FM HANDIE-TALKIE
FOR INDUSTRIAL USE
SEE FM SPEC.
Says LYMAN A. ABBOTT
THE IOWA FLYING SERVICEMAN

"To any organization such as ours, installing
and servicing PA systems, the new Rider PA
Manual is heaven sent help. It is a typical
Rider Manual. What more
need be said."

"... of course we have
all 17 RIDER MANUALS."
"... and attribute a good bit of our success in
producing a quantity of work in a minimum of
time to their always dependable, complete,
factory information. We will have Volume XVIII
as soon as it is published."

VOLUME 1
RIDER PA MANUAL
Just Out
Covers 145 Manufacturers' Amplifiers, from 1938 to Date

Bigger and better than ever we had anticipated, the scope and thoroughness of this first industry-wide PA service manual makes it an essential piece of equipment for any shop doing PA work. It covers public address systems, outdoor announcing, musical instruments and phonographs, theatre and church hearing aids, electronic megaphones, intercommunications systems, theatre and home motion pictures, school, hotel and hospital sound systems, mobile and portable sound systems.

- It provides schematics, voltage and resistance tables, tube and chassis layouts, installation notes, operational instructions, impedance matching.
- Separate "HOW IT WORKS" book explains the theory of various designs employed in different types of amplifier systems, the servicing of PA systems, using the sine wave and square wave means of checking, methods of rapidly locating faults. Everything you need.

2000 Pages in this new RIDER FIRST plus separate "HOW IT WORKS" and
INDEX $18.00
ORDER YOURS TODAY!

RIDER MANUALS
MEAN SUCCESSFUL SERVICING

ANOTHER NOTE. The C-D Capacitor Manual for Radio Servicing, 1948 edition No. 4, makes reference to only one source of receiver schematics—Rider Manuals.
Have You Met the Little Fellow with the BIG Advantages?

The All New Mallory Midgetrol

Offers These BIG Advantages...

- Bigger Market
- Simpler Installation
- Simpler Stocking

The small size of the Mallory Midgetrol lets you service portables, auto radios and small AC-DC receivers which require $\frac{15}{16}$" controls.

The unique shaft design of the Mallory Midgetrol saves installation time with all types of knobs.

Electrical characteristics let you use the Mallory Midgetrol to replace $\frac{15}{16}$" as well as $\frac{13}{16}$" controls. Stocks are further reduced because no special shafts are needed.

The Mallory Midgetrol is unusually quiet, both mechanically and electrically — and tests prove it stays quiet. In addition, the Mallory Midgetrol has nine all new features.

- New Size
- New Design
- New Shaft
- New Extension
- New Switch
- New Element
- New Contact
- New Terminal
- New Two-Point Suspension

It's the NEW Standard in Carbon Controls. See your Mallory distributor.
...the Roto Ranger

—automatically rotates one of 18 separate scales into position as you select the range.

SIMPSON MODEL 221 ROTO-RANGER
HIGH-SENSITIVITY A.C.-D.C. VOLT- OHM-MILLIAMMETER

Here is the only multiple scale test instrument of its kind in the world. It definitely reduces the possibility of errors by providing a single scale for each range of this finest of volt-ohm-milliammeters. As the selector switch is moved to the range desired, an ingenious gearing mechanism rotates a drum, bringing into place behind the meter window the proper scale for that range. Here is the equivalent of 25 separate instruments combined in one sturdy and compact unit (18 scales) 7 additional direct reading ranges through use of high voltage and output jacks.)

The patented Roto-Ranger principle eliminates the confusion of numerous readings on one scale, and the multiplying factors common to ordinary multi-range testers, by providing a separate scale for each range. There are no cramped calibrations in these full sized Roto-Ranger scales. Each is designed as it would be for a separate instrument.

SIMPSON ELECTRIC COMPANY
5200-5218 W. Kinzie St., Chicago 44, Ill.

Ranges

- 20,000 Ohms per Volt D.C., 1,000 Ohms per Volt A.C.
- Volts, A.C.: 2.5, 10, 50, 250, 1000, 5000
- Volts, D.C.: 2.5, 10, 50, 300, 1000, 5000
- Milliamperes, D.C.: 10, 100, 500
- Microamperes, D.C.: 100
- Amperes, D.C.: 10
- Output: 2.5, 10, 50, 250, 1000
- Ohms: 0-20,000 (12 ohms center), 0-200,000 (1200 ohms center), 0-20 megs (120,000 ohms center).
- Size: 12¾" x 10½” x 5½”
- Weight: 8 lbs. 9 oz.
- Price, complete with test leads and 28-Page Operator's Manual.. $69.85

High voltage probe (25,000 volts) for TV, radar, x-ray and other high voltage tests, also available.

Ask your Jobber, or write for complete descriptive literature.
Whether you require large quantities of relays for production runs or single units for laboratory or amateur work, Wells can make immediate delivery and save you a substantial part of the cost.

Our capable engineering staff is prepared to offer assistance in the selection of correct types to suit your exact requirements.

Each relay is brand new, standard make, inspected, individually boxed and fully guaranteed.

The following list represents only a tiny portion of our relay stock. Write or wire us for information on types not shown.

Standard DC Telephone Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-161</td>
<td>24V</td>
<td>1500</td>
<td>SPST (NO)</td>
<td>Auto. Elect.</td>
<td>1.30</td>
</tr>
<tr>
<td>R-162</td>
<td>24V</td>
<td>1200</td>
<td>SPST (NO)</td>
<td>Auto. Elect.</td>
<td>1.39</td>
</tr>
<tr>
<td>R-163</td>
<td>24V</td>
<td>1000</td>
<td>SPST (NO)</td>
<td>Auto. Elect.</td>
<td>1.15</td>
</tr>
<tr>
<td>R-164</td>
<td>24V</td>
<td>400</td>
<td>SPST (NO)</td>
<td>Auto. Elect.</td>
<td>1.05</td>
</tr>
<tr>
<td>R-165</td>
<td>24V</td>
<td>100</td>
<td>SPST (NO)</td>
<td>Auto. Elect.</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Sensitive DC Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-188</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-189</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-190</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Type 18 DC Telephone Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-175</td>
<td>24V</td>
<td>250</td>
<td>SPST (NO)</td>
<td>Allen Bradley</td>
<td>2.45</td>
</tr>
<tr>
<td>R-176</td>
<td>24V</td>
<td>250</td>
<td>SPST (NO)</td>
<td>Allen Bradley</td>
<td>2.50</td>
</tr>
<tr>
<td>R-177</td>
<td>24V</td>
<td>250</td>
<td>SPST (NO)</td>
<td>Allen Bradley</td>
<td>2.55</td>
</tr>
</tbody>
</table>

Type 80 DC Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-193</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-194</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-195</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Type 8J DC Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-202</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-203</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-204</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Heavy Duty Keying Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-211</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-212</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-213</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Direct Current Midget Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-221</td>
<td>12V</td>
<td>100</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>0.95</td>
</tr>
<tr>
<td>R-222</td>
<td>12V</td>
<td>100</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.05</td>
</tr>
<tr>
<td>R-223</td>
<td>12V</td>
<td>100</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Cutler Hammer

Heavy Duty Contactors

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-243</td>
<td>208V</td>
<td>500</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
<tr>
<td>R-244</td>
<td>208V</td>
<td>500</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.30</td>
</tr>
<tr>
<td>R-245</td>
<td>208V</td>
<td>500</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Adjustable Time Delay Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-265</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.45</td>
</tr>
<tr>
<td>R-266</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.50</td>
</tr>
</tbody>
</table>

DC Mechanical Action Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-271</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.45</td>
</tr>
<tr>
<td>R-272</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Type C.M.S. Relay

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-281</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-282</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-283</td>
<td>24V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

DC Type 71 Rotary Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-293</td>
<td>12V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-294</td>
<td>12V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-295</td>
<td>12V</td>
<td>50</td>
<td>SPST (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Direct Current Keying Relays

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-301</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.45</td>
</tr>
<tr>
<td>R-302</td>
<td>24V</td>
<td>10</td>
<td>DPDT</td>
<td>Allen Bradley</td>
<td>2.50</td>
</tr>
</tbody>
</table>

DC-Ratchet Relay

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Operating Voltage</th>
<th>Resistance</th>
<th>Contacts</th>
<th>Manufacturer</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-313</td>
<td>6V</td>
<td>50</td>
<td>DPDT (NO)</td>
<td>Guardian</td>
<td>1.15</td>
</tr>
<tr>
<td>R-314</td>
<td>6V</td>
<td>50</td>
<td>DPDT (NO)</td>
<td>Guardian</td>
<td>1.20</td>
</tr>
<tr>
<td>R-315</td>
<td>6V</td>
<td>50</td>
<td>DPDT (NO)</td>
<td>Guardian</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Special Sample Engineering Offer

Any ten relays listed (one of each type) except those on Nos. R-821 and R-246—only $10.00.

ORDER DIRECTLY FROM THIS AD OR THROUGH YOUR LOCAL PARTS JOBBER.

Manufacturers: Write for Quantity Prices.

320 N. La Salle St., Dept.-Y, Chicago 10, Ill.
Radio-Electronics for November, 1948

This is a large book, physically, and it covers a large subject. The coverage is thorough, beginning with the physical background of electronics—the atomic theory. Much of the material is on subjects of interest to the communication engineer as well as the industrial designer, because the two fields overlap considerably. There are chapters on emission, conduction in gases, vacuum tubes, phototubes, C-R tubes, tuned circuits, and allied topics. Sections which apply especially to industry are those dealing with industrial control, power rectifiers, r.f. heating, industrial X-ray work, and several others.

Each of the 36 chapters has been written by a different author, each evidently, a specialist in his subject. The information is complete and detailed, profusely illustrated with diagrams and tables. The treatment is not wholly mathematical, but the necessary formulas are given. While the text deals with principles and design rather than with descriptions of specific pieces of apparatus, the engineer will find the book a valuable reference source in almost any sort of industrial work.—R. H. D.

THE PHYSICAL PRINCIPLES OF WAVE GUIDE TRANSMISSION AND ANTENNA SYSTEMS, by W. H. Walsome. Published by the Oxford University Press, 6 x 9½ inches, 265 pages. Price $7.46.

The writer of this volume, a professor of mathematics at the University of Saskatchewan, has covered thoroughly all types of wave guides and the currently known methods of using them. The book was written to acquaint physicists and engineers with the multiple-propagation characteristics of microwaves. The subject is approached from an entirely theoretical angle, and the treatment is mathematical throughout.

The material will be of most use to those interested in the principles of microwave transmission, for whom it will provide a complete theoretical background. It is not intended to be an engineering guide.—R.H.D.

RCA TRIPLE PINDEX. Base diagrams of 475 tubes 17½ x 12 inches. Price 50c.

The book is composed of three separate base-diagram booklets, each with 2½ x 3½-inch pages, joined below each other in a single cover with a spiral wire binding which permits the pages to lie flat. This triple feature permits the repairman to have three separate base diagrams before him at all times without flipping pages from one to the other.

ANTENNAE. An Introduction to Their Theory, by J. Abarron. Published by Oxford University Press, 6 x 9½ inches, 265 pages. Price $8.50.

A completely mathematical treatment of the subject, this book is divided into three parts. Antennae and Boundary-Value Problems, Antennae and Integral Equations and Antennae as Wave Guides. A number of references—both books and papers—are given at the end of the text.

A collection of 45 papers delivered by RCA engineers at various meetings or published in technical journals, this is the seventh volume of the RCA technical series. Due to the large number of papers, the FM art is covered—though possibly somewhat spotingly—almost completely. The papers deal with problems in both FM reception and transmission.

There are two appendices—a bibliography of technical papers by RCA authors from 1936 to 1947 and a guide to a series of articles in Broadcast News on FM station placement and field survey techniques.
WANTS SERVICE LICENSES

Dear Editor:

Federal licensing of radio servicing technicians would have the following beneficial results:

1. Give the serviceman new prestige and promote public confidence in him.

2. Eliminate the incompetents who give the trade a bad name and destroy confidence in servicemen.

3. Give the federal government a bona fide roster of qualified servicemen which would be useful in the event of war.

4. Restrict the entrance of unqualified newcomers. The amateur, tinkered, and radio school product would be forced to serve a suitable apprenticeship instead of depressing wage levels through cheap competition with the higher priced but more competent individual.

5. Benefit the public through better, more competent servicing of radio receivers.

6. Attract better men to the trade through better conditions.

Organization has been tried in the past and has not worked because of the lack of a common interest or bond. Federal licensing would go a long way toward assuring a common interest in servicing, both in getting and renewing such licenses. The development of a national organization would put power in the hands of the servicemen to fight unethical conduct as well as incompetence in the industry. Such an organization would be stimulated by federal licensing and help improve both knowledge and working conditions.

William R. Moody,
Service Manager, Sanhour Co.,
Washington, D. C.

RADIO and TELEVISION

Through Training in All Fields of Technical Phases

APPROVED FOR VETERANS

B.CA GRADUATES ARE IN DEMAND

For Free Catalog Write Dept. R.C. 38

RCA INSTITUTES, INC.
A Division of the Radio Corporation of America
350 WEST 4TH STREET
NEW YORK 14, N. Y.

FREE BOOK

Short-Cut to Speed

In 100 Lessons

FREE BOOK

Handbook of Electrical and Electronic Engineering

Free Guide to 1000 Radio, Television, and Household Appliances

FREE BOOK

Complete Correspondence Courses in Radio and Electrical Engineering

RCA INTERMEDIATE COURSE

Write for Details

CHANGE OF ADDRESS?

Please give 2 months' notice. Address changes must be accompanied by old address.

American Radio Institute

101 West 63rd St.
New York 23, New York

AMERICAN RADIO INSTITUTE

Approved Under G.I. Bill of Rights
Licensed by New York State

WANTS SERVICE LICENSES

Dear Editor:

Federal licensing of radio servicing technicians would have the following beneficial results:

1. Give the serviceman new prestige and promote public confidence in him.

2. Eliminate the incompetents who give the trade a bad name and destroy confidence in servicemen.

3. Give the federal government a bona fide roster of qualified servicemen which would be useful in the event of war.

4. Restrict the entrance of unqualified newcomers. The amateur, tinkered, and radio school product would be forced to serve a suitable apprenticeship instead of depressing wage levels through cheap competition with the higher priced but more competent individual.

5. Benefit the public through better, more competent servicing of radio receivers.

6. Attract better men to the trade through better conditions.

Organization has been tried in the past and has not worked because of the lack of a common interest or bond. Federal licensing would go a long way toward assuring a common interest in servicing, both in getting and renewing such licenses. The development of a national organization would put power in the hands of the servicemen to fight unethical conduct as well as incompetence in the industry. Such an organization would be stimulated by federal licensing and help improve both knowledge and working conditions.

William R. Moody,
Service Manager, Sanhour Co.,
Washington, D. C.

RADIO and TELEVISION

Through Training in All Fields of Technical Phases

APPROVED FOR VETERANS

B.CA GRADUATES ARE IN DEMAND

For Free Catalog Write Dept. R.C. 38

RCA INSTITUTES, INC.
A Division of the Radio Corporation of America
350 WEST 4TH STREET
NEW YORK 14, N. Y.

FREE BOOK

Short-Cut to Speed

In 100 Lessons

FREE BOOK

Handbook of Electrical and Electronic Engineering

Free Guide to 1000 Radio, Television, and Household Appliances

FREE BOOK

Complete Correspondence Courses in Radio and Electrical Engineering

RCA INTERMEDIATE COURSE

Write for Details

CHANGE OF ADDRESS?

Please give 2 months' notice. Address changes must be accompanied by old address.

American Radio Institute

101 West 63rd St.
New York 23, New York

AMERICAN RADIO INSTITUTE

Approved Under G.I. Bill of Rights
Licensed by New York State

MORT'S—For Better Buys

HF10 TRUSOUND AMPLIFIER.

The HF 10 amplifier is a general purpose unit of small size (6" x 9" x 7") designed for hi-fi quality or short wave listening. Simple and direct, it has been built to give performance to match the quality of your equipment. It will handle the majority of tubes and will tune to your system.

FEATURES

1. 10 watts undistorted output power output 18 watts peak.

2. Outputs: High Gain for variable power level with high impedance input. Low Gain for high fidelity listening.

3. Gain switch for both "hi-fi" and "stereo".

4. Tuner switch for switch band frequency.

5. Hum level 70 db below 50 watts.

6. Linearity: Square of gain characteristics.

7. Treble-30% plus 150 db minus 15 db at 10,000 cps.

8. Base-from plus 10 db to minus 15 db at 500 cps.

9. Gain characteristics obtained with controls centered.

10. Output impedance 2, 4, 8, 16 and 800 ohms.

11. Straight AC for 110-1100V 50-60 cycle fused.

12. Tubes—587T, 656T, 6V6, 579T.

13. Chassis and speaker wires silver hammerhead finish.

$29.95

METAL CAN AEROVOX REPLACEMENT FILTER CONDITIONER

Replaces S x X of 600 wattaging only. 120 volt test voltage.

Each $2.90—10 for $21.75

2 TUBE WIRELESS PHONO OSCILLATOR

This line of equipment is being sold at almost the price of old types and is built with quantity lasts. Each...$3.25

Write for our new FREE 1946 catalog.

TERMS: Minimum Order $3.90, 25% deposit.

MORT'S RADIO SHACK

Dept. RC 1, 630 West Randolph Street
Chicago 6, Illinois

FREE! send for our

Radio Buying Guide

GUIDE TO EQUIPMENT, access to a distributor

For free mailing list and price of your guide, see PHONO scTAT.

24 HOUR SERVICE ON ALL ORDERS

FREE technical advice service!

JUST MAIL THIS COUPON TO GET YOUR CATALOGUE

Newark Electric Co., Inc., Dept. M
242 West 55th St., New York 19

Please send me the FREE Newark Buying Guide to fine radio equipment.

Name

Address

City State

Radio - Television - Electronic Parts & Equipment Specials

TELEVISION-CATHODE RAY HIGH VOLTAGE

2000 volt F.C. Power Supply

For an unbelievably low price, we can supply you with our newly designed anode ray 2000 volt D.C. power supply. Why bother with bulky and dangerous 60 cycle supplies, when you can purchase a complete 2000 volt D.C. unit (not a kit) ready to plug into the 200 volt A.C. power line. The ridiculously low price has been made possible by a thorough search of the high quality components. These units are brand new, completely tested and guaranteed.

Price $7.95

4000-6000 VOLT TELEVISION SUPPLY

Similar to the unit above, but has a much higher D.C. output, voltage suitable for use with the new 7" and 10" television tubes.

Price $12.50

RADIO NOISE FILTERS

Eliminates extremely noisy radio reception due to power line disturbances caused by lights, refrigerators, washing machines, vacuum cleaners, elevators, all home electrical equipment, etc.

Filters out man-made noises in the broadcast. Shortens life of ultra-high frequency valves.

Designed for all radios, appliances, and electrical equipment consuming up to 20 watts (12 amperes) at 120 volts AC or DC.

Uses in a metal case 1 2 x 1 2 x 1 2 inches complete with mate and female line connector.

Price only $1.95

Industrial Type Noise Filter—Will handle up to 50 amperes. Housing: Plastic case 3 2 x 3 2 x 3 2 inches.

Price $3.95

EASILY ASSEMBLED RADIO KITS

5 Tube AC-DC superhet kit furnished in a brown plastic cabinet of artistic design, cabinet size (6 1/2 x 4 x 5 1/2). Complete kit.

Variable condenser tuned; with 2 double tuned F.C. tubes.

Tubes used: 1 12AS7, 1 12SQ7, 1 12BNK, 1 356 and 1 356B. Glass. Price $11.95

6 TUBE 3 WAY PORTABLE KIT

異なる三つの放送用アンテナ

SPECIAL KIT

3 Tubes (6146, 6147, 6148) for broadcast, Industrial Type, Price $13.75

TUBE AND F.C. TUNER KIT

Price $2.95

EVEN MORE TUBES

6 TUBE 3 WAY PORTABLE KIT

Price $15.75

A SCIENTIFICALLY DESIGNED PHONO SCRATCH FILTER

Resembles a practically 5000 cycles effectively eliminating objectionable chatter without affecting the brilliancy of reproduction.

Contains a hi-fi series resonated circuit. Test the device in a radio store or on the phonograph. In 20 db attenuation with very little signal loss. Very effective in improving output by means of a SPECIAL MINIATURE gain control, EASY TO ATTACH. Just two wires to clip on, Connect. Price...

THREE TUBE PHONO AMPLIFIER

An ensemble unit ready for installation units tune phonographs or phono heads, with complete 5000 cycles. Price...

PHONO OSCILLATOR

Wireless phono oscillator transmits records for casual-listen or voice from record radio without wires. Can also be used as an information F.C. supply or for testing tubes. Price...

SPECIAL! SPECIAL!

Mammoth assortment of radio and electronic parts not less than 800 advertised, and the new UNIBUS transformers, chokes, condensers, resistors, valves, coils, wire, radio hardware, etc., all for the new buy for experimenters, service men, and amateurs.

Price...

Satisfaction guaranteed on all merchandise. All prices F.O.B. New York City.

For Free Catalog Write for Prices

RADIO DEALERS SUPPLY CO.
135 Liberty St.
New York, N. Y.
RADIO SCHOOL DIRECTORY

Become a Radio and
TELEVISION
TECHNICIAN

IN 18 MONTHS!

Here is the opportunity you have been waiting for. Now you can get in on the ground floor of the nation's fastest growing industry—TELEVISION.

LOOK AT THIS RECORD — In 1946 only 6,500 television sets were manufactured — in 1947 this skyrocketed to 175,000 — already in the first four months of 1948 over 160,000 sets have been produced. This means hundreds of new jobs are being created every month.

MILWAUKEE SCHOOL OF ENGINEERING — The Milwaukee School of Engineering now provides complete, practical, technical training in television as well as Radio in its laboratories. This is not just a serviceman's course. The special 18 month's residence course includes complete training in radio as well as television — qualifies you for a successful career as a technician in all phases, AM, FM, TV Receivers and Transmitters and Radio Communications.

This Technician Course Prepares You For Any Of These Jobs:
Radio Servicing — AM and FM TV receiver servicing
Broadcast Station Operating
Electronic Parts Sales
Radio and TV sales
Radio and TV manufacturing
Shop managing

Electrical Engineering
Bachelor of Science Degree
in 2 additional years
Majoring in ELECTRONICS

MILWAUKEE SCHOOL OF ENGINEERING
“A Technical Institute—Founded 1852”
Dept. RC/148 N. Broadway, Milwaukee, Wis.

LEARN RADIO!

IN ONLY 10 MONTHS
PREPARE FOR A GOOD JOB!
COMMERCIAL OPERATOR (CODE)
BROADCAST ENGINEER
RADIO SERVICEMAN

Television Servicing—15 Months
Veterans get $150.00 Equipment
SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 East Three, Dept. C, Baltimore 17, Md.

Radio Engineering Program
Complete Radio Engineering Course, Bachelor of Science Degree, Courses also in Civil, Electrical, Mechanical, Chemical, Aeronautical Engineering: Business Administration, Accounting, Secretarial Science. Graduates successful, 65th year. Enter Sept., Jan., March, June. Write for catalog.

TRI-STATE COLLEGE
24410 College Ave., ANGOLA, INDIANA

LEARN then EARN in RADIO

COURSES OFFERED IN
Broadcast Engineering
Commercial Oper. (Code)
Frequency Modulation
Television
Announcing

100% PLACEMENT SERVICE
APPROVED FOR VETERANS
WRITE FOR FREE BULLETIN

Cook's Radio School
DEPT. RC
2933 NORTH STATE ST.
JACKSON, MISSISSIPPI

TELEVISION 1948!!

Train at an institute that pioneered in TELEVISION TRAINING since 1918. Morning, Afternoon or Evening Sessions in laboratories and theoretical instruction, under guidance of experts, covering all phases of Radio, Frequency Modulation, Television, lead to opportunities in Industry, Broadcasting or own Business. Licensed by N. Y. State. Approved for Veterans. ENROLL NOW FOR NEW CLASSES

RADIO-TELEVISION INSTITUTE
480 Lexington Ave., N. Y. 17 (44th St.)
Place 3-4565 2 blocks from Grand Central

WANTED:
Men and Women to Fill
TOP RADIO JOBS
in AM—FM—Television

If you are looking for a career with a future, why not join the hundreds of Graduates from the Don Martin School of Radio Arts now successfully employed in the radio industry. Demand is acute for qualified radio personnel in AM-FM-Television. Training new to radio, former jockey, former policeman, former radio technician. Complete day and night classes at low academic prices. Approved for Veterans. Write for free booklet.

Don Martin School of Radio Arts
1635 North Cherokee St. Hollywood 28, Calif.

RADIO COURSES
Preparatory, Service, Broadcast, Television, Marine Operating, Aerial Acoustical, Frequency Modulation, Radar.
Classes now forming for mid-year term Feb. 1st Entrance exam. Jan. 17
Veterans' Literature.

COMMERCIAL RADIO INSTITUTE
(Founded 1928)
30 West Broad St., Baltimore 1, Md.

RADIO COURSES
Radio Operating & Code
Radio Servicing & Electronics
FM Television

Refrigeration Servicing
Write for Catalog and Picture Brochure
Y.M.C.A. TRADE & TECHNICAL SCHOOLS
15 W. 63rd St. (6th Blvd) New York City

ELECTRONICS for
FM INTERFERENCE

Dear Editor:

I have just read Mr. Zaratturo's letter in the August issue and want to suggest to him and others that the solution to the automobile interference problem seems to be either spark-plug suppressors or the new resistor spark plugs (see the September issue, page 86).

Also, I would like to advise fellow readers to beware of induction-type suppressors. They are likely to arc between turns of the coil, which consists of fine wire scramble-wound. The arcing makes matters worse.

R. J. FIEDLER
Baltimore, Md.

SUPPRESSORS STOP NOISE

Dear Editor:

I read with interest Mr. Zaratturo's letter in the August issue on ignition interference on FM. He is certainly right. Many listeners in suburbs or rural areas are plagued by the noise of cars going by right in the middle of an FM program.

However, I have found that cars with proper suppression will not cause this racket. A simple distributor resistor of 10,000 or 15,000 ohms will do wonders, as will resistor spark plugs.

An active campaign is necessary to get car owners to install these simple but effective suppressors. Would it be possible to get the FCC to do something? If an amateur causes interference, we get no trouble. Isn't a spark plug really a little transmitter?

CHARLES C. BOHINKE
Los Gatos, Calif.

ADVISES GOOD ANTenna

Dear Editor:

I do not see why Mr. Zaratturo should be so troubled by ignition noises. Perhaps either his receiver or antenna is not adequate.

I am located in an area with high ignition noise. With an ordinary dipole on the roof, enough noise was present to make an annoying clatter and mar the otherwise perfect reception from my Pilotuner. When I installed a double dipole with reflectors, the annoyance decreased until it is barely noticeable on even weak stations. I believe that additional antenna gain will solve the problem entirely. A friend tried the same cure with similar good results.

WILLIAM BANDES, JR.
Newspack, Pa.

NOISE TOO MUCH FOR HIM

Dear Editor:

I agree with Mr. Zaratturo's letter (Communications, August, 1948, page 22) that barometric induction systems ruin FM. I have two FM sets, an 11-tube RCA 71V3 and a Pilotuner, both using folded dipoles with reflectors located 50 to 100 feet from the street. When the traffic is heavy, I have had to turn off FM stations entirely to programs on AM to avoid ignition noise.

PHILIP J. BRASSINGTON
Easton, Pa.

NOVEMBER, 1948

FACTORY SPEAKER REPAIRS

Since 1927

LEOTONE

165-67 Dutch St, New York 7, N. Y.

VORth 2-0284

INTERNATIONAL RESISTANCE CO.

401 N. Broad St., Phila. 8, Penna.

In Canada: International Resistance Co., Ltd.
Toronto, Licensee

THIS SIMPLE BENCH TEST

proves you're right

Remove the cover from an IRC control, and from any other reputable control. You'll immediately see the superior IRC construction. Features that insure long dependable performance. Point by point, compare IRC's design to that of any other control and you'll know you're right when you ask for IRC!

Notice—the terminals are riveted assuring positive electrical contact. Glied "5-finger" contactor provides smooth graduation of volume. Silent Spiral Spring connector eliminates principal source of control noise. Resistance material bonded to bakelite base gives an even, long wearing wear.

ALL METAL CABINET

Add time-saving convenience to the other features of IRC controls by buying a practical stock in this hand-some all-metal cabinet. With this minimum investment of 18 Type D Controls plus switches and special shafts, the sturdy cabinet is furnished at no extra charge. You pay only the standard net price of the merchandise. Fast moving control stock in this IRC cabinet services 90% of the Howard Sans RED BOOK listings.
SUPER VALUES from MID-AMERICA!

Stromberg-Carlson DYNATENNA

This famous make FM antenna has been advertised and sold for many times the low price MID-AMERICA asks! Covers both FM bands. Deliver FM reception at its best. Complete with 68 ft. of 300-ohm twin lead-in. Line is standard approved flar-type, solid dielectric with weather-resistant insulation. Mounts anywhere vertically or horizontally to match polarization of transmitting station. Illustrated instructions and all necessary hardware. A screwdriver is only tool needed for assembly. Dynatenna is weather-proof, all aluminum, will withstand every weather.

$4.95 each
44¢ each in lots of 1

PERMEABILITY TUNER

Build a really HOT for 6-meter AC, DC together receiver! Takes place of old-style gang condensers of and antenna roll: resonates AX, KC intermediate frequency. Complete with permeability tuned-exciter coil. 4' X 4'. X 2' X 2'. Complete with diagrams for building 6 and 4 tube sets.

Order MA-2169 Loop Amelora $24.0

SPECIAL AUDIO TRANSFORMERS

Exceptionally high-quality audio transformers for up to 12 speakers. Rated at 12 watt. Matches any single, push-pull or parallel tube to 6-ohm when voltage doubled. Complete with binding posts. MA-1205 $17.19

Heavy Duty Noise Filters

Rated on 10 amp, 15 volt AC. Measures only 5/8" square. Install right in amplifiers, receivers and other equipment where line noises must be kept to a minimum. Not commercially known unit. MA-2164 $79¢

SPEAKER SPECIALS

All with Heavy ALNICO 5 Slugs

3½" PM MA-2062...$1.39 4½" oval PM MA-2107...$1.29
5" PM MA-2071...$1.39 6" PM MA-2108...$1.95

ORDER FROM THIS AD!

Quantities are limited, so get your order in now! Minimum order is 5. All orders should be prepaid. Dollar orders get on MID-AMERICA’s mailing list to receive BIG BARGAIN BULLETINS that hit latest, greatest items in radio, electronics, electronic equipment. Send orders to Dusty Ed., MID-AMERICA CO. INC., 2412 S. Michigan Avenue, Chicago 16, Ill.

NOW! CASH IN on TELEVISION

FM and TELEVISION SWEEP SIGNAL GENERATOR $34.95

A must for progressive service shops—a buy at this exceptionally low price! Accurate!—Aligns FM and television receivers. Frequency change 227 MHz. Output modulated or unmodulated, high frequency insulation throughout, built-in power line filter and special Milline capacitance tuning condenser. Easy to operate—use it to adjust to new TV channels. At only. Exceptional opportunity to purchase instrument of this kind direct from manufacturer at a tremendous saving!

WIRE RECORDER and RECORD PLAYER $109.00

Complete with 2 spools of wire cards for radio recording and microphones.

For Pleasure or Profit

Simply press a button and begin recording—anything you can hear, it will record and play back! You can make a permanent record, or with the money-saving "eraser" device use the same wire again and again. ALSO: a TUNING TABLE that plays standard 10 and 12" discs! It's a 3-in-1 machine—and simply itself to operate! Microphone has table attachment—lets you record programs without use of microphones—gets improved quality. Operates on AC. Beautiful luggage-type carrying case. Size: 9½" x 17½" x 14½".

All Items Backed by EGA with RMA Guarantee

Enclosed find check (or money order) □ in full □ 20% deposit, bal. COD for the following:

Send me FREE EGA Bulletin
EGG Sig. Generator $14.95
Wire Recorder $16.95

Name
Address
City
State
Zoo

ELECTRONIC CORP. OF AMERICA
353 W. 48th St.
New York 19, N.Y.

Communications

WHAT’S IN A NAME

Dear Editor:

I shall continue to buy RADIO-CRAFT no matter what the name or cover. I buy it just as it is inside.

The name "Radio-Craft" does not cover the entire contents of the magazine, but no title will, unless you put the whole table of contents on the front cover, like the digest magazines.

Old readers, too, will stick with the magazine regardless of the title. But don’t forget to leave some "craft" in the contents for the boys who are just coming into radio. They would never get started with television and u.h.f. in the beginning. Many people like to read about the new and up-to-the-minute gear, even though they don’t expect it to own it.

Don’t change the inside of the magazine! It’s good as it is.

J. W. BELL,
Countryside, Pa.

LIKES NEW FORMAT

Dear Editor:

I wish to commend you for the many improvements in the magazine in the past months. Reading it has always been an interesting, educational experience; however, your new format and the consolidation of each article into one continuous unit have made reading a genuine pleasure. Further, your expanded coverage of the entire radio-electronics field makes RADIO-ELECTRONICS a factual journal of the entire electronics industry.

K. E. FORSBERG,
Sauk Centre, Minn.

CARS ARE TRANSMITTERS

Dear Editor:

Mr. Zarattaro sure spoke a parable in his letter on page 82 of the August issue.

I have a G-E XFM-1 receiver, with antenna 20 feet high located 90 feet from a highway and parallel thereto. A passing truck can be heard from the time it gets within 400 feet until it is the same distance in the opposite direction. At a speed of 30 miles per hour that takes about 20 seconds. This interference is certainly the bane of F.M. reception.

Cars equipped with radios have spark suppressors that render them perfectly quiet. This suggests the only angle from which this problem can be tackled. The law should require that all cars be equipped with spark suppressors and subject them to inspection the same as brakes and lights.

Even with the laws as they are now, I don’t see why the FCC can’t arrest and fine truck drivers or owners for transmitting without a license and causing intolerable interference.

F.M. has come to stay. Ignition noise must go!

FREDERICK E. WARD,
Cotamnet, Mass.
MUST VACATE

WAREHOUSE — ALL PRICES REDUCED FOR CLEARANCE

HRU DC POWER SUPPLY
24-28 V. at 70 amp. 2000 watts gasoline engine generator with electric starter. Power supply which can be used to operate 24-28 V. equipment, start airplane engines, charge batteries, as a welding machine, lighting system of your radio station. 21 1/2" x 17 1/2" x 24 1/4". Weight 115 lbs. 89.50

REMOTE CONTROLLED COIN INSERT & SPEAKER BOX
Made by Personal Music Corp., Newark, N. J.

Model F
24 Volt operated, fused Weight 6 1/2 lbs.
Size 4 1/2 x 7 1/2 x 3 1/2" high
Sloping front PM Speaker 3" size
Has 2 Pilot Lights for illumination
Finished in chrome metal and grill with red plastic
Accepts 1 to 6 nickels
Each 5c coin gives about two phono records of music
Should be mounted on flat base
Has Haydon Mfg. Co. timer
Lock installed in top (with key)
Easily removable coin box, size 6 x 4 x 1 3/4"
Requires 4 wires from power unit
A beautiful piece of equipment that could be built to house coin operated radio

Want several times our asking price.
Price brand new 4.95

ULTRA-VIOLET FLUORESCENT COCKPIT LIGHT ASSEMBLY
Air Corps type C-5. 28 V. DC operated Black plastic case about 1 1/2" dia. x 3 1/2" long. Has adjustable mounting flange. 3 foot two conductor shielded cord and plug includes bulb. Brand new 1.00 ea.

CO-AXIAL CABLE VALUES
Co-axial cable values that we can only offer to customers who buy minimum of 100 foot per type.

RG-8/U cable 52 ohms impedance (unmarked) 2.95 per 100 ft.
RG-8/U cable 52 ohms impedance (marked) 3.95 per 100 ft.
RG-29/U Co-axial 53.5 ohms impedance (marked) 3.95 per 100 ft.

Telephone LINCOLN 8328

TELEVISION STATION LIST

<table>
<thead>
<tr>
<th>City</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Lake City, Utah</td>
<td>4</td>
</tr>
<tr>
<td>St. Paul, Minn.</td>
<td>7</td>
</tr>
<tr>
<td>Los Angeles, Calif.</td>
<td>4</td>
</tr>
<tr>
<td>Los Angeles, Calif.</td>
<td>7</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>13</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>4</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>6</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>13</td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td>6</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>5</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>2</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td>5</td>
</tr>
<tr>
<td>Baltimore, Md.</td>
<td>13</td>
</tr>
<tr>
<td>Boston, Mass.</td>
<td>10</td>
</tr>
<tr>
<td>Richmond, Va.</td>
<td>6</td>
</tr>
</tbody>
</table>

FIVE HUNDRED FORMULAS TO SUCCESS

Many millions of dollars are spent every year on excursions, compounding, dilution, and miscellaneous ingredients in a formula. As the result, many millions are lost by those who spend money on their "favorite" formula.

Sometimes the wrong ingredients are used in the wrong proportions or the wrong temperature. Sometimes a formula is made to order by one man and has no way of being duplicated by another. Sometimes the same formula is made in an effort to produce a similar result. Sometimes the formula is not used at all because the wrong ingredients are used or the wrong temperature is not maintained.

There are many ways to make a profit on a formula. One way is to start a business with a few ingredients, and when the business is successful, to make more money on the same ingredients. Another way is to make more money on the same ingredients by selling more of them to the same people. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price.

There are many ways to make a profit on a formula. One way is to start a business with a few ingredients, and when the business is successful, to make more money on the same ingredients. Another way is to make more money on the same ingredients by selling more of them to the same people. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price.

There are many ways to make a profit on a formula. One way is to start a business with a few ingredients, and when the business is successful, to make more money on the same ingredients. Another way is to make more money on the same ingredients by selling more of them to the same people. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price. Another way is to make more money on the same ingredients by selling more of them to the same people at a higher price.

NATIONAL PLAINS COMPANY

P. O. BOX 368, STATION N. NEW YORK 23, N. Y.
Presenting 3 Great New "Elmco" Amplifiers!

MODEL A-100
3 Watt AC Phono Amplifier Complete with Tubes, On-Off Switch, 6.5" Hacard, built-in Output Transformer, Phone-Jack.

$18.75
List

MODEL A-101
5 Watt AC Phono Amplifier Complete with Tubes, On-Off Switch, 6.5" Hacard, built-in Output transformers, Mic. and Phone Jacks. Microphone and Phonograph channels can be intermixed.

$20.42
List

MODEL A-102
8 Watt AC Microphone and Phone Amplifier. Built-in a Impedance Output Transformer, Mic. and Phone Jack, Hum Level at Normal Output: <8db. Frequency: 50 to 10,000 c.p.s.

$28.65
List

Prices slightly higher West of the Rockies.

Each unit packed in individual cartons with instructions sheets and circuit diagram.

Elmhurst Sound Equipment Co.
Hollywood 28, California

GET ON THE BANDWAGON!
NATIONALLY ADVERTISED TUBES
40% OR MORE OFF. INDIVIDUALLY BOXED.

DO YOU USE 9-1/2" TUBES?

WRITE FOR OUR "TUBES READY" STOCK." WRIGLEY.

DON'T BUY A MAGNETIC TAPE RECORDER
UNTIL

AMPLIFIER CORP. OF AMERICA
398-10 Broadway New York 13, N. Y.

TALK ANYWHERE INSTANTLY TO ANYONE WITH INTER-TALK! Just plug both ends of Inter-Talk phone cord into your phone jack and Inter-Talk phone jack on your amplifier. No batteries, No trouble! Only 50¢ each.

Radio-Electronics for

Choice Territories still available to Mfg. Representatives. Write for complete details.

Dealer inquiries invited. Write for free catalog.

The "ELMCO" Amplifiers are designed for highest quality reproduction of sound, music, and speech. These amplifiers used in conjunction with your suitute accessories will give the user the most gratifying results. They have been engineered to meet exacting requirements for High Fidelity pick-ups, FM, AM, Tuners and Mikes.

