scome tuhes, which is equipued with a letachable calibratel screen. Has centering and amplitude controls and two video inputs. A naturnl for television \(\$ 39.95\)

SELENIIM RECTIFIERS. All types are rated at 130 V.A.C. Do not assort to make quantity.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 75 MA & . 70 & 10 frr & 6.50 & 50 for & \$31.00 \\
\hline 100 MA & . 75 & 10 for & 7.00 & 50 for & 32.50 \\
\hline 150 MA & . 80 & 10 for & 7.50 & 50 for & 35.00 \\
\hline 200 MA & 1.05 & 10 for & 10.00 & 50 for & 47.50 \\
\hline 250 MA & 1.25 & 10 for & 12.00 & 50 for & 57.50 \\
\hline
\end{tabular}

GENERAL ELECTRIC RT-1248 15 -TUBE TRANSMITTER-RECEIVER
 \(\$ 100,00\) efterilve Ont. 1,1938 .

\section*{TERRIFIC VALUEPORTABLE ELECTRIC DRILL}
(Sold at loss than established factory price so we cannot mention brand name.)
 -

 multitse ball thens luatims.

\section*{\$595 Takes Both BIG BARGAINS}

\section*{SCR-274N COMMAND SET}

\section*{The greatest radio equipment value in history} A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110 V . operation); two 40 -Watt Transmitters including crystals, and Preomplifier and Modulator: 29 tubes supplied in all. Only a limited quantity available, so get' your order in fast. Removed from unused aircraft and in guaranteed electrical condition. A super value at \(\$ 34.95\), including crank type tuning knobs for receivers.

\footnotetext{
Cable Address: BUFRAD
}

NOTE: Each of the PE-109 power plants that we sell has been actually run and tested for output by us

\section*{RADIOMEN'S HEADQUARTERS + WORLD WIDE MAIL ORDER SERVICE ! !}

BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORS, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASERS, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES. EXPORT INQUIRIES ARE SOLICITED BOTH FROM EXPORT HOUSES AND FROM FOREIGN GOVT. PURCHASING COMMISSIONS HERE AND ABROAD. EXPENSE CAN BE REDUCED AND REQUIREMENTS FILLED WITH A MINIMUM OF DELAY BY CONTACTING BUFFALO RADIO SUPPLY INITIALLY.

Portable \(\qquad\) dralupremo Ifuaxedly buit and uning lifetime juthers matetiais using lifetime lubricatorl ball-bearing on comerain
ing rod and onl inipreknated main brarink on shalt. Thusuml desikn the most common tault in alt Colllbrewsors. PATENTED Unhilie alr intake system increases tthconnlyressors so that uir nutput is nuch Rreatel than that fromis heavier motors. Wifl deliver appiosi liately strun ru.

 though farer tip allustuent allow' seftink of cult but pressure at any valise, "hich will gulomatically lwo maintained. Works frolu ans 1/4 M.I'. motor. T'selul for spraying paints or lardilers, rivinfectants, inser ing trex, ete. lrice \(\$ 14.50\) postage pitpaid anyubere in the U. S. Efficient. vompletely Endustable asplion type spray gun colliplete, with 12 it . of 100 lt : testrel hose arallable for only \(\$ 7.75\) uith. Dint container. Sead for free catalora if imdio parts and suiplus Itento. Thansformers-Stebs up 110 c , or sted. fil. TRANSF.: 6.3s. 2i) AmDA.- \(\$ 1.98:\) Vnivelsal

 FORMER for T. \(1 \overline{0}\), slimerentondhone, inullal to line or Rrid \$1.95, or 6. av Hlamient ulien nrilerink. in

 tor \(2.5 v\), \(7+8\) tube sets-7

 Book on DRY'Disc RECTiFiERS by H. B. Conant.

\section*{STEATITE VarlabLE condensers}

\section*{auto radio dealer attention}

 frew if ulluth: hishy clangir liat will charace a cal bat ery, Bulleq for all

lots of two or more

\section*{BUFRAD CAR RADIO ANTENNAS}

All of our car radin antemas aie made of triple plated Admiraty
Brasa Tubing, coniplete with low loss shielded antenna leads and Brass Tubing, conplete with low loss shielded antenna leats and hish quality fullings.
Slli
SII) (OOWL-BR-1, 3 sections pxtend to \(66^{\circ}\). Your price-single Units-81.50: in lots of 12 - \(\$ 1.35\) er.
98*: This super-aelial has hast heayy duty sections that extend Your price-single unitaTILT ANGLE-BR-3. niay he adjusted to all body contours. sectlons extend to \(66^{\circ}\). Single unit price- \(\$ 1.50\); 12 lot price81.25 ea.

FERSATILE-BR-4, single hole fender or top cowl mounting may be adjusted to conform with all body contours. 4 sections
 tions extend in \(56^{\prime \prime}\). sillale unit price- \(\$ 1.90\); 12 lot price-

AFTER SEEING OUR ANTENNAS AND COMPARING, YOU WILL NEVER BUY ANY OTHER MAKE!

 plete will 17 \&ubes, remote control unit, 4 crystals, and the ape
cial wisle batnil VhF antrnna hat was eredifed for thia sel ronilition. We incluile frye bartand andiagrams for the conversion to "continuivualy variable freriuency coveraget in the receiver. thailible with a brand wew 12 volt dynaniotor for only sig.os.

VACUUM TUBE VOLT-OHM-GAPACITY METER

 facturers of test equipment costs only \(\$ 39.95\) complete
with all leads. as illustrated.

 SELENIUM RECTIFIERS-I HS Ifisi 1 Bhes \(116^{*}\) 。

\section*{1000 CYCLE AUDIO FILTERS}

Navy Plone010-1 low pass audio tilters as mentioned in the "Peaked Audio" article in June (\({ }^{\text {Q }}\), and designated by the ahove number, are the exact electrical abl physical equivalent of commereial audio filter units selling for \(\$ 35.00\) wholesale. They are infinitely better than the surplus "Radio Range Filters" being sold for reducing QRM. and at 2 KC off resonance for ex ample, a 2 section filter using PD52010-1 is abable of twice the selectivity available thru the use of the Q5-er (the B ('453 section of the 274 N which has provided the amateur's previous highest standard of interference elimination). EXTRA SPECIAI, -NAVY PD52010-1 with diagram.... \(\$ 5.00\)

RAIIO SET SCOOP. Product of a famous aircraft radio manufacturer who has abandoned the manufacture of table model radios because of the flood of govermment orders. All in 5 ply genuine mahogany eabinets, both regular and bleached. 6 -tube models have tone control. Original list price wiven first-then your cost. Sensational discounts.

Model 565. Mah. ol blonde. \$34.95-\$16.97 Model 6618. Mah. or blonde
\$44.95-\$20.97
Model 663, Mah. or blonde, \$46.95-\$21-97

CROSLEY 517
When these sets develop hum not traceable to a bad filter capacitor, check the volume control. It may be burned or warm at one end of the element. In either case, replace it.

Hurley D. Robinson. I'ullmom, W'. V'a.

RCA \(45 \times 1,45 \times 2\)
When the rectifier and pilot lamp burned out, the trouble was traced to a short between the voice coil and the field coil of the speaker. The field coil acts as a filter choke. Replacement of the speaker cone and coils was necessary.

> Donald E. Stevens. Los Alamox. . ․ . 1.

\section*{FILAMENT CIRCUITS}

When working on defective filament circuits of portables, insert temporarils a small fuse holder, with a fuse of the proper rating, in series with the filament string. Fuses are cheaper than tubes. When the trouble is cleared uh, remove the fusc.
R. W. Reid,

Lon Augeles, Calif.

\section*{. . . CHEVROLET SETS}

If a late-model Chevrolet radio is dead, look for the trouble in the second i.f. transformer. The trimners short easily.

Ed Christner,
Middletoun, Ohio.

\section*{RCA COIN RADIOS}

This contains a chassis identical to RCA's 61-5 and 61-10. The volume controls are faulty in some of the sets, the carbon element loosening and falling apart. To check a suspected unit, temporarily connect a 470,000 -ohm resistor in place of the control. If the set works, the control was causing the trouble. Leonard Thompson, Joplin. Mo.

PHILCO 38-38
When these sets distort hadly and no cause can be found, try replacing the 500,000 -ohm volume control.

Hurley D. Robinson, Pullman, W'. Va.

TELETONE TV RECEIVERS
We have found several Teletone sets with a faulty horizontal sweep coupling capacitor (the . \(005-\mu \mathrm{f}, 6,000\)-volt unit which feeds the sync pulse to the deflecting plates of the picture tube). The result is an intermittent raster or picture or complete blanking of both.

To test this capacitor, unsolder the lead from the terminal connected to the deflection plates. Turn the set on and touch the lead to the terminal. The capacitor will charge. Now remove it. If there is an arc, the capacitor is probally bad. Touching it to ground will check the diagnosis. A good capacitor will discharge, while a bad one will do mothing.

Replace the faulty capacitor with a 10,000 -volt unit.

> H. L. Frazier,

Jersey City, N.J.

\begin{tabular}{lll}
l.D4.604 & 1.B5.816 & 1.S.66 \\
1.K4.800 & \(1 . A 4.777\) & \(1 . S .67\) \\
1.D4.602 & \(1 . A 4.775\) & \(1 . S .40\)
\end{tabular}

Just the thing for your service bench or can be mounted on the wall an all-steel storage-display cabinet that holds 12 most frequently used Halldorson vacuum-sealed transformers as per list above . . . You pay only for the transformers . . . the cabinet is included in the deal at no extra cost to you . . . saves trips to distributor's counter makes stock keeping easy . . . Good for limited time only. Act now

SEE YOUR RADIO PARTS DISTRIBUTOR OR WRITE
The HALLDORSON COMPANY 4500 Ravenawood Ave. Chicago. III.

\section*{AT LAST!! A LOW COST POWER UNIT FOR SERVICE WORK}

Including pictorial and schematic
diagrams

For the first time. we are offering a well-engineered six volt direct current power unit for atutoradio and similar service work in kit form!!

This unit was formerly in the high priced range. Now, we have placed all the essential components necessary for construction in kit form, and are offering them to vou at this low. low pride.

There kits fulti\}l the long-standing need of every serviceman and technician. They are designed to operate from a 115 V.A.C. \(50 / 60\) cycle source, and deliver 6 V.D.C. well-filtered from three to eight amperes, with a peak rating of ten amperes. The A.C. ripple percentage is held to remarkably low values.

This unit charges a standard auto battery in one day!!

> Do away with bulky batteries! Do away with corroding fumes!
> Simplify your service operation!

Order these fine kits for your bench today \(8: i\)
No C.o.D.'s. Full remittance with order. Shipping wt., 12 lbs.

\section*{OPAD-GREEN COMPANY}

71 Worren St.
Phone: BEekman 3-7385
New York 7, N. Y.

Important Advances in TV Reception and Servicing!
Transvision makes television more enjoyable, more profitable!

MODEL IOBL TV/FM KIT

NEW . . . FIELD STRENGTH METER

NEW . . . TRANSVISION FIELD STRENGTH METER . . .

 and
Sill

NEW .. ALL CHANHEL BOOSTER
NEW

TRANSVISION ALL-CHANNEL TELEVISION BOOSTER

\section*{}

TRANSVISION REMOTE CONTROL UNIT KIT
 in stations onn worg contrakt and orirhtest

NEW 8-PAGE CATALOG showing complete transuision line
TRANSVISION, INC. Depl. R.C. New Rochelle, N.Y.
 All Prices Subject to Change Withont Notice.

Radlomen ... you can GET INTO THE TELEVISIOM BUSIMESS
In a BIG WAY with the TRANSVISION DEALER PLAN Write for detalls now!

NEW ZENITH VICE-PRES.
TheZenjth Radio Corporation announces that \(S\) a \(m\) Kap. lan, who l'ecently completed his twenty-fifth year with the company, has been appointed a vice. president. In \(1934, \mathrm{Mr}\). Kaplan became assistant treasuler and assistant secretary; in 1935, credit manager; and in 1945 assistant vicepresident.

\section*{CRESSON MEDAL TO COLPITTS}

The recipient of the 100 -vearold Cresson Medal of the Franklin Institute is Edwin H. Colpitts, director of the Engineering Foundation of New lo \(\mathrm{r}^{\mathrm{k}}\), and best known to radiomen as the designer of the
 circuit which bears his name. It is in recognition of his scientific achievements in the development of long-distance conmunication by telephone and radio. Dr. Colpitts mreviously won the Medal for Merit for his services with the National Defense Researeh Council.

\section*{RECEIVES PRESIDENT'S AWARD}
 John D. Reid. manager of research of the Croslev Division, Avo Manufacturing Corp., has recently been awarded the President's Certifi. cate of Merit for outstanding work on the proximity fuze during the war. The Crosley manager of research was one of fourteen Ohio scientists. doctors and educators to be awarded the homor at a recent Recognition Day Luncheon in Columbus, Ohio.

\section*{PARTS FIRM IN NEW HANDS}

Control of General Instrument Corp. Elizabeth, N. J., radio parts manufacturer, has been acquired be an industrial group. C. Russell Feldmann, chairman of National Union Radio, has bern elected to the same position with General Instrument, and Richard E. Laux. formerly executive vice-president of General Instrument Corp.. has been named president and treasurer:
Mr. Feldmann succeeds Samuel Cohen and Mr. Laux succeeds Ahraham Blumenkrantz, from whom the controlling interest was purchased. Mr. Cohen and Mr. Blumenkrantz have resigned from the board. as has Louis Scadron. Kenneth C. Meinken. president of National Union, and Harre E. Collin Toledo investment banker and industrialist, were elected to the new board.

\section*{CHECKING A.F. TRANSFORMERS}

\(V^{\mathrm{E}}\)
ERY often, an audio amplifier will
not deliver the power for which it is designed because of inefficient transformers, particularly in the output circuit. The efticiency of a transformer in percent is found by dividing the output power by the input power and multiplying by 100 .
The output power is computed by connecting a load resistor across the secondary and measuring the voltage de-

veloped across it when power is applied to the primary. The power in watts is equal to the square of the voltage divided by the resistance. Measuring power input is not as simple because leakage inductance of the transformer causes the input voltage and current to be out of phase, thus producing false readings. If a capacitor of proper value is shunted across the primary, the leakage inductance will be balanced out and current and voltage will be in phase.

The correct capacitance may be found by using the setup shown in the circuit described originally in Wireless Workd (London). Load the secondary of the transformer with a resistor equal to the output load impedance. Connect the primary to a 400 -cycle signal source through a resistor R 2 having a resist ance somewhat lower than the input load impedance. Connect the \(\mathbf{X}\) plates of a cathode-lay tube or oscilloscope to the connection of input and primary and the \(Y\) plates to the connection of input and \(R 2\) as shown. Then vary \(C\) until the pattern on the 'scope changes from an oval to a straight line. \(C\) will be about .015 uf for the average output transformer.

Measure E1, E2, and E3 with a vacuum-tube or high-resistance voltmeter. The input power is equal to E \(3 \times\) \(E 2 / R 2\). Dividing this into the output power \(\mathrm{E} 1 / \mathrm{R} 1\). the efficiency of the transformer then becomes:

E1~R2
\(\times 100\).
\(\mathrm{E} 2 \times \mathrm{E}: 3 \times \mathrm{R} 1\)
The effective leakage inductance of the transformer is:
\(E 3^{2} \times \mathrm{C}\)
\(\overline{(E 3 \times 2 \pi f C})^{2}+\mathrm{EQ}^{2}\)

\section*{R2}
where \(C\) is in farads, \(F\) : and \(E: 3\) in volts, \(R 2\) in ohms, and \(f\) the input frequency in excles.

If a number of different tiansformers are to be tested, it is advisable to make a bread board test panel with terminals for connecting the transformer, oscillator, voltmeter and cathode-ras tube. The variable capacitor \(C\) may be replaced with a switch and a number of fixed capacitors of different values. R1 and R2 may be calibrated potentiometers.

\section*{Radio-Electronic Xircuits}

\section*{Price only \$4}

 that is coledilug itto the tellosisint liteture, and texalls

\section*{NOT a Book of Mere Theory} This lan't a husw of thoms. mathematics and goneral

\section*{MAKES TELEVISION REPAIR WORK EASY TO UNDERSTAND}
\begin{tabular}{|c|c|}
\hline 1. Television ls Here & 10. Test Equipment and \\
\hline 2. Fundamentals of the & and Re \\
\hline \begin{tabular}{l}
Television System \\
3. The Radio.frequency
\end{tabular} & Technlques \\
\hline Intermediate-frequeney and Detector Sections & 12. Common Troubles in Television Rerrivers \\
\hline 4. Video Amplifters & 13. Troubleshooting \\
\hline 5. Cathode Ray Tubes & 14. Servicing Hints and \\
\hline 6. Synchronizing and & Case Histori \\
\hline Sween Circuits & 15. Color Television \\
\hline 7. Power Supplies & A. Intermediate Fro- \\
\hline 8. Antennas and wave Propaqation & Receivers \\
\hline 9. Television Receiver Installation & \begin{tabular}{l}
Diagrams \\
C. Giossary
\end{tabular} \\
\hline
\end{tabular}

\section*{FACTUAL SERVICING DATA ON}
- How to terat for an infermitent peaking coil or tranaformer
- How lo !ret a sigmal orer a moumain
- H"hat to do when the limearity of the niefare is poor
- Howe to smu a masi profmerly
- Cheching video remiowse wieh a sumare wave - Whrn to usc mica apacitorm in place of other
 TRIAL
- aractical srourpore of other arractical probleme
SEND NO MONEY JUST MAIL COUPON

Dept. RC.lls, Murray Hill Bonks. inc. 232 Madison Ave.. New York 16 , N. Y,
 Sision sbitvidN: for lut flase examinationt int

 najd).

\section*{Dudress}
```

('ity, /omk" Slalo

```
corunal lom

\section*{LEAKY CONDENSER TEST}

An ohmmeter does not always indicate the true condition of a leaky condenser. To make a better test, disconnect the ungrounded lead of the condenser and touch one lead of a voltmeter to it. Touch the other meter lead to some B-plus point in the receiver at which

the voltage does not exceed the condenser's rating. (Caution: make sure the Bplus voltage falls within the voltmeter rauge.)

The reading of the voltmeter will be proportional to the amount of leakage through the condenser.

> M. B. SYmснчсн, Sashatoum, Sask.

\section*{CRYSTAL-PLUS RADIO}

This crystal receiver uses a 1 N 34 and includes a two-stage audio amplifier. The tone quality is satisfactory, and selectivity is good for a crystal set.
The receiver works on 117 volts a.c. or d.c. Do not ground it, as the chassis is hot. The antenna trimmer shown was used with a 15 -foot length of wire.

Arthur S. Bean,
Baltimore, Md.

\section*{VOLTAGE DOUBLER}

This vibrator power supply circuit is one that I have found useful for operating mohile equipment requiring high voltage at moderate current. Standard replacement parts are used.

It is a bridge-type circuit using a combination mechanical and electronic rectifier. It has twice the voltage and half the current of conventional eircuits. With the components used, it delivers 650 volts at 50 ma . This exceeds the rat-

ings of the 024 , but we have had no trouble from this source.

A standard synchronous vibrator is connected to the power transformer in the normal manner. The center tap of the secondary is unused. When the vibrator reed contacts points \(\mathbf{A}\) and C, B becomes positive by the full secondary voltage, and the \(0 Z 4\) conducts between P2 and the cathode. When the reed is in the opposite direction, \(B\) and \(D\) are grounded and \(A\) is positive, causing plate D2 to conduct. If there is no output from the cathode, reverse the connections to \(A\) and \(B\).

\author{
Joe Mace, \\ Garnett, Komsts.
}

\section*{KEYING MONITOR}

This keying monitor works on approximately 6 volts of B-supply. The voltage is obtained from a resistor in the cathode circuit of the transmitter's keyed stage. When the stage is keyed, the oscillator produces a tone. The value

of the resistor should be chosen to give about 6 volts, though a somewhat higher voltage will be as satisfactory. The transformer is any 3:1 audio unit.
R. L. BRidges,

Los Angeles, Calif.

\section*{CARBON MIKE TRANSFORMER}

When a carbon microphone transformer is needed in a hurry and none can be found, a bell-ringing transformer will often work. Connect the lowvoltage secondary to the mike, with the mike battery in series, and the primary between grid and ground.

These transformers will sometimes work, too, as emergency output transformers. Where the secondary is rated at \(6-8\) volts, a bell transformer will supply filament voltage; but if only a few filamonts are to be connected across the transformer, check the voltage under load and insert a small series lesistor if it is too high.

\section*{Norris McKamey, \\ Davenport, louen}
(As an encrgency microphone transformer, a hell transformer might work well. lt would probably not do so in othel' jobs where more current is carried. Bell transformer's are designed for \(r a l e\) intermittent use and are intentionally built to have very high primary impedance and extremely poor regulation. - Editor)

\section*{War Surplus Bargains Sold As Used Unless Otherwise Specified!}

Micro-switch completely standard, metal grate well cast, rated 15 amperes @115 volts normally open type, plunger has override feature. New

\section*{BC-654-A RECEIVER AND TRANSMITTER}

For frequencies, \(3800-5800 \mathrm{Kc}\). Used but in good operating and mechanical condition. Worth many times the price for parts. Complete with all necessary tubes. Shipping weight 40 lbs. Each 29.75

Condenser, electrolytic, 100 Mid . © 300 volts. \(21 / 2^{\prime \prime}\) diameter, \(41 / 2^{\prime \prime}\) high, metal can. shipping weight 2 lbs. Brand new, 2.00

Condenser Industrial Cond. Corp. 8 Mfd. (10) 600 volts DC. 1 " \(\times 3 \frac{1}{2} \times 5\) high
1.50

Condenser, bath tub type, . I Mfd. @ 1000 volts DC. new20

Condenser, Tobe, oil filled, \(3 \times 1 \mathrm{Mfd}\). © 600 volts DC

Filter condenser, Aerovox. oil filled. 2 Mfd. @ 600 DC working volts, size about \(11 / 2 \times 11 / 2 \times 5^{\prime \prime}\) high, shipping weight about I lb., new

Condenser, Cornell-Dubilier, oil filled, 4 Mid. © 1000 volts DC working voltage, size about \(1 \times 21 / 2 \times 5^{\prime \prime}\) high, shipping weight 2 lbs.. new
1.75

Vibrator, Radiart VB-3, for 6 volt battery operation, used in vibrator supply PEl04-which is used with BC-654A transmitter-receiver, Type J-4, new, 1.95

Vibrator, Radiart VS-3 for 6 volt battery operation, used in vibrator supply PE 104 -which is used with BC-654A transmit-ter-receiver. Type J6 (probably exactly same as J-4). new
1.95

Relay, 110 volt 60 cycle AC plunger type for door interlock, new
.85
Lord Shock Mount, heavy duty type, base size \(3^{\prime \prime}\) square \(x 11 / /^{\prime \prime}\) high- \(3 / 8^{\prime \prime}\) diameter bolt may be used. New
.35
Dual volume control wire wound, each section 25.000 ohms. new
.35
Toggle switch, bat handle, DPDT, new,
Transformer, 110 volts 60 cycle input: output being two secondaries-each giving 14 volts @ 11 amperes. which can be used alone, in parallel, or in series for various voltage and current combinations. Size about \(31 / 2 \times 31 / 2 \times 4^{\prime \prime}\) high. Ideal for operation of propeller pitch motors used for beam antenna rotation. Shipping weight 7 lbs. Manufactured for our company, brand new

Microswitch, completely weather-proofed, metal-clad or cased rated 15 amps at 115 volts, normally open type, plunger has override feature, new

Battery type BA-38, 103.5 voltg, used in Handie-Talkie, Mine detectors or for any purpose where low current drain is re. quired. Size \(|x| x\left|\mid 1 / \mathbf{x}^{\prime \prime}\right.\) long. Outdated, but tests O.K.
3.00

Tube socket, RCA, for 866 or similar type tube bases, new, . 35 Tube socket, wafer octal type, excellent mica insulation, new. 10 Tube socket for 813 type tube, Johnson type 237, new . 60 Tube socket, for Acorn type tubes, made by Millen Co., new,

Tube socket, porcelain octal type, less mounting ring, new \(\quad 10\) First IF transformer for BC- 348 type receiver. 915 Kc ., new 1.00 Kit of potentiometers, twenty-five assorted sized carbon and wire wound. New 2.25 Resistor, voltmeter multiplier type, rated at 2 megohms, 2 kilovolts insulation, 1 Ma maximum current, about |" diameter x \(51 / \mathbf{2}^{\prime \prime}\) long, mounts in clips. New . 75 Resistor, 100 watt type, 5 sections having 7500, 3000, 23, 23 and 75 ohms (total of 11.269 ohms) resistance. \(1 \frac{1}{4}\) " diameter by \(8 \frac{1}{2}\) " long. New
Cord CD.132, has PL-55 type plug and 9" cord, with spade type lug tips ….................... 35 Sylvania type IN26 crystal. New,

Resistor 20 watt, one-half ohm. New
.10
Fuse holder for type 3AG fuses. New
Amphenol co-axial chassis connector, new. type 83-1R \(\quad 40\) Amphenol co-axial angle plug adapter, used, type 83-1 AP, . 40 Connector, bakelite insulation, male and female section, 6 pin polarized
.50
Canvas bag, moisture \& fungus proofed. with carrying strap. leather re-enforced corners, weight \(3 \mathrm{lbs}\). . size \(9^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime}\) high. Ideal for tool case, for sportsmen, etc. New 1.00 Argon bulbs-2 watt. ideal for transmitter tuning, night light, etc. 35 ce ea. Carton of ten 3.00 Filter condenser, 8 Mfd. © 700 volts DC working voltage. Oil filled. well insulated terminals. Size about 2" x 41/4" x 5" high. with mounting flanges, gray metal case, shipping weight about 4 lbs. New 1.25 Filter condenser, Cornell Dubilier, 1 Mfd. © 4000 volts DC working voltage, oil filled. Size about \(21 / 4^{\prime \prime} \times 4^{\prime \prime} \times 7\) " high over all. Shipping weight about 4 lbs. Heavy stand-off insulator type terminals. New
3.75

Telephone LINCOLN 8328 prices f.o.b. indianapolis

TERMS: CASH WITH OROER
AMERICAN SURPIUS PRODUCTS CO.
537 N. CAPITOL AVE. INDIANAPOLIS, IND.

Filter condenser, oil filled, 4 Mfd. @ 300 volts, DC working voltage, size about \(2^{\prime \prime} \times 2^{\prime \prime} \times 3\) 2" high. shipping weight about 2 lbs. New
Condenser Industrial Cond. Corp. 5.2 mfd . (10) 50 volts DC, \(1 " \times 2 \frac{1}{2} \times \times 314^{\prime \prime} .35\)

Filter condenser, Industrial Condenser Corp., oil filled. I Mid. (at 3000 volts DC working voltage. size about \(2 \frac{1}{4}\) " \(x\) \(34 / 2^{\prime \prime} \times 5^{\prime \prime}\) high, well insulated terminals. Shipping weight about 3 lbs . New, 2.00

\section*{METERS-Brand New All checked for accuracy}
0.500 Ma . DC \(31 / 2^{\prime \prime}\) round, NX3; Westinghouse
3.00
\(0-5\) Amps RF \(3 \%\) " round, NT3j Westinghouse, Internal TC
0.3 Amps RF \(21 / 2=2\) round. NT33 W/estinghouse, less TC
3.50
0.15 MA DC round \(31 / 2 "\) bakelite case G. E. type DO-41 Int. Res. 7 t/2 ohns 3.00 0.10 \& 0.250 Ma. DC combination. round. DW +1 G.E. \(\quad 2.50\) \(0-3 \mathrm{Ma}\). DC \(31 / 2^{\prime \prime}\) square. 327.A Trip. lett 4.50 \(0-500\) Volts \(A C 31 / 2 "\) square \(337 A\) Trip. lett 6.00
0.2 Volts AC rectifier type \(10.000 \mathrm{ohms} /\) volt 327A Triplett, 34 2" square 15.00 0.50 Ma . AC 337 A Triplett \(31 / 2\) " square.
7.50

\section*{RELAYS—All brand New}

RBM DPDT 110 V .60 cycle, make before break
.75
Leach type 1127-FR 110 V. 60 cycle,

\section*{DPST}
. 50
Automatic Electric Co. DPDT 24 V. DC
6 Amp. silver tungsten contacts .40 Automatic Electric Co. delay relay, 20 ohm, silver tungsten contacts . 40 Starter relay. 28 volt operated, heavy duty construction .50 Switch, pushbutton type DPST, on/off type, to fit standard switchbox, 10 amps at 250 volts
Switch. toggle type, bat handle. DPDT heavy duty contacts
Plastic coated Assault wire, iwisted 2. conductor No. 20-7 strand tinned,

100 Ft . or more . 01 c per ft .
Television wire, 2-conductor- 300 ohm.
250 Ft. spool 5.00
4-Conductor wire, 16 gauge impregnated rubber coated sheathed stranded copper wire

100 Ft. 6.00

\section*{BC-645 ULTRA HI-FREQUENCY TRANSMITTER-RECEIVER}

You read about it recently in QST! Originally operated in the frequency band from 450 to 500 Mc . Can be converted to 420 Mc . amateur band. Consists of complete transmitter and modulator system. and receiver. Complete. brand new, with 15 tubes
11.95

\section*{LS-3 SPEAKER}

6" PM type. housed in heavy metal case Contains output transformer to match 4000 ohm impedance. Used but guaranteed okay. Size about \(8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}\). Ship. ping weight approx. 10 lbs . Has jack for plugging in cord to receiver. Ideal for B.C. 348 receiver
8.50

\title{
War Surplus Bargains Sold As Used Unless Otherwise Specified!
}

\section*{must vacate warehouse - prices reduced for clearance}

SCR-625 MINE DETECTOR (brand new)
The most sensitive mine detector on the surplus market. For miners, treasure hunters, plumbers, electricians. lumber mills, etc.

\section*{AN/PRS-1 MINE DETECTOR (brand new)}

A very dependable detector only \(\mathbf{2 2 . 5 0}\)

\section*{TURBO AMPLIFIERS}

Used for parts or small phono-amplifier, shipped complete with the following tubes: 2—7C 3 s , 1-7Y4, 1-7F7. Our greatest bargain. See July 1947 "RadioCraft" for conversion data 1.75 ea.

\section*{WILLARD LEAD ACID CELLS}
(Brand new) 6 V. (dry-charged) 3.00 6 V . in metal carrying case (dry charged)
4.00
(Add electrolyte specific gravity \(1.265-\) any drugstore)
BC-348 Communications Receiver and or SCR-274N Command Set Power suppiy for 110 V . operation. with complete instructions

\section*{BC-375 GE MOPA XMTR.}

Transmitter only 19.50 Tuning units TU-5B, TU-6B, TU-7B, TU8B, TU.9B. TU.10B, TU-26B-choice.

Dynamotor PE-73C
Antenna tuning unit (\(\mathrm{BC}-306 \mathrm{~A}\)) 4.95

\section*{BC-357 MARKER BEACON RECEIVER}

Operates about 75 Mc . Ideal for controlling remote circuit and model aircraft. boats. etc. Signal easily altered to ?meter band. Tubes used and included12 C 8 and 12SQ7. Sensitive relay, circuit diagram inside case. Size \(53 / 8 \times 33 / 6 \times\) \(51 / 4 "\). For 24 V . DC operation
3.95

\section*{T-39 APQ-9 RADAR TRANSMITTER}

Contains many excellent parts for the VHF experimenter such as a cavity oscillator using 2-RCA 8012 tubes rated at full output to 500 Mc . Tubes are forced aircooled by 24 V . DC motor which is easily converted to 110 V . AC operation. Other valuable parts such as a pair of 807 s . 2-6AC7's. 1-931, and 16AC7 tubes. ceramic switch, potentiometers. gears. revolution counter. etc...

\section*{APN-1 RADIO ALTIMETER}

A complete 460 Mc . radio receiver and transmitter which can be converted for ham or commercial use. Tubes used and included: 4-12SH7,3-12SJ7, 2-6H6, 1-VR150, 2—95s. 2—9004. Other components such as relays, 24 V . dynamotor, transformers, pots. condensers. etc. make this a buy on which you cannot go wrong. Complete in aluminum case \(18 \times 7 \times 71 / 4\)
10.95

\section*{DETROLA AIRCRAFT RECEIVER}

If you want a good 28 V DC operated 200-400 Kc. aircraft receiver-just don't pass up this bargain. A few left at 5.75 ea.

\section*{JACK BOX BC-1366}

Contains 2 pole 5 position switch. rheostat, 2 phone jacks. etc. In aluminum case \(31 / 4 \times 43 / 8 \times 21 / 4\). Complete with headphone sct adapter to match high to low impedance
1.50

\section*{R-89 ARN-5A GLIDE PATH RECEIVER}

Formerly used for blind landing but adaptable to many other uses such as receiver for new police or citizens band. Band of operation 326.335 Mc . on any of its 3 pre-determined crystal con trolled frequencies. Contains 11 tubes, 6 relays and other valuable parts. For 24 V. DC operation. Size \(133 / 4 \times 51 / 4 \times 63 / 8^{\prime \prime}\).

Price complete, 12.45

\section*{AIRCRAFT RADIO RANGE FILTER FL-8A}

For helpful reduction of QRM or crowded CW bands. When attached to output of any communications receiver: (1) will pass signal of 1020 CPS, eliminating others, (2) will pass voice frequencies and eliminate 1020 CPS code signal. Compact. lightweight. with switch. Size \(23 / 4 \mathrm{x}\) \(233 \times 33 / 4{ }^{\prime \prime}\) 2.25

\section*{BC-733D LOCALIZER RECEIVER}

A part of aircraft blind landing equipment. Operates on any of its 6 pre-determined crystal controlled frequencies in the range of 108-120 Mc. Contains 10 tubes-3 of which are W'E. 717 A's—and crystals. Ideal receiver for conversion to 144 Mc . ham band or mohile telephone bands. For 24 V . DC operation. Size \(141 / 2 \times 7 \times 45 / 8\) "
Price, with dynamotor 6.95 Price, without dynamotor 5.95

MODULATOR with carbon mike input (with dy namotor) for SCR274 N Command Set
4.75

Telephone LINCOLN 8328 PRICES F.O.B. INDIANAPOLIS

TERMS: CASH WITH ORDER

\section*{AMERICAN SURPIUS} pRODUCTS CO. 537 N. CAPITOL AVE. INDIANAPOLIS. IND.

