IN THIS ISSUE
Installing Two-Way Radio in Taxicabs

HUGO GERNSBACK.
Editor
New "VOMAX", new "SPARX" signal tracer universal test speaker, AM, FM and TV sweep and signal generators, laboratory C/R bridge, multi-frequency standard, wavemeter, universal test speaker, sine/square wave audio oscillator. Buy them from your favorite jobber.

In our new catalog you will find completely described ten instruments, each of which is in a special class... Laboratory Caliber Electronic Test Instruments at prices every technician can afford. Each is the product of the exclusive McMurdo Silver LCETI plan... the modern plan which makes available to every service technician the same instruments used by the big manufacturers who design and test the very radios you must service.

Instruments of advanced design... practical application "know-how" translated into simple pictorial instruction manuals... backed by over 37 years of world-famous radio engineering leadership... have increased LCETI production over 500% in 3 years and continue its growth.

We are proud that our efforts to bring fine instruments to the service professional and the research engineer have earned such overwhelming acceptance. Without our tens of thousands of customers we could never keep prices down while continuously increasing quality, accuracy and all-around "usability".

We are ever ready to help you turn your shop into a modern, efficiently-equipped service laboratory with Laboratory Caliber Electronic Test Instruments. Our new catalog will show you how easy this is... how each of these new instruments can amazingly increase your earning-power and efficiency. Send for 1948-49 LCETI catalog.

Laboratory Caliber Electronic Test Instruments
YOU PRACTICE Radio Soldering! With Soldering Equipment and Radio Parts I send you. Get practical experience mounting and connecting parts.

YOU BUILD this A. M. Signal Generator for more valuable experience. It provides amplitude-modulated signals for many tests and experiments.

YOU BUILD this Tester with parts N. R. I. sends early in course. Soon helps you fix neighbors' Radios and EARN EXTRA MONEY in spare time.

YOU TEST Radio Circuits like this built with parts I send. Build special circuits; learn how to locate and repair circuit defects.

YOU BUILD Vacuum Tube Power Pack; make changes which give you experience with packs of many kinds. Learn how to correct Power Pack troubles.

YOU GET PRACTICAL EXPERIENCE With This Superheterodyne Receiver

YOU BUILD THIS complete, powerful Radio Receiver that brings in local and distant stations. N. R. I. gives you ALL the Radio parts—speaker, tubes, chassis, transformer, sockets, loop antenna, etc.

Do you want a good-pay job in the fast-growing Radio Industry—or your own Radio Shop? Mail the Coupon for a Sample Lesson and my 64-page book, "How to Be a Success in Radio-Television-Electronics," both FREE. See how I will train you at home—how you get practical Radio experience building, testing Radio circuits with BIG KITS OF PARTS I send!

Many Beginners Soon Make EXTRA MONEY in Spare Time While Learning. The day you enroll, I start, sending EXTRA MONEY manuals that show how to make EXTRA money fixing neighbors' Radios in spare time while still learning. It's probably easier to get started now than ever before because of the Radio Repair Business is booming. Trained Radio Technicians also find profitable opportunities in Police, Aviation, Marine Radio, Broadcasting, Radio Manufacturing, Public Address work. Think of even greater opportunities as public demand for Television, FM and Electronic devices continues to grow! Send for FREE books now!

Find Out What NRI Can Do For You. Mail Coupon for Sample Lesson and my FREE 64-page book. Read the details about my Course, letters from men trained; see how quickly, easily you can get started. No obligation! Just MAIL COUPON NOW in envelope or postage paid postcard to J. E. SMITH, President, Dept. SX, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

I WILL TRAIN YOU AT HOME. My Course INCLUDES TELEVISION ELECTRONICS. Get Both 64 PAGE BOOK SAMPLE LESSON FREE.

MR. J. E. SMITH, Pres., Dept. SX, National Radio Institute, Washington 9, D. C.

Mail me FREE Sample Lesson and 64-page book about how to win success in Radio and Television—Electronics. (No salesman will call. Please write plainly.)

Name
Address
City Zone State

APPROVED FOR TRAINING UNDER GI BILL
Contents

December, 1948

Editorial (Page 21)

Multiplex...by Hugo Gernsback
21

Electronics (Pages 22-29)

Radio Eyes Bring Safety to Fog-Bound Liverpool...by Major Ralph W. Hollands
22

Micro-Waveguides...by Virginia Walters
24

New A.F. Power Supply...by S. R. Winters
27

Electronics in Medicine, Part IV...by Eugene Thompson
28

FM (Pages 30-32, 84-89)

FM Telemetering Transmitters...by Leon Hillman
30

FM Station List
84

Television (Page 32-34)

Gas-Tube Oscillators...by Allan Lytel
33

Servicing (Pages 35-43)

Radio Set and Service Review [Pilot "Candid TV" Model TV 37]...35

Rolling Our Own Output Transformer...by J. R. Lagemm
38

Columbus Set for Video...by David Gnessin
41

Coin Radios—A Good Business...by James McDaniel
42

Scowdrum, Voltmometer and Brains...by H. A. Nickerson
43

Broadcasting and Communications (Pages 44-46)

Installing Two-Way Radio in Taxis...by Samuel Freedman
44

Audio (Pages 47-48)

Home-Built Phone Uses Two Pickups...by Harold J. Gould
47

Test Instruments (Pages 50-53)

Push-Button Generator...by Robert E. Altomare
50

Substitution Unit—Plus...by G. N. Carter
52

Foreign News (Pages 54-56)

European Report...by Major Ralph W. Hollands
54

New Telephone Recorder...
56

Amateur (Pages 58-62)

More Selectivity for the BC-455-B...by E. W. Williamson
58

Phase-Modulated Exciter...by Rufus P. Turner
60

Construction (Page 64)

Regulated Power Pack Has Variable Voltage...by W. D. Hayes
64

Radio Science (Pages 72-74)

Transmission Lines...by Robert C. Faine
72

Departments

The Radio Month...10

Radio Business...14

Technotes...66

New Devices...68

Question Box...70

People...76

Miscellany

Radio Electronic Circuits

New Patents

Try This One

Communications

Book Reviews

77

80

82

90

97

4

Hugo Gernsback, Editor-in-Chief
Fred Shuman, Managing Editor
M. Harvey Gernsback, Consulting Editor
Robert F. Scott, W2PWG, Technical Editor
R. H. Dorf, W2QMI, Associate Editor
I. Queen, W2QUX, Editorial Associate
Angie Pascale, Production Manager
Elmer Fuller, Shortwave Editor
Wm. Lyon McLaughlin, Tech. Illustration Director
G. Aliche, Circulation Manager
John J. Lamsom, Advertising Director
Alfred Stern, Promotion Manager

with radio men!

Again this year, radio service men are showing an overwhelming preference for Solar capacitor analyzers—specifically for Model CBC, worthy successor to Solar's famous Model CB, which out-sold all other capacitor analyzers combined.

Model CBC is small in size, light in weight, big in performance and dependability...the ideal low-cost instrument for the service industry:

- Capacitance range...10 mmf to 800 mf
- Power factor range...0 to 50 per cent
- Resistance range...100 to 7,000,000 ohms
- "Quick as a wink" Magic Eye Wien Bridge balancing
- Built-in adjustable voltage power supply
- Simplified leakage and insulation Resistance tests
- Easy to read clear scales

Write today for Bulletin IN-3, which also includes description of Model CF, the Analyzer with the remarkable patented "Quick-check."

SOLAR CAPACITOR SALES CORP.
NORTH BERGEN, NEW JERSEY

MEMBER AUDIT BUREAU OF CIRCULATION

www.americanradiohistory.com
Learn
RADIO
TELEVISION, ELECTRONICS
by
SHOP METHOD HOME TRAINING

Let NATIONAL SCHOOLS, of Los Angeles, a practical
Technical Resident Trade School for almost 50 years,
train you for today's unlimited opportunities in Radio

Good Jobs Await the Trained
Radio Technician

You are needed in the great, modern Radio, Television and Elec-
tronics industry! Trained Radio technicians are in constant and
growing demand at excellent pay—in Broadcasting, Communi-
cations, Television, Radar, Research Laboratories, Home Radio
Service, etc. National Schools Master Shop Method Home Study
course, with newly added lessons and equipment, can train you
in your spare time, right in your own home, for these exciting
opportunities. Our method has been proved by the remarkable
success of National Schools-trained men all over the world.

You Learn by Building Equipment with
Standard Radio Parts We Send You

Your National Schools Course includes
not only basic theory, but practical training as well—you learn by doing.
We send you complete standard equip-
ment of professional quality for building
various experimental and test units. You advance step by step until
you are able to build the modern super-
 Scarlet receiver shown above, which is yours to keep and enjoy. You
perform more than 100 experiments—
build many types of circuits, signal
generators, low power radio transmitter,
radio oscillator, and other units.
The Free Books shown above tell you
more about it—send for them today!

Now! NEW PROFESSIONAL MULTITESTER
INCLUDED!

This versatile testing instrument is portable
and complete with test leads and battery.
Simple to operate, accurate and dependable.
You will be able to quickly locate trouble
and adjust the most delicate circuits. You
can use the Multitester at home or on ser-
cvice calls. It is designed to measure AC and
DC voltages, current, resistance and decibels.
You will be proud to own and use this
valuable professional instrument.

Lessons
and
Instruction
Material Are Up-to-date, Practical, Interesting.

National Schools Master Shop Method Home Training gives you
basic and advanced instruction in all phases of Radio, Television
and Electronics. Each lesson is made easy to understand by nu-
merous illustrations and diagrams. All instruction material has
been developed and tested in our own shops and laboratories,
under the supervision of our own engineers and instructors. A
free sample lesson is yours upon request—use the coupon below.

You Get This and Other Valuable
Information in the Free Sample Lesson:

1. Basic Receiver Circuits and How They are
 Used.
2. Construction of the Antenna Circuit.
4. How Signal Currents are Converted into Sound.
5. How the Tuning Condenser Operates.
6. How the R.F. Transformer Handles the Signal,
 and other data, with diagrams and illustrations.

Both Home Study and
Resident Training
Offered

APPROVED FOR
VETERANS
Check Coupon Below

NATIONAL SCHOOLS
LOS ANGELES 37, CALIFORNIA EST. 1905

MAIL OPPORTUNITY COUPON FOR QUICK ACTION

National Schools, Dept. RC-12
400 S. FIGUEROA, LOS ANGELES 27, CALIF.

Mail me FREE the books mentioned in your ad including a sample lesson of
your course. I understand no salesman will call on me.

NAME

ADDRESS

CITY

STATE

ZIP

[] Check here if Veteran of World War II

GET THE DETAILS—SEND THE COUPON

DECEMBER, 1948
Here's how you can figure on a BETTER JOB in RADIO-ELECTRONICS, Broadcasting, Television, Servicing, Manufacturing

You can't plan your future on a slide rule. But you can take a measurement of your own capabilities.

Look at the successful radio man. You'll find that he's the fellow who looked and planned ahead. Today, you have the same opportunity—at a time when radio's technical progress has gone beyond the supply of technical Manpower. Never before have so many men like you had the opportunity to step ahead into better-paying jobs ... jobs that offer real interest and security in any one of the many expanding fields that urgently need competently trained men.

You can't say, "I don't need more training." Every ambitious radio technician needs more training. No matter what your experience, you must fortify yourself with up-to-date technical knowledge to qualify for the better jobs and to stave off the new competition that war-time activity has brought into the field.

CREI has a course of training for you. You will find our proved type of training practical and thorough. Whether your future lies in broadcasting, television, servicing, manufacturing or any branch of communications, you will find that you can "go all the way with CREI" from introductory, basic principles to advanced training, and on to specialized fields of radio-electronics.

Send for, and read, our new catalog and course outline. It explains our self-improvement program, courses and what CREI can do for you. It will give you a good idea how practical and easy-to-understand our training is, and why many thousands have enrolled for CREI courses since 1927.

VETERANS! CREI TRAINING AVAILABLE UNDER G. I. BILL

MAIL COUPON FOR FREE BOOKLET

CAPITOL RADIO ENGINEERING INSTITUTE
16th & Park Road, N. W., Dept. RE-12, Washington 10, D. C.

Gentlemen: Please send your free booklet, "CREI training for your better job in Radio-Electronics," together with full details of your home-study training. I am attaching a brief resume of my experience, education and present position.

Check field of greatest interest:
□ PRACTICAL RADIO-ELECTRONICS □ PRACTICAL TELEVISION
□ BROADCASTING □ AERONAUTICAL RADIO ENGINEERING
□ RECEIVER SERVICING

NAME
STREET
CITY _____ ZONE STATE

I am entitled to training under G. I. BILL

CAPITOL RADIO ENGINEERING INSTITUTE
An Accredited Technical Institute
Dept. RE-12, 16th and Park Road, N. W., Washington 10, D. C.

Branch Offices: New York (7) 170 Broadway * San Francisco (3) 240 Market St.
Train You to Work with Your Hands to LEARN RADIO!
You Build Receivers! You Make Typical Defects Occur and Make Tests to Prove the Theory!

YOU GET
8 BIG KITS OF RADIO PARTS & EQUIPMENT including
2-BAND SUPER RECEIVER!
and 16 RANGE METER FOR TESTING

YOU BUILD
ALL THESE TESTERS
........ AND MORE!
I give you a fine, moving-coil type Meter Instrument on Jewel Bearings — with parts for a complete Analyzer Circuit Continuity Tester. You learn how to check and correct Receiver defects with professional speed and accuracy.
You'll get valuable experience and practice building this Signal Generator and multi-purpose Tester. Makes an out-of-firing Radios and you don't have to spend money on ready-made Equipment.

Set has Long and Short Wave Tuning. All Sprayerberry Equip. Is yours for KEEPS.

SPRAYBERRY HOME TRAINING is PLANNED to MAKE MONEY for you FAST!
I train you with regular professional Radio Equipment. I tell you exactly what to do — how to do it. You handle Radio Parts, see them operate, learn what they're for. With the fine Kits I supply, you learn how to build Radio Circuits, construct your own Test Equipment. I'll show you how to cause typical Radio defects so you can watch and see how they act. You learn the latest methods for trouble-shooting and repair. All this adds up to the finest kind of "bench" experience. And you get it right in your own home. In no time at all, you'll be ready for a business of your own or a good job in Radio, FM, Television, Radar, Industrial Electronics, etc. Now's the time to get started!

Soldering, wiring, connecting Radio parts — building circuits with your own hands — you can't beat this method of learning. When you construct this Rectifier and Filter, Resistor and Condenser Tester, etc., you get a really practical slant on Radio that leads to a money-making future.

SPRAYBERRY ACADEMY of RADIO, Dept. 20-M
SPRAYBERRY BUILDING, PUEBLO, COLORADO, OR
20 NORTH WACKER DRIVE, CHICAGO 8, ILLINOIS
Please rush my FREE copies of "How to Make Money in Radio, Electronics and Television" and "How to Read Radio Diagrams and Symbols."

SEND FOR MY VALUABLE FREE BOOKS!

NOW! TWO LOCATIONS To Serve You Better!
Mail Coupon to Location Nearest Your Home

VETERANS!
Approved for G.I. Training
Under Public Laws 16 and 346

NAME
AGE

ADDRESS

CITY

STATE

POSTAL (Mail in envelope or paste on reply postcard)
Radar sends out pulses of electric waves which, reflected from a target, return to reveal the target's location.

Likewise, the apparatus pictured above sends electric waves over a coaxial telephone cable. Minute irregularities reflect the waves back to their origin; the echo makes a trace on an oscilloscope screen and so tells where to look for the trouble.

Telephone messages need smooth "highways" over which to travel across country: circuits able to transmit every talking frequency, without distortion. Television needs even smoother highways and at many more frequencies. So Bell Laboratories devised this method of spot-testing the cable over the entire frequency band needed for telephone or television. It is so delicate that any possible interference with transmission is detected at once. Its use makes sure that every inch of highway is clear.

This is another important example of how Bell Telephone Laboratories constantly develop finer communications for the nation.

Bell Telephone Laboratories

Exploring and inventing, devising and perfecting for continued improvements and economies in telephone service.
Amazing New **EQUIPMENT** Helps Prepare You **FASTER, EASIER** for...

TELEVISION

Here's good news... big news... our BIGGEST NEWS in 17 years. The equipment pictured at left gives a partial idea of D.T.I.'s remarkable, new combination of shop-method training aids... to prepare you AT HOME for your start in Television-Radio-Electronics.

Get 48-Page Book FREE

Mail coupon today for D.T.I.'s big new 48-page OPPORTUNITY GUIDE BOOK. See how this amazing newer method helps you get started toward a GOOD JOB or your OWN BUSINESS in one of America's most promising, thrilling fields... that includes Television... F.M., Train, 2-Way Taxi, Aviation, and Broadcast Radio... Industrial Electronics... and other fast-developing branches.

In addition to well-illustrated lessons, you work over 300 instructive experiments from 15 shipments of Radio-Electronic parts. Among these projects you build and keep a commercial-type CATHODE RAY OSCILLOSCOPE... that helps you get practical Television circuit training.

You also build and keep a double-range R-F SIGNAL GENERATOR, a jewel-bearing MULTI-METER and a quality 6-tube SUPERHET RADIO.

You BUILD AND KEEP ALL OF THE **EQUIPMENT AT LEFT... MAKE OVER 300 HOME EXPERIMENTS!**

D.T.I. alone includes the modern, visual training aid... MOVIES... to help you learn faster, easier at home. You see electrons on the march and other fascinating "hidden action"... a remarkable home training advantage that speeds your progress.

You Get D.T.I.'s Effective EMPLOYMENT SERVICE

When you complete your training, our effective Employment Service is available to you without extra cost, to help you get started.

MAIL TODAY!

DeForest's Training, Inc.
2533 N. Ashland Ave., Dept. RC-E12
Chicago 14, Illinois

Send me FREE your 48-page OPPORTUNITY GUIDE BOOK showing how I may make my start in Television - Radio - Electronics.

Name _______________________________ Age ______

Street _______________________________ Apt. ______

City ________________________________ Zone _____ State _____

Oscilloscope**

MULTI-METER**

R-F SIGNAL GENERATOR**

6-TUBE RADIO RECEIVER**

DeFOREST'S TRAINING, INC.
CHICAGO, ILLINOIS

Affiliated with the De Vry Corporation
Builders of Electronic and Movie Equipment

December, 1948

www.americanradiohistory.com
THE MOST DESIRABLE ANTENNA MOUNT EVER MADE!

Chimney Mount
Antenna Base

• for TELEVISION
• FM • AMATEURS

List Price: $7.50
Cost to Retailer: $4.50

Installed in 10 minutes • Permits Use of Several Mounts on One Chimney

Chimney Mount is by far the fastest selling product of its type in the radio and television fields. It can be installed in ten minutes without the use of special tools or drilling of holes. Several mounts can be strapped to one chimney— to pole, 7 x 4, side of house or to any rectangular roof extension. Fastens aerial to highest point with galvanized steel bands having a combined tensile strength of more than 3,000 lbs. Made of corrosion-resistant aircraft-type aluminum alloy. Weight: 3 lbs.

Available Through All Leading Jobbers and Dealers or Write to:
South River Metal Products Co.
South River, New Jersey

TOWN MEETING of Radio Servicemen held its second session in New York City September 27, 28 and 29. About 1,500 technicians registered for one or more of the sessions—roughly the same number as attended the first session at Philadelphia last January.

Highlight of the first evening was a paper “Antenna Installation” by Ira Kamen. RMA’s president Max Balcom was also well received when he stressed the importance of television to the servicing technician, as was a symposium “TV Installation in the Home.” Less well received was a paper “How to Collect Your Bills,” presumably because the bulk of the audience were operating on a cash basis.

Other papers which attracted special attention were “Case History of a Successful TV Service Shop,” by Harold Suss, “Television Service in the Shop,” by Carl Quirk, and John F. Rider’s talk on sweep generators. Listeners said the latter’s only fault was that he had only 40 minutes in which to talk.

On the business side, Austin Lesearboura’s “Advertising and Public Relations” was considered the best paper. Others were given a lower rating by the assembled servicemen chiefly because they seemed aimed at the larger shops, whereas the majority of the attending technicians came from one and two man establishments.

Next Town Meeting was scheduled for Boston, November 15, 16 and 17.

RADIO TECHNICIANS of Massachusetts and New York discussed the question of wider organization of servicemen, at a meeting held in Rochester, N. Y., October 10, 1948. The meeting was called by the Radio Technicians Guild of Rochester to discuss national organization. Delegates from Boston, Springfield, New Bedford, Binghamton, Rochester, Watertown, New York City, and several other points attended.

Failing to agree on whether formation of a national organization or a state federation was the best immediate step, the group proceeded to form both organizations. The State Federation was set up with Lawrence Raymo of Rochester as president, Wayne Shaw of Binghamton as secretary, and Max Liebowitz of New York as organizer.

The first meeting of the new organization was set for Binghamton on the 31st of October, with delegates and visitors from all interested radio servicemen’s organizations invited. Steps were also taken to incorporate a national organization based on the Radio Technicians Guild of northern New York and Massachusetts, and a temporary board of directors was named.

EUROPEAN BROADCASTERS are affected by the signing of a new treaty at Copenhagen in September. To add more channels to the European long and medium-wave broadcast bands, channel width was narrowed down to 8 or 9 kc depending on the assigned frequency. In the reallocation of frequencies the U. S. was given three channels in Occupied Germany instead of the former 13. The treaty takes effect in March, 1950.

TV IN BARS and other public places can legally be stopped by station owners if they wish, said David M. Solinger, New York attorney, in the Columbia Law Review last month. The article, entitled “Unauthorized Uses of Television Broadcasting,” points out that television is protected by copyright laws, as well as by other common-law property rights.

“An owner of a television receiver,” wrote Mr. Solinger, “by performing a program in a tavern, hotel, restaurant, private auditorium, or motion-picture theatre, has thereby infringed on the copyright of the creator to the same degree as he would have had he reproduced the material on his own stage with his own live cast.”
MINE DETECTORS may soon be used by veterinarians, at least in principle. A new device for the detection of metal is designed to locate foreign objects in animals. A bit of baling wire swallowed by a cow or a bullet fired into a farm animal can be pinpointed by a trio of happy hunters located by passing the detector over the animal's body. Developed by the Army Medical Department, the device is awaiting final clinical tests.

TELEVISION GRANTS were halted by the FCC last month for a six-month period. During this time no action will be taken on applications for TV station licenses. In announcing the freeze, Wayne Coy, FCC chairman, said that evidence presented at an industry-commission conference held in Washington on September 13 and 14 raised serious questions about the present and proposed frequency-allocation scheme. An engineering conference will be called to discuss the question; meantime, no further allocations will be made.

Operation of the 37 stations now on the air and construction permits previously authorized will remain unaffected. Mr. Coy emphasized that the usefulness of presently owned and marketed television receivers will not be impaired.

BRAZILIAN TELEVISION plans were completed last month and South America's first television station will be in operation within a year, according to an announcement made by Cesar Ladeira, one of the founders of the newly organized Radio Televisão do Brazil. The station will be at Rio de Janeiro.

A 28-30-hour weekly schedule of programs will be carried, including live shows, news films, educational programs, and sports.

The 5,000-watt transmitter and all other station and transmitter equipment will be furnished by General Electric.

FINE OF $10,000 or two years' imprisonment may be the price of operating a phonograph oscillator so as to cause interference to radio reception. Readers of the New York Daily News were informed last month. The paper had reported a suggestion from a reader that neighbors' sets whose volume controls were turned up too high might be jammed up by a phonograph oscillator.

In a letter to the newspaper the FCC warned of the Communications Act, which states that any radio transmission—no matter how low the power—which interferes with the reception of other stations is illegal and punishable.

THE QUARTER CENTURY Wireless Association will hold a dinner meeting in New York's Frances Tavern on December 3rd, John DiBlasi, W2FX, the association's president, announced last month. The association, membership in which is open to any one who has been active hams for at least 25 years, now has more than 100 members. Among the recent Joiners is FCC Commissioner George E. Sterling, W3DF.

December 1948
Meter Bargain 77¢

C.R. Tubes

- 3 CP 7 (Ind. Screen) .95
- 3 DP 7-A (Ind. Screen) .95
- 3 HP 7 .95
- 3 HP 7-A .95
- 3 HP 7-B .95
- 3 HP 7-C .95

(add 25¢ each to cover postage and handling)

- 5 FP 7 .195
- 5 FP 7-A .95
- 5 FP 7-B .95
- 5 FP 7-C .95

(add 35¢ each to cover postage and handling)

- 7 FP 7 .265
- 7 CP 7 .325
- 7 DP 7 .265
- 7 DP 7-A .95

(add 40¢ each to cover postage and handling)

- 9 FP 7 .350
- 9 CP 7 .350
- 9 DP 7 .350
- 9 DP 7-A .95

(add 50¢ each to cover postage and handling)

525 Feet Brand New Only

Surplus Jubes

All New, All Postpaid

- 8012 $1.69
- 1626 $1.35
- 705-A $1.19
- 211 $0.69

Special Bargain

- Westinghouse, Oxygen Flow Indicators- MK-11. New in original cartons. 49¢, add 15¢ to cover postage and handling.
Set by Set, Volume by Volume—PHOTOFACT Boosts Your Profits!

Build the Service Data library that helps you earn more. Have at your finger-tips the most accurate, uniform and practical service data ever produced—everything you need for easier, more profitable work. From the moment you get them, PHOTOFACT Folder Sets and Volumes pile up increasing profits for you, month after month, year after year. For success in servicing, for bigger earning power, you owe it to yourself to keep your PHOTOFACT library up-to-date!

NOW! PHOTOFACT VOLUME 5 ON SALE AT YOUR JOBBER’S TODAY!

Latest addition to the famous PHOTOFACT Volume series—brings your file of postwar receiver service data right up to December 1948! Most accurate and complete radio data ever compiled—preferred and used daily by thousands of Radio Service Technicians. Everything you need for faster, more profitable servicing: Exclusive Standard Notation Schematics; photo views keyed to parts lists and alignment data; complete parts listings and proper replacements; alignment, stage gain, circuit voltage and resistance analysis; coil resistance; record changer service data, etc. Order Volume 5 today—keep ahead with PHOTOFACT—the only Radio Service data that meets your actual needs!

Switch to PHOTOFACT—the Best Service Data Buy You’ll Ever Make!

Your Price Each Volume, In Deluxe Binder $18.39

You’ll Use These Practical Books Every Single Working Day!

The Radio Industry RED BOOK

NOW—stop wasteful hunting through dozens of incomplete parts manuals. The RED BOOK tells you in one volume what you need to know about replacement parts for approximately 17,000 sets made from 1938 to 1948. Includes complete, accurate listings of all 9 major replacement components—not just one. Lists correct replacement parts made by 17 leading manufacturers—not just one. Covers original parts numbers, proper replacement numbers and valuable installation notes on: Capacitors, Transformers, Controls, IF Transformers, Spigaers, Vibrators, Phonograph Cartridges, Plus—Tube and Dial Light data, and Batttery replacement data. 448 pages, $8.11. Sewed durable binding. ONLY......$3.95

1947 Changer Manual

Complete, accurate service data on over 40 popular postwar Changer models. Shows exploded views, photos from all angles. Includes change cycle data, adjustment notes, service hints, complete parts lists. PLUS—complete data on leading Wire, Ribbon, Tape and Disc Recorders. 400 pages; hard cover; opens flat. Order now! ONLY.............$4.95

Tube Placement Guide

Shows you exactly where to replace each tube in 5500 radio models, covering 1938 to 1947 receivers. Each tube layout is illustrated by a clear, accurate diagram. Saves time—eliminates guess-and-miss methods. 192 pages; handy index. ONLY......$12.00

Dial Cord Stringing Guide

The book that shows you the one right way to string a dial cord. Here, in one handy pocket-sized book, are all available dial cord diagrams covering over 2500 receivers. 1938 through 1946. Makes dial cord restringing jobs quick and simple. ONLY.............$10.00

FREE PHOTOFACT Cumulative Index

Send the FREE Cumulative Index to PHOTOFACT Folder Sets covering all postwar receivers up to the present. You’ll want this valuable reference guide to the Radio Service Data preferred and used by thousands. Helps you find the folders you want in a jiffy. Get this FREE Index at your JOBBER or write for it now.

FREE PHOTOFACT Folder Sets

You can’t afford to miss a single PHOTOFACT Folder Set! You get not only the most complete and accurate Radio Service Data ever compiled—but you keep up with fast-moving developments. Have all the advantages that make PHOTOFACT indispensable to thousands of Service Technicians—PLUS—exclusive new TV Folders on popular Television receivers—the invaluable TV Course (don’t miss the sections on wave pattern trouble-shooting, and antennas) —full data on the latest Record Changers—all this in addition to full coverage of current radio models. Subscribe regularly to PHOTOFACT Folder Sets—to make your work easier, quicker, more profitable. Issued two Sets per month. Subscribe at your JOBBER today. $1.50 PER SET ONLY...

BOOST YOUR EARNING POWER!

Mail This Order Form to Your Parts JOBBER Today or send to HOWARD W. SAMS & CO., INC., 2924 E. Washington St., Indianapolis 7, Ind.

My (check) (money order for $........ enclosed.

Send following PHOTOFACT Volumes: □ Vol. 5.
□ Send the RED BOOK, $5.95.
□ Automatic Record Changer Manual, $4.95.
□ Tube Placement Guide, $1.25
□ Dial Cord Stringing Guide, $1.00
□ Send FREE PHOTOFACT Cumulative Index.

Name...........................
Address...........................
City..............................State........................

DECEMBER, 1948
W. L. Parkinson, manager of the Technical Service Section of General Electric, predicts a sale of approximately 120,000 television receivers in the New York metropolitan market within the next six months. He stressed the point that there must be an increase in dealer service facilities if this market is to be satisfied.

"The sale of television receivers," he said, "is directly dependent upon the service provided. Sales can only increase as fast as the radio service industry assumes the service obligation. The problem now is not how fast we can sell television receivers, but how fast we can, the service industry, install and provide service."

"We know that the time is not too far distant when the need for factory supervised service will no longer exist. We know that the wholesale distributor also is eager to turn the obligation over to the servicing industry. In the past two years, the service industry has made great gains in technical knowledge, and the manufacturers have invested many thousands of dollars in television training for the service industry. However," he concluded, "no one in the industry can predict just when the service industry will be able to take over full responsibility for television receiver installation and maintenance."

Trend toward heavy fall production of radio and television receivers was reflected in August as TV set output again reached a new monthly peak, the Radio Manufacturers Association reported.

RMA member-companies manufactured 64,953 television receivers in August for a new monthly record and an increase of almost 10,000 over the July output. Average weekly production of 16,238 TV sets in August showed an increase of 51 per cent over the weekly production for the first half of this year. FM-AM set production by RMA member-companies totalled 110,879 in August to record the largest output of this type of receiver since last March. Radio receiver production of all types totalled 870,044 in August compared with 627,349 in July. Production of automobiles and portable radios aggregated 265,594 and 176,323, respectively.

Paul V. Galvin, president of Motorola, Inc., Chicago, has announced that as a result of its recent purchase of the "inventory and certain assets" of the Car Radio Division of International Detrola Corp., Detroit, Motorola will now for the first time supply sets to automobile manufacturers. For 20 years, the Motorola Company has sold automobile radios to consumers only.

The Department of Commerce reports that during the month of July sales by independent radio stores throughout the nation were 2 per cent below July, 1947.

Westinghouse Electric Corp. has disclosed a plan called the Westinghouse Equity Plan, designed to encourage local banks to handle the financing of radio and electrical appliances purchased by local Westinghouse dealers and their customers.

L. H. Lund, vice-president and treasurer of Westinghouse, said that banks participating in the program would be afforded many protective assurances, not before available.

The plan, which is being sent to the nation's 15,000 banks, "has been carefully scrutinized by sixteen of the leading consumer credit bankers of the country, acting as an advisory council to Westinghouse."

"To the consumer, these agreements mean an equitable financing of the appliances and radios he buys as the result of economies the plan makes possible for the local banks," explained Mr. Lund. "They mean also that the consumer encounters less 'red tape' in getting his installment purchase arranged."

Copies of the 1948 complete roster of The Representatives of Radio Parts Manufacturers, Inc., are available and will be furnished without charge to any manufacturer of radio and electronic parts and equipment who sends his request on his business letterhead to L. C. McCarthy, Secretary of The Representatives, 9 South Clinton Street, Chicago 6, Illinois.

The 72-page booklet, prepared by the Industry Relations Committee, lists more than 350 members of The Representatives alphabetically and by geographical regions.

John Pell, manager of television service for the Philco Corp. of Philadelphia, has announced that the company has started a large program to train radio servicemen in the technique of television servicing.

"All Philco distributors in television cities are cooperating in this program aimed at developing many additional thousands of competent technicians familiar with all phases of servicing modern television receivers and in proper antenna installation, whether outdoor or indoor," Mr. Pell stated.

"The new course is available to all servicemen who have a sound basic technical knowledge of radio. These men include dealers, service managers and servicemen employed by dealers and independent servicing contractors."

"The Philco training course in television is designed to make it easy for every serviceman or technician with a fundamental knowledge of radio and preferably some practical experience, to obtain the technical schooling necessary to keep pace with the latest developments in television."
WANT YOUR FCC COMMERCIAL LICENSE IN A HURRY?

Get Your "Ticket" in a FEW SHORT WEEKS! It's EASY when you use CIRE Simplified Training and Coaching AT HOME in SPARE TIME

Thousands of new jobs are opening up—FM, Television, Mobile Communication Systems. These are only a few of the radio fields which require licensed radio technicians and operators.

Your FCC Ticket Is Recognized in ALL Radio Fields as Proof of Your Technical Ability

More than ever before an FCC Commercial Operator License is a sure passport to many of the better paying jobs in this New World of Electronics. Employers always give preference to the license holder, even though a license is not required for the job. Hold an FCC "ticket" and the job is yours!

Hundreds of Satisfied, Successful Students

"Transmitter engineering is great, especially in the job I am in. Thanks again for all you have done, and you can take the credit for the fact that my "ticket" is now posted on the wall of a former Westinghouse office."
Student #235512

"I now hold ticket number P-10-2787, and judging by the letters I have been receiving, I can truly say that training with CIRE has been worth every penny I spent for it. Thanks for all you did for me, and you can be sure that when the time comes to hire another operator, I will not hesitate a moment. Thanks again for everything you have done for me. With the best wishes."

Student #235512

"I was issued license number P-2-11118 on November 1, 1944, in New York, N.Y. The next day I was called on board a submarine as Radio Telegraph Operator. Thanks again for the help I received while I was training."

Student #235512

"I take great pleasure in informing you that I have taken the examination for FCC Commercial license in the ship's radiotelephone station and have passed and have received my license. I am now working at WNCJ, a local radio station."
Student #235512

FREE BOOKLET— Tells you the Government requirements for all classes of FCC commercial licenses. No cost, no obligation. Use coupon below for Booklet B.

FREE CATALOG — Describes all Cleveland Institute home study courses—tells of CIRE unique, post-war methods of training. Use coupon below for Catalog A.

COURSE A — Master Course in Radio Communication
A complete course covering the technical fundamentals of radio-electronics, for the radio-man who wants a general review. Includes preparation for broadcast station employment.

COURSE B — Advanced Course in Radio Communication Engineering
A genuine college-level radio engineering course, completely mathematical in treatment. For the advanced radio-man with considerable practical experience and training.

COURSE C — Specialized Television Engineering
An advanced college-level course for the radio-man who has had formal training equivalent to A and B.

COURSE D — Advanced Radio Telephony
An advanced, specialized course covering broadcast station engineering and operation. Without preliminary preparatory fundamentals, this course enters immediately into the heart of the subject matter. Covers the engineering knowledge and the technical duties required of the studio control operator, the master control operator, and the transmitter operator.

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
RE-12 4900 BUILDING, CLEVELAND 3, OHIO

Don't Delay—Write Today!
HEATHKIT FM and TELEVISION SWEEP GENERATOR KIT

A necessity for television and FM. This Heathkit completely covers the entire FM and TV bands from 2 megacycles to 220 megacycles. The unit is 110 V 60 cycle power transformer operated. Uses two 6L6 tubes, two 6C4 tubes and a 6X5 rectifier. An electronic sweep circuit is incorporated allowing a range of 0 to 10 MC. A sewn-in horizontal sweep voltage and phase control are provided for the oscilloscope. The coils are ready assembled and precision adjusted to exact frequency. In all Heathkits, the best of parts are supplied. Mallory filter condenser, zero coil, ceramic condensers, all punched and formed parts, grey crackle cabinet, 5 tubes, test leads, etc. Better get it built now and be ready for the FM and TV business. Shipping wt. 6 lbs.

$24.50

Nothing ELSE TO BUY...

HEATHKIT SINE AND SQUARE WAVE AUDIO GENERATOR KIT...

$34.50

The ideal instrument for checking audio amplifiers, television service, distortion, etc. Supplies excellent sine wave 20 cycles to 20,000 cycles and in addition supplies square wave over same range. Extremely low distortion, leakage and hum. birthday 2 color panel, 1% precision calibrated resistors. 110 V 60 cycle power transformer, 5 tubes, detailed blueprints and instructions. R.C. type circuit with excellent stability. Shipping wt. 5 lbs.

$19.50

Nothing ELSE TO BUY...

HEATHKIT SIGNAL GENERATOR KIT...

$19.50

Nothing ELSE TO BUY...