The "ELMCO" Amplifiers are designed for highest quality reproduction of sound, music, and speech. These amplifiers used in conjunction with your suitute accessories will give the user the most gratifying results. They have been engineered to meet exacting requirements for High Fidelity pick-ups, FM, AM, Tuners and Mikes.

50-23 79th Street
Elmhurst, N. Y.
<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON, ENGLAND</td>
<td>258.0 to 302.00</td>
</tr>
<tr>
<td>COPENHAGEN, DENMARK</td>
<td>2060 to 2340</td>
</tr>
<tr>
<td>PARIS, FRANCE</td>
<td>2060 to 2340</td>
</tr>
<tr>
<td>BANGKOK, THAILAND</td>
<td>2060 to 2340</td>
</tr>
<tr>
<td>GUIADARUPO, SPAIN</td>
<td>2060 to 2340</td>
</tr>
<tr>
<td>ISTANBUL, TURKEY</td>
<td>2060 to 2340</td>
</tr>
</tbody>
</table>

NEW HOME ORGAN COMPANY

The Model 40 Utility Tester comes housed in a rugged traffic-colored steel cabinet with weather cover, carrying instructions—only $15.75

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency (MHz)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2300</td>
<td>$15.75</td>
<td></td>
</tr>
<tr>
<td>2580</td>
<td>$15.75</td>
<td></td>
</tr>
<tr>
<td>3020</td>
<td>$15.75</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL CO.

General Electronic Distributing Co., 90 Park Place, Dept. R.C., New York 7, N.Y.

OIL-FILLED CONDENSERS

<table>
<thead>
<tr>
<th>Make</th>
<th>MFD</th>
<th>VAC</th>
<th>MAX.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROMATIC</td>
<td>50</td>
<td>150</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>STETHOSCOPE</td>
<td>50</td>
<td>150</td>
<td>300</td>
<td>50</td>
</tr>
</tbody>
</table>

TRANSMITTING MICA

<table>
<thead>
<tr>
<th>Type</th>
<th>Resistance</th>
<th>Wattage</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075</td>
<td>35</td>
<td>10</td>
<td>1/8</td>
</tr>
<tr>
<td>1075</td>
<td>35</td>
<td>10</td>
<td>1/8</td>
</tr>
<tr>
<td>1075</td>
<td>35</td>
<td>10</td>
<td>1/8</td>
</tr>
</tbody>
</table>

TUBE-CHOKES-POTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075</td>
<td>35</td>
<td>Tube-35K Metal</td>
</tr>
</tbody>
</table>

SHELFED WIRE #22 to 50 Ft.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>35KV 50K</td>
<td>$15.75</td>
</tr>
<tr>
<td>60KV 50K</td>
<td>$15.75</td>
</tr>
<tr>
<td>60KV 50K</td>
<td>$15.75</td>
</tr>
</tbody>
</table>

SHEETING

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075</td>
<td>Tube-35KV</td>
<td>$15.75</td>
</tr>
<tr>
<td>1075</td>
<td>Tube-35KV</td>
<td>$15.75</td>
</tr>
<tr>
<td>1075</td>
<td>Tube-35KV</td>
<td>$15.75</td>
</tr>
</tbody>
</table>

TECHNICAL RADIO PARTS CO.

265 Greenwich St., Dept. RC-6, N.Y. 7, N.Y.
RADIO- ELECTRONICS
DEPT. RC-19 497 UNION AVE. BROOKLYN 11, N. Y.

YOU DON'T HAVE TO
GRUNT & SWEAR & SWEAT
when installing Wright Verified Speakers
with the new
Adjustable Mounting Bracket
They fit on like an old shoe

Write for literature and name of nearest
distributor
WRIGHT
Inc.
2234 University Ave. St Paul 4, Minn.

Get Started in Radio
10 "HOW-TO-DO-IT" BOOKS
Get a solid foundation in radio—open a world of pleasure and income. Send $1.00 today to 5A West B-way, New York (2) for "How to Build Your First Radio Station." You'll be amazed at the wealth of fascinating information packed into these books. Send for your free copy today.

5 BOOKS FOR 50c
10 BOOKS FOR $1.00
Sent to You Postpaid

NATIONAL OFFICE: 5A West B-way, New York

RADIO PUBLICATIONS

World-Wide Station List

By ELMER R. FULLER

HCJB in Quito, Ecuador, known the world over as the "Voice of the Andes" is heard on 12,500 mc in English from 0630 to 0800; 1700 to 1800; and 2100 to 2400. Programs in other languages, 16 in all, are broadcast at other times; and other frequencies in the band 6200 and 15,160 mc. HCJB was first organized in 1931 and now has six transmitters, both long and short wave. The languages used include Spanish, English, French, German, Portuguese, Russian, Italian, Dutch, Swedish, Yiddish, Greek, Lithuanian, Bohemian, Latvian, Czech, Arabic, Urdu, and Quechua. It is also known as the pioneer missionary radio station, and is supported entirely by contributions from its listeners. The signals are among the strongest received in this country, and are very consistently heard. The station is always silent on Mondays.

The BBC is now being beamed to North America on 11,800 mc from 0000 to 0900; on 21,550 mc from 0000 to 1600; and on 15,110 mc from 1400 to 1915. Also on 11,800 from 1615 to 2215 and on 9,850 mc from 1930 to 2215 hours. All times are Eastern Standard.

Advice has been received from the manager of the "Voice of Guiana," ZFY, stating that the station may be heard on Sundays from 0545 to 1145 and 1445 to 1945 hours; and on Wednesdays from 0545 to 0745; 0945 to 1145; and 1445 to 1945 hours. The frequency is 6,000 megacycles. This is the pioneer broadcasting station in the British West Indies and started operation in 1935. At present they carry commercially sponsored programs and soon will have a station operating in the standard broadcast band. Their signals are heard well in the Guianas, Trinidad, Grenada, and Barbados.

It can be expected that several of the schedules will be changed when the clocks are returned to standard time, but most of them will remain as they have been published. A major change will probably be made in the U. S. schedules and it can generally be figured that all schedules will be moved one hour.

International schedules are never as much affected as those of the stations which broadcast for local consumption, of course. Remember that this list is always in Eastern Standard Time, and will remain so until and unless the majority of our shortwave listeners prefer another system. Please consider this until new schedules are printed, which will be in the January issue.

Next month we again print an FM Station List, complete in every way. Many new stations have appeared since our last list was printed in the September issue, so owners of FM receivers will find the new edition very useful.

RADIO-ELECTRONICS for
CAPACITOR DROPS VOLTAGE

When the filament-dropping resistor in a transformerless receiver burns out or when a new set is being built, a capacitor can be used instead of the resistor to drop line voltage to a suitable value for the filaments. To calculate the value of the capacitor use the formula

$$C = \frac{2650}{\sqrt{120 - 25.2}} \cdot \frac{1}{15} = 3.4 \mu F \text{ approx.}$$

Where the line is 50 cycles, substitute 3,180 for the 2,650 above in the equation; for 25 cycles use 6,360. The answer in each case will be in microfarads.

Otto von Guérke,
Wiesen, Switzerland

CORRECTIONS

In the diagram of the Six-Tube Dry-Cell Superhet, page 51 of the August, 1948, issue of this magazine, the tuning condensers of the r.f. and mixer stages are shown connected to the a.c. line through 220,000-ohm decoupling resistors. The rotors of the condensers should be grounded to the chassis and the bottom ends of the secondary coils connected to the a.c. decoupling resistors. Connections between the resistors and coils should be bypassed to ground with 01-uF condensers.

TELEVISION ASSEMBLY

PROJECTION TELEVISION

520 Sq. Inches... 20 x 26" Screen

BY TELEVISION ASSEMBLY COMPANY
Complete with All Parts Hood and Rack

37 R.C.A. TUBES
Dumont Inputuner
12" P.M. Speaker

Pre-wired & Pre-tuned Picture I.F. & Sound I.F.
Pre-wired 30 KV Trippler Fly Back Power Supply
Eastman Kodak Projection Screen
Aluminum Coated Top Mirror
Bausch & Lomb f:1.9 Projection Lens

EXPRESSLY DESIGNED
Metal Rack, Hood and Picture Frame

For realism, clarity, definition and BIG SCREEN Televiewing, the pictures produced by this unit have no equal!

This screen is absolutely flat, precluding curvature distortion anywhere in the picture. Picture tones are true black, grey and white—high in brilliance, yet absolutely glare-free!

MANUAL OF INSTRUCTIONS AND SCHEMATIC DATA

Prepared and Edited by
JOHN F. RIDER PUBLISHER, INC.

YOUR LOCAL NATIONAL PARTS DISTRIBUTOR

ALMO

Cocera C Globe
509 Arch St., Phila., Penn.

PHONE
Lombard 3-9225

INSTRUCTIONS AND SPECIFICATIONS

Send us your name to receive FREE Almo Broadcasters magazine.

BRAND NEW SURPLUS! GUARANTEED!

3/4 RPM, HI-TORQUE ELECTRIC MOTOR

$2.85

G.O.T.'S. COST: $1.60

- Operates on 110V AC or DC—50-cycles
- (Available only in 2 MFD capacitor.)
- Reversible—No Free Swiss Quiet
- With Full Instructions

SEND NO MONEY
J ust your name and address on Postcard

FREE OFFER OF COMPLETE MONEY MAKING SUCCESS PLAN

We show you how to start—how to get orders—how to train others. Send for your free copy of "Warner Success Plan". Your home is your headquarters. It costs nothing—now or ever. Don't wait. Send name and address on postcard today to Ehr Brandt, Staff Warner Electric Co., 1823 Jarvis Avenue, Dept. 2211, Chicago 26, Illinois

TV INTERFERENCE TO GO?

TV interference caused by automobile engines will be reduced in the future, according to a statement made last month by P. J. Kent, chief engineer of the electrical division of the Chrysler Corporation. Some of the new cars coming off the assembly lines have had changes built into their electrical systems which reduce the interfering radiation. Results are good, he said.
NEW G.E. WATTHOUR METER

(Continued from page 85)

effect, a push on one side of the disc without a correspondingly great pull on the other. This tends to thrust the entire shaft to one side or the other. Side-thrust will be slight if the two concentric magnets in the bearing system are not perfectly aligned.

Stainless steel guide pins are fastened to the inside of the fixed cavity to keep the moving system in line. These extend down into the rotating cylinder through a graphite washer. Any displacement caused by side-thrust would make the guide pin touch the washer. Placement of the damping magnets has been arranged so that there is minimum side thrust.

Since 1941 the magnetic suspension has been on accelerated-life tests, showing excellent stability during tests equivalent to 65 years of ordinary operation.

CORRECTION

The line cord resistor of the dual test instrument, page 40 of the March, 1948, issue, is shown as 300 ohms. The correct value for the tube shown is 550 ohms. If a dropping resistor is used, it should have a rating of 20 watts or more.

We thank Mr. David Gnessin of Columbus, Ohio, for this correction.
NEW G-E WATTHOUR METER
THE watthour meters used by electric power companies, to measure consumption have been developed to the point where maintenance needs are very small. However, since the rotating disc rests on bearings, friction eventually makes it necessary to replace the jeweled bearing. A new meter developed by the General Electric Company eliminates bearing friction by using magnetic suspension.

Fig. 1 shows the rotating disc and the magnetic-suspension system. The concentric outer and inner cylinders are magnetized axially, with opposite polarity, so that the resulting magnetic field supports the inner magnet with a slight downward displacement, which can be seen in the photograph. Thus the inner member hangs freely in air—a bearing truly without friction.

Fig. 2 is a detailed view of the upper cylinder and a cavity. The magnets are made of cunico, a highly coercive and easily machined material.

In the usual jewelled bearing, most of the weight of the rotating disc is supported by the lower bearing. The stress is on the order of 100 tons per square inch. With the new magnetic bearings, this pressure is eliminated.

There are, however, side-thrust forces that can cause wear. These are caused by the rotation of the disc and by the damping magnet, which is a part of the electrical metering system. When the disc is made to rotate as power is drawn through the meter, there is, in
THE NEW MODEL 247

TUBE TESTER

Checks outlets, louds, loudam jr. peanuts, television miniature, magic eye, hetero nickels, theratrons, the new type H.F. miniatures, etc.

Features:
- A newly designed element selector switch reduces the possibility of dislocation to an absolute minimum.
- When checking Diode, Triode and Pentode sections of multi-purpose tubes, sections can be tested individually. A special isolating circuit allows each section to be tested as if it were in a separate envelope.
- The Model 247 provides a super-sensitive method of checking for shorts and leakages up to 5 Megohms between any and all of the terminals.
- One of the most important improvements, we believe, is the fact that the 4 position fast-action snap switches are all numbered in exact accordance with the standard E.M.A. numbering system. Thus, if the element terminating in pin No. 7 of a tube is under test, button No. 7 is used for that test.

Model 247 comes complete with new speed-read chart. Comes housed in handsome, hand-rubbed oak cabinet shaped for bench use. A slip-on portable hinged cover is included for outside use. Size: 10½" x 6½" x 5½".

20¢ Deposit Required on All C.O.D. Orders

MOSS ELECTRONIC DISTRIBUTING CO.
DEPT. RC-11, 229 FULTON ST., NEW YORK 7, N. Y.

E.M.C.

Gives More Measurement Value per Dollar

E.M.C. MODEL 300

Vacuum Tube Volt-Ohm Capacity Meter
- DC VOLTS—6 ranges to 1000 volts.
- AC VOLTS—5 ranges to 1000 volts.
- RESISTANCE—6 ranges to 1000 meg- ohms.
- CAPACITY—4 ranges (0.00025 mfd to 20 mfd)
- Has Zero Center Position

Model 300, as illustrated

$39.50

(other models also available)

See the Model 300 at your Jobber
WRITE TODAY to Dept. B7, for new, FREE CATALOG

S M O O T H F M S E R V I C I N G

In V.H.F. ALIGNMENT

WANDS were a necessity back on the days of the old TV & other 500 mc equipment. Now everything is blinded by stages and alignment means intensity matching and fine tuning. RACING STABILITY a 514 problem. Thus was born "A Modern Shop" HAWKINS RADIO COMPANY

423 Broome St., New York 13, N. Y.

SPECIAL OFFER

$3.00 FOR CARTOON IDEAS

RADIO-CRAFT publication. Send in radio cartoons every month. Send in all you can. Send in enough to fill the space. Gifts will be given for best entries. It is not necessary that you draw a picture, unless you wish. Make it simple. All entries are payable on publication.

RADIO CARTOONS, RADIO-ELECTRONICS

52 West Broadway, New York 7, N. Y.

Miscellany

Radio Thirty-Five Years Ago
In Gernsback Publications

HUGO GERNSBACK

Founder

Modern Electronics 1900
Electrical Experimenter 1913
Radio News .. 1919
Science & Invention 1920
Radio Craft .. 1929
Short Wave Craft 1930
Wireless Association of America 1938

Some of the latter libraries in the country still have bound sets of ELECTRICAL EXPERIMENTER on file for interested readers.

In ELECTRICAL EXPERIMENTER
November, 1914

A Simply Made Loading Coil
by Stuart Sundreute

Crystal Detectors and Electrothermal Action
by Dr. W. II. Eccles

Making a High Wire Ammeter
by Dr. W. II. Eccles

Electronic Interrupters and how to use them
by H. Winfield Secor

U. S. Wireless Truck has 800-Mile Range

Wireless on Delivery Vans

ELECTRONIC LITERATURE

Any or all of these catalogs, bulletins, and periodicals are available to you if you write to us on your letterhead (do not use postcards) and request them by number. It is necessary to send only the number of the item you want. We will forward the request to the manufacturers, who in turn will send the literature directly to you. This offer void after six months.

11.1—FM AND ANTENNA DATA

A 16-page booklet of information on the Model 300 and Model 300 television FM antennas, issued by Tricraft Products Company. Illustrated with drawings, directivity patterns and performance charts on these antennas. Of interest to owners of FM and television sets.—Gratis

11.2—TRANSFORMER CATALOG

Catalog No. 1814, issued by Merit Coil and Transformer Corp., lists specifications and prices of transformers and chokes for replacement, amateur and electronic application.—Gratis

11.3—PLASTICS BULLETIN

Bulletin No. CDP-578 describes and illustrates the design, molding and molding facilities of the Chemical Department of General Electric. It lists applications and general properties of such materials as mycalex, silicone and other plastic materials.—Gratis to interested parties

11.4—WALSCO CATALOG

This 19-page catalog lists hardware tools, chemicals and finishing materials, made by Walter L. Schott Co., for use in assembling and servicing radio and electronic equipment.—Gratis

RADIO-ELECTRONICS for

www.americanradiohistory.com
former mutually repel each other. Hence the appearing divergence in a stream of electrified effluvia.

"But though the particles of electrical matter do repel each other, they are strongly attracted by all other matter..."

"Thus common matter is a kind of sponge to the electrical fluid."

"But in common matter there is (generally) as much of the electrical as it will contain within its substance. If more is added, it lies without upon the surface, and forms what we call an electrical atmosphere, and then the body is said to be electrified."

Dr. Millikan says, "The opening sentence contains the simple statement of an epoch-making discovery: 'The electrical matter consists of particles...'. After 200 years of research we cannot improve the content of Franklin's conclusion. Its obvious, axiomatic truth may stand forever, but perhaps at the end of another 200 years additional truths may give it a different aspect."

SAUNDERCISMS

Epigrams from a lecture on television delivered by Albert C. W. Saunders to the Associated Radio Servicemen of New York (City) at their meeting June 9, 1948.

"A serviceman's work consists of nine mental operations to every manual one." "Don't be too technical with the public—your customer doesn't care whether the dielectric has any specific inductive capacitance or not." "Amplification itself is cheap—it's broad-band amplification that costs money."

"Electricity is the fastest thing in the world—but it's the laziest."

CORRECTIONS

Data on the old Philco lakelile-case bypass condensers is found on page 11 of Volume II (2) of Rider's Manual instead of Volume 11 as reported in the Technote, Philco Condensers, on page 72 of the July issue.

We thank Mr. John Wohlrab of Buffalo, N. Y., for calling our attention to this error.

There is an error in the diagram of the Wobbulted Signal Generator on page 34 of the May 1948 issue. The plate of the 6J5 cathode follower is shown connected to ground. This should be connected to the B-plus line running from the No. 4 pin of the power input socket.

We thank Mr. Thomas B. Brook of Twin Bridges, Montana, for this correction.

DE FOREST BANQUET

Dr. Lee de Forest, Father of Radio, was tendered a special banquet at the Chicago Railroad Fair on his 75th birthday. It was spread jointly by the Morse Telegraphers Club of America and American Television Inc. The banquet was only one of a number of celebrations which marked the great inventor's birthday, the high light of them all being Dr. de Forest's coast-to-coast broadcast on the Mutual Broadcasting System network.

BUILD THE NEW MODEL TV-67 ALL CHANNEL TELEVISION BOOSTER FOR YOUR OWN USE OR FOR RESALE

With the aid of our TV-67 INDUCTOR TUNER illustrated below. only $3.50

INDUCTOR TUNER comes complete with circuit and instructions for building the TV-67 TELEVISION BOOSTER. We will also include at no charge basic circuits utilizing the TV-67 INDUCTOR TUNER to build a Television and F.M. Signal Generator, a Television Interference Eliminator and front end for Television Receiver.

No need for switching when using the TV-67 INDUCTOR TUNER

TV-67 Booster Features:

- Permits use of Indoor Installations.
- Reduces or eliminates interference including Amateur, F.M., Short Wave and Inter-Channel.
- Permits TV reception in fringe areas.
- Amplifies weak signals.
- Provides brighter and clearer images.

Specifications:

- The Model TV-67 employs 1-6AK5 as a high gain amplifier; 1-6C4 as an isolation amplifier and 1-6C4 as rectifier. Use of these highly efficient miniature tubes in conjunction with INDUCCTOR TUNER results in maximum gain on all channels up to channel 13.
- The Model TV-67 provides a 6 megacycle band-width reducing Video detail loss to absolute minimum.
- The Model TV-67 is designed to operate with any antenna system indoor or outdoor—any impedance.
- New INDUCCTOR TUNER covers all television channels, 2 to 13, inclusive without switching.

INDUCTOR TUNER comes complete with circuit and instructions for building the TV-67 Television Booster. We will also include basic circuits utilizing the TV-67 INDUCCTOR TUNER to build a Television and F.M. Signal Generator, a Television Interference Eliminator and front end for Television Receiver. only $3.50

GENERAL ELECTRONIC DISTRIBUTING CO.

98 PARK PLACE NEW YORK 7, N. Y. DEPT. RC-11
The Model 360 Signal Generator features transistor design utilizing four recently advanced transistors. Special circuitry permits operation at any standard or TV A.C. line. Complete with tubes, 11 tubes and output plug. Similar new to 117.50 $16.50 Net
Model 360-K Complete Kit & Instructions 14.05

RANGE MASTER MODE 10

The 8-in-1 Service Instrument Covers these 8 ranges—
(1) CAPACITY 600 C. and 110 M. C.
(2) A.C. Volts 0 to 3000 M. and 5000 M. C.
(3) A.C. Voltmeter 1 to 500 volts full scale.
(4) D.C. Voltage 10 to 500 volts full scale.
(5) B.C. CURRENT 1 to 100 milliamps.
(6) D.C. CURRENT 1 to 1000 milliamps.
(7) Unused. (8) D.C. voltages in 10's. 1000 to 10,000 volts.
Not suitable for a.c. circuits.

Model 10 $37.50 Net
Model 10-K Complete Kit & Instructions $52.50 Net

MULTI-TESTER MODEL 30

A.C. Volt: 0-125/250/500/1000/1500 V
D.C. Volt: 0-125/250/500/1000/1500 V
A.C. Current: 0-150 M. C.
D.C. Current: 0-150 M. C.
Capacitance: 0-10 microf.
Resistance: 100 to plus 0 to plus 1 M.
Model 30 $15.00 Net
Model 30-K Complete Kit & Instructions $19.50 Net

BARGAIN PACKAGE Two Multi-Tester Models 30-K, complete with probe and test leads. A valuable service tool in kit form. Similar new to 20.00 17.50 Net
Model 30-K Complete Kit & Instructions 13.50 Net

WE'VE MOVED
More Space—Better Service
3 TUBE PHONO AMPLIFIER $1.95

WANTED

RADIO SERVICE MEN

Address box number 02 c/o Radio-Electronics 25 W. Broadway New York 7, N. Y.
2-METER TRANSCEIVER

Please print a circuit for a very compact 144-nc transceiver.—F. M. S., Mars Hill, Me.

A. The simple circuit shown in the diagram can be constructed in a small case. The 3A4 is used for both transmitting and receiving. Note that its filaments are paralleled for 1.5-volt operation. The 1IS is modulator and audio tube.

Be sure to keep all wiring as short as possible. Vary the coupling between L1 and L2 for best operation as a super-regenerative receiver. The same coupling is satisfactory for transmission.

The coils are self-supporting and can be wound with No. 18 wire. L1 has five turns, 3/8 inch inside diameter, spaced to occupy 5/8 inch (adjust to cover band). L2 is one turn of the same diameter placed at the end of L1. L3 and L4 are chokes wound with 50 turns of No. 30 wire on 10-megohm resistors.

Electronic Timer

Please give me a design for an electronic timer adjustable to a maximum of about 2 minutes.—R. R. K., Vallejo, Calif.

A. The diagram gives the circuit of a timer with a little more than 2 minutes' maximum time. The capacitors connected to the range switch and the 10-megohm potentiometer are the timing components. The maximum time can be increased somewhat by adding a third position to the range switch, with a 20- to 40-uf paper capacitor.

The control switch normally should be in the CHARGE position. When it is thrown over to TIME, the timing cycle is automatically started and completed.

Don't Get Your Fingers Burnt

Use the NEW GC Amo Miniature TUBE PULLER

"Prevents Tube Breakage and Burned Fingers"

It's easy to remove or insert miniature tubes with the new GC Amo Miniature Tube Puller. Inserts or extracts tubes where fingers will not reach—into hard-to-reach places. Saves time and money.

No. 5093 Miniature puller . . . Net 99c
Write for catalog, Dept. D, or see your distributor.
(DISTRIBUTORS: WRITE FOR DETAILS)
Manufactured by GENERAL CEMENT MFG. CO.
ROCKFORD, ILLINOIS, U.S.A.

Every Serviceman can afford SUPERIOR TEST EQUIPMENT

The New Model 670

SUPER METER
A Combination VOLT. OHM MILLIAMMETER plus CAPACITY, REACTANCE, INDUCTANCE and DECIBEL MEASUREMENTS
D. C. VOLTS: 0 to 7.5/15/25/50/100/150/250 A.C. VOLTS: 0 to 12/30/150/300/1500/200 VOLS. OUTPUT VOLTS: 0 to 12/25/50/100/150/300/500. D. C. CURRENT: 0 to 15/15/150 Ma.; 0 to 1.5 Amps. RESISTANCE: 0 to 500/1000/10000 ohms. 0 to 10 Megohms. CAPACITY: 0.01 to 2 Mfd., 1 to 1 Mfd. (Quality test for electrolytics). REACTANCE: 10 to 27,000 ohms. INDUCTANCE: 1.7 to 70 Henrys. 35 to 8000 Henrys. DECIBELS: —10 to +18, +18 to +30, +30 to +50.

The model 670 covers the popular 10- and 15-megohm models in a rugged stamped steel case, complete with test leads and operating instructions. Size 9" x 5" x 3½.

SUPERIOR INSTRUMENT CO.
227 Fulton St., New York 7, N. Y.

at your regular jobber

Net Price
99c

November, 1948
Question Box

PHOTOELECTRIC CONTROL

My problem requires some photoelectric circuits wired in parallel and connected to indicator lamps that light when their controlling beams are interrupted. The indicator must remain on for 10 to 15 seconds. The light beams are interrupted for about .0005 second. Will you prepare a diagram of one of the control circuits?—J. W., Alameda, Calif.

A. The circuit shows one of the controlling circuits and a common power supply. An adjustable pulse-lengthening circuit, R1-C1, assures relay operation with very short interruptions of the beams.

When the slider of R1 is at A, full effects of the lengthening circuit are had; at B the effect is cut out. Capacitor C2 controls the length of time the indicator is on. Its value may depend on the tension of the relay spring. Experiment with the value of R2 for best results. A 3:1 line isolation transformer may be used if desired.

RADIATION MEASUREMENT

I need a loop antenna with a pickup about one-half the signal field strength in microvolts per meter. I want to measure radiation on 600 kc from wireless systems to make sure it does not exceed 15 microvolts per meter at a distance equal to 3/2a.

My receiver (its input impedance is 300 ohms) is already calibrated in microvolts, so the antenna should have known characteristics.—P. O., Chicago, Ill.

A. Close-wind 56 turns of either No. 18 or 20 d.c.c. wire on a 34-inch-square frame. The signal pickup will be approximately 7.9 µv in a field of 15 microvolts per meter. The antenna should be located very close to the receiver to avoid the effects of long leads.

SIGNAL STRENGTH INDICATOR

I have built the signal tracer described on page 8 of the 1946 Radio-Craft Reference Annual. I would like to install an electron-ray tube as a signal-strength indicator. Can you supply me with a diagram?—H. V. Z., Hanford, Calif.

A. The 6E5 shown in the diagram is inserted in the signal-tracer circuit between the audio input and the grid of the output tube. Some gain is added, because the triode in the 6E5 is used as an amplifier.
ANTENNA INSTALLATION

When installing an antenna on the roof of a new apartment house, it is often necessary to place insulators on the outer wall of the house to carry the wires down to the window. It is very easy, when leaning over the parapet, to drop the star drill used to make the necessary holes.

To prevent this, tie a length of waxed wire-lacing twine to the star drill. The wax will keep it from slipping. Tie the other end around your belt. Then, if the drill drops, you can just pull it up again with no damage to life, drill, or other property.

LAWSON NORMAN,
Los Angeles, Calif.

CRYSTAL DIODE POLARITY

To find the polarity of a crystal rectifier, measure its resistance with an ordinary ohmmeter. When the leads are connected for minimum resistance reading, the polarity of the meter's battery voltage indicates the polarity of the crystal.

NORRIS MCKAMEY,
Davenport, Iowa

TV TUBE SUBSTITUTION

Recently I built a television receiver using a 7EP4 picture tube. Not satisfied with the picture because I had to darken the room when viewing, I replaced the 7EP4 with a 7JP4 with very satisfactory results. Since the tube pin arrangements are different for the two kinescopes, the 7JP4 using a 14-pin diheptal socket instead of the 12-pin one needed for the 7EP4, the wiring had to be changed. All voltages were left the same.

The table below shows the wiring changes:

<table>
<thead>
<tr>
<th>Tube</th>
<th>Pin numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>7EP4</td>
<td>1 3 4 6 7 8 9 10 11</td>
</tr>
<tr>
<td>7JP4</td>
<td>1, 2 10 5 7 9 11 8 3 14</td>
</tr>
</tbody>
</table>

JOHN URANOWICZ,

DIAL SCALES

To make a precise, commercial-looking black dial scale with transparent white numbers and markings (to be used with back lighting) draw the scale in normal size. Using this as a model, make a copy five to eight times as large with black India ink on smooth white paper (obtaining at an art goods store). Your local photographer can make a high-contrast negative of this large drawing on sheet glass, which is then the size of the small original.

This negative is the dial scale. The background is black and the lines and numbers are transparent.

G. P. BRUNTON,
Kington, Ontario

HIGH-VOLTAGE SOURCE

When a cheap source of high voltage at low current is needed for experiments, use a 5- or 10-to-1 audio coupling transformer. Connect the low-turn side to the 117-volt line.

NORRIS MCKAMEY,
Davenport, Iowa

NOVEMBER, 1948
SOLDERING METAL

It is often difficult to confine solder to a neat, narrow band when making long seams in sheet metal. A method for overcoming the trouble, suggested by A. J. Richards in the British magazine, *RADIO ELECTRONICS*, is to use two grease crayons (sometimes sold as "china-marking" pencils).

The crayons are bound together, as the drawing shows, and marks are made on each side of the seam. Because solder will not stick to the grease, there will be no overflow unless an excessive amount of solder is used.

FUSE INDICATOR

Plastic night lights, consisting of a neon lamp embedded in a plastic shell, on sale at hardware and department stores, may be used to indicate blown fuses.

Bend the prongs outward, as the sketch shows, and attach spade lugs to the ends. Slip the spade lugs under the fuse block connection screws. When the fuse opens, the current passing through the neon lamp will make it light but will be too small to cause any damage to circuits.

Richard L. Parmenter, Middleboro, Mass.

NOISE ANTENNA

The 6,600-volt power line passing my house creates a very high noise level in the receiver. I cut down the noise considerably by using the out-of-phase bucking principle.

As the drawing shows, the regular signal-pickup antenna is at right angles to the power line. The noise-pickup antenna, half as long, is parallel to the line. Each antenna is connected to one side of the receiver's antenna coil. The center lead of a co-axial cable is used for the signal antenna, and the shielding for the noise antenna.

The noise picked up by both antennas from the power line is very nearly the same. Since this places both ends of the antenna coil at nearly the same potential (and the same polarity) as far as noise is concerned, the secondary of the coil picks up little noise. Due to the differences in directional orientation and in length, of the two antennas they do not pick up the same radio signals, so signals are not cancelled to a great degree.

250-m uf variable capacitors in series with each incoming lead would help to balance out the noise more effectively, but it was not necessary here.

Charles C. Coffin, San de Fuca, Wash.

AUDIO TRANSFORMERS

Audio transformers with a 3 to 1 or 3 1/2 to 1 ratio are useful for giving a voltage gain in circuits which originally were R-C-coupled.

The audio sections of some old receivers do not have enough gain to permit a crystal pickup to be used if the usual method of connection is employed. A transformer, hooked up according to the diagram, will increase the effective input to the amplifier.

Where medium- or low-mu triodes in an amplifier do not give enough gain when R-C coupled, two stages can be transformer-coupled. The step-up ratio from primary to secondary will increase the gain. Other operating conditions, especially the cathode-bias resistor, will have to be changed to accommodate the higher plate current.

G. N. Carter, Naramina, Canada

(While the transformer will step up volume when used with a crystal pickup, it will almost certainly ruin the frequency response.—Editor)

300-Ohm Line

The 300-ohm ribbon used as transmission line for FM and television antennas is insulated with a plastic material that can be melted easily. To seal and weatherproof a connection to this line, cut a strip of insulation from a similar piece and melt it, allowing the material to drip onto the connection. This plastic catches fire easily, so pick a safe place to do the melting.

Albert Loisch, Darby, Pa.
1994 MODEL MUTUAL CONDUCTANCE TUBE TESTER
with over 9 point meter to handle all tube type developments! $49.95
No possibility of good tubes trading "bad" or bad tubes trading "good" as on static or 100ma. 6 point meter to indicate transistor type, voltage or current. FRATEMENS HEADQUARTERS WORLD WIDE MAIL ORDER SERVICE!!

CONDENSERS - PAPER TUBULAR .001uf. 96v., .05μf. 1-10v., .2μf. 5-25v., .3μf. 8-35v., ETC. ELECTRO-LYM. F. TUBE PENTOPER 0.1μf., 300v. 0.2μf. 600v. 0.3μf. 1k. 0.5μf. 2k. 0.6μf. 3k. 1μf. 5k. 2μf. 10k. 5μf. 30k. 10μf. 150v. OIL CONDENSERS: .001μf. 600v. 0.002μf. 600v. 0.003μf. 600v.

SPEAKERS - The P.M. speakers are the finest that are available. They are flexible and can be used in any type of receiver, and will produce the loudest and clearest sound possible.

Model "C" - Stroking front case. $49.95

Model "P" - Hand-crank hand-tinted portable case. $49.95

RADIOMEN'S HEADQUARTERS WORLD WIDE MAIL ORDER SERVICE!!

HEAT GUN
Streamlined pistol grip heat gun in vivid red housing, that delivers a powerful 24 Volt P.T. per minute burst of hot air. Use for painting, drying, and soldering. Heats in only 2 min. With this gun, you can have small heat motors, but this has a lifetime lubricated A.C. D.C. motor of the rugged type, that produces a hurricane of either hot or cold air. Perfect for blowing out dirt or dust from radio cabinets, drying out circuits, warming up computer parts, quick-drying paint, thawing out radiators, or drying out water pipes, etc. Warning: Keep this away from your nose, or she will be unable to dry her hair because it will do it in half the time of her ordinary hair dryer. $12.35. Satisfaction guaranteed or money refunded if returned prepaid within 3 days.

GENERAL ELECTRIC 150 WATT TRANSMITTER
Cost the Government $1800.00 & Cost to You—BRAND NEW—$100.00.

This is the famous transmitter used in U.S. Army bombers and destroyers during the war. Its design and construction have been proved in service, under all kinds of conditions, all over the world. The entire frequency control is caused by means of adjustment which is included in the kit. The transmitting has 800 watts output and power indicator built-in, and antenna tuning circuits all designed to operate in top efficiency within its particular frequency range. Transmitter and antenna are enclosed in a heavy duty case. The tubes are built into the heat sink, and these are mounted on the front panel. Here are the specifications: POWER TRANS Rx - 110v. 6000 watts; Ex. 1200 watts; TRANSMITTER Rx - 1000 watts at 1200 watts; INDUCTION 150v. 5000 watts; TUNING 500v. 1200 watts; antennas are 80' feet long. All costs are included in the price of the transmitter. For further information, write to American Radioman, Inc., 117 West 57th Street, New York, N.Y. 10019.

BRAND NEW BC-231 FREQUENCY METERs
with calibrating Crystal and calibration chart. A precision frequency meter that is useful for innumerable applications for laboratory technician, experimenter, etc. for the give away price of only $75.00.

RT115 Brand New 12 Tube, 110 Volt Receiver-Indicators- Oscillators complete with all tubes and power supply. Has telescoping hood over scope tubes, which is equipped with a detachable calibrated screen. Has centering and amplitude controls and two video inputs. A natural for television. $39.95

SELENIUM RECTIFIERS. All types are rated at 150 Volts V.A.C. Does not replace the current rectifier and the uses for this rectifier is in high voltage and high current applications. $0.50 per unit, 10 for $4.50.

$59.50 Takes Both BIG BARGAINS

1. ALUMINUM GEAR BOX KIT. silk thread, plastic gear case, and all parts necessary to make one of the silkest, smoothest, most silent gear box in the world. In sizes 5/8 to 1/4 inches in diameter. This kit is ready to make a gear box without any other similar kits. $3.00

2. THERMAL SENSITIVE RELAY KIT. AND BELL SENSOR. Round head metal heads made of the best grades of copper-steel, and insulation to prevent short circuits that can be used to operate on 110 V.A.C. Any of the best grades of normally open, normally closed, or normally both contacts can be used in its various combinations in 110 volts. $3.00

SCR-274N COMMAND SET
The greatest radio equipment value in history. A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110V. operation); two 40-Watt Transmitters including crystals, and operating and Morse code, or supplied in all. All this equipment is shipped in five boxes which will work on either 120 or 240 Volts, and the complete system will operate for any power for the set is only $12.00 minimum.

SCR-274N COMMAND SET
The greatest radio equipment value in history. A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110V. operation); two 40-Watt Transmitters including crystals, and operating and Morse code, or supplied in all. All this equipment is shipped in five boxes which will work on either 120 or 240 Volts, and the complete system will operate for any power for the set is only $12.00 minimum.

55.95 Takes Both BIG BARGAINS

1. ALUMINUM GEAR BOX KIT. silk thread, plastic gear case, and all parts necessary to make one of the silkiest, smoothest, most silent gear box in the world. In sizes 5/8 to 1/4 inches in diameter. This kit is ready to make a gear box without any other similar kits. $3.00

2. THERMAL SENSITIVE RELAY KIT. AND BELL SENSOR. Round head metal heads made of the best grades of copper-steel, and insulation to prevent short circuits that can be used to operate on 110 V.A.C. Any of the best grades of normally open, normally closed, or normally both contacts can be used in its various combinations in 110 volts. $3.00

PA-109 32-Volt Direct Current Power Plant
This power plant consists of a 6-kilowatt engine that is direct wound to a 2000 watt 32 volt D.C. generator. This unit is ideal for use in locations that are not serviced by commercial or by tapping any of the two other sets that require 21-23 volts D.C. for operation. The price of this power plant is only $125. We are happy to accept orders for PA-109 with the 110 Volt A.C. from the above box or from any 220 Volt D.C. source for $125.00.

NOTE: Each of the PA-109 power plants that we sell has been actually run and tested for output by us before shipment. Above price is F.O.R. Buffalo.

PE-109 32-Volt Direct Current Power Plant
This power plant consists of a 6-kilowatt engine that is direct wound to a 2000 watt 32 volt D.C. generator. This unit is ideal for use in locations that are not serviced by commercial or by tapping any of the two other sets that require 21-23 volts D.C. for operation. The price of this power plant is only $125. We are happy to accept orders for PA-109 with the 110 Volt A.C. from the above box or from any 220 Volt D.C. source for $125.00.

NOTE: Each of the PA-109 power plants that we sell has been actually run and tested for output by us before shipment. Above price is F.O.R. Buffalo.

SCR-274N COMMAND SET
The greatest radio equipment value in history. A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110V. operation); two 40-Watt Transmitters including crystals, and operating and Morse code, or supplied in all. All this equipment is shipped in five boxes which will work on either 120 or 240 Volts, and the complete system will operate for any power for the set is only $12.00 minimum.

RADIO COMMUNICATIONS
SCR-274N COMMAND SET
The greatest radio equipment value in history. A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110V. operation); two 40-Watt Transmitters including crystals, and operating and Morse code, or supplied in all. All this equipment is shipped in five boxes which will work on either 120 or 240 Volts, and the complete system will operate for any power for the set is only $12.00 minimum.

BUFFALO RADIO SUPPLY, 219-221 Genesee Str., Dept. RC-II BUFFALO 3 N. Y.

