


## ELIMINATE the VARIABLES

 in Television Installation with the TRANSVISION FIELD STRENGTH METER IMPROVES INSTALLATIONS!! SAVES $\mathbf{1} / \mathbf{2}$ THE WORK!!Has numerous features and advantages, including-(1) Measures actual picture signal strength . . . (2) Permits octual picture signal measurements without the use of a complete talevision set . . . (3) Antenna orientation can be dane exactly (4) Measures losses or gain af various antenna and lead-in combinatians .... (5) Useful for checking receiver re-radiation (local osciltator) $\therefore(6) 12$ CHANNEL SELECTOR... (7) Amplitudes of interfering signals can be checked . . . (8) Weighs only 5 lbs.... (9) Individually calibrated
(10) Housed in ottractive metal carrying case . . . (11) Initial cost of this unit is covered after only 3 or 4 installations (12) Operates on $110 \mathrm{~V}, 60$ Cycles. A.C. Model FSM-1, with tubes..... Net $\$ 99.50$


NEW LOW PRICE
TRANSVISION ALL.CHANNEL TELEVISION BOOSTER CONTINUOUS TUNING
To assure television reception in weak signal areas, or areas which are out of range af certain broadcasting statians, Tpansvision engineers have designed this new baaster. It increases signal strength on all television channels. Tunes all television channels con. tinuously. Can be used with any type of tele. vision receiver. Unusually high gain in upper television channels.
Model B.I
List \$32.50


DuMont TV-FM INPUTUNER
The finest TV.FM Tuner on the market today! Distributed exclusively by Transvision.

- Covers all 12 chonnels, entire FM range.
- Continuously tunes from 44 to 218 mc withaut o break. Reavires no bond switching for funina from channel to channel.

Model IT-I
Lisł \$59.95

## TRANSVISION ALL-ANGLE LENSES for ALL TV SETS

Give picture sizes up to 150 sa . in. Exclusive pat* ented feoture makes image visible from wide angle. Lenses come with adopter for installation on ANY $7^{\prime \prime}$ of $10^{\prime \prime}$ picture tube. and with color kits.
All.Angle Lens for $7^{\prime \prime \prime}$ fubes (gives 75 sa. in. Picture) $\$ 25.95$. All-Angle Lens for $10^{\circ \prime}$ tubes (gives 150 sa . in. picture) $\$ 37.50$.

$$
\text { For } 121 / 2^{\prime \prime} \text { tubes, } \$ 49.50
$$



> GET IMTO the TV BUSIMESS In a BIG WAY with the TRAMSVISION DEALER PLAN

> WRITE FOR FOLDER D.I


TELEVISION and FM SWEEP SIGNAL GENERATOR
Complete freauency coveraqe from 0.227 MC with no band switchina.... Sweed width from 0.12 MC, completely variable. . Accurately calibrated OUTSTANDING FEATURES: (1) Freauency ranqe from 0.227 MC...(2) Dial calibrated in frequency from (3) Sweep width from 0.12 MC completely variable. . (4) Selt-contained markers readable generator required to brov de the marker sianals) ... (5) Ciystal controlled output makes possible any crystal contralled freauency from 5.230 MC . stoge alianment...(7) Output impedance 5-125 ohms . . (8) Directly calibrated markers, 2030 MC for trap, sound and video IF alignment. (9) RF for alignment of traps for If channels when a DC voltmeter is used as the indicatina medium. (10) Unmodulated RF sianal ta provide morker DiDs simultaneously with the main variable oscillator . (II) Markers can be controlled as to oupput strenath in the pib oscilinio.... (IZ) Power leakoge (13) Atl active thes are the new mod. єrn riniature pype. (14) Phasina control in corcoroted in the qererator. . . (15) Operates on 110 V .60 Cveles. AC.

REMOTE CONTROL UNIT
OPERATES ANY TELEVISION SET from a DISTANCE up to 50 feet.


Model TRCU Remote Control Unit, foctory pre wired and tested, with 25 -ft. cahle.... .
Also ovalable without cobinet ...........
$\mathbf{\$ 6 9 . 0 0}$
$\mathbf{8 5 . 0 0}$

## IF YOU ARE NOT NEAR <br> A TRANSVISION OUTLET <br> USE THIS COUPON

MAIL TO: TRANSVISION, INC., NEW ROCHELLE, N. Y.
Pleose ship the following Transvision Products THROUGH YOUR NEAREST LOCAL OUTLET:-

I am enclosing 10\% DEPOSIT in the amount of $\$$ $\qquad$ bolonce C.O.D.
( ) I wont to get into the Talevision Businass. Send me detoils of vour Deoler Plan.
Name
(pleose print) City \& Zone

Address


# RNDE - 

formerly RADIO-CRAFT

short wave crast.

RADIO \& TELEVISION


| Circulation Manager | Business Manager |
| :---: | :---: |
| G. Aliquo | Charles K. Brett |
| Sales Managers | Promotion Manager |
| Jhn J. Lamson | Alfred Stern |
| Lee Robinson |  |

## Confents

 Alfred SternHugo Gernsback, Editor-in-Chief
Fred Shunaman, Western Editor
M. Harvey Gernsback, Consulting Editor Robert F. Scott, W2PWG, Technical Editor R. H. Dorf, W2QMI, Associate Editor I. Queen, W2OUX, Editorial Associate Angie Pascale, Production Manager
Elmer Fulier, Shortwave Editor
Wm. Lyon McLaughlin,
 original by Avery Slack. See article on page 32

[^0]Editorial (Page 19)
Whither Rodio
Television News (Pages 20-31)
Electronic Magic
USAF Shows Off its Television
Television Helps Astronomy
Antennas for Television, Part V
Antennas for Television,
Pedro's Temporary Cure
Ignition Interference to FM and Television
New Design (Pages 32-33)
The Radio Hat (cover Feature)
Electronics (Pages 34-36)
Electronics in Medicine. Part VIII
Theory and Engineering (Pages 37-39)
Microwaves. Part II
Servicing (Pages 40.49)
How to Repair a Hommond Solovox
Servicing Intermittents
Legal Rights of Radio Technicians
Heat Reduction in Midget Sets
Specialize for Increased Profits
Construction (Poges 50.51)
Electronic Metronome has Neon-Lamp Time Indicator
Amateur (Pages 52.56)
Mobile 10 -Meter Rig
A New Low-Cost Transmitter
Test Instruments (Pages 57-61)
Carvalyzer Services Auto Radios
Combinotion Instruments Meosures
Audio (Pages 62.67)
Versatile Amplifier for 6 or 117 Volts
Observation on TV.Sound
Designing Push-Pull Amplifiers
Foreign News (Pages 70-71)
European Report

## Departments



ON THE COVER: The Rodio Hat, posed by Hope Lange. From on Ektachrome
by Hugo Gernsback
by H.W. Secor 20
by B. W. Southwell 23
by William Rhodes 24
by M. Noll and Mott Mand 26
by Guy Slaughter 28
by Jahn B. Ledbetter 30
by Eugene Thompson 3
by C. W. Palmer 37
by Homer L. Davidson 40
.by John B. Ledbetter 42 by Leo T. Porker 44 by John T. Bailey 46
by Matt Mondl 48
by O. A. Coppens 50
by Poul M. Kersten, WØWIT 52
by Carlton G. Rich. W8ZYG 54
by S. H. Covington, Jr. 57
by B. J, Cederqvist, OH2NL 60
by Paul W. Streeter 62
by Richard H. Dorf 64
by David Fidelman 65
by Mojor Ralph W. Hallows 70
The Radio Month
10
Radio Business
New Devices
Miscellony
People
Communicotions
$\qquad$
97

## Spracte PHENOLIC-MOLDED

## THLECAP* TUBULARS

- Extra Dependability at No Extra Cost
- Withstand Heat and Humidity, Shock and Vibration
- High Insulation Resistance
- High Dielectric Strength
- Unequalled for Sizzling AC-DC Midgets, or "Hot" TV and Auto Sets.
See Your Jobber Today !


## SPRAGUE PRODUCTS CO.

North Adams, Mass.
*Trademark
The Success Story of Bill Smith... OR YOU!

Mails coupon to National Schools in Los Angeles, and receives Free Lesson and book of information about Radlo, Television and Electronics training.


Enrolls...studies in spare time. Finds personal attention from instructors, interesting material and practical equip-


Applies for-and GETS-a good pay, full time job in industry. Finds that employers know Natlonal Schools and


Builds actual units as part of Course. Earns money doing spare time repair and installation work.


Or he opens own profitable Service Shop, with valuable counsel and aid from National Schools. Now for real happiness and success!

Completes Course and receives Diploma
$\ldots$ is now a qualified Radlo. Television and Electronics Technician.
 $2 \pi$

# morado, tilivision 

 and ELECTRONICS by NATIONAL SCHOOLS SHome menioin
## THIS PRACTICAL, TECHNICAL RESIDENT TRADE SCHOOL TRAINS YOU AT HOME FOR BIG RADIO OPPORTUNITIES!

- Never in history has such rapid progress been made as in the great Radio. Television and Electronics Industry today! This exciting, fast-moving development means new and greater opportunities for the trained, skilled man for you-in Television and Radio Broadcasting, Installing, Servicing in Frequency Modulation; in Applied Electronics in many industries; in a business of your own!
Natioral Home Training is Practical Your National Schools Course fully covers basic, advanced and specialized instruction in all phases, including basic radio principles. receivers, am-
plifier systems, transmitters, television, aviation radio, electronics. You Sion, aviation radio electronics. You get complete instruction material, in-
cluding shop manual, tube manual, job sheets, radio dictionary, special laboratory experiment lessons. experimental equipment. You receive complete, modern television lesson texts.
Your Home Study is supervised by our staff of highly trained instructors who daily teach our resident students here. Let the Free Books shown below tell you more about National Home Training. Use coulon today!

```
APPROVED
    FOR
                                    VETERANS
```


## NATIONAL SCHOOLS

 experiment lessons to guide your practical exercises with your equipment. These lessons have been prepared with a special technique of illustrating radio principles by numerous easy-tounderstand examples.Both Resident and Home Study Courses Offered
Send Coupon Today for These Two Valuable Free Books

Professional Multitester Included!
This portable instrument isee right) enables you to perform many practical tests, make delicate adjustments and do service work. Complete with test leads.
You receive a series of special laboratory


You Build This Superheterodyne Receiver With Ports We Send
You receive complete standard equipment, including latest type High-mu Tubes, for bullding various experess step by step until you build a complete Superheterodyne Receiver. It is yours to use and keep.
$\qquad$

LOS ANGELES 37. CALIF. EST. 1905 IMil Wf: firm



OUTPUT TRANSFORMER HIGH FIDELITY 20-20,000 C.P.
SCOOP PRICE
S6.95 EACH



 Genernal ELECTRIC $\quad \$ \mathbf{8 5}$
GARIABLE RELUCTANCE
CARTRIGE
$\qquad$
CAPE HART $\$ 19.95$ 2.POST AUTOMATIC RECORD







KIT MODEL X-45 KIT MODEL DE-6 \$14.95 S6.95


HALLICRAFTERS S-56
Wio sull


COMPLETE RADIO KITS S6.95 UP


## ST. GEORGE WIRE

 RECORDER MECHANISM A $\$ 45.00$ VALUEFOR ONLY $\$ 9 \mathbf{4 5}$

MAJESTIC RADIO CHASSIS AND WIRE RECORDER \$49.95
RADIO CHASSIS $6 \times 5 \times 11^{\prime \prime}$ OSC- $5 \times 5 \times 5$ " $7^{\prime \prime}$ SLIDE RULE DIAL
$\qquad$


# TV Offers YOU Good Pay, Security and Bright Future 

## CREI On-the-Job Iraining Can Give You the Technical Ability to Step Ahead of Competition and Get the Better Job You Want

GET IN and get ahead in Television! You can make your own opportunity if you start preparing now. No need to tell you how fast Television is expanding-or, of the great number of jobs that are being created. One of industry's leaders predicts: I Million Persons in TV within 4 Years! He estimates 12 Million TV sets by 1953-40 Million by 1958.

If you are now in radio, and wish to get in Television, CREI offers the very training you need to go after-and geta good TV job.
CREI can show you the way with convenient spare-time study at home that gives you the up-to-date technical background and understanding you must have for Television. CREl courses are designed to give you a thorough grounding in basic principles and take you step-hy-step through the more advanced subjects of TV and its related fields. It must
VETERANS: CREI TRAINING AVAILABLE UNDER G.I. BILL. FOR MOST VETERANS JULY 25, 1951, IS The deadline - act now! If you have had professional or amateur radio exberience and want to make more money, let us prove to you we have the training you need to clualify for a better radio job. To help us answer intelligently your inquiry-please stale briefly your bachoround of experience, cducation and present position.

## Capitol Radio Engineering Instifute

An Accredited Technical Institute Founded in 1927
Dept. 148-A, 16th and Park Road, N. W., Washington 10, D. C. Branch Offles: New York (7) 170 Broadway • San Franclise (2) 760 Market St.
be remembered that all new electronic developments have their roots in past techniques. That's why your own radio experience is so important and worth while when coupled with modern CREI training. You will find CREI basic and helpful right from the start. You will learn about and understand such subjects as: Optics, Pulse Techniques, Deflection Circuits: RF, IF, AF and Video Amplifiers; FM, Receiving Antennas; Power Supplies; Cathode Ray, Iconoscope, Image Orthicon and Projection Tubes; LHF Techniques, Television Test Equipment, etc.

Don't wait another day. Television won't wait for you. In all our 22 years of association with professional radiomen we know that the man who acts promply is the man who succeeds. The facts about CREI, our courses. and what we can do for you, are described in our 32-page booklet. It is well worth reading. Send for it now.

## MAIL COUPON FOR FREE BOOKLET

[^1]$\square$ I AM ENTITLED TO TRAMNIMG UNDEA C . I. EILt.

## HOWARD W. SAMS presente the authoritative new book 

## "The Recording and Reproduction of SOUND" The first complete reference book that gives the right answers on all phases of Sound

Now you can own the book thousands have asked for-the book they got a taste of in the representative chapters which ran in radio \& television news during 1948. Now brought up to the minute-complete - the one-volume answer to the great demand for a reliable, understandable, full discussion of the theory and methods used in the recording and reproduction of Sound. Absolutely essential to everyone interested in any or all phases of Sound-for a complete, unbiased explanation that gives you a thorough understanding of the entire subject.

## Absolutely Invaluable References

a PARTIAL LIST OF COMTENTS:
Behavior of Sound Waves-History of Sound.
Basic Recording Methods: Film, Disc, Wire, Tape, etc. Magnetic and Crystal cutters. Magnetic recording methods on wire, tape and coated materials. Magnetic tape recorders.
Microphones-Types and applications.
Pickups-Types and applications. Phono pickup tracking error.
Stylii-Selection and use.
Microgroove and LP records.
The Decibel simplified.
Loudspeakers and enclosures. Dividing networks.
Amplifiers-complete analysis of types and applications. Dynamic noise suppression. Tone controls, equalizers, and attenuators. Performance and testing of amplifiers.
PLUS HUNDREDS OF OTHER SUBJECTSA "MUST" FOR EVERYONE INTERESTED IN THE RECORDING AND REPRODUCTION OF SOUND!
304 PAGES
180 ILLUSTRATIONS
$6 \times 9$ 9", CLOTH BINDING
only $\$ 500$
howard w. SAMS a co., inc.
INDIANAPOLIS I, INDIANA

## Have the Answers to Questions like These

Do you know how to select the proper recorder for your purposes? Do you know how to get the most out of your recorder? Can you select the proper amplifier for a given application? Want to know how to test amplifier performance? Which to use-crystal or magnetic pick. up? Do you know how to utilize inverse feedback, ex. panders and compressors? The answers to these and hundreds of other vital questions are given authoritatively by Oliver Read. His easy-to-understand treatment takes the mystery out of the subject; his facts are based largely on actual laboratory experience. No other single volume brings you this vast wealth of reliable information. This book belongs in your library!

## PUBLICATION DATE: MAY 15

## ORDER YOUR COPY TODAY!

## HOWARD W. SAMS \& CO., INC.

955 N. Rural St., Indianapolis 1, Ind.

I $\square$ Send me Oliver Read's "Recording and Reproduction of Sound." $\$ 5$ per copy. $\square$ Check Enclosed $\square$ Ship C.O.D. $\underbrace{$|  for the  |
| :---: |
|  first  |
|  purchasers!  |$|}_{\text {f-R }}$

$\qquad$
Address

 ment. D. T. I's new labora. tories are armang the finest of their kind. Ample instructors ... every major training advanlage. Write for delails!

## EMPLOYMENT SERVICE

When you complete your training, our effective Employment Service is available to you without extro cosi-ma grand aid oo help you get started.
 about the many other thrilling opportunities in FM Radio... Aviation and Broadcast Radio ... 2. Way Taxi, Truck and Police Radio . . . Industrial Electronics. . . even the chance to start your own profitable Television-Radio Sales and Service business. And to top it all, you'll see that you don't need to know a thing about this subject at present-that NOW you can get the very training and starting help you need by means of our GREATEST OFFER IN 17 YEARS.

## Send for FREE Information

See HOW-in your own home-DeForest's Training, Inc., now brings you one of today's most complete combinations of major home training aids. You (1) Learn-by-Reading from well-illustrated lessons. (2) You Learn-by-Seeing from D.T.I.'s exclusive instrucrive Home Mosies. And (3), you set up your own HOME LABORATORY where you Learn-by-Doing from 16 shipments of Radio-Electronic parts which you use and KEEP to work over 300 instructive ...fascinating projects. This includes building the valuable 6 tube "Superhet" RADIO and the commercial-type OSCILLO. SCOPE, R-F SIGNAL GENERATOR, and JewelBearing MULTIMETER, pictured at the right.

You may use this test equipment to help you earn real money-both in your spare time and later when working full time in the field. Get complete facts. Mail coupon today!
D. T. I., alone, includes the use of one of todoy's most effective training alds MOVIES... to help you learn imporianl fundamentals faster, easier, at home. What an advantage to see elec fascinating "hidden actian" - a remarkable home raining advantage that speeds your progress.


YOU BUILD and KEEP THIS EQUIPMENT TO WORK OVER 300 HOME EXPERIMENTS



Sparkling new Telekis $10-8$ has 52 .inch screen, Brand new compact loy-out has video fube mounted on chassis. Big illustraled eosy-to-follow instruction book guides yau step by step through easy assembly. No special knowledge of television is required. All you need is a soldering iron. pliers, and screw driver. Telekir 10-8, $\$ 88.99$ Tube kis, including 10BP4 and all other tubes,
$\$ 59.30$. 10.8 Telekit cabinet $\$ 24.50$. Telekit $\begin{array}{ll}\$ 59.30 . & 10.8 \text { Telekis cabinet } \$ 24.50 \\ \text { Guarantee includes free foctory service. }\end{array}$ Guarantee includes free foctory service.
New 7 . for catalog listing 10.8 kit, including $7 \mathrm{JP4}, \mathbf{5 4 2 . 0 8}$. 7.8 cabinet, $\$ 24.50$


Note simple clean lay-out for easy assembly of new Telekit 10-B. Feotures 2 sound I F stages, o new pre-built, pre-aligned tuner that includes a stage of R. F. for distance reception. Easy-to-adjust horizontal lock circuits. Beoutiful new model cobinets for $7-\mathrm{B}$ and $10-\mathrm{B}$ are heovily constructed of hand rubbed walnut.


NEW 13 CMANNEL TUNER is o small compact unit with stogo of R.F. Made to conform with Telekit or any ather TV set hoving videa I.F. of 25.75 Mc. Complete with lubes, pre.wired, pro oligned; only three connections to make. See your iobber, or write to us for information. Your cost, $\$ 19.95$.
Write for cotalog of Telekit ontennos, boosters television kits, tuners, television ports and tubes.

TELEVISION IN BARS may not be as common in the future as it is now, according to New Jersey tavern keepers. Some Jersey bars are removing their sets as a bad investment. The tavern owners report that many drinkers like a quieter atmosphere, that fewer drinks are bought while programs are on, and that some customers leave immediately after their favorite programs. In addition, non-paying "customers" keep drinkers from the bar and patrons argue over which program to watch. As graphic proof of the trend, many tavern ads appearing in local newspapers say "No Television."

MOVIES AND TELEVISION are so closely allied, in the opinion of members of the Society of Motion Picture Engineers, that a proposal was made last month to change the name of the organization to Society of Motion Picture and Television Engineers.

SCIENCE WRITERS were invited last month to try for the $\$ 1,000$ AAASGeorge Westinghouse Science Writing award offered by the American Association for the Advancement of Science. The award will be presented on September 28th to the writer who has written the best article explaining a scientific subject to the American public. Stories entered must have been published between August, 1948, and September, 1949. Information and entry blanks can be obtained by writing to the Chairman, Managing Committee, AAAS-George Westinghouse Science Writing Awards, 1515 Massachusetts Ave., N.W., Washington 5, D. C.

KINESCOPE RECORDINGS made by NBC total more footage on an annual basis than all the films put out by the Hollywood motion picture producers, Carleton D. Smith, director of NBC television operations, revealed last month. Total output by the major picture producers was 369 features or 550 hours in 1948. NBC, he said, is producing almost 700 hours a year. An average of 223 prints a week are shipped by the network to stations throughout the country.

VHF TV CHANNELS will remain in use to serve audiences in large cities, Dr. Allen B. Du Mont predicted last month. Even after the u.h.f. bands are utilized, the present 12 channels will remain in use, avoiding obsolescence of present sets. The new frequencies will certainly be allotted in areas not now covered by standard-frequency television transmitters. He pointed out that sufficient power cannot now be generated in the $500-900-\mathrm{mc}$ region for largearea coverage.

MOVIES, RADIO, AND VIDEO will be combined in a new home-entertainment instrument soon to go into production, Fred C. Forney, inventor of the unit, announced last month. Called Tel-a-see, the single cabinet will contain radio and television chassis plus a film projector which will hold enough fireproof film for a two-hour showing.

AUSTRALIAN TELEVISION may be a reality within the next three years. Postmaster - General Senator Donald Cameron announced last month that Australia is planning a national TV service to include the most modern facilities available. The Government regards video as important to defense and training of the armed forces as well as for broadcasting. The first station will be erected in Sydney at an estimated cost of $\$ 1,280,000$.

TRANSIT RADIO, which arranges for FM programs to be heard in buses and street cars, is now in operation in 14 cities and one suburb: Covington, Cincinnati, St. Louis, Wilkes-Barre, Houston, Topeka, Allentown, Pa., Huntington, W. Va., Tacoma, Wash., Evansville, Ill., Kansas City, Mo., Des Moines, Washington, Worcester, Mass., and Bradbury Heights, Md.

MAGNETIC RECORDING is able to produce movie sound tracks of excellent quality, John G. Frayne and Halley Wolfe told the Society of Motion Picture Engineers at their recent convention. An experimental recorder was made by revising a standard Western Electric machine intended for optical recording. Sound tracks made at the standard speed ( 18 inches per second) had excellent frequency response characteristics and were practically free from flutter.
A standard theater-type sound reproducer, modified to operate with either optical or magnetic sound tracks, showed "an excellence of quality unsurpassed in any previously known recording system." The complete absence of background noise is possibly the most striking feature of the system, and "lends an air of reality to the reproduced sound that makes it indistinguishable from direct monitoring of the original pickup."

BOOSTER TRANSMITTERS may be used eventually by television stations to provide coverage of nearby small towns and fringe areas. This was revealed last month by Mark Woods, president of the American Broadcasting Company. Paper work to iron out the problems of such installations has been going on for some time, Mr. Woods said, but a policy decision will be required from the FCC before work is begun.

CITIZENS RADIO SERVICE is removed from experimental status as of June 1 and regular licenses will be issued. Under FCC rules, any U. S. citizen who is 18 years of age or older may obtain a license for the $460-470-\mathrm{mc}$ band without technical knowledge. Only FCC-approved-type equipment may be used, that is, transceivers purchased from manufacturers whose models have been tested and approved by the FCC.

TV IN CARS OR TRAINS will be forbidden under penalty of $\$ 1,000$ fine in Connecticut if a bill introduced in the state legislature by Rep. Louis A. Lemaire, Jr ., is passed.

BALLOON is used by RCA engineer's to determine the best placement for television transmitting antennas, it was reported last month. It carries a high-peak-power pulse transmitter and is raised to the height of the projected tower by means of a windlass. Reception at a number of points in the service area is evaluated with a mobile unit consisting of a receiver, signal generator, scope, and extension mast with dipole.


## FEDERAL TRADE COMMISSION

 last month reported that nearly all radio manufacturers are now telling the public the truth about the number of tubes in receivers. Under a rule laid down in 1933 it is an unfair trade practice for a manufacturer to pad the tube count by including dummy or fake tubes or those which perform no useful function. In 1947 a Commission interpretation included rectifiers among tubes which should not be included in the count. Closing a two-vear investigation of the industry, the FTC said, "Virtually the entire industry . . . has not only pledged compliance with the rule but has furnished proof of compliance."RADIO RANKS FIRST on the list of leisure activities, atecording to an announcement in Forture last month of the results of a rationwide poll conducted by Dr. Elmo Roper. Asked to indicate which of a list of leisure-time activities was their favorite, $51 \%$ of those polled designated radio listening. Ranking second, but far behind, was spectator sports $(26 \%)$, followed by visiting and sports participation ( $23 \%$ each), and card playing and moviegroing ( $20 \%$ each).

TELEVISION jobs will number $\mathbf{9 5 0 , 0 0 0}$ in 1953, predicted Ir. Allen B. Du Mont last month. TV will have become a $\$ 7$ billion industry by then, Dr. Du Mont thinks, and nearly a million people will be employed in technical (manufacturing. servicing, and station-operation) positions and in program production.

TV ANTENNAS were officially noted last month by the city of Rochester, N. Y.. which adopted an amendment to the municipal code relating to roof stıuctures. The amendment provides that television antenna structures not over 16 feet in height may be crected on the roof of a building without a building permit as long as the antenna is set back from any edge of the building which comes within 16 feet of the lot line by an amount at least equal to the antenna's height. To comply with the regulations, antennas must be solidly built, rigidly mounted, fireproof, and must be correctly grounded.

## PULSE CODE MODULATION has

 been successfuly applied to television, W. M. Goodall of Bell Telephone Laboratories reported to the IRE last month. First demonstrated by Bell two years ago as a means for transmitting multiplex telephone signals, a telephone sampling rate of 8,000 times per second had to be raised to $10,000,000$ times per second for television. Output of TV pulses is $50,000,000$ per second (five channels).With PCM, poor signals become, in effect, good ones. At repeater stations. the equipment does not pass along the signals it receives but new, entirely noise- and distortion-free ones which are exact representations of the original.

A great deal of additional study is necessary before PCM can become a commercial reality.

CANADIAN TELEVISION should begin in 1950 , according to a report last month by the Toronto Star. Progress has been made by the Canadian Broadcasting Corporation in discussions with commercial groups, and technical decisions are expected shortly.

NEW GUN developed by the armed forces for anti-aircraft and anti-tank use will not fire on a friendly tank or ${ }^{\text {r }}$ plane but only on an enemy. Electronic controls identify the target, according to a statement last month by Leighton H. Peebles, electronics production chief for the National Security Resources Board.
Though no details on the new "skysweeper," as the weapon is called, were released its controls are presumably actuated by automatic responses to radar challenges, possibly in much the same way as IFF was used during the last war. The new device thus apparently eliminates the human factor (plane crews sometimes forgot to turn on the IFF equipment).
Peebles said that the new gun could be sighted and the trigger pulled all day-but it would fire only when enemy planes and tanks are targets.

TELEVISION NETWORK cities will increase by 13 in 1949, AT \& T's Long Lines Department announced last month. By the end of the year there will be about 8,200 channel miles (number of miles times number of channels in each cable or relay), extending 2,850 actual miles and linking 27 cities.


## Heathkit тUBE CHECKER NIT/Eath\&it TEST



## Features

1. Measures each element individually 2. Has geat driven roller chatt.
2. Has lever swirching for speed.
3. Complete tange of flament voltages.
4. Checks every tube element.
5. Uses latest cype lever switches
6. Uses beautiful shatternroof full view meter
7. Large size $11^{\prime \prime} \times 14^{\prime \prime} \times 4^{\prime \prime}$ complete.

Check the fearures and you will realize that this Heathkit has all the features you want. Speed - simplicity - beauty - protection against obsolescence. The most modern type of rester - measures each clement - beauriful Bad-Good scale, high quality merer - the best of parts - rugged oversize 110 V .60 cycle power transformet er of hers for all set of sockets for all type tubes lothuding blank spare for tuture types- fast action gear driven roller chart uses brass gears to quickly locate and set up any type tube. Simplified switching cuts necessary time to minimum and saves valuable service time. Short and flexible switching arrangement easilys arrangement of rube clements, the Heathki roxiay See for vourself thar Heal hander your oday. See forl Complere tube will pay for irself in a few weeks - better build it now
Complere with detail instructions - all farts - cabinet - roller chart - ready
to wife up and operate.

## Hem Freathkit television alignment GENERATOR KIT

Everything you want in a relevision alignment generator. A wide band sweep generator covering all FM and TV frequencies - a marker indicator - AM modulation for RF alignment - variable calibrated sweer width 0.30 Mc - mechanical driven inductive sweep. Husky 110 V .60 cycle power transformer operated - step type output attenuator with 10.000 to 1 range - high output on all ranges - band switching for each range vernier driven main calibrated dial with over 45 inches of calibrations-vernier driven calibrated indicator marker tuning. Large grey crackle cabinet $16.1 / 8^{\prime \prime} \times 10.5 / 8^{\prime \prime} \times 7.3 / 16^{\prime \prime \prime}$. Phase control for single trace adjustment. Uses four high frequency triodes plus 5 Y 3 rectifier - split stator tuning condensers for greater efficiency and accuracy ar high frequencies this Heathkit is complete and adequate for every alignment need and is supplied with every part - cabinet - calibrated pancl - all coils and condensers wound, calibrated and adjusted. Tubes, transformer, test leads - every part with instruction manual for a asembly and use. Acually three instruments in one TV sweep generator - TV AM generator and TV matker indicator. Also covers FM band.


## Heathkit

SINE AND SQUARE WAVE AUDIO GENERATOR KIT

\$3450 Nathing ELSE TO BUY

Experimenters and servicemen working with a square wave for the tirst cime invariably wonder why it was not incroduced before. The characWhy it was not introduced before. The characseconds compared to several hours of tedious seconds compared to sereral hours older merhods. Srage by srage, plorting using older merhous. Srage by stage. The low distortion (less thar mis and linear or superior co factory built equipment selling for three or four times its price. The circuit is the popular RC tuning circuit using a four gang variable condenser. Three ranges 20.200 .200 2,000 , 2,000-20,000 cycles are provided by selector switch. Either sine or square waves instanty available at slide switch. All components are of highest quality, cased 110 V . 60 cycle power transformer, Mallory F.P. filter condensers. 5 tubes, calibrated 2 color panel. grey crackle aluminum cabinet. The detailed instructions make assembly an interesting and instructive few hours. Shipping w't., 13 lbs.

RF Crystal Test Probe Kit No. 309. Kit to assem. No. RF probe extends ble. RF probe extenus
VTVM range to 100 MC. Complete with weight crystal. Shipping weight, 1 lb.... $\$ 6.50$


New Heathkit FM TUNER KIT

\$1475
CABINET EXTRA A truly fine FM Tuner with the coils ready
wound, all alignment completed all that is necessary is wiring and it's ready to play is necessary is wiring and it 5 ready to play

- uses super regenerative circuit - 110 V. 60 cycle eransformer operated - two gang runing condenser - slide rule calibrated tuning condenser - slide rule calibrated including pictorial enable even beginners to build successfully.
The circuit uses twin triode and is excremely powerful - pulls in stations far beyond normal expectations. Shipping Wr., 4 pounds.
beautiful mahogany cabinet for FM Tuner (shown above) extra............. $\$ 3.75$


## New Heathkit TOOL KIT

Now a complete tool kit to assemble your
Heathkit. Consists of Krauter diagonal cut. Krauter diagonal cut-
ters and pointed nose assembly pliers, Xceassembly pliers, XceW'att 110 V , soldering iron and supply of solder. Shipping Wt., 2 lbs. Complete kit. .................. $\$ 5.95$

## Heathkit

CONDENSER CHECKER KIT \$1950 nathing ELSE TO BUY

## Features



- Bridge type circuit
- Magic eye indicato
operafed
Power factor scale - All scales - Measures resistance on panel - Checks paper-mic Checks all types of condensers, paper-mica-electrolytic-ceramic over a range of .00001 MFD to 1000 MFD . All on readable scales that are read direct from the panei. NO CHARTS OR checker anyone can read without a college cducarion. A leakage test and polarizing voltage for 20 to 500 volts provided. Measures power factor of electrolytics berween $0 \%$ and $50 \%$. 110 V .60 cycle transformer operated complete with rectitier and magic eye tubes, cabinet, calibrated panel, test leads and all other parts. Clear derailed instructions for assembly and use. Why guess at the quality and capacity of a condenser when you can know for less than a twenty dollar bill. Shipping $W_{\text {t., }} 7$ lbs.
10.000 V K.V. Tesi Prabe Kit
No. 310 . Excends
range of any 11 meg-
ohm VTVM to 3,000
and 10,000 Volt ranges.
A necessity for rele-
vision. Ship. wi., 1 Ib.
anc................ $\$ 4.50$


## EQUIPMENT and accessories

## Nem Heathkit BATTERY ELIMINATOR KIT

Now a bench 6 Vole power supply kit for all auto radio testing. Supplies 5 . $71 / 2$ Voles at 10 Amperes continuous or 15 Amperes intermittent. A well filtered rugged power supply uses heavy dury selenium rectifier. choke input filter with $4,000 \mathrm{MFD}$ of electrolytic filter. 0.15 Volt meter indicates output. Outpur variable in eight steps. Excellent for demonstrating auto radios. Ideal for servicing - can be lowered to find sticky vibrators or stepped up to equivalent of generator overload - easily constructed in less than two hours. Complete in every respect.


$$
\$ 2250
$$

SHIPPING WT. 18 LBS. nothing ELSE TO BUY

## 1949 MODEL

## Heathkit vacuum tube

 VOLTMETERKIT Features
## New 200 ua Meter.

24 Ranges.
New Accessory H.V. Probe makes Heathkit a kilovoltmeter. (Extra) New Accessory RF Probe extends range to 100 megacycles. (Extra)
A new Model V. 2 Heathkit VTVM with new 200 microampere mecer, four additional ranges - full scale linear ranges on borh $A C$ and $D C$ of 0.3 V .10 V . 30 V.. 100 V ., 300 V . and $1,000 \mathrm{~V}$ Accessory probe listed elsewhere in ad xen D.C New model has greater sen sitivity, stability and accuracy - still the highest quality features - shatterproof plastic full view meter face - automatic meter protection, push pull electronic voltmeter circuit, linear scales - db . scale - ohmmeter measures $1 / 10$ ohm to 1 billion ohms with internal battery isolated DC test prod for dynamic meas urements - 11 megohm input resistance on DC - AC uses electronic rectification with 6H6 tube. All these features and still the amazing price of only $\$ 24.50$ Comes complete with cabinet - pancl - three tubes - new Mallory switches - test prods and leads. $1 \%$ ceramic divider resistors and alt other parts. Complete instruction manual for assembly and use. Berter start your laboratory with this precision instrument. Ship. Wt., 8 lbs

## Feathkit RF SIGNAL Generator kit $\$ 1950$ <br> Nothing ELSE TO bur



Every shop needs a good signal generator. The Heathkit fultills every servicing need, fundamentals from 150 Kc . to 30 megacycles with and 1 marmonio ever 100 megacycles covering the new relevion 400 cycle audic available for modulation or audio testing. Uses 6SN7 as RF oscillator and audio amplifier. Complete kit has every part recessary and detailed blueprinss and instructions enable the huilder to assemble it in a few hours. Larre easy to read Calibration. Convenient size $9^{\prime \prime} \times 6^{\prime \prime} \times 43^{\prime \prime}$. Shipping W't., $41 / 2 \mathrm{lbs}$

## Hearhkit 5" OSCILLOSCOPE KIT <br> \section*{Features}

- Instant switching
- Sweep generator supplying variable sweep 15 cycles to 30,000 cycles.
- All controls on front panel.
- Cased electrostaticly shielded 110 V 60 cycle power transformer.
- AC test voltage on front panel.
- External synchronization post on front panel.
- Deflection sensitivity .65 V . per inch
- Frequency
- Frequency response $\pm 20 \%$ from 50
- Input impedance 1 Megohm and 50 MMF. The Heathkir $5^{\prime \prime}$ Oscilloscope fulfills every servicing need. The husky cased power trans former supplies 1100 Volts negative anu 350 Volts positive. Tubes supplied are two 6SJ7 amplifiers, 884 sweep generator, two SY'3 rectitiers, and 5BP1 CR tube. Grey crackle aluminum cabinct and beautiful grey and maroon panel. Chassis espectally de-
signed for easy assembly. signed for easy assembly
of an osthoscope prondes endess sources of experimentation in radio, electronics medicine and scientific esearch Detailed instructions make assembly fun and instructive. Shipping $W_{z}, 24$ lbs. Express only



## \$395.

Nothing ELSE TO BUY

Hew Heathkit SIGNAL TRACER AND UNIVERSAL TEST SPEAKER KIT
The popular Heathkit signal tracer has now been combined with a universal test speaker at no increase in price. The same high quality eracer follows signal from antenna to speaker - locates intermiztents - de. to speaker - locates intermiztents - deice time - gives greater income per service ice time - Gorks equally well on broadcast FM or TV reccivers. The rest speaker has assortment of suitching ranges to match push pull or single output impedance. Also tests microphones. pickups - PA systems - comes complete - cabinet - 110 V. 60 cycle power transformer - tubes, test probe. all parts and detailed instructions for assembly and use. Shipping W't., 8 lbs.

## Feathkit ELECTRONIC SWITCH KIT

dOUBLES THE UTILITY OF ANY SCOPE
An electronic switch used with any oscilloscope provides two separately controllable traces on the screen. Lath the position of the traces may be varied. The input and output traces of an amplifier may be observed one beside the other or one directly over the other illustrating perfectly any clange occurring in the amplifier. Distortion - phase shift and other de. feces show up inseantly, 110 Vole 60 cycle transformer operared. Uses 5 tubes (1 6X5, 2 6SN7's, 2 6SJ7's). Has individual gain controls, position. ing control, and coarse and tine sweeping rate controls. The cabinet and panel match all other Heathkits. Every part supplied including detailed instructions for assembly and use. Shipping $\mathrm{W}_{\mathrm{t}, \mathrm{I}} 1 \mathrm{I}$ lbs.

\$3450

$\$ 87$.

Freathkit 3.tube all wave RADIOKIT
An ideal way to learn radio. This $k$ it is complete ready to assemble, with zubes and all other parts Operates from 110 V . AC. Simple, clear detailed instructions make this a good radio training course.
Covers regular broadcasts and short wave bands. Plug-in coils. Regenerative circuit. Operates loud Ppeaker, Shipping Wit., 3 lbs.
HS30 Headphones per ser
$21 / 2^{\prime \prime}$ Permanent Ma
Mahogany Cabinet.
$\$ 1.00$
1.95
2.95

The UIEATU CONIPANY
...benton harbor 20, michican

## RADIOMEN'S HEADQUARTERS



NO ROOFTOP CLIMBING HERE!


The ramous VEE.O-X LONG RANGE
ANTENNA. Consibtant perfect results ANTENNA. Consistant perfect results areas. The directional characterlstics and
extreme galn from this $i$ hay unlt providu the desired antuer for those who have
given up bope of satisfactory reception given up hope of satigactory recepli
An absolute neceenity for rereption
distances Rreater than 70 miles. distances Rreater than 70 miles. Your
AFTER SEEING OUR ANTENNAS AND COMPARING, YOU WILL NEVER BUY ANY OTHER MAKE!
 slnkle ining
$-\$ 1.75 ; \tan$ lots of $12-\$ 1.50$ es.
SKYSCRAPER-H18-2 has 4 heary duts
 price-si.
$\$ 2.25$
OA.
TILT ANGLE-TBH-3. may be adinated in Sinkle untt price- $\$ 1.75$; 12 dot price $\$ 1.50$ es.
VERSATILE-HR-4, single hole fender form with all body eontours. $i$ section 1.) extot tor THE MONARCM-BR-5. single hole. top
row! mounting. 3 gections extend to $56^{\prime \prime}$. slngle un
$\$ 1.75$ ea.


OUR PE-109 POWER PLANT direct curbent


 and in good prondit on is only 579.95 F., it It


FCC AUTHORIZES RADIO for PRIVATE SERVICE!!!!
(The FCC announced that eftective June any American over 17 years of age is eligi-
ble for a year station permit. In the Me ror a " year niation permit. In the
"Mazens" haml. no code test or teclintral GENERAL ELECTRIC IS TUBE TRANSMITTER-RECEIVER SET
Tils hrand new is tube transmiter-r cejur was desigmed for mohlte storage bat
tery powered service. It will operate in the
 any experimenter to connect this unit for 110 VAC eperation by rollowing the in
structions and dlagrams auplled. which cover numerous applications. including television. For those Inteniling to use of car or boat. a new flynamotor, exactly an
oriminally supplied. cost only $\$ 15.00$. Ibon't (1rder our RT- 1248 for onls $\$ 29.95$. or $t w$ for $\$ 53.90$.

## Sonsational Value in AC-DC POCKET TESTER



## "SO" RADAR SET

" 80 " RADAR RECEIVER, complete wIth 9 tubes including pleture tube. Thls Plan - Pelf-contalned pack designed 10 run Trma
the 110 V . power suply on L.sT or PIT the 110 "Dower supply on L.ST or 1'T
boatt. It Drovides a $5^{\prime}$ diameter picture boats. It showing lueation of boat at the renter. any obstruction, so, that narigation can b carried out in plich darkness of ditensest tuk With an much safety
sunlight. Your cost $\$ 39.95$.



SAVE HOURS OF HARD WORK
 sockel for sorkels. sillus.

$\begin{array}{ll}\$ 1295 & \text { Takes All Three } \\ \text { BIGBARGAINS }\end{array}$

clectric motor or pinwer take-nft. Nlso in cluded in this unbellevable ofter are sur
 Clamace hith speed arinding wheel, yo col
forn butting wheel and a lapse supply bufing compound, and a $4^{\prime \prime}$ steel wit
serateh hrush. Your cost $\$ 6.00$. Sole ex

adjustat
Jetew
availabl
tainer. also $p$
C.O.D. orders


THE TUFRAD SECTIONAL TOWER


MICROPHONES
est quality aill clumme bultet shamed
$\qquad$


 eartion
93 e .

## SUPER SPECIAL

FAIRCHILD Lotmbsight POWER UNITS. Justity the spare required by a ploto. bu each unlt is brand new. containg 9 tubes
whith alone hare a tutai value of $\$ 15.00 ; 8$ electric motors or geverators. 6 of which are of the permanent magnet field ispe; relays. and 20 vuluable precision reyistors plus
multitude of the orlinary kind. in addition multitude of the ordinary kind. in addition
to many condenvers and potentlometers All for only $\$ 14.95$. We will ship but one .

### 6.95 TAKES ALL THREE

 BIG BARGAINS1. AUOIO AMPLIFIER - IBrand new. 2 of the ruluable and searce ouncer $1 y p e$
uudlo transformers that sell for orer $\$ 10.00$ aplece. Neat aluminum case, fully en-
closed (largest dimension 6 inches). fect for intercom, systems, phono smpliplltier ior testing radlo sets. A sensational 2. BANOSWITCMING TUNING TURRET
 sliser-plated wire. Complete with tuning
condensers and powferful electric driving
 3. The dual meter-One 50 ua gnd one 200 II. movernent in the same case. This meter
is ideally sulted for use fa a comhlnation moduation percentake and carrier shit be removid frim the case and used sep-
aratels. All meters are In perfect operatink conctition. but a few lave cracke

AMAZING PORTABLE RADIO
ethet in leautlful maron crackle finish scople whis antenna. Exactiy like a ca radio except works oft self-contained stand aril portable radio batteries, easily obtain
ahble anyuhere. Theft-proof mounting bracket at1arlius by anyone to a bike or
motorevele in 3 minutes. Tealliy installed on any velifile from a wheelharrow to a
whtelis breum. fatio removable from mounting liracket Instanty hy means of a rifed antwhere for ute as a portanle it de
sirect. Welght 5 ths, Your cost with hat

## NOW! T.A.C. AGAIN SCOOPS THE INDUSTRY!

|  |  |
| :---: | :---: |
|  |  |


T.A.C. "CHAMPION"
$121 / 2^{\prime \prime}$-TUBE DIRECT VIEW
BIG 81 Square Inch Screen without lenses or gadgets. Exclusive T.A.C. designed handsome, modern-styled Select-Grain Cabinet in Walnut, Mahogany or Blonde. 30 tubes, including BIG 12 -inch Picture Tube. Manufactured by the nationally accepted Leader in Cus-tom-Built Televsion. Licensed by Radia Corporation of America. The ideal home Televisian and FM Receiver! Remarkable performance and value! A miracle of Television engineering as well as a rich, beautiful furniture piece.
"AUDITORIUM" 520 SQ. IN. PROJECTON TELEVISION


Optical system by Bousch \& Lomb and Eastman Kadak. 37 tubes. $12^{\circ}$ High Fidelity Speaker. 20" by 26''screen for BIGGER - THAN . LIFE-SIZE, bright. steady, clear pictures. Can be viewed by on audience as large as 750 people. For home recreation rooms. schools, institutions, clubs, commercial establishments and offices.

## COMBINATION TV and ALL FM Sets

Dumont Inputuner for con. tinuous tuning of ALL TELEVISION and ALL FM chan. nels with utmast sensitivity and stability.

Exclusive T.A.C. "VIVIDeo" Feature

Renowned I.F. Picture and Sound Strip with $51 / 2$ stages of Cathode-Caupled Grounded-Grid Video I.F. Amplification that brings television reception to a new high standard of quality.

## FREE!

Complete Service Data Manual SB.I on the "VIVI. Dea' feature, contains all information needed to thor* oughly understand and service this unique high-gain I.F. Strip. Write for it today or Strip. Write for it today or
ask your locol jabber for it.

## Studio Quality Picture

Until you'veseen and enjoyed T.A.C.'s "Studio Quality Pic. ture' you haven't really viewed television at its best. Here is a new standard of video quality. It's a NEW KIND of picture and we know you will agree if's the best yet.

## Finest Obtainable

 ComponentsCombinotion of RCA. DuMont and highest rated nationally advertised components.

AMERICA'S GREATEST TELEVISION VALUE PER SQUARE IHCH of pICTURE!

## GUARANTEE

All T.A.C. receivers and their components are of the highest quality and are guaranteed under the Standard RMA Guarontee

T.A.C. "SPORTS.VIEW"

15".TUBE DIRECT VIEW
128 Square Inches. Amazingly bright, steady and clear! 30 tubes, including BIG 15" Picture Tube. Large 12' Heavy Duty PM Speaker for fidelity sound. Licensed by Radio Corporation of America. Manufac tured by the nationally accepted Leader in CustomBuilt Television. Leatherette covered cabinet in choice of colors. Perfect for commercial installations and all large audience viewing. Special-Contrals under Lock and Key!

## DISTRIBUTED THROUGH NATIONAL PARTS DISTRIBUTORS

DISTRIBUTORS! DEALERS! WRITE FOR LITERATURE AND CONFIDENTIAL PRICE INFORMATION TODAY!


540 BUSHWICK AVE. BROOKLYN 6, N. Y.
$5 \%$ Higher West of the Mississippi
Prices subject to change without notice.


- Interested in higher - voltage. dopendable yot inexpensive paper oapacitora? Here's the Aerovex an*wen

The popular Aerovox Type "84" paper tubulara are now available in ex-tended-veltage rutings -2500 . 3500. 5000 . 7500 and 10.000 volts D. C. W. Capacitances of .0001 to .05 mid . Compaet dimensions-from $3 \mathrm{~h}^{\prime \prime}$ did. by 1 1/3 ${ }^{\circ}$ lang for smailest, to $1-\frac{2 / h^{\prime \prime}}{}$ dia, to 3n long for largest. Oil-impregnated wax-silled. Sturdy insulating tube. Sealed ends. Bare pigtail leads that wan't work loose. Bright yellow-redblack labol jacket. And toughl

## - See Our Jobber ...

These extended-voliage paper tubulars are now available. Order your needs from our jobber. Aak for latest catalog.

## ERQVOX <br> capacitors

## FOR RADIO-EECTRONIC AND

INDUSTRIAL APPLICATIONS
AEROVOX CORP., MEW BEDFORD, MASS., U.S.A. Expert: 13 E. 40th St, New York 16, M.Y. • Cable: 'ARLLA8' in Caada: aerovox camada LTd., Mamiltan, ont.

Zenith Radio Corp. of Chicago reports estimated net consolidated operating profits amounting to $\$ 2,025,781$ for itself and its subsidiaries for the first nine months ended January 31, 1949 of its current fiscal year, after Federal income taxes of $\$ 1,227,450$, depreciation, excise taxes, and reserves for contingencies.
Net consolidated operating profits for the three-month period ended January 31,1949 , amounted to $\$ 1,041,246$, after taxes, depreciation, and reserves.

Radio Manufacturers Association reports that January sales of radio receiving tubes, in a seasonal decline, were 5.7 million under those in December, and 2.4 million under January, 1948. Tube sales in January totalled $13,508,906$, compared with $19,270,164$ in December and 16,004,927 in January a year ago. Of the total sales during the month, RMA member companies sold $10,425,566$ receiving tubes for new sets and $2,256,996$ for replacements. Tubes sold for export totalled 749,685 and to government agencies 76,659 .