\section*{ARB (CRV-46151) AIRCRAFT RADIO RECEIVER}

6 tube, 4 band, super-heterodyne rec. with built-in dypamotor. Designed for reception of MCW (tone or voice) or CW' within the frequency range 195 Kc . to 9.05 Mc. Complete with brand new pilot's control box and brand new receiver tuning unit
27.50

\section*{BC-221 FREQUENCY METER}

Covers \(125 \cdot 20,000 \mathrm{Kc}\). Battery or 110 V. AC or vibrapack operated. A beautiful instrument. The finest we have sver had
69.50

BC-221 FREQUENCY METER, with modulation
89.50

\section*{T-17-B CARBON MICROPHONE}

\section*{Handmike. Brand new \\ 1.75}

Telegraph Keys, new ……............ . 75
Headphone extension cords
75

\section*{INTERVALOMETER}

Electric timing device. Was used for releasing bonibs at intervals. ldeal for darkroom timer, model train control. Contains relays, switches, pilot light, resistors, knobs, etc.
3.25

\section*{C-I AUTO PILOT GYRO}

Operates from 24 V . DC or 110 V . AC Adaptable to many interesting hohbies,
7.95

\section*{TELRAD 18-A FREQUENCY STANDARD}

Checks signals in the range of 100 Kc . to 45 Mc . with a high degree of accuracy. Self-contained power supply for 110 . 130, 150,220 and \(250 \mathrm{~V} .25-60\) cycle AC. Complete with tubes, dual crystals and instruction book. One of the best buys on the surplus market today. While the few that we have left last 39.5) SCR-510 RADIO SET, new 69.75 SCR-522 (100-156 Mc. receiver \& transmitter). complete with tubes 39.75

BC-406-A RECEIVER-Brand New Manufactured by Western Electric. 165 to 205 Mc . operation. IF frequency 19.5 Mc . IF band width .7 Mc . Easily converted for operation on other ultra-high frequencies. Operates from 110 V., 60 cy cle. AC. Worth many times this amount for tubes and parts. Tubes-one 574 , two 6SJ7, four 6SK 7. one 6N7. five 954 's one 955 . one 6F7. one 6N7. Also contains small 110 V . operated motor, 34.50

Condenser, mica, . 25 Mfd. © 250 volts. new

Jack Box BC-631-B, size about \(2^{\prime \prime} \times 2^{\prime \prime} \times\) \(4^{\prime \prime}\). aluminum case, contains 10.000 ohm volume control, knob, Jones Barrier strip. brand new

Switch, push-button type DPST, on/off type, to fit standard switch box. 10 amperes @ 250 volts, new

\title{
New Patents \\ \\ KINESCOPE PROTECTION \\ \\ KINESCOPE PROTECTION CIRCUIT
}

Patent No. 2,444,902
Charles Edward Torsch
Lancaster Township, Lancaster County, Pa. (assigned to Radio Corp. of America) Many television receivers derive their high soltale from the seamming "iremits. of these kinescolve. In wher cases, the himh voltake comes
 from a semarate sume such as an rof. oscillator.
if the scanning eircuits become defective an intense spot is formed an the screen because the

\(x\) - to andoe of Cr tube
T- horiz out trans
Woan is not doflecteri. This may damage the kincerame.
The cirnit shown here eliminates the danger In antumatically removing the hivh woltate if the somaning eirenit fails. The reetilier filament i. handet from the horizomtal outhut transformer. Unless the sweep eirchit is normal. full bwer will nat be applied to the filament and hisk viltage will be relluced.

There is alson protection in case of trouble in the damping circuit. The induced whake laeross th. semudaries of the unmut transformary is
due mands to the abrupt damping of the brimary due mainls to the abrupt damping of the brimary
courent. Fou examule, if the defleetion eoils should oben, full boltage will not be applied to the rectitior filament akain serving to roblue tha. hich voltalye.
It is sulficiont turentert against failure in the hurizantal seanning eircuit. If only the vertiad seanning faile the shot will be swort urruss the sereorn to furn a line. This is not likely to canse damage.

\section*{BOTH BOOKS FREE}

Frise to weyp reader if Radio. Electron ics. No, string. hoth-

COMPLETE RADIO HANDBOOK RED HOT BUYS! The RADIO DATA BOOK
 the only radio handtwok of its kind . 1148 puges. . . ject more completely than any other book: ANYONE and every one in radoo and etectronics

\section*{ON SALE NOW ONLY \(\$ 5.00\)}
complete television manual The VIDEO hand book

The \(12 s\) amount of information contained in this lmok can only be briefly wutlined here. The wol illustrations-thousands of vital facts.

ADVANCE SALE-ONLY \$5.00!
MAKE SURE YOU GET YOUR COPY-ORDER NOW!

BOLAND \& BOYCE INC., PUBLSSHERS

CO-AX CABLE RG59U, 100 ft. \$ 5.25 500 ft .24 .75
TWIN LEAD.IN, 300 Ohms, 100 ft .1 .95
500 ft. 7.95 1000 ft .13 .75
PM SPEAKERS (Alnico No. 5 Mog.)
\begin{tabular}{lrrr}
\(4^{\prime \prime}\) & \(\$ 1.19\) & \(8^{\prime \prime}\) & \(\$ 3.95\) \\
\(5^{\prime \prime}\) & 1.39 & \(10^{\prime \prime}\) & 4.95 \\
\(6^{\prime \prime}\) & 1.75 & \(12^{\prime \prime}\) & 5.95
\end{tabular}

\section*{OUTPUT TRANSFORMERS}

MATCHING, 50L6, 25L6, 43, etc. \$. 39 PUSH PULL (2.25L6) .59 MATCHING, 6V6, 6K6, 6F6, etc. . 65 MATCHING, 6L6, heavy duty .79 UNIVERSAL, any tube setup . 95 AC-DC CHOKE, \(50 \mathrm{ma}, 10\) henrys .39
STANDARD VOLUME CONTROLS
10K. \(25 \mathrm{~K}, 50 \mathrm{~K}, 1 / 2 \mathrm{meg}, 1 \mathrm{meg} .2 \mathrm{meg}\). Less switch 19c With switch 39c

\section*{I.F. AND OSCILLATOR COILS}
I.F. TRANSFORMER, input \(456 \mathrm{kc} \$.39\) I.F. TRANSFORMER, output 456 kc .39 OSCILLATOR COIL. 456 kc .19 OSCILLATOR COIL. short wave . 19 FM-I.F. TRANSFORMER, \(10.7 \mathrm{mc} \quad .83\) FM-LIMITER TRANS. 10.7 mc .83 FM.DISCRIM. TRANS., 10.7 mc .83 FM-OSCILLATOR COIL 19 FM ANTENNA COIL … 19

\section*{WIRE SPECIALS}

6 FOOT LINE CORD. incl. plug \$. 12 ANTENNA HANK, 15 -ft. spool .15 RESISTANCE CORD. 150 ohms .39 RESISTANCE CORD, 180 ohms . 39 STEP-DOWN CORD, 220 to 110 V .79 ZIP CORD. 20 gauge, 500 feet 6.75

AUTO RADIO ACCESSORIES

\section*{VIBRATOR, 4 prong. non synch \$1.19} WHIP ANTENNA, side mount 1.95 CEN. CONDENSER, 5-200V . 22

\section*{PHONOGRAPH ITEMS}

IHONO AMPIIFIER. incl. 3 tubes......... \(\$ 3.95\) IHONO MOTOR, inct, turntable 2.95 (CKYSTAL PICKUl', incl. hardware 1.95 (RYSTAL CARTRIDCE, fits most pickups. 1.45 IPERMANENT SAPPHIRE NEEDIE
NEELDl, ('ID', automatic spring dowr
TOGGLE SWITCH. SIST
ToGGIE SWITCH. DI'sT
.15

\section*{MISCELLANEOUS ITEMS}
oNE POU'N! ROSIN SOl.bER 59 110 WATT ESICO EILEC. SOLID. IRON .. 2.36 BROOKS INVERTER. 110 V . DC to AC ... 8.95 FM condenser \& coll Kit. w inst..... 4.95 (HASSIS IPAN, incl. 8 mounted sockets 39 LOOD ANTENNA. oval AC-BC type 39 SHIENIIM RECTHIER, 100 ma 99 VARIABI,E CONDFNSER, 2 gang, 420/162 .68 VARIABIE CONDENSER, triple 420 mmid 1.45 VARIABLE CONDENSER. FM. S8 lo losme . 95 RADIO TUBE. HIN: sylvania, list \$2.65... . 39 100 TIBE ('ARTONS. GT type 95 110 TiCBE CARTONS. peanut type 75 100 Asst. CoNintinseks. . 001 (11 . 02 3.95 100 Asst. sockets. foct., oct., min. 4.95 100 Assr. REsistors. \(1 / 2\) walt 1.50 106 ASST. KNOlss. serew \& push on 4.95 10: ASsT. PHLOT LIGHTS. It \& \(17 \ldots \ldots\)..... 4.95
BROOKS RADIO DIST. CORP. 80 VESEY ST., DEPT. A NEW YORK 7, N.Y.

 mure muny, casily, quitkly. \$2Ju Wrekly nossithe. Wo 132 nd Avenue. Springfielil Garilens 13. New Yotk.

\section*{ \\ 398-10 Broadway New York 13, N.Y.}

Defense appropriations approved by the last session of Congress will require a total of \(\$ 1,000,000\) of electronic equipment over the mext two years or \(\$ 500\),000,000 in each rear. This will mean that the radio industry will be foreed to convert \(25^{\prime}\), of its facilities to the production of electronic equipment for defense by the end of this year,

\section*{RELAY TUBE}

Patent No. 2,443,5I
Michael Parcaro, Arlington, N. J. (Assigned to Penn Electric Switch Co. Goshen, Ind.)
The life of a tube can lie protonged lis oneratng its heater only whin neederl. However, if the plate voltagu is amplied before the heater reathes oberating temperature. the blate current will caluse hish wamoration of the emitting mawrisil on the surface of the cathode. This shortIIs its life cunsiderably
The primary purnwic of this tube is to prevent

blate current from flowing until the tilament is fully heated. I'u do this the inventor has included a thermal delay relay in the krid circuit of an wherwise morntal tuke.
In the diagram, the usual control grid is per mancortly connected to the bias supuly. When the filament and plate voltumos are lirst applied the hias on the contral prid prevents any plate current flow.
After the lilament has heated, the bimetallic strip Is elistorts and makes contact with the curntrul wrid. The numal signal or krid-control -oltape is connectud to the strjp. When cuntact is marie the excitation as well as the bias voltage abpears un the control grial and oberation is nurmal. In effect, the internal relay takes the ulsece of the external relay in series with the B-supuly often used with medium- and hichbuwer tulses in transmitting equipment for this same purbuse.

While many uses could be made of this inventom, the insentor refers particularly to nase in unattended relayontrol circuits, In several applications the filament could automatically be *witeherl on and aff intermittertly hut with usual fubs this is nut dune beanse of the severe deterioration sanseal by platecurrant flow hefore the filament is fully hefiterl. This tube would allow infermittent "proration with a consequen saving in filament wear.

\section*{A.C. REGULATOR \\ Patent No. 2.444.715}

Alec H. B. Walker, London, England (assigned to Union Switch \& Signal Co., Swissvale, Pa.)
Several impovements are included in this stabilizing transformer.
The bine is connected across the loft-hand wimeling. Output is taken from a fair of windang aruand the uther fwo lages of the corn Those are series-apposing. The risht-hand leg urerates at fatux density ghome satumation The erenter less incolules an air-gap, therefore its flux density is much lower.

The output valtage is due mainly to the winding around the rishtohand leg. This is mpposed and stabili\%orl lyy the valtage induced in the center leg winding which is more sonsitive to lond chantrs. A third winding is commerted to a series combenser and iron-core inductance which resunate at the third harmonic of the line frequency. The harmonic is areatly reduced, leaving a pure output wave.
The transformer may be designed for \(1: 1\) ratio or for voltage transformation.

MEASURING ELECTRON VELOCITY

\section*{Patent No. 2,442,961}

Edward G. Ramberg. Feasterville, Pa. (Assigned to Radio Corp. of America) Electron velucity can lee measured by its effects "In a whuturaphic film or screen. This invemtiminterptets velucity in terns of a colured film. Twu filmes are separated by a metallie deprsit which slows down electron particles, Each film has maximum sensitivity to electrons of the same velocity. Therefure the second film gets maximun! expmsure from electrons which had at hisher initial velocity. To determine which film has received expesure, eath is mixed with a differently culored dye.
The plate shawn hore is made of a plass subpurt, a red photoseraphic screen. a metallic depusit (such as maknesiaml and a green screen. Each screen has maximum sensitivity tolectrons of \(51 / \mathrm{kv}\) velocity. and the metal is sufficient to slow the welucity by 20 kr . Fach sereen is arranged in checker-botarcl matterns with the dye watches of one corresponding to the suaces between dye patches of the other.

In the presence of 50 kv electrons the sreen screen becames alark after developing. If the entire plate is then held to a light theser areas will look red. When the plate is exuresed to 70 kv . devtrons, the red screen becomes dark. There. fure the wlate looks green when held to a light. Difierent color shadings correspond to slightly* different electron velocities.

\section*{INDUCTION COMPASS}

\section*{Patent No. 2,444.290}

Carl-Erik Granquist, Lidingo, Sweden (assigned to
Svenska Aktiebolaget Gasaccumulator Lidingo, Sweden)
This compass indientes direction electronically. A filter is connceted between the instrument and the line to remove second-hurmonic distortion which may prolluce error. Then the a.c. is connected to one coil of a watmeter \(W\) and also through a phase-shifter to a coil I.1. The field due to this coil is shown as Hm .
Two mure roils L2. L3 are- shown tu left of is tibilized by a \(a\) re rotating core which is stibilizen hy a dyro. The rotating core \(C\) and the two
tal.
Two fields are cut by the rotating core. One is the field Hm and the other is the earth's maknetic field Hh . shown as making an angle d with the first. As C rotates it causes a voltarge to ho inducest in 1.2 and L.3. This is rectified and amplifiod by a screen-rid tube. The plate cireuit is tured to the line frequencs. The and compunent is passeal on to whe wattmoter poil.
The wattmeter indication is proportional to the ensine of the angle \(d\). The reating is zero the ensine of the angle di. The reating is zero this case Hm and 1 h are in the same direction.

 PHONOGRAPHS . . . Availoble in SEPARATE CHASSIS Like the POWERFUL SERIES 16 AM-FM Model above or in COMPLETE CONSOLES tike this..

\section*{Beautiful}

SYMPHONY GRAND
AM-FM Radio-Phonograph with TELEVISION Audio Switch-Over and NEW Intermix AUTOMATIC RECORD CHANGER
A Magnificent musical instrument and a masterpiece of cabinet design-the finest Midwest Radio in 29 years of manufacture. Offers world-ranging radio reception and newest automatic Intermix Record Changing Phonograph. Uses Series 16 Super DeLuke AM.FM Chassis. Giant \(141 / 2^{\prime \prime}\) Panasonic SpeakCr: Tri-Magnadyne Coil System; BuiltIn Loop Antenna. Other luxurious console and table model cabinets available
with Series 16,12 and 8 chassis with Series 16,12 and 8 chassis-on
Easy Terms and 30 Days Free Trial.

\section*{Rush for Free Catalog!}

\section*{GIL IN COUPON AND MAL TODAY OR JUST} SEND NAME AND AODEESS ON te POSTCAND

\section*{MIDWEST RADIO TELEVISION CORP.}

Dept. 383 90Y Broadway, Cincinnail 2, Ohlo
Please send me your new FREE 1949 Catalog.

Including the
Exdusive Midwest
FIASH-O-MATIC
Volure and Band Indication Titivision
Audio Swirch-Over MDEL-A-STAT Color-Roy Tone Selestion TRI-magnadrne Coil System
...Plus NO-drifi Fm and many other features

\title{
Poreign News
}
COMMAND RECEIVER AC POWER SUPPLY AND SPEAKER

\section*{BC 454 COMMAND} RECEIVER
3 to 6 Megacscles. Corers 75 \({ }^{\text {and }} 80\) meter amateur band matics, new...... \$6.95 TUNING CRANK for Comm.
Recelvers

\section*{AC POWER SUPPLY AND SPEAKER}

\section*{B 19 MARK II TRANSMITTING AND RECEIVING SETS}

MARKER BEACON RECEIVERS

\section*{INTERPHONE AMPLIFIER BC-347}

 or 3 for

\section*{SELSYN TRANSMITTER AND INDICATOR}

Ideal as Hadio lieam position indfertor, tor Hath, Telehndicator. Autosyn Trans. 1: Volf bin Csele iransformer.
and wiring instruetions. and "iring thstruetions. \(\$ 7.95\) 1-82 Indicator only 54.95

\section*{ANTENNA MAST MOUNT}

Multiple Mast Mount-Can be thounten On Chimmeys.
un gathe. slanted. or Hat roofs of ph sides or curners
 "ypes of Telecisigh and ry Alifinhits ith sizes nit th ware, plated. Complete with banding for \(\mathbf{\$ 4} \mathbf{\$. 5 0}\)
Mrice
Less bading 53.00

\section*{DYNAMOTORS-INVERTERS— MOTORS}

\section*{}

\section*{RADIO TUBES}

For immediate shipment
R.M.A. Guaranteed

Individually Sealed Cartons

GT type
6K6GT 40 Minialure Tynes
.46 IT4 .50
6V6GT . 46 IR5 . 55
6SA7GT . \(46354 \quad .55\)
6SJ7GT . 46 6BA6 . 50
6SK7GT . 46 6BE6 . 50
6SQ7GT . 46 6AT6 . 42
6X5GT . 40 12BA6 .50
12SA7GT . 46 12BE6 . 50
12SQ7GT . 46 12AT6 .42
12SK7GT . 46 35W4 42
12SJ7GT . 46 50B5 . 55
35L6GT . 40
3575GT . 32
50L6GT . 46
\(25 \%\) oeposit required on c.o.d.- \(2 \%\) c.o.d.
\(10 \%\) DISCOUNT ON LOTS OF 50 OR MORE
RAVAC ELECTRONICS CORP.
432 Fourth Avenue
New York 16, N. Y.

\section*{UN ASSEMBLY USES RADIO}

RADIO coverage of the United Nations General Assembly in Paris called for "the most complete and efficient installations ever made in France's history," according to officials of the French Broadcasting System.
The installations, thrown open to the world's radio correspondents and commentators during the Assembly sessions, were made by the French Broadcasting System in cooperation with the United Nations. They included the first use in any international session of the Frenchmade Magnetophone, a tape-recording device which reproduces sound with such astonishing fidelity that even trained musicians are said to be unable to distinguish its recordings from live performances.
In addition to the numerous broad. casting booths installed in the plenary session and committee rooms, six studios for special interviews and commentaries were built into the Palais de Chaillot, the General Assembly's temporary home. A battery of 13 recording ma chines manned loy France's outstanding recording experts was available to the world's radio reporters. Live broadcasts were relayed through a special control room ly wire and cable to London, Brus sels, Holland, and Geneva, and by shortwave radio to the United States. Complete broadcasts of the sessions were also short-waved throughout the world over the French Broadcasting System's facilities.

Much of the equipment provided by the French Broadcasting System was manufactured especially for the occasion, and a hundred of France's top technicians were assigned to the operation of running and servicing it for the assembly.

Sugtrested bu: Grego IInnshuel

\section*{CORRECTION}

Mr. Gene Conklin informs us that the yearly license fee for radio servicemen in Costa Rica is \(\$ 10.00\) rather than \(\$ 100.00\) as stated in his article, "Radio in Latin America," on page 69 of the August issue.
owner of any car who has fitted an interference suppressor to its ignition system can ohtain one of these free of charge from the Radio Society of Great Britain. He then fixes it to his windshield, telling the world that he is doing his lit in the warfare agaiust television interference. I haven't the least doubt that the idea will be a success. To "suppress" an auto costs so little and means so much to televiewers that in television service areas the owner of the vehicle whose windshield doesn't carry the sticker will soon come to be looked upon

Fig. 2-Stickers identify "suppressed" cars
as a public enemy. It's a really good idea; I take pleasure in passing it on.

\section*{Olympic retrospect}

Quite apart from our admiration of the wonderful performance of competitors from the United States in the Olympies, the coming of so many Americans to watch the athletic and other events has given us a great deal of pleasure.
One point of special interest was the impression made on American visitors hy our television. Naturally, I was anxious to learn how the received images compared with those on American viewing screens. As the BBC televised most of the big items of the Games, there was plenty of opportunity for comparison. It was good to experience the U. S. A. enthusiasm and to find how surprised the Americans were that our 405 -line system could accontplish so much.
Actually, it's all wrong to imagine that definition is fixed by the number of lines. You can't, of course, drop below a certain minimum nunber (probably about 300) without having a poor image. But once you send a reasonable number of lines, the most important factor is the range of modulation frequencies gemumely transmitted and properly handled by the receiver. Unless this is sufficient your screen picture is "muzzy" and seems not to be sharply focused. This happens because the video impulses are not square enough, with the result that the different shadings merge gradually into one another instead of being sharply defined. Our frequency range is 2.7 mc -a total band width of 5.4 mc . This, with the very efficient cameras which have been developed, seemed to me to give images about as clear as one could wish. I was glad to hear from American visitors that they were agreably surprised by the definition and the depth of foons.

\section*{Intraducing... \\ }

Model 12A3-Two-unit remole-controt amplifier, Dec. orotor-styled controt cabinet for living-room use. Also

\(\mathbf{H}^{\text {E }}\)ERE it is at last-an amplifier of incomparable performancehuilt up to the highest standards of Brook enginecring-in the moderate price field.
Within the range of its power rating the new Model 12A3 is equal in all respects to the world-renowned Brook 30 -watt amplifiers.

The use of low-mu triodes in all stages, together with Brook-designed transformers available io no other amplifier, permits the cleanest amplification ever achieved . . . with
intermodulation and harmonic discortion reduced to the vanishing point at uny power up to maximum. Frequency response is flat within 0.2 DB from 20 to 20,000 cycles. Now for the first time, the distor-tion-free all-triode performance which the Brook Amplifier alone provides is available at a new low cost. Orders will be filled as rapidly as production permits.
W rite TODAY for copy of detailed Distortion Analysis and Technical Bulletin SL-8!

Dealer Inquiries invifed - Stondard Discounts Apply

\section*{The Brook High Qualify Amplifier}

- Designed by LINCOLN WALSH

BROOK ELECTRONICS, Inc.,
34 DeHart Ploce, Elizabeth 2, N. J.
\(\star\) POLICALARM
F. M. RADIO

RECEIVER
\(\$ 39^{95}\)
Excise tax included. F.O.B. Indianapotis \(\$ 10\) cash, rest C.O.D Slightly higher west
 of Rockies.
TUNES 152-162 MEGACYCLES 6.tube superheterodyne, ready to operate. Veneer cabinet \(91 / 2 \times 61 / 4 \times 51 / 4\) deep, wt. 6 lbs. Schematic inside back cover, warranty outside. 2 stages high gain 10.7 megacycle I. F.'s. Guaranteed reception from local F.M. transmitters with attached antenna -police, cabs, others. Ready 10 plug in and use. 115 volts, A.C.-D.C. Power consumed 2B watts. SOME CHOICE OEALERSHIPS OPEN . . . WRITE

\section*{RADIO APPARATUS CO.} 729 N. BANCROFT ST. INDIANAPOLIS I, IND.

\section*{GREYLOCK \\ A Dependable Name in RADIO TUBES}

GT. Glass at miniature Types
\begin{tabular}{|c|c|c|c|}
\hline 6A8G T & 12AT6 & 1 R5 & \\
\hline GAT6 & 12BA6 & 174 & \\
\hline 6BA6 & 12BE6 & tu4 & - \\
\hline 6BE6 & 12 K 7 GT
1207 GT & 155
\(3 S 4\) & \() 0\) \\
\hline 6K7GT & \({ }^{1207 \mathrm{GT}}\) & \(3{ }^{3} 4\) & \\
\hline 6Q7GT & +2SA7 & \(3 \mathrm{O}_{4}\) & \\
\hline 6SA7GT & 125157
12507 & 3 V 4 & \\
\hline 6SK7GT & \({ }^{2} 5 \mathrm{LLGGT}\) & 12 AU6 & \\
\hline 6SQ7GT & \({ }^{2526 G G T}\) & \({ }^{12 \mathrm{BFF}}\) & \\
\hline 6 6 6 GT & \(35{ }^{3} 4\) & \(35 \mathrm{B5}\) & each \\
\hline 6X4 & \(50 \mathrm{B5}\) & 35 l 36GT & \\
\hline 12A8GT & 50L6 & 3525GT & \\
\hline
\end{tabular}

near the mouth of the Thames estuary its main industry is to provide seaside fun and games for visitors. Londoners flock there in thousands. Though it insists on calling itself Southend-on-sea, the town is, as a matter of fact, some few miles up the river. But the estuary is about seven miles wide here, and the town dweller gets the impression of a vast expanse of water, which is certainly salt.

Since the estuary has shallows extending a long way out from the shore even at high tide, Southend had to build one of the world's longest piers to enable the steamboats, which bring so many of its visitors, to use it as a port of call. That pier is actually over \(11 / 2\) miles in length and juts out right into the main channel, through which there is a ceaseless passing of ships to and from the Port of London.

Could there be a better place than the end of this enormous pier at which to set up a school for training future radar operators of the mercantile marine? Radar apparatus situated there has its screens as well supplied with "breaks" caused by passing ships as though it were carried on a vessel afloat in mid-channel.

That is just what has been done in the last few weeks. Some of the most up-to-date ship radar equipment has been set up. The scanner provides a lookout extending many miles upstream and downstream; the display is exactly the same as in shipborne radar. Classes of student operators are undergoing intensive training.
But don't forget that Southend is above all things a holiday town, all out to entertain its visitors. The opportunity of showing them "the wonders of radar" was too good to be missed. And it hasn't been missed. A repeater PPI tube has been installed in a room open to all. Do the holidaymakers like it? They do indeed! The radar cabin is now one of Southend's most popular sideshows.

\section*{New dry cell}

For the best part of 50 years the dry cell just stagnated. Until recently we operated our flashlights or portable radios from cells little more efficient

\title{
European Report
}

\section*{By Major Ralph W. Hallows}

\author{
radio-Electronics London Correspondent
}
than those which were available to our grandfathers. The zinc-sal ammoniacmanganese dioxide-carbon cell had been good enough for them, and for a long time it seemed that it would be all that we would ever get. Though it has a good many things to recommend it, that combination of electrodes, electrolyte, and depolarizer is a very long way from ideal. The worst of its shortcomings is that it has a continually falling e.m.f. while under load. True, it recuperates to a large extent when given a rest, but it never quite regains all that it has lost. During a rest the e.m.f. rises, but it never reaches the point at which it was when the previous discharge began.
All this is due to the effects of polari-zation-and incomplete depolarization. Polarization means that positive hydrogen ions arriving at the carbon electrode to give it its positive charge stay there after they have been neutralized by grabbing electrons reaching the carbon from the outside circuit. In theory the manganese-dioxide depolarizer should hand out enough oxygen atoms to enable the hydrogen molecules to combine with them and form water. In practice it doesn't. Both short-term and long-term polarization occur. During discharge the chemical combination is not sufficiently rapid to cause all the hydrogen mole-

Fig. I-Vidor Kalium cell has extended life.
cules to form water. Short-term polarization thus occurs because of the formation of a film of hydrogen gas round the carbon rod. The internal resistance goes up, and down goes the e.m.f.
When the cell is rested, the \(\mathrm{MnO}_{z}\) depolarizer does further cleaning-up work; but it never entirely catches up with its job. After every discharge and the following rest the film is a little denser, the internal resistance a little greater, and the e.m.f. a little lower.

Two noteworthy attacks on basic problems of the dry cell have been made recently. One resulted in the Ruben-Mallory cell; a second has just led in Britain to the Vidor Kalium cell. The Vidor cell, whose internal makeup is shown in Fig. 1, has many interesting points. The
zinc can of the original Leclanche dry cell is still there to form the negative contact. There is, again, a central carbon rod. But the electrolyte is caustic potash (KOH) and the depolarizer mercuric oxide (HgO). The top of the carbon rod is pressed hard against the tinplate cap of the cell. A boss in the cap forms the positive contact. As the Kalium cells are made in sizes identical with those of the familiar Leclanche cells, they can replace them anywherethey have the same diameter, the same length, and the same contacts.

But there's a vast difference in their performance. I've just tested out some of the new Vidor cells of the \(61 \times 32.5\) mm size. I was asked by the makers to treat 'em rough, so I did. Each cell was discharged contimuously and with no rests through a resistance of 5 ohms. As the initial e.m.f. under load is about 1.25 v , this means a nominal current of 0.25 amp . Try that test on the best Leclanché cell of the same size and see what happens. The needle of the voltmeter moves visibly downward, and before so very long reaches the cutoff of 1.0 v . The new cells are perfectly happy with this load. They settle down almost at once to an e.m.f. of 1.15 v and maintain it. My tests showed that the e.m.f. was constant within \(\pm 0.025 \mathrm{v}\) for the first 25 hours of such continuous heavy discharge. Then it fell gradually for a further \(101 / 2\) hours until it had reached 1.0 v . After that it was a landslide; within an additional \(11 / 2\) hours it had fallen almost to zero. The e.m.f. may seem rather low, but I must say I prefer a moderate e.m.f. which stays put to a nominally higher one which doesn't.

The Kalium cell is available right down to the \(35.5 \times 20-\mathrm{mm}\) and \(51 \times 14-\) mm sizes. The rather complicated selies of chemical reactions during discharge is still a matter of some doubt; but don't be surprised at that, for electrochemists still wage fiercer battles of words over those of the lead-acid secondary cell. Those of the Kalium cell are probably:
1. \(\mathrm{Zn}+\mathrm{HOH}=\mathrm{Zn}(\mathrm{OH})_{:}+2 \mathrm{H}\)
(formation of zinc hydroxide and hydrogen)
2. \(2 \mathrm{H}+\mathrm{HgO}=\mathrm{Hg}+\mathrm{HOH}\) (removal of hydrogen)
3. \(\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{KOH}=\mathrm{K}_{\mathrm{z}} \mathrm{ZnO}_{z}+\) \(2 \mathrm{H}_{z} \mathrm{O}+2 \mathrm{KOH}\).
(Removal of zinc hydroxide)
The only snags are that this cell is more expensive to produce than the Leclanché and relatively is not as efficient under light loads as under heav: ones. It needs, in fact, vigorous chemical reactions inside it to be at its best.

\section*{The war on interference}

I'm sure you'll approve of the automobile sticker shown in Fig. 2. The

\title{
Instrument Voltage Supply
}

A cheap and simple power supply that provides up
to 50 ma at exactly 90 volts for instrument use

By R. L. PARMENTER

VERY frequently resistors that are in the order of megohms have to be checked. Usually an external battery is used with a limiting resistor to extend the resistance range of the average ohmmeter: A Bhattery will last a long time and its cost is not too great, but there are advan-

Fig. I-A regulator tube fixes the voltage.
tages in having a small power supply available for the purpose.

This small regulated supply provides 90 volts at 50 ma. There is no warm-up period; the potential is there as soon as the line switch is snapped. Such a power supply can also be used as a B-supply for servicing battery receivers up to its limit of 50 ma. This limit might be extended somewhat by using a heavierduty choke. The cost of the unit is nominal, about twice the price of B-batteries, hut it will last indefinitely. With the \(0 B 3 /\) 'R90, a regulated potential of 90 volts is obtained. Since this is a multiple of the batteries commonly used in ohmmeters, the resistance readings of the instrument can generally be multiplied by the proper factor without need of recalibration. In other words, if a 4.5 -volt battery is normally used in the ohmmeter circuit the multiplier would he 20 , since 90 divided by 4.5 equals 20 .

The cireuit diagram is shown in Fig. 1. The 1,000 -ohm. 10 -watt adjustable resistor is for setting the current flow through the regulator tube to the proper value. This may be done very casily ly inserting a \(0-50-m a\) meter between the resistor and the tube. Adjust the slider until the current flowing through the tube is about 20 ma. This will provide good regulation even when the line voltage varies over a considerable range. The \(1 / 4\)-watt neon luulb is used as a pilot lamp. Observe the polarity of the rectifier unit when wiring.

The cabinet was constructed of masonite and wood.

The unit described was built to be used with the volt-ohm-milliammeter shown in the photo, which calls for a 90 -volt external battery for the ohms \(\times 1,000\) range and provides readings up to 10 merohms. With any similar meter, where jacks are provided for connecting an external battery, the 90 -volt supply can be connected to these jacks and no further equipment is needed.

When the meter has no provision for connection of an external battery, a cur-rent-limiting resistor and a zero adjuster must be added. A separate box cam be used for these, or they can be built right into the power-supply case.

To find the values for these resistors, the huilder must know the basic full-

The voltage supply and a 90 -volt ohmmeter. scale range of the meter movement. This can usually be judged from the voltage ratings: a 1.000-ohm-per-volt multimeter has a 1 -ma movement; a 10.000 -ohm-per-volt unit has a 100-uta movement; and so on.

Fig. 2-Circuit of highoresistance ohmmeter.
The circuit is shown in F'ig. 2. R1 phis I: equals the total series resistance which, when the test prods are shorted. will give a full-scale meter reading. If the meter has il 1-ma movement,
\[
\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}}=\frac{90}{.001}=90.000 \mathrm{ohms}
\]

Suitable values would then be around 80,000 ohms for R1 and 20,000 ohms for R2 (to give it a little extra adjustment range).

To measure a resistor, connect the circuit of Fig. 2 to the multimeter through the milliampere jacks on the panel. Short the test terminals \(A\) and \(B\), and adjust R2 for full-scale reading. Now insert the unknown resistor between the test terminals and read the value from the ohms scale, multiplying by the proper factor.

The circuit of Fig. 2 can be used with any milliammeter, even one not calibrated in ohms. Having found the total series resistance necessary for full-scale meter reading (R1 plus R2), use the following formula to find the value of an unknown resistor:
\[
\mathrm{Rx}=\frac{90}{\mathrm{Im} 1}-(\mathrm{R} 1+\mathrm{R} 2)
\]
where Rx is the unknown resistor and Im is the millianmeter reading (in amperes) with the unknown in the circuit.

For instance, if the meter is a \(0-1-\mathrm{ma}\) unit. R1 plus R2 will equal 90,000 . If the meter reading is 0.5 ma (.0005 amp), the formula will read:
\(\mathrm{Rx}=\frac{90}{.0005}-90,000=90.000 \mathrm{ohms}\).
An easier approach is to calibrate the meter with a number of known resistors. and paste a chart or table on some convenient part of the instrument.

When taking readings, beware of shock. Even 90 volts can be uncomfortable.

The panel sheif makes construction easier.