N O V E M B E R, 1 9 4 8

www.americanradiohistory.com
BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORs, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASERS, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES. EXPORT PRICES ARE SOULICITED BOTH HERE AND ABROAD. EXPENSE CAN BE REDUCED AND REQUIREMENTS FILLED WITH A MINIMUM OF DELAY BY CONTACTING BUFFALO RADIO SUPPLY INITIALLY.

COMPRESSED AIR INSTANTLY. ANYWHERE!!

Portable Air Compressor and storage tank. Ruggedly built of heavy gauge steel in our trademarked "Air-Tuff" series. Built to take heavy loads and other imposed mains and extremely hard use. A real "Work Horse," never underestimates true value, even for large compressors. PATENTED unique air tank system increases efficiency tremendously over other compressors in that air output is much greater than that from larger compressors of identical size. Will deliver approximately 250 cu. ft. of air at 150 psi. Micro-inlet and outlet pressure is 30 lbs., or will inflate a 26 in. tire in less than one minute. Comes complete with 250 lb. gauge, all though finger-tip adjustment allows setting of output pressures within the range of 5-150 psi. Air volume is automatically shut off for protection of air tank, when connected to filling nozzles, discharge valves, air horns, new tire, etc. Price $16.50, postage prepaid anywhere in the U.S. Efficiency and durability of our air compressor equals that of the most expensive air compressors on the market, although our list price of $16.50 represents a wholesale price to dealers of approximately $25.00.

For AUTO RADIO DEALER

STEATITE VARIABLE CONDENSERS

Syrup-Safe Steatite Construction-all electrolytic capacitors are of natural rubber shrunk to the metal disc. Book on DRY DISC RECTIFIERS by H. B. Connell, containing 300 illustrations and diagrams. Theory and practical applications...

STEATITE VARIABLE CONDENSERS

for power transmission.

SUITABLE FOR USE IN ALL AUTOMATIC CIRCUITS, where condensers are subjected to low voltages and high currents, the Steatite variable condensers shown here are particularly suitable. They are available in such sizes as will meet your every requirement and are thoroughly recommended for use in all automatic circuits.

ALL STEATITE CONDENSERS are built to comply with our standard specifications. They are manufactured from the highest quality materials and are thoroughly tested before they leave our factory. A complete line of condensers is available at any time.

Unsupported CONDENSER'S are in stock.

WE HAVE ON HAND ALL STEATITE VARIABLE CONDENSERS IN STOCK.

AUTO RADIO DEALER ALERT

New Steatite condensers are now available in the latest and most advanced designs.

BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. RC-21 BUFFALO 3, N. Y.

BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORS, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASERS, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES. EXPORT PRICES ARE SOULICITED BOTH HERE AND ABROAD. EXPENSE CAN BE REDUCED AND REQUIREMENTS FILLED WITH A MINIMUM OF DELAY BY CONTACTING BUFFALO RADIO SUPPLY INITIALLY.
... CROSLEY 517
When these sets develop hum not traceable to a bad filter capacitor, check the volume control. It may be burned or warm at one end of the element. In either case, replace it.
HURLEY D. ROBINSON, Pullman, W. Va.

... RCA 45X1, 45X2
When the rectifier and pilot lamp burned out, the trouble was traced to a short between the voice coil and the field coil of the speaker. The field coil acts as a filter choke. Replacement of the speaker cone and coils was necessary.
DONALD E. STEVENS, Los Alamos, N. M.

... FILAMENT CIRCUITS
When two defective filament circuits of portables, insert temporarily a small fuse holder, with a fuse of the proper rating, in series with the filament string. Fuses are cheaper than tubes. When the trouble is cleared up, remove the fuse.
R. W. REID, Los Angeles, Calif.

... CHEVROLET SETS
If a late-model Chevrolet radio is dead, look for the trouble in the second i.f. transformer. The trimmers short easily.
ED CHRISTNER, Middletown, Ohio.

... RCA COIN RADIOS
This contains a chassis identical to RCA's 61-5 and 61-10. The volume controls are faulty in some of the sets, the carbon element loosening and failing apart. To check a suspected unit, temporarily connect a 470,000-ohm resistor in place of the control. If the set works, the control was causing the trouble.
LEONARD THOMPSON, Joplin, Mo.

... PHILCO 38-38
When these sets distort badly and no cause can be found, try replacing the 500,000-ohm volume control.
HURLEY D. ROBINSON, Pullman, W. Va.

... TELETONE TV RECEIVERS
We have found several Teletone sets with a faulty horizontal sweep coupling capacitor (the 805-mf, 6,000-volt unit which feeds the sync pulse to the deflecting plates of the picture tube). The result is an intermittent raster or picture or complete blanking of both.
To test this capacitor, unjoin the lead from the terminal connected to the deflection plates. Turn the set on and touch the lead to the terminal. The capacitor will charge. Now remove it. If there is an arc, the capacitor is probably bad. Touching it to ground will check the diagnosis. A good capacitor will discharge, while a bad one will do nothing.
Replace the faulty capacitor with a 10,000-volt unit.
H. L. FRAZIER, Jersey City, N. J.

AT LAST!! A LOW COST POWER UNIT FOR SERVICE WORK

"A" ELIMINATOR KIT
K 1-10
only $19.50

For the first time, we are offering a well-engineered six volt direct current power unit for auto-radio and similar service work in kit form!!
This unit was formerly in the high priced range. Now, we have placed all the essential components necessary for construction in kit form, and are offering them to you at this low, low price.
These kits fulfill the long-standing need of every serviceman and technician. They are designed to operate from a 115 V.A.C. 50/60 cycle source, and deliver 6 V.D.C. well-filtered from three to eight amperes, with a peak rating of ten amperes. The A.C. ripple percentage is held to remarkably low values.
This unit charges a standard auto battery in one day!!

Order these fine kits for your bench today!!
No C.O.D.'s. Full remittance with order. Shipping wt., 12 lbs.

OPAD-GREEN COMPANY
71 Warren St. Phone: BEEKMAN 3-7385 New York 7, N. Y.
NEW ZENITH VICE-PRES.

The Zenith Radio Corporation announces that Sam Kaplan, who recently completed his twenty-fifth year with the company, has been appointed a vice-president. In 1934, Mr. Kaplan became assistant treasurer and assistant secretary; in 1935, credit manager; and in 1945 assistant vice-president.

CRESSON MEDAL TO COLPITTS

The recipient of the 100-year-old Cresson Medal of the Franklin Institute is Edwin H. Colpitts, director of the Engineering Foundation of New York, and best known to radomen as the designer of the circuit which bears his name. It is in recognition of his scientific achievements in the development of long-distance communication by telephone and radio. Dr. Colpitts previously won the Medal for his services with the National Defense Research Council.

RECEIVES PRESIDENT'S AWARD

John D. Reid, manager of research of the Crosley Division, Avco Manufacturing Corp., has recently been awarded the President's Certificate of Merit for outstanding work on the proximity fuse during the war. The Crosley manager of research was one of fourteen Ohio scientists, doctors and educators to be awarded the honor at a recent Recognition Day Luncheon in Columbus, Ohio.

PARTS FIRM IN NEW HANDS

Control of General Instrument Corp., Elizabeth, N. J., radio parts manufacturer, has been acquired by an industrial group. C. Russell Feldmann, chairman of National Union Radio, has been elected to the same position with General Instrument, and Richard E. Laux, formerly executive vice-president of General Instrument Corp., has been named president and treasurer.

Mr. Feldmann succeeds Samuel Cohen and Mr. Laux succeeds Abraham Blumenkrantz, from whom the controlling interest was purchased. Mr. Cohen and Mr. Blumenkrantz have resigned from the board, as has Louis Scadron. Kenneth C. Meikin, president of National Union, and Harry E. Collin, Toledo investment banker and industrialist, were elected to the new board.

RADIO-ELECTRONICS for
CHECKING A.F. TRANSFORMERS

Very often, an audio amplifier will not deliver the power for which it is designed because of inefficient transformers, particularly in the output circuit. The efficiency of a transformer in percent is found by dividing the output power by the input power and multiplying by 100.

The output power is computed by connecting a load resistor across the secondary and measuring the voltage developed across it when power is applied to the primary. The power in watts is equal to the square of the voltage divided by the resistance. Measuring power input is not as simple because leakage inductance of the transformer causes the input voltage and current to be out of phase, thus producing false readings. If a capacitor of proper value is shunted across the primary, the leakage inductance will be balanced out and current and voltage will be in phase.

The correct capacitance may be found by using the setup shown in the circuit described originally in Wireless World (London). Load the secondary of the transformer with a resistor equal to the output load impedance. Connect the primary of a 600-cycle signal source through a resistor R2 having a resistance somewhat lower than the input load impedance. Connect the X plates of a cathode-ray tube or oscilloscope to the connection of input and primary and the Y plates to the connection of input and R2 as shown. Then vary C until the pattern on the scope changes from an oval to a straight line. C will be about .035 μf for the average output transformer.

Measure E1, E2, and E3 with a vacuum-tube or high-resistance voltmeter. The input power is equal to E3 x E2/R2. Dividing this into the output power E1/R1, the efficiency of the transformer then becomes:

\[
\text{Efficiency} = \frac{E1}{E2 x E3 x R1} \times 100
\]

The effective leakage inductance of the transformer is:

\[
E3^2 \times C
\]

\[
= \frac{(E3^2 \times \text{nf}(f))^2 + E2^2)}{R2}
\]

where C is in farads, E2 and E3 in volts, R2 in ohms, and f the input frequency in cycles.

If a number of different transformers are to be tested, it is advisable to make a breadboard test panel with terminals for connecting the transformer, oscillator, voltmeter and cathode-ray tube. The variable capacitor C may be replaced with a switch and a number of fixed capacitors of different values. R1 and R2 may be calibrated potentiometers.

Radio-Electronic Circuits

LOW OVERHEAD

THAT'S WHY YOU SAVE at SENCO!

THOUSANDS OF TUBES

<table>
<thead>
<tr>
<th>Type</th>
<th>Each</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>1A2GT/G</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>

INDIVIDUALLY CARTONED

10% M.F. GUARANTEED

WIRELESS WORLD

MARCH 1948

www.americanradiohistory.com

Senco Radio Inc.

Dept. B, 73 West Broadway

New York 7, N. Y.

BEEKMAN 3-6498

NOVEMBER, 1948

LOW OVERHEAD

THAT'S WHY YOU SAVE at SENCO!

POWER TRANSFORMERS

<table>
<thead>
<tr>
<th>Power Transformer</th>
<th>Coil</th>
<th>Pole Coils</th>
<th>Field Coils</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000 V 6000 V</td>
<td>5</td>
<td>6000</td>
<td>6000</td>
<td>$1.29</td>
</tr>
<tr>
<td>6000 V 12000 V</td>
<td>5</td>
<td>6000</td>
<td>12000</td>
<td>$2.38</td>
</tr>
<tr>
<td>12000 V 6000 V</td>
<td>5</td>
<td>12000</td>
<td>6000</td>
<td>$3.59</td>
</tr>
<tr>
<td>12000 V 12000 V</td>
<td>5</td>
<td>12000</td>
<td>12000</td>
<td>$4.80</td>
</tr>
<tr>
<td>24000 V 6000 V</td>
<td>5</td>
<td>24000</td>
<td>6000</td>
<td>$6.01</td>
</tr>
<tr>
<td>24000 V 12000 V</td>
<td>5</td>
<td>24000</td>
<td>12000</td>
<td>$7.22</td>
</tr>
</tbody>
</table>

VOLUME CONTROL

Bargains

Nationally advertised new model: All brands now.

10,000,000 ohms $1.69 per box

25,000,000 ohms $3.95 per box

40,000,000 ohms $6.99 per box

50,000,000 ohms $10.95 per box

Now only 44¢ ea.

AMAZING CARTRIDGE VALUE

Last stock of brand new cartridges. Be sure you get all you need

PN98 Shure Crystal $1.69

NT Webster Crystal $1.49

Antistic Nylon Cartridge $2.95

SIGNAL CORPS DUAL HEADSETS

6 foot cord and plugs. 2000 ohms, individually boxed. Special

Extra Speaker $1.49 ea.

Minimum order $1.00

WHEN ORDERING INQUIRIES, COMPLETELY SATISFACTORY SERVICE. Orders, including C.O.D. Shipment, may be mailed. Manufacturers' obsolete stock. All prices F.O.B. New York City.
LEAKY CONDENSER TEST

An ohmmeter does not always indicate the true condition of a leaky condenser. To make a better test, disconnect the ungrounded lead of the condenser and touch one lead of a voltmeter to it. Touch the other meter lead to some B-plus point in the receiver at which the voltage does not exceed the condenser’s rating. (Caution: make sure the B-plus voltage falls within the voltmeter range.)

The reading of the voltmeter will be proportional to the amount of leakage through the condenser.

M. B. SYMCHYCH, Saskatoon, Sask.

CRYSTAL-PLUS RADIO

This crystal receiver uses a N34 and includes a two-stage audio amplifier. The tone quality is satisfactory, and selectivity is good for a crystal set.

The receiver works on 117 volts a.c. or d.c. Do not ground it, as the chassis is hot. The antenna trimmer shown was used with a 15-foot length of wire.

ARTHUR S. BEAN, Baltimore, Md.

VOLTAGE DOUBLER

This vibrator power supply circuit is one that I have found useful for operating mobile equipment requiring high voltage at moderate current. Standard replacement parts are used. It is a bridge-type circuit using a combination mechanical and electronic rectifier. It has twice the voltage and half the current of conventional circuits. With the components used, it delivers 650 volts at 50 ma. This exceeds the rating of the 024, but we have had no trouble from this source.

A standard synchronous vibrator is connected to the power transformer in the normal manner. The center tap of the secondary is unused. When the vibrator contact points A and C become positive by the full secondary voltage, and the 024 conducts between P2 and the cathode. When the reed is in the opposite direction, B and D are grounded and A is positive, causing plate D2 to conduct. If there is no output from the cathode, reverse the connections to A and B.

JOE MACE, Garnett, Kansas

KEYING MONITOR

This keying monitor works on approximately 6 volts of B-supply. The voltage is obtained from a resistor in the cathode circuit of the transmitter’s keyed stage. When the stage is keyed, the oscillator produces a tone. The value of the resistor should be chosen to give about 6 volts, though a somewhat higher voltage will be as satisfactory. The transformer is any 3:1 audio unit.

R. L. BRIDGES, Los Angeles, Calif.

CARBON MIKE TRANSFORMER

When a carbon microphone transformer is needed in a hurry and none can be found, a bell-ringing transformer will often work. Connect the low-voltage secondary to the mike, with the mike battery in series, and the primary between grid and ground.

These transformers will sometimes work, too, as emergency output transformers. Where the secondary is rated at 6-8 volts, a bell transformer will supply filament voltage; but if only a few filaments are to be connected across the transformer, check the voltage under load and insert a small series resistor if it is too high.

NORRIS MCKAMEY, Davenport, Iowa

(As an emergency microphone transformer, a bell transformer might work well. It would probably not do so in other jobs where more current is carried. Bell transformers are designed for rare intermittent use and are intentionally built to have very high primary impedance and extremely poor regulation. — Ed.)
Microswitch completely standard, metal grade well cast, rated 15 amperes @ 115 volts normally open type, plunger has override feature. New. .35

BC-654-A RECEIVER AND TRANSMITTER

For frequencies, 3800-5800 Kc. Used but in good operating and mechanical condition. Worth many times the price for parts. Complete with all necessary tubes. Shipping weight 40 lbs. Each. .29.75

Condenser, electrolytic, 100 Mfd. @ .30 volts, 2½" diameter, 4½" high, metal can, shipping weight 2 lbs. Brand new. .20

Condenser Industrial Cond. Corp. 8 Mfd. @ 600 volts DC, 1" x 3½" x 5" high. .150

Condenser, tub type, 1 Mfd. @ 1000 volts DC, new. .20

Condenser, Tube, oil filled, 3 x 1 Mfd. @ 600 volts DC. .25

Filter condenser, Aerovox, oil filled, 2 Mfd. @ 600-Dc, working volt size about 1½ x 1½ x 5½ high, shipping weight about 1 lb. new. .35

Condenser, Cornell-Dubilier, oil filled, 4 Mfd. @ 1000 volts DC working voltage, size about 1 x 2½ x 5½ high, shipping weight 2 lbs. new. .175

Vibrator, Radiant VB-3, for 6 volt battery operation, used in vibrator supply PE104—which is used with BC-654-A transmitter-receiver, Type J-4, new. .195

Vibrator, Radiant VS-3 for 6 volt battery operation, used in vibrator supply PE104—which is used with BC-654-A transmitter-receiver, Type J6 (probably exactly same as J-4), new. .195

Relay, 110 volt 60 cycle AC plunger type for door interlock, new. .85

Lord Shock Mount, heavy duty type, base size 3" square x 1½" high—¾" diameter bolt may be used. New. .35

Dual volume control wire wound, each section 25,000 ohms. new. .30

Toggle switch, bat handle, DPDT, new. .30

Transformer, 110 volts 60 cycle input, output being two secondaries—each giving 14 volts @ 11 amperes, which can be used alone, in parallel, or in series for various voltage and current combinations. Size about 3½ x 3½ x 4½ high. Ideal for operation of propeller pitch motors used for beam antenna rotation. Shipping weight 7 lbs. Manufactured for our company, brand new. .595

Microswitch, completely weather-proofed, metal-clad or cased, rated 15 amps at 115 volts, normally open type, plunger has override feature, new. .35

Battery type BA-38, 103.5 volts, used in Handie-Talkie. Mine detectors or for any purpose where low current drain is required. Size 1 x 1 x 1⅛" long. Outdated, but tests O.K. .3.00

Tube socket, RCA, for 866 or similar type tube bases, new. .35

Tube socket, wafer octal type, excellent mica insulation, new. .10

Tube socket for 813 type tube, Johnson type 237, new. .60

Tube socket, for Acorn type tubes, made by Millen Co., new. .20

Tube socket, porcelain octal type, less mounting ring, new. .10

First IF transformer for BC-348 type receiver, 915 Kc., new. 1.00

Kit of potentiometers, twenty-five assorted sized carbon and wire wound. New. 2.25

Resistor, voltmeter multiplier type, rated at 2 megohms, kilovolts insulation, 1 Ma. maximum current, about 1½" long, wide in chips. New. .75

Resistor, 100 watt type, 5 sections having 7500, 3000, 23, and 75 ohms (total 11,269 ohms) resistance, 1½" diameter by 8½" long. New. .35

Card CD-132, has PL-55 type plug and 9" cord, with spade type lug tips. New. .35

Sylvania type IN26 crystal, New. .35

Resistor, 20 watt, one-half ohm. New. .10

Fuse holder for type 3AG fuse. New. .10

Amphenol coaxial chassis connector, new, type 83-1R. .40

Amphenol coaxial angle plug adapter, used, type 83-1AP. .40

Connector, bakelite insulation, male and female section, 6 pin polarized. .50

Canvas bag, moisture & fungus proofed, with carrying strap, leather lined, reinforced corners. weight 3 lb., size 9½ x 14½ x 12½ high. Ideal for tool case, for sportmen, etc. New. 1.00

Argon bulbs—2 watt, ideal for transmission testing, television, night light, etc. 3½ ea. Carton of 10. 3.00

Filter condenser, 8 Mfd. @ 700 volts DC working voltage. Oil filled, well insulated terminals. Size about 2½ x 3½ x 5½ high, with mounting flanges, gray metal case, shipping weight about 4 lbs. New. .1.25

Filter condenser, Cornell Dubilier, 1 Mfd. @ 4000 volts DC working voltage, oil filled. Size about 2½ x 4½ x 7½ high over all. Shipping weight about 4 lb. Heavy stand-off insulator terminals. New. 3.75

Telephone LINCOLN 8328

Filter condenser, oil filled, 4 Mfd. @ 300 volts, DC working voltage, size about 2½ x 2½ x 3½ high, shipping weight about 2 lbs. New. .35

Condenser Industrial Cond. Corp. 5.2 mfd. @ 50 volts DC, 1" x 2½" x 3½" high. .35

Filter condenser, Industrial Condenser Corp., oil filled. 1 Mfd. @ 3000 volts DC working voltage, size about 2½ x 3½ x 5½ high, well insulated terminals, Shipping weight about 3 lbs. New. 2.00

METERS—Brand New

All checked for accuracy!
0-500 Ma. DC 3½" round. $3.50
0-5 Amps RF 3½" round, NT35 Westinghouse. Internal TC. 4.50
0-3 Amps RF 2½" round, NT35 Westinghouse, less TC. 3.50
0-15 MA DC round 3½" bakelite case G.E. Type DO-41 Int. Res. 7½ ohms 3.00
0-10 kh. 250 Mfd. DC combination turn of, DW41 G.E. 2.50
0-3 MA. DC 3½" square, 327A Triplet. 4.50
0-500 Volts AC 3½" square, 327A Triplet. 6.00
0-2 Volts AC rectifier type 10,000 mfd. volat 327A Triplet, 3½" square. 15.00
0-50 Ma. AC 337A Triplet 3½" square. 7.50

RELAYS—All brand New

RBM DPDT 110 V. 60 cycle, make before break. .75
Leach type 1127-FC 110 V. 60 cycle. .1.50
Automatic Electric Co. DPDT 24 V. DC. 6 Amp. silver tungsten contacts .40
Automatic Electric Co. DPDT 24 V. DC. 6 Amp. silver tungsten contacts. .40
Starter relay. 28 volt operated, heavy duty construction. .50
Switch, push button type DPDT, on/off type, to fit standard switchboxes, 10 amperes at 25 volts DC. Switch, toggle type, bat handle, DPDT heavy duty contacts .35
Plastic coated Assault wire, twisted 2-conductor No. 20-2 stranded wire. 100 Ft. or more .01c per ft.
Television wire, 2-conductor—300 ohms. 250 Ft. spool 5.00
4-Conductor wire, 16 gauge impregnated rubber coated sheathed stranded copper wire. 100 Ft. 6.00

BC-645 ULTRA HI-FREQUENCY TRANSMITTER-RECEIVER

You read about it recently in QST! Originally operated in the frequency band from 450 to 500 Mc. Can be converted to 420 Mc. amateur band. Consists of complete transmitter and modulator system, and receiver. Complete, brand new, with 15 tubes. .11.95

LS-3 SPEAKER

6" PM type, housed in heavy metal case. Contains output transformer to match 4000 ohm impedance. Used but guaranteed okay. Size about 8 x 8 x 4. Shipping weight approx. 10 lbs. Has jack for plugging in cord to receiver. Ideal for BC-348 receiver. .8.50

AMERICAN SURPLUS PRODUCTS CO.
537 N. CAPITOL AVE., INDIANAPOLIS, INDIANA.

NOVEMBER, 1948
War Surplus Bargains Sold As Used Unless Otherwise Specified!

MUST VACATE WAREHOUSE — PRICES REDUCED FOR CLEARANCE

SCR-625 MINE DETECTOR (brand new)
The most sensitive mine detector on the surplus market. For miners, treasure hunters, plumbers, electricians, lumber mills, etc.

59.50

AN/PRS-1 MINE DETECTOR (brand new)
A very dependable detector only 22.50

TURBO AMPLIFIERS
Used for profit or personal use. Shipped complete with the following tubes: 2-709's, 1-7Y4, 1-7E7. Our greatest bargain. See July 1947 "RadioCraft" for conversion data.

1.75 ea.

WILLARD LEAD ACID CELLS (Brand new) 6 V. (dry charged) 3.00
6 V. in metal carrying case (dry charged) 4.00
(Add electrolyte specific gravity 1.265 — any drugstore)

BC-348 Communications Receiver and or SCR-274N Command Set (Power supply for 110 V. operation, with complete instructions)

7.95

BC-375 GE MOPA XMTR.
Transmitter only

19.50

TU-B5, TU-B8, TU-B13, TU-B25

2.00

Dynamotor PE-73C

4.95

Antenna tuning unit (BC-306A)

4.95

BC-357 MARKER BEACON RECEIVER
Operates about 75 Mc. Ideal for controlling remote circuit and model aircraft, boats, etc. Signal easily altered to 3 meters band. Tubes used and included: 12C8 and 12SQ7. Sensitive relay circuit diagram inside case. Size 5 3/4 x 3 3/4 x 3 3/4. For 24 V. DC operation.

3.95

T-39 APQ-9 TRANSDUCER RECEIVER
Contains many excellent parts for the VHF experimenter such as a cavity oscillator using 2 RCA 8012 tubes rated at full output to 300 Mc. Tubes are forced air cooled by 24 V. DC motor which is easily converted to 110 V. AC operation. Other valuable parts such as a pair of 807a, 2 6AG7a, 1-931, and 1-6A6 tubes, ceramic switch, potentiometers, gears, revolution counter, etc.

12.50

APN-1 RADIO ALTIMETER
A complete 460 Mc. radio receiver and transmitter which can be converted for ham or commercial use. Tubes used and included: 4-12SH7, 3-125J7, 2-6146, 1-VR150, 2-955, 2-9004. Other components such as relays, 24 V. dynamotors, transformers, pots, condensers, etc. make this a buy on which you cannot go wrong. Complete in aluminum case 18 x 7 x 7 1/4.

10.95

DETROLA AIRCRAFT RECEIVER
If you want complete 28 V. DC operated 200-400 Kc. aircraft receiver — just don't pass up this bargain. A few left at 5.75 ea.

JACK BOX BC-1366
Contains 2 pole 5 position switch, rheostat, 6AG7, etc. In aluminum case 3 1/2 x 4 3/4 x 2 1/4. Complete with headphone set and adapter to match high to low impedance

1.50

R-89 ARN-5A GLIDE PATH RECEIVER
Formerly used for blind landing but adaptable to many other uses such as receiver for new police or citizens band. Band of operation 326-335 Mc. on any of its 3 pre-determined crystal controlled frequencies. Contains 11 tubes, 6 relays and other valuable parts. For 24 V. DC operation. Size 13 3/4 x 3 5/8 x 3 1/2.

Price complete, 12.45

AIRCRAFT RADIO RANGE FILTER FL-8A
For helpful reduction of QRM or crowded CW bands. When attached to output of any communications receiver: (1) will pass signal of 1020 CPS, eliminating others. (2) will pass voice frequencies and eliminate 1000 CPS code signal. Compact, lightweight, with switch. Size 2 3/4 x 2 3/8 x 3 3/4.

2.25

BC-733D LOCALIZER RECEIVER
A part of aircraft blind landing equipment. Operates on any of its 6 pre-determined crystal controlled frequencies in the range of 100-120 Mc. Contains 10 tubes — 3 of which are W. E. 717-A's and crystals. Ideal receiver for conversion to 144 Mc, ham band or mobile telephone band. For 24 V. DC operation. Size 14 1/2 x 7 x 4 3/4.

Price, with dynamotor

6.95

Price, without dynamotor

5.95

MODULATOR (with carbon microphone)

3.50

Telephone LINCOLN 8328

TERMS: CASH WITH ORDER

AMERICAN SURPLUS PRODUCTS CO.
537 N. CAPITOL AVE.
INDIANAPOLIS, IND.

RADIO-ELECTRONICS for
KINESCOPE PROTECTION CIRCUIT
Patent No. 2,444,902
Charles Edward Torsch
Lancaster Township, Lancaster County, Pa.
[Assigned to Radio Corp. of America]

Many television receivers derive their high voltage from the scanning circuits. If these circuits fail, no high voltage is applied to the kinescope. In other cases, the high voltage comes from a separate source such as an r.f. oscillator.

If the scanning circuits become defective an intense spot is formed on the screen because the beam is uncontrolled. This may damage the kinescope.

The circuit shown here eliminates the danger to the filament by reducing the r.f. bias to a value that is safe for the filament. The rectifier filament is protected from all normal surges in the line. This is done by the addition of the small diode section which reduces the peak r.f. to a safe level. In the event of power failure or a lightning surge the diode section provides a short circuit to the filament.

In many cases, the high voltage applied to the kinescope is derived from an r.f. oscillator. If the oscillator is turned off the kinescope will remain illuminated for a period of time.

Complete INDEX to Most-often-Needed RADIO DIAGRAMS and Troubleshooting Information

Complete INDEX to Most-often-Needed RADIO DIAGRAMS and Troubleshooting Information

RED HOT BUYS!

CO-AX CABLE RG59U, 100 ft. $5.25

TWIN LEAD-IN, 300 Ohms, 100 ft. 1.95

500 ft. 2.95

1000 ft. 7.95

PM SPEAKERS (Alnico No. 5 Mag.)

4" $1.19

5" 1.39

6" 1.75

OUTPUT TRANSFORMERS

MATCHING, 50L6, 25L6, 43, etc. $0.39

PUSH PULL (2-25L6) $0.59

MATCHING, 50L6, 25L6, 6F6, etc. $0.65

MATCHING, 6L6, heavy duty $0.79

UNIVERSAL, any tube setup $0.95

AC-DC CHOKES, 50 ma, 10 henrys $0.39

STANDARD VOLUME CONTROLS

10K, 25K, 50K, 1/2 meg, 1 meg, 2 meg.

Less switch $0.95

With switch $1.19

FM-LIMITER Transit, 10.7mc $0.83

FM-SCERMM TRANS., 10.7mc $0.83

FM-Oscilll COIL $0.19

FM ANTENNA COIL $0.19

WIRE SPECIALS

6 FOOT LINE CORD, incl. plug $0.12

ANTENNA HANK, 15-ft. spool $0.15

RESISTANCE CORD, 150 ohms $0.39

RESISTANCE CORD, 180 ohms $0.50

STEP-DOWN CORD, 220 to 110V $0.75

ZIP CORD, 20 gauge, 500 feet $6.75

AUTO RADIO ACCESSORIES

VIBRATOR, 4 prong, non-synch $1.19

WHIP ANTENNA, side mount $1.95

GEN. CONDENSER, 5-200V $0.22

PHONOGRAPH ITEMS

PHONO AMPLIFIER, incl. 3 tubes $3.95

PHONO MOTOR, incl. turntable $2.95

CRYSTAL PICKUP, incl. hardware $1.95

CRYSTAL CARTRIDGE, fits most pickups $1.95

PERMANENT SAPPHIRE NEEDLE $0.49

NEEDLE CUP, automatic spring door $0.47

TOGGLE SWITCH, SPST $0.15

TOGGLE SWITCH, DPST $0.25

TOGGLE SWITCH, DPST $0.37

MISCELLANEOUS ITEMS

ONE POUND ROSES HOLDER $0.39

100 WATT ESCO ELEC. SOLID IRON $2.24

BROOKS INVERTER, 110 V. DC to AC $0.85

FM CONDENSER & COIL KIT, w inst. $1.95

CHASSIS PAN, incl. 8 mounted sockets $0.39

LODGE ANTENNA, oval AC-DC type $0.39

SELENIUM RECTIFIER, 100 ma $0.59

VARIABLE CONDENSER, 2 zan, 420±162 $0.68

VARIABLE CONDENSER, triple 120 mfd $1.45

VARIABLE CONDENSER, FM, 40 to 100mc $1.95

RADIO TUBE, HLN Sylvania, list $2.65 $0.39

100 TUBE CARTONS, GT type $0.95

100 TUBE CARTONS, prezent Inc. $0.75

100 ANS. CONDENSERS, .001 to .02 $0.35

100 ANS. CONDENSERS, .02 $0.45

100 ANS. SQUEETERS, bct., oct. $0.45

100 ANS. RESISTORS, 1/2 watt $1.50

100 ANS. KNOBS, oval & push $1.05

100 ANS. PILOT LIGHTS, 6/17 $0.65

BROOKS RADIO DISC. CORP.

88 VESAY ST., DEPT. A.

NEW YORK, N. Y.

www.americanradiohistory.com
OPPORTUNITY AD-LETS

Advertisements in this section and for a weekly fee of $4.75, line ad copy and address must be included at the above rates. Each insertion adds a quarter at the expense of the advertiser. All advertising copy is subject to the approval of the Publication Committee. All interested parties should submit a classified advertisement in writing to the School. No credit is given for any classified advertisement. All advertising rates include handling.

RADIOTECHNICS, SERVICING, BEGINNERS — MAKE more money, easily, quickly. $25 weekly possible. We show you how. Information free. Merely Products, 223-227, 122nd Avenue, Springfield Gardens, New York.

BRITAIN'S FOREMOST RADIO MONTHLY. PUBLISHER OF THE RADIO ENGINEER since 1918, all over the world in the same standard format, with technical information on latest developments. Leading technical and practical articles by leading British Authors. Bound monthly and indexed, with index for each volume. For further information, write to the Radio Engineer, 7, Brearley, Knightsbridge, London, S.W. 7, England.

RTHANS'S SIZE RADIO SHOE-BUILD IT AND make long waves. Free literature. Write: Grand Federal, 1650 Westlake, Dallas 5, Texas.

26 YEARS EXPERIENCE, RADIO REPAIRING AT your finger tips. Two pages each week of practical, illustrated instruction. No money or calculation, built repair units. Membership 1 year 12.00 available or 45th birthday guarantee. Send Radio 1001-5 to subscriber, 151 5th Ave., New York, N.Y.

YOU CAN ACCURATELY ALIGN SUPERHET ROY核定 of your own invention. Complete instruction. Includes How to Design, How to Build, How to Test. MAGAZINES: QUICK DAVEY—FORDON, DOMESTIC, and books house, levelling, switching, etc., etc. Catalogue 50 cents, Copeland, 625 First Ave, New York 17, N. Y.

TELEVISION, BUILD YOUR OWN, OUR DETAILED plans, instructions. Telephone: Sally P. 3720, Los Angeles 9, Calif.

AMATEUR RADIO LICENSES. COMPLETE THEORY to practical in 17 lessons. Electro-magnetic, Antenna, receiver and receiver, transmitter, etc. American Radio Institute, 1740 W. 63rd St., Chicago 37, Illinois. Orders postpaid.

AMPLIFIER CORP. OF AMERICA

398-10 Broadway New York 13, N.Y.

Defence appropriations approved by the U.S. Congress will bring a total of $1,000,000,000 of electronic equipment over the next two years or $500,000,000 in each year. This will mean that the radio industry will be forced to convert 25% of its facilities to the production of electronic equipment for defense by the end of this year.

RELAY TUBE
Patent No. 2,443,511
Michael Parcero, Arlington, N. J. [Assigned to Penn Electric Switch Co., Goshen, Ind.]

The life of a tube can be prolonged by operating its heater only when needed. However, if the plate voltage is applied before the heater reaches operating temperature, the plate current will cause high evaporation of the emitting material on the surface of the cathode. This shortens the life of the tube.

The primary purpose of this tube is to prevent plate current from flowing until the filament is fully heated. To do this the inventor has included a thermal delay relay in the grid circuit of an ordinary normal tube.

In the diagram, the usual control grid is permanently connected to the bias supply. When the filament and plate voltages are first applied the bias on the control grid prevents any plate current flow.

After the filament has heated, the bimetallic strip A distorts and makes contact with the control grid. The normal signal or grid-normal voltage is connected to the control. When contact is made the excitation as well as the bias voltage appears on the control grid and operation is normal. In effect, the internal relay takes the place of the external relay in series with the amplifier. Usually prefened with medium and high-power tubes in transmitting equipment for this same purpose.

While many uses could be made of this invention, the inventor refers particularly to use in stranded-relay-control circuits. In several applications described the circuit could be switched on and off intermittently but with unusual tubes this is not done because of the severe deterioration caused by plate-current flow before the filament is fully heated. This tube would allow intermittent operation with a consequent saving in filament wear.

A.C. REGULATOR
Patent No. 2,444,715

Several improvements are included in this stabilizing tube, besides the usual features of a carbon resistor. These are series-opposing. The right-hand grid operates at a flux density above saturation. The center leg includes an airgap, therefore its flux density is much lower.

The output voltage is due mainly to the winding around the second-gap. This is opposed and stabilized by the voltage induced in the center leg winding which is more sensitive to load changes. A third winding is connected to a series condenser and iron-core inductance which resonate at the third harmonic of the line frequency. The harmonic is greatly reduced, leaving a pure output wave.

The transformer may be designed for 1:1 ratio or for voltage transformation.

MEASURING ELECTRON VELOCITY
Patent No. 2,442,961
Edward G. Ramberg, Feasterville, Pa. [Assigned to Radio Corp. of America]

Electron velocity can be measured by its effect on a photographic film or screen. Each electron in a beam of electrons which has a higher initial velocity, to determine which film has received exposure, each is mixed with a differently colored dye.

The plate shown here is made of a glass support, a red phosphor screen, a metallic deposit such as magnesium and a green screen. Each screen has maximum sensitivity to electrons of 5 kev velocity, and the metal is sufficient to show the velocity by 20 kev. Each screen is arranged in checker-board patterns with the dye patches of one corresponding to the visibilities between dye patches of the other.

INDUCTION COMPASS
Patent No. 2,444,290
Carl-Erik Granqvist, Lidingo, Sweden [assigned to Svenska Attaboliogat @ssaccumulator, Lidingo, Sweden]

This compass indicates direction electronically. A filter is connected between the instrument and the live line to remove second harmonic distortion which may produce error. Then the a.c. is connected to one coil of a wattmeter W and also through the magnetic field L1, to a coil L1. The field due to this coil is shown as Hm. Two more coils L2, L3 are shown to left of L1. Between them is a rotating core C which is stabilized by a gyror. The rotating core C and the two fixed cores (within L1, L2) are horizontal to the earth's magnetic field L3, shown as making an angle d with the first. As C rotates it causes a voltage to be induced in L2 and L3. This is rectified and amplified by a screen-grid tube. The plate circuit is tuned to the line frequency. The air component is passed on to one of the wattmeter coil. The wattmeter indicates is proportional to the cosine of the angle of the earth's magnetic field, as shown in the table, for which the three cores point north and south. In this case Hm and L1 are in the same direction.

www.americanradiohistory.com
LOW FACTORY PRICES!

NEW SERIES 16
SUPER DELUXE
AM-FM
CHASSIS

30 DAYS TRIAL

Here is the last word in radio engineering ... a powerful, world-ranging, magnificently-toned radio that is unsurpassed for performance, selectivity, sensitivity, and advanced engineering features. Uses these latest-type tubes, rectifier and tuning indicators: three 7A2, three 7A4, two 7C5, one 7A6, one 7Q7, one 6BA6, one 6BE6, one 6C4, one 6AL5, one 5U4, one 6U5. Comes complete with satin stripe copper finish front panel attached, Magna-Tenna Loop Aerial and giant 14½" Electro-Dynamic Panasonic Speaker. Requires only a few minutes to install, plug in and play. LOW FACTORY PRICES ... EASY TERMS ... 30 DAYS TRIAL. Send TODAY for FREE 1949 Midwest Radio Catalog of separate Chassis and beautiful Console and Table models.

A Complete Line of FINE RADIOS and RADIO-PHONOGRAPHS ... Available in SEPARATE CHASSIS like the POWERFUL SERIES 16 AM-FM Model above or in COMPLETE CONSOLES like this...

Beautiful SYMPHONY GRAND
AM-FM Radio-Phonograph with TELEVISION Audio Switch-Over and NEW Intermix AUTOMATIC RECORD CHANGER

A Magnificent musical instrument and a masterpiece of cabinet design—the finest Midwest Radio in 20 years of manufacture. Offers world-ranging radio reception and newest automatic Intermix Record Changing Phonograph. Uses Series 16 Super DeLuxe AM-FM Chassis, Giant 14½" Panasonic Speaker, Tri-Magnadyne Coil System, Built-In Loop Antenna. Other luxurious console and table model cabinets available with Series 16, 12, and 8 chassis—on Easy Terms and 30 Days Free Trial.

Rush for Free Catalog!
FILL IN COUPON AND MAIL TODAY OR JUST SEND NAME AND ADDRESSES ON 1 POSTCARD

Midwest Radio & Television Corp.
Dept. 383 909 Broadway, Cincinnati 2, Ohio
Please send me your new FREE 1949 Catalog.

NAME
ADDRESS
CITY ZONE

Midwest Radio & Television Corp.
Dept. 383 909 Broadway, Cincinnati 2, Ohio

BUY DIRECT FROM FACTORY and SAVE!