Shipments of television receivers by RMA member manufacturers increased $88 \%$ during the fourth quarter of 1948 over shipments in the third quarter. At the end of the past year, RMA set manufacturers had shipped 964,206 TV receivers into 42 states and the District of Columbia since January 1, 1947, when the shipment reports were started.

Fourth-quarter shipments by RMA members totalled 354,314 , compared with 188,120 during the third quarter of 1948. Shipments during the entire year numbered 802,025 .
TV set shipments, RMA explained, always trail behind production reports, which previously had shown RMA member companies producing 866,832 television receivers in 1948. Total industry production was estimated at more than 975,000 TV sets.

Westinghouse Electric Corp. of Pittsburgh announces that the 1948 net sales were $\$ 970,673,847$.
The net income for 1948 , after all charges, was $\$ 52,656,351$, equal, after preferred dividends, to $\$ 3.88$ a share on common stock.

Motorola, Inc., Chicago, reports in the company's twentieth annual statement that net sales rose to $\$ 58,080,236$ last year, compared with $\$ 46,679,148$ in 1947. The 1948 net earnings amounted to $\$ 3,332,739$, equal to $\$ 4.17$ per share, against $\$ 2,510,410$ or $\$ 3.14$ a share, in the preceding year.

Stewart-W'arner Corp., Chicago, reveals that net sales in 1948 were $\$ 72,534,085$, down $5.7 \%$ from 1947 sales. Net profit carried to surplus was $\$ 3,154,316$, equal to $\$ 2.44$ per share of $\$ 5$ par value common stock and $29.5 \%$ greater than 1947 profits. Sales in 1947 were $\$ 76,930,304$, and profit carried to surplus was $\$ 2$,436,634 or $\$ 1.88$ per share.

Admiral Corp., Chicago, reported net
earnings of $\$ 3,782,825$ after all charges, for the fiscal year ended December 31, 1948 , as compared with $\$ 2,248,186$ for the previous fiscal year, in its annual report released to stockholders. Per share earnings were $\$ 3.78$ on the 1 ,000,000 shares now outstanding as compared with $\$ 2.25$ for 1947 on the equivalent number of shares, representing an increase of $68 \%$.
Net sales amounted to $\$ 66,764,266$, showing an increase of $39 \%$ over sales of $\$ 47,898,938$ in 1947, and an increase of $85 \%$ over sales of $\$ 36,169,850$ for the fiscal year ended December 31, 1946.

Allen B. Du Mont Laboratories, Inc., New York, reported that sales in 1948 a mounted to $\$ 2(6,859,000$, compared with $\$ 11,109,172$ in 1947 . Net profit advanced to $\$ 2,701,000$, equivalent to $\$ 1.29$ per share, after taxes, on $2,043,652$ shares outstanding. This compares with earnings of $\$ 563,677$ or 27 cents per share on $2,031,040$ shares in 1947.

Cornell-Dubilier Electric Corp. declared a dividend of 20 cents per share on the common stock, payable March 10, 1949, to stockholders of record February 28, 1949.

Directors also declared the twentieth regular quarterly dividend of $\$ 1.311 / 4$ per share on the company's $\$ 5.25$ cumulative preferred stock, series A, payable April 15, 1949, to stockholders of record March 23, 1949.

Radio Manufacturers Association has started a public relations program to give the public, government, trade, and other interests complete and accurate information regarding television-broadcasting service and receiving sets.
An "objective, orderly, and constructive" presentation of full information on television, including present broadcasting service and receivers, in the present VHF channels and also in the UHF channels in the future was voted by the RMA Board of Directors at its meeting in Chicago on March 17, following recommendations from the Association's Set Division Executive Committee.
RMA President Max F. Balcom was authorized to appoint a special committee, widely representative of the manufacturing industry, to determine and direct the Association's television public relations project, for which the Board of Directors voted substantial funds. The committee will be appointed promptly and the information program begun in the immediate future.

Upon recommendation of the Parts Division Executive Committee and Section Chairmen, the Board of Directors also adopted a resolution continuing the Town Meetings of Radio Technicians under RMA sponsorship and authorized President Balcom to appoint a representative committee, includirs members of the Set Division, to develop a program of future activities and methods of financing them.

Harry A. Ehle, chairman of the Town Meeting Committee, reported that more than 10,000 persons had attended the five Town Meetings held to date.

## MS! EXPERIMENTERS! LOOK AT THESE TERRIFIC BUYS!

TMY AIRCRAFT

## RECEIVER-

 BC.946-B Covers 520 Ke to 1500Ke 13 roiadestat liamal. 6
 12K8. Hesigncd for dynamotor operation
 can be casily cowerted
to 110 volt or 32 volt us to 110 volt or 32 volt use. Two 14 Stages. Three-gang laning ron. HRAND NEW, in sealed carton, with tubes and
 Dynatmotor IDM-32A $\qquad$

SMASH VALUES IN RADIO RECEIVERS BC-453—RCVR ..Used $\$ 10.95$ New $\$ 17.95$ $\begin{array}{lllll}\text { BC-454-RCYR } & \text {. Used } & 6.95 & \text { New } & 8.95 \\ \text { BC.455-RCYR } & \text { Used } \\ 7.95 & \text { New } & 8.95\end{array}$ $\begin{array}{lllll}\text { BC-455-RCVR } & \text {..Used } & 7.95 & \text { New } & 8.95 \\ \text { BC-456-MOD } & \text {.Used } & 2.95 & \text { New } & 3.95 \\ \text { BC-457-XMTR } & \text { Used } & 6.95 & \text { New } & 9.95\end{array}$ $\begin{array}{lllll}\text { BC-457-XMTR } & \text {..Used } & 6.95 & \text { New } & 9.95 \\ \text { BC. } 458 \text {-XMTR } & \text {..Used } & 6.95 & \text { New } & 9.95\end{array}$ | BC-459-XMTR... |  |  |
| :--- | :--- | :--- | :--- | :--- |

## BC. 645 XMTR RECEIVER

15 Tubes 435 To 500 MC


The electronic eduipment that saved mamy le modified to use for - way communication, voice or code, on following bands: ham bund 420-450 me, citizens radio $460-170$ me. tixed hind moblile $450-460 \mathrm{me}$. television exberimental $470-500$ me. 15 tubes
ftubes alone worth
s11
95 more than sale price!):

 covers 460 to 490 me . In rand new 13C-645 with ubes, less power supply in factory carton. SEIOIC DYNAMOTOR for above 8C-645 UHF ANTENNA ASSY. for $\$ 2.95$ above 8C-645


GE THYRATRON FG-105


## SPECIAL!

SPERTI R-F Vocuum Switch Famed Collins Ximtr Anvolts. 8 amperes. RIIAND NEW
$\$ 1.69$

## OTHER TUBE VALUES

\section*{$1625 \ldots 35 \mathrm{C}$ Lots of 4 Eoch <br> $1625 \ldots .35 \mathrm{c} \quad 864 \ldots .25 c \quad 6 \mathrm{~K} \overline{6} \ldots . .39 \mathrm{c}$ | $1626 \ldots . .35 c$ | $\begin{array}{l}\mathrm{RK} 60 \\ 12.15 \mathrm{GT} \\ \end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

## DC AMMETER

A terrific buy! $31 /{ }^{\prime \prime}$
casy reating scale. 75
divisions. Black plastic
case $41 / 2 \mathrm{k} \times 51$, " $\times 21 / 4^{\prime \prime}$.
Rubber coverell test clip
leads ulus black metal carrying case with hinged cover. Brand
New. Wonderful for autonotive, battery charging, weneral test work. Val-\$3.99
ue $\$ 25$. All yours for only.....

or Xmtr keying or cole practice. Has photocell and sensitive relay. Variable sheed motor, 110 V AC or DC. Complete with 2-117Z6 and 1-117L4 tubes.
$\$ 14.95$

## (2) <br> CARBON HANDMIKE Genuine sig. Corys Mike. 200 ohm, single button, has press-totalk switeh. 4-ft. rubher cable anmbenol mur. Bealutiful satin chrome tinish. BRANI NKW..... $\$ 2.25$

## SELSYN 2JIG1 Operates from 57112 400 cycles. Suksested wiring for 110 V 60 cycle i tested. <br> $\underset{\text { pair. per }}{\text { Price }} \mathbf{3 . 5 0}$ <br>  <br> ARMY FIELD TELEPHONES



| Inquiries welcomed from institutions. |
| :--- |
| wholesnlers. doalers, large users. Phone. |
| write. wire fur nuant ity frices. |

Please include $25^{\circ}$. Deposit with orderBalance C.O.D. MINIMUM ORDER $\$ 3.00$. Al Shipments F.O.B. Our Warchouse N.Y.C.

## (1) arnilie uatestie <br> radio parts senvice <br> 58 yegey staet - hew yoak t, n...



## 5081 <br> WILLARD 2.VOLT STORAGE BATTERY <br> 20 Ampere-Hours <br> Exact replacement for GE artables-brand $\$ 1.95$ nortables $n$ new. Fach

## GOULD 6.VOLT

STORAGE BATTERY
Navy Standard, Black Rubher Case. BRAND NEW. ${ }_{\text {Rating }}^{15 \text { Amp. Hour } \$ 4.95}$ Ratimg

$$
\begin{aligned}
& \text { WILLARD G.VOLT } \\
& \text { STORAGE BATTERY }
\end{aligned}
$$



Similar to above hut in transpa
ent plastic case. Real valur at
$\$ 4.95$


WILLARD MIDGET 6.V STORAGE BATTERY parent hastic rating. Trans-
 high. Uses stand-
$\$ 3.25$

1.QUART BOTTLE BAYTERY ELECTROLYYE Matce by Willard, for above storage batteries, cally sealed. SP'ECIAL. $\$ 1.25$ 7-PRONG 2-VOLT RADIO VIBRATOR for mornt for GE 1,13 Si30............ $\mathbf{\$ 1 . 6 5}$
LOOK AT THESE PM SPEAKER BUYS!

|  | Alnico V. 4" PM, less trans. |
| :---: | :---: |
|  | Alnico V. $5^{\prime \prime} \mathrm{PM}$, less trans. 1.45 |
|  | Alnico V, G" PM, lessitrans. 1.79 |
|  | Annico V. 8*" PM, lesstrans. 2.75 |
|  | Alnico V, $10^{\prime \prime} \mathrm{PM}$, less trans. 4.50 |
|  | Anico V, 12" 1 'M, less trans. 4.95 |
|  | Alnico V, $\mathrm{f}^{\prime \prime} 1$ M, with trans. $\mathbf{2 . 3 5}$ |
|  | Alnico V. 8"PM.with trans. $\mathbf{3 . 2 5}$ |
|  | Alnico ${ }^{\prime} .10^{\prime \prime}$ P'M. with trans. 4.65 |
| 6V6-Mid | et Output Trans. . . . . . . . . 42 c |
| 50L6-Midret Outhut 'Trans. |  |
|  |  |

Wonderful Condenser Buys! Oit-Filled Metal Cased Condensers All Brand
$1 \mathrm{mf} 400 \mathrm{~V} .14 \mathrm{c} \mid 4.0 \mathrm{mf} 600 \mathrm{~V} .79 \mathrm{c}$
 $\begin{array}{lll}2.0 \mathrm{mff} 60 \mathrm{~V} .34 c & .25 \mathrm{mff} 600 \mathrm{~V} 51.79 \\ 1.0 \mathrm{mf} 1001 \mathrm{~V} .49 \mathrm{c} & 8 \mathrm{mf} 1000 \mathrm{~V} & 2.25\end{array}$

 $40 / 40 / 20 \mathrm{mfl} 150 / 150 / 20 \mathrm{~V} \cdot \mathrm{Cl} .35 \mathrm{~s}$ 16 mfl 500 V ar mid 500 V ............. 59 c

TUBULAR $50+30 \mathrm{Mfd} 150 \mathrm{~V}$
NEW...................lots of 12.19 cea . 20 Mfd $200 \vee$ INVERTED CAN SCREW $4 / 3 \mathrm{Mad} 400 / 475 \mathrm{~V}$ Round Metal Can Com ${ }^{29 \mathrm{c}}$ 60 Mex filo v 60 cy. AC motor start Cond. ${ }^{39 \mathrm{c}}$

#  <br> <br> WANT YOUR FCC COMMERCIAL LICENSE IN A HURRY? 

 <br> <br> WANT YOUR FCC COMMERCIAL LICENSE IN A HURRY?}

## Add Technical Training to Your Practical Experience and Get Your "Ticket" in a FEW SHORT WEEKS

 It's EASY When You Use CIRE Simplified Training and Coaching AT HOME in SPARE TIMEThousands of new jobs are opening up-FM, Television, Mobile Communication Systems. These are only a few of the radio fields which require licensed radio technicians and operators. Get your license without delay. Let Cleveland Institute prepare you to pass

FCC license examinations, and hold the jobs which a license entitles you to, with CIRE streamlined, post-war methods of coaching and training.

Your FCC Ticket is always Recognized in ALL Radio Fields as Proof of Your Technical Ability

More than ever before an FCC Commercial Operator License is a sure passport to many of the better paying jobs in this New World of Electranics. Employers always give preference to the license
holder, even though a license is not required for the job. Hold an FCC "ticket" and the job is yours!

## Hundreds of Satisfied, Successful Students

Transmitter engineering is great. specially on the job 1 am on. Thanks again for all you have or the fact that my "ticket" is now posted on the wall of a 1000 Watt broadcast station. ${ }^{\text {Student No. } 3678 \mathrm{~N}_{12}}$
"I now hold ticket Number P-103787. and holding the license has helped me to obtain the type of ing. Yes. thanks to CIRE. I am now working for CAA as Radio Maintenance Technician. at a far better salary than I've ever had before. I am deeply grateful.
"I took the FCC examination on March 4th. and received my secMarch 9 th. 1 go to work for the Trans-Texas Airways in the maintenance department. Thanks for all the assistance.

Student No. 2394aI

I take great pleasure in informing you that I have taken the first class license on June 29 th and passed and have received my license. I am now working at WCNH, a local 250 Watt Station.' Student No. 3171N12

## OTHER

Cleveland Institute Home Study Courses Offer Complete Technical Radio Training from LowLevel to College-Level, for the Radioman with Practical Experience!

COURSE A—Master Course in Radio Communication
A complete course covering the technical fundamentals of radio-electronics, for the radioman who wants a general review. Includes preparation for Broodoast stotion employment.

COURSE B-Advanced Course in Rodio Communication Engineering A genuine college-level radio engineering course, completely mathematical in treatment. For the advanced radioman with considerable proctical experience and training.
COURSE C-Specialized Television Engineering
An advanced college-level course for the radioman who has had formal training equivalent to $A$ and $B$.
COURSE D—Advonced Rodio Telephony
An advanced, specialized course covering broadcast station enginee ing and operation. Covers the engineering knowledge and the techical duties required of the studio control operator, the master control operator, and the transmitter operator.

## Mail Coupon At Once GET ALL 3 FREE



1. rems of Frovesws or NOW OPINTOFCCLICENSFHOIDERS

TELLS HOW YOU WILL BENEFIT BY
HOLDING AN FCC COMMERCIAL LICENSE.

- TELLS HOW YOU CANGET

3. YOUR FCC COMMERCIAL

RADIO OPERATOR LI
CENSE IN A FEW SHORT
WEEKS - EASILY AND OUICKLY, BY USING CPRE SIMPLIFIED TRAINING AND COACHING AT HOME IN YOUR SPARE TIME.
4. TELLS OF HUNDREDS OF OUR

SUCCESSFUL STUDENTS WHO
NOW HAVE LICENSES AND NOW HAVE LICENSES AND

TELLS HOWWE PREPAREYOUTOPASS
5. THE NEW FCC COMMERCIAL LICENSE EXAMINATIONS, WHICH NOW IN CLUDE FM AND TELEVISION.

Approved for Veteron Troining under "G. I. Bill of Rinhts"
CLEYELANP INSTITUTE OF RADO $\square$ —


Rimhrs
6. TELS HOW WE GUARANTEE TOTRAIN - your license

IELIS HOW WE HELP YOU TO GET A
BETTE A YING, LICENSED HOB, WITH OUR FREE AND EXCIUSIVE SERVICE, MENT APPLICATION FOE MAILING TO HUNOEEDS OF EMPIOYERS. IN. CIUDING FM. AM AND TELEVISION. GROADCAST $5 T$ ATIONS, RADIO MANUFACTUEERS. POLICE RADIOSIAIIONS. AND RADIO-EQUIFPIO TAXA. BUS AND PUBLIC UTILITY COMPANIES

# Whither Radio? 

. . . Radio broadcasting is by no means obsolete or dying . . .

## By HUGO GERNSBACK

THERE is an unfortunate tendency among some people in certain quarters, who nowadays are shouting from the roof tops: "radio is dead-long live television" . . .

While the advent of celevision has made some inroads into radio broadcasting, it is certainly not true that radio in this country is doomed to an early extinction-say within the next few years. While it is also true that at the present time television has and is making tremendous strides, radio is still a vital force that will be with us for a long time to come.

In a recent issue of Lool. we note an article entitled "Radio is Doomed." by Merlin H. Aylesworth. The author, a former head of the National Broadcasting Corporation-who certainly should know better-qlibly predicts that "within three years, the broadcast of sound. or ear radio. over giant networks will be wiped out." Mr. Aylesworth however fails to advance a single sound or logical reason for that prediction.

It is only natural that television should have captured the imagination of our people. Every new and revolntionary scientific advance in the past has done the same. Added to this is the important fact that television goes right into our homes where it touches all of our lives most intimately.

After the novelty has worn off-that is, during the next few years-radio will not only continue on its former road, but conceivably will become more important than ever before.

This has always been true in the techological field. The autonobile did not put the railroads out of business. Nor did the faster airplane doom the railroads. You can fly across the Atlantic in less than a day now, while it takes the fastest express steamer four days. That does not mean that steamships are even seriously threatened by the airplane.

When radio first made its triumphant march across the world everybody predicted the end of the phonograph and phonograph records. Today many times more phonographs and records are in use than ever before. The new technological fdyances made the phonograph and phonograph records more popular than they had ever been at any time.

This is true of many inventions in the past and will presumably hold true in the future.

One thing, however, is certain, there will surely be a quiet revolution in radio during the next decade.

Radio, now seriously threatened with extincJUNE, 1949
tion, will make a strong comehack in the early future.
lt is safe to predict that new electronic inventions and advances will be made that will enhance the value of radio far above the pre-television level.

The stimulus to radio's survival is great. Many new and at this moment unimagined inventions and features will in the future push radio on to new heights. Radio today is a particularly popular attraction when a good musical background is eagerly sought by millions of listeners. It is not always possible of feasible to watch the television screen for hours at a time. Listening to symphonic or other cultural music presents no such obstacle, hence the popularity of such stations as-for instance New York's WQXR station which gives almost uninterrupted musical background of the highest order.

One thing seems certain: rarlio broaldensting must put its house in order.

If it is to survive, the present-day crude "pluguglies" will vanish completely to make way for more subtle and artistic commercials.

Radio will always have a strong following among the people if it gives that service which television cannot give. There is really no necessity for television and radio to compete with each other. Each has its own special sphere of usefulness. It is up to each to exploit that sphere to the limit.

Thus, for good symphonic and operatic music. weather reports, time servir, short news reports and similar features radio will probably always remain in the foreground. These sorvices will be rustly bettered as time goers oll.

Then there is also the facsimile service which has as yet not been exploited by radio and which conceivally will be mashed energetically from now on.

In the next few years miniaturization of radios will certainly be a commonplace. We have spoken of this a great many times. Only recently have technological advances made the vest-pocket radio set possible. This type of receiver is soon coming to the front. It will be important for reception of news, weather reports, etc., which can be heard by everybody wherever he may happen to be. In other words, we will no longer be dependent upon the stationary receiver as we are today.

Rest assured radio will continue to be a great force in this country despite the false prophets of doom, whose croaking roices we hear from all sides today.


THE many startling and mystifying sights shown on the screens of our television receivers have made many a televiewer wonder how such things as "ghosts," for instance, are made to appear and disappear in television plays. A man reaches for a cigar in the breast pocket of his jacket out jumps a tiny Lilliputian figure of a man. A volcano belches forth smoke and lava which rolls down the

By H. W. SECOR

(Drawings by Frank Paul)
mountainside in most realistic fashion. How are such effects produced in the television studio?

Have you seen a ghostlike figure of an actor mysteriously appear on the television screen?


Chair empty


Electronic
Loo Dissolve
Lop Diss
(Mixer)

Fig. 2

Fig. 2-How the "ghost" is materialized.

Perhaps the figure seemed to pass miraculously through a closed door? Or an empty chair was suddenly occupied by $\varepsilon$. "rure which materialized before your very eyes? Such stage effects used to be produced with the aid of mirrors, but in this television age ghostly materializations are produced electronically.

A method of fading the image of a person or object in or out of a television scene electronically has been de veloped by Roy Moffett of the NBC engineering staff. The device is known as an electronic lup dissolice

Suppose we wish to make the figure of a person slowly materialize in an empty ehair (Fig. 1). The actor is dressed in light-colored clothes and appears in front of a black background He is seated on a black chair (to render it invisible to the television audience) of the same shape and size as the empty chair shown on the television screer.

Two television cameras are used to produce the lap dissolve. One of them picks up the image of the actor, while the other is focused on the empty chair As Fig. 2 shows, the images from the two cameras are fed into separate amplifiers and control devices (tube bias controls) and then pass into a common $m$ xer stare. From this point the blended image of chair and tigure are passed on to the video transmitter and broadcast. Either image can be made of any strength desired-that is, faded in or out
Another adaptation of Moffett's development is the electronic super-imposition device, which operates similally to the ghost-producing scheme. By focusing two television cameras from two different angles on a pianist, for example, a novel effect can be produced whereloy we see the figure of the pianist seated at the piano, while across this scene appears another image showing the pianist's fingers moving over the keyboard. The superimposed inage may be made of any strength desired, say about $60 \%$ of full strength for the fingers and kevboard closeup, and $40 \%$ for the long shot of the pianist. Many variations of this arrangement can he made. See the superimposed "montage" video image of Toscanini photographed from the kinescope tube by NBC.


Figs. 3, 4, and 5-How blocked scanning is used to produce split.image "interviews" between persons who may be far apart geographically.

## The split image

One of the most promising novelties in television is the solit image, in which two people appear side by side, each image being picked up at a different remote point (possibly in two cities). While in no way weird in effect, the technique very much resembles that used in "magic" stunts, and is even more interesting from the electronic point of view. The diagram (Fig. 3) shows how the separate television camera images are picked up and transmitted to a central point. The unwanted half of each image is blanked out by electronic mans. The two halfimages are then combined in a mixer and passed on to the video transmitter. In the split-image arrangement. the sync generators at both originating studios must b, sumchromized (by signals transmitted over the co-axial cable connecting the two stations) so that each scanning trace starts and stops at exactly the same time. Fig. 4 shows a simplified block diagram of the setup for mixing the split images. Blanking generators are used to feed in the blanking pulses to the amplitier circuits carrying the image signals from each camera. Half of each picture is thus blanked out. Clipper stages are added to the mixer unit and the combined signals corresponding to the two half images. one from each originating station. are then mixed through a suitable mixing amplifier and passed on to the television transmitter.
This split-mage nevice is useful, for example, in creating the illusion of an actual, personal interview, when in reality the principals may he in different cities (see Fig. 5). Many other applications of this novel development will find ready application in television. The size of each image has to be watched at its pickup station, so that they will both be approximately the same and


Fig. 7-This overhead shot of a CBS actor ascending a stairway is "all done with mirrors."


Superimposition of Toscanini on his chorus by the techniques deseribed in Figs. 1 and 2.


Fig. 8-Two cameras are set up at different distances to produce this mystifying effect.
thus make a harmonious picture when they are combined.

## Volcanos made to order

For video entertainment purposes an artificial volcano is often more practical than a real one. At the CBS television studio in New York City, a very realistic erupting volcano was created from a piece of canvas, some rolled oats, and a smoke-producing chemical (titanium
tetrachloride). Fig. 6 shows how the volcano was built of canvas stretched over a framework to resemble a mountain. Pockets were arranged in the surface of the artificial mountain to hold portions of the smoke-producing chemical. Around the mouth of the crater there was a ring-shaped trough to hold alcohol, the flames of which provided the fiery effect of a volcanic eruption. At the start of the display a burst of
magnesium powder added realism to the scene.

In the center of the volcano was a hollow cylinder fitted with a plunger. The cylinder was filled with rolled oats, interspersed with some of the smokeproducing chemical. When the plunger was moved upward with a cord, the rolled oats swelled out through the top of the volcano, some of the oats catching fire and tumbling down the sides of the mountain as lava. The smoke chemical added the necessary steam effect. At the same time the chemical in the pockets on the surface of the volcano was liberated, adding still more smoke and steam to the display.

## Overhead shots with mirrors

In motion picture studios it is easy to take overhead shots, looking down on the actors, where such scenes are desirable to lend dramatic emphasis. In the close confines of a television studio it is usually inpossible to do this because of lack of head-room. An in. genious device for taking these overhead shots of actors was worked out at the CBS studios, the arrangement making use of two mirrors as shown in Fig. 7. The top mirror is tilted to any desired angle to pick up any portion of the scene. The image picked up by the top mirror is reflected down to the lower mirror, and from there into the lens of the television camera.

By this simple application of ordinary optics, a scene showing a person ascending a flight of stairs or a ship's ladder can be reproduced on the television screen, when it would be practically impossible to do so otherwise. One such scene showed a man coming up out of the hold of a ship, a scene adding greatly to the dramatic appeal of the play presented and which would have been lost without this mirror device.

## Lilliputian figures

In one mystifying scene recently staged at the CBS studios and devised by John De Mott, a Lilliputian figure of a man crawled out of the pocket of a normal-sized man's coat. The actor reached toward his pocket for a cigar and the little man bit him, much to the enjoyment of the television audience. The televiewers were much mystifiedto say the least.

This effect was attained by using two video caneras. One picked up the man reaching for a cigar in his breast pocket; the second camera was trained on a large, oversize replica of the coat pocket, made from plywood. Behind the large model of the pocket a ladder was placed, and the "Lilliputian" actor clinibed up the ladder and reached upward as if he were actually in the man's coat pocket and attempting to climb out of it (see Fig. 8).

When the two camera images were combined through an electronic mixer, the novel effect of a tiny but live man climbing out of the coat pocket was produced.

Other effects will be described in a succeeding article.

# USAF Shows off 

# its Television 

By B. W. SOUTHWELL

$\vee$ISITORS to the California State Fair last fall were treated to their fist glimpse of military television. The exhibit of the United States Air Force unit based at Moclellan Field did much to acquaint the public with television as employed by the armed forces for recommissance.

Cameras were set up on the Fair Grounds for on-the-spot pickups to be transmitted to th. Machinery Building where receivers were feeding external monitor: for view ng. The monitors employed cathode-ray tubes having both green (P1) and white (P4) screens.
Perhaps the most interesting feature was an airborne camera, which was mounted in a C-17, for televising an aerial view of Sacramento. The visual transmission was made on a frequency of 336 mc . The commentary while in flight was given by Lt. C. R. Hart of the Public Information Office on a frequency of 138 me and was received on an SCR-522.

Technical standards for the equipment used in the project differed in most respects from these prescribed by the FCC for conmercial broadcasting.
Both sidebands were transmitted, since it was not considered feasible to employ a vestigial-sidehand filter because of weight and complexity, Negative transmission was employed, as in broadcasting, as less objectionable ef-
fects with the reproduced picture are experienced; interference drives the maximum carrier amplitude further into the sync-pulse or blacker-than-black region. Positive transmission, on the other hand, would produce serious loss of resolution due to interference.
The aerial camera was locked at infinity focus, as all olijects to be televised were at a distance. A cathode-ray-tube view finder was used to advantage. The camera utilized the sensitive image orthicon tube enclosed in a single housing along with all tubes and components except the synchronizing generator. This assembly produced a complete video signal to modulate the transmitter. The view finder was mounted in a similar housing and was fastened to the camera to make a complete unit.

The transmitter line-up consisted of an ultraudion oscillator circuit, buffer stage, and a push-pull-parallel, gridmodulated class-C stage.

The receiver was contimuously tunable over a range of 264 to 372 me and employed a 5 -me bandwidth. The receiver sensitivity was such that an input signal of 35 microvolts with $40^{\text {r }}$ modulation produced an output with unity signal-to-noise ratio. A $72-\mathrm{hm}$ co-axial line matched a half-wave dipole to the receiver input. A fast-acting automatic volume control, operated from the peak value of the detected synchro-


The camera and commentator in the airplane.
ni\%ing signals, served to smooth out signal fluctuations due to addition to or cancellation of the direct wave from the transmitter in the C-47 by waverecerved over indirect naths. The receiver furnished a composite video and syne signal for external viewing monitors. Sufficient resolution was obtained to show autos on the city streets and boats on the Sacramento River.

The receiver line-up included one r.f. stage, mixer, oscillator, six stages of i.f. second detector video stages, horizontal and vertical blocking oscillators. and amplifiers, syne separators, a.ve. circuit, and picture tube. The high voltage ( 4,800 volt: ) for the $\mathrm{C}-\mathrm{R}$ tube was obtained through a flyhack system.

An interesting point is that the positioning controls had 12 volts at 600 ma fed to them. Input to the receiver was 28 volts d.c., and a dynamotor supplied 410 volts positive ( 225 volts for video and i.f. eircuit: was stabilized by mean: of V R tubes) and 30 volts negative for bias, The i.f. stages were stagger-tuned and covered from 47 to 52 mc .


The camera below picks up scenes which are transmitted ta receivers and manitors located in the Machinery Building (see photo at left).


# Television Helps Astronomy 



This telescope "brings the picture inside,"
enlarges and projects it on a screen for the
benefit of a large class or other gathering


By WILLIAM RHODES*

Inventor holding control box. Viewing screen is within black ring on white cylinder, left.

ASTRONOMY is interesting to a large number of people who are not even amateur astronomers. They are fascinated with the appearance of the heavenly bodies and with their doings, possihly for much the same reason the stay-athome likes to read in the Notional reoographic Magazine, for instance, about faroff places on his own planet.

To tell people ahout the solar system, elaborate planetaria have been set up to reconstruct the movements of the bodies mechanically and project them on the inside of a domed roof. While this is instructive, it does not give the same thrill of persomal observation as does a look at the surfaces of the moon, the stars, and the planets themselves.

Ordinarily only one person at a time can look through a telescope. To allow many people at a time to observe the heavens, we developed an "electronmultiplier" telescope, using the principles of television to transform the snall, dim image at the telescope eyepiece into a large image projected on a screen for a roomful of observers. Besides making it possible for many people at one time to see the images, the invention allows us to leave the telescope itself outdoors in its best location (heated air is bad for telescopes) while the observers can stay indoors.

The pickup cell at the prime focus of the telescope mirror was constructed at the Panoramic Research Lahoratory and is a miniature of the latest television design. It is inclosed within the shell at the base of the hornlike device near the end of the barrel (see photo).

[^2]The pickup cell transmits images to a primary receiving cathode-ray tube. Both are tied to the same sweep oscillators, which are set for 2,000 lines per franie and 120 frames per second.

This high number of frames and lines is necessary because the original image is about the size of a 25 -cent piece and is blown up to a dise 64 inches in diameter, with detail that rivals the finest existing television pictures. The screen of the final viewing surface is about 8 inches in diameter and shows only about 280 miles of the moon's surface at a time. If ordinary TV equipment and standards were used, the magnification would be so sreat that only a few lines would be seen and images would hardly be recognizable. As it is, every detail down to an object only a few thousand feet across on the moon's surface can be seen clearly. Much depends, of course, on the clarity of the atmosphere at the time. The detail, in other words, is limited, not by the electronic equipment, but only by the telescopic and atmospheric conditions.

## Scramble scanning

liy using a 120 -cycle sine wave, we get what we call random or scramble scanning-the lines lace, interlace, and overlap to such an extent that not a single line is visible on the small screen of the cathode-ray tube which first receives the image. This is possible because both transmitting and receiving tubes are tied to the same sweeps so that they lock together, regardless of the vagaries of the scanning system. The detail is so great that the image might as well be coming through as a solid reflection from a mirror.

One trouble we had from the first, however, was that when gain or bril-
liance was turned up, halation or spreading of any given point in the image caused the picture to blur and lose definition. We eliminated the problem (or hypassed it) by turning brilliance down to a point at which the image is just detectable in a dark room. The definition is then at its best. (Incidentally, the tube was constructed with the narrowest possible electron beam.)

As a result, we were left with an image dimmer than the dial of a luntinous watch, one, in other words, about equal in every way to that at the main mirror of the telescope itself. What had been done up to this point was to bring the image indoors where folks could view it in comfort, while the telescope stayed outside where it could work best.


Outdoor unit-the telescope and its mounting.

The image was too small and dim to he seen by anyone not gifted with super-vision. By using another, very special cell, we built up the brilliance ( not the diameter) of the picture until it is so bright one can hardly look directly at it.

## An electron multiplier

The drawing illustrates the special photomultiplier tube. The image on the face of the cathode-ray tube is focused by a lens on the glass bottom of the photomultiplier. On the back of the glass is a light-sensitive coating of cesium, frequently used in phototubes, which emits electrons when struck by light.

Because the face of the $C-R$ tule is curved and the photomultiplier glass is flat, the border of the focused image is somewhat distorted, though the rest is excellent. We get rid of the border by masking it out with a diaploragn.

Atop the cesium coating is a very thin aluminum foil which is a few volts positive with respect to the cesium layer, so that the photo-emitted electrons are accelerated enough to pass through it.

Next the electrons hit a silver-magnesium alloy which is electron-sensitive. This gives off about six to eight electrons for every one which hits it, giving an effect of clectron multiplication.

Tiny pinholes which transmit some light to the multiplier layer exist in the aluminum foil, but since the layer is not affected noticeably by visible light, this does no harm. When three or four pinholes line up on top of each other, a spot is apparent, but that happened only once with seven cells we have made.

The sheets of aluminum foil are known as Lenard windows. In a device where electrons are accelerated greatly as, for instance, the electron microscope, a straight beam of electrons hitting a window would scatter like shot from a bell-muzzle shotgun. Due, however, to the thinness of the cell and of the foil. the distance the electrons travel is so small there is little spreading.

After going through several lavers of foil separated by silver-magnesium multiplying material, the electrons have increased tremendously in number and also in speed. They go through the last foil window and strike the green fluorescent screen. With an image on it, the screen is about as bright as a 100 -watt frosted lamp bulb.

The zinc-compound screen could ruin the image by spreading light all over the place, just as in the primary cathode-ray tube, had not the zinc compound been applied by a process which does not allow this. Light cannot spread sideways on the film but can travel only straight through at right angles to the surface. Visualize the effect by thinking of a thin slice of honeycomb filled with fluorescent material. The material in each little cell can fluoresce, but it cannot spread its light to the next cell because the wall will not pass light. These cells are so numerous that it tikes a microscope to show them.


Schematic of the electron multiplier unit.
The image on the face of the multiplier cell is now very bright but has not yet been magnified.

A very-long-persistence fluorescent material was chosen for several reasons. In the first place, it will not show transients like line and tube noises. Second, it will not show the fairly rapid fluctuations in the atmosphere which take place in some degree all the time. The final image has to be on the screen for 2 to 4 seconds so that it can build up; therefore, in effect, the image is an "average" of everything that comes through. The actual image is as still as a photograph.

If the atmosphere is quiet, the image

## NEW NAME FOR TV?

"Television" may be fine for engineers, but the public needs a new name, "some catchy, friendly word which may be called out over the garden fence without sounding silly." That's the conclusion of the London Luily Ex, the U.S., accolding to the E, bross, couldn't think up anything better than video or TV.

Some of the suggestions the Express has received sound like a new breakfast fool: Oculo, Focal, Imagec, Visray, Telio, Vix. Others are: Lookies, Peeps, Vizema, Rad-E-Eye, and LookHear. In all of them the impact of highpressure advertising or Buck Rogers (or both) seem apparent.

Current leaders are Gazio, Air-Pic, Opalook, I.C., and Kaladio.

Some suggestions for descriptive terms for those who watch television were given at the end of the article on page 69 of the March issue of RadioElectronics.
is crisp and clear. If it is tremulous, the image is blurred slightly; definition gets worse as the atmospheric conditions deteriorate. Through the eyepiece of a telescope on a had night the moon would appear as though it were reflected from the surface of a pool of water in a brecze. On the screen, it would be blurred but motionless.
The final step in producing an image that can be viewed is magnification and projection. Atop the upright metal cylinder which houses the $\mathrm{C}-\mathrm{R}$ tube and the multiplier cell is a screen of white tracing paper. Just above the multiplier, within the cylinder, is a lens from an $8-\mathrm{mm}$ movie projector. The lens is mounted on an arm controlled by selsyns. The lens can be moved over any part of the multiplier tube so that it can pick up any desired part of the image. Light goes through it and is projected onto the tracing paper, where the much enlarged image is seen by the observers. The lens may be moved up and down for focusing.

Though the multiplier telescope was not meant to and could not replace existing telescopes used for serious astronony, it does an excellent job of revealing the mysteries of the heavens to the lay observer.

## BETTER TV STANDARDS

More exact scanning standards are required for perfect picture transmission, reported F. J. Bingley of WOR to the recent convention of the Society of Motion Pieture Enrineers.

Artists may suddenly appear taller and thinner (or the reverse) as studio cameras are changed, he pointed out. Also, if the receiver is lined up to give a nice round pattern on one station, the next one may be an oval. This is due to differences in the ratio of vertical and horizontal scanning velocities. Present standards specify aspect ratio at 4 to 3 , but permit tolerances on both horizontal and vertical blanking times. Thus the ratio is not specified exactly. Horizontal and vertical lines (as, for example, the height and waistline of an artist) may be transmitted differently by the same station using different cameras. As cameras are switched rapidly during the shooting of a scene, the result can be disturbing to the onlooker.

## Part VI-Construction information and

performance reports on several varia-<br>tions of the common halfanae dipole

By

EDWARD M. NOLL and<br>MATT MANDL $\dagger$

ANUMBER of antennas, which can be considered half-wave dipole types, have different characteristics because of their shape. The basic modifications are the short-V, conical, and circular types. These antennas have a higher resistance and generally a broader bandwidth than the dipole. Gain is a bit higher because of somewhat narrower


Short-V antenna is usable with 300 -ohm line.
directivity, particularly in the vertical plane, and because of greater surface area presented to the arriving wavefront.

The short-V (Fig. 1) consists of two $V$-shaped sections fed at the apex of each section. Each rod forming the $V$ is an electrical quarter-wave; the separation between the rods of each section forms an angle (which is noncritical) of $: 30$ to 45 degrees. Antenna resistance is 150 to 200 ohms and matches a 300 ohm line with insignificant loss for the usual length of line used for TV installations.

The short-V and other modified types find application in the fringe areas because they lend themselves to stacking and use of parasitic elements without too much reduction of antenna resistance, If antenna resistance is too low, matching problems are more diffcult and leakage losses become higher because of the higher current which flows in the antenna system.

[^3]The improved performance of the expanded types of dipoles is due to the ease with which the transfer is made from propagated wave to antenna current feeding into the transmission line. Perhaps this is best understood if we consider that at the ends of the antenna we have minimum current but maximum voltage. If an end is expanded, it will intercept a greater cross section of the arriving signal wavefront. Energy, if it has a choice, will flow along a conductor. If a substantial part of the wavefront is intercepted, its energy (in the form of antenna current) will flow along the antenna elements, grouping at the apex, the maxi-mum-current point of the antenna. At this point the transmission line is attached.

## The conical antenna

The conical antenna (Fig. 2) is a further expansion of the $V$, each antenna element spanning out in the form of a cone from the apex. The recommended element length for symmetrical bandwidth on each side of a chosen center frequency is 0.365 wavelength from the apex along the conical surface to the rim. Of the modified types the conical has the greatest bandwidthapproximately $30 \%$ of center frequency.

For example, a cone cut for a strategic frequency in the low band (depending on local station frequencies) can be made to have peak response to two or three channels and a somewhat reduced sensitivity to other channels, depending on frequency separations. In addition the third-harmonic sensitivity of the cone permits substantial pickup on the high-band channels. A cone cut for 70 me has a landwidth of 21 mc and, therefore, would have peak sensitivity to channels 3,4 , and 5 . Third-harmonic sensitivity would cover channels 9 through 13 .

The cone can be constructed of sheet metal, although (better from the standpoints of wind resistance and economy) it can be formed of 12 equidistant radial wires or of copper screening, with an insignificant change in characteristics. The cone is versatile so far as impedance match is concerned be-
cause its resistance depends on its shape. For example, with an angle of 15 degrees between the sidewall and axis, the antenna resistance is 300 ohms. If two cones are to he stacked, an angle of 10 degrees can be used to obtain a resistance of 600 ohms per unit, again matching a 300 -ohm line. Some typical angles and corresponding antenna resistances are:

| Angle <br> (degrees) | Resistance <br> (ohms) |
| :---: | :---: |
| 5 | 950 |
| 8 | 750 |
| 10 | 600 |
| 13 | 400 |
| 15 | 300 |

Reflectors and directors can be used with the various dipole modifications. The parasitic elements, for best performance, should have the same general shape as the driven antenna. Thus a $V$-shaped reflector is used for a $V$ antenna, while a cone can be used for the conical antenna.

## The circular antenna

A circular antenna constructed by the authors was found to have a number of unusual features which make its performance outstanding for television. It has somewhat higher gain than a V or folded dipole, and it is much less sensitive to high-angle radiation. Horizontal directivity is also sharp, and orientation rather critical. This is, of course, advantageous for the suppression of multipath reflections which would produce ghosts.

The manner in which this circular antenna receives signals differs from that of an ordinary radio or a direc-


Fig. I-Short-V uses four quarter-wave rods.


Mast supports the loop ot exact center of top.
tion-finding loop antenna with which maximum pick-up is obtained when the edge of the loop points toward the station. In direction finding, a minimum or null is obtained with the loop broadside to the station. Of course, the loop itself is smaller in diameter than the wavelength of the received signals. Inasmuch as the signal phase, therefore, is about the same


Fig. 2-Conical antennas moy be mode in a number of ways, as these drawings illustrote.
on both sides of such an antenna, similarly phased voltages are induced in both sides and cancel at the receiver feed point.

The circular antenna illustrated in Fig. 3, however, although in the form of a loop, is just slightly less than a half-wave in diameter; therefore, outof phase voltages are present on the sides when the antenna is broadside to the television station. It is this position which feeds maximum signal to the transmission line.

Orientation is critical because the pattern of this antenna is elongated, extending in narrow-beam formation forward and backward. Position of the antenna in its vertical plane is also sharp. A tilt of a few degrees makes a considerable difference in signal pickup. Because of the electric and magnetic fields of the antenna, rotation about its circumference is also critical, and the transmission line feed point must be either at the exact bottom or top.

The more nearly perfect the circle, the better the reception and noise-reduction characteristics for television. The tubing from which the antenna is constructed can be either $1 / 4$ or $1 / 2$ inch. Too large a surface area may increase signal pickup from ground levels and harm the exceptional noise-reduction characteristics of this circular antenna.

For peak performance, then, the following summarized factors must be closely observed: The antenna must be absolutely circular; it must be mounted vertically; the plane of the
antenna must be broadside to the station direction; and the transmissionline feed point must be attached so that it is exactly at bottom or top. The antenna conveniently matches a 300 -ohm, ribbon transmission line.

The poor performance of a circular antenna in other than the correct position indicates its ability to reject noise and spurious-signal interference. This improvement is evident when we consider that, for signals arriving from beneath the antenna, the voltages induced in opposite sides of the antenna would be in phase because of the added half-wave of travel necessary to reach the top of the antenna. Noise signal would therefore cancel at the trans-mission-line feed point. Multipath and other signals which arrive at an angle other than perpendicular to the plane of the antenna encounter the same canceling effects. The directivity pattern of the circular antenna instead of being doughnut-shaped as is that of the more conventional type of dipole, is narrowed and pulled out horizontally toward the station as is the pattern of a stacked system.

The circular antenna is a full wavelength in circumference, and this dimension must not be corrected for end effect. It was found that peak sensitivity was obtained with the antenna cut to a free-space wavelength. Apparent absence of end effects also indicates less end loss due to capacitive leakage. Dimensions for the various channels (in inches) are as follows:

| Channel Circum. |  |  |  |  |  |  |  | Channel Circum. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 202 | inches | 8 | 63 | inches |  |  |  |  |  |  |
| 3 | 183 | inches | 9 | 61 | inches |  |  |  |  |  |  |
| 4 | 167 | inches | 10 | 59 | inches |  |  |  |  |  |  |
| 5 | 145.5 inches | 11 | 57 | inches |  |  |  |  |  |  |  |
| 6 | 135.5 inches | 12 | 55.5 inches |  |  |  |  |  |  |  |  |
| 7 | 65 | inches | 13 | 54 | inches |  |  |  |  |  |  |

Perhaps another reason for the increase in sensitivity of the circular antenna is its responsiveness to other than horizontally polarized components of the arriving signal. With the usual turnstile transmitting antenna used by television broadcast stations, there is present a vertically polarized component which is 25 to $30 \%$ as strong as the horizontally polarized component. A substantial level of circularly polarized component has also been observed. The circular antenna has some sensitivity to these components also. In fact, the circular antenna can be converted into one with peak sensitivity to a vertically polarized wave simply by positioning the transmission line feed point at the right or left instead of at top or bottom.

A circular antenna constructed for
channel 10 is shown in the photo. Note that the antenna can be attached to the mast at the top, which is a ground or maximum-current point. Feed point is at the bottom where the antenna is insulated from the mast. The antenna is comparatively small, symmetrical, not top-heavy, and has very little wind resistance.

## Summary

1. Antenna placement is of primary importance. It can do more to bring up a stubborn signal than a multi-element array or a booster. Place the antenna in space loops of weak stations.
2. Use directional antennas where needed in fringe areas or multipath localities. To obtain the utmost from a directive system, both impedance matching with stubs at the antenna and proper over-all length of transmission line are important.
3. Choose antenna type and dimensions with an eye to your local allocations. Design antennas for peak sensitivity on frequencies to be received and minimum sensitivity to other frequencies from which interference might come. Broad-band insensitive antennas are not recommended.
4. Use ribbon transmission line to match standard receiver inputs and cut down attenuation on spans of line. Only at the very high TV channels does the loss in twin-lead approach the loss of a very-good-quality co-axial line. Coaxial line is helpful in some noisy localities, but make certain the greater attenuation does not cancel the benefits of shielding.
5. Antennas perform better on frequencies higher rather than lower than those for which they are cut. Choose antenna dimensions to favor the lower frequencies, particularly if one of these stations is weak. Separate high- and low-band antennas are not necessary in most localities. A low-band antenna properly cut will perform just as well on the high band because of harmonic relationship. If stations are not in the same direction, a separate high-band antenna may be helpful in some localities if it can be separately oriented.


Fig. 3-Loop is a simple I-wavelength circle.
6. The advantage of stacked antenhas, so far as signal strength is concerned, is questionable, the maximum possible increase under the most ideal conditions being $40 \%$. Stacked systems reduce noise pickup from below.

## -



HEY, Pedro," I shout, cradling the telephone. "Dig me up a hatful of spark-plug suppressors, will you?"
He lays down his broom gratefully, and starts for the back room. Then he stops, turns, and gives me the quizzical eye.
"How many?" he queries suspiciously.
"All you can find," I reply shortly. "And make it snappy." I reach for my overcoat, climb into it, and by that time he's back. I can see the curiosity working on him when he hands me the box.
"How come so many?" he asks, trying to be casual but not succeeding very well.
"One per cylinder," I answer, "six cylinders per car, and nine cars."
"Whose cars?"
"Sheriff's office," I snap back, starting for the door. "They're lousing up seven TV sets in the apartment across the street from them." I shut the door behind me, climb into the truck, glance back through the window, and climb out again. I shove my head in the door, and bellow good and loud.
"Stick with that broom!" I shout. I hear a gasp from the back room, and Pedro rockets through the doorway, grabs the broom from the counter, and
begins sweeping furiously. I climb back in the truck, whistling.
When I get to the county jail, I'm not whistling any more. There are six squad cars in the space marked No Parking Reserved For Sheriff's Vehicles, their engines running. I glance across the street as I get out of the truck: my antennas are still up, all seven of them.

I climb the steps to the sheriff's office, which is also the reception room of the county jail, and ring the bell. In a minute a surly-faced turnkey opens the door, and regards me stonily.
"Well?" he says, blocking the opening.
"Hello," I falter. "Sheriff in?"
"Naw,", he says bitterly. "He ain't never in."
"When will he be back?"
"Couple months, maybe," the turnkey says.
"Where is he?" I ask.
"Florida. Tough life, huh?"
"Yeah," I say. "Look, who's the boss while he's gone?"
"Joe," the hard-faced one says. "Joe Dimitz. Wanna see him?"
"Please," I say.
He steps out of the way, and I walk in. The room is lined on three sides by iron bars, and has a sort of counter
running along the middle. Behind the counter I see two tables of pinochle going strong, complete with four kibitzers.
"Joe," the turnkey says, slamming the iron door shut behind us. "Fer you."
One of the pinochle players looks up, annoyed. He gets to his feet with a resigned air, sticks his cards in his trouser pocket, and walks to the counter. He leans on it and gives me the once over.
"Yeah?" he says.
"Pleased to meet you," I say, figuring a white lie is no crime. "You're in charge here?"
"Chief Deppity," he says, prodding himself in the chest. "What's on your mind?"
"Well," I say, taking a deep breath. "I'm in the radio business."
"Yeah, yeah," he says impatiently. "I'm in the sheriff business. Whaddya want?"
"I've installed seven television sets in the apartment across the street, and your squad cars are fouling them up."
"G'wan," he says suspiciously. "How?"
"Ignition noise," I say. "Every time one of your spark plugs fires, the pictures jump."
"Yeah?" he says, interested.
"That's right." I manage a friendly smile. "It's just unfortunate that the antennas have to be pointed in this direction, but they do. Your plugs must be gapped too wide, too."
"So?" he says.
"So I'd appreciate it if you'd let me
install spark-plug suppressors," I plead, "and regap the plugs. At my own expense of course."