29 Years of Service－500，000 Satisfied Customers

\section*{NEW L．C．CATALOG ELLCTRFIFES RADIO MEN}
 THE BARGAIN COUNTER
 Here＇s your chance to pick up some of the latest developments at big money savings．Every one a bona－fide＂buy＂：

UNBELIEVABLE VaLUE IN A 10＂SPEAKER
Grab upa couple at this amazingly low price．
They＇re top quality \(10{ }^{\circ}\) M speakers． 4.8 oz．Almico \(V\) magnet．Voice coil impedance 3.2 ohms．Up to a booming 8
 Lots of 3．．． \(3.2 \overline{\mathrm{e}}\) ea．－Lots of \(6 . . .83 .10 \mathrm{ez}\) MICROGROOVE PICK－UP FOR NEW LP RECORDS

For the new long－playing records，crysta phono piakup or reproduction of lateral cut
long paying microgroove records at \(331 / 3\) rpm．Excellent frequency response for voice and music．Output voltage approx． 1 volt．Extremely low tracking \(\$ / 95\)
force．No． 99 N 3577 R ．Wi． 12 oz．．．．
THIS IS IT！NEW VM DUO SPEED CHANGER！

FOR NEW 331／3 AND STANDARD 78 RPM RECORDS

Four hours＇continuous entertainment with a stack of 3313 rpm ．records；one hour con－ \(10^{\prime \prime}\) records，intermixed．）U＇niversal dual speed motar．，Quick，quiet－changing cycle， takes less than 4 seconds．Automatic shut－ off．single tone arm returns to rest and mechanism shuts of after isst record． －no adjustrnents．Dual needle reversible cart ridge；single speed control．Mounting
 No． 34 N 22563 R －same as above，mounted

MADE TO SELL FOR \(\$ 14950\) NOW AN AMAZING \(\$ 59^{95}\)

Ano tuin in 7 BAND RECEIVER
 \(8^{\prime \prime}\) DM dynamic speaker delivers an undis－ torted 4.5 watt output． 3 gang condenser． RF stage．Supersensitive． \(110-220\) V．AC． Guarantced foreign reception．Beautifully
finished cabinet．All heavy duty components． Quantity limited so rush your

PORTABLE BICYCLE RADIO
Battery operated．
Can be easily
mounted or car． mounted or car．
ried as a personal．
Supplied complete Supplied complete
with all bicycle mounting haraware and telescopic antenna which plugs into radio．Slide rule dial．Ver－ Operates on inexpensive flashlight cells and standard \(671 / 2\) volt＂\(B\)＂battery．Attached handle．Lightweight．Case beautifully fin．
ished．Anti－theft feature． \(71 / 4 \times 41 / 4 \times 3 / 22^{6}\) ． Weight： 3 libs, 3 oz．No． \(1 \times 420\) R \(\$ 1995\)
Battery kit，\(\$ 1.84 \ldots ~\)

ONE THIRD LESS THAN YOU＇D ordinarily PAY FOR THIS BIG \(15^{\prime \prime}\) CO－AX HI－FI SPEAKER Ideal for quality FM－AM receivers． \(15^{\circ}\) dual speaker system with built－in frequency net－ work．Tweeter and woofer reproduce entire With built－in load resistor． 8 s 995 ohm input inpedance．
No． \(99 \mathrm{NF} 014 \mathrm{R}-24 \mathrm{lbs}\).\(\$ 495\)
SPECIAL BULLETINS
Dont mins getting coynes of our two new
Frce bulletins．One on TV．the other a Christmas Gift Calalog．Both will sare you money！The Xmas book＇s a real eyeoppener．．．full of unusual ideas and grand valucs．Send the coupon．

Economy－minded hams，set builders，service men overwhelmed by giant new book！＂Never saw anything like it！＂．．．＂As good as money in the bank！＂－typical comments．

\section*{Law Upholds Landlord on TV Antennae}

Under the law landlords appear to be within their rights in refusing permission for erection of antennae by apartment ten－ permission to some residents and bar others， without being held answerable to those who are denied this favor．Courts have held that the rental of an apartment does not give the lessee any proprietary right to attach any parts of a building．
The property owner also is held to be within The property owner also is held to be within
his rights in removing an aerial which has his rights in removing an gerial which has
been set up without his pernigsion，pro－ vided he takes the precaution of returning the equipment intact to the tensnt in his building．

NEW \(3311 / 3\) RPM PLAYER
our Xeral for the top names on your Xmas list．Sure to make a hit； one has it yet． \(331 / 3 \mathrm{rpm}\) ．motor（ 110 volts， 60 cycle）for sensational long pronve pick－up，with life－long needle． Portable cabinet covered with simu ared leather，handsomely lined． lays \(12^{*}\) record with cover closed． R．C．A．phono jack radio．\(\$ 1\) 85
No． 34 N 22677 R ．．．．．．．

Listen－how would you feel if you opened your mail box this A．M．and found an envel． ope stuffed with crisp new fives and tens？ That＇s how veteran bargain hunters react when they open their copies of the giant in the mails！
IT＇S THE NEXT BEST THING TO A BANKBOOK
180 pages solidly crammed with sensational buys，＂made possible by the purchasing power of the largest radio supply organiza－ mous the world－plus everything in fa． mous brafds！There＇s hardly a page with－ out come real＂hnd＂in TV，Hi－Fi，Ham Parts FM Radios，P．A．，Test Equipment

every day you let 60 by with－ OUT THIS CATALOG IS COSTING YOU HARD CASH！

\section*{海外頼各} OVERSEAS CUSTOMERS CLIENTES DE ULTRAMAR Send your communications Send your communications

\section*{RUSH THIS COUPON AT ONCE FOR YOUR FREE CATALOG}

TUBE PIN STRAIGHTENER
Hytron Radio \& Electronics Corp. Salem, Mass.
This miniature-tube pin straightener companion device to this company's seven-pin straightener. Miniature-tube pins are actually thin wire extensions of the tube elements and are easily mis. aliged,
useless. The straimes making the tube to the bench. Each tube is inserted in it before being plugged into its socket.

BICYCLE RADIO
Trin Radio Co. Brooklyn, N. Y.
Attachment devices are offered for cyclists who like to listen to a radio en route. The devices are champed to the
handle bars and will hold battery re. ceivers of any height and measuring up to \(\pi y / 4\) inches in length and 6 inches in width. The brackets absorb shocks, pre. ventina damage to the set.

OSCILLOSYNCHRO. SCOPE
Browning Laboratories, Inc. Winchester, Mass.
Model OL-158 Oscillosynchroscope is a new laboratory instrument for ob-
servation of transient and recurrent servation of transient and recurrent
phenomens involving wide ranges of frequencies. A 5 -inch cathode-rov tube with 4,000 volts accelerating potential provides excelien

Other features include a vertical am plifier band width of 6 mc , recurrent sweeps of from 5 to 500,000 per second, second per inch to 200 microseconds second per inch to 200 microseconds is also provided, as well as a variable
delay circuit which may to used to pro.
vide delayed triggers swe delayed triggers \({ }^{\circ}\) a delayed sweep either internally o externaily vides measurement of
The vertical amplifier.
without positive slope fro'n 10 cycles to 6 me, has a transient resp ir se such that 100 .kc square wave which rises or falls
of the rate of 500 volts per microsecond

\section*{ISOLATION TRANSFORMER}

\section*{Radio Corporation of America} Camden. N. J.
The Isotap variablevoltage isolation trisnsformer is designed for the service.
man, but it can also be used in homes where line voltage is too low or too
high for proper radio or television
A tap switch may be set for the avail. able line voltage. Three a.c. outp'J

DIUM, and HIGH. These provide 105, 117 . and 130 volts, respectively. The test oscillator stability and the high voltage to "pop" components which are ready to fail. In all cases, the unit a.c.-d.c. equipment

\section*{DISC RECORDER}

Risco Electronics
New York, N. Y.
Records may be made at either 78 op \(33 \mathrm{l} / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}\). with this portable unit. ism is used. The cutting mechan* ism is used. The recorder includes crystal microphone, and a 6 -inch crystal
speaker.

TV-FM ALIGNER Philco Corporation Philadelphia, Pa.
Model 7008 precision visual-alignment generator for television and FM con. tains in one instrument all the gene just FM and TV receivers. The basic unit adjustable up to 15 mc . An AM gen erator tunable from 3.2 to 250 mc can be used by itself or as a morker for
the FM and TV alignments. A crystal calibrator provides check points every 5 mc to maintain the reset accuracy of the generators. The AM oscillator can
be modulated by the internal \(400-\mathrm{cvcle}\) a.f. generator to produce a modulated test signal.
Above the generators on the same panel is a 3inch cathode-ray tube with its controls. This oscilloscope unit is
operated from the same power supply operated from the same power supply as the generators. Sensitivity of the inch (vertical). Phasing and blanking controls are

Output is controlled by a shielded attenuator. To compensate for the loss in gain usually present at the higher frequencies, output of all generators in creases about five times at the high frequencies over that at the low end of
the range, giving fairly constant output
SQUARE HOLE CHASSIS PUNCH
Pioneer Broach Co. Los Angeles, Calif.
This chassis punch operates on the same principle as the familiar tube. others. A hole is drilled in the metal to accommodate the cop screw. The die and the punch are placed on opposite sides of the metal and screwing down the bolt makes the punch go through the metal, cutting out a clean square hole to accommodate transformers or other rectangular components.
Any shape of hole having square copners may be cut out with the new punch. It is ofered a

\section*{TWO-SPEED PHONO TABLE}

Alliance Mfg. Co. Alliance, OOhio
The new two-speed turntable is designed for playing Columbia Micro. groove records as well \({ }^{\text {bs }}\) ordinary
phonograph discs. A dual version of this manufacturer's Model 80 table, the unit uses two motors, one for each speed, a single lever controlling both speeds. It has a center off position, in which both motor shafts are disengaged from the idlers to prevent flats from developing on the idlers and causing wows.

\section*{MULTITESTER}

Triplett Electrical Instrument Co. Bluffton, Ohio
Model 630 volt-ohm-milliammeter has six d.c. voltage ranges at 20.000 ohms ohms per volt. Top voltage on each is 6,000 . Five d.c. ranges are included, the lowest 60 ma full scale and the highest 12 amperes. Resistance up to 100 meg . ohms and -30 to +30 decibels may be measured.

AUDIO OSCILLATOR General Electric Co. Syracuse, N. Y
The YGA-4 audio test generator is The entire range from 25 to 16.000 cycles is covered in one band. Output has low ting of the volume contral within \(\pm 1 \mathrm{db}\) over the band.

\section*{TV ALIGNMENT} MARKER
Vision Research Laboratories Richmond Hill, N. Y. Model TM-100 is an absorption trap

ment generator as a marker. Instead of small usual pip on the scope screen, a unit uses no power and is hand-calibrated. Frequency range is from 9.5 to 2 Bmc .

\section*{DUAL CLIP \\ Mueller Electric Co. Cleveland, Ohio}

The new No. 22 Twin-Clip has two jaws, one at each end, as well as 3 crew terminal in the center. It can be porarily or to conno pieces of wire temporarily or to connect a lead to two or mental purposes. The sprina is in the center and both jaws may be is in the once by squeezing the spring. Squeezing the clip at either end couses only one set of juws to open without disturb. ing the other. The Twin.Clip is macae of cadmium-plated steel.

\section*{SPEECH CLIPPER}

Elecłro-Voice, Inc
Buchanan, Mich.
Model 1000 speech clipper is a diode unit designed to increase the effective output of transmitter without exceed.
ing \(100 \%\) modulation. As much as 20 db

of clipping can be accomplished. A low-pass filter attenuates the harmonics created by the clipping. 3ction. A \(6 S C 7\)
and a 6 H 6 are used. B.plus (iso volts \(t 5\) ma) and 63 volts at 0,6 amp for the filaments must be furnished from an external supply.

\section*{BATTERY TESTER}

Chicago Industrial Instrument Co Chicago, III.
Batteries of any voltage from 1.5 to 150 may be tested with Model 471 buttery Merchandiser. The buttery is tested under the recommended load. A \(51 / 2\). inch meter is divided into three
NEW, USEFUL, and REPLACE.

REACHING TOOL
Emco Enterprises Chicago, III.
Flex-o-pic is a fiexible tool for pick ing up small parts in hard-to reach lo type employed in speedometers and which employed be furnished in any length. A claw at one end, operated by a button at the other end, picks up small ob The unit may be taken opart for
cleaning. It is chromium-plated and acid-proof.

Electron microscope, perfected at RCA Laboratories, reveals hitherto hidden facts about the structure of bacteria.

\section*{Bacteria bigger than a Terrier}

Once scientists, exploring the invisible, worked relatively "blind." Few microscopes magnified more than 1500 diameters. Many bacteria, and almost all viruses, remained invisible.

Then RCA scientists opened new windows into a hidden world-with the first commercially practical electron microscope. In the laboratory this instrument has reached magnifications of 200,000 diameters and over. \(\mathbf{1 0 0 , 0 0 0}\) is commonplace...

To understand such figures, pic-
ture this: \(\AA^{\circ}\) man magnified 200,000 times could lie with his head in Washington, D. C., and his feet in New York.... A hair similarly magnified would appear as large as the Washington monument.

Scientists not only see bacteria, but also viruses -and have even photographed a molecule! Specialists in other fields-such is industry, mining, agriculture, forestry-have learned unsuspected truths about natural resources.
Development of the electron
microscope as a practical tool of science, medicine, and industry is another example of RCA research at work. This leadership is part of all instruments bearing the names RCA, and RCA Victor.

When in Radio City, New York, you are cordially invited to see the radio, television and electronic wonders at RCA Exhibition Hall, 36 West \(49 t h\) Street. Free admission, Radio Corporation of America, RCA Building, Radio City, New York 20.

Combines - top-quality 6 tube superhet receiver, plus office or home intercom system in hondsome walnut-veneer cobinels. Hi-Amplification 3 fube iniercom permits instant communicotion between remote station can call the moster while padio is ploying; coll con be returned to ony remote stotion. Operotes on 110 volts AC or DC Operotes on \(J 10\) volis AC or DC
It's hondsome-It's eosy to instoll-ti's easy to usel
Price Includer Rodio Mozter, I Remete, \(50^{\prime}\) wire
Original retall price was
\(\$ 84.50\) with 4 remotes. Buy from RSE and SAVE OVER \(50 \%\).
arand new-only 400 avaif. able.
\(\$ 2995\)
Erifa Remetes - \(\$ 3.55\)
MIDGET I.F.TRANSFORMERS
Back again-by popular demond!
RSE scores ogain with a new and better I. F.! 400.500 KC ronge- \(11 / 4\) " square x high in ceromic bosed mico trimmershigh goin iron cores-pep up old receivers, deol for new construction- and now ovail. peat performancel Individuolly bexed in the colorful RSE corton, List price \(\$ 210\) LR1—-input; LR2-output;
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Specify Jype.} \\
\hline Each & Matched Polr & Dozen & Egg Crate of 100 \\
\hline 36 c & 69 & 3.95 & \$29.00 \\
\hline
\end{tabular}

nationown privare brand-made by
notionolly known monufocturer. The some kind thot net for \(\$ 1.09\). Noise-free corbon con struction, stond ord shaft and bushing. Individuolly of opproval. Complete with switch, full ronge of sizes 10 M ohms 100 M ohms 15 M ohms 250 M ohms 25 M ohms 500 M ohms 50 M ohms 1 Meg ohms 2 Meg ohms
each
59c
Som knvide shoft assti- 5.50
\begin{tabular}{|c|}
\hline \multirow[t]{18}{*}{} \\
\hline \end{tabular}

SIGNAL TRACERS ARE POPULAR
(Comtinued from page 56)
not obtainable, the time spent in winding them with a high-value carbon resistor as a form, well repays the trouble. (Winding 4,700 - and \(15,000-\mathrm{ohm}\) resistors with resistance wire is not too easy, and the likelihood of any constructor's getting the same residual inductance and capacitance values as those in the author's instrument seem fairly remote depending pretty much on accident. Possibly ordinary carbon resistors could be used with small r.f. chokes in series.-Editor)

\section*{An excellent indicator}

The 6 E 5 has proved itself an excellent detector. It is especially useful in one instance where other indication devices would be more or less useless-on a weak unmodulated carrier provided by the local oscillator of a superheterodyne receiver. It is obviously impossible to detect by ear whether a local oscillator is oscillating; but, by placing the r.f. prod of the tracer on the plate of the oscillator, a clear indication can be obtained from the 6E5 by the partial closing of the eve. Naturally, the response of the eye is not as great as it would be normally, but it is sufficient for the purpose.
It is essential that stray pickup should be guarded against, and therefore metal 6J7 and rectifier tubes should be used. If possible, an open-ended shield can should be placed round the 6E5.
The instrument is built on a chassis inside a \(6 \times 7 \times 10\)-inch metal cabinet.
Fig. 2 shows the probes. Notice that the shiclding is made continuous from the probe tip to the tracer jack by bonding the probe case to the cable shielding.

This tracer has been found extremely useful on outside service jobs, on account of its lightness and portahility. Its weight is little more than that of the average battery-operated multirange meter.

\section*{A bigger instrument}

For bench work, a much more elaborate instrument is used. The circuit is shown in Fig. 3.
As a bench analyzer may frequently be used to trace very weak signals, considerable r.f. gain is advisable. Two r.f. stages are incorporated, both of them heing resistance-capacitance-coupled and having the r.f. gain control in the common cathode leads. These are followed by a cathode-follower detector, chosen for its signal-handling properties, high fidelity, and minimum damping effect upon the previous stage. The signal is then passed on to a 6C5 audio amplifier (into which the a.f. prod is fed), and finally into a 6V6 output stage.

Notice that two terminals have been connected to the voice-coil leads for insertion of an external a.c. voltmeter which can be used as a visual indicator.

Bonding between chassis and panels and all other shielding must be thorough
if the instrument is to be a first-class job.

\section*{Operating the tracer}

The tracer is easy to operate. When using the r.f. probe, the a.f. gain control should be kept at maximum, and any adjustment of gain should be made on the r.f. gain control in order to keep tube noise to a minimum. When using the a.f. probe, the r.f. stages are not in use and the gain control may be turned down. While not essential, this will make for a clearer signal.

Let us suppose that the receiver under test has poor quality. The first thing is to tune in a local station or inject a signal from a generator into the antenna terminal of the receiver. The second is to silence the receiver's speaker as we shall be using that in the tracer. Probably the best way to silence the speaker is to disconnect the speaker transformer secondary and replace the voice coil with a load resistor. In that way no damage can be caused to the output tube or transformer.

Now by placing the r.f. probe on the various grids and anodes the signal can be made to appear in the tracer's speaker. If no fault is apparent up to the second detector, change over to the a.f. probe. Once the faulty section has been found, the bad component can often be determined by injecting a signal at various points of the input to the tube and using the probe.

Occasionally a receiver will be found in which the signal, if there at all, is so weak as to be inaudible on its own speaker. In such cases, if the signal is not audible when the r.f. probe is placed on the first detector plate, it can be assumed that the local oscillator is not functioning, and checking can be done on that basis. On the other hand, al though the signal is strong at the receiver input, it may arrive at the speaker distorted and weak. Tracing through with the instrument, a stage will be reached at which there is a marked diminution in the gain. Some measure of the actual loss can be secured by rotating the r.f. gain control and noting how much rotation is needed to bring the signal back to its former strength.

With experience the operator will rapidly become familiar with these and many other faults indicated by the tracer and will find that it is one of the handiest bits of gear any service technician can possess.

There are four rules to remember when using a signal tracer: (1) Always see that the power pack of the receiver on test is \(0 . K\). before switching on (2) Always start tracing from the antenna end of the receiver and proceed toward the output stage. (3) When using the probe, keep the a.f. gain control at maximum, and regulate volume with the r.f. gain control. (4) When using the a.f. prod, turn the r.f. gain control to minimum.

The waveguide connects with antennas, which are oriented in azimuth with antennas at next station. At right is complete repeater station.

Base of a waveguide circuit in a repeater station of the New York-Boston radio relay system.

\title{
Pipe Circuits
}

UNLike radio broadcast waves, microwaves are too short to be handled effectively in wire circuits. So, for carrying microwaves to and from antennas, Bell Laboratories scientists have developed circuits in "pipes," or waveguides.
Although the waves travel in the space within the waveguides, still they are influenced by those characteristics which are common to wire circuits, such as capacitance and inductance. A screw through the guide wall acts like a capacitor; a rod across the inside, like an inductance coil. Thus transformers, wave filters, resonant circuits - all have their counterpart in waveguide fittings. Such fittings, together with the connection sections of waveguide, constitute a waveguide circuit.

From Bell Laboratories research came the waveguide circuits which carry radio waves between apparatus and antennas of the New York-Boston radio relay system. As in long distance wire communication, the aim is to transmit wide frequency bands with high efficiency - band widths which some day can be expanded to carry thousands of telephone conversations and many television pictures.

Practical aspects of waveguides were demonstrated by Bell Telephone Laboratories back in 1932. Steady exploration in new fields, years ahead of commercial use, continues to keep your telephone system the most advanced in the world.

BELL TELEPHONE LABORATORIES EXPLORING AND INVENTING, DEVISING AND PERFECTING FOR CON. TINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.

\title{
Signal Tracers Are Popular
}

\author{
By T. W. DRESSER
}

FOR a considerable number of years the equipment used by most service technicians consisted of a good multirange meter, a signal generator, an emission-type tube tester, a soldering iron, and an assortment of pliers, trimming tools, and other odds and ends.

With such equipment the more obscure faults such as distortion, intermittent signals, or low sensitivity or selectivity could not be located, and the trouble shooter had to resort to the time-honored method of guess and substitute. Surprisingly enough, it often worked-the radio man has always been rather a genius at putting his finger on the spot-but generally it was a temperfrazzling and time-wasting business.

Then came the introduction of compact portable oscilloscopes, Fault finding, for those who could afford to buy a 'scope, became much easier. Even so, it took some time for the serviceman to familiarize himself with the sig. nificance of the various traces.

The man who could ill afford the high cost of such an instrument was still left to get along as liest he could on the hit-or-miss principle. Only comparatively recently, with the advent of signal tracers, has he had the break he deserves.

Signal analyzers or signal tracerstake sour piek; the instrument is one and the same thing-have continued to grow in popularity.

There are two very sound reasons for thi : increasing popularity: the low initial cost and light runnins costs and replacements; and the fact that, where receivers and amplifiers are concerned, a signal tracer localizes the fault as easily and as quickly as an oscilloscope.

Possibly the first signal tracer was a pair of phones and a blocking condenser. Literally thousands of technicians have
prodded their way hopefully around a.f. circuits with, such a combination without realizing to what extent such gear could be claborated!

\section*{A simple tracer}

Although still very useful in a.f. work, a pair of phones would be obviously useless on r.f. It follows, then,
capacitances, was sufficient to resonate around the high-frequency end of the coverage and thereby give a slight lift to the response curve at that end. resulting in a fairly level characteristic where otherwise there would have been a considerable falling off. Inductive wire-wound resistors are, therefore, a worth-while feature; and, if they are

Fig. I-A simple but efficient visual signal tracer. The 6E5 is detector and indicator.
that we must have a detector for demodulation, and an a.f. amplifier to boost the signal. These are minimum requirements, but around them a useful tracer can be built.
The one shown in Fig, 1 was constructed \(l_{y}\) the writer for portability. The circuit is almost self-explanatory. A 6.J7 is used as an r.f. anplifier into which the r.f. prole feeds directly. The signal is then passed on to either a 6E5 or 6 C 5 , which is utilized as a grid-leak detector and also as an indicator. The phone signal is taken from the 6E5 plate via a \(0.1-\mu \mathrm{f}\) mica condenser. Highimpedance phones must be used.
Inductive wire-wound resistors were used in the plate supply of the 6J7. There is a very sound reason for choosing such resistors: it was found that the small amount of inductance present in them, combined with the stray circuit

N.B.-SOLDER LUGS ARE BOLTED TO CANS

Fig. 2-One of many ways of making probes.

Fig. 3-A much larger-but still untuned-circuit for service bench work. Two r.f.'s and a cathode follower feed two a.f. stages.

\section*{G.E. BC 375 TUNING UNIT}

NO. 203. Model TU108 covers plete with aluminum cabinet. The best buy of surplus. Over \(\$ 30.00\) worth of new variable condensers, coil, dials, switches
cic. Add postage for 20 lbs.

ETA G.E. 50 AMP CIRCUIT BREAKER

BC 347 AIRCRAFT INTERPHONE

\section*{AMPLIFIER}

NO. 205 . Interphone amplifier contains 6F8 tube. Ouncer transformers Add postage \(\$ 995\) \(\$ 2.95\)

274 N COMMAND SET ACCESSORIES NO. 238. 5" PM Speaker with out put transformer matching head. NO. 239. Dual receiver rack FT277A with connecting plugs.............. \(\$ 1.00\) NO. \({ }_{F} 240\). Single transmitter \(\$ 1.00\) NO. 241. Spline shaff for tuning commond receivers. Allows use of regular tuning knob on 8C 453-4.5 receivers \(\$\). 39

BC 451 CONTROL BOX NO. 236. Control box for 274 N transmitters. Contains proper ewpower switch, mike jack ond tele groph key. Add postoge for 2 lbs.............. \(\$ 1.95\)

\section*{METER SPECIAL}

NO. 237. 8rand new DeJur Model \(3120-800\) M.A. D.C. Square \(3^{\prime \prime} 0-10\) M.A. basic meter with built in
shunt. Probably the best buy ever offered in a surplus meter. \(\$ 2.95\)
shipping weight \(1 \mathrm{lb}42\)

A-62 ARMY PHANTOM ANTENNA
NO. 206. Contains tuning condenser, coil, resistors, funing dial, tuning indicator, binding posis. steel case, use Add postage for 8 lbs.
\(\$ 1.95\)
BENDIX MR9C COMPASS CONTROL UNIT
NO. 207. Tuning and control unit or Bendix MN 26 rodio compasses contains funing dial, band switch. crystal switch, AVC switch, volume control, fuses, phone iacks, \(\$ \mathbf{9 . 5 0}\)
etc. Shipping Weight 5 lbs. \(\$ \mathbf{5}\)

BC731 CONTROL BOX with Weston Model 476 AC Voltmeter NO. 208. Excellent buy in motor control box. Size \(8^{\prime \prime} \times 10^{\prime \prime} \times 51 / 2^{\prime \prime}\). Contains Wes. ton 0-150V. AC \(31 / 2\) voltmeter, motor starting switch, 28 fuses all 33 Amp 110 V . and 8 fuse holders. Fuses and holders alone worth the price. \(\$ 7.95\)

\section*{ELECTRIC} ELECTRIC
NO. 201. Complete 15 iube transmitterreceiver. Ideal for new citizens band 460 Mc. for communication between office and cap, home, LECTRONICS Mager ion article in August ELECTRONICS Magaline. Brand now in original G.E. carton with tubes. Add postage for 25 lbs
\(\$ 19.50 \ldots 2\) for \(\$ 35.00\) ACCESSORIES FOR BC 645 PEIOIC Dynamotor for car use 110 V 60 Cycle Power 3.95 for home or office use....\$14.50
T32 TABLE MICROPHONE NO. 210. One of the Army's best. call sysem public idool for factory use. Brand now in original contons. Add postage for 5 lbs.
\(\$ 2.95\)
MINIATURE ELECTRIC MOTOR
 \(11^{i "} x^{22^{\prime \prime}} 10.000 \mathrm{RPM}\). Operates from 6 To 24 V . Excellent for mod-
eis. Add postage for 1 lb. \(\mathbf{\$ 2 . 9 5}\)

Pivity
No \({ }^{\text {No }}\) 212. Dras Dramotor only from Yoths, outpur 500 Volts at 160 MA
Brand
now original cartons. Ship
 \(\$ 5.95\) ping Woight 29 lbs .

 NO 213. An ideal dynamotar for mobile operation in taxicabs, police cars, sound systems and amateur sta-
tians. Supplies above valtage from 12 Volis or 500 V . at 350 MA from 6 \(\$ 5.95\) Volis. Complete with stanting relay Shipping Weight 72 lbs.
DM-36 DYNAMOTOR
NO. 215. Western Electric 24 Volt input, 220 V . of 60 MA out. With filter assembly Shipping weight 6 lbs
\$2.95

G.E. BC 306 ANTENNA TUNING UNIT
NO. 231. Matches any derial to 150 Watt transmitter, used on 8C 375. Brand new. Add postoge
\$2.95
W.E. BC 456 MODULATOR NO. 217. Modulator from 274 N cam-
 mand transmitters contains 3 husky relays, 3 tubes, \(\mathrm{VR} 150,12 \mathrm{JS}\) and 1625.
Brand new. Add postage for 11 lbs.
\(\$ 3.95\)

BE 77 TELETYPE TEST SET NO. 218. Contains zero center voltmilliammeter, switches, relays, voltage divider resistors, neon indicator, eft.
\(\$ 7.95\) Excellent foundation for radio tester
BENDIX MN 20E DIRECTION FINDER LOOP NO. 219. Ring type loop excellent for use on boat or aircraft. Extremely rugged construction. Low im-

IP 18 C DIRECTION FINDER LOOP NO. 220. Motar driven streamline pod NO. 220. Morar driven streamline pod finders. Has Selsyn transmitter and finders. Has selsyn transmitter and finders. Add postage 1450 for 20 ibs.................... \(\$ 14.50 \mathrm{each}\)

\section*{KIT SPECIALS}

POTENTIOMETERS
NO. 232. Kit of 10 excelient shaft typo po-
ientametert \(\$ \$.95\)
good variefy \(\$ 1.95\)

\section*{SOCKETS}
types

\section*{RCA NAVY COMMUNICATION RECEIVER} NO. 202. The last of these Kc. to 9.1 Mc. continuously. Supplied complete with tubes, control box, tuning unit, 24 Volt dynamotor, band change motor, plugs and circuit dia. gram. Superheterodyne circuit covers aircraft, broadcast, shont wave, marine, foreign braadcasts. Has sharp ar broad I.F.'s B.F.O., etc. Shpg. Wt. 30 Ibs.

PE 125 TRANSMITTER
POWER SUPPLY NO. 223. Operates from 12 to 24 Volts and supplies 500 Volts at 160 MA . Extremely rugged construction used in Army tanks. Completto with fuses - relays -
\$12.95 filters, etc. Ideal for boats FM PUSH BUTTON TUNER NO. 224. Brand new ten push buton runing assembly rom 100 FM
eceiver
silver plated funing conden- \$2.50 Eacm
ser. Add postage for 10 lbs . \(\$ 2.50\).

\section*{RG 8/U FLEXIBLE} COAXIAL CABLE NO. 225. Standard television lead PERFOOT in 52 ohm. Any length up to 1,000

POWER TRANSFORMER Specials
 NO. 226. Primary 117 V .60 cycle. Secondaries supply 746 V.C7 at 220 MA, 6.3V. at 4.5 A., and 5V. at 4A. Supply is limited, order early. Ship. ping Weight 11 lbs. each.
\(\$ 3.95\). 3 for \(\$ 9.95\)
OUTPUT TRANSFORMER
NO. 227. Push pull \(6 \mathrm{VG}^{\prime}\) 's to 6.8 ohm voice coll excertent

3 for \(\$ 1.95\)
 TRANSMITTER TRANSFORNIER NO. 228. The transformer for Iransmitter Power Supply, 600 Volt af 200 MA and 4 Amp. filaments of 3 to 24 Volits. Also 5 Volts of 4 omperes for rectifier \(\$ 9.50\)
Shipping Weight 12 lbs............. \(\$ 9.5\) MILITARY POWER TRANSFORMERS NO. 229. Convert your military receivers without rewiring the filament. A . of 2 A . and 24 V . af \(1 / 2 \mathrm{~A}\). " B " ype supplies 500 VCT at \(50 \mathrm{MA}, 5 \mathrm{~V}\). at 2 A . and 12 V . of 1 Amp. State whether A or Biype desired. \(\$ 2.95\)
shipping Weight 4 lbs......... \(\$ 2.95\)

\section*{HOME WORKSHOP GRINDER KIT}

NO. 230. Easily assembled 110 V
AC or DC ball bearing fully en-
closed motor from Army surplus simple changes and shaft extensions, detailed instructions and all parts supplied. Motor approximately 5,000 R.P.M. Ideal for
 tool-post .grinder, fiexible shaft tool, model drill press, saw. Ship. ping Weight 6 lbs.

HEARING AID HEADPHONES NO. 216. The Army's best - eliminate flat ears and outside noise. Complete with tronsformer for conversian from low to
high impedance. With cord ond plug complete. Add postage for I lb................. \$1.00

\section*{TELEVISION CONDENSERS}

NO. 221. Tobe triple . 2 MFO 4000 V.D.C. Filter used on Army radar.
Ideal filter for \(\mathrm{H} V\) ldeal filter for H.V. relevision set. Add
postage
\(\$ 3.95\)

NO. 222. G.E. Pyranol capocilop . 25 MFD 6000 V.D.C. Porcelain insu. lated, an outstanding
buy for high voltage filsers. Add post- \(\$ 3\) filsers. Add post- \(\$ 3.95\)
age for 3 lbs......
 \({ }_{\star \rightarrow *}\left(-H^{2}\right)\)

The HEATTH COMMPAN
DEPT. C
BENTON MARBOR, MICHIGAN

\section*{ELECTRONIC BARGAINS far EXPERIMENTERS and HOBBYISTS}

\section*{ALL \\ STANCOR FILAMENT TRANSFORMER} NO. 242. Heavy duty Stancor No. ST355 supplies 5 V at 6 Amps, 5 V at
3 Amps and 5 V at 3 Amps

Cased trpe. Ship. \$1.50

G.E. THYRATRON TRANSFORMER NO. 243. New G.E. Transformer sup plies 2.5 V af 100 KVA has 3 KV in sulation 100 V 60 ey . primary. Ship ping Wgt. 13 lbs.
\(\$ 9.50\)
RCA SATURABLE REACTOR TRANSFORMER NO. 246. New RCA No. CRV30531 AC
current 750 MA OC current 2 Amperes.
Roted 1.75 henries. Ship. \(\$ 1.00\)
ping wgt. 4 lbs. Each
12.6V POWER TRANSFORMER
 10. 247. New cased 110 V 60 Power Transformer. Supplies 440 V Ct . at \(60 \mathrm{MA}, 6.3 \mathrm{~V}\) ot 2 A . and 12.6 V at hipping Wght. 6 lbs. Each.
CA INPUT TRANSFORMER
NO. 248. Heavy duty RCA No CRVN29. Inpur has C.T. Shipping Wgt.