NOVEMBER, 1948

www.americanradiohistory.com
UN ASSEMBLY USES RADIO

Radio coverage of the United Nations General Assembly in Paris called for "the most complete and efficient installations ever made in the United Nations," according to officials of the French Broadcasting System.

The installations, thrown open to the world's radio correspondents and commentators during the Assembly sessions, were made by the French Broadcasting System in cooperation with the United Nations. They included the first use in any international session of the French-made Magnetophone, a tape-recording device which reproduces sound with such astonishing fidelity that even trained musicians are said to be unable to distinguish its recordings from live performances.

In addition to the numerous broadcasting booths installed in the plenary session and committee rooms, six studios for special interviews and commentaries were built into the Palais de Chaillot, the General Assembly's temporary home. A battery of 13 recording machines manned by France's outstanding recording experts was available to the world's radio reporters. Live broadcasts were relayed through a special control room by wire and cable to London, Brussels, Holland, and Geneva, and by shortwave radio to the United States. Complete broadcasts of the sessions were also short-waveed throughout the world over the French Broadcasting System's facilities.

Much of the equipment provided by the French Broadcasting System was manufactured especially for the occasion, and a hundred of France's top technicians were assigned to the operation of running and servicing it for the assembly.

CORRECTION

Mr. Gene Conklin informs us that the yearly license fee for radio servicemen in Costa Rica is $10.00 rather than $100.00 as stated in his article, "Radio in Latin America," on page 69 of the August issue.
owner of any car who has fitted an interference suppressor to its ignition system can obtain one of these free of charge from the Radio Society of Great Britain. He then fixes it to his wind-
shield, telling the world that he is doing his bit in the warfare against television interference. I haven't the least doubt that the idea will be a success. To "suppress" an auto costs so little and means so much to television owners that in television service areas the owner of the vehicle whose windshield doesn't carry the sticker will soon come to be looked upon

Olympic retrospect

Quite apart from our admiration of the wonderful performance of competitors from the United States in the Olympics, the coming of so many Americans to watch the athletic and other events has given us a great deal of pleasure.

One point of special interest was the impression made on American visitors by our television. Naturally, I was anxious to learn how the received images compared with those on American viewing screens. As the BBC televised most of the big items of the Games, there was plenty of opportunity for comparison. It was good to experience the U.S.A. enthusiasm and to find how surprised the Americans were that our 405-line system carried so much.

Actually, it's all wrong to imagine that definition is fixed by the number of lines. You can't, for instance, drop below a certain minimum number (probably about 300) without having a poor image. But once you send a reasonable number of lines, the most important factor is the range of modulation frequency, generally transmitted and properly handled by the receiver. Unless this is sufficient your picture screen is "muzzy" and seems not to be sharply focused. This happens because the video impulses are not square enough, the result that the different shadings merge gradually into one another instead of being sharply defined. Our frequency range is 2.7 mc—a total band width of 5.4 mc. This, with the very efficient camera which have been de-
veloped, seemed to me to give images about as clear as one could wish. I was glad to hear from American visitors that they were agreeably surprised by the definition and the depth of focus.
European Report

By Major Ralph W. Hallows

Radio-Electronics London Correspondent

SOUTHEND is to Londoners what I imagine Coney Island is to New Yorkers. Lying near the mouth of the Thames estuary, its main industry is to provide seaside fun and games for visitors. Londoners flock there in thousands. Though it insists on calling itself Southend-on-sea, the town is, as a matter of fact, some few miles up the river. But the estuary is about seven miles wide here, and the town dweller gets the impression of a vast expanse of water, which is certainly salt.

Since the estuary has shallows extending a long way out from the shore even at high tide, Southend had to build one of the world’s longest piers to enable the steamboats, which bring so many of its visitors, to use it as a port of call. That pier is actually over 1¼ miles in length and juts out right into the main channel, through which there is a ceaseless passing of ships to and from the Port of London.

Could there be a better place than the end of this enormous pier at which to set up a school for training future radar operators of the merchant marine? Radar apparatus situated there has its screens as well supplied with “breaks” caused by passing ships as though it were carried on a vessel afloat in mid-channel.

That is just what has been done in the last few weeks. Some of the most up-to-date ship radar equipment has been set up. The scanner provides a lookout extending many miles upstream and downstream; the display is exactly the same as in shipborne radar. Classes of student operators are undergoing intensive training.

But don’t forget that Southend is above all things a holiday town, all out to entertain its visitors. The opportunity of showing them “the wonders of radar” was too good to be missed. And it hasn’t been missed. A repeater PPI tube has been installed in a room open to all. Do the holidaymakers like it? They do indeed! The radar cabin is now one of Southend’s most popular side-shows.

New dry cell

For the best part of 50 years the dry cell just stagnated. Until recently we operated our flashlights or portable radios from cells little more efficient than those which were available to our grandparents. The zinc-sal ammoniac-manganese dioxide-carbon cell had been good enough for them, and for a long time it seemed that it would be all that we would ever get. Though it has a good many things to recommend it, that combination of electrodes, electrolyte, and depolarizer is a very long way from ideal. The worst of its shortcomings is that it has a continually falling e.m.f. while under load. True, it recuperates to a large extent when given a rest, but it never quite regains all that it has lost. During a rest the e.m.f. rises, but as soon as the load is applied it ceases to have the same value as it had when the previous discharge began.

All this is due to the effects of polarization— and incomplete depolarization. Polarization means that positive hydrogen ions are formed at the carbon electrode and to give its positive charge stay there after they have been neutralized by grabbing electrons reaching the carbon from the outside circuit. In theory the manganese-dioxide depolarizer should hand out enough oxygen atoms to enable the hydrogen molecules to combine with them and form water. In practice it doesn’t. Both short-term and long-term polarization occur. During discharge the chemical combination is not sufficiently rapid to cause all the hydrogen molecules to form water. Short-term polarization thus occurs because of the formation of a film of hydrogen gas round the carbon rod. The internal resistance goes up, and down goes the e.m.f.

When the cell is rested, the MnO₂ depolarizer does further cleaning-up work; but it never entirely catches up with its job. After a long discharge and the following rest the film is a little denser, the internal resistance a little greater, and the e.m.f. a little lower.

Two noteworthy attacks on basic problems of the dry cell have been made recently. One is the Ruben cell; a second has just led in Britain to the Vidor Kautilum cell. The Vidor cell, whose internal makeup is shown in Fig. 1, has many interesting points. The zinc can of the original Leclanché dry cell is still there to form the negative contact. There is, again, a central carbon rod. But the electrolyte is caustic potash (KOH) and the depolarizer mercuric oxide (HgO). The top of the carbon rod is pressed hard against the tin-plate cap of the cell. A boss in the cap forms the positive contact. As the Kautilum cells are made in sizes identical with those of the familiar Leclanché cells, they can replace them anywhere—they have the same diameter, the same length, and the same contacts.

But there’s a vast difference in their performances. The Vidor has been tested out on some of the new Vidor cells of the 61 x 32.5 mm size. I was asked by the makers to treat ‘em rough, so I did. Each cell was discharged continuously and with no rests through a resistance of 5 ohms. Down to a voltage of 1.0 v. The cell reached the cutoff of 1.0 v. The new cells are perfectly happy with this load. They settle down almost at once to an e.m.f. of 1.15 v and maintain it. My tests showed that the e.m.f. was constant within ± 0.025 v for the first 25 hours of such continuous heavy discharge. Then it fell gradually for a further 10½ hours until it had reached 1.0 v. After that it was a landslide; within an additional 1½ hours it had fallen almost to zero. The e.m.f. may seem rather low, but I must say I prefer a moderate e.m.f. which stays put to a nominally higher one which doesn’t.

The Kautilum cell is made of dry alkaline material. The material used contains potassium hydroxide in a solution in form of potassium hydroxide (KOH), which is the depolarizer. The electrolyte contains potassium hydroxide and potassium carbonate. The cell’s e.m.f. is 1.25 v. It is an improvement over the Leclanché cell.

RADIO-ELECTRONICS for

www.americanradiohistory.com
Instrument Voltage Supply

A cheap and simple power supply that provides up to 50 mA at exactly 90 volts for instrument use.

By R. L. Parmenter

Very frequently resistors that are in the order of megohms have to be checked. Usually an external battery is used with a limiting resistor to extend the resistance range of the average ohmmeter. An external battery will last a long time and its cost is not too great, but there are advantages in having a small power supply available for the purpose.

This small regulated supply provides 90 volts at 50 mA. There is no warm-up period; the potential is there as soon as the line switch is snapped. Such a power supply can also be used as a B-supply for servicing batteryreceivers up to its limit of 50 mA. This limit might be extended somewhat by using a heavier-duty choke. The cost of the unit is nominal, about twice the price of B-batteries, but it will last indefinitely. With the 0B3/VR90, a regulated potential of 90 volts is obtained. Since this is a multiple of the batteries commonly used in ohmmeters, the resistance readings of the instrument can generally be multiplied by the proper factor without need of recalibration. In other words, if a 4.5-volt battery is normally used in the ohmmeter circuit the multiplier would be 20, since 90 divided by 4.5 equals 20.

The circuit diagram is shown in Fig. 1. The 1,000-ohm, 10-volt adjustable resistor is for setting the current flow through the rectifier tube to the proper value. This may be done very easily by inserting a 0-50-MA meter between the resistor and the tube. Adjust the slider until the current flowing through the tube is about 20 mA. This will provide good regulation even when the line voltage varies over a considerable range. The 1/4-watt neon bulb is used as a pilot lamp. Observe the polarity of the rectifier unit when wiring.

The cabinet was constructed of masonite and wood.

Suitable values would then be around 80,000 ohms for R1 and 20,000 ohms for R2 (to give it a little extra adjustment range).

To measure a resistor, connect the circuit of Fig. 2 to the multimeter through the milliammeters jacks on the panel. Short the test terminals A and B, and adjust R2 for full-scale reading. Now insert the unknown resistor between the test terminals and read the value from the ohms scale, multiplying by the proper factor.

The circuit of Fig. 2 can be used with any milliammeter, even one not calibrated in ohms. Having found the total series resistance necessary for full-scale meter readings (R1 plus R2), use the following formula to find the value of an unknown resistor:

\[Rx = \frac{90}{I_m} - (R1 + R2), \]

where Rx is the unknown resistor and Im is the milliammeter reading (in amperes) with the unknown in the circuit.

For instance, if the meter is a 0-1-mA unit, R1 plus R2 will equal 90,000. If the meter reading is 0.5 mA (0.0005 amp), the formula will read:

\[90 \times R_x = 90,000 = 90,000 \text{ ohms}, \]

An easier approach is to calibrate the meter with a number of known resistors, and paste a chart or table on some convenient part of the instrument.

When taking readings, beware of shock. Even 90 volts can be uncomfortable.
NEW L.C. CATALOG ELECTRIFIES RADIO MEN

THE BARGAIN COUNTER

Here's your chance to pick up some of the latest developments at big money savings. Every one of these "bargains" are sold at the lowest possible price. They're top quality, too! PM speakers, 68 or Alnico magnets. Voice coil impedance 3-2 ohms. Up to a booming 8 watt capacity. Ideal extra speaker for radios, public address, etc. $3.45

Lot of 2... $6.90 ea.

MICROGROOVE PICK-UP FOR NEW LP RECORDS

For the new long-playing records, crystal phonograph pickup for reproduction of lateral cut long playing microgroove records at 33'/3 rpm. Excellent frequency response for voice and music. Output voltage approx. 1 volt. Extremely low tracking force. No. 930043571. $4.95

THIS IS IT! NEW VM DUO SPEED CHANGER!

Made to sell for $149.50 now an amazing $59.95

For new 33 1/2 and standard 78 rpm records

Four hours' continuous entertainment with a stack of $355 rpm. records. One hour continuous play at 78 rpm. (Takes both 12" and 10" records, interspersed.) Universal dual speed motor, Qucik, quiet-changing cycle, takes less than 6 seconds. Automatic shut-off, single tone arm returns to rest and mechanism shuts off after last note. Crystal clear crisp tone, high fidelity. No 930059676, complete, $33.22

PICK-UP FOR 78 RPM PLAYER

Ideal for quality FM AM receivers. 15" dual speaker system with built-in frequency network. Tweeter and woofer reproduce entire audible range with magnificant realism. With built-in lead resistor, 8 ohm input impedance. No. 930009116...24 lb. $34.95

SPECIAL BULLETINS

Don't miss getting copies of our two new Free bulletins. One on TV, the other a Concord Hi-Fi Catalog. Hit the last one yet? We'll send you one free! The Xmas book's a real rainger, full of unusual ideas and grand values. Send the coupon.

RUSH THIS COUPON AT ONCE FOR YOUR FREE CATALOG

LAFAYETTE-CONCORD

the world's largest radio supply organization

N O V E M B E R, 1 9 4 8

ECONOMY-MINDED HAMS, SET BUILDERS, SERVICE MEN OVERWHELMED BY GIANT NEW BOOK! "Never saw anything like it!... As good as money in the bank!" —typical comments.

Law Upholds Landlord on TV Antennae

Under the law, landlords appear to be within their rights in refusing permission for erection of antennae by apartment tenants. They may file certain entirely or some permission to some residents and bar others, without being held answerable to those who do deny this favor. Courts have held that the rental of an apartment does not give the lessee any proprietary right to attach any equipment to the roof or other exterior parts of a building.

The property owner is also held to be within his rights in removing an aerial which has been put up without his permission, provided he takes the precaution of returning the equipment intact to the tenant in his building.
at without positive slope
vides measurement of c,ction
sweeps of
recepi...
Electron microscope, perfected at RCA Laboratories, reveals hitherto hidden facts about the structure of bacteria.

Bacteria bigger than a Terrier

Once scientists, exploring the invisible, worked relatively "blind." Few microscopes magnified more than 1500 diameters. Many bacteria, and almost all viruses, remained invisible.

Then RCA scientists opened new windows into a hidden world—with the first commercially practical electron microscope. In the laboratory this instrument has reached magnifications of 200,000 diameters and over. 100,000 is commonplace...

To understand such figures, picture this: A man magnified 200,000 times could lie with his head in Washington, D. C., and his feet in New York... A hair similarly magnified would appear as large as the Washington monument.

Scientists not only see bacteria, but also viruses—and have even photographed a molecule! Specialists in other fields—such as industry, mining, agriculture, forestry—have learned unsuspected truths about natural resources.

Development of the electron microscope as a practical tool of science, medicine, and industry is another example of RCA research at work. This leadership is part of all instruments bearing the names RCA, and RCA Victor.

* * *

When in Radio City, New York, you are cordially invited to see the radio, television and electronic wonders at RCA Exhibition Hall, 36 West 49th Street. Free admission. Radio Corporation of America, RCA Building, Radio City, New York 20.
not obtainable, the time spent in wind-
ing them with a high-value carbon re-
sistor as a form, well repays the trouble.
(Winding 4,700- and 15,000-ohm res-
isters with resistance wire is not too
easy, and the likelihood of any con-
structor’s getting residual in-
ductance and capacitance values as
those in the author’s instrument seem
fairly remote depending pretty much
on accident. Possibly ordinary carbon
resistors could be used with small r.f.
choke in series.—Editor)

An excellent indicator

The 6E5 has proved itself an excellent
detector. It is especially useful in one
instance where other indication devices
would be more or less useless—on a
weak unmodulated signal. This is made
possible by the presence of the weak
local oscillator of a superheterodyne
receiver. It is obviously impossible to
detect by ear whether a local oscillator
is oscillating; but, by placing the r.f.
prods of the tracer on the plate of the
oscillator circuits a signal can be ob-
tained from the 6E5 by the partial
closing of the eye. Naturally, the
response of the eye is not as great as it
would be normally, but it is sufficient
for the purpose.

It is essential that stray pickup should
be guarded against, and therefore metal
6J7 and rectifier tubes should be used.
If possible, an open-ended shield can
should be placed round the 6E5.

The instrument is built on a chassis
inside a 6 x 7 x 10-inch metal cabinet.
Fig. 2 shows the probes. Notice that
the shielding is made continuous from
the probe tip to the tracer jack by bond-
ing the probe case to the shield.

This tracer has been extremely
useful on outside service jobs, and
accounts for its lightness and portability.
Its weight is little more than that of
the average battery-operated multi-
function meter.

A bigger instrument

For bench work, a much more elabo-
rate instrument is used. The circuit is
shown in Fig. 3.

As a bench analyzer may frequently
be used to trace very weak signals, con-
siderable r.f. gain is advisable. Two r.f.
stages are incorporated, both of them
being resistance-capacitance-coupled
and having the r.f. gain control in the
common grid leg. These are followed
by a cathode-follower detector, chosen
for its signal-handling proper-
ties, high fidelity, and minimum
damping effect upon the previous stage.
The signal is then passed on to a 6C5
gate audio amplifier (into which the a.f.
prod is fed), and finally into a 6V6 output
stage.

Notice that two terminals have been
connected to the voice-coil leads for in-
sertion of an external a.c. voltmeter
which can be used as a visual indicator.
Bonding between chassis and panels
and all other shielding must be thorough

if the instrument is to be a first-class
job.

Operating the tracer

The tracer is easy to operate. When
using the r.f. probe, the a.f. gain control
should be kept at maximum, and any
adjustment of gain should be made on
the r.f. gain control in order to keep
tube noise to a minimum. When using
the a.f. probe, the r.f. stages are not in
use and the gain control may be turned
down. While not essential, this will
make for a clearer signal.

Let us suppose that the receiver
under test has poor quality. The first
thing is to tune in a local station or
inject a signal from a generator into
the antenna terminal of the receiver.
This is intended to silence the receiver’s
speaker as we shall be using that in
the tracer. Probably the best way to silence
the speaker is to disconnect the speaker-
transformer secondary and replace the
voice coil with a load resistor. In that
way no damage can be caused to the
output tube or transformer.

Now by placing the r.f. probe on
the various grids and anodes the signal
can be made to appear in the tracer’s
speaker. If no fault is apparent up to
the output tube detector, check over the
a.f. probe. Once the faulty section has
been found, the bad component can often
be determined by injecting a signal at
various points of the input to the tube
and using the probe.

Occasionally a receiver will be found in
which the signal, if there at all, is so
weak as to be inaudible on its own
speaker. In such cases, if the signal is
not audible when the r.f. probe is placed
on the first detector plate, it can be
assumed that the local oscillator is not
functioning, and checking can be done
on that basis. On the other hand, al-
though the signal is strong at the recei-
ver input, it may arrive at the speaker
distorted and unreliable. Tracing through with the instrument, a stage
will be reached at which there is a
marked diminution in the gain. Some
measure of the actual loss can be sec-
cured by rotating the r.f. gain control
and noting how much rotation is neces-
sary to bring the signal back to its former
strength.

With experience the operator will
rapidly become familiar with these and
many other faults indicated by the tracer
and will find that it is one of the handi
cest bits of gear any service tech-
nician can possess.

There are four rules to remember
when using a signal tracer: (1) Always
rotate the gain control to maximum,
(2) always start tracing from the an-
tenna end of the receiver and proceed
toward the output stage. (3) When using
the probe, keep the a.f. gain con-
trol at maximum, and regulate volume
with the r.f. gain control. (4) When using
the a.f. prod, turn the r.f. gain control
to minimum.
The waveguide connects with antennas, which are oriented in azimuth with antennas at next station. At right is complete repeater station.

The waveguide continues upward through the roof of the station toward the antennas.

Base of a waveguide circuit in a repeater station of the New York-Boston radio relay system.

Pipe Circuits

Unlike radio broadcast waves, microwaves are too short to be handled effectively in wire circuits. So, for carrying microwaves to and from antennas, Bell Laboratories scientists have developed circuits in "pipes," or waveguides.

Although the waves travel in the space within the waveguides, still they are influenced by those characteristics which are common to wire circuits, such as capacitance and inductance. A screw through the guide wall acts like a capacitor; a rod across the inside, like an inductance coil. Thus transformers, wave filters, resonant circuits—all have their counterpart in waveguide fittings. Such fittings, together with the connection sections of waveguide, constitute a waveguide circuit.

From Bell Laboratories research came the waveguide circuits which carry radio waves between apparatus and antennas of the New York-Boston radio relay system. As in long distance wire communication, the aim is to transmit wide frequency bands with high efficiency—band widths which some day can be expanded to carry thousands of telephone conversations and many television pictures.

Practical aspects of waveguides were demonstrated by Bell Telephone Laboratories back in 1932. Steady exploration in new fields, years ahead of commercial use, continues to keep your telephone system the most advanced in the world.

Bell Telephone Laboratories EXPLORING AND INVENTING, DEVISING AND PERFECTING FOR CONTINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.
Signal Tracers Are Popular

By T. W. DRESSER

For a considerable number of years the equipment used by most service technicians consisted of a good multitrange meter, a signal generator, an emission-type tube tester, a soldering iron, and an assortment of pliers, trimming tools, and other odds and ends.

With such equipment the more obscure faults such as distortion, intermittent signals, or low sensitivity or selectivity could not be located, and the trouble-shooter had to resort to the time-honored method of guess and substitute. Surprisingly enough, it often worked—the radio man has always been rather a genius at putting his finger on the spot—but generally it was a temper-frazzling and time-wasting business.

Then came the introduction of compact portable oscilloscopes. Fault finding, for those who could afford to buy a 'scope, became much easier. Even so, it took some time for the serviceman to familiarize himself with the significance of the various traces.

The man who could ill afford the high cost of such an instrument was still left to get along as best he could on the hit-or-miss principle. Only comparatively recently, with the advent of signal tracers, has he had the break he deserves.

Signal analyzers or signal tracers—take your pick; the instrument is one and the same thing—have continued to grow in popularity.

There are two very sound reasons for this increasing popularity: the low initial cost and light running costs and replacements; and the fact that, where receivers and amplifiers are concerned, a signal tracer localizes the fault as easily and as quickly as an oscilloscope.

Possibly the first signal tracer was a pair of phones and a blocking condenser. Literally thousands of technicians have prodded their way hopefully around a.f. circuits with such a combination without realizing to what extent such gear could be elaborated!

A simple tracer

Although still very useful in a.f. work, a pair of phones would be obviously useless on r.f. It follows, then, that we must have a detector for demodulation, and an a.f. amplifier to boost the signal. These are minimum requirements, but around them a useful tracer can be built.

The one shown in Fig. 1 was constructed by the writer for portability. The circuit is almost self-explanatory. A 6J7 is used as an r.f. amplifier into which the r.f. probe feeds directly. The signal is then passed on to either a 6E5 or 6L5, which is utilized as a grid-leak detector and also as an indicator. The phone signal is taken from the 6E5 plate via a 0.1-µf mica condenser. High-impedance phones must be used.

Inductive wire-wound resistors were used in the plate supply of the 6J7. There is a very sound reason for choosing such resistors: it was found that the small amount of inductance present in them, combined with the stray circuit capacitances, was sufficient to resonate around the high-frequency end of the coverage and thereby give a slight lift to the response curve at that end, resulting in a fairly level characteristic where otherwise there would have been a considerable falling off. Inductive wire-wound resistors are, therefore, a worth-while feature; and, if they are

Fig. 1—A simple but efficient visual signal tracer. The 6E5 is detector and indicator.

Fig. 2—One of many ways of making probes.

Fig. 3—A much larger—but still untuned—circuit for service bench work. Two r.f.'s and a cathode follower feed two a.f. stages.
APN/1 RADIO ALTIMETERS
NO. 300. The last chance to get a complete new 14 tube altitude meter. Contains 420 Mc, transmitter and receiver, power supply, range switches, two antennas, meter indicator, all wires and instructions manual. This unit makes excellent amateur station as it is right in the band. Shipped in original export crate. Weight 8 lbs. $34.50

G.E. BC 375 TUNING UNIT
NO. 203. Model TU108 covers 10 Mc. to 17.5 Mc. New complete with Aluminum Cabinet. The best buy of surplus. Offers 90.00 worth of new transmitters, collars, dials, switches, etc. Add postage for 20 lbs. $2.49

G.E. 50 AMP CIRCUIT BREAKER
NO. 204. New General Electric 50 Amp 220 Volt AC circuit breaker. 100 Amp when used on 110V. Add postage for 4 lbs. $2.95

BC 347 AIRCRAFT INTERPHONE AMPLIFIER
NO. 205. Interphone amplifier contains AF tube, Output transformers, diaphragm, etc. in aluminum cabinet. Add postage for 4 lbs. $2.95

274N COMMAND SET ACCESSORIES
NO. 238. 5th PM Speaker with out put transformer matching head- phone output. Add for $2.80. NO. 239. Dual receiver units FT277A with connecting plugs. $1.00 NO. 240. Single transmitter unit FT234A. $1.00 NO. 241. Splice shaft for tuning command receivers. Allows use of regular tuning knobs on BC 453-45 receivers. Add postage for 1 1/2 lbs. $1.95

BC 451 CONTROL BOX
NO. 246. Control box for 274N transmitters. Contains proper cw voice switch, 4 channel switch, power switch, mike jack and telegraph key. Add postage for 2 lbs. $1.95

METER SPECIAL
NO. 237. Brand new Delair Model 312 250 M. W. Model 313-10 3-010 M.A. basic meter with built in shaft. Probably the best buy offered in a surplus meter. Shipping Weight 1 lb. $2.95

A-62 ARMY PHANTOM ANTENNA
NO. 206, Contains tuning condenser, coil, resistors, tuning dial, tuning in- dicator, binding posts, steel case, useful for building amateur transmitter. Add postage for 8 lbs. $1.95

BENDIX MR9C COMPASS CONTROL UNIT
NO. 207. Tuning and control unit for Bendix MN 250 compass. Contains tuning dial, band switch, crystal switch, AVC switch, volume control, fusible plugs, etc. Shipping Weight 5 lbs. $9.50

BC 645 GENERAL ELECTRIC TRANSMITTER
NO. 201. Complete 15 tube transceiver-receiver, ideal for new and used ionosphere band 460 Mc. for communication between afi- liated stations, or as booster, etc. Conversion article in August ELECTRONIC MOSAIC. Brand new in original G.E. cartons. Add postage for 85 lbs. $19.50

ACCESSORIES FOR BC 645
PE101C Dynamic for car $2.95
110V 60 Cycle Power Supply for car or home office $14.50

T32 TABLE MICROPHONE
NO. 210. One of the Army's best. Built by Kellogg, ideal for factory call system, public address, amateur use. Brand new in original cartons. Add postage for 5 lbs. $2.95

MINIATURE ELECTRIC MOTOR
NO. 211 Grid motor only $1.15. 420-600 RPM. OPERA. $2.95 per motor. Add postage for 1 lbs. $2.95

DYNAMOTOR
NO. 310. Brand new. PE103 power supply. Input 6 or 12 Volts, output 500 Volts at 160 MA. Brand new original cartons. Shipping Weight 29 lbs. $9.50

P. F. 103 110V VOLTS FM DYNAMOTOR
NO. 213. An ideal dynamos for mobile operation in taxicabs, police cars, sound systems and amateur stations. Supplies 500 Volts at 350 MA from 6 Volts to 300 Volts complete with starting relay, and fuse. New. Our Dynamos A. Shipping Weight 72 lbs. $210.00

DYNOSOAR
NO. 215. Western Electric 24 Volt input, 220V, or 60 MA. Out. With filter assembly. $5.95

G.E. BC 306 ANTENNA TUNING UNIT
NO. 231. Matches any aerial to 150 Watt Transmitter, used on BC 375. Brand new original cartons. Shipping Weight 6 lbs. $2.95

W.E. BC456 MODULATOR
NO. 217. Heats two BC456 commands contains 3 husky relays, 3 tubes, VR150, 1225 and 1625. Brand new. Add postage for 11 lbs. $3.95

BE 77 TELETYPE TEST SET
NO. 218. Contains zero center vatt- milliammeter, switches, relays, voltage divider resistors, neon indicator, etc. Excellent foundation for radio tester. Shipping Weight 10 lbs. $7.95

BENDIX MN 20E DIRECTION FINDER LOOP
NO. 219. Ring type loop excellent for use on flexible or semi- rigid conducted. Low impedance unit excellent. Add postage for 8 lbs. $9.95 each

LP 18C DIRECTION FINDER LOOP
NO. 220. Metal box with transmitter and type loop used on automatic direction finding. Has Selyn transmitter and motor, fits most military direction finders. Add postage for $14.50 EACH

KIT SPECIALS
POTENTIOMETERS
NO. 223. Kit of 10 ex- cellent shaft type potentiometers varying 0 to 90 degrees. $1.95 each

SOCKETS
NO. 223. Kit of 20 high quality telephone socket and variable. $1.00 each

RCA NAVY COMMUNICATION RECEIVER
NO. 202. The last of these beautiful RCA sets. Covers Kc. to 9.1 Mc. continuously. Supplied with tuning assembly, two control box, tuning unit, 24 Volt dynamo, band change motor, plugs and instruction manual. Superhetorodyne circuit covers aircraft; broadcast, marine, high wave, marine, foreign broadcast. Has sharp or flat equalization. 6 B.F.O., etc. Shipped in original wooden case. $29.50

PE 125 TRANSMITTER
POWER SUPPLY
NO. 224. Operates from 12 to 24 Volts and supplies 500 Volts at 160 MA. Extremely rugged construction used in Army tanks. Complete with fuses, relays, filters, etc. Ideal for boats. $12.95

FM PUSH BUTTON TUNER
NO. 225. Brand new ten push button tuning assembly from Army FM receiver. Contains 4 gang 100 MMF silver plated tuning condens- ers. Add postage for 1 lbs. $2.50 EACH

RG 8/u FLEXIBLE COAXIAL CABLE
4 ft. PER FOOT
NO. 226. Standard television lead with each connector. Any length up to 1,000 ft. Add for postage. $3.95

OUTPUT TRANSFORMER
NO. 237. Push pull 6MV6's to 6.6 am voice coil excellent characteristics. 3 for $1.95

TRANSFORMER TRANSFORMER
NO. 228. The transformer for Transmitter Power Supply, 600 Volt at 200 MA, and 4 Amp. Filaments of 3 to 75 Volts. Also 5 Volts at 4 amperes for rectifier. $9.50

MILITARY POWER TRANSFORMERS
NO. 229. Convert your military receivers without rewiring them to "A" type supplies 500 VCT at 50 MA, 5V. at 2A and 54V. type supplies 500 VCT at 50 MA, 3V at 2A, and 12V. at 1 AMP. State whether A or B type desired. Shipping Weight 12 lbs. $12.95

HOME WORKSHOP GRINDER KIT
NO. 230. Easily assembled 110V AC or DC tool bearing full enclosed motor from Army surplus dynamotor. Purchaser to make some simple changes and shaft exten- sions, detailed instructions and all parts supplied. Motor approxi- mately 3.000 R.P.M. Ideal for tool-grind, flat, shearing tool, model drill press, saw, Shipping Weight 6 lbs. $3.95

HEARING AID HEADPHONES
NO. 216. The Army's best - eliminate flat ears and outside noise. Complete with transformer for conversion from low to high impedance. With cord and plug complete. Add postage for 1 lb. $1.00

TELEVISION CONDENSERS
NO. 221. Tube triple, 3 MFD 1100 Volt AC. D.C. C. D. Filter used on Army radar. Stock for H. V. Power supply for TV or on an outstanding buy for high voltage applications. Add postage for 3 lbs. $3.95

HOW TO ORDER
GIVE PART NUMBER AND DESCRIPTION. IF ORDERED UNDER $2.00 WE WILL SHIP COD.

THE HEATH COMPANY
DEPT. C . . . BENTON HARBOR, MICHIGAN

NOVEMBER, 1948

www.americanradiohistory.com
STANCOR FILAMENT TRANSFORMER NO. 243. Heavy duty Stancor ST355 supplies 5V at 6 Amps, 5V at 3 Amps and 5V at 3 Amps from 220/240 V, 50/60 cycles or 1/2 above from 110V. Rated type SH-165 Wgt. 7 lbs. Each $1.50

G.E. HYTRATRON TRANSFORMER NO. 245. New G.E. Transformer supplies 25V at .010 KVA, has 3Kv input and 12.6Kv output at 1A. Excellent for military sets. 6 lbs. Each $1.95

RCA SATURABLE REACTOR TRANSFORMER NO. 246. New RCA No. CRV30531 AC current 250 MA. DC current 500 MA. Rated 1.75 henries. Shipping Wgt. 4 lbs. Each $1.00

REPLACEMENT POWER TRANSFORMER NO. 251. Excellent value transformers made by one of largest transformer companies. 110V 60 cy. 12.6V at 1A. Most useful parts. Complete circuit furnished. 2 lbs. Each $2.95

FEDERAL POWER TRANSFORMER NO. 248. Heavy duty RCA No. CRV-30529. Input has primaries 600 to 200 and 32 ohms secondary 250,000 ohms. C.T. Shipping Wgt. 2 lbs. Each $1.00

HEAVY DUTY 12-24 VOLT VIBRATOR NO. 253. A husky vibrator capable of operating a transmitter. Rated 30 amperes at 6 Volts. 230 cycle with contacts for 12 and 24 Volts. Synchronous type, has many industrial applications. Ship. Wgt. 3 lbs. Each $1.50

4 CHANNEL PUSH BUTTON TUNER NO. 254. Permeability tuner from BC 728 containing RF, first detector, and oscillator coil (see page 158). Complete circuit furnished. Shipping Wgt. 2 lbs. Each $2.50

CONDENSER SPECIAL NO. 255. Made from ideal oil filled paper supply filter used in army 16 tube units, has 2.5, 3.5 and 5.5 Mfd all at 6000 V.D.C. rating. Shipping Wgt. 3 lbs. Each $1.50

TELEVISION CONDENSER NO. 256. Aerovox Nyval .05 Mfd at 7500V. Rating. Each. Used in television receiver. Used as tuning condenser with mounting bracket. Shipping Wgt. 3 lbs. Each $3.50

PC 746 TUNING UNIT NO. 257. Plug in transmitter tuning unit from army Walkie Talkie. Contains antenna and tank coils, tuning condenser, transmitting and receiving crystals. Ideal transmitter condenser. Shipping Wgt. 1 lb. Each $1.00

T30 THROAT MICROPHONE NO. 258. Makes excellent contact microphone. Ideal for atmospheric instrument or vibration pick-up. Shipping Wgt. 1 lbs. Each $1.00 Extension cord with switch for above $1.50 each

BRAND NEW ARMY AIR FORCE ASTROGRAPH NO. 259. The case of this unit makes the finest amateur telescopes. Kit ever designed. Plywood construction. 11 x 10" high, with 8 covered compartments in the battery. Steel reinforced, leather handle, hinged lid. Also excellent as case for radio, phonograph, movie projector, camera, shell, fishing kit, paint kit, etc. The astrograph itself, (which cost the government $72.50) makes an excellent contact printer, and can be used for a foundation for enlarger, strip map holder, etc. The case alone worth twice the give-away price of $3.95

ANZ7 ARNS ANTENNA NO. 260. Standard blind type antenna complete with case, in original carton. Shipping Wgt. 14 lbs. $9.50

AS115/APT ANTENNA SYSTEM NO. 261. New blade type antenna complete with case, in original carton. Shipping Wgt. 11 lbs. $7.50

AT38A/RADAR ANTENNA NO. 262. Standard blade antenna used on many military lighting planes with coastal location at base. Shipping Wgt. 3 lbs. $14.50

AN104A BLADE ANTENNA NO. 264. Standard blade antenna used in many military installations. Shipping Wgt. 11 lbs. $1.50

BENDIX MTS1C TRANSMITTER CONTROL BOX NO. 235. Contains channel switch, emission switch, receive switch, power switch and sending antenna system. Brand new in original crate. Shipping Wgt. 14 lbs. $25.00

BC 670B REMOTE CONTROL BOX NO. 265. Meter starting and stopping switch, indicator and cable plug. Shipping Wgt. 6 lbs. Each $1.95

BK 23 RADAR ASSEMBLY NO. 266. Used on SCR 269 Radar Compartments. Contains stepping and control switch, junction box of aluminum. Brand new. Shipping Wgt. 7 lbs. Each $3.95

HEINEMANN CIRCUIT BREAKER NO. 267. Heavy duty type 7 Amp. 24 Volt D.C. Many uses around shop. Shipping Wgt. 2 lbs. Each $1.00

CUTLER HAMMER MOTOR FIELD CONTROL NO. 285. Rated 10 ohms. 3.2 Amps. Maximum 6/8" diameter with knob and mounting feet, can be used to regulate generator output voltage. Shipping Wgt. 5 lbs. Each $2.50

PENN THERMO RELAY NO. 268. Therma Relay with a range of 45 to 100 complete with 5 ft. Flexible cable to im- mersion bulb. Shipping Wgt. 6 lbs. Each $2.50

B/W 11 to 14 MC TANK COIL NO. 281. Plug in type used in BC 410 Transmitter. New, original cartons. Shipping Wgt. 2 lbs. Each $1.50

DM 44A 12 VOLT DYNAMOTOR NO. 269. Input 12V at 5 Amps. Output 275 Vat 150 MA. New. Shipping Wgt. 7 lbs. Each $3.50

DM 32A COMMAND SET DYNAMOTOR NO. 276. Part of 274A Command set. Uses 28 Volts, output 250V at 60 MA. Shipping Wgt. 4 lbs. Each $5.50

DM 21 12 VOLT DYNAMOTOR NO. 272. New 12 Volt Dyna- motor used on present military receivers. Input 28 Volts, output 250V at 60 MA. Shipping Wgt. 4 lbs. Each $5.50

PE94C SCR S22 POWER SUPPLY NO. 273. Complete Dyna- motor power supply for the SCR 521, operates from 28 Volts. Complete with controls, filters, etc. Original car- ton. Shipping Wgt. 24 lbs. $8.75

PE101C BC645 POWER SUPPLY NO. 274. Complete power supply for BC 645, 24 Volts. Supplies both AC and DC. Shipping Wgt. 13 lbs. Each $3.95

DM 35 12 VOLT DYNAMOTOR NO. 275. New input 110 V at 187 Ampere supplies 675V at 275 MA or 1/2 above voltage for Military. Excellent for auto use. Shipping Wgt. 11 lbs. Each $7.50

PE 86 DYNAMOTOR NO. 214. A popular 28 Volt receiver dynamotor used on present military equipment. Supplies 250V at 60 MA. Shipping Wgt. 4 lbs. Each $5.50

GN 58 HAND GENERATOR NO. 277. Makes excellent home lighting plant, operated by wind propeller, waterfalls, gas engine, or hand crank. Reduction gear allows full output at slow speed; supplies 445 amp at 115 V. New. Add postage for 28 lbs. Each $7.95 Handles for GN 58 50.00 each Connecting card for GN 53 with plug .050" 51.50 each

COLINS AUTOTUNE CONTROL HEAD NO. 278. Brand new controls used on the ABT/12, 100 Watt Trans- mitter. Types 7,8, 10, and 11 available. QRP Control as new cost is over $52.00 each. Shipping Wgt. 1 lbs. Price any type (mention when ordering) $4.50

MC 432 VHF ANTENNA LOADING UNIT NO. 279. Contains 2 pole, 5 position rotary switch with silicon controlled variable condensers, and coils for matching VHF Transmitter antenna with 50 ohm line. Many useful parts. Shipping Wgt. 2 lbs. Each $1.50

148 OUTDOOR TELEGRAPH KEY NO. 280. Rugged enclosed type for outdoor use, built for army to withstand hard usage. Complete with case and PL55 plug. Shipping Wgt. 2 lbs. Each $2.00

ONE KILOWATT ADJUSTABLE ANTENNA LOADING COIL NO. 282. Huge porcelain coil diameter 8", longer in diameter 8", fixed type, with 2 sliders for adjustments. Shipping Wgt. 5 lbs. Each $3.50

300 MA SELENIUM RECTIFIERS NO. 209. Rated 300 MA at 36 Volts, complete with mounting brackets. Shipping Wgt. 1 lb. Each $3.00

DUAL SELENIUM RECTIFIER NO. 283. Two units mounted on single bracket, each 300 MA at 15V, 1/2 Amp. Shipping Wgt. 2 lbs. Each $1.00

HOW TO ORDER • GIVE PART NUMBER AND DESCRIPTION • ADD POSTAGE FOR WEIGHT SHOWN. NO ORDERS UNDER $2.00...WE'LL SHIP C.O.D.