Every shop needs a good signal generator. The Heathkit fulfills every servicing need, fundamentals from 150 Kc to 30 megacycles with strong harmonics over 100 megacycles covering the new television and FM bands. 110 V 60 cycle transformer operated power supply. 400 cycle audio available for modulation or audio testing. Uses 6SN7 as RF oscillator and audio amplifier. Complete kit has every part necessary and detailed blueprints and instructions enable the builder to assemble it in a few hours. Large easy to read calibration. Convenient size 9 x 6 x 4 1/2. Shipping weight 4 1/2 lbs.

HEATHKIT HIGH FIDELITY AMPLIFIER KIT

$14.95

110 V. A.C. MILITARY RECEIVER POWER SUPPLY KIT

$5.95

110 V. A.C. TRANSFORMER POWER SUPPLY KIT

$5.95

HEATHKIT CONDENSER CHECKER KIT

$19.50

Nothing ELSE TO BUY...

Checks all types of condensers, paper mice-electrolytic-ceramic over a range of 0.0001 MFD to 1000 MFD. All on readable scales that are read direct from the panel. NO CHARTS OR MULTIPLIERS NECESSARY. A condenser checker anyone can read without a college education. A leakage test and polarizing voltage of 20 to 500 volts provided. Measures power factor of electrolytics between 0% and 50%. 110 V 60 cycle transformer operated complete with rectifier and magic eye tubes, cabinet, calibrated panel, test leads and all other parts. Clear detailed instructions for assembly and use. Why guess at the quality and capacity of a condenser when you can know for less than a twenty dollar bill. Shipping wt. 7 lbs.

The HEATH COMPANY

BENTON HARBOR 20, MICHIGAN

RADIO-ELECTRONICS For
IDEAL TEST INSTRUMENTS

HEATHKIT VACUUM TUBE VOLTMETER KIT

Everything you want in a VTVM. Shatterproof solid-plastic meter face; automatic meter protection in burn-out proof circuit; push-pull electronic voltmeter circuit assuring maximum stability; linear DC and AC scales. Complete selection of voltage ranges starting with 3 Volts full scale up to 1,000 Volts. Isolated DC test lead for signal tracing and measurements of voltage while instrument is in operation. An ammeter section accurately measuring resistance at 1.15 ohms to one billion ohms with internal battery. Extremely high input resistance 11 megohms on all ranges DC and 6.5 megohms on AC. All these features and many more are the reasons hundreds of radio and television schools are using Heathkit VTVM’s and recommending them to all students. Like all Heathkits, the VTVM kit is complete, 110V 60 cy power transformer, 500 microamp meter, tubes, grey crackle cabinet, panel, test leads, 1% ceramic precision resistor and all other parts. Complete instruction manual. Better start your laboratory now, and enjoy it all winter. Shipping Wt. 8 lbs.

HEATHKIT SIGNAL TRACER KIT

Reduces service time and greatly increases profits of any service shop. Uses crystal diode to follow signal from antenna to speaker. Locates faults immediately. Internal amplifier available for speaker testing and internal speaker available for amplifier testing. Connection for VTVM on panel allows visual testing and gain measurements. Also tests phonograph pickups, microphones, PA systems, etc. Frequency range to 200 MC. Complete kit ready to assemble. 110V 60 cycle transformer operated. Supplied with 3 tubes, diode probe, 3 color panel, all other parts. Easy to assemble, detailed blueprints and instructions. Small portable 9 1/2” x 6” x 4 1/4”. Wt. 8 pounds. Ideal for taking an service calls. Complete your service shop with this instrument.

HEATHKIT 3-TUBE ALL-WAVE RADIO

110 Volt AC Operation. Blue, white and all other parts. Operates from AC. Simple, clear detailed instructions make this a good radio training course. Covers regular broadcasts and short wave bands. Plug-in coils. Regenerative circuit. Operates loud speaker. Add postage for 3 lbs. $8.75 HS 30 Headphones per set $19.00 21/2” Permanent Magnet Loudspeaker $9.95

INTERPHONE 2-WAY CALL SYSTEM KIT

Ideal call and communication system for homes, offices, factories, stores, etc. Makes excellent electronic baby watch easy to assemble with every part supplied including simple instructions. Distance up to 1 1/2 mile. Operates from 110V A.C. 3 tubes, one master and one remote speaker. Shipping Wt. 5 lbs.

HEATHKIT ELECTRONIC SWITCH KIT

DOUBLES THE UTILITY OF ANY SCOPE

An electronic switch used with any oscilloscope provides two separately controllable traces on the screen. Each trace is controlled independently and the position of the traces may be varied. The input and output traces of an amplifier may be observed one beside the other or one directly over the other illustrating perfectly any change occurring in the amplifier. Distortion—phase shift and other defects show up instantly. 110 Volt 60 cycle transformer operated. Uses 3 tubes (1-6X5, 2-6527’s, 2-6527’S). Has individual gain controls, positioning control and course and fine sweeping rate controls. The cabinet and panel match all other Heathkits. Every part supplied including detailed instructions for assembly and use. Shipping weight 11 lbs.

New 1948

HEATHKIT 5” OSCILLOSCOPE KIT

A necessity for the newer servicing technique in FM and television at a price you can afford. The Heathkit is complete, beautiful two color panel, all metal parts punched, formed and plated and every part supplied. A pleasant evening’s work and you have the most interesting piece of laboratory equipment available.

Check the features—large 5” 5BP1 tube, compartmented vertical and horizontal amplifiers using 6527’s, 13 cycle to 500 Kc sweeping generator using 884 gas tube, 110V 60 cycle power transformer gives 1100 volts negative and 350 volts positive.

Convenient size 81/2” x 13” high, 19” deep, weight only 26 pounds.

All controls on front panel with test voltage and ext. sync. past. Complete with all tubes and detailed instructions. Shipping weight 35 pounds. Order today while surplus tubes make the price possible.

Nothing ELSE TO BUY

$24.50

$34.50

$39.50

ORDER DIRECT FROM THIS AD.
WE WILL SHIP C.O.D.
Add Postage for Weight Shown
APN/1 Radio Altimeters

NO. 200. The last chance to buy a complete new 1" tube radio altimeter. Contains 296 Mc. transmitter and receiver, power supply, range switches, two antennas, meter indicator, all plugs and instruction manual. A very practical unit for the right in the band. Shipped in original export crate. Weight 87 lbs.

$34.50

G.E. BC 375 Tuning Unit

$2.49

G.E. 50 Amp Circuit Breaker

NO. 204. New General Electric A.M. Breaker 200 Volt AC circuit breakers, 100 Amp when used on 110V. Add postage for 4 lbs.

$2.95 each

G.C. 347 Aircraft Interphone Amplifier

NO. 205. Interphone amplifier contains 686 tube. Owner transformers, diaphragm, etc. in aluminum cabinets. Add postage for 4 lbs.

$2.95

274N Command Set Accessories

NO. 238. 5" Speaker with output transformer matching head phone. Add postage for 2 lbs. $2.80

NO. 239. Dual receiver rack FT27A with connecting plugs. Add postage for 4 lbs.

$2.95

NO. 240. Single transmitter rack FT234A. $1.00

NO. 241. Spline shaft for tuning command receiver. Allows use of regular tuning knob on BC 455-A. $0.39

BC 451 Control Box

NO. 242. Control box for 274N transmitters. Contains proper cvsw voice switch, 4 channel switch, power switch, mike jack and telephone key. Shipping Weight 2 lbs. $1.95

METER SPECIAL

NO. 237. Brand new Delco Model 212. 0-100 A.-D.C. basic meter with built in shunt. This is the last chance to buy a surplus meter. Shipping Weight 1 lbs. $1.95

A-62 Army Phantom Antenna

NO. 206. Contains tuning condenser, band switch, tuning dial, tuning indicator, binding posts, steel case, useful for building amateur transmitter. Add postage for 8 lbs. $1.95

BENDIX MR9 Compass Control Unit

NO. 207. Tuning and control unit for Bendix MN 28 radio compasses contains tuning dial, band switch, crystal switch, AVC switch, volume control, fuses and holder, fuses and holders alone worth the price. Shipping Weight 5 lbs. $9.50

BC 731 Control Box

With Weston Model 476 A.C. Voltmeter

NO. 208. Excellent buy in motor control box. Supplies 350-000 and 0-200 Mc. transmitters 0-5000 Mc. 9.149 = 120 Volt A.C. 35" = volt meter, motor starting switch, 28 fuses all 30 Amp, 120 Volt, and control fuses, fuses and holders alone worth the price. Shipping Weight 18 lbs. $7.95

BC 645 General Electric Transceiver

$19.50 for 2 for $35.00

ACCESSORIES FOR BC 645

For 200 Mc Dynamotor for car use. $3.95

110V 60 Cycle Power Supply for ham use. $11.95

F.T. 227 Table Microphone

NO. 210. One of the Army's best. Built by Kellogg, ideal for factory call system, public address, amateur use, brand new in original cartons. Add postage for 5 lbs.

$2.95

MINIATURE ELECTRIC MOTOR

NO. 211. Tiny Dc motor only 11/4" x 3/4" x 3/4", 10,000 R.P.M. Operates from 6 V.V.C. or 12 Volt A.C. Add postage for 4 lbs.

$2.95

DYNAMOTOR

NO. 212. Dynamotor only from PE 103 power supply. Input 6 or 12 Volts, output 500 Volts at 140 Amp. Brand new original cartons. Shipping Weight 29 lbs.

$5.95

DM-36 DYNAMOTOR

NO. 215. Western Electric 24 Volt input, 220V. or 60 MA out. With filter assembly. Shipping Weight 6 lbs. $2.95

G.E. BC 206 Antenna Tuning Unit

NO. 211. Matches any aerial to 150 Watt transmitter, used on BC 375. Brand new. Add postage for 20 lbs.

$2.95

W.E. BC 456 Modulator

NO. 217. Uses BC 457A command transmitters contains 3 husky relays, 3 tubes, VR150, 1275, and 1625. Brand new. Add postage for 11 lbs. $7.95

BE 77 Teletype Type SET

NO. 218. Contains zero center volt-matter, tuning dial, dial, tuning indicator, binding posts, steel case, useful for building amateur transmitter. Add postage for 8 lbs. $9.95 each

BENDIX MN 20E Direction Finder Loop

NO. 219. Ring type loop excellent for use on beat only, hard to find loop. Low impedence manual. Add postage for 8 lbs. $9.95 each

LP 18C Direction Finder Loop

NO. 220. Motor driven steerable pod type circuit used on automatic direction finders. Has Salixi transmitter and motor, fits all military direction finders. Add postage $14.50 each

KIT SPECIALS

POTENTIOMETERS

NO. 222. Kit of 10 extra high quality, 10 turn, 500 ohms each. $1.95

NO. 223. Kit of 20 high quality, 10 turn, 500 ohms each. $1.00

SOCKETS

NO. 224. Kit of BNC type sockets several different types. $1.00

RCA Navy Communication Receiver

NO. 202. The last of the most beautiful RCA sets. Covers 195 Kh. to 4 Mc. completely. Supplied complete with tubes, control box, tuning unit, 24 Channel demodulator, band switch, power supply, motor, plugs and circuit diagram. Supplemented by在全国范围内, find a store that circuit on covers aircraft, broadcast, short wave. Conversion boxes, Mas sharp or broad I.F.'s. B.F.O., etc. Shipping Weight 30 lbs.

$29.50

PE 125 Transmitter

POWER SUPPLY

NO. 225. Operates from 12 to 24 Volts and supplies 500 Volts at 160 MA. Extremely rugged construction used in Army tanks. Complete with fuses — relays — filters, etc. Ideal for high impedance. Shipping Weight 73 lbs.

$12.95

FM Push Button Tuner

NO. 224. Brand new ten push button tuning assembly from Army FM receiver. Contains 4 gang 100 MFM silver plated tuning contacts, filter box, tuning unit, binding post, etc. Add postage for 10 lbs. $2.50 each

8G/8 Flexible Coaxial Cable

NO. 225. Standard television lead in 50 ohm. Any length up to 1,000 ft. Add for postage.

$9.50

Power Transformer Specials

NO. 226. Primary 117V. 60 cycle. Secondary supplies 200 Volts at 200 Mc. 6.3V. at 24 A. 12 Volts at 1.5 A. Will handle 13 tube radio receivers. Shipping Weight 11 lbs. each. $3.95

 OUTPUT TRANSFORMER

NO. 227. Push pull 6A/6 to 6-8 ohm voice coil excellent characteristics. 3 for $1.95.

TRANSMITTER TRANSFORMER

NO. 228. The transmitter for Transmitter Power Supply, 600 Volt at 200 MA and 4 Amp. Filaments from 0 to 24 Volts, Alto 5 Volts at 4 amperes for rectifiers. Shipping Weight 13 lbs. $9.50

Military Power Transformers

NO. 229. Convert your military radio without rewiring the chassis to operate on surplus receiver. 120 Volt A.C. or DC from battery. "A" type supplies 500 V.C.T at 50 MA, 72 Volts at 24 A, 4.5 V. at 175 A, 117V. 15.5 Volts at 125A. $2.95

Home Workshop Grinder Kit

NO. 220. Easily assembled 110V AC or DC bench bearing fully closed motor and home or television type supplies. $3.95

Hearing Aid Headphones

NO. 216. The Army's best — eliminate flat ears and outside noise. Complete with transformer for converting to high impedance. With cord and plug complete. Add postage for 1 lb. $1.00

Television Condensers

NO. 221. Take triple .25 MF diameter and C.V.D. filter used on Army radar, TV or telephone. Ideal for high voltage units. $3.95

NO. 222. G.E. Pyranol V.D.C. Condenser 25 MF 4000 V.D.C. Porcelain insulated, outstanding buy for high voltage filters. Add postage for 3 lbs. $7.95

How to Order

Give part number and description add postage for weight shown. No orders under $2.00. Will ship COD.
STANCOR FILAMENT TRANSFORMER
NO. 242. Heavy duty. Stancor No. ST255 supplies 5V at 6 Amps, 5V at 3 Amps and 5V at 3A from 220V 60 Cy. primary or 1/2 above from 110V. Case type. $1.50

12V POWER TRANSFORMER
NO. 243. New G.E. Transformer supplies 2.5V at 100 KVA, has 3KV insulation. 240V 60 Cy. primary. Shipping Wgt. 13 lbs. $9.50

RCA SATURABLE REACTOR TRANSFORMER
NO. 246. New RCA No. CRYO3531 AC current 750 MA DC current 2 Amps. Rated 1.75 hours. Shipping Wgt. 4 lbs. Each. $1.00

FEDERAL POWER TRANSFORMER
NO. 252. 110V 60 Cy. Power Transformer. Supplies 440V CT. at 30 MA. 6.5 V at 21.6 Amperes. Supplies 2.5V at 4A and 6.5V at 4.5 Amps. Shipping Wgt. 3 lbs. Each. $2.95

HEAVY DUTY 6-1200 VOLT VIBRATOR
NO. 253. A husky vibrator used on army transmitter. Rated 20 amperes at 6 Volts. 220 cycle with contacts for 12 and 24 Volts AC and DC. Synchronous type has many industrial applications. Shipping Wgt. 4 lbs. Each. $1.50

4 CHANNEL PUSH BUTTON TUNER
NO. 254. Push button tuner from BC 728 containing RT, first detector, and heterodyne coil. $2 to $5. Complete circuit diagram furnished. Shipping Wgt. 2 lbs. Each. $2.50

CONDENSER SPECIAL
NO. 255. An ideal oil filled power supply filter used in most BC sets. 2.5, 2.5 and 5 MFD at 4000 Volts. C rating. Shipping Wgt. 3 lbs. Each. $1.50

TELEVISION CONDENSER
NO. 256. Aerovox Hyval 0.5 MFD at 7500V rating. Excellent television coupling condenser with mounting bracket. Shipping Wgt. 3 lbs. Each. $3.50

BC 746 TUNING UNIT
NO. 257. Plug in transmitter tuning unit from army Wallace Talkie. Contains antenna and tank coils, tuning condenser, transmitting and receiving crystals. Ideal transmitter foundation. Shipping Wgt. 1 lb. Each. $1.00

T30 THROAT MICROPHONE
NO. 258. Makes excellent contact microphone for musical instrument or voice pick-up. Shipping Wgt. 1 lb. $1.00 each. Extends to 10 ft. for above - $0.50 each.

BRAND NEW ARMY AIR FORCE ASTROGRAPH
NO. 259. The case of this unit makes the finest tool for educational purposes. Kit set outsider designed. plywood construction complete with case 11 x 10 high, with 10 covered compartments in the base, Acrylic parts, leather handle, steel reinforced, 4 inch high lid. Also excellent as a Radio receiver, phonograph, movie projector, camera, shell case, fishing kit, picnic kit, etc. The Astrograph itself, which cost the government $125.00 makes an excellent contact printer, and can be used for a foundation for enlarger, strip map holder, etc. The case alone worth twice the give-away price of $3.95

AN77 ANTS ANTENNA
NO. 260. Standard blind type antenna complete. Shipping Wgt. 14 lbs. $9.50

AS-114/A ANTENNA SYSTEM
NO. 261. New blade type antenna complete with case, in original carton. Shipping Wgt. 9 lbs. $7.50

BENDIX MT1C TRANSMITTER CONTROL BOX
NO. 255. Contains channel switch, variable and a 1-1000 ohm to 5. MCD. Complete circuit diagram furnished. Shipping Wgt. 3 lbs. Each. $5.50

BC 670A R.N. CONTROL BOX
NO. 256. Motor starting control box has starting and stopping switch with indicator, cable and plug. Good case. Shipping Wgt. 2 lbs. Each. $1.95

CK 22 RELAY ASSEMBLY
NO. 257. Used on Bendix Aviation Receivers. Contains stepping and control relays. Shipping Wgt. 7 lbs. Each. $3.95

HEINEMANN CIRCUIT BREAKER
NO. 267. Heavy duty Type 7 Amp. 24 Volt 0.10. Many uses around shop. Shipping Wgt. 2 lbs. Each. $1.00

CUTLER HAMMER MOTOR FIELD CONTROL
NO. 258. Rated 10 amps. 3 x 3. Maximum 6/5" diameter with knob and mounting feet, can be used to regulate generator output voltage. Shipping Wgt. 5 lbs. Each. $2.50

PENN THERMAL RELAY
NO. 259. Therma Relay with a range of 45 to 100 complete with 5 ft. Flexible cable toимply connection. Shipping Wgt. 6 lbs. $3.50

B & W 11 to 14 MC TANK COIL
NO. 260. Plug type used on BC 610 Transmitter. Shipping Wgt. 2 lbs. Each. $0.50

DM 64A 12 VOLT DYNAMOTOR
NO. 261. No. 274. New 12 Volt 275 Volts 150 MA. New. Shipping Wgt. 7 lbs. Each. $5.50

DM 32A COMMAND SET DYNAMOTOR
NO. 270. No. 271. Part of 374 Hammer. Complete. Shipping Wgt. 28 Volts, output 250V at 60 MA. Shipping Wgt. 4 lbs. Each. $5.50

DM 21 12 VOLT DYNAMOTOR
NO. 281. New RC 3112 Communication Receiver. New 12 Volts at 3.3 Amps. Output 235 Volts at 40 MA. New, original cartons. Shipping Wgt. 7 lbs. Each. $5.50

PE94C SCR 522 POWER SUPPLY
NO. 272. Complete dynamotor power supply for the SCR 152, operates from 28 Volts. Complete with controls, filters, etc. Original carton. Shipping Wgt. 34 lbs. Each. $8.75

PE101C BC 445 POWER SUPPLY
NO. 273. Complete power supply for BC 445 generators from 12 or 24 Volts. Supplies both AC and DC required. Shipping Wgt. 13 lbs. Each. $3.95

DM 35 12 VOLT DYNAMOTOR
NO. 274. New No. 275. New 12 Volt 285 Volts 475V at 70 MA. Complete 1/2 above voltage from 6 Volts. Each. $7.50

D-F 86 DYNAMOTOR
NO. 275. A paper 28 Volts receiver dynamotor used on present military equipment. Supplies 200V at 60 MA. Shipping Wgt. 4 lbs. Each. $5.50

GN 58 HAND GENERATOR
NO. 276. Makes excellent home lighting plant, operated by propeller, waterfll, gas engine, or hand crank. Reduction gear gives full output at slow speed, supplies 6 Volts at .45 amp, 425 volts at 115 amp. Add. $7.95

Handles for GN 58 to each. For GN 58 with plug and CD1086. $1 each.

COLLINS AUTOTUNE CONTROL HEAD
NO. 277. Brand new controls used on the ART 12, 100 Watt, Transmitter Types 7, 8, 9 and 10 available. Get a spare while available at new rates. Shipping Wgt. 3 lbs. Each. $4.50

MC 432 VHF ANTEenna LOADING UNIT
NO. 278. Contains 2 pole, edge tuned rotary switch with silver ceramic rings, zinc condensers, etc. for matching VHF Transmitter to AN109 antenna with 50 ohm line. Many uses. Extra. Shipping Wgt. 2 lbs. Each. $1.50

148 OUTDOOR TELEGRAPH KEY
NO. 279. Slugged enclosed type for outdoor use, built for army. Has withstand hard use. Complete with cord and PS35 plug. Shipping Wgt. 2 lbs. Each. $2.00

ONE KILOWATT ADJUSTABLE ANTEenna LOADING COIL
NO. 280. Has a rectangular volume of 35 cm. 5 1/2" long, with 5 sliders for adjustments. Shipping Wgt. 5 lbs. $3.50

300 MALE SCREW RECTIFIERS
NO. 281. Type 280 MA at 36 Volts, complete with mounting brackets. Shipping Wgt. 1 lb. Each. $3 FOR $1.00

DUAL SCREW RECTIFIER
NO. 282. Two units mounted on single bracket, each rated 150V at 1.5 Amp. Shipping Wgt. 1 lb. $2 FOR $1.00

TO ORDER • GIVE PART NUMBER AND DESCRIPTION • ADD POSTAGE FOR WEIGHT SHOWN • NO ORDERS UNDER $2.00 • WE WILL SHIP COD •

ELECTRONIC BARGAINS FOR EXPERIMENTERS AND HOBBYISTS
ALL QUANTITIES LIMITED SUBJECT TO PRIOR SALES

HOW TO ORDER • GIVE PART NUMBER AND DESCRIPTION • ADD POSTAGE FOR WEIGHT SHOWN • NO ORDERS UNDER $2.00 • WE WILL SHIP COD • BENTON HARBOR 20, MICHIGAN

www.americanradiohistory.com
Buy WHERE YOU SEE THIS BANNER ... because IT'S BETTER FOR YOU!

SPRAGUE TM TUBULARS
The first truly practical MOLDED Paper Tubulars! Now in stock—ready for your use—see your SPRAGUE Distributor.

SPRAGUE ATOMS—DRY ELECTROLYTICS
You can make up virtually any required capacity-voltage combination with a small stock. Keep a representative supply in your shop. SAVE TIME—SAVE MONEY—SAVE SPACE!

SPRAGUE EL SELF-MOUNTING MIDGET CAN CAPACITORS
No other Dry Electrolytic gives so much dependability in so small a space! Tinned, Twist-Prong Tabs for easy soldering; quick, universal self-mounting. SAVES TIME—SPEEDS RELIABLE SERVICE!

Yes, it's better for you and your business to buy where this banner is displayed because the SPRAGUE BANNER identifies a Distributor who agrees that "It's foolish to play penny-ante when your business is at stake!"

Your Sprague Distributor is a successful business man. He knows the parts business intimately—and he knows that to really build a bigger, more successful service business, you should use only the best replacement parts. That's why he features Sprague Capacitors and "Koolohm Resistors. His business depends on your success and he wants you to remember that YOUR REPUTATION AND YOUR CUSTOMERS ARE TOO VALUABLE TO RISK FOR THE FEW PENNIES "SAVED" BY BUYING INFERIOR OR UNKNOWN "BARGAINS"!

Yes! We're Listed in the RED BOOK
Looking for the correct Sprague replacement capacitors for any receiver manufactured from 1933 to 1948? It's easy—just refer to The Radio Industry RED BOOK . . .

SPRAGUE PRODUCTS CO., North Adams, Mass. • (JOBBERING AND DISTRIBUTING ORGANIZATION FOR THE PRODUCTS OF THE SPRAGUE ELECTRIC COMPANY)

RADIO-ELECTRONICS FOR...
MULTIPERCEPTION

Television will change our habits even more than radio...

By HUGO GERNSBACK

Psychologists are insistent in pointing out that human beings do not make the most of their brain power. Each new technical advance, every new tool, many new inventions open up entirely new avenues of human progress. We take most of these things for granted and seldom realize that we are still at the beginning of exploiting our mental powers.

Radio not only changed a number of our former habits, but also brought us numerous new accomplishments not known before the advent of broadcasting. The masses are today much better informed in almost every line of human endeavor. Our musical appreciation has taken on new meaning and risen to new heights. A wealth of information and knowledge only known to serious students before Radio, is commonplace today.

Our perception also has been greatly enhanced in a manner not even dreamt by Dr. de Forest when he first launched broadcasting at the turn of the century.

The new rising generation now already uses radio in a way that the older generation totally fails to comprehend. The younger people now listen routinely to radio practically constantly—irrespective of what they may be doing at the time. Thus, recently we noted how students of both sexes in the midst of preparation for their Regents examinations—a most difficult and harrowing experience—kept their radios going full blast while they were completely immersed in their studies. Our questioning brought out the fact that the youngsters could study and listen simultaneously—a thing the older generation has never learned to do.

Here we have to do with a phenomenon—multiperception of the human brain. If this were an isolated example, perhaps it might be thought unusual. But, as we look around us we see that all the younger people are doing precisely the same thing, whether they are stenographers, switchboard operators, factory hands, accountants, or working at countless other professions and endeavors.

At first we might doubt that this double perception would be sufficiently deep to be retained for all practical purposes, but we soon find that, indeed, the human being can listen and study or work at the same time and absorb both.

This, after all, is not any more difficult to understand than specialized multiperception endeavors with which we have been familiar for centuries.

We will give only a single example. An organist can and does play the organ not only with both hands, but also with both feet at the same time. On top of this he not only reads his notes, but if necessary he can also read the words of the theme and sing at the same time. This is five-fold multiperception: playing the organ by hand, by foot, reading the notes, reading the words, and singing. Once the organist is properly trained he finds no difficulty in doing all these functions routinely. This would seem a most complex undertaking of the human machine and, indeed, it is just that.

If a psychologist were to analyze and enumerate everything that happens while the organist is at work, a good-sized book could be filled with all the processes involved.

Remember that the brain must give the impulse to everything that goes on; even such a "simple" thing as reading a note and striking exactly the right key without looking at the keyboard, would fill many pages of the book on nerve impulse-muscle coordination, etc.

It should be well understood that all new endeavors are best learned in youth. Older people find it difficult to co-operate to view everything 100% in this manner, but if you see 80% or 90% of the action this will be sufficient to give you a good comprehension even if a fast baseball game is in progress. Will all this extra work fatigue or damage the eye? Not in the slightest. We do not work our muscles sufficiently anyway, nowadays, according to physicians.

The only strain caused by our present-day television sets is due to insufficient illumination in our cathode-ray tubes. This, however, is only a passing condition of the new art. Future television receivers will have such brilliantly lighted screens that they can be viewed in bright daylight, or at night with a strong table lamp on the same desk.

December, 1948

www.americanradiohistory.com
Radar Eyes Bring Safety To Fog-Bound Liverpool

By Major RALPH W. HALLOWS

Handling more than 10 million tons of goods each year and serving the densely populated northwestern industrial areas, Liverpool is one of the most important of Britain's seaports. It is also one of the most difficult in the world for shipping. A glance at the map will make one of the reasons for this clear. The port lies at the head of a winding channel 12 miles in length and nowhere much more than a quarter of a mile wide. The channel divides the great sandbanks of Liverpool Bay. On that stretch of coast, with its 30-foot tides, the sand is always on the move; in the last 60 years the annual amount of it dredged from the Mersey Channel has averaged 14 million tons. The channel is very carefully marked by three light vessels and between 50 and 60 powerful acetylene buoys (every black dot on the map shows the position of one of these buoys); in fact, its appearance on a clear night has been likened to that of the main street of a great town.

No map, though, can show the greatest of all menaces to shipping in narrow waters, the demon fog; and Liverpool is subject to dense and frequent fogs in the colder months of the year. In the past that fog or falling snow might bring the business of the port to a standstill and keep it inactive for days on end.

Because of the narrowness of the channel big ships can neither turn round nor anchor in it. An average of a score of ocean-going vessels enters and leaves the port every day; and once the captain of one of them has decided either to enter the channel at the Bar light vessel or to put to sea from the Liverpool docks, there is no turning back. He must go on. On this account many vessels in the past missed one or more tides for reasons of prudence. And missing even one tide is an expensive business for a big ship; the average loss is about $2,000.

Today Liverpool and the ships using the port no longer dread the fog menace. The first complete radar approach system in the world is in use. No matter what the weather, the whole of the channel from the Bar lightship to the Liverpool docks and for some miles upstream is seen on the radar screens as clearly as the proverbial back of one's hand. Liverpool, in a word, has installed a radar system which may well revolutionize the traffic systems of half the world's great harbors. The Liverpool port authorities emphasize that it is not a control system. The responsibility for deciding what his ship shall do in any circumstances must always remain with the captain. In other words, he does not and will not receive orders from the shore. But he can at any time receive by radio telephone the exact position of his own vessel, of other vessels in the channel, of any obstruction. In combination with the information provided by his own shipborne radar, this knowledge will enable him to sail safely inward or outward in weather conditions which in the past would have meant missing one or more tides.

The radar installation is entirely of...
British design. The work was carried out by the British Sperry Gyroscope Company (an associate of the American company of the same name) in conjunction with the Cessor Radio Company, both working with the collaboration of Sir Robert Watson-Watt, the originator of Britain's wartime radar chain. The screens of its presentation unit (see photo) give complete coverage of the whole channel. The normal maximum seaward range is 14 miles, but this can be increased to 22 miles when required, by the use of a switch.

These are six 15-inch presentation tubes, the "picture" occupying about 100 square inches around the central and least distorted part of each. No. 1 screen gives a small-scale view of the whole channel. The areas covered, on a scale about four times as great, by Nos. 2, 3, 4, and 5 are shown by the squares on the map. Notice that the areas have a slight overlap and in combination give a large-scale view of the entire channel. The sixth picture is in some ways the most interesting of all. It is known as the wandering display and can be moved at will to any one of 22 positions so as to give large-scale coverage of any desired part of the Mersey Estuary or of Liverpool Bay. It can thus be used to give an additional picture of any area in which there is congestion. Or, it can, if need be, replace temporarily any of the four fixed large-scale displays if necessary.

The scanner is a "cheese" antenna 15 feet in diameter by 2 feet deep, mounted at the top of an 80-foot ferro-concrete tower at the northwest corner of the Gladstone Dock. Close to the foot of the tower is a building containing the transmitter, receiver, power supply, and display unit.

The scanner itself is built of horizontal slats with gaps between them, not from a continuous sheet of metal. This is to reduce resistance to the high winds which often occur. It is heated to prevent icing in the coldest weather and rests on rollers arranged to prevent distortion of the reflecting surface by temperature changes. Driven by a 6-h.p. motor housed in a weatherproof compartment in the tower, it makes 10 revolutions per minute.

The peak pulse power of the transmitter is 30 kw, with a 0.25-microsecond pulse and a repetition frequency of 1,000 per second. The frequency band used is 9,425 to 9,525 mc (wavelength approximately 3 cm). Special precautions have been taken in the design of the mirror to reduce side lobes. The width of the beam is 0.7 degree horizontally and 5 degrees vertically. The discrimination is better than 45 minutes in bearing and 40 yards in range.

Now for some particulars of the displays, which have already been briefly mentioned. These are an entirely new type of P.P.I. (plan position indicator), which gives true plan presentation without distortion. An interesting point is that, owing to the long afterglow, a moving ship leaves what looks like a wake on the tube; therefore, it is easy to see at a glance the direction in which any vessel is moving. In front of each tube is a transparency on which all light buoys and other floating sailing marks are shown in green. It is most important that the positions of these should be constantly checked and any displacement announced at once. Formerly this was a laborious business needing a large staff. Now checking is automatic, for operators can see at a glance whether or not the radar echoes coincide with the green marks on the transparency.

The transparency carries also a red lattice of grid lines. In this way the position of any ship can be plotted in the display room in a matter of seconds on a large-scale chart, which carries the same grid lines. Should a vessel require a quick "fix" of her position, this can be read straight off the P.P.I. screen and radioed instantly to her.

At the present time the movements of all ships up and down the river and their positions from moment to moment are telephoned continuously to the administrative headquarters of the port from the radar operating room. At headquarters they are plotted on a large chart. It is intended shortly to replace this telephone communication by a television link.

An important part of the Liverpool radar scheme is the direct service from radar operating room to ship by radio telephone. This is conducted on a special frequency, and when the pilot boards any ship, he takes with him a portable pretuned transmitter-receiver.

DECEMBER, 1948
Why use waveguides? At microwave frequencies (frequencies above 300 mc) the inductance of a twin-lead or co-axial line becomes so high and the capacitance so low that such transmission lines cannot be used.

Skin effect is practically negligible at lower frequencies. The current is distributed almost uniformly through a conductor. At higher frequencies most of the current is confined to the outer surface of the conductor, and a transmission line which conducts lower frequencies well looks like a resistance to microwaves. Electromagnetic energy cannot be conducted by one of these transmission lines. Instead it must be propagated in a waveguide.

Waveguides are hollow rectangular or circular pipes (see Fig. 1). They have tremendous advantage over co-axial lines as far as high power is concerned, and can carry up to five megawatts with very low losses. This is the highest power ever obtained. Waveguides are broad-band as well. A variation of 35 to 40% in the frequency is possible without serious attenuation.

Everyone who has worked with short waves is familiar with the natural waveguide that causes skip. Sometimes reception is surprisingly good at some distance from the transmitter, sometimes it is distorted, and sometimes the signal is not received at all. Fig. 2 helps to illustrate this problem. The transmitted signal may bounce back and forth between the earth and the Heaviside layer. If a receiver happens to be at a point where a signal of a particular frequency is reflected from the Heaviside layer, reception will be good. If the Heaviside layer is higher or lower because of atmospheric conditions, time of day, or other reasons, reception may be poor at this same point for the same frequency as before, but it may be good for another frequency. Reception is affected by a relationship between the transmitted frequency and the height of the Heaviside layer.

Actually this is simply a waveguide problem where the earth and the Heaviside layer are two walls of a waveguide. In the same way as a transmitter radiates power into the air, an antenna or metal probe introduces power into a waveguide. This electromagnetic energy bounces back and forth between the walls of the guide, but because of the particular frequency and the spacing between the walls, there is only one pattern the electromagnetic wave can take.

Figs. 3 and 4 help give a better understanding of the propagation of the wave. Fig. 3 shows the electrostatic field of a sine wave travelling in free space. A, C, and E are wavefronts. B and D are nodes or zero points. A and E are positive maxima, and C is a negative maximum. From A to E is a wavelength in free space. A to C or C to E is a half wavelength in free space. The direction of propagation is from E to A in the figure.

TABLE I

<table>
<thead>
<tr>
<th>Condition</th>
<th>Column A Closed or Shorted Line</th>
<th>Column B Open Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the line is less than 1/4 wavelength</td>
<td>It looks inductive</td>
<td>It looks capacitive</td>
</tr>
<tr>
<td>If the line is 1/4 wavelength</td>
<td>It looks open</td>
<td>It looks closed</td>
</tr>
<tr>
<td>If the line is between 1/4 and 1/2 wavelength</td>
<td>It looks capacitive</td>
<td>It looks inductive</td>
</tr>
<tr>
<td>If the line is 1/2 wavelength</td>
<td>It looks closed</td>
<td>It looks open</td>
</tr>
</tbody>
</table>

The capacitive or inductive effects of different lengths of open or shorted waveguide.

Staff Physicist, DeMornay-Budd, Inc., New York, N. Y.
A probe inserted in a waveguide will radiate waves. Fig. 4 shows what happens along two of these wavepaths. Positive maxima and negative maxima have electric and magnetic components. In this case TE means transverse electric because the electric field is across the guide or transverse to the direction of propagation. See Fig. 7, which is a side view of the waveguide of Fig. 5. The top view, Fig. 8, shows the magnetic field components.

In a transverse magnetic (TM) mode, the magnetic instead of the electric field is across the guide, with no part of a magnetic field line running along the guide, as it does in the TE mode illustrated in Fig. 8.

The subscripts 0 and 1 signify the number of half-wave patterns of the electric field along the two sides of the guide. The subscript 0 refers to the short side in Fig. 5 and the subscript 1 refers to the long side.

The size of a waveguide determines the lowest frequency it can carry. Above this frequency, known as cutoff, radiation may be propagated down the guide. When the frequency used is too high, there are other modes than the TE which may be propagated. The wavelengths are shorter so there may be more half-wave patterns across the guide. These higher modes are known as TEm, TMm, etc. Higher modes complicate transmission problems, so it is common practice to operate a waveguide at frequencies where only the TE and no other modes can exist.

Microwave radio parts

Conventional resistors, condensers, and inductances cannot be used for microwaves, because their sizes are very nearly equal to the lengths of waves at frequencies above 300 megacycles. In place of the conventional parts, special microwave components are used. These give the same effects as resistors, capacitors, and inductances. Inductance or capacitance may be introduced by using guides of varying length, Table I is based on transmission line theory and shows the effects of the length of line when the line is closed or shorted (column A) or open (column B).

Instead of a resistor, a waveguide attenuator is used. It is constructed to absorb power and is used to cut down power in the line or to terminate the line. Fig. 9 shows a variable attenuator. It is usually a strip of dielectric material coated with a power-absorbing material, such as carbon. The strip is mounted in the section of waveguide and may be moved in and out through the slot in the guide. The strip has no effect when it is out of the guide, and reduces the power as it is moved into the guide.