2 ibs. Each
\(\$ 1.00\)
REPLACEMENT POWER TRANSFORMER NO. 251. Excellent value transform. ers mode by one of largest trans. former companies. V CY at 150 Ma . 5 V at 4 A and 6.3 V at 45 AmPs

\(\$ 1.95\)
 7 lbs Each
FEDERAL POWER TRANSFORMER No. 252. New cased 110 V 60 cy . Power Transformer. Supplies 480 V CT beautiful transformer. Ship. \(\$ 1.50\)
 ping Wgt. 4 lbs. Each \$1.50

\section*{HEAVY DUTY 6-12-24 VOLT VIBRATOR}
 No. 253. A husky vibrator Rased on army transmitter. 30 amperes at 6 Valts 220 eycle with contacts for 22 and 24 Volts, Synchronous yype, has many industrial applications. Ship.
Wgt. 3 lbs. Each

4 CHANNEL
PUSH BUTTON TUNER NO 254. Permeability funer from and oscillatar coils. Covers 2 to 5 MC . Complete circuit diagram furnished Shipping Wgl.
2 lbs. Each

CONDENSER SPECIAL

NO. 255. An ideal oil filled power supply filter used in army 16 fube Unit, has \(25,2.5\) and 5 MFD all at 600V O.C. rating. Shipping \$1.50 Wgi. 3 lbs. Ea
TELEVISION CONDENSER NO. 256. Aerovox Hyvol . 05 MFO a 7500 V . raling. Excellent television coup shipping Wgi. Shipping Each
\$3.50

BC 746 TUNING UNIT NO. 257. Plug in transmitter Tuning unit fram army Walkie Talkie. Contains antenna and tank coils, tuning condenser, tals. Ideal transmitter founda tion. Shipping Wgt. \$1.00 (Same as above excep irans mitter crystal in 80 meter amo teur band \(\$ 2.50\) each) T30 THROAT MICROPHONE
NO. 258. Maker excellent contac microphone for musical instruping Wgt. 1 lb. \$1.00 each Extension cord with switch fo above
 lent os case for radio phonograph, movie projector, camera, shell case, fishing kif, pienic kit, etc. The astrogroph ifself, (which cost the government \(\$ 125.00\)) makes on excellent contact printer, and can be used for a foundation for enlorger, strip map holder, ote. The case alone worth twice the
\$3.95
AN27/ARN5 ANTENNA
NO. 260. Standard blind landing antenna system. \(\$ 9.50\) crand new in original ship. Wgt. 14 lbs. ASII4/APT ANTENNA SYSTEM

NO. 261. New blade
type antenna complete \(\$ 7.50\)
with case assembly.
in original carton. Shipping Wgt. 9 Ibs.
ASIIS/APT ANTENNA SYSTEM

NO. 262. New blade 50
NO. 262. New blade type assembly, in original carton. Ship. Wgt. 11 lbs

AT3BA/APT RADAR ANTENNA NO. 263. New rodar dame type an nections, in original car- 140 ton. Ship. Wgt. 11 lbs. \(\$ 14.50\)

ANIOAA BLADE ANTENNA

NO. 264. Standard blade antenna used on many mili. tary fighting planes with Shipping Wgt. 3 lbs base.
Shipping Wgt. 3 lb
BENDIX MT5IC TRANSMITTER CONTROL BOX NO. 235. Contains channel switch, emission switch, send receive switch, power switch and indicator for Bendix aircraft trans- \(\$ 5.50\)
mitters. Ship. Wgt. 3 libs. \(\$ 5.50\) BC \(670 B\) REMOTE CONTROL BOX
 NO. 265. Motor starting contro box has starting and stopping swith, indicator, cable and plug. Wooden case. Ship. \$1.95
Wgt. 6 lbs. Each BK 22 RELAY ASSEMBLY COX为 Used on SCR 269 Radio Compasses. Contain stepping and control relays - junction box of aluminum Brand new. Ship. \$3.95
Wgt. 7 lbs. Each \(\$ 3.7\)

HEINEMANN CIRCUIT BREAKER NO. 267. Heavy duty irpe 7 Amp shop Sh.C. Many uses around Wgit. 2 lbs. Each
\(\$ 1.00\)
CUTLER HAMMER
MOTOR FIELD CONTROL
NO. 285. Rated 10 ahms. 3.2 Amps. Maximum. \(61 / 2^{\prime \prime}\) diometer with linob and mounting feet, can be used to regulate generator output valtage. Shipping. Wgt.
5 lbs. Each
\$2.50

PENN THERMO RELAY NO. 268. Thermo Relay with a range of \(45^{\circ}\) to \(100^{\circ}\) complete with 5 Fi . fexible cable to im . mersion bulb. Ship-

B \& W 11 to 14 MC TANK COIL NO. 281. Plug in type used on BC 610 Tronsmitter. New, origina
cartons. Shipping
\(\$ 1.50\)

DM \(64 A 12\) VOLT DYNAMOTOR NO. 269. Inpul 12 V at 5 Amps. Output 275 Volt 150 mA . New Shipping Wgt.
\(\$ 5.50\)
DM 32A COMMAND SET DYNAMOTOR NO. 270. Part of 274N Command Receivers. Input 28 Volis, output 250 V at 60 MA. Shipping
Wgt. 4 lbs. Eoch

DM 2112 VOLT DYNAMOTOR NO. 271. Used in Army BC 312 Communicalion Receiver. Input 12 Volts at 9.3 Amps . Noutput 235 Cartons. Shipping Wgt.
8 J Whe Each 8 the. Each
PE94C SCR 522 POWER SUPPLY NO. 272. Complete dynamotor power supply for the SCR 522, oper. ates from 28 Volts. Complete with controls, filters, etc. Original car-
ton. Shipping Wgt. 34 ibs. Each … PEIOIC BC645 PO

PEIOIC BC645 POWER SUPPLY NO. 273. Complete power supply for \(B C\) 645. Operotes from 12 or
24 Volis Supplies both \(A C\) and \(D C\) 24 Volis. Supplies both AC and DC required. Shipping
Wgt. 13 ibs. Each
\$3.95
DM 3512 VOLT DYNAMOTOR NO. 274. New input 12 Volt at 18.7 Amperes. Supplies 675 V of 275 MA or \(1 / 2\) above voltoge from 6 volts. Excellent for auto use. Ship. \$7.50
ping Wgi. 11 lbs. Each

PE 86 DYNAMOTOR
NO. 214. A popular 28 Volt remilitory equipment. Supplies 250 V
 Wgt. 4 lbs. Each

\section*{GN 58 HAND GENERATOR}

NO. 275. Mokes excellent home lighting plont, operated by wind propeller, waterfoll, gos engine, or hand cronk. Reduction gear allows 5 volts ot 245 amp. 425 volis at .115 amp. New. Add \(\$ 7.95\) postage for 28 lbs
Handles for GN 58 \$ 50 each
 Connecting cord for GN'58
with plugs CDIO86. \(\$ 1.50\) each

COLLINS AUTOTUNE CONTROL HEAD NO. 278. Brand new controls used on the ART/13, 100 Watt, Trans. mitter. Types \(7,8,10\), and 11 avail able. Get a spare while available as new cost is over \(\$ 22.00\) each. Shipping Wgt. 3 lbs. Price any type (mention when
\(\$ 4.50\)
MC 432 VHF ANTENNA IOADING UNIT NO. 279. Contains 2 pole, 5 position otary switch with silver ceramic variable condensers, and coils for matching VHF Transmitter ta AN 109 antenna with 50 ohm line. Many Useful parts. Shipping \$1.50

148 OUTDOOR TELEGRAPH KEY NO. 280. Rugged enclosed type for ouldoor use, built far army ta withstand hard useage. CamShipping Wgt.
\(\$ 2.00\)
ONE KILOWATT ADJUSTABLE ANTENNA LOADING COIL
NO. 282. Huge porcelain coil 4'
diameter \(81 / 4 "\) lang, has 5 sliders far adjustments. Ship. ping Wgt. 5 lbs.
\(\$ 3.50\)
\(\$ 3.50\) DUAL
SELENIUM RECTIFIER NO. 283. Two units mounted on single bracket, each section rated 15 V . at \(1 / 2\) Amp. Shipping Wgr. 1 lb .2 FOR \(\$ 1.00\)
 (1) +1N/2+. 1 PTM

300 MA SELENIUM RECTIFIERS NO. 209. Rated 300 MA at 36 Volts, complete with mounting brackets. Shipping
Wgt. I ib.

\section*{TESTEQUIPMENT}

\section*{Mean! SWEATHKIT FM and TELEVISION \\ Featured - \(\star\) THE BASIC FM AND AND}
- Covers 2 Mc .10226 Mc .
* 110 V 60 cy transformer
* \(\star\) Supplies either RF armer. \(\star\) Variable sweep ar FM. 0 to App. 10 Me

\# Large colibrateo dial.
\# Variable phasing cantrol
Sweep output for
\(\star\) No band purfor scope. \# Uo band switching necessary

heathkit
HIGH FIDELITY
HEATHKIT 3-TUBE

\section*{\$2450}

Enjoy the pronts now of this new field

\section*{AMPLIFIER KIT}

Build this high fidelity amplifier and sove two. thirds of the cost. Push pull output using 1619 tubes (militory iype 6(6's), two omplifier stoges using o duol triode (65 N 7), and a phose inverter give this
omplifier olineor reproomplifier olineor repro duction equal to amplifiers selling for ten times this price. Every port supplied; punched and formed chassis, transformers (including quality output to
3.8 ohm vaice coil) tubes controls and complete 3.8 ohm vaice coil. Nubes, controls, and complete instructions. Add postage for 20 lbs
\(12^{\prime \prime}\) PM speakors for obove

Add postage for 3 lbs
HS 30 Headptiones per set
2 \(1 / 2^{\prime \prime}\) permonens magnet loudspeaker

\section*{NEW 1948 HEATHKIT}

\section*{5" OSCILLOSCOPE KIT}

A necessoty for the newer servicing rechnique in FM and relevision a price you can afford. The Meathkit is complete, beoutiful iwo color panel, oll metal paris punched, formed and plated ond every par supplied. A pleasant evening's wark and you have the most interesting piece of laboratory equipment available.
Check the feotures - large \(S^{\prime \prime}\) SBPI tube, compensated vertical and horizoniol omplifiers using 65J7's, 15 cycle to 30 M cycle sweep generhorizontol omplifiers using \(65 \mathrm{J7}\) 's 15 cycle to 30 M cycle sweep gener-
otor using 334 gos triode, 110 V on cycle power transformer gives 1100 ator using 384 gos triode,

All controls on front ponel with test voltoge and ext syn post Complete with all lubes ond detoiled instructions. Shipping weight 35 pounds. Order loday while surplus tubes make the price possible.

110 V. A.C. MILITARY RECEIVER POWER SUPPLY KIT

Ideal way to convert military sets. Sup. plies 24 Volts for filament - no wiring changes inside radio. Also supplies 250 V . D.C. plate voltage af \(50-60 \mathrm{MA}\). Connections direct to dynamotor input. Complete with all parts and detailed
instructions. Ship. Wt., 6 lbs. \(\$ 5.95\)

\$14.50

110 V. A.C. TRANSMITTER POWER SUPPLY KIT For BC-645, 223, 522, 274N's, etc. Ideal for powering military transmitters. Supplies 500 to 600 Volis of 150 to 200 MA plate, 6.3 C.T. of 4 Amps, 6.3 at 4 Amps and 12 V at 4 Amps. Con be combined to supply 3-6-9. 12 or 24 Volts of 4 Amperes. Kit supplied complete with husky 110 V 60 cycle power transformer, Su4 fectifier, oil filled condensers, cased chake, punched chassis, and tions. Complete - nothing else to buy.

\section*{The CIEATCI}

Tit Only FOR RADIO MEN TO ASSEMBLETHEIROWN

\section*{Natural}
* Save \(2 / 3\) the cost.

Fiearhbit ELECTRONIC SWITCH KIT doubles the utility of Any scope Gives twa separately controllabi individual inputs on and output traces, local See both the input and oulpurediately distortion, phase shift, er., control Coarse and fine sweeping rate cortrials. Complete Heathkit matches others, with 5 tubes, All metal parts are punched, formed and cadmium plated. Complete with rubes, all parts, detailed blueprint.
tons. Shipping Wt. 13 lbs \(\$ 3450\) lions. Shipping Wt. 13 lbs. Nothing ELSE TO BUY

\section*{HEATHKIT}

CONDENSER CHECKER KIT
A condenser checker anyone con offord to own. Measures copocity and leakage from 00001 to 1000 MFD on colibioted anoles with test voltage up to 500 volts. No need for tables or multipliers Reads resistance 500 ohms to 2 megohms. 110 V 60 cycle transformer operated complete Eh rectifier and magic eye indicator tubes. Easy quick assembly with clear de. toiled blueprints and instructions. Small 4 pounds. This is one of the handiest 4 pounds. This is one of the handiest

\(\$ 1950\)
Nothing ELSE TO buy

HEATHKIT

\section*{SIGNAL GENERATOR KIT}

Every shop needs a good signal genetatop. The Heathkit fulfills every serviceing need, fundamentals from 150 Kc . to 30 megacycles with strong harmonics over 100 megacycles covering the new television and FM bands. 110 V 60 cycle transformer operated power supply
400 cycle audio available for \(30 \%\) modulation or audio testing. Uses 6SN7 as RF oscillator and audio amplifier. Com. plate kit has every part necessary and de-

\section*{\(51 \circ 50\)}
nothing else to buy ailed blueprints and instructions enable the builder to assemble it in a few hours. large easy to read calibration. Con. venient size \(9^{\prime \prime} \times 6^{\prime \prime} \times 434^{\prime \prime}\). Weight \(41 / 2\) pounds.

\section*{HEATHKIT SINE AND SQUARE WAVE AUDIO GENERATOR KIT}

The ideal companion instrument to the Heathkit Oscilloscope. An Audio Genet tor with less than \(1 \%\) distortion. high calibration accuracy, covering 20 to 20,000 cycles. Circuit is highly stable resistance capacity tuned circuit. Five tubes are used, a 6537 and 6 K 6 in the oscillator circuit, a 6517 square wave clipper, a 65N7 as a cathode follower output and 5 Y3 os transformer pow supply rectifier
The square wave is of excellent shape between 100 and 5,000 cycles giving adequate range for all studio. FM and television amplifier testing.
Either sine or square wave available instantly of a toggle switch. Approximately 25 V of sine \(A C\) available of 50,000 ohm output impedance. Output \(\pm 1 \mathrm{db}\) else to buy. All metal parts are punched formed and cadmium plated. Complete with tubes, all parts, detailed blueprint and instructions.

THE NEW HEATHKIT VACUUM TUBE VOLTMETER KIT
The most essential tool a radio man can hove now within the reach of his pocketbook. The Heath it VIVM is equal in quality to instruments selling for \(\$ 75.00\) or more. Features 500 microamp meter, transformer power supply, \(1 \%\) gloss enclosed divider resistors, ceramic selector switches, 11 megohms input resistance, linear \(A C\) and DC scale. electronic \(A C\) reading RMS. Circuit uses 6 SN 7 in balanced bridge circuit, o 6H6 os AC rectifier and \(\times 5\) os transformer power supply rectifier. Included is means of calibrating without standards. Average assembly time less than four pleason hours and you have the most useful test instrument you will ever own. Ranges \(0-3,30,100,300,1000\) volts \(A C\) and \(D C\). Ohmmeter has ranges of scale limes 1, \(100,1000,10 \mathrm{M}\) and 1 megohm, giving range 1 ohm to 1000 megohms. Complete with detailed instructions. Add postage for 8 lbs

\(\$ 2450\)
Nothing
ELSE TO BUY

\section*{HEATHKIT}

\section*{SIGNAL TRACER KIT}

Nothing eLSE to buy

Reduces service time and greatly increases profits af any service shop. Uses crystal diode to follow signal from mediately internal amplifier available for speaker internal amplifier available for speaker testing and internal speaker ion for VTVM on panel allows visual tracing and gain measurements Also tests phonograph pickups, microphones PA systems, etc. Frequency range to 200 Mc. Complete ready to assemble. 110 V 60 cycle transformer operated. Supplied with 3 tubes, diode probe, 2 color panel, all other ports. Easy to assemble. detailed blueprints and instructions. small portable \(9^{\prime \prime} \times 6^{\prime \prime} \times 43 / 4^{\prime \prime}\). Wi. 6 pounds. Ideal for toking on service calls. Complete your service shop with this instrument.
\$345.0
Shipping Wt., 13 lbs.

ing, even though not a single resistor is changed!

The amplitier, used on the lower ranges. also has negative feedback, achieved by leaving part of the cathode resistor unbypassed so that good frequency response is obtained throughout the audio range.

A certain amount of high-frequency conipensation is gotten by connecting a 20-uuf condenser between the amplifier cathode and ground.

\section*{Constructional details}

The larouts of the front panel and chassis are shown in the photographs. For the panel, a black crackle finish is used, lettered with white drawing ink. Where the panel is to be lettered, the paint is first smoothed with fine sandpaper, then moistened with saliva and allowed to dry.

Layout of the chassis is not particularly critical, no more so than that of a microphone preamplifier. Main points are shielding the 6J7-G, if one is used, and short leads from the hot input terminal and from the control grid of the first tule. The range switch should be covered with a grounded metal shield can.

Warning: do not attempt to omit the power transformer and use an a.c.-d.c.

fig. 2-Setup for calibrating the voltmeter.
circuit with a line-cord resistor. You can't hope for reliable readings if one side of the power line is connected to the chassis.

\section*{Colibrotion}

Set 121 so that the meter reads a very small value, but not zero (say about 01 ma). Mark this point zero on the meter scale.

A calibration setup will be needed. This can consist of a \(100,000-\mathrm{ohm}\) potentioneter connected across the 117 volt power line, with a reliable a.c. voltmeter hetween the arm and ground. Test with an incandescent lamp to make sure which is the grounded side of the line. The arrangement appears in Fig. 2. Be careful not to touch anything but the grounded leads.

Before going further, adjust the values of \(R 2\) and \(R 3\) for the indicated \(B\) voltage. Then set the arm of the calibration potentiometer for 20 volts. Set the v.t.v.m. range switch to the 20 -volt position, and adjust R4 for full-scale meter deflection. Adjustnents on this and other fixed resistors can be made either hysulstituting other resistors or, if the resistor is an uninsulated carbon type. filing it down to obtain higher resistance. The scale can be calibrated now by varying the input voltage and marking in the various values on the meter.

Next set the test voltage at 10 and make sure the v.t.v.m. reads properly.

The chassis layout. Notice the shield covering the 6J7-G. RI and R7 are on strip at right.

Wiring under the chassis should be rigid and short to minimize hum pickup and instability.

Set the range switch at 200 and adjust R5 and R6 so that the meter again reads 10.

The remaining scale can be calibrated by setting the range switch, feeding in the proper voltage, and adjusting the 6 -megohm resistor on the 0.8 -volt range and the 38 -megohn resistor on the 4 volt range for full-scale meter reading. The 0.2 -volt range should be calibrated first by setting R7. R7 should be left alone while calibrating the other two
low-voltage ranges.
This type of meter gives readings depending upon the peak value, although the scale is calibrated to read r.m.s. or effective values. The presence of even harmonics can be detected by reversing the input leads to the v.t.v.m. If there is a difference in the readings, second harmonic is probably present. Inadequate shielding of the supply may also cause hum to be picked up with one polarity but not with the other.

\title{
Sensitive Vacuum - Tube Voltmeter
}
 the range switch, appears on panel.

\title{
A practical instrument which uses an extra amplifier tube for the lower-voltage ranges
}

\author{
By JOHN W. STRAEDE*
}

ANY voltage measurement that can be inade by a v.t.v.m. can be made lis some other means, but a tule makes a very portahle, convenient, stable, cheap and versatile device.

Vacuum-tuhe voltmeters are used to measure voltages: (a) from a high-impedance source. (b) that are very small, (c) of very high frequency, and (d) whose wave form is unknown or unusual. Voltages is. class (a) can be measured by certain types of electrostatic voltmeters which contain no resistance across the input, but it's easier and cheaper to use a buffer amplifier with a special tube requiring no grid leak and to follow it with an ordinary meter.

Very minute voltages can be measured with an Einthoven string galvanometer or by a potentiometer, but again it's easier to amplify the small voltage and bring it into a higher range.

High-frequency voltages can be measured with rectifier-type or thermocouple meters if special compensation networks are used, but the effective ohms per volt are rather low.

No matter what the wave form, it is possible to devise a v.t.v.m. that will measure peak, average, or r.m.s. value, whichever is desired.

Any detector circuit can be used as a v.t.v.m. There are three types of detectors: the grid-leak (very sensitive for low input voltages); the anode-bend with feedback (very linear but comparatively insensitive) ; and combinations of these with an amplifier preceding or following.

The preceding amplifier usually makes the instrument suitable for a.c.

\footnotetext{
* Lecturer in electronios and elcetro-aeoustics, Melbourne Techniat Cellece. Australia.
}
only and must be well designed to take care of frequency response, tube aying. and variations in B-voltage. A following amplifier must be direct-coupled and must have a current bucking device to correct for drift.

Chief advantages of the meter described in this article are: (1) independence of supply voltage \((\because 0\); change gives no detectable difference in reading at the center of each scale and only. slight changes at the ends): (2) good linearity of scale and the sume limectrity on each range, so that only one scale is required; (3) separate sensitivity adjustment on each range. so that the meter can be adjusted at intervals to be "dead accurate"; (4) an input resistance higher than 1 megohm per volt, except on the higher-voltage ranges where it is desirable to avoid special high-value resistors: (5) good frequency response over the audio range: and (6) no false reading if the input is shorted-d.c. continuity or otherwise ot the source of the voltage being meas. ured does not affect the readins.

The useful frequency range is ap-
proximately from 25 to 20,000 cycles. At the low-frequency end the response is down about 2 db at 10 cycles. It drops off below this at about 6 db per octave on the higher-voltage ranges. On the lower-voltage ranges the response drops off below 25 cycles.

The response in the r.f. range depends on care in layout. Poor layout requires excessive shielding, resulting in poor response. With good layout, the meter still works (though well down) in the r.f. range.

This particular meter was designed for checking phonograph pickups and for general audio-frequency amplifier testing. Lowest range is 0.2 volt, full scale, and highest is 200 . The basic circuit. that of the triode in Fig. 1, is a plate detector with complete negative feedhack, obtained by having all the load in the cathode circuit. Plenty of feedback means stability and constancy of calibration, with consequent freedom from troubles due to \(B\)-supply variation. So self-adjusting is this circuit that replacement of the triode by a pentode has only a negligible effect on the read-

Fig. 1-Pin numbers of detector tube refer to 6J7-G only. RI is the zero-adjustment control.

\footnotetext{
MOHEY BACK GUARANTEE - We believe units offered for sole by mail order should be sold only on a "Money-Back-If-Not-Satisfied" basis. We carefully check the design, calibration and value of all items advertised by us and unhesitatingly offer all merchandise subject to a return for credit or refund. You, the customer, are the sole judge as to value of the item or items you have purchased.
}

\section*{BUILD YOUR OWN SIGNAL TRACER and SAVEI!}

THE MOHEI CA-12 KIT COMES Can be wired in 31 minutes. Components ing : circuil guaranteed to meet the follow-

\section*{The Only Signal Tracer in the Low Price Range Including BOTH METER AND SPEAKER!!}

We are pleased to announce we have obtaind an exclusive franchise to distribute the well known Model CA-12 Signal Tracer in kit form. The Model ('A-12 sells regularly for \(\$ 29.95\), here is your opportunity to save \(\$ 8.00\) with the added advantage of complete familiarity of design and operation made possible when you build your own in strument.
FEATCHES: Comparative intensity of the sifnal is read directly on the meter-puality of the signal is heard in the speaker. Simble to olerate-only one connecting calple--no tuning controls, Hixhly sensitive-usty an improved vacuan-tube voltmeter circuit. © Tube and re sistor calmacity network are built into the detector probe. \& Muiltoin MODEL. C.I-12 Kit includes AII. PARTS assembled and ready for wiring. circuit diagram and detailed operating data for the completed instrument

\section*{\(\$ 21.95\)}
\(\$ 29.95\)

\section*{THE NEW MODEL 670 \\ }

SUPER METER. A Comhination VOLT - OHM MILLAMMMETER plus CAPACITY REACTANCE. MEASTREMENTS.
D.C. VOLTS: "t VOL's:
 D.C. CURRENT:

 INDUGTANCE: \(1 . i^{\prime \prime}\) to ill \|enties: 35 DEGIBELS: -10 to +18 . +10 to +38 .

The model 670 comes housed in a rugged. erackle- inlshed stitel cabb
innet complete with test
 \(71 / 2^{\circ} \times 3^{\prime \prime}\). \({ }^{51 / 2} \times 1{ }^{\text {NET }}\)

The Model S-35 - a POWERFUL

\section*{REFLEX PROJECTOR}

COMPLETE WITH WESTERN ELECTRIC BUILT-IN DRIVER UNIT
CONSERVATIVEI.Y RATED AT 35 WATTS—WILL EASILY HANIDIE UP TO 5.5 WATTS WITHOUT BLASTING

 chld thine Mas sublect til almosphetle corlustrin. Combliete tuitt unemondilionally Specincations Specincations
POWER (CONSERVATIVE)
- 35 WATTS: AIR COLUMN- \(31 / 2\) FT.; DISPERSION-A0 : POWER (PEAK) - 55 WATTS: BELL DIAMETER--15": IMPEDANCE-A ohms: FREQuENCY RANGE-I30 to 5000 C.P.S. PROJECTION - \(1 / 2\) mite: FINISH - Attractlve Tho tone crystaline. Complete with Built
Driver Unit.
ONLY

11 NET

\footnotetext{
GEMERAL ELECTRONIC DISTRIBUTING CO. \({ }^{\text {Deft. } \mathrm{rc}-1.198 \text { park Place, }}\) NEW YORK 7,
N. Y.
}

\author{
A companion to last month's preamplifier
}

Fig. I-Unit is a cascode with double tuning. Underchassis view. Parts layout and manner of winding coils can be seen from the photograph.

The preamplifier has two tubes and two controls.

LTKE the booster described in the October issue. the one diagrammed is hased on the cascode circuit, using two tubes in a novel circuit arrangement (sie Fig. 1). It operates on the h.f. television band.

Both the input circuit and the output circuit are tuned. L1 and L2, made of heavy wire, are self-supporting. Fach is formed of \(1^{1} \frac{2}{2}\) turns \(1 / 4\) inch in diameter. A little experimenting with turns spacing will be needed to tune over the band. With four-plate midget tuning condensers, channel 13 comes in near minimum capacitance. Chamel 7 requires about two-thirds maximum capacitance. The tuning controls track closely.

Input and output coupling coils, L3 and L4, are also self-supporting and are made of push-back wire. Each has \(1^{112}\) turns. Maximum gain is provided by coupling as tightly as possible to the tank coils.
Choke L5 is made of four turns \(3 / 8\) inch in diameter. Ld is 6 turns of wire and \(1 / 8\) inch in diameter. Use No. 18 to sel enameled wire.

The booster has been tried on channels 7,11 , and 13 . Using the conventional signal-strength scale, it raises the signal about 2 S-points. Gain is slightly less near the upper end of the band than it is on channel 7 . Unless the noise level is already too high, this booster will bring in a clearly visible (though weak) picture where the receiver alone tunes in one which is fractically invisible.

When added to an average TV set which has an r.f. stage, the booster provides as much gain as can be used in most cases. This is because the noise level is also brought up. Further im-

provement requires a better location or a more efficient antenna.

Onl: one hooster mas 'ke suticient in a particular location. hut it is possible that hoth high and low hands will require amplification. This booster and the one described in Octuter can be combined into a single unit on the same chassis and with the sante power supply. Since the low-band unit induded a power supply, all that is necessary is to connect the high-band unit to the same supply. As a matter of tact, this amplifier was built on half of the same sawed-in-two chassis.

Even the simplest switching arrangement within either preanphitier will introduce long leads and add tow much capacitance. When combining the two preamps on one chassis. switeh the ?00ohm lines from the antema and to the receiver. Construct each amplitier as a complete unit (excent for power supply) and use a rotary selector switeh to transfer input and output transmission lines from one to the other. A center
position for cutting out the preamps entirels would he a good idea. To prevent long leads under the chassis (these will reduce amplitication and cause instabil-

Fig. 2-Proposed low-high switching circuit. ity), use a long switch shaft and position the switch gangs close to the terminal points. The switching diagram of Fig. : 2 gives a sugrested arrangement. Use low-loss-type switch wafers.

\section*{Capitol Radio Engineering Institute - Pioneer in Radio Englneering Instruction Since 1927}

2 As of Sept. 1918: 618 FM stations on the uir. 818 FM stations with construction permits and
conditional grants.

MAIL COUPON TODAY
FOR THIS 24-PAGE FREE BOOKLET!
```

Capltol Radlo Englneering Instifute
16th and Park Road, N, W., Dept. RC-11
Washington 10, D.C.
Gentlemen: Please send me your free
booklet, "CREI training for your
booklet, "CREI training for your
better job in RADIO-ELECTRON-
ys. Hogether Study training Ims of
yourhing a brief resume of my experi
laching a brief resu, prement experi
ence, education and present position.
Check One Course
Practical Television
Practical Radio-Electronics
Name.
Street
City
Zone......State
OI am entitled to training under
the G. I. Bill.

```

\section*{Yes, Plenty of Good-Paying Jobs...}

\section*{BUT Only for those Qualifed}

FM is actually coming into its own in 1918.49... more than 1100 FM stations will permits and grants now on the air, or som to be. Over 1700 standard broadrast stations now in operation-12010 more with constmetion permits and applications. Television receivers are on maiss prodartion limes. Hundreds of new TV stations will be going on the air-over a hundred construction permits now isued -over 46 Th TV applications now at the FCC.

Radio-electronics is nom ouly expanding in job opportunities lont it is also prowing in technical complevity. Rapid developmems in perery brath of the field are leaving many radio technicians and enpineers far behind the parade of progress. These are the men who fail to realize that thair techuical howwedge must grow with the expansion of the industry.

What does this mean to von? It means yon must study not only to hold the jol, you now ownepy . . . Dut stady to duali/y for the better jol, you wath. CREI modern technical training rath (within a comparatively short time) qualify you for the better jobs and help enable you to step aheal of those who have failed to improve their ability through technical training.
Beginning right now CREI can provide the onthe-job tratining that equips yon with the terhmiad ahility to 20 after-and GET the importan, high salaried jots. Get all the facts today abomt the murecedented opporturities that nwait you. Learn how CREI spare time training can help yon its it hats helped thousands of other professional radiomen advance to better jobs during the past twenty years.
veterans! crel training available under the "G. l." bill

\section*{Capifol Radio \\ Engineering Institute \\ An Accredited Technical Institute}

Dept. RC-11, 16th and Park Road, N. W., Washington 10, D. C.
Branch Offices: New York (7): 170 Broadway
very much like shunt-peaked circuits but they have sharper cutoff. The voltage developed across \(R L\) is applied across the wrid leak of the following stage, Rg , and C2. Since \(R g\) is large, the series

Fig. 5-Basic diagram, series peaking circuit. resonant circuit, \(L\) and \(C 2\), works as a reactive voltage divider. The voltage across C2-and Rg-rises as the resonant frequency is approached. (The value of \(L\) is chosen so the resonant frequency is outside the high-frequency cutoff point of the amplifier.) This compensates for losses caused by C1 shunting RI. C1 and C2 are portions of the shunt capacitance between the stages. The

Fig. 6-The value of Cl is twice that of C 2 . shunt capacitance, Cs . (\(\mathrm{Cown}+\mathrm{C}_{\text {'innut }}\) + C stray) is divided into C1 and Ce by L. The major disadvantage of series praking is that there should be a 2 to 1 ratio between the capacitance of C 1 and C2. This is not always easy to realize in practice. The circuits work best when RL is on the low-capacitance side of the network. In Fig. 5, RI, is comected directly to the plate of the tulse so C. 2 must be made equal to 2 C 1 .

It is difficult to balance the shunt capacitance properly and the positions of the components in the circuit must be found by experiment. A rood'scope and a square-wave generator are required for this. Connect the 'scope to the output of the generator, feed in a 400 -cycle square wave and observe the wave shape on the 'scope. Adjust the generator and scope controls until a good square wave is obtained. Now connect the generator to the input of the amplifier and the scope to its output. If the leading edges are badly rounded, try altering the positions of RL, L and Ce. Position the components for the best possible wave shape-giving particular attention to the edres.

Fven in the most carefully planned circuits, Ce, the coupling capacitor, will add considerably to the stray capacitance. If it is paper. the major capacitance will be between the outer foil and

Fig, 7-Combination series and shunt peaking. and
WOTE:-1649 IS A SPELIAL NON-MICROPHONIC BACT
\[
\begin{aligned}
& \mathrm{RL}=1.8 / 6.28 \times \mathrm{fC} \\
& \mathrm{~L} 1=0.12 \times \mathrm{RL}^{2} \times \mathrm{Cs} \\
& \mathrm{~L} 2=0.52 \times \mathrm{RL}^{2} \times \mathrm{Cs}^{2}
\end{aligned}
\]
sation methods. The basic circuit is shown in Fig. 7. Here, L. 1 corresponds to \(L\) in Fips. 1 and 2 and Li2 corresponds to 1 . in ligs. 5 and 6. In this circuit, the 2 to 1 ratio of C 1 and C 2 should be maintained. In this canse. I. 1 and liL may have large capacitance to ground and it may be necessary to connect the shunt peaking network at \(A\) on the plate side of I.2. In Fig. 7:

Fig. 8 shows the series-shunt peaking network used in the RCA 641TV. The 20,000-ohm resistor across \(L, 2\) flattens the response peak that may be due to improper ratio of C 1 to C 2 or to distributed capacitance of l.2. lgnoring the wiring capacitance, \(C 1\) is the output capacitance of the \(6 \mathrm{~A} U 6\) and C 2 is the input capacitance of the 6 K 6 G .

Fig. 9 is a partial schematic of the iconoscope mreamplifier used in the Navy ATK airborne television transmitter. The output of the iconoscope consists of signals ranging from about 20 cycles to 4 me or higher at a very low level. This signal appears across the \(470.000-\) ohn input resistor of the 1649 . The input capacitance of the 1649 shunts the resistor and reduces the signal level at high frequencies. L1 and L2 constitute a series-shunt peaking circuit with all reactances negligible up to 1 mc . The load inmpedance of V 1 is the 2,700 -ohm resistor. Above 1 me , the rising reactances of L 1 and L 2 in combination with the shunt caparitanco. boost the gain gradually to 4 mc . This compensates for some of the losses at the input of V1. The 22,000-resistor across

Fig. 10 (left) -The ideal VI-ło-V2 response. Fig. II (right)-Response of the high peaker.
L2 controls its \(Q\) and assists in obtaining the desired response. Fig. 10 shows optimum response between the grid of V1 and the plate of V2.

The "high-peaker" between V2 and Vis completes the restoration of highs lost at the input of V'1. The degree of poaking and the point at which it occurs may be varied by adjusting C.2. Fig. 11 is the response curve between

Fig. 9-Navy ATK airborne transmitter uses an R-C high peaker and L-C stage compensators.
the grid of Ve and the plate of V3.
The compensating system employed depends largely on the desired gain and permissible phase shift at the highest froquencry, f. In an uncompensated amplifier, sain at f is \(70.7^{\prime}\); of the gain at mid-band. With shunt poaking, the response at \(f\) is equal to the response at mid-band. With sories and seriesshunt compensating mothods, the relative gains are \(150^{\prime}\); and \(180^{\prime}\); when compared to the gain at mid-band.

If phase shift is important series peaking is the most desirable system to use.

\section*{ALLED'S NEW EREE 1949 RADIO CATALOG 180 VALUE-PACKED PAGES Send far it now!}

\section*{The Preferred Radio Buying Guide}

It's ready for you-the new 1949 ALLIED Radio Catalog! Get the Radio Buying Guide that's the first choice of thousands of expert service technicians, engineers, soundmen, Amateurs, builders and experimenters. The new Allied Catalog-Radio's largest and most complete-brings you 180 pages packed with the widest selections of the newest and finest equipment, at today's lowest, money-saving prices! Here's everything in radio for everyone in radio: new Television and home receivers; radio-phonos with new DualSpeed Changers; packaged Sound Systems, high-fidelity sound components and P. A. equipment; latest Amateur receivers and station gear; test instruments; builders' kits; thousands of parts, tubes, tools, books-the world's largest and finest stocks of nationally known equipment. Take advantage of ALLIED's speedy, expert shipment and the personal attention of seasoned old-time radio men. Get the details, too, of radio's most liberal Time Payment Plan. Write today for your FREE copy of ALLIED's newest and greatest Catalog-the preferred Radio Buying Guide!

LARGEST STOCKS • QUICK, EXPERT SERVICE
Send for your FREE copy of Radio's Most Complete Catalog. Use the coupon below - NOW !

Radio's Leading Buying Guide

WORLD'S LARGEST STOCKS
Everything in radio for everyone in radio! AllIED's huge stocks are the world's largest, including complete lines of all leading makes of parts and equipment. Get everything you need from one dependable centralized source-ALLIED RADIO!
TELEVISION \& HOME RADIOS
See AllIED'S outstanding selection of new Television sets, new table model radios, FM-AM combinations with new Dual-Speed Automatic Changers. Save on these radio models-the choice of experts!

AMATEUR STATION GEAR
You'll find everything you need for your shack in the new AllIED Caralog. See all the latest releases in receivers, transmitters, parts, station equipment-the biggest and most complete listings in Hom radio!
NEW SOUND EQUIPMENT
Packaged, ready-to-use Sound Sys. tems; amplifiers guaranteed for one full year; high-fidelity sound components; everything in speakers, mikes, P. A. accessories, intercom and recording equipment-headquarters for Soundmen!

\(\square\) Send FREE New 1949 ALLIED Catalog.
\(\qquad\)
\(\qquad\)

City................................... Zone.....State..........

\title{
Compensating TV Amplifiers
}

\author{
Special círcuits bring up h.f. response
}

VIDEO amplifiers are resistancecoupled amplifiers with special compensating circuits added to increase the over-all band-width. These amplifiers are commonly used in television, radar, special oscilloscope circuits, and in numerous other applications. It was shown in "Wide-Band Amplifiers" (Radio-Craft, March, 1948) that high-frequency response is limited by the wiring and interelectrode capacitances shunting the output impedance of the tube. In "High-Fidelity Amplifiers" (Radio-Craft, May, 1948) we found that high-frequency response can be increased-at the expense of gainby decreasing the size of the plate load or coupling resistor. The gain at high frequencies is equal to
\[
\frac{\text { Gif }}{\sqrt{1} \mp \overline{(\text { Req } / \mathrm{Xcs})^{2}}}
\]
where Gif \(=\) gmReq, Xcs is total shunt capacitive reactance and
\(\mathrm{Req}=\frac{\mathrm{RL} \times \mathrm{Rp} \times \mathrm{Rg}}{\mathrm{RL} \times \mathrm{Rg}+\mathrm{RL} \times \mathrm{Rp}+\mathrm{Rg}+\mathrm{Rp}}\)
If \(\mathrm{R}_{\mathrm{p}}\) (the internal plate resistance of the tube) and Rg are many times larger than RL-as they should be for good h.f. response-RL will be approximately equal to Req. High-frequency response varies inversely as the shunt capacitance and RL and directly as gm.
\begin{tabular}{lcc}
Table I & \begin{tabular}{c}
Table \\
gm
\end{tabular} & \begin{tabular}{c}
Figure of \\
(micromhos) \\
5100
\end{tabular} \\
WAK5 & 5000 & 750 \\
6AG5 & 9000 & 602 \\
6AC7/1852 & 11,000 & 562 \\
6AG7 & 6300 & 536 \\
EF-50 & 5000 & 484 \\
6AB7/1853 & 6000 & 385 \\
807 & 9500 & 333 \\
25L6 & 4900 & 322 \\
6SH7 & 7100 & 316 \\
6Y6 & 2300 & 308 \\
6AK6 & 6000 & 308 \\
6L6 & 4100 & 272 \\
6AQ5 & 3750 & 216 \\
813 & & 123
\end{tabular}

The advantage of one tube over another can he determined by dividing the transconductance, gm, by the sum of the input and output capacitances of the tube. The resultant is called the figme of morit. Table I shows the figure of merit and gm of a number of tubes suitable for video amplifiers.