THE HEADQUARTERS
DEPT. C...BENTON HARBOR, MICHIGAN

www.americanradiohistory.com
TEST EQUIPMENT

HEATHKIT FM and TELEVISION SWEEP GENERATOR KIT

THE BASIC FM AND TELEVISION SERVICE INSTRUMENT

Features -
* Covers 2 Mc. to 326 Mc.
* 110 V. 60 cycle transformer.
* Supplies either RF or FM.
* Variable sweep width 0 to App. 10 Mc.
* Large calibrated dial.
* Variable phase control.
* Sweep output for scope.
* No band switching necessary.
* Uses new miniature HF tubes.

At the lowest cost possible, anyone can now service FM and television receivers. The Heathkit sweep generator kit operates with oscilloscope and covers all necessary frequencies. A few pleasant hours assembling this kit puts any organization in position to share the profits of the FM and TV boom.

Every part supplied - grey metal cabinet, two color calibrated panel, all metal parts punched, formed, and plated. 5 tubes, complete detailed instructions for assembly and use. Shipping weight 6 lbs.

$24.50

HEATHKIT HIGH FIDELITY AMPLIFIER KIT

Build this high fidelity amplifier and save two-thirds of the cost. Push pull output using 1619 tubes (military type 6L6), two amplifier stages using a dual triode (6SN7), and a phase inverter give this amplifier a linear reproduction equal to amplifiers selling for ten times this price. Every part supplied; punched and formed chassis, transformers (including quality output to 3-8 ohm voice coil), tubes, controls, and complete instructions. Add postage for 20 lbs.

12" FM speakers for above $6.95

$14.95

NEW 1948 HEATHKIT 5" OSCILLOSCOPE KIT

A necessity for the newer servicing technique in FM and television at a price you can afford. The Heathkit is complete, beautiful two color panel, all metal parts punched, formed, and plated and every part supplied. A pleasant evening's work and you have the most interesting piece of laboratory equipment available.

Check the features - large 5" 5BP1 tube, compensated vertical and horizontal amplifiers using 657's, 15 cycle to 30 M cycle sweep generator using 384 gas triode, 110V 60 cycle power transformer gives 1100 volts negative and 350 volts positive.

Convenient size 8½" x 13 1/2" high, 17" deep, weight only 26 pounds.

All controls on front panel with test voltage and ext. syn. post. Complete with all tubes and detailed instructions. Shipping weight 35 pounds. Order today while surplus tubes make the price possible.

$14.50

HEATHKIT 3- TUBE ALL-WAVE RADIO

An ideal way to learn radio. This kit is complete ready to assemble, with tubes and all other parts. Operates from AC. Simple, clear detailed instructions make this a good radio training course. Covers regular broadcasts and short wave bands. Plug-in coils. Regenerative circuit. Operates loud speaker. Add postage for 3 lbs.

HS 30 Headphones per set $1.00
2½" permanent magnet loudspeaker $1.95

$8.75

INTERPHONE 2-WAY CALL SYSTEM KIT

Ideal call and communication system for homes, offices, factories, stores, etc. Makes excellent electronic baby watchter, easy to assemble with every part supplied including simple instructions. Distance up to 1/3 mile. Operates from 110 V. A.

3 tubes, one master and one remote speaker. Shipping Weight 3 pounds.

$14.50

110 V. A.C. MILITARY RECEIVER POWER SUPPLY KIT

Ideal way to convert military sets. Supplies 24 Volts for filament - no wiring changes inside radio. Also supplies 250 V. D.C. plate voltage at 50-60 MA. Connections direct to dynamotor input. Complete with all parts and detailed instructions. Ship. Wt.: 6 lbs.

$5.95

110 V. A.C. TRANSMITTER POWER SUPPLY KIT

For BC-645, 223, 522, 374V-1's etc. Ideal for powering military transmitters. Supplies 500 to 600 Volts at 150 to 200 MA plate, 6.3 C.T. at 4 Amps, 6.3 at 4 Amps and 12V at 4 Amps. Can be combined to supply 3-6-9-12 or 24 Volts at 4 Amperes. Kit supplied complete with worthy 110V 60 cycle power transformer, SU4 rectifier, all filled condensers, capped chokes, punched chassis, and all other parts including detailed instructions. Complete - nothing else to buy.

$14.50

The HEATH COMPANY
DEPT. C... BENTON HARBOR, MICHIGAN

NOVEMBER, 1948
HEATHKIT CONDENSER CHECKER KIT

A condenser checker anyone can afford to own. Measures capacity and leakage from 00001 to 1000 MFD on calibrated scales with test voltage up to 500 volts. No need for tables or multipliers. Reads resistance 500 ohms to 2 megohms. 110V 60 cycle transformer operated complete with rectifier and mag eye indicator tubes. Easy quick assembly with clear detailed blueprints and instructions. Small convenient size 9" x 6" x 4½”. Weight 4 pounds. This is one of the handiest instruments in any service shop.

HEATHKIT SIGNAL GENERATOR KIT

Every shop needs a good signal generator. The Heathkit fulfills every servicing need, fundamentals from 150 Kc. to 30 megacycles with strong harmonics over 100 megacycles covering the new television and FM bands. 110V 60 cycle transformer operated power supply. 400 cycle audio available for 30% modulation or audio testing. Uses 6SN7 or RF oscillator and audio amplifier. Complete kit has every part necessary and detailed blueprints and instructions enable the builder to assemble it in a few hours. Large easy to read calibration. Convenient size 9" x 6" x 4½”. Weight 4½ pounds.

THE NEW HEATHKIT VACUUM TUBE Voltmeter Kit

The most essential tool a radio man can have, now within the reach of his pocketbook. The Heathkit VTVM is equal in quality to instruments selling for $75.00 or more. Features 500 microamp meter, transformer power supply, 1% glass enclosed divider resistors, ceramic and glass switches, 1 megohm input resistance, linear AC and DC scales, electronic AC reading RMS. Circuit uses 6SN7 in balanced bridge circuit, a 6000 ohm AC rectifier and 6 x 5 as transformer power supply rectifier. Included is means of calibrating without standards. Average assembly time less than four hours and you have the most useful test instrument you will ever own. Ranges 0-1, 100, 1000 volts AC and DC. Ohmmeter has ranges of scale from 1, 100, 1000, 10M and 1 megohm giving range 1 ohm to 1000 megohms. Complete with detailed instructions. Add postage for $8.

HEATHKIT SIGNAL TRACER KIT

Reduces service time and greatly increases profits of any service shop. Uses crystal diode to follow signal from antenna to speaker. Locates faults immediately. Internal amplifier available for speaker testing and internal speaker checks. Available for amplifier testing. Connection for VTVM on panel allows visual tracing and gain measurements. Also tests phonograph pickups, microphones, PA systems, etc. Frequency range to 200 Mc. Complete readymade kits. 110V 60 cycle transformer operated. Supplied with 3 tubes, push pull plug-in, 2 color panel, all other parts. Easy to assemble, detailed blueprints and instructions. Small portable 9" x 6" x 4½”. Weight 6 pounds. Ideal for taking on service calls. Complete your service shop with this instrument.

HEATHKIT SINE AND SQUARE WAVE AUDIO GENERATOR KIT

The ideal companion instrument to the Heathkit Oscilloscope. An Audio Generator with less than 1% distortion, high calibration accuracy, covering 20 to 200,000 cycles. Circuit is highly stable. Transformer capacity tuned circuit filter tubes are used, a 6X3 and a 6L6 in the oscillator circuit, a 6517 square wave clipper, a 6SN7 as cathode follower output and 592 as transformer power supply rectifier. The square wave is of excellent shape between 100 and 5000 cycles giving adequate range for all studio, FM and television amplifier testing. Either sine or square wave available instantly at a toggle switch. Approximately 25V of sine AC available at 50,000 ohm output impedance. Output is 1 db. from 30 to 20,000 cycles. Nothing else to buy. All metal parts are punched, formed and cadmium plated. Complete with tubes, all parts, detailed blueprints and instructions.

HEATHKIT ELECTRONIC SWITCH KIT

DOUBLES THE UTILITY OF ANY SCOPE

Gives two separately controllable traces with individual input on any scope. See both the input and output traces, locate distortion, phase shift, etc., immediately. Individual gain controls and positioning controls. Course and fine sweeping rate controls. Complete Heathkit matches others, with 5 tubes. All metal parts are punched, formed and cadmium plated. Complete with tubes, all parts, detailed blueprints and instructions. Shipping Wt. 13 lbs. Nothing ELSE TO BUY

$34.50

FOR RADIO MEN TO ASSEMBLE THEIR OWN

★ Save ½ the cost.
★ Gain valuable knowledge.
★ Achieve better craftsmanship.
★ Learn many new applications.
★ Ideal training for use.

Heathkits are regular factory quality test equipment unassembled but with all forming, punching, calibrating and printing already completed.

HEATH COMPANY
DEPT. C ... BENTON HARBOR, MICHIGAN

RADIO-ELECTRONICS for...
The amplifier, used on the lower ranges, also has negative feedback, achieved by leaving part of the cathode resistor unbypassed so that good frequency response is obtained throughout the audio range.

A certain amount of high-frequency compensation is gotten by connecting a 20-muf condenser between the amplifier cathode and ground.

Constructional details

The layouts of the front panel and chassis are shown in the photographs. For the panel, a black crackle finish is used, lettered with white drawing ink. Where the panel is to be lettered, the paint is first smoothed with fine sandpaper, then moistened with saliva and allowed to dry.

Layout of the chassis is not particularly critical, no more so than that of a microphone preamplifier. Main points are shielding the 6J7-G, if one is used, and short leads from the hot input terminal and from the control grid of the first tube. The range switch should be covered with a grounded metal shield can.

Warning: do not attempt to omit the power transformer and use an a.c.-d.c. circuit with a line-cord resistor. You can’t hope for reliable readings if one side of the power line is connected to the chassis.

Calibration

Set R1 so that the meter reads a very small value, but not zero (say about .01 ma). Mark this point zero on the meter scale.

A calibration setup will be needed. This can consist of a 100,000-ohm potentiometer connected across the 117-volt power line, with a reliable a.c. voltmeter between the arm and ground. Test with an incandescent lamp to make sure which is the grounded side of the line. The arrangement appears in Fig. 2. Be careful not to touch anything but the grounded leads.

Before going further, adjust the values of R2 and R3 for the indicated B-voltage. Then set the arm of the calibration potentiometer for 20 volts. Set the v.t.v.m. range switch to the 20-volt position, and adjust R4 for full-scale meter deflection. Adjustments on this and other fixed resistors can be made either by substituting other resistors or, if the resistor is an unsulated carbon type, filing it down to obtain higher resistance. The scale can be calibrated now by varying the input voltage and marking in the various values on the meter.

Next set the test voltage at 10 and make sure the v.t.v.m. reads properly.

Fig. 2—Setup for calibrating the voltmeter.

Wiring under the chassis should be rigid and short to minimize hum pickup and instability.

Set the range switch at 200 and adjust R5 and R6 so that the meter again reads 10.

The remaining scale can be calibrated by setting the range switch, feeding in the proper voltage, and adjusting the 6-megohm resistor on the 0.8-volt range and the 38-megohm resistor on the 4-volt range for full-scale meter reading. The 0.2-volt range should be calibrated first by setting R7. R7 should be left alone while calibrating the other two low-voltage ranges.

This type of meter gives readings depending upon the peak value, although the scale is calibrated to read r.m.s. or effective values. The presence of even harmonics can be detected by reversing the input leads to the v.t.v.m. If there is a difference in the readings, second harmonic is probably present. Inadequate shielding of the supply may also cause hum to be picked up with one polarity but not with the other.
ANY voltage measurement that can be made by a v.t.v.m. can be made by some other means, but a tube makes a very portable, convenient, stable, cheap and versatile device.

Vacuum-tube voltmeters are used to measure voltages: (a) from a high-impedance source, (b) that are very small, (c) of very high frequency, and (d) whose wave form is unknown or unusual. Voltages in class (a) can be measured by certain types of electrostatic voltmeters which contain no resistance across the input, but it's easier and cheaper to use a buffer amplifier with a special tube requiring no grid leak and to follow it with an ordinary meter.

Very minute voltages can be measured with an Einthoven string galvanometer or by a potentiometer, but again it's easier to amplify the small voltage and bring it into a higher range.

High-frequency voltages can be measured with rectifier-type or thermocouple meters if special compensation networks are used, but the effective ohms per volt are rather low.

No matter what the wave form, it is possible to devise a v.t.v.m. that will measure peak, average, or r.m.s. value, whichever is desired.

Any detector circuit can be used as a v.t.v.m. There are three types of detectors: the grid-leak (very sensitive for low input voltages); the anode-bend with feedback (very linear but comparatively insensitive); and combinations of these with an amplifier preceding or following.

The preceding amplifier usually makes the instrument suitable for a.c.

A practical instrument which uses an extra amplifier tube for the lower-voltage ranges

Just one control, the range switch, appears on panel.

By JOHN W. STRAede*

*Lecturer in electronics and electron-acoustics, Melbourne Technical College, Australia.
BUILD YOUR OWN SIGNAL TRACER and SAVE!!

The Only Signal Tracer in the Low Price Range
Including BOTH METER AND SPEAKER!!

We are pleased to announce we have obtained an exclusive franchise to distribute the well known Model CA-12 Signal Tracer in kit form. The Model CA-12 sells regularly for $29.95, here is your opportunity to save $8.60 with the added advantage of complete familiarity of design and operation made possible when you build your own instrument.

FEATURES: ☀ Comparative intensity of the signal is read directly on the meter—quality of the signal is heard in the speaker. ☀ Simple to operate—only one connecting cable—no tuning controls. ☀ Highly sensitive—uses an improved vacuum-tube voltmeter circuit. ☀ Tube and resistor capacity network are built into the detector probe. ☀ Built-in high gain amplifier—Alnico V speaker. ☀ Completely portable—weight 8 pounds—measures 9" x 6½" x 7½".

MODEL CA-12 Kit includes ALL PARTS assembled and ready for wiring, circuit diagram and detailed operating data for the completed instrument $21.95

MODEL CA-12 COMPLETELY WIRED READY TO OPERATE $29.95

THE NEW MODEL 670

SUPER METER

SUPER METER A Combination VOLT-Ohm-MILLIAMMETER plus CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS. D.C. VOLTS: ±3 to +3.75 150, 250/ 150, 9 VDC. OUTPUT VOLT: 1.5 VDC 1000 ohms. D.C. CURRENT: ±1.5 μA 100 Ω. VOLTAGE RESISTANCE: ±2.5 in 5000 Ω. MILLIAMMETER: CAPACITY: 100 μF to 2 μF. 1 to 4 MHz. DECIBEL TEST for microphonic / REACTANCE: 7 kΩ to 20 kΩ; 100 kΩ to 1 MHz. INDUCTANCE: 1.75 μH to 20 μH; 25 μH to 50 μH. DECBELS: -10 to +18 -45 to +35.

The Model 670 comes housed in a rugged, wrinkle-finished steel cabinet complete with test leads and operating instructions. Size 8½" x 5½" x 3½" $28.40 NET

The Model S-35 — a POWERFUL REFLEX PROJECTOR

COMPLETE WITH WESTERN ELECTRIC BUILT-IN DRIVER UNIT

Conservatively rated at 35 watts—will easily handle up to 33 watts blasting. Heavy cast aluminum in the main trumpet section completely eliminates beating and blurring. New glassy diaphragm assures the inherent peaks of the old type; and it is absolutely insensitive to accidentally curious when the old type was subject to accidental effects. Complete unit warranted 1 year from date of purchase.

Specifications

POWER (CONSERVATIVE) — 35 WATTS: AIR COLUMN—1/8 FT.; DISPERSION—8 ft. POWER (PEAK) — 55 WATTS: BELL DIAMETER—12½" IMPEDANCE—8 ohms FREQUENCY RANGE—130 to 5000 G.P.S. PROJECTION—1/2 mile FINISH — Attractive two tone crystaline. The Model S-35 Comes Complete with Built-in Driver Unit, ONLY $28.50 NET

The Model S-88 — A COMBINATION SIGNAL GENERATOR AND SIGNAL TRACER

SIGNAL Generator Specifications:

*Frequency Range: 150 Kilocycles to 50 Megacycles. The R.F. Signal Frequency is kept completely constant at all output levels. *Modulation is obtained by fixed blockage action which is equally effective for alignment of amplitude and frequency modulation as well as for television receivers. *R.F. obtainable separately or modulated by the Audio Frequency.

SIGNAL Tracer Specifications:

*Uses the new Sylvania 11714 germanium crystal tube which is combined with a resistance-capacity network providing a frequency range of 500 cycles to 50 megacycles.

The Model S-88 Comes complete with all test leads and operating instructions ONLY $28.85 NET

20¢ DEPOSIT REQUIRED ON ALL C.O.D. ORDERS

GENERAL ELECTRONIC DISTRIBUTING CO.

DEPT. RC-11 98 PARK PLACE, NEW YORK 7, N. Y.

NOVEMBER, 1948

www.americanradiohistory.com
The preamplifier has two tubes and two controls.

Like the booster described in the October issue, the one diagrammed is based on the cascade circuit, using two tubes in a novel circuit arrangement (See Fig. 1). It operates on the h.f. television band.

Both the input circuit and the output circuit are tuned. L1 and L2, made of heavy wire, are self-supporting. Each is formed of 11½ turns ¾ inch in diameter. A little experimenting with turns spacing will be needed to tune over the band. With four-plate midget tuning condensers, channel 13 comes in near minimum capacitance. Channel 7 requires about two-thirds maximum capacitance. The tuning controls track closely.

Input and output coupling coils, L3 and L4, are also self-supporting and are made of push-back wire. Each has 11½ turns. Maximum gain is provided by coupling as tightly as possible to the tank coils.

Choke L5 is made of four turns ½ inch in diameter. L6 is 6 turns of wire and ¾ inch in diameter. Use No. 18 to 22 enamelled wire.

The booster has been tried on channels 7, 11, and 13. Using the conventional signal-strength scale, it raises the signal about 2 S-points. Gain is slightly less near the upper end of the band than it is on channel 7. Unless the noise level is already too high, this booster will bring in a clearly visible (though weak) picture where the receiver alone tunes in one which is practically invisible.

When added to an average TV set, which has an r.f. stage, the booster provides as much gain as can be used in most cases. This is because the noise level is also brought up. Further improvement requires a better location or a more efficient antenna.

Only one booster may be sufficient in a particular location, but it is possible that both high and low bands will require amplification. This booster and the one described in October can be combined into a single unit on the same chassis and with the same power supply.

Since the low-band unit included a power supply, all that is necessary is to connect the high-band unit to the same supply. As a matter of fact, this amplifier was built on half of the same sawed-in-two chassis.

Even the simplest switching arrangement within either preamplifier will introduce long leads and add too much capacitance. When combining the two preamps on one chassis, switch the 500-ohm lines from the antenna and to the receiver. Construct each amplifier as a complete unit (except for power supply) and use a rotary selector switch to transfer input and output transmission lines from one to the other. A center position for cutting out the preamps entirely would be a good idea. To prevent long leads under the chassis (these will reduce amplification and cause instability), use a long switch shaft and position the switch ganges close to the terminal points. The switching diagram of Fig. 2 gives a suggested arrangement. Use low-loss-type switch washers.

![Diagram of High Band Telebooster](image-url)

Fig. 1—Unit is a cascade with double tuning.

Fig. 2—Proposed low-high switching circuit.

Underchassis view. Parts layout and manner of winding coils can be seen from the photograph.
As of Sept. 1948: 618 FM stations on the air. 818 FM stations with construction permits and conditional grants.

MAIL COUPON TODAY FOR THIS 24-PAGE FREE BOOKLET!

Capitol Radio Engineering Institute
16th and Park Road, N.W., Dept. RC-11
Washington 10, D.C.

Gentlemen: Please send me your free booklet, "CREI training for your better job in RADIO-ELECTRONICS," together with full details of your Home Study training. I am attaching a brief resume of my experience, education and present position. Check the Course:

☑ Practical Television
☐ Practical Radio-Electronics

Name: __
Street: __
City: __
Zone: State: ____________________________________

☐ I am entitled to training under the GI Bill.

Chief Engineers, Studio Engineers, Transmitter Engineers
for more than

1100 FM* & 2350 AM BROADCAST STATIONS
the FCC indicates will be in operation in the U.S. next year

Yes, Plenty of Good-Paying Jobs...
BUT Only for those Qualified

FM is actually coming into its own in 1948-49...more than 1100 FM stations with permits and grants now on the air, or soon to be. Over 1200 standard broadcast stations now in operation—1200 more with construction permits and applications. Television receivers are on mass production lines. Hundreds of new TV stations will be going on the air—over a hundred construction permits now issued—over 400 TV applications now at the FCC.

Radio-electronics is not only expanding in job opportunities but is also growing in technical complexity. Rapid developments in every branch of the field are leaving many radio technicians and engineers far behind the parade of progress. These are the men who fail to realize that their technical knowledge must grow with the expansion of the industry.

What does this mean to you? It means you must study not only to hold the job you now occupy...but study to qualify for the better job you want. CREI modern technical training can (within a comparatively short time) qualify you for the better jobs and help enable you to step ahead of those who have failed to improve their ability through technical training.

Beginning right now CREI can provide the on-the-job training that equips you with the technical ability to go after—and GET—the important, high salaried jobs. Get all the facts today about the unprecedented opportunities that await you. Learn how CREI spare-time training can help you as it has helped thousands of other professional radio men to better jobs during the past twenty years.

VETERANS! CREI TRAINING AVAILABLE UNDER THE "G. I." BILL

Capitol Radio Engineering Institute
An Accredited Technical Institute
Dept. RC-11, 16th and Park Road, N.W., Washington 10, D.C.

Branch Offices: New York (2): 170 Broadway
San Francisco (2): 760 Market St.
very much like shunt-peaked circuits but they have sharper cutoff. The voltage developed across RL is applied across the grid leak of the following stage, Rg, and C2. Since Rg is large, the series resonant circuit, L and C2, works as a reactive voltage divider. The voltage across C2—and Rg—rises as the resonant frequency is approached. (The value of L is chosen so the resonant frequency is outside the high-frequency cutoff point of the amplifier.) This compensates for losses caused by C1 shunting RL. C1 and C2 are portions of the shunt capacitance between the stages. The ground. If the output capacitance is larger than the input capacitance, R1 will normally be connected to the grid (low-capacitance) end of L, as in Fig. 6. If Cc has a large capacitance to ground, this will add to the input capacitance and C2 may be larger than C1.

Fig. 5—Basic diagram, series peaking circuit.

Shunt peaking reduces the effect of the series capacitance by a factor of (Cm + Ct + Cw), divided into C1 and C2 by L. The major disadvantage of series peaking is that there should be a 2 to 1 ratio between the capacitance of C1 and C2. This is not always easy to realize in practice. The circuits work best when RL is on the low-capacitance side of the network. In Fig. 5, RL is connected directly to the plate of the tube so C2 must be made equal to 2C1.

It is difficult to balance the shunt capacitance properly and the positions of the components in the circuit must be found by experiment. A good scope and a square-wave generator are required for this. Connect the scope to the output of the generator, feed in a 100-cycle square wave and observe the wave shape on the scope. Adjust the generator and scope controls until a good square wave is obtained. Now connect the generator to the input of the amplifier and the scope to its output. If the leading edges are badly rounded, try altering the positions of RL, L, and Cc. Position the components for the best possible wave shape—giving particular attention to the edges.

Even in the most carefully planned circuits, Cc, the coupling capacitor, will add considerably to the stray capacitance. If it is paper, the major capacitance will be between the outer foil and

where I is in henries, C in farads and f in cycles. Best results can be obtained by winding L on a form with a variable powdered-iron core. The core can be adjusted for the best high-frequency response. Series-peaked circuits cut off sharply, so the further f is from the cutoff frequency, the flatter the frequency response curve. In some instances, it may be necessary to shunt L with a resistor about 5 to 10 times RL to flatten the response.

Series-shunt peaking is, as the name implies, a combination of both compensation methods. The basic circuit is shown in Fig. 7. Here, L1 corresponds to L in Figs. 1 and 2 and L2 corresponds to L in Figs. 5 and 6. In this circuit, the 2 to 1 ratio of C1 and C2 should be maintained. In this case, L1 and RL may have large capacitance to ground and it may be necessary to connect the shunt peaking network at A on the plate side of L2. In Fig. 7:

Fig. 8—Commercial series-shunt high peaker.

Check this by moving Cc to the plate end of L (A in Fig. 5). It is even worth while to try turning Cc end-for-end.

In Figs. 5 and 6:

Fig. 9—Navy ATK airborne transmitter uses an R-C high peaker and L-C stage compensators.

Fig. 10 (left)—The ideal V1-to-V2 response. Fig. 11 (right)—Response of the high peaker.

L2 controls Q and assists in obtaining the desired response. Fig. 10 shows optimum response between the grid of V1 and the plate of V2.

The "high-peaker" between V2 and V3 completes the restoration of highs lost at the input of V1. The degree of peaking and the point at which it occurs may be varied by adjusting C2. Fig. 11 is the response curve between
The Preferred Radio Buying Guide

It's ready for you—the new 1949 ALLIED Radio Catalog! Get the Radio Buying Guide that's the first choice of thousands of expert service technicians, engineers, soundmen, Amateurs, builders and experimenters. The new ALLIED Catalog—Radio's largest and most complete—brings you 180 pages packed with the widest selections of the newest and finest equipment, at today's lowest, money-saving prices! Here's everything in radio for everyone in radio: new Television and home receivers; radio-phonos with new Dual-Speed Changers; packaged Sound Systems, high-fidelity sound components and P. A. equipment; latest Amateur receivers and station gear; test instruments; builders' kits; thousands of parts, tubes, tools, books—the world's largest and finest stocks of nationally known equipment. Take advantage of ALLIED's speedy, expert shipment and the personal attention of seasoned old-time radio men. Get the details, too, of radio's most liberal Time Payment Plan. Write today for your FREE copy of ALLIED's newest and greatest Catalog—the preferred Radio Buying Guide!

LARGEST STOCKS • QUICK, EXPERT SERVICE

Send for your FREE copy of Radio's Most Complete Catalog. Use the coupon below—NOW!

WORLD'S LARGEST STOCKS
Everything in radio for everyone in radio! ALLIED's huge stocks are the world's largest, including complete lines of all leading makes of parts and equipment. Get everything you need from one dependable centralized source—ALLIED RADIO!

TELEVISION & HOME RADIOS
See ALLIED's outstanding selection of new Television sets, new table model radios, FM-AM combinations with new Dual-Speed Automatic Changers. Save on these radio models—the choice of experts!

AMATEUR STATION GEAR
You'll find everything you need for your shack in the new ALLIED Catalog. See all the latest releases in receivers, transmitters, parts, station equipment—the biggest and most complete listings in Ham radio!

NEW SOUND EQUIPMENT
Packaged, ready-to-use Sound Systems; amplifiers guaranteed for one full year; high-fidelity sound components; everything in speakers, mikes, P. A. accessories, intercom and recording equipment—headquarters for Soundmen!

ALLIED RADIO CORP.
833 W. Jackson Blvd., Dept. 2-L 8
Chicago 7, Illinois

☐ Send FREE New 1949 ALLIED Catalog.

Name..
Address...
City..Zone........State........
VIDEO amplifiers are resistance-coupled amplifiers with special compensating circuits added to increase the over-all band-width. These amplifiers are commonly used in television, radar, special oscilloscope circuits, and in numerous other applications. It was shown in “Wide-Band Amplifiers” (Radio-Craft, March, 1948) that high-frequency response is limited by the wiring and interelectrode capacitances shunting the output impedance of the tube. In “High-Fidelity Amplifiers” (Radio-Craft, May, 1948) we found that high-frequency response can be increased—at the expense of gain—by decreasing the size of the plate load or coupling resistor. The gain at high frequencies is equal to

\[G_f = \frac{V_t}{|\text{Req}|} \left(\frac{\text{Xcs}}{\text{Xcs}}\right)^2 \]

where \(G_f \) is the gain at high frequencies, \(V_t \) is the output voltage, \(\text{Req} \) is the real impedance, \(\text{Xcs} \) is the total shunt capacitive reactance and

\[\text{Req} = \frac{\text{RL} \times \text{Rp} \times \text{Rg}}{\text{RL} \times \text{Rg} + \text{RL} \times \text{Rp} - \text{Rg} + \text{Rp} - \text{RL}} \]

If \(\text{Rp} \) (the internal plate resistance of the tube) and \(\text{Rg} \) are many times larger than \(\text{RL} \)—as they should be for good h.f. response—\(\text{RL} \) will be approximately equal to \(\text{Req} \). High-frequency response varies inversely as the shunt capacitance and \(\text{RL} \) and directly as \(\text{gm} \).

Table 1

<table>
<thead>
<tr>
<th>Tube</th>
<th>(\text{gm})</th>
<th>(\text{Figure of Merit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AK5</td>
<td>5100</td>
<td>750</td>
</tr>
<tr>
<td>6AG5</td>
<td>5000</td>
<td>602</td>
</tr>
<tr>
<td>6AC7/1852</td>
<td>9000</td>
<td>562</td>
</tr>
<tr>
<td>6AC7</td>
<td>11,000</td>
<td>536</td>
</tr>
<tr>
<td>EF-50</td>
<td>6300</td>
<td>484</td>
</tr>
<tr>
<td>6AB7/1853</td>
<td>5000</td>
<td>385</td>
</tr>
<tr>
<td>807</td>
<td>4000</td>
<td>333</td>
</tr>
<tr>
<td>25L6</td>
<td>9500</td>
<td>322</td>
</tr>
<tr>
<td>6H7</td>
<td>4900</td>
<td>316</td>
</tr>
<tr>
<td>6Y6</td>
<td>7100</td>
<td>308</td>
</tr>
<tr>
<td>6AK6</td>
<td>2300</td>
<td>238</td>
</tr>
<tr>
<td>6L6</td>
<td>6000</td>
<td>272</td>
</tr>
<tr>
<td>6AQ5</td>
<td>4100</td>
<td>216</td>
</tr>
<tr>
<td>813</td>
<td>3750</td>
<td>123</td>
</tr>
</tbody>
</table>

The advantage of one tube over another can be determined by dividing the transconductance, \(\text{gm} \), by the sum of the input and output capacitances of the tube. The resultant is called the *figure of merit*. Table 1 shows the figure of merit and \(\text{gm} \) of a number of tubes suitable for video amplifiers.

One of the simplest methods of compensating for the effects of shunt reactance is to insert an inductance \(L \) in series with the load resistor \(\text{RL} \) as in Fig. 1. The inductance and shunt capacitance, \(\text{Cs} \), form a parallel tuned circuit.

Fig. 1—L and \(\text{Cs} \) are parallel tuned circuit as in amplifier. The resonant frequency should be approximately 1.41 times the h.f. cutoff frequency for best compromise between linear amplitude, linear phase response, and voltage.

In an amplifier using shunt peaking, \(\text{RL} \) is made equal to the reactance of the shunt capacitance, \(\text{Cs} \), at cutoff frequency or

\[\text{RL} = \frac{1}{\sqrt{6.28 \times f \times \text{Cs}}} \]

where \(f \) is the cutoff frequency in cycles and \(\text{Cs} \) is the total shunt capacitance in farads. Input and output capacitances can be taken from a tube manual and wiring capacitance can be measured or estimated depending on the accuracy desired. The stray wiring capacitance averages between 10 and 15 \(\mu \)F in a well-designed video amplifier that has been carefully laid out.

To measure the total shunt capacitance, connect a wide-range oscillator and v.t.v.m. to amplifier as shown in Fig. 3. Set the oscillator to about 1,200 cycles and adjust the output to about 10 volts or some convenient value. Measure the output of the amplifier. Increase the frequency—keeping the output of the oscillator constant—until the output of the amplifier drops to 70.7% of its value at 1,200 cycles. When the output of the amplifier has dropped to this level, the shunt reactance equals the resistance formed when the interplate reactance, the coupling resistance and the grid resistance are considered in parallel. In order to calculate the total shunt capacitance present use the formula

\[\text{Cs} = \frac{1}{6.28 \times f \times \text{Req}} \]

![Fig. 3](image-url)

Fig. 3—V.t.v.m. measures shunt capacitance. The wiring capacitance can be found by subtracting the sum of the input and output capacitances of the tubes and the input capacitance of the v.t.v.m. from the measured shunt capacitance. These measurements are made on an uncompensated amplifier. If peaking inductors are added later, their capacitance to ground will add to the stray capacitance and make previous calculations useless. If exact measurements are desired, connect a single pie of a small r.f. choke in the exact place where the peaking coil is to be mounted. Be sure to short-circuit the pie before beginning the measurements.

The value of the necessary peaking inductance can be found from

\[L = \frac{C \times \text{RL}^2}{2} \]

Fig. 4 shows the shunt peaking constants used in a video amplifier with high-frequency response flat to 2.5 mc. The inductances are wound on forms with adjustable powdered-iron cores.

![Fig. 4](image-url)

Fig. 4—Peaker gives flat response to 2.5 mc.

Figs. 5 and 6 show circuits for series peaking to compensate for high-frequency losses. These circuits function...
Television

a 10-inch set when the station changes from one sync generator to another, or from a local to a relay program.

(2) The line voltage at the receiver may change. This changes the deflection voltages and high voltages, both of which affect the picture size. (For this reason also, a TV set that is adjusted in the service shop for correct size may be found to have a smaller or larger picture on the owner's power supply.)

(3) There may be some drift in the picture size or centering during the first hour of operation.

For these and other reasons, experience has taught that it is a practical necessity to make the picture extend slightly beyond the mask.

The test pattern should be designed with this in mind. For example, if the pattern has small circles or other information too close to the corners, it may cause unnecessary headaches for the technician, because when the picture is made larger than the mask, the designs in the corner may be partly hidden. Some TV owners want to know why.

The two arcs of circles in the NBC pattern (Fig. 1) are an aid in adjusting horizontal centering. The main black circle is used in adjusting vertical centering.

The television signal controls the intensity of the electron beam in the kinescope. This beam produces a fluorescent spot of light on the inner face of the kinescope. It is this spot that "paints" the picture.

For good definition or resolution, or ability to make very small details evident and distinct in the picture, the spot must be small and round. It should be small enough so that the horizontal line structure can be seen distinctly, and it should be round in order to get the best definition from top to bottom and from left to right.

If the spot is slightly elliptical or oval shaped, instead of round, it may be rotated by adjusting the focus control, as described below.

The vertical and horizontal wedges are used in adjusting focus; they provide a check on the shape of the spot.

Closely examine the separate lines toward the narrow end of the vertical wedge, and adjust the focus control so these lines are in best focus, or sharpest.

Then look at the lines toward the narrow end of the horizontal wedge, and see if a slight readjustment of focus improves the focus on these lines.

If best focus on both the vertical and horizontal wedges is obtained at the same setting of the focus control, it may be assumed that the spot is round.

If the setting for best focus is slightly different for the two wedges, it indicates that the spot is oval. In this case it is generally preferable to adjust the control for best focus on the vertical wedge.

In most test patterns, the narrow ends of the wedges are intentionally placed near the center of the test pattern. By focusing then, it ensures that the picture will be in best focus at the center, which is desirable.

Some test patterns, such as Fig. 2, provide additional wedges in the corners to show whether the focus is good on the sides and top and bottom, compared with the center.

If focus is not reasonably uniform over the entire picture, it may indicate need for repositioning of the ion-trap magnet, or the focusing coil and focusing control.

If the test pattern does not have wedges in the corners, the horizontal scanning lines can be observed to check focus over the entire screen.

When focus must be adjusted on a program, without the help of a test pattern, it is generally satisfactory to adjust for the finest scanning lines near the center of the picture.

In projection receivers, there is the usual electrical focus control for the kinescope, and the mechanical focusing adjustments for the optical system. To prevent confusion, and to get the best possible pictures, it is important to adjust the electrical focus first while looking at the kinescope, or at the reflection of the kinescope in the spherical mirror.

The optical system should not be touched until the test pattern as seen on the kinescope is sharp and clear.

If the test pattern has crossed lines in the corners and in the center of each side, and in the center of the top and bottom, they are very helpful in adjusting the reflective optical systems that are used in some projection receivers.

Contrast and brightness

Almost all test patterns include some form of shading blocks to assist in adjusting contrast and brightness.

The shading blocks have at least five shades: black, dark grey, medium grey, light grey, and white. The contrast and brightness should be adjusted so that each shade is distinguishable. With contrast too high, the darker greys become black; and with contrast too low, the lighter greys become washed out.

If brightness and contrast are set too high, the definition will suffer, owing to "blooming" of the kinescope spot. When the spot is too bright, it grows larger, and best definition depends on a small spot.

Instead of shading blocks, some test patterns have a section of light grey background with white lettering, and a section of darker grey background with black lettering. This serves the same purpose as the shading blocks, and is more fool-proof, because few persons are aware of the significance of the shading blocks.

Many test patterns are designed with a grey background to secure an average modulation of 50%. This reduces the need for readjusting brightness and contrast when the station switches from the test pattern to an average program.

The horizontal wedges show lack of interlacing by a moire pattern, or wavy effect, toward the narrow end of the horizontal wedges. A moire pattern is somewhat similar to the effect that is seen when looking through two pieces of window screening, or at a piece of satin.

The appearance of poor interlacing can usually be duplicated by turning the vertical-hold control slowly until the picture is just beginning to move down. At this point the moire effect will be seen on the horizontal wedges. Also the horizontal scanning lines, instead of interlacing, will lay over each other.
WHEN something goes wrong in a television receiver, it generally shows up as a definite symptom in the picture. In no other type of electronic equipment are the troubles and symptoms so clearly displayed before our eyes.

If we learn to recognize these visible symptoms, we can quickly localize the trouble to a particular portion of the set. Even the complete absence of picture and raster tells us to suspect certain definite parts.

There is no standard test pattern in general use. The nearest thing to a standard is the RCA “Indian head” monoscope, which is used by a number of TV stations. RCA has proposed a standard “resolution chart,” but for various reasons it has not been adopted by TV stations for air use.

Many TV stations have designed their own test patterns, which, although differing in appearance, are all intended to facilitate adjustments and checks in both the transmitting equipment and in the receivers.

Two typical test patterns, the NBC and the RCA Indian head, are shown in Figs. 1 and 2. The various elements are named in Fig. 1, and these names will be referred to in the following discussion.

The controls for width, horizontal drive, and horizontal linearity, and the controls for height and vertical linearity should be adjusted so that:
1. The circles in the test pattern are as round as possible.
2. The test pattern is slightly larger than the mask appearing in front of the kinescope.

If linearity is not correct, the circles will be flattened or egg-shaped.

In judging vertical linearity, it helps if you lay your head on your shoulder and look sideways at the picture. This makes vertical nonlinearity more apparent.

Many TV owners are extremely fussy about having the circles exactly round. Some of them check the circles by holding a small plate in front of the screen, and others measure the wedges to see if they are equal lengths. In some TV areas, this makes life extremely difficult for the television technicians, because it is an unfortunate fact that some stations do not transmit good linearity. Also, the linearity may be different from one camera to another. In one particular city, if the receiver is adjusted so that the test-pattern circle is round on the first station, the second station will be egg-shaped vertically, and the third station will be egg-shaped horizontally.

In the latter case, it is sometimes necessary for the technician to adjust the receiver for the best compromise linearity on all stations in the area. But it is preferable to select the station that is most likely to have correct linearity, and adjust the receiver on this station, because in time the other stations will correct their nonlinearity.

Frequently, it is necessary to install and adjust TV receivers at night or when there are regular programs, but no test patterns on the air. In such cases, it is possible to use a “bar generator” which produces a number of vertical and horizontal bars on the picture. These bars are “synchronized” by the sync pulses so that the bars remain stationary on the picture. The set is then adjusted for equal spacing between the bars.

A very useful hint for checking and adjusting vertical linearity when there are only programs and no test patterns on the air, is to turn the vertical hold control so the picture keeps rolling slowly from top to bottom. If the vertical linearity is good, the black vertical-blanking bar will remain the same thickness in all positions from the top to the bottom. There is no similar easy way to check horizontal linearity.