Although capacitive and inductive effects appear at certain distances from the end of a shorted or open line as in Table 1, it is not always convenient to terminate the line. Then capacitance or inductance must be introduced somewhere along the guide instead. Windows, as illustrated in Figs. 10 and 11, are used for this purpose. A window consists of two thin metal plates extending from opposite sides of the waveguide toward the center. The inductive or capacitive reactance increases with the depth of the metal plates.

Microwave measurements

In microwave apparatus, it is important to know if the power is being propagated without losses. If there are losses, it is necessary to locate and measure them, so that they may be reduced. With the waveguide components so far described as a basis, many others have been designed for the most direct and obvious measurements of r.f. energy. The impedance of a waveguide is determined by its dimensions. For maximum power transfer, an impedance match is required. Impedance mismatch may be caused by discontinuities in the transmission line. Examples are: junction of two sections of waveguide where misalignment may occur, change of direction of propagation, variation of the internal dimensions. Such discontinuities partly or completely reflect the waves propagating forward, and set up another set of waves propagating backward.

Fig. 9—Variable attenuator, 5850-8200 mc.

Figs. 10 and 11—Cross-section view of waveguides with capacitive and inductive windows.

Fig. 12—A tuned load for 8200-12400 mc.

This is the effect you find if you attach one end of a rope to a wall and shake the other end. Waves travel to the wall, are reflected there, and start back again. If you shake the free end with the right timing, the waves going forward meet the waves coming backward so that they appear to stand still. These standing waves occur when waves propagating down a waveguide meet a discontinuity.

The mismatch may be measured in terms of the **voltage standing wave ratio**. This ratio is defined as the maximum voltage reading divided by the minimum voltage reading. The maximum voltage reading occurs at the crest of a standing wave and the minimum
of (a) a probe whose depth of insertion and whose position along the length of the guide may be controlled and (b) an absorbing strip. The probe has a capacitive effect which increases with the depth of insertion. If the probe is moved a quarter wavelength along the guide, an inductive effect will appear where before there was a capacitive effect. At intermediate positions of the probe, it will look as if there were more or less inductance or capacitance at the original position. In this way, any amount of resistance due to the reflections set up by the connecting flanges and the absorbing strip may be matched out. The ideal absorbing strip is pure resistance and absorbs all the power. But some reflections are caused by the edge of the strip in spite of the fact that it is usually tapered to minimize the surface area presented to the oncoming waves.

For each different frequency at which a test is to be made, the load must be tuned. The load is connected directly to the standing wave detector. The two tuning controls are varied until the standing wave ratio is one; this means the line is perfectly matched. The waveguide component to be tested is then inserted between the standing wave detector and the tuned termination. The standing wave ratio under these conditions is due only to the component under test and not to the termination.

The cover picture

The test set-up pictured on the cover is arranged for such measurements. Three tubes are used, one operating at each frequency at which a measurement is desired. These are fed into the main line through a triple input guide. A switch enables the technician to select any one of the three tubes at a time, eliminating the delay of changing the frequency by adjusting a single tube.

In such a test set-up, frequency is measured by a wavemeter (Fig. 13). If a waveguide is completely closed except for a small hole for the power to enter, it is known as a cavity. A cavity resonates at a particular frequency dependent upon the dimensions of the cavity. In general a wavemeter is a cylindrical cavity which has an end plate that can be moved to vary the height of the cylinder. This wavemeter is inserted in parallel with the line so that when it is in resonance it draws power from the line and reduces the output reading. When the point of reduced output power is reached, the position of the end plate may be read on the micrometer and the frequency determined from a calibration chart based on the size of the cavity.

A few waveguide components used in measurements have no analogous low-frequency component. For example, a directional coupler (Fig. 14) can tap off power for measurement from the waveguide system without affecting the line. A probe or a loop would cause some reflections and set up standing waves of its own. A directional coupler has the advantages of being broad-band, of not setting up standing waves, and of measuring only the wave going forward and not any reflections. One can see that the coupler is really two sections of waveguide side by side. In the wall between them are holes spaced so that energy coupled through them will add up for a forward-going wave. An attenuator strip or pad is placed in the coupler to absorb reflected waves, so that only the forward-going wave is propagated.

Developed from the directional coupler is the bidirectional coupler (Fig. 15), which will pick up the waves going in either direction, each independently of the other. A directional coupler always picks up a certain proportion of the power in the main guide. The power received in the coupler is a certain number of decibels down from the power in the main line—usually about 25.

Sometimes it is necessary to change the polarization of the wave to meet the mechanical requirements of waveguide apparatus. Polarization is changed by a twisted section of waveguide (Fig. 16). The outgoing wave is at right angles to the incoming one, and the electric field anywhere along the twist is as shown in the cross-sectional illustration of Fig. 5.

The connecting flanges in many of the illustrations here are grooved. The outer groove may be used for a gasket to make tight fits. The inner groove is

Fig. 13 Cavity wavemeter for 8400-9800 mc.

Fig. 14 Directional coupler, 8200-12400 mc.

Fig. 15 Example of a bidirectional coupler.

Fig. 16 This section changes polarization.
New A.F. Power Supply

By S. R. WINTERS

A NEW power supply for use in electrolysis has been developed by the National Bureau of Standards. It has the proverbial constancy of Caesar’s wife in that the apparatus, functioning from a 115-volt a.c. line, affords stable and yet continuously adjustable d.c. voltages at currents up to 2 amperes or even more.

The new electronic power source bypasses faults of previous instruments. The voltage is governed by a precisely engineered, compact electronic circuit that utilizes standard radio parts. The new apparatus can produce a controlled output of several volts in loads as low as a single ohm, and identical techniques can be employed in equipment built for higher outputs. In numerous applications, the usual series-regulated power supply is handicapped because of the high load currents which must be handled directly by vacuum tubes.

In the separation of metals by electrolysis—a function served by this novel instrument—it is necessary to govern the power supplied to a load, the plating electrode, with respect to the potential of a reference electrode. An excessively high potential spells an excessively low power. Thus the function of the Bureau of Standards’ electronic circuit is to curtail its output automatically until the control potential reaches the required value.

Inside the device are an amplitude-controlled oscillator (V1 and V2 in the diagram), a power amplifier (V3 and V4), and rectifier (V5), and two direct-coupled stages of amplification (V6 and V9). The oscillator, a multivibrator, functions at about 2,000 cycles, turning out a variable-amplitude square wave. This is amplified by a couple of audio beam-power tubes in push-pull. These tubes are linked through a step-down transformer T2 to the low-voltage, high-current selenium rectifier. An L-C filter cuts ripple and noise to a negligibly low value. The filtered voltage is the output of the instrument.

For regulation a portion of the output voltage is compared to another output voltage stabilized by a gaseous regulator tube V8. The difference between the two is amplified by the two direct-coupled stages and is employed to govern the amplitude of the signal from the oscillator.

The circuit connections are made in such a manner that the amplitude of the oscillator is increased when the output voltage drops below the reference value. The two stages of amplification insure exact regulation of the power supply and its output deviates very little from the reference voltage.

The reference voltage is adjustable by a knob on the panel of the instrument. This control, acting as the output voltage regulator, has a range of adjustment from 0 to 2 volts. Higher voltages may be obtained by employing only a portion of the output for comparison. If the proper voltage divider is added, the power supply can deliver as much as 8 volts.

In consequence of such a high degree of regulation, the new instrument has a low effective internal impedance. This is about 0.06 ohm when the entire output voltage is employed for comparison with the reference voltage. Thus, the voltage drop due to heavy load currents is small. The low internal impedance of the device suggests its adaptability as a substitute for a storage battery where constancy of output under varying loads is required. The regulation ratio is about 0.5%.

To duplicate the performance of this apparatus with a storage battery at an output of 1 volt, it would be necessary to use a voltage divider with 200-ampere fixed drain.

The regulated voltage supply may also be connected as a constant current source, if desired. The voltage drop caused by passage of the load current through a selected fixed resistance becomes the index which is compared to the reference potential. When applied in this manner, the device affords about the same advantages as when employed as a constant voltage source.
Electroencephalography is an electronic method for recording the brain's electrical activity. This activity consists of trains of brain waves called action potentials. Their frequency and amplitude depend upon the age, health, activity, emotional state, and other characteristics of the patient. Children's waves tend to be faster than adults', and extremely rapid, sharply peaked potentials are characteristic of epileptics. Movement of an arm or leg, hearing a loud noise, or even opening or closing the eyes will affect the action potentials. Strong emotions such as rage or fear may produce very interesting patterns. For these reasons, electroencephalograms are recorded with the subject reclining in a quiet, semi-darkened room, eyes closed. Under these standard conditions, the brain of a normal adult emits an approximately sinusoidal signal which varies continuously in frequency from 1 to 100 cycles and in amplitude from 1 to 100 microvolts. However, the predominant components have a frequency of about 10 cycles and an amplitude of 10 to 50 microvolts. In most cases, the frequency and amplitude vary oppositely.

Although a great deal is known about the appearance of brain waves in health and disease no one knows how or where they arise, or what their purpose is. It is interesting to note, however, that they are not unlike FM signals. Some experts regard this as evidence that they are nerve impulses and are frequency-modulated to prevent interference from other electrical discharges within the body.

The photographs and diagram show a rack-mounted electroencephalograph. It is essentially a four-stage, push-pull, resistance-capacitance-coupled amplifier. Except for slight circuit variations made by individual manufacturers, the design shown is the basic pattern around which all these devices are constructed.

The three stages of voltage amplification have a gain of over 2,000,000 (about 126 db). This is more than enough to detect and amplify signals in the microvolt range. Triodes are employed in the first stage to keep tube noise at a minimum. The relatively slight loss of gain is counteracted by the two pentode stages which follow. Some manufacturers use nonmicrophonic pentodes in the first stage instead of triodes. Noises from x-ray or diathermy equipment or from similar sources are reduced by placing the patient in a screened room, by shielding pickup cables, and by the bucking action of the push-pull circuit. All three stages are decoupled to prevent the effects of coupling through the common impedance of the power supply. Push-pull 6L6's are used in the output stage to provide sufficient power to overcome the inertia of the mechanical recording device, thus insuring faithful reproduction of the higher-frequency complexes.

The coupling condensers are larger than those employed in conventional amplifiers to assure good low-frequency response. The lowering of the high-frequency limit is not a problem because frequencies higher than 150 or 200 cycles are of no significance in electroencephalograms. No bypass condensers are needed because of the push-pull design, which bucks out the unwanted a.c. components because they are 180° out of phase. If it were not for this action of the push-pull circuit, screen bypass condensers with a capacitance of several thousand microfarads would have to be used to maintain the low-frequency response.

The instrument incorporates an elec

Each pen of six-channel recorder is actuated by a Rochelle salt crystal.

By EUGENE THOMPSON
tronically regulated power supply because even slight variations in plate voltages would distort the low-level signals. The supply can maintain the plate and screen voltages to within a fraction of 1%.

To permit accurate measurement of the voltages picked up from the patient despite slight changes in the gain of the amplifier, a calibrating circuit consisting of a 1.5-volt dry cell and a series of calibrated resistors is employed. This circuit is shown at the input of the 6SF5 grid. By proper selection of resistors, a standard calibrating signal of 1, 10, 50, 100, or 1000 microvolts may be introduced into the amplifier while the record is being made.

Because of the cost and difficulties in processing long photographic records, they have been replaced in modern equipment by plain paper or plastic coated paper tape. Electrically driven pens or heated styli are used to record on these surfaces. The pen is fastened to a moving coil, similar to the voice coil in a loudspeaker. This coil is fed by the output of the 6L6's. Either an electric or a permanent magnet may be used as the field supply.

A recording device which operates on a more novel principle is illustrated in the photograph. This instrument works like a crystal cutting head. The amplified brain waves are applied to a Rochelle salt crystal. The crystal is distorted in step with the variations in the applied voltage and the resulting movement is mechanically magnified by levers which actuate the pen. The pen reproduces the wave form of the brain's action potentials. In the photo there are six recorders, each of which is driven by a separate amplifier.

The brain's potentials are picked up from the surface of the scalp with small metal electrodes. These are dipped in salt paste to reduce the skin resistance, and held in place with a drop of collodion. From the electrodes, small flexible wire leads pass through a shielded cable to the input of the amplifier.

Two wires are needed to pick up the brain waves. Each pair is referred to as a lead. There are two types of leads, unipolar and bipolar. In the former type, one wire is located over some part of the brain, and the other is attached to some neutral point on the body, such as an ear lobe. In bipolar leads the second wire is placed over some area of the brain rather than on a neutral point. In general, bipolar leads give more information than unipolar ones.

The various leads are named according to the lobe of the brain over which they are placed and whose action potentials they record. Thus in the unipolar leads these are right and left temporal, frontal, and occipital leads, etc. The bipolar leads are called bifrontal, bitemporal, and so on. The positioning of the various electrodes requires a highly specialized knowledge of the topography of the brain.

The combination of a lead, its amplifier, and a recording pen is referred to as a channel. A minimum of four bipolar or six unipolar channels is required. Most clinical units have eight channels.

Electroencephalographic diagnosis is largely based on experiment although some attempts have been made to reduce parts of the technique to a mathematical basis. At present, however, there is no substitute for the experience of a trained electroencephalographer. Most diagnoses are established by inspection of the record for an abnormal preponderance of fast or slow wave forms compared to the normal, or for phase reversals between the signals picked up from different points on the surface of the head.

Electroencephalography has been used with great success in the diagnosis and localization of brain tumors, for the diagnosis of various forms of epilepsy, and for following the progress of patients being treated for these conditions. Thus far there has been no correlation between various types of psychoses, neuroses, and the intelligence quotient of the patient, and the pattern of his brain waves. Thus, idiots and college professors may have very similar electroencephalograms — no reflection intended upon the gray matter of the professors! It must be added, however, that electroencephalography is still a young science, and that intensive investigations are continually being conducted which may lead to new uses.

Six amplifiers are mounted in rack at right.
THROUGH balloon telemetering research meteorologists and physicists are gaining new tools with which to probe the mysteries of the upper atmosphere. As always, the electronic engineer is playing an important role in the steady progress of science.

Two new small transmitters for radio telemetering have been developed at New York University for weather balloon use. The transmitters include modulation circuits, one for FM and the other for AM. Their unique, simplified modulation circuits and their compact design make these transmitters useful for voice communication, radio remote control, as well as telemetering systems.

Of particular interest is the new FM transmitter circuit shown in Fig. 1. Frequency modulation offers considerable advantage in signal-to-noise ratio for line-of-sight transmission at the higher frequencies.

Several transmitters were constructed, at first using the conventional resistance tube to obtain FM. Only a small amount of deviation can be achieved by this method and doublers must be used to obtain a 150-kc swing.

The new circuit does not require frequency multipliers, since the required deviation may be obtained at the fundamental frequency. To do this a vacuum tube (V2-a in Fig. 1) is used as a variable resistance in series with the cathode of the oscillator V1.

The frequency of a self-excited oscillator depends to some extent on the plate voltage. Imposing an audio signal on the grid of V2-a varies the resistance of its plate circuit, increasing the plate current when the grid is positive and decreasing it when the grid is negative. Since the voltage drop across the tube is proportional to the current flowing through it, the tube acts as a variable resistance.

These changes in voltage across the modulator vary the oscillator plate voltage at an audio rate. The plate voltage changes on the oscillator vary the oscillator frequency. To stabilize the oscillator against changes in frequency due to variations in battery voltage, a neon-bulb voltage regulator is used. Thus, only changes in the modulation signal produce a carrier swing.

The output of the oscillator is capacitance-coupled to a class-C r.f. amplifier V2-b, which acts also as an r.f. limiter. To obtain a wide tuning range, the resonant circuits of both the oscillator and the amplifier are composed of a combination of slug-tuned coils and variable micro trimmers. The slug-tuned coils are adjustable from the outside and are used for fine tuning.

The transmitter operates on any plate voltage between 180 and 270. This wide range is desirable because the batteries may have to be used for a long period of time though they depreciate due to current drain and low temperatures in the upper atmosphere.

By LEON HILLMAN*

* New York University College of Engineering
The tuning range is from 20 to 100 mc. Power output is approximately 1 watt. The transmitter uses two 3A5's. These are dual triodes and therefore are equivalent to four separate tubes. One section is used for the modulator, a second for the oscillator, and a third for the r.f. amplifier. The extra triode is unused.

The amplifier and oscillator coils are wound on ¾-inch forms with adjustable powdered-iron cores. Both coils consist of 5 turns of No. 14 enamel wire tapped at ¼-inch. The turns are spaced the diameter of the wire. The antenna coupling coil consists of 2 turns of plastic-covered wire wound around the center of the amplifier plate coil.

A blocking oscillator (Fig. 2) converts meteorological data into an audio signal which may be transmitted. The blocking oscillator is, in effect, a feedback oscillator which quenches itself periodically due to the time constant of R1-C1. By varying R1 the audio frequency may be set between 10 and 500 cycles.

The blocking oscillator operates on approximately 1 megacycle. The plate coil is tuned by TC which is the sum of the distributed capacitance of the coil, the stray capacitance of the wiring and the interelectrode capacitance of the tube. The coil is wound with 10/40 litz wire on a ¾-inch form. The plate coil has 100 turns wound in a pie ¾-inch wide. The grid coil, L, (Fig. 2) consists of 15 turns in a pie similar to the plate winding. The windings are spaced ¾ inch apart.

The audio frequency may be used for operating frequency-sensitive relays in a control receiver. To show how the blocking oscillator is used for temperature measurement, consider what happens when a high resistance with a large temperature coefficient is exposed to the atmosphere. The resistor replaces R1 in Fig. 2. Since its resistance varies in proportion to the temperature, the blocking oscillator produces an audio frequency which is dependent on the temperature. Using a chart showing frequency as a function of resistance and temperature, the ground operator compares the received audio frequency with the values on the chart to determine the atmospheric temperature.

The antenna is important, since signals must be transmitted for long distances. A conventional half-wave vertical dipole is best for the purpose. For receiving, a vertical dipole is used in most cases, although some experiments with an omnidirectional circularly polarized antenna have been successful. At times it is necessary to locate the position of the balloon in flight. In such cases a highly directional antenna with 32 elements in a broadside array and a receiver provided with lobe scanning and an oscillograph for observation are used.

The transmitter is built on a U-shaped frame and is completely shielded with an aluminum cover. The r.f. amplifier is shielded from the oscillator with a thin aluminum part-

The AM transmitter. Metal sections are removed from the chassis to reduce weight. The oscillator trimmer until the desired frequency is reached. The amplifier trimmer is adjusted next with the antenna disconnected, until the amplifier plate current drops to a minimum. The cover is then replaced and the tuning repeated by adjusting the cores of the r.f. coils. A 10-me tuning range can be

FM TRANSMITTER PARTS LIST—Fig. 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>150 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R3</td>
<td>100 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R4</td>
<td>220 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R5</td>
<td>10,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R6</td>
<td>250 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>C1</td>
<td>0.1 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.01 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.001 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>10,000 µf, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>C5</td>
<td>0.002 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>0.003 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.004 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>0.005 µf, paper</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>0.1 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L2</td>
<td>0.2 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L3</td>
<td>0.3 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L4</td>
<td>0.4 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L5</td>
<td>0.5 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L6</td>
<td>0.6 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L7</td>
<td>0.7 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L8</td>
<td>0.8 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L9</td>
<td>0.9 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L10</td>
<td>1.0 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
</tbody>
</table>

AM TRANSMITTER PARTS LIST—Fig. 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>82-47,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R2</td>
<td>82-470,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R3</td>
<td>82-4,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R4</td>
<td>82-15,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R5</td>
<td>82-300,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>C1</td>
<td>0.25 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.05 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.01 µf, paper</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0.001 µf, paper</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>0.1 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L2</td>
<td>0.2 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L3</td>
<td>0.3 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L4</td>
<td>0.4 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L5</td>
<td>0.5 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L6</td>
<td>0.6 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L7</td>
<td>0.7 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L8</td>
<td>0.8 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L9</td>
<td>0.9 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L10</td>
<td>1.0 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
</tbody>
</table>

BLOCKING OSCILLATOR PARTS LIST—Fig. 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1 megohm potentiometer</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>10,000 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>R3</td>
<td>100 ohms, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L1</td>
<td>0.1 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L2</td>
<td>0.2 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L3</td>
<td>0.3 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L4</td>
<td>0.4 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L5</td>
<td>0.5 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L6</td>
<td>0.6 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L7</td>
<td>0.7 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L8</td>
<td>0.8 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L9</td>
<td>0.9 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
<tr>
<td>L10</td>
<td>1.0 mH, 1/2 watt</td>
<td>1/2 watt</td>
</tr>
</tbody>
</table>
covered with the slug-tuned coils. For greater variations, the cover is removed and the trimmers are readjusted.

In preparation for a balloon flight, the transmitter is placed inside a corrugated carton lined with 1 inch of Styrofoam insulation to minimize the effects of the outside temperature. The battery pack consists of as many 67½-volt batteries, connected in series-parallel, as are required for the flight duration. Several 1½-volt batteries are included in the pack for filament supply.

Other circuit designs

In addition to the FM transmitter, several other circuits have been tested and flown. For transmission ranges exceeding the line of sight, it was necessary to employ frequencies below 20 mc. An AM transmitter with a power output of 2 watts was developed. To obtain modulation with a minimum of components an unconventional circuit was used. This is shown in Fig 3. Three paralleled 3A5 sections are used as a series resistance, as in the FM transmitter. With AM, however, the tubes are in series with the plate-voltage supply of the r.f. amplifier. Fig. 3 erroneously shows four sections of the 3A5’s in parallel. In practice, only three sections are used. The remaining triode section can be used as the blocking oscillator if one is used.

The AM transmitter is crystal-controlled, using a Pierce oscillator. The three 3A5 sections provide a high percentage of modulation. Plug-in coils are used in the r.f. amplifier. The circuit is tuned with a variable air condenser. The amplifier may be used as a doubler by tuning the tank circuit to twice the oscillator frequency. It is neutralized with a small mica trimmer condenser C6. The tube is neutralized with the B-plus lead disconnected from the amplifier. A pickup coil connected directly to the plates of a cathode-ray oscilloscope is used as a detector of r.f. The neutralizing condenser is rotated until no r.f. envelope is seen on the ‘scope screen for any position of the tank condenser.

To measure the power output of the transmitter, a three-turn loop is wound around the tank coil and connected in series with a coil, variable condenser, r.f. milliammeter, and a 22-ohm noninductive load resistance. With the inductance and capacitance tuned to series resonance, the power output is calculated from Ohm’s law, where P equals V/F. With the transmitter as shown, the r.f. current is about 300 ma, corresponding to a power output of 2 watts. With the plate voltage set at 270, the transmitter will draw approximately 20 ma at no load. With the dummy load applied the plate current rises to about 35 ma.

If a half-wave or other resistive antenna is coupled to the transmitter, the plate current will also read 35 ma. A half-wave antenna connected directly to the plate of the amplifier tube is most satisfactory. The transmitter will operate on any B-voltage between 150 and 300. Two separate 1½-volt filament supplies are required. The four tubes and tank coil are mounted on top of an aluminum plate measuring 3 x 4 inches. Total weight of the transmitter without batteries is 6½ ounces.

The AM design has been tested thoroughly—on many occasions it has transmitted signals from the upper atmosphere for over 9 hours and for a distance of 400 miles.

These transmitters have been useful to meteorologists for making upper-air measurements and for obtaining information on the movement of an air mass. Attached to meteorological balloons which move with the air currents, the miniature radio transmitter relays vital data to a ground receiving station.

Not standard radiosondes

The equipment differs from the standard radiosonde in the long period over which it is required to operate and the longer distance from which reception is required. The standard radiosonde transmitter is sent aloft and the balloon continues to rise until it reaches approximately 60,000 feet. Then the balloon bursts and the equipment descends to earth on a parachute. The total time for ascension takes about an hour. With the new balloons and control equipment the flight lasts many hours, frequently eight or nine, and the transmitter provides required data continuously.

To achieve a range of several hundred miles, it has been found necessary to use transmitters with a power output of at least four times that of the standard radiosonde, which is usually only 250 ma. The transmitters developed at New York University College of Engineering are unique for their compactness, low weight, high efficiency, and novel circuit arrangement. Though designed basically for balloon telemetering, they can be applied to other services where lightweight, low-drain transmitters are required. They may be used for amateur or point-to-point communication.

A photo of a transmitter ready for flight is shown on page 30. A chromometric pressure unit is shown on top of the case. This is a unit used to produce the pressure-indicating signals. It consists of an aneroid cell, a small 3-volt d.c. motor and an insulated drum with a metal helix and two closely-spaced metal contacts on its surface. The diaphragm of the aneroid cell is linked to a metal arm that rests on the surface of the drum. The position of the arm on the drum depends on the atmospheric pressure. The helix and the two contacts are arranged to close a series circuit consisting of a 90-volt battery and a 15,000-ohm resistor when the arm touches either of them.

The drum is driven by the motor. As it revolves, the arm touches the two contacts in turn and produces two reference pulses. As the drum continues to rotate, the arm touches to helix momentarily to produce a single key pulse. The time interval between the second reference pulse and the key pulse depends on the position of the arm on the drum. Since the arm is controlled by barometric pressure through the aneroid cell, the unit can be calibrated so pressure can be determined by the interval between reference and key pulses.

This type of pulsing mechanism can be used in a number of ways. The pulses could be used to key an audio oscillator that has been blocked with a high negative bias or even used to key the blocking oscillator so temperature and pressure signals can be transmitted simultaneously.
TELEVISION

GAS-TUBE OSCILLATORS

The author discusses relaxation oscillators and points out the advantages of using thyratrons

By ALLAN LYTEL*

The relaxation oscillator has been used as a sweep generator in television sets, but it has a number of definite disadvantages and has been practically superseded by other types. Its stability is not as great as that of the sweep oscillators used in modern television receivers, and the problem of getting a perfectly linear sweep is much greater. It is a fundamental circuit, however, and the student of television sweep circuits should be familiar with it as an aid in understanding such circuits in general. Moreover, it does find a wide practical field in oscilloscope time-base sweep generators, in which it is almost universally used.

The time-base generator is one of the most important parts of an oscilloscope. It furnishes the horizontal amplifier a signal which sweeps the spot across the screen at the same time the test signal is moving it vertically. Without the horizontal sweep, the test signal would simply trace a thin vertical line, and it would be impossible to observe the shape of the wave.

![Fig. 1—Ideal oscillator gives sawtooth wave.](image)

The signal needed for the sweep is shown in Fig. 1. When the voltage is lowest (the point marked L), the spot is at the left of the screen. As the voltage rises linearly, the spot sweeps across the screen at a uniform rate of speed. When the voltage is maximum (at R), the spot is at the right of the screen. The voltage then collapses very quickly, and the spot returns to the left of the screen so fast that it cannot be seen.

Because of the resemblance of the wave's shape to the teeth of a rip saw, the wave is called a sawtooth. For ideal results the rise in voltage should be uniform; if it is not, a sine wave would appear compressed on one side of the screen and expanded on the other. The collapse of voltage must be as fast as possible—that is, the lines in Fig. 1 from R to L should be as nearly vertical as possible—so that the spot will be invisible when it is traveling from right to left back across the tube face. If this collapse is too gradual, the scope will show a horizontal line trailing from the right end of the observed wave toward the left.

The time-base generator which furnishes this saw-tooth wave in almost every general-purpose oscilloscope is essentially a simple relaxation oscillator. The basic circuit is shown in Fig. 2-a. High voltage is applied to a capacitor C in series with which is a resistor R and across which is a gas-filled tube V. This may be a neon lamp or a voltage regulator, such as the OA3, OB3, OC3, or OD3, depending on the B-voltage.

When voltage is first applied to the uncharged capacitor, the electron flow—electrons passing from one plate of the capacitor through the B-supply to the other plate—is very rapid. The rate of flow becomes slower and slower, however, as the capacitor becomes charged. All this time R slows up the charging of the capacitor because the current passing through R creates a voltage drop across it. This drop detracts from the voltage available to the capacitor. However, as the current gets smaller and smaller, this drop gets less and less, finally dropping off to zero when the capacitor is fully charged.

The gas tube has two electrodes, a plate and a cathode. There is no heater. The tube is filled with an inert gas which is responsible for the action of the tube. Neon in the tube is quite common, although there are several other gases that would serve as well.

With only a small applied d.c. voltage, the tube does not conduct. At a certain potential, the gas breaks down into electrons and ions. The electrons are negative and go to the plate; the ions are positive and go to the cathode. The tube conducts heavily. The voltage that causes the tube to ionize and conduct is the ionization potential. After the tube breaks down the applied voltage may be reduced and the conduction will continue. At another voltage, lower than the ionization voltage and greater than zero, the tube stops conducting. This is the deionization potential.

The capacitor is capable of charging to the full potential of the B-supply. In practice, however, the B-voltage is made greater than the breakdown voltage of V. When the capacitor has charged enough so that its voltage equals the tube breakdown value, the gas within the tube ionizes. The tube conducts.

Now the conducting tube across the capacitor is in effect a low resistance. It shorts the capacitor and causes it to lose its charge. The loss continues until the capacitor voltage is so low that the tube no longer has enough potential across it to maintain the ionization. It stops conducting. The effective low resistance is removed from across C, which is then free to charge up again.

![Fig. 2-a—This is basic gas-tube oscillator.](image)

![Fig. 2-b—AB shows normal capacitor charging.](image)

DECEMBER, 1948
fairly uniformly; but, as the capacitor nears full charge, the rate of change becomes smaller.

In the circuit of Fig. 2-a, however, the maximum capacitor charge is limited to the ionization voltage of the tube. After the initial cycle, the minimum charge is limited to the deionization voltage of V. The circuit thus does two things: it causes the capacitor to charge and discharge periodically, and it restricts the changes in capacitor voltage to a certain part of the normal charging curve.

Note the resemblance between Fig. 2-b and the ideal saw-tooth sweep voltage in Fig. 1. The voltage rise is not quite straight; but if the supply voltage and the breakdown voltage of the tube are chosen correctly, only a comparatively straight portion of the curve will be used and the 'scope trace will be linear enough for most purposes. To get a fast discharge so that the return trace will be visible, the tube should conduct as heavily as possible when it breaks down.

The frequency of the saw-tooth voltage can be controlled by choosing various values of resistance and capacitance. If the resistor is large, it will create a large voltage drop when the charging current passes through it. This will delay the application of full power-supply voltage to the capacitor and lengthen the charging time.

If the capacitor is large, more current will flow before it will charge to a given voltage. This, too, takes more time. To lower frequency then, the capacitor or resistor (or both) must be increased in value. To raise frequency these values are reduced.

Fig. 3 shows one possible type of oscilloscope sweep generator. The switches selects various values of capacitance to allow a rough adjustment of the sweep frequency. The resistor R1 is variable and is used to make fine adjustments in frequency.

In order to stop the pattern on the oscilloscope screen so that it can be examined, the sweep frequency must be either equal to that of the signal or else a submultiple of it. To examine a 5,000-cycle signal, for instance, a sweep of 5,000 cycles will allow one cycle of signal to appear on the screen. A 2,500-cycle sweep would show two cycles, and a 1,250-cycle sweep would show four cycles. Sometimes sweeps higher than the signal are used. A 10,000-cycle sweep is invariably employed in such cases where the sweep frequency must be an exact multiple of the signal frequency.

Using the resistor R1 (in Fig. 3) to set the sweep frequency exactly (and it must be exact to make the pattern stand out clearly) is a very difficult job. Even steady hands are not the solution because the frequencies of signal and sweep are always at least slightly affected by temperature and changes in line voltage. Some method of synchronizing the sweep with the signal frequency is always used. R2 in Fig. 3 is the potentiometer used for synchronization control.

A portion of the test signal that is to be viewed is applied across R2. (This is done within the 'scope.) Let us suppose that this tube will fire at 100 volts. If the cathode is a ground potential, the tube will fire with 100 volts on its plate. As soon as the condenser reaches this voltage in its charging curve, the tube will conduct.

If the test signal is a sine wave, it will increase and decrease the voltage at the cathode of the gas tube. Suppose that the signal that is applied across the resistance R2 has a peak value of 10 volts.

If the resistance arm is at the top, the full voltage of this 10-volt sync is applied to the cathode. When the sine wave reaches its positive peak, the cathode is 10 volts positive. However, this time will result in positive voltage on the plate before it will fire or ionize. This means that the plate voltage will now have to increase to 110 volts before the tube will fire.

When the sine wave reaches the negative peak, the cathode will be 10 volts below ground. Since the tube needs 100 volts across it, the tube will now fire with 90 volts on the plate since the cathode is 10 volts negative. This means that the tube will fire at every negative peak of the applied sine wave. The sweep will then be at the same frequency as the signal being observed.

To make the sweep frequency one of the submultiples of the signal, the sweep frequency controls SW and R1 are adjusted to approximately the frequency desired. R2 is again advanced. If it is adjusted to one-third of the signal frequency, for instance, every third sine wave will cause the tube to conduct.

Advancing R2 too far and introducing too much sync voltage will destroy the linearity of the sweep voltage. Therefore, when using the 'scope, it is important to set the sweep controls as close as possible to the correct frequency—anywhere that the pattern is nearly stationary—then advance the sync control as little as possible until the pattern is stationary. On most 'scopes it should never be necessary to rotate the sync control more than a few degrees unless the signal being observed is sampled as on a vertical sweep. If this is done, the grid bias is made more negative, the voltage necessary to fire the tube is higher. For this reason, the sync voltage can be applied to the grid instead of the cathode.

Another advantage of the thyratron is that it passes more current when it breaks down than the neon or voltage-regulator tubes shown in previous figures; that is, its resistance is lower. As a result, the capacitor discharges faster, the return trace is less likely to be visible on the screen, and the generator can be used at higher frequencies. In addition, the breakdown voltage of a thyratron can be predicted more accurately, thus making it a more stable device. Since firing and deionizing potentials are adjustable (by means of grid bias), it is possible to adjust any given tube to operate on the most linear portion of the capacitor charging curve to obtain the most linear sweep.

Two refinements are included in the generator of Fig. 4. A limiting resistor R2 is in series with the usual charging resistor R3 to make adjustment of R3 easier. Without a limiting resistor, the lowest resistance settings of R3 would not be very useful, and some of the 270 degrees of rotation usually possible for a potentiometer would not be used. A second rotary switch SW is provided to change the source of sync voltage. In the INT position, sync is taken from the signal being fed to the vertical amplifier (or plates). The EXT position is connected to a terminal on the front panel so that any desired source can be used for sync. And placing the switch in the LINE position connects the 60-cycle line to the sync input for use as a sync source.

Ordinarily, oscilloscopes are provided with a vertical and a horizontal amplifier. Usually, the signal under test is fed through the vertical amplifier to the vertical plates. Almost invariably, the sweep generator signal (when it is used) is fed through the horizontal amplifier because it does not have sufficient amplitude to be fed directly to the plates. This has the additional advantage of providing a gain control (the horizontal amplifier control) which can be adjusted to maintain the sweep cover the screen or any portion of it which may be desired. Amplitude of the sweep signal determines the width of the pattern on the screen.

'Scope amplifiers must have good frequency response and a wide audio range. This is especially important for the horizontal amplifier because the saw-tooth wave form includes much harmonic energy. If this is not transmitted to the C-R-tube plate faithfully, the reproduction of any wave will be rounded off with resultant distortion of the pattern.
Radio Set and Service Review

The "Candid T-V" Model TV-37 is America's lowest priced televiser, selling for $99.50

A low-price portable television receiver has finally been made available to the TV-conscious public. Pilot has come out with its "Candid T-V" Model TV-37. Its 3-inch cathode-ray tube produces a picture 2 inches high and 2½ inches wide. Housed in a mahogany-finished Masonite cabinet 14¼ inches wide, 13¾ inches deep and 9¼ inches high, it is just the right size for a student's desk or for a small table in a busy executive's office.

It operates from 105-120-volt 60-cycle a.c. lines and tunes channels 2 through 13 in two bands.

Weighing only 14½ pounds, it is easy and convenient to carry on vacations and business trips. An indoor-type antenna made of 300-ohm ribbon transmission line convenient for placing under a rug or hanging on a wall is furnished with the set. A leatherette-covered carrying case with a built-in telescopic dipole antenna can be obtained if desired.

The set is easy to operate. Panel controls are: On-Off Volume, Brightness, Tuning, and Contrast. The power switch is on the volume control and operates in the usual manner.

The tuning control consists of a variable condenser shaft and bandswitch with concentric shaft. Channels 2 through 6 are tuned with the bandswitch in the Low position and 7 through 13 with the control set on High. Continuous tuning is used between stations on each band. The variable-condenser tuning, a novelty in TV receivers, appears to work very well. Pilot's copper-plate condensers, first seen in the Pilotuner, are used.

Hold, centering, and focus controls are on the rear chassis skirt. They are provided with insulated knobs with slots for screw-driver adjustment when necessary.

The set uses transformerless power supplies with one side of the line connected directly to the chassis. This does not constitute a shock hazard because the set must be fully enclosed in the cabinet before power can be applied through an interlock type of power cord. The control shafts are insulated from the chassis so as to avoid shock, even with the control knobs removed.

The circuit

The circuit of the set is shown on page 37. The 21 tubes and their functions are: 12AT7, high- and low-band r.f. amplifier; 12AT7, high- and low-band mixer; 12AT7, high- and low-band oscillator; four 6AU6's, i.f. amplifiers; 6AU6, ratio-detector driver; 6AL5, ratio detector; 35B5, a.f. amplifier; 6BA6, video amplifier; 6AU6, sync amplifier and d.c.-restorer; 12SN7-GT, horizontal multivibrator; 12SN7-GT, horizontal amplifier; 12SN7-GT, vertical multivibrator; 12SN7-GT, vertical amplifier; 35W4, negative rectifier; 25Z6-GT, positive rectifier; 25L6-GT, oscillator (r.f. power supply); 1B3-GT, high-voltage rectifier; and 3KP4 cathode-ray tube.