One of the simplest methods of compensating for the effects of shunt reactance is to insert an incluctance \(L\) in series with the load resistor \(R L\) as in

Fig. 1. The inductance and shunt capacitance, Cs, form a parallel tuned circuit, Fig. 2, resonant at some frequency outside the high-frequency limit of the am-

Fig. I-L and Cs are parallel tuned circuit. plifier. The resomant frequency should be approximately 1.41 times the h.f. cutoff frequency for host compromise between linear amplitude, linear phase response, and voltage.

In an amplifier using shunt peaking. RL is made equal to the reactance of the shunt capacitance, Cs , at cutoff frequency or
\[
R L=\frac{1}{\sqrt{6.28 \times \mathrm{f} \times \mathrm{Cs}}}
\]
where \(f\) is the cutoff frequency in cycles and Cs is the total shunt capacitance in farads. Input and output capacitances can be taken from a tule manual and wiving capacitance can be measured or estimated depending on the accuracy desired. The stray wiring capacitance averages between 10 and \(15 \mu \mu \mathrm{f}\) in a well-

Fig. 2-Equivalent circuit of that in Fig. I.
designod video amplifier that has been carefully laid out.

To measure the total shunt capacitance, connect a wide-range oscillator and v.t.v.m. to amplifier as shown in Fig. 3. Set the oscillator to about 1.200 cyoles and adjust the output to about 10 volts or some convenient value. Measure the output of the amplifier. Increase the frequency-keeping the output of the oscillator constant-until the output of the amplifier drons to 70.7r, of its value at 1.200 cycles. When the output of the amplifier has dropped to this level, the shunt reactance equals the resistance formed when the internal plate resistance, the coupling resistance and the grid resistance are considered in parallel. In order to calculate the total
shunt capacitance present use the formula
\[
\mathrm{Cs}=\frac{1}{6.28 \times \mathrm{f} \times \mathrm{Req}}
\]
where

The wiring capacitance can be found by subtracting the sum of the input and output capacitances of the tubes and the input capacitance of the v.t.v.m. from the measured shunt capacitance.

These measurements are made on an uncompensated amplifier. If peaking inductors are added later, their capac-

Fig. 3-V.t.v,m. measures shunt capacitance.
itance to ground will add to the stray capacitance and make previous calculations useless. If exact measurements are desired, connect a single pie of a small r.f. choke in the exact place where the peaking coil is to be monnted. Be sure to short-circuit the pie before beginning the measurenents.

The value of the necessary peaking inductance can be found from
\[
\mathrm{L}=\frac{\mathrm{C} \times \mathrm{RL}^{2}}{2}
\]

Fig. \(\&\) show's the shunt peaking constants used in a video amplifier with high-frequeney response flat to 2.5 me. The inductances are wound on forms with adjustable powdered-iron cores.

Fig. 4-Peaker gives flat response to 2.5 mc .
Figs. 5 and 6 show circuits for series peaking to compensate for high-frequency losses. These circuits function
a 10 -inch set when the station changes from one sync generator to another, or from a local to a relay program.
(2) The line voltage at the receiver may change. This changes the deflection voltages and high voltages, both of which affect the picture size. (For this reason also, a TV set that is adjusted in the service shop for correct size may be found to have a smaller or larger picture on the owner's power supply.)
(3) There may be some drift in the picture size or centering during the first hour of operation.

For these and other reasons, experience has taught that it is a practical necessity to make the picture extend slightly beyond the mask.

The test pattern should be designed with this in mind. For example, if the pattern has small circles or other information too close to the corners, it may cause unnecessary headaches for the technician, because when the picture is made larger than the mask, the designs in the corner may be partly hidden. Some TV owners want to know why.

The two ares of circles in the NBC pattern (Fig. 1) are an aid in adjusting horizontal centering. The main black circle is used in adjusting vertical centering.

The television signal controls the intensity of the electron beam in the kinescope. This beam produces a fluorescent spot of light on the inner face of the kinescope. It is this spot that "paints" the picture.

For good definition or resolution, or ability to make very small details evident and distinct in the picture, the spot must be small and round. It should be small enough so that the horizontal line structure can be seen distinctly, and it should be round in order to get the best definition from top to bottom and from left to right.

If the spot is slightly elliptical or oval shaped, instead of round, it may be rotated by adjusting the focus control, as described below.

The vertical and horizontal wedges are used in adjusting focus; they provide a check on the shape of the spot.

Closely examine the separate lines toward the narrow end of the vertical wedge, and adjust the focus control so these lines are in best focus, or sharpest.

Then look at the lines toward the narrow end of the horizontal wedge, and see if a slight readjustment of focus improves the focus on these lines.

If best focus on both the vertical and horizontal wedges is obtained at the same setting of the focus control, it may be assumed that the spot is round.

If the setting for best focus is slightly different for the two wedges, it indicates that the spot is oval. In this case it is generally preferable to adjust the control for best focus on the vertical wedge.

In most test patterns, the narrow ends of the wedges are intentionally placed near the center of the test pattern. By focusing here, it ensures that the picture will be in best focus at the center, which is desirable.

Some test patterns, such as Fig. 2,

Fig. 2-With this monoscope pattern the edges of screen can be checked as well as center.
provide additional wedges in the corners to show whether the focus is good on the sides and top and bottom, compared with the center.

If focus is not reasonably uniform over the entire picture, it may indicate need for repositioning of the ion-trap magnet, or the focusing coil and focusing control.
If the test pattern does not have wedges in the corners, the horizontal scanning lines can be observed to check focus over the entire screen.
When focus must be adjusted on a program, without the help of a test pattern, it is generally satisfactory to adjust for the finest scanning lines near the center of the picture.
In projection receivers, there is the usual electrical focus control for the kinescope, and the mechanical focusing adjustments for the optical system. To prevent confusion, and to get the best possible pictures, it is important to adjust the electrical focus first while looking at the kinescope, or at the reflection of the kinescope in the spherical mirror. The optical system should not be touched until the test pattern as seen on the kinescope is sharp and clear.
If the test pattern has crossed lines in the corners and in the center of each side, and in the center of the top and bottom, they are very helpful in adjusting the reflective optical systems that are used in some projection receivers.

\section*{Contrast and brightness}

Almost all test patterns include some form of shading blocks to assist in adjusting contrast and brightness.
The shading blocks have at least five shades: black, dark grey, medium grey, light grey, and white. The contrast and brightness should be adjusted so that each shade is distinguishable. With contrast too high, the darker greys become
black; and with contrast too low, the lighter greys become washed out.

If brightness and contrast are set too high, the definition will suffer, owing to "blooming" of the kinescope spot. When the spot is too bright, it grows larger, and best definition depends on a small spot.

Instead of shading blocks, some test patterns have a section of light grey

Fig. 3-Grid pottern is good linearity check.
background with white lettering, and a section of darker grey background with black lettering. This serves the same purpose as the shading blocks, and is more fool-proof, because few persons are aware of the significance of the shading blocks.

Many test patterns are designed with a grey background to secure an average modulation of \(50 \%\). This reduces the need for readjusting brightness and contrast when the station switches from the test pattern to an average program.

The horizontal wedges show lack of interlacing by a moire pattern, or wavy effect, toward the narrow end of the horizontal wedges. A moire pattern is somewhat similar to the effect that is seen when looking through two pieces of window screening, or at a piece of satin.

The appearance of poor interlacing can usually be duplicated by turning the vertical-hold control slowly until the picture is just beginning to move down. At this point the moire effect will be seen on the horizontal wedges. Also the horizontal scanning lines, instead of interlacing, will lay over each other.

\title{
Using TV Test Patterns
}

\author{
By JOHN R. MEAGHER
}

Redrinted from RCA Radio Service News, RCA Tube llepartment. Harrison, N. J.

WHEN something goes wrong in a television receiver. it generally shows uf as a definite symptom in the picture In no other type of electronic equipmont are the troubles and symptoms so clearly displayed before our eves.

If we learn to recognize these visible symptoms, we can quickly localize the trouble to a particular portion of the set. Even the complete alsence of picture and raster tells us to suspect certain definite parts.

There is no standard test pattern in general use. The nearest thing to a standard is the RCA "Indian herad" monoscope, which is used by a number of TV stations. RMA has proposed a standard "resolution chart," but for various reasons it has not been adopted by TV stations for air use.

Many TV stations have derigned their own test patterns, which, although differing in appearance, are all intended to facilitate adjustments and checks in both the transmitting equipment and in the receivers.

Two typical test patterns, the NBC and the RCA Indian head, are shown in Figs. 1 and 2. The various elements are named in Fig. 1, and these names will be referred to in the following discussion.

The controls for wilth, horizontal drive, and horizontal linearity, and the
controls for height and vertical linearity should be adjusted so that:
(1) The circles in the test pattern are as round as possible, and
(2) The test pattern is slightly larger than the mask appearing in front of the kinescope.

If linearity is not correct, the circles will be flattened or egg-shaped.

In judging vertical linearity, it helps if you lay your head on your shoulder and look sideways at the pieture. This makes vertical nonlinearity more apparent.

Many TV owners are extremely fussy about having the circles exactly round. Some of them check the circles by holding a small plate in front of the screen, and others measure the wedges to see if they are equal lengths. In some \(T V\) areas, this makes life extremely difficult for the television technicians, because it is an unfortunate fact that some stations do not transmit good linearity. Also, the linearity may be different from one cancra to another. In one particular city, if the receiver is adjusted so the test-pattern circle is round on the first station, the second station will be eqgshaped vertically, and the third station will be egg-shaped horizontally.

In the latter case, it is sometimes necessary for the technician to adjust the receiver for the best compromise

Fig. I-This typical test pattern helps owner and serviceman adjust set for best picture.
linearity on all stations in the area. But it is preferable to select the station that is most likely to have correct linearity, and adjust the receiver on this stat.on, because in time the other stations will correct their nonlinearity.

Frequently, it is necessary to install and adjust TV receivers at night or when there are regular programs, but no test patterns on the air. In such cases, it is possible to use a "bar gener" ator" which produces a number of ver tical and horizontal bars on the pirture. These bars are "synchronized" by the syunc pulses so that the bars remain stationary on the picture. The set is then adjusted for equal spacing between the bar's.

A very useful hint for checking and adjusting vertical linearity when there are only programs and no test patterns on the air, is to turn the vertical hold control so the picture keeps rolling slowly from top to botton. If the vertical linearity is good, the black verticalblanking har will remain the same thickness in all positions from the top to the bottom. There is no similar easy way to check horizontal linearity.

In a few test patterns, all circles are intentionally onitted: regularly spaced horizontal and vertical lines are used to check and adjust linearity, as shown in Fig. 3. This design of test pattern is the answer to the technician's prayers, because it avoids the trouble of the fussy customer who insists that the circles he exactly round, yet it provides a satisfactory means for adjusting linearity within reasonable limits.

Of course nothing that has been stated here should be used as an alibi to excuse poor linearity that is caused by incorrect adjustment of the receiver or by failure or change in value of components in the deflection circuits of the receiver. The question of whether the station or the receiver is at fault can lee determined by experience with a number of different receivers, or by the use of a bar generator.

Most TV set owners complain if the picture does not completely fill the mask, but do not complain if a small portion of the picture is hidden behind the mask.

It would seem reasonable to make the picture exactly the same size as the mask, but this is impractical, because:
(1) There is considerable variation in the horizontal and vertical blanking time on different stations, and on different sync generators in the same stations. Actually there may be as much as \(1 / 4\)-inch difference in height or width on

Another type of pressure recorder makes use of a very ingenious adaptation of the Wheatstone bridge. Fig. 4 is a photograph of this device, which is known as an unbonded resistance wire strain gauge. Its circuit dis.g.am, which is that of a Wheatstone bridge, is represented in Fig. 5.

Whenever a wire is subjected to stress it becomes longer and thinmer and, within limits, returns to its original length upon removal of the stretehing force. Also, as the wire elongates and narrows, its electrical resistance inereases. Therefore, the change in resistance and the reading of the galvanometer can be used as a measure of the force producing stress.

The construction of the gauge is shown in the photo. It consists of two major parts: a frame, and an armature which moves with respect to the frame. The armature is supported by two very flexible suspensions. The metallic filaments which undergo resistance changes with stress are strung on the eight posts.

Four of these are mounted on the armature and the other four on the frame. One end of each element is fixed to an armature post and the other end to a frame post.

The rod extending from the right side of the assembly is fastened to the armature. In the asscmbled instrument, the free end of the rod is attached to a metal diaphragm. The device operates just as does the photoelectric recorder, the changes in fluid pressure causing the diaphragm to bulge and relax. The movements of the diaphragn are transmitted to the armature via the rod. Hence, whenever the rod (and consequently the armature) is pushed to the left, the central pair of resistance-wire elements increases in length and the two outside elements contract. When the rod is pulled to the right by the diaphragm, the movement of the armature to the right will relax the central elements and stretch the outer pair. It is these four metallic filaments which are connected together to form the Wheatstone bridge.

Fig. 3-This is a typical direct-coupled amplifier for amplifying oufpuf of the photofube.

Photograph of the blood-pressure measuring device diagrammed in Fig. 2. Plug is for wires.

The instrument is so construeted that the bridge is balanced and no current flows through the galvanometer when no pressure is applied to the diaphragm.

Courtesy Statham Laboratorics
Fig. 4.Unbonded resistance.wire strain gauge.
Whenever the diaphragm is subjected to pressure, the stretching of one pair of elements and the contraction of the other pair unbalances the bridge. Current flows through the galvanometer and the galvanometer deflection is proportional to the pressure of the fluid on the diaphragm.

Fig. 6 is a photograph of a perman-ent-magnet, six-trace galvanometer assembly. Small reflecting mirrors, which replace the pointer needles, pivot with the galvanometer suspension. They can be seen through the focusing lenses in the inset. This instrument throws a moving reflected image of the light source upon a traveling light-sensitive surface to produce a permanent tape recording.

The author wishes to acknowledge the cooperation of the varions manufacturers who supplied photographs for this article, particularly Statham Laboratories for providing technical data on their strain gauges.

Fig. 5-Strain gauge is a Wheatstone bridge.

1hoto rourtes: Heilamel hexrarch (orp
Fig. 6-This is 6-trace optical galvanometer.

\title{
IIIElectronics in Medicine
}

\author{
 \\ Parl III \\ Phototubes and photoelectric cells find extensive use in medical diagnosis and examination By EUGENE THOMPSON
}

THE photoclectric technique most widely used by the medical profession is photoelectric cularimetry or, as it is sometimes called, photomctry. The reason for its ereat popularity is the astonishing rapidity and precision of this method of performing laboratory analyses, as compared to the older, time-consuming. and often inaccurate chemical procedures used for the same analyses.

In photoelectric colorimetry the physician treats the blood. urine, or other material containing the sulstance to be analyzed, so as to produce a colored product. The color intensity is then proportional to the concentration of the substance in the blood, urine, or other sample.

The depth of color of the solution is measured with the photoelectric colorimeter as indicated in Fir. 1-a. The lipht source and the battery are held to standard values. and the rheostat is previously calibrated. When the filtered light rays pass through the test tule containing the colored solution, the amount of light striking the photo tube varies with the depth of the color. The amount of light. in turn. determines the resistance of the phototule and the read-

and inflates. This procedure is somewhat inaccurate, does not permit continuous blood-pressure recording, and is not very suitable for determining the venous blood pressure. It is being replaced in many institutions by the direct method in cases which are serious enough to require more than the routine physical examination.
In the direct method of blood pressure measurement the physician inserts a hypodermic needle into an artery or vein (depending on whether the arterial or venous pressure is being measured). Fig. 2 is a cut-away view of one type of instrument used. A photograph of it appears on page 41.
The device is filled with sterile isotonic salt solution, and the needle introduced into the blood vessel, As the blood pressure varies, the pressure changes are transmitted through the needle and salt solution to the recording chamber. As the transmitted fluid pressure rises and falls within this compartment, the flexible rubber diaphragm bulges and relaxes in step with the fluctuations. The movements of the diaphragm alter the position of the light gate cemented to its surface. This motion of the gate produces variations in the amount of

Fig. I-Photoelectric colorimeter analyzes a substance by measuring the depth of its color
ing of the galvanometer G. Comparison of the reading with a previously made curve showing current verses concentration gives the physician the desired information.

Another type of photometer employs a photovoltaic cell. The circuit is shown in Fig. 1-b. The physical arrangement is the same as that of Fig, 1-a.
One of the most important items of information needed ly the physician is the arterial blood pressure. This may be determined by the indirect method using the familiar cloth cuff which the physician wraps around the patient's arm
light reaching the phototuhe, the output of which varies accordingly.
The resulting signals are then fed into a direct-coupled amplifier-such as the one shown in Fig. 3-the output of which actuates an optical galvanometer or electro-magnetic recording stylus. Both of these recording devices were described in a previous article on electrocardiography (Radio-Craft, Mareh, 1948).

Resistance-capacitance-coupled, trans-former-coupled, or impedance-coupled amplifiers cannot be used. Directcoupled amplifiers respond at zero or
very low frequency. If a d.c. signal is applied to the input of such an amplifier and maintained, the galvanometer or recording arm connected to the amplifier output will be deflected and muintrinecd in the deflected position. If an a.c. signal is superimposed on this d.c., the recording deviee, besides holding an initial deflection proportional to the d.c., will fluctuate about the d.c. point in step with the superimposed a.c.

The d.c. component is the phototube output for some mean value of blood

Fig. 2-Taking blood pressure with phototube.
pressure. The a.c. component is the variation, above and below this mean value, produced ly the tube in response to the fluctuations of blood pressure above and below its mean pressure. Only directcoupled (d.e.) amplifiers are usable because other types will not pass the d.c. component (the mean blood pressure). but only the a.c. signal (the periodic variations). Hence, they are of no value for quantitative analysis.

Modification of this pressure recorder makes it useful for other measurements. For example, if a length of small rulber tuling with a balloon at its free end is substituted for the hypodermic needle, the device can be used for studying the activity of the lungs, the stomach, or any part of the gastro-intestinal tract. For the latter application, the instrument is filled with some material onaque to X-rays, such as barium, and the balloon and tube passed through the mouth and down the throat. The barium permits the physician to see the position of the tube while it is in the patient's body on a fluoroscope.

Fig. 5-The Modernair uses a book condenser for tuning. Case and chassis are white plastic.
because the electromagnetic vibratory system is so small.

The editors were surprised at the high sensitivity of such a low-priced (under \(\$ 5.00\)) toy telephone, Conversations were held without difficulty and with good intelligibility.

The Little Orphan Annie Portable Radio-Phone, a small radio receiver. made by the same manufacturer. appears in Fig. 3 alongside a regular telephone instrument. Inside the red plastic base of the Radio-Phone are the components, consisting of a tube, coil, condenser, and batteries. See Fig. 4. An onoff switch is on the front of the case and antenna and ground clip-leads come from the rear. The headphone is contained in the handset, in the same place where a telephone receiver would normally be. There is, of course, no transmitter in the handset.

The set is tuned by rotation of the telephone dial. The tuning element is a coil with a movable core. This permeability tuner is linked to the dial by a dial-cord arrangement. The dial is not calibrated though the numbers from \(1-0\) can be used as a guide.

While an outside antenna aids reception, especially in weak-signal areas, clipping the antenna lead to almost any metal object will suffice if there is a strong local signal. The inside of the cover of the box in which the radio comes is metallized and a terminal is provided for attaching the ground wire. This counterpoise ground also helps reception. In downtown New York City the box cover was attached to the antenna lead and the radio was carried around. giving grood reception almost all the time. The sound was not always loud but it was sufficient.

The Modernair, pictured in Fig. 5, uses almost exactly the same circuit as the previous set. It is made by the Vaugh Manufacturing Co. The tube. however, is a 1LA and tuning is done with at "hook" condenser", This condenser, which looks like a large-size compression trimmer is compressed and expranded by the plastic tuning shaft, which screws in and out of a threaded hole, The slide-
rule tuning indicator is moved by a gear on the tuning shaft. The on-off switch is on the rear of the case. The plastic "chassis," shown on the left in Fig. 5, holds all components except the tuning indicator. It fastens to the back of the case with three machine serews. Batteries are exposed at the rear for easy replacement. Two pen-light cells and miniature \(221 / 2\)-volt batteries are used. A standard single earphone is permanently attached. A tryout showed about the same results as the previous receiver.

General Electric's toy record player, shown in Fig, 6, is all-electronic. A standard electric motor is used. The amplifier, powered from 117 -volt a.c. or d.c. lines, puts a maximum of three-quarters of a watt output into a built-in 4 -inch PM speaker, Two tubes are used, a rectifier and an amplifier. The pickup is a high-output crystal with replaceable needles. Since it is made especially for children, care was taken to make it safe. All electronic parts are inside the case away from prying hands, and the metal pickup arm is sufficiently isolated from the power line to avoid any shock.

The player will handle ordinary 10 and 12 -inch records, as well as those made for children in the 6 - and 8 -inch size.

Though the amplifier will operate on d.c. the motor will not.

Fig, 6-Complete G-E phonograph for children.

\section*{ELECTRON TUBE CONFERENCE}

N
OT so long ago electron tubes were associated exclusively with conmunications. Now more and more are required for special instruments such as computing machines, one, the ENIAC, using 18.000 tubes. Many electronic instrunments require great uniformity and precision in tubes.

The increasing use of tubes in research and industry inspired an Electron Tube Conference which was held recently in Philadelphia. Tube makers met tube users, and there was an opportunity to exchange recommendations.

The most frequent defects in tubes are short circuits, broken beads, uncertain life, and low emission.

Among suggested improvements were a 10,000 -hour life span, lower hunt and microphonics, freedom from unexpected failure, and \(10^{\prime}\); tolerance in characteristics.

The following basic tube types were discussed at the conference: doublediode (6 H 6), pentode anmplifier (6 SJ 7), gating tube (6SA7), double-triode (6SN7), and beam power (6L6). Electrometer and voltage regulators were also analyzed.

One of the most common circuits user in electronic instruments is the trigger circuit which usually employs a 6SN7 or similar type. For example, about half of the tubes in the ENIAC are 6SN7's. Experience shows that this tube has a life expectancy of about 150 years of intermittent life, provided it passes the first 100 hours without developing a defect. For trigger use, it was recommended that the tube be kept within closer tolerance than at present. The most important characteristic is the bias required for plate current cutoff.

In pentode amplifiers, the important factor is uniformity: Of course sufficient degeneration cancels out the need for tube uniformity, but more gain is then required. If the 6SJ7 could he made more nearly uniform, it would be possible to get higher gain in each stage. In some cases stages could be eliminated.

Tubes of the 6 SA 7 type find different uses in communications than in industry. For radio the present tule is satisfactory. However, industry requires a gating tube. The two controlling grids must have independent control over the output and each should operate from cutoff to the positive grid region. It was recommended that an entirely new tube be developed for this purpose.

A more rugged, longer-life tube was recommended for the 61,6 beam tube. Improvements were asked for in leakage, hum. microphonies, and noise. The tube would have to be redesigned mechanically to stand shock and vibration.
The plan also includes mote conservative voltage, current, and temperature ratings. without much change in the prosent gain and ontput. This could be done by redesigning the tube strncture.

It is felt that the conference will result in improved tube design.

A second conference on electron tubes is planned for next year.-L. Queen

ufactured hy Da-Myco Products Company of New York. Although there is nothing supersonic about this toy, it does give very usable 2 -way communication without any hatteries. The two

\author{
RICHARD HENRY
}

THAT this is the age of electronics is made clear hy the multitude of electronic devices which appear every day in business and at home. The younger generation also has a place in the world of electronics, for even very young children will enjoy many of the new electronic toys put on the market recently. Among the devices especially designed for children are a sound-powered 2 -way telephone, a small all-electronic record player and miniature radio receivers operating on tiny batteries and selling for less that \(\$ 5\). These devices widen the gulf between a child's life today and the rag-doll-and-coaster-wagon era of a few years ago.

One of the most interesting of these padgets is known as the Ruck Rogers Supersonic Two-Way Transceiver, man-

Fig. I-The Buck Rogers phone instrument.
esting that it well deserves the attention of telephone receiver manufacturers who wish to try for the greatest possible sensitivity. They work on the electromagnetic principle first discovered by Alexanter Graham Bell. The earphones are, therefore, reversible-each can be used also as a transmitter as, in fact, it is.

In the usual earphone a rather thick soft iron diaphragm is used. Its diameter is usually about 2 inches. If very strong magnets are used the entire diaphragm is pulled down; this qreatly impedes vibration making a fairly strong current necessary for operation of the telephone.

The makers of the new toy have gotten around this difliculty and actually made an earphone which is self amplify-

Fig. 4-Diagram of Orphan Annie Radio-Phone
ing. Insteal of the 2 -inch diaphragm, they have used a very small iron diaphagm measuring \(\frac{5}{6}\) inch in diameter: This is fastened rigidly to a thin brass amplifying cone which is able to swing freely under the influerice of the small diaphragm. A powerful electro-magnet can now be used without hampering ribration. An Alnico magnet is used in the toy. Great sensitivity is available

Fig. 3-Toy radio at left is tuned by turning the "telephone" dial. Standard phone at right.
first. The discriminator is a Foster-Seeley circuit using crystal diodes. The 2 E. 36 a.f. amplifier is transformercoupled to a receiver in one end of the handset. A switch on the handset operates the filament changeover relay to switch power to the transmitter.

\section*{The transmitter}

There are 8 tubes in the transmitter; two are miniature and the others are subminiature types. The 567e crestal oscillator, No. 14, is wired with the crystal hetween the grid and sereen grid. The signal from the oscillator goes to the 2 E .36 phase modulator. This tuhe is so commected across the output of the
oscillator that the phase of the signal varies with the audio signal at the grid of the modulator. Transformer coupling is used between the microphone and the control-grid of the modulator.
The phase modulator is followed by a 2F36 buffer operating straight-through. Two triplers and a doubler raise the phase modulated signal to the operating freguency. The second tripler uses a pair of 2E:36's in parallel.

\section*{Construction}

Construction and maintainance of a 19-tube unit as compact as this HandieTalkie transmitter-receiver would present many problems were it not for the
cellular type of construction. The tubes and all components associated with each stage are on plug-in sub-assemblies.
This type of construction simplifies servicing and reduces to a minimum the time a unit must rentain out of service for repairs. As soon as a defective stage is isolated, it can be replaced by a good one and the unit put back in service.
The defective unit can be repaired at a more convenient time and placed in stock for replacement purposes when needed.

Metering points are provided for trouble-shooting and adjusting the transmitter power amplifier or the receiver mixer and limiter circuits.

The top cover and nine of the plug-in units have been removed to show chassis construction.

Crystals for the high-frequency model range from 6.15 to 7.98 mc and those in the low-frequency set are between 4.65 and \(6.31 \mathrm{mc} . \mathrm{L} 3\), in the sereengrid circuit, is adjusted to resonate at three times the crystal freguenc: The third harmonic of the crystal is amplified and coupled to the grid of the 5672 frequency doubler, No. 13. The output of the doubler-six times the oscillator frequency-is the heterodyning freguency. It is coupled to the input of the mixer, No. 4, through L4 and L5. The heterodyning frequency is 2.1 mc lower than the operating frequency.

The mixer works into a 3 -stage 2.1me intermediate-frequency amplifier. Miniature i.f. transformers are used. The primary and secondary coils of each are tuned by varying the position of powdered-iron cores with in the coils. The secondary of the i.f. output transformer feeds into the grid of the first stage of the cascade limiters. Both limiters have the same time-constant but the second limiter is operated at a lower plate voltage than the first. This second stage removes any amplitude variations that may pass through the

Each of the plug-in units has a plug at the bottom. There are wiping contacts at the top.

\section*{Cover Feature}

\section*{FM Handie-Talkie Radio for Industry}

This is the portable radioset. The antenna,handset and bottom cover have been removed. tion workers, rescue and emergency teams and in other applications where a light-weight, low-power transmitterreceiver is required. Its 9.8 pounds include an 8 -tube transmitter and 11 -tube receiver. Its case is 10 inches high, \(125 / 8\) inches long and \(31 / 8\) inches wide. It is designed to be carried in the hand or strapped to the body. A handset clips into a cradle on top of the case when not in use.

A 43 -inch base-loaded whip-antenna is standard equipment, but any \(50-\mathrm{ohm}\) antenna can be used to increase the range when the unit is used in fixed or semi-fixed locations. It is normally supplied with a battery power pack. Vibrator packs and a.c. supplies are also available.
A power switch is located on one end of the case. The receiver remains on when the switch is closed. The transmitter is turned on and the receiver off in the standard manner by a push-totalk switch on the handset. The transmitter and receiver are crystal controlled.

The Handie-Talkie rarlio is available in two models. The FHTR-1AL and FHTR-1AH operate on any predetermined frequency in the 25 to \(40-\mathrm{nic}\) and 39 to \(50-\mathrm{mc}\) bands respectively. The units are tuned to the desired frequency at the factory.

A unique cellular construction is used in the chassis. There are 19 cells, each housing a complete plug-in stage. These cells are shown in the photographs and are numbered and separated by broken lines on the diagram on pages 36 and 37 . -Trade mark of Motorola, Inc.

\section*{The receiver}

There are 11 subminiature tubes in the receiver. They are: 2 E 36 , first r .f. amplifier; 2E32, second r.f. amplifier; 5672, oscillator-multiplier; 5672, multiplier; 2E36, mixer; 2E32's as first, second and third i.f. amplifiers and cascade limiters; and a 2E36 audio amplifier. Crystal diodes are used in the discriminator circuit.
The grid of the first r.f. amplifier, cell No. 2, is capacitance-coupled to the plate end of L1. the power-amplifier
tank coil of the transmitter. This is the common antenna secondary coil for both transmitter and receiver. I, 2 couples the resonant coil to the antenna when transmitting and receiving. All coils between the antenna and the grid of the mixer are tuned to the operating frequency.

Low-freguency crystals are used in the crystal oscillator-multiplier, No. 12. The crystal is between plate and grid. A third harmonic is developed in the screen circuit. (Cont. on next page)

Four of the nineteen plug-in stages are shown. Cellular construction simplifies servicing.
the ratio detector, connect the network from plate to ground of the next to the last i.f. tube. In Philco sets, connect it from plate to ground of the last i.f. stage. (It is important to keep the signal generator output as low as possible for all i.f. and r.f. adjustments.)

First place the load network across the proper stage as outlined above and adjust the secondary trimmer of that stage for maximum output. Then remove the loading network and connect it from the grid end of the same trans-

Fig. 3-Meter connection for ratio detector.
former to ground. Align the primary trimmer for maximum output. Follow this routine through to the first i.f. stage, adjustments being made with the signal generator connected to the converter control grid. After the adjustments have been completed remove the loading network.

\section*{Front-end olignment}

Connect a 70 -ohm resistor across the signal generator output terminals and connect the output leads to the antenna terminals of the raceiver. With the generator and receiver set at 105 mc , adjust the oscillator trimmer for maximum output. Set the receiver to 88 mc and check oscillator tracking by tuning the generator slightly to either side of this frequency. Spread or compress the turns of the oscillator coil very slightly, if necessary, to bring the signal generator in at the 88 -me setting. Then repeat the adjustments at both ends of hand until no further improvement is noted.

Fig. 4—Philco detector contains oscillator.
Set the generator and receiver at 105 mc and adjust the converted trimmer for maximum output. Rock the tuning condenser of the signal generator when making this adjustment.

If the receiver has no r.f. stage, make the adjustment as follows: connect two 30 -inch lengths of wire to the signal generator and two identical lengths to the receiver antenna terminals. Bend each to form a simple dipole and place the generator several feet away from the receiver. Set the generator and receiver to 105 mc and adjust the r.f.
trimmer for maximum output. Set the generator and receiver to 92 mc and check tracking of the converter grid with a tuning wand. A decrease in signal when either the iron or brass end is inserted in the coil indicates proper tracking. If the output increases with brass inserted, spread the coil slightly; if the output increases with the iron end inserted. compress the coil. Repeat all oscillator, converter, and r.f. adjustments until maximum results are obtained.

\section*{Limiter ond detector}

In receivers using two limiter stages, the second limiter must be adjusted before proceeding to the detector.

With the d.c. indicating meter still connected as before, connect the signal generator to the grid of the i.f. stage preceding the first limiter and connect the loading network from plate to ground of the same stage. Then carefully retune the generator to the center intermediate frequency, as indicated by maximum reading on the meter.

Remove the loading network and connect the indicating meter to the grid of the last limiter. With the generator connected to the first limiter grid, connect the loading network from the first limiter plate to ground. Adjust the input trimmer of the second limiter for maximum reading. Then. with the loading network connected from the second limiter grid to ground, adjust the first limiter plate trimmer for maximum output. Remove the meter and loading network.

For detector adjustments, an FM signal generator and oscilloscope should be used to ohserve detector linearity. If these instruments are not available, proceed with the AM generator. For all detector adjustments. use an insulated, nonmetallic alignment tool. Alignment procedure depends on the type of detector circuit incorporated in the receiver.

With the Armstrong discriminator, connect an audio output meter across the speaker voice coil. With the signal generator connected to the grid of the i.f. stage preceding the limiter (but with loading network and d.c. indicating meter removed), tighten the discriminator balancing trimmer to detune the circuit. With the output of the signal generator as low as possible, adjust the plate trimmer (C1 in Fig. 2)
for maximum audio output. Adjust the balancing trimmer (C2) for minimum audio output. The output should increase sharply on either side of the minimum setting.

\section*{Rotio detector}

Connect the d.c. indicating meter as shown in Fig. 3. (Use the 10 - or \(50-\) volt range of the meter.) Connect the generator to the grid of the next to last i.f. tube; connect the loading network from plate to ground of this stage. Reset the generator to the center intermediate frequency, as indicated by a maximum reading on the d.c. meter. Remove the loading network.

First adjust the diode trimmer (C2 in Fig. 3) for maximum output, then adjust the plate trimmer C1 for maximum reading. Remove the d.c. meter and retrim C 2 for minimum audio output. Output should increase sharply on either side of the minimum setting.
The Philco detector (Fig. 4) is adjusted by tuning the oscillator section to zero beat with the signal generator. which is tuned to the center intermediate frequency and connected to the i.f. stage immediately preceding the detector.
With the audio output meter across the speaker voice coil. connect the generator to the input of the last i.f. stage and the loading network across the primary of the last i.f. transformer.

With the oscillator grid (pin 2 of the FM1000 tube) grounded, modulate the signal generator and retune to the center intermediate frequenco, as indicated by maximum audio output. (For this adjustment keep the generator output as low as possible.) Then remove the short and take out the loading network and output meter.
Short pin 4 of the tube to the audio load resistance R (Fig, 4). Then turn off the generator modulation and adjust the oscillator trimmer C 1 to zero beat.
Remove the short and adjust the re-actance-control trimmer C2 for zero beat. This adjustment is rather sharp; use a very low input signal from the generator.
This step-by-step alignment procedure is the one recommended by Philco for alignment of FM receivers without an \(F M\) signal generator or oscilloscope. The Phico Model 7070 r.f. signal generator was used for making the adjustments.