He looks me full in the face, reaches in his pocket for his cards, and fans them out carefully. Then he turns his back on me and walks on over to the table.
"No can do," he says, his attention on his cards. "Can't have citizens messin' with county cars."
"Well, how about killing the engines when you park out ir front?" I ask in desperation. "That would help a lot."
"It would, would it?" he says turning his head to look at me.
"Sure," I say, misunderstanding his tone. "They'd still bother going and coming, but the parked ones wouldn't."
"Listen," he growls. in an ugly voice. 'Them cars is left runnin' to keep 'em warm so we c'n get a fast start if we have to." He pauses and winks at the man across the table from him. "Besides," he says. "How'd you like to leave a warm room'n climb in a cold car?"
"I know," I falter, "but . . . ."
"ILeave'm out, Ike," he inter'rupts me, motioning to the turnkey. I'm still trying to think of something to say when the door swings shut behind me.

## Pedro gets curious

When I get back to the shop, I find Pedro perched on my high stool, elbows on the bench, earnestly studying an antenna directivity chart spread out before him. He looks up, nods vaguely, and goes back to the chart.
"Hi." I say. peeling off my coat.
"Hi." murmurs Pedro absently. "Look." He lays a finger on a figureeight curve. "I don't get it. Herk."
"Nothing to get," I say, hanging up the coat. "That just shows the directiveity of a folded dipole antenna."
"What's the dotted lines for?"
"Directivity of the dipole on different frequencies," I explain, leaning on the bench and tracing out the curves with my forefinger. "Different channels, really, since they're bands of frequencies."
"Over here it's different." he says, pointing at another set of curves.
"Sure," I nod. "This is the same dipole with a reflector added. That makes it more nearly unidirectional."
"Hunh?" says Pedro.
"Capable of receiving better from the front than the back." I elucidate.
"Hey," says Pedro. "If you point the front end at the station, the picture'll be stronger, hunh?"
"Right," I agree. "And noise pickup from the rear will be attenuated."
"Gee," he says. "Hey, Herk, you had some phone calls."
"Oh?" I question absently, still looking at the curves.
"Trouble," declares Pedro happily. "You got more trouble."
"Now what?" I groan.
"Four people called," he says, consulting a list he drags from his pocket. "All from the same atddress. They got funny lines going through their pictures all the time. The pictures keep
jumping, too." He laughs, pleasantly. "Funny, hunh?"
"Not very," I scowl. "What else?"
"Three of them said you better either fix their sets or give their money back," Pedro says lightly. "That's all."
"Yeah," I mutter. "That's all," I go out front, and make a phone call to a friend of mine who has a friend on the county council. Pretty soon he calls back. His friend, my friend reports, will be glad to recommend to the council that the sheriff's squad cars be equipped with suppressor-type spark plugs; but he'll have to wait for the sheriff to get back before he makes his recommendation. It's not good politics, my friend tells me, for his friend to do anything in the sheriff's absence. I thank my friend bitterly for using his influence with his friend, and hang up.

The phone rings before I get two steps away, and it's another of the seven.
"Yes," I say, after the spluttering subsides. "I know your pictures are streaked and jumpy. It's ignition hash from the sheriff's cars across the street. Yes, I am doing something about it. Yes. Of course I guaranteed it. Yes, I'm working on it." I hang up despondently, and wonder idly where I can find a good. tall cliff to fall off.
"What's the matter", Herk?" Pedro asks eyeing me solemnly.

So I very carefully give him my full opinion of political hirelings who leave engines running 24 hours a day within spitting range of a seven-unit TV installation. I elaborate on the details of how crowded the poorhouse is these days with innocent ex-radiomen who have suddenly had to redeem seven TV sets with cold casli. And I shake a verbal fist at a guy named Edison who started the whole sorly situation by noticing that current flowed through a light bulb with an extra wire sealed into it. Finally I run out of breath.
"Can't you change the aerials, Herk?" Pedro asks.

I shake my head sadly.
"I'm already using co-ax," I explain, "and the antennas are mounted as far back from the street as the landlord will allow,"
"You can't put suppressors on the squad cars?"
"Not without permission. The chief deputy won't play, and the sheriff's gone for a couple of months."
"We need a temporary cure, hunh?"
"Yeah," I say.
"Want to spend some money?" Pedro asks innocently. His eyes are narrowed, and his thoughts seem far away.
"I'd rather spend a lot of money than take those sets back," I retort. "But no bribery, thank you. I couldn't cuss politicians any more if I were as crooked as they are."
"Yeah," acquiesces Pedro. "Well, time to go home." He eyes me expectantly, and I suddenly realize it's Saturday.
"Payday, hunh?" I comment, digging deep. "Okay, kiddo, here you go."
"Thanks, Herk," he says, pocketing it. "See you Monday after school." He
starts for the door, and stops with his hand on the knob. "Coming in tomorrow?"
"No," I answer, absently.
"G'nite, Herk," Pedro says. He's got a funny light in his eyes, but I'm too busy worrying to pay much attention. I potter around a few minutes, and then I go home too.

## Monday morning

Monday morning I seem to feel something is wrong the minute I walk in the shop. But everything looks all right, so I shrug off the feeling, and go back to the bench and start to work.

Along in the middle of the morning, the phone rings. I figure it's one of the seven and shrink from answering it; but it keeps on jangling, so I grab it.
"Mr. Newton?" a rough voice demands.
"Yeah."
"Joe Dimitz," the voice goes on. "Chief Deppity. Harya this mornin'?" He is all sweetness and light and chumminess, and I don't get it.
"Okay, thanks," I say coldly. "What can I do for you?"
"Where c'n I get some of them things your boy was tellin' me about yestiday? Some kinda spark plugs that don't mess up the television?"

When I come to enough to recover my voice, I tell him of a garage in town that carries them.
"Thanks," he says. "We don't leave our cars runnin' no more when we park. In fact we kill the motors a block away and coast in." His voice goes apologetic. "We'd like ta get a block away before we star't up again, but we ain't figgered it out yet." He hangs up, and leaves me in a daze. I just sit there for a minute staring into space.

Then my eyes focus: there's an empty spot where there's supposed to be a TV set. A little 7 -inch job that l've been trying to peddle for three months is missing, and way back deep in my alleged brain something keeps whispering "Pedro."
I take the phone off the hook, and call the high school, meanwhile trying to keep my plate current from rising too high. First I have to talk to the principal's secretary, and then to the principal himself; but they finally put Pedro on the line.
"Hi, Herk," he says. "Anything wrong?"
"You know what's wrong," I declare. "You bribed the Sheriff's force with a TV set yesterday, didn't you?"
"No," he says innocently. "I didn't."
"Hunh?" I'm brought up short. Pedro does a lot of things, but he's never lied to me. "Pedro, you tell me the truth."
"I loaned it to them," murnurs Pedro softly, "until the sheriff gets back. With option to buy."
"Yeah?" I say weakly, beginning to see the light.
"I stuck up a folded dipole," Pedro continues gaily. "No reflector." He pauses, and his voice drops. "Any complaints from across the street?"
"No, Pedro," I say reverently. "No complaints."

# Iginition Interference to FM and Television 

By JOHN B. LEDBETTER*

# Exhunstive measurements show the effects of antomobile interference on 

reception and ways of preventing it

WHILE the effects of interference from automobile igninition systems on radio and television reception are well known, the exact process through which they are brought about is not as familiar. A sound basic knowledge of the contribution of each part of the ignition system to the generation and radiation of interfering electrical pulses is necessary for a logical approach to the problem.
We usually think of the electrical system of motor vehicles as handling low-voltage direct currents. There are several points, however, in the ignition system where high-frequency, highvoltage oscillations exist. At any point where an arc is generated, a transient oscillating current flows in certain parts of the wiring. Such ares occur under certain conditions at the generator brushes, starter motor, heater fan motor, and at the breaker points of anyof the relay devices, such as the voltage regulator.


Fig. I-Cars drove slowly away from antenna.
In the ignition system, high-freguency oscillation takes place in the primary circuit when the breaker points open, even though an are does not actually form. This is due to the rapid change of current in the primary, which causes a correspondingly rapid change in the magnetic fux linking the primary and secondary of the ignition coil. As the mignetic flux collapses through the secondary winding, it induces a very high voltage in that circuit, which ionizes the electrodes of the spark plug and causes the spark to appear.

* WKRC, WCTS-FM, wKrC-TV. Cincinnati

The spark, or instantaneous secondary discharge, has a copucitance component of approximately 1 microsecond duration and a peak current up to 150 amperes. The discharge of the capacitance component, which oscillates at very high frequencies, is followed by an induction component of much longer duration and much lower current value. The current, which decreases exponentially during this period, has superimposed on it sine-wave oscillations whose frequency depends on the L-C properties of the primary circuit, that is, the frequency of resonance.
It is the extremely high-frequency, high-current discharge in the capocitance component of the spark which results in outward radiation of electromagnetic waves from the high-tension ignition system. Because this radiation does not confine itself to any fixed frequency but occurs at many different frequencies, and at greatly varying amplitudes, interference is caused to almost every type of radio broadeast and communications service, especially those operating in the higher-f requency bands.

## Suppression at the source

Although directional receiving antenna systems can be employed to good advantage in discriminating against uncontrolled radiation from a parallel plane or fixed source, they become rather ineffective if interference is received from several different direction:. The only logieal answer to the problem; therefore, is the suppression of ignition interference at its source, or its reduction to a tolerable limit. ${ }^{1}$
The Radio Manufacturers Association has taken steps toward a practical solution of the problem. A meeting was called in February, 1944, between the RMA and the Society of Automotive Engineers, and a joint RMA-SAE Committee on Vehicle Radio Interfer-
" The Automotive Industry's Participation in Reduction of Radio and Television Interference." P. J. Kent. Chief Ensineer. Electrical Div., Chrysler Corp, Paper presented at SAE summer meeting. French ILek, Indiana, June
$6.11,1948$.
ence was organized. Three subcommittees were formed, and each was given a specific assigmment in the interference sturly.

In 1944, the receiver subcommittee made exhaustive tests to determine the tolerable limits of interference of sevctal makes of FM receivers. The first field test was made at Rye. N. Y., where several different makes of FM and television receivers were set up to receive broadeasts from NBC and CBS in New York City. Conditions were controlled so that the reccived signal strength at Rye would approximate the fringe-a rea value of 50 microvolts per meter for FM and 500 microvolts per meter for television.

The measurement setup consisted of a horizontal receiving dipole mounted $71 / 2$ feet above the ground and connected to the various receivers, and a Measurements Corporation Model 58 noise meter. With the receivers tuned in, different nakes of motor vehicles were driven slowly away from the receiving antenna until a point of tolerable interference (as determined aurally or visually by a committee of three) was reached. (See Fig. 1.) The noise meter was then connected to the antenna and the strength of the interfering radiation was measured.

As a result of these tests, a field strength of 35 microvolts per meter at a distance of 50 feet from the distrib-utor-coil side of the vehicle was fixerl as the tolerable limit of interferenc:. This limit is applicable at all frequencies up to 150 mc .


Fig. 2-Noise measurement setup used at Rye. RADIO-ELECTRONICS for

## A second łest

In June, 1944, the RMA-SAE interference committees conducted the second field test at Ander'son, Indiana. For the test, seven different makes of automobiles were selected as being representative of the engines and electrical systems in common use. The noisemeter antenna was sit up for both horizontal and vertical polarization at distances of 5,15 , and 50 feet from the ignition side of the vehicle. Each vehicle was equipped with the suppression supplied or recommended by the manufacturer; in many cases different types or amounts of suppression were employed to determine their effectiveness.
Some general wnclusions were reached as a result of this series of experiments:

1. Vehicles employing compactly grouped ignition sy:tems produce less interference than those in which conponents are more widely separated from each other.
2. Spark-plug and distributor suppressors are more effective below 40 mc than above, although interference is reduced considerably at the higher frequencies.
3. A very effective method of suppression is to complctely enclose the ignition system in a grounded metal shield and employ spark-plug and distributor suppressors.
4. Measurements of radiation intensities made by different methods and with various instruments do not necessarily agree.
5. Generator interference, when present, was noticeable at a distance of 5 feet but not at 50 feet.
6. Interference resulting from a group of vehicles is less than the total of the individual vehicles (possibly due to phase cancellations).
7. Radiation from any given vehicle varied widely at a number of different frequencies.

Another series of field tests was made at Anderson in 1945 to determine which type of suppression would work best with each type of vehicle. For this test 13 passenger cars and trucks were used. and the standard Rye measurement setup was used (see Fig. 2). Note the radiation curves (Fig. 3) of a typical six-cylinder engine with two degrees of suppression. The addition of spark-plug suppressors is obviously important.

## The conclusions

Several conclusions were reached:

1. The majority of vehicles are capable of meeting the tentative tolerable limit ( 35 microvolt.i per meter at 50 feet, measured on a horizontal antenna $71 / 2$ feet above ground) by employing 10,000 -ohm suppressors at each spark plug and in the distributor center lead, and by locating the ignition coil so that the high-tension lead (from coil to distributor) is not over 8 inches in total length.
2. Addition of a capacitor on the
primary lead ot the coil is necessary in some cases.
3. All high-tension leads should be kept as short as possible.
4. All metal tubing, rods, coolant lines. and wiring other than ignition should be kept well away from the ignition system.
5. No excesive interference from electrical equipment other than ignition was noted at the 50 -foot distance, although the possibility of such interference does exist.

A third series of field tests was conducted at Anderson in August, 1947, mainly for the purpose of educating automotive personnel who had not seen the previous tests.

## Another set of tests

The fourth set of field tests, made expressly to determine the effect of ignition interference on modern television receivers, was conducted at Marlton, N. J., approximately 15 miles from Camden, where a signal strength of 500 microvolts per meter at $71 / 2$ feet above the ground could be obtained from WFIL-TV, Philadelphia.

The measurement site was located in an open field, removed from interference except for the vehicles to be measuled. The television receivers and the noise meter were placed in darkened area for proper viewing of the C-Rtube screen.

The cars under measurement were driven head-on toward the antenna site until the observers agreed on a tolerable value of interference. For each measurement, the engine was run at the speed which resulted in the greatest amount of interference (usually a repetitive acceleration).

The conclusions were:

1. Interference from ignition systems causes a tolerable black or black-andwhite streak in the picture at an interference level varying from 6 to 69 mi crovolts, depending on the character and duration of the radiated pulse as well as on the receiver. The average limit of tolerable interference for all measurements on the four receivers was approximately 3:3 microvolt:. (This agrees remarkably well with the 35 microvolt level of tolerable interference set up in the Rye tests.
2. The television receivers did not lose synchronization when subjected to the so-called tolerable limit of interference.
3. The character and duration of the radiated pulse as seen on the television screen determines to some extent the tolerable level of interference. For example, the long, serrated pulse of a Pontiac tested was easily seen and therefore required more suppression than some others.
4. The interference level used for the tests allows satisfactory reception only if it is intermittent but does not if it is continuous interference. For satisfactory reception under continuous interference, a signal-to-noise ratio of approximately $30-40 \mathrm{db}$ (for equal band
width of television receiver and noise meter) would probably be required. This is a considerably better ratio than the "tolerable" ratio decided on during the test.
5. In the receivers tested, the intmunity of the sound channel to inter-


Fig. 3-Curves show suppressors are effective.
ference was better than that of the picture channel, and. for all practical purposes, may be regarded as about complete.
6. The 1948 Chevrolet (the only latemodel car tested) incorporated certain ignition changes and was not equipped with suppressors. Its interference radiation was within tolerable limits.
7. Use of the special "resistor" spark plugs" (with built-in suppressors) reduced radiation from the ignition system by an appreciable amount. In the two tests conducted with these spark plugs, the tolerable interference distance moved from 200 feet from the antenna to approximately 70 feet, a substantial gain.

Reports from numerous sources indicate that no detrimental effect on engine performance or fuel consumption is brought about by the installation of suppressor resistors. Their addition, in many cases, helps show up spark plugs which are old, coked, or partially fouled.

The ultimate result of all the tests has been to show that by the simple expedient of equipping all motor ve-hicles-passenger cars, trucks, and buses-with suitable suppressors (and possibly rearranging distributor wiring in stubborn cases) the problem of ignition interference to television and FM and AM radio reception can be effectively solved.

Thanks are due to K. A. Chittick of RCA, P. J. Kent, Chief Engineer of Chrysler's Electrical Division, the Radio Manufacturers' Association, and the Society of Automotive Engineers for permission to use some of the material in this article.

# The Itadio Hat 


|T IS refreshing to note that not all radio manufacturers in this country believe that radio broadeasting is doomed to early extinction. It seems certain that American ingenuity and inventiveness will do much to keep it in the foreground for generations to come.
This is exemplified by an entirely new radio receiver-the Radio Hatillustrated on the cover of this magazine. Communication, reception of news, time and weather reports, are a constant necessity to people in this country. So is a light and portable receiver, such as the Radio Hat, illustrated in these pages.
As a new article of manufacture, it will probably cause no little sensation in this country during the next few months. Originally the manufacturer of the Radio Hat believed that the item was geared for the use of youngsters only. It would seem indeed that on account of its low price-below $\$ 8.00$-it will find a large market in this particu-
lar sphere. Boy Scouts and youngsters on their vacations, whether in the country or at the beach, will be avid buyers of an article of this type.

Grown-ups, however, will buy it as a stunt and for emergency purposes or sports, such as hiking, canoeing, and boating.

The editors made a number of tests on the Radio Hat and found it to be an exceptionally efficient receiver, particularly for outdoor purposes. In and around New York City, practically all the locals came in with excellent volume. An efficient modified ultraudion circuit is used and the separation of stations is clean and effective. The set is tuned with a control located between the two tubes on top of the hat.

The device was found to be quite directional and for this reason the rotatable loop antenna should be used. unless the wearer of the hat turns on his own axis to get the best reception.

A number of tests were also made indoors. Reception was fair, even in steel buildings; good in non-steel buildings.
The battery, incidentally, is made up of one $221 / 2$-volt B-battery and two $10 \$$ A-batteries. These are contained in a carton which is kept in the pocket and is connected to the hat with a flexible short lead cord.

ONE of the most useful and eyecatching radio novelties in a long time is the Kadio Hat, a new type of personal receiver manufactured by the American MerriLei Corporation of Brooklyn, N. Y. It is a sensitive little two-tube set built into a tropical-type helmet with the tubes projecting from the front like two small horns.

Its tuning control is a small, streamlined bar knob mounted between the tubes. The antenna (and tuning inductor) is a 5 -incl. loop, $1 / 2$ inch wide, mounted vertically on the rear of the crown. It fits into a socket that permits rotation through 90 degrees for directional effects. A single headphone is built into the inside of the hat just over one ear.

Power is supplied by a tiny 8 -ounce battery pack that fits into a pocket and connects to the set through a 36 -inch length of thin 3 -conductor wire. The
appearance of the set is bizarre but strangely impressive, as seen in the photographs.

At a glance, this "man-from-Mars" personal radio would appear to be a child's toy but after using it for a few hours, we beran to see its possibilities.

For example, it is just the thing for baseball fans who want to keep up with the doings of the out-of-town teams while rooting for the home-town favorites in the local ball park. Followers of the sport of Izalak Walton


The interesting detector circuit apparently adds considerably to the receiver's sensitivity.
will be wearing their radios as they head-rod and reel in hand-for a spot on the banks of the old mill stream. For beaches, hiking, bicycling, picnics, or strolling in the park, the Radio Hat will prove its worth to all who wear it.
Substantial and water-resistant, the Radio Hat weighs only 12 ounces and can be fitted to any size head by adjusting the leather sweatband. Twelve ounces may seem heavy for a hat until compared with the five to seven ounces of the average man's hat. The Radio


Within the hat. Interior is perfectly smooth.
Hat fits well and can be worn at almost any angle. Probably young ladies will wear it perched on the back of their heads (see this month's cover) and youthful gay blades can wear it tipped jauntily over one rye. The phone is over the left ear but can be moved to the right if the wearer desires.

The Radio Hat is made in such gay colors as canary yellow, lipstick red, turquoise, chartreuse tangerine, lavender, blue, and cerise for teen-agers, and in tan, gray, green-gray, and bluegray for adults.

## The circuit

The circuit of the Radio Hat is shown in the diagram. The 1 S 5 is connected as a modified ultraudion detector. Its tuned circuit consists of the loop and a small compression-type capacitor with the control knob on the front between the tubes. The audio amplifier is a 3 V 4 pentode, resistance-coupled to the detector. Bias for the amplifier is developed across its $\quad 2 l$-megohm grid resistor. The single phone is in the plate circuit of the 3 V 4 where it provides sufficient volume for local stations.

The power supply is a small battery pack that supplies $1^{1 / 2}$ volts for the filaments and $221 / 2$ volts for the plates and sereen grids. The A-battery is a standard No. 2 flashlight cell that will last as long as 20 hours with intermittent use. Replacenvent battery nacks will be available at retailers or from the nanufacturer. These are $21 / 2 \times 21 / 2 \times 11 / 4$ inches, housing the A- and B-batteries. The A-battery is held in the pack with spring-brass clips that connect to the battery terminals.

The batteries connect to the set through a 3 -prong connector and a thin flexible cable. There is no switch. The set is turned on by plugging the battery cable into the socket on the pack.
The selectivity is surprisingly good. It separates stations much better than some 4 -tube t.r.f. sets. Like most regenerative detectors, this one requires careful adjustment of the tuning control and antenna for best reception.

The manufacturer states that when the Radio Hat is put on the market, its tubes will be coated with a tough plastic that will prevent damage from flying glass should a tube be broken.


This "chassis" is covered and shielded with foil-coated liner seen in photo at left.

## NEW AND IMPROVED TRANSISTOR



New design in the Transistor has resulted in the model above. A thin crystal occupies the central portion of a cylinder, and the two cat-whiskers press on it from the opposite ends.

# Electronies in Medicine 

Part VIII-A radio technician can repair and maintain almost any X-ray installation

By EUGENE THOMPSON

X-RAYS are an invisible form of radiant energy of extremely short wavelength $\left(0.125 \times 10^{-}\right.$ to $\left.0.5 \times 10^{*} \mathrm{~cm}\right)$. They have the ability to penctrate many opaque materials. They are produced in an evacuated glass envelope by bombarding a positively charged, tungsten-plated, copper anode with a high-velocity stream of electrons emitted from a heated filament and negatively charged cathode (Fig. 1).
As the potential between cathode and anode increases, the X-rays become shorter in wavelength and more penetrating. Commercial X-ray tubes are operated at voltages ranging from 50 kv to several million volts, depending on the design of the tube. The current consumption runs from about 15 to several hundred ma. Hirher-current tubes produce better contrast in X-ray pictures.
Most of the energy produced by the electronic bombardment of the anode is liberated in the form of heat. Only a small proportion is emitted as X-rays. This heat may be dissipated by radiation fins attached to the anode, by circulating water, or by immersing the tube in oil.

Tuhes may have either stationary or rotating anodes; Fig. 2 illustrates the latter. Its chief advantage is that it permits the X-rays to be concentrated into a much smaller area because of


Control panel for an X-ray-fluoroscope unit.
the more efficient heat dissipation of the rotating anode. A rotary anode is cool under conditions that would generate enough heat to destroy a staticnary anode.

Radio technicians are occasionally called upon for emergeney servicing of X-ray apparatus belonging to local hospitals or physicians. Although many repairs can be made only by specially trained personnel with the proper replacement parts, the most commonly encountered difficulties are relatively simple to remedy. Therefore, the remainder of this article deals with some of the basic components of all X-ray equipment, with which some familiarity is required for servicing profitably such machines.


Fig. I-High-velocity electrons strike anode.
A word of caution at the outset. X-ray equipment is dangerous! Carelessness may lead to serious injury or loss of life. Never violate the following rules:

1. Never handle the free and of amy cable without first curcfully grownding it to discharge any high voltage. This is doubly important in machines which employ capacitors in the power supply. Also, the negative leg of the high voltage is common with one of the filament leads.
2. Never take measurements with the prower on. Wake certain that the equipment is turned off. and use a continnity meter.
3. Never observe an unconered X-reny tube unless protected by the lead and glass shicld provided with the equipment. Excessive exposure to X-rays may cause severe burns. Carelessness may lead to the loss of a hand or of eyesight.
Although these warnings make X ray servicing appear exceedingly dangerous, actually it is no more so than television work. The fact that many thousand physicians and X-ray servicemen work with such equipment daily with safety proves that it is harmless

When correct and careful precautions are taken.

## Typical generators

Figs. 3, 4, and 5 are schematic diagrams of relatively simple $X$-ray machines. Although more complicated instruments are sometimes encountered, they all boil clown to the basic essentials illustrated here. The servicing of all X-ray apparatus, no matter how complex, may be greatly simplified


Fig. 2-The anode rotates to dissipate heat.
when it is remembered that they must all contain an X-ray tube, a highvoltage power supply, and a source of filament voltage. The remaining conponents found in more complicated machines are usually incorporated in the control unit to make the equipment more convenient for non-technicians to operate.

No attempt will be made to enumerate all the possible defects which may be encountered. The reader can obtain this information by inspecting the diagrams. The X-riny trouble-shooting chart enumerates those common difficulties which can be remedied by the average radio repairman. The following discussion is linited to basic principles.

The machine in Fig. 3 is a small, I5-ma portable unit of the type commonly used in many doctors' offices and for bedside work in hospitals. The schematic is more or less self-explanatory. The X-ray tube is self-rectifyincr because of the comparatively low potential and current at which it is operated. For higher-voltage tubes, external rectification is necessary because the operating potential is so much higher than the peak inverse voltage of the tuhe. Note that one side of the high voltage is common with one leg of the filament: that is why the filament's cable must be grounded when removed from the tube for inspection before being handled.

Fig. 4 is a schematic of a typical high-voltage X-ray unit. The amplitude of the high voltage is controlled
by the autotransformer voltare-selector setting. A four-tube bridpe-type, fullwave rectifier is ustul. Some units employ only one or two rectifier tubes. X-ras rectificrs are of the heavy-duty type and are commonly immersed in ail to dissipate heat. Note that again the negative side of the high voltage is tied to one side of the $X$-riay tube filament circuit.

As a safety measure, the filaments of the X-ray tube and rectifier tulse: can be lighted independently of the high-voltage circuit. This makes possible safe inspection for servicing purpeses. It also permits the $X$-ray operator to keep the machine warmed up for instant use.

The X-ray tuhe filaments can be inspected by looking through the window in the tube in some rases. In other tubes, the filament camnot be seen and continuity testing is the answer. When testing for gassy tubes with the high voltage on, alwats stay behind a protective shield.

An additional fcature of X-ray equipment illustrated in Fig. 4 is the dead contacts or buttons between the tap contacts on the autotransformer. This prevents shorting of the high voltages developed across the autotransformer winding when switching from one contact to another. The insportance of these dead buttons from the servieing stampoint is that the voltage selector may sometimes be unintentionally loft in a dead button: and when the operator attempts to use the equipment, it appears to be out of order.

## A two-tube unit

The cireuit in Fig. 5 is similar to that in $\mathrm{F}^{\mathrm{r} i g}$. 4. Howevere, two tubes are used instead of onc. One tuhe is used for taking X-raly photorraphs. and the other is used for luorosenpy. In this resperet it is similat to the table unit illustrated in the photograph. The fluoroscopice tuhe is conecated under the table. The radiograbhic tube is mounted on the moving earriage alowe the table. On oreasion the cables on switebes to the tubes of sume $X$-ray machines may get transposed and cause some difticulty:

The four latige cireles in Fig, 5 represent the X-iay tuhe connections. Tha two black circles are anode contacts. The other terminals are the filament and cathode comections. The large and small filaments arre used to vary the area covered by the X-rays. The ravs from the small filiment are used to take pictures or fluoroscope small areas of the hody. such as a finger or hand. The large filament is employed for such johs as ehest X-ray work. The cathode terminal is common to one lege of both filaments and the negative side of the high voltage.

The solenoid-actuated contactors are oil-inmersed steel contacts for clusing the various circuits. One of the commonly eneountered difficulties in X-ray equipment servicing is a defective or dirty contact.

Many X-ray installations are pro-


Fig. 3-Portable X-ray units like this are often found in doctors' and dentists' offices.


Fig. 4-A hospital $X$-ray machine is likely to be a high-voltage unit much like this one.


Fig. 5-To provide for both radiography and fluoroscopy, this circuit includes two tubes.

## X－RAY EQUIPMENT TROUBLE－SHOOTING CHART

|  |  |  | 言 |  | 号 | 边 |  |  | Finalty meter | Lathevoltage flucthations | Burnerd－ont rect．Hids． | 気 |  |  |  |  | Wworkated S゙-ray tute. |  |  | Matre expmure switch open | 兂 | Folenoid contactar not closimg |  | 䔍 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X－rays tulme fil．not lightert | 1 | $\geq$ | 3 | x |  | x | र | $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $=$ |  |
| Vor reading on X－ray tube til．metar |  | 1 |  | 8 | $\lambda$ | ＊ | V |  | $x$ |  |  |  |  |  |  |  |  | － | －－ | －－ | － | －－ | － |  |
| F｜netuation in X－risk tulue lit．meter |  |  |  |  |  |  |  | 1 |  | $\geq$ | － | － |  |  |  |  |  |  |  | － |  |  | － |  |
| chitwale X－ras tube til．muther ramlime |  |  | 1 |  |  |  |  |  | $\pm$ |  |  |  |  |  |  |  | － | －－ | －－ | －－ |  |  |  |  |
| Jrect．fils．not lightul |  |  |  | $\checkmark$ | x | x | 1 |  |  |  | I | ＊ |  |  |  |  |  |  |  | －－ | －－ |  |  |  |
|  |  |  |  | $x$ | $\cdots$ | ， | ＊ | － | $\checkmark$ |  |  |  |  |  |  | － |  | － | － | － |  |  |  |  |
|  |  |  |  | $\because$ | 1 | ： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 1 |  | $\underline{2}$ | x |  | 3 | 1 | $\checkmark$ | x |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  | ＊ |  |  |  | － | － | － |  |
|  |  |  |  | v | ？ | ： | $\checkmark$ |  | र |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  | 1 | ＊ |  |  | ： | －－ | －－ |  |  |  |
| If．e．Iram．muter llathition |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  | － | －－ |  |  |  |
|  |  | ： | 8 | ， | $\lambda$ | $\cdots$ | 1 |  | 1 |  |  | ＊ |  |  |  |  |  | ， | 1 | 1 | r | ， | －－ | －－ |
|  |  |  |  |  |  |  |  |  | 1 |  | $3+1$ | 31 |  |  |  | ？ |  |  |  |  |  |  | 1 |  |
| Sa or ma－sicotid midar thaluation |  |  |  |  |  |  |  | 1 |  | 3 |  |  |  |  | ＊ | 1 |  |  |  |  |  |  |  |  |
| Ma or ma weroml meter wif seale |  |  |  |  |  |  |  |  | v |  |  |  |  |  | 1 | 8 |  |  | ， |  |  |  | $\pm$ |  |
| Nob hight vollage |  |  |  | x | ， | r | $\cdots$ |  |  |  |  |  |  |  |  |  |  | $x$ | 8 | 1 |  | $?$ |  |  |
| Wsurlamd switel upors |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | $\because$ |  |  | ， |  | x |  |  | 3 |

 foumd ornas octaviouallo arse markod with $X$ ．

$\dagger$ Foband cillo in lralige rewtithers．


Ihoton courtany W＂msimuhone Electric（＂orm． X－ray－tluoroscope table is tilted by a motor．
vided with an operating and servicing manual which aids greatly in servicing the equipment．However，some manu－ facturers sell their machines installed and provide a course of instruction for the physician or X－ray technician op－ erating it．Under these circumstances，
no diagrams of the machine may be available and servicing is somewhat more difficult．Often the physician or technician may be of great assistance if he explains the operation and pur－ pose of the various controls to the re－ pairman．

The chart shown above should be helpful in servicing X－ray machines． While it will not help in fixing specific faults，it will aid diagnosis by substi－ tuting for trial the experience of many technicians in associating a certain symptom with a certain cause or bad effect．
In any event，equipped with a knowl－ edge of the basic principles and cir－ cuits of X－ray equipment，a continuity tester，and a little common sense，the average technician can trouble－shoot and repair upward of 70 per cent of the common defects in X－ray machines and add a lucrative source of income to his business．
In a previous article of this series， Part III，dealing with phototubes and pressure measurements in medical work， a photograph captioned as a photoelec－ tric blood－pressure measuring device was actually the resistance－wire strain gauge manufactured by Statham Lab－ oratories．

## X－RAYS SEE THROUGH STEEL

New X－ray machine that＂looks＂ through 16 inches of solid steel to find otherwise undetectable flaws was ex－ hibited last month at the Navy＇s new $\$ 35$ million White Oak Ordnance Labo－ ratory in Maryland．Developed by the General Electric Consulting and Engi－ neering Laboratory，the machine cost $\$ 95,000$ and is part of the Navy＇s new X－ray plant．At the demonstration，pic－ tures were taken through a $17,000-\mathrm{lb}$ ． cruiser anchor．

## HOSPITAL USES TV THERAPY

Television therapy will be tried out in the Loudon－Knickerhocker Hall psy－ chiatric sanatorium．A nityville，N．Y．， according to a report last month， The TV setup will be similar to that used in some New York hotels，but in－ dividual receivers will have no tuning controls．All tuning will be done at the central control unit，with the psychia－ trist choosing the programs he believes to have the best therapeutic value．

Other features of the special sets will be shatter－proof Plexiglas windows cever the C－R tubes，steel cabinets，and pro－ vision for turning off each picture unit from the central office．

## Part III-Tubes for the microwave <br> frequencies. giving special notice <br> to the lighthouse triode. velocitymodulated tubes, and the magnetron <br> By C. W. PALMER

THE early investigators of microwave frequencies above $3,000 \mathrm{mc}$ soon discovered that conventional vacuum tubes with the grids operated at a negative bias were inadequate or entirely inoperative for several reasons.

First, interelectrode capacitance between the elements of the tubes was large enough to bypass the high-frequency currents so that they went around the tuhe instead of through it.


Fig. 1-Cross-section of a lighthouse tube.
Second, the internal leads from the tube elements to the extornal comnections wore often first-clas inductances at the desired freguencius. This combination of I , and C limited the higherst frequeney at which the tube could operate.

However, even before this theoretical limit was reached, it was found that tubes would not osc llate beramse of losses in the insulation, electronic emission from the grids, and (perhaps most inportant) the transit time of electrons from cathode to plate.

As an example of this transit-tine trouble, let us consider a conventional tube operating at 1.000 kc (in the broadcast band). A typical transit time of .001 microsecond at this frequency is only one one thousandth of a cycle of the r.f. current, and would have little effect on the flow of electrons. At 500 mc , however, the same transit time would become a half eycle, which would make the tube entirely inoperative.

The upper limit of oscillation of tubes of ordinary construction is about 150 to 175 me or even lower. Special acorn. door-knob, and miniature tubes were developed to reduce the capacitance and inductance of the leads in an effort to increase the maximum operating frequency.

Next, tubes were made with the gridcathode spacing cut to as little as .005 inch to reduce transit time and still
maintain control of the electron flow. Hy these methods the maximum operating frequency was raised to about 800 me.

Another trick-using multiple leads to the tube elements-provides additional gains. The grid and plate leads are run right through the glass envelope on both sides of the tube, forming terminals at each side which are commected to the ends of the tuning inductances, providing resonant circuits with the tube capacitance and inductance included in the over-all values. This serves to divide the shunting eat pacitance between the two circuits (grid and plate), and, since the inductance of the leads is then part of the resonant line, it becomes a distributed, instead of a lumped, constant. Of course, there is no effect on the transit time.

## Lighthouse triodes

l'p to this point, microware tuhes were of conventional design with wrinkiles added to make them operative at higher frequencies.


Fig. 2-Lighthouse tube in co-oxial circuit.
One tube that is truly a microwave design instead of a modification of conventional forms is the Lighthouse tube or Megatron. In this tube the cathode, prid, and plate are mounted in parallel planes instead of co-axially. This can be seen in Fig. 1. The cross section shows how glass cylinders are fused to metal dises and cylinders to form the housing and the control elements. This coplanar electrode design and elisc-seal
construction permits really low interelectrode capacitances.

In addition, the construction permits the tube to become a part of a resonant cavity for providing high-Q resonant circuits at microwaves. Fig. 2 is a typical cross section of a lighthouse tube mounted in co-axial cavity resonators to form a grounded-grid amplifier of microwave signals.

The lighthouse tube is used in local oscillators for superhet receivers, in detectors and amplifiers, and as a signal source for microwave measurements. Its main limitation is its low power output for transmitting purposes, compared to some other microwave tubes to which we will turn our attention.

## Orbital beam fube

Secondary electron emission plays an important part in several of the microwave tube dosigns. One of these is the orbital beam tube. Fig. 3 shows a cross seetion (looking down from the top) of such a tuhe. A small edectrode structure of cathode and two grids with a secondary electron emitter raises the transconductance of the tube above the level ohtairable in the usual direct-emission construction.

Flectrons emitted by the cathode K 1 are accelerated through the control grid (il by a screen grid G:3 which has a high positive hias. The electrons enter a strong electrostatic field set up by electrodes Jl and J: causing them to follow a circular path at high speed until they strike the secondary emitter K2. Here they "hounce off" about 10 secondary electrons for each primary electron in the cathode stream. The


Fig. 3-Operation of the "orbital-beam" tube.
greatly multiplied electron stream proceeds to the plate $P$, causing a considerably greater plate current to flow than would be possible by direct emission. The result of this beaming effect is a tube having a high transconductance without increasing transit time or internal capacitance effects. Transconductances of $\mathbf{1 5 , 0 0 0}$ at higher than 500 me have been measured.
gle turn with a capacitor across it. At $b$ the capacitor plates are made of mesh so they can also act as grids. At $c$ a large number of turns are joined together to suggest how the resonant cavity can be built up. In the complete resonant cavity, as seen in the Klystron of Fig. 5, one end of the cavity is made flat, of corrugated flexible metal, so the circuit can be tuned by pressing the


Fig. 4-Evolution of the resonant cavity and grid system of the Klystron.

This tube finds application in amplifiers where high voltage gain is needed with small input loading effects. In both transmitters and receivers it is desirable to have high-gain amplifiers in the low-level parts of the circuit. R.f. and i.f. amplifiers, detectors, and oscillator circuits are typical examples of this, particularly at frequencies under $1,000 \mathrm{mc}$.

## Velocity-modulated tubes

In conventional negative-grid tubes, the control grid restricts the flow of electrons when it becomes negative and increases the flow when it becomes positive. Thus, the electrons, after passing the control grid, tend to separate into groups. Those which pass the grid during the negative half-cycle are collectively slowed down while those passing during the positive half-cycle are speeded up.

However, because of incomplete control of the electron stream, only part of the electrons reach the plate in the alternating slowed-down and speeded-up groups, the remainder reaching the plate at random speeds, thus contributing nothing to the tuhe action. The efficiency of the tube is thus reduced in proportion to the variation in velocity and reaches zero when the transit time approaches a half-cycle, as we mentioned before.

A velocity-modulated tube has been developed, in which this effect serves a useful function. In this tube, the input signal on the grid is used to control the velocity of the electrons in a constantcurrent beam instead of varying the intensity of a constant-velocity flow.

A specialized form of velocity-modulated tube, which is extensively used for wide-frequency operation because it can be readily tuned over a wide range, is the Klystron.

The Klystron depends on the resonant cavity discussed in our last installment. There are two of these in the standard Klystron. Each of them has two grids, which may he considered the capacitor plates of a greatly modified coil-capacitor circuit. See Fig. 4, which is developed in a little different way from the resonator of Fig. 4 in last month's installment. At $a$ we see a sin-
two grids closer together. This is the same as turning the plates of a variable capacitor further "in."

If r.f. is introduced through the in. put terminal, any part of the wall and


Fig. 5-Cutaway of a typical Klystron tube.
the two grids act like the single turn of Fig. 4-a, electrons flowing along the wall and voltages building up on the grids at the frequency of operation.

Electrons are attracted by the grids, which are maintained at a higher positive d.c. voltage than the cathode. Those which pass through the two grids at a part of the r.f. cycle when the first grid is at a higher voltage than the second are slowed down somewhat by the relatively more negative second grid. Those electrons which pass through the grids when the second is at a higher voltage are speeded up. Thus there is a tendency for the electrons to bunch.

The bunching effect is increased by letting the electrons travel through a "drift space" where the faster-moving electrons gradually overtake the slowermoving ones. The electrons emerging from the pair of grids are separated
into groups or bunched along the direction of motion. This relocity-modulated electron stream is passed into a catcher cavity similar to the one that bunched the electrons. As the groups of electrons approach each of the two grids in turn, they induce positive charges in them by capacitor action, causing r.f. currents to flow in the catcher cavity at the frequency set by the in put r.f. In other words, the catcher cavity is tuned or made resonant to the frequency of the velocity-modulated electron beam so that oscillations are set up in it by the passage of the electron bunches through the grid aperture. If a feedback loop is provided between the catcher cavity and the bunches, oscillations will occur at a frequency determined by the electrode voltages and the dimensions of the cavities. The Klystron is tuned by varying the supply voltages and altering the size of the cavities by means of their bellows or "rhumbatron" construction.

The bunched-beam current in a Klystron is rich in harmonics, but the out put wave is remarkably pure because of the high $Q$ of the cavity resonators which suppresses the unwanted harmonics.

Klystrons may be tuned through several modes of the cavity resonators and thus are "wide-range" devices covering a wide band of frequencies. They are, however, designed for a specific band of frequencies and are applicable only to that band.

Klystrons are perhaps the most widely used vacuum tubes for microwave measurement work, as oscillators. However, they find many applications also as amplifiers, frequency multipliers, and as detectors or mixers in superheterodyne receivers.

The reflex Klystron differs from the type described above in that only one cavity resonator is used instead of two. The electrons are reflected back from the drift space into that cavity by a reflector electrode. The action is otherwise very similar.

## Positive-grid oscillators

If a triode tuhe is arranged in a circuit in which the grid, rather than the plate, is at a high positive voltage with respect to the cathode, it will oscillate at higher frequencies than the conventional circuits.

Electrons emitted by the cathode are accelerated toward the positive grid, some striking it and some passing between its meshes. Those that pass through are repelled by the negative


Fig. 6-Electrons in split.plate magnetron.
plate and return, passing once again between the grid meshes. In this process, the electrons induce high-frequency voltages in the grid at a frequency depending directly on the electron transit time.

Some electrons may pass through the grid structure several times while others strike the grid on the first trip. The former lose energy, but the latter gain energy. However, since the former are free for a longer period of time, there is a net transfer of energy that main-


Fig. 7-Cutaway view of W.E. 5 J 23 magnetron.
tains oscillation.
In this type of oscillator the frequency is controlled by the grid voltage and the tube-element spacing as well as by the external resonant circuit into which the oscillation energy is fed.

Positive-grid oscillators can be operated at frequencies approaching 10,000 me ( 3 cm ) but are low in efficiencyonly 2 or $3^{\prime}$ '-and are useful mostly for lahoratory experimental and research work.

## The Magnetron

Perlatps the tube with the most exciting of all carers is the magnetron. Invented many sears ago. the early split-plate type vas known only as a cranky but efficiont laboratory oscillator. The demand for a high-power. high-frequentes radar oscillator speeded researeh to the point where the present cavity magnetrons were born.

The magnetron is fundamentally a diote with one. two, or a number of anodes placed in a cylinder around the cathode. The tube is placed in a strong magnetic field, with the lines of force parallel to the elements ( $N$ and $S$ poles at ends of tube). Nagnetron oscillators operate in two different wayswith negative-resistance (dynatron), or transit time.

When no magnetic field is applied, the magnetron acts like an ordinary diode. Electrons leaving the filament are drawn directly to the positively charged plate. "pon application of a magnetic field, the election is acted on by two forces-the electrostatic force attracting it to the plate, and the magnetic force urging it in a direction at right angles to its path from cathode to anode. Therefire, the electron moves in a curved path, the curvature of which increases with the magnetic field strength, until a point is reached at
which the plate is missed altogether. and the electron-calried on by its own momentum-curves back toward the tilament.

To make the tube act as a negativerosistance magnetron oscillator, anode voltage and field strength are so adjusted that the tube acts as a negative resistance. The magnotic field force is increased to a point which prevents practically all electrons from reaching the anodes. If, howerer, one of the splif sections is at a higher voltage than the other. the electrostatic field in the vicinity of the slot between sectors will be distorted as shown in Fig. 6. Any electron whose circular path causes it to move parallel with the plate and in the direction of the one with lower voltage is retarded by the opposing field and no longer has momentun enough to carry it clear of the plates and back to the cathode. Consequently, it comes to rest on the lower-voltage a node.

This is a true case of negative resistance. A lowering of voltage results in an increase of current, and vice versa.

The action is more completely described in Radio-Cpaft, February, 1946, from which the above description is taken.

In the transit-time oscillator, the electrostatic and magnetic fields are so adjusted that all the electrons rotate in circles and never reach the plates, but form a strong space charge between cathode and anodes.

If an alternating current is now applied between the plates, they alternately draw electrons from the space charge, causing momentary plate current to flow. If the frequency of the alternating voltage applied between the plates equals the time it takes for an electron to rotate once round the cathode in the magnetic field. the a.c. component of the plate current changes direction twice for each electron rotation. The result is a sustained oscillation dae to transfer of energy from the electrons to the electrie field in the tube.

In the early magnetrons, the plates were semicircles surrounding the cylindrical cathode and the output of the pates was ferl to a resonant transmission line. Nodern magnetrons have
built-in cavity resonators as shown in Figs. 7 and 8. At extremely high frequencies the plate structure is divided into as many as six or eight segments, wach with its own resonant cavity coupled to the cathode by slots of critical dimension. Sometimes, further to increase efficiency, the segments are cross-connected with wires. The magnetron is then said to be "strapped." See Fig. 7.

The efficiency of multisegment magnetrons may le as high as $70 \%$. The frequency of high-order modes of oscillation can be as high as $120,000 \mathrm{mc}$ $(0.25 \mathrm{~cm})$ at power outputs of 100 watts or more. Thus it can be readily seen why magnetrons are almost exclusively used as high-power oscillators and transmitters in the microwave regions.

The above descriptions cover most of the microwave tubes now in use. We have not covered some of the specialized types such as the Micropup, which is a special triode of English origin in which the plate is part of the external tuhe envelope and is equipped with radiating fins to dissipate heat and permit it to produce higher power; the Zahl internal-circuit tube, which contains four triodes in one envelope connected directly to resonant quarterwave lines and can develop up to 200 kw of pulsed microwave power; or the ring triodes in which separate triodes are mounted around the periphery of a circular mounting with their elements con-


Fig. 8-A $2^{-0} 0 . \mathrm{kw}$ magnetron, the W.E. 728-AJ. nected in parallel. These and other special types are either outmoded or have little general application and are interesting only from a purely academic viewpoint.

## INSECTS ARE RADAR "ANGELS"

Many a Gl who sat at a radar screen in the South Pacific during the war can attest to the harassing power of flying (and lighting) insects. But he never dreamed that these insects were responsible for the "angels" which confused his observations when they appeared on his radar scope.
"Angels" is the nickname applied to the short, sharp echo "blips" that have been noted on radar equipment for years. These little spots of light defied all the laws of aerodynamics and hewildered all the experts, who were at a loss to explain them.

Recently, however, tests and observations conducted jointly by Bell Telephone Laboratories and the Naval Electronics Laboratory confirmed that high-
flying insects were the source of the "angels:" Working at night, researchers threw out a strong searchlight beam and stationed observers at different levels of a 200 -foot tower. While the observer: counted insects, the radar operators counted "angels." In one 15 minute period, for instance, 20 were counted. 15 of which coincided with the sighting of an insect.
A. B. Crawforl of Bell Laboratories, who reported the discovery, points out that insects fit most of the descriptions applied to the mysterious reflections. Ther are small, move at a speed around that of the wind (sometimes with and sometimes against the wind), are present both day and night, and increase in warm weather.

# How To Repair a <br> Hammond Solovox 

By HOMER L. DAVIDSON



The author has taken the "works" out of the tone cabinet for service. Keyboard is at right.

WHEN a bulky box and a piano-like keyboard is brought into your radio repair shop, you may wonder what it is and how you will ever be able to service it. But don't let a Solovox stump you. It is not hard to service. Last year I repaired 15 of them, and I am now going on my eighth for this year.

While some parts of the circuit more or less resemble standard amplifiers. most parts are peculiar to the Solovox. Since all the components are ordinary ones, however, with which the technician comes in contact every day, repairing the instrument is not a difficult problem. The troubles I have found in actually working with Solovoxes and the repairs made should help other technicians with their own Solovox repair.

## Vibrato

The vibrato effect is caused by a metal reed with a magnetic drive. On one end of the reed is an iron core which moves in and out of an auxiliary coil connected (when the vibrato switch
is on) across a portion of the oscillator tuning coil. The moving core varies the inductance of the coil and the frequency of the oscillator.

Sometimes the vibrato does not work because the reed is not vibrating. The magnetic drive is not self-starting; the on-off volume-control lever gives the reed a push to get it started. If the lever is moved to the operating position too gently, the push may not be hard enough. The trouble can usually be remedied by turning the instrument off and then pushing the lever to the right more quickly.

Remember. if the keyboard is placed on the workbench for service, that the reed won't vibrate unless the keyboard is in the playing position, as in the photos, not on its back or up-ended.

## Silent octaves

There is only one oscillator in the Solovox. It oscillates at 2.093 to 3.951 cycles, equivalent to the $C$ to $B$ at the top of the piano keyboard. The five lower octaves which can be sounded are generated by five 6SN7-GT frequency
dividers and two 6SN7-GT drivers. Therefore, when the top octaves sound normal but all notes below a given C are silent, one or more of the (iSNT-GT's may be bad. The easiest way to find out is to replace them, one by one, beginning with the fifth tube from the left in the upper row (see photo of rear of tone cabinet).
If no sound is heard or if only the top octave is working, the GSJ7 7 (tube at extreme left) or the 6.J5 first driver (second tube from left) may be bad. Try substitution.