The front end or tuning assembly of the set uses separate oscillators, r.f. amplifiers, and mixers for the high and low bands. Each band has its own coils, tuning condensers and tube circuits. The bandswitch connects antenna and B-plus to the section in use. The tubes in the front end are duo-triodes, one-half of each tube operating on the high and the other half on the low band.

The r.f. amplifiers are of the ground-grid type, coupled to the antenna through fixed-tuned band-pass transformers adjusted with 30-muf trimmer condensers. The r.f. amplifier plate circuits and mixer grid circuits are coupled through band-pass transformers with primaries and secondaries tuned by the front and middle sections of their respective tuning condensers.

The oscillators use tuned-plate untuned-grid circuits. The underside of the set is shown in Fig. 2. The front-end assembly is on a sub-chassis at the front of the set. The oscillator and r.f. coils are on the forms on each side of the three tube sockets on the sub-chassis. The construction of the oscillator tickler coils is novel. These coils, L1 and L2, are silver-plated brass.
right-angle brackets fastened to the chassis so the sides pass close to the oscillator plate coils. The coupling between the ticklers and the mixer grid coils is sufficient to provide injection for the mixer. L1 and L2 are pointed out in Fig. 2.

The receiver uses the inter-carrier system—the common i.f. amplifier strip passes both video and audio signals simultaneously. Impedance coupling is used between the stagger-tuned i.f. amplifiers. The first i.f. stage is fed from a 23.5-mc permeability-tuned coil common to both mixers. The first, second, third and fourth stages are tuned to 25.6, 22.0, 21.6 and 24.8 mc respectively.

Semi-fixed bias is used on the grids of the r.f. amplifiers and on the first, second, and third i.f. amplifiers. The amount of bias is adjusted with the contrast control.

The video detector is a 1N34 germanium diode. It is in a can along with a sound trap, L3, tuned to 21.25 mc to prevent sound from reaching the grid of the video amplifier. The detector is followed by a 6BA6 video amplifier compensated for flat response to about 3.8 mc. The output of the 6BA6 is capacitance-coupled to the cathode of the 3K14 cathode-ray tube.

The sync voltage developed across the 5,600-ohm video amplifier load resistor is coupled to the grid of a 6AU6 sync amplifier. This tube, a class-AB2 amplifier, amplifies the sync signals and passes them through integrating and differentiating networks to the horizontal and vertical multivibrator-type sweep oscillators.

Since the sync amplifier operates class AB2, the d.c. voltage across its cathode resistor varies with the average peak-to-peak signal amplitude. This voltage corresponds to the d.c. component of the picture. A part of the voltage is tapped off and applied to the grid of the C-R tube for d.c. restoration.

The sweep voltages are developed by 12SN7 multivibrators. Each one works into a 12SN7 push-pull deflection amplifier. The horizontal oscillator plates are grounded through large resistors and the cathodes are connected to a negative supply used for bias. The horizontal size is controlled by a trimmer, T5, across the output of the oscillator.

Linearity is controlled by the combined settings of T8 and another trimmer, T9, between the plate of T1 and the grid of T2 in the horizontal amplifier tube.

The vertical oscillator has its plates connected to B-plus and cathodes to ground in the conventional manner.

The vertical size is controlled by the setting of the 5-megohm resistors, a part of the load resistance of T2, one of the multivibrator triodes. Vertical linearity is maintained by the feedback network consisting of two .0015-mf capacitors and a 1.2-megohm resistor between the plate of the multi-vibrator triode T2 and the grid of the vertical amplifier T1.

The vertical and horizontal hold controls are variable resistances in the grid returns of the second multivibrator triodes. They control the frequencies of the oscillators by changing the time constants of the circuits.

Sweeping is adjusted by varying the voltage on the focusing electrode.

The plates of both deflection amplifiers are connected to the B-plus supply and the cathodes to the output of the negative or bias supply. This arrangement increases the deflection plates on the amplifiers and provides sufficient sweep voltage for the deflection plates.

The control of the 25L6-GT oscillator is returned to ground and the cathode to the negative supply. R.F. feedback to the oscillator grid is picked up by a spring clip around the lower end of the 1B3-GT high-voltage rectifier envelope.

There are two B-supplies in the set. One, using a 25Z6-GT, delivers about 120 volts positive with respect to the chassis. This tube feeds all tubes in the set except the sync amplifier, horizontal oscillator, and high-voltage oscillator. The other, using a 35V4, develops a negative voltage and supplies bias throughout the set as well as operating voltage for tubes not supplied by the 25Z6-GT.

The heaters of the tubes are connected in series-parallel filament strings with R-C filtering between most of the tubes.

The set was tested for several weeks in a number of New York City locations and was found to work nicely in all of them—even when using the 300-ohm indoor antenna. It was not possible to eliminate ghosts in all locations. This, of course, is to be expected when no special precautions are made to orientate the antenna. The set is very stable and it was not necessary to retune the set after it was turned on.

The line cord is connected permanently to the back of the cabinet. This prevents the set owner from operating the set with the cover removed, thus exposing himself to shock. This is an excellent feature for the owner but not for the poor serviceman who tries to service the set. He can't check the receiver without removing it from the cabinet and won't be able to service the set until it is in the cabinet. This handicap to servicemen was mentioned to the manufacturer and it was stated that very likely in the near future, line cords minus cabinets would be made available to servicemen on request.

Fig. 2—Dial drums are on the two tuning condensers. Arrows show novel tickler coil strips.
Pilot Radio's Candid Television Receiver Model TV-37, an a.c.-operated televierson with a picture 2 x 2½ inches in dimensions, and weighing only 14½ pounds—almost a portable television set.
Rolling Our Own Output Transformer

By J. R. LANGHAM

The first time I ever wound an output transformer was way back when, I was just getting interested in radio, and the XYL was just a YL. I wasn't even in the radio business—I was just an amateur. Money being very scarce those days, I could not afford to buy a decent output transformer for my amplifier. I had a little open-frame 39+ special and blamed it for the distortion and the short frequency range. I asked to be able to spend ten or twelve bucks for a hi-fi job, but I just didn't have the long green stuff.

It was the YL who put this particular bug into my head. "Why don't you make your own?" she suggested.

"Me? Wind a transformer myself?"

It was absurd. Transformer winding was an esoteric art reserved for the mysterious high-priests of electronics. It was unthinkable—but I thought of it just the same. I heard of a guy who wound transformers, and I made a pilgrimage to see him. He talked, I listened. I bought some beer and was respectful, and he gave me an old burned-out 300-ma power transformer and some insulating paper.

"Here," he said, "this'll make you a honey of an output transformer."

I gulped. "How do I go about it?"

"First un-pot it and knock the laminations apart. Heat them up and then let them cool slowly so they'll get soft. Measure your window carefully and decide how many turns you want of what size wire. You know your impedance ratio, so you know the turns ratio. Get a wire table. Make the primary about half the space available. Put in at least three secondaries and parallel 'em. That's to give good highs. Design it."

I gulped and went home with my booty. I melted the tar out and pulled the ugly thing out of the case. I hammered the laminations apart and cooked them in an electric oven over at the technical school. That was to anneal the iron and soften it. It had to cool slowly to do it. I spent a morning easing the temperature up slowly, and then I just shut the oven off and left the laminations in there with the door closed. That was on a Saturday, and I came back on Monday to take them out.

Well, the textbooks gave me most of the dope: the efficiency varies with the amount of copper in the window; bass response is determined by the primary inductance; treble response depends on the leakage inductance (mostly). I knew I wouldn't have to worry about capacitance because it was to be used...
Should an end turn cut through the glassine, lay a strip of paper under it as shown above, and loop it back, winding other turns over it. Pull the loop up snug after a few turns.

Finishing winding. Place paper loop as shown, wind a few turns over it, pull up loop ends and continue. On next [last] layer pull end through and pull loop ends tight. If winding ends midway, use loop as above, wind a few turns over it and slip end turn through.

from tube to speaker and therefore was a low-impedance affair. My impedance ratio was from a pair of 2A3's to a 16-ohm voice coil and amounted to 5000:16, or 312.5. I knew the turns ratio had to be the square root of that: 17.7 approximately. Plain arithmetic gave me that and it meant there had to be 17.7 primary turns for each secondary turn.

I forget now just what the dimensions of my window were, but I remember deciding that 6,000 turns of No. 28 wire would come very close to filling the hill for the primary. The figure of 6000:17.7 meant 340 on my secondary would get the needed impedance ratio.

My friend had told me to make at least three secondaries. That didn't really mean much so I called him on the phone. "Why, it's simple," he answered. "To get good high-note response you have to have good coupling. So make three secondaries: one next to the core, another between the two halves of the primary, and the third on the outside. That way you get better coupling between the primary and secondary. Just tie all three of the secondaries in parallel."

"But I figured 340 turns for my secondary and"

"That's fine," he said. "Make three of them and tie 'em together. Just use a smaller-size wire so you can accommodate three 340-turn windings."

"But about this high response business," I said. "The books say it's a matter of leakage inductance and"

"That's just a measure of the coupling. With low-impedance stuff the coupling is all that limits your high notes. Forget the capacitance."

I sat down again with my wire tables and figured. 3×340 meant 1,020 turns had to go into that space and, what with the thickness of the insulation—hmmm. No 12 wire ought to be about right. A trifle light, but No. 11 would be too big. I drew up my winding sketch. (See diagram.)

Now came the big problem: how to do the actual winding. There were several lathes over at the technical school, and the management said I was welcome to use them if I'd clean up after myself. I prontised a counter that could be attached to the end of the spindle to keep track of the number of turns. I still had the old cardboard winding form and I stripped all the old wire off it. Then I sawed a piece of wood that fitted nicely into the form and bought my wire.

One more visit to my transformer friend showed me how to tape the ends of each winding layer, and then I started. It went much easier than I had expected. Actually it wasn't hard at all. Tedium, but not at all difficult. It took the better part of the day, what with attaching the counter and setting up a roller for the spool of wire to feed from. I wore heavy gloves and fed it by hand. Cutting the insulation carefully with a pair of shears, I taped it as neatly as possible.

The YL and I had a date that night, and we spent it fitting the laminations into and around the winding and then putting insulating fiber between windings even up the surface and provides insulation.

Fitting the lamination. With the YL and I had a date that night, and we spent it fitting the laminations into and around the winding and then putting insulating fiber between windings even up the surface and provides insulation.

Putting insulating fiber between windings even up the surface and provides insulation.

Finishing job, showing method of attaching lead wires. These connections are usually made in the interior, between windings, and are held securely by the windings over them.

DEC 1948
re-potting the transformer. Her mother still resents the fact that we used a saucepan to heat the tar and pour it into the case. We cleaned it, but I guess we didn’t get it as clean as she thought we should have. Tar wouldn’t hurt her anyhow. We used to chew it when we were kids.

The transformer was still warm when we bolted it onto the chassis and soldered the leads in. We hadn’t checked it for shorts or opens or anything, just hitched it up and tried it out. It worked fine. I soon found I could hear lows and highs that hadn’t been there before. The old 39E open-frame job was given to the YL’s kid brother who was building a set at that time.

But that transformer had faults. Several of them. The two halves of the primary weren’t balanced properly, and the whole unit was too big and clumsy. My finances improved, and the YL became my XYL, and before long I could buy a big, fancy output transformer and build a new audio amplifier.

That old wreck was kicked around the house for a couple of years before it was given, traded really, to a chap I knew. I had never run a test on it at all while I had it.

The new owner did run a test. I was amazed when he gave me the results. He used it in a class-B 6L6 PA amplifier and ran loads of current through it. He found a test point one time, and he put an audio oscillator into the circuit as a sort of signal-tracer deal.

He found the trouble and then idly twisted the dial on the thing. It went right down to 20 cycles on the bottom and the output of 12 kw on the top.

I frowned when he told me, so he unshipped the big brute from the chassis and made a bench test. The half-power points on the curve were 24 cycles and 23 kw. Those were where the level dropped 3 db. The efficiency was 87% and there was no sign of distortion at 30 watts, which was as much as he had available. All this too, was without feedback, mind you.

It sounded as though it were better than the transformer I had bought. The curve on that was supposed to be 1 db from 20 cycles to 20 kw but it cocked out at 12 kw on the top.

I got a new job around then in a laboratory and was put to running bench tests on a whole series of standard transformers. I found an amazing thing: None of the “high-fidelity” transformers tested would meet their published curves. In fact, most of them didn’t come near them. There were only two brands among all those I tested whose transformers all came up to their own specifications. Since our work involved Sonar listening gear we had to have the highest possible fidelity in transformers for faithful transmission of submarine sounds. We soon found we could not get enough really good transformers from the big companies and so we had to wind a lot of our own.

The winding was done much as I had done it. I managed to get those photographs from the U. S. Navy. They show the work done in that laboratory in making up a transformer—and we made a great many of them.

I have since wound up more output transformers for my own outfit and for those of some friends. I use essentially the same technique as with that first hoary old model. I try to find a big old power transformer that someone has burned out and rip the old windings off it. I anneal the laminations and then design a new winding. This is really very simple and takes just a little figuring if you have to remember these considerations:

1. Fill up the window with copper. Fill it as full as you can. This governs the efficiency.

2. As a rule of thumb, allot half your space to the primary and half to the secondary. It works fine.

3. Have a multiple of turns for the primary to get good low-frequency response. I never use wire larger than No. 30 any more. Even with 6L6’s the transformer still runs plenty cool. For 2A3’s you can use even smaller wire if you wish. Lots of turns.

4. Have several secondaries in parallel for your coupling. At least three. Five is even better. Put them here and there and all over and then just tie them together—but watch your polarity.

5. If it’s to be for a push-pull amplifier, wind both your primaries at the same time from two spools of wire. That way you can get a good balance and keep down the intermodulation distortion. Make them in two sections or three, interleaved with the secondaries; but if you wind both primaries together, you’ll have a good balance.

6. Lay the turns in closely and don’t let any over laps stick in. Go back and remove them.

7. Don’t use transparent sticky tape if you live near water. Get thin cambric tape and regular thin paper insulation from your supply house.

As to what kind of power transformer is best—that’s up to you. The bigger it is, the easier it is to get enough primary turns for good bass response. Just get yourself a wire table and study the turns-per-inch of the different sizes. Don’t squeeze it. A thousandth of an inch too little means a slight loss in your efficiency, but a thousandth too much means you can’t get the laminations to stick together and you’ll have your work for nothing. Measure your insulation thickness and plan the whole thing carefully.

You might be arguing to yourself now. “Well, if it’s so easy, why don’t the companies make transformers that are as good?” I’ll tell you why. The economics are against it. You’re worrying about one transformer—you own. They have to think in terms of a thousand or more. Extra wire, extra insulation, and larger cores run up the cost considerably and then they couldn’t compete with the others’ prices.

You can have any coil-winding firm make you up a special transformer to your own specifications, and it will cost you plenty. Or, if you’re a working stiff without much lucre, you can look around for an old, burned-out 300 ma power transformer and, with a little work, make yourself a really fine output transformer.

It’s really easy and, what’s more, a lot of fun. Try it.
One city's servicemen prepare to meet the problems of television

By DAVID GNESIN

COLUMBUS, OHIO, does not yet have its own television station. It is a healthy 100 miles to the nearest TV transmitter at Cincinnati. Yet the numerous TV dipoles and reflectors on Columbus rooftops amply testify that Columbusites—their appetites whetted by the occasional fringe reception of television signals from other cities—are anxiously awaiting 1949 when the first of three TV transmitters opens regular schedules in this capital city.

The radio servicemen and dealers in this town, long banded together for mutual gain and public service through the Associated Radio Service Dealers of Columbus (ARSD), realizing the imminence of television, took matters into their own hands by organizing study chapters on this subject as a regular feature of their monthly meetings. Fred Colton, the red-haired sparkplug of that organization, spearheaded the effort as chairman of the Education Committee. Using the regular Television Course now available in the Sams Photofact Service as text, the group started by reading the lessons at home, then bringing up their questions at the meeting.

The system worked so well they invited guest speakers to handle the advanced questions, which were rapidly reaching the stage where the cooperating member dealers found difficulty in finding satisfactory solutions. Here they were, out of the regular service area of scheduled TV stations, yet besieged by eager buyers thirsting for television and demanding they be supplied, maintained, and serviced.

The first of these really professional seminars in television took place Thursday, August 12, in the large basement of the Buckeye Radio Lab. The guest speakers (see photograph) included Paul Wendell and William Hensler, both of the Howard W. Sams Institute of Indianapolis. These engineers were happy to offer their expert opinions on television as seen by the serviceman. That information was of necessity limited to the bare two years or less that television has been available in any measure to their own Indianapolis.

The speakers were besieged by the service dealers, who were anxious for any practical information on the subject. Prominent in their minds was the worry about the dangerous voltages found in TV sets. It was contended that since C-R tubes require high voltages, these should be recognized as dangerous and care should be taken to insure safety in servicing.

The Columbus servicemen brought up the question of servicing sets with many different stages, any of which might be inoperative and affect the general operation. The speakers made the reassuring reply: "Under most general conditions, the television receiver, by its own C-R pattern, provides its own test instrument, showing the trained serviceman the errant stage, immediately localizing the trouble—making the servicing job considerably simpler than the tiny a.c.-d.c. job with the elusive intermittent which takes hours to locate." This theory is strongly supported by John R. Meagher, of RCA Television Service, who states in the current RCA Service News, (see reprint in November issue), "If we learn to recognize these visible symptoms, we can quickly localize the trouble to a particular portion of the set. In no other type of electronic equipment are the troubles and symptoms so clearly displayed before our eyes!"

The attending dealers were further cheered to find that their worries about stocking a large pile of expensive C-R tubes for servicing all the different types of TV receivers was groundless. In the first place, the high mortality of C-R tubes in the laboratory assures extremely low loss of picture tubes in the field. Secondly, the visiting engineers could name only four different types of C-R tubes in general use in commercial TV receivers, indicating an extremely high degree of standardization on this relatively high-priced item. Finally, the other tubes in the TV receiver are practically duplicates of the FM numbers already stocked by service shops in general practice.

The engineers made it a point to mention that even at that meeting, as the servicemen were making notes of the replies of the speakers, the guests were making notes of the questions for use in future Photofact service notes, as practical aids in the servicing field. In that regard both the publishers and servicemen pledged each other continued support for their mutual betterment.

The practical demonstration of alignment at the seminar brought out a unique point possibly overlooked in routine servicing. In TV service, merely moving the wiring aside to get at the solder terminals varied the constants enough to affect circuit alignment. So remember, replacing that open condenser isn't quite enough from now on—replace those leads exactly as you found them. The radio manufacturers have taken to separating the different circuits to avoid confusion. While simplifying assembly (the prime reason for this separation) the new technique exposes wiring terminals for ready servicing. It took television to do it—but it was worth it!
Coin Radios—A Good Business

How one serviceman became his own boss

By JAMES Mc DANIEL

ANY radiomen have a great desire to go into business for themselves instead of working for someone else. Having the same urge about a year ago, I decided to investigate coin-operated radios. I began by visiting several banks, with the idea of getting a loan to finance the business. None of the banks had ever heard of coin-operated receivers, but the bankers were enthusiastic and asked me to go ahead immediately.

The next step was a trip to the company making the radios. Here I was shown through the plant and given demonstrations.

The next day I visited several hotels and signed contracts for installing the sets in guest rooms.

The receivers

Because I am a radio technician, keeping the sets in good condition has been no problem. The sets are standard a.c.-d.c. jobs with slug tuning. They are very selective and have plenty of volume.

There is a master volume control locked inside the case so that only the serviceman can get at it. This is set so that no matter how high the customer turns his volume control, the people in the next room won’t be annoyed.

The timing box, the mechanism which determines how long the radio will play, occupies a separate compartment, which is locked. The owner can set the gear more than the basic one- or two-hour period.

The timing mechanism sometimes jammed when the starting plunger was pushed down too soon after the coin was deposited. The result was that the radio would not operate, even though the coin was accepted. The hotel manager made refunds in these cases and I reimbursed him. The problem was much less important after the public became used to operating the sets.

The coin box will hold about $40 worth of quarters, so that collections do not have to be made too often. The coin mechanism can be disconnected in case the owner wants the set to play like any home receiver.

Business problems

One of the prime necessities is to protect the radio and the coin box from a few misguided hotel customers. The familiar towel-and-soap stealers need very little encouragement to become radio-and-coin thieves. The sets could be screwed to walls, but most hotel managers don’t like this; so I furnish small tables, to which the sets are fastened and which are bolted to the floor.

I have found the burglar alarm shown in the diagram very useful. A normally open microswitch is installed in each receiver in such a way that the back of the case presses the contact lever, making it close. Leads from each switch are brought down to the hotel manager’s office, where current from the transformer secondary flows through all switches in series with the normally closed relay. This keeps the relay contacts open.

If a guest tampers with a set, in removing the back he will make the microswitch open. If, for instance, his set is the one in which S1 is installed, S1 will open. The 1.5-volt pilot lamp PL1 is then placed in series with the relay coil and it lights. The added series resistance reduces relay coil current so the contacts close, making the bell ring. The manager, summoned by the bell, sees that PL1 is lit and knows just which guest is tampering with his radio.

This is admittedly a big installation job if there are many sets in the hotel. However, the mischief done by guests can be so costly that it is well worth while.

The arrangements made with the owner of the hotel or other place where the radios are installed will, of course, vary. The average income from each of my sets is about $3 per day. Of that 25% goes to the hotel owner. However, after the purchase price of each receiver has been paid out of the profits, the hotel owner’s portion can be increased.

![Coin Radio Set](https://via.placeholder.com/150)

Luncheonette set gives 15 minutes for a dime.
A RE you charging $3 an hour for your servicing time? Maybe you should—or maybe you shouldn't.

On vacation in a strange town, I needed a set of tubes tested, so I went to a newly opened service shop. I stated my errand and asked to borrow an ohmmeter. The man behind the counter told me, with a laugh at my ignorance, that all I needed was a continuity tester.

Borrowing the shop copy of the RCA Tube Manual, I was unable to find my tubes listed; the manual was an old edition. Taking pity again on my ignorance, the serviceman made a continuity test and found that the filament of the 35W4 was open. Then we started to talk.

"I noticed your ad," I said. "You didn't state your experience.

"When I opened up," he told me, "there was quite a piece about me in the local paper. As a matter of fact, I have a master's degree in electrical engineering, but I don't believe in bragging about it."

"I replied, "Still don't see how the average person—especially a stranger in town like me—can tell whether he ought to bring work to you. As a matter of fact, I understand most of the local people take their sets to a nearby town where there's a ham with a good reputation.

"So I said: "After people learn that I do good work, they'll bring their sets here.'"

The conversation was friendly enough, but even in resort towns people aren't in business for their health. "How about a new 35W4?" he said with a mental glance at the cash register. My own mental picture revealed shelves of assorted tubes in my own workshop, so I declined. He relaxed again and put his elbows on the counter.

"Do you do much service work?" he asked me.

"No, just occasionally. I'm sort of a radio tinkerer," I told him, "and once in a while I write an article for a radio magazine."

A smile passed across his face and he stilled a hole in the air with his forefinger. "You know," he said, "we have one of those tinkerers here in town—hit-or-miss boys, I call them. Now, when I was working as a production engineer, I had to inspect and pass on 350 to 450 sets before I could say I'd done a day's work. After you've tested 'em day in and day out you get so you can tell what the trouble is by the sound. For instance," and he poked the air again, "you hear a hum. How do you know what's causing it?"

"Well," I answered, "first you suspect the power-supply filter, then a leaky tube, usually the output tube. You substitute condensers in the filter and put the tube on a leakage test." "Heck, no," he laughed, "you don't have to tell me all that—all you have to do is listen!" He became serious. "Too many radio men are charging the customers for their own lack of knowledge. A radio set has one of two troubles, either an open or a short. All you have to do is find out which it is and fix it. Oh, I know," and he brushed aside my unspoken objection, "it might be an intermittent. But any good man ought to be able to find that in an hour at the most."

He turned to the workbench and I took a look around the shop. I centered a volt-ohmmeter, apparently one of the vest-pocket models with a maximum range of 5 megohm. There were some resistors and condensers, too, and a collection of tools.

As I stood there, he aligned a five-tube "nickel-clack" as he called it, by ear. As he jacked the chassis after putting in a new tube, I heard a scratchy on-and-off effect from the speaker.

"In my ignorance," I volunteered, "that sounds like trouble in the new tube."

He admitted my ignorance. "How could that complete on-off effect come from a tube that draws such a small current? It must be in the i.f. transformer." He hit transformer, tube, and chassis. All with equal effect on the noise. (He hadn't found the answer by the time I left.)

As he worked, he started talking about servicing fees. "The real radio-men in this locality got together," he told me, "and agreed to charge $3 an hour for service, with a flat charge of $1.50 for going to a customer's home."

I posed a question. "What do you do about the fellow with the old set worth $15 that you work on for three hours, digging out old bypasses and replacing them?"

"Oh, I charge list prices for the parts and the hourly rate for the time. But it would never take that long to do the job."

"My system is different," I told him. "If I have to work for four or five hours on some old relic, I don't charge what my time is worth; I base the charge on what the set is worth. Then if someone comes in with a set that takes me only a minute to fix, I make up the previous loss with my charge for the short job."

"Ah!" he said, turning around so I could see the triumphant look on his face. "That's why those surveyors found so much to complain about. You're gypping the customer with the small job."

"Well," I argued, "someone has to pay for bookkeeping, answering the phones, and sweeping the floor—to say nothing of the rent."

Now he was indignant. "You just can't charge that to the small job," he laid down. "It's people like you," and he shook his finger in my face, "who give the radio serviceman a bad name. You should charge for your time, and you should charge everyone the same rate. On those long jobs you're just charging the customer for your inex-

I had an answer for that. "If I charged for my time on some jobs, the customer would hate me forever. You take your ear to some garage, and someone fools around with it for a long time and you have to pay for that time. But next time you'll take it to a better mechanic. I don't expect to get paid for being slow. I should get paid for being fast; if I can locate trouble in a hurry, I'm a specialist and can charge more for my time. I've known plenty of good radio-men who spent hours on a set and then found some soldering flux in a pilot-light socket. According to you, they should have found it right away, by just listening to the set." "If they took three or four hours to find a little thing like that," he said, "admirably, "they were just tinkerers." Before I left the shop I looked around again, this time more critically. I couldn't find any Rider Manuals or Photofact books or anything similar. There was no signal generator. All I saw was the collection of resistors and condensers, the tools, and the pocket-size volt-ohmmeter. I wish I had had the time to stay longer and see how quickly he could check an elaborate band-switching system or find a shorted tube in an i.f. transformer with only the volt-ohmmeter. But I had to go, and so I said good-bye. "I hope I've convinced you not to overcharge for small jobs," was his parting comment.

As I walked slowly down the street, I didn't notice the bright sunshine or the pleasant shade trees that lined the sidewalks on either side. I was puzzled. I had just spent a half hour with the biggest faker in radio? Or was he a brilliant and highly skilled practical technician? Should time charges be inflexible? Or was my system the better one?

What do you think?
TAXICABS now have more two-way radio installations than all the other mobile radio services combined. The Federal Communications Commission estimates that there are now about 2,000 taxicab radio systems. A rough estimate based on a number of systems picked at random indicates that there is an average of 21 taxicabs per system. This means that about half of America's 80,000 taxicabs are equipped or licensed for two-way radio. About 150 new systems per month are being licensed.

Equipment for taxicabs is now available from Bendix, Comeo, Doolittle, Federal, General Electric, Harvey, Kaar, Link, Mobile Communications, Motorola, Philco, Raytheon, RCA, Temco, Western Electric, Wilcox Electric, and others. The entire field has developed since the war when the FCC in May 1945 made available two frequencies in the 152-162 mc band.

Except for a few modified surplus military sets, all taxicab equipment is FM. The operating frequency in the 152-162 megacycle band is reached with several frequency-multiplication stages stepping up the quartz crystal fundamental frequency from 32 to 96 times. Because taxicabs are primarily interested in coverage of their own city or community (usually less than 5 miles maximum distance in any single direction), most sets are of low or medium power. This has permitted the development of compact equipment in which the transmitter and receiver are in the same cabinet. Some manufacturers have designed equipment powered by a vibrator instead of having a separate dynamotor high-voltage supply for the transmitter.

The equipment is of three types:

1. Single unit with all the transmitting and receiving components mounted on a single chassis. The Bendix 21/2-watt and Motorola 5-watt Dispatcher units are typical.

2. Single housing with two decks, one for the transmitter and the other for the receiver. The Federal 25-watt equipment is a typical example.

3. Dual unit with separate cabinets for the transmitter and the receiver. This requires two mounting plates and additional space. It is common with higher-powered equipment. The highest power used in the mobile units for the 152-162mc band is currently about 30 watts.

In the typical taxicab installation, the following will normally be found:

In the rear trunk: The transmitter and receiver as one or two units. Cables leave run to the rooftop antenna, to the control unit in the driver's compartment, and to the storage battery, wherever it may be located (usually under the hood).

In the driver's compartment: The control unit, microphone, and loudspeaker. A control cable will run back to the transmitter-receiver in the rear trunk.

Under the hood: A two-wire power cable will run to the transmitter-receiver in the rear trunk. In some installations only one wire is used and the ground return circuit is through the ear body.

On the roof: An antenna, either flexible, or rigid with a spring base, capable of withstanding collision with tree branches. For the taxicab frequencies this antenna is approximately 17½ inches long and is always vertical. It connects to the transmitter-receiver via a solid-dielectric flexible co-axial cable.

Installation pointers

Aside from the conditions specific to a particular piece of equipment, the following is considered good practice in installing equipment in taxicabs or similar vehicles.

1. The transmitter and receiver should be made inaccessible to unauthorized persons. This is done best by
locating them in the locked rear trunk.

2. The control unit and microphone should be easy to reach and use by the driver of the taxicab. They are usually located at about the center of the instrument panel.

3. The equipment (transmitter, receiver, and power supply) should be easy to install, service, and remove without sacrificing too much space in the rear trunk.

4. The equipment in the rear trunk should be protected against rain which might work inside along the seam between the rear trunk door and the car body. It should also be protected against loose tools, tire chains, luggage, or anything else bumping against it.

5. The equipment cabinet or cabinets should be electrically grounded to the car body. If the cabinet is screwed or bolted into the metal deck, this requirement is automatically taken care of. Otherwise a metal braid strap should be connected between the equipment cabinet and some metal part of the car body.

6. The equipment layout and holes should be planned and spotted carefully before they are made.

7. If there is any excess cable length, remember that the equipment may be used in new cars when the old ones are traded in, and the length requirement may be different. A cable that is too long can be still used; one that is too short cannot.

8. The spare tire must be accessible for removal or for checking its air pressure.

9. Every hole through which cable must pass may chafe or cut into the cable. Prevent this by using a rubber grommet, protecting the cable with several layers of insulating tape where it passes through the hole, or by doing both.

10. Every bolt without a lock-washer may be expected to work loose unless it corrodes badly and rusts solid.

11. In drilling bolt holes in the rear trunk to support the transmitter-receiver, make sure that the drill does not penetrate into the gasoline tank or into a heavy car frame member or some inaccessible point where it will not be possible to attach a bolt underneath for tightening.

12. Drill no holes in sheet metal (particularly on the fine exposed finishes of the vehicle) without first using a center punch. Otherwise, the electric drill will crawl and mar a large area.

13. The voltage drop between the storage battery and the equipment in the rear trunk should not exceed 0.5 volt. If it does, a new battery cable should be used as short as possible. It is good practice to cut it to the minimum possible length for a particular installation without regard for future installations. Usually the battery end of the cable will need replacement (because of corrosion) by the time the equipment is transferred to another vehicle. A new battery cable for each new installation is entirely reasonable.

14. Do not permit any cable to run outside the vehicle, as underneath the car, where it will be exposed to mud, dust, and jars.

15. Mount equipment in the rear trunk to withstand severe shocks when the vehicle travels over uneven road surfaces at high speeds.

16. Place the microphone where it will not hit the face or body of the driver in the event of a collision.

17. Make the installation such that the value of the car will not be seriously lessened for trade-in because of the holes. The only visible hole should be that in the rooftop for the antenna. The antenna base insulator should be left on the car when it is traded in and a new one used for the next installation.

18. Install equipment so that it can be removed and replaced in the event of faulty behavior or transfer to another vehicle.

All items of equipment should be located for the shortest cable lengths consistent with accessibility for servicing and inspection.

The toxicob antenna

The single antenna must serve both for reception and transmission. This is made possible by the antena transfer relay located in the transmitter. When the microphone push-to-talk button is pressed, the relay closes and connects the antenna to the transmitter. When the button is released, the relay opens and connects the antenna to the receiver.

The antennas used for the 152-162-kec band are either flexible, or else rigid with a flexible spring base, as shown in the photograph. The base of the rigid radiator connects through the insulator to the co-axial transmission line leading to the equipment with a flexible braid conductor.

Fig. 1 shows the details of a typical antenna installation. The procedure for such an installation is:

1. Measure the length of antenna cable from the bottom of the antenna base. Determine the location of the cross members near the center of the roof of the car; and, at a spot between members equidistant from each side of the car, drill a %-inch hole. If a longitudinal channel is encountered and it cannot be penetrated through a hole in the channel, drill a hole through that also. Usually it is not necessary to cut or drop the upholstery. A good location for the antenna base is directly over the center of the back rest of the front seat but clear of the dome light. The hole should be clean, with no burrs. Be careful to prevent the drill from slipping through and damaging the upholstery.

2. Feel the free end of the co-axial cable (without the fitting) from the antenna base through this hole.

3. Route the cable through holes in cross members of the roof. These holes may be located by feeling through the upholstery on the roof of the car. The cable is to be brought out into the trunk compartment near the equipment cabinet. In some cases, removal of the rear seat is helpful in routing the cable and fishing it through. All slack cable should be pulled through into the trunk compartment.

4. Loosen the bracket screw on the antenna base as much as is necessary.
to slip the bracket through the hole in the roof of the car. A rubber washer must be under the head of the mounting screw. The pointed end of the antenna base should be toward the rear of the car. Tighten the mounting screw, making certain that the semicircular guide on the base fits into the hole and that the two metal grounding points project through the vulber gasket. This will insure proper grounding to the metal frame of the car when the mounting screw is securely tightened. The

Motorola control unit mounts under dashboard.

antenna whip is trimmed to the correct vertical length. For the 152-162-mc band, the correct lengths are:

Frequency (mc)	Length (inches)
152-155 | 17\%
155-159 | 17\%
159-162 | 17\%

5. Insert the whip into the base insulator and secure with an Allen wrench. The lock-nut may be covered with Duco or Glyptal so it will not work loose.

6. Cut off any excess cable, allowing 3 feet more than necessary to reach the cabinet. Make a fitting to the cable for attachment to the equipment. Very poor range and signal strength can result if the shield of the co-axial cable floats at either end. The inner conductor must connect to the whip electrically at the rooftop and to the inner conductor of the co-axial fitting at the equipment. The outer conductor or sheath must be grounded at the rooftop and at the equipment cabinet. The writer has seen sets with a working range of less than 5 miles with a co-axial cable floating at one end, compared to a range of 40 miles as soon as this condition was corrected.

If the antenna is not located on the center of the roof, transmission will be directional. The best transmission and reception will take place in the direction in which most of the car metal is between the antenna and the station. In the case of an antenna mounted on one corner of a vehicle, the difference in signal strength will be approximately 4 to 1 between the best direction and the worst direction for the same distance. One of the great advantages of taxicab radio operating on the 152-162-mc band is the feasibility of using the center of the roof, where this 4-to-1 characteristic has disappeared. Instead, the maximum characteristic is approximately present in every direction rather than only one as in the days of 30-40 mc when bumber antennas were employed.

General experience in the taxicab field has been that low power can be tolerated but a defective antenna system cannot. The maximum airline coverage required in a typical city for taxicab operation seldom exceeds a working range of 5 miles.

To reduce interference to adjacent cities in urban areas, the FCC is currently considering plans to limit the antenna height and transmitter power of the dispatching station, as most of them have an excess coverage.

Some typical sets

The Bendix MRT-3A Communication Unit includes a 1/4-watt FM transmitter, a 10-tube superheterodyne FM receiver, and a 6-volt vibrator power supply in one cabinet, which is mounted in the rear trunk. This cabinet measures 16 1/2 x 8 x 3 3/4 inches. The equipment requires a maximum of 16 1/2 amperes from the 6-volt car storage battery during transmission. The entire installation is shown in Fig. 2.

There are three connecting cables. A co-axial cable connects the transmitter-receiver to the antenna. An eightwire cable goes to the control unit in the driver's compartment. This unit contains an on-off switch and a volume control as well as the hand-set. A two-wire power cable connects to the storage battery. The live side goes through a protective fuse to the live lug of the car starter, making unnecessary a connection to the corrosive lug of the storage battery.

The principal unit is mounted flat across the back of the rear seat, attached to a pair of metal braces usually present behind the seat. If these braces are suitably spaced, they can be drilled for four 10-32 bolts on 5 x 12-inch centers to accommodate the predrilled mounting holes in the case. If braces cannot be used, a piece of plywood may be used to support a unit. Screws, nuts, and lock-washers should be used to prevent loosening due to vibration.