\section*{FM STATIC SHIELD}

My FM receiver was picking up automobile spark interference. Working on the theory that noise travels in straight lines, I made a shield and placed it on the antenna mast so that it intercepts ignition radiation from cars on the road below, but allows the FM signals to pass over the top of the shield and strike the antenna. The scheme is shown in the drawing.

The shield is made from metal lath such as that used as a plaster base in most houses. It can be obtained at any lumber yard. The sheet is bent into a

U-shaped trough and held that way with heavy wires. It is mounted on the mast (which passes through a hole in it) just below the dipole.

The shield eliminated about \(90 \%\) of
the noise. Hap Kingsland,
the noise. Hap Kingsland,

\title{
You can align any FM receiver withont an
}

\title{
FDI genenator or "saoper 'This article gives the
}

\author{
aligimment procedure in step-by-step fashion
}

\author{
By JOHN B. LEDBETTER
}

|T IS a relatively simple matter to align an FM receiver when the service manual is available and the proper instruments are on hand. But when a new or unfamiliar receiver comes into the shop without alignment instructions or when the FM signal generator and oscilloscope usually specified in the service manual are not available, proper alignment becomes a more difficult undertaking.

Most FM receivers can be aligned with an \(A M\) signal generator, provided the generator's frequency range extends to 105 or 110 mc , and provided the serviceman knows the proper function of each stage of the receiver. The only additional equipment needed is an output meter, a 20.000 -ohm-per-volt d.c. meter. an insulated alignment tool, and a tuning wand.

\section*{Circuit characteristics}

In an FM receiver, the \(r\).f., converter, and oscillator circuits may be aligned hy peaking for maximum output. They are heavily damped to allow broad response, and mresent no unusual prohlems in alignment.

The main difference between i.f. transformers in \(A M\) and \(F M\) roceivers is the band width. The maximum width required in the liest AM receivers is \(\mathbf{1 0}\) kc, whereas an FM i.f. transformer must have a flat-top eharacteristic over

Fig. I-Meter placement for aligning i.f.'s. a band width of 200 kc . Two basic methods are used to obtain wide-band response: overcoupled tiansformers and single-peak transformers.

For overcoupling the i.f. coils have
been placed physically close together, past the point of critical coupling, so that a flat-topped response curve is obtained. Transformers of this type cannot he aligned by paking for maximum output. An attempt to align overcoupled transformers by peaking would throw some or all the i.f. tuned circuits off the center frequency.

Single-peak i.f. transformers are designed to have relatively high gain at the center frequencs, at the same time having a \(Q\) sufficiently low to give broad response over the required band. They may be peaked for maximum output.

Three basic types of detectors are in use. They are the Armstrong discriminator. the ratio detector and the Philco.

The Armstrong system employs a duo-diode frequency discriminator, preceded by one or two limiter stages. An amplitude-modulated signal cannot be used for alignment because the limiters

Fig. 2--This is the Armstrong discriminator. remove most of the AM component from the i.f. signal. However, since the i.f. signal causes d.ce grid-current flow in the limiter which is dependent on the signal amplitude, i.f. alignment adjustments can be made with an ordinary 20,000 -ohm-per-volt d.c. meter as the tuning indicator. (See Fig. 1.) To mevent detuning the limiter a 100,000 -ohm resistor should be inserted in the test prod when it is attached to the Armstrong circuit. The meter may be used for all r.f. and i.f. adjustments; it should be connected across the first limiter output if two limiters are used, then connected to the second limiter for alignment of the first limiter stage.

In the ratio detector, which also uses two diodes, a high-capacitance condenser is charged at a varying rate by the i.f. signal.

The Philco detector has a special tube (FM 1000), part of which acts as a Colpitts oscillator operating on the center intermediate frequency. The i.f. output is fed into an injector grid of this tube, and the reactive coupling between the pentorle section and the oscillator causes the latter to lock in and follow the frequency variations of the i.f. signal. In a receiver employing the Philco detector, the oscillator control grid must he shorted to ground before the r.f. and i.f. stages can be aligned. The pentode section then acts as a regular \(\mathbf{A} M\) detector: and r.f., i.f., and oscillator adjustments can be peaked with a modulated AM signal generator for maximum output.

\section*{I.f. alignment}

First determine the type of detector employed. Then connect the signal generator accordingly. In the Armstrong detector the generator is connected to the last i.f. stage preceding the limiter, or to the first limiter if two are used. In the ratio detector, the generator should be connected to the control gide of the next to the last i.f. stare. (Alignment is always begun with the last i.f. stage and worked back to the converter.) In the Phileo circuit, the signal generator is connccted to the control grid of the last i.f. tube.

With overcoupled i.f. stages a loading network, consisting of a \(0.1-\mu \mathrm{f}\) condenser in series with a 4,700-ohm resistor, must be placed across the coil opposite the one being tuned, to allow each coil to be aligned for maximum output without affecting the center frequency of the other. If you are not sure whether the receiver has overcoupled or single-peak i.f. stages, connect the loading network anyway and proceed as if the stages were overcoupled. Use of the network will not affect the tuning adjustments in singlepeaked stages.
In the Armstrong circuit, the load network is connected from limiter plate to ground (first limiter plate to ground if two limiter stages are employed). In

RY1 opens contacts 6 and 7 to turn off the recorder.

When a signal is received, C 8 charges through contacts 3 and 4. When RY1 opens, the condenser discharges into the grid circuit of the GSJ7. This positive pulse makes RY1 act quickly and positively without chattering. The \(0.5-\mu \mathrm{f}\) condenser across RY1 bypasses surges resulting from static and random noise in the receiver.

Terminal No. 2 ends in a phone plug, which is inserted in the receiver metering jack, and the metering switch is turned to No. 1 position (or if separate jacks are used. to the appropriate jack). The grid of the GSJ7 will then be in

Fig. 3-Low-frequency i.f. of the FM receiver. either the grid circuit of the low-frequency i.f. tube or the first limiter.

A grid resistor is unnecessary in the 6SJ7 circuit. The grid return is through R1 and R2 (Fig. 3).

Terminal No. 3 is connected to the hot or ungrounded side of the plate transformer primary in the transmitter. When the transmitter is turned on its plate transformer is furnished line voltage by the keying "elay in the transmitter. This feeds line voltage to the a.c. relay RY2 in the keser from terminal No. 3 and the recorder is started to record the transmitted message. Note this is done through points 1 and 2 of RY1. Thus, mimary voltage cannot be placed back on the primary of the transmitter plate toansformer when RY1, due to received signal. actuates RY゙2, as the points 1 and 2 will have opened the line to terminal No. 3 and the plate transformer in the transmitter. R5, R6 and R7 are taps on a voltage divider. A 100 -watt size is used for ease in adjustment of the taps. The total value of the divider is \(15,000 \mathrm{ohms}\), and the bleeder current, used to help stabilize circuit voltages, must be taken into consideration in setting tap points, the values of which are shown in the schematic.

The recorder itself must be modified to permit all internal circuits to remain hot except the motor. An added d.p.d.t toggle switch in the recorder permits throwing the hot side of the motor ei-
ther to the regular line terminal for normal operation or to J 2 by means of a connector cord for automatic operation. S2 permits the sensitivity of the kever to be sot to operating point by means of R3 and the indicator lamp hefore the recorder is turned on. The outer conductor of the connector cable hetween J2 and the recorder is used to complete the ground return between the two units. This is necessary to reduce hum in the recorder.

An ordinary wall receptacle is used for connecting the power cord of the recorder. It may he necessary to polarize this receptacle because of the transmitter keving circuits introduced into the keyer through terminal No. 3. For this reason the nower cord of the kever is attached in the transmitter arross the line fuse block to insure against possible mixup. All eables and terminals are color-coded. Sl is the power on-off switch.

In the event the radio equipment is not remote-controlled, the two-way recording can be ohtained with the recorder microphone instead of connections from terminal Nos. 4 and 5. Simply place the recorder mike in common
proximity to the receiver speaker and the operator's microphone. The recorder will continue to operate automatically and will record both sides of the traffic.

It is possible this type kever will have two advantages over the betterknown voice-operated circuits, especially as used in radio networks. The instant a carrier appears in the receiver the kever will start the recorder or other device before audio is present, thus allowing the recorder to reach operating speed and eliminating wow. Also, in FM receivers the saturated limiters produce tervitic audio, due to amplified thermal noise. when the squelch is opened by weak and undesired signals as is often the case. This noise audio would trip a voice-operated keyer and the result would be considerable loss as far as recording is concerned.

In actual operation the keyer descrited can easily be tripped by signals received from 50 -watt stations operating from the 200 -foot towers in the \(30-40-\mathrm{mc}\) band in excess of 125 miles and by mobile units 40 miles distant. Its application in the \(72-\) and 156 -me hands will prowe just as effective according to the area covered.

\section*{NEWLY-DEVELOPED RECEIVING TUBES}

Three new miniature tubes wore announced recently by RCA and a new twpe of tube construction is being used hy Raytheon.

The new tubes are 6BA7, 12BA7 and 6AR5. The \(12 B A 7\) has the same appearance as the 6BA7 shown on the left. The GAR5 is shown at the right. Both the 6BA7 and 12BA7 are pentagrid converters with the same characteristics as the standard-size 6SB7. Differing only in filament characteristics. these two miniatures are especially reconmended by RCA for service in the \(88-108\)-me FM hand.

The 6AR5 is a boam power tube. It is intended for use in the output stage of automobile and compact a.co-operated
 receivers. It delivers a moderate power ontput with relatively small input voltage. Within its maximum ratings. it is the nerformance equivalent of the 6K6-GT.

The heater of this tule operates at 6.3 volts, 0.4 amperes. Maximum voltage is 250 volts for plate and the screengrid. When operated as a class-A amplifier, plate and
 screen are operated at 250 volts. With 16.5 volts of bias. maximum plate and screen currents are 45 ma and 10 ma respectively. The \(\mathrm{gnm}^{2}\) is \(2,400 \mathrm{micromhos}\), 65.000 ohms and the load resistance is 7,000 ohms. Maximum power output is 3.2 watts with \(7 \%\) total harmonic distortion. With 18 volts of bias; plate current is 33 ma , screen curnont is 10 ma , gil 2.300 micromhos, plate resistance 68.000 ohms, and load resistance 7,600 ohms. Maximum power output is 3.4 watts with \(11^{\prime \prime}\) distortion. Resistance in the grid circuit should not exceed 100,000 ohms for fixed bias or 500,000 ohms for cathode bias.

The maximum plate dissipation is 8.5 watts and screen dissipation is 2.5 watts. Do not permit the voltage between the heater and cathode to excced 90 volts in either direction. The Raytheon Bantal-type tube has increased ruggedness due to an 8 -pillar support construction. Fach tube has an internal shield, short leads with wide spacing and other stactural advantages. The Bantals are at present manufactured to replace the 6 SA \(7-G T, 6 S J 7-G T, 6 S K 7-G T\) and 6SQ7-GT.

\title{
Broadenstin! and Co
}

\title{
A Carrier-Controlled Recorder
}

\author{
By RHETT McMILLIAN*
}

Messages are logged automatically F I just had a recording of that!" That, of course. being some piece of monitored air traffic which, having come fleetingly to one's attention, is as quickly irevocably gone, Such expressions are familiar to all in communication circles. Too many times has an occasion abruptly shown the need of an exact replica of a certain transmission in such fields as police, fire, taxi, marine. railroad, and other branches of the so-called emergency services.

Wire recorders are satisfactory for copving such transmissions; however, the longest average recording time of most of these instruments, without rethreading, is one hour. It being impossible to predict when a call will be received over the radio system, the recorder is normally run continuously to assure a record of all transmissions, This results in miles of dead wire and numerous later hours wasted in playback monitoring. Also, hecause of the necessity of changing wire spools every hour, the recording equipment must be placed in the dispatch room so the operator may have access for servicing. Satisfactory operation may be impaired because of operator failure in attending the equipment, especially in the event of irregular traffic in which the personnel is involved.

The keying device shown in Figs. 1 and 2 was developed to turn on the recorder whenever a signal is being received or transmitted. When the keyer is used with a recorder, several hours -and often days-can be reduced to one hour of continuous recording. The net recording time will naturally be influenced by the amount of the traffic load on the net.

The device described was designed to work in conjunction with a Motorola FM 30-40-me receiver and associated transmitter, one of the many popular brands of emergency radio equipment. There should be no serious difficulty in adapting the keyer to operate from practically any receiver, including AM a.v.c circuits. However, to design such an instrument to operate from all the many types and makes of receivers would be highly impractical from a field service standpoint, especially inasmuch as one radio system will not ordinarily employ more than one type of manufactured equipnent.

The greater majority of emergency services now use or intend to use, frequency-modulated equipment. Therefore, the discussion of the simple cir-

\footnotetext{
*Chief, Communications, Florida Highway I'atrol,
} Tallahassee, florida
cuit will be limited to its intended use with an FM receiver. No alterations or rhanges are necessary in the receiver. Phone jacks or one jack with a selective switch are usually provided for measuring voltage or current while tuning the IVM receiver circuits. One of these metering voltages triggers the keyer. The keyer is set off by the negative voltage developed across the metering resistor in the grid return of the low-freguency i.f. stage in the doublesuperheterodyne receiver.

The schematic of the kever is shown in \(\mathrm{F} \because \mathrm{ig}\). 1. It is essentially a d.c. amplifier with the GS.J7 drawing enough current to reduce the plate current of the
6.55 below the point required to activate the relay RY1. Upon receipt of a signal. the low-frequency i.f. tube (first limiter in some receivers). Fig. 3 , will be driven to a point where a negative voltage is developed across its grid load Rt. This negative voltage drives the bSJJ to cutoff, making its plate-and the grid of the 65 -more positive so the 6.J5 will pass current and actuate RY'. This closes contacts \(f\) and 7 to exide the coil of RY'2. When KY'2 closes, a.c. is applied to the motor of the recorder through J:. When the transmitting station goes off the air, the 6S.J7 conducts more houvily, making its plate less positive. The grid of the 6.55 is cut off and

Fig. I-Receiver develops voltage to cut off 65.57 and trigger relay in plate circuit of \(6 \mathbf{J 5}\).

Fig. 2-This 3-tube relay unit operates recorder when a signal is transmitted or received.

The listeners must be trained-they have to know what to listen for and how to describe what they hear in terns of treble, bass, muddiness, brilliance, fuzziness, tinniness, boominess, presence, and sometimes in unprintable terms. It is best to have one or two other radios to compare with the one being tested. The listeners should be blindfolded so that they are not influenced by knowl-

Automatic ink recorder is mounted in a rack.
edge of what radio they are listening to.
Since the listeners are human beings and not indicating instruments, their ratings have most value when they are unanimous. If all the listeners agree that a radio sounds bad, the inescapable conclusion is that the tone really is poor.

Listening to radios must be done at both ends of the radio dial, since the tone at the two ends may be different in AM sets. It should be done on a number of different stations, because all stations are not operated the same way with regard to frequency response, hum, and distortion. It should include different kinds of selections, such as male and female speech, vocal and musical programs. Live programs are hest.

In listening to midget radios the most important single requirement is that the radio reproduce sibilants. If you can't hear the s's, don't bother buying the radio.

Another way to set up listening tests is to lroadcast your own test programs. For this purpose high-fidelity records
are played through the signal generator. The standard of comparison (the "other radio") may be an audio amplifier. The British HMV and Decca records have outstanding fidelity.

The record-playing equipment used in this laboratory is a Rek-O-Kut transcription turntable with a Gray phono arni and a G-E cartridge and Gray preannlifier. These can be switched from the signal generator to a Fisher amplifier and a Stephens co-axial speaker in a bass-reflex cahinet for comparison listening.

\section*{Testing FM and television sets}

Tests of FM radios are quite similar to those for \(A M\) sets. The frequencyresponse test differs mainly in the fact that an FM signal generator is usedthe Boonton 202-B. Since this does not have a built-in pre-emphasis circuit, an external one is attached between the audio oscillator and the FM generator. Also, instead of a transnitting loop, a dunmy antenna is used between the signal generator and the receiver.

In measuring the sensitivity of an \(F\) M set, there is a choice of several kinds of sensitivities as defined in the IRE standard. From a home listener's viewpoint the quieting signal sensitivity appears to be the most appropriate, since it neasures the sensitivity when the audio signal is 30 db stronger than the background noise.

One very bad fault of early postwar FM radios was frequency drift with time and frequency shift with changes of line voltage. These have been largely overconse cev in the cheaper sets, but the listener should still he on the lookout. As far as drift is concerned. the listoner is probably interested in knowing whether he has to retune during the first half hour of listening (by that time chances are that he will have tuned to another program anyway) and whether he has to retune the next day after turning off the set in the evening. These facts can be determined the hard way -as outlined in the standard, by plotting an oscillator frequency-drift curve -or by simply listening. The results of the latter method are even more signiticant because drift by itself is not oh-jectionable-it is the audio distortion (if any) resulting from drift.

\section*{Service shop tests}

The average serviceman can perform similar tests with a minimum of equipment, though with less precision.

For frequency-response charting, one can use a service oscillator if it has connections for external modulation. Unfortunately too few servicemen and experimenters own an audio oscillator. If none is available, the cheapest thing to do is to buy a frequency record (see page 46 , October issue) and play it through a wide-range pickup into the external modulation connections of the service oscillator. The relative loudness of the different tones as they come from the loudspeaker may be checked with an amplifier systen of known flat characteristics and an output meter. It is
important, of course, to leave the volume control strictly alone during this test.

An easier but less informative way to judge the frequency-response would be to connect an a.c, voltmeter across the loudspeaker terninals. The voltmeter readings (converted to decibels) may then be plotted on graph paper. This test does not take the speaker into account, of course.

In the listening test, pay attention to sibilants-they should be audible, but not exaggerated. As an over-all test for trebles, triangles will be completely inaudible on some radios. A record with a good bass to listen to is the Victor recording of the Itt. Kije Suite, side 4. The tympani are completely inaudible on radios with poor bass response and too loud on boomy ones.

The sensitivity of an AM radio is usually given in service notes as the voltage on the antenna terminals. This is all right for checking whether the set is in proper operating condition. As a matter of fact, it has been recognized for some time now among radio servicemen that the easiest way to locate hard troubles is, not to measure d.-c, voltages and resistances all over the place, but to make over-all gain measurements with a service oscillator and an r.f. vacuum-tube voltmeter. Of course, for this purpose one must have nominal gain figures for each stage. Such figures nowadays are obtainable from the better service notes.

For evaluating two radios to find out which is more sensitive, the loop antennas must le included in the test. This nay be done by placing them one by one in exactly the same position on the table or on the floor, so that their loops are in exactly the same position. The set that can bring in the weakest station the clearest is the more sensitive one. In making this test, be careful that there is no metal table, metal floor or wall in the vicinity since results will then-to a great extent-depend upon which radio has its loop of the latter method mounted so as to he farther from the metal.

One test that cannot be made by actual comparison of two sets is the in-terference-rejection test, that is, unless the i.f.'s are at exactly the same frequency. The interfering station may be at just the right frequency for one set and not for the other, while it is the second set that is really had. If the two i.f.'s have been aligned to exactly the same frequency, then at least the image interference and i.f. interference frequencies will be the same, and a comparison test would be valid. Again, if the test is made during the day, there may be no interference on any set. Listen for interference after sundown.

A very enlightening analysis of interference is published by RCA Victor Division, Camden, N. J. (Interierence Analysis and Its Radio Recoption Effects by W. J. Zaun). It gives the i.f. frequencies to which radios in given cities should be aligned to avoid interference. Servicemen might avoid a lot of birdie troubles if they followed such a chart and used one of the crystal service oscillators for exact aligning to the proper frequency.
the output started dropping at about 2,000 cycles; and by the time the audio oscillator had reached about \(5,000 \mathrm{cy}\) cles, there was no output at all. Taking the \(10-\mathrm{db}\)-down point as a reasonable

Fig. 2-Sample receiver response curve chart.
measure of limiting response, the radio might be said to be good from 150 cycles to 3,300 . This was a good table-model radio. Good console FM radios will go both lower and higher.

\section*{Interference rejection}

Another thing that affects the way a radio sounds is its liability to interference from stations other than the one to which it is tuned. A two-signal-generator, interference-rejection test imitates actual listening conditions. The radio is tuned to one signal generator, and the other is cranked through its range to find interfering frequencies.

The "desired-signal" generator is tuned to a clear channel mid-hand, and the radio under test is tuned to it. The signal is adjusted to be strong enough to be usable on the particular radio (16 db signal-to-noise ratio). The volume control of the radio is adjusted for average loudness (80 db on the \(40-\mathrm{db}\) scale of the sound-level meter). The modulation on the desired signal is then turned off, and the undesired signal is turned on and cranked through a wide frequency range to catch interference. If interference is heard at any spot. the generator is stopped and its output reduced until the interference practically vanishes. The ratio of the outputs of the two signal generators is then a measure of the goodness of the radio as regards interference rejection. In other words, the bigger an undesired signal must be (compared to a desired signal) to produce interference, the better the radio. Signal ratio is expressed in decibels.

In testing a group of 14 expensive 1948 radios, it was found that on the average it took an interfering image signal 30 db stronger than the desired signal to cause interference. However, on the hest of sets there was interference only if the signal was 60 db stronger, while on the worst a signal 9 db stronger caused interference.

In the same group of radios the best radio could tolcrate an interfering signal on the intermediate frequency as much as 18 db stronger than the de-

Pholos courtexy of Constumers Union
These are four of the high-precision generators used in the laboratory for comparing performances of receivers tested.
sired signal, while the worst one could not stand i.f. interference 13 db lower. than the desired signal.

It was also found that on some radios the selectivity was so good that an adjacent signal (\(10-\mathrm{kc}\) separation) could be as much as 4 db stronger than the desired signal, while on others the adjacent signal had to be 12 db wealier not to cause interference.

The interference rejection tests are performed in slightly modified forms for three types of interference: image interference (birdies), adjacent-channel interference, and i.f. interference. For the i.f. test the desired signal and the test radio are both tuned to the lowfrequency end of the broadcast band.

\section*{Sensifivify}

The sensitivity of a radio is best tested under operating conditions-not at the antenna terminals but through the built-in loop antenna. The setup is very similar to the frequency-response test shown in Fig. 1. The main difference is that no recorder is used. The transmitting and receiving loops are placed very carefully so that they are exactly 50 cm apart and so that each is at least 5 feet away from the metal walls of the test booth. The standard-signal generator is \(30 \%\) modulated with the random-noise generator. The volume control of the receiver and the output control of the standard-signal generator are then adjusted until the audio signal is 16 db stronger than the noise. Naturally, if
the signal generator output is increased from this point, the signal-to-noise ratio improves; and if it is decreased, the signal-to-noise ratio becomes worse. The field strength (in microvolts per meter) about the receiver loop at which the signal-to-noise ratio is 16 db is taken as a measure of the usable sensitivity of the radio. This is usually less than the absolute sensitivity, but the usable sensitivity has more significance for the listener to local broadcasts. The absolute sensitivity figure might be of interest to long-distance listeners, but even so, the noise in some expensive radios makes them completely useless with the sensitivity and volume controls turned fully on.

\section*{Listening tests}

The tests so far described are the most important of the laboratory tests performed on home radios. These tests take place in an electrostatically shielded room, which also must be sound-isolated so that outside noises don't get in and sound-treated so that the sound doesn't bounce around inside the room too much.

A radio must also be subjected to listening tests. A frequency response curve and distortion measurements (at the present state of the art) do not tell you whether a set sounds good or bad to the ear. For listening tests a room is needed that does have some reverberation-like a typical living room. (Continued on following page)
 urements determine the qualities of a receiver

By K. V. AMATNEEK*

\section*{Badio Performance Tests}

T- HE worth of a radio receiver is determined by its performance, operating convenience, durability, ease of mantenance, hazards to the user and to other property, and appearance. Probably the most important point is performance. Many radio repairmen and experimenters have sufficient equipment to make some of the tests which show exactly how a radio performs. To furnish some guidance on the testing methods, we shall describe how one laboratory compares different receiver makes and models.

The most important aspects of performance are tone, interference rejection, and sensitivity. The exact meaning of these and standardized ways of testing for them, are described in standards published by the Institute of Radio Engineers. The first of these, issued in 1938 and still useful, is entitled Standards on Radio Recpivers: Methods of Testing Radio Reccivers, 19.38. Another important one is Standards on Electro. acoustics, 1938: Definitions of Terms, Letter and Graphical Symbols, Methods of Testing Loudspeakers. And there is the latest one, Standards on Radio Re. ceivers: Methods of Testing FrequencyModulation Broadcast Receivers, 1947. These standards are highly recommended to anyone interested in radio receivers. They have been published as separate pamphlets at 50 cents each hy the Institute of Radio Engineers, Inc., 1 East 79th Street, New York City 21.

Probably the most interesting test of a radio is measuring.its frequency response. The usual way is to disconnect the speaker voice coil from the output transformer and connect a dumny load -a resistor of the same value as the loudspeaker impedance-across the output terminals. Of course, this leaves out

\footnotetext{
Head of the Electrical Division of Consumers Union of U. S., Inc., New York. N. Y.
}
altogether the characteristics of the loudspeaker and the cabinct. (A radio might be pumping both low bass and high treble frequencies through its output transformer, but the speaker may be unable to reproduce them.)

A good acoustic frequency-response test on the other hand is very compli-cated-mainly because of such things as standing waves-and the equipment is very expensive. A suitable compromise may he reached by leaving the loudspeaker in place and using a listening microphone about 12 inches from the loudspeaker in a reasonably well padded room. At such a small distance from the speaker, the standing waves are relatively small at the microphone, but the resulting frequency-response curve is not entirely accurate.
The fidelity test is best described by a block diagram. Fig. 1 shows the setup with names and model numbers of the equipment used in the author's laboratory.

What the setup amounts to is a broadcast transmitter (the signal generator), a receiver, and a listening microphone. The transmitter is modulated by an audio oscillator which is cranked by a motor through the whole audio-frequency range-from 20 to 20,000 cycles. The same motor pulls the frequencyresponse chart under a pen; the pen rides up and down on a moving strip of graph paper as the loudness of the loudspeaker increases and decreases. The result is a curve like that shown in Fig. 2.
To perform the test the audio oscillator (or else a special random-noise generator) is adjusted to give 30 '\% modulation of the standard-signal generator; the latter is tuned to a free channel somewhere in mid-band and its output adjusted to give an average input into the receiver under test. The re-
ceiver is then tuned to that frequency and its volume control adjusted to average loudness. (The \(40-\mathrm{db}\) scale of a sound-level meter is used for this purpose.) The microphone is placed in front of the speaker and the anplifier gain is adjusted to deflect the recorder pen 15 db below the top of the graph paper. The audio oscillator is then cranked to the 20 -cycle position, and the paper drum is aligned so that the pen falls on the 20-cycle division on the graph.

The notor switch is then turned on. As the audio oscillator dial passes 50. 100,200 cycles and so on, the pen at the same time passes the correspondinv markings on the graph paper. In the curve of Fig. 2 the radio evidently had little or no output below 100 cycles. The output then rose rapidly to a peak at 260 cycles. At the high frequencies

Fig. I-Set up of the measuring equipment.
example, metals in contact, plus modulation of a carrier wave by the rectified signals. Station X's signal reaches some BX cable, in a building, which is touching another piece of metal, the bimetal contact acting as a detector and producing an audio current. This affects another carrier, which is modulated by the audio current. Of course, it has its own modulation as well. The result in the listener's receiver is two sets of voices or music

The same phenonenon occurs in the set when, in some circuit before the second detector, there is rectification of one signal and modulation by it of a second carrier. External cross-modulation may be recognized by the fact that othes sets in the same location will have the same trouble.

Several excellent articles going into the causes of interference due to harmonics and heterodynes have appeared in past issues of Radio-Craft, notably "Interference Analysis" in November 1941. Cross-modulation was dealt with in detail by the article "Station Riding" which appeared in Radio-Craft in January, 1945.

Oscillation is likely to be found in commercial sets when the location of wires has been changed by some serviceman and also in homemade sets. The cause is generally more difficult to locate and cure than either hum or interference. Perhaps the chief reason for oscillation in a well-designed set is at tempted alignment "by ear." Homer L Buck and others after him caused considerable controversy in older issues of Radio-Craft by advocating "by ear"
alignment, but no one was able to show a. satisfactory method.

\section*{Home-built receivers}

Anyone who has used a single-tube regenerative set will recognize the signs and sounds of oscillation. High sensi-

Fig. 3-Grid.cathode winding is the largest.
tivity, instability, and a rushing sound plus a squealing or squawking which increases with an advance in the volume control setting, mark oscillation in the wrong place in an a.c.-d.c. set. How to cure it? Sometimes rebuilding the homebuilt set seems the only method. Screwing down one i.f. trimmer condenser and unscrewing the other trimmer of the same i.f. (stagger-tuning) or shunting the primary or secondary of the i.f. coil. with, say, a 50,000 -ohm or higher resistance may cut the oscillation but naturally will lessen signal strength and selectivity.

Filter condensers again may be causing the trouble and should be replaced for a trial or shunted with paper or miea capacitors. Proximity of grid and plate leads (particularly in the i.f. section), lack of shielding, or improperly yrounded shields may result in oscillation. Replacement of a low-gain trans-
former with a high-gain one, as, for example, replacement of the i.f. transformer in a cheap 5 -tuber with a highgain i.f. transformer taken from a portable, may result in oscillation. Of course, too high an a.c. line voltage may cause trouble, and an external antenna connected to the loop on the set produces oscillation.

A common cause is a defective or omitted bypass condenser, particularly the screen bypass. Try substituting condensers of known good quality for those in the set. A cathode bypass condenser may need to have a larger capacitance or a condenser should be used to shunt a cathode resistor where none appears in the set. Even so small an omission as failing to shield the small openings in the top of an i.f. can may result in oscillation, due to feedback to the loon. Be sure that every i.f. can is thoroughly grounded to the chassis. Most servicemen familiar with small sets have found some that persisted in oscillating when everything was "just light" according to the instruments. Note in Fig. 3 that the tapped oscillator coil has its outside ends across the variable condenser terminals, and that a larger portion of the winding is between grid and cathode of \(12 S A 7\) than between the tap and ground. A resistance check will reveal the larger winding.

Sometimes omission of a line bypass will not only bring in clicks and hum but will also cause oscillation. When the tuning condenser is not connected to chassis directly but through a fixed condenser, sometimes a larger condenseb will stop oscillation.

\section*{OFFER TO ORGANIZATIONS}

RADIO-ELECTRONICS has discovered that many active radio repair men's associations are unknown outside a small area.

It would be advantageous to these associations to be in touch with the larger radio technicians' organizations and federations, and with magazines which encourage radio servicemen's organizations. It would be equally advantageous to the larger organizations and State federations to he able to keep in touch with all the local associations.
To establish continuing contart with all radio technicians' associations, Radio-Electronics is offering a subscription to each active assuciation of servicemen in the L..S. and Canada.
To qualify, send us the names and addresses of your officers and a report of the latest meeting.

Radio-Electronics will also he glad to print any interesting events in the lives of the associations, such as cases of customers' complaints settled or other instances in which the assuciation was useful to the local radio technicians or to the public.

Write immediately and get your association's name on our roster and Radio-Eidectronics in your library. Lists of active local associations will be printed in the magazine from time to time.

\section*{WICHITA SERVICEMAN IN BUSINESS 15 YEARS}

The photograph above shows the service bench of the Chase Radio Service, Wichita, Kansas. C. F. Chase, the shop's owner, shown soldering a lead back in place, states that he has been servicing for over 15 years, Because of his progressive business methods, the small shop lit is less than 100 square feet in areal provides a comfortable living for a five-member family. First-quality parts are used, tube testing is free, and all the work done is guaranteed.

\title{
Servicing a Noisy Set
}

\section*{This arvicle gires the ranses and rmres}
for hume, uhistlos, and rross-modulation

\author{
By H. A. NICKERSON
}

HUM-M-M. What shall we do about it? First, test filter condensers in the B-supply. Test them for leakage with a milliammeter or with an ohmmeter. Test them for capacitance if you have some sort of capacitance meter. They may test reasonably well, but a new pair will sometimes work wonders on the hum Substitution is the real test for poor filters. Sometimes shunting each filter unit with a good paper or mica condenser of .001- to 0.1-uf capacitance will do the trick

So it wasn't the filter condenser? Test the tubes, particularly the output tube, for leakage. A tuber tester of modern design will generally show leakagre, but try two other similar tubes in the nutput stage to see if there is a change. Maybe the set was designed with one of those old a.c.-d.c. chokes not intended to carry the milliamps of plate current required by a \(50 \mathrm{~L} ;\) phos the other tubes in the set. Or perhaps the filtur choke has shorted turns, or the hum-hucking coil in a speaker using the field for a choke is connected hackwards.

The \(35 Z 5\) or other rectitier tube may cause a hum. Test the coupling condenser leetween second detector and output tube. If you are using an ohmmeter, after one flicker of the meter pointer, intermittently tourhing the probes to the terminals of that condenser should not register any more flickers on a 10 megohm scale.

Take a look at the pilot light and socket. Some other serviceman mas have dropped soldering paste on the ter-
minals, or there may be a leakage or partial short there. Test all hypass condensers and try substituting similar or slightly larger capaciturs of known good quality. The \(X\) 's in Fig. 1 indicate commonest sources of hum; the ?'s less common ones.

See if changing the location of the output transformer with relation to the rectitier causes a reduction in hum. Somotimes a slight change in the placement of grid and plate leads-ahead of the second detector. particularly-will cure hum (and oscillation). Some lead may be too near the a.c. mput line or the pilot light leads. If the nerative return lead is connested to the chassis through a condenser, try a different condenser of the same or larger capacitance. Addition of a cathode loypass, if there is none or a new, larger comdenser, may rut hum. The location of the plate condenser on the output tube may le shifted so that the end away from the plate is connected to cathode instead of chassis, of vice versa. Sometimes connection of the cathode hias resistor and condenser to different spots on the chassis may result in hum. Shielding of tubes and proper grounding of existing shiolds may he required.
It still hums? Get the wiring diagram of the set and hunt for omitted hypasses and wrong values of condensers and resistors. Figure that the serviemman who repaired it before you could have made a few errors which you have to lonate and correct.

There may be some external troubles. The a.c. line may have too high a volt-

Fig. I-A typical a.c.d.c. set. X's mark the common sources of hum; 7's occasional ones.
age; it may bring in motor and other noises. Most a.c.-d.c. sets have some sort of line condenser. Check it. You will sometimes find that it has been omitted or is defective.

Sometimes one broadcast station will seem to have a carrier hum. This may or may not be due to a defect in the set.

\section*{Image interference}

Servicemen remote from powerful stations may not realize the troubles found in congested areas. A little consideration of super herterodrne principles will explain the origin of the whistl heard on most a.c.-d.c. five-tube sets

Fig. 2-WEEI is desired station. WMEX image
In Boston, for instance, it appears at one side of WEEI, whieh has an assigned frequency of 540 kc . To tune in WEEI at 590 ke , the oscillator must be 460 kr higher than 5!0. or 1050. There is a powerful station near Boston. WMEX. operating on 1510 kc . When the sert is tuned for W FEF and the oscillator is at \(\mathbf{1 0 5 0}\). the differenee between the oscillator frequerney and WMEX's 1510 -ke frequency is also 460, which is the set © i.f. So WMEX. heing powerful romough to get through the r.f. tuned circuit at the input of the converter. will also he amplified by the i,f. and heard in the speaker. See Fig. 2. This interfereme from a station whose frequency is on the wrong side of the oscillator's is callod image interference, A slight change of the setting of the i.f.'s. use of a wave trap. rotation of the set so the loop point: another direction, or purchase of a six-tube set, may alleviate the interference. If there is no antenna coil or external antemna, the wave trap must le something that affects the loop. Another loop, shunted by a variable mica compression condenser placed clos. to the sct loop and parallel to it, may be tuned to eut down the signal from the interfering station.