In a few test patterns, all circles are intentionally omitted: regularly spaced horizontal and vertical lines are used to check and adjust linearity, as shown in Fig. 3.

This design of test pattern is one answer to the technician’s prayers, because it avoids the trouble of the fussy customer who insists that the circles be exactly round, yet it provides a satisfactory means for adjusting linearity within reasonable limits.

Of course nothing that has been stated here should be used as an alibi to excuse poor linearity that is caused by incorrect adjustment of the receiver or by failure or change in value of components in the deflection circuits of the receiver. The question of whether the station or the receiver is at fault can be determined by experience with a number of different receivers, or by the use of a bar generator.

Most TV set owners complain if the picture does not completely fill the mask, but do not complain if a small portion of the picture is hidden behind the mask. It would seem reasonable to make the picture exactly the same size as the mask, but this is impractical, because:

1. There is considerable variation in the horizontal and vertical blanking time on different stations, and on different sync generators in the same stations. Actually there may be as much as \(\frac{1}{2} \)-inch difference in height or width on
Another type of pressure recorder makes use of a very ingenious adaptation of the Wheatstone bridge. Fig. 4 is a photograph of this device, which is known as an unbonded resistance wire strain gauge. Its circuit diagram, which is that of a Wheatstone bridge, is represented in Fig. 5.

Whenever a wire is subjected to stress it becomes longer and thinner and, within limits, returns to its original length upon removal of the stretching force. Also, as the wire elongates and narrows, its electrical resistance increases. Therefore, the change in resistance and the reading of the galvanometer can be used as a measure of the force producing stress.

The construction of the gauge is shown in the photo. It consists of two major parts: a frame, and an armature which moves with respect to the frame. The armature is supported by two very flexible suspensions. The metallic filaments which undergo resistance changes with stress are strung on the eight posts.

Four of these are mounted on the armature and the other four on the frame. One end of each element is fixed to an armature post and the other end to a frame post.

The rod extending from the right side of the assembly is fastened to the armature. In the assembled instrument, the free end of the rod is attached to a metal diaphragm. The device operates just as does the photoelectric recorder, the changes in fluid pressure causing the diaphragm to bulge and relax. The movements of the diaphragm are transmitted to the armature via the rod. Hence, whenever the rod (and consequently the armature) is pushed to the left, the central pair of resistance-wire elements increases in length and the two outside elements contract. When the rod is pulled to the right by the diaphragm, the movement of the armature to the right will relax the central elements and stretch the outer pair. It is these four metallic filaments which are connected together to form the Wheatstone bridge.

The instrument is so constructed that the bridge is balanced and no current flows through the galvanometer when no pressure is applied to the diaphragm.

Whenever the diaphragm is subjected to pressure, the stretching of one pair of elements and the contraction of the other pair unbalances the bridge. Current flows through the galvanometer and the galvanometer deflection is proportional to the pressure of the fluid on the diaphragm.

Fig. 6 is a photograph of a permanent-magnet, six-trace galvanometer assembly. Small reflecting mirrors, which replace the pointer needles, pivot with the galvanometer suspension. They can be seen through the focusing lenses in the inset. This instrument throws a moving reflected image of the light source upon a traveling light-sensitive surface to produce a permanent tape recording.

The author wishes to acknowledge the cooperation of the various manufacturers who supplied photographs for this article, particularly Statham Laboratories for providing technical data on their strain gauges.

Fig. 3—This is a typical direct-coupled amplifier for amplifying output of the phototube.

Fig. 5—Strain gauge is a Wheatstone bridge.

Fig. 6—This is 6-trace optical galvanometer.
Electronics in Medicine

Part III. — Phototubes and photoelectric cells find extensive use in medical diagnosis and examination

By EUGENE THOMPSON

The photoelectric technique is widely used by the medical profession in photometric colorimetry, or, as it is sometimes called, photometry. The reason for its great popularity is the astonishing rapidity and precision of this method of performing laboratory analyses, as compared to the older, time-consuming, and often inaccurate chemical procedures used for the same analyses.

In photometric colorimetry the physician treats the blood, urine, or other material containing the substance to be analyzed, so as to produce a colored product. The color intensity is then proportional to the concentration of the substance in the blood, urine, or other sample.

The depth of color of the solution is measured with the photometric colorimeter as indicated in Fig. 1-a. The light source and the battery are held to standard values, and the rheostat is previously calibrated. When the filtered light rays pass through the test tube containing the colored solution, the amount of light striking the photo tube varies with the depth of the color. The amount of light, in turn, determines the resistance of the phototube and the reading of the galvanometer G. Comparison of the reading with a previously made curve showing current vs. color concentration gives the physician the desired information.

Another type of photometer employs a photoelectric cell. The circuit is shown in Fig. 1-b. The physical arrangement is the same as that of Fig. 1-a.

One of the most important items of information needed by the physician is the arterial blood pressure. This may be determined by the indirect method using the familiar cloth cuff which the physician wraps around the patient's arm and inflates. This procedure is somewhat inaccurate, does not permit continuous blood-pressure recording, and is not very suitable for determining the venous blood pressure. It is being replaced in many institutions by the direct method in cases which are serious enough to require more than the routine physical examination.

In the direct method of blood pressure measurement the physician inserts a hypodermic needle into an artery or vein (depending on whether the arterial or venous pressure is being measured). Fig. 2 is a cut-away view of one type of instrument used. A photograph of it appears on page 41.

The device is filled with sterile isotonic salt solution, and the needle introduced into the blood vessel. As the blood pressure varies, the pressure changes are transmitted through the needle and salt solution to the recording chamber. As the transmitted fluid pressure rises and falls within this compartment, the flexible rubber diaphragm bulges and relaxes in step with the fluctuations. The movements of the diaphragm alter the position of the light gate cemented to its surface. This motion of the gate produces variations in the amount of light reaching the phototube, the output of which varies accordingly.

The resulting signals are then fed into a direct-coupled amplifier—such as the one shown in Fig. 3—the output of which actuates an optical galvanometer or electro-magnetic recording stylus. Both of these recording devices were described in a previous article on electrocardiography (Radio-Chart, March, 1948).

Resistance-capacitance-coupled, transformer-coupled, or impedance-coupled amplifiers cannot be used. Direct-coupled amplifiers respond at zero or very low frequency. If a d.c. signal is applied to the input of such an amplifier and maintained, the galvanometer or recording arm connected to the amplifier output will be deflected and maintained in the deflected position. If an a.c. signal is superimposed on this d.c., the recording device, besides holding an initial deflection proportional to the d.c., will fluctuate about the d.c. point in step with the superimposed a.c.

The d.c. component is the phototube output for some mean value of blood pressure. The a.c. component is the variation, above and below this mean value, produced by the tube in response to the fluctuations of blood pressure above and below its mean pressure. Only direct-coupled (d.c.) amplifiers are usable because other types will not pass the d.c. component (the mean blood pressure), but only the a.c. signal (the periodic variations). Hence, they are of no value for quantitative analysis.

Modification of this pressure recorder makes it useful for other measurements. For example, if a length of small rubber tubing with a balloon at its free end is substituted for the hypodermic needle, the device can be used for studying the activity of the lungs, the stomach, or any part of the gastro-intestinal tract. For the latter application, the instrument is filled with some material opaque to X-rays, such as barium, and the balloon and tube passed through the mouth and down the throat. The barium permits the physician to see the position of the tube while it is in the patient's body on a fluoroscope.

Fig. 2—Taking blood pressure with phototube.
because the electromagnetic vibratory system is so small.

The editors were surprised at the high sensitivity of such a low-priced (under $5.00) toy telephone. Conversations were held without difficulty and with good intelligibility.

The Little Orphan Annie Portable Radio-Phone, a small radio receiver made by the same manufacturer, appears in Fig. 3 alongside a regular telephone instrument. Inside the red plastic base of the Radio-Phone are the components, consisting of a tube, coil, condenser, and batteries. See Fig. 4. An on-off switch is on the front of the case and antenna and ground clip-leads come from the rear. The headphone is contained in the handset, in the same place where a telephone receiver would normally be. There is, of course, no transmitter in the handset.

The set is tuned by rotation of the telephone dial. The tuning element is a coil with a movable core. This permeability tuner is linked to the dial by a dial-cord arrangement. The dial is not calibrated though the numbers from 1-0 can be used as a guide.

While an outside antenna aids reception, especially in weak-signal areas, clipping the antenna lead to almost any metal object will suffice if there is a strong local signal. The inside of the cover of the box in which the radio comes is metallized and a terminal is provided for attaching the ground wire. This counterpoise ground also helps reception. In downtown New York City the box cover was attached to the antenna lead and the radio was carried around, giving good reception almost all the time. The sound was not always loud but it was sufficient.

The Modernair, pictured in Fig. 5, uses almost exactly the same circuit as the previous set. It is made by the Vaugh Manufacturing Co. The tube, however, is a 114 and tuning is done with a "loop" condenser. This condenser, which looks like a large-size compression trimmer is compressed and expanded by the plastic tuning shaft, which screws in and out of a threaded hole. The slide-rule tuning indicator is moved by a gear on the tuning shaft. The on-off switch is on the rear of the case. The plastic "chassis," shown on the left in Fig. 5, holds all components except the tuning indicator. It fastens to the back of the case with three machine screws. Batteries are exposed at the rear for easy replacement. Two pen-light cells and miniature 22½-volt batteries are used. A standard single earphone is permanently attached. A tryout showed about the same results as the previous receiver.

General Electric's toy record player, shown in Fig. 6, is all-electronic. A standard electric motor is used. The amplifier, powered from 117-volt a.c. or d.c. lines, puts a maximum of three-quarters of a watt output into a built-in 4-inch PM speaker. Two tubes are used, a rectifier and an amplifier. The pickup is a high-output crystal with replaceable needles. Since it is made especially for children, care was taken to make it safe. All electronic parts are inside the case away from prying hands, and the metal pickup arm is sufficiently isolated from the power line to avoid any shock.

The player will handle ordinary 10- and 12-inch records, as well as those made for children in the 6- and 8-inch size. Though the amplifier will operate on d.c. the motor will not.

Fig. 5 — The Modernair uses a book condenser for tuning. Case and chassis are white plastic.

Fig. 6 — Complete 6-E phonograph for children.

ELECTRON TUBE CONFERENCE

NOTSO long ago electron tubes were associated exclusively with communications. Now more and more are required for special instruments such as computing machines, one, the ENIAC, using 18,000 tubes. Many electronic instruments require great uniformity and precision in tubes.

The increasing use of tubes in research and industry inspired an Electron Tube Conference which was held recently in Philadelphia. Tube makers met tube users, and there was an opportunity to exchange recommendations.

The most frequent defects in tubes are short circuits, broken beads, uncertain life, and low emission.

Among suggested improvements were a 10,000-hour life span, lower hum and microphonics, freedom from unexpected failure and 10% tolerance in characteristics.

The following basic tube types were discussed at the conference: double-diode (6H6), pentode amplifier (6S37), tube (6S37), triode (6SN7), and beam power (6L6). Vacuum tubes and silicon diodes were also analyzed.

One of the most common circuits used in electronic instruments is the trigger circuit which usually employs a 6SN7 or similar type. For example, about half of the tubes in the ENIAC are 6SN7's. Experience shows that this tube has a life expectancy of about 150 years in perfect life, provided it passes the first 100 hours without developing a defect. For trigger use, it was recommended that the tube be kept within closer tolerance than at present. The most important characteristic is the bias required for plate current cutoff.

In pentode amplifiers, the important factor is uniformity. Of course sufficient degeneration cancels out the need for tube uniformity, but more gain is then required. If the 6S37 could be made more uniformly, it might be possible to get higher gain in each stage. In some cases stages could be eliminated.

Tubes of the 6S7 type find different uses in communications than in industry. For radio the present tube is satisfactory. However, industry requires a gaging tube. The two controlling grids must have independent control over the output and each should operate from cut-off to the positive grid region. It was recommended that an entirely new tube be developed for this purpose.

A more rugged, longer-life tube was recommended for the 6L6 beam tube. Improvements were asked for in leakage, hum, microphonics, and noise. The tube would have to be redesigned mechanically to stand shock and vibration.

The plan also includes more conservative voltage, current, and temperature ratings, without much change in the present gain and output. This could be done by redesigning the tube structure. It is felt that the conference will result in improved tube design.

A second conference on electron tubes is planned for next year.—J. Queen
ELECTRONICS in the Toy World

By RICHARD HENRY

THAT this is the age of electronics is made clear by the multitude of electronic devices which appear every day in business and at home. The younger generation also has a place in the world of electronics, for even very young children will enjoy many of the new electronic toys put on the market recently. Among the devices especially designed for children are a sound-powered 2-way telephone, a small all-electronic record player and miniature radio receivers operating on tiny batteries and selling for less than $5. These devices widen the gulf between a child’s life today and the rag-doll-and-coaster wagon era of a few years ago.

One of the most interesting of these gadgets is known as the Buck Rogers Supersonic Two-Way Transceiver, manufactured by Da-Myco Products Company of New York. Although there is nothing supersonic about this toy, it does give very usable 2-way communication without any batteries. The two

Fig. 2—Parts of the earphones: A—Cap made of plastic; B—Diaphragm; C—Reinforcing disc on armature; D—Armature; E—Wire connecting armature to diaphragm; F—Cushion ring; G—Plastic case; H—Brass shell; J—Coil winding; K—Alnico magnet. Units receive and transmit. Identical instruments used are shown in the photograph and cutaway drawings of Figs. 1 and 2.

Each instrument is a specially designed earphone. These highly ingenious self-amplifying earphones are, of course, a toy, but the principle used is so interesting that it well deserves the attention of telephone receiver manufacturers who wish to try for the greatest possible sensitivity. They work on the electromagnetic principle first discovered by Alexander Graham Bell. The earphones are, therefore, reversible—each can be used also as a transmitter as, in fact, it is.

In the usual earphone a rather thick soft iron diaphragm is used. Its diameter is usually about 2 inches. If very strong magnets are used the entire diaphragm is pulled down; this greatly impedes vibration making a fairly strong current necessary for operation of the telephone.

The makers of the new toy have gotten around this difficulty and actually made an earphone which is self amplifying.

Fig. 4—Diagram of Orphan Annie Radio-Phone. Instead of the 2-inch diaphragm, they have used a very small iron diaphragm measuring 1⁄16 inch in diameter. This is fastened rigidly to a thin brass amplifying cone which is able to swing freely under the influence of the small diaphragm. A powerful electro-magnet can now be used without hampering vibration. An Alnico magnet is used in the toy. Great sensitivity is available

RADIO-ELECTRONICS
first. The discriminator is a Foster-Seeley circuit using crystal diodes. The 2E36 a.f. amplifier is transformer-coupled to a receiver in one end of the handset. A switch on the handset operates the filament changeover relay to switch power to the transmitter.

The transmitter

There are 8 tubes in the transmitter; two are miniature and the others are subminiature types. The 5672 crystal oscillator, No. 14, is wired with the crystal between the grid and screen grid. The signal from the oscillator goes to the 2E36 phase modulator. This tube is so connected across the output of the oscillator that the phase of the signal varies with the audio signal at the grid of the modulator. Transformer coupling is used between the microphone and the control-grid of the modulator.

The phase modulator is followed by a 2E36 buffer operating straight-through. Two triplers and a doubler raise the phase modulated signal to the operating frequency. The second tripler uses a pair of 2E36's in parallel.

Construction

Construction and maintenance of a 19-tube unit as compact as this Handie-Talkie transmitter-receiver would present many problems if it were not for the cellular type of construction. The tubes and all components associated with each stage are on plug-in sub-assemblies. This type of construction simplifies servicing and reduces to a minimum the time a unit must remain out of service for repairs. As soon as a defective stage is isolated, it can be replaced by a good one and the unit put back in service.

The defective unit can be repaired at a more convenient time and placed in stock for replacement purposes when needed.

Metering points are provided for trouble-shooting and adjusting the transmitter power amplifier or the receiver mixer and limiter circuits.
Crystals for the high-frequency model range from 6.15 to 7.98 mc and those in the low-frequency set are between 4.65 and 6.31 mc. L3, in the screen-grid circuit, is adjusted to resonate at three times the crystal frequency. The third harmonic of the crystal is amplified and coupled to the grid of the 5673 frequency doubler, No. 13. The output of the doubler—six times the oscillator frequency—is the heterodyning frequency. It is coupled to the input of the mixer, No. 4, through L4 and L5. The heterodyning frequency is 2.1 mc lower than the operating frequency.

The mixer works into a 3-stage 2.1-mc intermediate-frequency amplifier. Miniature i.f. transformers are used. The primary and secondary coils of each are tuned by varying the position of powdered-iron cores within the coils. The secondary of the i.f. output transformer feeds into the grid of the first stage of the cascade limiters. Both limiters have the same time-constant but the second limiter is operated at a lower plate voltage than the first. This second stage removes any amplitude variations that may pass through the
Cover Feature

FM Handie-Talkie Radio for Industry

Radio can be used as a vital link between working teams. The new Motorola FM Handie-Talkie unit is suitable for many industrial applications.

The new Motorola FM Handie-Talkie* transmitter-receiver unit is designed for use by police, firefighters, public-utility and construction workers, rescue and emergency teams and in other applications where a light-weight, low-power transmitter-receiver is required. Its 9.8 pounds include an 8-tube transmitter and 11-tube receiver. Its case is 10 inches high, 12½ inches long and 3½ inches wide. It is designed to be carried in the hand or strapped to the body. A handset clips into a cradle on top of the case when not in use.

A 43-inch base-loaded whip-antenna is standard equipment, but any 50-ohm antenna can be used to increase the range when the unit is used in fixed or semi-fixed locations. It is normally supplied with a battery power pack. Vibrator packs and a.c. supplies are also available.

A power switch is located on one end of the case. The receiver remains on when the switch is closed. The transmitter is turned on and the receiver off in the standard manner by a push-to-talk switch on the handset. The transmitter and receiver are crystal controlled.

The Handie-Talkie radio is available in two models. The FHTR-1AL and FHTR-1AH operate on any predetermined frequency in the 25 to 40-mc and 39 to 50-mc bands respectively. The units are tuned to the desired frequency at the factory.

A unique cellular construction is used in the chassis. There are 19 cells, each housing a complete plug-in stage. These cells are shown in the photographs and are numbered and separated by broken lines on the diagram on pages 36 and 37.

* Trade mark of Motorola, Inc.

NOVEMBER, 1948

This is the portable radio set. The antenna, handset and bottom cover have been removed.

The receiver

There are 11 subminiature tubes in the receiver. They are: 2E36, first r.f. amplifier; 2E32, second r.f. amplifier; 5672, oscillator-multiplier; 5672, multiplier; 2E36, mixer; 2E32's as first, second and third i.f. amplifiers and cascade limiters; and a 2E36 audio amplifier.

Crystal diodes are used in the discriminator circuit.

The grid of the first r.f. amplifier, cell No. 3, is capacitance-coupled to the plate end of L1, the power-amplifier tank coil of the transmitter. This is the common antenna secondary coil for both transmitter and receiver. L2 couples the resonant coil to the antenna when transmitting and receiving. All coils between the antenna and the grid of the mixer are tuned to the operating frequency.

Low-frequency crystals are used in the crystal oscillator-multiplier, No. 12. The crystal is between plate and grid. A third harmonic is developed in the screen circuit. (Cont. on next page)

Four of the nineteen plug-in stages are shown. Cellular construction simplifies servicing.
the ratio detector, connect the network from plate to ground of the next to the last i.f. tube. In Philco sets, connect it from plate to ground of the last i.f. stage. (It is important to keep the signal generator output as low as possible for all i.f. and r.f. adjustments.)

First place the load network across the proper stage as outlined above and adjust the secondary trimmer of that stage for maximum output. Then remove the loading network and connect it from the grid end of the same transformer to ground. Align the primary trimmer for maximum output. Follow this routine through to the first i.f. stage, adjustments being made with the signal generator connected to the converter control grid. After the adjustments have been completed remove the loading network.

Front-end alignment

Connect a 70-ohm resistor across the signal generator output terminals and connect the output leads to the antenna terminals of the receiver. With the generator and receiver set at 105 mc, adjust the oscillator or trimmer for maximum output. Set the receiver to 88 mc and check oscillator tracking by tuning the generator slightly to either side of this frequency. Spread or compress the output of the oscillator coil very slightly, if necessary, to bring the signal generator in at the 88-mc setting. Then repeat the adjustments at both ends of band until no further improvement is noted.

Fig. 3—Meter connection for ratio detector

Fig. 4—Philco detector contains oscillator.

Set the generator and receiver to 105 mc and adjust the converted trimmer for maximum output. Rock the tuning condenser of the signal generator when making this adjustment.

If the receiver has no r.f. stage, make the adjustments as follows: connect two 30-inch lengths of wire to the signal generator and two identical lengths to the receiver antenna terminals. Bend each to form a simple dipole and place the generator several feet away from the receiver. Set the generator and receiver to 105 mc and adjust the r.f. trimmer for maximum output. Set the generator and receiver to 92 mc and check tracking of the converter grid with a tuning wand. A decrease in signal when either the iron or brass end is inserted in the coil indicates proper tracking. If the output increases with brass inserted, spread the coil slightly; if the output increases with the iron end inserted, compress the coil. Repeat all oscillator, converter, and r.f. adjustments until maximum results are obtained.

Limiter and detector

In receivers using two limiter stages, the second limiter must be adjusted before proceeding to the detector.

With the d.c. indicating meter still connected as before, connect the signal generator to the grid of the i.f. stage preceding the first limiter and connect the loading network from plate to ground of the same stage. Then carefully tune the generator to the center intermediate frequency, as indicated by maximum reading on the meter.

Remove the loading network and connect the indicating meter to the grid of the last limiter. With the generator connected to the first limiter grid, connect the loading network from the first limiter plate to ground. Adjust the input trimmer of the second limiter for maximum reading. Then, with the loading network connected to the second limiter grid, tune the first limiter plate trimmer for maximum output. Remove the meter and loading network.

For detector adjustments, an FM signal generator and oscilloscope should be used to observe detector linearity. If these instruments are not available, proceed with the AM generator. For all detector adjustments, use an insulated, nonmetallic adjustment tool. Alignment procedure depends on the type of detector circuit incorporated in the receiver.

With the Armstrong discriminator, connect an audio output meter across the speaker voice coil. With the signal generator connected to the grid of the i.f. stage preceding the limiter (but with loading network and d.c. indicating meter removed), tighten the discriminator balancing trimmer to detune the circuit. With the output of the signal generator as low as possible, adjust the plate trimmer (C1 in Fig. 2) for maximum audio output. Adjust the balancing trimmer (C2) for minimum audio output. The output should increase sharply on either side of the minimum setting.

Rotor detector

Connect the d.c. indicating meter as shown in Fig. 3. (Use the 10- or 50-volt range of the meter.) Connect the generator to the grid of the next-to-last i.f. tube; connect the loading network from plate to ground of this stage. Reset the generator to the center intermediate frequency, as indicated by a maximum reading on the d.c. meter. Remove the loading network.

First adjust the diode trimmer (C2 in Fig. 3) for maximum output, then adjust the plate trimmer C1 for maximum reading. Remove the d.c. meter and retune C2 for minimum audio output. Output should increase sharply on either side of the minimum setting.

The Philco detector (Fig. 4) is adjusted by tuning the oscillator section to zero beat with the signal generator, which is tuned to the center intermediate frequency and connected to the i.f. stage immediately preceding the detector.

With the audio output meter across the speaker voice coil, connect the generator to the input of the last i.f. stage and the loading network across the primary of the last i.f. transformer.

With the oscillator grid (pin 2 of the FM1000 tube) grounded, modulate the signal generator and tune to the center intermediate frequency, as indicated by maximum audio output. (For this adjustment keep the generator output as low as possible.) Then remove the short and take out the loading network and output meter.

Short pin 4 of the tube to the audio load resistance R (Fig. 4). Then turn off the generator modulation and adjust the oscillator trimmer C1 to zero beat.

Remove the short and adjust the reactance-control trimmer C2 for zero beat. This adjustment is rather sharp; use a very low input signal from the generator.

This step-by-step alignment procedure is the one recommended by Philco for alignment of FM receivers without an FM signal generator or oscilloscope. The Philco Model 7070 r.f. signal generator was used for making the adjustments.

U-shaped trough and held that way with heavy wires. It is mounted on the mast (which passes through a hole in it) below the dipole.

The shield eliminated about 90% of the noise.

HAP KINGSLAND, Mountain Home, Idaho

RADIO-ELECTRONICS for
Aligning FM Receivers

You can align any FM receiver without an FM generator or 'scope. This article gives the alignment procedure in step-by-step fashion.

By JOHN B. LEDBETTER

It is a relatively simple matter to align an FM receiver when the service manual is available and the proper instruments are on hand. But when a new or unfamiliar receiver comes into the shop without alignment instructions or when the FM signal generator and oscilloscope usually specified in the service manual are not available, proper alignment becomes a more difficult undertaking.

Most FM receivers can be aligned with an AM signal generator, provided the generator's frequency range extends to 105 or 110 mc, and provided the serviceman knows the proper function of each stage of the receiver. The only additional equipment needed is an output meter, a 20,000-ohm-per-volt d.c. meter, an insulated alignment tool, and a tuning wand.

Circuit characteristics

In an FM receiver, the r.f. converter, and oscillator circuits may be aligned by peaking for maximum output. They are heavily damped to allow broad response, and present no unusual problems in alignment.

The main difference between i.f. transformers in AM and FM receivers is the bandwidth. The maximum width required in the best AM receivers is 10 kc, whereas an FM i.f. transformer must have a flat-top characteristic over a bandwidth of 200 kc. Two basic methods are used to obtain wide-band response: overcoupled transformers and single-peak transformers.

For overcoupling the i.f. coils have been placed physically close together, past the point of critical coupling, so that a flat-topped response curve is obtained. Transformers of this type cannot be aligned by peaking for maximum output. An attempt to align overcoupled transformers by peaking would throw some or all of the i.f. tuned circuits off the center frequency.

Single-peak i.f. transformers are designed to have relatively high gain at the center frequency, at the same time having a Q sufficiently low to give broad response over the required band. They may be peaked for maximum output.

Three basic types of detectors are in use. They are the Armstrong discriminator, the ratio detector and the Philco.

The Armstrong system employs a duo-diode frequency discriminator, preceded by one or two limiter stages. An amplitude-modulated signal cannot be used for alignment because the limiters remove most of the AM component from the i.f. signal. However, since the i.f. signal causes d.c. grid-current flow in the limiter which is dependent on the signal amplitude, i.f. alignment adjustments can be made with an ordinary 20,000-ohm-per-volt d.c. meter as the tuning indicator. (See Fig. 1.) To prevent detuning the limiter a 100,000-ohm resistor should be inserted in the test prod when it is attached to the Armstrong circuit. The meter may be used for all r.f. and i.f. adjustments; it should be connected across the first limiter output if two limiters are used, then connected to the second limiter for alignment of the first limiter stage.

In the ratio detector, which also uses two diodes, a high-capacitance condenser is charged at a varying rate by the i.f. signal.

The Philco detector has a special tube (FM1000), part of which acts as a Colpitts oscillator operating on the center intermediate frequency. The i.f. output is fed into an injector grid of this tube, and the reactive coupling between the pentode section and the oscillator causes the latter to lock in and follow the frequency variations of the i.f. signal. In a receiver employing the Philco detector, the oscillator control grid must be shorted to ground before the r.f. and i.f. stages can be aligned. The pentode section then acts as a regular AM detector; and r.f., i.f., and oscillator adjustments can be peaked with a modulated AM signal generator for maximum output.

I.f. alignment

First determine the type of detector employed. Then connect the signal generator accordingly. In the Armstrong detector the generator is connected to the last i.f. stage preceding the limiter, or to the first limiter if two are used. In the ratio detector, the generator should be connected to the control grid of the next to the last i.f. stage. (Alignment is always begun with the last i.f. stage and worked back to the converter.) In the Philco circuit, the signal generator is connected to the control grid of the last i.f. tube.

With overcoupled i.f. stages a loading network, consisting of a 0.1-mf condenser in series with a 4,700-ohm resistor, must be placed across the coil opposite the one being tuned, to allow each coil to be aligned for maximum output without affecting the center frequency of the other. If you are not sure whether the receiver has overcoupled or single-peak i.f. stages, connect the loading network anyway and proceed as if the stages were overcoupled. Use of the network will not affect the tuning adjustments in single-peaked stages.

In the Armstrong circuit, the load network is connected from limiter plate to ground (first limiter plate to ground if two limiter stages are employed).
RY1 opens contacts 6 and 7 to turn off the recorder.

When a signal is received, C8 charges through contacts 3 and 4. When RY1 opens, the condenser discharges into the grid circuit of the 6SJ7. This positive pulse makes RY1 act quickly and positively without chattering. The 0.5-mf condenser across RY1 bypasses surges resulting from static and random noise in the receiver.

Terminal No. 2 ends in a phone plug, which is inserted in the receiver metering jack, and the metering switch is turned to No. 1 position (or if separate jacks are used, to the appropriate jack). The grid of the 6SJ7 will then be in the regular line terminal for normal operation or to J2 by means of a connector cord for remote operation. S2 permits the sensitivity of the keyer to be set to operating point by means of R3 and the indicator lamp before the recorder is turned on. The outer conductor of the connector cable between J2 and the recorder is used to complete the ground return between the two units. This is necessary to reduce hum in the recorder.

An ordinary wall receptacle is used for connecting the power cord of the recorder. It may be necessary to polarize this receptacle because of the transmitter keying circuits introduced into the keyer through terminal No. 3. For this reason the power cord of the keyer is attached in the transmitter across the line fuse block to insure against possible mixup. All cables and terminals are color-coded. S1 is the power-on-off switch.

In the event the radio equipment is not remote-controlled, the two-way recording can be obtained with the recorder microphone instead of connections from terminal Nos. 4 and 5. Simply place the recorder mike in common proximity to the receiver speaker and the operator's microphone. The recorder will continue to operate automatically and will record both sides of the traffic.

It is possible this type keyer will have two advantages over the better-known voice-operated circuits, especially as used in radio networks. The inductive coupling across RY1 in the receiver will start the recorder or other device before audio is present, thus allowing the recorder to reach operating speed and eliminating wow. Also, in FM receivers the saturated limiter produces the normal or induced thermal noise, when the squelch is opened by weak and undesired signals as is often the case. This noise audio would trip a voice-operated keyer and the result would be considerable loss as far as recording is concerned.

In actual operation the keyer described can easily be triggered by signals received from 50-watt stations operating from the 200-foot towers in the 30-100-mc band in excess of 125 miles and by mobile units 40 miles distant. Its application in the 72- and 156-mc bands will prove just as effective according to the area covered.

NEWLY-DEVELOPED RECEIVING TUBES

Three new miniature tubes were announced recently by RCA and a new type of tube construction is being used by Raytheon.

The new tubes are 6BA7, 12BA7 and 6AR5. The 12RA7 has the same appearance as the 6BA7 shown on the left. The 6AR5 is shown at the right. Both the 6BA7 and 12BA7 are pentagrid converters with the same characteristics as the standard-size 3SB7. Differing only in filament characteristics, these two miniatures are especially recommended by RCA for service in the 88-108-mc FM band.

The 6AR5 is a beam power tube. It is intended for use in the output stage of automobile and compact a.c.-operated receivers. It delivers a moderate power output with relatively small input voltage. Within its maximum ratings, it is the performance equivalent of the 6K6-GT.

The heater of this tube operates at 6.3 volts, 0.1 amperes. Maximum voltage is 250 volts for plate and the screen-grid. When operated as a class-A amplifier, plate and screen are operated at 250 volts. With 16.5 volts of bias, maximum plate and screen currents are 45 ma and 10 ma, respectively. The a.m. noise figure is 2,400 micromhos, plate resistance 65,000 ohms and the load resistance is 7,000 ohms. Maximum power output is 15 watts with 7:1 harmonic distortion. With 18 volts of bias, plate current is 33 ma, screen current 10 ma, and 2,300 micromhos, plate resistance 65,000 ohms, and load resistance 7,000 ohms. Maximum power output is 34 watts with 7:1 distortion. Resistance in the grid circuit should not exceed 100,000 ohms for fixed bias or 500,000 ohms for cathode bias.

The maximum plate dissipation is 8.5 watts and screen dissipation is 2.5 watts. Do not permit the voltage between the heater and cathode to exceed 30 volts in either direction. The Raytheon Bantel-type tube has increased ruggedness due to an 8-pillar support construction. Each tube has an internal shield, short leads with wide spacing and other structural advantages. The Bantals are at present manufactured to replace the 6SA7-GT, 6SJ7-GT, 6SK7-GT and 6SQT-GT.
A Carrier-Controlled Recorder

Messages are logged automatically

By RHETT Mc MILLIAN

"If I just had a recording of that!"
That, of course, being some piece of monitored air traffic which, having come fleetingly to one's attention, is as quickly irrevocably gone. The expressions are familiar to all in communication circles. Too many times has an occasion abruptly shown the need of an exact replica of a certain transmission in such fields as police, fire, taxi, marine, railroad, and other branches of the so-called emergency services.

Wire recorders are satisfactory for copying such transmissions; however, the longest average recording time of most of these instruments, without re-threading, is one hour. It being impossible to predict when a call will be received over the radio system, the recorder is normally run continuously to assure a record of all transmissions. This results in miles of dead wire and numerous later hours wasted in playback monitoring. Also, because of the necessity of changing wire spoons every hour, the recording equipment must be placed in the dispatch room so the operator may have access for servicing. Satisfactory operation may be impaired because of operator failure in attending the equipment, especially in the event of irregular traffic in which the personnel is involved.

The keying device shown in Figs. 1 and 2 was developed to turn on the recorder whenever a signal is being received or transmitted. When the keyer is used with a recorder, several hours—and often days—can be reduced to one hour of continuous recording. The net recording time will naturally be influenced by the amount of the traffic load on the net.

The device described was designed to work in conjunction with a Motorola FM 30-40-mc receiver and associated transmitter, one of the many popular brands of emergency radio equipment. There should be no serious difficulty in adapting the keyer to operate from practically any receiver, including AM a.v.c. circuits. However, to design such an instrument to operate from all the many types and makes of receivers would be highly impractical from a field service standpoint, especially inasmuch as one radio system will not ordinarily employ more than one type of manufactured equipment.

The greater majority of emergency services now use or intend to use, frequency-modulated equipment. Therefore, the discussion of the simple cir-
The listeners must be trained—they have to know what to listen for and how to describe what they hear in terms of treble, bass, muddiness, brilliance, fuzziness, tinyness, boomininess, presence, and sometimes in unprintable terms. It is best to have one or two other radios to compare with the one being tested. The listeners should be blindfolded so that they are not influenced by knowl-
edge of what radio they are listening to.

Since the listeners are human beings and not indicating instruments, their ratings have most value when they are unanimous. If all the listeners agree that a radio sounds bad, the inescapable conclusion is that the tone really is poor.

Listening to radios must be done at both ends of the radio dial, since the tone at the two ends may be different in AM sets. It should be done on a number of different stations, because all stations are not operated the same way with regard to frequency response, hum, and distortion. It should include different kinds of selections, such as male and female speech, vocal and musical programs. Live programs are best.

In listening to midgit radios the most important single requirement is that the radio reproduce sibilants. If you can’t hear the s’s, don’t bother buying the radio.

Another way to set up listening tests is to broadcast your own test programs. For this purpose high-fidelity records are played through the signal generator. The standard of comparison (the "other radio") may be an audio amplifier. The British HMV and Decca records have outstanding fidelity.

The record-playing equipment used in this laboratory is a Rek-O-Kut transcription turntable with a Gray phone arm and a G-E cartridge and Gray preamplifier. These can be switched from the signal generator to a Fisher amplifier and a Stephens co-axial speaker in a bass-reflex cabinet for comparison listening.

Testing FM and television sets

Tests of FM radios are quite similar to those for AM sets. The frequency-response test differs mainly in the fact that an FM signal generator is used—the Boonton 202-B. Since this does not have a built-in pre-emphasis circuit, an external one is attached between the audio oscillator and the FM generator. Also, instead of an transmitting loop, a dummy antenna is used between the signal generator and the receiver.

In measuring the sensitivity of an FM set, there is a choice of several kinds of sensitivities as defined in the IRE standard. From a home listener's viewpoint the quieting signal sensitivity appears to be the most appropriate, since it measures the sensitivity when the audio signal is 30 db stronger than the back-
ground noise.

One very bad fault of early postwar FM radios was frequency drift with time and frequency shift with changes of line voltage. These have been largely overcome even in the cheaper sets, but the listener should still be on the look-
out. As far as drift is concerned, the listener is probably interested in know-
ling whether he has to retune during the first half hour of listening (by that time chances are that he will have tuned to another program and wondered whether he has to retune the next day after turn-
ing off the set in the evening. These facts can be determined the hard way—as outlined in the standard, by plot-
ting an oscillator frequency-drift curve—or by simply listening. The results of the latter method are even more signifi-
cant because drift by itself is not ob-
jectible—it is the audio distortion (if any) resulting from drift.

Service shop tests

The average serviceman can perform similar tests with a minimum of equip-
ment, though with less precision.

For frequency-response charting, one can use a service oscillator if it has con-
nections for external modulation. Unfortu-
nately too few servicemen and experi-
menters own an audio oscillator. If none is available, the cheapest thing to do is to buy a frequency record (see page 46, October issue) and play it through a wide-range pickup into the external modulation connections of the service oscillator. The relative loudness of the different tones as they come from the loudspeaker may be checked with an amplifier system of known flat char-
acteristics and an output meter. It is

important, of course, to leave the volume control strictly alone during this test.

An easier but less informative way to judge the frequency-response would be to connect an a.c. voltmeter across the loudspeaker terminals. The voltmeter readings (converted to decibels) may be plotted on a graph paper. This test does not take the speaker into ac-
count, of course.

In the listening test, pay attention to sibilants—they should be audible, but not exaggerated. As an over-all test for trebles, triangles will be completely in-
audible on some radios. A record with a good bass to listen to is the Victor re-
cording of the It. Kije Suite, side 4. The tympani are completely inaudible on radios with poor bass response and too loud on boomy ones.

The sensitivity of an AM radio is usu-
ally given in service notes as the voltage on the antenna terminals. This is all right for checking whether the set is in proper operating order. More to the point of fact, it has been recognized for some time now among radio servicemen that the easiest way to locate hard problems is, not to measure d-c. voltages and res-

cistances all over the place, but to make all gain measurements with a serv-

eice oscillator and an r.f. vacuum-tube voltmeter. Of course, for this purpose one must have nominal gain figures for each stage. Such figures nowadays are obtainable from the better service notes.

For evaluating two radios to find out which is more sensitive, the loop an-
tennas must be included in the test. This may be done by placing them one by one in exactly the same position on the table or on the floor, so that their loops are in exactly the same position. The set that can bring in the weakest station the clearest is the more sensitive one. In making this test, be careful that there is no metal table, metal floor or wall in the vicinity since results will then be very great extent—depend upon which radio has its loop of the latter method mount-
ed so as to be farther from the metal.

One test that cannot be made by actual comparison of two sets is the inter-
ference-rejection test, that is, unless the i.f.’s are at exactly the same fre-
quency. The interfering station may be at just the right frequency for one set and not for the other, while it is the second set that is really bad. If the two i.f.’s have been aligned to exactly the same frequency, then at least the image interference and i.f. interference frequen-
cies will be the same, and a compar-
ison test would be valid. Again, if the test is made during the day, there may be no interference on any set. Listen for interference after sundown.

A very enlightening analysis of inter-
ference is published by RCA Victor Di-
vision Engineer N. J. (Interference Au-
alyg) and Its Radio Reception Effec-
tives by W. J. Zaun). It gives the i.f. frequencies to which radios in given cities should be aligned to avoid interference. Service-
men might avoid a lot of the noise troubles of the followed such a chart and used one of the crystal service oscillators for exact aligning to the proper frequency.

www.americanradiohistory.com
the output started dropping at about 2,000 cycles; and by the time the audio oscillator had reached about 5,000 cycles, there was no output at all. Taking the 10-dB-down point as a reasonable measure of limiting response, the radio might be said to be good from 150 cycles to 3,300. This was a good table-model radio. Good console FM radios will go both lower and higher.