## The mute circuit

One of the factors affecting the tone quality of the instrument is the mute circuit, operated by a switch on the front of the keyboard. The mute switch cuts in a diode following each freguency divider. The diode, when in the circuit (MUTE switch off), gives the tones hoth odd and even harmonies. When the switch is oll, the diodes are out of the circuit and the only overtones heard are the odd harmonies. giving the tones a "muted" or softened effect.
If operating the muTE switch has no effect on the tone-if it remains muted -a Gilf may be bad. Three fitis's are used, one of the six diode sections being in the output circuit of the oscillator and each divider. Usually, therefore, only a certain range of tones will not be muted correctly (assuming that only a single GHf goes out at a time). If all tones are affected, the contacts on the MUTE switch may be bent or dirty.

## Clicks and thumps

One of the two contacts on each key selects one of 12 tuning capacitors for the oscillator. However, when no keys are pressed, the oscillator generates the note $B$. The amplifier, therefore. nust be shut off when no keys are being pressed.
A pair of 6SK7 control tubes (V14, V 15 ) is used in a gating circuit. Normally they are biased to cutoff by a high positive cathode voltage. When a key is pressed, relay coils, obtaining their voltage from the same voltage divider that supplies the cutoff bias, are energized. The current drawn by the coils reduces the voltage at the 6SK7 cathodes so that the tubes operate. The audio fed to them is amplified and passed on to the 6 K 6 push-pull output stage.
Unless the 6SK7's are well balanced, you may hear a click or thump each tine a key is pressed. The unbalance may be due to age, or balanced tubes may not have been installed during a previous service job. As replacements, use two tubes of the same make. If the noises are still heard, experiment with tubes selected at random until a good balance is indicated by the absence of noise.

## Relays

Though the keyboard covers only three octaves, six octaves of tones are
available from the oscillator and frequency dividers. The keyboard is "moved" up and down through this range $b y^{\prime}$ the registration controls, which select the three octaves to be played. In addition, the upper, niddle. and lower octaves of the keyboard are connected to the correct divider by three relays, one for each octave. If these relays do not operate, no tone will be heard.

To determine whether the relays are working, put your "ar close to the relay unit and push one note on each of the three octaves successively. You will be able to hear the relay go on. If the relay is heard but the notes are not, the contacts may be pitted or dirty. Before going into the relays, however, check everything else, as the relays are hard to get at. If necessary. apply the usual remedies to the con-tacts-clean with calbon tetrachloride and burnish them.

## Switch and key contacts

Dirty, pitted, or bent contacts are sometimes found on the switches and keys. The bass, tenor, contralto, and SOPRANO registration controls may be removed for inspection and cleaning. Remove the small screws from the bottom of the Bakelite end piece at the left of the keyboard. After removing the end piece, pull out the long rod on which the register controls pivot. Pull off the control or controls that seem to be causing trouble. Clean the contacts with carbon tetrachloride. Bend them into place if necessary; but unless you are sure vour bending is correct, don't do it.

When replacing the controls. be sure the small lip fits inside the copper spring to give correct tension. When the rod is pushed in. the controks will sometimes not line up. Jiggle them a little to put them in place. Check all keys, octaves, and controls. I) o not leave a Solovox repair job until you have done so. and you will have few callhacks.

If one or more of the notes chirp or don't appear to go on and off cleanly, the key contacts may he dirty. Dirty contacts may also cause complete fail-
ure of one key or nay make a key play the note $B$ instead of its correct note.

Each key has two sets of contacts, one for tuning and one for relay control. These contacts hit hus hars. Each bar may be moved slightly to expose a new, clean contact area by loosening one screw in each end of the keyboard. Hove the bars about ${ }^{1}$ a inch.

## Volume troubles

l.ow volume or too much volume may be caused by misidjustment of the maximum and minimum volume controls. These are located under the keyboard at the left of the volume-control lover and may sometimes be shifted aceidentally by the player.

Complete loss of volume control may be caused by had iSKit control tuhes. The volume control itself is not a continuously variable unit, but a multipoint switch. It rarely causes trouble.

## Components

As with all electronic equipment, trouble can always be caused by failure of components-resistors. capacitors, and so on. To find these, the usual signal tracing is effective. A good beginning is to trace through the frequencydivider stages, beginning with the oscillator. A signal should appear at the plate of each 6SNT-(iT. Trouble will be located between the oscillator and the first tube at the plate of which no signal can be heard.

If all is well here, check the $6 J 5$ pramplifier. The various tone controls are in the plate circuit of this stage. The signal then goes to the control tubes and the power output stage. which may he checked like any pushpull amplifier.

The voltage chart is useful for furmishing a clue to the sousce of trouble. The roadings shown there were taken with a 1.000 -ohmener-volt meter having $50-$, $250-$ and 1.000 -volt soales. I Heviations of as much ats $20 \%$ in readings mat be caused by variations in line voltage All contiols were off during the measurements. the volume control in its softest position. and no key pressed unless noted. All voltages are positier with respect to chassis.

## Summary

The most common troubles in the Solovox are as follows (in order):

1. Bad contacts (or keys, register relay controls, or relay contacts.)
2. Gassy and microphonic 6SN7-GT.
3. Bad control tubes.

Here is a list of practical troubles and their remedy:

Sputtering and cracking: Dirty key; remove the end piece and shift the bus bar.

Chirping: Dirty key on relay contacts; as above and clean.

Thumping and checking: Bad 6SK7 control tube; replace both.

Cracking and microphonic sound: Microphonic GSN7-GT or 6V6-GT; replace.


Unit fails to light up: Large male receptacle pluy has been pulled out of its socket.

One key fails to play: Dirty key or contact; shift bus haw about $1 / 32$ inch.

One single octave fails to play: Generally register control tablet; remove end and wipe or brush contacts with carbon tet.

Low volume: First check min and max volume controls as they can easily he turned during operation; then check power output stages.

No vibrato tone: Dirty contact or vibrator; first switch vibrator on vigorously with switch lever; then check contacts.

Can't control volune: Bad 6SK7 control tubes: replace.

Excessive a.c. hum: Bad filters.


Oscillator ond dividers provide tones over b-octave range. Oscillator is tuned by key contacts. Register controls select octave ranges.

# Servicing Intermittents <br> way you will obtain first-hand informa- 


will not show up the trouble in every instance; there are many elusive cases

ONE of the most trying and time-consuming problems of radio receiver servicing is the location and correction of intermittent troubles. Intermittents not only waste valuable time; they also cut down profits. It is often difficult for the customer to understand a repair bill for "three hours labor" when the trouble was caused by a 15 -cent capacitor.

Intermittents produce a variety of symptoms and are due to as many causes as there are parts in the set. In the majority of cases, however, the probable sources of trouble can be narrowed down and the defective part located by making a few simple aural checks. In addition, it is common knowledge that certain makes and models of receivers have recurrent troubles which of ten are peculiar only to that model.

Familiarity with these peculiarities, gained through past experience, of ten will indicate the approximate, if not exact, component at fault. For example, a particular set of several years ago was notorious for its poor bypass capacitors (it was not unusual for the whole capacitor to fall out of the set when one lead was clipped); another was known for open, noisy i.f. primaries. A nother set often came up with intermittent broken leads in the voice coil.

The tests described below admittedly
which will clear up at the slightest circuit disturbance or will occur only at rare intervals, sometimes days apart. For ordinary or recurrent intermittents, however, these tests will prove to be worth-while in saving time, patience, money, and customer good will.
In any intermittent complaint, first secure all the information possible from the customer. Here are some of the stock questions which can help a great deal in locating the trouble:

1. Does turning an electric light or appliance on or off cause the set to cut in or out, or does this occur independently?
2. Does jarring the set or operating the volume control or waveband switch affect operation?
3. Does the customer use an external aerial or ground?
4. Does the pilot light flicker or go out when the trouble appears?
5. How long has the set been acting this way?
6. Does the condition appear only after the set has been on for a certain time?
7. Is the trouble more noticeable at certain hours of the day?
8. Does trouble occur at both ends of tuning range on a given band?
On service calls to the customer's home, turn the set on and wait for the trouble to appear hefore disturbing any connections or jarring the set. In this
tion as to the nature of the complaint; taking the set to the shop first often relieves the trouble and makes for undue difficulty in making it reappear. Frequently such simple things as a loose or shorting antenna wire or a loose ground connection are responsible for intermittent, noisy reception. Poor connections at the wall socket or extension plug also contribute their share. Noise in the set can also be caused by a dirty ground, loose lamp socket, etc. Check all light bulbs for tightness in the socket; examine line plugs for loose, dangerous connections. A noticeable change in volume as a light or appliance is turned on is a good indication of a bad coupling or bypass capacitor.

If you have no chance to observe operation of the set in the owner's home, handle it as gently as possible until the trouble has had a chance to show up. Avoid placing the receiver on a metal-top bench where possible contact with the chassis or antenna lead might upset the electrical balance and clear up the intermittent condition. It is always best to obtain an aural indication of the trouble before checking the tubes or removing the chassis.
In many cases the fault may be due to a short in the wiring, tube-socket terminals, or component leads; pulling a tube from the socket may relieve the trouble temporarily. Sometimes this effects a permanent cure; more often, it results only in restoring normal operation until the set is taken home.

The most common causes of intermittent reception are (in the order in which they commonly occur) capacitors, tubes, coils and transformers, resistors, high-resistance joints, poor connections, and socket breakdown. However, it is more convenient to check the tubes first. Many times the symptoms may point to a defective capacitor when actually a tube is at fault. Testing the tubes first often results in locating and correcting the trouble without removing the chassis. (It might be pointed out however, that many technicians remove the chassis anyway to check and clean all components.)

## Tubes

Intermittent operation in a tube is usually due to an internal short or to an open due to the heat in the heater circuit. In most instances, intermittent shorts or poor connections in a tube can be located quite readily by tapping the envelope or grid cap. The usual symptom which denotes this kind of tube trouble is a drop in volume, accompanied by a crackling or rustling noise. In oscillator or converter tubes, the noise is often accompanied by loss
or shifting of the station. In high-gain, multi-element tubes, a poor grid connection is frequently responsible for intermittent operation. This trouble is prevalent in such tubes as the 6T7-G, $6 \mathrm{~B} 6-\mathrm{G}, 75,6 \mathrm{Q} 7,6 \mathrm{~F} 5$, and their 12 -volt or single-ended counterparts. Converter tubes such as the $6 \mathrm{~A} 7,6 \mathrm{~A} 8,6 \mathrm{~K} 8$, and 6SB7Y are similarly affected.

Intermittent heater operation, especially in metal tubes, is a bit harder to locate, particularly when the heater is opening at a steady, slow rate. In the majority of cases, the tube filament will show continuity when checked with an ohmmeter, but will open again as soon as the heater reaches normal operating temperature. The faulty tube may sometimes be located by placing a hand on the metal shell and comparing its warmth with that of similar tubes in the set. Many times it is necessary to use the substitution method. Some servicemen use an electric sun lamp or heater element to raise the temperature of the suspected tube. This method is all right if used for only a short time, but don't overdo it. A sun lamp on the loose can wreck more than a little havoc of its own, particularly on parts adjacent to the tube.

In cases where vibration of any tube or any part of the set produces the same amount of noise, it is a good idea to try the substitution method first, starting with the converter tube. If the set is out of the cabinet, it is well, of course, to examine the wiring and component leads briefly for indication of poor contact or soldered joints.

Heat-affected heater elements are more prevalent in high-voltage a.c.-d.c. tubes such as the $25 \mathrm{~L} 6,35 \mathrm{~L} 6,50 \mathrm{~L} 6$, 50 A 3 , and 117 L 7 . The higher operating temperatures in these tubes, along with the increased filament contraction and expansion, make them more susceptible. The $35 \mathrm{Z5}$ and similar types of rectifier tubes are also in this category. In tapped-heater types, such as the 35 Z 5 , which show up with an open pilot-lamp section, be sure to check the pilot lamp for burn-out and to replace it with a bulb having the proper current rating before replacing the tube. If either the pilot lamp or the pilot-lamp section of the tube burns out, the current load on the remaining branch is doubled and it soon burns out.

In some cases a replacement tube in an a.c.-d.c. set will show a tendency to burn brighter than normal. Although this does not necessarily mean trouble, the a.c. voltage across each tube heater should be checked. If any one tube is taking more or less than its share of voltage, the cause should be found and corrected. Often the resistance of the tube is incorrect. (This may be checked by substituting a new tube.)

## Capacitors

The most common source of intermittent trouble in capacitors is the loosening of lead contacts which results in a very light pressure on the foil. Usually the trouble can be found by tapping or probing the capacitor
lightly. Avoid pulling or striking roughly, since this is an almost sure way of making an intermittent. An intermittently open capacitor generally can be located by bridging it with a good capacitor of the correct value. In some cases, however, substitution may not give an absolute indication unless one end of the suspected unit is cut loose. Bad paper or mica capacitors in the oscillator circuit usually result in a shift in frequency of the station, especially at the lower end of the band.

Electrolytic filter capacitors of the fabricated-plate type often are the cause of intermittent popping, staticlike noise, which may be accompanied by hum and oscillation. As with bypass or coupling capacitors, the surge caused by bridging a filter capacitor with a good unit may cause it to heal. The entire filter block should be replaced at the first indication of trouble. Avoid replacing just the bad section; the other is likely to give trouble shortly. If this happens, you will have a dissatisfied customer on your hands.

## Coils and transformers

I.f., oscillator, antenna, and r.f. windings are subject to electrolysis and corrosion because of moisture content in the coil forms and absorption from the atmosphere. Trouble usually appears in the primary section first, the windings next to the coil forms showing green, corroded spots on the form and throughout the first few layers of wire.

Noise originating in a transformer can be determined either by measuring the winding resistances with an ohmmeter or by momentarily shorting the plate end of the suspected transformer to ground. Resistance of a corroded winding will vary from the readings of the other windings, reading higher if high-resistance corroded spots are present, and reading lower if the winding is partially shorted.

Coil and transformer noise in a set may be isolated in the following manner:

1. First short the second-detector grid to ground. If the noise persists, the trouble is in the second-detector plate circuit, the audio stage, or the speaker. If it ceases, it is ahead of the second detector.
2. Short the grid of the last i.f. stage to ground. If the noise stops, look for a defective tube or plate circuit in the stage ahead. If the noise is still present, the trouble is in the last i.f. stage.
3. Continue the test, successively shorting the grid of each stage to ground, working back to the converter or r.f. stage. Noise which ceases when the grid of the r.f. stage is grounded is being picked up from a defective antenna coil or from an external source.

A defective oscillator coil is indicated by improper tracking or by inability to pick up a station even though the converter is operating. Noise in the speaker may be due to a defective field coil or to turns of the voice coil which are rubbing against the speaker frame. The voice coil may open inter-
mittently or shor't under these conditions. Braided voice-coil leads are found in some sets; vibration may cause the braid to wear and pull loose, producing an intermittent open.

## Resistors

Resistors usually giving trouble are wire-wound, metal-covered bleeder units which are riveted to the chassis. Poor connections between the terminal lugs and resistor elements of cause an open condition, which may show up when the set is first turned on but which will disappear after the resistor has warmed up and expanded. To check this possibility, make a resistance measurement of the resistor sections when the set is hot, and again after it has cooled. An open or partially shorting condition will often be shown up here.

Carbon resistors frequently develop internal noise. This trouble is usually continuous when it develops and may easily be found; intermittent noise may be located by twisting or probing the resistor.

## Other causes

A set may become intermittent only at certain times of the day. Usually trouble will be found in a poor oscillator or rectifier tube or filter capacitor. Operation becomes erratic only when the line voltage drops below a certain critical point. Intermittent distortion, especially in a.c.-d.c. receivers, may be due to secondary emission in the output tube when the line voltage is increased to a certain value.

Arcing or intermittent operation caused by loose tube-socket terminals, poorly soldered connections, etc., can be located by probing and tapping the wiring or by turning off all lights and watching for a small arc at the loose point. High-resistance joints may be located best by applying a hot soldering iron to the terminals. This is particularly effective in oscillator, r.f., and a.v.c. circuits.

As mentioned before, servicing of intermittents can often be expedited by focusing a heat lamp on the set so that its operating temperature increases.* Thermal conditions may also be checked by placing the set for a time in an old refrigeration or cold-storage unit. A flasher placed in the a.c. line often causes breakdown of faulty capacitors by generating peak surges. The same result may be accomplished in a.c. sets by removing all the tubes except the rectifier and letting the set "cook." The increased voltage, in most sets at least, will not damage a good capacitor but very often one on the verge of breakdown will be shown up.

Most intermittents can be located by combining patience with simple logic and circuit analysis, based on practical experience and a knowledge of typical receiver peculiarities. There are cases, however, where an intermittent may refuse to show up for hours or even days. This type of set should be connected $t$ some form of signal tracer and left to run while other sets are being repaired.

LEO T. PARKER

TBadio
Teclnnicialls

T is important to radio technicians and dealers to know the modern law involving sale contracts in which the seller agrees to render specified service on television sets, equipment, and electrical merchandise. The higher courts consistently hold that contracts of this nature are valid and enforceable by the purchaser, provided, of eourse, the purchaser does not breach any obligation he assumed under the contract. In other words, a seller who has nade a valid contract always is obliged to perform promised service in strict accordance with the terms of the contract if the purchaser fulfills his agreement.

It should be remembered that whether or not the buyer of the equipment agreed to pay for service, he is liable for the "reasonahle" value of the services rendered-if the seller did not agree to furnish free service. This is so because all higher courts consider that one who orders service will pay its reasonable value. The courts will not permit a purchaser to "impose on the good nature" of a seller.

For illustration, in one case a contract for sale of a television set contained a clause which guaranteed that "the purchaser shall be satisfied." Although the set was apparently worth the purchase price, the purchaser refused to make the agreed payments. The seller denianded final payment and the purchaser refused on the grounds that he was not, as he termed it, "satistied."

The seller filed suit and proved that the television set was "reasonably" satisfactory, notwithstanding the complaints registered by the purchaser. In view of this testimony, the higher court held the purchaser bound to pay the full amount due on the original sales contract.

## Special service

On the other hand, if a contract or agreement clearly and distinctly specifies the kind of service the seller of radio equipment will supply and on what dates inspections, alterations, adjustments, and necessary repairs shall be made, then the seller positively is obligated to fulfill the exuet terms of this contract. Failure of the seller to do so is a legal breach which entitles the purchaser to rescind the contract and force the seller to take back the appliance or the equipnent covered by the contract.
The courts have laid down well-defined laws respecting different kinds of service contracts. The distinctions are important.

For example, modern higher courts consistently hold that if a seller fails to carry out an agreement to keep radis equipment in repair, and if a seller did not guarantee that he personally would keep the radio in repair, the buyer is not entitled to rescind the contract and recover the purchase price. In this kind of a contract the bryer must make
necessary repairs, and then he must sue the seller for a credit against the contract price, this credit equaling the expense he incurred in keeping the radio in proper repair for the period of the guarantee.
For illustration, in Welkner v. D. G., 27 A. (2d) 351, it was shown that : seller brought suit against a purchaser who refused to pay for a radio. The sale contract stated that the equipment was guaranteed "one year free." There was no guarantee of the quality except that the service was "guaranteed" for' one year. In other words, the seller did not guarantee that he personally would make repairs.

After the purchaser had the equipment for several weeks, he discovered that it was defective and needed repairs. He phoned the seller several times, but no one caune to make repairs. In subsequent suit the purchaser claimed that the radio was so unsatisfactory that he could not use it.

The higher court held that the purchaser must pay the full purchase price for the equipment. but that he could dednct from the contract price the total expenses he incurred in making needed and necessary repairs. This court explained that, sinee the seller had not guaranteed that be personally would make the repairs. he was not obligated to make the repairs, although he had to pay the purchaser, who had had another technician make them.

For comparison, see May, 159 Md . 605. In this case a retail dealer sold and guaranteed electrical equipnent to the purchaser. The dealer guaranteed to herp it in repuir for a year, but he failed to do so.

The court held that, where a sellel personally guarantees to keep an appliance in repair for a stated period and fails to do so, the purchaser may rescind the contract and recover from the dealer the full purchase price.

Hence, these two leading higher court decisions clearly distinguished between service guaranteed personally by the seller and "guaranteed service." Both buyers and sellers should examine contracts carefully to determine which of the two is intended.

According to a recent higher court the purchaser of a radio on installment may keep it and refuse to pay the dealer who breaches his agrement to keep the radio in good repair.

For example, in Sinn, :30 P. (2d) 761, it was disclosed that a seller and buyer signed a written contract which con-
tained the following clause: "In the event of default in the payment of any installment of this note, the seller may declare the remaining installments not then due hereunder immediately due and payable."

The contract also provided that the seller would inspect the equipment on stipulated dates and make necessary repairs and adjustments.

After the purchaser made several payments, he defaulted in making further payments. In subsequent suit the purchaser proved that, although the seller agreed to keep the equipment in operating order, he had not rendered service when it was reasonably necessary. Therefore, the higher court held that the purchaser was not required to pay the balance due. The court said:
"In the instant case the agreement to make the payments was based upon consideration of the service which plaintiff (seller) was to render in keeping the equipment in operating order.

It is well-established law that a technician is entitled to a lien on radio equipment to secure service charges. All higher courts agree that a commonlaw lien is the right of a technician to retain a radio in his possession until certain demands against the customer are satisfied. Similar liens have alvays been valid in favor of persons such as innkeepers, farriers, common carriers, and warehousemen, who service the public.

## Damage to equipment

Considerable discussion has arisen from time to time over the legal question: Is the proprietor of a service shop liable for theft, fire, or other damage to radios or equipment left in his care for repairs? The answer is no if the loss does not result from the technician's negligence. (See Ablon v. Hawker, 200 S. W. [2d] 265.)

On the other hand, all courts agree that the owner of a service shop is liable for any loss or injury to radios belonging to customers caused by failure to exercise reasonable care to protect them. Nevertheless, a technician is not liable for any loss or injury to radios which could not have been avoided by exercise of such care as would have been exercised by other reasonably careful and experienced technicians.

One thing is certain: if a technician keeps in his employ a person known to have stcjen radios or equipment, that employer is likely to be held liable for theft losses, even though no proof is given that this particular employee stole the equipment in question. (See 269 Pac. 469).

If a fire destroys a service shop containing customers' radios, the owner of the service shop is not liable unless the testimony proves that the fire started through his negligence.

## Rights of seller

Considerable discussion has arisen from time to time over this question: If a buyer of radio or television equip. ment breaches his contract to make
agreed payments, what rights has the seller? $A$ review of recent leading higher court decisions discloses this established law: Failure of the purchaser to fulfill his agreement to make regular monthly payments affords the seller the right to decide to do one of three things:

1. The seller may sue the purchaser. for damages;
2. He may sue the purchaser for return of the radio and the jury will decide the amount due the seller; or
3. The seller may sue and have the court compel the purchaser to fulfill the exact terms specified in the purchase contract.

For illustration, in Carisch, 255 N. W. 815 , it was disclosed that a purchaser signed a contract in which he made a down payment and agreed to pay the balance in monthly installments, plus an additional stipulated amount for special service and monthly inspections by the seller. An important clause in this contract stated that the seller was to supply repairs and adjustments which in his opinion were necessary, and, if the equipment got out of order, the purchaser had to notify the seller immediately.

The equipment got out of order and failed to operate satisfactorily. The purchaser failed to notify the seller and then later refused to make agreed payments. The seller sued the purchaser for the entire balance due on the contract.

The higher court held the purchaser must pay the seller the entire balance due immediately. This court explained that, when a purchaser breaches a contract of this nature and fails to notify the seller immediately when the equipment gets out of order, he cannot complain and he must pay the seller the full balance due.

The seller may sue and repossess the equipment or recover at once all payments due in the future if the purchaser breaches the contract by failing (1) to make agreed monthly or weekly payments on the exact dates specified in the contract; (2) to accept delivery of the equipment on the agreed date; or (3) to use the merchandise in the manner prescribed in the contract. The court said that, if the purchaser violates his contract in any of these respects,

1. the seller may refuse to perform his guarantee, and sue the purchaser for damages and profits equal to his financial loss resulting from the breach;
2. the seller may file suit and compel the purchaser to fulfill the exact terms of the contract;
3. the buyer and seller may enter into

negotiations and make a supplementary compromise contract; or
4. the seller may ask the cour't to compel the purchaser to keep the radio and to pay the entire balance which is due at once.

## Rights of purchaser

Obviously a purchaser has certain well-defined rights if a seller or technician breaches his contract. A review of recent higher court cases discloses that the courts have adopted this rule: $A$ purchaser is privileged to cancel a contract of sale and recover damages from a seller who

1. fails to deliver radio equipment on the exact date specified in the contract;
2. refuses to make the delivery in the exact manner specified in the contract; or
3. fails in any other particular to fulfill the obligations assumed in the contract, such as installation, service inspections, or guarantees of quality and efficiency.

At this point it is well to explain that although the seller may not give a written or verbal guarantee, all courts consider that a seller guarantees that the radio is "reasonably fit" for the intended purposes.

For illustration, in Brand v. Burd, 192 S. W. (2d) 651, the testimony proved that a purchaser traded in old equipment under a written contract which contained a clause: "The seller warrants the goods ... for one year, this warranty being limited to the furnishing at our factory of such parts as shall appear to us to have been defective in material and workmanship."

The purchaser soon discovered that the new equipment did not perform satisfactorily, and he refused to pay the amount due. He requested the seller to return his old equipment. The seller refused this offer and the purchaser continued to use the new equipment while corresponding with the seller. The seller sued the purchaser, proving that the latter had failed to return any defective parts as required by the clause. (Continued on bottom of next page)


Front view of the compact a.c.-d.c. radio.

# Heat Realuction 

 In Miaget Sets
## The author designs a compact, Iow-heat set

By JOHN T. BAILEY

A

LIMITING factor in the design of compact a.c.-d.c. receivers is the problem of heat dissipation. When using ordinary-
size components, plenty of space must be left between parts to permit circulation of air. If this is not done, coils, resistors, and capacitors change values,

## LEGAL RIGHTS OF RADIO TECHNICIANS <br> (Continued from page 45)

The higher court held that when a purchaser seeks to rescind a contract because of the seller's breach of a warranty and guarantee, the purchaser does not have a right to keep and usc the equipment during the period of the negotiations.
Also, this court held that when a buyer keeps in his possession and uses the equipment, he forfeits all his legal rights to rescind the contract when he violates a contract clause requiring him to submit defective parts to the seller for examination.

## What is a breach?

Broadly speaking, either the owner of a radio or a serviceman: breaches the contract if he fails to comply with any detail of the agreement. A review of leading higher court cases discloses that a breach of contract exists under any of these circumstances:

1. If the owner of the equipment notifies the technician that he will not fulfill his obligations unless the technician modifies the contract, this is a breach of the contract by the owner. ( 92 Conn. 569).
2. If the owner refuses to complete the contract unless the technician will waive a claim for damages, this is a breach. (121 Cal. 153).
3. A refusal by the owner to pay for the service unless the technician consents to reduce the contract price is a breach of the contract. ( 103 Atl .843 ).
4. If a contract provides for credit, refusal of the technician to deliver the radio on credit is a legal breach. ( 89 Ohio St. 365). If the contract does not specify whether the sale is cash or credit, cash is implied. (146 S. W. [2d] 115).

Very frequently discussion arises be-
tween the owner of a radio or television set and the technician over failure of the technician to complete repair work promptly. It is true, of course, that a technician may be liable for fallure to repair a radio within the time promised when the service contract was made. The amount of danages is whatever the owner proves he suffered.
A technician may uithout liability delay completing repair work under the following circumstances: (? when the owner actually consents verwaily or in writing to the delay; (2) when the owner orders a change in the originat agrement or specifications which delays the technician in making the repairs; (3) when the technician breaches the contract before the date for completing the repair work arrives; (4) when delayed service results from a public enemy, such as might be caused by service in the Armed Forces during a war; or by an act of Cod.

Not only is a technician liable in damages for failure to complete repair work within the period promised, but also he may be liable for insults or other injurious acts in a customer's home.

For example, in Digsby v. Carroll, 47 S. E. (2d) 203, it was shown that a technician went to a home. The housewife sued the technician and his employer for damages because the employee became unusually boisterous and used vulgar and abusive language to the housewife, and threatened her.
The higher court held the housewife entitled to recover damages and said:
"The courts have settled down to the common-sense doctrine than an employer is liable for the torts (wrong acts) of his employee committed in the course of the employee's employment."
the cabinet gets hot; and premature failures occur. But the public continues to want smaller sets and it is up to designers to plan them. There are a number of ways to reduce heat without cutting down efficiency.

Before describing a compact a.c.-d.c. receiver, it will be well to review the sources of heat. First we must distinguish between heat and temperature. As an illustration of this difference. consider a small, $x^{1}$-watt resistor and a larger, $थ$-watt resistor, both of the same resistance. say 20 ohms. If these two resistors are connected in series and placed across a (j-volt storage battery, the same current (about 150 ma) will flow through each. The voltage drop across each will be the same (about :; volts:), and the wattage dissipated in each will be identical (about $1 / 2$ watt). But the small. ${ }^{3}$-watt one will be hot to hanile, and the larger, 2-watt resistor will be cool.

The wattare is calculated from Ohms law and is equal to IPR or EI. In this case it is (0.15): x 20 or 0.45 watt. Since heat is proportional to wattage. each of these resistors is producing the same amount of hot, but the tembrorfure of one is greater than that of the other.
The significance of this in design is that, when a part operates at a high temperature, it must be located further away from nearby temperature-sensitive parts than it would if it were giving off the same amount of heat (INR watts) but operating at a lower temperature.

## Temperature and heat

It is easy to be confused on the subject of temperature and heat. Parts are damaged by too high temperature. Yet we speak of keeping heat down. The fact is that these interlock in actual practice. A small resistor dissipating two watts may operate at a high temperature, yet would raise the temperature of an enclosed box far less than a 20 -watt resistor which would operate cool in open air.

If the two $20-0 h m$ resistors pre-
viously mentioned were shut up in small boxes of the same size, the temperature of each box would the the same after a few hours. The temperature of the larger resistor would rise keeping a few degrees (or a fraction of a degree) above that of the air around it. The small one might 1 ise to a dangerous temperature as the temperature of the surrounding air increased.

A small radio cabinet is often almost an enclosed box. The heat produced by one component acts on another, with a mutual increase of temperature. There are two ways of keeping this temperature down--we can arrange to produce less heat, or we can carry it away rapidly from the components that produce it.

## Main heat producers

In an a.c.od.c. set the tubes generate innst of the heat. This heat is the result of the current through the heater plus that from the plate and screen currents.

It is common practice to select consbinations of tubes at that their heater voltag's total close to the line voltage. A combination of a $12 S . A 7$. a $12 S K 7$, a 12SQ7. a 50 L 6 , and a $: 375$ totals $12 ; 3$ voles; and, because they draw 150 ma , the heat generated is $123 \times 0.150=18.5$ watts, approximatcly. Of course, the 12 -volt tubes generate less heat than the 50 - or 35 -volt $t$ bes, the figures heing 1.9 watts each for the $1 \cdot 2$ SAT. 12 SK゙7, and $12 S(27$. 7.5 watts for the $50 L 6$, and 5.3 watts for the $: 3575$.

Let us consider ways of reducing this heater wattage. First, we can substitute a selenium rectifier stack which requires no heater current and elimimates the 8575 . This saves 5.3 watts. By replacing the 12 SQ ( with a miniature G.AQG and the 12.5 K 7 with a GBJJ, 1.4 watts more is salved.

So far the results are a 7.2 -watt reduction. with a saving in space because of the miniature tuhes-and no reduction in performance. Another hig reduction can be made fy replacing the sold with a miniature (iAK $\%$. The power output will be less than before but surprisingly adequate for a small set. This change saves 6.6 watts in the heater, making a total heater saving of 13.8 watts or a reduction to 27 '; of the original value.

In order to make all tuhes miniature We should replare the 12SAT with a 12BEri. Now we have a combination of a 1213 E , a $6 \mathrm{~B} . \mathrm{J}$, a AAO , and a riAK6. whose heate-s total 80 volts. The difference hetween $: 10$ volt, and the line voltage is about 90 volts, which can be taken cate of by a 000 -ohm line cord. Since the heat of the line cord (1:3.5 watts) is dissipated ontside the recciver cabinet, it will not affect the components.

## Other heat sources

What other sources of heat do we have in a typical a.c.-d.c. set? The next largest offender is plate and screen current. When we charged the output tube from a 50 dit to a didkt, we decreased the plate-plus-sereen current from about 50 mato apmoximately 10 ma .

The wattage produced by these currents is approximately equal to the b-pluvoltage times the sum of the carrents. so for this tulse change we save $(.05 \times 100)-(.01 \times 100)$ or 4 watts. Nothing ean be done about the plate and screen currents in the other tubes.

Assuming the use of a P.II speaker rather than a dynamic type, which would dissipate about 2 watts in the field, there are no other large heatgencrating components to worry about. The selenium rectifier produces some heat due to the tuhe currents and the filter-capacitor ripple currents, and th power-supply filter resistor produces a little heat; but with judicious design, these two parts need not interfere with compactness

Having now reduced the heat to minimum, the designer's talents can be directed toward producing a truly compact set. An example is shown in the photos. In most respects the circuit is conventional, except for the second i.f. transformer and the permeability tumer arrangement. The tuner is mounted on the front face of the chassis in such it way that the coils are sandwiched between the speaker frame and chassis. The i.f. transformer between the i.f. tuhe and second detector is made from the primary coil and trimmer of a conventional transformer and was chosen to save space.

This set, using a 4 -inch speaker. measures only 4 inches wide by 5 inches high hy ? inches deep and has


Rear view of the low heat midget receiver.
enough excess space to add an untuned r.f. stage if desired. Such a compact design would have leen impracticable had not the heat problem first been solved by the methods outlined above.

## MATERIALS FOR RECEIVER

Resistors: I-100, I-470. I-20,000, I-100.000, I270,000 , $3-470,000$ ohms. |-3. 1-5.1 megohms, $1 / 2$ wott: I-15, I-I,200 ahms. I wott: I- $500,000 \mathrm{ohm}$ potentiometer; $1-600$-ohm line cord. Capacitors: 1-50, 1-100. 2-200 $\mathrm{\mu uf}$, mica; I-. 001 $-.01,1-02,1-05,1-0.1 \mathrm{k}, 400$ volts, paper: $1=10$ f. 10 volts. $1-30.1-50 \mathrm{\mu t} .150$ volts, electrolytic Tubes: I-6AK6. I-6AQ6. I-6BJ6. I-I2BE6.
Miscellaneous: I - broadcast-band permeability †uner: |-selenium rectifier: I-oułpuł transformer. 10,000 ohms to voice coil; 1-4-inch PM speaker: 4-7. pin miniature tube sockets; chassis and necessary hardware.


Note the two brackets on the chassis that bolt to the bottom holes of the loudspeaker.


Schematic of the low heat a.c.d.c. radio is quite conventional from a circuit viewpoint.

# Specialize for Increased Profits 



ESS than three years ago Isadore Marks, an ex-GI, opened a radio service and sales shop in a neighborhood which already had its full quota of radio stores. From a business standpoint the venture seemed dooned to failure: two of the recently opened sales and service stores in that area were ready to close down because of the serious competition offered by the older, better established firms. Marks, howevel', had a definite plan and went ahead with his project. Today he has a healthy, growing business with several technicians on the payroll.

The secret of his success? He specialized. Where others were content to sell and service home radios, Marks specialized on car radios. Aiming for this goal he had leased a place with a drive-in for the convenience of his customers. He augmented his Navy training in aircraft radio by thoroughly studying au-to-radio trouble shooting and servicing. His familiarity with automobiles aided him in finding short-cut methods and tricks. Backing this up, he acquired a small but complete stock of replacement parts and accessories. The addition of a franchise for the sale of car radios rounded out his specialty.

Later Marks added home radios and television receivers to his line in order to meet the occasional call for these items from his car-radio customers.

Thus. by choosing a particular field and upgrading himself to qualify as a specialist in that field, Isadore Marks had, within a few months time, a thriving business. His Trenton, N. J., store

[^4]soon acquired the reputation for being the headquarters if you wanted a good job done on that car radio of yours, or if you were in the market for a new one.

This man's experience, however, is not the exception. There are many successful establishments, which have reached the top because they were made up of experts in a particular branch of electronics. The same holds true with respect to the individual. The man who is really a specialist in a particular electronic field has an enormous advantage over somebody with just a general knowledge; the high-paying jobs invariably go to the person who has concentrated his abilities and efforts into a single channel and thus has put himself in a class apart by virtue of his superior knowledge and skill.

Granting the advantages of specialization, however, the two questions are: What field shall 1 choose? What need I learn to qualify?

To answer the first question: The choice of any particular field must lie with the individual himself. You must evaluate your talents and inclinations and choose a field for which you are adapted by reason of your background and ability. For instance, if you can't work with tiny units and small toler. ances. don't choose hearing-aid repairing. This field requires manual dexterity of the type encountered in watch repairing.

On the other hand, if industrial control= fascinate you-or if you like installing such devices as intercomsthen by all means choose one of these branches. Likes and dislikes are big
contributing factors toward a success.
Take the case of another acquaintance of the writer. This person has always been interested in photography, film projection, and radio. He combined these interests by securing a job as an assistant projectionist in a motion-picture theater. To qualify, he had to learn all about the particular type of projection system used in motion-picture work. Besides this, he had to work for some time as an apprentice in order to acquire the necessary skill and become familiar with on-the-spot trouble-shooting procedures so often necessary. Today he is ready to step into a high-paying job as a full-fledged projectionist in one of the larger theaters in his city.

The accompanying chart gives some idea of the many fields available for specialization. By analyzing the requirements for cach, you will get a better idea of the preparation needed to become a specialist in any particular field.
As a foundation you must have a basic electronic background, which should consist of sufficient knowledge and training upon which to build up to the field you desire. Experience in radio servicing contributes materially to such a foundation by providing the necessary practical work and hasic circuit knowledge. The next logical step could be television installation and repair.

## Television installation and repair

In preparation for this specialty you must learn some circuits quite foreign to those previously encountered in radio servicing. You should study the ef-
fects of the very higl television frequencies on the beravior of amplifier rircuits, tubes, and other receiver components. This is of vital importance in servicing, because improper dressing of leads and unit replacement can seriously hamper the proper functioning of a television receiver.

You must also learn about wide-band amplifiers, pulse separation, d.c. restorers, vertical and horizontal sweep eircuits, and synchronization circuits, In television receivers, you will no longer encounter conventional tuning methods, but will run across pretuned channel switching embodying novel innovations. Three r.f, signals are mixed in the convorter stage-the picture signal, the FM sound signal. and the local oscillator. You must be able to differentiate between the sound and pix i.f. stage : for competent servicing.

Added to this should be a thorough grounding in the use of oscilloscopes, sworp gonerators, and other testing equipment for servicing TV sets.
by reading poriodicals and texthooks or loy taking a short eourse, the man With a faidy good batckeround should be able to understand these circuits without much difficulty.

## PA and intercom systems

Public-address sustems and intercoms are closely allied leranse they are primarily audio amplifiers: for this reason, many shops combine both under ${ }^{\circ}$ one specialty.

In the public-addres-system field a thorough knowledre of audio voltage and power amplitioation is necessary. At the same time there is a growing nerd for the type of man who can estimate the size and scope of a particular installation in terms of the number of units required, the job layout, and the total cost of naterial and installation.

A similar situation is encountered with intercommunicating systems. You have to know about call-in circuits, master stations, substations, cable layout, and switching methods.

## Hearing aids

Branching off from radio repair on our chart, we also have the field of hearing-aid repair. This again requires a basic knowledge of audio circuits, coupled with the problems encountered with a device worn close to the body. The technician finds a tiny chassis, extremely small components, and usually self-contained batteries. This means audio-amplifier repairs on miniature units, tubes, and chassis. Troubles occur due to the body moisture absorbed by the instrument. Clothing lint, temperature, receiver cord wear, and delieate components contribute to circuit failure; their effects should be known to the repairman.

A hearing-aid technician should have a knowledre of audiometers, their function and repair. Audiometers are used by hearing-aid retalers to test a customer's hearing loss; the use and servicing of these are within the scope of a

Well-equipped hearing-aid technician, The hearing-aid repair field is particularly umorowded and offers many opportunities. Few realize that with the advent of subminiature vacuum tubes, the hearing-aid business has grown to huge proportions. Many opportunities also exist in sales.
specialized components found in industrial devices must also be studied. In industrial electronies you can specialize in estimating and installation, or you can devote your knowledge and activity to maintenance and repair. As with previous fields discussed, the many books and periorlicals devoted to such subjects


## Station operation

Branching off from our basic electronic knowlerlge to the left on the chart, we find radio station operation, An contering wedge into this field is a first-class radiotelephone operator's license. You have to study communication laws and basic radio and transmitting theory. as well as power-supply systems. There are several good books on the market containing typical questions and answers, and a study of these will be of great help. When you feel qualified. apply to the nearest $\mathrm{F}^{\prime} \mathrm{C}$ C district office or examining point (located in most of the larger (ities) and take your operator's examination. The firstclass license will allow you to take full charge of standard broadcast, FM, or television stations.

## Industrial electronics

Your knowledge here has to encompass such items as photoelectric tubes, thyratrons, ignitrons, electron multipliers, counters, and control circuits. Relays, thermostats, switches, and other
contain a wealth of information for the neweomer.

## Sales

Not least in terms of increased earnings and protits are the possibilities of being a sales specialist in television, PA sustems, intercoms, hearing aids, industrial equipment, or other electronic gear. If you are in husiness for yourself or are selling for someone eise. a thorough knowledge of your specialty will increase sales to a great degree.

In all these electronic branches, the successful salesman is the one whose knowledge goes beyond the superficial appearance or function of the item he sells. He is the one who can point out specific features, performance, and advantage in circuit design and manufacture.

So take a hint from the highly paid specialists in other fields and do likewise in your own-the field of electronics. By adding to your knowledge you will add to your satisfaction-and what is also important, you will add to your income!


Window sign at Marks Radia Service praclaims special interest in repairing ear receivers.

## By O. A. COPPENS



The complete metronome is built in an aircraft radio jack box. The original switch is used.

ARTICLES have appeared in magazines in the past few reals on the construetion of seresal types of metronomes. the mat jority vanging from complicated tulne assemblies to sperial relays and mowieldy capacitors. Following the old pattern of mechanieal metronome- the adudible beat seems to be almost a requisite for any device deseribed.

An andille beat interferes with the music, so a metronome of this type is generally used for rehearsal or timing practice only. On the other hand, an inconspicuous risual metronome provides a check on timing, may be used at any time, and in no way interferes with the music.

A simple, inexpensive, and fairly accurate visual metronome may be constructed from a selenium-rectifier power supply and a neon-bulb relaxation oscillator. Inconspicuous but usable flashes covering a wide frequency range may be obtained from small standard radio components.

A glance at the schematic (Fig. 1) shows the selenium-rectifier power supply to be conventional. RI is the rectifier protective resistor; R 2 and R 3 with the filter capacitors form the filter and voltage-divider network. Approximately 140 volts is applied to the oscillator circuit. The power consumption is small, so heating effects are negligible.

Operation of the neon-bull relaxation oscillator is as follows: When the device is phaged into a 11 -volt supply socket and the switeh moved from OFF position. cusrent from the d.e. power supply flows through Ret and kis to eharge pradually any capacitor combination switehed aceros: the neon bulb. When the capacitor voltage builds up to a certain definite value (90 volts. approximately), the neon bulb ionizes and conducts. This action discharges the capacitance, and the neon bulb stops conducting. The capacitance then slowly recharges through $R 4$ and $R 5$, and the cocle repeats.

The frequency of the neon flashes is
approximately proportional to the supply voltage and inversely proportional to the values of the R-C combinations. Rough frequency control is obtatined by switehing the various eapacitor rombinations across the neon bulb. This: permits form rough steps of overlapping frequencies with only four small capacitors. The fine contiol of each step is provided by the high-resistance potentionmeted lij and Rt. The high-resistance values of $R 4$ and 125 are also a factor in permitting the use of small capacitor:-

A contimuous frequency range of approximately 30 to 350 flashes per minute may be ohtained. Some alteration in the fixed resistor values may help to obtain


Fig. 1-The circuit diagram. Fig. 2-The switch contact numbers refer to those in the diagram.
correct overlapping of ranges. Due to the high resistances used, well-insulated components and good-quality capacitors are of prime importance for stability and proper operation.

Changes in supply voltage will have some effect on frequency. However, this effect is so small that it is not important in a metronome.

## Construction

The metronome was constructed around a war surplus $B C-366$ jack box, available for a few cents. The box provides an excellent case $121 / 4 \times 31 / 4 \times 41 / 2$ inches) together with the required switch, 3-circuit jack, and the control knobs.

Photographs show the original jack box, the complete metronome, and the internal assembly of the metronome. All components except the neon extension are mounted and wired on the box cover for ease of construction and inspection. The box is completely isolated from the electrical circuit to avoid possible shock.

Remove the jack box cover and strip all the wiring. Also remove the banana jack and plug assemblies from the cover and base, as they will not be needed. Replace the original potentiometer with


To get into jack box, remove two top screws,
a 10 -megohm unit, cutting the shaft to fit the original knob. The single-circuit phone jack may next be removed and a rubber grommet inserted in the hole to accommodate the line cord.

Construct a small metal angle bracket for rectifier support, and bolt the rectifier assembly near one corner of the box cover as shown in Fig. 2 and the inside photo. A two-lug terminal strip is also bolted to the cover near the linecord opening for cord connection and support. A few small holes may be drilled in the cover and base for ventilation.

Remove the rotary switch from the box cover and pry out the spring retention which makes the fifth (CALL) position momentary. This will provide for five switch positions. The switch may then be remounted, using the original knob. The banana-plug insulating strip (not the plug assembly) is remounted in position above the switch, using the original assembly screws, to provide a barrier between switch and capacitors.


After wiring the switch, the fiber banana-plug strip is placed over contacts to insulate them.

A $1 / 4$-watt neon bulb is connected to an insulated two-wire extension cord terminating in a three-circuit PL-68 plug. If no plug is available, the neon extension may be connected directly to the metronome circuit by removing the three-circuit mic jack and inserting a rubber grommet, similar to the linecord hole. The value of the neon resistor R6 will depend upon the type of neon bulb used. It could be located in the box instead of the extension. A tubular fiber shield with hole, as shown in the photographs, slipped over the neon bulb, will direct and intensify the flashes.

Connect the rectifier power supply, all resistors, and the neon jack according to the schematic. To simplify connections to the switch terminals, an arbitrary numbering system corresponding to numbers shown on the schematic is shown in Fig. 2.

With the power supply on and the neon extension plugged in, temporarily
connect various capacitor combinations until the desired ranges and overlaps are obtained by operation of the switch and R5. After the capacitors have been selected, mount and wire them permanently. Ample space is available for 400 -volt capacitors. During construction, one 600 -volt unit was used merely because it happened to be of correct value, sufficient mounting space being available near the side.

When the metronome is assembled and tested, a paper dial plate may be glued on the cover indicating the off position and each frequency range.

## MATERIALS FOR METRONOME

Resistors: $1-3,600$ ohms, $1 / 2$ watt; $1-240,1-75,000$ ohms, i- 10 megohms, i watt; i- 10 megohm potentiometer.
Copacitors: ${ }^{2-20} \mu \mathrm{f}_{\mathrm{i}} 150$ volts, electrolytic; 1-.02. $2-0.1$, $1-0.25 \mu \mathrm{~F}, 400$ volts, paper.
Miscellancous: 1-75.mo selenium rectifier: 1-3circuit microphone plug (PL-68): $1-1 / 4-\mathrm{waH}$ neon lamp; 1-BC-366 iack box; necessary hardware.

## REGENERATIVE SUPERHETERODYNE RECEIVER

The 6 K 8 in this receiver converts the incoming broadcast-band signal to the $456-\mathrm{kc}$ i.f. The regenerative triode section of the 6AD7 is the second detector, and the pentode section the audio amplifier.

The tickler coil is added to an ordi-
nary slug-tuned i.f. transformer. Closewind 15 turns of No. 20 d.c.c. wire $3 / 15$ inch below the transformer secondary. The antenna and oscillator coils are standard commercial broadcast units available at any parts store-Manolis Samảrakis.


# Mobile IO-Meter Rig 



T-17 microphone hangs beside the converter. Both ore handy to the driver.

PREDICTIONS for the 10 -meter band indicate that it is likely to be "hot" for some time. Many amateurs have discovered the dx capabilities of the band even with low power, and some have installed mobile gear in their automobiles. With the useful surplus equipment available and instantheating tubes, the problems of mobile installation are very slight.
Operating current requirements have been kept at a minimum in the mobile station described here so that the total drain from a 6 -volt car battery is not more than 25 amperes. That load is adequately handled by a regular generator which charges at a 35 -ampere rate. The generator is kept charging during all testing and operating periods, and there has been no battery failure.
The power unit used is the Army PE-103-A dynamotor, which can be purchased for very little money at almost any surplus outlet. Polarity was a problem; the negative side of the battery in the automobile goes to the frame. In the power unit the $B$-minus is directly connected to the 6 -volt A-plus lead. It is necessary, therefore, to operate the transmitter above car ground and to use a floating link to couple to the antenna. The link is connected to the antenna by 50 -ohm co-axial cable and isolated from the transmitter, the outer lead being grounded to the car chassis at the base of the antenna.
Because the A-plus lead is connected to the dynamotor case and to chassis, cabinet, and any other exposed metal parts of the transmitter (via the Bminus line), it is most important not to have any contact between these points and the car frame unless the plus terminal of the battery in the car being used is grounded. Any contact will be a direct short across the battery,
which will not only ruin it immediately, but will very likely fuse the wire or metal that makes the contact. At the very least it will create a very colorful spark which, if gasoline vapor is floating around, may possibly mean one ham less on this planet. That means that tire tools and other miscellaneous metallic articles should not be tossed carelessly into the trunk where they may slide up against the transmitter.
The transmitter r.f. section (Fig. 1) consists of a 2E30 crystal oscillator operating on 28 mc driving a 2 E 25 class-C r.f. amplifier. This is modulated by an HY31Z dual-triode, zero-bias, class-B stage, which is driven by a 2 E30. A T-17 single-button carbon mike is used. This surplus microphone is equipped with a push-button in the handle for push-to-talk operation. The button controls the microphone circuit and a second circuit as well. This is a valuable feature because microphone current flows only when the transmitter is in use and the second circuit is used to control the starting relay in the dynamotor.