\section*{Cross modulation}

Much has been written ahout crossmodulation. This manifests itself as a background of unwanted signal which appears when the set is tumed to a wanted signal. The cause often is external to the receiver.

External eross modulation arises from rectification (detection) by. for
brackets for the mounting screws as sern in the front view. This has to be done carefully so that the amplitier will go into the rack at the proper place. The leest way to do it is to actually fit the panel to the rack, with ans other backmounted equipment in place. and measure for the holes. The ends can be cut off a standard rack panel for the purpose, but most of these are \(1 / x\) inch thick, a failly heave gatuge to cut with a hand hacksaw. If a machine shop is available, they can do the jols. The heavier metal will be worthwhile because of its extra strength.

Take one plate out of the center of the stator and remove about \({ }^{1}\), inch or more from the center of each side of the stator frame. This produces a splitstator condenser with about in puf per section. This is just right to tune the 6 -turn amplifier coil to 28 me. This coil will be usod as the push-pull tank eoil Li3 of the amplifier, so plate a tap at the center for B-plus. P'ush the link L4 into the center of the form and remount the switeh, coil, and condenser, Connect one end of the link and the switch arm to terminal on the right side of the case.

The original oseillator coil and condenser will be used for the grid circuit of the amplifier. Remove two turns from the winding and tap it at the center. Wind a two-turn pickup link \(L\) around the center' of the coil, using flexible wire. After remounting the coil. connect the 50 -unf condenser across it, and connect the link to terminal strips mounted on the left side of the case. The link is used for connecting to a driver or exciter stage.

Cut the shield plate into strips and drill mounting holes for sockets and other components as shown in Figs. 2 and 3. Bolt the strips in the case and complete the wiring. Connect filament plate, and ground leads to the heavy jacks in the rear or to a cable connector like the one behind the grid coil in Fig. 2. The . \(0004-1 \mathrm{f}, 5,000\)-volt grid and filament bypass condensers are obtained from the tuning unit. (If you plan to modulate the amplifier. leetter use .01-uf filament bypass condenser's. -E'(litor.) The r.f. choke was also taken from the original unit. The neutralizing condenser we used is a dual unit with rotors connected with an insulated shaft. Standard neutralizing condensers can be used if desired. Their value and plate spacing depends on the tubes and the plate roltage used. Capacitors variable between 0.25 -uuf and 4 !uff are suitable for the 24 G's. The voltage breakdown rating should be about twice the sum of plate and grid bias voltages to avoid the possibility of are-over.

A 100-ma d.c. meter measures cathode and grid currents. When the meter switch is in the gridecurrent position. it is shunted across a 25 -ohm resistor. The shunt in the cathode circuit. R1. is made by shunting enough No. 26 wire across the meter to make it read \(: 300\) ma full scale. Isolantite erystal-holder suckets were used for connecting the input and output links. Ans type of low-
loss connectors could he used.
Ans good exciter delivering 10 watts or more will drive this amplifier to full output, even with 2,000 volts on the plates. 'The output coupling system will Work into almost ans coupling network or antenna with nonresonant feerlers. Coupling should be adjusted until the cathode current is at its proper value at resonance. 'This will be found in the tube manual.

The eircuit is standard in evers respect. so no trouble will be encountered. No doulst different arrangements will suggest themselves, such as the type of plug used to carry the filament and
plate voltages, mounting of the various parts to fit each constructor's ideas, and so on, but the twning unit does provide the lasis for making a good final amplifier and most of the work, especially the tough metal punching. is already done.

Of course, some of the (iI's who lived with the BC-375 mas think they would prefer never to see the gadgets again in ally form; but with ham electrons coursing through the coils and condensers, the picture takes on a different hue. For three lucks one has most of the makings for a pretty good final amplifier, even if it is a bit GI-looking.

Fig. 1-This simple push-pull amplifier can be built on the TU-10-8 chassis in a few hours.

Fig. 2-This photograph shows the underside of the amplifier. The grid coil is at the left.

Fig. 3-Looking down on the amplifier from the top. The original tuning condensers are used.

\title{
Ten-Meter Final From TU-IO-B
}

Metal extensions allow placing panel in standard rack.

\author{
By L. W. MAY, W5AJG
}

\title{
An excellent final amplifier can be built very cheaply from standard components of the surplus \(B C-191\) and \(B C-375\)
}

THE drawer-type tuning units from the BC-191 and BC-375 have been plentiful on the surplus market for some time. These units, TU-5, TU-6, etc., contain a large number of parts useful in amateur transmitters. They contain all the tuning circuits for an m.o.p.a.-type transmitter using 211 's as a v.f.o. and single-ended final amplifier. Available for less than \(\$ 3\), these units have been purchased in large numbers by hams who have either converted them to variable-frequency oscilators and transmitters or dismantled them for the parts they contain. Here at W5AJG, we converted a TU-10-B to a 200 -watt final amplifier that works so well that we plan to build similar units for the other amateur bands. For \(90 \%\) of the components needed for a 200 -watt amplifier, \(\$ 3\) is not a particularly high price to pay.

There are 12 different types of tuning units in the series designed for the BC-191 and BC-375. Since all of these look alike, be sure to get one nearest the frequency you wish to use. The frequeney ranges nost commonly a vailable and most useful for amateur conversions are listed in the table which fol-
lows. Ihough the figures do not show it, there is some overlap in the ranges.
\begin{tabular}{lrr}
& \multicolumn{2}{c}{ kc } \\
TU-5 & 1,500 to & 3,000 \\
TU-6 & 3,000 to & 4,500 \\
TU-7 & \(\mathbf{4 , 5 0 0}\) to & 6,200 \\
TU-8 & 6,200 to & 7,700 \\
TU-9 & 7,700 to 10,000 \\
TU-10 & 10,000 to 12,000
\end{tabular}

The number of the tuning unit is usually followed by a letter that indicates the scries of the transmitter for which it was designed. There is little, if any, difference between tuning units with the same number although they may be TU-5-A and TU-5-B. Either the A or the \(B\) will be satisfactory for conversion to use as an amateur power amplifier.
The TU-10-B was selected as the foundation for the 10 -meter amplifier. The oseillator tuning circuit consists of eight turns of No. 10 wire tuned with a 50 -muf variable condenser; the power amplifier circuit has six turns tuned with a 116 -puf condenser. Both circuits are tuned from the front panel with slow-sped dial mechanisms. The power amplifier coil has a tapped link connected to a six-position tap switch on the
pancl. The link is inside the form at the cold end of the power amplifier coil.

We selected \(3 \mathrm{C} 24 / 24 \mathrm{G}\) 's because they are efficient at most amateur frequencies and will work well with the \(1,250-\) volt power supply we had available for them. A number of other tubes-not necessarily triodes-will work equally well. The components in the tuning units are suitable for use in most mediumpower transmitters. The variable condensers have a breakdown voltage of 1,500 volts or higher. Unless you have some way of finding out exactly what the breakdown voltage is in the case of any particular condenser, it is probably. a good idea to keep the B-supply voltage at or below 1.500.
The amplifier uses a standard pushpull circuit (Fig. 1). It is simple and takes only a few hours to build. After removing the top, bottom, sides, and center shield, take out all components except the dial drives. Do not disconnect the switch from the link coil. If you plan to mount the amplifier in a standard 19 -inch relay rack, cut strips from 1/16-inch sheet metal and bolt them to the ends of the panel to make it 19 inches across the front. Noteh the

Besides the sale of hearing aids to individuals, the Audiphone Company installs group hearing-aid systems in churches. A group hearing aid consists of a microphone at the pulpit and an amplifier which is usually concealed within the pulpit housing. A master cable from the output of the amplifier is run beneath the church flooring for the entire length of the room. From this cable branches are tapped off, each leading to a pew section and coming to a receiver jack. The hard-of-hearing members of the congregation are furnished with individual earphones which they plug into the jacks under the pews. Volume can be regulated to suit the individual by a special volume control in the cord running to the plug. Over-all volume can be adjusted at the amplifier.
This company has also had a number of calls from clinies, schools, and otologists for audiometers, devices which are essentially audio oscillators calibrated to read hearing loss. These come in units to read individual hearing losses as well as in models designed to read the hearing of groups.
For its intercom business, the Audiphone Company depends on newspaper advertisements, telephone directory listings and some direct-mail literature to potential customers. Word-of-mouth advertisement by satisfied customers has also been a contributing factor in sales. They have felt no need to list intercoms on their store show window, feeling that they are not an over-the-counter sales item.
Besides advertising locally, they have the benefits of national advertising, for most intercom and hearing aid manufacturers pass on leads whieh result from inquiries. When such leads come in, the customer receives a personal visit from one of the owners of Audiphone. A demonstration is a great aid in closing sales.
The repair department is manned by two competent technicians who handle all the repair work necessary on intercoms, audiometers, and hearing aids. Because of the small size of hearing aids and intercoms, the repair space is not as large as would be needed for radio service work. Desks are used because of their convenience; the drawers are ideal for storage of small replacement parts.
The test equipment used here is similar to that found in any radio shopmultimeters, vacuum-tuhe voltmeters, 'scopes, gain-checking devices, and similar items.
The two organizations mentioned are representative examples of how much business there is in sound. The newcomer would do wel! to secure literature from various manufacturers and familiarize himself with representative standards and variations. A franchise for the sale and service of public address systems or intercommunicating systems can then be obtained from the manufacturer or distributor whose products are considered the best in their price range. (Some manufacturers sell directly to appointed representatives while others work through distributors.)

In most cases manufacturers furnish
free engineering service to their representatives where a particular installation exceeds normal requirements in size and complexity. The manufacturer will cooperate with the dealer in the design of special control panels, and will furnish necessary wiring instructions and schematics.

To facilitate installation and service work, manufacturers also publish service bulletins which contain troubleshooting procedures, normal wiring methods, and schematics. Since each manufacturer sells cable, junction boxes, and other accessories necessary for the best hookup of his particular line, the radio repairman finds the transition to intercommunication system and PA work a comparatively simple matter.

\section*{Other sound work}

A nother branch of sound which shows promise is the rental of tape or wire recorders to schools and clinics, where they have proved valuable in speech study.

The popularity of electronic organs and organ attachments for pianos has opened another field for the radio repairman. The Radio Service Shop has already contracted with several manufacturers for local service and repair.

Many other possibilities exist, from wired music for hotels, restaurants, and

Radio Service Shop does large sound business.
factories, to the use of intercoms in the home for baby-watching or basement workshop communication.
Sound offers a wide variety of potential money makers for the radio repairman. When you've successfully developed a particular line, you'll agree with many others who have built successful sidelines that "sound is a sound business."

Intercoms, hearing aids, and amplifiers are tested and repaired on Audiphone's bench.

Moin store entrance of the Audiphone Company. Hearing aids and intercoms are sold,

\title{
S|||||| MHKE WIII \\ \\ winf
} \\ \\ winf
}

\author{
By MATTHEW MANDL
}

~UND—either as a sideline or an independent business-offers unusual opportunities for the radio repairman. It movides a means for augmenting his yearly profits, and at the same time opens another avelue along which his husiness can expand. Since the average servieroman is already quite familiar with audio amplification, he will encounter no difficulty in working with public address systems, intercoms, or any other sound equipnent.

The most popular sideline with the radioman today is the renting and selling of PA systems. This does not mean, however, that it is the only one with money-naking possihilities. Many shops have done excoptionally well in the sales and service of intercommunication systems, the gross income from which often excerds that secured from PA system rentals. Others have done nicely renting large phono anmplifiers to lodges, churches and sehouls for their special events. Still others have concentrated on servicing office sound equipneent, such as dictating machines. There are also good markets for tape and wire recorder rentals, as well as the furnishing of recorded music for factory workers.

A good example is The Radio Service Shop operated by David Van Nest and Gilson Brindley in Trenton, N. J. Shortly after opening the shop they found the
repair business profitable and decided to expand. Their shop was too small to allow then to go into radio sales, so. after some debate, they decided to take on I'A systems as a sideline. The equipmont required no floor space in the shop and could be stored away when not in use.

Thes acquired a 10 -watt amplifier, two microphones, and three speakers. To start off, they ram an excasiomal newspaper advertisement and lettered "PA Systems:" on their delivery truck. A box in the classificd section of the telephone directory also helped. From the first. they found their investment paying dividends.

Ahout a year after their entry into the PA business, their entire sound system was burned heyond repair at an amusement park fire.

They bought new and better equipment, until today they have half a dozen indoor-type PA systems, ranging from 10 to over 50 watts in output power, and three portable amplifiers, two of which were built in their own shop.

A number of lodges, churches, and civic groups have become regular customers of The Radio Service Shop. The owners make a specialty of reparing pernanently installed PA systems, and their public address business has reached such proportions that the in-

Any serviceman has enough knowledge to enter the PA business. Rental and service help bring in extra cash.
come from it often exceeds that from their radio repair service.

Both Van Nest and Brindley are agreed in attributing their success to the fact that they concentrate on giving good service. Thes take turns personally supervising the installation of their pulilic address systems, making sure that the micophones are placed properly and that the gain of each is sufficient for the use to which it will be put.

\section*{Intercoms and hearing aids}

Another store which does exceptionally well in the field of sound is the Audiphone Company, also of Trenton, which drals exdusively with sales and sarvice of interommunication systems and hearing aids.

This lusiness is a good example of what can be done with sound. In a little over six years the volume of business in sales and repair has peached enviable proportions. They have consistently exceerled their yearly quotas for Western Electric hearing alid sales, and have installed intercoms in country clubs, state offices, business places, stores, and institutions within a 50 -mile radius of their location.

\section*{The}

RADIO SERVICE SHOP
RADIO and ELECTRONIC TECHNICIANS
24 YEARS EXPERIENCE
TELEVISION SOUND EQUIPMENT
DAVID VAN NEST
GIISON ERINDLEY
TRENTON 2-4742
\(11011 / 2\) Hamilton Av.

These ads appear in the classified phone book.

\title{
HOW TO BREAK INTO SERVICING
}

A new era in servicing lies ahead . . .

By HUGO GERNSBACK

WHEN the radio boom first started in the early 20's, servicing of radio receivers was an entirely new development. The then radio experimenters, radio amateurs, and other radio enthusiasts soon heard the servicing call. As the new radios went out of order the laymen owners could not put them into condition again and it was not long before radio technicians who understood something about the intricacies of radio sets were called in. That was the birth of radio servicing.

At present we are again in the midst of another-but much greater-radio boom. This time it is television. Authorities are convinced that during the next few years there will be a tremendous upswing in the servicing industry, far greater than was ever the case with AM receivers.
Millions of new television receivers will be in use in the near future. Indeed, it is quite conceivable that at the end of the next ten years the television receiver will have replaced to a great extent the present-day radio receiver.

The editors are now constantly in receipt of letters from men anxious to climb on the television bandwagon in one way or another and those who wish to get in on the ground floor in television servicing are no exception to that rule. Here is an excerpt from a letter received recently:

\section*{Editor, Radio-Eiectronics:}
"Just a few lines to you from a friend and a subscriber of yours since my early school days. I an 38 today.
"I am not a radio engineer by any means but I am also no tyro-how could I le with all the information you and your staff have crammed into my head through the years?
"Have always used Radio as a hobby while working at something else.
"If I don't get into radio and television servicing now I never will. I am not trying to say that I know all that there is to know about Radio. But I can get along; my education is fairly good.
"What are your suggestions?
"When you get a free moment, please drop me a line. I grew up with the name Gernslack as familiar to me as Babe Ruth to basehall fans.
John J. Beryen, Paterson. N. J."

The present time, indeed, is a most anspicious moment to start out in a radio-television servicing career. Furthermore in order to become established in the industry there are no great handicaps, no secrets. Nor does it take a great deal of money. If you have a good radio background -you need not be an engineer-if you are industrious, if you are willing to study and work hard, you should be able to make a good living in television servicing.

The first and nost important requirement is good radio technical knowledge. This can be gained from schools or by studying radio publications and texthooks. The second is actual and concentrated experience in repairing radio and television sets. If you have a good theoretical radio knowledge, if you understand circuits, if you know a fair amount of mathenatics, you should have no trouble in getting along.

To be sure, you will require the service manuals and servicing data of the various receivers. This information fortunately is tendered to you nowadays on a silver platter. The radio set and television manufacturers all issue valu-
able servicing information. Then there are several excellent servieing organizations that make a specialty of publishing and supplying such data to servicemen at a reasonable cost.
Experience with actual radio and television receivers is, however, a paramount requirement. It takes some time before the average new serviceman becomes proficient in locating the various troubles-it camot be learned overnight. Furthermore to do efficient servicing and make a living from it, it is of the utmost importance that you have the proper tools. The days of the serew-driver-and-pliersserviceman are gone forever. Modern receivers, particularly television receivers, are most complex. To work efficiently: and hunt down receiver failure in a minimum of time, good servicing instruments are an absolute necessity. The new serviceman requires as a minimum the following:

A 20,000 -ohm-per-volt multimeter with HV range or multiplier to 8 or 10 kv .

Standard signal generator with a.f. output terminals.
Tube tester, mutual conductance type.
VTVM (high-frequency type).
Scope, with triggered sweep, blanking and calibrated scale.

FM and TV sweep generator (hest available).
The above represent only a modest beginning. Later on the experienced serviceman will wish to add other items to help him work nore efficiently and guarantee him a better living.

If you have a reasonably good radio hackground it should not take more than three to four months to lecome a selfsupporting radio and television serviceman. But remenher this important point: even if you are the greatest radio wizard in the country gon will still wot be a success unless you have the ability to sell yourself to the public. The independent serviceman nowadays in many localities is often under a cloud. This is due to no fault of his, but because a small minority of unserupulous servicemen-the outer fringe-are exploiting and have exploited the public. It is this very small minority that has given the industry a black eve in the past. It takes no more than five per cent of such nien to give the whole group a bad reputation.

The new serviceman should always remember the cardinal rule that honesty is the lest policy in the long run. When an unscrupulous serviceman charges \(\$ 5.00\) or more for cleaning the contacts of a tule, or tightening a loose wire connection, such tactics invariably come home to roost and plague him and his industry. Sooner or later the public catches on to these underhanded methods and becomes not only suspicious, but antagonistic towards the whole servicing trade. The serviceman who is successful in the end is the one who makes no charge whatsoever for little jobs such as the ones mentioned above. (It is presumed that the receiver was taken to his shop; if he was called in by the set owner, then a small servicing charge is in order.) Such treatment will be remenbered and when a serious repair comes along next time, the set owner will have confidence in the serviceman-an asset that will pay big dividends in his future.

In short, if you wish to make a success in servicing, it can best be summarized in the following five points: 1. Good radio knowledge. 2. Intelligent work. 3. Honesty and fair play. 4. Good personal appearance. 5. Keeping everlastingly at it.

for a SPRAGUE You're Right!
reach

THESE SPRAGUE PRODUCTS ARE UNCONDITIONALLY GUARANTEED!
When used at their capacitance and voltage ratings, these Sprague Products are unconditionally guarantee to render satisfactory performance.

\title{
Wire holding the Line, OUR PRICES ARE STAYING DOWN DESPITE
}年 INCREASED COST OF WAREHOUSING EREPLACEMENT Xmas Spccial anden incer 525 stigate this offer
 F.O.B. Detroit Express Charqes Collect.

> 3 conductor braided insulated copper ond steel telephone wire. It is of copper for conductivity and steel for strength. Worth of leost 3 c per foot, vet due to on exceptional buy te can now otfer it ot less than le per faot.

\section*{GR. Jubes}

(Shipped express, chorges

BRAND NEW " 211 '乌" 49í

A wor proven veteran. The 211 Transmitting Triode, Signol Corps No. VT.4.C. Used in the famous BC375 and BC191. 2 Tubes gaod for Closs A oudio 39.4 w' outpur, Class 8 oudio 260 w output, Closs C 300 w input and 200 w output and Closs C (cw) 375 w input and 260 w output. These ate really tugged tubes. Their grophire plates will roke plenty of beating. Add 20 c to cover postage and hond-

Triple remote cantrol bon for Com mand Receivers 'SCR 274 N Sctics' Equipped with 3 tuning dials. 3 valume contrals, and 6 selector 3 witches. Used, but in erecellent condition, o stcol of only \(\$ 1.50 \mathrm{co}\). ' Add 25 c to cover pos. tagk and hendling.

Originolly used with the command berween Modulotor BC456A ond Control Box BC451A. Contoins 3, 24 volt relays ond other ports an excellent buy ot only \(\$ 1.39\) postpaid.

\section*{IN RUGGED \(A l l\)-Plastic cabinet}

\section*{Servicemen's Assortment Contains 125 Selected 1/2-Watt} Little Devil Composition Resistors in 40 Separate Compartments

Here's a handsome, sturdy, all-plastic resistor cabinet you'll he proud to have in your shop-and one that will save you hours of valuable time. The new cabinet is molded of solid plastic and has five drawers with eight compartments in each drawer. It is extremely compact-only \(9^{\prime \prime}\) long, 4-3/4" high, and 5-1/4" deep. Factory-packed in the cabinet is a serviceman's assortment of 125 carefully selected Ohmite "Little Devil." \(1 / 2\)-watt, individually marked, insulated composition resistors, in the 40 values (10 ohms to 10 megohms) most fre-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Quan- } \\
& \text { lity }
\end{aligned}
\] & OHMS & \[
\begin{array}{|l|l|l|l|l|}
\substack{\text { ana. } \\
\text { tir }}
\end{array}
\] & OHMS & \[
\begin{aligned}
& \text { Quan } \\
& \text { tity }
\end{aligned}
\] & OHMS & |lane & OKMS \\
\hline 1 & 10 & 3 & 1000 & 1 & 33000 & 10 & 0.47 meg. \\
\hline 1 & 15 & 1 & 1500 & 5 & 39000 & 1 & 0.68 mag. \\
\hline 1 & 21 & 1 & 2200 & 10 & 47000 & 10 & 1.0 meg . \\
\hline 1 & 41 & 3 & 2700 & 1 & 68000 & 1 & 1.5 meg . \\
\hline 1 & 108 & 5 & 4700 & 1 & 82000 & 1 & 2.2 meg . \\
\hline 1 & 150 & 1 & 6800 & 10 & 0.1 meg. & 1 & 2.7 meg. \\
\hline 1 & 270 & 10 & 10000 & 5 & 0.15 meg . & 1 & 3.9 meg. \\
\hline 1 & 330 & 3 & 15000 & 1 & 0.22 meg . & 1 & 4.7 meg. \\
\hline 1 & 470 & 5 & 22000 & 10 & 0.27 meg. & 1 & 6.8 meg. \\
\hline 1 & 680 & 10 & 27000 & 1 & 0.33 meg . & 1 & 10 meg . \\
\hline
\end{tabular}
quently used by servicemen. The assortment is offered at the price of the resistors alone-the cabinet is furnished without extra cost!

You'll need one or several of these handy cabinets in your shop to protect your resistors and to help you find resistance values quickly. What's more, they provide visual stock control so you can avoid duplicate inventories or unnecessary trips to your distributor. Order your assortment and cabinet from your jobber, today!

Stocked by Leading Distributors

CAN BE STACKED ON EACH OTHER
A dovetail joint is provided on top and hot tom of each cal. inet so they can be stacked one on top of another.

OHMITE MANUFACTURING CO., 4895 flournoy St., Chicago 44

\section*{Switch to PHOTOFACTthe Best Service Data Buy Yoill EverMake! \\ Thousands of Radio Service Technicians are right! They've found the way to quicker, easier, more profitable servicing. Join these thousands of successful money-making Servicemen who have switched to PHOTOFACT Service Data. Learn for yourself how this accurate, easy-to-use, practical data saves you time, makes your} work easier, helps you earn more. PHOTOFACT gives you \(100 \%\) useful service data-every photograph, every diagram, every bit of information helps you do a complete job. You owe it to yourself to switch to PHOTOFACT. There'll be a big difference in the time you save and the bigger profits you'll earn every single working day.

\section*{PHOTOFACT VOLUMES The Preferred Service Dała}

Bring your file of post-war receiver Service Data right up to July, 1248 ! Here's the most accurate and complete radio data ever compiled-preferred and used daily by thousands of Radio Service Technicians. Includes: Exclusive Standard Notation Schematics; photo views keyed to parts lists and alignment data; complete parts listings and proper replacemeatsialignment, stage gain, circuit voltage and resistance analysis; coil resistances; record changer service data, etc. Order Volume 4 roday record changer shorvice library up-to-date-it's the only Radio Service Data that meets your actual needs!
Vol. 4. Covers models from Jan. 1, 1948 to July 1, 1948 Vol. 3. Covers models from July 1, 1947 to Jan. 1. 1948 Vol. 2. Covers models from Jan. 1, 1947 to July 1, 1947 Vol. 1. Covers all posi-war models up to Jan. 1, 1947

1947 Record Changer Manual Nothing like it! Complete, accurate data on over 40 postewar models. Exclusive exploded views photos
from from all angles. Gives full change cycle data, information on adjust. ments, service hints and kinks, com. مlete parts lists. PLUS-for the first wime- complete dala on leading Recorders! 400 paxes; paper Disc Recorders!
opens fat. Order now!
UNLY.................... \(\$ \mathbf{\$ 9 5}\) 0.NLY........................

Receiver Tube Placement Guide Shows you exactly where to replace each cube in 5500 radio models, covering 1938 to 1947 receivers. Fach tube lay. out is illustrated by a clear, accurate hit-and-miss methods. 192 pares, com. nievly indexed.
ONLY.......................... \(\$ \mathbf{1 5}\)

\section*{Dial Cord Stringing Guide}

The book that show's you the one righs way to string a dial cord. Here, in one handy pocket-sized book. are all avail. able dial cord diagrams covering over 2300 receivers, 1938 through 1946. Makes dial cord restringing \(\$ 100\) jobs quick and simple. ONLY. ?

\section*{Radio Industry RED BOOK}

The RFD BOOK tells you in one trlume all you need to know about replacement parts for approxi1938 to 1948 . Includes complere. accurate listings of all 9 maior re. placemens components-not just placemens compunents-not iust made by 17 leadine manufacturers -not just one. Covers original parts numbers, proper replace. meni numbers and valuable instal. lation notes on: Capactiors. Trans formers. Controls, IF's. Speak. ers. Vibrators, Phono.Carridges. Plus-Tube and Dial Light data. and Battery replacement dara 440 pages. \(81 / 2 \times 11\) \% \(\$ 395\) sewed binding. ONL Y...\$395

\section*{Subscribe Regularly to PHOTOFACT Folder Sets}

Here's the most accurate and complete Radio Data ever compiled-issued reg. ularly two sets per month. Keeps you right up-to-the-minute on all current receiver production. Your best buy in Service data-practical, useful information that makes money for you every day by saving you time on service jobs. Shows you everything you need to know about the sets you service-in clear, accurate, uniform style. Packed with extra help-full PHOTOFACT data on Automatic Record Changerscommunications receivers-amplifiers -plus new PHOTOFACT Television Folders-exclusive, uniform coverage of popular Television Models, data proved best by actual service clinic experience. Subscribe at your Jobber today, for regularmonthly issues. \(\$ \mathbf{5 0}\)
PER SET ONLY...........................

\section*{FREE Phofofact Cumulative Index}

\section*{BOOST YOUR EARNING POWER! \\ andex to PHOTOFAC'I Fold. ers covering all postwar re evers uptothe present. You'll want this valuable reference guide to the Radio Service Data preferred and used by thousands. Helps you ind the Fold Index at your lobber or write for it today. \\ }

\section*{Moil This Order Farm}
to HOWARO W. SAMS \& CO., INC.
2924 E. Woshington St., Indianopalis 7, Indiana
My (check) (money order) for \$........enclosed.
\(\square\) Send the RED BOOK. \(\$ 3.95\) per copy.
Send PHOTOFACT Volumes in DeLuxe Binder: \(\square\) Vol 4. \(\square\) Vol. 3. \(\square\) Vol. 2. \(\square\) Vol. 1 (\(\$ 18.39\) each).
\(\square\) Automatic Record Changer Manual, \$4.95.
\(\square\) Tube Placement Guide. \$1.25.
\(\square\) Dial Cord Stringing Guide, \$1.00.
Send FREE Photofact Cumulative lndex.
\(\qquad\)
\(\qquad\)

for the SENSATIONAL-NEW-IMPROVED 10 INCH
TELEVISION KIT
Complete with new buitrin pretuned and aligned 13 Channel tuner, all parts and easy step-hy-step instructions and schemattes.
\(\$ 89.50\) less tubes

The Now Model TC. 50
TUBE AND SET TESTER
\(\qquad\)

 "lat "uryday's menauncluer ts.

IMMEDIATE DELIVERY FROM STDCK

\section*{Mothopolitan EIEctronic \& Dept RCII 42 WARREN ST N ४ 7 N .}

RCA USES RAYTHEON PATENTS
Raytheon Manufacturing Company has recently granted a licellse to Radi, Corporation of America unler the ralar patents owned by Raytheon. These ra. dar patents were issued to Submarine Signal Company, now Raythom's marine affiliate, and cover development work begun in the early thirties.
The company states that mactically every radar device built during the recent world war employed the hasic principles used in these patents.

\section*{EGYPT'S NEW RADIO CENTER}

\section*{A new hroadeasting center in cove} the whole Nile delta, beachimer to Alexandria and I'ort sadid. is under derelorment near Cairo. A 50 -kilowatt mediumwave transmitter has heen purehased ly the Eryptian Govermment fom the International Division of L:C.A. It will be erected at Abu Zaabal. 11 miles form the eapital, where the studios are built.

\section*{RMA NAMES LIAISON GROUPS}

To continue industrial comproation between radio manufacturers and broarlcasters, two liaison committees recontly have been appointed by RM. President Max F. Balcom. These committees will Work with similar representatives of the National Association of Broadeaster: and the FM Association.

Early meetings are panmed to promote broadcasting services and recoiv ing set sales for AM and F M radio and television. The RMA Committee for liaison with NAI; is headed by Paul \(\mathrm{V}^{\circ}\) Galvin, president of Motorola. The RMA committee for liaison with FM is header by H. C. Bonfig, vice-president of Zenith Radio Corporation.

\section*{SET PRODUCTION FLUCTUATES}

A recent RMA report on the number of radio sets modured during the first seven months of \(19.2 x\) shows that the output of television recoivers rontinters to be high. The drop in production of \(F M\) and \(A M\) sets is attrihuted to seasonal conditions. The tahle shows the figures given by the RMA.
\begin{tabular}{|c|c|c|c|c|}
\hline & iv & FM.AM & AM & All sets \\
\hline January & 30.001 & 136.015 & 1.173.240 & 1.339.256 \\
\hline February & 35.889 & 140,629 & 1.203,087 & 1,379.605 \\
\hline March & 52,137 & 161.185 & 1.420 .113 & 1.633 .435 \\
\hline April & 46.339 & 90.635 & 1.045.499 & 1.132.473 \\
\hline May & 50,177 & 76.435 & 970,168 & 1.096,780 \\
\hline June & 64,35] & 90,414 & 959.103 & 1,113,870 \\
\hline July & 56.089 & 74.988 & 552,361 & 683,438 \\
\hline totals & 334.985 & 770,301 & 7.323.571 & 8.428.85\% \\
\hline
\end{tabular}

\section*{COMPANIES REPORT EARNINGS}

The reneral tone of financial statements issued recently by radin manufacturers shows that business as a whole is excellent. Some examples are:

RCA: Total gross income of the parent company and its domestic sulside iaries- \(\$ 176,079.71:\) in the first hali of 1948, compared with \(\$ 154,8: 8,87 \cdot\)) for the same period in \(194 \%\). representing an increase of \(\$=1.754 .841\). Net income for the first half of this low was \(\$ 10,850,288\), as compared with last
\(52.0 \bullet 4,376\)
(i-E: Net income of \(\$ 54,602,339\) in the first 6 months of 1948 , as compared with \(\$ 42,802,075\) in the same period of 1!47-a gain of \(28^{\prime}\)

I'H/H, \({ }^{\circ}\) O: Total sales for the first half of this rear were \(16^{\circ}\), higher than for the comparable period in 1947.
E.MEKSON: The parent compan! and sulsidiaries report a consolidated net protit of \(\$ 1,32(3,290.64\) for the \(: 39-\) week proiod ending July :31, 1448 , as compared with \(\$ 1,585,197.48\) for a like period in 1:94.

KENTHH: Net consolidated operating polits for itselt and sulsidiaries for the three months ending Jal! : \(: 1.1948\), ammunted to \$104.969. No comprabison Was marle with the pevious fiscal period. Shipments for the threr-month period amounted to \(\$ 14,1: 37,81 \%\). Demand fon the company's models, enpecially portable radios, continued strong.
R.AYTHEON: An increase in the harklog of govermment orders led to the reversal, after the close of the fiscal sear, of tho previous declining trend in sales. Batcklog of goveromment busjness on May : 1,1948 , was approximately \(\$: 34\) million agrainst \(\$: 36,4\) million on August 1, 1947.

\section*{FCC LIMITS STATION CONTROL}

The Commission recently adopted rules making it inpossible for any person or corporation to have more than seven standard broadcasting outlets or \(t_{0}\) own an interest in more than 14.

Previously it had set a limit of six on the number of FM stations under common control and had forhidden joint ownership of over five television outlets.

The rules now in force also prohihit dual ownership of facilities in the same coategory in the same commmits, thus limiting one person or groupl to one standard, one FM, and one television outlet in a single area.

\section*{TV SHIPMENTS INCREASE}

Second-quarter shipments of television sets by RMA manafacturers totalled \(153.45 \dot{5}\) as compared with 106,136 during the first quarter, a gain of \(50 \%\). Televisers went to 31 of the 48 States and to the District of Columbia.

This hrings the half-rear total to 259, 591, as compared with 169.181 for the entire year 1947 . No reports were made for 1946 shipments, but \(6,476 \mathrm{TV}\) sets were produced by RMA nembers.

Shipments lag behind actual production. which amounted to 278,896 for the first six months of 1948 . The total TV sct proluction since the war is reported as 463,943 .

\section*{AWARD TO HOWARD SAMS FIRM}

Howard W. Sams \& Co. was recently the recipient of a citation made by Finamial World for the firm's clear analysis of its financial position for the benefit of stockholders during 1947.

\section*{Which \\ \\ Better Pay Do You Want? \\ \\ A Nice Home \\ \\ A New Car Greater Security \\ Happy Vacations and Travel \\ \\ Get your FCC ticket Jobs worth \(\$ 3000\) to \(\$ 7500\) are opening up right now for FCC Licensed Radiomen}

\title{
Get Your FCC COM M ERCIAL
RADIO OPERATOR in a Few Short Weeks
}

\section*{It's EASY if you use CIRE Simplified Training and Coaching AT HOME in SPARE TIME}

Get your license easily and quickly and he ready for the \(\$ 3000\) to \(\$ 750 \mathrm{~m}\) jols that are open to ticket holders. CIRF: training is the only planned course of coaching and training that leads directly to an FCC license.
Your FCC ticket is recognized in all radio fields as proof of your technical ability.

Employers aiten give prefcrence to license hodders. even thugh a license is not reguired ior the joh. Holl an FCC "ticket" and the job is yours!