Interference rejection

Another thing that affects the way a radio sounds is its liability to interference from stations other than the one to which it is tuned. A two-signal-generator, interference-rejection test imitates actual listening conditions. The radio is tuned to one signal generator, and the other is cranked through its range to find interfering frequencies.

The "desired-signal" generator is tuned to a clear channel mid-band, and the radio under test is tuned to it. The signal is adjusted to be strong enough to be usable on the particular radio (16 db signal-to-noise ratio). The volume control of the radio is adjusted for average loudness (80 db on the 40-db scale of the sound-level meter). The modulation on the desired signal is then turned off, and the undesired signal is turned on and cranked through a wide frequency range to catch interference. If interference is heard at any spot, the generator is stopped and its output reduced until the interference practically vanishes. The ratio of the outputs of the two signal generators is then a measure of the goodness of the radio as regards interference rejection. In other words, the bigger an undesired signal must be (compared to a desired signal) to produce interference, the better the radio. Signal ratio is expressed in decibels.

In testing a group of 14 expensive 1948 radios, it was found that on the average it took an interfering image signal 30 db stronger than the desired signal to cause interference. However, on the best of sets there was interference only if the signal was 60 db stronger, while on the worst a signal 9 db stronger caused interference.

In the same group of radios the best radio could tolerate an interfering signal on the intermediate frequency as much as 18 db stronger than the desired signal, while the worst one could not stand i.f. interference 13 db lower than the desired signal.

It was also found that on some radios the selectivity was so good that an adjacent signal (10-ke separation) could be as much as 4 db stronger than the desired signal, while on others the adjacent signal had to be 12 db weaker not to cause interference.

The interference rejection tests are performed in slightly modified forms for three types of interference: image interference (birdies), adjacent-channel interference, and i.f. interference. For the i.f. test the desired signal and the test radio are both tuned to the low-frequency end of the broadcast band.

Sensitivity

The sensitivity of a radio is best tested under operating conditions—not at the antenna terminals but through the built-in loop antenna. The setup is very similar to the frequency-response test shown in Fig. 1. The main difference is that no recorder is used. The transmitting and receiving loops are placed very carefully so that they are exactly 50 cm apart and so that each is at least 5 feet away from the metal walls of the test booth. The standard-signal generator is 30's modulated with the random-noise generator. The volume control of the receiver and the output control of the standard-signal generator are then adjusted until the audio signal is 16 db stronger than the noise. Naturally, if the signal generator output is increased from this point, the signal-to-noise ratio improves; and if it is decreased, the signal-to-noise ratio becomes worse. The field strength (in microvolts per meter) about the broadcast antenna at which the signal-to-noise ratio is 16 db is taken as a measure of the usable sensitivity of the radio. This is usually less than the absolute sensitivity, but the usable sensitivity has more significance for the listener to local broadcasts. The absolute sensitivity figure might be of interest to long-distance listeners, but even so, the noise in some expensive radios makes them completely useless with the sensitivity and volume controls turned fully on.

Listening tests

The tests so far described are the most important of the laboratory tests performed on home radios. These tests take place in an electrostatically shielded room, which also must be sound-isolated so that outside noises don't get in and sound-treated so that the sound doesn't bounce around inside the room too much.

A radio must also be subjected to listening tests. A frequency response curve and distortion measurements (at the present state of the art) do not tell you whether a set sounds good or bad to the ear. For listening tests a room is needed that does have some reverberation—like a typical living room. (Continued on following page)
Radio Performance Tests

The worth of a radio receiver is determined by its performance, operating convenience, durability, ease of maintenance, hazards to the user and to other property, and appearance. Probably the most important point is performance. Many radio repairmen and experimenters have sufficient equipment to make some of the tests which show exactly how a radio performs. To furnish some guidance on the testing methods, we shall describe how one laboratory compares different receiver makes and models.

The most important aspects of performance are tone, interference rejection, and sensitivity. The exact meaning of these and standardized ways of testing for them, are described in standards published by the Institute of Radio Engineers. The first of these, issued in 1938 and still useful, is entitled Standards on Radio Receivers: Methods of Testing Radio Receivers, 1938. Another important one is Standards on Electroacoustics, 1938: Definitions of Terms, Letter and Graphical Symbols, Methods of Testing Loudspeakers. And there is the latest one, Standards on Radio Receivers: Methods of Testing Frequency-Modulation Broadcast Receivers, 1947. These standards are highly recommended to anyone interested in radio receivers. They have been published as separate pamphlets at 50 cents each by the Institute of Radio Engineers, Inc., 1 East 79th Street, New York City 21.

Probably the most interesting test of a radio is measuring its frequency response. The usual way is to disconnect the speaker voice coil from the output transformer and connect a dummy load—a resistor of the same value as the loudspeaker impedance—across the output terminals. Of course, this leaves out altogether the characteristics of the loudspeaker and the cabinet. (A radio might be pumping both low bass and high treble frequencies through its output transformer, but the speaker may be unable to reproduce them.)

A good acoustic frequency-response test on the other hand is very complicated—mainly because of such things as standing waves—and the equipment is very expensive. A suitable compromise may be reached by leaving the loudspeaker in place and using a listening microphone about 12 inches from the loudspeaker in a reasonably well padded room. At such a small distance from the speaker, the standing waves are relatively small at the microphone, but the resulting frequency-response curve is not entirely accurate.

The fidelity test is best described by a block diagram. Fig. 1 shows the setup with names and model numbers of the equipment used in the author's laboratory.

What the setup amounts to is a broadcast transmitter (the signal generator), a receiver, and a listening microphone. The transmitter is modulated by an audio oscillator which is cranked by a motor through the whole audio-frequency range—from 20 to 20,000 cycles. The same motor pulls the frequency-response chart under a pen; the pen rides up and down on a moving strip of graph paper as the loudness of the loudspeaker increases and decreases. The result is a curve like that shown in Fig. 2.

To perform the test the audio oscillator (or else a special random-noise generator) is adjusted to give 30° modulation of the standard-signal generator; the latter is tuned to a free channel somewhere in mid-band and its output adjusted to give an average input into the receiver under test. The receiver is then tuned to that frequency and its volume control adjusted to average loudness. (The 40 db scale of a sound-level meter is used for this purpose.) The microphone is placed in front of the speaker and the amplifier gain is adjusted to deflect the recorder pen 15 db below the top of the graph paper. The audio oscillator is then cranked to the 20-cycle position, and the paper drum is aligned so that the pen falls on the 20-cycle division on the graph.

The motor switch is then turned on. As the audio oscillator dial passes 50, 100, 200 cycles and so on, the pen at the same time passes the corresponding markings on the graph paper. In the curve of Fig. 2 the radio evidently had little or no output below 100 cycles. The output then rose rapidly to a peak at 260 cycles. At the high frequencies...
example, metals in contact, plus modulation of a carrier wave by the rectified signals. Station X’s signal reaches some RX cable, in a building, which is touching another piece of metal, the bimetal contact acting as a detector and producing an audio current. This affects another carrier, which is modulated by the audio current. Of course, it has its own modulation as well. The result in the listener’s receiver is two sets of voices or music.

The same phenomenon occurs in the set when, in some circuit before the second detector, there is rectification of one signal and modulation by it of a second carrier. External cross-modulation may be recognized by the fact that other sets in the same location will have the same trouble.

Several excellent articles going into the causes of interference due to harmonics and heterodynes have appeared in past issues of RADIO-CRAFT, notably “Interference Analysis” in November, 1941. Cross-modulation was dealt with in detail by the article “Station Riding” which appeared in RADIO-CRAFT in January, 1945.

Oscillation is likely to be found in commercial sets when the location of wires has been changed by some serviceman and also in homemade sets. The cause is generally more difficult to locate and cure than either hum or interference. Perhaps the chief reason for oscillation in a well-designed set is attempted alignment “by ear,” Homer L. Buck and others after him caused considerable controversy in older issues of RADIO-CRAFT by advocating “by ear” alignment, but no one was able to show a satisfactory method.

Home-built receivers

Anyone who has used a single-tube regenerative set will recognize the signs and sounds of oscillation. High sensitivity, instability, and a rushing sound plus a squealing or squawking which increases with an advance in the volume control setting, mark oscillation in the wrong place in an a.c.-d.c. set. How to cure it? Sometimes rebuilding the home-built set seems the only method. Screwing down one i.f. trimmer condenser and unscrewing the other trimmer of the same i.f. (stagger-tuning) or shunting the primary or secondary of the i.f. coil with, say, a 50,000-ohm resistor may cut the oscillation, but naturally will lessen signal strength and selectivity.

Filter condensers again may be causing the trouble and should be replaced for a trial or shunted with paper or mica capacitors. Proximity of grid and plate leads (particularly in the i.f. section), lack of shielding, or improperly grounded shields may result in oscillation. Replacement of a low-gain transformer with a high-gain one, as, for example, replacement of the i.f. transformer in a cheap 5-tuber with a high-gain i.f. transformer taken from a portable, may result in oscillation. Of course, too high an a.c. line voltage may cause trouble, and an external antenna connected to the loop on the set produces oscillation.

A common cause is a defective or omitted bypass condenser, particularly the screen bypass. Try substituting condensers of known good quality for those in the set. A cathode bypass condenser may need to have a larger capacitance or a condenser should be used to shunt a cathode resistor where none appears in the set. Even so small an omission as failing to shield the small openings in the top of an i.f. can may result in oscillation, due to feedback to the loop. Be sure that every i.f. can is thoroughly grounded to the chassis. Most servicemen familiar with small sets have found some that persisted in oscillating whenever everything was “just right” according to the instruments.

Note in Fig. 3 that the tapped oscillator coil has its outside ends across the variable condenser terminals, and that a larger portion of the winding is between grid and cathode of 12SA7 than between the tap and ground. A resistance check will reveal the larger winding.

Sometimes omission of a line bypass will not only bring in clicks and hum but will also cause oscillation. When the tuning condenser is not connected to chassis directly but through a fixed condenser, sometimes a larger condenser will stop oscillation.

OFFER TO ORGANIZATIONS

RADIO-ELECTRONICS has discovered that many active radio repairmen’s associations are unknown outside a small area. It would be advantageous to these associations to be in touch with the larger radio technicians’ organizations and federations, and with magazines which encourage radio servicemen’s organizations. It would be equally advantageous to the larger organizations and State federations to be able to keep in touch with all the local associations.

To establish continuing contact with all radio technicians’ associations, RADIO-ELECTRONICS is offering a subscription to each active association of servicemen in the U.S. and Canada.

To qualify, send us the names and addresses of your officers and a report of the latest meeting.

RADIO-ELECTRONICS will also be glad to print any interesting events in the lives of the associations, such as cases of customers’ complaints settled or other instances in which the association was useful to the local radio technicians or the public.

Write immediately and get your association’s name on our roster and RADIO-ELECTRONICS in your library. Lists of active local associations will be printed in the magazine from time to time.

WICHITA SERVICEMAN IN BUSINESS 15 YEARS

The photograph above shows the service bench of the Chase Radio Service, Wichita, Kansas. C. F. Chase, the shop’s owner, shown soldering a lead back in place, states that he has been servicing for over 15 years. Because of his progressive business methods, the small shop (it is less than 100 square feet in area) provides a comfortable living for a five-member family. First-quality parts are used, tube testing is free, and all the work done is guaranteed.

Fig. 3—Grid-cathode winding is the largest.

N O V E M B E R , 1 9 4 8

www.americanradiohistory.com
Servicing a Noisy Set

This article gives the causes and cures for hum, whistles, and cross-modulation

By H. A. NICKERSON

HUM-M-M. What shall we do about it? First, test filter condensers in the B-supply. Test them for leakage with a milliammeter or with an ohmmeter. Test them for capacitance if you have some sort of capacitance meter. They may test reasonably well, but a new pair will sometimes work wonders on the hum. Substitution is the real test for poor filters. Sometimes shunting each filter unit with a good paper or mica condenser of 0.01- to 0.1-mf capacitance will do the trick.

So it wasn't the filter condenser? Test the tubes, particularly the output tube, for leakage. A tube tester of modern design will generally show leakage, but try two other similar tubes in the output stage to see if there is a change. Maybe the set was designed with one of those old a.c.-d.c. chokes not intended to carry the milliamperes of plate current required by a 50L6 plus the other tubes in the set. Or perhaps the filter choke has shorted turns, or the hum-blocking coil in a speaker using the field for a choke is connected backwards.

The 35Z5 or other rectifier tube may cause a hum. Test the coupling condenser between second detector and output tube. If you are using an ohmmeter, after one flicker of the meter pointer, intermittently touching the probes to the terminals of that condenser should not register any more flickers on a 10-megohm scale. Take a look at the pilot light and socket. Some other serviceman may have dropped soldering paste on the terminals, or there may be a leakage or partial short there. Test all bypass condensers and try substituting similar or slightly larger capacitors of known good quality. The X's in Fig. 1 indicate commonest sources of hum; the ?'s less common ones.

See if changing the location of the output transformer with relation to the rectifier causes a reduction in hum. Sometimes a slight change in the placement of grid and plate leads—ahead of the second detector, particularly—will cure the hum (and oscillation). Some lead may be too near the a.c. input line or the pilot light leads. If the negative return lead is connected to the chassis through a condenser, try a different condenser of the same or larger capacitance. Addition of a cathode bypass, if there is none, or a new, larger condenser, may cut hum. The location of the plate condenser on the output tube may be shifted so that the end away from the plate is connected to cathode instead of chassis, or vice versa. Sometimes connection of the cathode bias resistor and condenser to different spots on the chassis may result in hum. Shielding of tubes and proper grounding of existing shields may be required.

It still hums? Get the wiring diagram of the set and hunt for omitted bypasses and wrong values of condensers and resistors. Figure that the serviceman who repaired it before you could have made a few errors which you have to locate and correct.

There may be some external troubles. The a.c. line may have too high a voltage; it may bring in motor and other noises. Most a.c.-d.c. sets have some sort of line condenser. Check it. You will sometimes find that it has been omitted or is defective.

Sometimes one broadcast station will seem to have a carrier hum. This may or may not be due to a defect in the set.

Image interference

Servicemen remote from powerful stations may not realize the troubles found in congested areas. A little consideration of superheterodyne principles will explain the origin of the whistle heard on most a.c.-d.c. five-tube sets.

In Boston, for instance, it appears at one side of WEEI, which has an assigned frequency of 500 kc. To tune in WEEI at 500 kc, the oscillator must be 460 kc higher than 500, or 1050. There is a powerful station near Boston, WMEX, operating on 1510 kc. When the set is tuned for WEEI and the oscillator is at 1050, the difference between the oscillator frequency and WMEX's 1510-kg frequency is also 460, which is the set's i.f. So WMEX, being powerful enough to get through the r.f. tuned circuit at the input of the converter, will also be amplified by the i.f. and heard in the speaker. See Fig. 2. This interference from a station whose frequency is on the wrong side of the oscillator's is called image interference. A slight change in the setting of the i.f.'s, use of a wave trap, rotation of the setting so the loop points another direction, or purchase of a six-tube set, may alleviate the interference. If there is no antenna coil or external antenna, the wave trap must be something that affects the loop. Another loop, shunted by a variable mica compression condenser placed close to the set loop and parallel to it, may be tuned to cut down the signal from the interfering station.

Cross modulation

Much has been written about cross-modulation. This manifests itself as a background of unwanted signal which appears when the set is tuned to a wanted signal. The cause often is external to the receiver.

External cross modulation arises from rectification (detection) by, for

Fig. 1—A typical a.c.-d.c. set. X's mark the common sources of hum; ?'s occasional ones.
brackets for the mounting screws as seen in the front view. This has to be done carefully so that the amplifier will go into the rack at the proper place. The best way to do it is to actually fit the panel to the rack, with any other rack-mounted equipment in place, and measure for the holes. The ends can be cut off a standard rack panel for the purpose, but most of these are ½ inch thick, a fairly heavy gauge to cut with a hack saw. If a machine shop is available, they can do the job. The heavier metal will be worthwhile because of its extra strength.

Take one plate out of the center of the stator and remove about 1 inch or more from the center of each side of the stator frame. This produces a split-stator condenser with about 55 µf per section. This is just right to tune the 6-turn amplifier coil to 28 mc. This coil will be used as the push-pull tank coil L1 of the amplifier, so place a tap at the center for B-plus. Push the link L4 into the center of the form and remount the switch, coil, and condenser. Connect one end of the link and the switch arm to terminal on the right side of the case.

The original oscillator coil and condenser will be used for the grid circuit of the amplifier. Remove two turns from the winding and tap it at the center. Wind a two-turn pickup link L1 around the center of the coil, using flexible wire. After remounting the coil, connect the 50-µf condenser across it, and connect the link to terminal strips mounted on the left side of the case. The link is used for connecting to a driver or exciter stage.

Cut the shield plate into strips and drill mounting holes for sockets and other components as shown in Figs. 2 and 3. Bolt the strips in the case and complete the wiring. Connect filament plate, and ground leads to the heavy jacks in the rear or to a cable connector like the one behind the grid coil in Fig. 2. The .0004-µf, 5000-volt grid and filament bypass condensers are obtained from the tuning unit. (If you plan to modulate the amplifier, better use .01-µf filament bypass condensers. —Editor.) The r.f. choke was also taken from the original unit. The neutralizing condenser we used is a dual unit with rotors connected with an insulated shaft. Standard neutralizing condensers can be used if desired. Their value and plate spacing depends on the tubes and the plate voltage used. Capacitors variable between 0.25-µf and 4 µf are suitable for the 2A7's. The voltage breakdown rating should be about twice the sum of plate and grid bias voltages to avoid the possibility of arc-over.

A 100-ma d.c. meter measures cathode and grid currents. When the meter switch is in the grid-current position, it is shunted across a 25-ohm resistor. The shunt in the cathode circuit, R1, is made by shunting enough No. 26 wire across the meter to make it read 300 ma full scale. Isolantite crystal-holder sockets were used for connecting the input and output links. Any type of low-loss connectors could be used.

Any good exciter delivering 10 watts or more will drive this amplifier to full output, even with 2,000 volts on the plates. The output coupling system will work into almost any coupling network or antenna with nonresonant feeders. Coupling should be adjusted until the cathode current is at its proper value at resonance. This will be found in the tube manual.

The circuit is standard in every respect, so no trouble will be encountered. No doubt different arrangements will suggest themselves, such as the type of plug used to carry the filament and plate voltages, mounting of the various parts to fit each constructor's ideas, and so on, but the tuning unit does provide the basis for making a good final amplifier and most of the work, especially the tough metal punching, is already done.

Of course, some of the G1's who lived with the BC-375 may think they would prefer never to see the gadgets again in any form; but with ham electronics coursing through the coils and condensers, the picture takes on a different hue. For three lacks one has most of the makings for a pretty good final amplifier, even if it is a bit G1-looking.

Fig. 1—This simple push-pull amplifier can be built on the TU-10-B chassis in a few hours.

Fig. 2—This photograph shows the underside of the amplifier. The grid coil is at the left.

Fig. 3—Looking down on the amplifier from the top. The original tuning condensers are used.
Ten-Meter Final
From TU-10-B

By L. W. MAY, W5AJG

The drawer-type tuning units from the BC-191 and BC-375 have been plentiful on the surplus market for some time. These units, TU-5, TU-6, etc., contain a large number of parts useful in amateur transmitters. They contain all the tuning circuits for an m.o.p.a.-type transmitter using 211's as a v.f.o. and single-ended final amplifier. Available for less than $3, these units have been purchased in large numbers by hams who have either converted them to variable-frequency oscillators and transmitters or dismantled them for the parts they contain. Here at W5AJG, we converted a TU-10-B to a 200-watt final amplifier that works so well that we plan to build similar units for the other amateur bands. For 90% of the components needed for a 200-watt amplifier, $3 is not a particularly high price to pay.

There are 12 different types of tuning units in the series designed for the BC-191 and BC-375. Since all of these look alike, be sure to get one nearest the frequency you wish to use. The frequency ranges most commonly available and most useful for amateur conversions are listed in the table which follows. Though the figures do not show it, there is some overlap in the ranges.

<table>
<thead>
<tr>
<th>TU</th>
<th>1,500 to 3,000</th>
<th>3,000 to 4,500</th>
<th>4,500 to 6,200</th>
<th>6,200 to 7,700</th>
<th>7,700 to 10,000</th>
<th>10,000 to 12,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TU-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of the tuning unit is usually followed by a letter that indicates the series of the transmitter for which it was designed. There is little, if any, difference between tuning units with the same number although they may be TU-5-A and TU-5-B. Either the A or the B will be satisfactory for conversion to use as an amateur power amplifier.

The TU-10-B was selected as the foundation for the 10-meter amplifier. The oscillator tuning circuit consists of eight turns of No. 10 wire tuned with a 50-µf variable condenser; the power amplifier circuit has six turns tuned with a 116-µf condenser. Both circuits are tuned from the front panel with slow-speed dial mechanisms. The power amplifier coil has a tapped link connected to a six-position tap switch on the panel. The link is inside the form at the cold end of the power amplifier coil.

We selected 3C24/24G's because they are efficient at most amateur frequencies and will work well with the 1,250-volt power supply we had available for them. A number of other tubes—not necessarily triodes—will work equally well. The components in the tuning units are suitable for use in most medium-power transmitters. The variable condensers have a breakdown voltage of 1,500 volts or higher. Unless you have some way of finding out exactly what the breakdown voltage is in the case of any particular condenser, it is probably a good idea to keep the B-supply voltage at or below 1,500.

The amplifier uses a standard push-pull circuit (Fig. 1). It is simple and takes only a few hours to build. After removing the top, bottom, sides, and center shield, take out all components except the dial drives. Do not disconnect the switch from the link coil. If you plan to mount the amplifier in a standard 10-inch relay rack, cut strips from 1/16-inch sheet metal and bolt them to the ends of the panel to make it 19 inches across the front. Notch the
Besides the sale of hearing aids to individuals, the Audiphone Company installs group hearing-aid systems in churches. A group hearing aid consists of a microphone at the pulpit and an amplifier which is usually concealed within the pulpit housing. A master cable from the output of the amplifier is run beneath the church flooring for the entire length of the room. From this cable branches are tapped off, each leading to a pew section and coming to a receiver jack. The hard-of-hearing members of the congregation are furnished with individual earphones which they plug into the jacks under the pews. Volume can be regulated to suit the individual by a special volume control in the cord running to the plug. Overall volume can be adjusted at the amplifier.

This company has also had a number of calls from clinics, schools, and otologists for audiometers, devices which are essentially audio oscillators calibrated to read hearing loss. These come in units to read individual hearing losses as well as in models designed to read the hearing of groups.

For its intercom business, the Audiphone Company depends on newspaper advertisements, telephone directory listings, and some direct-mail literature to potential customers. Word-of-mouth advertisement by satisfied customers has also been a contributing factor in sales. They have felt no need to list intercoms on their store show window, feeling that they are not an over-the-counter sales item.

Besides advertising locally, they have the benefits of national advertising, for most intercom and hearing aid manufacturers pass on leads which result from inquiries. When such leads come in, the customer receives a personal visit from one of the owners of Audiphone. A demonstration is a great aid in closing sales.

The repair department is manned by two competent technicians who handle all the repair work necessary on intercoms, audiometers, and hearing aids. Because of the small size of hearing aids and intercoms, the repair space is not as large as would be needed for radio service work. Desks are used because of their convenience; the drawers are ideal for storage of small replacement parts.

The test equipment used here is similar to that found in any radio shop—multimeters, vacuum-tube voltmeters, 'scopes, gain-checking devices, and similar items.

The two organizations mentioned are representative examples of how much business there is in sound. The newcomer would do well to secure literature from various manufacturers and familiarize himself with representative standards and variations. A franchise for the sale and service of public address systems or intercommunicating systems can then be obtained from the manufacturer or distributor whose products are considered the best in their price range. (Some manufacturers sell directly to appointed representatives while others work through distributors.)

In most cases manufacturers furnish free engineering service to their representatives where a particular installation exceeds normal requirements in size and complexity. The manufacturers will cooperate with the dealer in the design of special control panels, and will furnish necessary wiring instructions and schematics.

To facilitate installation and service work, manufacturers also publish service bulletins which contain troubleshooting procedures, normal wiring methods, and schematics. Since each manufacturer sells cable, junction boxes, and other accessories necessary for the best hookup of his particular line, the radio repairman finds the transition to intercommunication system and PA work a comparatively simple matter.

Other sound work

Another branch of sound which shows promise is the rental of tape or wire recorders to schools and clinics, where they have proved valuable in speech study.

The popularity of electronic organs and organ attachments for pianos has opened another field for the radio repairman. The Radio Service Shop has already contracted with several manufacturers for local service and repair.

Many other possibilities exist, from wired music for hotels, restaurants, and factories, to the use of intercoms in the home for baby-watching or basement workshop communication. Sound offers a wide variety of potential money makers for the radio repairman. When you've successfully developed a particular line, you'll agree with many others who have built successful sidelines that "sound is a sound business."

Intercoms, hearing aids, and amplifiers are tested and repaired on Audiphone's bench.
Any serviceman has enough knowledge to enter the PA business. Rental and service help bring in extra cash.

SOUND HELPS YOU MAKE MORE MONEY

By MATTHEW MANDL

SOUND—either as a sideline or an independent business—offers unusual opportunities for the radio repairman. It provides a means for augmenting his yearly profits, and at the same time opens another avenue along which his business can expand. Since the average serviceman is already quite familiar with audio amplification, he will encounter no difficulty in working with public address systems, intercoms, or any other sound equipment.

The most popular sideline with the radio man today is the renting and selling of PA systems. This does not mean, however, that it is the only one with money-making possibilities. Many shops have done exceptionally well in the sales and service of intercommunication systems, the gross income from which often exceeds that secured from PA system rentals. Others have done nicely renting large phon amplifiers to lodges, churches and schools for their special events. Still others have concentrated on servicing office sound equipment, such as dictating machines. There are also good markets for tape and wire recorder rentals, as well as the furnishing of recorded music for factory workers.

A good example is The Radio Service Shop operated by David Van Nest and Gibson Brindley in Trenton. Shortly after opening the shop they found the repair business profitable and decided to expand. Their shop was too small to allow them to go into radio sales, so after some debate, they decided to take on PA systems as a sideline. The equipment required no floor space in the shop and could be stored away when not in use.

They acquired a 10-watt amplifier, two microphones, and three speakers. To start off, they ran an occasional newspaper advertisement and lettered "PA Systems" on their delivery truck. A box in the classified section of the telephone directory also helped. From the first, they found their investment paying dividends.

About a year after their entry into the PA business, their entire sound system was burned beyond repair at an amusement park fire.

They bought new and better equipment, until today they have half a dozen indoor-type PA systems, ranging from 10 to over 50 watts in output power, and three portable amplifiers, two of which were built in their own shop. A number of lodges, churches, and civic groups have become regular customers of The Radio Service Shop. The owners make a specialty of repairing permanently installed PA systems, and their public address business has reached such proportions that the income from it often exceeds that from their radio repair service.

Both Van Nest and Brindley are agreed in attributing their success to the fact that they concentrate on giving good service. They take turns personally supervising the installation of their public address systems, making sure that the microphones are placed properly and that the gain of each is sufficient for the use to which it will be put.

Intercoms and hearing aids

Another store which does exceptionally well in the field of sound is the Audiphone Company, also of Trenton, which deals exclusively with sales and service of intercommunication systems and hearing aids.

This business is a good example of what can be done with sound. In a little over six years the volume of business in sales and repair has reached enviable proportions. They have consistently exceeded their yearly quotas for Western Electric hearing aid sales, and have installed intercoms in country clubs, state offices, business places, stores, and institutions within a 50-mile radius of their location.
HOW TO BREAK INTO SERVICING

A new era in servicing lies ahead...

By HUGO GERNSBACK

When the radio boom first started in the early 20's, servicing of radio receivers was an entirely new development. The then radio experimenters, radio amateurs, and other radio enthusiasts soon heard the servicing call. As the new radios went out of order the laymen owners could not put them into condition again and it was not long before radio technicians who understood something about the intricacies of radio sets were called in. That was the birth of radio servicing.

At present we are again in the midst of another—but much greater—radio boom. This time it is television. Authorities are convinced that during the next few years there will be a tremendous upswing in the servicing industry, far greater than was ever the case with AM receivers.

Millions of new television receivers will be in use in the near future. Indeed, it is quite conceivable that at the end of the next ten years the television receiver will have replaced to a great extent the present-day radio receiver.

The editors are now constantly in receipt of letters from men anxious to climb on the television bandwagon in one way or another and those who wish to get in on the ground floor in television servicing are on no exception to that rule. Here is an excerpt from a letter received recently:

Editor, Radio-Electronics:

"Just a few lines to you from a friend and a subscriber of yours since my early school days. I am 38 today."

"I am not a radio engineer by any means but I am also no tyro—how could I be with all the information you and your staff have crammed into my head through the years?"

"I have always used Radio as a hobby while working at something else.

"If I don't get into radio and television servicing now I never will. I am not trying to say that I know all that there is to know about Radio. But I can get along; my education is fairly good."

"What are your suggestions?"

"When you get a free moment, please drop me a line. I grew up with the name Gernsback as familiar to me as Babe Ruth to baseball fans."

John J. Bergen, Paterson, N. J.

The present time, indeed, is a most auspicious moment to start out in a radio-television servicing career. Furthermore in order to become established in the industry there are no great handicaps, no secrets. Nor does it take a great deal of money. If you have a good radio background—you need not be an engineer—if you are industrious, if you are willing to study and work hard, you should be able to make a good living in television servicing.

The first and most important requirement is good radio technical knowledge. This can be gained from schools or by studying radio publications and textbooks. The second is actual and concentrated experience in repairing radio and television sets. If you have a good theoretical radio knowledge, if you understand circuits, if you know a fair amount of mathematics, you should have no trouble in getting along.

To be sure, you will require the service manuals and servicing data of the various receivers. This information fortunately is tendered to you nowadays on a silver platter. The radio set and television manufacturers all issue valuable servicing information. Then there are several excellent servicing organizations that make a specialty of publishing and supplying such data to servicemen at a reasonable cost.

Experience with actual radio and television receivers is, however, a paramount requirement. It takes some time before the average new serviceman becomes proficient in locating the various troubles—it cannot be learned overnight. Furthermore to do efficient servicing and make a living from it, it is of utmost importance that you have the proper tools. The days of the screw-driver-and-pliers-serviceman are gone forever. Modern receivers, particularly television receivers, are most complex. To work efficiently and hunt down receiver failure in a minimum of time, good servicing instruments are an absolute necessity. The new serviceman requires as a minimum the following:

A 20,000-ohm-per-volt multimeter with HV range or multiplier to 8 or 10 kv.

Standard signal generator with a.f. output terminals. Tube tester, mutual conductance type.

VTVM (high-frequency type).

Scope, with triggered sweep, blanking and calibrated scale.

FM and TV sweep generator (best available).

The above represent only a modest beginning. Later on the experienced serviceman will wish to add other items to help him work more efficiently and guarantee him a better living.

If you have a reasonably good radio background it should not take more than three to four months to become a self-supporting radio and television serviceman. But remember this important point: even if you are the greatest radio wizard in the country you will still not be a success unless you have the ability to sell yourself to the public. The independent serviceman nowadays in many localities is often under a cloud. This is due to no fault of his, but because a small minority of unscrupulous servicemen—the outer fringe—are exploiting and have exploited the public. It is this very small minority that has given the industry a black eye in the past. It takes no more than five per cent of such men to give the whole group a bad reputation.

The new serviceman should always remember the cardinal rule that honesty is the best policy in the long run. When an unscrupulous serviceman charges $5.00 or more for cleaning the contacts of a tube, or tightening a loose wire connection, such tactics invariably come home to roost and plague him and his industry. Sooner or later the public catches on to these underhanded methods and becomes not only suspicious, but antagonistic towards the whole servicing trade. The serviceman who is successful in the end is the one who makes no charge whatsoever for little jobs such as the ones mentioned above. (It is presumed that the receiver was taken to his shop; if he was called in by the set owner, then a small servicing charge is in order.) Such treatment will be remembered and when a serious repair comes along next time, the set owner will have confidence in the serviceman—an asset that will pay big dividends in his future.

In short, if you wish to make a success in servicing, it can best be summarized in the following five points: 1. Good radio knowledge. 2. Intelligent work. 3. Honesty and fair play. 4. Good personal appearance. 5. Keeping everlastingly at it.
Why play "PENNY-ANTE"... when your business is at stake?

A good reputation, like good-will, is built by many deeds, but may be destroyed by a single dissatisfied customer. Your reputation is too valuable to risk for the few pennies "saved" by buying inferior or unknown "bargains." That's why we keep repeating "Your Reputation and your customers deserve the best!" And the best means Sprague.

SPRAGUE TM TUBULARS—The first truly practical MOLDED Paper Tubular Capacitors

SPRAGUE ATOMS—Universal Midget Dry Electrolytics

SPRAGUE LM—Universal Mounting Replacements!

SPRAGUE E—Self-Mounting Midget Can Type

THESE SPRAGUE PRODUCTS ARE UNCONDITIONALLY GUARANTEED!

When used at their capacitance and voltage ratings, these Sprague Products are unconditionally guaranteed to render satisfactory performance.

CAPACITORS

RESISTORS

(JOBBING AND DISTRIBUTING ORGANIZATION FOR THE PRODUCTS OF THE SPRAGUE ELECTRIC COMPANY)

www.americanradiohistory.com
We're holding the Line,

OUR PRICES ARE STAYING DOWN DESPITE INCREASED COST OF WAREHOUSING & REPLACEMENT

Xmas Special

BRAND NEW Electric Drills
AS LOW AS:
$19.95 or $23.50
F.O.B. Detroit Express Charged Collect.

525 FT. BRAND NEW WIRE
$2.95

PHANTOM ANTENNA
A transmitting antenna, for use on approximately 450 MC. Complete with standard coax connector. A weather-proof unit. Add 25c to cover postage and handling.

BRAND NEW "211'S"
$49c

WILLARD 2 VOLT BATTERIES
$1.25

BC-616 RELAY BOX
Originally used with the command set between Modulator BC-456A and Control Box BC-451A. Controls 3, 24 volt relays and other parts on an excellent buy at only $1.39 postpaid.

N. SILVERSTINE CO.
6532 EAST McNICHOLS ROAD DETROIT 12, MICHIGAN

"Seven Acres of Surplus"

PRICES IN GENERAL N.S. PRICES

1947 1948 1949 1948

0.24 0.24 0.24 0.24
NEW!

OHMITE Little Devil
RESISTOR ASSORTMENT
IN RUGGED All-Plastic CABINET

Servicemen’s Assortment Contains 125 Selected ½-Watt
Little Devil Composition Resistors in 40 Separate Compartments

Here’s a handsome, sturdy, all-plastic resistor cabinet you’ll be proud to have in your shop—and one that will save you hours of valuable time. The new cabinet is molded of solid plastic and has five drawers with eight compartments in each drawer. It is extremely compact—only 9" long, 4-½" high, and 5-¾" deep. Factory-packed in the cabinet is a serviceman’s assortment of 125 carefully selected Ohmite “Little Devil” ½-watt, individually marked, insulated composition resistors, in the 40 values (10 ohms to 10 megohms) most frequently used by servicemen. The assortment is offered at the price of the resistors alone—the cabinet is furnished without extra cost!

You’ll need one or several of these handy cabinets in your shop to protect your resistors and to help you find resistance values quickly. What’s more, they provide visual stock control so you can avoid duplicate inventories or unnecessary trips to your distributor. Order your assortment and cabinet from your jobber, today!

Stocked by Leading Distributors

OHMITE MANUFACTURING CO., 4895 FLOURNOY ST., CHICAGO 44

Be Right with OHMITE
RHEOSTATS • RESISTORS • TAP SWITCHES

REGULAR PRICE FOR RESISTORS
$10.00
NO CHARGE FOR CABINET

CAN BE STACKED ON EACH OTHER
A dovetail joint is provided on top and bottom of each cabinet so they can be stacked one on top of another.

QUANTITIES AND RESISTANCE VALUES IN THE SERVICEMAN’S ASSORTMENT

<table>
<thead>
<tr>
<th>Quantity</th>
<th>OHMS</th>
<th>OHMS</th>
<th>OHMS</th>
<th>OHMS</th>
<th>OHMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>33000</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1500</td>
<td>5</td>
<td>39000</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>2200</td>
<td>10</td>
<td>47000</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>3</td>
<td>2700</td>
<td>1</td>
<td>68000</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>4700</td>
<td>1</td>
<td>82000</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td>6800</td>
<td>10</td>
<td>0.1 meg.</td>
<td>1</td>
</tr>
<tr>
<td>270</td>
<td>10</td>
<td>10000</td>
<td>5</td>
<td>0.15 meg.</td>
<td>1</td>
</tr>
<tr>
<td>330</td>
<td>3</td>
<td>15000</td>
<td>1</td>
<td>0.22 meg.</td>
<td>1</td>
</tr>
<tr>
<td>470</td>
<td>5</td>
<td>22000</td>
<td>10</td>
<td>0.27 meg.</td>
<td>1</td>
</tr>
<tr>
<td>680</td>
<td>10</td>
<td>27000</td>
<td>1</td>
<td>0.33 meg.</td>
<td>1</td>
</tr>
</tbody>
</table>

FOR www.americanradiohistory.com
Switch to PHOTOFACT—the Best Service Data You’ll Ever Make!

Thousands of Radio Service Technicians are right! They’ve found the way to quicker, easier, more profitable servicing. Join these thousands of successful money-making Servicemen who have switched to PHOTOFACT Service Data. Learn for yourself how this accurate, easy-to-use, practical data saves you time, makes your work easier, helps you earn more. PHOTOFACT gives you 100% useful service data—every photograph, every diagram. Every bit of information helps you do a complete job. You owe it to yourself to switch to PHOTOFACT. There’ll be a big difference in the time you save and the bigger profits you’ll earn in single working day.

PHOTOFACT VOLUMES
The Preferred Service Data

Bring your file of post-war receiver Service Data right up to July, 1948! Here’s the most accurate and complete radio data ever compiled—preferred and used daily by thousands of Radio Service Technicians. Includes: Exclusive Standard Notation Schematics; photo views keyed to parts lists and alignment data; complete parts listings and proper replacements; alignment, stage gain, circuit voltage and resistance analysis; coil resistances; record changer service data, etc. Order Volume 4 today—keep your Photofact library up-to-date—it’s the only Radio Service Data that meets your actual needs!

Vol. 4. Covers models from Jan. 1, 1948 to July 1, 1948
Vol. 3. Covers models from July 1, 1947 to Jan. 1, 1948
Vol. 2. Covers models from Jan. 1, 1947 to July 1, 1947
Vol. 1. Covers all post-war models up to Jan. 1, 1947

FREE Photofact Cumulative Index

Send for the FREE Photofact Cumulative Index, covering all postwar receivers up to the present. You’ll want this invaluable reference guide to the Radio Service Data preferred and used by thousands. Helps you find the Photofact you want quickly. Get this index at your Jobber or write for it today.

Boost Your Earning Power!

Mail this order form to HOWARD W. SAMS & CO., INC., 2924 E. Washington St., Indianapolis 7, Indiana.

My (check) (money order) for $......... enclosed.

☐ Send the RED BOOK, $3.95 per copy.
☐ Send PHOTOFACT Volumes in Deluxe Binder:
 Vol. 4.
 Vol. 3.
 Vol. 2.
 Vol. 1. ($18.39 each).
 ☐ Automatic Record Changer Manual, $4.95.
 ☐ Tube Placement Guide, $1.25.
 ☐ Dial Cord Stringing Guide, $1.00.
 ☐ Send FREE Photofact Cumulative Index.

Name..
Address..
City...State..........

