PROTECTS AGAINST
- Bent Pointers
- Burned-Out Resistors
- Damaged Pivots
- Overheated Springs
- Burned-Out Meter
- Changes in Accuracy Due to Overheating

Model 630-PLK
BURNOUT PROOF V-O-M

FACTS MAKE FEATURES:
1. Comprehensive overload protection.
2. One selector switch minimizes chance of incorrect settings
3. Polarity reversing switch

Additional protection is provided by Model 630-PLK's new transistorized relay circuit. Transistorized overload sensing device does not load circuit under test, eliminating the possibility of damaging circuit components. A special meter shorting feature on "off" position offers high damping when moving tester. The exclusive patented Bar Ring Movement provides self-shielding and is not affected by stray magnetic fields. Wider spread scales, and unbreakable clear plastic window assure maximum readability. Diode network across meter protects against instantaneous transient voltage.

TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

Suggested U.S.A. User Net

RANGES

DC Volts:	0-2.5-5-15-25-50-100-250-500 at 20,000 ohms/volt.	0-100 at 200 ohms/volt.
AC Volts:	0-3-10-50-50-150-500-1,000 at 5,000 ohms/volt.	
Decibels:	-20 to +11, +21, +35, +49, +61, +75; "0" Db at 1 MW on 600 ohm line.	
DC Microamperes:	0-100 at 250 Mv.	
DC Milliamperes:	0-10-100-1,000 at 250 Mv.	
DC Amperes:	0-10 at 250 Mv.	
Ohms:	0-1,000-10,000 (4.4-44,000 at center scale).	
Megohms:	0-1-100 (4,400-440,000 at center scale).	
Output Volts (AC):	0-3-10-50-750-1,000 at 5,000 ohms/volt; jack with condenser in series with AC ranges.	

CARRYING CASE
Model 639-DS black leather carrying case, built-in stand, flaps open to permit use of tester in the case. Suggested U.S.A. User Net: $13.00

THE WORLD'S MOST COMPLETE LINE OF V-O-M'S. AVAILABLE FROM YOUR TRIPLETT DISTRIBUTOR'S STOCK.

www.americanradiohistory.com
Be the man who's always first to say: "I've got the answer right here!"

START USING THIS REMARKABLE ELECTRONICS SLIDE RULE

Some day everyone in electronics may have a slide rule like this. Till then, the man who uses one will seem like a wizard as he solves reactance and resonance problems in 12 to 20 seconds—without pencil and paper.

This is a professional slide rule in every detail, a full 10" long, made exclusively for Cleveland Institute of Electronics, to our rigid specifications, by Pickett, Inc. It can be used for conventional computation as well as special electronics calculations. All-metal construction assures smooth operation regardless of climate.

Handsome top-grain leather carrying case has heavy-duty plastic liner to protect slide rule; removable belt loop for convenient carrying. "Quick-flip" cover makes it easy to get rule in and out of case.

You also get four full-length AUTO-PROGRAMMED™ Lessons, which teach you how to use the special electronics scales on the slide rule. These lessons have been carefully designed to meet the same high educational standards as the electronics career courses for which our school is famous. Even if you've never used a slide rule before, you'll soon whiz through the toughest problems with this CIE rule.

Deliberately underpriced. Many men in electronics have told us that this unique slide rule, leather case, and 4-lesson course easily add up to a $50 value. But we have deliberately under-priced it at less than $25. Why? Our reason is simple: we are looking for men in electronics who are ambitious to improve their skills...who know that this will require more training. If we can attract you with the low price of our slide rule and course—and impress you with its quality—you are more likely to consider CIE when you decide you could use more electronics training.

Send for free booklet. See for yourself why this amazing slide rule and course have made such a big hit with busy electronics men everywhere. No obligation, of course—just an opportunity to get in on the best offer ever made to people in electronics. Just mail coupon, or write Cleveland Institute of Electronics, Dept. RE-126, 1776 East 17th St., Cleveland, Ohio 44114.