The Motorola Dispatcher is rated at 7 to 10 watts output. It draws a maximum of 21 amperes at 6 volts during transmission. The entire transmitter, receiver, and dual-vibrator power supply are mounted on a single chassis which mounts in the rear trunk. There are five different ways of mounting the cabinet. The control unit used by the driver's compartment has a volume control with four positions: Off, Low, Med., and High. A variable squelch control to adjust sensitivity just above the local noise level. The range may be increased by adjusting the squelch control into the noise region, at a sacrifice in signal quality. A micro-

phone clip on the control unit serves as receptacle for a small microphone. If a handset is used, an additional holder assembly is provided. In the Motorola a single cable connects to the live battery terminal. The return battery circuit is through the grounded car body.

The Raytheon installation uses a transmitter-receiver unit and a smaller power supply and control unit with connecting microphone. This equipment is arranged in such a manner that, in case of power supply in the driver's compartment, a shorter power cable may be run to the storage battery.

The Western Electric Type 238 is another common installation. The maximum load during transmission is 57 amperes. If considerable transmission must take place, it is advisable to equip the vehicle with a oversized generator. This is the same equipment as that designed for the Bell mobile radio service for common-carrier communication. It utilizes separate transmitter and receiver units in the rear trunk. It is also designed to function as part of a selective dialing and ringing circuit.

The Federal 25-watt installation uses a single cabinet housing the transmitter and receiver. Either unit is removable merely by pressing the levers on each drawer handle. The unit may then be inspected, serviced, or exchanged. All connections are automatically made in the rear of the unit when the drawer is locked in position.

Installation time

The normal time for a complete taxicab installation is approximately half a working day for two men. Some economy in man-hours results when identical equipment is installed in many identical vehicles at the same time. Then more men may be used, with each specializing in certain operations. The vehicle should be placed alongside each other with one man drilling holes, another mounting units in the rear trunk while another works in the driver's compartment. If more men are available, another may be fishing and securing cables. In that manner, installation time may be reduced to about 2 hours, depending on the type of equipment and the type of vehicle which is being equipped.

Typical charge for an installation job is about $20 for labor. Typical charge for servicing is $5 per vehicle per month, under contract, with parts extra. Parts are usually charged for at either list or half-way between list and net. Prices vary greatly, depending on the volume and the source of supply and the number of vehicles involved, and to what extent his principal livelihood depends on this work. It also is dependent on the quality and complexity of the equipment and the type of job. Operating personnel give their equipment. The cost of parts varies from zero to several dollars in any one month, with the possibility of operating several months in a row with no expense whatever.
HOME-BUILT PHONO USES TWO PICKUPS

By HAROLD J. GOULD

A PHONOGRAM comparable in results to the more expensive custom-built sets can be built according to the following specifications. The phono gram is equipped with two pickups, and the amplifier has two input stages. A high-quality pickup feeds one input and is used with good recordings; the other pickup is used for playing old or badly worn discs. The two input stages (see Fig. 1) are identical high-gain pentode amplifiers. The equalizer enclosed in the dashed box is the unit supplied with the Brush PL-20 pickup; the resistors and condensers for this are sealed in a metal can and are connected to terminal lugs. Be sure to use the Brush 3761-B equalizer. It is intended for high-impedance inputs. Others are supplied for low-impedance use.

The input stages are followed by a phase inverter using a triode-connected 6SJ7. This stage gives very little amplification but has low distortion and excellent frequency fidelity. The load resistance for the phase inverter consists of two 17,000-ohm resistors R14 and R15. Splitting the load in this way and grounding the center point supplies the grids of the power tubes with voltages approximately the same in amplitude, but differing in phase by 180 degrees. R14 and R15 should be as nearly equal as possible to obtain equal push-pull signals.

Used in the power amplifier stage are two 6B4-G tubes, biased for class-A operation. Other tubes, such as the 6A5 or 2A3, could be used in this stage; they have similar characteristics, but different heater requirements and bases. Class-A amplification, although not as efficient as the other classes, has much to recommend it: its use in a high-quality outfit. For one thing, 6B4-G's in class-A push-pull have very low distortion; and what distortion they do have is second harmonic, which cancels out in push-pull. Another advantage of using class-A triodes results from their low plate resistance. This plate resistance is effective in parallel with the speaker voice coil and serves to damp the speaker. Without adequate damping, a sound impulse fed to the voice coil will not produce an exact replica of the original impulse but may pass through several cycles before it eventually dies out. This is what causes the muddy effect in many amplifiers employing tubes whose plate resistance is too high, especially beam-power tubes.

There is absolutely no advantage in having a superb pickup and amplifier if the output transformer is a cheap, skimpy affair. This component can introduce distortion that will nullify the results of an otherwise high-fidelity system.

A cheap output transformer will handle its rated power all right; but the amount of iron in the core is usually too small for the flux density present. And third-harmonic distortion is introduced into the signal. Also, the transfer of power from the plates of the output tubes takes place less efficiently in a poorly designed transformer. The obvious solution is to use a good transformer, one with plenty of iron and copper in it. The output transformer could well be nearly as large as the power transformer. The writer was unable to obtain a high-quality transformer, but with a little extra work managed to contrive an admirable substitute.

The parts—choke, transformers, filters, and a few other components—can be obtained from any well-stocked radio supply house. The higher-grade parts are used but not necessary for satisfactory operation. For those who prefer a more modular approach, the parts have been listed at the end of this article (Fig. 1).

Fig. 2—Details of speaker cabinet and stand.

AMPLIFIER PARTS LIST

R1	R7=500,000-ohm pots.
R2	R8=1,000 ohms, 1/2 watt
R3	R9=710,000 ohms, 1/2 watt
R4	R10=100,000 ohms, 1/2 watt
R5	R11=33,000 ohms, 1/2 watt
R6	R12=2 megohms, 1/2 watt
R7	R13=100,000 ohms, 1/2 watt
R8	R14=47,000 ohms, 1/2 watt
R9	R15=2,000 ohms, 1 watt
R10	R16=27,000 ohms, 1 watt
R11	R17=470,000 ohms, 1/2 watt
R12	R18=400 ohms, 1 watt, adjustable
C1	C5=25-uf, 60-volt elec.
C2	C6, C7, C13=0.01 uf, 400-volt paper
C3	C8, C9, C11=0.01 uf, 450-volt elec.
C4	C12=0.01 uf, 50-volt elec.
C15	C16=8-uf, 400-volt, oil-filled
T1	Push-pull output transformer, 5,000 ohms to voice coil (see text)

MOTORBOARD holds two pickups, one for good discs, one for bad.

DECEMBER, 1948
ter condensers—that were selected for the power supply were on the hefty side, allowing a generous margin for safety and making for trouble-free operation. R19, the 6B4-G biasing resistor, should be adjusted to give a 4½-volt drop across it.

(The milliammeter in the power-stage plate circuit was apparently put there to indicate whether or not the stage was functioning. Other constructors might leave it out for economy's sake.—Editor)

The speaker chosen for the phonograph was a Jensen A12-PM. Although there are many units on the market utilizing woofer-tweeter combinations, this was judged to be the best compromise between quality and economy. Heavy and solidly built, its power-handling ability is high enough. Any good speaker may, of course, be used.

A well-designed enclosure for the speaker is as important as a good speaker. If the enclosure is flimsy or undersized, the sound will lack deep bass and the high notes will sound strident. Also, there will be annoying rattles on loud passages.

The enclosure used satisfies all the requirements for high-quality, life-like reproduction. It consists of a ruggedly constructed wooden box, the dimensions of which are shown in Fig. 2. This size exceeds the requirements of a minimum inside volume of 15,000 cubic inches which is needed for a 12-inch speaker mounted on an infinite-type baffle. By the time the inside reinforcing members and absorbent lining are added, the space is used up. For strength and solidity 7/16-inch-thick wood is used in the construction of the box, with cross-members of 2 by 2. To lessen the possibility of boards' working loose in time, wood screws rather than nails are used to fasten the several sections together.

A removable back for the speaker box is constructed of the same heavy wood used for the walls. The 11-inch speaker opening is equipped with a hinged lid which can be lowered to protect the speaker cone against accidental injury. To aid in moving such a large and heavy speaker assembly, casters are fitted to the bottom of the cabinet. (A square of heavy metal screening placed between the speaker and the hole would probably be a better way to protect the cone against injury.—Editor)

When the box is completed and the speaker mounted and wired, the enclosure and its back are lined with absorbent material to a thickness of approximately 1½ inches. Kimsul acoustic wadding may be used here. This material was unobtainable, however, and the writer made do with a quantity of cotton batting of the kind used to fill quilts and bedsprads. These served the purpose and were an inexpensive substitute for the regular sound-absorbent material. A glance at the photo will be sufficient to show how this lining is tacked inside the baffle. With the lining in place, the back of the box should be screwed down securely using plenty of heavy wood screws.

Construction of the separate phonograph-amplifier assembly is shown in Figs. 3, 4, and 5.

This is a phonograph that will give its high-priced brother, the custom-built model, a run for its money as far as performance is concerned. And as for appearance, there is no reason why it cannot compete here, too. If the builder has any skill at all in cabinet making, or wishes to have the cabinet made to order by a cabinet maker, he will have a fine piece of furniture. The rough appearance of the model shown in the photographs was due partly to lack of skill at carpentry and partly to impatience with spending any undue time on the "mere appearance" of the equipment.

(Note: While many readers will not be impressed with the idea of using an extra pickup for the purpose of saving the "good" one, the two-pickup scheme could well be used to make the phonograph play the new Microgroove records as well as standard discs. Simply substitute a Microgroove pickup for the inexpensive crystal the author used. Of course, a two-speed turntable will be necessary, too. Both preamplifiers are not necessary—one of those now used may be abandoned by placing S1 ahead of the preamplifier and using it to switch pickups to the input of a single 6SJ7. If the PL-20 gives too much surface noise with poor records, build one of the simple step-type equalizers shown in the PL-20 bulletin, obtainable from the manufacturer.—Editor)
Get Your ALLIED Catalog Now
180 Value-Packed Pages Featuring Everything New in Radio!

NEW! Projection Television
by Hallicrafters—16”x12” Screen
Amazing 192 Sq. Inch Picture!

Develops a brilliant, steady, optically correct picture; glare-free for comfortable viewing both at close range or distance day or night. Optical system stays in perfect, stable adjustment. Includes following features: 2% magnetic projection triode, sealed optical unit, 25 kv high voltage unit, 12 channel push-button selector, RF amplifier, 3 IF amplifiers, 2 video amplifiers, special synchronizing circuits, AGC and black level control, single picture control, inter-carrier FM system. Complete with 20 tubes, plus projection triode and 5 rectifiers. In handsome classic Chippendale mahogany cabinet. For 105-125 volts, 50-60 cycles AC.

97-805. Hallicrafters T-68 Projection TV in console. NET, f.o.b. Chicago $695

97-801. Hallicrafters T-60 Projection TV in rack (less cabinet) for custom installation. NET, f.o.b. Chicago $595

Hallicrafters 10” Direct View!
Here’s an unbelievably sharp picture, with excellent stability and truly photographic contrast. Priced amazingly low for the quality. Features include: 12 channel push-button tuning, RF amplifier, 3 IF amplifiers, 2 video amplifiers, improved sync circuits, AGC, static-free FM. Complete with 19 tubes, plus 10” picture tube and 4 rectifiers. In rich mahogany picture table cabinet. For 105-125 volts, 50-60 cycles AC.

97-804. Hallicrafters T-67, 10” TV wood table model. NET, f.o.b. Chicago $295

97-802. Hallicrafters T-61, 10” above, inblack plastic cabinet. NET, f.o.b. Chicago $275.50

Famous Hallicrafters 7” TV Receiver
An immensely popular TV receiver at low cost! Provides a brilliant 23 square-inch picture. Easy to operate. Excellent sound; install it yourself.

97-803. Hallicrafters 505 in mahogany cabinet. NET, f.o.b. Chicago $199.50

97-800. Hallicrafters 3-54, at above, but in gray furniture-steel cabinet. NET, f.o.b. Chicago $189.50

SERVING THOUSANDS OF BUILDERS, TECHNICAL PROFESSIONALS, AND AMATEURS since 1918

ALLIED RADIO CORP. Dept. 2-M-8
833 W. Jackson Blvd., Chicago 7, Illinois

Send for the ONE COMPLETE Radio Buying Guide!
Get the Radio Buying Guide that’s used by thousands of expert servicemen, engineers, amateurs, soundmen, builders and experimenters. Get every buying advantage at ALLIED—widest selection of equipment at money-saving low prices—speedy, expert shipment—personal attention—complete satisfaction on every order. Get your ALLIED Catalog today!

Short Wave Listeners! DX Fans!
S-62

HALLCRAFTERS’ special SWL Receiver! Tuning range: 540 kc to 110 mc, continuous—world-wide Short Wave and special services; broadcast and all FM channels between 27 mc and 110 mc. Features: professional slide-rule dial; 500 kc crystal calibrator; single knob tuning, 60 to 1 ratio; bands illuminated separately, series type ANL; 4-position tone control; high-fidelity audio; 6-step filter, dual IF channels; crystal filter; 8 watts output, etc. In handsome steel cabinet. With tubes.

97-540. SX-62. NET, f.o.b. Chicago $269.50

97-780. R-42 Speaker to match. NET $34.50

97-568. B-42 Tilt-Base. NET $7.50

Radio’s Leading Buying Guide...
RECEIVERS can be aligned faster and more accurately than usual with the aid of this crystal-controlled, push-button-tuned signal generator. Seven channels are used, but, by employing a switch with more buttons, the constructor can increase the number of available frequencies. By a judicious choice of crystals, harmonics may be used and an instrument developed which covers an extremely wide range with comparatively few channels. The instrument also has separate audio output with very good wave form.

The audio can also be used to modulate the r.f.

A 6AU6 miniature pentode is employed as an electron-coupled Pierce oscillator. The screen grid acts as the oscillator anode. The Pierce circuit was chosen because it is simple and requires no adjustable tuned circuits.

The diagram shows the circuit. The crystals connect directly between the control grid and the screen. With too much r.f. excitation, the crystal may crack. Since r.f. excitation depends on the d.c. anode voltage, this must be kept fairly low. The 56,000-ohm dropping resistor may have to be increased to keep the screen down to about 60 volts. The 100-ohm cathode resistor aids in protecting the crystal in the event of an accidental overload. The 100,000-ohm grid resistor furnishes grid-leak bias. The 33-µµf capacitor determines the amount of feedback applied to the control grid; its value is not too critical.

Since a Pierce oscillator requires a capacitive anode circuit, the anode tank must be tuned to a frequency below that of the crystal. While maximum output will be obtained if this tank is tuned just below the crystal frequency, there will be enough output even if the tank is tuned far below it, provided the L-C ratio is high. This is why a tuning capacitor can often be omitted and only stray and coil capacitances utilized in its place. In this instrument the 2.5-mh and 1-mh chokes act as tuned anode circuits. The 5-46-µµf trimmer is inserted simply because various constructors will have their own ideas as to which crystal frequencies are most desirable. It, along with the stray and choke-coil capacitances, will resonate the choke anywhere between approximately 170
and 800 kc. The 1-mh choke will resonate somewhat below 1 mc (depending on the coil and the stray circuit capacitances). Crystals inserted in positions 5, 6, and 7 can therefore be 1 mc or higher.

Another 6AU6 is used as an audio oscillator; its output can be used to modulate the r.f. oscillator. A phase-shift circuit was chosen because it gives very low distortion, yet is extremely simple and compact, no transformers or inductances being necessary.

The audio gain control also determines the percentage modulation when the r.f. oscillator is being modulated. It actually varies the feedback necessary to sustain audio oscillation. The 82,000-ohm resistor in series with it provides a stopping point. Oscillations just begin when the potentiometer arm is set at the ground end. When it is at the plate end, sufficient audio output goes to the r.f. oscillator to modulate it approximately 100%. The suppressor of the r.f. oscillator tube is modulated so there is little interaction with the oscillator proper.

Crystal frequencies

The writer chose the frequencies listed in the table because these are probably the most useful ones for service work. The table shows the range possibilities with harmonics of the crystal frequencies chosen. (Another reason for using a Pierce oscillator was that its output is rich in harmonics.)

Economy is an important factor, too. For this reason, surplus crystals were used. For example, the 455-, 460-, and 470-kc crystals are purchasable on the surplus market at attractively low prices. These crystals were employed in FM channels and, in order to obtain correct final frequencies after modulation, it was necessary to employ fractional-kilocycle crystals. Thus, the 455-kc crystal actually oscillates at 455.556 kc. It might be thought that this makes for inaccuracy. Actually, the error is only 0.128%, a degree of accuracy normally unobtainable in a tunable signal generator even if it is "on the button" because of operating errors introduced by parallax and the width of the pointer.

This particular crystal is employed not only to align 455-kc i.f. amplifiers, but also for 450-kc i.f.s. The error here is less than 0.1%.

Some other crystals available on the surplus market at reasonable prices include those with frequencies of 200, 1,000, 2,500, 3,500, 5,000, and 10,000 kc.

It might be a good idea to mount one crystal socket on the front panel so that unusual frequencies could be set up without opening the case.

The crystal-controlled signal generator will be most useful in aligning broadcast sets, of course. Harmonics of the 200-kc and 470-kc oscillators, as well as the fundamental of the 1,000-kc crystal, are essential for aligning the r.f. sections of broadcast sets. I.f.'s are taken care of by the 455-, 460-, and 470-kc crystals. And the 10.7-mc channel is suitable for FM i.f.'s.

Servicemen are not the only ones who will find the unit handy. Many amateurs, for instance, have found that building a v.f.o. with the desired stability is not as easy as it sounds. For them, the push-button crystal selection scheme makes a large number of crystal frequencies available, especially if a larger push-button assembly is used.

The variety of harmonics available from the several crystals can be used to spot a large number of frequencies in the short-wave bands, useful for calibrating or band-locating.

More crystal frequencies can be made available if a larger push-button assembly is employed.

All the parts can be distributed neatly under the chassis leaving plenty of space to spare.

DECEMBER, 1948
Substitution Unit—Plus

A capacitor test up to 800 volts is also supplied by the instrument

By G. N. CARTER

Next to the tube tester and the voltmeter this piece of equipment has been found to be the most useful in the shop. It can be employed on almost every service job because it deals with the two most frequently used components, condensers and resistors.

The unit actually does four separate jobs. First, it provides a resistor substitution unit giving any value between 1 and 9,999,999 ohms. Second, it furnishes a high-voltage test for condensers, with test voltages of 200, 400, 600, and 800. Third, it contains a paper condenser substitution unit with values of .005, .01, .02, .03, .04, .05, .1, .25, and .5 pf. Last, an electrolytic condenser substitution assembly gives values of 4, 8, 12, 16, 20, 30, and 40 µf.

It was built as a substitution unit for service bench use, but a similar instrument made with precision resistors and accurately calibrated capacitors could well be used as a semi-laboratory instrument for comparison tests or in connection with a Wheatstone bridge. In that case, the electrolytic condensers would have to be checked regularly, as they cannot be depended on to maintain their capacitance.

The resistor unit shown in Fig. 1 is a modification of a decade resistor box. Any resistance value between 1 and 9,999,999 ohms may be obtained with the direct-reading scale. Each decade range is individually accessible by plugging into the correct pair of tip jacks. (This feature is especially valuable when employing values between 1 and 9 ohms. Jacks G and H can be used, eliminating the possible resistance of the switch contacts which would be in the circuit if the connections were made to jacks A and H and all switches but the last turned to zero.—Editor)

Resistors of 5% tolerance were used, giving sufficient accuracy for most replacement work, as well as a saving in cost over those of better accuracy.

Radio-Electronics
Shorting-type switches were used to minimize sparking and burning of the switch contacts when employed in current-carrying circuits. Note that in the zero position of the switches adjacent terminals are shorted, allowing a rapid selection of values without having to move the test leads from one jack to another. Say the test leads were plugged into jacks A and D to find some unknown value. If the 1-megohm resistors were too high in value, then the megohm switch would be turned to zero, effectively cutting out all those from the circuit and leaving the 100,000- and the 10,000-ohm resistors.

The only precaution to observe is that when the decade is across a high-voltage circuit, the switches in use should not all be turned to zero. If they are, the source will be shorted. Zero was purposely omitted from the front panel markings to prevent persons unfamiliar with the circuit from using that position and possibly causing trouble.

In the model, the four lowest ranges employed 10-watt resistors for greater power dissipation in case these ranges were to be used as bleeders or as dummy loads in checking audio power output of amplifiers.

The capacitor-substitution sections are shown in Fig. 2. In the one using paper capacitors (at left) the foil end of each capacitor should be connected to the common bus and to the ground terminal. In the electrolytic section (at right) capacitor polarities should be observed as shown. Although 450-volt electrolytics were used in the model, 600-volt units would be more useful and would be less likely to break down.

Capacitor tester

This portion of the instrument, diagrammed in Fig. 3, has several features worth noting. The first position of the rotary switch puts a 0.1-µf condenser across the test terminals so that the operator can test the checker for correct operation. The other four positions supply 200, 400, 600, and 800 volts to the test jacks. To reduce shock hazard while using the voltage test, the a.c. switch is spring-retumed to off, which means that both hands cannot accidentally be across the high voltage. This a.c. switch is ganged to a discharge switch which discharges the condenser under test through the 1-megohm resistor, producing a flash in the neon bulb. A pair of polarized leads with insulated tin plugs on one end and clips with rubber insulators on the other allows the test voltage to be applied to condensers and other components for test purposes. The spring-return switch used for charge-discharge and a.c. is a Centralab 455. (It might be more convenient to use an ordinary toggle for the a.c. on-off switch, retaining the spring-return unit for charge-discharge only. This would eliminate the necessity of waiting for the 83 to warm up each time a test is made when a number of condensers are to be tested in one session. The safety of the spring-return feature is not too complete, since one hand could be touch-

Fig. 2—Two rotary switches make available all switch to CHARGE. If the condenser has a value of 0.02 µf or greater, the neon lamp will flash and go out, indicating a nonleaking condenser at that test voltage. When the switch returns to DISCHARGE, the condenser will discharge and flash the neon bulb again, indicating a good condenser and making it safe to handle, particularly if it is of high capacitance and was tested on 800 volts.

Fig. 3—Voltage supply. An old receiver pack may be adapted, as voltages are not critical.

To check the operation of the tester, switch to the TEST position. This will put the 0.1-µf capacitor across the test terminals. Operation of the CHARGE-DISCHARGE switch in the usual way will show that the unit is working. If some day, the test does not flash the lamp, don't start tearing the instrument apart. Try a new 0.1-µf test capacitor first; the old one may have gone bad.

The outer case for the instrument was taken from a discarded PA amplifier. The 9 x 17½-inch front panel being replaced with a piece of black Masonite fastened to the frame with rayk-panel-mounting screws. The surface of the Masonite was sanded lightly with fine sandpaper to remove the glaze and permit it to be easily marked with a white crayon pencil. If, just prior to marking the surface is moistened with glass cleaner, the pencil will write much more easily than if dry and the result will be almost the equal of a pen or a brush job. After the marking was completed, the panel was sprayed lightly with clear lacquer to prevent the white lines from getting smudged. White bar knobs were used for the resistance switches and red for the three lower ones which are for the condenser sub-

This rear view of the equipment reveals a few more details of mounting and parts layout.
European Report
By Major Ralph W. Hallows

Radio-Electronics London Correspondent

A new interesting series of subminiature tubes has recently been brought out by Mullard Electronics. Designed for use in deaf-aid appliances, these tubes are of three types: DF70 is a pentode amplifier, DL71 and DL72 are output tubes, intended for use with crystal insert and magnetic earphones respectively. The characteristic curves of DF70 are seen at right. An outstanding feature of these tubes is their minute filament current, which is but 25 milliamperes for all types. The drain on the A-battery of a 3-tube hearing aid is thus only 75 ma. The B-battery load is 1.76 ma with 2 DF70s and 1 DL71, or 2.45 ma when the DL72 is used in the output stage. It is not too many years since the old Audion required 750 ma at 4 volts, or 3 whole watts of A current to heat its filament — and now the DL70 rubs along quite contentedly with one tenth as much filament current at less than one sixth the voltage, consuming no more than 0.0408 watt! I needn’t say what a boon these low-current tubes are to users of hearing aids, particularly when their filament current is supplied by the Vidor mercury cell which I described recently. One of these cells will supply the filaments of a 3-tube hearing aid for 30 hours continuously without any falling off in performance.

Hail Columbium!

A remarkable new magnetic alloy, developed here by the Permanent Magnet Association in collaboration with the Electrical and Allied Industries Research Association, has just been announced. In this case the “little something that the others haven’t got” is a tiny quantity of the scarce metal which we call Niobium and you Columbium — anyhow it’s Element No. 41. The makeup of the alloy is:

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt</td>
<td>21</td>
</tr>
<tr>
<td>Nickel</td>
<td>11</td>
</tr>
<tr>
<td>Aluminum</td>
<td>8</td>
</tr>
<tr>
<td>Copper</td>
<td>4</td>
</tr>
<tr>
<td>Columbium</td>
<td>1</td>
</tr>
</tbody>
</table>

The exact percentage of Columbium has not been divulged, but it is believed to be very small. Queer, by the way, that that table should contain yet another metal for which we have a different name. We call it aluminium, (pronounced “al-you-ninie-un”). You will see that the new alloy is more of an iron than a steel, for it contains no carbon at all. Further, except for the columbium, it is made up of the same ingredients as Alnieo, though they are not quite in the same proportions. The new alloy, which doesn’t yet appear to have been given a name, is superior to any other now known in its coercivity. In other words, it is much less easily demagnetized. It is the latest addition to the largish family of cobalt-nickel-aluminum-iron alloys and the history of its gradual development goes back quite a few years. Two alloys very like it, but without the Columbium, were produced during the war for use in radar equipment. Then came another, containing vanadium, which was designed not for magnetic purposes but for use in jet propulsion engines. This proved to have unexpected magnetic qualities and gave birth to the idea that even better results might occur if Columbium, which is in the same group as vanadium in the periodic table of the elements, were used instead.

Birmingham television

There is considerable disappointment that the official date for the opening of the TV transmitter at Sutton Coldfield, near Birmingham, should be as far ahead as the fall of next year. In fact I wouldn’t be surprised if popular clamor led to a speed-up. This station will be a good deal more powerful than the one in London. The exact figures haven’t been announced, but I gather that they’re something like 50 kw for vision and 10-15 kw for speech. It is to work on 61.75 mc and 58.25 mc for vision and sound respectively. This is just about as far as the band of frequencies allotted to television allows it to be from the London transmissions.

I don’t quite know why such a wide separation has been decided on — it can hardly be from fear of mutual interference, since the London frequencies are 45 and 41.5 mc. Certainly it’s causing a bit of heart-burning amongst those — and there are quite a few of them — living outside the normal London service area, though well within that of the Birmingham station, who have already invested in televisions. By using “add-on” amplifying stages and efficient antennas they have been able to bring in the London transmissions pretty well. But the snag is that their sets won’t tune to the frequencies of the new station. It’s preset tuning of course in televisers; but it seems to me that the range should be adequate in any mass-produced receiver to allow at least the whole 40-60 mc band to be covered.

A.c.-d.c. Television

Though the manufacturers don’t call them a.c.-d.c. sets, the new Pye B18T televisers which have just appeared here will work quite satisfactorily from 200-240-volt d.c. mains. These sets represent a big step forward, for by doing away with the need for a mains transformer they show how to make a surprising reduction in price.

This Pye set, for instance, with a 7½ x 6 inch image and a 19-tube circuit, sells at the equivalent of about $175 in table model form. Nor is the price the only thing that has been reduced: the set weighs only 30 pounds and its size is 17 x 12½ x 12¼ inches overall. The whole thing is a neat affair, incorporating some neat and ingenious ideas. The heaters of the tubes, for instance (including that of the cathode-ray tube) are series connected. Focussing is done by means of a permanent magnet. Not only does it need no current, but as there is no temperature drift, the control becomes one of the pre-sets and doesn’t appear on the panel.

V. h. t. (“very high tension,” or high voltage for the C-R tube) comes from the fly-back like this: the line-sean time base is a blocking oscillator feeding a pentode, whose output goes by way of a transformer to the deflector coils. The primary is made to form a step-up auto-transformer, which boosts up the fly-back voltage and passes it on via a single-diode rectifier to the v. h. t. line. (See “Kickback Power Supply” Radio-Craft, January, 1948).

There are just three visible control knobs on the set: on-off switch, sound.
TV, FM, LP "IN THE BAG" SAYS CLAUS!

New radio-electronic developments high on gift lists this year, W2 Xmas chief reveals, in exclusive interview.

TV PROGRESS REPORT

Washington: Recent FCC ruling which halts development of TV applications for six months at least was warranted by the FCC to improve service of present station facilities. It has been found that stations in adjacent cities operating on the same channel, or even on nearby channels, have been interfering with each other. Wayne Coy, FCC chairman says that in no event will the usefulness of TV stations now in the field or in private ownership be limited. The 16 TV stations now on the air, and the 46 in the pre-stages of construction are not affected by the ruling. TV is racing ahead and the FCC feels that it is better to check and make revisions now, in allocations, etc., than later on. The industry is in agreement with Chairman Coy when he says: "Our belief is that television is going to be a terrific service." If you want to take a quick glance at some of the best values in TV, get the Lafayette Concord Bulletin on TV... it's ready now.

GIVE YOURSELF THIS VALUABLE XMAS GIFT IT'S FREE!

If you would talk to the hundreds of thousands of Lafayette-Concord catalog shoppers, you would soon find out why this is the biggest gift of the season. First of all, prices on the average are lower, Secondly, stocks are complete—don't forget LC! The largest parts organization in the world. Then there are the thousands of odds and ends, the parts and tools you need and want fast.

SO GET YOUR COPY BY RUSHING THE COPY

Lafayette-Concord has issued millions of copies of catalogs during the past 20 years. None have been more informative: Television, High fidelity, 12 FM, FM, Fuller Address, Ham Gear, Test Equipment— we name it—and dollars to doughnuts you'll find the new and old trade here in any given issue. All you need do is clip the coupon below and send it back to us in a penny postal. We've a hunch you'll count this new Lafayette-Concord Catalog among your most worthwhile gifts this Xmas.

U.S. ATTENTION EXPORTERS U.S.

Orders from our many friends outside of the U. S. will get even faster handling if they are addressed to the Export Division.
volume and picture brightness. And, once the set has been properly installed, and the pre-sets correctly adjusted, these are the only ones needed.

This is a real pioneer amongst television receivers. I don't think it will be long before the set advertised as an a.c.-d.c. model makes its appearance. That will be progress indeed.

Better listening
At the moment the radio industry is conducting a "better listening" propaganda campaign. The object is to convince the owner of an aged receiver that his set is out of date and can't give him what's going from the broadcasting stations. Actually, there must be at least four or five million receivers still in use here which have been working for ten years or even more. During the war almost no new sets were marketed and people became accustomed to making do with their old ones. The habit has stuck and there's no denying that many listeners are putting up with shockingly bad reproduction. Servicemen tell me that they have receivers in for repair in which the only parts not worn out are the knobs.

One very clever advertisement is being run by the Ekco company in the trade papers. The illustration shows an ancient, bearded Dutchman, with eyes fast shut and the headphones of an antediluvian crystal set clamped to his ears. The accompanying slogan is "Winking out the Rip van listener". I expect the Rip van listener isn't unknown in the U. S. A. either!

One thing that is keeping back sales here is the purchase tax of 33 1/3% on radios. Salesmen have to break down not only sales resistance but tax resistance. I know quite a few folk who could well afford new equipment, but just won't buy it on account of that tax. Come to that, I hope no reader will ask the age of the broadcast receiver in my own home!

Star radio
The story of the tracking down of the sources of certain once mysterious radio noises (described in the March, 1948, issue of this magazine) is a fine example of the international cooperation of science. It began in 1933, when K. J. Jansky of the Bell Laboratories determined the source of the noise as the Milky Way. But the Milky Way covers a pretty big amount of space and more exact location was wanted. In 1946 J. S. Hey, working near London, found that radiation came from an active area not more than two degrees in diameter in the constellation Cygnus.

In July of this year J. G. Bolton of the Australian Council for Scientific Research narrowed down the Cygnus area to 8 seconds of arc; and now M. Ryle and F. G. Smith of the Cavendish Laboratory at Cambridge, working on 80 mc and observing the interference between signals from two directional antennas 500 meters apart, have measured the size of the source with still greater accuracy.

They find that the radiation comes in "bursts" of 20 seconds duration. This means that the source has a probable diameter no greater than the distance which radio waves can travel in 20 seconds: 186,000 x 20 = 3,720,000, or say 3 1/2 million miles. The diameter of the sun is 800,000 miles. There must be in the constellation of Cygnus some great body, of more than four times the sun's diameter, which is continually sending out these pulses of radiation.

Lately, at least six other sources of u.h.f. radio noise have been pinpointed. The work is going forward in many parts of the world and it may well lead to fundamental discoveries about the nature of radiation from our own sun and from other stars or suns in space.

It's an extraordinary thought that we don't know and never can know what's going on in any star now. So far away are those in the Milky Way that some of the "plocks" in the telephone receivers or the "gibbering" in the C.T. traces that we hear or see are due to upheavals that actually occurred long before the earliest of our ancestors ceased gibbering in the tree-tops and decided to walk the earth on their two hind legs!

New Telephone Recorder
A ROBOT telephone secretary which can be adapted to any business or home, made its debut in Switzerland this summer before going into mass production in the United States and Great Britain.

This robot, a combination telephone and phonograph for taking messages in the subscriber's absence, is the creation of Willi Mueller, whose earlier invention of the Ipsophon had already commanded recognition.

That pioneer apparatus is now succeeded by a far more compact and less expensive instrument, the Notaphon. It uses an entirely new recording system which eliminates the use of magnetized wire and the attendant drawback of rewinding for the playback. Recording on the Notaphon is effected by means of a disc similar to a phonograph record; but, unlike the latter, it is not cut but merely magnetized when a recording is made.

The Notaphon may be connected to any standard telephone instrument without altering or interfering with the latter's mechanism.

When a call comes through and the telephone receiver is not removed after three rings—perhaps either because the subscriber is absent or because he wishes to remain undisturbed—the Notaphon automatically goes into action.

It first announces the subscriber's name and address, and then requests the caller to speak. If he does not do so within eight seconds, the request is repeated, if he still does not speak, he hears "Notaphon ringing off."

As soon as the caller utters a sound, the recording mechanism starts to function. A silence of eight seconds automatically cuts it out. The whole arrangement is simple and foolproof.

One of several novel features of the Notaphon is a vocal secret code, preset by the subscriber, which enables him alone to play back the messages recorded on the disc. By dialing his own number from any telephone, waiting for the Notaphon's request to speak, and then pronouncing the vowel sounds forming his secret code, he sets the reproduction mechanism into motion. Five thousand possible code variations insure complete secrecy.

When the subscriber, who is perhaps spending the night out of town, has dialed his number, he can hear the code correctly, and been told by the Notaphon that he is now connected, the playback of the day's "bag" starts at once.

On completing the playback, the robot requests its master to erase the recording. This is accomplished by pronouncing another predetermined vowel sound. Deletion is verbally confirmed by the Notaphon, which now regains its full half-hour capacity. If deletion is not desired, the recording of later calls on the disc starts where previous recording stopped. When the instrument's capacity is exhausted, the robot voice informs subsequent callers of the fact.
Look for the distributor who displays this sign!

As a part of its 1948 program, Sylvania Electric will supply each of its authorized distributors with this new decal, printed in red, yellow, black and three shades of green. It's worth your while to look for this sign on his windows, doors and trucks — it is your assurance that this distributor will supply you with genuine Sylvania radio tubes and top-quality test equipment — and that you can count on prompt, courteous service as well!

Sylvania Electric

December, 1948
More Selectivity
For the BC-455-B

AMONG the slickest radio receivers on the surplus market are those from the command set, the BC-453, 484, and 455. When converted to available current sources, they leave little to be desired. However, the BC-455-B, covering the 6-0-mc range, differs from the other receivers in that it employs no i.f. transformers, as such. Instead, each i.f. can contains a single plate tank, condenser-coupled to the following stage, while the coil which would serve as secondary in a conventional i.f. stage is untuned. This second coil merely acts as an i.f. choke in the following grid circuit.

For this reason, and because the i.f. is 2830 kc, the BC-455-B, while sensitive, tunes too broadly for crowded hands. The inherent selectivity of the set is only 9.8 kc two times down or 24.2 kc ten times down.

Fortunately, this lack of sharpness is easily remedied. The lower the intermediate frequency, the greater the selectivity and gain, up to the point where the image ratio becomes troublesome. All that is necessary to make the 455-B razor-sharp is to substitute conventional 456-kc. intermediate-frequency transformers.

The change-over is simplified by the construction of the i.f. stages already in the set. Each i.f. can contains four metal pillars, one at each corner, attached to the plug-in base. These pillars support a mica plate on which the variable condenser is mounted. The “works” of a standard 456-kc i.f. transformer (in this case a Meissner 16-6658) fit snugly inside those supporting pillars, and can be suspended from a plastic or metal plate attached to the top of the pillars with the original screws. Here are the steps:

Each of the three plug-in i.f. coils is secured to the chassis by two screws. Remove these screws and lift out the cans. Remove the four small screws holding the shield can to the plug-in base, and pull off the can. Remove the four screws holding the mica plate to the supporting pillars. Remove the screw in the center of the plug-in base which holds the coil form to the base. Cut the wires soldered to the plug-in socket terminals. The coil form, mica plate, and condensers may now be lifted out, and the unit is ready for installation of the 456-kc coils.