\section*{Cire Graduates Find FCC License Pays Off}

I can train you to pass your FCC License Exans in a few short weeks if you've had any practical radio ex-perience- amateur, Army, Navy, radio servicing or other. My timeproven plan can help put you, too, on the road to success-
Let me send you FREE the entire story Just fill out the coupon and mail it, I will send yous, free of charge. a copy of "How to Jass FCC License Exams Catus a describing opportmities for yon EDW, H. GUb.FOHD, Vire-Fresident

\section*{3 FREE Send Coupon Now:}

CLEVELAND INSTITUTE OF RADIO ELECTRONICS RC-11 4900 Euctid Ave., Cleveland 3, Ohio
"Thanks to this course, I now have a very good job in a Incal power plant's test department. I cotrldn't have ofbtained this job withont the math and basic rlectrical theories in the first natr of Sectinn of of
course."
\({ }^{4}\) I have been working for Police Radin Station \(11 P \mathrm{PFS}\) in Asheville for five months since getting my second-class tieket." Sphd. No. \(2858 \mathrm{~N} 12^{2}\)
"Jon may be interested to know that I am employed at the local broadeast station. Where I am a transmitter operator. 1 took and
passed the \(\operatorname{FCC}\) examinations last February." Stud. No. 2754 N 12

CLEVELAND INSIITUTE of RADIOELECTRONCS, r8-11
4900 Euclid Avenue
Cleveland 3, Ohio
Approved for Training under "O. I. Bill of Eights"

NI

Big, handsome, ere-catching! That's the new Sylvania \(38 \frac{13}{4}\) " high and \(81 /^{\prime \prime}\) wide metal thermometer! Put this green, black and white business aid outside your shop-call attention to the service yon offer and the merchandise displayed in your windows!

You can obtain this salescatcher from your Sylvania Distributor! See him tixlay!

\section*{omly \(\$ 295\)}

Here's the new Sylvania Service Kit now available to service deal-ers-a prestige-building and practical addition to your service husiness!
Made of laminated plyworl covered with brown plastic fabric with the appearance of fine leather, this kit has a tute capacity of over 75 tubes. The interior measures only \(18^{\prime \prime} \times 11^{\prime \prime \prime} \times 51 / 2^{\prime \prime}\). The tool section in the lid is designed to hold the most commonly used tools for oncall service. Äsk your Silvania Distributor for this wonderful new, low-priced Service Kit. Get that added professional toueh that means so much.

\section*{MADE TO SELL YOU AND YOUR SERVICE}

\section*{}

only \$995

And here's the new Sylvania illuminated shadow box sign that's reaty for hanging in your wintow. on your wall, or on any strategic flat surface in your window. Two eyes in the top of the sign are for hooks or chains.
The hig, bright red letters "Radio Service" tell your message in no uncertain terms to every passerby. The sign's face is glass; the bachground translucent sellow. The red letters are outlined in blach, while the bottom half of the sign is black with yellow lettering. The brown metal case is chrome trimmed. Size: \(18 \frac{1}{4 \prime \prime}\) long. \(814^{\prime \prime}\) high, \(334^{\prime \prime}\) deep. Seven-foot cord provided.

At Sylvania Distrihutors everywhere: Sylvania Electric Products Inc., Advertising Department, Emporium, Pa.

\section*{10 Reasons Why...} D. T. I. can prepare you for a profitable future in D.T.I. "usis ulus
(1) You profit from our 17 years of "Know-how" in preparing men for real opportunities in the Radio-Electronics field.

2 A faculty of more than 60 skilled residential and 15 extension instructors to guide students in their training.
3
You may learn at home or in our new, modern laboratories in Chicago.

Home Movies, an exclusive D.T.I. feature, help you learn faster... easier at home.
5
You receive many shipments of com-mercial-type equipment which give you practical "on-the-iob" experience in your own home. Youkeep all of this equipment - working about 180 experiments, including a permanent 6 -tube Radio Receiver the entire family will enioy.
0
You build and keep modern-type test equipment which you can regularly use for analyzing, checking and testing purposes.

You also get lessons with many illustrations and schematic drawings that make electronic circuits easier to understand.

The only training of its kind to be awarded the Certificate of Merit by the New York Museum of Science and Industry.

EFFECTIVE EMPLOYMENT SERVICE is available when you complete your training to help you get started.
 Consultation Service. After you have completed your training, you are privileged to write for additional information to help you with "on-the-job" problems.
tele vision Radio-Electronics

See how DeForest's Training, Inc. can start preparing you now for the opportunities ahead in TELEVISION ... RADIO . .. ELECTRONICS. We provide practical training in your own home to help you gain the confidence and "know-how" to fit you for a responsible, well-paying job or your own business. D.T.I. trains you rapidly, thoroughly, by using modern instruction methods and equipment. Write today for free facts on how you, too, may get started toward a profitable, exciting career.

\section*{You BUILD}
and KEEP this jewel bearing MULti-meter labovel and b-tube "Super-Het" Receiver (below) . . giving you practical experience at home in ASSEMBLY ... WIRING ... SOLDERING . . . TESTING ...TROUBLE SHOOTING! - sons, prepared in clear, simple

\section*{NO EXPERIENCE NECESSARY}
D.T.I. sends every major aid to speed your home training. In addition to the many shipments of Radio-Electronics parts and assemblies, you receive well illustrated, loose-leal les-

YOU ALSO USE HOME MOVIES
Only D.T.I provides you with this atl impoltont home training did that makes Rodio-Elestionics principles remarketbly clear and easier to undersland. We lend you a 16 mm . proiector and many reels of informa. tion-packed film

EMPLOYMENT SERVICE
When you complete your training, our Employment Service will help you gel started Mar coupon today

\title{
DEFOREST'S TRANING, INC.
}
cmicaco, ILINOIS
Associgtod winh the DeVry Corporation,
Sellders of Electronic and Movio Equipment

\section*{MAIL THIS OPPORTUNITY COUPON NOW!}

Deforest's Training, Inc.
2533 N. Ashland Ave. Dept. RC-ElI
Chisogo 14, lllinois
Send me complete details, showing how I may make my start in Radio-Electroniss-Television. No obligation.

Cof actual field experience now enable us to offer you the new 900A "VOMAX". Revolutionary as was the original, the new 900A forges far ahead in simplicity, dependability all-around usability.
Just \(3+\) months ago McMurdo Silver Co. announced "VOMAX" - the first truly stable, ultra-high input resistance v.t.v.m. Lifting the v.t.v.m. out of the limited labora-tory-application class, Silver engineering and use-experience made "VOMAX" the first universal v.t.v.m. Its acceptance was instant and overwhelming - for "VOMAX" will measure, at input resistance so astronomically high as not to "load down" any circuit to which it may be connected d.c. volts, a.c., a.f., i.f. and r.f. volts, d.c. milliamperes and amperes, resistance and db . - all over tremendous range and with laboratory accuracy. Used in scores and hundreds by such competent organizations as the National Bureau of Standards, the Navy, Army, F.C.C., C.A.A., Veterans Administration. G. E., Western Electric Co. Recommended by Bendix, "VOMAX" is consistently copied, never equalled - stands today as "standard of comparison" for the entire industry.
In announcing the new "VOMAX" we think you'll agree that we can feel just a bit proud of having again done the impossible to give you the world's finest universal Laboratory Caliber Electronic Test meter at only Net \(\$ 68.50\).

\section*{FEATURES}
- Non-breakoble glass \(7^{\prime \prime}\) meter completely protected Non-breakob
behind panel.
- Single hand.convenient probe gets into tight places, banishes usual snarl of easily last and broken test leads.
- Newer - and fewer - minature u.h.f. tubes.
- 51 ranges af highest available a.c. and d.c. input resistance.
- Absolutely stable-ane adjustment sets meter zero for all ranges.
- No grid current error. Exclusive to "VOMAX", this vital feature is carried to new heights in new 900 A .
- 24 d.c. ronges af 51 and 126 megohms, constant input resistance, 0 thru 3, 7.5, 12, 30, 75, 120 , \(300,750,1200\) and 3000 volts. Polarity reversing switch.
- 6 a.c./r.f. ranges, 20 N thru 300 mc ., 20 megohms input resistance shunted by 7 mmfd . 0 thru 3, 12 , \(30,120,300\) and 1200 volts.
- 3 db . ranges. \(-10 /+10,+10 /+20\) and \(+20 /+50 \mathrm{db}\).
- 6 resistance ranges. 0 thru 2000, 20,000 and 200,000 ohms. 0 thru 2, 20 and 2000 megohms.
- 6 direct current ranges. 0 thru \(1.2,30,120,300\), 1200 ma . and 12 amperes.
- True vacuum tube meter in all but current functians. No low-resistance, frequency-erroneous copper oxide rectifiers.

Every good jobber features the new "VOMAX". new super-sensitive 905A "SPARX" Signal Tracer, 910 Universal Test Speaker \& 18 Watt Universal Output Transformer, 906 FM/AM Signal Generator, new 909 and 911 TV and FM Sweep Signal Generators, 904 Resistance/Capacitance Tester. All, Laboratory Caliber Electronic Test Instruments at a price you can afford.

UNAUTHORIZED BROADCASTING from a transmitter operated in Jennings, La., was stopped last month by federal agents. The station was operated by a young veteran who had studied radio at a Texas school. He had been broadcasting music and entertainment on a frequency of 1540 kc for several months.
The intervention of federal agents and seizure of the equipment provides another warning to all radio men that unauthorized transmissions will not be tolerated by the government. Even phono oscillators may come under the ban if they have suffirient output. The safest plan is to deliberately limit output of such devices to the minimum necessary to transmit across the room in which oscillator and receiver are located.

\section*{U. S.-CANADIAN AGREEMENT}
was reached last month with regard to FM stations close to the border. The agreement calls for consultation between the FCC and the Canadian Department of Transport to eliminate any possibility of interference between stations of both countries. No loss of channels to this country is expected.

KENNETH B. WARNER, known to radiomen as secretary of the American Radio Relay League and editor of its official organ, QST, died unexpectedly September 2.

Mr. Warner was one of the founders of the League and was its first paid secretary, holding the post from 1919 till his death. He was active in organizing the International Amateur
 Radio Union and at practically all national and international conferences where the welfare of the amateur was affected.

He maintained his personal interest in radio, operating his own station W1EH up to the time of his death. He was also an enthusiastic amateur photographer, and many of his pictures have been exhibited. He was a member of the Institute of Radio Engineers and the Hartford County Camera Club.

\section*{SUPERSONIC PAINT TESTING} was reported last month to the American Chemical Society. Less than a second is required to tell whether a paint or varnish will wear well.

The coating of paint is smeared on a piece of metal. The metal is then shaken violently by a transducer connected to a supersonic oscillator. The amount of vibration necessary to make the paint or varnish peel indicates how long it will be likely to last under normal conditions of use.

TOWERS are being erected across Northern Indiana to chart a layout for television relays, it was announced last
month by T. C. Wilhoite, TV engineer for the American Telephone and Telegraph Co. The towers are temporary; when the permanent ones are built next year, they will link Chicago with East Coast TV facilities.

A co-axial cable laid across the same route last year was intended for television but this cable is already being overworked to handle long-distance telephone calls. When the relays are finished, the cable will be used for television only in emergencies.

\section*{NATIONAL ELECTRONICS CONFERENCE will be held at the Edge-} water Beach Hotel in Chicago on November 4, 5 , and 6.

A comprehensive technical program has been arranged covering all the major fields. New equipment will be displayed throughout the sessions.

LOW-POWER FM transmitters may be used by schools and other non-commercial, educational broadcasters, according to a ruling made by the FCC last month. Power used may be 10 watts or less and all stations will operate on 88.1 mc . The ruling is expected to make it possible for many schools with limited finances to enter the broadcasting field.

BRITISH TV standards were frozen indefinitely last month by a government decision to retain the present 405 -line, 25 -frame pictures. The British decision parallels the American one made some time ago against converting to color. The reason in each case was that technical advances were not sufficient tojustify a change in system which would make all present sets obsolete. British televiewers now own approximately 60 ,000 receivers.

MAGNETIC TAPE STANDARDS for the broadcast industry were decided upon last month by the NAB, lifting the last barrier to widespread production and use of tape recording equipment. Most important was standardization of tape speed at 15 inches per second for high-fidelity work, with 7.5 inches as a secondary speed and 30 inches as a supplemental speed. The 7.5 -inch speed corresponds to the proposed RMA standard for home recording.

Other standards adopted included a tape width of 0.25 inch, specified breakage, temperature, and humidity characteristics, noise level 40 db below peak signal, and 33 -minute playing time on each spool.

NATIONAL RADIO WEEK will be observed this year from November 14 to 20 , with all phases of the broadcasting and radio manufacturing industries participating. The announcement was made by RMA and NAB, the joint sponsors.

This will be the fourth year in which all radio interests will cooperate in observing the anniversary of broadcasting. This year's anniversary is the twenty. eighth.

AUDELS RADIORANS GUIDE-914 Pages, 633 Illustrations, Photos, Wiring Diagrams, 38 Bia Chopters, covering Radio Theory, Construction, Servieing, includElectronics and Frequency Ma'dulation, Review. Questions and Answers, Calculations \& Tosting. Highly Endorsed - - Indispensable for Ready Reference and Home Study.
\(\$ 4\) COMPLETE - PAY ONLY \(\$ 1\) A MONTH step up your owa skill with the facts and fares of yical inside Trade Information in a handy form, Fully lliustrated and Easy to Understand. Highly Fire Examlastion.
Send No Mones. INothing to pay postman.

AUDEL, Publishers, 49 W. 23 St, New, Yohix PIoase send me postpald for FREE EXAMINATION booke Parked (x) below. If I decide to keop them I eEreet to man \(\$ 1\) In 7 Daye on each book ordemed and further mall \$i monthyy on each book wntw i heve pald price

\section*{The Radio Montla}

Pat. Pending

\section*{Chimney Mount Antenna Base}
- for TELEVISION - FM - AMATEURS

\author{
List Price: \(\$ 7.50\) \\ Cost to Retailer: \({ }^{\$ 4.50}\)
}

Installed in 10 minutes - Permits Use of Several Mounts on One Chimney

Chimney Mount is by far the fastest selling product of its type in the radio and television fields. It can be installed in ten minutes without the use of special tools or drilling of holes. Several mounts can be strapped to one chimney - to pole, \(2 \times 4\), side of house or to any rectangulor roof extension. Fostens aerial to highest point with galvanized steel bands having a combined tensile strength of more than \(3,000 \mathrm{lbs}\). Made of corrosion-resistont aircraft-type aluminum alloy. Weight: 3 lbs.

Available Through All Leading Jobbers and Dealers or Write to
South River Metal Products \(\mathbf{C o}\). South River. New Jersey

ALL-METAL TV TUBES are now being manufactured by the Tel-O-Tube Corporation of America, aceording to an announcement made last month iy. Samual Kagan, the firm's president. The new tube has a 16 -inch viewing surface. They are being produced at the rate of 100 a day, the first metal viewing tube to be made in quantity.
Most of the tube is made of spun chrome-steel allos. Ordinary plate glass

is used for the face. Advantages include: lighter weight (the new tule weighs only about one-sixth as much as a 15 -inch all-glass tulx.) ; larger viewing area (144 square inches, compared with 115 for a standard 15 -inch glass twhe); and better shielding from ambient light.

MICROWAVE RELAYS are now being used for some of the ordinary longdistance telephone conversations between New York and Buston, the Long Lines Department of the American Telephone and Telegraph Company announced last month. The new system was completed about a year ago and was used for experiments in the transmission of telephone and television traf fic. Seven stations operating in the vicinity of 4.000 me are used over the New York-Boston route.

NEW OPERATOR LICENSE classifications will not be created, the FCC amounced last month. Some time ago the Commission had proposed abandoning the present radiophone licenses which eover broadeast station operators and adopting three new grades, broad"ast enginecr-operator, broadeast tech-nician-operator, and limited hroadcast operator.

The proposal had been strongly opposed by union spokesmen, who charac terized it as degrading. It was suggested that the problem of higher qualifications for broadeast operators be solved by advancing the requirements for obtaining the first class 'phone license to rover the latest developments in the field.

The FCC announced that it had started revision of the examinations and that work has been completed on the examinations for first and second permits.

COSMIC NOISE which left outer space about 3,000 years ago is interfering with our radio conmunication today. According to an account published recently in the Australian Journal of

Sciertitic Reserarh, J. G. Bolton and G. J. Stanley have discovered that this radiation comes from a mysterious space in the constellation Cyguizs.

The radiation produces the second loudest cosmic noise of any place in the Milky Way. A place in the constellation Sagittarius produces the loudest noise.

The Cygnus radiation is unusual because it sends two kinds of signals. One is of constant intensity at about 100 me; the other varies in intensity and uses frequencies below 100 mc.

CHILDREN may not attend television shows in New Jersey bars, according to a decision last month hy state Aleoholic Beverage Commissioner Erwin B. Hock.

Patrick Radigan, owner of a Hoboken tavern, had made a practice of closing his bar to adults between 6 and \(7 \mathrm{p} . \mathrm{m}\). and inviting neighborhood children in to watch the television juvenile programs. In ordering Mr. Radigan to stop the practice, Hock wrote. "However worthy your intentions, I disagree. Henry Wadsworth Longfellow would turn over in his grave if he could see the locale of your 'Children's Hour'!'

SIGNAL CORPS RESERVE UNIT will be organized in New York under the sponsorship of NBC. Chief Signal Officer Maj. Gen. Spencer B. Akin announced last month. The unit will be a mobile radio broadeasting company.

SYNTHETIC MICA with the desirable characteristics of natural mica has been produced for the first time. it was revealed last month. The material is being produced by a pilot plant under a research program sponsored by the Office of Naval Research, the Army Signal Corps, and the Navy Burcau of Ships.

Known as fluorine-phlogopite mica, the synthetic can be separated into thin shects and hats good electrical and mechanical properties and chemical stability. The discovery is important because of the scarcity of natural mica in this country. Indispensable in almost all electronic apparatus, only \(15 \%\) of the amount of mica needed during the war was produced domestically:

\section*{SUSPENSION OF LICENSES of} three amateur stations was proposed last month by the FCC. Reuben E. Gross, W2OXR, a lawyer of Staten Island, N. Y., was charged with transmitting deceptive signals. According to the commission, Mr. Gross transmitted and received messages to and from Palestine in code on behalf of a third person and used false call letters in addressing the Palestine station in order to conceal its identity.

Joseph A. Jurkowski and Marvin C. Grossman of Caldwell. N. J., were charged with using profanity during a radio conversation. The commission said the two made "obscene and disrespectful allusions to this commission and the law generalls:

\section*{ONE OF THEEE 5 WILL BEST FIH YOUR V.O.M. REOUIREMBNHS}

MODEL 630. Outstanding Features: (1) The new Triplet Molded Selector Switch with contacts fully enclosed . . . (2) Has Unit Construction with Resistor Shunts, Rectifier Batteries in molded base ... (3) Provides direct connections without cabling. . no chance for shorts . (4) Big easily read \(51 / 2^{\prime \prime}\) Red - Dot Lifetime Guaranteed Meter.

\section*{TECH DATA}
D.C. VOLTS: 0-3.12.60.300.1200.6000, at \(20,000 \mathrm{Ohms} / \mathrm{Vol}\) A.C. VOLTS: 0-3.12-60.300.1200-6000, of \(5,000 \mathrm{Ohms} /\) Volt

D C. MICROA MPERES: 0.60 at 250 Millivolts
D C. MILLIA MPERES: \(0.1 .2 .12-120\), at 250 Millivolts
D.C. AMPERES: 0.12 , at 250 Millivolts

OHMS: \(0.1000-10,000 ; 4.4\) Ohms at center scale on \(1000 \mathrm{scale;} 44 \mathrm{Ohms}\) center scale on 10,000 range.
MEGOHMS: \(0,1-100(4400,440,000\) at center scale).
DECIBELS: -30 to \(-4,-16,-30,-44,-56,-70\)
OUTPUT: Condenser in serles with A.C. Volt ranges.
MODEL 630. ...U.S.A. Dealer net price \$37.50 Leather Carrying Case, \(\$ 5.75\). . Adapter Probe for TV and High Voltage Extra.

MODEL 666.HH. This is a pocket-size tester that is a marvel of compactness and provides a complete miniature laboratory for D.C. and A.C. voltages, Direct Current and Resistance analyses. Equally at home in the laboratory, on the work bench or in the field... its versatility has labeled it the tester with a thousand uses . . . housed in molded case . . .

\section*{теCH DATA}
D.C. VOLTS: 0.10.50.250.1000-5000, at \(1,000 \mathrm{Ohms} / \mathrm{Volt}\)
A.C. VOLTS: \(0.10 \cdot 50 \cdot 250-1000 \cdot 5000\), at \(1,000 \mathrm{Ohms} / \mathrm{Volt}\) D.C. MILLIAMPERES: O-10.100-500, at 250 Millivolt

MODEL 666.HH...U.S.A. Dealer Net Price
\(\$ 22.00\)
Leather Carrying Case, \$4.75.

MODEL 625-NA. This is the widest range laboratory-type instrument with long \(5.6^{\prime \prime}\) mirrored scale to reduce parallax Special film resistors provide greater stability on all ranges Completely insulated molded case. Built by Triplett over a long period of time, it has thoroughly proved itself in labora. tories all over the world.

\section*{TECH DATA}

SIX D.C. VOLTS: \(0 \cdot 1 \cdot 25 \cdot 5 \cdot 25 \cdot 125.500 \cdot 2500\), at 20,000 Ohms/Volt
SIX D.C. VOLTS: O.2.5.10.50-250-1000-5000, at 10,000 Ohms/Vols SIX A.C. VOLTS \(0.2 .5 \mathrm{~S} 10.50 .250 .1000-5000\), at \(10,000 \mathrm{Ohms} / \mathrm{Volt}\) D.C. MICROAMPERES 0.50 , at 250 Millivolts
D.C. MILLIAMPERES: \(0.1 \cdot 10 \cdot 100 \cdot 1000\), at 250 Millivolts
D.C. AMPERES: \(0 \cdot 10\) : at 250 Millivolts

OHMS: \(0.2000-200,000,(12-1200\) at center scale)
MEGOHMS: \(0-40\), (240,000 at center scale)
SIX DECIBELS RANGES: \(-30+3.0,+15,-29,+43,+55,+69\) (Reterence level "O" DB at 1.73 V on 500 . Ohm line.)
Six Oulput on A.C. Volts ranges.
MODEL 625-NA. . U.S.A. Dealer Net Price . . . \(\$ 45.00\) Carrying Case, \(\$ 5.50\). Accessories available on special order for extending ranges.

MODEL 2405-A. This instrument combines ultra sensitivity with a large \(53 / 4^{*}\) scale meter and is housed in a rugged metal case. . . It is furnished with hinged cover so that it can be used for service bench work or for portable field service. Gives A.C. Amperes readings to 10 Amps.

\section*{TECH DATA}
D.C. VOLTS: \(0 \cdot 10 \cdot 50 \cdot 250 \cdot 500 \cdot 1000\), at 20,000 Ohms/Volt
D.C. AMPERES: 0.10 at 250 Millivolts
D.C. MILLIAMPERES: \(0.1 \cdot 10 \cdot 50-250\), at 250 Millivolts
D.C. MICROAMPERES: 0.50 , at 250 Millivolts
A.C. VOLTS: 0.10.50.250-500-1000 at 1000 Ohms/Volt
A.C. AMPERES: O-0.5-1-5.10, at I Volt-Ampere

OHM-MEGOHMS: \(0.4000-40,000\) ohms \(-0.4-40\) megohms (self-contained batteries)
OUTPUT: Condenser in series with A.C. Volts ranges
DECIBELS. -10 to \(+15,-29 .+43 .-49,+55\). (Reference level " 0 " DB at 173 V . on \(500 \cdot \mathrm{hm}\) line.)
CONDENSER TEST: Capaciey check of paper condensers is possiblo by following data in instruction book
MODEL 2405-A
U.S.A. Dealer Net Price
.\(\$ 59.75\)

MODEL 2451. Electronic Volt-Ohm-Mil-Ammeter ... is easy to use in complicated testing ...A must in F.M. and TV work in any sensitive circuit where low current drain is a factor...

TECH DATA
D.C.A.C.A.F. VOLTS: \(0.2 .5 \cdot 10-50-250-500 \cdot 1000\)
R. E. VOLTS 0.2 5.10.50
D.C. MILLIAMPERES: 0-2.5.10-50.250.500. 1000

OHMS: O. \(1 \mathrm{~K} \cdot 10 \mathrm{~K} \cdot 100 \mathrm{~K}\)
MEGOHMS 0.1:10-100
INPUT IMPEDANCE. 11 Megohms on D.C. Volls
4.8 Megohms on A.C. R.F. Volts

MODEL 2451U.S.A. Dealer Net Price \(\$ 76.50\)
External high-voltage probe available on special order. See the Triplett V.O.M. line at your local Radio Parts Distributor or write
triplett electrical instrument company - bluffion, ohio, u. S.a.

Model A. 750.1

\section*{\(\checkmark\) THESE SELLING ADVANTAGES}
* Complete with amplifier \(\star\) Records direct from radio, phonograph or telephone \(\star\) Automatic shut-off at end of play or rewind of wire * Crystal mike for hand table or stand and plug-in mike cord \(\star\) Rewind speed: 6 times forward speed \(\star\) Plug for cable to recard from rodio to phonograph \(\star\) Erases automatically when recording over used wire \(\star\) Safety lock prevents accidental erasure \(\star\) Covered in leatherette * One piece chassis \(\star\) luggagetype carrying case \(\star 5^{\prime \prime}\) Alnico V P.M. Speoker * TUBES: 2 - 50l6, 1 - 1280, 1 - 6AQ6 plus selenium rectifier WEIGHS: \(21 / \frac{1}{2} \mathrm{lbs}\). MEASURES: \(13^{3 / 4^{\prime \prime}}\) long by \(12^{\prime \prime}\) wide by \(9^{\prime \prime}\) high

Only Experience can build fine WIRE RECORDERS -and only AIR KING experience could build this moderately priced, matchless Wire Recorder with Amplifier. As pioneers, AIR KING has achieved and maintained the leadership in the magnetic recorder industry: Glamorous consoles . . compact portables .. radio-phono-wire recorder combinations : every one is AIR KING epericnce-built. It's the know-how that counts! AIR KING has it!
AIR KING PRODUCTS CO ive., 170 53rd STREET, BROOKLYN 32, NEW YORK Export Address: Air King Iniemeticnol. 75 West Street, New York 6. New York

F

Practice Does It! Soldering, wir ing. connect. ing Radio Parts circuits with circuits with
yourownhands -yourcan't beat this method of learning. When you construct his Rec. tifier ant filter Resisto and Conden er Tester, etc., you get a really practieal slant on Radio that leads to a mones-making future.

Learn Fast . . . Earn Fast HOME TRAINING Planned For Your Needs you Build All These TESTERS . . . and MORE! Igive you a fine, mov-
ing-coil type Meter Instrument on Jewel Hearings - with parts for a complete Analy. zer Circuit Continuity Tester. You learn how to check and correct Receiver defects with frotessional speed and NOVEMBER, 1948

\section*{How do you stack up \\ in the modern radio servicing field?}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline -am broadcast receivers & - Safety devices & -electric fences & C MOBILE COMMUNICATIONS \\
\hline Sfmbroadcast receivers & - SELECTING Machines & -furnace control & EQUIPMENT FOR: \\
\hline -television receivers & - signalling & Dfurnaces. induction & POLICE. FIRE. fortst service. \\
\hline - automatic phonographs & - SIGN CONTROLS & Qgas detection - & airctaft, maring. Explora. \\
\hline - homerecording devices & S & Cgraders & tions. Rallroads. taxicass. \\
\hline C public address systems & F & Dheaters & Stregtears. busses. trueks. \\
\hline INTERCOMMUNICATING SYSTEMS & How to & & ambulances. emergincy vehieles. erte. \\
\hline -hearing aids & Meet & (epar & ISYNCHRONIZERS \\
\hline \(\square\) telephoto equipment & & 1911 & Jtherapy equipment \\
\hline - homefacsimile receivers & More mon & Itat & コinickness gauges \\
\hline C radio weather devices & DENSITORETE & Urity for y & 口timers \\
\hline - home sound movies & Cdetectors & Ior 14 ! & -traffic controls \\
\hline [] andio teletypewriters & - detonators & \(\square\) MEASURING DEPTE & Qvibration \\
\hline Salarm systems & - door openerg & \(\square\) metal analysis & - weighing \\
\hline] cardiographs & - dryers & -microscopes & -welding \\
\hline - chemical controls & - enginetesters & - motor controls & -wrapping \\
\hline [circuit breakers & Delevator levelers & -packaging & [XPRAY \\
\hline
\end{tabular}

Have you takin a really good look recently at the expanding service field? Do you lave a feeling of helplessness when you think of some of the intricate, new-model equipment that you may be called upon to service? Or of the many jobs you may be missing in these related fields because you feel you don't know anything about them?

You may as well face the facts. You must keep your technical ability in pace with industrial developments-or be left behind liecause you lack understanding of radiooelectronics as applied today to busincss and industry.

There is no need to tell these things you already know. But it is important for you to realize that, no matter whether you are a "begimer" or an "old timer" CREI home study training can help you. You will find that CREI courses in Radio-Electronics and Television are pitclied to your own level. They take you all the way from introductory basic prirciples to advanced training, on to specialized subjects. CREI training can help you right now, in your daily work in the installation and scrvicing of radioelectronic equipment.

CREI's reputation has been proved over a period of 20 years. Join the many servicemen who are studying-at home-the new developments and techniques with CREI-protecting their future jolss, their busincsses by acquiring the new "know \({ }^{\text {how" }}\) NOW!

\section*{television and fm SERVICIIG}

\section*{This is it! The New 100\%}

Practical "On-the-Job" Course

\section*{SEND IN THE COUPON NOW!}
\(\downarrow\) This New CREI Course Can Help You \(\downarrow\)

\section*{MAIL}

Radio Service Division of

\footnotetext{
CAPITOL RADIO ENGINEERING INSTITUTE An Accredited Technical Institute
Dept. 5118,16 th \& Park Rd., N. W., Washington 10, D. C. Branch Offices: New York (7) 170 Broadway - San Franclsco (2) 760 Market St.
}

CaptoL tado tweiwhiname instirure
 entlement :
Please kehd me complete detalls of your new home study brief resume of and FM Servicing. I am attachinu postifon.
NAME
STRRET
crit \(\quad\) ZONE STATR

 tions. Television. Radar, Research Laboratories, Home Radio Service, etc. National Schools Master Shop Method Home Study course, with newly added kessons and equipment, can train you in your sbare time, right in your own home, for these exciting oplortunities. Our method has lieen proved by the remarkable suecess of National Schools-trained men all over the world.

\section*{You Learn by Building Equipment with \\ Standard Radio Parts We Send You}

Your Nuthnal Schouls Course inclutles not only basie theory. hut practical
 ment of professional phality fur luipment of professional mathey for haiking various experimental ind test yon alle able to builat the modern suyon ane able to build the modern superncterodsne recever shown inve. which is yours to keep anic enjoy. You buthl many types of circuits. signal generator, low power radio transmitter. :udio oscillator, and wher units. The Frec Iknoks shown inhove tell you mare alout it-send for them today!
Now ! new professional multitester

\section*{INCLUDED!}

This versatile testing instrument is portable and complete with test leads and batteries. Simple to operate. accurate and dependable. Sinme will be able to quickis locate trouble and adjust the most delicate circuits. You ca. wis the Mititester at home or on serDC volts, current. resistance and decibels. You will be urourl to own and use this valuable professional instrument.

\section*{Lessons}
and

\section*{Instruction}

Material Are Up-to-date, Practical, Interesting.
National Schools Master Shop Method llome Training gives you basic and advanced instruction in all phases of Radio. Television and Flectronies. Each lesson is made easy to understand by mumerous illustrations and diagrams. All instuction material has been developed and tested in our own shops and laboratories, under the supervision of our own enginears and instructors. A free sample lesson is vours upon request-use the coupon below.

You Get This and Other Valuable Information in the Free Sample Lesson:
1. Basic Receiver Circuits and How They are Used.
2. Construction of the Antenna Circuit.
3. How Energy is Picked Up by the Aerial.
4. How Stgral Currents are Converted into Sount.
5. Haw the Tuning Condenser Operates.
G. How the R-F Transformer Handles the Sional, and other dala. wilh diagrams and IMusirations.

Both Home Study and Resident Training Offered

\section*{APPROVED FOR veterans}

Check Coupon Below

NATIONAL SCHOOLS

\title{
RADID \\ PII:CIIONICS \\ formerly RADIO-CRAFT
}

Incorporating
SHORT WAVE CRAFT. TELEVISION NEWS*
RADIO \& TELEVISION
- Trademark registered L. S. Patent omico

Hugo Gernsback, Editor-in-Chief Fred Shunaman, Managing Editor M. Harvey Gernsback, Consulting Editor Robert F. Scott. W2PWG. Technical Editor R. H. Dorf, W2QMI, Associate Editor I. Queen, W2OUX, Editorial Associate Angie Rascale, Production Manager Elmer Fuller, Shortwave Editor Wm. Lyon McLaughlin, Tech. Mllustration Director
G. Aliquo, Circuiation Manager John J. Lamson, Advertising Director Alfred Stern, Promotion Manager

\section*{Contents}

November 1948
Editorial (Page 21)
How to Break nto Servicing
.by Hugo Gernsback
Audio (Pages 22-23)
Sound Helps You Make More Money............................... by Matthew Mand 22
Amateur (Pages 24-25)
Ten-Meter Final From TU-I0-B.by L. W. May, WSAJG
Servicing (Pages 26-30)
Servicing a Noi,y Set. . .. by H. A. Nickerson
Radio Performance Tests
.by K. V. Amatneek
Broadcasting and Communications (Pages 31-32)
A Carrier-Contioled Recorder
.by Rhett McMillian
FM (Pages 33-37)
Aligning FM Receivers
by John B. Ledivetter
FM Handie-Talk e Radio for Industry (Cover Feature)
\(\qquad\)
Electronics (Pages 38-41)
Electronics in tาe Toy World....................................... by Richard Henry
Electronics in Medicine.. by Eugene Thompson
Television (Pages 42-48)

Compensating TV Amplifiers.. by Robert F. Scott
High Band Teleวooster. .. by I. Queen
Test Instruments (Pages 50-58)
Sensitive Vacuu•n.Tube Voltmeter.....................................by John W. Straede 50
Signal Tracers are Popular..by T. W. Dresser 56
Construction (Page 62)
Instrument Voltuge Supply...by R. L. Parmenter 62
Foreign News (Page 64)
European Report..by Major Ralph W. Hallows 64
Theory and Design (Page 87)
Capacitor Drops Voltage.......................................by Otto von Guericke 87

Departments

Try This One............................ . . 78
Question Box 80
Miscellany
80
World. Wide Station List
by Elmer R. Fuller
Communications
People 74
Technotes

Book Reviews. 97

\footnotetext{
RADIO-ELECTRONICS. November, 1948. Volume XX. No. 2. I'uhlislest fumithly. Puhlicatinn Omice: ETie Ave.

 don Fic. A Austratia; Werills Akenes.

Editorial and Execulive Offices:
25 West Broadway, New York 7. N. Y.

MEMRER AUDIT BUREAU OF CIRCULATION ABC PAID CIRCULATION 6 MONTHS TO JUNE 30 , 1948-112.592. (Publishers Statement)
FOR NOVEMBER ISSUE: -157.000
}

This year again more radio men u'ill bry more Sealdtite \(\star\) Capacitors than any other molded paper tubulars.
This year-after-year preference for Sealdtite Capacitors over all other molded paper tubulars is positive proof of Sealdtite superiority. And there are reasons! Solar's exclusive allpurpose molded Hi -Temp construction resists atmospheric moisture, and heat up to \(100^{\circ} \mathrm{C}\)-no cardboard tubes to grow soggy-no dripping wax. These all add up to definite assurance of long trouble-free life. Write right now for catalog.
SOLAR CAPACITOR SALES CORP. NORTH BERGEN, NEW JERSEY

SEALDTITE MEANS LONGER LIFE
\(\star\) Trade Mark

\section*{SOLAR SOLAR CAPACITORS "Quality Above All"}
```