The 10 -meter oscillator gives more output and is more dependable when it is connected as a triode than as a pentode. A small coil was inserted in the grid-to-ground lead, and one side of the filament was tapped to a point 3 turns from the ground end. A similar coil was inserted in the other filament lead at the tube socket. These coils (L1 and L2), wound on $1 / 4$-inch polystyrene rod 1 inch long, consist of 30 turns each of No. 30 enameled wire.

The 2 E 30 is operated with 250 plate volts and furnishes adequate drive for the 2 E 25 . The oscillator tank coil L3 is six turns of No. 14 wire, self-supporting, soldered directly to the tuning capacitor.

## PAUL M. KERSTEN, WøWIT

Interstage coupling is capacitive. The $3-30-\mu \mu \mathrm{f}$ coupling capacitor reflects capacitance into the oscillator tank and must be carefully adjusted or the oscillator will not perform properly. Once set it will not cause difficulty.

The circuit for the final is straightforward. Parasitic suppressors (100ohm, 1-watt carbon resistors) were placed at the grid and screen terminals. The 2E25 is operated under load with 425 volts on its plate and 300 volts on the screen. A combination of battery and grid-leak bias is used. There is adequate room under the chassis for this battery as well as the one used to bias the speech amplifier.

The final tank coil L4 is made of 8 turns of No. 14 enameled wire 1 inch in diameter. This coil is center-tapped. In the center of the coil space is provided for the insertion of a 2-turn link L5 made of the same size wire wound to the same diameter, 1 inch. L4 is selfsupporting and is soldered directly to the split-stator variable capacitor. An r.f. choke is connected directly to the center tap. The link is also self-supporting and is rigidly mounted to the panel feed-through insulators. A regular coaxial connector fitting was originally used with one side of the link grounded to the chassis. This necessitated connecting the outer conductor of the line to the automobile chassis through a bypass capacitor, which introduced loading problems. This connector was replaced by two insulated feed-through connectors, making the entire link electrically separate from the transmitter and allowing the outer braid of the coaxial line to be directly grounded to the car chassis at the bottom of the antenna. All loading problems were solved in this way.

Meter switching, as shown in the diagram, greatly facilitates tuning and is easier than multiple jacks which would have to be insulated from the panel. A $2 \frac{1}{2}$-inch $0-150-\mathrm{ma}$ meter fits


Rear view. Bias batteries are under chassis.
nicely in the center of the panel beneath the chassis. The meter switch is located just to the right of the meter, letween it and the power-input socket.

The speech end of the transmitter is located along the rear of the chassis. It consists of a single-button carbon microphone driving a 2 E 30 which is transformer-coupled to the HY31Z. A switch on the gain control breaks the filament circuit of the modulator so that this section can be turned off during tuning. The microphone circuit is given in Fig. 1. A :3-citcuit mike jack must be used to match the PL--68 microphone plug. The output of the nrodulator is capable of fully modulating 30 watts input to the 2 E 25 final. As in the oscillator plate circuit, a sliding-tap, 10 -watt resistor is used to set speech amplifier plate voltage at 250 .

## Modifying the dynamotor

The PE-10:3-A will put out 500 volts at 160 ma . It must be removed from its case for modification; circuit diagram pasted inside the case makes the modification easier.

The negative 6 -volt terminal is the high side, and the positive end is grounded to the case. As mentioned before, the case must be kept away from the automobile chassis except in certain cars where the prisitive side of the battery is grounded.

The output socket is an 8-contact Cannon, for which the corresponding male fitting must be ohtained. The number of this is P8-ed. As the dymamotor is furnished, prong 1 of the output socket is at $-f$ volts when the unit is turned on 1 with circuit breakers closed). Discomnert the wire from pin 1, and conneet pin 1 to the stationary contact of relay : $\mathrm{E} \cdot \mathrm{z}$ in the dynamotor. The tubes in the transmitter are quickheating: this modifiation will make them light only when the push-to-talk switch is pressed, sarting the dynamotor.

With the dynamotol out of its case. the backs of the three eircuit breakers are visible. The center breaker is for high-voltage overload. It was shorted out of the circuit because modulation peak: caused it to cut out. A nother reason for shorting it is that the heating time for the ee:30 oscillator filament is 1 second longer than that for the $2 \mathrm{E} \cdot 5$ final and the static plate current through the 2 E 25 rises briefly to 90 ma, actuating the circuit breaker. The terminals on the back of the center breaker are numbered. Connect No. 2 to No. $G$ and short the remaining two.

Fortunately, the battery input cables which accompany the dynamotor unit are long enough to reach from the trunk compartment to the notor compartment. One lead was connected to the block and the other to the ungrounded side of the starter. Proper polarity must be maintained; otherwise, though the dynamotor will turn over, it will have no output. The equipnent was insulated from the car frame by mounting the dynamotor on top of the $91 / 2 \times 91 / 2 \times$ 14 -inch cabinet which houses the trans-


Fig. 1-Circuit of the complete transmitter. Fig. 2-Noise limiter built in car receiver.
mitter and which, in turn, is shockmounted to boards. bolted to the floor of the trunk compartment. Mounting the dymamotor on top of the cahinet also reduces the space required for the entire unit.

The antenna is a 12 -foot valiablelength whip. It is mounted on the right rear fender in such a way that the end of the bumper acts as a quard for it. It is fed as a quarter-wave radiator by a 2 -foot length of 50 -ohin co-axial cable. Field-strength readings are very helpful in determining the proper length for the transmitting antenna.

For receiving, a Gon-Set converter was mounted beneath the automobile radio on the underside of the dashboard. This allows for short leads and convenient operation. Power leads are brought out the rear of the car radio and connect to the converter wif a plug. The microphone is conveniently hung just to the right of the converter. Be sure the microphone lead connected to the sleeve of the plug does not contact any car metal.
Conquering ignition noise requires complete shielding of all cables whici feed through the fire-wall and some experimentation as to the direction in which the antenna lead travels. To help remove car noise a limiter using a 1 N34 crystal was installed in the auto receiver. The circuit for this is given in Fig. 2.

MATERIALS FOR TRANSMITTER-FIG. I
Resistors: 1-750, 2-10,000 ohms, $1 / 2$ watt: 6- 100 I- 10,000 ohms. i watt: |-6,000, ।-8 500 ohms, 10 watts, adiustable: $1-500,000$-ohm potentiometer with 5.p.s.t. switch.

Copacitors: 4-. 002 uf. 600 volts, paper: 1-3-30. I25 unf variable: $1-50$ inlif, split-stator, variable. Tubes: 2-2E30, I-2E25, I-HY3IZ.
Miscellaneous: $3-2.5-\mathrm{mh}$ r.f. chokes: 1-10-mete crystal; I - single-button-micraphone-to-grid. 1 oudio interstage, I-universal modulation trans former: 1-0-150-ma meter: 1-2-circuit, 4-position rotory switch: 2-7-prong. miniature. I-4-prong. Ioctal tube sockets; I-PE-103-A dynamotor: I-T-19 microphone; I-Cannon P8-24 plug; 1-45-volt, I- 15 volt batteries; 1-3-circuit microphone jack; chassis panel, and cabinet; necessary hordware and cable,

MATERIALS FOR NOISE LIMITER-FIG. 2
Resistors: 2-27,000, 1-820,000 ohms, I-I megohm, Copocitors: 1-.001, 1-.01, 1-0.1 $\mu \mathrm{f}, 400$ volts poper. Miscellameous: I-IN34 crystal rectifier: I-s.p.d.t toggle switch.


The dynamotor is placed atop the transmitter.


THE woods are full of 75-watt, allband transmitters using variablefrequency oscillators, but this one should be of special interest to those who don't have too much green stuff left over after paying for the pork chops. It is practically all war-surplus material of straightforward design, with no freak parts. It will do anything any other rig of like power will do and costs from a quarter to a half the usual price to build. The economy feature stems from the current low prices of the components, especially those which are surplus.

The foundation for the rig is the TU-5-B tuning unit ( $1500-3000 \mathrm{kc}$ ) from a BC-375 transmitter. It is full of the highest-quality parts, all usable. A TU-6-B unit was also bought, its oscillator tuning capacitor being just the right size for the final amplifier tank. The amplifier tuning capacitors in these two units are identical and, with the dials and other parts, make the foundation for a fine antenna tuning unit, using either series or parallel tuning. Another good buy, but not necessary, is the AM26/AIC intercom anplifier. At a low price it provides four needed tubes, sockets, a switch, a mike input transformer, and other small parts. The rest of the components can be purchased individually as needed. Type 1625 tubes are plentiful and very cheap, making a good final amplifier tube if 12 volts for the filament is available. They are the equivalent of

807 's, except for their filaments and bases, which have seven prongs instead of the 807's five. They were widely used in military equipment.

Once committed to 12 -volt tubes, the logical choice for the exciter stages and the output in the v.f.o. is the 12 A 6 , an audio beam type with the right amount of power for this job. 12AG's are very cheap too. This leaves only the oscillator tube to be chosen, and any r.f. pentode will do-12SJ7, 12SK7, etc. The v.f.o. shown in Fig. 1 uses a 12C8 because the author happened to have one handy.
One way to get 12 volts for the filaments is to use two husky combination power transformers for plate and filament supply and hook the 6 -volt windings in series. Depending upon the transformers, the high-voltage windings may be used in series or in parallel to obtain the required 600 to 750 volts at 250 ma . This will take care of the modulator current requirements also. Surplus transformers are usually conservatively rated. If the rig is not to be modulated, about 110 ma will be sufficient.
In the rig shown, a 12 -volt filament transformer of the type now being marketed as surplus equipment is used to heat the tubes. A separate receivertype power supply is used for the v.f.o. and doublers. From 250 to 300 volts is right for the 12A6's. The VR-150 which regulates the 150 volts applied to the v.f.o. is necessary because the current
drain on this power supply varies widely as doublers are switched into or out of the circuit. The maximum current drain is just under 110 ma with all circuits at resonance and loaded to the correct point.

In the front-panel photograph the three pointer knobs in a row at the upper left tune the 12A6 amplifierdoubler stages (Fig. 1). Below these is the dial for the v.f.o. At the upper right are the band-change switch and the closed-circuit meter jacks in the


Transmitter is built on converted TU-5 base.
grid and cathode circuits of the final amplifier. Below the jacks is the tuning dial for the final tank circuit. In the bottom panel at the right are the microphone input jacks and speech gain control. The left panel light shows green when the small power supply is turned on, and the right pandllight contains a $500-\mathrm{ma}$ dial lamp which is in the highvoltage center-tap lead of the power supply and serves as a fuse for the plate circuit. It glows at about half brilliance with the r.g turned on and modulated.

## Construction

The v.f.o. is constiucted entirels within the left-hand compartment of the TU-5-13 tuning unit case, using the original dial, capacitor, and coil. This coil (L1 in Fig. 1) has a number of taps fastened to the wire. All connections are unsoldered from these taps and the coil is. left in place undisturbed, with new connections made to one end to the tap located five turns from that end, and to the tap 19 turns from that end. The other end floats, with no connection at all.

A row of fixed mica capacitors with temperature-compensating plates is located under the tun ng capacitor. The two nearest the rear, plainly marked .00003 and .0001 , are left in place, and all the others are removed. This fixed capacitance, using the 19 turns of the coil, gives just the right amount of coverage on the tuning capacitor, with the 80 -meter band taking up about 2,000 of the 2,500 divisions on the vernier dial.

There is plenty of room to mount the tubes and small parts, the main idea being to keep heat away from the coil and other frequency-determining components. The only definite precaution that must be observed is to use dissimilar r.f. chokes RFC1 and 2 in the v.f.o. The tuning units contain two each. One, with resistor attached, is needed for the final grid circuit-RFC3R1. One, but only one, of the other chokes can be used in the v.f.o. If two are used, the 12A6 amplifier will take off by itself all over the dial. An additional r.f.c. of a different type must be obtained. The common pie-wound, $2.5-\mathrm{mh}$ type is excellent. A liberal slurping with Ducu cement after the wiring is completed will hold the leads rigidly in place.

As the rear-view photograph shows, the amplifier-doubler stages are built on an additional chassis mounted atop the tuning unit, on the left side directly above the v.f.o. The ventilated cover plate separates and shields the two sections. The output of the v.f.o. is fed through switch S1 into the first tuned stage, which serves either as a straight amplifier on 80, a doubler to 40 , or a crystal oscillator (by opening the switch and plugging a crystal into the socket). This crystal feature was included in the original design and so is shown here, but could very well be eliminated, switch and all; it has never been used by the author except for testing, the v.f.o. being so satisfactory for
use under almost any set of conditions
The doubler stages are conventional, using plug-in coils, except for the last one, with its 28 -me output, where the coil is fixed. Three plug-in coils are needed, one each for 80, 40, and 20 meters, with a maximum of two in use at any time.
L2 and Lis are wound on $1^{1 / 1 / 4-\text { inch }}$ forms. The 80 -meter coil is 30 turns; the 40 -meter, 14 turns; and the 20 meter, 7 turns. Let is a permanent 10 meter coil made of 4 turns of heavy wite or tubing. self-supported, 1 inch in diameter. The final uses i5-watt plug-in coils with end links, one being necessary for each band, 20.40 , and 80 meters.

Any combination of doubling or quadrupling seems to work equally well,
as the 12A6's provide ample drive. The output tube always works as a straight amplifier. The v.f.o. output will not drive the final directly, so the first exciter tube is always used, with an 80meter coil for 80 -meter output. Series plate feed is used, with the tuning capacitors insulated from the chassis. Hardwood $1 / 4$-inch dowel makes an effective insulated shaft for these capacitors.
The right-hand compartment of the tuning unit contains the output circuit of the final stage. The 1625 hangs upside down in a socket mounted high enough above the tuning unit's ventilated cover so that half the tube projects through the cover into the compartment, with the tuning and bypass capaciturs and the 75 -watt plug-in coil


Fig. I-The r.f. section. $S 2$ is a special switch found in the TU-5.B. It must be modified.


Under-chassis view of completed r.f. section shows 1625 mounted upside down, right center.
inside. This arrangement permits short leads and provides thorough shielding, resulting in a perfectly stable amplifier. The coil plugs in from the botton of the set (this seems awkward but actually has not proved to be so). For coil changing, the transmitter slides forward like a drawer. It takes no longer to pull downward than upward to remove a coil. A suitable hole is cut in the bottom plate. The link output is at the two close-spaced feedthroughs at the rear. The tuning capacitor was taken from the left compartment of the TU-6-B and fits perfectly in place. The 1625 tube socket shown was sawed out of the BC-456-B modulator unit in the $274-\mathrm{N}$ series. (There is no less painful method of removing it.)

The band-change switch S2 taken from the tuning unit is modified slightly by making a shorter arm, using the original for a pattern, to connect the $t$ wo sections so they will fit side by side on the right half of the panel. Just enough space is left between them to mount the grid and cathode meter jacks. The switch section nearest the edge (S2-b) is used as is, turning on the filaments as the doublers are connected into the circuit. The other section (S2-a) is altered to a tap switch, instead of the shorting type, by breaking off all but one of the rotor contacts, which selects the output of the proper doubler as required. The contacts snap off readily with a twist of the pliers.

The rig is keyed by plugging the key into the final cathode jack. For tuning, a meter with at least a $0-150$-ma range plugs into the same jack. The capacitor bypassing this jack must be able to withstand the full plate voltage when the circuit is open (with the key up). The oscillator runs continuously and is no bother except when working a station directly on one's own frequency. Then it may be turned off while receiving, by the switch S 3 mounted below its tuning dial.
The doublers are tuned by watching for maximum grid current on a meter inserted in the final grid jack. Doubler tuning is not critical and ordinarily need not be touched when shifting frequency within a band. It is necessary only to set the oscillator on the desired frequency, guided by the calibration chart on the panel, and then tune the final for cathode-current dip. A minimum of 6 to 8 grid ma is available, which is approximately twice the rated
requirement. High-sensitivity beam tubes like the 1625 can be damaged by too much grid drive. A little detuning of the doubler stages will eliminate this possibility.

## The modulator

The entirely conventional modulator circuit (Fig. 2) also uses 12 -volt tubes. Most modulators in this power range terminate in 6L6's. It seemed reasonable that a 1625 will do anything a 6 L 6 will do, and perhaps do it better. Experience has proved this to be true. The 1625 is capable of much greater output than is necessary with this transmitter, and several 1625's cost less than one 6L6.

To avoid wasteful excess power input, the screen voltage is reduced through a dropping resistor to only 275. The original model uses a 12 -watt potentiometer (surplus) to accomplish this, but any adjustable resistor of 10 watts or more and 20,000 ohms will do. At this screen voltage the plate input to the two tubes is about 120 ma when idling. A 12SJ7 and 12 J 5 provide adequate sensitivity for a crystal or dynamic mike.

A small PM dynamic speaker makes a good microphone. The original model also will accommodate a T-17 carbon mike, which is adequate and eliminates the need for the 12SJ7, at a slight decrease in tone quality. Using either mike, the gain control adjusts the output power for the correct modulation. If only the carbon mike is used, the entire 12SJ7 circuit may be eliminated; if the dynamic mike is used, then the microphone input transformer and battery are not needed. The battery is three flashlight cells wired in series. The built-in switch on the T-17 mike shuts off the battery current when not in use. If the modulator is turned off only by the filament switch and plate voltage remains on, then C1, C2, and C3 must be able to withstand the full plate voltage, as there will be no voltage drop in the resistors when the tubes are not drawing current.

There are a number of small surplus modulation transformers that are suitable for use in this transmitter. One of these, used in some ARC-5 transmitters, was designed to match class AB 1625's or 807's to a single-ended r.f. amplifier using a pentode or beam-power amplifier tube. This transformer has three sec-


Fig. 2-This modulator is designed for carbon or crystal microphones. Be sure to ground the junction of the 250 -ahm cathode resistor and the center tap of the interstage transformer.
ondary windings. One modulates the plate and another the screen grid of the r.f. amplifier. The third is a low-impedance winding used for monitoring the output of the modulator. The screen grid of the 1625 must be fed from a 300 -volt supply with this transformer.
The mechanical work is not difficult. The tuning units and most other surplus equipment is made of aluminum. A small Allen wrench is needed for the setscrews. It is useless to try, as the author did, to pull and pry a knob off after loosening one setscrew; there are always two of them. The panel of the r.f. section measures 17 inches wide by 14 inches high, with an additional 9 inches of height in the lower panel, which covers the power supply and modulator. For stability in the v.f.o. the panel must be rigid. A sheet of Presdwood or Masonite $1 / 2$ inch thick with a very thin galvanized sheet-steel backing meets all requirements and is easily worked. The two sheets can be glued into a sandwich with Miracle adhesive, available in dime stores. This forms a panel which may be pushed, twisted, or thumped upon without any effect whatever upon the oscillator. All the preliminary construction can be done with the original panel in place, and any necessary new holes drilled in it. It is then a simple matter to use it as a template in marking out the new panel, eliminating measurements or mistakes upon the latter.

## Operation

When finished, this rig won't drown out the 900 watts in the next block or the next town. But even on the 75meter phone band there is generally room between a couple of big ones to sneak a signal through. On the higher frequencies, particularly 10 meters, results are very good indeed, with plenty of dx. Even higher-frequency operation might be possible by doubling in the output circuit. The v.f.o. and the various doubler combinations provide maximum flexibility; the rig can be quickly set to any amateur frequency up through the 10 -meter band-and when so set, it stays there. After the first initial heating of the tubes, there is no detectable drift. On c.w. the note is always given a 9 X tone report and is assumed to be crystal-controlled. Results of phone operation are also excellent, with complimentary reports received. The whole unit makes a very satisfactory transmitter from any angle.

MATERIALS FOR TRANSMITTER
Resistors: $\{-20,000,2-24.000$, I-47,000 ohms, I2 megohms, $1 / 2$ watt; $2-390,4-1,500,3-47,000$, 191.000 , $1-470,000$ ohms. $1-1$ megohm, I watt: I15000 ohms, ${ }^{2}$ watts; $1-40,000$ ohms, 5 watts: $1-250$
ohms $1-20,000$ ohms, adjustable, 10 watts; $\mid-500$. 000 -ohm potentiometer with switch.
Capacitors: $1-100 \mu \mu f_{i}$ mica: $2-10 \mu f_{0} 50$ valts. electrolytic; $11-.01$ uf, 600 volts. paper; i-. 01 . I$4 \mu f, 1,000$ volts, paper; $1-, 004$ uf. 1,500 volts, mica 4-3.30 unf trimmers: $1-35,2-100$ unf. variable.

Tubes: 4-12A6, I-12J5, I-125J7, 3-1625, I-12CB.
Miseellaneous: I-TU-5-B; 7-octal, 3-7-prong tube sockets; 2-s.p.s.t. toggle switches; 1-2.5.mh r.f. choke: I-carbon mierophone to grid, 1-3-1 ratio interstage audio. $1-6,000$-to 6,000 -ahm modulation transformers; power supplies; I-TU-6-B; necessary insulators, hardwore. etc.


The front panel of the Carvalyzer. The A-eliminator inside the cabinet supplies the power.

# Making complete, accurate, and speedy checks on 6-volt 

## receivers reguires a versatile combination instrument

By S. H. COVINGTON, JR.

DESIGNEI) especially for servicing automohil. radios and testing vibrators. the Carvallozer also furnishes $A$ - and $D$-voltages for sorvicing on any types of battery and three-way radios, particularly those with sories filament strings. It supplies $i f$ volts for auto radios and indicates the eurrent drawn by the entire set or by the viluator alone. The name Carvalyzer, suggest ve of the unit's functions, was coined from "Combined A-Eliminator with Fatio and Vibrator Analyzer." Fig. 1 is the circuit.

The first step is to own or get a good husky i-volt d-eliminator. (One can be constructed from the directions given in the article "A-Battery Eliminator" in the April, 1949, issue of Radio-Eiectronics.) This unit is built around a type fo ATR eliminator. Other units can be used by following the general outlines of this article.

If you have the type 60 ATR unit or one of similar construction, it may be mounted as follows. Stand the unit on end so the 6 -volt terminals are on your right. Discard the hottom cover. Place a 19 -inch metal or Masonite panel over the eliminator so that approximately 1 inch of panel extends on the left side. Cut a slot in the panel directly in front of the fuse clip. This will permit the fuse to be withdrawn when a d-inch
loop of tape is passed aromod it and allowed to mroject through the slot see front-view photor. The fuse clip maty be replaced by a fuse extractor post on the panel. Renove the pilot lamp and line switch, and mount them on the pancl. Mount a $0-10$ or 0-15 d.c. ammmeter and primary tap switch on the panel where they will be inside the eliminator case, The panel is fastened to the case with screws or strips of angle iron at the top and bottom.

The PRI coNTROL is a nonshorting switel connected so that turning it to the right increases the voltage at the fi-volt terminals of the aliminator. This switch does not have sufficient control over the output voltage; therefore, a heavy-duty rheostat, marked IINE CoNTROL, is inserted in series with the a.c. line. This is a 200 -ohm unit with a rating of 200 watts or more. Such units being bulky and expensive, we made one by connecting carhon bars across the contacts of a rotary switch. These eavbon bars have various resistances valying from approximately 1.4 to 39 ohmas. A general automotive electrician (not a dealer) will probably give you some of these carbon resistors from discarded relays. They have holes in the ends, making it easy to bolt them together. A soldering lug over each bolt connects these points to the switch con-
tacts. The resistors are comected in a square helix as shown in the rear-view photugraph. The homematde rheostat is commected in series with one side of the a.c. line so that maximum resistance is in the eircuit when the switch is turned counterclockwise as far as it will go.

## Additional components

A 115-cycle vibrator transformer must he used in this unit, since most vibraturs work at that frequency. If a 115 -cycle vibrator is tested on a 180 eycle transformer, it will pass too mueh current and its contacts will he damaged.

The transformer, hash chokes, $0.5-\mu f$ capacitors. and the filter choke may be salvaged from an old automobile radio. The vibrator replacement guide will tell you whether the set selected has a 115 -cycle transformer.

There are three meters. M1, a 0-10 ol 0-15 d.c. ammeter, reads current drawn from the eliminator. M2 is a $0-8$. or preferably a $0-10$, d.c. voltneter that indicates the d.c. output of the eliminator. M3 is a 0-1 d.c. milliameter that is converted to a $10-00^{5} 500$-volt meter hy throwing the METER switch.

Two good-bad scales are drawn on the face of meter M3. The upper scale checks vibrators by measuring the output roltage. The BAD area goes from 0
to 0.47 , and the cood area covers the rest of the scale. Convert the meter reading to volts by multiplying by 500 . The lower scale indicates the starting voltage of the vibrator. A good vibrator will begin to vibrate at as low as 4.7 volts, and a perfect one with no film on its contacts will start at 4 volts. The area between 0 and 0.4 ( 4 volts) is marked Good, the area between 0.4 and 5.6 is marked "?", and the balance of the scale is BAD.

The vibrator switch, a four-circuit, double-throw unit, switches the transformer secondary to the rectifier plates for nonsynchronous vibrators, or to the secondary contacts of a synchionous vibrator.

The SYNC POL switch is a d.p.d.t. leaf type used to reverse the polarity of the secondary winding when testing synchronous vibrators. This switch must withstand several hundred volts; therefore, the usual radio toggle switch cannot be used.

The 50,000 -ohm wirewound potentiometer, switch S1, the B-voltage jacks, the push-button switch, and J5 were added after the original Carvalyzer was completed and do not appear in the photographs. The $50,000-\mathrm{ohm}$ control has a s.p.d.t. switch $S 2$ ganged to it and connected so that A - and B-minus are tied together when the control is all the way over in a counterclockwise direction. Advancing the control connects the resistance of the control across the B-supply and isolates the A- and B-supplies. This prevents shunting the bias supply in some sets. A jumper can be run between the vibrator test clip $R$ and the $B-m i n u s$ terminal if the $A$ - and B-supplies must be connected together. The B-supply having very little filtering, faulty filters in a set will show up in the form of hum.

A 32-candle-power lamp loads the Gi-volt supply and prevents the voltage from rising when there is no external load.

Leads marked R, A, P1, P2, S1, and S2 are brought out and terminated with insulated alligator clips with the end teeth filed down to fit the pins of the vibrator under test. A small round tile will remove the teeth nicely. Mark the leads clearly to avoid mistakes when connecting them to vibrators. Typical vibrator connections are shown in Fig. 2.
$\mathrm{J} 1, \mathrm{~J} 2$, and J 5 are standard pin jacks, and J3 and J4 are heavy-duty banana jacks. Leads for J3 and J4 are heavy wires, one of which is terminated with a heavy battery clip and the other with a fuse holder of the type most commonly used on auto radios. A pair of smaller leads is made to fit into J 3 and J 4 . These leads terminate in alligator clips filed to fit the A-battery prongs of most battery radios. A similar pair of leads is made with suitable clips for the B-voltage jacks.

## Testing vibrators

Determine the make and type number of the vibrator you wish to test and look up its characteristics and base connections in a vibrator manual. Set up the Carvalyzer as follows:

1. MASTER switch OFF.
2. VIB TEST On T.
3. METER switch on 10 vOLTS.
4. VIBRATOR switch on SYNC or NONSYNC for synchronous or nonsynchronous vibrators, respectively.
5. BUFFER switch IN.
6. LOAD LAMP switch ON.
7. Set line control for highest resistance.
8. B-vOLTAGE CONTROL counterclockwise until $S 2$ is off.
9. PRI control at lowest-voltage setting.
10. Close S1.
11. Connect vibrator test leads to vibrator letting unused clips hang clear.
12. MASTER switch on.

M3 should indicate about $11 / 2$ volts.


Fig. I-The vibrator test leads are labeled to conform with the base markings in Fig, 2.

Hold the vibrator in your left hand and advance the liNe control until the vibrator starts to vibrate. Note the indication on the lower Good-?-BAD scale of M3. If the meter reads BAD or "?", or M1 reads more than 2.4 amperes, reject the vibrator. This test tells the condition of the reed, driving coil, and starting contacts.
If the vibrator is good, test it for


Fig. 2-Typical vibrators, with pin morkings.
output. Set the Meter switch to 500 volts. If there is no indication when testing synchronous vibrators, throw the SYNC POL switch to the opposite position. M3 should read up-scale. Check the syNc POL switch as soon as possible because, when it is incorrectly set, a negative voltage is applied to the positive side of the filter capacitors in the Carvalyzer.
When M3 reads up-scale with either type of vibrator, turn the load lamp off and advance the PRI and LiNE CONTROL until M2 reads 6 volts. Check M1 to make sure the vibrator is not drawing more than 2.4 amperes. The indication on the upper gOOD-BAD scale of M3 will tell whether the vibrator passes the voltage-output test.

## Testing auto radios

Consult the sticker on the chassis or a serviee manual to determine the drain of the set. Connect the Carvalyzer to the set through the heavy leads from J3 and J4. Set the PRI CONTROL and the LiNe control for the lowest voltage. Close S1.

Make sure all tubes and the vibrator are firmly seated in their sockets. Turn on the Carvalyzer and radio while watching M1 to make sure it does not go off-scale. Advance the line control and note the starting voltage on M2. The vibrator should start at about 4 volts. Adjust the voltage polarity for the lower current on M1. This corrects for positive or negative ground on polarized sets.

If the current drain is greater than specified by the manufacturer, test the tubes, pilot lamp, and vibrator; record any defects. Do not replace these components at this time. Turn on the set and Carvalyzer and adjust the input voltage to, 6 volts. Note the current drain. It snould be zero if the set has a PM speaker, and less than $11 / 2$ amperes if the set has a 4 -ohm field coil. If it is more than $11 / 2$ amperes, disconnect the hot lead from the coil. The current
should drop to zero. If current still Hows, look for stuck contacts on the push-button solenoid or clutch circuits, leaky capacitors, defective spark plates, and other defects in the 6 -volt circuit.

Clear up any trouble in the 6 -volt circuit; then check the B-circuits. Some sources of trouble in the high-voltage circuit have been cleared when the vibrator and tubes were checked. To check the vibrator transformer, install a good vibrator in the set. Open the burfer switch and disconnect the field coil. Open the centir tap of the secondary if the set has a synchronous vibrator. Current greater than 1 ampere indicates shorted turns in the transformer, which must be replaced.

Replace all defective components. Be sure to put in a new buffer capacitor if the vibrator was bad. Turn on the set, adjust the Carvalyzer to 6 volts, and let the set warm up. Note the current drain. Remove the vibrator, readjust the input to 6 volts, and note the current. The difference in current consumption is the current passed by the vihrator. Most vihrators are rated at a 6-ampere maximum.

## Measuring B-voltages

To measure B-voltages in any set being supplied by the eliminator, set the vib test switch to A, the meter switch to the desired range, and plug the positive test lead into J 1 or J 2 . Voltages are read on M3. With this connection, the filament lead is the reference point. Plug the negative test prod into $\mathbf{J 5}$, and open S1 to make measurements from other reference points, as across individual filaments in a series string.

## Continuity tests

For low-resistance circuits, set the vib test switch to A, turn the load lamp off, meter switch to 10 volts, vibrator to sync, and b-voltage control off. Plug one test lead into the 10 -volt terminal J2, and clip the other to vibrator test lead A. Turn on the Carvalyzer, and adjust the primary and line controls for full-scale reading on M2. Touch the prorls together, and M3 will read full scale. Use the prods for low-resistance tracing.

For high-resistance testing, connect a good synchronous vibrator as you would when running a test and adjust the output to 250 volts (mid-scale) on M3. Open S1, and M3 returns to zero. Plug one test lead into 55 and the other into the B-minus jack. Touching the leads together will bring M3 to mid-scale. Use known resistances to calihrate M3 on the low- and high-resistance ranges.

## Operating 3-volt sets

Connect a good nonsynchronous vibrator to the test leads and adjust the output of the eliminator to 3 volts. Slightly less than 90 volts will appear at the B-terminals. For higher B-voltages, use a synchronous vibrator and adjust the Carvalyzer accordingly.

Plug the small test leads into J3 and J 4 ; place the clips over the A-pins on the battery cable of the set. Plug an-


Inside the Carvalyzer. The A-eliminator is at left and the line-control resistor at right.
other pair of leads in the B-voltage terminals and connect the clips to the Bvoltage pins on the battery cable. Be sure to observe circuit polarity when making these connections. Consult the diagram of the set to see if there is a resistor in the negative lead; if so, make sure that it is good.

Set the Carvalyzer as for startingvoltage tests on the vibrator attached to the test clips. Turn on the unit and adjust it so the voltage on M2 does not exceed the filament voltage for the set. Turn on the set and correct the fila-
ment voltage if necessary. Insert test leads in J 2 and J 5 , throw the vib TEST switch to $A$, and check the polarity of the voltage on J3 and J4. If the polarity is incorrect, reverse it with the voltage polarity switch. Remove the leats from J2 and J3. Close S1. Set the meter switch on 500 volts and advance the b-voltage control just enough to throw S: ON. Check the filament voltage on M2. Hold the pushbutton switch S 3 closed while adjusting the b-voltage control until the correct B-voltage is indicated on M3.

## INEXPENSIVE RESISTANCE BOX

Here is a cheap and easy way to make up a resistance box which will allow the serviceman or experimenter to choose many values. Four octal tube sockets and 31 resistors are needed. The diagram shows the necessary connections.

Though half-watt resistors would be least expensive in making up the box, using 1- or 2-watt units will allow it to be ensployed where higher voltages and currents are to be dealt with to any extent.

Any combination of series resistors can be selected by plugging test leads into the proper pin holes. For 33,000 ohms, for instance, use terminals 22 and 13. If the desired value cannot be obtained with a series combination, use resistors in parallel by providing a jumper lead with a single phone tip on one end and a phone tip and tip jack on the other. For quick calculation of parallel resistances, one of the comnercial cardboard "slide rules" is extremely helpful.
The schematic will be needed each time you use the resistor box, so preserve it well. Draw it with ink on white
cardboard very carefully and shellac it.-G. I' Prunton

octal sockets useo

# Combination Instrument Measures 

# R, C, and L Accurately 

By B. J. CEDERQVIST, OH2NL*



Generator and bridge are in a single cabinet.

I$T$ IS often nocessary for an experimenter or engincer to make various kinds of measurements. Fuervone is fimmilar with the common instris monts for meatwing current amd voltager, but not always with the imperance bridge, which can be used for measurements of resistance. inderetane or capacitantere 'The general principle of hatlges is shown in Fig. 1.

Fig. 1-at is the Wheatstone beidge. The unknown resistance is $R_{\text {s }}$ while $R_{\text {, }}$ is vandable. The resistors $R_{\text {, and }} R_{1}$ are the retion "rms. If $R$ is calibrated, and we know the latio of $R_{13}$ to $R_{1}$, the value of the unknown resistor $R_{\text {s }}$ is equal to

$$
\begin{aligned}
& \mathbf{R}_{1 B} \\
& \mathbf{R}_{1}
\end{aligned} \times \mathbf{R}_{1},
$$

after adjusting $R_{\text {. }}$. so that there is no potentiol difference between the galvanomucer terminals (the mull adjustment).

Fig. l-b is a Maxwell bridge. The unk nown inductance is $L_{5}$ : in the opposite arm we have a standard capacitance $C_{4} . R_{4}$ is again a calibrated variahle resistor. The Maxwell bridge compares an inductan'e with a capacitance. After adjusting $R_{\text {c }}$. and $R_{A}$ for null,

$$
\begin{aligned}
& \mathbf{L}_{x}=\mathbf{R}_{1} \cdot \mathbf{R}_{11} \mathrm{C}_{A}, \text { and } \\
& \mathrm{R}_{\mathrm{x}}=\frac{\mathbf{R}_{*}}{\mathbf{R}_{1}} \times \mathrm{R}_{\mathrm{R}} .
\end{aligned}
$$

It would be very difficult to obtain a true null point if we had only the standard capacitor in the A-arm, due to the resistive lorses in the inductance $L_{x}$. These losses can be represented by an

[^5]imaginary resistor $\mathrm{R}_{\mathrm{a}}$; by connecting a variable resistor $R_{a}$ in parallel with the standard capacitor $C_{1}$ and adjusting this resistor along with the $R_{r}$, we can balance out $R_{x}$ and obtain a very sharp null in the phones.

Fig. 1-c is the circuit for a usual capacitance bridge (in principle a Wien bridge). $\mathrm{C}_{\mathrm{x}}$ is the unknown capacitance and the standard capacitor is $C_{1} . R_{4}$ is the calibrated variable resistor. Note that $C_{x}$ and $R_{\text {. }}$ are in opposite arms, Because the reactance of a capacitor is inversely proportional to the capacitance, the value of $C_{x}$ is equal to

$$
\frac{\mathbf{R}_{1 *}}{\mathbf{R}_{11}} \times \mathrm{C}_{1 \cdot}
$$

Capacitors also have losses. To obtain a true null, $\mathrm{R}_{\text {, }}$ is connerted in series with $C_{1}$; by adjusting it along with $R_{1}$, we can again obtain a very sharp null in the phones. The bridge is perfectly balanced when

$$
\mathbf{C}_{\mathrm{x}}=\frac{\mathbf{R}_{4^{*}}}{\mathrm{R}_{11}} \times \mathrm{C}_{1} \text { and } \mathrm{R}_{\mathrm{s}}=\frac{\mathbf{R}_{11}}{\mathbf{R}_{\mathrm{t}}} \times \mathbf{R}_{1} .
$$

## The impedance bridge

The circuit diagrams of a bridge and gemerator built by the writer are shown in Figs. $\because$ and :3. The photos show the complete instrument and bottom views of the bridge chassis and the generator. The following ranges are covered with the bridge:

With the $\mathrm{S}: 3$ in the $\Omega$ position and S 2 on 10 , values up to 10 ohms can be read from the big dial scale on the potentiometer R1. With S3 in the ks! position and $S: 2$ on 10,000 , values up to 10 megohms can be measured.

The inductance ranges are also divided into two S: 3 positions, MH and H . With $S: 3$ in the $M H$ position and $S 2$ on 0.1 , values up to 0.1 mh can be read from the scale. By switching $S 3$ to the

H position and $S$ : to 100 , values up to 100h can be measured

In the same way, capacitances to 100 uluf can be measured with S 3 in the u!uf position, and values up to 100 uf with the switch in the position marked NF . The expression nf (nano-farad) has been employed by the author to make it possible to use the same scale for urf and uf measurements (1,000 nf is equal to 1 uf)

The accuracy of the bridge depends upon the accuracy of the resistors and the potentioneter R1. All resistors must be wirewound and carefully calibrated with a precision resistance bridge. The potentiometer must be of good quality and proferably one with a large diameter. The scale on the potentiometer must also be calibrated with a preceision bridge. Good capaeitors must be used for the $1,000-\mathrm{ten} \mathrm{f}^{\text {and }} 1-\mathrm{mf}$ units. By selerting eapacitors with values smaller than 1,000 entif and 1 uf and shunting them with others, the exatet vallues ean he obtained.

Switch S: shunts the galvanometer with a suitable resi-tor RS so when the bridge. in measuring resistances, is far from balance, the galvianometer deflection is not too big. I! the first position an external detector theadphones or an amplifier) can be used when measuring inductances and capacitances. The normally open push-button switch in series with the galvanometer makes it possible to see more easily when the current through the galvanometer is zero by interrupting and closing the galvanometer cireuit. The galvanometer is also connected to the terminals marked METER; therefore, it can be used for other purposes.

When measuring resistances, S6 should be in the position marked DC and S7 must be closed. An internal d.c. voltage is then connected to the bridge.


Fig. I-Wheatstone, Maxwell, and capacitance bridges illustrate general working principles.

External batteries can be used by opening S7 and connecting the hattery to the terminals marked Ext bat for more accurate measurement of high resistances.

When measuring inductances and capacitances, S5 should be in the EXT position and $S 6$ in the int position. An 800 -cycle audio note is then connected to the bridge. If an audio note of another frequency should be needed, an external generator can he connected to the terminals marked EXT GEN and the switch turned to the position marked EXT.

In the author's lridge, a switch S 4 had to be installed to shor the 500,000 ohm potentiometer because it was impossible to find a potentiometer which could reach zero ohns. If the $500,000-$ and 200 -ohm potentiometers are furnished with calibrated scales, the power factor can be calculated from the readings.

When making measurements on capacitors of low value, it is desirable to determine the capacitance of the bridge itself. In the bridge shown, this capacitance is very close to 5 , $\mu \mathrm{f}$; and, when measuring capacitors up to 100 and 1,000 Hif, this value should be sulstracted.

Fig. 3 shows the generator. It has cathode output. The home-made transformer $T$ has 2,500 turns of No. 38 enameled wire on the primary and two 1,250 -turn windings of the same wire on the secondary. Hetween the primary and the copper screen is an electrostatic shield-a single-layer winding of No. 31 enameled wire. The screen encloses completely the secondary winding. The cross section of the core in the transformer is $7 / 8 \times 1$ inch.

An extra winding on the high-voltage transformer gives 25 volts to a selenium rectifier for the d.c. voltage to the bridge. A 200 -ohm current-limiting resistor and a 50 -uf electrolytic capacitor are connected between the rectifier and the hridge.

The generator is located in the upper end of the steel box (see photos) and connected to the bridge virl a five-prong socket. The dimensions of the steel box are $7 \times 11 \times 14$ inches. All parts of the bridge are mounted on a bakelite panel.

## MATERIALS FOR BRIDGE-Fig. 2

Resistors: 2-10. 2-100, 2-1,000, 3-10,000 1-100000 ohms, precision, $1 / 2$ to I wott; 1-200, $1-10,000$ ohms, wire-wound potentiome'ers; 1-500,000 composition potentiometer
Capacitors: 1-1.0, 1-.001 11f, precision, paper, 50
Switches: 1-2-position, 5-circuit, 2-4 position, 2. circuit, 1-3-position, 2 -circuit, 1-3-position, 3 -circuit, rotary, non-shorting, $2-s$. p.s.t. toggle.
Miscéllaneous: 1-golvanometer: 1 -prong male plugi, necessary binding posts, terminals, dials and scoles, hardwore, etc.

MATERIALS FOR SIGNAL SOURCE-Fig. 3
Resistors: 1-20.000, 2-100.000 ohms. $1 / 2$ watt: 1-200 ohms, watt; 1-250,000-ohm potentiometer.
Capacitors: 1- $50 \mathrm{\mu t}, 50$ volts, electrolytic; $2-8 \mathrm{\mu f}$, 450 volts, electrolytic; $1-0.2,2-0.25$ uf, 600 volts, paper.
Tubes: 2-37, 2-80.
Miscellaneous: 1-p-prong. 2-5-prong fube sockets: $1-1-3$ rotio audio interstage tronsformer: 1 -power transformer, 500 volts center-tapped of ' 75 ma or more, 6.3 volts at 500 ma , 5 volts at 2 amperes, 25 volts at 50 ma; $1-10-\mathrm{h}$, 75 -ma filter choke: $1-5$-prong femole plug; 4-100-ma selenium rectifiers; necessary hardware.


Fig. 2-Switches and controls in the bridge circuit provide for four ranges of R, C, and $L$


Fig. 3-The tone generator. Note how the output is balanced to avoid upsetting the bridge.


The bridge (left) and generator-power supply (right) are easily disassembled for service.


# Versatile Amplifier For 6 or 117 Volts 

By PAUL W. STREETER

MANY radio repair shop: have profited by the increasing demand for sound cars for publicity. announcing local sports events, and similar uses. This writer started out in a small way, equipping one car to be used to advertise his radio repair business. Within a year, the sound-car phase of the business has outstripped the repair end (in dollar volume) two to one! At present, three cars are in constant demand, and all kinds of publicity and announcing johs from localities as far as 200 miles from the shop are being handled regularly.

Several different amplifiers were tried, but each one had something not quite to our liking. When we added the latest car to the fleet, we decided to build amplifiers that would more nearly meet our requirements, foremost, of course, heing dependability and troublefree operation. (Equipment failure during an event can he embarrassing.)

In designing the equipment for the 6SF5121
5. The amplifier should have sufficient output to drive two speaker units.
The amplitier to be deseribed has all of the above features. In addition, it can be built at reasonable cost.

By careful arrangement of parts it was found possible to build the amplifier on a chassis which, with cover, turntable, and pickup, measures only $10 \times 12 \times 111 / 2$ inches. Complete with tubes and power cords, it weighs :35 pounds.

Adequate under-chassis ventilation must be provided; and if built-in louvres are not incorporated in the chassis, a series of holes $3 / 8$ to 1 inch in diameter should be provided. These should be placed preferably along the lower edge of each end and in the top of the chassis. The holes can be covered with pieces of $1 / 4$-inch hardware cloth soldered to the inside edges.

Sockets should be of good quality (Steatite sockets are ideal), since the contacts are necessarily close together
6N7 6N7
and audio currents and d.c. voltages is the amplifier can cause flashover $i_{\text {. }}$ cheap sockets are used.
Either of two types of 6 -volt, $60-$ cycle vibrators can be used. The can dimensions of both are the same, although they differ in the internal connections and the arrangement of the terminal prong:- The heavier-duty type, such as Electronic's type 491, has two sets of socket prongs and requires two fi-prong sockets mounted on 3 -inch centers. It is really the best vibrator to use, since all contacts are paralleled. However, there are large quantities of surplus vibrators on the market, readily obtainable, that have a single 6-prong socket mounting. We have had very good service from these vihrators, also. Fig. 1 includes a single-socket vibrator, while Fig. 2 shows the changes necessary to accommodate the two-socket type.
The power plug on the rear of the chassis is a 9 -prong male. This socket

6L6(2)

should be wired first, as far as possible, since four terminals require heavy con-ductors-at least No. 10 and preferably No. 8 flexible, stranded, rubber-covered wire. It was found that automobile lowtension wire, obtainable at auto-parts supply houses, was adequate.

First terminal 2 on the plug is wired to the chassis, using a short piece of heavy wire. Paint must be well cleaned from the chassis before soldering, to insure good connection. A heavy wire connects terminal is on the vibrator socket to this same ground point. Also, capacitors C1, C2, C3, and C4 have their outside foils connected to this ground. Later, after the power transformer is installed, three additional heavy leads from it will have to be fastened to this same chassis point.

A heavy wire is connected to terminal 6 of the power plug, to one side of the on-off switch, and from the other side of that switch to terminal 8 of the power plug. A heavy wire from the standby switch to terminal 9 of the plug and from the other side of that switch to terminal 4 of the vibrator socket completes the heavy wiring.

The No. 1 terminals of all tube sockets are next connected directly to the chassis, using short pieces of bare hookup wire soldered directly to the chassis after paint is scraped off. Be very sure that good solid connections are obtained; poor connections here will cause hum. The amplifier will be subject to considerable vibration and rough handling, so make all connections mechanically secure.

The filament r.f. choke is made of No. 14 solid, insulated, hookup wire and fastened between the rear 6X5-GT socket and the power plug. The choke is made by winding 15 turns of this wire on a piece of $1 / 2$-inch wood dowel, after which the coil is slipped off the dowel and bound with string or heavy thread to retain its shape. It is supported by the leads.

After the amplifier has been completely wired, check all connections to be sure that there are no loose joints. A drop of colored paint should be applied to each connection after testing. It will be an aid later if inspection is necessary, for the paint will flake or peel off if the connection is loose.

If a phonograph motor is to be installed in the top of the amplifier housing, it should be mounted together with the pickup arm and cartridge assembly. The phonograph on-off switcl can be installed on the top front left corner of the housing. Wires from the motor and switch should be twisted and firmly clamped in such a manner that they will not be caught in the motor mechanism. They should terminate in a plug to match a socket on the amplifier chassis. The pickup lead should be shielded and terminate in a plug, also. The plugs make it easy to remove the housing for service.

If desired, a separate a.c. outlet can be installed on the chassis to furnish 117 volts for an automatic record changer. Current drain up to about 25 watts can be obtained from this ampli-
fier when used with a 6 -volt battery, which is sufficient for nost changers. The driver of one of our sound cars runs his electric razor from that power source, shaving while he drives-a practice which we do not reconmend!
Automatic changers, if used, should be so constructed that jars or vibration will not cause records to jam or to drop at the wrong time. Pickup cartridges must be rugged and capable of taking considerable abuse. Needle protection (an arm rest) must be provided.
Two power cables are required, one for 6 -volt d.c. operation and one to be used when the amplifier is connected to 117 volts a.c. (see Fig. 3). Terminals 6 and 9 of the 6 -volt connector are connected with a piece of No. 10 wire, since considerable current to the vibrator is carried through these pins. Bare wire can be used, covering it with a short piece of spaghetti tubing where exposed. Terminals 2 and 3 are connected with a piece of No. 14 wire, as are terminals 4 and 6. Leads are soldered to terminal 8 and to the junction of terminals 2 and 3. These leads should be long enough to reach the hot starter-switch terminal on the car and an accessible ground terminal on the car frame. The leads may be identified


Chassis view: vibrator box at extreme right.
by different-colored insulation, paint, or Scotch-tape tags.

If a permanent installation is intended, solder lugs should be used for power connections. Terminal nuts should be clean and tight. If the amplifier is to be used only occasionally, good husky battery clips can be used. This practice is not recommended, however, as battery-clip connections are a source of annoyance and create a voltage drop due to poor contact or corrosion.