Remove the coil and condenser assembly from a 456-kc i.f. transformer. Drill and tap holes for 6-32 screws, through the two bosses of the plastic plate supporting the trimmer condensers, and attach the entire unit to the new top plate. Then screw the plate to the four supporting pillars of the plug-in unit and solder the four leads to the proper socket terminals, as shown in the drawing.

Drill two 1/4-inch holes in the top of the shield can to permit tuning the new transformers.

The next step is to line up the new i.f.’s with a signal generator. Clip the generator’s output lead to the top grid connection of the 12K8 and adjust the trimmers for peak output. Because the shield cans in the set are somewhat larger than those from which the 456-kc coils were removed, the effective inductance of the coils is altered slightly and it may not be possible to set the coils at 456 kc. The writer found that 498 kc fell in about the middle of the trimmer’s range.

The oscillator coil is originally set to track with the antenna coil with a 240-µf fixed paddler shunted across a 40-µf variable condenser. Changing the i.f. naturally calls for new tracking arrangements. This is not difficult because the antenna and r.f. coils already are tracked to the dial, and it is necessary only to make the oscillator coil track with these circuits.

The plug-in oscillator coil, as supplied with the set, contains 17 turns of wire in 1/2 inch of space on a form 11/16 inch in diameter. It is tuned by a powdered-iron core, which is preset and anchored in position. Remove the coil from its shield by unscrewing the four small screws which fasten the plug-in unit to the shield can. The coil then drops out, attached to its plug-in base.

Break the seal on the powdered-iron core, and screw the core down as far as it will go. Then either add four turns of wire to the coil, bringing the total to 21 turns, or remove the entire winding and rewind the coil to have a total of 21 turns. The winding is easy, since the coil form is threaded. No. 24 enamelled wire makes a nice fit in the

By E. W. WILLIAMSON

threads. Unscrew the core 10 1/2 turns, and replace the coil in its shield.

Now solder a 500-µf silvered-mica condenser in shunt with the button-shaped 240-µf paddler next to the 40-µf variable paddler on the frame of the main gang condenser. To do this, it is necessary to remove the aluminum shield enclosing the main condenser.
Fit the 500-mfd condenser snugly in the space below the reduction-gear mechanism, as shown in the photograph, so that it will not be in the way when the shield is replaced.

Feed a 6100-ke modulated signal into the antenna terminal of the set. Set the dial to 6100 ke and adjust the variable padder until the signal is loudest. While doing this, rock the dial a little to find the point of peak response. Since the antenna and r.f. circuits already are tuned to a gnat's eyelash, only a very slight rocking should be necessary.

If it is impossible, by varying the padder condenser, to bring the signal in at exactly 6100 ke on the dial, adjust the iron core in the oscillator coil half a turn at a time until the signal can be brought in precisely.

Now set the dial at 8900 ke and feed an 8900-ke modulated signal into the set. Adjust the oscillator trimmer condenser for peak response. Go back to the low end and readjust the padder, repeating both operations until good tracking is obtained from one end of the dial to the other.

If you find that the trimmer adjustment makes it impossible for the padder to correct the low end or that adjustment of the padder throws the high end beyond the range of the trimmer, you can get the inductance approximately correctly by the following method:

Set the dial to 7500 ke and feed a signal of that frequency into the set. Set the padder condenser at about half capacitance, and adjust the oscillator inductance with the iron core until the signal comes in. Next turn to the high end and trim, and then to the low end and pad.

It is best to complete the preliminary tracking before replacing the aluminum shield on the gang condenser because the oscillator section of the gang condenser has two trimmers, only one of which, C-4E, can be adjusted with the shield in place. The other, C-4G, which is near the front of the set and normally is hidden by the shield, is set at maximum capacitance at the factory.

It may be necessary to adjust this trimmer, as well as C-4E, to bring the oscillator into line at the high end. It is convenient, while tracking the receiver, to remove all the coil shield cans from the metal plate to which they are riveted by drilling out the rivets. A %4-inch hole then may be bored in the center of the oscillator coil shield can, so that a small screw driver or tuning tool can be used to adjust the iron core.

Later the cans may be re-attached to their supporting plate with 2-52 screws in the holes.

To complete the conversion, change the frequency of the b.f.o. from 2580 ke to the new f. If this may be done by adding either inductance or capacitance to the b.f.o. unit until the required frequency is obtained. Or buy a 456-ke beat-frequency oscillator unit and substitute its coils for those in the set.

When the tuning is complete, a strong signal 10 ke away from the dial setting will be inaudible.

December 1948
Phase-Modulated Exciter

By Rufus P. Turner

Amateur NBFM rigs generally sound good only so long as the carrier is not swung too much by the variations in voice intensity. This is especially true when the receiver is a conventional AM superheterodyne. Some fellows get so enthusiastic describing their new NBFM transmitters that they unintentionally shout into the microphone and knock the carrier all over the place. We decided, therefore, to include some sort of automatic level control in the audio channel of our NBFM exciter. Speech clipping won out over automatic modulation control because the clipper's action is instantaneous; a.m.c. takes a short time to catch up with unwanted voice peaks and does not "let go" immediately.

For a satisfactory design, we borrowed the basic essentials of the phase modulation exciter described some time ago by Sterman1 and the speech clipper used in the Collins 30K transmitter. Modifications were made in a few portions of each circuit, either to permit use of easily obtained components or to adapt the exciter more efficiently to 75-meter operation from a low-frequency crystal.

The block diagram in Fig. 1 shows the basic arrangement of the radio and audio channels of the exciter. The amount of equivalent frequency modulation obtained by phase modulating a crystal oscillator amounts to only a few hundred cycles. The desired narrow-band swing of 2 or 3 kc must be obtained by frequency multiplication. A frequency-multiplication factor of 8 usually is satisfactory. To use this factor, it is necessary to operate the crystal oscillator between 481.25 and 487.5 kc in order to obtain output in the 3850-3900-ke NBFM section of the 75-meter phone band. However, it is desirable to keep the carrier at least 3 kc inside of each edge of the NBFM section to prevent out-of-band operation during frequency modulation. This means that the center frequency must be kept within the limits of 3847 and 3897 kc. The crystal frequency, accordingly, must be between 481.625 and 487.125 kc. (See the oscillator block in Fig. 1.)

The oscillator-modulator is followed by a doubler and a quadrupler, which provide the necessary frequency multiplication. The 75-meter output of the exciter may be link-coupled to a high-power input in any conventional 80-meter c.w. transmitter having a plate power input up to 1 kilowatt. In many transmitters, the FM exciter output may be fed directly into the grid circuit of the existing crystal oscillator (without its crystal) either with or without a link-coupled grid tank at the transmitter end.

The audio channel of the exciter includes a standard speech clipper which effectively knocks the peaks off all audio signals which rise above a level determined by the setting of the clipper control and keeps the carrier swing within controlled limits.

The unit is operated on voltages taken from a small power supply in the main transmitter. However, an individual builder, if he desires, may include the power supply on the exciter chassis for completely packaged construction.

When the exciter was first laid out, we were worried by the possibility of beat-note interference with nearby broadcast reception, since the crystal oscillator is operated on the nearest subharmonics of the broadcast band and the doubler is operated right inside the broadcast band. But tests have shown that no interference is caused in a broadcast receiver in the same house, provided the tank circuits are completely shielded (as shown in the photograph), the power-supply cable and r.f. output cable are shielded and grounded at each end, and the audio chassis is grounded solidly to earth.

The low-frequency crystal required in this exciter may arouse some curiosity. We took a few "wipes" off a regular 455-ke receiver i.f. crystal to bring it up to 485 kc (exciter output 3880 kc). But crystal grinding is unnecessary, since government surplus crystals for frequencies between 400 and 500 kc may be bought, mounted in standard holders, for about a half dollar each.

The complete circuit

Fig. 2 is a complete schematic diagram of the exciter.

One triode of the 6SL7-GT acts as a low-frequency Pierce oscillator, while the second triode section is the phase modulator. The tank circuit L1-C5 in the plate circuit of the phase modulator is tuned to the crystal frequency.

The phase modulator is capacitance-coupled to the CV6-CT/G frequency doubler. The doubler, in turn, is capacitance-coupled to the quadrupler. The quadrupler output tank is link-coupled to the co-axial output jack J1.

Three tank circuits L1-C5, L2-C10, and L3-C15 are shunt-fed. The .01-uf isolating capacitors C6, C11, and...
C16 remove all d.c. from the tuning capacitor rotors, permitting these capacitors to be fastened directly to the shield cans without insulating washers. Once set for any crystal within the range, the tank circuits do not require retuning when crystals are changed.

A 0-1 d.c. milliammeter M is employed for tuning. The two-pole, four-position rotary selector switch SW connects this meter, with the proper polarity, across shunt resistors R8, R10, R12, and R14. In position 1, doubler grid current is read (this reading is a sensitive tuning indicator for the preceding tank circuit L1-C5). In position 2, the meter indicates doubler plate current. In position 3, quadrupler grid current is read. And in position 4, the meter shows quadrupler plate current.

With the shunts given, the meter has approximately the following current ranges: (1) 0-11 ma, (2) 0-50 ma, (3) 0-11 ma, (4) 0-50 ma. Note that R10 is so connected that the milliammeter reads only plate current—not the total of plate and screen currents. This may well be done with R14.

The audio channel is a conventional high-gain amplifier with the addition of a speech clipper. The low-pass clipper filter is CH and C22, C23, and C24. R18 sets the clipping level, while R27 is the gain control. Audio output voltage from the 6SF5 is delivered to the phase-modulator section of the 6SL7-GT through coupling capacitor C27.

Power-supply requirements are 300 volts d.c. at 150 ma, well filtered, and 6.3 volts a.c. at 3 amperes. The B-plus line must be bypassed to chassis with a .005-mfd mica capacitor beside the power-supply unit, and both sides of the incoming 115-volt power line must be bypassed to the power-supply chassis with 0.1-mfd capacitors. The power-supply chassis must be grounded solidly to earth.

Construction

The photograph shows how the 7 x 15 x3-inch chassis is laid out. Shielding may be completed by slipping an amplifier foundation metal cover over the top of the chassis.

The tank-circuit aluminum shield cans were originally in an old-time broadcast receiver. A hole for the threaded bushing of the tuning capacitor is drilled through the top of each can. This grounds the rotors. The coils are held to the capacitors with stiff bus wire. L1 may be mounted by its own pigtails. The isolating capacitors C6, C11, and C16 are placed inside the shield cans. Leads from the completely wired tank circuits pass (r.f. transformer fashion) through a grommet-lined chassis hole under the center of each shield can.

R27 is mounted through the top of the chassis; and its sawed-off shaft is slotted for screwdriver adjustment, since it ordinarily will not have to be touched after it has been set.

The power-supply cable must be shielded and the shield braid connected to chassis at both ends. The r.f. output cable of J1 likewise must be shielded and must be connected to chassis at both exciter and transmitter ends.

All wiring must be short, direct, and as free as possible from movement. Liberal use of insulated terminal strips as circuit tie points is recommended. If the power supply is built on the exciter chassis, the clipper choke CH must be located and oriented with respect to the power transformer and power-supply filter so that it will not pick up hum.

Adjustment

After the wiring has been inspected and found correct, the exciter is ready for adjustment. Here are the necessary steps:

DECEMBER, 1948
NEW Television Kits, and Equipment

Important Advances in TV Reception and Servicing!

NEW 10' TV KIT at amazingly LOW PRICE!

MODEL 10A TV KIT, less cabinet...........Net $99.00
MODEL 12A TV KIT, same as above, but has a 12" picture tube...........Net $265.00

NEW STREAMLINED CABINETS
For Transvision Model 10A or 12A TV Kit. Made of select walnut with beautiful rubberized finish. Priced lower, ready for installation of chosen TV receiver. Walnut Cabinet for 10A or 12A (Specify)........Net $44.95

TRANSVISION ALL-CHANNEL TELEVISION BOOSTER
To assure television reception in weak signal areas, or areas which are out of range of a certain broadcast station. Transvision engineers have identified this new booster, which can be used with any type of television receiver. Consists of high gain in RF stage and convenient, complete, all-telephone clamps.

Model B-1..LIST $15.00

TRANSVISION REMOTE CONTROL UNIT KIT
Will operate any TV receiver from a distance. Turns set on, tunes in stations, controls contrast and brightness, turns set off. Ideal for installations where the television receiver is inaccessible. Tuner unit in a high gain, all-channel unit with about 50 micro-ohm sensitivity. Easy to assemble in about an hour.
Model TRCU, with 25 feet of cable............NET $44.50
Without cabinet.....................NET $42.00

NEW TRANSVISION SWEEP SIGNAL GENERATOR
For television and FM

Complete frequency coverage 5-227 MC with no band variable.
...Beam width from 0-12 MC completely variable.
...Accurately calibrated built-in marker generator.

OUTSTANDING FEATURES: (1) Frequency range from 0-227 MC.
(2) Hf calibrated in frequency.
(3) Sweep width from 0-12 MC completely variable.
(4) Built-in calibrated markers readable directly on the dial to 0.5 MC or letter.
(5) External generator required to provide the marker signals.
(6) Crystal controlled output makes possible any crystal controlled frequency from 5-227 MC.
(7) Plenty of output to permit stage-by-stage alignment.
(8) Directly calibrated markers, 20-30 MC for trip, sound and video frequencies.
(9) HF for alignment of 86 and 108 MHz.
(10) HF in cathode affects the microphone and oscillator plate tank.
(11) Quality oscillator and the oscillator plate tank.
(12) Quality oscillator and the oscillator plate tank.
(13) Markers can be controlled as to output power for the tube oscillator.
(14) Complex suppression of all stages.
(15) Stationary unit complete, fully assembled and ready for use.

RADIOMEN...You Can GET INTO The TELEVISION BUSINESS IN A BIG WAY WITH THE TRANSVISION DEALER PLAN

Write for FOLDER D-1

Amateur

(1) Connect the power supply to the exciter, switch on the heater voltage and allow a few minutes for the tubes to reach operating temperature.
(2) Connect two or three feet of insulated wire to J1 to act as a simple antenna.
(3) Set SW to position 1, switch on the d-c voltage, and tune C5 for maximum meter reading.
(4) Set SW to position 2 and tune C10 for minimum meter reading.
(5) Turn the meter switch to position 3 and readjust C10 for maximum meter swing.
(6) Turn to position 4 and adjust C15 for meter minimum.
(7) Check the exciter's output frequency with a heterodyne frequency meter or other suitable device to make sure the quadrupler output is at 75 meters.
(8) Switch on a nearby receiver or FM monitor and tune to the exciter's output frequency.
(9) Plug a crystal or dynamic microphone into J2.
(10) Advance the clipper control R18 approximately half way and, while whistling into the microphone, adjust R27 until the desired frequency swing is obtained, as observed with the receiver or monitor. Speak into the microphone and note the voice quality. Reduce the setting of R27, if necessary, to improve quality. R27 ordinarily will not need any further adjustment after this setting has been made. Later it will be necessary to adjust only clipper control R18 to fix deviation.
(11) Couple the exciter to the transmitter and readjust C15 with the meter switch set to position 4 (see step 6).

Fig. 3 shows several circuits for coupling the exciter to a transmitter. Fig. 3-c is the best arrangement. Fig. 3-a arrangement will be satisfactory only if the original oscillator tube is a well screened tetrode or pentode and if the tuned circuit (L-C1) is enclosed in a metal can, otherwise t.p.t. oscillations will be set up between the input tuned circuit and the oscillator plate tank. C2 is a 50-100 µf mica capacitor. Circuit 3-b is simple and convenient, but will be entirely satisfactory only when the oscillator tube in the transmitter provides considerable gain. C is a 50-100 µf mica capacitor. In extreme cases, it may be necessary to operate the second 6V6-6T7/G tube in the exciter as a doubler. The oscillator in the transmitter then will operate also as a doubler.

It is best to do a little experimenting to determine which coupling arrangement will supply normal excitation to your own transmitter.

If you modify the unit for mounting in a cabinet or rack, the crystal socket may be placed on the front panel instead of on the chassis. If you like to QSY rapidly, purchase several crystals between 481.625 kc and 487.125 kc. Wire them so any one can be selected at will with a rotary switch on the panel. Connect the switch between C1 and the top plate of the crystal holders.

RADIO-ELECTRONICS for
Here is the last word in radio engineering . a powerful, world-ranging, magnificently-toned radio that is unsurpassed for performance, selectivity, sensitivity, and advanced engineering features. Uses these latest-type tubes, rectifier and tuning indicator three 7A7, three 7A4, two 7CS, one 7A6, one 707, one 6BA6, one 6BE6, one 6C4, one 6AL5, one 5U4, one 6U5. Comes complete with satin stripe copper finish front panel attached, Magna-Tenna Loop Aerial and giant 14½” Electro-Dynamic Panasonic Speaker. Requires only a few minutes to install, plug in and play. LOW FACTORY PRICES . . . EASY TERMS . . . 30 DAYS TRIAL. Send TODAY for FREE 1949 Midwest Radio Catalog of separate Chassis and beautiful Console and Table models.

A Complete Line of FINE RADIOS and RADIO-PHONOGRAPHS . . . Available in SEPARATE CHASSIS Like the POWERFUL SERIES 16 AM-FM Model above or in COMPLETE CONSOLES like this...

Beautiful SYMPHONY GRAND
AM-FM Radio-Phonograph with TELEVISION Audio Switch-Over and NEW Intermix AUTOMATIC RECORD CHANGER

A Magnificent musical instrument and a masterpiece of cabinet design—the finest Midwest Radio in 29 years of manufacture. Offers world-ranging radio reception and newest automatic Intermix Record Changing Phonograph. Uses Series 16 Super DeLuxe AM-FM Chassis. Giant 14½” Panasonic Speaker; Tri-Magnadyne Coil System; Built-In Loop Antenna. Other luxurious console and table model cabinets available with Series 16, 12, and 8 chassis—on Easy Terms and 30 Days Free Trial.

Rush for Free Catalog!
FILL IN COUPON AND MAIL TODAY OR JUST SEND NAME AND ADDRESS ON 1c POSTCARD

MIDWEST RADIO & TELEVISION CORP.
Dept. 384 909 Broadway, Cincinnati 2, Ohio
Please send me your new FREE 1949 Catalog.

NAME __________________________
ADDRESS _______________________
CITY ______ ZONE ______ STATE ______

BUY DIRECT FROM FACTORY and SAVE!

MIDWEST RADIO & TELEVISION CORP.
Dept. 384 909 Broadway, CINCINNATI 2, OHIO

DECEMBER, 1948
Regulated Power Pack Has Variable Voltage

By W. D. HAYES

ONE handdy helper in the builder's and experimenter's shop is a variable-voltage regulated power supply, which will provide a well-filtered d.c. output at any voltage within its range and will maintain that voltage, regardless of variations in line voltage or load current. A typical commercial model may supply several hundred milliamperes of output current at voltages up to 600 or so, but for use in the home shop a small and inexpensive unit is more appropriate.

The little supply shown in the photographs provides a variable output voltage from 30 to 250, regulated to within approximately 1/2% for variations in output current between 0 and 50 ma and for variations in line voltage between 105 and 125. Voltages below 30 and above 250 are also available, but at some sacrifice of regulation. Several amperes of 6.3-volt heater current are also provided in the output. The unit may be built on a small chassis or breadboard. Construction and wiring are not at all critical.

The circuit employs a 6X5-GT as full-wave rectifier and a 6V6-GT as the main control tube. One half of a 6SL7-GT serves as regulator amplifier, while the other half of the same tube is used as a simple diode rectifier for the negative reference voltage. Two type NE12 neon lamps serve as the voltage standard, and one of these also acts as a pilot light, visible at the front of the chassis.

The 6SL7-GT amplifier amplifies differences between the output and the negative reference voltage. Its plate is connected to the grid of the 6V6-GT. The supply's output current flows through the 6V6-GT, and variations in its grid potential change its internal impedance and, consequently, the voltage drop across it. Effectively the 6V6-GT is a variable resistor. Its resistance is controlled by the 6SL7-GT amplifier so as to maintain an essentially constant output voltage.

The output voltage is varied by adjusting the amount of voltage applied to the grid of the 6SL7-GT amplifier with R5.

Adequate filtering (C1 and C2),

Under-chassis view, N2 was added just inside chassis from N1, after the photo was taken.

TELEVISION OSCILLATOR

Since all television picture tubes using electrostatic deflection require push-pull signals, several tubes are usually used. The circuit shown uses only one—a combination blocking oscillator and phase inverter using one half of a 6SN7. The circuit gives about 25 volts output and makes a fine horizontal oscillator for a homemade TV receiver.

The transformer can be any horizontal blocking oscillator unit, or it may be wound at home on a large powdered-iron slug. The grid winding should be about 1,000 turns of No. 36 enameled wire, and the plate coil about 2,000 turns of the same.

The resistor across the grid winding should be varied until a wave with good saw-tooth form is obtained.

ROBERT A. CUNNINGHAM,
Newport, Ky.
BUILD YOUR OWN SIGNAL TRACER and SAVE!!

The Only Signal Tracer in the Low Price Range
Including BOTH METER AND SPEAKER!!

We are pleased to announce we have obtained an exclusive franchise to distribute the well known Model CA-12 Signal Tracer in kit form. The Model CA-12 sells regularly for $29.95, here is your opportunity to save $8.00 with the added advantage of complete familiarity of design and operation made possible when you build your own instrument.

FEATURES: * Comparative intensity of the signal is read directly on the meter—quality of the signal is heard in the speaker. * Simple to operate—only one connecting cable—no tuning controls. * Highly sensitive—uses an improved vacuum-tube voltmeter circuit. * Tube and resistor capacity network are built into the detector probe. * Built-in high gain amplifier—Alnico V speaker. * Completely portable—weight 5 pounds—measures 5½ x 6½ x 9½.

MODEL CA-12 Kit includes ALL PARTS assembled and ready for wiring, circuit diagram and detailed operating data for the completed instrument.

$21.95

MODEL CA-12 COMPLETELY WIRING READY TO OPERATE $29.95

THE NEW MODEL 670
SUPER METER
The New Model 770 — An Accurate Pocket-Size VOLT-OHM MILLIAMMETER

(Sensitivity: 1000 ohms per volt)
Features:
- Compact—measures 3½" x 5½" x 2¼".
- Uses latest design 2½" accurate 1 Meg. personal type meter. Same zero adjustment holds for both resistance ranges. It is not necessary to switch from one resistance range to another. This is an important time-saving feature never before included in a V.O.M. in this price range. Housed in round-worsted, molded case. Beautiful black etched panel. Depressed letters filled with permanent white, insures long-life even with constant use.
- Specifications: 6 A.C. VOLTAGE RANGES: 0-15/30/150/300/1500/3000 V. D.C. VOLTAGE RANGES: 0-1½/3/7½/15/30/60 V. D.C. CURRENT RANGES: 0-1½/3/7½/15/30/60 MA. REACTANCE, INDUCTANCE: 100,000 ohms, 0.1 Mfd., 250 Megohme. (Conervative) Kit includes both test leads; operating instructions.

The Model S-35 — a POWERFUL REFLEX PROJECTOR COMPLETE WITH WESTERN ELECTRIC BUILT-IN DRIVER UNIT

Conservatively rated at 35 Watts—will easily handle up to 55 Watts without blowing filament. Heavy gauge aluminum in the main transistor section completely eliminates blasting and blurring. New design differential overcomes the resonant peaks of the old type; also it is absolutely insensitive to atmospheric changes whereas the old type was subject to atmospheric variation. Complete unit immediately guaranteed for one year.

Specifications
- Power (Conservative) — 35 Watts, Air Column—3½ FT.
- Dispersion—80': Power (Peak) — 45 Watts. Bell Diameter—1½": Impedance—8 ohms: Frequency Range—12 to 5000 C.P.S. Projection—½ mile; Finish — Attractive two-tone crystalline. The Model S-35 Comes Complete with Built-in Driver Unit, ONLY $28.50

The Model 88 — A COMBINATION SIGNAL GENERATOR AND SIGNAL TRACER

Signal Generator Specifications:
- Frequency Range: 150 Kilocycles to 50 Megacycles. The R.F. Signal Generator is in fact completely constant at all output levels. *Modulation is accomplished by grid-blocking action which is equally effective for alignment of amplitude and frequency modulation as well as for television receivers. R.F. obtainable separately or modulated by the Audio Frequency.

Signal Tracer Specifications:
- Uses the new Motorola 1N14 Germanium Crystal Diode which combined with a resistance-capacity network provides a frequency range of 50 to 50 Megacycles.

$28.50

20% DEPOSIT REQUIRED ON ALL C.O.D. ORDERS

GENERAL ELECTRONIC DISTRIBUTING CO.
DEPT. RE-12 98 PARK PLACE
NEW YORK 7, N. Y.
MAKES THE WORK TWICE AS EASY

Covers all auto radio types from mid-1930's to the present, including mobile FM receivers.

It is the only single book that includes needed data to transform a good home service man into a car radio expert. Describes circuits, explains automotive electrical units, their function and effect on radio tubes and receivers. Explains the design, operation and why it is made. Describes the human element and what it boils down to. The Second Antenna, with full details on proper antenna mounting; contains pertinent information on FM receivers; tells how to set buttons, how to deal with antifreeze, $1.00 postpaid. Today's Car Radio and the tube, the basic test, the test, etc., for maximum performance and long lasting service. A thorough, no-nonsense, complete guide to servicing the entire auto radio field. The 1930's, $5.00.

ONLY 9,000,000 CAR RADIO!

"Just think of it! Approximately 10 out of every 100 cars in use in the U.S. are car radios—and this percentage is increasing every day. Good automotive radio servicemen are scarce—and Mr. Hurlbut gives a gold mine of information you need to cash in on this profitable business!"

OCCUPATION OF A LIFETIME

for alert servicemen, says A. A. Ghirardi

Take this advice from A. A. Ghirardi, author of hundreds of well-known service books and articles. It is a new section in Hurlbut's SERVICING THE MODERN CAR RADIO. This is a complete, up-to-date reference and handy pocket guide for the radio repairman and for anyone who wants to do his own radio servicing. Covers all types of car radios from 1930 to 1950. A real "must" for any serviceman. $5.00.

EMERSON 577 AM-FM

A large amount of frequency drift is caused by the heat of the 25L6, the 25Z6, and the ballast resistor. The holes in the fiber back are too small to allow good circulation of air. I used a miniature tube socket to make six %4-inch holes in the back, after which drift was reduced almost to the vanishing point. $7.50.

LIFETIME TECHNOTES

MAJESTIC 7YR72

When plugged in on some power lines, the set had a loud hum on local stations. I remedied this by connecting a 0.01-µf capacitor across the line.

ALBERT BALZUR, Ada, Minn.

AUTOMATIC RADIO TOM THUMB

Sound was very distorted when the set was operated on a.c. Replacing a discharged A-battery cured the distortion.

ROLAND H. DERBY, Woosocket, R. I.

MINIATURE TUBES

Some receivers using miniature tubes are noisier because of resistance between the tube pins and the socket lugs. Better contact can be made sometimes by bending the tube pins outward slightly to make a better contact.

JAMES LETZELTER, East Greenwich, N. Y.

AUDIO DISTORTION

An old receiver showed excessive distortion after a five-minute warmup. The voltmeter showed that bias was good. The output tube started at —15 volts when the set was first turned on, rose to zero, and then started climbing in the positive direction. A new 41 in the output stage cleared up the trouble.

DAVID GNESIN, Columbus, Ohio.

TUNING EYES

Some receivers with tuning eyes do not have sufficient sensitivity to close the eye unless they are close to the transmitter. In the country, the eye is almost useless. When the eye tube is a 6U6, 6L6, replacing it with a 6E5 will often make the eye operate excellently. The 6E5 requires only about one-third the grid voltage of the 6U6 to close the eye.

ALAN SMITH, Shaftesbury, Vt.

SILVERTONE RECODERS

Silvertone wire recorders frequently chatter when the wire is rewinding. To stop this, clean any oil or grease from the idler wheels, then hold a pencil eraser against the aluminum idler for a few seconds while it is running.

Grease the idler bearings with a very small amount of Marfak No. 3 lubricant.

ALAN McFARLANE, Aberdeen, S. D.

SHANEY'S 20 STEPS TO PERFECTION AMPLIFICATION

Cover of America

New York 13, N. Y.

RADIO-ELECTRONICS for
AUTHORIZED DeWALD DISTRIBUTORS

DeWALD MODEL B-614
DUAL SPEED RADIO
PHONOGRAPH COMBINATION
- QUALITY SUPERHET RADIO
- FIVE TUBES PLUS RECTIFIER
- PLAYS STANDARD RECORDS
- PLAYS LONG PLAYING RECORDS

DeWALD MODEL B-510
WORLD WIDE RADIO
THREE BANDS
- BROADCAST: 535-1600 KC
- SHORTWAVE: 10-100 Meters
- FOREIGN: 63-152 Meters

DeWALD MODEL B-403
RADIO CLOCK
DOUBLE-UTILITY COMBINATION
SELF-STARTING ELECTRIC CLOCK
P.M. DYNAMIC SPEAKER
BEAM POWER OUTPUT
IVORY, MAHOG., MAPLE, MAROON

DeWALD MODEL B-504
3-WAY PORTABLE
- BEAUTIFUL SHATTERPROOF CABINET
- SUPERHET 4 TUBES PLUS RECTIFIER
- INSTANTANCEOUS OPERATION
- PLAYS ON A.C. or D.C.
- BATTERY SUPPLY: 4-87, Y: 1-4, 1/2V.
- SIZE: 4 x 8 x 7"

SPECIAL NET PRICE

$39.95

ATTRACTIVE DEALER PRICES
WRITE • WIRE • PHONE

BROOKS RADIO DIST. CORP., 80 VESEY ST., (Dept. A) NEW YORK 7, N. Y. CO. 7-2312

DECEMBER 1948
FOUR-HOUR RECORDER
Amplifier Corp. of America
New York, N. Y.
A long-playing version of the Twin-Trax Magnetophone, this unit has a continuous playing time of four hours. Using the same mechanism and two-track feature as the model described in the October issue of RADIO-ELECTRONICS (page 42), the Model 910-B uses 4,000-foot reels of tape. The reels are mounted parallel to the sides of the cabinet and are coupled to the driving mechanism in such a way that standard 7-in. 7-inch reels can be used on top of the recorder chassis.
The 910-B cabinet contains complete amplifier, power supply, and supersonic interference components. A rotary switch is available for locating any selected sections of the recording.

METAL-CASE SPEAKER
Tarrytown Metalcord Corp.
Tarrytown, N. Y.
A 4-inch speaker is inclosed in a heavy cast-aluminum case which withstands rough handling. The speaker has a 13/2-ounce Alnicco magnet and a voice coil of 4 ohms impedance. A 5-ohm volume control is provided. Key sockets on the rear of the case permit mounting the unit on a wall.

BUS FM RECEIVER
General Electric Co.
Syracuse, N. Y.
A new FM receiver, designed specifically for installation in buses, will operate up to eight speakers. The set incorporates a crystal-controlled local oscillator and a vibrating power pack. Employing 10 tubes, it has double limiters for optimum quieting. The crystal is a new design, operating on the third mechanical mode and requiring only 250 cycles multiplication of only three.

HIGH-VOLTAGE PROBES
Precision Apparatus Co., Inc.
Elmhurst, N. Y.
Series TV high-voltage safety test probes are designed for use in conjunction with standard test sets and v.t.v.m.'s. Voltages up to 30,000, such as are used in television receivers, may be measured without danger to the serviceman. Stock tubular multipliers are supplied for use with these probes, eliminating the necessity for a special instrument. The multipliers are placed directly over the probe.

SAFETY PROBLEMS include a multi- through a channel shield barrier, shielded with a long handle, internal arc-back shield which is directly grounded, an external arc-back shield, and a shielded cable. All high-voltage and ground connections are made with high-impedance contact springs. The probe head is made of polyethylene, the remainder of the instrument being constructed of bakelite and lucite.

REMOTE BROADCAST AMPLIFIER
Radio Corporation of America
Camden, N. J.
The new BN-2A portable remote amplifier has three input gain controls and four input channels, the third and fourth being switched to one control. Because of excellent frequency response, low noise level, and low distortion, the maker recommends the amplifier for FM as well as AM.

THOUGH the unit weighs only 29 pounds and is only 141/2 inches long, it has a self-contained, 117-volt a.c. power supply, as well as provision for battery operation. Gain of each channel is 9.25 db. High-level mixing is used. Provisions for switching the amplifier output to a PA system as well as the line are included, making the amplifier suitable for almost any remote pickup.

BATTERY CHARGING PLUG
P. R. Mallory & Co., Inc.
Indianapolis, Indiana
This new cigarette lighter plug is intended to help car owners charge their batteries with a minimum of effort and possibility of soiling clothes.

LOW-COST INTERCOMS
Operadio Manufacturing Co.
St. Charles, Ill.
The Flexifone intercommunication system is designed for applications where a small, low-cost installation is needed. The master station will handle three past stations. The housing is die-cast metal.

PORTABLE SERVICE KIT
Sylvania Electric Products, Inc.
Emporium, Pa.
The new service kit contains 1 x 1/4 x 5/8-inch fabric-covered case with tool pocket in the lining of the lid. Looking more like a small suitcase than a tool kit, the case will accommodate nearly 75 tools and most of the commonly used tools.

HIGH-CURRENT RECTIFIERS
Federal Telephone and Radio Corp.
Clifton, N. J.
Two new high-current rectifier stacks RS 400 and RS 500 with current ratings of 400 and 500 ma, respectively, have been developed. The rectifiers are similar in appearance to other miniature stacks of this manufacturer. They are intended for use in television receivers, for rectifying filament voltage to avoid hum in high-gain tubes, and for other applications where high-current-capacity rectifiers are needed.

POCKET-SIZE TESTER
Superior Instruments Co.
New York, N. Y.
Model 770 volt-ohm-milliammeter uses a 1%-accurate meter with a 1½-inch movement. Voltage is measured at 1,000 ohms per volt, with a.c. full-scale ranges from 15 to 3,000 volts. D.c. voltage ranges are from 7½ to 1,500. Maximum current range is 1½ amperes, and resistances up to 1 megohm are measured in two ranges. The instrument is extremely compact, measuring 3½ x 1 5/16 x 2½ inches. It is suitable for carrying on outside calls.

www.americanradiohistory.com
GENERAL ELECTRIC 150 WATT TRANSMITTER

Cost the Government $1800.00 • Cost to You—BRAND NEW—$100.00

This is the famous transmitter used in U.S. Army barracks and ground training, during the war. Its design and construction have been guided to ensure simplicity, reliability and economy. The enforcement frequency range is limited to a single band with a selectivity of 3000 Hz. The unit is portable and is designed for use in the field. The transmitter is equipped with a built-in filter and is capable of operating in a wide variety of conditions. The unit is constructed of all-steel components and is designed to withstand severe conditions. The transmitter is furnished complete with all needed accessories, including a power supply, a microphone, and a tuning unit. The unit is designed for use in a wide range of frequencies and can be used in a variety of applications. The transmitter is a reliable and efficient design, suitable for use in a variety of environments.
H-F RECEIVER

At 32 mc it may or may not be necessary to ground the lower end of the primary L1. Reception may be improved by connecting both ends of it to a doublet antenna.

For 32-mc operation, L2 and L4 consist of 10 turns of No. 14 solid-copper wire on a 1/4-inch-diameter form. The primaries L1 and L3 are five turns of No. 18 enamel wire interwound with the secondaries.

PHOTOFIASH UNIT

If only battery operation is desired, leave out the gang switch and use a s.p.a.t. on-off switch.

The batteries and power supply can be mounted in an insulated metal carrying case with handle and shoulder strap, and the flash lamp in the conventional type holder and reflector. A three-wire cable is needed between the flash unit and the power supply. Be sure that the high-voltage lead is insulated for at least 5 kv for safety.

BC-455 CONVERSION

I have a surplus BC-455-B receiver which I want to use on 10 meters. Please tell me how to rewind the coils.—S.W.P., Yakima, Wash.

A. First remove all wire from the antenna coil and substitute six turns of No. 18 enamel wire. Space the winding the full length of the form.

Remove all wire except the last layer from the plate coil of the 12SK7 r.f. tube. This should leave about nine turns.

Remove all wire from the 12K8 converter signal grid coil (the one connected to the grid cap of the tube) and rewind with five turns of No. 18 enamel. Space it the full length of the form.

The coil connected to the first grid of the 12K8 is left as is. The coil to which it is coupled should be unwound and replaced with five turns of No. 18 enamel, unspaced.

From each section of the main tuning capacitor remove all rotor plates except two in each line. Leave the two right-hand plates (as viewed from the rear) on each section intact.
Practical New Home Study Course
Teaches You to Install & Service
TELEVISION and FM RECEIVERS

If TELEVISION installation and repair is over your head, before many months roll by you'll be as obsolete as a variable grid leak or a 201-A tube! The shop without qualified FM or TV repairmen might as well close up and sell apples... because the repair business will go to the men with ability to do a scientific servicing job on EVERY KIND of receiver. The most conservative estimates indicate that about 800,000 TV sets will be produced this year—and experts tell us that within 4 or 5 years there'll be some 11,000,000 in use. FM figures are equally impressive: there will be 4,000,000 more radios with FM as we enter 1949.

There are thousands of good radio repairmen who don't know a blanking pedestal from a kinescope. For them, and for the man with limited experience who has real ambition and inherent ability, CREI's new practical course in Television and FM Servicing can mean security and increased income. The course was developed by the experienced educators and technical men who have made CREI famous for home study and residence school radio-electronic training. It is designed to teach what you need to know to install and repair TV and FM sets. It won't make you a television engineer—it won't make you a million dollars overnight. But it will give you systematic methods for FM—TV installation and maintenance; knowledge of TV fundamentals; lessons in basic radio math, meters, lenses and mirrors, inductive coupling and condensers at ultra-high frequencies; practical application of resonant circuits; TV tubes; FM receiver alignment. TV antennae; picture synchronization; TV trouble-shooting—and much more.