1947 Record Changer Manual

Nothing like it! Complete, accurate data on over 40 post-war models. Exclusive exploded views, photos from all angles. Gives full mana-
cycle data, information on adjustments, service hints and hints, complete parts lists. PLUS—for the first time—complete data on leading Wire, Ribbon, Tape and Paper Disc Recorders! 400 pages; hard cover; open flat. Order now! ONLY........... $4.95

Receiver Tube Placement Guide

Shows you exactly where to replace each tube in 5500 radio models, covering 1938 to 1947 receivers. Each tube layout is illustrated by a clear, accurate diagram. Saves time—eliminates risky hit-and-miss methods. 192 pages, completely indexed. ONLY........... $1.25

Dial Cord Stringing Guide

The book that shows you the one right way to string a dial cord. Here, in one handy, pocket-sized book, are all available dial cord diagrams covering over 2500 receivers, 1938 through 1946. Makes dial cord restringing jobs quick and simple. ONLY... $1.00

Radio Industry RED BOOK

The RED BOOK tells you in one volume: all you need to know about replacement parts for approximately 1,000 sets made from 1938 to 1948. Includes complete, accurate listings of all 9 major replacement components—not just one. Lists correct replacement parts made by 17 leading manufacturers—not just one. Covers original parts numbers, proper replacement numbers and valuable installation notes on Capacitors, Transformers, Controls, JFs, Speakers, Vibrators, Phone-Cordjers, Pior Tube and Dial Light data, and Battery replacement data. 440 pages, 85¢ + 11¢ re-awed binding. ONLY... $3.95

Subscribe Regularly to PHOTOFACT Folder Sets

Here’s the most accurate and complete Radio Data ever compiled—issued regularly two sets per month. Keeps you right up-to-the-minute on all current receiver production. Your best buy in Service Data-practical, useful information that makes money for you every day by saving you time on service jobs. Shows you everything you need to know about the sets you service—in clear, accurate, uniform style. Packed with extra help—full PHOTOFACT data on Automatic Record Changers—communications receivers—amplifiers—plus new PHOTOFACT Television Folders—exclusive, uniform coverage of popular Television Models, data proved best by actual service clinic experience. Subscribe at your Jobber today, for regular monthly issues. $1.50 PER SET ONLY

How and Where to Order

Mail this form to HOWARD W. SAMS & CO., INC., 2924 E. Washington St., Indianapolis 7, Indiana.

My (check) (money order) for $......... enclosed.

☐ Send the RED BOOK, $3.95 per copy.
☐ Send PHOTOFACT Volumes in Deluxe Binder:
 Vol. 4.
 Vol. 3.
 Vol. 2.
 Vol. 1. ($18.39 each).
 ☐ Automatic Record Changer Manual, $4.95.
 ☐ Tube Placement Guide, $1.25.
 ☐ Dial Cord Stringing Guide, $1.00.
 ☐ Send FREE Photofact Cumulative Index.

Name..
Address..
City...State..........

NOVEMBER, 1948

HOWARD W. SAMS & CO., INC.
INDIANAPOLIS 7, INDIANA

www.americanradiohistory.com
RCA USES RAYTHEON PATENTS
Raytheon Manufacturing Company has recently granted a license to Radio Corporation of America under the radar patents owned by Raytheon. These radar patents were issued to Subarnarai C. Pattinam’s Signal Corporation, Raytheon’s magazine affiliate, and cover development work begun in the early thirties.

The company states that practically every radar device built during the recent world war employed the basic principles used in these patents.

EGYPT’S NEW TELEVISION CENTER
A new broadcasting center to cover the whole Nile delta, reaching to Alexandria and Port Said, is under development near Cairo. A 50-kilowatt medium-wave transmitter has been purchased by the Egyptian Government from the International Division of RCA. It will be erected at Abu Zanbul, 11 miles from the capital, where the studios are built.

RMA NAMES LIASION GROUPS
To continue industrial cooperation between radio manufacturers and broadcasters, two liaison committees recently have been appointed by RMA President Max F. Baleon. These committees will work with similar representatives of the National Association of Broadcasters and the FM Association.

Early meetings are planned to promote broadcasting services and receiving set sales for AM and FM radio and television. An RMA Committee for liaison with NAB is headed by Paul V. Galvin, president of Motorola. The RMA committee for liaison with FM is headed by H. C. Bonfig, vice-president of Zenith Radio Corporation.

SET PRODUCTION FLUCTUATES
A recent RMA report on the number of radio sets produced during the first seven months of 1948 shows that the output of television receivers continues to be high. The drop in production of FM and AM sets is attributed to seasonal conditions. The table shows the figures given by the RMA.

<table>
<thead>
<tr>
<th>Month</th>
<th>TV</th>
<th>FM-AM</th>
<th>AM</th>
<th>All sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>130,001</td>
<td>136,016</td>
<td>1,713,240</td>
<td>1,339,258</td>
</tr>
<tr>
<td>February</td>
<td>139,001</td>
<td>141,016</td>
<td>1,905,087</td>
<td>1,639,097</td>
</tr>
<tr>
<td>March</td>
<td>122,001</td>
<td>161,016</td>
<td>2,080,116</td>
<td>1,803,085</td>
</tr>
<tr>
<td>April</td>
<td>163,001</td>
<td>184,016</td>
<td>2,185,087</td>
<td>1,903,085</td>
</tr>
<tr>
<td>May</td>
<td>177,001</td>
<td>147,016</td>
<td>2,295,087</td>
<td>2,067,085</td>
</tr>
<tr>
<td>June</td>
<td>150,001</td>
<td>164,016</td>
<td>2,355,087</td>
<td>2,170,085</td>
</tr>
<tr>
<td>July</td>
<td>156,001</td>
<td>162,016</td>
<td>2,335,087</td>
<td>2,147,085</td>
</tr>
<tr>
<td>TOTALS</td>
<td>1,134,985</td>
<td>1,376,301</td>
<td>17,335,761</td>
<td>15,024,851</td>
</tr>
</tbody>
</table>

COMPANIES REPORT EARNINGS
The general tone of financial statements issued recently by radio manufacturers shows that business is as whole is excellent. Some examples are:

RCA: Total gross income of the parent company and its domestic subsidiaries—$170,070,713 in the first half of 1948, compared with $134,323,872 for the same period in 1947, representing an increase of $25,745,841. Net income for the first half of this year was $10,860,288, as compared with last year’s $8,825,912; this is an increase of $2,034,376.

G-E: Net income of $54,602,339 in the first 6 months of 1948, as compared with $42,802,075 in the same period of 1947—a gain of 28.1%. Net income of $34,602,339 in the first half of 1948, as compared with $28,290,61 for the 20-week period ending July 3, 1948.

PHILCO: Total sales for the first half of this year were 16% higher than for the comparable period in 1947.

EJMERSON: The parent company and subsidiaries report a consolidated net profit of $1,253,658 for the six months ending July 31, 1948, compared with $1,253,658 for the first half of 1947.

ZENITH: Net consolidated operating profit for itself and subsidiaries for the three months ending June 30, 1948, amounted to $141,175,885. Demand for the company’s products, especially portable radios, continued strong.

RAYTHEON: An increase in the backlog of government orders led to the reversal, after the close of the fiscal year, of the previous declining trend in sales. Backlog of government business as of June 30, 1948, was approximately $34 million against $65 million on August 1, 1947.

FCC LIMITS STATION CONTROL
The Commission recently adopted rules making it impossible for any person or corporation to have more than seven standard broadcasting outlets or to own an interest in more than 14.

Previously it had set a limit of six on the number of FM stations under common control and had forbidden joint ownership of over five television outlets.

The rules now in effect also prohibit dual ownership of facilities in the same category in the same community, thus limiting one person or group to one standard, one FM, and one television outlet in a single area.

TV SHIPMENTS INCREASE
Second-quarter shipments of television sets by RMA manufacturers totaled 163,455 as compared with 106,136 during the first quarter, a gain of 50%. Sales reports went to 31 of the 48 States and to the District of Columbia.

The shipments during the half-year total rose to 259, 581, as compared with 162,181 for the entire year 1947. No reports were made for 1946 shipments, but 6,476 TV sets were produced by RMA members.

Shipments lag behind actual production, which amounted to 278,906 for the first six months of 1948. The total TV set production since the war is reported as 683,943.

AWARD TO HOWARD SAMS FIRM
Howard W. Sams & Co. was recently the recipient of a citation made by Financial World for the firm’s clear analysis of its financial position for the benefit of stockholders during 1947.
Get Your FCC COMMERCIAL RADIO OPERATOR LICENSE in a Few Short Weeks

It’s EASY if you use CIRE Simplified Training and Coaching AT HOME in SPARE TIME

Get your license easily and quickly and be ready for the $3000 to $7500 jobs that are open to ticket holders. CIRE training is the only planned course of coaching and training that leads directly to an FCC license.

Your FCC ticket is recognized in all radio fields as proof of your technical ability.

Employers often give preference to license holders, even though a license is not required for the job. Hold an FCC “ticket” and the job is yours!

Cire Graduates Find FCC License Pays Off

“Thanks to this course, I now have a very good job in a local power plant’s test department. I couldn’t have obtained this job without the math and basic electrical theories in the first part of Section 1 of this course.”

Stud. No. 2893N12

“I have been working for Police Radio Station WPFS in Asheville for five months since getting my second-class ticket.”

Stud. No. 2858N12

“You may be interested to know that I am employed at the local broadcast station, where I am a transmitter operator. I took and passed the FCC examinations last February.”

Stud. No. 2754X12

CLEVELAND INSTITUTE OF RADIO ELECTRONICS, RC-11
4900 Euclid Avenue, Cleveland 3, Ohio
Approved for Training under “G. I. Bill of Rights”

N O V E M B E R, 1 9 4 8

Get your FCC ticket
Jobs worth $3000 to $7500 are opening up right now for FCC Licensed Radiomen

Greater Security
A Nice Home
Happy Vacations and Travel

Get All 3 FREE Send Coupon Now!

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
4900 Euclid Ave., Cleveland 3, Ohio

I want to know how I can get my FCC ticket in a few short weeks by studying at home in spare time. Send me your FREE booklet, “How to Pass FCC License Examinations.” Also, send free exams for Amateur License as well as a sample FCC-type exam and Catalog A, describing opportunities for you.

NAME ...

ADDRESS ...

CITY ..ZONE...STATE...........................

Veterans check for enrollment information under G.I. Bill

NO OBLIGATION—NO SALESMEN.

www.americanradiohistory.com
MADE TO SELL YOU
AND YOUR SERVICE

3 NEW
SYLVANIA AIDS!

Here's the new Sylvania Service Kit now available to service dealers—a prestige-building and practical addition to your service business!

Made of laminated plywood covered with brown plastic fabric with the appearance of fine leather, this kit has a tube capacity of over 75 tubes. The interior measures only 18" x 11 3/4" x 5 3/4". The tool section in the lid is designed to hold the most commonly used tools for on-call service. Ask your Sylvania Distributor for this wonderful new, low-priced Service Kit. Get that added professional touch that means so much.

only $9.95

And here's the new Sylvania illuminated shadow box sign that's ready for hanging in your window, on your wall, or on any strategic flat surface in your windows.

The big, bright red letters "Radio Service" tell your message in no uncertain terms to every passerby. The sign’s face is glass; the background translucent yellow. The red letters are outlined in black, while the bottom half of the sign is black with yellow lettering. The brown metal case is chrome trimmed. Size: 18" long, 9 3/4" high, 3 3/4" deep. Seven-foot cord provided.

only $4.50

At Sylvania Distributors everywhere! Sylvania Electric Products Inc., Advertising Department, Emporium, Pa.

Sylvana Electric
RADIO TUBES; CATHODE RAY TUBES; ELECTRONIC DEVICES; FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; PHOTOLAMPS; ELECTRIC LIGHT BULBS

RADIO-ELECTRONICS for
10 Reasons Why...

D.T.I. can prepare you for a profitable future in TELEVISION Radio - Electronics

See how DeForest's Training, Inc. can start preparing you now for the opportunities ahead in TELEVISION...RADIO...ELECTRONICS. We provide practical training in your own home to help you gain the confidence and "know-how" to fit you for a responsible, well-paying job or your own business. D.T.I. trains you rapidly, thoroughly, by using modern instruction methods and equipment. Write today for free facts on how you, too, may get started toward a profitable, exciting career.

NO EXPERIENCE NECESSARY
D.T.I. sends every major aid to speed your home training. In addition to the many shipments of Radio-Electronics parts and assemblies, you receive well illustrated, loose-leaf lessons, prepared in clear, simple language to help you learn faster, easier.

You BUILD and KEEP this jewel bearing MULTI-METER (above) and 6-tube "Super-Hot" Receiver (below) ... giving you practical experience at home in ASSEMBLY...WIRING...SOLDERING...TESTING...TROUBLE SHOOTING!

MAIL THIS OPPORTUNITY COUPON NOW!

DeForest's Training, Inc.
2533 N. Ashland Ave. Dept. RC-11
Chicago 14, Illinois

Send me complete details, showing how I may make my start in Radio-Electronics-Television. No obligation.

Name
Address
City Zone State

If under 16, check here If a discharged veteran of World War II, check here
CONTINUOUS RESEARCH, study of thousands of cases of actual field experience now enable us to offer you the new 900A "VOMAX". Revolutionary as was the original, the new 900A forges far ahead in simplicity, dependability all-around usability.

Just 34 months ago McMurdo Silver Co. announced "VOMAX"—the first truly stable, ultra-high input resistance v.t.v.m. Lifting the v.t.v.m. out of the limited laboratory-application class, Silver engineering and use-experience made "VOMAX" the first universal v.t.v.m. Its acceptance was instant and overwhelming — for "VOMAX" will measure, at input resistance so astronomically high as not to "load down" any circuit to which it may be connected — d.c. volts, a.c., a.f., i.f. and r.f. volts, d.c. milliamperes and amperes, resistance and db. — all over tremendous range and with laboratory accuracy. Used in scores and hundreds by such competent organizations as the National Bureau of Standards, the Navy, Army, F.C.C., C.A.A., Veterans Administration, G. E., Western Electric Co. Recommended by Bendix, "VOMAX" is consistently copied, never equalled — stands today as "standard of comparison" for the entire industry.

In announcing the new "VOMAX" we think you'll agree that we can feel just a bit proud of having again done the impossible to give you the world's finest universal Laboratory Caliber Electronic Test meter at only Net $68.50.

FEATURES
- Non-breakable glass 7" meter completely protected behind panel.
- Single hand-convenient probe gets into tight places, banishes usual snarl of easily lost and broken test leads.
- Newer — and fewer — miniature u.h.f. tubes.
- 51 ranges at highest available a.c. and d.c. input resistance.
- Absolutely stable — an adjustment sets meter zero for all ranges.
- No grid current error. Exclusive to "VOMAX", this vital feature is carried to new heights in new 900A.
- 24 d.c. ranges at 51 and 126 megohms, constant input resistance. 0 thru 3, 7.5, 12, 30, 75, 120, 300, 750, 1200 and 3300 volts. Polarity reversing switch.
- 6 a.c./r.f. ranges, 300,000 mc., 20 megohms input resistance shunted by 7 mmfd. 0 thru 3, 12, 30, 120, 300 and 1200 volts.
- 3 db. ranges — 100, 1000, 10000.
- 6 direct current ranges. 0 thru 2, 20 and 2000 megohms.
- True vacuum tube meter in all but current functions. No low-resistance, frequency-erroneous copper oxide rectifiers.

Every good jobber features the new "VOMAX", new super-sensitive 905A "SPARX" Signal Tracer, 910 Universal Test Speaker & 18 Watt Universal Output Transformer, 906 FM/AM Signal Generator, new 909 and 911 TV and FM Sweep Signal Generators, 904 Resistance/Capacitance Tester. All Laboratory Caliber Electronic Test Instruments at a price you can afford.
UNAUTHORIZED BROADCASTING from a transmitter operated in Jenkintown, Pa., was stopped last month by federal agents. The station was operated by a young veteran who had studied radio at a Texas school. He had been broadcasting music and entertainment on a frequency of 1540 kc for several months.

The intervention of federal agents and seizure of the equipment provides another warning to all radio men that unauthorized transmissions will not be tolerated by the government. Even phone oscillators may cause under the ban if they have sufficient output. The safest plan is to deliberately limit output of such devices to the minimum necessary to transmit across the room in which oscillator and receiver are located.

U. S.-CANADIAN AGREEMENT was reached last month with regard to FM stations close to the border. The agreement calls for consultation between the F.C.C. and the Canadian Department of Transport to eliminate any possibility of interference between stations of both countries. No loss of channels to this country is expected.

KENNETH B. WARNER, known to radiomen as secretary of the American Radio Relay League and editor of its official organ, QST, died unexpectedly September 2.

Mr. Warner was one of the founders of the League and was its first paid secretary, holding the post from 1919 till his death. He was active in organizing the International Amateur Radio Union, and at practically all national and international conferences where the welfare of the amateur was affected.

He maintained his personal interest in radio, operating his own station W1EH up to the time of his death. He was also an enthusiastic amateur photographer, and many of his pictures have been exhibited. He was a member of the Institute of Radio Engineers and the Hartford County Camera Club.

SUPersonic PAINT TESTING was reported last month to the American Chemical Society. Less than a second is required to tell whether a paint or varnish will wear well.

The coating of paint is smeared on a piece of metal. The metal is then shaken violently by a transducer connected to a supersonic oscillator. The amount of vibration necessary to make the paint or varnish peel indicates how long it will be likely to last under normal conditions of use.

TOWERS are being erected across Northern Indiana to chart a layout for television relays, it was announced last month by T. C. Wilhoite, TV engineer for the American Telephone and Telegraph Co. The towers are temporary: when the permanent ones are built next year, they will link Chicago with East Coast TV facilities.

A co-axial cable laid across the same route last year was intended for television but this cable is already being overworked to handle long-distance telephone calls. When the relays are finished, the cable will be used for television only in emergencies.

NATIONAL ELECTRONICS CONFERENCE will be held at the Edge-water Beach Hotel in Chicago on November 4, 5, and 6.

A comprehensive technical program has been arranged covering all the major fields. New equipment will be displayed throughout the sessions.

LOW-POWER FM transmitters may be used by schools and other non-commercial, educational broadcasters, according to a ruling made by the FCC last month. Power used may be 10 watts or less and all stations will operate on 88.1 mc. The ruling is expected to make it possible for many schools with limited finances to enter the broadcasting field.

BRITISH TV standards were frozen indefinitely last month by a government decision to retain the present 405-line, 25-frame pictures. The British decision parallels the American one made some time ago against converting to color. The reason in each case was that technical advances were not sufficient to justify a change in system which would make all present sets obsolete. British televiewers now own approximately 60,000 receivers.

MAGNETIC TAPE STANDARDS for the broadcast industry were decided upon last month by the NAB, lifting the last barrier to widespread production and use of tape recording equipment. Most important was standardization of tape speed at 15 inches per second for high-fidelity work, with 7.5 inches as a secondary speed and 30 inches as a supplemental speed. The 7.5-inch speed corresponds to the proposed RCA standard for home recording.

Other standards adopted included a tape width of 0.125 inch, specified breakage, temperature, and humidity characteristics, noise level 40 db below peak signal, and 33-minute playing time on each spool.

NATIONAL RADIO WEEK will be observed this year from November 14 to 20, with all phases of the broadcasting and radio manufacturing industries participating. The announcement was made by RMA and NAB, the joint sponsors.

This will be the fourth year in which all radio interests will cooperate in observing the anniversary of broadcasting. This year's anniversary is the twenty-eighth.
THE MOST DESIRABLE ANTENNA MOUNT EVER MADE!

All-Metal TV Tubes are now being manufactured by the Tel-O-Tube Corporation of America, according to an announcement made last month by Samuel Kagan, the firm's president. The new tube has a 16-inch viewing surface. They are being produced at the rate of 100 a day, the first metal viewing tube to be made in quantity.

Most of the tube is made of spun chrome-steel alloy. Ordinary plate glass is used for the face. Advantages include: lighter weight (the new tube weighs only about one-sixth as much as a 15-inch all-glass tube); larger viewing area (14 square inches, compared with 115 for a standard 15-inch glass tube); and better shielding from ambient light.

Microwave Relays are now being used for some of the ordinary long-distance telephone conversations between New York and Boston, the Long Lines Department of the American Telephone and Telegraph Company announced last month. The new system was completed about a year ago and was used for experiments in the transmission of telephone and television traffic. Seven stations operating in the vicinity of 4,000 mc are used over the New York-Boston route.

New Operator License classifications will not be created, the FCC announced last month. Some time ago the Commission had proposed abandoning the present radiophone licenses which cover broadcast station operators and adopting three new grades, broadcast engineer-operator, broadcast technician-operator, and limited broadcast operator.

The proposal had been strongly opposed by union spokesmen, who characterized it as degrading. It was suggested that the problem of higher qualifications for broadcast operators be solved by advancing the requirements for obtaining the first class 'phone license to cover the latest developments in the field.

The FCC announced that it had started revision of the examinations and that work has been completed on the examinations for first and second permits.

Cosmic Noise which left outer space about 3,000 years ago is interfering with our radio communication today. According to an account published recently in the Australian Journal of Scientific Research, J. G. Bolton and G. J. Stanley have discovered that this radiation comes from a mysterious space in the constellation Cygnus.

The radiation produces the second loudest cosmic noise of any place in the Milky Way. A place in the constellation Sagittarius produces the loudest noise.

The Cygnus radiation is unusual because it sends two kinds of signals. One is of constant intensity at about 100 mc; the other varies in intensity and uses frequencies below 100 mc.

Children may not attend television shows in New Jersey bars, according to a decision last month by State Alcoholic Beverage Commissioner Erwin B. Hock.

Patrick Radigan, owner of a Hoboken tavern, had made a practice of closing his bar to adults between 6 and 7 p.m. and inviting neighborhood children in to watch the television juvenile programs. In ordering Mr. Radigan to stop the practice, Hock wrote, "However worthy your intentions, I disagree. Henry Wadsworth Longfellow would turn over in his grave if he could see the locale of your 'Children's Hour'!"

Signal Corps Reserve Unit will be organized in New York under the sponsorship of NBC. Chief Signal Officer Maj. Gen. Spencer Akin announced last month. The unit will be a mobile radio broadcasting company.

Synthetic Mica with the desirable characteristics of natural mica has been produced for the first time, it was revealed last month. The material is being produced by a pilot plant under a research program sponsored by the Office of Naval Research, the Army Signal Corps, and the Navy Bureau of Ships.

Known as fluorspar-phlogopite mica, the synthetic can be separated into thin sheets and has good electrical and mechanical properties and chemical stability. The discovery is important because of the scarcity of natural mica in this country. Indispensable in almost all electronic apparatus, only 18% of the amount of mica needed during the war was produced domestically.

Suspension of Licenses of three amateur stations was proposed last month by the FCC. Reuben E. Gross, W2OXR, a lawyer of Staten Island, N. Y., was charged with transmitting deceptive signals. According to the commission, Mr. Gross transmitted and received messages to and from Palestine in code on behalf of a third person and used false call letters in addressing the Palestine station in order to conceal its identity.

Joseph A. Jurkowski and Marvin C. Grossman of Caldwell, N. J., were charged with using profanity during a radio conversation. The commission said the two made "obscene and disrespectful allusions to this commission and the law generally."
ONE OF THESE 5 WILL BEST FILL YOUR V.O.M. REQUIREMENTS

MODEL 630. Outstanding Features: (1) The new Triplet Molded Selector Switch with contacts fully enclosed . . . (2) Has Unit Construction with Resistor Shunts, Rectifier Batteries in molded base . . . (3) Provides direct connections without cabling . . . no chance for shorts . . . (4) Big easily read 5½ Red + Dot Lifetime Guanteed Meter.

TECH DATA
D.C. VOLTS: 0.1-12.5-30.0-120.0-600. at 20,000 Ohms/Volt
A.C. VOLTS: 0.1-12.5-60.0-120.0-600. at 5,000 Ohms/Volt
D.C. MICROAMPERES: 0.50 at 250 Milliamps
D.C. MILLIAMPERES: 0.1-2.5-10-30-90, at 250 Milliamps
D.C. AMPERES: 0.1-1.0-2.5-10-30-90, at 250 Milliamps

MODEL 666-HH. This is a pocket-size tester that is a marvel of compactness and provides a complete miniature laboratory for D.C. and A.C. voltages, Direct Current and Resistance analyses. Equally at home in the laboratory, on the work bench or in the field . . . its versatility has labeled it the tester with a thousand uses . . . housed in molded case . . .

TECH DATA
D.C. VOLTS: 0.1-10.0-50.0-250-1000-5000, at 1,000 Ohms/Volt
A.C. VOLTS: 0.1-10.0-50.0-250-1000-5000, at 1,000 Ohms/Volt
D.C. MILLIAMPERES: 0.1-0.5-1-5-10, at 250 Milliamps
D.C. AMPERES: 0.1-0.5-1-5-10, at 250 Milliamps

MODEL 625-NA. This is the widest range laboratory-type instrument with long 5.6' mirrored scale to reduce parallax. Special film resistors provide greater stability on all ranges. Completely insulated molded case. Built by Triplet over a long period of time, it has thoroughly proved itself in laboratories all over the world.

TECH DATA
SIX D.C. VOLTS: 0.1-2.5-5-25-125-500-2500, at 20,000 Ohms/Volt
SIX D.C. MICROAMPERES: 0.50 at 250 Milliamps
SIX D.C. MILLIAMPERES: 0.1-2.5-10-50-250.1000-5000, at 10,000 Ohms/Volt
SIX D.C. AMPERES: 0.1-0.5-1-5-10, at 250 Milliamps
OHMS: 0.0-5000-10,000-20,000-50,000-10,000-200,000-500,000-1,000,000-2,000,000-5,000,000-10,000,000-20,000,000-50,000,000-100,000,000-200,000,000-500,000,000-1,000,000,000
MEGOMHS: 0.1-0.5-1-5-10, at 250 Milliamps
A.C. VOLTS: 0.1-10.0-50.0-250-1000-5000, at 1,000 Ohms/Volt
A.C. AMPERES: 0.1-0.5-1-5-10, at 250 Milliamps

MODEL 2451. Electronic Volt-Ohm-Mili-Ammeter . . . is easy to use in complicated testing . . . A must in F.M. and TV work in any sensitive circuit where low current drain is a factor . . .

TECH DATA
D.C. VOLTS: 0.2-5.0-10.0-25.0-50.0-100.0-200.0-500.0-1000.0-2000.0
R.F. VOLTS: 0.2-5.0-10.0-25.0-50.0-100.0-200.0-500.0-1000.0
OHMS: 0-1K-10K-100K
MEGOMHS: 0.1-10-100
INPUT IMPEDANCE: 11 Megohms on D.C. Volts
4.8 Megohms on A.C.-R.F. Volts

MODEL 2451. U.S.A. Dealer Net Price . . . $76.50
External high-voltage probe available on special order. See the Triplet V.O.M. line at your local Radio Parts Distributor or write

Precision first . . . to Last

TRIPLETT ELECTRICAL INSTRUMENT COMPANY - BLUFFTON, OHIO, U.S.A.

In Canada: Triplet Instruments of Canada, Georgetown, Ontario
Now AIR KING "Know How" makes possible this outstanding Portable WIRE RECORDER

Complete with AMPLIFIER
$99.95
INCLUDES FEDERAL TAX
Slightly higher in Zone 2

The AIR KING Wire Recorder line is complete

TECHNICAL SPECIFICATIONS

- Complete with amplifier
- Records direct from radio, phonograph or telephone
- Automatic shut-off at end of play or rewind of wire
- Crystal mike for hand table or stand and plug-in mike cord
- Rewind speed: 6 times forward speed
- Plug for cable to record from radio to phonograph
- Erases automatically when recording over used wire
- Safety lock prevents accidental erasure
- Covered in leatherette
- One-piece chassis
- Luggage-type carrying case
- 5" Alnico V P.M. Speaker
- TUBES: 2-50L6, 1-1280, 1-6AQ6, plus selenium rectifier
- WEIGHTS: 21 1/2 lbs.
- MEASURES: 13 1/2" long by 12" wide by 9" high

Selling Advantages

- Complete with amplifier
- Records direct from radio, phonograph or telephone
- Automatic shut-off at end of play or rewind of wire
- Crystal mike for hand table or stand and plug-in mike cord
- Rewind speed: 6 times forward speed
- Plug for cable to record from radio to phonograph
- Erases automatically when recording over used wire
- Safety lock prevents accidental erasure
- Covered in leatherette
- One-piece chassis
- Luggage-type carrying case
- 5" Alnico V P.M. Speaker
- TUBES: 2-50L6, 1-1280, 1-6AQ6, plus selenium rectifier
- WEIGHTS: 21 1/2 lbs.
- MEASURES: 13 1/2" long by 12" wide by 9" high

AIR KING RADIO

The Royalty of Radio Since 1920

AIR KING PRODUCTS CO., INC., 170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING

Portable Wire Recorder
Model A-725

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.

AIR KING PRODUCTS CO., INC.

170 53rd STREET, BROOKLYN 32, NEW YORK
Export Address: AIR KING INTERNATIONAL, 75 West Street, New York 6, New York

AIR KING RADIOTOGRAPHICS

DIVISION OF HYTRON RADIO & ELECTRONICS CORP.
I'll Send You 8 Big Kits of Training Equipment including

TWO-BAND 6 TUBE SUPER RECEIVER
AND 16 RANGE METER SET-UP
for Testing

Learn Fast ... Earn Fast
HOME TRAINING
Planned For Your Needs
You Build All These
TESTERS ... and MORE!

Practice Does It!
Soldering, wiring, connecting, building circuits with your own hands — you can't beat this method of learning. When you construct this Rectifier and Filter Resistor and Condenser Tester, etc., you get a really practical start on Radio that leads to a money-making future.

LOW COST HOME RADIO TRAINING!
Easy Monthly Payments!

My perfected Radio Training prepares you to start your own Radio Service Shop — or to land a big pay Radio job. With my help you can get Radio jobs while learning — for extra cash and rich experience. I train you RIGHT — by putting you to work with your hands in your own home during spare hours. You get 8 big kits of real professional Radio Parts and Equipment — and use them to build, test and trouble-shoot a powerful 6 tube superhet receiver, a 16 range test meter set-up and over 150 fascinating, instructive Radio experiments. My training is down-to-earth, really PRACTICAL — it's the training you need to make money in Radio. Theory is cut to the bone — you don't need any previous schooling or experience. Sprayberry Training starts you out at the very beginning of Radio — the lessons are illustrated, simply written and easy to understand. Get the facts about Sprayberry Training now. Find out what it can do for you — prepare for amazing opportunities in Radio Servicing, Television, FM, Radar and Industrial Electronics. Fill out and mail coupon for my two big Books — FREE. No obligation — and no salesman will call. Mail coupon Now!

MAIL COUPON FOR THESE 2 BOOKS!

VETERANS: Approved for G.I. Training under Public Laws 16 and 346

Sprayberry Academy of Radio, Dept. 20-L
Sprayberry Building, Pueblo, Colorado, or
20 North Wacker Drive, Chicago 6, Illinois

Please rush my FREE copies of "How to MAKE MONEY in RADIO, ELECTRONICS and TELEVISION" and "How to READ RADIO DIAGRAMS and SYMBOLS."

Name
Age
Address

City State

Mail in envelope or paste on penny postcard

www.americanradiohistory.com
Have you taken a really good look recently at the expanding service field? Do you have a feeling of helplessness when you think of some of the intricate, new-model equipment that you may be called upon to service? Or of the many jobs you may be missing in these related fields because you feel you don't know anything about them?

You may as well face the facts. You must keep your technical ability in pace with industrial developments—or be left behind because you lack understanding of radio-electronics as applied today to business and industry.

There is no need to tell these things you already know. But it is important for you to realize that, no matter whether you are a "beginner" or an "old timer" CREI home study training can help you. You will find that CREI courses in Radio-Electronics and Television are pitched to your own level. They take you all the way from introductory basic principles to advanced training, on to specialized subjects. CREI training can help you right now, in your daily work in the installation and servicing of radio-electronic equipment.

CREI's reputation has been proved over a period of 20 years. Join the many servicemen who are studying—at home—the new developments and techniques with CREI—protecting their future jobs, their businesses by acquiring the new "know-how" NOW!
Learn
RADIO
TELEVISION, ELECTRONICS
by
SHOP METHOD HOME TRAINING

Let NATIONAL SCHOOLS, of Los Angeles, a practical Technical Resident Trade School for almost 50 years, train you for today's unlimited opportunities in Radio!

these two FREE books will tell you how

Good Jobs Await the Trained Radio Technician

You are needed in the great, modern Radio, Television and Electronics industry! Trained Radio technicians are in constant and growing demand at excellent pay—in Broadcasting, Communications, Television, Radar, Research Laboratories, Home Radio Service, etc. National Schools Master Shop Method Home Study course, with newly added lessons and equipment, can train you in your spare time, right in your own home, for these exciting opportunities. Our method has been proved by the remarkable success of National Schools-trained men all over the world.

You Learn by Building Equipment with Standard Radio Parts We Send You

Your National Schools Course includes not only basic theory, but practical training as well—you earn by doing. We send you complete standard equipment of professional quality for building various experimental and test units. You advance step by step until you are able to build the modern superhetmodern receiver shown above, which is yours to keep and enjoy. You perform more than 100 experiments—build many types of circuits, signal generator, low power radio transmitter, audio oscillator, and other units. The Free Books shown above tell you more about it—send for them today!

Now! NEW PROFESSIONAL MULTITESTER INCLUDED!

This versatile testing instrument is portable and complete with test leads and batteries. Simple to operate, accurate and dependable. You will be able to quickly locate trouble and adjust the most delicate circuits. You can be the Multitester at home or on service calls. It is designed to measure AC and DC volts, current, resistance and decibels. You will be proud to own and use this valuable professional instrument.

Lessons and Instruction Material Are Up-to-date, Practical, Interesting.

National Schools Master Shop Method Home Training gives you basic and advanced instruction in all phases of Radio, Television and Electronics. Each lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own shops and laboratories, under the supervision of our own engineers and instructors. A free sample lesson is yours upon request—use the coupon below.

You Get This and Other Valuable Information in the Free Sample Lesson:

1. Basic Receiver Circuits and How They are Used.
2. Construction of the Antenna Circuit.
3. How Energy is Picked Up by the Aerial.
4. How Signal Currents are Converted into Sound.
5. How the Tuning Condenser Operates.
6. How the R.F. Transformer Handles the Signal, and other data, with diagrams and illustrations.

Approved for VETERANS

Both Home Study and Resident Training Offered

Mail Opportunity Coupon for Quick Action

NATIONAL SCHOOLS
Los Angeles 37, California

MAIL OPPORTUNITY COUPON FOR QUICK ACTION

NATIONAL SCHOOLS, Dept. RC-11
4900 S. Figueroa, Los Angeles 37, Calif.

Mail me FREEBIE, the book mentioned in your advertisement, sample lesson of your course. I understand no obligation will result.

NAME
ADDRESS
CITY
STATE

Check one: I'm Veteran, or I work here.

NOVEMBER, 1948

GET THE DETAILS—SEND THE COUPON

www.americanradiohistory.com
Contents

November 1948

Editorial (Page 21)
How to Break Into Servicing.................................by Hugo Gernsback

Audio (Pages 22-23)
Sound Helps You Make More Money..........................by Matthew Mandl

Amateur (Pages 24-25)
Ten-Meter Final From TU-10-B..................................by L. W. Mey, W5AJG

Servicing (Pages 26-30)
Servicing a Noisy Set..by H. A. Nickerson
Radio Performance Tests.......................................by K. V. Amstreek

Broadcasting and Communications (Pages 31-32)
A Carrier-Controlled Recorder.................................by Rhet McMillian

FM (Pages 33-37)
Alliegion FM Receivers...by John B. Lodoetter
FM Handie-Talkie for Radio Industry (Cover Feature)......by Otto von Guericke

Electronics (Pages 38-41)
Electronics in the Toy World..................................by Richard Henry
Electronics in Medicine..by Eugene Thompson

Television (Pages 42-48)
Using TV Test Patterns...by John R. Meagher
Compensating TV Amplifiers....................................by Robert F. Scott
High Band Telebooster..by I. Queen

Test Instruments (Pages 50-58)
Sensitive Vacuum-Tube Voltmeter.............................by John W. Strade
Signal Tracers are Popular....................................by T. W. Dresser

Construction (Page 62)
Instrument Voltage Supply......................................by R. L. Permenter

Foreign News (Page 64)
European Report..by Major Ralph W. Hallows

Theory and Design (Page 87)
Capacitor Drops Voltage..by Otto von Guericke

Departments

The Radio Month...10
Radio Business..16
New Devices...60
New Patents..68
Radio-Electronic Circuits.......................................72
People..74
Technote..75

Try This One..78
Question Box...80
Miscenery..82
World-Wide Station List......................................90
Communications...92
Book Reviews..97

Editorial and Executive Offices:
25 West Broadway, New York 7, N. Y.
I Radio men.

You Practice COMMUNICATIONS
I Send You Parts To Build
This Equipment

As part of my new Communications Course I send you parts to build your own Transmitter. Conduct actual procedure demanded of Broadcast Station Operators. practice many interesting experiments and learn how to put a transmitter on the air.

You Practice Radio SERVICING
On This Modern Radio You
Build With Parts I Send

As part of my Servicing Course, I send you the speaker, tubes, chassis, transformer, loop antenna, EVERYTHING you need to build this modern Radio Receiver that brings in local and distant stations. You use it to conduct many tests and experiments.

NEW

BE A RADIO TECHNICIAN
Learn Servicing or Communications

You CAN GET THIS TRAINING
UNDER G. I. BILL
MAIL COUPON

VETERANS
I TRAINED THESE MEN AT HOME

Good Job In Radio Station
As Chief Engineer of Station W O R D, I
charged of four
men. One all I knew about
Radio to NRI — CLAY BURDETTE, Spartanburg, South Carolina.

Makes Extra Cash In Space Time
$100,000 next month by time I
graduated. NRI training is tops — ALEXANDER K I S H, Carteret, New Jersey.

Operates Own Radio Business
Have largest service establishment in Southeast Missouri — A R L E Y STUBBY IN, Defiance, Mo.

BRIGHT FUTURE IN TELEVISION

Think of the present and future opportunities in the fast-growing Television field. New stations are going on the air every month...

GET ACTUAL LESSON AND BOOK FREE
Send now for my special DOUBLE FREE OFFER. Get actual lessons on Radio Servicing and you can build your own hobby station... Free... Also get 64-page book. "HOW TO BE A SUCCESS IN RADIO — ELECTRONICS." See how quickly easily you can start.

J. E. SMITH, President, Dept. $MX, National Radio Institute, Pioneer Home Study Radio School, Washington D. C.

Learn by Practicing in Spare Time
with MANY KITS OF PARTS I Send

Want a good-pay job in the fast-growing Radio and Television industries? Or is he boss of your own money-making Radio and Television shop? I've trained hundreds of men with no previous experience to be Radio technicians. I can do the same for you! Get the first time, enroll in my new practical course in Radio—Television Communications — learn to be a broadcasting and Communications technician. You learn Radio and Television principles from clear illustrated lessons. You get practical Radio experience with MANY KITS OF PARTS I SEND in my training course. All equipment yours to keep.

MAKE EXTRA MONEY IN SPARE TIME

As part of my Radio Servicing Course, I send EXTRA MONEY booklets, starting the day you enroll. Use your know-how to make EXTRA MONEY fixing Radios in spare time while training. The next step is your own Radio shop — a good-pay Radio servicing job. If you prefer, get into Government, Police, Aviation or Marine Radio, Broadcasting, Radio Manufacturing or Public Address Work.

Good for Both—FREE

MR. J. E. SMITH, President, Dept. $MX, National Radio Institute, Washington 5, D. C.
Mail me FREE Sample Lessons and 64-page book about how to win success in Radio and Television—Electronics. (No salesman will call. Please write plainly.)

Name

Address

City

State

Check If Veteran

APPROVED FOR TRAINING UNDER G. I. BILL

www.americanradiohistory.com