It will probably be most convenient (Contimued next page, bottom)


Fig. 2—Changes for 2 -socket vibrator. Fig. 3-Power cables for 6 and 117 volts.


Underchassis view showing wiring. The large unit at the left is the output transformer.

# Olservation on TV-Sonme 

## Lore is blind, but are tele-viencers deaf?

By RICHARD H. DORF

LET a man get interested in music, then in electronics. then in both together. and you've got a combination of protoplasm that will writhe in agony at a few percent distortion coming from a loudspeaker and will walk out in a buff if three inoffensive decibels stand between him and 15,000 cycles. This, brother. is straight from the loudspeaker's mouth. You're looking at one.

The human-relations experts claim that the large incidence of divorce in this country is due to infidelity, insecurity, and hasty marriage. But. unless I miss my quess, there is also a substantial proportion caused by the wife's inability to remain sane in the face of hours of pure tone coming through the loudspeaker at high levels, generated either by a test oscillator or by a frequency test record. There's a man on the Columbia $100004-\mathrm{M}$ dise who begins by saying "One . . . thousand
cycles . . . to set . . . level" and then gres on to amnounce cach frequency in the same flat. pontifical tone. I don't know this man's name. but I take this opportunity of warning him to stay away from my honse. Jy wife who ordinarily is as peace-loving and lawabiding as most people. has promised
instant and complete decapitation.
I have had a television receiver for over a year. It brings in a nice picture on the 10 -inch tube and is a good-looking piece of furniture. But it has a 6 inch speaker. It's a good (i-inch speaker; but. as Paddy observed, standing before Big Ben and comparing his 4 minute-slow watch with it, you can't expect a little wristwateh to run as fast as a big, expensive clock.

But humans are some of the most unpredictable people in the world. You might expect that I'd remove the 6 inch speaker and replace it with a coaxial. Or at least run an audio line from the TV set to my good amplifier and speaker. But no. I'm satisfied. When the studio organist hits a low (i with the 64 -foot stop pulled out, I never know it. The trap drum is about the lowest-pitched percussion instrument I can hear on TV-but I don't care.

And aside from the speaker, most of the films shown on TV have sound tracks you would swear had been bushed lightly with gray paint and then walked on. Frequently the film seems, moreover. to have been pulled through the projector hy hand. judging hy the steadiness of musieal pitehes. forthermore, because the mike has to
be kept out of the picture, live piano pickups are often made too far off mike; the effect of the multiple echoes will make any old-timer reach into his change pocket for another nickel. But it doesn't bother me.

What's the answer? Does the visual effect so far overshadow the aural (when sou have both) that the sound is unimportant? I'm not unique - I've talked to others who feel the same way. Are television listeners still so thankful for the "miracle" of video that they'll tolerate just any kind of sound?

There are a couple of straws that may indicate a cross current blowing in the other direction. A number of kit and set manufacturers are naking mitch of the fact that their newer models are equipped with 10 -inch and bigger speakers, for "full-fidelity range." One company is even making for small televisers a table which has a built-in speaker and baffle to improve the audio response. Does this indicate that public taste is changing? Or simply that the manufacturers hope it is?
l'd be interested to hear from anyone with ideas on this. Vou'll find books on psyehology under 150 in your local library. I'll see you there.

## VERSATILE


( ${ }^{\circ}$ ontimued from merions pagr)
to test the completed amplifier on 117 . volt power first. Connect the power cord to the plug on the rear of the chassis. Connect a microphone (any good erystal or dynamic) to mierophone input No. 1. Connect a speaker large emoumh to rarry the loud to the terminal strip on the rear of the chassis. Turn all controls off before plugging into the outlet.

Turn the on-off switch on and let the tubes warm up for a minute. Turn the microphone gain up slightly, and talk into the microphone. If audio feedback occurs, turn the gain down until it disappears. In use, the microphone should be placed as far as possible from, and behind, the speakers to eliminate feedback. Normal operation should give good volume with the microphone gain turned up one-quarter to one-third of maximum. Next, try the other microphone input. Similar results should be obtained.

The phonograph should now be tested. Normal operation with an average popular-music recording will probably require that the phonograph gain be turned up half-way. Cnused gain controls should always be turned off. The
amplifier gatin controls can be used to fade or mix any input combination.

When using the amplifier on 6 volts d.c., the on-off switch should be turned on first to allow the tubes to warm up for a minute before the standby switch it turned on to start the vibrator: The standby switch can be turned off to save battery current when the amplifier is used intermittently. If only the filaments are on, the battery drain is 5.35 amperes; the total battery current with the amplifier operating at full output and the phonograph motor on is 21 ampere:

The amplifier should never be turned on with the speaker load disconnected, since a.c. voltages in the output section may rise to dangerous values.

When more than one speaker is used, the speakers must be properly phased or they will have very little volume and poor tone. On most 25 -watt driver units obtainable, terminals are marked, and proper phasing can be accomplished by wiring all the No. 1 terminals together. However, if different-make drivers are used or if the terminals are not marked, it is imperative that the speaker phasing be checked. This can
easily be done by placing the speakers so that they face each other and then plaving a recording at nedium volume. If the low notes are missing or subdued. the speaters are correctly phased. If they are out of phase, reverse the connections to one of the speakers. After the speakers have been placed, it is a good plan to make speaker cables with polarized plugs or mark connections to maintain eorrect phasing.

[^6]
# Designing <br> Push-Pull Amplifiers 

Calculation methods for better fidelity

By DAVID FIDELMAN

ONE day you will decide to rebuild your audio amplifier system. (If you haven't yet, you will-everybody does, sooner or later.) When you do, the new system should be better than your old one, else there is no point in going to the trouble.

The chances are that most of the circuits obtainable were not designed for your particular requirements. You may already have a good output transformer or some tubes and circuit components which you might like to use to avoid the expense of purchasing new contponents. The most satisfactory results will almost always be obtained with a good circuit of your own design.

High-quality audio amplifiers should be push-pull rather than single-ended. Push-pull amplifiers have these advantages:

1. There is less distortion, due to the cancellation of all even harmonics.
2. There is no d.c. saturation of a well-balanced output transformer since the plate currents of the two tubes cancel one another in the transformer core, and low-frequency response is better.
3. Effects of power-supply hum are greatly reduced.
4. The push-pull stage does not tend to cause motorboating in the amplifier.

These advantages are so important that a push-pull arrangement using two small tubes is preferable to a single larger tube capable of developing the same total power output.

The design of the amplifier should

depend mainly upon where it will be listened to, for example, in an average living room or a large auditorium.

For normal listening levels in the home, a system capable of handling 4 or 5 watts peak power will generally sound good enough. The amplifier of the average table-model a.c. radio is capable of putting out about 4 to 5 watts, but at loud levels a considerable amount of distortion is noticeable. In this case, the distortion is often due to the improper use of a small loudspeaker


Fig. I-Circuit of a typical push-pull stage.
which cannot handle the entire output of the amplifier. If the small speaker is disconnected and the amplifier output fed into a good 10 - or 12 -inch loudspeaker, the quality will be good even at fairly loud living-room levels. Actually, the averoge power into the speaker even during loud levels is considerably less than 1 watt. However,


Two views of a high-power push-pull amplifier built by the author, using the principles and design information contained in this article.
the reserve power is necessary, because transient peaks in speech and music require considerably more power. For reproduction of these peaks without distortion, 10 watts is about the best compromise design value for home listening.

## The output stage

Once the power requirements of the amplifier have been decided, the tubes can be selected. The schematic circuit diagram of the typical push-pull amplifier is shown in Fig. 1. The specific circuit values-plate load impedance, cathode resistance, plate voltage, and so on-are obtained from data and the plate-current-characteristic curves given in the tube manual by a procedure similar to that followed in selecting the values for the ordinary singleended amplifier stage.

These methods are so well described in the RCA Recciving Tube Manual (Technical Series RC15), presumably owned by all radio technicians, that no attempt will be made to duplicate that description here. Reference is made especially to the material appearing on pages 18,19 , and 22 of the tube manual.

However, in using the plate-current characteristics, a composite set of curves must be used instead of the ones given in the tube manual. These composite curves are obtained by placing the plate voltage-current curves of the individual tubes back to back with the common operating voltage superimposed, and then averaging the plate current for grid-potential curves corresponding to the same applied signal. (The signal voltages applied to the two grids are opposite; therefore, if the operating grid voltage is - 20 , for example, then - 15 volts for one tube is averaged with - 25 for the other, and so on). The load line is then drawn, using the derived composite curves. The actual plate-to-plate load will be four times the resistance represented by the load line.

The procedure may be best understood by considering a specific example. The curves given in Fig. 2 represent the composite plate voltage-current curves for a push-pull 2 A 3 amplifier. The complete set of curves consists of two sets of plate-current characteristics, one representing tube 1 and the other tube 2. (Each set of curves can be


Fig. 2-Composite $\mathbf{E}_{\mathbf{g}}$ curves and load line are drawn on superimposed handbook $\mathrm{E}_{\mathrm{p}}-1 \mathrm{p}$ graphs.
redrawn from the tube manual. For some tubes, these detailed curves will be found only in a professional-grade manual, such as the RCA HB-3 looseleaf handbooks.) To derive the composite curves, first place the two copied sets back to back, with the 300 -volt (recommended plate voltage) points coinciding, as shown.

The load line is then drawn in the same manner as for an ordinary set of tube characteristics, first selecting a convenient value for plate voltage and grid bias, erecting a perpendicular at 0.6 operating voltage, noting the point at which it intersects the zerobias curve, and then checking for power output. If, as in this case, the plate dissipation is too great, plate voltage may be lowered or load resistance increased and another approximation made. Re-


Fig. 3-Cathode and plate outputs are equal.
fer to page 22 of the tube manual for an elaboration of the process, as the constants in the above example have been made to conform with those worked out on that page. The load line which is shown in Fig. 2 crosses the zero-current axis at 300 volts, which is the quiescent (or zero-signal) operating point. If extended in either direc-
tion, it would intersect the zero-platevoltage axis at 400 milliamperes. Therefore its resistance is 750 ohms . This is multiplied by 4 to obtain total plate-to-plate load resistance; thus the load line represents a 3,000 -ohm plate-toplate load.
Therefore, desirable operating conditions for two 2A3 tubes in a push-pull amplifier are:

| Plate voltage: | 300 |
| :--- | ---: |
| Grid bias voltage: | -60 |

Load resistance

$$
\text { (plate-to-plate): } \quad 3,000 \mathrm{ohms}
$$

(Note that the composite curves which have been derived for this amplifier represent the signal currents through the plate load, and not the actual tube current. Each tube will still draw 40 ma of plate current for zero signal.

The above is a general method for designing any push-pull amplifier. However, in many cases fairly standard values are available.
For convenience in designing the amplifier, the complete operating conditions and circuit values for a number of the tubes most widely used in pushpull audio output stages are given in the table. These values have been determined as just described.
lf the specific requirements in a particular case are satisfied by any of the tubes listed in this table, the best results will be obtained with the values given. Values as close as possible to those recommended should be used in the actual amplifier for maximum power output with lowest distortion. For anyone interested in experimenting with tubes other than those given in the table, or with other operating volt-
ages for the tubes given, the method described of using composite curves will give the best design values.

Once the push-pull output stage has been designed, the problem arises of supplying the grids of the two tubes with voltages which are equal in voltage and 180 degrees out of phase. The simplest method of driving the grid in push-pull from a single-ended amplifier is with a center-tapped transformer. This metbod is not too widely used because a good transformer is expensive and may not give the fidelity which can be obtained with resistancecapacitance coupling. Two different circuits for driving the grids of a pushpull amplifier with the proper out-ofphase voltages are in general use. These are familiar phase inverters, and their schematics are given in Figs. 3 and 4.
The circuit in Fig. :? is a cathodefollower phase-splitter. Output signal is taken from the cathode circuit as well as from the plate circuit of the tube. The grid-to-grid driving voltage which can be obtained from the phasesplitter is:

E grid-to-grid =


Fig. 4-Common 2-tube phase inverter.
where $R_{1}$ is the value of the plate and cathode load resistance, $\mu$ is the tube amplification factor, and $R_{r}$ is the plate resistance of the tube. The maximum gain of the phase-splitter stage is 2 ; therefore, this tube can be used for coupling the single-ended amplifier to the push-pull stage, but cannot be used for voltage amplification.
Another type is shown in Fig. 4. In this circuit, the single-ended amplifier drives one of the push-pull grids directly. An additional tube is used to amplify a small part of this voltage, with a 180 -degree phase reversal, and thus to drive the second push-pull grid in the proper phase. The voltage for the phase-inverter grid is obtained by tapping down on the grid resistor of the first push-pull grid, as indicated. For satisfactory balance of the pushpull amplifier, the resistances should be chosen so that

$$
\frac{R 2+R 1}{R 2}=M
$$

where $M$ is the gain of the phase inverter stage. In using this type of phase inverter in a circuit, it is best to make resistor R 2 adjustable so that
balance may be obtained letween the two sides. Once the circuit is constructed and placed in operation, a rectifieror vacuum-tube-type a.c. voltmeter should be connected from each pusbpull plate to ground, and R : aljusted until both audio-frequency voltages are the same.

In addition to the preliminary adjustment, it is an excellent idea to check the balance periodically. Aging of

## Earlier stages

The stages preceding the phase inverter are conventional single-ended voltage amplifiers, readily designed according to the values given in the re-sistance-coupled amplifier chart in the receiving-tube manual. The number of stages, the over-all gain. the input impedance, and any equalizing or tone control circuits which may be used will depend upon the individual require-


Fig. 5-This simple push-pull amplifier circuit shows how the design information is used.
tules and components will almost always make readjuitment necessary after a time. If the adjustment is not made, distortion mas develop.

A number of variations on these phase inverters have been made at one time or another. Several are shown in John W. Straede's article on page 34 of the July, 1948, issue of this magazine. One of the most popular is the floating paraphase, in which the grid of the second inverter tube is connected to the junction of the two final
ments, and should be selected in the usual manner to satisfy the conditions under which it is desired to operate the amplifier.

The circuit of a simple push-pull amplifier which has been constructed according to the information given in this article is shown in the schematie in Fig. 5. It consists of a single voltage amplifier stage, a phase inverter, and the push-pull output stage which drives the loudspeaker. The frequency response and sound quality of this am-

> AMPIUAER DESIGN TABle:

| Tube Tywe | Power Gutput (Watts) | Wigh Voltages |  | (irid luias |  | l'ak Grid-to-Sirid 1)riving Siltage | L.oal Plate-to I'liate (0hms) | Typical ("ommercial Outjut I'ramsiormers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ilato | Screell | Fixal 1sias | Sell-\|has (6 at hade Revistor |  |  |  |
| 2A3 <br> Alsn: fiA <br>  bis5-( | 10 | 3011 | - | -- | -sug | 156 | $5 \times 10$ |  <br> Kenlyon: T-301 <br>  <br> 1"-5 |
|  | 15 | 3(1) | -- | -lizv | - | 121 | 3 mmo |  |
| 6 F 6 | 11 | 31.5 | 245 | - | 32002 | 5 | 10,000) |  <br> Kurlyon: T-30:3 <br> Thord: 1"--5s.5 |
| 6 V 0 | 14 | $2 \times 3$ | $2 \times 5$ | $-10 \mathrm{v}$ |  | 38 | NOMO |  |
| $\begin{aligned} & 91,6 \\ & 80.7 \end{aligned}$ | 18 26.5 | 360 360 | $2 \%$ $2 \% 0$ | -25 | - | 45 45 | 3800 8.600 | ```U'T": 1.*-1BlA, I'A-4IAB (3800()```  ```Kenvon: '1"-317: T-31!1 TMordarson: T'1%:13(6600(2)``` |
| 845 | 100 | 1200 | - | -14.jv | - | I)rive Iroln troust ecouptral <br>  | \$00 | 1-TC: LS-845 |

grid resistors. This point is grounded through a resistor. Any inequality of voltage across the two final grid resistors causes a voltage to appear across the grounded resist $n$ and therefore on the inverter-tuhe prid.

The phase-inverter stage should be chosen according to the driving voltage required at the grids of the push-pull stage. Normally a ceneral-purpose triode, used either as a cathode-follower or as a phase inverter, will furnish sufficient output voltage to drive any of the various receiving tubes listed in the table above in a push-pull power output stage.
plifier are excellent. and it has sufficient gain to operate a loudspeaker from an r-f. tuner or a crystal phonograph pickup. (No tone controls are included since they are not the subject of this article, but they may be included in the conventional manner if desired.) The circuit is included to illustrate the case with which the dosign principles discussed may be applied to the practical construction of a high-fidelity audio amplifier. By proper application of these methods, good, high-fidelity, push-pull amplifiers may be designed with ease to satisfy almost any audio requirements.

## A MODULATION MONITOR

A simple, low-cost, visual modulation monitor that can be added to many existing phone transmitters was described in RC'A Ham Tijs. It consists of a 2BP1 C-R tube, eight resistors, three capacitors, and a little hardware.

All components can be mounted in a $3 \times 4 \times 5$-inch metal utility cabinet. The socket is mounted inside the cabinet at one end so the tube can project through a hole drilled in the opposite end. A shield originally made for an 807 tube protects the sides of the $C-R$ tuhe and prevents some of the stray light from striking its face. Operating potentials are taken from a transmitter with voltages up to approximately 1,000 volts. Heater voltages are tapped off a 6.3volt supply in the speech amplifier. exciter, or elsewhere in the rig. If the filament supply is ungrounded, peak heater-cathode voltage should not exceed 125.

Voltage for the second anode is tapped from al 1,000 -volt point on the high-voltage power supply for the final amplifier. A modulation voltage tapped off the hot side of the secondary of the modulation transformer is applied to the horizontal deflection plates. Modulated r.f. voltage, picked up with a special loop, constructed as shown in the drawing, is applied to the vertical plates. Trapezoidal patterns will appear on the screen when the transmitter is modulated. The modulation envelope can be viewed if the lead is removed from the plate end of the modulation transformer secondary and clipped to the plate of one of the transmitter's rectifier tubes.

When the monitor is used on transmitters with voltages higher than 1,000 on the modulated amplifier, bleeder resistors eonsisting of several 1 -megohm, 1-watt resistors in series should be used so the voltage applied to the monitor does not exceed 1,000 .

No centering controls are provided. The small metal cabinet may become magnetized while it is being drilled. This residual magnetism will probably deflect the spot from the center of the screen. To compensate for this, take a small horseshoe matgnet or an old PM speaker and move it around the outside of the cabinet until the spot is deflected further in the same direction as the original error. When the magnet is removed, the sot will return closer to center. Continue till spot is centered.


## PA AMPLIFIER

Elmhurst Sound Equipment Co., Elmhurst, N. Y.
Madel A- 103 has a maximum normol Output of 10 watts. with a 14 wott peok limit. Freavency response is within 2 db from. 50 to 15,000 cycles. Inputs are provided for one microphone and one phonograph pickup (low-outbut pickups may be used). ond a sinale control adiusts tone. Five tubes are used. with push- Dull 6 be's in the output
stoge. Hum level is -65 . stoge. Hum level is -65 db .


## MULTIMETER

Radio City Products Co., Inc.,
New York, N. Y
Model 447A multitester is a new version of the Model 447. It is lighter in weiaht because of o mognesium ponel ond the inclusion of only one bottery. Ranaes include d.c. volts to 2.500 . o.c. volts to 1.000 , d.c. milliamperes to 000, d.c. omperes to 10 , and resistonce to I megohm. The case is made of wood.


## TUBE ANALYZER

General Electric Co.,
Syracuse, N. Y.
The new type YTW- 3 is 0 tube analyzer designed specifically for industriol use. it tests thyratron and dustrial tions. The unit measures the peak arc drop valtoge of each qube under either maximum load or under a specified other load. Readings ore taken directly from o lorge dial which controls o slide-back v.t.v.m. Weight of the onolyzer is obout 55 pounds.

## QUICK-DISCONNECT

## PLUGS

Cannon Electric Development Co., Los Angeles, Calif.
The new series RTC connectors meet the need for auick disconnect on rodio choss is woll or rock mounting ossem. blies. One connector is ottached to the chassis, its mate to the mounting. Ad.

vantages include low sedaration force simple mountina, moisture-droin holes and provision for lacing wires to plug after solderina. Two kinds of terminols ore offered, crimpon ond soldered. Five sizes and several styles ore availoble includina 12 . to 36 -contact units for No. 18 ond No. 20 wire. SDocing between contacts is sufficient for 2.500
volts. and contocts will carry 5 volts. and contacts will carry 5 omperes.

For The Best in Tape Recorders Look For The TWIN-TRAX ${ }^{*}$ Label


This label identifies the original and only TWIN-TRAX Recorder, manufactured exclusively by Amplifier Corp. of America. It is your assurance that the recorder bearing this label has the professiona specifications that have made TWIN.TRAX the "choice of engineers verywhere."
TWIN-TRAX was the first commercially available two-channel tape recorder. Imitators have announced two-channel recorders with similar names and similar external appearances. But it's the performance that counts, not the appearance. And the performance of TWIN-TRAX recorders cannol be duplicated. Our leadership in the tape recording field has been undisputed since we designed the first magnetic recording amplifier in 1936.
Remember, imitative Twin-Track or Two-Track does not mean TWIN. IRAX, because TWIN.TRAX is the registered trade mark of the best in tape recorders, made exclusively by Amplifier Corp. of America. Send roday for liferalure on the exclusive TWIN-TRAX line, and discover why TWIN.TRAX is the recorder engineers are buying.
${ }^{*}$ Registered Trade Mark,

## Amplifile Corp. of America

REPLACEABLE NEEDLES

## Astatic Corp.

Conneaut, Ohio
The LQD cartridae uses two seporate

for stondord recordinas. Each needle mav be removed for replocement with the tio of a knife, without removing the cortridge from the pickup orm. The
needles ore the $Q$ and $Q-33$ units. The cartridge hos o ranale of 50 to 7.000 creles, with output valtages of 1.2 and 0.75 for standord and microgroove

## BATTERY TESTER

Triplett Electrical Instrument Co. Bluffton. Ohio
The new pocket-size Madel 698 battery tester will indicate the condition under lood. A LOW.?.GOOD sole is under lood. A LOW-?-GOO scole is provided. the meter is calibroted in volts as well.


## ANTENNA BRACKET

General Cement Mfg. Corp., Rockford, III.
Na. 8000 hinged most bracket can be tilted to ony anale, so thot a TV or FM most may be maunंed on a slanting roof or on, other sloping surface. It is olso useful for vertical installations: the mast can be tiahtened to the brocket while in a convenient horizontal position, then swung ud. The bracket will hold mosts uo to $13 / 6$ inches in diometer.


## TELEVISION

 CAPACITORSSprague Products Co. North Adams, Mass. A new series of hiah-voltace poper
capocitors, cased in molded phenolic housinas:

includes units roted of 6,000 and 10.000 working volts d.c. Known os type TVM for TV receivers and cothode-roy equipment where temperatures as high os

MICROPHONE STAND
Electro-Voice, Inc.
Buchanan, Mich.
The Century crystal microdhane is now ovailable with o desk stand, as riser on a $45 / \mathrm{m}$-inch-diameter base. The stand has the standard $5 / 8.27$ thread Microphone and stand are detachable.


PLASTIC FLASH LAMP Amglo Corp.,
Chicago, III.
The $88 \mathrm{P9M}$ is on electronic photoflosh lomp with o tough plostic envelope. Containing an ouxiliory gas reservoir and an extro-lorge is built for heavy is built for heavy
duty. Peok ligh output is obout 45,000,000 lumens mended voltaqe of 2.000-2.500 Maximum enera is 300 wott-sec. onds with o high voltoge pulse a the discharge method. The lomp is $11 / 2$ inches in inches lona les pins. A five-pin


## TELEVISION BOOSTER

Perfect Products Co..
Queens Village, N. Y.
This is a high-goin. low-noise unit, width is 5 to 6 mc over the ronge.


INSTRUCTIONAL KIT
Eagle Electronics, Inc. New York, N. Y. The Pict-O-Graph Quadrucational Kit Q.5. designed to helo rodio and elec vices. In a sinale constructional proiect if combines an amplifier a code.proct tice oscillatar a receiver, and a minia. ture transmitter. Complete step.bystep buildina instructions and pictures are furnished.


## ALL THE NEWEST RELEASES

 BIG MONEY-SAVIIG VALUES
## They're in your latest ALLIED CATALOG!

## TOP VALUES IN QUALITY TV ANTENNAS



Knight Indoor TV Antenna
High efficiency indoor type-with length and direction easily adjustable for maximum TV recedtion. Covers all「V channels efficiently. Compact; fits on receiver cabinet or table, or mounts to wall. Ideal for use where roof antennas can't be installed. Shpg. wh. 2 lhs.
97.354
97.354 . Only
${ }^{3} 325$


Knight TV All-Band Antenna An excellent, low cost all-channel TV antenna. Has separate dipole and re. flector for the high and low bands. Two-section 6 ft . mast of sturdy aluminum tubing, with dipoles and reflectors of aluminum also. Complete, eas only lead-in line. Shpg. wt., 81 bs. 97-355. Oniy
${ }^{5} 795$
NEW LOW-COST HIGH-QUALITY RECORDERS


Knight Wire Recorder
Makes and plays high-qualit y wire reMakes ant plays high-qualit wire redisc recording; serves also as PA system or as wireless phono oscillator tem or as wireless phono oscillator Comy to operate. Ruggedy const ructed. Complete in comblacisimulated leather pase, wip, all tubes, and 2 half-hour picools of wire. For 105-125 v., 60 cy . AC. Shpe. 4 t., 29 lbs. 96-172. Unly


Knight Tape Recorder A top-grade tape recorder and play. hack unt at amazing low cost. May cellent frequency response. Easy to record; stable constant-sjeed mech anism. Fxceptional playback quality. In sturdy portahle case; with crystal handmike, 600 ft . reel of tape. take-up reel, and all tuhes. For 105-125 v. 60 cy . AC. Shing. wt., 36 lbs. $\$ 12750$
$96-187$. Only. ...............

FAMOUS HALLICRAFTERS S-38
A new low price for this all-star, all-wave value! Covers 4 ful hands continuous
from 540 ke . to 32 mc . Full electrical from 540 kc . to 32 me. Full electrical handspread; noise immiter; band selector; headphones switch; standby-receive switch; latest PM speaker. In handsome $12 \times 7 \times 8^{\prime \prime}$ furniture-steel cabinet. Compiete with tubes. For 105-125 v. AC or DC. Shpg. wt., 15 lhs. 97-565. Only...
s3995

BIG PRICE REDUCTION ON


## Brit

## Send for

## Radio's Leading Buying Guide

Get the Radio Buying Guide that's used by thousands of expert servicemen, engineers, amoteurs, soundmen, builders and experimenters. Get every buying advantoge at ALLIED: widest selection of equipment at money-saving low pricesspeedy, expert shipment-personal aftention-complete satisfaction on every order. Get your latest ALLIED Catalog foday -use handy coupon below!

## NEW! 45 RPM Record Playing Equipment


in Radia
and Electronies

## es

ALLIED RADIO


Knight 45RPM Automatic Phono First at ALLIED! Automatically plays ten of the new 45 rym rec-
ords at one loading. Just push a butords at one loading. Just pusha buttion. Exceptionally reliable changer mechanism works with amazing speed. High-quality amplifier and built-in speaker deliver plenty of power and excellent fidelity. With tone control. In attractive portable case. With all tubes and preciouspoint needle. For $105-125 \mathrm{v} .60 \mathrm{cy}$. AC. Shpg. wt., $16 \mathrm{lbs} . \$ 3995$ 96-284. Only ................

## Better Than Ever-Knight 20 Watt Hi-Fi Phono Amplifier

New styling-new features! The hig high fidelity value. Response $\pm 1 \mathrm{db}, 20-20,000$ cps . Less than $2 \%$ harmonic distortion at full 20 watts; hum way down- 80 db below 20 watts, dual phono iaput with 78 db gain, matches any and 500 ohme rmpere' nothing finer anywhere near thiglow price. nothing finer anywhere near this low price. Complete with tubes. For $110-125$ v., 60 cy. AC. Shpp. wt., 30 lbs.
$93-320$. Only..................... $\$ \mathbf{5 9 5}$
all prices net f. o. b. chicago
FREE
CATALOG


Knight 45 RPM Player Plays the sensational new RCA 45 rpm records! Can be connected easrpm to any amplifier and speaker, or to any radio with phono connection. With special crystal pickup and precious-point $.001^{\prime \prime}$ needle; dependable 45 rpm phono motor. In attractive, extremely compact cabinet, finished in furniture brown. Includes on-off switch and pickup arm rest. For $110-120 \mathrm{y} ., 60 \mathrm{cy}$. AC. Shpg. wt., 5 lbs . A real buy at our low price!
96-257.
${ }^{5} 125$


ALLIED RADIO CORP., Depl. 2-F-9
833 W. Jackson Blvd., Chicogo 7, Ilinois
D Send FREE ALLIED Catalog
$\square$ Enter order for
Enclosed \$............ $\square$ Full Pay. $\square$ Part Pay. (Bal. C.O.D.)
$\qquad$
$\qquad$
City..................................................... State...............
 the BBC marked a new high level in TV achievement. The immense technical difficulties were surmounted with complete success. The race, which is one of Britain's biggest sporting events, takes place over a $41 / 2$ mile course on the River Thames in London. This part of the river makes some big bends, besides being spanned by several bridges. The banks (lined by scores of thousands of spectators) are high; and along most of the route there are buildings from 40 to 100 feet in height. The BBC is always allowed to have a small motor launch following elose behind the contending boats. Bear those facts in mind and then think of what had to be done to give televiewers a complete and continuous picture of this world-famous race from start to finish.

First, a means had to be found of housing two television cameras and a microphone, a radio-link transmitter, a power-supply unit, and the cameramen and commentator in one small launch. Next, the problem of cutting down the effects of vibration from the engine of the launch and from the movements of

# European Report 

By Major Ralph W. IIallows

Radio-Electronics Lonmon Correspondent
the hull itself in rough water had to be dealt with. In the third place, there was the headache of suppressing interference from the ignition systems of the launch and the power-supply generator. Next, what was to be done about the inevitable blackouts when the launch passed under bridges? Lastly, how could interruption of the program be prevented if the launch carrying the TV gear were "blinded" for a time by another which inadvertently came between it and the racing boats, cutting off the camera's view?

The most difficult problen was to counter the effects of vibration, for with a telephoto lens in the TV camera this is very greatly magnified in the received picture. The solution was to suspend the cameras in such a way that they were isolated from vibration ef fects-and that needed a bit of working out! Power was supplied by a small gasoline-driven generator of high efficiency, and the ignition systems of both this and the engine of the launch were fitted with the latest in interference suppressors. To make sure that there should be no cuts in the transmission due to the effects of bridges of high buildings, or of interruptions in the field of view of the water-borne cameras, a whole range of cameras, each yoked to a radio-link transmitter, was installed along the banks of the river.
Every one of the fixed cameras on
the banks was constantly in operation, so long as the boats were within its field of view. The producer had before him at any moment pictures of the outputs of water-borne and land cameras, and he could fade quickly from one to the other as required. The results were superb. We saw the whole race from start to finish. As was fitting to mark this epoch-making transmission, the race was the closest and the most exciting in living memory. The crews were neek and neek over the whole $41 / 2$ miles and were dead level 100 yards from the finishing line. Then the screen showed us Cambridge creeping up by inches with each of their last tremendous 10 strokes and winning by a matter of a few feet. As I'm an old Cambridge man and did a bit of rowing in my time, you'll gather that I blessed TV for such a wonderful show and for such a thrill. Of one thing I'm sure: no one who witnessed the race from the banks had anything like the view or the thrills that TV gave. They saw the boats for just a few moments, while we could follow every stroke during the whole 18 minutes of the race from the start of the event to the exciting end at the finishing line.

## An ingenious antenna

An interesting Scophony-Baird televiser appeared here a short time ago. I should perhaps mention that the Scophony and Baird companies have


The telovision-transmitting launch Consuta. Camero control equipment on the launch. Marconi camera on its vibration-froe mount.
now amalgamated, for this set does not use the Scophony principle described by Dr. A. H. Rosenthal in the March issue of Radio-Electronics. Actually a lightweight a.c.-d.c. receiver of the familiar C-R-tube type, its outstanding features are its low price and the fact that it incorporates a power-line antenna, which gives excellent results at short range, where the field strength is high. The principle is shown in the drawing. The route from the plug and the line cord to the set is by way of two chokes L1 and L2. Between these two chokes and the actual input to the first tube there is a section of line cord exactly half a wavelength long. The input section consists of the grid coil L3 tuned by the capacitor C , and a second coil L4 coupled to L3. The chokes L1 and L2 serve to isolate the half-


Input of TV receiver connects to power line.
wavelength portion of the lead from the remainder, and it thus forms an antenna for short-range reception. The other connections of L. 3 and L, 4 are in accordance with ordinary a.c.-d.c. practice. The lower end of L.3 is connected to chassis; the lower end of L4 to the hot end of the heater chain. C2 acts as an r.f. bypass to chassis. For reception at longer distances the set uses an ordinary antenna.

## A novel solder

Of the many remarkable things that I saw at the Radio Components Exhibition, few impressed me more than a new type of cored solder designed to be used with some of the more "difficult" metals. Every practical workshop man and technician knows that resin-cored solder is admirable for such jobs as connecting copper wires to tinned tags, But it falls down badly (in fact, it's quite useless) when it comes to dealing with iron, steel, zine, nickel, and many other metals, which is a pity, because cored solder is so much handier than ordinary solder plus a separate flux of some kind.

The Multicore people have just brought out a new cored solder which tackles almost anything but aluminum. I know it does, because I hrought some home and have since tried it on all sorts of things. One test I made was on a piece of blued clockspring, which was not previously cleaned in any way. Another was on a piece of stainless steel. On both an ordinary electric soldering iron made Multicore Arax solder run like butter on hot toast!

The flux incorporated in the core is not claimed to be noncorrosive; but it is perfoctly safe so long as any surplus is washed off immediately with just plain water.

## New capacitors

I was very much interested at the Components Exhibition in some of the entirely new ways of making fixed capacitors that were shown. Miniaturization is the order of the day in both radio and TV, and it is important to be able to obtain high values of capacitance with small bulk. Take paper capacitors first. Those between . 003 and . 01 uf used to be large. With the new manufacturing process devised by the firm of Hunt, they are made from only one strip of metalized paper. The result is a $.01-\mu \mathrm{f}$ capacitor with a diameter of "16inch and a length of $\overline{7} / 1 ;$ inch -a good deal smaller than the discarded stub of a cigarette and not very much heavier.

Another new process permits making electrolytic capacitors in much more compact form. This is the fabricatedanode method developed by the British Electrolytic Condenser Co. Here the anode is formed by depositing pure aluminum on a gauze base. Since the surface of the anode is thus greatly increased, capacitors made in this way have up to 12 times the capacitance of electrolytics of the same size made by ordinary methods.

## Russian TV

The Russians seem to be going ahead with television in a big way, though how they can ever hope to cover that gigantic and, on the whole, rather sparsely populated country with a TV network is rather hard to see. For all that, they are mass-producing a televiser model known as the Moskvitch. So far as one can discover, two TV transmitters are operating, one at Leningrad and another at Moscow. Two others are being constructed at Sverdlovsk and Kiev. The system in use is 441-line, with 25 frames interlaced. Development of a system of very much higher definition is said to be going forward. The Moskvitch televiser seems to be a neat and compact little set, with a minimum number of tubes and only two tuning controls, a notable simplification. Further details are not available.

## LEGISLATORS USE PA



Dr. Armando Codina Subirats, Vice-President of the Cuban Senate, wears lapel microphone connected to a PA amplifier. A special speaker in center of Senate chamber makes voices clearly audible to all the senators.


MAXIMUM
Jiun Lansing Signature Spcakers will provide an almost unlelievalle real. ism. The experience gained through a efuarter of a century of leadership in the sound reproduction ficld has gone into their develonment and design. For maximmm dynamic range and frequency rc. sponse compare Jim Lamsing Signaturc Spleakers before you buy.


MODEL D. 130


Designed especially for music systems and tublic address use. Has exceptionally high efficiency. Recom mended for operation and frefuencies from 60 to 6500 C.P.S. with a maximum usable range of 40 to 15000 C.P.S.

MODEL
TWO WAY SYSTEM


JAMES B. LANSING SOUND INC. 7801 HAYVENHURST AVENUE VAN NUYS, CALIFORNIA

"A" Eliminator Kit \#KC 1-10

## Including pleforlal and 5 \& 5

These kits fulfill the long.standing need of every servictman and technician. They are designed 10 operate from a 115 V.A.C. 5060 eycle source. and deliver 6 V.D.C. well.filtered from three to eight amperas, with a peak rating of ton amperes. The A.C. rioplo percentage is held to remarkably low values.
This unit charges a standard auto battery in one day:

- Do away with bulky batterles.
- Do away with corroding fumes!
- SImplify your service operalion!

Order this fine kif for your bench fodayl! Nof'o f .'s, plenke. Orders receited withant sufficipms allurumer far postage ucill be shipped cia Riolvelu Hirpresa collert.

Shipping ut., 12 lbs
OPAD-GREEN COMPANY
71 Warren St. New York 7. N. Y.
Phone: BEekman 3-7385-6
MAKES AUTO RADIO REPAIR
TWICE AS EASY!
Here-prepared by an auto radio expert of 20 years standing-1s every-
thing you need to know to install. service and repair all types of auto radios faster - easi r - more profit. ably. Covering every tyue of auto
radio from the mid-1930's. fact book glves you complete installationt, troubleshooting and repant procedures plus thps on how to set up

## SERVICING THE MODERM CAR RADIO

 by A. L. Hurlbut
 after reading this great book! From basic theory through step-by-steps servicing methods. every detall of stand Differences between car and ordinary radios: anstand Differences betweencar and ordinary radios: anleatures: automotive electrical systems: installations: loudspeakers: intriference: vibrator maintenance: alynment, pushibutton luming and other related sub-

## OVER 500 CIRCUIT DIAGRAMS

Of particular importance. SERVICING THE MODERN CAR RADIO contans over 500 crircuit diacrams giving circait retals of sp cific car radio types you are most can save yout many limes the cost of the book. Use

## 10 DAYS' TRIAL

Dept. RE, 69. MURRAY HILL BOOKS, INC.
239 Madison Ave.. New York 16. N. Y.
Send me Hurlbut's SERVICING THE MODERN CAR RADIO for 10 davs examination on approval In 10 days, I $w^{r}$ ill send $\$ 7.50$ (outside U. S ., 38.00 ). plus a few' cents postage or return book postpaid. (Postare paid on cash orders: same return privHese. Book sent on approval in U.S. only.)

## Name.

Address
City, Zone. State.
Occupation.

Qvestion Box inquiries are answered by mail. Those of general interest are printed on this page. A fee of $\$ 1.00$ is charged for questions requiring no research or schematic's. Write for estimates on questions requiring research or schematics. Be sure to give full specifications and details. Due to nominal fees charged for this work, it must be handled as a part-time proposition. Therefore rapid service is impossible. Six to eight weeks is required to draw up answers involving large drawings or research.

## MARINE-BAND TUNER

* Please prepare a circuit of a thener for the marine band (2450 to 2750 kc). I do not want a superheterodyne circuit. Will a regenerative detector with two stages of r.f. amplification prove satisfactory?-E.H., Philadelphia, Pa.
A. A regenerative detector with two r.f. stages should work nicely. The r.f. stages prevent the oscillator from radiating, eliminate dead spots in the antenna, and increase the selectivity.
Standard two-winding plug-in coils can be used in the grid circuits of the r.f. stages and three-winding coils in the detector circuit. The GSF5 can be coupled to a power amplifier, or a pair of high-impedance phones can be connected between the output terminals and ground.

The $140-\mu \mathrm{f}$ bandset capacitors may be small padders mounted in the top of the coil forms. The $35-\mu \mu \mathrm{f}$ capacitors are ganged and should be coupled to a good vernier dial mechanism.

The coils are to be wound on $11 / 4$-inch

The heaters may be supplied from a 6 volt storage battery or a number of No. 6 dry cells in series-parallel. The Bsupply can be reduced to around 135 volts for battery operation. Disconnect the bottom end of L1 from ground if a doublet antenna is used.

## LOW-POWERED MODULATOR

? I have a small transmitter that opcrates with a power input of slightly less than 1 u'att. Please draw a circuit

of a suitable modulator using $11 / 2$-volt tubes and a 90-volt B-battery.-F.M.S., Mars Hill, Me.

forms. L2, L4, and L6 consist of 37 turns of No. 24 enamel. L1. L3, and L5 consist of 20 turns of No. 32 d.s.c. interwound with L2, L4, and Lf, respectively. L7 is a $1 \%$-turn winding of No. 32 d.s.c. spaced ${ }^{1} / 2$ inch from the ground end of L6.

Experiment with the value of the grid leak and the spacing between L6 and L7 to get the smoothest regeneration control over the tuning range. It may be necessary to shield the individual coils and use a shield between the sections of the bandspread capacitors.

This set can be operated from batteries for emergency or portable work.
A. This class-B modulator delivers about 675 milliwatts with a 90 -volt plate supply. A zero-bias twin-triode was selected to avoid using fixed bias on the output stage. The speech amplifier uses fixed bias obtained from the microphone battery. A universal modulation transformer should be used so the modulator and power amplifier can be matched under varying load conditions. The driver transformer should match the plate of a $30,1 \mathrm{H} 4$, or 1 G 4 to push-pull class $B$ grids. The ratio of primary to one-half secondary should be about 2.4 to 1 .

## MONEY BACK GUARANTEE - We believe units offered for sole by mail order should be sold only on a "Money-Back-If-Not-Satisfied" basis. We carefully check the design, calibration and value of cll items advertised by us and unhesitatingly offer all merchandise subject to a return for credit or refund. You, the customer, are the sole judge as to value of the item or items you have purchased.



## THE NEW MODEL 670

 SUPER METER. A Combination VOLT OHM - MILIIAMMFTER plus CAPACITY REACTANCF, INDUCTANGE and DECIBEI MEASUREMENTS.









DECIBELS: - 10 t 0 +1s. $+1010+3 \mathrm{~s}$ The model 670 comes housed in rugped,
 inet complete with test
leads and operating in.
strictions.
Size
s strictions.
$71 / 2^{\circ} \times 3^{\prime \prime}$

The Mode/ S-35 - a POWERFUL

## REFLEX PROJECTOR <br> COMPLETE WITH WESTERN ELECTRIC

 BUILT-IN DRIVER UNITCONSERVATIVEIY RATED AT 35 WATTS - WILI, EASILY HANDLE I'P TO 55 WATTS WITHOUT BLASTING
Heary gause aluminum in tue mady rumpet es fint romuletels climinatha hast-


 Enee'feations
POWER (CDNSERVATIVE) - 35 WATTE: AIR COLUMN- $31 / 2$ FT.: DISPERSION-B0 $0^{\circ}$ : POWER (PEAK) - 5 WATTS: BELL DIAMETER--15": IMPEDANCE-8 ohms: FRE. QUENEY RANGE-130 to 5000 C.P.S. PROJECTION - $1 / 2$ mile: FINISH - Attractive
two torys cerysalline
The model s. 35 Comes The Model S-35 Comes
Complete wilh Built-in Complete Unit. ONLY


SEE and HEAR the Signal with the new CA-12 SIGNAL TRACER

## FFiATCRIR

- Comparative intensity of the signal is read directly on the meterheard in the speaker.
Simple to operate. Only one connecting cableNo tuning controls.
- Hishly sunsitive-Uses

This model also available in Kit Form. All narts assembled ready fur wiring. Order Model CA-12 Kit. Only

## \$2195

he New Model 770 - An Accurate Pochet-Size VOLT-OHM MILLIAMMETER

(Sensitivity: 1000 ohms per volt) Features:
Cumpact-measures $31 / s^{\prime \prime} \times 5 \pi / /^{\prime \prime} \times 21 /{ }^{\prime \prime}$. Uses latest design $2 \%$ accurate 1 Mil DArsanval inle meter. Same zero ad justment holds for bir resistance ranges it is not necessary to readjust when swithing fis is important rime $h$ nother. Tre never before included in V O M in this price range Housed in .o.m. cornered polded case Beautiful back athed panel Depressed letters flled with permanent white insures lone fled with p Specifications: 6 A.C. VOLTAGE RANGES:
 4 D.C. CURRENT RANGES: $0-1 / \frac{1}{2} / 15 / 150$ 2haESISTAMCE RANGES: 0:500 Ohms. 0-1 The Model 770 comes complete
with self contained batterits.
test leads and ali operating a $\mathbf{9 0}$ test leads and ali operating (1) NET

The Model 88 - A COMBINATION

## SIGNAL GENERATOR

AND SIGNAL TRACER


Signal Generator Specifications: *Frequency Range: 150 Kilo ${ }^{*}$ Frequency Range: ${ }^{2}$ cycles to 50 Megacycles. The cycles 1050 Megacycles. The
R.F. Siznal Frequency is kept R.F. Sixnal Freatency is kept put levels. Molulation is ac complisherl by Grid-hlocking acorn which is equally effectifin which is equally iturectand fir aliknment of ampliturie and frequency modulation as well as tainable separately or modulated by the Audio Frequency. Signal Tracer Specincations:
Signal tracer Specincations: tuantum rysial lyorle whith com.
 cycles to \$0 Mexarycles
s28
$88_{\text {NET }}^{85}$

## 2-METER MOBILE RIG

A prize-winner at a recent Long Beach Associated Radio Amateur meeting, this 2 -meter mobile transmitter was designed and constructed by D. E. St. John, WGBRC. It was described in Radiogram, a monthly publication of Scott Radio Supply, Long Beach, California.
Its power drain is 100 ma at 300 volts and 1.6 amperes at 6 volts d.c. One section of the $6 J 6$ is a crystal oscillator and tripler, and the other section is a straight tripler. This tube is followed by a 6 C 4 doubler driving a 6 C 4 neutralized amplifier on 2 meters. The amplifier is Heising-modulated by a GAQ5 working from a carbon microphone.

The amplifier is tuned by a butterflytype capacitor having a capacitance of 1.7-3.3 buf per section. This may be a Johnson type 160-203 or equivalent. The amplifier is neutralized by a small trimmer modified so its maximum capacitance is about $2 \mu \mu \mathrm{f}$. A suitable neutralizing capacitor can be made from a 2 -inch piece of 300 -ohm ribbon. Small pieces a re clipped off until the stage is neutralized.
The transmitter is designed to be placed in the trunk compartment and operated by remote control from the front of the car. The meter switch, SI, S 2 , and the microphone jack are on the chassis for use while tuning the rig. Connections for power and remotecontrol leads are made to a terminal strip or socket on the chassis.

The radio-frequency chokes are 1megohm resistors wound solid with No. 32 d.s.c. wire. RFC 1 is wound on a 1 watt resistor, and RFCS and RFC 3 are on $1 / 2$-watt resistors. L 1 has 22 turns, $1 / 2$ inch in diameter and $11 / 2$ inches long, tapped at 5 turns. L2 has 6 turns $5 / 40$ inch in diameter, $1 / 2$ inch long. L3 has 3 turns, $5 / 14$ inch in diameter and spaced to $5 / 4$ inch. L. 4 is a 10 -turn, center-tapped winding, $5 / 10$ inch in diameter and $7 / 8$ inches long, L5 is a 2 -turn winding around the center of L4. No. 18 wire is used for L1, L2, and L4; No. 14 for L3 and No. 22 for L5.

## DUAL VOLTAGE POWER SUPPLY

On numerous occasions, a high-voltage power supply is needed in the shack or on the workbench at a time when no suitable high-voltage power transformer is available. If two replacement power transformers of the same type are on hand, these may be connected, as explained in $G-E H(t m$ Neu's, to supply approximately twice the voltage of one. Two 676-volt, center-tapped, 200-ma

In most circuits of this type, the highvoltage output is twice that of the lowvoltage supply. In this case, choke input was used on the high-voltage supply to reduce the output to the 500 volts needed by the designer. The output can be raised to approximately 600 volts by using capacitor input to the filter rather than choke input as shown.

A common bleeder resistor is used for

power transformers are connected with their primaries in parallel and the highvoltage secondaries in series-aiding. A 5R4-GY is connected so that the total high voltage is fed to its plates, and a 5U4-G has its plates connected to the center taps on the high-voltage windings. The $5 R 4-G Y$ filament is supplied by the 5 -volt winding on one transformer, and the $5 \mathrm{U} 4-\mathrm{G}$ is heated by the 5 -volt winding on the other. The 6.3volt filament windings are paralleled, and one side terminated at a pin on the output plug.
the high- and low-voltage supplies. The 300 -volt tap should be made precisely at 30,000 ohms to prevent overloading the resistor. It may be advantageous to use separate bleeder's on each supply because a single resistor may be overloaded under some conditions.

The $B$-supplies are controlled by a d.p.d.t., 117 -volt relay with the normally open contacts in series to increase the distance between contacts in the open position. A maximum of 200 ma can be drawn from either supply when used alone or together.

## A NOVEL SWEEP GENERATOR

Sweep generators in most oscilloscopes have comparatively low output which must be fed through the horizontal amplifiers to obtain adequate deflection on the $C-R$ tube. This highpower sweep generator, described in

Broadcast Enginecr's Journal, was designed to drive the plates of a $C-R$ tube without going through an amplifier.