Begin Training Now At Home

Put the knowledge you gain from each lesson to work immediately. The course has been tested—and proved in the field. It's intensely practical, designed for one purpose: to help a good radioman become a good TV-FM serviceman. Get complete details now.

MAIL TODAY!

RADIO SERVICE DIVISION OF
CAPITOL RADIO ENGINEERING INSTITUTE
An Accredited Technical Institute
Dept. 5128, 16th & Park Road, N. W., Washington 10, D. C.
Branch Offices: N. Y. 7, 170 Broadway; San Francisco 2, 560 Market St.
DEC. 5128, 16th & Park Road, N. W., Dept. 5128, Washington 10, D. C.

Gentlemen:
Please send me complete details of your new home study course in Television and FM Servicing. I am attaching a brief resume of my experience, education and present position.

NAME
STREET
CITY
STATE

□ I am entitled to training under G. I. Bill.

www.americanradiohistory.com
Transmission Lines

By ROBERT C. PAINE

A TRANSMISSION line conveys power or communication signals from one point to another. It may be electrically "long" or "short." The "length" depends on the frequency and the wave length. At a power-line frequency of 60 cycles per second a wave length is approximately 300,000,000 / 60, or 5,000,000 meters long, roughly 3,000 miles. A radio frequency of 100 kc has a wave length of 3,000 meters.

The effects of reflection of waves begin to be barely noticeable on lines .01 wave length long and may become serious as 3/4 wave length is approached. So it may be said that a transmission line begins to be "long" when it is over .01 wave length.

At 10 kc a line would have to be over 300 meters long, nearly a quarter of a mile, before reflection effects could be noticed at all. So we see that at audio frequencies a line must be very long indeed to be a "long line." At 10 mc, however, a transmission line starts to be "long" when over 0.5 meter, although serious standing waves would not occur until it approached a length of about 6 meters. At 100 mc, in the middle of the new FM band, .01 wave length is only 3 cm, not much over an inch.

But in the high region, the nearest scrap of wire becomes a "long line." So with greater activity on the higher frequencies, reflection becomes very important.

If the line is not properly terminated, electromagnetic waves are reflected from the distant end. The returning waves meet the waves from the generator in such a way as to add up at some points and subtract at others. This results in fixed points of high and low voltage, standing waves. Standing waves are negligible.

Standing waves can be kept low or eliminated by proper line terminations and impedance-matching methods. Standing waves are harmful because they result in power losses due to heavy currents at certain points, which heat the conductors, and high voltages at other points, which increase the losses in the insulation. These standing-wave voltages can become high enough to break down the insulation. Where standing waves exist, the impedance of the load as seen by the generator at the input end of the line varies with frequency and the wave length of the line. This interferes with proper loading of the generator. The impedance of the generator at all times for greatest power transfer. The impedance of a receiver should match that of the antenna, as seen at the input end of the transmission line, to get the greatest signal.

The conductors of a transmission line actually form a wave guide on which energy exists in the form of a traveling electromagnetic field. The electromagnetic field consists of an electric field between the conductors and a magnetic field encircling them. These fields extend indefinitely out into space; a portion of them is shown in Fig. 1. The solid lines represent the magnetic field and the dashed lines the electric field. The line wires are shown in cross section.

On a line terminated by an open circuit the magnetic field collapses on reaching the open end of the wires; since the current flow is interrupted at that point. This sudden collapse of the field produces a reflected voltage wave of such polarity as to add to the initial wave, resulting in a maximum of voltage at the end of the line.

On a line terminated by a short circuit, the electric field collapses on reaching the end, since there can be no voltage across the short circuit. This produces a reflected current wave in such a direction as to add to the initial current, resulting in a maximum of current at the end of the line.

Wires --- MAGNETIC FIELD --- ELECTRIC FIELD

Fig. 1--End view of line and fields around it.
end of the line, the voltage is relatively low.

The effect of this length of line is to increase the voltage at the output to a much greater value than that at the input end, much as a tuned circuit (coil and condenser) multiplies voltage.

However, on a line with reflections, there may be several points at which maximum voltage appears, such as at A and B in Fig 2.

Fig. 3 shows a short-circuited line of the same length. Here the current is at a maximum and the voltage zero at the shorted end. This line results in an output current much greater than that at the input end. There is only a slight multiplication of the input voltage at the voltage peaks, since the input is connected at a point near a voltage peak. As shown, the input voltage of Fig. 3 is higher than in Fig. 2, yet the voltage peaks are of the same height.

Reflection of waves at the end of the line can be understood more easily by thinking of familiar low-frequency circuits. In the open-circuited line, consider the somewhat similar case of a coil in which current is flowing, with energy stored in the surrounding magnetic field. When the circuit is broken, collapse of the magnetic field causes energy to reappear as a momentarily increased voltage of a polarity which tends to cause current to flow in the same direction as before the circuit was broken, often causing a spark. Automobile ignition coils use this principle.

As a parallel to the example of the short-circuited line, consider the two charged plates of a condenser, in which energy is stored in the electric field. When the charged plates are connected together, the electric field collapses. Its energy reappears in the magnetic field of the current which flows momentarily from the positive to the negative plate. (One type of magnetizer for permanent magnets is based on this principle; it causes a very high current to flow for an instant by the discharge of large condensers.)

When the transmission line is terminated by a load of any kind, the energy of both the electric and magnetic fields traveling toward the load is partially or wholly absorbed and dissipated in the load. The percentage of absorption depends upon the load impedance. On a line terminated by pure capacitive or inductive reactance, no energy can be absorbed by the load; but energy from the electric field can be momentarily stored in a capacitor, and energy from the magnetic field can be momentarily stored in an inductance. Since this energy is almost instantly returned to the line, the wave is completely reflected.

The reflected wave can have any phase relation to the incident generated wave, depending on the type of terminating impedance, with different corresponding patterns of standing waves in which voltage and current maxima may occur at other points than those shown in Figs. 2 and 3.

To understand how standing waves can be eliminated, imagine a uniform transmission line extending to infinity. On such a line outgoing waves would never reach the distant end so there could be no reflection and no standing waves. The input voltage would have a constant ratio to the input current for any particular type of line. This ratio is a measure of input impedance because $Z = \frac{V}{I}$.I Should sections be successively cut off the input end, the same impedance would appear at each new input end.

This is because the impedance of a transmission line is controlled by two factors—the inductance of the conductors, and the capacitance between them. Both these increase with increasing line length—but the increasing inductance decreases the reactance of the line, while the increasing capacitance decreases it.

So if (for example) the impedance of a 3-mile line were measured in three successive 1-mile sections, then the whole line measured, the four impedances would be the same. The whole line has the same impedance as a part of it. This impedance is known both as the \textit{iterative} (literally "repeating") impedance and also the \textit{characteristic} or \textit{magnitude} impedance.

Although such an infinite line is impossible, any uniform line can be terminated in a certain load impedance which eliminates standing waves and gives a constant input impedance regardless of line length. The line would appear at its input to be the same as an infinite line, and the impedance seen would be equal to its characteristic.

The characteristic impedance is usually designated Z. This impedance—for low-loss radio transmission lines—is practically pure resistance, so it is sometimes designated R_0. If a line is terminated in its characteristic impedance, the energy of the electromagnetic wave is completely absorbed by the load and no reflection takes place.

The input impedance of any transmission line is determined by the ratio of input voltage to input current. The input voltage shown in Fig. 2 is low and the current high, showing that the

DECEMBER, 1948

www.americanradiohistory.com
input impedance is low. But in Fig. 3 the input voltage is high and the current low, indicating a high input impedance for the same length of line but with a different termination. By selecting lengths between 180 and 270 degrees, the impedance of either the open line of Fig. 2 or the shorted line of Fig. 3 may be made to vary from a very low to a very high value, the impedance of the open line being greatest at 180, and that of the shorted line at 270 (or 90) degrees.

When a transmission line is terminated by any impedance other than its characteristic one, its input impedance varies with the length of the line and the frequency. The formulas are rather complex. So it is generally more convenient to calculate input impedance by means of some of the various charts available.6

The characteristic impedance of air-spaced parallel-wire lines depends on the diameter d of the wires and the center-to-center distance D between them. Zc in ohms = 276 log10 2D/d. Values of Zc for various sizes of wire and spacing are shown in Fig. 4. For concentric lines (air-spaced), Zc = 138 log10 D/d, where d is the diameter of the inner conductor and D is the inner diameter of the outer conductor or sheath. Values for various ratios are shown in Fig. 5.

There are many types of transmission lines. Parallel wires supported by insulators are used where relatively high impedance is desired. A ribbon type consisting of two parallel wires spaced by a flexible dielectric is used for lower impedances. These lines have standardized values such as 75, 150, and 300 ohms. Parallel lines are subject to some extent to interfering external voltages. Co-axial lines are much more completely shielded from interference by the outer conductor. Common impedance values for the solid-dielectric co-axial lines are 52 and 75 ohms.

The conductors of parallel lines are balanced to ground; the conductors of co-axial lines are unbalanced. When co-axial lines are connected to parallel lines or balanced loads, it is necessary to take special measures to maintain balance. In transmission lines where the conductors are separated by a continuous dielectric other than air, the speed of transmitted waves becomes somewhat less than that in air and the wave length is from 5% to 20% less. The correct values are furnished by the various manufacturers.

There are various methods of matching the impedance of the load to the line to eliminate or reduce standing waves. There are also circuits in which standing waves can be useful. These will be discussed in subsequent articles.
HOW'D YOU LIKE TO GET
these famous Ghirardi Training Course Books
FOR CHRISTMAS?

BEGINNERS! LEARN BASIC
RADIO-ELECTRONICS
as fast as you can read!

No matter what phase of Radio or
Electronic work you'd like to specialize
in, you'll need the basic training that
Ghirardi's 972-page RADIO
PHYSICS COURSE book gives!

Many people have gotten their start
from this giant book than any other
book or course in the entire survey of
all hundreds of radio service experts.

Out of 10 said that Ghirardi's RADIO
PHYSICS COURSE is the best
way to understand Radio-Color-
Electronic Training Course on the
market, even for only $5 for the
complete course—enough money
ever spent!

36 COURSES IN ONE!

RADIO PHYSICS COURSE is espe-
cially outstanding for the self-
taught student.

Nothing is omitted or con-
cealed. Starting with a thorough, easily-
understood foundation course in Basic
Electronics, this book takes you right
through the entire field of broad-
cast and electronic servicing.

RADIO PHYSICS COURSE also
contains the new Basic-Modern
RADIO COURSE, telling you
exactly how to troubleshoot all
kinds of electronic troubles.

Phases are explained to

Simplified and

easy

You'll learn to:

1. Solve all terminals on

2. Repair ALL modern

3. Analyze and test

4. Test electronic

equipment.

5. Identify all radio

circuits.

6. Tell when and why.

7. How to repair

8. How to get

9. How to

10. How to

11. How to

12. How to

13. How to

14. How to

15. How to

16. How to

17. How to

18. How to

19. How to

20. How to

21. How to

22. How to

23. How to

24. How to

25. How to

26. How to

27. How to

28. How to

29. How to

30. How to

31. How to

32. How to

33. How to

34. How to

35. How to

36. How to

37. How to

38. How to

39. How to

40. How to

41. How to

42. How to

43. How to

44. How to

45. How to

46. How to

47. How to

48. How to

49. How to

50. How to

51. How to

52. How to

53. How to

54. How to

55. How to

56. How to

57. How to

58. How to

59. How to

60. How to

LEARN TO REPAIR RADIOS
THIS FAST, EASY WAY!

You don't have to be an expert to make
ordinary repairs in radios OUT OF ORDER.
You needn't need a lot of high-priced test equipment.

Ghirardi's RADIO TROUBLESHOOTER'S
HANDBOOK does all the guessing and figuring
for you! It's the only book that gives you
the answers to repair hundreds of
difficult-to-troubleshoot jobs...eases you
down the road to radios OUT OF ORDER.

DO TWO JOBS...IN THE TIME
NORMALLY REQUIRED FOR ONE!

Ghirardi's RADIO TROUBLESHOOTER'S
HANDBOOK tells you what to do and how to do it...in repairing practically
every radio model in use today. And that's just the begin-
ing. It also contains the most comprehensive, helpful
charts in the history of radio servicing.

Let this "AUTOMATIC TEACHER"
show you exactly how to repair
OVER 4 8 00
RADIOS MODELS
in a few simple steps.

MONEY SAVING SPECIAL OFFER!

Let Ghirardi's RADIO TROUBLESHOOTER'S
HANDBOOK save you time and money on
common service jobs. Let his MODERN
RADIO SERVICING train you for professional
service work of all kinds! Get BOTH big
books for only $9.50 ($10.50 for-
eign.) See Money-Saving Offer
in coupon.

Get a complete PROFESSIONAL
RADIO SERVICE TRAINING

At Home Without An Instructor

Ghirardi's famous, 1300-page MODERN
RADIO SERVICING is a complete, 13-course
program in professional service methods
of the kind that open the door to big money
opportunities, which only scientifically-trained
men can grasp. It shows how to avoid guess-
work by analyzing radio and other electronic
circuits by professional methods. Explains
how all different types of radio and electronic
parts behave in all kinds of trouble.

Trouble-Shooting Instruments
and Repair

MODERN RADIO SERVICING is invaluable as a
"point-check" course for men all
in the service business...what it's
worth its weight in gold to service businessmen!

Everything is explained so clearly it can
be understood at home without an
instructor. The real illustrations and
the full Text Review Questions enable
you to save money in coupon.

D E C E M B E R, 1948
NEW BATTERY HAS LONG LIFE

A dry battery developed by National Carbon Company for use in hearing aids will give satisfactory service three times as long as a standard cell of the same weight. The new Eveready 1005-E hearing-aid A-cell, like other batteries, needs oxygen to neutralize the hydrogen which would otherwise collect on its carbon electrode. However, the 1005-E, instead of using oxygen-liberating manganese dioxide—a depolarizer—draws its oxygen from the air. The large space taken in the ordinary cell by the manganese dioxide is thus free in the new unit to hold a larger supply of active chemicals.

What allows the battery to draw its oxygen from the air is its peculiar "inside-out" construction. Most flashlight cells have a zinc casing with a carbon rod up the middle. The 1005-E has, as the diagram shows, a zinc core between two plates of porous carbon. The carbon plates are placed against openings in the sides of the case. In manufacture a strip of adhesive tape covers the windows. Before use, the buyer peels off the tape.

At present the cell is being made only for use as an A-cell in hearing aids. However, other sizes and styles will be marketed when uses are found. An attribute of the cell which may make it especially valuable is the constancy of its voltage during its life.

TV SET ADS MISLEADING

TV set advertising is sometimes misleading, according to a statement by Raymond B. Wilson, operating manager of the National Better Business Bureau in a bulletin issued recently. The Bureau has received numerous complaints that some sets advertised as "receiving all channels" actually will not receive the high-frequency stations at all, or if they do, reception is poor.

The Bureau recommended that the number of channels which can be received should be clearly stated in all advertising unless the receiver will actually receive all 12. It also said that installation charges should be fully and correctly stated in all advertising material.
DYNAMOTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Input Volts</th>
<th>Input Rpm</th>
<th>Output Volts</th>
<th>Output Rpm</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD 30</td>
<td>28</td>
<td>19</td>
<td>260</td>
<td>225</td>
<td>2.45 7.15 2.15 7.15</td>
</tr>
<tr>
<td>PD 32</td>
<td>33</td>
<td>6</td>
<td>260</td>
<td>225</td>
<td>3.55 7.15 2.15 7.15</td>
</tr>
<tr>
<td>PD 55</td>
<td>15</td>
<td>12</td>
<td>260</td>
<td>225</td>
<td>7.15 6.85 2.15 7.15</td>
</tr>
<tr>
<td>PD 115</td>
<td>15</td>
<td>12</td>
<td>260</td>
<td>225</td>
<td>11.15 6.85 2.15 7.15</td>
</tr>
</tbody>
</table>

*Price includes exciter.

GREAT TUBE VALUES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-A</td>
<td>50.35</td>
</tr>
<tr>
<td>01-B</td>
<td>37.85</td>
</tr>
<tr>
<td>01-C</td>
<td>32.50</td>
</tr>
<tr>
<td>01-D</td>
<td>23.00</td>
</tr>
<tr>
<td>01-E</td>
<td>19.00</td>
</tr>
</tbody>
</table>

BAND PASS FILTER

Send filter

SHIPS IN 12 TO 15 DAYS

30" U.S. Army SIGNAL RADIO MASTS

Complete set for 1/4 wave to 30" mound. Of rugged ladder construction telescoping into 3 mast sections for easy transportation. A perfect setup for setting up. Quantity discounts: 2 complete masts, 28.40 each; 10 masts, 20.50 each. Special offer: 100 mast, Big Cork price. AUTOMATIC CODE EQUIPMENT

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>123A</td>
<td>155.00</td>
</tr>
<tr>
<td>123B</td>
<td>140.00</td>
</tr>
<tr>
<td>123C</td>
<td>100.00</td>
</tr>
<tr>
<td>123D</td>
<td>75.00</td>
</tr>
</tbody>
</table>

Specify complete code equipment: 123A

ELECTRIC PORTABLE PHONOGRAPH

Leakproof, 12" record player with changer. 5 inch speaker. Self starting motor. High fidelity pick-up. 400 W. P. Codeähl. 26.50 net. 38.00 ex-

PHONE DIGBY 9-4124

Franklin-Elco Co. 1313 West Randolph St. Dept. RE-12 Chicago 7, Illinois

131-C Liberty St. New York 7, N.Y.

All merchandise guaranteed. Mail orders promptly filled. All prices, F.O.B. New York City. Send Money Order or Check. Shipping charges sent C.O.D.

COMMUNICATIONS EQUIPMENT CO.

MANUFACTURERS QUANTITIES AVAILABLE

DECEMBER, 1948

D 317, RPN-1* | $1.25

SN-32 | 100 CT.

SPEAKERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 P.M.</td>
<td>$1.25</td>
</tr>
<tr>
<td>5 P.M.</td>
<td>$1.25</td>
</tr>
<tr>
<td>6 P.M.</td>
<td>$1.98</td>
</tr>
</tbody>
</table>

SPECIAL VOLUME CONTROL

1/4 sq. with switch. 3 for $2.75

FRANKLIN-ELCO CO. 1313 West Randolph St. Dept. RE-12 Chicago 7, Illinois

www.americanradiohistory.com
CONTROL OF POWER
Patent No. 2,444,153
Samuel C. Conitti
[assigned to General Aniline & Film Corp.]

This device is a means of controlling large amounts of power by a small change in frequency. The power is developed in the plate load of a thyratron. The tube is not operated; its grid is connected through R1 to an audible output relay. When an object is dropped into the tube it becomes magnetized as the tube is tuned. It retains magnetism until it passes through S1. The voltage change is amplified and energizes the output relay. S3 is magnetized for a short interval. As described previously this opens the passageway into which the object drops. If the object does not make a good permanent magnet it drops into A.

FIELD MEASURING TUBE
Patent No. 2,437,374
Robert E. Burroughs, Washington, D. C.
[assigned to Eastman Kodak Co.]

Originally designed for electronic view-finders, this tube has many other practical applications. It is about the size of a walnut and is very sensitive. The tube contains one cathode, two anodes, and a suppressor. In addition there are two "compressors" which focus the electron beam into two distinct beams from cathode to anode.

The plate currents are adjusted to equal zero without a magnetic field. Then, if the tube is placed in a field the beams are deflected. Usually one beam is deflected more than the other, and there is an indication of the plate voltage. This voltage imbalance is indicated on a meter after amplification.

An important use of the tube is to indicate change of position. A tiny magnet is clamped to one object, and the tube is fixed to another. When their distance varies, the change in the field around the tube shows up on the meter. The tube can even be used to detect weak magnetization of a watch. The motion of the magnetized spring creates the changing field.

MAGNETIC SORTER
Patent No. 2,444,751
Kenneth L. Scott, Western Springs, Ill.
[assigned to Western Electric Co., Inc.]

This apparatus sorts material according to magnetic properties. The low non-magnetic tube is divided by two branches at its lower end. Here a pivot bearing is arranged to open one of the passages and to close the other when a magnetized object is dropped into the tube.

AUTOMATIC BEAM CONTROL
Patent No. 2,448,299
Arthur Dorne, Mineola, N. Y.
[assigned to United States of America as represented by the Sec'y of the Army]

Automatic control of the maximum beam intensity on the screen of a cathode-ray tube is provided by this patented circuit. This intensity increases as the sweep is reduced, and vice versa. When the intensity is maintained too high, the screen is dammed.

The sweep is connected to the deflection plates of a cathode-ray tube and also through a network to tube D1. The sweep voltage must go positive during some portion of its cycle, and both positive and negative charges condenser C, the A side being negative.
During the remainder of the circle, the negative voltage adds to that on the condenser and is applied to cathode K. This increases the beam intensity.

The greater the sweep, the more intense the screen image. A limit is provided by D2 which begins to conduct at some critical value. The P adjustment sets the minimum intensity.

CRYSTAL OSCILLATOR
Patent No. 2,444,349
Charles W. Harrison, Flushing, N. Y. (assigned to Bell Telephone Labs, Inc.)
This oscillator, which works well even with sluggish crystals, is suitable for driving a trans-
mitter or as a crystal test set. Frequency and amplitude stability are excellent. In addition, the frequency is variable over a limited range. R1 and R2 are adjustable to accommodate different types of crystals.

The tube may be a 6F57. Circuit constants shown are suitable for operation at about 5 mc. The feedback depends upon the ratio of C3 to C1. These condensers also tune the transformer secondary to the crystal frequency. The secondary should have relatively few turns compared to the primary.

The oscillation frequency is tuned over a small range by adjusting the two variable condensers. With more active crystals the feedback may be reduced.

THOUSANDS OF TUBES

<table>
<thead>
<tr>
<th>Type</th>
<th>Each</th>
<th>Each</th>
<th>Each</th>
<th>Each</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>6C38</td>
<td>69</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>812</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C28</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>6C48</td>
<td>39</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C49</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C54</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C57</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C58</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C34</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C36</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>6C37</td>
<td>45</td>
<td>39</td>
<td>35</td>
<td>39</td>
<td>35</td>
</tr>
</tbody>
</table>

NO. 2: ELECTRONIC VOLTAGE REGULATOR
Patent No. 2,445,171
Wm. S. Graff-Baker, Rugby, England (assigned to General Electric Co.)
Offering greater control range than conventional regulators, this circuit eliminates the control grid of V1 instead of the usual triode, and there are two additional resistors R1 and R3. Also, R1 and R2 are ganged so that R1 is automatically increased as R3 is adjusted toward the lower terminal. In the usual circuit, control becomes sluggish as V1 nears saturation. The new circuit eliminates this difficulty.

R2 is set near its upper terminal if greater voltage output is desired. This increases V1 plate current and puts a more negative potential on the control grid of V1. V1 does not operate near saturation and its grid has sufficient control. The value of R1 is small, and V1 therefore acts like a triode.

For low voltage across the load, R2 is set near the lower terminal. The control grid of V1 becomes more positive and the tube approaches saturation. Therefore, the grid has much less control than before. With this setting, however, R1 is much greater and V1 acts like a screen-grid tube. The amplification increases, and the grid still controls the regulation.
AT LAST!! A LOW COST POWER UNIT FOR SERVICE WORK

“A” ELIMINATOR KIT # KC 1-10

Only $19.50 including pictorial and schematic diagrams

For the first time, we are offering a well-engineered six volt direct current power unit for radio-auto and similar service work in kit form!!

This unit was formerly in the high priced range. Now, we have placed all the essential components necessary for construction in kit form, and are offering them to you at this low, low price.

These kits fulfill the long-standing need of every serviceman and technician. They are designed to operate from a 115 V.A.C. 50/60 cycle source, and deliver 6 V.D.C. well-filtered from three to eight amperes, with a peak rating of ten amperes. The A.C. ripple percentage is held to remarkably low values.

This unit charges a standard auto battery in one day!!

- Do away with bulky batteries!
- Do away with corroding fumes!
- Simplify your service operation!

Order this fine kit for your bench today!!

No C.O.D.'s. Full remittance with order. Shipping wt., 12 lbs.

OPAD-GREEN COMPANY

71 Warren St. Phone: BEekman 3-7385 New York 7, N. Y.

Mr. Radio Serviceman

ADDITIONAL $$$$ FOR YOU EVERY WEEK

REPAIR ELECTRICAL APPLIANCES

WITH THE AID OF THE NEW MODEL 40

UTILITY TESTER

A NEW KIND OF INSTRUMENT FOR TESTING ALL ELECTRICAL CIRCUITS AND APPLIANCE SUCH AS—

- RANGES
- WASHERS
- VACUUM CLEANERS
- SHAVERS
- FANS
- AIR CONDITIONERS
- HEATERS
- MOTORS
- REFRIGERATORS
- TROUBLERS
- TOASTER
- SUNLAMPS
- WASHING MACHINES
- ALL TYPE MOTORS FROM FRACTIONAL H.P. TO 1 H.P.

THE MODEL 40 UTILITY TESTER

Will test Thermowatt under ACTUAL WORKING CONDITIONS. Will measure the actual CURRENT CONSUMPTION of any appliance either A.C. or D.C. WHILE THE UNIT IS IN OPERATION—reading will be direct in amperes—the appliance or utility may be plugged directly into front panel receptacle—a special pair of insulated clip-ended leads is provided for motors; incorporates an ultra-sensitive direct-reading resistance range which will accurately measure all appliance and utility resistances down to a fraction of an ohm; Will test bulbs, fuses, condensers, field coils, etc.; is ideal troubleshooter as it will instantly locate opens, shorts and grounds; Will locate cause of failure in three way heat control switches; will indicate when one side of an appliance or motor connected to line under test is “grounded”; Will indicate excessive leakage between a motor and a line; Will indicate when a three phase motor is running erratically due to a “blown” fuse; Will indicate whether the volt-

FM Station List

The great length of the present station list precludes printing a complete account of records made by FM listeners. Greatest distance reported was by Leon H. Hinman of Ithaca, N. Y. He received KTRH at Houston, Texas, on the evening of June 2. Another interesting report is from Earl Cunningham, of Webster, Mass., who sends us a list of 32 stations from Portsmouth, N. H., to Philadelphia, Pa.

Mr. C. R. Bills of South Bend, Indiana, has a list of several stations ranging from 70 to 975 miles (this last one KXYZ-FM, Houston, Texas).

<table>
<thead>
<tr>
<th>CITY</th>
<th>CALL</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anniston</td>
<td>WHMA-FM</td>
<td>100.5</td>
</tr>
<tr>
<td>Birmingham</td>
<td>WRMD-FM</td>
<td>104.7</td>
</tr>
<tr>
<td>Birmingham</td>
<td>WGSN-FM</td>
<td>93.7</td>
</tr>
<tr>
<td>Bakeston</td>
<td>WJTY-FM</td>
<td>103.7</td>
</tr>
<tr>
<td>Huntsville</td>
<td>WHYS-FM</td>
<td>95.1</td>
</tr>
<tr>
<td>Lanett</td>
<td>WRDI-FM</td>
<td>102.9</td>
</tr>
<tr>
<td>Mobile</td>
<td>WKGK-FM</td>
<td>99.9</td>
</tr>
<tr>
<td>Montgomery</td>
<td>WCNY-FM</td>
<td>97.5</td>
</tr>
<tr>
<td>Montgomery</td>
<td>WCVO-FM</td>
<td>94.5</td>
</tr>
<tr>
<td>Montgomery</td>
<td>WMCY-FM</td>
<td>107.5</td>
</tr>
<tr>
<td>Montgomery</td>
<td>WSFA-FM</td>
<td>101.3</td>
</tr>
<tr>
<td>Sylacauga</td>
<td>WSTO</td>
<td>101.9</td>
</tr>
<tr>
<td>Blytheville</td>
<td>KLQM-FM</td>
<td>94.1</td>
</tr>
<tr>
<td>Fort Smith</td>
<td>KFPW-FM</td>
<td>94.9</td>
</tr>
<tr>
<td>Fort Smith</td>
<td>KRNK-FM</td>
<td>101.7</td>
</tr>
<tr>
<td>Fort Smith</td>
<td>KRKN-FM</td>
<td>102.1</td>
</tr>
<tr>
<td>Fort Smith</td>
<td>KBOW-FM</td>
<td>101.9</td>
</tr>
<tr>
<td>Fort Smith</td>
<td>KSFM-FM</td>
<td>110.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFCT-FM</td>
<td>97.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KMRO-FM</td>
<td>95.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFAC-FM</td>
<td>104.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFME-FM</td>
<td>102.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFBC-FM</td>
<td>94.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KJCR-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KLMA-FM</td>
<td>97.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KMMG-FM</td>
<td>95.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KBSM-FM</td>
<td>100.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KRMR-FM</td>
<td>95.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KMKY-FM</td>
<td>91.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KVME-FM</td>
<td>97.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KBEE-FM</td>
<td>102.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KCOX-FM</td>
<td>96.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFBE-FM</td>
<td>96.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KURS-FM</td>
<td>107.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KBXT-FM</td>
<td>99.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFRC-FM</td>
<td>95.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KSBR-FM</td>
<td>100.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KFDF-FM</td>
<td>101.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KPSD-FM</td>
<td>94.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KGOO-FM</td>
<td>96.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KWFM-FM</td>
<td>104.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KALW-FM</td>
<td>91.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KGFC-FM</td>
<td>102.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KGQ-FM</td>
<td>106.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KJRM-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KNBC-FM</td>
<td>99.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KQWM-FM</td>
<td>103.7</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KRON-FM</td>
<td>96.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KSFH-FM</td>
<td>94.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KWBR-FM</td>
<td>97.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KRPO-FM</td>
<td>92.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KGDF-FM</td>
<td>95.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KYPE-FM</td>
<td>99.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KSMA-FM</td>
<td>103.1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KCFW-FM</td>
<td>89.9</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KCIR-FM</td>
<td>91.3</td>
</tr>
<tr>
<td>Buffalo</td>
<td>KGDM-FM</td>
<td>92.9</td>
</tr>
</tbody>
</table>

ALABAMA

CALIFORNIA

- Birmingham, WCLS-FM
- Buffalo, WGRD-FM
- Canton, WTTC-FM
- Cheyenne, WJME-FM
- Corpus Christi, WQAM-FM
- Dallas, WXMN-FM
- Denver, WBAO-FM
- Detroit, WPHY-FM
- Flint, WJZQ-FM
- Houston, WOCN-FM
- Jacksonville, WJAI-FM
- Los Angeles, KFAC-FM
- Miami, WORP-FM
- Minneapolis, WMPR-FM
- New York, WWRL-FM
- Oklahoma City, WWMP-FM
- Philadelphia, WFSW-FM
- Portland, WLSN-FM
- Providence, WJSE-FM
- San Antonio, WFTS-FM
- San Francisco, KMCO-FM
- Seattle, KINS-FM
- St. Louis, WACO-FM
- St. Paul, WCCO-FM
- St. Louis, WACO-FM
- Tampa, WMAA-FM
- Washington, DC, WTOP-FM
- Washington, DC, WINS-FM
- Wichita, KODI-FM

FOR YOUR SERVICE

With corrosion finished to all parts, this ELIMINATOR KIT is boxed in a rugged cradle finished steel cabinet with portable cover, complete with all test tools and operating instructions. For your service, only $15.75

GENERAL ELECTRONIC DISTRIBUTING CO.

90 PARK PLACE, DUT. R.E. 12 NEW YORK 7, N. Y.
"It's Fun to STRIP" - WIRE - Says Speedy with the Speedex Wire Strippers

- Strip 300 ohm Twin F.M. and Television lines
- Strip all types wires sizes 8 to 30

G-C announces a new television and F.M. tool for 300 ohm twin line. It will easily strip both wires at the same time. Just place the wire between the jaws and squeeze—insulation will come off instantly without moving the wire. A great time-saver on installations.

No. 733-H regular Twin Line Strippers $3.60 Net
No. 744-H Automatic Twin Line strippers $4.80 Net

Other models available for all size wires—write for catalog details. Distributed, Write for Details

Manufactured by
GENERAL CEMENT MFG. CO.
ROCKFORD, ILL., U.S.A.

THE NEW MODEL 770—An Accurate Pocket-Size VOLTMETER MILLIAMMETER

(Sensitivity: 1000 ohms per volt)

Features:
- Compact—measures 3½" x 5½" x 1½".
- Uses latest design 2½ volt, 1.5 milliamp germanium FET tubes.
- Same zero adjustment holds for both resistance ranges. It is not necessary to realign when switching from one resistance range to another. This is an important time-saving feature never before included in a VOM, at this price range.
- housed in a molded, molded case.
- Beautiful blank-plated panel, decrusted letters filled with permanent white, jam door-lever even with one-third of the part.

Specifications:
- D.C. VOLTAGE RANGES: 0-15, 0-30 V, 0-75, 0-150
- CURRENT RANGE: 0-15 MA, 0-150 MA, 0-5000 MA, 0.01 AMP.
- RESISTANCE RANGE: 0-5000 ohms, 0-5000 ohms.

The Model 770 comes complete with self-contained batteries, test leads and all operating instructions... $13.90 Net

We manufacture a complete line of radio test equipment. Write Dept. RE-12 for free catalog today!

SUPERIOR INSTRUMENTS CO.
227 Fulton St., New York 7, N. Y.

at your regular jobber
DON'T FORGET to read the SPECIAL SECTION on TELEVISION ASSEMBLY CO. in next month's issue

GREYLOCK A Dependable Name in RADIO TUBES
GT Glass & Miniature Types Aoden in Individual Cartriges

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X3GT</td>
<td>12AT6</td>
<td>185</td>
</tr>
<tr>
<td>6AT6</td>
<td>12BA6</td>
<td>175</td>
</tr>
<tr>
<td>5BY6</td>
<td>12B13</td>
<td>170</td>
</tr>
<tr>
<td>6B9</td>
<td>12BT7</td>
<td>165</td>
</tr>
<tr>
<td>6DS7GT</td>
<td>12AT7</td>
<td>304</td>
</tr>
<tr>
<td>6DK7GT</td>
<td>12AT7</td>
<td>304</td>
</tr>
<tr>
<td>857GT</td>
<td>12AT6</td>
<td>198</td>
</tr>
<tr>
<td>6J9GT</td>
<td>125L6</td>
<td>190</td>
</tr>
<tr>
<td>6AQ5</td>
<td>125L6</td>
<td>190</td>
</tr>
<tr>
<td>6AQ5</td>
<td>125L6</td>
<td>190</td>
</tr>
<tr>
<td>6A7</td>
<td>12AT6</td>
<td>185</td>
</tr>
<tr>
<td>6AQ5</td>
<td>125L6</td>
<td>190</td>
</tr>
<tr>
<td>6A7</td>
<td>12AT6</td>
<td>185</td>
</tr>
<tr>
<td>6AQ5</td>
<td>125L6</td>
<td>190</td>
</tr>
<tr>
<td>6A7</td>
<td>12AT6</td>
<td>185</td>
</tr>
<tr>
<td>6AQ5</td>
<td>125L6</td>
<td>190</td>
</tr>
</tbody>
</table>

SPECIAL OFFER! All 36 tubes may be purchased in lots of 100 at $5.50 each, at $5.00 per 100.

PEN-OSCIL-LITE Extremely convenient self-oscillator for all radio servicing and alignment. A simple, compact circuit, easily disconnected from other circuits. Equipment in perfect condition where used as a test instrument or where no test equipment is available.

GENERAL TEST EQUIPMENT $3.98 each 38 Argyle Ave. Buffalo, N. Y.

FM FREQUENCY CALL

CITY
Muncie WMUN
N. New York WMNY
South Bend WSBE
Terre Haute WHOF
Winston Raleigh WSO
Washington WSM

IOWA
Burton KBUR-FM
Cedar Rapids KCRK
Council Bluffs KBEU-FM
Davenport KDSM
Des Moines KIOI
Dubuque KDBJ
Fort Dodge KVDF
Iowa City KXIP
Kokomo KSNK
Mason City KGLO-FM
Minneapolis KSDK
Waterloo WUVW

KANSAS
Garden City KGAN-FM
Hutchinson KMIV
Kansas City WDAF-FM
Lawrence WBNE-FM
Topeka WTVI-FM
Wichita KFKM

LOUISIANA
Alexandria KAXO-FM
Alexandria KFDQ-FM
Baton Rouge WAFB-FM
Baton Rouge WLCF-FM
Baton Rouge WLCG-FM
Monroe KFMF
New Orleans WYES
New Orleans WJNO-FM
New Orleans WPLF-FM
New Orleans WUPL

MAINE
Bangor WGBY-FM
WGDJ-FM
Portland WGAN-FM

MARYLAND
Annapolis WMSR-FM
Baltimore WBOC-FM
Baltimore WPTF-FM
Baltimore WJZ-FM
Bradley Beach WTNJ-FM
Frederick WJFR-FM
Hagerstown WJTN-FM
Salisbury WJBS-FM
Silver Spring WEGY-FM

Massachusetts
Boston WBOC-FM
Boston WMCA-FM
Boston WZLC-FM
Boston WZIB-FM
Brookline WJRB-FM
Cambridge WACM-FM
Boston WCRF-FM
Fitchburg WGBY-FM
Greenfield WGBY-FM
Haverhill WGBY-FM
Huntington WGBY-FM
Lynn WGBY-FM
WGBY-FM
WGBY-FM
WGBY-FM
WGBY-FM
WGBY-FM
WGBY-FM

Michigan
Ann Arbor WPAG-FM
Ann Arbor WABC-FM
Battle Creek WCBQ-FM
Bay City W102J-FM
Grand Rapids WSBG-FM

Ohio
Akron WKJF-FM
Canton WBCD-FM
Cincinnati WDTN
Cleveland WBLP-FM
Columbus WTMF
Dayton WDDT-FM
Delaware WDDT-FM
Durham WDDT-FM
East Lansing WDDT-FM
Erie WDDT-FM
Frankfort WDDT-FM
WDDT-FM
WDDT-FM
WDDT-FM
WDDT-FM
WDDT-FM
WDDT-FM
WDDT-FM

Pennsylvania
Philadelphia WIBS-FM
Pittsburgh WIKY-FM
Reading WQXW-FM
Scranton WQXW-FM
Wissahickon WQXW-FM

RADIO-ELECTRONICS needs more photos of service shops and service branches. We will pay $6.00 for each 8 x 10' inch glossy photo. A "don't dress up" your pictures, but take a bone-fide photo, preferably with men working.
<table>
<thead>
<tr>
<th>City</th>
<th>CALL</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cherry Valley</td>
<td>WBUJ-FM</td>
<td>91.9</td>
</tr>
<tr>
<td>Clarksville</td>
<td>WKXZ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Cuyahoga Park</td>
<td>WUSM-FM</td>
<td>135.3</td>
</tr>
<tr>
<td>Dayton</td>
<td>WOAP-FM</td>
<td>95.5</td>
</tr>
<tr>
<td>East Cleveland</td>
<td>WGAC-FM</td>
<td>97.1</td>
</tr>
<tr>
<td>Eastlake</td>
<td>WTXH-FM</td>
<td>104.7</td>
</tr>
<tr>
<td>Elmwood</td>
<td>WEXL-FM</td>
<td>104.3</td>
</tr>
<tr>
<td>Grafton</td>
<td>WJXL</td>
<td>98.1</td>
</tr>
<tr>
<td>Hamilton</td>
<td>WKJH-FM</td>
<td>101.3</td>
</tr>
<tr>
<td>Hamilton</td>
<td>WOAA-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Lima</td>
<td>WOAY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Lorain</td>
<td>WCUG</td>
<td>96.5</td>
</tr>
<tr>
<td>Middletown</td>
<td>WJRT-FM</td>
<td>91.7</td>
</tr>
<tr>
<td>Middletown</td>
<td>WJCI-FM</td>
<td>97.1</td>
</tr>
<tr>
<td>New Haven</td>
<td>WOAM-FM</td>
<td>97.5</td>
</tr>
<tr>
<td>New Haven</td>
<td>WUVO-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Oberlin</td>
<td>WOEX-FM</td>
<td>105.1</td>
</tr>
<tr>
<td>Oakley</td>
<td>WJIB-FM</td>
<td>107.3</td>
</tr>
<tr>
<td>Ogdensburg</td>
<td>WBOC</td>
<td>98.3</td>
</tr>
<tr>
<td>Parma</td>
<td>WOJC-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>South Euclid</td>
<td>WUWJ-FM</td>
<td>101.3</td>
</tr>
<tr>
<td>Westlake</td>
<td>WJON-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Westlake</td>
<td>WJAM-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Woodland Park</td>
<td>WWLL-FM</td>
<td>101.3</td>
</tr>
<tr>
<td>Wooster</td>
<td>WEPY</td>
<td>102.1</td>
</tr>
<tr>
<td>Wooster</td>
<td>WOAC</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJJA-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJAG-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJGM-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJMR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFV-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WKYX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WMYN-FM</td>
<td>100.5</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFO-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFZ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WQTR-FM</td>
<td>98.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWX-FM</td>
<td>101.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJYX-FM</td>
<td>100.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJFY-FM</td>
<td>107.1</td>
</tr>
<tr>
<td>Wyoming</td>
<td>WJWJ-FM</td>
<td>107.1</td>
</tr>
</tbody>
</table>
ABSOLUTELY NO KNOWLEDGE OF RADIO NECESSARY
YOU NEED NO ADDITIONAL PARTS!

THE PROGRESSIVE RADIO KIT IS THE ONLY COMPLETE KIT
that contains all components necessary to build a complete radio set.

SPECIAL FREE OFFER
Electrician and Radio Technician can assemble a complete radio set absolutely FREE with each 100% value kit. For further information write for FREEERSHIPS KIT.

WHERE RADIOMEN MEET, EAT and SLEEP
The Ideal Hotel for Rest and Relaxation. Beautiful Rooms \ Salt Water Baths Glass enclosed Sun Porches. Open Sun Decks. Dining Room. • Delicious Gourmet Cooking. • Highest Bona Fide Service.

PROGRESSIVE ELECTRONICS CO.
DEPT. RE-20 497 UNION AVE. BROOKLYN 11, N. Y.

HOW TO GET THE MOST
from only
BASIC TEST EQUIPMENT

SERVICING BY SIGNAL SUBSTITUTION

S-S-S tells HOW — in simple, direct language, FM-AM-TV.

We Pay Postage on Prepaid Orders

G.O.D. ORDERS SHIPPED COLLECT

ATTENTION RADIOMEN!!! Send for Your FREE DEALERS rated and Price List Today.

* RADIO KITS * AMPLIFIER KITS * FM COIL * CONDENSER KITS * RESISTOR KITS * TUNERS * PORTABLE RADIOS * RADIO KITS * RACK SETS * TELEVISION Selnors * FM TEST EQUIPMENT * FM TUNERS

Visit the FAMOUS Puenta LOUNGE Recognized for Fine Food

Atlantic City's Hotel of Distinction

OPEN ALL YEAR

Exclusive Pennsylvania Ave. and Boardwalk

RADIO-ELECTRONICS FOR

www.americanradiohistory.com
Selsyn Transmitter and Indicator

Price: $7.95

Antenna Mast Mount

Price: $4.95

Dynamotors—Inverters—Motors

Price: $2.95

Fair Radio Sales

Prepared for a Good Job Now in

Radio Television

F.M. - Electronics

Learn Quickly in the Great Shops of Coyne

Not a "Home Study" Course

Get ready for a better job, big as pay NOW in radio television. Cash in with "All-around" knowledge of Radio—Television. Train on actual equipment not by "Home Study." Visit your local Coyne, 2011 S. State Street, Chicago, Ill. for a complete list of courses, prices and how to register. Coyne Technical Institute, Chicago, Ill. 165.

Send coupon for free book

Send send at once for Big FREE Book on radio, television, F.M. - Electronics and facts about our Finance Plan.

Mail this coupon today

Coyne Electrical and Radio School

1705 South Main St., Lima, Ohio

Name

Street

City

State

Tiny Radio!

Red Indians no more. No talking, listening or eating of food allowed. Front office clowns and receptionists must have at least one piece of equipment ready to go on any contact. Please use phone. $6.95

Mall 1s C U P T O D A Y

Coyne Electrical and Radio School

500 S and Paulina St., Dept. 94, Chicago, Ill.

Send coupon for free book on radio, television, F.M. - Electronics and facts about our Finance Plan.
Transformer Scoops!

Transformers listed are t-tap type, upright mount.
Color coded leads. Brand name quantities are limited—no order now!

MA-3515—Power Transformer 500 VCT, 20 MA; 5V, 5A and 60V, 1A. 4.5V x 4 x 3.5. Regular List $19.75. No. 8, $19.05 ea.
MA-5253—Driver Transformer 90V-320 VAC. Hated 40 MA. Primary current 3A x 215 x 3. $37.75 value Mid-America's value price... $39 ea.
MA-2521—Plated Transformer 115 V, 6-cycle primary, 0.3V, 3A secondary. 3A x 25V x 3.5. New!...

Amazing FM Antenna

Model A-100 for use in home—eliminates trouble of external antenna. Tuned in line Monti with excellent signal gain. May be mounted on wall or ceiling, or, for better pickup, it should be mounted in window. Provides excellent reception, eliminates cables. $5.49 ea.

Standard Brand Electrolytic Condensers

50c each. 10 for $5.49
MA-852 16-16 mfd, 560 VDC...

Chokes and Transformers

MA-5326 16 henry, 50 MA, 150 ohm coils. $1.29
MA-5328 100 mVCT, 50 MA, .63V, .2A, .35. 2 transformers, half-shelf micro... 2.09
MA-1200 10 25 henry, 50 MA, 120 ohm coils...

Volume Controls with Switches

39c each. 10 for $3.49
MA-1141 100,000 ohm...

PM Speakers

MA-2223 3?, 1.47 ohm, Alnico...

TERRIFIC SAVINGS ON CERAMIC GRID CAPS

5¢ each to #100, 2X2 and other popular tubes. Made by a famous manufacturer. Previous list, 25¢. Get your share while the sale lasts at this unusual low price. MA-2234, 6 for 75c

ORDER FROM THIS AD

Quantities on above-listed items are strictly limited! You must act fast to make sure you get what you want. Pay balance plus post. Pay balance plus post on delivery. Get your name and address on Mid-America's order blank, enclose list (or group of items), list in catalogs is good. Postal orders and money orders only. No checks or cash. MA-2234, 6 for 75c

MID-AMERICA CO. Inc.
2412 S. Michigan Avenue
Chicago 16, Ill.

You Can't Match these MID-AMERICA Values!

Try This ne S-METER

I had a 0-10-ma meter which I wanted to use as an S-meter in an ordinary home receiver. The set used two 6K7's as i.f. amplifiers. Both cathodes were connected together and to ground. I inserted the meter between the cathodes and ground, as the diagram indicates. The 50-ohm rheostat is used for zero adjustment. The switch bypasses the meter and reconnects the cathodes directly to ground when no meter indication is desired.

If the i.f. tubes in your receiver have cathode-bias resistors, place the meter between their ground ends and ground. Be sure bypass condensers are grounded.

JOHN A. BISHOP,
Transvaal, South Africa

STARTING FLUORESCENTS

Here is a method for starting blown-out fluorescent lamps. Old lamps can be used indefinitely.

The burning out of the lamp means that one or both of the filaments has opened. The filaments heat the gas in the tube so that they will not need a higher starting voltage than is available from the 117-volt lines.

The drawing illustrates the method of starting lamps with open cathodes. An igniting coil and interrupter create a high-voltage a.c. This ionizes the gas sufficiently to allow the 117-volt line current to keep the tube lit. After the lamp is started, the coil can be removed.

DONALD G. BERLYER,
Ballarat, Australia

CRYSTAL HOLDER

A clip-type fuse holder for 3AG-size fuses makes an excellent holder for the negative terminal of the 1N21 or 1N27 silicon crystals which are available on the surplus market. A tube-pin clip from an octal wafer socket is a good connector for the positive end.

HARRY MANDEL,
Brooklyn, N. Y.

Chemical Containers

Many radio preparations, such as chassis cleaner, come in bottles without applicators. Clean out old liquid shoe polish bottles and put the solutions in them. The applicator furnished for the shoe polish can then be used for the chemicals.

WILLIAM MUESSIG, JR.
Aurora, Ore.
PRACTICAL DISC RECORDING

Answers Your Questions

PRACTICAL INFORMATION

Here is a book that thousands of radio enthusiasts have been waiting for:

- Whether you're interested in amateur or professional recording, you'll find PRACTICAL DISC RECORDING by Richard H. Dorf invaluable, not only tells you how to make successful records, but in addition each important recording component is given a full chapter, explaining its purpose, and what features to look for when buying.
- You'll like this book for many reasons. Without waste of words, it sets right down to business on the first page: It tells you what you need to make good records and how to do it by using any type equipment - from the simplest to the most expensive - depending on your purse and purposes.
- You will find all the practical phases of recording covered as well as the underlying principles.

FILLED WITH FACTS

Chapter 1 discusses the various components which make up the complete system. Chapters 2 to 5 go into the practical details of the selection and use of discs, motors and turntables, feed mechanisms and cutters. Chapter 6 is a comprehensive explanation of constant amplitude and constant velocity recording, the two fundamental recording characteristics on which all recording is based. Chapter 7 covers stile selection. In Chapter 8 the various models of recording telephones, radio tuners, etc. are discussed. A feature in the handy chart of characteristics of different types of microphones. Chapter 9 discusses the all-important amplifier, and describes several practical amplifiers are given. In Chapters 10 thru 13, you'll find described techniques of making good records. All the fine points of alignment, equalization, microphone placement and microphone technique, and a whole chapter on dubbing. Chapter 14 is a concise summary of common troubles in recording, and how to overcome them. The book ends with a comprehensive glossary of recording terms.

96 PAGES, 82 ILLUSTRATIONS

Only 75c

See your radio parts jobber today or order direct.

SPECIAL OFFER BELOW

- **CLIP AND MAIL**

RADCRAFT PUBLICATIONS, Inc.,
23 West Broadway, New York 7, N. Y.

- Send me PRACTICAL DISC RECORDING.
- I enclose 75c.

Your Name
(Print clearly)

Address

Jobber's Name

Address

DECEMBER, 1946

ALUMINUM DISCS

Every recordist uses some blank discs for making test cuts. Instead of throwing these away after use, why not use them, immerse them in hot water for several minutes, then peel off the recording lacquer. The shiny aluminum disc that emerges will be useful for making small chassis shields, and separators. The lady of the house will find them useful, too, for serving canapes or for use as coasters for plants and flower-pots.

John Anthony Tagliarino,
Union City, N. J.

PILOT LAMP FUSE

A shorted first filter condenser in a receiver power supply usually causes the rectifier tube to burn out, necessitating an expensive replacement. To prevent this, I place a pilot lamp in series with the rectifier cathode and the input to the filter.

In normal operation, the lamp will make a very good pilot. If the first filter (or any later component which is across the power supply) shorts, the excessive current drawn by the lamp will burn it out. It thus acts as a fuse, protecting the rectifier tube.

The lamp chosen should be a 6-volt one, with a current rating somewhat higher than the total current drawn by the receiver and filter (as determined with an ammeter), placed temporarily where the lamp will go.

Jean S. Bastin,
Ronce, Belgium

SPEAKER REPLACEMENT

The cone of the electrodynamic speaker in my table-model receiver was damaged beyond repair, and I wanted to use a PM speaker as the replacement.

I removed the field coil (with its core and housing) and output transformer from the old speaker, leaving all leads connected, and fastened the field coil under the chassis with solder.

The new PM was installed, and the output transformer mounted on it. I connected the new voice coil to the proper transformer terminals.

This avoided the necessity for procuring a new electrodynamic speaker, since the old field coil is still in the circuit, acting as a power-supply choke, just as it did before.

John R. Hooper,
Eastport, Me.

TRANSFORMER WINDING

When winding a transformer with small wire, it is usually quite a problem to keep the windings in place during the winding process. Masking tape will solve this problem. The tape is wrapped around the form, gummy side up, and each turn sticks to the tape.

Masking tape is also useful where the person winding the coil wants to stop in the middle of the job for any reason. The wire already wound will remain in place until the work is resumed.

John E. Kent,
Wayneboro, Va.
TRANSMITTING Mica CONDENSERS

SPECIAL LOW PRICES FOR IMMEDIATE SALE AND DELIVERY

We have literally hundreds of thousands of these top quality standard type transmitting mica condensers in stock for immediate delivery at a fraction of their original cost. Every condenser is brand new and carries the name of a fine nationally known manufacturer.

Despite the unusually low prices, these mica condensers, like all Wells Components, are fully guaranteed. Be sure to order sufficient quantities for your requirements.

<table>
<thead>
<tr>
<th>Cap Mfd</th>
<th>Wkg.</th>
<th>Price</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.005</td>
<td>1250</td>
<td>1.05</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>600</td>
<td>1.35</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>2500</td>
<td>1.50</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>1200</td>
<td>1.45</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>2500</td>
<td>1.60</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>1200</td>
<td>1.50</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>2500</td>
<td>1.50</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>1200</td>
<td>1.45</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>2500</td>
<td>1.45</td>
<td>.05</td>
</tr>
<tr>
<td>.005</td>
<td>1200</td>
<td>1.45</td>
<td>.05</td>
</tr>
</tbody>
</table>

This is only a partial listing. Write or wire for information on types not shown and for receiving set micas and silver micas.

We advise distributors to order immediately from this ad. Our standard jobber arrangement applies.

Manufacturers and Distributors: Write for our complete Mica Condenser Listing No. 102A.

WELLS SALES, INC.

320 N. LA SALLE ST. DEPT. Y, CHICAGO 10 ILL.
RADIO-ELECTRONICS for DECEMBER, 1948

www.americanradiohistory.com
ALUMINUM DISCS

Every recordist uses some blank discs for making test cuts. Instead of throwing these away after they are used, immerse them in hot water for several minutes, then peel off the recording lacquer. The shiny aluminum disc that emerges will be useful for making small chassis, shields, and separators. The lady of the house will find them useful, too, for serving canapes or for use as coasters for plants and flower-pots.

JOHN ANTHONY TAGLIABUE,
Union City, N. J.

PILOT LAMP FUSE

A shorted first filter condenser in a receiver power supply usually causes the rectifier tube to burn out. This prevents an expensive replacement. To prevent this, place a pilot lamp in series with the rectifier cathode and the input to the filter. In normal operation, the lamp will make a very good pilot. If the first filter (or any later component which is across the power supply) shorts, the excessive current drawn by the lamp will burn it out. It thus acts as a fuse, protecting the rectifier tube.

The lamp should be a 6-volt one, with a current rating somewhat higher than the total current drawn by the receiver and filter (as determined by an ammeter placed temporarily where the lamp will go).

JEAN S. BASTIN,
Rouen, Belgium

SPEAKER REPLACEMENT

The cone of the electrodynamic speaker in my table-model receiver was damaged beyond repair, and I wanted to use a PM speaker as the replacement. I removed the field coil (with its core and housing) and output transformer from the old speaker, leaving all leads connected, and fastened the field coil under the chassis with solder.

The new PM was installed, and the old output transformer mounted on it. I connected the new voice coil to the proper transformer terminals.

This avoided the necessity for procuring a new electrodynamic speaker, since the old field coil is still in the circuit, acting as a power-supply choke, just as it did before.

JOHN R. HOOPER,
Eastport, Me.

TRANSFORMER WINDING

When winding a transformer with small wire, it is usually quite a problem to keep the windings in place during the winding process. Masking tape will solve the problem. The tape is wrapped around the form, gum side up, and each turn sticks to the tape. Masking tape is also useful where the person winding the coil wants to stop in the middle of the job for any reason. The wire already wound will remain in place while the work is resumed.

JOHN E. KENT,
Waynesboro, Va.
RESISTOR KIT Assorted

SPECIAL OFFER—2,000 Resistors, $3.00 2,500 Resistors, $3.50 5,000 Resistors, $7.50 10,000 Resistors, $15.00

SHIELDED WIRE

50 ft. 60 ft. 75 ft. 100 ft.

- $2.25 $2.50 $3.00 $3.50

CONNS

- $0.65 $0.65 $0.65 $0.65

MICAS

- $0.85 $0.85 $0.85 $0.85

TUBES

- $1.00 $1.00 $1.00 $1.00

PAPER

- $0.60 $0.60 $0.60 $0.60

FREE

- $0.15 $0.15 $0.15 $0.15

FREE

- $1.00 $1.00 $1.00 $1.00

- $1.00 $1.00 $1.00 $1.00

FREE

- $1.00 $1.00 $1.00 $1.00

$2.00 min. order F.O.B. N.Y. Add postage 50c, deposit balance C.O.D. with order. Manufacturers inquiries invited. Send for Flyer. Prices subject to change without notice.

TECHNICAL RADIO PARTS CO.

MOVED TO LARGER QUARTERS

557 McDonald Ave., Brooklyn 18, N. Y.

Dept. RE-7
Dear Editor:

I think part of Mr. Zarattaro's trouble is in not having the station tuned in properly. If I don't have my FM receiver tuned right, automobile interference will break through; but correctly retuning the set cuts out interference. I am located right on a main highway where there is plenty of traffic. I listen for the between-station hiss when I tune my set. When the hiss is gone, I figure the station is tuned in properly. I tune in a station, not for the loudest, but for the clearest sound.

Frank C. Pierce, 3301 Bedford, Mass.

(Perfect discriminator alignment, as well as proper tuning, is necessary for exclusion of interference. This may explain some of the apparently contradictory results obtained by readers with similar equipment and in similar situations.—Editor)

WANTS CODE-STATION LIST

Dear Editor:
The September issue of Radio-Craft wins our approval for design and editorial content. We have been reading your magazine since the days of Modern Electrics. Many things have happened in radio since the time of the Electrical Experimenter and Duck's catalogue, but without Gernsback's leadership and foresight many of us old-timers (I have been in radio and electricity since 1908) in all probability would have been lost in the confusion.

I still copy code and would like to see a table of call letters of low-frequency commercial stations published in the magazine. What say?

Howard's Radio Hospital, Cleveland, Ohio.

(Any other readers interested in a list of commercial c.w. stations for code practice purposes?—Editor)

FM SERVICE INADEQUATE

Dear Editor:

As a long-time FM listener, I am certainly disappointed in the type of service FM is giving listeners. Too many stations in this area are giving forth with low fidelity, operating with low intermod power, or making no attempt to get on the air at all. As for high fidelity, only two stations out of about 25 I can receive even approach the 15,000-cycle standard.

FM receivers, too, lack high standards. I have tried many; most lack sensitivity and drift too much.

At present I am using a Heiseiner AM-FM tuner and a Hallcrafters SX-42. The antenna is a rotatable Vee-Dx on a 20-foot mast on the roof. Best dx I have gotten was about 260 miles. I find that dx is best from 10 pm on when the sky is overcast and the humidity low.

I prefer having FM stations listed by frequency instead of by call letters.

Thomas A. Irby, Boyertown, Pa.

DECEMBER, 1948

$1,000 A MONTH

That's what 2$500 of the many plunks in this book brings in over 1,000 a month, piledly, from radio stations alone. HOW TO MAKE MORE MONEY IN RADIO will be a must for any money-maker, and ideas it will suggest. Why work for wages? Why not become your own boss and make money? EVEN BEGINNERS can land one of the bigger stations. HOW OVER 100 A WEEK is for anybody from home. This book is making money for operators, station ... everywhere—U.S.A., Canada, Mexico, Philippines, and other countries. Letters of thanks are continually coming in.

AT LAST!
The real money-making FM radio service is given out in this book—book very helpful—fulfilling what has been requested by many operators looking for ideas, as or... —Best of his kind that have ever been printed, Bradford, E. Chicago, Indiana.

How to earn only a wad costs one of these books, Cleveland, Ohio.

2$995

Add 17% for freight charges.

MISSING PAGE: THIS PAGE WAS OMITTED FROM YOUR BOOK. ORDER A NEW COPY FROM THE STORES:

NEWNFORD CORP., 17-21 Fulton St., NEW YORK 9, N.Y.

MORT'S RADIO SHACK

Dept. RE-12

630 W. Randolph St., Chicago 6, Illinois
Here is the opportunity you have been waiting for. Now you can get in on the ground floor of the nation's fastest growing industry—TELEVISION.

LOOK AT THIS RECORD — In 1946 only 6,500 television sets were manufactured — in 1947 this skyrocketed to 175,000 — already in the first four months of 1948 over 160,000 sets have been produced. This means hundreds of new jobs are being created every month.

MSOE NOW ADDS TELEVISION — The Milwaukee School of Engineering now provides complete, practical, technical training in television as well as Radio in its laboratories. This is not just a serviceman's course. The special 18 month's residence course includes complete training in radio as well as television — qualifies you for a successful career as a technician in all phases, AM, FM, TV Receivers and Transmitters — Radio and Television Communications.

This Technician Course Prepares You For Any Of These Jobs:
Radio Servicing — AM and FM
TV receiver servicing
Broadcast Station Operating
Electronic Parts Sales
Radio and TV sales
Radio and TV servicing
Television Service
Supervising and testing in radio and TV manufacturing

Electrical Engineering
Bachelor of Science Degree
in 2 additional years
Majoring in ELECTRONICS

MILWAUKEE SCHOOL OF ENGINEERING
5 Technical Indpls. (Founded 1903)
Dept. RE-1248 N. Broadway, Milwaukee, Wis.

WANTED:
Men and Women to Fill TOP RADIO JOBS in AM—FM—Television
If you are looking for a career with a future, why not join the number of Graduates from the fine Radio School of Radio Arts now successfully employed in the radio industry. The demand is great for well qualified radio personnel in AM-FM-Television. Train now to be an announcer, writer, editor, disc jockey, news caster, or radio technician. Complete day and night classes, latest equipment, free placement service. Approved for veterans. Write for free booklet.

Don Martin School of Radio Arts
1615 North Clark Ave.
Hollywood 28, Calif.

RADIO COURSES
Preparatory, Service, Broadcast, Television, Marine Operating, Aeronautical, Frequency Modulation, Radar.
COMMERCIAL RADIO INSTITUTE
Founded 1920
58 West Riddle Street, Baltimore 1, Md.

RADIO and TELEVISION
Thorough Training in All Technical Fields
APPROVED FOR VETERANS
BRC INSTITUTES, INC.
A Service of Radio Corporation of America
550 West 4th Street, New York 14, N. Y.

TELEVISION 1948!!
Train at an Institute that pioneered in TELEVISION training since 1938. Morning, Afternoon or Evening Sessions in laboratory and theoretical instruction, under guidance of experts covering all phases of Radio, Frequency Modulation, Television, lead to opportunities in Industry, Broadcasting or own Business. Licensed by N. Y. State. Approved for Veterans.
ENROLL NOW FOR NEW CLASSES
Visit, Write or Phone
RADIO-TELEVISION
INSTITUTE
480 Lexington Ave., N.Y. 17 (46th St.)
Plaza 3-0585 2 blocks from Grand Central

LEARN RADIO!
IN ONLY 40 MONTHS PREPARE FOR A GOOD JOB!
COMMERCIAL OPERATOR (CODE) BROADCAST ENGINEER RADIO SERVICEMAN
Television Servicing—15 Months
Veterans get $126.00 Equipment
SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 Kutat Place, Dept. C, Baltimore 17, Md.

RADIO COURSES
SOUND RECORDING SCHOOL
A practical engineering course in Sound Fundamentals, Recording and Sound Transmission measurements; in a laboratory containing the latest equipment. Complete courses end generator and intermodulation analyzer, and other equipment. Approved for GI Bill of Rights.
HOLLYWOOD SOUND INSTITUTE, INC.
1040 S. No. Kenmore
Hollywood 27, Calif.
Dear Editor:

On page 58 of your August 14, 1948, issue, you note on substitution of the 6A5-G for the 6N6-G. The statement made in the 6N6 is "no longer available."

You may be interested to know that Hytron is manufacturing the 6N6-G for the industry — and has for several months been supplying the tube through its Hytron jobbers.

Harry G. Burnett,
Hytron Radio and Electronics Corp.
Salem, Mass.

(Fine! When are we going to hear about renewed production of the 6A5-G? There has been a tremendous popular demand for that tube during the past year.—Editor)

2. That the owner is: (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of all stockholders owning a 1 per cent or more of total amount of stock, if not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a firm, company, or other unincorporated association, its name and address, as well as those of each individual member, must be given.) Rader Pub. Co., 42 Park Ave., New York, N. Y.; L. H. Gernsback, 25 West Broadway, New York, N. Y.

3. That the known bondholders, mortgagees, and other security holders owning or holding 1 per cent or more of the total amount of bonds, mortgages, or other securities are: (If there are none, so state). None.

4. That the two paragraphs next above, giving the name and address of all stockholders and security holders, if any, contain not only the list of stockholders and security holders as they appear upon the books of the company and the state in which such stockholders and security holders appear upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting, is given; also that the said two paragraphs state statements embodying all the full knowledge and belief as to the circumstances and conditions under which all stockholders and security holders who do not appear upon such books of the company as trustees, hold stock and securities in a capacity other than that of owner, and that the publisher has no reason to believe that any other person, association, or corporation has any interest direct or indirect in the said securities or any other securities than as stated by him.

5. That the total number of copies of each issue of this publication sold or distributed through the mails, and otherwise, to paid subscribers during the twelve months preceding the date shown above, was 6200.

(Signature of editor, publisher, manager, or owner) H. Gernsback.

Sworn to and subscribed before me this 1st day of October, 1948, May Farhi, Notary Public, Seal.

(My commission expires, March 30, 1949)

December 14, 1948

Get Started in Radio

10 "HOW-TO-DO-IT" BOOKS

Get a solid foundation in radio buying with these practical, step-by-step guides. Each clearly written, pricefully illustrated manual contains enough information to make you an expert in your technical library. Your money back if not satisfied.

5 BOOKS for 50c
10 BOOKS for $1.00

Sent to You Postpaid

"FCC LICENSE TRAINING" - Four complete chapters of "FCC LICENSE TRAINING" to help you through the radio laws in a simple easy-to-understand manner. Includes "FCC LICENSE TRAINING" in 4 parts and "FCC LICENSE TRAINING" in 8 parts.

Send today for your free catalogs, supplements and illustrated hints and tips. About 25 pages each manual. Tells the inside story of an exciting new service method — also contains many valuable hints and tips for every radio-fancier. Send 30¢ stamp to cover handling.

Get Your Free Catalogs

"WHERE IN AMERICA TO BUY" is a wide variety of prices from 95¢ to 589.95. There's something for everybody at every price, yet — at prices they can't...money today!

New Technical Manuals FREE!

"The Inside Story" contains valuable hints and tips. This new complete illustrated 28-page technical manual tells the inside story of an exciting new service method — also contains many valuable hints and tips for every radio-fancier. Send 30¢ stamp to cover handling.

Announcing...

"FREE" MAGNETIC TAPE RECORDER

WRITE TODAY FOR YOUR FREE MAGNETIC TAPE RECORDER

WHICH MAGNETIC TAPE RECORDER IS BEST FOR YOU?

Your Playing Time... Cuts Your Tape Costs in Half...

"AMPLIFIER CORP. OF AMERICA"

358-10 BROADWAY
NEW YORK 13, N. Y.

WE ARE LOOKING FOR TUBES!

WHAT HAVE YOU GOT?

Interested in small or large quantities of all types of Transmitting, Industrial, and Receiving Tubes?

T. L. BLACK, WHOLESALE TUBE DIV.
NIAGARA RADIO SUPPLY CORP.
160 GREENWICH ST., NEW YORK 6, N. Y.

"POCKET TALKIE" TELEPHONE...

Receives and sends messages over miles or more — FITS IN YOUR POCKET! TELEPHONE. TELEGRAPH. RADIO. ANY TIME, ANYWHERE. ORDER TODAY. SEND $1.00! 100% REFUND IF NOT SATISFIED.

"PUBLIC MEETING" TELEPHONE...

FOR BOTH INDOOR AND OUTDOOR USE. SEND $1.00! 100% REFUND IF NOT SATISFIED.

"SKYWAGON RADIO"...

FOR BOTH INDOOR AND OUTDOOR USE. SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.

"RADIO STORE OPEN 24 HOURS A DAY..." SEND $1.00! 100% REFUND IF NOT SATISFIED.
This book is of major interest to designers and engineering students. Much of it is also worth-while reading for experimenters and persons working with specialized electronic equipment. —R.F.S.

This standard work needs little comment, except to report that it has been revised and modernized throughout. The second edition is 195 pages longer than the first. This increase appears throughout the book, each chapter containing more subject matter than its first-edition counterpart.

Two new chapters, "Underwater Sound" and "Supersonics and Ultrasonomics," have been added. Supersonic in this case refers to any sound of very great intensity.

The illustrations have also been revised and increased in number. Out of the 542 illustrations in the second edition, 145 are new ones.

TELEVISION SIMPLY EXPLAINED, by Maj. Ralph W. Hallock, Published by Chapman and Hall, Ltd., London. 5 1/2 x 8 1/4 inches, 198 pages, Price 9 shillings sixpence.

Major Hallock's genial style of writing and his facility for lucid explanation are familiar to Radio-Electronics readers. Both are apparent in this elementary television book. Much of the genuinity has been sacrificed, however, to compactness, since a complete explanation of the workings of television has been compressed into less than 200 pages.

Not a manual for technicians, the book was written to answer the layman's questions about picture transmission. Though the impression sometimes exists that laymen cannot understand any phase of electronics without long study, it is hard to see how a clearer, more readable explanation could be written. The author begins with a chapter entitled "Sound and the Eye" and carries the reader in logical sequence through every principal phase of television.

Perhaps it is the plentiful use of analogies that makes things so clear. Undoubtedly, large contribution was made by the author's self-discipline; though obviously thoroughly schooled in the subject, he allowed himself no assumptions of knowledge on the reader's part, but fearfully from beginning to end without an unfilled gap, reciting in a few places some of the simplest facts known to radiomen but which are not known to non-technical readers.

As a result, a reading of this book (a one- or two-evening project) will prove to be an excellent antidote for the feeling of wonderment existing in the minds of many members of the viewing public.

And technical men who have not previously worked with television will do well to begin their studies with this volume, using it to obtain a preliminary eagle's-eye view before settling down to more specialized study of the subject.

—R.H.D.
TRANSMITTING Mica CONDENSERS

SPECIAL LOW PRICES FOR IMMEDIATE SALE AND DELIVERY

We have literally hundreds of thousands of these top quality standard type transmitting mica condensers in stock for immediate delivery at a fraction of their original cost. Every condenser is brand new and carries the name of a fine nationally known manufacturer.

Despite the unusually low prices, these mica condensers, like all Wells Components, are fully guaranteed. Be sure to order sufficient quantities for your requirements.

This is only a partial listing. Write or wire for information on types not shown and for receiving set micas and silver micas.

STYLE "A" CONDENSERS

<table>
<thead>
<tr>
<th>Cap Mid</th>
<th>Wkgs.</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>2500</td>
<td>1.60</td>
</tr>
<tr>
<td>.025</td>
<td>6000</td>
<td>1.50</td>
</tr>
<tr>
<td>.005</td>
<td>3500</td>
<td>1.50</td>
</tr>
<tr>
<td>.0025</td>
<td>1200</td>
<td>1.40</td>
</tr>
</tbody>
</table>

STYLE "B" CONDENSERS

<table>
<thead>
<tr>
<th>Cap Mid</th>
<th>Wkgs.</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000425</td>
<td>5100</td>
<td>.80</td>
</tr>
<tr>
<td>.000475</td>
<td>3000</td>
<td>.75</td>
</tr>
<tr>
<td>.000525</td>
<td>1140</td>
<td>.70</td>
</tr>
</tbody>
</table>

STYLE "C" CONDENSERS

<table>
<thead>
<tr>
<th>Cap Mid</th>
<th>Wkgs.</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000625</td>
<td>3000</td>
<td>.65</td>
</tr>
<tr>
<td>.000675</td>
<td>1500</td>
<td>.65</td>
</tr>
<tr>
<td>.000725</td>
<td>750</td>
<td>.65</td>
</tr>
</tbody>
</table>

STYLE "D" CONDENSERS

<table>
<thead>
<tr>
<th>Cap Mid</th>
<th>Wkgs.</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0004</td>
<td>600</td>
<td>.20</td>
</tr>
<tr>
<td>.0005</td>
<td>600</td>
<td>.20</td>
</tr>
<tr>
<td>.0006</td>
<td>600</td>
<td>.20</td>
</tr>
<tr>
<td>.0007</td>
<td>600</td>
<td>.20</td>
</tr>
</tbody>
</table>

Wells SALES, INC.

320 N. LA SALLE ST. DEPT. Y, CHICAGO 10 ILL.

RADIO-ELECTRONICS for DECEMBER, 1948

Manufacturers and Distributors: Write for our complete Mica Condenser Listing No. 103A.

www.americanradiohistory.com
Get Acquainted with the Little Fellow with the BIG Advantages

The All New Mallory Midgetrol

Offers These BIG Advantages...

BIGGER MARKET
SIMPLER INSTALLATION
SIMPLER STOCKING

The small size of the Mallory Midgetrol lets you service portables, auto radios and small AC-DC receivers which require 15/16" controls.

The unique shaft design of the Mallory Midgetrol saves installation time with all types of knobs.

Electrical characteristics let you use the Mallory Midgetrol to replace 1/8" as well as 15/16" controls. Stocks are further reduced because no special shafts are needed.

Both mechanically and electrically, the Mallory Midgetrol is amazingly quiet. Tests prove it stays quiet! And the Mallory Midgetrol offers nine all new features.

It's the NEW Standard in Carbon Controls. See your Mallory distributor.

- NEW SIZE
- NEW DESIGN
- NEW SHAFT
- NEW EXTENSION
- NEW SWITCH
- NEW ELEMENT
- NEW CONTACT
- NEW TERMINAL
- NEW TWO-POINT SUSPENSION

P. R. MALLORY & CO., Inc., INDIANAPOLIS 6, INDIANA

www.americanradiohistory.com
Push RCA Tubes and Watch Your Business Grow!

Sell more service... sell more RCA tubes... by displaying this dramatic 8-color, 22" x 28" girl poster.

In miniatures... it's RCA!

The trend is to more miniatures... in midget and auto sets... FM and TV receivers... commercial and industrial equipment.

Whether miniature, or metal, or glass... RCA provides you with the greatest line of tubes to sell... and the outstanding line of sales promotion displays to help you sell them.

When you push RCA tubes you're selling the brand that holds No. 1 customer acceptance. RCA tubes help your business grow because they build store traffic... lead customers to count on you for all their radio needs.

So... Push RCA Tubes and watch your business grow! For full details on sales promotion displays, see your local RCA Tube Distributor today.

The Fountainhead of Modern Tube Development is RCA

Tube Department
Radio Corporation of America
Harrison, N. J.