The circuit is shown. If the capacitor $C$ is shorted, the current through the plate and cathode circuits of the 6P5


RADIO-ELECTRONICS for
will be approximately 1 ma－limited by the values of $R 1$ and $R 2$ ．The voltage drop in the cathode circuit will be about 25 volts with 350 volts on the plate． The 884 will not operate because its plate and cathode are at the same po－ tential．

When the short is removed， C begins to charge．Since the grid of the GP5 is tied to the positive side of C ，it will be－ come less positive，increasing the plate current．When the charge on C equals the drop in the cathode circuit，the grid and cathode are both 275 volts posi－ tive（zero bias），and the current is stabilized at 11 ma．


The 884 plate and 6 P 5 grid are di－ rectly connected；therefore，the voltage is the same on both．The bias on the grid of the 884 can be adjusted so the tube fires at a plate voltage determined by the amount of bias．For a linear sweep，the bias should be such that the 884 fires at slightly under 275 plate volts．

Assuming an extinction voltage of 15 volts for the 884 and a 275 －volt maximum across R1－R2，$C$ can be charged to any value between 15 and slightly less than 275 volts by adjust－ ing the 884 bias．When $R 3$ is a $11 / 2$－ megohm variable resistor and C is a three－section， 420 －uиf variable capaci－ tor with its sections in parallel，the sweep range is variable from about 60 cycles to $100 \mathrm{kc} . \mathrm{C}$ and R 3 can be ganged on the same shaft for ease of control．

The frequency range and amplitude are affected by the settings of R2 and the bias control；therefore，these may be fitted with lock or screwdriver shafts so they cannot be disturbed after they are adjusted to give the best linearity at the ends of the sweep．R4 is selected to limit the 884 plate current to a safe level．Increasing its value in－ creases the flyback or retrace time．R1 controls the sweep width．

Be sure to use husky，noninductive potentiometers for R1．R2，and R3．Use a clean，high－quality capacitor for C so its power factor will be satisfactorily high．

## SOLDERING PASTE HOLDER

Test leads，tools，and components are often smeared with soldering paste from an open container on the work bench．To prevent this from happening， fasten a needle cup with spring cover to the bench and put the soldering paste in it．The lid stays closed and protects both paste and tools．－Harry Ashby

## United Cuts Prices！！！

## CATHODE RAY TUBES


POWER TRANSFORMERS．Statilatd Makce $\because$ Fid cic．



 5 c
－FILTER CHOKES－Hifn frame


## THORDARSON SPECIALS

## 




 Asis $\quad 33.95$ ．
－A REAL BUy！！ 10 assorted robuat Trabsformers
 CONOENSERS－［anpular liratuls．F＇resll Stocks．Nu：


－OfL FILLED PAPER TUBULAR
 for 95e．
－DIStRIBUTOR AND GENERATOR FILTERS Carious typ
only $\$ 1.95$.
BATHTUBS－0H flled paper．Frum ni Mfil．to e．n Mfd．
inll
22．35．

－MICAS，Transmitiling．OHOOO Mtul．to ． 01 Mfd．fino

－TRIMMERS－mica．（eramie anil themolir，simgles Thoulhes．Tribles ald（dlaiks．10 asemerti－95e
FILTERS，ROUND CAN TYPES．
1 Mfd．M000 V．NB． 3 for $\$ 1.00$ ．









 3．0 Mff


CARTRIOGE AND UPRIGHT TYPES．
（i）M1f1．lin vir． 1 for 95 e



 $\$ 1.69$.
111
\＄1 1010 $11.1+111$



 $\$ 1.45$.
－PRECISION GANG ANO OIAL ASSEMBLY－A

 －talbilily is sequired．Xim－$\$ 5.95$. －SX28－A TUNING CONOENSER ASSEMBLY


 It11．s．
$95 e$.
POL


 W．E．TELEGRAPH TYPE $=24$ V．Atustaldo aring
 TYPES $=\times 960 \quad \because$ ALLEN BRADLEY TYPES．$=X 960 \because 4$ ソ．1．1

 ＂ottark．N゙とい－79c．






LIP MICROPHONES－C＇urlon C＇artiluges（malys．
is tor \＄1．．17．
－MOOKUP WIRE－Issurtedi slans und volors．Fabtir． Tiastle．Rulborr ablel ditass Insulat
I．F．FILTER CRYSTAL－ 104.5 Ki ：A Iommed
 Wew．3 for $\$ 1.45$.
－WAVE GUfDES－：\％f．Iong with Hames at botl emis． Abprox．${ }^{3}$ cal．rombletely siluer blated．Outsine


HAROWARE ASSORTMENT－I＇momists n
－SOLOER lUGS－r＂upper．IRass．Tinned aillil Nintural．
SOLOER LUGS－r＂upper．1hrass．Timned aillal Nintural
ALUMINUM RIVETS－Assurtment of many sifes ALUMINUM RIVETS－A．
CAREON RESISTORS
Talnes．Mmwly insulated moulded tybu．Inik for $\$ 1.95$.



 llast ent ．Imps．Sew－$\$ 1.39$.
－JEWEL LITES Assortment of typrs．collors and

SPEAKER CONES Fixart replarement por inensen

COMPASS LOOP AND CABLE Hemilix MN： 0 M




－BC－603 WESTERN ELECTRIC FM RECEIVER－


BC－604 WESTERN ELECTRIC FM TRANSMIT．


－CRYSTAL KIT FOR BC－604 WESTERN ELECTRIC FM TRANSMITTER Mo erystal in motal callinet

ELECTRONICS PACKAGE－Mure tham 10 lalog．
ssorted dectronir unlis and paris－$\$ 1.29$ ．
to rlamge＂lthout nolice．Sindantinn oreser－$\$ 2.00$ ． shry dernsit reguired lialatice C．O．b．．Ah orders


## E. M.C. MODEL 30C VACUUM TUBE Volt-Ohm-Capacity METER C 4405

- DC VOLTS-6 ranges to 1000 volts! - AC VOLTS-5 ranges to 1000 volis! - RESISTANCE- 6 ranges to 1000 meg.ohms!
- CAPACITY - 4 ranges (. 000025 mfd to 20 mld )
- zero center position - InCLuDES LEADS Comoleted Unit
$\$ 39.50$ CAPACITY RANGES and ZERO CENTER POSI TION rre features not ovailable in compelitive VTVM kits


ImE OMLY 20,000 OHMS.PER.YOLI IMSTRUMEMT THAT GIVES yOU

- 6 D.C. Volt ranges at $20,000 \mathrm{ohms} /$ volt to 6000 volts
- 6 A.c. Volt ranges at 10,000 ohms volt to 6000 volts
- 5 current ranges to 6 amps
- 4 resistance ranges to 300 megs

Completed Unit (open face).. $\$ 29.95$
Completed Unit (portable)... $\$ 34.95$

## EMC

ELECTRONIC MEASUREMENT CORP
423 Broome St., Dept. B.5. New York 13, N. Y.
Write for free Catolos

## EASY TO LEARN CODE

11 1s eary io learn or increase apeod Whis an Insiruslokrabit "fole Teacher. Allards the "ulickest and soose prec.



ENDORSED BY THOUSANDS:


acquired the conde, with the fnmifuctoprathors fare

## IISTRUCTOGRAPH COMPAIY

## H. F. CATHODE-RAY TUBE

Potent No. 2,454 204
Richard C. Raymond, State College, Po (assigned to the United States of Americal Very high freturocies eanmot pans thromgh must uscillosicone amblifiners, su it is nevessary to enmeet them diseetly serows the deflerting blates. This limits the amomint of deflection and makes it dillicult to observe low-amblitude waveshapes. This inventor ormposes to buidd an amplifier into

the "alloule-ray lube. In this was distributed aibacitance is helle to :l minimum and much

A. shown in the figure, the deflecting plate can also be the anowle of tho amplifier twhe. 'The resistor in series with the aslector is the plate hasad for the amplifior.

## TIME INTERVAL MEASURE

Potent No. 2.454,191
Angus A. Macdonald, Catonsville, Md. (Assigned to Westinghouse Elec. Corp.) This cirellib indicates vollage as a function the time interval letween two pulses, Fil and E?
 and hoth are impressed across the same tube. Tha first in appied to the plater the seerond to the econtrol krid.


Nurmally the ubbe is at cutuff and remains there unifl Fi rises above its minimum value and is apllied simulatneausly with Fig. For eximple, the there danmot condart in b. but in emolactiar bexins atl time t1. At this instint current flows thromsh the cathade resistom and the "apacitor $C$ chawes. Its voltage cominues tor rise unitl tim t2 when pulse Eit returns to mininum and burks the tube.
If the grial pulse sharts earlier or tater than 11 the output voltage will be geater or less, as the case may he. A voltage indicator, calibrated 11 termes of timu biterval, mity le cabliewtal atpos


## D.C. AMPLIFIER

## Potent No. 2,455,718

Barton L. Weller, Richland, Wash.
(Assigned to the United States of America as represented by the U.S. Atomic Energy Camm.)
Randum fluctuation in cathode emission is known as sathule drift. It is a surinas problem in the design of sensitive amplilicrs. The figure shows
a sensitice current amplifier using an FP-54 electrometor tube. A GSLA is used to catneel out eathonde-lrift interferrone
The allude of the FP-ō4 and its spactechared Lerids are compled totriouks A athl bs, respectively.
 tu nerative feredtack in this resistor, the gain of winde $A$ is alnust zoro if the kriols of $A$ antal is sars: in the same whase.
When eathode drift takes place in the elletromater thbe its ander and its space-charge eride are attroted in the -ama was. Therofore the biats on both fislat grids varies in tha same direction and there is no output. If a signal abpears on the FP-sts. only its a mome is atfoceted. There can be no change in trionde 18 in this alse. and thare is nu degenoration due tar it. Therefore trinde A amplifies the sutput of the l- P-5.5. This circuit can amplify current as weak as .onl miswampere with litila interfernce due to eatholle duift.


## HEATING CIRCUIT

Patent No. 2,455,387
Theodore E Sippel, Valley Stream, N. Y. (Assigned to Bell Tel. Labs. Inc.)
Two thermostats are used in this circuit: one intarrubts the total current, but is onerated onty whin mower is initially turned on: the other eyeles contimumsly. but makes and hreaks a work current. Therefure buth unite have long life
Torminals 2-3 are for filament supply to the thyration. and $1-2$ are for the plate voltage. Bonh supplies are taken without rectification from the fillocesele line
Oriminally buth thermowats are clused. When the mwer is switchid on. a.c. flows through heating clement $R$ and thermostat $A$. Since a.c. causes mure rabid heating than chuivalent half-wave rectifitd current, the temuerature rises aluiekly and anon A "perts. This muts a.e. .in the theratrom date. 13 is still chesed, so rectified current flows through S. T, and IS, The lattor obons at at pro deternined tomberature, intermuting the viruit and couling the thermostat. At the lower tomperafure limit. It closes akain and the erele relleats.


## R.F. PRESSING

Patent No. 2. 449.318
Earle C. Pitman, Red Bank, N. J. and Ervin L. Crandell, Wellesley, Mass. lassigned to Compo Shoe Machinery Corp Boston, Mass.)
When an r.f. henter is ussed for pressing. danger of scorching or burning is greatly rednceal. In addition, mo time is wasted heating the irmen itsulf, and the hat is apllient of the parmant immediately. The garment to bur ironed must be slightly damp su that the olectrostatio field will genor:tte hat within it. As the eloth drit* less heat is mralued.
The iroming table has a trounded metal layer just lielow its surfare. Th. h.f. oseillator is placed within the table loehind safety dours. A
cable leads power to the iron. Within the base of the iron are separate parallel metal elements. Alternate clements are connected together and to one of the r.f. leads.


To press a karment, it is placed upon the table and the iron is moved about on it. A h.f. field is set up brtween each element (within the iron) and the grounded metal plate within the table top. To prevent a short, the r.f. output must be balanced to ground, that is, neither end can be grounded.

## PULSE AMPLIFIER

Potent No. 2,459,181

Milton W. Rosen and Conrad H. Hoeppner. Washington, D.C.
Pulses are most conveniently measured by direct comparison with a standard pulse on a cath-ode-ray tube. It is preferable to see both pulses at the same time as at a, where two pulses appear back to back on opposite sides of the same base line. In this case P1 takes place at the same time as P2 but has lexs amplitude. Both pulses appear at the same time when they are reproduced alternately and rapidly. For example. they may be passed
 through separate amplifiers which are alternately blocked by a multivibrator. The amplifiers and the C-R tube must be direct-coupled for sharp pulses.


Unfortunately, when an amplifier is blocked and unblucked, its plate voltage rises and falls abruptly. This de change affects the patiern by changing the position of the base lines so that changink the position of the base linces so
To overcome this difficulty. a 6SA7 or similar tube is used in circuit b. Its plate is tapped on the power subply at a point lower than the suppressor arid so that the plate emits secondary electrons. The control-grid biss is set at point $E$.

The graph $c$ shows the tube characteristic. Due to secondary emission. a negative-conduetance period is followed by one which is positive. With the tube unblocked. the control grid bias is set to point Ex2. where Ip $=0$. Of course, the plate current is also zero when the tube is blocked by the multivibrator
It is evident (from e) that the plate voltage is the same whether the tube is blocked or unblocked. Therefore, no change in potential is transmitted to the plates of the C-R tube, and the base line remains constant. The pulses appear on either side of this vertical line. Furthermore. the positive-transconductance portion is linear for faithful amplification of the pulse signals.

# REVOLUTIONZES TV WIRE STRIPPING! 

## FLEXTRON



Strips 300 ohm lead-in safely - quickly - easily. A "must" for every TV Serviceman's Kit!
${ }^{5} 3^{95}$
individually packaged

DISTRIBUTORS: Write for distributors' prices and circulars. SERVICEMEN: If your distributor does not yet have FLEXTRON Wire Stripper, write to:

ELECTR(-STEEL PRODUCTSSINC. 112-14 N. SEVENTH ST. PHILA. 6, PA.


## Try This (Ine

## TIE-DOWNS FOR TONE ARMS

Most service technicians have their pet ways of anchoring a pickup arm to a recold changer so it will not bounce around and damage the nedde or upset delicate adjustments while the instrument is being carried to or from the service shop.


My pet method is to puncll $1 \mathbf{1}$-inch holes through the opposite sides of a tulue calton. The caton is placed over the pickup and lowered over the center post of the changer until the post projects through the calton as shown in the photosraph. The carton insert or facial tissue can be used to stuff the carton where necessary.

$$
\begin{aligned}
& \text { JoLI.Y M. WiLson. } \\
& \text { Little Rock, drk. }
\end{aligned}
$$

## CABINET REPAIRS

Small seratches on radio cabinets are easily covered with any of the scrateh removers on the market, but a deep scratch or dig is a real problem. Commercial scratch removers simply stain the flaw. often leaving a very noticeable scar in the finish.

An andetectable repair can be made with stick shellace in a few minutes and without the need of any great skill. Select a stick of shellac which matches the finish. Hold it an inch or so above the serateh and touch it with the tip of a hot solderingr iron. Melt off enough shellate to cover the selatch completely Hold the iron over the repair just close bough to make the shellac melt and run. Be careful not to let the iron touch either the shellac or the cabinet. nor blister the good finish around the repair
Allow a few seconds for the shellate to harden. With a sharp knife blatle held parallel to the surface chip off the top of the new shellac until it is nearly Hlush. Dress it down to a smooth finish with very fine sampaper dipped in oil Linseed oil or light machine oil will do. It is important to scrape the shellac neally thash before sanding otherwise a lump will be left. Too much sanding will remove finish adjacent to the repair'.

Kits of stick shellace in several colors and shades may be purchased from most radio parts jobbers.
iVilliam H. Carr, Steo, Maine

## SURPLUS!

DYNAMOTORS \& INVERTERS

## SURPRISE PACKAGE

$\$ 1.95$
VERTICAL ANTENNA
$\$ 12.95$
PE-117 UNIVERSAL POWER SUPPLY

VHF TRANSCEIVER


## CONDENSER

$\qquad$
GEARED TUNING DIAL
$\$ 1.3=$
APS-13 UHF ANTENNA
$\$ 1.45$
10CM RECEIVER-AMPLIFIER
$\$ 14.55$
BC. 620 TRANSMITTER-RECEIVER UNIT
$\$ 9.95$
$\$ 12.95$
SPECIAL!
WESTINGHOUSE TRANSMITTER BC-122 Freq. range 325 to rill KC: in portable teld
case: 3 meters fus exrullant narts (less tubes)
$\qquad$


ARROW SALES, INC., Dept. R MAIN OFFICE:
1712-14 5. Michigan Ave., Chicago 5, Illinoi NORTH SIDE BRANCH:
1802 N. Humboldt Blvd., Chicago 47, III. WEST COAST BRANCH:
1260 S. Alvarado, Los Angeles, Calif.


# Practical On-the-Job Training Program for the Better Serviceman Who Wants Greater Earn- ings and Security In This Expanding Field 

THIS hasic CREI Servicing Course paves the way to greater earnings for you. Since 1927 thousands of professional radiomen have enrolled for our home study courses in Practical Radio Engineering. Now, ClREl supplies the answer to the need for a Practical Servicing Course. You do not have to be, or want to be, an engineer to benefit from this course. It is written for you-the average good serviceman! It's not too elementary for the experienced. It's not "over the head" of those who have limited experience-if they have real ambition and natural ability.

CREI developed this course at the request of several large industrial organizations. The urgent need for capable. trained servicemen is one of the big problems of the industry. Hundreds of thousands of Television Receivers will be marketed in 1949. By 1953-just

4 years-it is estimated that there will be 12 million TV sets in use. With Television comes FM receivers and circuits. This new field demands a tremendous increase in the number of properly trained television and FM technicians to install and service this equipment.

## CREI EQUIPS YOU TO INSTALL AND SERVICE ALL TYPES OF TELEVISION AND FM RECEIVERS

Now . . . with the help of this new CREI streamlined Service course you can move ahead to unlimited opportunities in your chosen field. CREI has again taken the lead by offering a course so entirely new that for the first time in our twenty two year history we can offer a down-to-earth course of training for servicemen. In offering this course at a popular price, CREI is enabling thousands
of the "top third" now engaged in service work to enter the ultimate profitable field of television and FM installation and service.
This can be your big year! Don't waste another day. CREI has the answer to your future security in this new servicing course. Write today for complete information. The cost is popular. The terms are easy. The information is /ree. Write today.

VETERANS! CREI TRAINING IS G. I. APPROVED
For most Veterans July 25, 1951 is the deadline—Act now!

## Radio Service Division of <br> CAPITOL RADIO ENGINEERING INSTITUTE

An Accredited Technical Institute

[^7]
## SENSATIONAL SUMMER SALE

Jlere It 1s-Just what you've heen watilng for. Iow act fusf Slurry. take adsantake of till; terrllie savilig

## SENCO DECLARES A DIVIDEND Whan ardering 25 ar mort suruted tobses, dedurt 54 Whan ardering 25 ar more ens fram the price af eash twhe.

TUBES:



 MAGNAVOX SPEAKERS put. cord and plut with GVG P.P. 2" 1000 ohms neld

$$
\text { with } 6 \text { vg }
$$

 \$5.95
cord and plug
$12^{\text {" }} 680$ ohms fiel
cord and plup 680 and 5.95
cord ohms fiel
RCA INTERCOM
3 the Of FOR MOME. OFFICE. STORE'




FREE-W Wife for Our new circula
MINIMUM OROER $\mathbf{5 2 . 5 0}$

 pries Fols sen

New Yort 7 . 73 West Broadway
New York 7, N. Y Tel. BEekman 3-649B

# Werrla-Wiale Station List 

By ELMER R. FULLER

A
T LONG last, we are back again with a little dope on the shortwave activities. Remember our yearly warning; all schedules are given in Eastern Standard Time, even though you may be on Daylight Saving Time. Do not be surprised if you find the given times off an hour as some stations change their schedules to conform to summer time, though others do not. It is confusing either way, but we will stick to standard time, like the majority of international stations.
Paris is reporteg to be using 11.700 and 9.550 me from 1945 to 2000 and from 2100 to 2145 with excellent reception on the east coast of the United States. These seem to be the two best frequencies in use at the present time.

We received a very nice QSL card recently from CTp83 in Braga, Portugal, with Manuel A. de Mesquita as the chief operator. This ham is on either ten or twenty fone, and perhaps both. We wish to welcome him as one of our new readers, and if any wish to write to him, I am sure that he would like to hear from other amateurs and shortwave listeners. His address is Avenue Central, 108, Braga, Portugal. We would like to hear from other overseas hams and shortwave listeners who read our magazine.
Several requests have been received in the past for information concerning the Hungarian stations. At the present time, no Hungarian shortwave stations are operating. Hungary has but six stations, and they are all operating in the standard broadeast band.

Our only source of information is directly from the stations, and reports from our listeners. From this you can see that our listeners' letters are very important to this department, and we would like to receive more of them. Let us know what you are hearing, and what you would like to see in this section of the magazine. Our aim is to be of service to you. Send the dope to us, and we will pass it on to our other readers. Let's be of service to ourselves by being of service to each other.

| rea. | Station | on and Schedule |
| :---: | :---: | :---: |
| 9.590 | vu05 |  |
| 9.630 |  |  |
| 9.600 | Gry | LONDON. ENGLAND: \%houn tullis |
| 9.610 | zRL | CAPETOWN. SOUTH AFRIC |
| 9.610 | z YCB | RIO DE JANEIRO. ERRAZIL: 1.5 ml |
| 9.610 | vLC6 | shepparaton. australia: 1mm |
| 9.610 | tipg | SAN jose. Costa rica: niul to |
| 0.620 | cxag | môntevideo, uruguay: $1 ; 3$ |
| 9.620 | Gwo | London. englano: lian tur zhin |
| ${ }_{9.630}$ | cklo | MONTREAL. CANADA: 1 (limel to |
| 9.640 | gvz | LONDON. ENGLAND: MIOY! In Olm: |
| 9.670 | tGwa | gUATEMALA CITY. GUATE. |
| 9.670 | rix | NEW YORK City: inazil |
| 9.680 | xeaq | MEXICOCITY, MEXICO: VIIN |

OPPORTUNITY AD-LETS










## 









 Buildung. Wa, ulukhut. J.E.


















| Frag. | Station | Location and Schedule |
| :---: | :---: | :---: |
| 9.700 |  | (1N01) to 12001 <br> FORT DE FRANCE. MARTIN, <br> IQUE: 1530 to 1845 : and later |
| $\begin{aligned} & 9.710 \\ & 0.720 \end{aligned}$ | PRL7 | MOSCOW, U.S.S.R. - 3300 to 0730 |
|  |  |  |
| 9.730 | C8W7 |  |
| 9740 | OTC | LEOPOLDVILLE. BELGIAN CON. <br>  |
| 9.670 | TGWA | gUATEMALA CITY, GUATE. MALA; Ix30 1023.331 |
| 9.770 | OTC2 | LEOPOLDVILLE, BELGIAN CONGO: Ul (M) to viall |
| 9850 | GRH | LONDON, ENGLAND; 1830 10 2300 |
| 9.830 | COBL | HAVANA. CUBA: 07.5 to 004 L |
| 9.840 |  | LENINGRAD, U.S.S.R.: 1800 to |
| 9.900 | ZTJ | JOHANNESBURG. SOUTH <br> AFAICA: 0315 to $0: 15: 0500$ to |
| 9.960 | HCJB | QU170 <br> axcep ECUADOR: 2230 to 2400. <br> except Mon.; Mon., 2300 to 0300 ; |
| 10.000 | XGOL |  |
| 10.220 | PSH | RIO DE JANEIRO, BRAZIL: 1600 |
| 10.730 | va7lo | NAIPOBI, KENYA: 0500 to 0600: |
|  |  | 0430 to 0915 ; 1144.5 to 1100 |
| 10.780 | S0 82 | STOCKHOLM. SWEOEN: 1000 to $1055 ; 1230$ to $1330 ; 2000$ to 2100 |
| 11.040 | CSW6 | $\begin{aligned} & \text { LISBON PORTUGAL: } 1230 \text { to } \\ & \text { 1530: In00 to } 1800 \end{aligned}$ |
| 11.090 |  | PONTA DEL GADA, AZORES: 1:00 to 11:00 |
| 11.630 |  | MOSCOW. U.S.S.R.: 1930 to 0300: 0600 to 0800: (1):30 to 1300 |
| 11.650 | XTPA | CANTON. CHINA: 0t100 to 0830: |
| 11690 11.690 | XORA | SHANGHAI, CHINA: 0500 to 1000 TABAIZ. IRAN: 0500 to 0700 |
| 11.700 | HP5A | PANAMA CITY. PANAMA: 0700 |
| 19.700 | GVW | LONDON, ENGLAND: 2300 to 0030 |
| 11.700 | SBP | STOCKHOLM, SWEDEN: 0170 to $0220 ;$ |
| 10 |  | DAKAR 021.7 to 1100 WEST |
|  |  | DAKAR. FRENCH WEST <br> AFRICA: 1330 to 1700 |
| 11.710 | VLG3 | MELBOURNE, AUSTRALIA: 024.i |
| 11.710 | HEIS | BERNE. Switzerland: Mon. Tues. Thurs. Fil.. 021.i to 3330 |
| 11.720 |  | KIEV, U.S.S.R.; 1 W00 to wis |
| 11.720 | PRLE | AIO DE JANEIRO, BRAZIL: 0315 |
| 11.720 | CKRX | WINNIPEG. CANADA: 1000 to |
| 11.720 | OTC | LEOPOLDVILLE, BELGIAN CONG O: 0.330 to 1730 |
| 11.730 |  | SINGAPORE, WALAYA: 0325 to 1\%00 |
| 11.740 11.740 | $\begin{aligned} & \text { COCY } \\ & \text { CEI } \end{aligned}$ | HAVANA. CUBA: 0.330 to 2330 SANTIAGO. CHILE: 1;00 to 2400 |
| 11.740 | HVJ | VATICAN CITY: 001: to 0025: 0830 (0) 0900): 1100 to $114 \pi^{\circ}$ |
| 11.750 | GSD | LONDON. ENGLAND: 2000 to |
| 11.760 | VLA8 | MELBOURNE. AUSTRALIA: 1300 |
| 11.780 | HP5G | PANAMA CITY, PANAMA; (nG30 |
| 11.780 |  |  |



Supoested by J. F. Inunnett, Voncowrer, B.C., Canada


## TELEVISION RECEIVER—\$1.00


 layout. Also booklet of aliznmen netrictions voltage realstance tebles and trouble ot ing hints.-All for $\$ 1.00$.
CERTIFIED TELEVISION LABORATORIES Dept. C. 5507-13th Ave., Brooklyn 19. N. Y.

## YOU CAN PUT ALL YOUR EGGS IN THE QUAM BASKET!



In spite of the old adage, you'll find it pays to specify Quam Adjust-A.Cone Speakers for all your replacement jobs. The Quom Line is complete, there's o speaker for every standard receiver. Quam Speakers are listed in the Radio Industry Red Baok for your convenience.
Quam Speakers are built by a reliable organization that has
been manufacturing quality speakers for over a quarter century.
Customer Good Will is important in your business-you can be sure of building it when you install Quam Speakers. Their fine performance and trouble-free service reflect to your credit!
It pays to replace with Quam!


QUAM-NICHOLS CO.
521 E. 33rd Place, Chicago, Illinois
Please send QUAM Catalog
Name
Addresl
City

# For GREATER Earnings... LEARN RADIO-ELECTRONICS 

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knou's the modern application of electronic devices, as used in the aircraft industry, is always in demand . . . not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't coufuse the RADIO-ELECTRONICS course offered by SPARTAN with, other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests - first class radio telephone, second class radio telegraph, or class $\quad 1$ " $B$ " radio amateur.


SPARTAN'S 21 years of teaching civilian and army personnel is your assurance of receiving the best possible training in the least possible time. Youll not need MORE than Spartan training - you cunnot afford to take LESS.



A tilbe lester downecht rasy io operate. This is ane A tube lester downraht casy to operate. This is onle
 CHECK THESE FEATURES

- This lube tester has provisions for ehecking individ. ual sections of multt-purpose tubes as well as minia.
- ture and subminiature receiving tubes. due to specia Alnico A.C. meter and ixtremely low test circuit valtage drop.
- Convenient ja-k is provided for head-phone noise test to check noisy swinging. or high resistance interna
- Neon lamp for rapid short and leakane tests between
- Netem lamis.
- Ccmpact, sturdy eonstruetion

Openstes an $100-130$ volt. $50 / 60$ eyele A.C. pawer
open-face in new hammerione arey nnish steel cabine

Send for Bullefin No. 6C
BUY IT AT YOUR LOCAL DEALER

## BadIo CITY PRODUCTS CO., INC. 152 West 25 th 31.

| Frea. | Statian | Location and Schedule |
| :---: | :---: | :---: |
| 11.780 |  | VIENNA, AUSTRIA: 2345 |
| 11.780 |  | SAIGON, INDO-CHINA: 15DO 20 |
| 11.820 | GSN |  |
|  |  | 1230 to live : 18011 to 2030 |
| 11.830 |  | MOSCOW, U.S.S.R.: 2tur to 1600: |
| 11.830 | CXA19 | MONTEVIDEO, URUGUAY: 0600 |
| 11.830 |  | 10.2.20 <br> CONSTANTINE, ALGERIA: 013! <br> to (0315: thisu to 0.!15: 131\% to |
| 11.840 | VLC7 | 1t00: 1430 10 1700 |
|  |  | to llt 5 : 1.00161615 |
| 11.840 |  | PARIS, FRANCE: 1330 10 1700 |
| 11.860 | HER5 | BERNE, SWITZERLAND: $\mathbf{5} 30010$ 114101 |
| 11.870 | MUNICH I | MUNICH, GERMANY: liuromean |
| 11.880 |  | BEall. 1100 to li'tll 1820 to 1931). |
| 11.880 | LRR | ROSARIO. ARGENTINA: 0400 to -110 |
| 11.890 |  | MANILA, PHILIPPINES; far Fast |
| 11.900 | XGOY | CHUNGKING, CHINA: 0400 to |
|  |  |  |
| 11.900 | CXAIO | MONTEVIDEO, URUGUAY: 183^ |
| 11.960 | HEK4 | BENNE, SWITZERLAND: 1645 |
| 11.970 | F21 | BRAZZAVILLE, FRENCH, EQUA. <br>  <br>  |
| 12.000 | CEII80 | SANTIAGO. CHILE; mino |
|  |  | LONDON, ENGLAND: サ300 |
| 12.090 | GR | LONDON, ENGLAND: E300 to 1617: <br>  |
| 12210 |  | VIENNA. AUSTRIA : 334, to lwon |
|  | TFJ | REYKJAVIK. ICELAND: Sub.. (990! to $1!130$ |
| 12.440 | HCJB | QUITO. ECUADOR: 1400 to $\because 230$ |
| 15.110 | GWG | ONDON. ENGLAA |
|  |  |  |
| 15.110 | HCJB | QUITO, ECUADOR: 0500 to |
| 15.120 | HVJ | VATICAN ${ }^{\text {ce }}$ CITY : 0830 to 0930: 110 |
|  |  | ROME 11.7TALY: 1715 to 901. |
| \$5.120 |  | ROME, 1TALY: 1715 to 201. LONDON. ENGLAND: |
| 15.140 | GSF | LONDON. ENGLAND : MiOO to 0715: $0!15$ to 1115 5 : 1030 to 1200: 13,1010 |
|  |  | to 16011: 1615 to $2015: 2300$ to 11110 |
| 15.150 | SBT | STOCKHOLM. SWEDEN: 0145 to 06t5; 1001 to 1100: 1230 to 1330: |
| 15.170 | TGWA | GUATEMALA CITY, GUATE |
|  |  | MALA: 0730 to 1500 |
| 15.180 | G80 | LONDON. ENGLAND: 2300 to 16 |
| 15.190 | CKCX | MONTREAL, CANADA; 0845 |
| 15.190 | TAQ | ANKARA, TURKEY; 0000 to 020 |

Frea. Station Location and Sehedule
15.230 VLG6 MELBOURNE, AUSTRALIA: 233
 MOSCOW. U.S.S.R. Sun
 HONOLULU. HAWAII: "HineseL'lidibline heand. Ut00 to 100.1 SINGAPORE, MALAYA: 0330 to

 LONDON, ENGLAND: $1 \% 00$ to 131. LONDON, ENGLAND: 1015 to 1315: SHEPPARTON, AUSTRALIA: 0215 BERNE, SWITZERLAND: 15 104.5
 moscow ${ }^{203}$ to 230 U.S.S.R.; 2200 to 23 mm ; 01910 Lo 0.Mil : 1530 to Ux00: 0830 LEOPOLDVILLE, BELGIAN CONGO: 1200 io 1330 ES: Indlan Moscown leranl 02310 to 034.1

 LONDGN E GLAND: U100 BRAZZAVILLE. FRENCH EQUA TORIAL AFRICA: 1445 to 0xin RABAT, FRENCH MOROCCO: OTI. VATICAN CITY: 071:5 to 0815 BRAZZAVILLE: FRENCH EQUALONDON. ENGLAND: 0600 to 0900 1 IT10 to $1 \times 80$
LONDON, ENGLAND: 0nt 5 to 0400 : LONDON. ENGLAND:OX30 to 0900: PARIS. FRANCE: 0i00 to 0900: LEOPOLDVILLE. BELGTAN CONGO: 0.i00 to $0930: 1130$ to COLOMBO, CEYLON: 9300 to 0730 LONOON. ENGLAND; 0545 to 0715: 0830 to 1030 : 1100 to 1145
HDNOLULU. HAWAl!: (Yhinese.
 Mondays:

| Frea. | Station | Location and Schedule |
| :---: | :---: | :---: |
| 17.800 | $01 \times 5$ |  |
| 17.810 | GSV | LONOON, ENGLAND: |
|  |  | MONTPEAL CANADA: \%3t- |
| 17.820 | CKNC | MONTREAL CANADA: 2:St |
| 17.820 | SEAC | COLOMBO. CEYLON: I', woll |
| 17.830 | vudio |  |
| 18.020 | Grio |  |
|  |  | LONOH ', Nat |
| $\begin{aligned} & 18.080 \\ & 18.130 \end{aligned}$ | $\begin{aligned} & \text { GVO } \\ & \text { PMC } \end{aligned}$ | LONDON ENGLAND BATAVIA. NETHERLANOS |
|  |  | OIES: I1010 10113:3 |
| 21.470 | GSM |  |
| 21.530 | GSJ |  |
| 21.550 | GSt |  |
| 21.640 | GR2 |  |
|  |  |  |
| 21.750 | GVI | LONDON ENGLAND: "1nl\|l|l|lat |
| 26.100 | GSK | LONDON. ENGLAND: 16 til ( $01: 201$ |

## ELECTRONIC LITERATURE

Any or all of these catalogs. bulletins, and periodicals are available to you if you write to us on your letterhead (do not use postcards) and request them by number. It is necessary to send only the number of item you want. We will forword the request to the manufacturers, who in turn will send the literature directly to you. This offer void after six months.

JN.I-TV.FM ANTENNA FOLDER
An eight-page folder clescribes FM and TV antennas and antenna accessories matle ly Ame 'ican lhenolic Corporation. The folder also includes a short technical article on the characteristics of some of the anternas made by the firm. Comparison curves and radiation patterns of the various antennas are included.-Grut is

JN.2—RESISTOR DATA BOOKLET
An eight-page catalog and data book gives complote technical specifications and prices on High Stability Carbon Resistors and leromatic Resistors made by Welwen bilectronic Components. Inc. Information includes temperature rise, temnerature coeffieient. Johnson noize factily, and reactive ef-fects.-Cratis

## JN-3-TECHNIFAX CATALOG

A small folder lits: and reviews the contents of 59 ted nical hulletins pulslished by Technifax Service. The bulletins come under the headings of "Electrical Design and Construction." - Electroplating, Soldering-BrazingWeldenge" "llome Improvements." "Mctal (asting-Heat Treating," "Plas-tics-Casting of Nowelties-Decorative Arts," and "Sperialty Sale': Iroducts and Business Opprtunities." with several bulletins under each heading. Grut is

## JN-4-MAGNET CATALOG

The Chemical In partment of General Electric Company issues a 28 -page illustrated catalog describing a variety of cast and sintered Alnico magnets as well as special magnetic alloys stocked by the company. Photographs and pullcurves are provided on a large number of the stock items, and completely detailed drawings of all stock patterns are included-Givetis to interested perties

## JN.5-HYTRON REFERENCE GUIDE

The new third addition of Ilytron Reference Guide for Miniature Elec-

## PRICESTALK at RADIO SUPPLY R.S.E. 3 inch OZ4's <br> (No Limit) Fresh RK and RCA. Standard commercial grade, not JAN's. buy 1258 c get 1 free $E A C H$ <br> egg Crate of $100 \$ 4900$ TELEVISION SCOPE <br> 

## VIBRATORS

MALLORY universal standard


## AERIALS

 disco list $\$ 6.75$.


$$
\text { BUY } 10 \mathrm{get} 1 \text { free }
$$ $\$ 21500$ per 100

## GENERATOR CONDENSERS



By one of the big 3
15
.5 mfd 200 VDC, $6^{\circ}$ lead

BUY 12 get ane free
$\$ 12.00$ per 100

## ORDER INSTRUCTIONS, <br> Minimum order - $\$ 2.00 .25 \%$ deposir with order required for all C.O.D. ship ments. Be sure to include sufficient post oge-excess will be refunded. Orders received withour postoge will be shipped express collect. All prices Demand This F.O.B. Detroit. <br>  <br> DON'T WAT-ORDER TODAY

The R.S.E., AR-3 Scope has been built by Ross Armstrong to our rigid specifications. It's a complete unit that embodies standard horizontal amplifier and sweep circuits with normal sensitivity.
It's different because of the extreme vertical omplifier response. Check the featured specifications against others. For TV use wide band response if necessary.
The case is $8^{\prime \prime}$ high $\times 5^{\prime \prime}$ wide $\times 14^{\prime \prime}$ long, aftroctively finished in "hammered" opalescent blue enamel. Operates on PRICE standard 110 valts -60 cycles -40 wolls. Tubes, $3 \mathrm{BPI}-6 \mathrm{AC7}$
s 499 structions included. Complete specifications upon request. Satisfaction or your money back. DETROIT

## PUSHBACK <br> WIRE

## BELOW MILL PRICES!

2,000,000 feet-tinned copper-all lst class, double cotton serve, waxed finish.

Available solid or stranded 22 gauge (6 colors) per $1000 \$ 3.98$ 20 gauge (6 colors) per $1000 \$ 4.98$ 18 gauge (brown) per $1000 \$ 6.49$

DADN<br>KAVU supply \& ENGINEERING CO., inc. 85 SELDEN AVE. DETROIT 1, MICH.

NEVER AGAIN!


## SUPERIOR INSTRUMENTS CO.

227 Fulton St., Now York 7, N. Y.
at your regular jobber


FAIR RADIO SALES "دa sovir, "antics
tron Tubes has six pages giving pertinent characteristics, data, and basing diagrans of 91 types of miniature tubes. Nineteen of these types are recent additions to the Hytron line.Gratis

## JN.6-ELECTRO.VOICE BULLETIN

Bulletin No. 144, issued by ElectroVoice, Inc., describes the new highfidelity broadcast microphone Models 645 and 650. Mechanical and electrical specifications are given on these models. -Gratis

## JN.7-MOVIE SOUND BOOKLET

The booklet "Sound for Your Home Movies" is issued by Sears, Roebuck and Company. It describes a method of synchronizing a wire recorder with a silent movie projector to produce sound for home movies. A number of applications for synchronized sound are listed and illustrated.-Gratis

## JN-8-C.R EQUIPMENT CATALOG

The Instrument Division of Allen B. Du Mont Labs., Inc., issues a new 11 page catalog of cathode-ray tubes and related equipment. It lists electrical specifications on 11 cathode-ray tubes and electrical and physical specifications on oscillographs, recording cameras, C-R indicators, voltage calibrators, time-base generators, and electronic switches.-Gratis

## JN-9-CO-AXIAL CABLE BULLETIN

Bulletin No. 48, issued by Andrew Corporation, is of interest to broadcast engineers. It gives complete technical details on the type $737 \mathrm{7} / \mathrm{s}$-inch semiflexible co-axial cable made by the firm. The bulletin also lists and illustrates accessories and fittings designed for use with this cable.-Gratis to interested parties

## JN-IO-RELAY CATALOG

The latest Advance Relay catalog is of interest to amateur radio operators, engineers, and experimenters. It lists telephone, time-delay, keying, antenna, latching, overload, underload, and impulse relays as well as several other types. All types are illustrated with photographs and mechanical drawings. -Gratis

## JN-II-RADIO MAGAZINE INDEX

Radiofile is a subject index of all the information published in Radio-Electronics and 11 other radio magazines. A new cumulative index is issued monthly covering all material published during the year. The index is crossreferenced so that most items can be found under several headings. Indexes for 1946 through 1948 are available.1 -year subscription, $\$ 1.50$.

## JN-12-Variac catalog

A new seven-page catalog issued by General Radio Company lists characteristics and specifications on five different types of Variacs made by the firm. Each type of unit can be had with a number of basic modifications, Drawings and photographs show all types.-Gratis

# A Lesson in Theological Electronics 

By L. S. KOBEL

THE lesson for today is taken from the second chapter of the first book of the prophet FLEMING.

There dwelt nigh unto the gates of the great city of HIGH VOLTAGE BATTERY an official of great importance, known as NEGATIVE TERMINAL. It came to pass that this official, seeing a number of ELECTRONS gather together spake unto them saying:
"Get ye gone, O ye of little mass. Gird up your loins and follow in the footsteps of your brothers and sisters before ye."

And they straightway made haste and departed.
As they traveled in the narrow valley of CIRCUIT DIAGRAM they were guided by a great pillar of fire known as the INDIRECTLY HEATED CATHODE. When they had come nigh unto the INDIRECTLY HEATED CATHODE, a voice cried unto them saying, "Halt! Ye have traveled far and are doubtless footsore and weary. Prepare you camp and rest." And they did so. Whereupon they named this place SPACE CHARGE, as it is known unto this day.

But on the morrow there came a mighty wind, known as the ELECTRIC GRADIENT, of such great force that the ELECTRONS were driven from their camp, swept through the great forest of GRID, up the steep slope of ANODE RESISTANCE, ceasing not until they were deposited on the great plain of PLATE. And there they did rebuild their camp, as they were weary and did hunger and thirst.

But presently there came an inhabitant of PLATE, an aged atom of MOLYBDENUM, renowned for his sagacity and piety throughout all the land. As he drew nigh unto the ELECTRONS he spake thus: "There lieth but a few days' journey distant a great city in a land flowing with ELECTROLYTE and AMPERES and CUR-

"Our answer to the limited floor space problem for radio-phono-TV combination.

RENT." And the ELECTRONS, knowing this to be their birthplace, made haste and journeyed without ceasing.

But lo! in their path stood a great mountain called the ANODE LOAD. Now there were two paths over this mountain, one steep and rocky, passing over the top and the other wide and smooth at its foot. And the two paths were known as INDUCTANCE and CAPACITANCE.
Whereupon the evil ELECTRONS took the smooth path of CAPACITANCE. But presently they came to the great precipice of DIELECTRIC, and they could not pass. Then sprang up a mighty tempest known as the TANK-CIRCUIT OSCILLATORY CURRENT which swept the evil ELECTRONS against the precipice time and time again. But still they could not pass. as it allowed no ADMITTANCE. And there they remain even unto this day

Now the good ELECTRONS took the rocky path of INDUCTANCE, and it came to pass they were attacked by a great army of warriors known as MAGNETIC LINES OF FLUX. Thereupon the ELECTRCNS cried out unto their ruler of POSITIVE POTENTIAL, and he did hear their supplications. And so he blessed them with KINETIC ENERGY, and on that day there collapsed many thousands of MAGNETIC LINES OF FLUX.
And presently they drew nigh unto the great city of HIGH-VOLTAGE BATTERY where they were received with great rejoicing. And the ruler of POSITIVE POTENTIAL spake unto them: "My children have been returned unto me unharmed, let there be a great feast." Whereupon many CURRENTS of AMPERES and atoms of ZINC were slaughtered and many vessels of ELECTROLYTE made ready.

But afterwards, the ELECTRONS having eaten and drunk to SATURATION, they dispersed throughout the city, destroying many vessels of ELECTROLYTE, killing many atoms of ZINC, and POLARIZING the rest with fear, And the ruler of POSITIVE POTENTIAL was exceeding wroth and condemned them to be driven from the city.

And so they wander, even unto this day. Here endeth the lesson.

Rabot operator devised by engineers of station WHBF, Rock Island, Ill., virtually eliminates program interruptions on both AM and FM channels. The robot automatically turns on an auxiliary transmitter and switches program to it if the main transmitter breaks down. The switchover, which involves about 20 operations, is made by the robot in 20 seconds. Manual switchover normally requires about two minutes.


[^8]
## Miscellany

## FEDERATED Terrific SPEAKER VALUES!



SERES

## MODEL

 A12-PM He avy-duiy highly efficient, 12 "speaker Widely recom mended for PA and high-quality rodio-phono use. 8 chm voice coil, 18 watts power rating. Made to sell for more thon twice this special low price. Comes less transformer, but provides for easyatfachment.


## GE GD650

Famous 6" GE speoker feoturing Aluminum Foil voice coil and Alnico 5 Permanent Magnet. Excellent for replacement use. Has "big speaker" quality.
$\$ 1.98$


RCA 12" PM SPEAKER 12 watt copacity. for re. plocement ond PA use. 2.15 oz. Alnico 5 magnet. Spe-
cial
$\$ 3.75$
Same, but with extra heory 4.64 oz . Alnico 5 magne
$\$ 4.49$
RCA 2" $\times$ 3"' $^{\prime \prime}$ SPEAKER
Genuine RCA oval midget speaker for partables, intercoms, etc. Excellent sound quality.

79


## STORAGE BATTERY

Brand new, Willard Storage bat- $\$ 1.25$
tery- Delivers 2 volts.
Please include $25 \%$ deposit with order. Balance COD. Minimum order \$5. Dept. C.6.


## TUNING TV LINES

For a variety of reasons the imped ance of the antenna transmission line rarely matches the input of the television receiver exactly. One of the simplest methods of tuning out the reactive element which results is to shunt the line at a strategic point with capacitance.
This can be done without cutting the ribbon lead or making any connection to it. Wrap a short piece of tinfoil around the lead a few inches from the receiver and place a paper clip over it to keep it in place.
Tune in the station whose signal needs the most improvement. Then slide the tinfoil along the line until the picture improves noticeably. Usually the point of improvement will be fairly sharp and moving the foil away from it in either direction will make the pic-


These little units remove the standing-wave "kinks" from the standard 300 -ohm lead-in.
ture poor again. Simply leave the foil at the best point on the line.

The Sig-Max, a commercial unit which does the same job as the tinfoil, is shown at center in the drawing. Made by Telecite Television Corp. of East Islip, N. Y., it is a folded piece of metal about 4 inches long which slips over ribbon line. It is slid up and down until a point of best reception is found, then left in place.

The Tenastub, made by Crystal Devices Co., Inc., Freeport, N. Y., functions along the same lines. It is shown in the same illustration. The Tenastub is furnished in three lengths, approximately $6,3 \frac{1}{4}$, and 2 inches. The longer strip is slid along the transmission line first for a point of maximum picture brightness. The improvement takes place over a fairly broad band of frequencies. Next, the $31 / 4$-inch unit is adjusted. This gives further improvement in a narrower band. Finally, if necessary, the shortest Tenastub is used for greater improvement in a still narrower band.

Small fasteners are available to slip over the open side of the Tenastub, giving the effect of a closed loop around the transmission line. In many cases, this aids reception still further, sharpening the picture noticeably.

## POLISHING CLEAR PLASTIC

Scratches may be removed from plastic meter faces, dials, and other transparent plastics easily. Simply rub BonAmi briskly over scratch and finish with a fine buffer. Polish with Glass Wax to obtain original luster.-Lawrence Roeshot.


## RADIO \& TELEVISION

 CATALOG FREE!
on kite. eete. perte and
accenenries! 148 pates of values in mound and electronic equipment for profemsionale and amateurs. ONE YEAR TO PAY! Send penny postcard with twanl flcernic adaress to 242 Wast 55il Sireti, Mow Yert
N.Y.C. STORES: 115 W. 4 sth 5 st 4212 Faltan $5 t$ CHICAGO STORf: 323 West Wadisen Strint

## PEN-OSCIL-LITE

Extremely convenient test oscillator for all radio
servicing alignment Small as a pen powered. Range from 700 cycles audio to Self 600 megacycles u.h.f. - Output from zero to over 125 - Write for in cost © Used by Signal Corps

GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

## SERVICEMEN'S

## RADIO PARTS KITS



RADIO-ELECTRONICS for

## THE DANGEROUS MALE

A good number of manuscripts on construction projects which are subtted to Radio-Electronics include a $\therefore$ etachable 117-volt power cord or cables 0 " one sort or another carrying power. Frequently we find that an experii:enter has terminated a cord at one c.d with a male plug, and connected $\mathrm{h} \approx$ other end to a source of voltage.
Consider what may happen. If every rlug is in its socket, with no prongs exposed, all is well. But if (a) the ower is turned on or the a.c. plug is i serted in a wall socket with the male o) the other end of the cable not rugged in, or (b) the plug pulls out of he chassis during operation, someone ay touch the exposed power contacts a 2 d get a nasty (or fatal) shock. Or a i:ort to ground may destroy valuable equipment.

There is a very simple but extremely important rule to follow in all except the most unusual cases:

If any harmful voltage may appear at a conncctor when it is not plagged into its mate, that connector must be " femile.

Manuscripts which do not follow this rule are changed, wherever it is pos: ible, before publication. However, the fact that so many authors show unsafe connectors indicates that a far greater number of radiomen who are not authors may do the same thing.

It's undoubtedly just habit-chassismounting connectors are usually females and cable-end units are usually males. But don't let habit get you into trouble. Be smart and be safe!

## MILLIONS WANT TV

The number of prospects to whom television receivers might eventually be :old was put at 16.6 million last month hy Frank Mansfield, Director of Sales Research for Sylvania Electric Prodtiets, Inc. Of thest, three out of four amilies have purclased, intend to purchase, or are favorable toward television.

These figures are some of the results of a survey on "Attitudes of NonOwners of Television" made recently by Cylvania. The interest in TV represents : n increase of about $70 \%$ over that of 1945, when less than half of the families in TV areas were favorably disposed.

The survey revealed that at least 1.58 million sets will be purchased in 1949 lut that as many as 2.71 million might be sold if the industry improves its sales techniques. A part of the probable failure to attain the maximum figure is attributed to confusion over pricing, frequencies, and screen size.

While only $16 \%$ of the people in television areas had actually seen a telecast in 1945, $89 \%$ indicated they had watched the screen in the current survey, confirming the tremendous gains the medium has made. What is more (Continued on next page)

"TENN-ALIGNER" is amazingly easy to use - no long leads or connections-leaves
both hands free for
antenna manipulation

# One man TV installation now easy, quick, positive 



When more than one mon is on the in stallation the extra set of headphones plugs into the "downstairs" cabinet for two-way communications without the necessity of a separate transmission line.

THE NEW McMURDD SILVER "TENN•ALIGNER" works on the audio or video carrier, and makes it possible for one man to quickly and surely match and orientate even the most complicated antenna systems on all TV channels.

Simply place the cabinet pick-up unit near the receiver. Connect the antenna lead-in to the back plate terminals. Run a short piece of the same transmission line from the cabinet to the antenna terminals of the set. Switch the receiver to the desired channel, and tune in the test-tone, video carrier or music/speech being transmitted. No separate line is required between the set and roof positions, as the transmission line itself serves both as antenna lead-in, and dual communication link.

Clip the special headset across the transmission line connection at the antenna to actually hear the re-transmitted signal. This "upstairs" unit has been designed to allow full freedom of the hands at all times. Extra trips between roof and set are now unnecessary. Since the measurement is aural, the ratio of received signal to noise may be easily observed, and no nisleading effects can exist.

See this amazing "TENN-ALIGNER" at your favorite jobber today. Model 914 complete for one man operation is only $\$ 23.95$ net.

Special lip mike and extra head set for twoway communication $\$ 11.00$ net.

## Look to McMURDO SILVER for the NEWEST in TV Service Equipment



## TELEVISION PARTS!!

Our new catalog lists hundreds of new television items; sets, parts and accesso ries at unbelievably low prices. Write today-it's free!

## TELEVISION TRANSFORMER

Pri. 115 Volts 60 Cycles Sec. 2500 Volts @ 2 ma.: 6.3 Volts @ .6A.: 2.5 Volts @ 1.75 A

PRICE \$3.85

## MODEL MFRD-RADIO NOISE

 FILTERif it doesn't work, send it back!!
We absalutely guarantee that our Model NFRD will eliminate all line noises when properly connected to radios, television sets, short wave sets, motors, electric shavers, refrigerators, vibrators, oil burn ers, transmitters, and all other sources of interference. This unit will carry up to 12 amperes or $11 / 4 \mathrm{KW}$ of power and may be used right at the source of interference or at the radio.
Small size only $3^{\prime \prime \prime} \times 11 / 2^{\prime \prime} \times 71 / 2^{\prime \prime}$. $\quad \$ 1.95$

## Pre-Aligned TELEVISION KIT

Similar to Fornous RCA 63OTS and 830TS Circuits. Complete 12 Cha-nel Tuning. 30 RCA Tubes, including rectifiers and video. New, improved daylight viewing. Bult-in power for picture tubes, up to 16 inches. PM speaker with Choke (Better tone and volume-na huml. Special mounting bracket for 16" tube available. Simplified step-by-step instructions. 6 Full scale lithographed blueprints. All hardware and wre supplied. Exceptional Lang Range reception. All components mounted to chassis.

## $\$ 168.50$

less PICTURE TUBE
-IV cabinet to match
—Bracket to mount $12^{\prime \prime}$ tube
-Bracket to mount $15^{\prime \prime}$ or $16^{\prime \prime}$
tube
-TELEVISION COIL ASSEMBLY Consists of a set of 5 slug.tuned coils mounted on a bracket $41 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$ and which can be resonated in the frequency range 21.29 me . This unit can be disassembled readily to make up a Television stagger tuned Video I.F. Amplifier.

Our PRICE ONLY \$. 35

## IHTERCOMMUNICATION SYSTEM

A low priced system for executives, professionals or hame use. Consists of a master station and one remote. Simple to oper. ate, simple installation. Neat, rugged, beautifully finished wood cabiner, will fit anywhere. Complete with tubes-ready to operate. Ideal for use as Radio Baby Nurse.

Price $\$ 13.95$

## SPECIAL! SPECIAL!

Mammoth assortment of radio and elec. tronic parts, not less than TEN POUNDS of such items as transformers, chokes, condensers, resistors, switches, coils, wire, hardware, etc. A superbuy for experi-


Satisfaction ouaranleed on all merchandise.
All prices $\operatorname{F.O.B}$. New York City All prices F.O.B. New York City
WRITE FOR FREE CATALOGUE T6
RADIO DEALERS SUPPLY CO.
154 Greenwich St.
New York 6, N. Y.

## TUBES-TUBES



| 39 | 27 $35 / 51$ 3974 77 | 80 85 89 893 | 644 64.7 646 607 | $6 \times 5$ $125 \times$ 3525 |
| :---: | :---: | :---: | :---: | :---: |
| 014 | $5{ }^{514}$ | 665 | 748 |  |
|  | ${ }_{3}{ }^{514} 4$ | 615 617 | 788 |  |
| 41 | $0<4$ | ${ }_{6}^{6156}$ | 787 |  |
| $\stackrel{+2}{46}$ | ${ }^{6.3}$ | ${ }_{\text {Gisa }}$ | 705 |  |
| $\begin{array}{r}46 \\ 30 \\ \hline\end{array}$ |  | 6su7 | ${ }_{7} \mathbf{7} 7$ |  |
| 78 | ${ }_{6 B 7}$ | ${ }_{60} \mathbf{S 6 9}$ | $7 \mathrm{Cb7}$ | 128 |
| ${ }^{84}$ | ${ }^{0} 0.5$ | ${ }_{6}^{6817}$ | $7 \mathrm{H7}$ | 35 L |
| ${ }^{14}$ | 606 | ${ }_{6 S H 7}$ | $7 \times 7$ | ${ }_{3523}$ |
| 1LA64 | 6E5 6 |  | ${ }^{714}$ | 5085 |
| 345 | $6+6$ | 7 A 7 | $12 \mathrm{SA7}$ | 1291 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | FORTABLE |  |  |
|  |  | O.15 AMPS |  |  |
|  |  | COMPARE WITH IX mitrosins pold vir. <br>  Mita. Itestature and mill 4 411.18 .3 |  |  |

 battery eharging, motor work. automotive. industrial

 $\$ 3.95$


TELEVISION, ELECTRONIC PARTS, HIGH-FIDELITY RADIO, HAM GEAR, PUBLIC ADDRESS EQUIPMENT, PARTS AND WORKSHOP TOOLS

Write today for the 1949 LafayetteConcord catalog. A penny postcard will do the trick. You'll find pages and pages of the finest equipment at new, low prices. Use the catalog to order everything you need and save both time and money. You'll like shopping from this mammoth bargain guide.
write for your copy poday. It's freel

## LAFAYETTE-CONCORD

World's largest radio supply organization

innportant from a sales angle, $91 \%$ of the total families contained at least one member who is favorable to television.

The survey results include exhatustive breakdowns of the percentage of people who do and do not want to buy-now or in the future-and why. For instance, 4.6 million families are interested in buying, but only 2.7 million are likely to buy this year. Those who mean to delay say they will do so because they believe prices are too high, that there are not sufliciently varied programs, or that programs are not good enough.

One interesting point is that the Iargest number of potential prospects$77 \%$-earn less than $\$ 100$ a week. This, according to Sylvania, places the futufe of TV with the great middle-income or mass market. The figures should explode forever the myth that television is or could ever profitably be a luxury item.

Hadio ©hirty= Fibe Mears Ago 3nt Qernsback i)ublucatons

| HUGO GERNSBACK |  |
| :---: | :---: |
| Fournder |  |
| Mrdern Eloetries | .1908 .1913 1919 |
| Radio News | (1919 |
| Television | 1927 |
| Radio.Craft Craft | 1939 1930 |
| -ielevision N -we | 1930 1931 |
| Wireless Association of Ameriea | 1908 |



## JUNE 1915

## ELECTRICAL EXPERIMENTER

How to Build a Telegraphone, by Samuel Cohen
The Gripenberg Selenium Cell, by Samuel W'ein
A Mercury Break Wंireless Key, by H. C. Graham

A New Type Sending Helix, by J. H. Alden
Intensifying Radio Signals, by H. Secor Spectacular Discharges and Large Tesla Coils
"Electrical Dog" Follows Beam of Light
The Fessenden Brooklyn Radio Station The Kolster Radio Decremeter
A Commercial Type Helix
Variation of Strength of Radio Signals Improvements on Detectors
The Perikon-Electra Detector

## PRIVATE TV FOR JUNIOR

The major interests of the nation are of ten mirrored in the children's toys, as witness the large sales of toy guns, tanks, and airplanes during the war. The latest indication of television's widespread importance is Junior's Television, manufactured by Junior's Television Co., Inc., New York. Making use of one of the oldest forms of home entertaimment to imitate the newest, the unit consists of a lantern-slide projector and a special translucent screen. The screen is mounted in a frame on which "controls" are pictured and which, in general, looks like the front of a television receiver.

HALLICRAFTERS T-54 and 505
Insufficient picture height may be caused by low plate voltage on the 12SN7 vertical oscillator. In two cases this was traced to the 1.5 -megohm plate load resistor R 78 changing its value. Replace this resistor with a good 1.5 -megohm unit with a 1 -watt rating. Guy Naylor, Baltimore, Md.

## RCA 630TS, Crosley 307TA

High voltage failure in these and other sets with similar horizontal circuits may be caused by poor 6SN7's in the horizontal discharge circuits. Such tubes often test good in emission-type testers, but their quality may be checked more definitely by measuring the plate voltage on the tube. The normal voltage is -37 volts. (Yes, minus 37 !) If the voltage swings positive, the tube is bad.

Prescott R. Dow, Woburn, Mass.

## MAJESTIC 7P420

Frequent tube burn-out in this threeway portable can be caused by a gassy 50B5. When this set is operated on a.c., the filament voltage for the bat-tery-type tubes is supplied by the cathode current of the 50 B 5 . High cathode emission will result in abnormally high voltage across the filament string. Replace the 50B5; then check the voltage across each tube to make sure that it is normal.
E. V. Schwartz,

Lns Angeles. Calif.


How many times have you losi money because of mis-
take in figuring? Do youknow how to gure quickiy and correctly? Can you figure discounts. interest rates. taxes and all the other calculations you meet up with in your daily life?
Are you having trouble qualitying for Civil Service Exams or Armed Services Promotions, because you're not up on mathematies?
Here is the book that gives you a good background in mathematies: that takes all the irritation and drudeery out of it. You don't need to be scared of mathematies, because here's the subjeet explained without frills. with. out useless computations. Here's the book for men in radio Jobs: for business men; technicians and eraftsmen. explaining and answering everyday mathematie Droblems in easy. Yea. 1t's the words and ihustrations.
matles. It's a real home-study course in mathematics for the man who's mlert to its importance in the world today.
ELEMENTARY MATHEMATICS

- EASY - SIMplified - practical ------CONTENTS of BOOK ----1


CMAPTER ${ }^{\text {It }}$ (Geomelry), V. Powere and Invorlutlon-Roots and Evo-
CMaPTER VI. Mathematice for the


TECHNIFAX
110 N. Fiankin St., Chta o. 6. III


## SERVICE <br> Television <br> THIS MODERN

## SERVICE UNIT

TELEVISION and FM rodio present un-limited opportunity for service PROFIT . . . Your profils ond service require the best equipment . . . SER.V.IUX.

* Custom built instruments ovail-
oble for all types of service . . . or,
Unit con be supplied with blonk
panel.
Write for bulletin D
 391h ond Buchonon Ave.
GRAND RAPIDS, MICH.



## $5\left[\frac{5}{5}\right.$ RADIONIC

## Fouse of Radica and Teleutsion Buys

## TV RECETVER The famous rCA 630 TS design


TV ANTEDMA hi-Lo treq. 2 dipoles with re


1
TMANETORNLER RCA model. 400 V © 200 ma

splazzer Cenuine RCA, 10 watt. $12^{2 \prime}$ speaker. Powerful Annico $V$ magnet. 3.2 ohm
voice coll. New. Beautiul desigh.... $\$ 3.95$

## TUE ${ }^{2}$ Standard brands up to $80 \%$ off. Send for list

## RADIONIC

## Trioune Theater Eatrance

170L Namase 8treet it New York 7, N. Y. WOrth S-0421 it Open dally 9 to 6--Saturday 9-5


## - $\$ 39$ PHONO AMPLIFIER



## AIRBORNE SALES CO., INC. curvonit.



Iraul Wrare has been elected head of the Electronics Parts Division, Allen B. Du Mont Laboratories, Inc., of Passaic and Clifton, N. J., announces.

While associated with P. R. Mallory \& Co. as consulting engineer (1935-39), Ware developed and patented a new method of inductance tuning which became the Mallory Inductuner, later incorporated in the Du Mont Inputuner
 under the Mallory-Ware patents. From 1925 to 1935, Ware was consultant for Splitdorf-Bethlehem, Sonora Phonograph, R. E. Thompson, and also for Monmouth Memorial Hospital, developing for the latter a hospital paging system. He has also engaged in the design and manufacture of radio sets for Macy's, Bamberger's, John D. Williams Export, and others.

Dr. F. Stanley Atchison has been appointed chief of the Missile Intelligence Section of the National Bureau of Standards, where he will investigate intelligence systems for guided missiles. Dr. Atchison has worked in nuclear physics, in design of radio proximity fuzes for bombs, rockets, and mortars, and in the design of electronic systems for guided-missile control at the $\mathrm{Na}-$ tional Bureau of Standards. In connection with the proximity fuze work, he was technical advisor to the Air Force in the Pacific theater during their first use of proximity-fuze bombs in the invasion of Iwo Jima.

Robert C. Tait, Pittsburgh banker, formerly of Rochester, is new president of the Stromberg-Carlson Company, Rochester, N. Y. He succeeds Dr. Ray H. Manson, president since 1945.

Roy Boscow has been named general sales manager of the Magnavox Company, Fort Wayne, Ind.

Dr. Paul Wang has joined the staff of the X-Ray Laboratory of the National Bureau of Standards, where he will do research in X-rays and nuclear physics, particularly betatron and high-voltage equipment. His present investigations include the design and development of a new type of ionization measurement equipment, X-ray-dosage research, and experimental verification of modern theories of high-energy radiation.

John W. Utecht has been appointed to the staff of the National Bureau of Standards, where he will be concerned with development of new electronic ordnance devices and related equipment in the Ordnance Engineering Laboratory.
Mr. Utecht has done research on VT proximity fuzes for projectiles, rockets, and bombs. He has also conducted investigations leading to improved design and development of solenoids, shadedpole motors, gear trains, and turbine wheels and blades.


##  <br> 


 thanks cume it evntunually.



2.5 yearg experience nacked in 83 .page book by Gale.
 hatne them out of calimets and kive estimatex HAptlo
 customers et"tckis.

HOW TO BUILD A MDNEV.MAKING RADIO MAIL ORDER
 Hhsinsk. Start spare or full tume. How to start with
 urdurs: how te your mecombly cosht chicks. momes.

 vou from North. Finct. Shouth, and Weat.




MERIT PRODUCTS, DEPT. RE.
216-32 132 Avenue Springifield Gardens 13. N. Y

t The
(no high frequency head needed)
t Moximum efficiency on All chonnels
t 4 to I front to back ratio on all frequencies TELREX Conical Antennas provide the highest possible goin to the receiver-since the full strength of the signal (as received ot the antennal is carried to the set with negligible loss-and with o definite reduction in the sirength of ghosts or refections.


TELREX Conical Antennas ore built better. Nate this center clomp which provides sucho strong grip over better than $3^{\prime \prime}$ of each rod surface. It is baih o mechon. ical support and electricoi contact secand to none. And is only one of the feotures which result in improved ond stoodier pictures - from o bette ontenno - o TELREX

C 1949 , Telrex linc
OF MODELS
AVAILABLE IN A VARIETY OF MODELS TO MEET ANY NEED

1 your dis

## TELREX,INC. <br> ASBURY PARK 7, NIW JERSEY

Ceorge A. Ellinger, chief of the Optical Metallurgy Laboratory of the Nitional Burean of Standards. Dr. Charles Snowden l'iggot. consultent to the Research and Development Board of the National Dejense' Establishment, and Dr. Robrrt Simha, consultant to the Division of Organic and Fibrous Materials of the National Bureau of Standards have been elected to honorary membership by the Society of Sigma Xi, national honorary scientific fraternity,

Lloyd Dopkins has become manager of direct accounts for Crosley Corporation with headquarters in Crosley's Radio City offices in New York. His activities are to be nation-wide in scope. Prior to joining Crosley, Dopkins was vice-president in charge of sales of Majestic Radio and Television Corporation. Active in the radio industry since 1923, he was with Crosley as a regional sales manager from 1939 to 1942.


Dr. John R. Pellant has been appointed to the staff of the National Bureare of Standards, where he will do research in the Cryogenics Laboratory. Dr. Pellam has conducted studies in ultrasonics and low temperature, including sound diffraction, absorbing materials, ultrasonic velocity and absorption, and liquid helium. In his present assignment, he will continue his investigation of the properties of liquid helium II.

William M. Piper has been appointed to the staff of the National Burcan of Strindards, where he will do research in the Ordnance Mechanics Laboratory of the Electronics Division.

Mr. Piper has designed and built electronic test equipment, including wide-range video amplifiers and highfidelity public-address systems.

Charles A. Mabry, formerly Director of Research for the Bristol Company, has been appointed to the staff of the $N a$ tional Bureau of Standards, where he will supervise electronic miniaturization circuits and processes as assistant chief of the Engineering Electronics Laboratory. Mr. Mabey has done research on ultra-shortwave radio equipnent, humidity measurement, industrial instruments, and automatic control apparatus.
C. S. Franklin has been awarded the Faraday medal for 1949 by the (British) Institution of Radio Engineers. The medal was given for his distinguished work in radio engineering, particularly in the development of the beam antenna and other devices which made high-frequency communication possible over long distances.

Mr. Franklin, whose name is best known in America as the originator of the Franklin oscillator, is a real pioneer of radio, having been one of the first group of engineers who joined the Marconi Company 50 years ago.


A new and highly important book: (iives a complete understand ing of working brinciples behind oscilloscope operation, and how to use the instrument effectively. Clearly written with a single purpose-to help you use and understand the oscilloscope. No man servicing television recejvers can afford to he without this knowl. edge. Invaluable far anyone who uses the oscilloscope.

## ALL ANGLES COVERED



## IMPROVES ENLARGER

## Dear Editor

I read Fips' article on the magnetic TV enlarger (April issue) with some interest. As you say, it is impossible to draw electrons through giass, as would be necessary for this unit to work. Fowever, there is a solution. When the face of the eathode-ray tube is made of Electro-crystalite (a material whose nature I am not at liberty to reveal. but which will release electrons on the outside in direct proportion to those striking it on the inside), it becomes quite eass: to enlarge images in this manner, Furthermore, if we phace a large, strong magnet in frout of the screen, we can puil the image right out into a three-dimensional picture. There is one difficulty here, however. This makes it necessary to have complete shielding over the whole unit, and of course this seals the picture up inside a box where you can't see it. As soon as 1 lick this problem, I will let you know.

## milly R. Pogue, <br> The Dalles, Oreg.

(A number of elever suggestions have been made on our April Fool story. This. we believe, is the best oneEditor)

## MORE TV DX

Dear Editor:
I noticed a letter from Donald Snith of Northfield, Mass., about television dx reception at 100 miles. I an 150 miles from Louisville, 200 miles from Cineinnati, and 240 miles from Atlanta and I get excellent reception from these cities about $50 \%$ of the time. I find that one good booster gives less snow and a clearer pieture tan two or three.
It's proper matching of the antenna that does the job. U'se of a shorting stub matched to a channel is better. than adding boosters
B. Waters.

Oncidu, Tenn

## NIX ON COMPULSION

Dear Editor:
I disarere with the men who say that all radio technicians should be licensed. The real reason for such an attitude is to reduce competition.

This is America, the land of opportunity, the better mousetrap, ete. Those who do grod work have nothing to fear from less competent pivals. It is too had that well meaning "gimmick" investigators have spread the idea that technicians are crooks; it makes lawmakers more willing to listen to licensing propositions.
If Johnny Neighbor can fix his friends' radios it is all right with me. I'll get his failuses. I lenmed that way. I built my first radio when I was 13, back in 1926. It got one station and Dad was as proud as a peacock. I've never been threatened with jail because 1 didn't know all the answers.

I believe voluntary associations requiring certain standards of menbership are all right. But nix on the compusion stuff!
R. N. Beard.

Hoyfork, Calif.

## BATTERY ELIMINATOR

Dear Editor
The improvements recommended for an A-battery eliminator on page 50 of the January issue are already incorporated in my home-made model, but I think I have gone the author one better.

I included a reversing switch in the d.c. output leads. Different car radios have different 6 -volt polarities to correspond with the differences in automobile electrical systems. Rather than fool around and reverse leads, I simply flip the polarity switch to the position at which the radio will play.

> Henry C. Szymanski, Buffalo, N. Y.

## HELP FOR FOREIGN RADIOMEN

The following letter was addressed to James R. Langham, author of many Radio-Electronics articles on sound: Dear Mr. Langham:

During the Japanese occupation all my books were destroyed-possession of even an English dictionary might have cost me my life. For that reason my knowledge of radio is like that of a beginner. I would like to make a transformer, following your article ["Rolling Our Own Output Transformer"] in the December issue of Radio-Electronics, but I do not have a wire table or enough knowledge to make the calculations. Would you the kind enough to give me some detailed instructions?

Not a cent can be sent out of the country to buy radio parts-not even to get educational books. It took me over two years even to secure a subscription to Radio-Electronics, and that I got through the kindness of an American company which does business with my employers.

Lai Chee Choy,
Pontianak, West Borneo
Mr. Langham not only answered Mr. Choy's queries but sent the letter to us with a notation that many foreign radiomen are in this same predicament. Could we do anything to help them?
While many countries restrict the export of cash, most will allow merchandise to be sent out. What is more natural, then, than a swap?
Now here is our offer: Radio-ElecTRONICS will run-without chargesmall classified-type advertisements for


Swojeated by Anthony Munnich, Budapest, Hungary "Call a serviceman to repair the setthere are absolutely no ghost images"
foreign radiomen living in exchangerestricted countries who need radio parts or books and who have something they wish to swap for them. American radiomen may then correspond with the advertisers.

Radio-Electronics cannot act as in-termediary-hut it can and will print these free advertisements. They must come from countries from which money may not be exported. All ads must be under 40 words in length. Ads may be re-worded or edited. State your needs exactly and give your full name and mailing address.

Note well that almost all countries (including the U.S.) have export and import duties and regulations. Both correspondents should check up on these before sending anything.

## "BRAIN" HAS ANCESTORS

## Dear Editor

Your March Radio-Eiectronics is really sizzling with a great collection of fine articles by experts in their fields and it is a pleasure to send you my congratulations.

Of particular interest to me were the articles on "The Electronic Brain" by W. I. Ashhy, M.A., M.D., and the story on the "President's Transmitter."

The "Electronic Brain" is very remindful of the theories of our old and far-seeing friend Nikola Tesla, and of the eminent biologist Jacques Loeb, on the Mechanistic Conception of Life. (Contimued on page 95)


The famous ACA-100 Amplifier - self-balancing. drift-correcting, direct-coupled amplifier - the most satisfying musical amplifier ever designed. Based on early Loftin. White circuits, perfected by A. C. Shaney in 1936, and now brought to a standard of quality far above that of any corresponding amplifier. Exclusive features include:

PushoPell Triede Expander.

- Won frequeney-diseriminating noise suppressor.
- Push-pull hl and lo treq. variable equalizers.

If you are satisfied with nothing less than the best. write soday for free technical liferature.

Special models for all mognetic cartridges.


Ampufier Corp. of America
398-10 Eiroadway New York 13, N, Y,

## REFRIGERATION

 SERVICE MANUAL 1935 EDITION

Radio Electranies, 25 W. Broadway, N.Y.7, N.Y.

## T.A.C. DOES IT First AGAIN! All Major Components Already Mounted on Chassis including pre-wired "YIVIDeo" I. F. strip (Pat. Pend.) and pre-wired front end. Only 13 tubes remain to be wired! No technical knowledge required!

| NEW! SIMPLIFIED INSTRUCTIONS! COMPLETE SERVICE DATA! The most elabarately detailed instructions in tele. vision even a laymon can follow. | CABINETSANDSTANDSIN BLOND AND WALNUT AVAIL. ABLE AT REASONABLE PRICES. WRITE FOR LITERATURE. |
| :---: | :---: |

PEETE Cumplete eomprehensive Service Data on the T. A.C. exclusive "Vivideo" i3-tube features $51 / 2$ stages of to thoroughly understand and seryice this unique high.gain 1 . . Strip which tivity, stability, "ViviDoo' can't be beat: Write for FREE booklet SB. 1 or ask. your local jobber for it,

NEW LOW PRICES!

|  <br>  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
| Model Fiors-Carmplete wuth | \$169.50 Dealer's ${ }^{\text {cel }}$ - |
|  | \$203.50 <br> Tube |
|  | $\$ 23125$ |
|  |  |





* Write for Catalag on our Complete Line of TV Replacement omponentsl

Prices subject to chonge without notice.
540 BUSHWICK AVE. BROOKLYN $6, N \cdot \mathbf{N}$.
T.A.C. CHAMPION MODELS. Identiral extra-valut
 HuMont duputuner fur comt
 $\$ 209.50$ driler"s Nelo \$243.75

Madet Fisic-Complete will $\$ 357.35$ Icaler's Nomo
$\$ 566.75$


[^9]RADIO SCHOOL DIRECTORY


## LEARN RADIO!

PlarPalkE FOR A GOOD JuB! COMMERCIAL OPERATOR (CODE) RADIO SERVICEMAN
TELEVISION SERVICING
BROADCAST ENGINEER
Veterans get $\$ 130.00$ Equipment
SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 Eutaw Place, Dept. C, Baltimore 17. Md.
( $)$ RADIO ENGINEERIMG
FM-Television-Broadcast Iootice Radio Marine Radlo Ratio Serriring: Aria. tion Hadio and Citra High motnle abilications. tronics. Modern laboratories and eunipinivitu. Old es
 campus. Sumall classes. entrollutents for catalog.

Approved for Veterans
VALPARAISO TECHNICAL INSTITUTE Dept. C VALPARAISO. INDIANA


## JOBS IN TELEVISION

YOUNG MEN 16 TO 60
There is a Job Opening for Every Qualified Trained Television Technician
WE CAN TRAIN YOU Free Employment Service Visit Our Madern Laboratories and Class Rooms approved under g.i. bill of rights
AMERICAN RADIO INSTITUTE New York Buffalo, N. Y. Syracuse, N. Y. 101 W. 63 St. 640 Main st. 131 Shonnard 54 .

##  -

 An Tenewislon dains momentum, rapldly, nlelans carecrs will a futhre in industryTrain at an Institute that pioneered in TELEVISION TRAINING since 1938. Marning, Afternom or Erening Sesslons in der kuldance of exprris. covertng all phases Mif Hadilio Frqquency Modulation. Tele-
Yishn. Licersed by N. Y State. Free ENROLL NOW FOR NEW CLASSES
RADIO-TELEVISION INSTITUTE
480 Lexington Ave., N.Y. 17 (46th St.) Plaza $\mathbf{3 - 4 5 8 5} 2$ blocks from Grand Central

## Make Your Career RADIO and TV

 In no fither induine hatz the thiture hold hrikhorer nollo techmians. It wall bas sonn 10 insuesticate thee




Don Martin School of Radio Arts 1655 No. Cherokee, Hollywood, Calii. HUdson 23281

## CORRESPONDENCE COURSES IN <br> RADIO m ELECTRICAL ENGINEERING

 ELECTRICAL ENGINEERING Get good graso of
 wark. Tralne you to be super-bervice man, regiploculim.






## RADIO and TELEVISION

Thorough Training in All Technical Phases
APPROVED FOR VETERANS
days-evenings
RCA GRADUATES ARE IN DEMAND
IRCA INSTITLTES. Inc.
A Service of Radio Corporation of America 350 WEST 4TH STREET NEW YORK 14. N. Y.


अETDTT



 CRIBE. WHIE COER FIWE: ROOK

## EleCTRICAL TRAINNG

Intensive 82 weeks residence course in funda mentals of industrial electrical engineering, inmentas of industrial electrical engineering, including radio, electronics. Prepares for technician, 56 th year. Enter Sept. 6, Jan. 9. Catalog.

ELECTRICAL SCHOOL 7SAE TAKOMA AVENUE
WASHINQTON I2. D.


RADIO COURSES Preparatary Mathematics, Serv. ice, Broadeast, Television. Marine Operating. Aeronautical, Frequency Modulation, Radar.
Classes now samana? lea ine summer term June isi Entance enam. May If
Veterans. Literature.
COMMERGIAL RADIO INSTITUTE
38 Wost Biddife sireat ${ }^{1920}$ (1)

Tesla felt this strongly; Loeb studied life reactions to external stimuli and found definite proof, as disclosed in his 1918 book, "Forced Movements, Trophisms, and Animal Conduct." These theories and tests on lower animals prove conclusively that many of man's actions are merely the result of his reactions to external or internal stimuli.
A moth flies into a flame, guided there automatically and without volition by internal heat- or light-sensitive organs; a bat flies, visionless, by reaction to radar-like, supersonic squeaks it itself emits; homing pigeons and bird migrations have some sort of direction-sensing apparatus, perhaps magnetic, as suggested by some; even plant life, such as the sunflowers, turn with the sun. Man has made proximity fuses which "tell" the flying shell when to explode; gun pointers which "tell" the gun when and where to fire; automatic camera irises, which, like the human eye, regulate the exposure to suit the light intersity on the subject ; electronic "computing brains" of great complexity, and many other and similar reactors to stimuli of one sort or another which set up definite actions in the mechanisms they control. Work is progressing on target-seeking guided missiles which will not only take the right course and adjust themselves to course-deviating
forces, but which will seek, identify, and destroy a given target as well as if they had human pilots. Many years ago (1911) I built for John Hays Hammand, Jr., an "electric dog" which would follow a light anywhere it went. This principle has been applied to photographic telescopes for keeping them accurately "on" a given celestial object, irrespective of varying atmospheric refraction. Dr. Ashby goes a long step further in his "homeostat" by endowing it with power to adapt itself and its stimuli reactions to changing environmental conditions.

> Benjamin F. Miessner, Morristoun, N. J.
(Mr. Miessner is one of the pioneer inventors in the radio field and holds more than 100 patents on aircraft radio, phonography, directional microphones, electronic music instruments and other radio and electronic devices.-Editor)

## WOOED BUT NOT WON

## Dear Editor:

I have been a reader of your magazines since the "cat-whisker" days of radio and have always enjoyed your editorials. But the latest one, Mamufacturers 1 'oo Servicemen, has me wondering.
Radio trouble-shooting is my hobby; I do not compete with established concerns and don't have to. I believe I have established a rather enviable reputation as a "radio expert" and any work that I do is on jobs turned out by repair firms but still for some reason or other not satisfactory to the customer. This brings me up to the subject of your editorial:

For many years I have used and recommended Philco products. I know my say-so has resulted in the sale of many of their sets without any financial gain on my part, nor was I looking for any. Last year. 1948, a number of Philcos were purchased by friends on my recommendation and reports to date show three of the jobs very unsatisfactory. For instance, the Philco 5-tube a.c.-d.c. radio-phonograph combination. Examination of this set disclosed the tuningdial knob broken off. This control and the volume control are bakelite; there is no support whatever, and these knobs just pop off. Also the least downward pressure on the volume-control knob shorts out the set. Getting into the chassis, I found a blob of solder covering about half of the windings of the oscillator coil. Rotten workmanship, to say the least, and it seems to me inspections must be lax. Try and replace these knobs and you will find the distributor doesn't have any. Simply because I have always had a high regard for Philco, I wrote the factory, told them of these incidents. They didn't even bother acknowledging my letter. If this outfit is so high and mighty and don't give a hoot about my reputation suffering in recommending their products, they can go and jump in the lake.
Apparently Philco Corporation is not "wooing servicemen."

> J. E. Epperson,
> University City, Mo.


Silver Mica Button Condensers

$\$ 7.50$ per 100 (all one type)

| 318-3536 | (G) | 20 | mm? | M 1 -3505 | (c) |  | mmp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31-3701 | (1) | 20 | mmi | MA-3709 | (1) | 500 | mmp |
| M1. 3531 | (F) | 55 | mmp | M A-3.06 | (13) | 500 | mmif |
| MA 3503 | (1) | IS | mmit | MA-3il0 | (1) | 500 | mm? |
| Ma-333: | (11) | 75 | menf | MA-3502 | (D) | 500 | mins |
| MA-3504 | (1) | 200 | tum? | MA-3507 | (E) | 50 | $m \mathrm{mf}$ |
| 31A-3117 | ( $\mathrm{F}^{\prime}$ ) | 210 | mm | M. $\mathrm{S}^{\text {-3518 }}$ | (A) | 2001 | mmt |

\#18 2-conductor Wire \& Drum
 ers. ete. Fuli 175 feet of highest qirality wire with

tounh, weatier-resistant Insulation. complete with | $\begin{array}{l}\text { lanily ditum for spooling u'lre lor storage. Limlted } \\ \text { ithantils } \\ \$ 2.39\end{array}$ |
| :--- |






## INTERCOM TRANSFORMER SET

One 1 ransformer to matrh volce coll to grid, another
for $; 01, f 1$ and simllar output fulbes. Winth of theae tine Tof wop, and simlar output tulbes. Both of these tine lutton sutich for less than walue of one transformer alone! These are small. strap momilng transformers ONLY 98c FOR ALL THREE UNITSI

## GRILLE CLOTH

Neser, before at our low price! lilgheat
hualis, Rollen-tone grille clotli, styled to
harmonize ufth all cablinet designs. (ien-
ha hualts, Roldeni-tone Rrile elotli, stsled to
hiamolize ufth all cablinet designs. (ien- per yard
erous 50 widh.


## ORDER FROM THIS AD!

Sind 20. denosit with order. Pay balance plus nostare tes leliting titt your name on Mhi-America's select
nualing list and get first rrack at latest,

$\qquad$
MID*AMERICA CO. Inc.


## WhERE RADIOMEN MEET, EAT and SLEEP



Atlontic City's Hotel of Distinction The Ideol Hotel for Rest and Relaxation Beautiful Rooms - Solt Water Baths - Gloss inclosed Sun Porches - Open Sun Decks atop - Delightful Cuisine - Garage on premises. - Moderate Rote Schedule.

Exclusive Pennsylvania Ave. and Boardwalk

## For Quality Pictures-

## 

For rich contrast, freedom from ion stain, long life and dependability there is no better tube. Limited quantity available now. Write or phone immediately as shortages are likely to recur.

## ZETKA TELEVISION TUBES, INC.

131 Getty Avenue, C!ifton, N. J.
Phone: Passaic 2-9095

## SPECAL ${ }^{\text {s }} 159$ 3 WAY PORTABLE

## NUi A KIT b. a factory finished TOP QUALITY PRODUCT. Operates an 110.220 V.AC.DC and Battery. 4 miniature tubes plus selenium rectifier 4" Almico 5 Speaker. Uses $1.671 / 2 \mathrm{~V}$. and $1.41 / 2 \vee$ Battery. Total weight $61 / 2$ bs. Size: $9^{\prime \prime} \times 43 / 4^{\prime \prime} \times 61 / 2^{\prime \prime}$ MONEY BACK GUARANTEE. <br> Rush your order today. $25 \%$ with order, Balance C.O.D. <br> Kit of Batteries for above <br> $\$ 1.95$ <br> SALCO ELEGT, DIST. 110 Marcy Ave. Brooklyn II M. Y.

Aerovar Corporation
Airborn Sales CompanyAllied Radio CorporationAmerican Television \& Radio CompanyAmplifier Corporation of AmericoBroots Radio Distributing Company14
Buffalo Rodio Supply7. 79
Copital Radio Engineering Institute81

## Ciner, Inc.

Cleveland Institute of Radio
Communications Equipment Compony
Coyne Electrical School
DeForest's Training, Inc.
Electronic Measurements Company Electro.Technical Industries
Electro-Steel Products, Inc
Fair Radio Soles
Federal Teleohone $\boldsymbol{A}^{\text {A }}$ Telegraph Co.
Federated Purchaser
G \& R Radio Parts Service
Generol Electronic Distributing Campany General Test Equipment Company Gernsback Librory Series Greylock Electronic Supply Company Heath Company Heath Company
Hudson Specialties
Instructograph Company Lafayette-Concord
James B. Lansing Sound, Inc.
Leotone Radio Corporation
McGee Radio Company McMurdo Silver Compony Manuel Klein Industries Merit Products
Mid-America Company
Midwest Radio
Miles Reproducer
Mohawk Electronics Company
Mu-ray Hill Books, Inc.
Nationol Radio Institute
Nat'onal Schools
New-rt Electric Company
Opad-Green Company
Opdortunity Adlets
Pine Wotch Compony
Precision Apparatus Company Progressive Electronics Company Quim Nichols Company
Radio City Produets Compony, Inc. Radio Dealers Supply
Radio Mail Orders
Rad'onic Equipirent Company Radio Supply \& Engineering Company

RADIO SCHOOL DIRECTORY (Poges 94-95)

American Rodio Institute
Baltimore Technical Institute Bliss Electrical Schoo
Candler System Company
Commercial Radio Institute
Don Martin Schaol of Radio Arts
Hollywood Sound Institute
Lincoln Engineering School
Milwoukee School of Enginetring
RCA Institutes
Radio Television Instifute
Valparaiso Technical Institute

Salco Electronic Distributing Co. Howard W. Sams \& Company. Inc. Servelux Manufacturing Co.
Sylvania Electric Products
Inside Back Cover
In
Senco Radio. Inc
Hotel Strand
Spartan Schoal of Aeronoutics
Sprague Praducts Company
Technifox
Television Assembly Company
Telrex, Inc.
Transvision
Transvision
Universal General Corporation
United Surplus Materials
Wells Sales, Inc.
Wholesale Radio Parts Company, Inc.
Zetka Television Tubes

COYNE ELECTRICAL TROUBLE SHOOTING MANUAL, prepared and published by the Educational Book Publishing Division-Coyne Electrical and Radia School, Chicazo. $9 \times 11$ inches, 626 pares plus 7 -page index. Price $\$ 6.95$.
A parallel work to the familiar radio trouble shooters' handbooks, this large volume contains circuit diagrams of more than 600 pieces of electrical equipment of all types, data and specifications where useful, as well as trouble shooting, maintenance, and repair information.
The subjects covered include basic principles of electricity, measurement and tests, transformers, motors, controls, generators and converters, and electronics. Refrigeration is dealt with under controls.

Since considerable general information as well as specific trouble-shooting tips is included in each section, the book may be interesting to the radioman who though not himself a regular electrical worker, may need information on the principles or details of certain electrical equipment from time to time. The general reader will also find the tables, symbol charts, and illustrative diagrams useful. The drawings are especially large and clear, and many of them cover a full page.

SURPLUS CIRCUIT IIAGRAMS, published by Troup Engineering Co., Lang Beach, Calif.

Circuit diagrams of the R-89$\mathrm{A} / \mathrm{ARN}-5 \mathrm{~A}, \quad \mathrm{AN} / \mathrm{ARC}-4, \quad \mathrm{BC}-733-\mathrm{A}$, BC-221-Q, Collins MBF, BC-1206-C, AN/APN-1, Navy ARB (CRV 46151), BC-412, R-9/APN-4, ID-6/APN-4, AN/-ARC-5 receivers and transmitters (including the v.h.f. transmitter), $\mathrm{BC}-645$, SCR-269-G, T-67/ARC3, R-77/ARC-3, and R-65/APN-9 are given. A simplified schematic of the ARB receiver and conversion data on the $B C-412$ radar oscilloscope and the BC-645 are also included. (The popular SCR-274-N diagrams are handled in another book by the same publisher.)

Most of the diagrams are reprinted from technical manuals and in some cases they were reduced considerably to fit the pages of the book. Consequently, several of the diagrams are too small to be of great practical value unless they are enlarged. In four circuits, the components are coded and no parts values are supplied. It happens that these diagrams are large and clear and can be used for circuit tracing. -R.F.S.

CYBERNETICS, or Control and Communication in the Animal and the Machine, by Norbert Wew York. $6 \times 9$ inches. 194 pakes. Price $\$ 3.00$.
Cybernetics is a book which may be the first publication of a new and very important science. Derived from the Greek Kybernetes (a steersman, Latin gubernator, English governor), it refers to the study of feedback mechanisms, such as for example the governor of a steam engine, the negative feedback in a radio circuit, or the complex and little-understood mechanisms by which human body and brain unite to perform any action.
Electronic scientists developing feedback control mechanisms have been increasingly impressed by the analogy between their apparatus and the human brain and nervous system. At the same time advanced students of the brain and nerves discovered essential parallels between the action of the brain and nervous system and the feedback action of certain electronic apparatusa parallelism so exact that one worker in the field stated that he found it easier to discuss the nervous system with electronic engineers than with doctors. A number of meetings between representatives of the two groups resulted in laying down plans for common and organized study. The book explains the subject, outlines the problems and reports on progress to date.



## vacuum tube voltmeter kit

 lantral sarsitiok refolizues \$23.95




7-10" TELEVISION KITS
 " Kit............... $\$ 59.50$





| TV SWEEP GENERATOR KIT <br>  | \$28.95 |
| :---: | :---: |
| SIGNAL GENERATOR KIT <br> 1.50 KC .414 Mc . Murdamental. <br> as Mc. 100 Me. Harmance. | \$18.95 |
| RF SIGNAL TRACER PRO |  |

ECONOMY AMPLIFIER KIT ............... $\mathbf{S 5}$

5 TUBE AC-DC SUPERHET KIT .......... $\$ 14.25$ Complete with tulkeg and ceninet.
6 TUBE AC-DC 2-BAND SUPERHET KIT. $\$ 17.45$ Fritiv: thook on Amateur kiadio linilding
7 TUBE AC-DC FM RECEIVER KIT. . . . . $\$ 29.95$ Firkta Television and FM simpicing Notes
4 TUBE SUPERHET PORTABLE KIT, ... $\$ 12.95$

 AUTOMATIC BIKE RADIO
Can be mounted on a bl clice, or carried as a per shat partable radio. sup. Dlled with all filevele
motuting hurdwre molnting hardware and
telescupli a antenna. Antithert feature $\$ \mathbf{1 7 . 4 7}$

AUTOMATIC CAR RADIO 6 tubes strperhet. Three gank
condenser, fits all cars-easi th stallation - mounting brackets.



ALL MERCHANOISE SHIPPEO
Deduet $2 \%$ if full FAy 'EW ronk
depoeit required on COD ordercompanies order. $25 \%$
Write for turther intormaters. coneerning
PROGRESSIVE ELECTRONICS CO.
Dept. RE-26
497 Union Avenue
Brooklyn 11, New York

## RELAYS FOREVERYPURPOSE Over a Million in Stock!

Whether you require large quantities of relays for production runs or single units for laboratory or amateur work, Wells can make immediate delivery and save you a substantial part of the cost.
Our capable engineering staff is prepared to offer assistance in the selection of correct types to suit your exact requirements.

Each relay is brand new, standard make, inspected, individually boxed and fully guaranteed.

The following list represents only a tiny portion of our relay stock. Write or wire us for information on


## FOR EVERY RADIO SERVICEMAN!

## The new Sylvania FM-AM Signal Generator Type 216

Supplies all signals necessary for complete stage-by-stage alignment of AM and FM receivers.

## Frequency Coverage:

80 kc to $60 \mathrm{mc} A M$ and 80 kc to 120 mc FM, continuously variable in seven bands on fundamental frequencies. Useful AM and FM hormonics to 240 mc .

For FM service:
$\pm 350 \mathrm{kc}$ Sweep: up to 120 mc with 60 cps modulation.
$\pm 75 \mathrm{kc}$ Sweep: up to 120 mc with 400 cps modulation.

In addition, sawtooth external modulation may be used.

For AM service:
$\pm 15 \mathrm{kc}$ Sweep up to 61 mc with 60 cps modulation.
0 to $100 \%$ Modulated $A M$ with 400 eps modulation.
In addition, external modulotion may be used.
Check these Syivania features! They're "musts" for complete FM and $A M$ servicing:

AM modulation: 0 to $100 \%$, continuously variable.
Accurate calibration: $1 / 2$ of $1 \%$.

High rf output: 1 volt on all ranges
True rf meter for constant reference level.
Both step-by-step and smooth attenuator out put controls.
Regulated power supply.
Oscilloscope synchronizing voltage output.
Crystal check point circuit.
Multiple shielding and filtered for minimum leakage.
Heterodyne detector for frequency comparison.
Mar-resistant, pearl-gray crackle finish boked on a treated steel case.

electronic oevices; radio tubes: cathode ray tubes; fludrescent lamps, fixtures, wiring devices, sign tubing; light bulbs; photolamps


How would you solder a wire to a crystal? 'This must be done for most of those wafer-thin plates of quartz used in electrical circuits. They play a big part in the myriad-channel telephone system that utilizes coaxial cables.

This is how Bell Laboratories scientists solved the froblem: A spot of paste containing silver is deposited on the crystal and bonded to it by oven heat. The crystal is then vapor-plated with a thin layer of silver. Then a fine wire is soldered to the spot by a concentrated blast of hot air. The result
is a rugged electrical connection to the surface of the crystal which does not interfere with its vibrations.

Sealed in glass tubes, the crystals are precise and reliable performers in the telephone system. Each is a crystal gate to a voiceway, separating four conversation from the hundreds of others which may be using a pair of coaxial conductors, at the same time.

This spot of paste, this tiny wire. this puff of air are among the tremendous trifles which concern Bell Telephone Laboratories in finding new ways to improve your telephone service.

BELL TELEPHONE LABORATORIES
EXPLORING AND INVENTING, DEVISING AND PERFECTING, FOR CONTINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE



[^0]:    RADIO-ELECTRONICS.
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

    Editorial and Executive Offices:
    25 West Braodway, New Yark 7, N, Y
    AUDIT BUMEAU OF CIRCULATION

[^1]:    CAPITOL RADIO ENGINEERING INSTITUTE
    16th \& Park Road, H. W., Dept. 146-A. Washington 10, D. C.
    Gentlemen: Please send your free booklet. "Your Future in the New World of Electronies." together with full details of your New World of Electronies, together with full details of your
    homestudy training. I an attaching a brief resume of my experience, education and jresent position.
    Check ficld of greafcet interest:
    $\square$ PRACTICAL TELEVISION ENGINEERING
    $\square$ PRACTICAL RADID ENGINEERING $\square$ TELEVISIOM, FM \& ADVANCED AM DERONAUTICAL RADIO ENGINEER-

    DBROADCAST RADIO ENGINEERING (AM, FM, TV)
    $\qquad$
    $\square$ ADYANCED ELECTROMICS COMmUHICations
    R RADIO.ELECTROMICS IN INDUSTRY NAME
    STREET.
    CITY

[^2]:    * Chief of staff. Panoramic Rescarch Laboratory and Observatory, Phoenix, Arizona

[^3]:    * From a forthcoming book: Reference Guide For Television Antennas.
    $\ddagger$ Television Instructors-Technical Institute. Temple University.

[^4]:    - Technical Institute. Temple University.

[^5]:    - Finniah rable co.. Il.lningforn, Finland

[^6]:    MATERIALS FOR AMPLIFIER
    Resistors: 1-6,200, 4-100.000, 3-270.000, 4-470.000 ohms. $1 / 7$ watt: $3-1.200,3-47.000$ ohms. I watt: 210,00000 : 500000 - 200 , 1-5.00 ohms. 10 watts hms, 0,2 , 12,000 ohms (Maliory ohms, potentiometer tapped at 12,000 ohms (Mallory TRP617).
    Capacitors: $1-20 \mu f, 25$ volts, electrolytic; $1-50 \mu f$ 50 volts, electrolytic: 3-8 $\mu$, 450 volts, electrolytic $1-.0002,1-.002,1-.02,3-05,6-0.1 .1-0.5$. $1-1.5$ uf. 600 volts, paper: $2-8 \mathrm{\mu f}, 600$ volts. electrolytic: 1-. 006 uf, 1,600 volts, vibrator buffer.
    Transformers and choke: 1 -power transformer (Halldorson 5500 or Thordarson T22R24): 1—output transformer, 6,600 ohms to multitap secondary $1-8$-h, 160 -ma filter choke.
    Tubes: 2-6L6. 2-6N7, 2-6SF5, 2-6X5.GT.
    Miscellaneous: 1-3-ampere, $2-1 / 4$-ampere fuse os. semblies; 2-s.p.s.t. toggle switches, at least one with 30 -ampere contacts; 8 -octol tube sockets; chassis-mounting plug. 2-9.Pin female cablerend receptacles; chassis; case; necessary connectors and hardware.

[^7]:    Dept. 156-A, $16^{\text {th }}$ \& Park Rd., N. W., Wash. 10, D. C.
    Branch Offices: New York (7) 170 Eroadway - San Franclsco (2) 760 Market St.

[^8]:    \$3.00 FOR CARTOON IDEAS RADIO-CRAFT prints several radio cartoons every month. Readers are invited to contribute humorous radio ideas is not necessary that you draw a sketch. unless you wish.

[^9]:    Model P. 520 . . . 520 Sq. In. Screen Projection Television Assembly. Wonderful LARGE PICTURE TELEVISION with - 20x26 In. screen. Dealer's Net*
    $\$ 769.50$