CIE Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

MAIL THIS COUPON FOR FREE BOOKLET

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114
Please send me without charge or obligation your booklet describing CIE Electronics Slide Rule and Instruction Course. ALSO FREE if I act at once: a handy pocket-size Electronics Data Guide.

Name (please print)

Address

City State Zip

Accredited Member National Home Study Council
A Leader in Electronics Training...Since 1934

RE-126

Circle 8 on reader's service card

AUGUST, 1966
Electronics' Role in Auto Safety

The most controversial news topic this year—next to Vietnam—has been Auto Safety. The arguments have been hot! Almost everyone has been blamed for our high accident rate: auto designers and builders, drivers, laws and enforcement, road design, teaching systems, the government. Few have escaped accusation of some sort.

A lot of people are suddenly experts. In the US and abroad, safety committees and advisory panels are springing up like crabgrass in a suburban lawn. Everyone who drives, or knows someone who does, has sounded off on auto safety.

Auto safety unquestionably deserves this concern. Our annual tally of traffic deaths is appalling. We are killing each other off as if we were at war. (During the Civil War, there were 215,000 battle deaths, or about 50,000 a year—practically the same as our traffic toll.)

Who really is to blame? The presumably inanimate car, or its more vocal (and trainable) driver? Or is it the government?

What difference does it make who is at fault? Placing the blame won't solve the problem, nor will it save any lives.

The truth is: there is no pat answer. The solution lies in many areas; all should have attention rather than just those with loud voices. Autos ought to be more foolproof. Drivers must be selected more carefully and trained more fully. Roads should include more safety engineering. Traffic control devices are important. Throughout the nation, laws need to be brought up-to-date and enforcement made more uniform. Even pedestrians, frequently slammed around in auto mishaps, are part of the auto-safety picture.

For more than 10 years, electronics companies have included auto safety in their research and development programs. Many devices and systems have been introduced, and we've written of them in RADIO-ELECTRONICS. Only a very few have been adopted. Besides systems worked out especially for auto safety, there are dozens from other industries (aircraft, marine) that can be adapted. There is one expert who is in the best position to help every other class of expert find solutions to auto-safety problems—the electronics expert.

Here is a brief list of electronic approaches to auto safety. Some are in use, some being refined, some still in the lab.

For the auto: Collision-avoidance systems like those for planes. Separation-assurance devices, that automatically order evasion maneuvers. Rate-of-approach warnings. Electronically controlled acceleration and braking. Warning systems that stimulate the driver to action, and those which initiate evasive action automatically. Pedestrian warnings. Hazard warnings (ice, tailgater, low tire pressure, impending brake failure). Electronic speed governors. And so on.

For the driver: Electronic driver-training simulatores. Computerized knowledge testing and stored driving records. Simplified instruments for quickly checking reaction time, medical reactions to emergencies, and health conditions that might affect driving.

For the road: TV traffic monitors. Radar/computer traffic-flow controls. Devices that forcibly prevent exceeding speed limits. Impending-trouble warnings that force autos to slow down as they approach a danger spot (stalled car, slick road, and the like). Electronic freeways (or tollways) that carry automated-drive cars at high speed with complete safety.

Everyone has a stake in solving the auto-safety problem. Whoever has an idea, no matter how unimportant it may seem, should make it known. (We'll gladly collect any from our readers.)

Government and the auto industry are tackling auto safety. They should look into all the facets.

Most important, however: Every single committee and advisory panel should include an electronics expert. It is from the electronics industry that many of the automotive safety devices of the future will come.

—Forest H. Belt
Radio-Electronics

AUGUST 1966 VOL. XXXVII No. 8
Over 53 Years of Electronic Publishing

EDITORIAL
2 Electronics' Role In Auto Safety Forest H. Belt

TEST INSTRUMENTS
16 Service Clinic .. Jack Darr
30 The Poor Man's Digital Voltmeter Carl David Todd
35 Is That Distortion In Your Scope? William Darragh
39 Simple Scope Switch Randall K. Kirschman
41 Build Your Own Pulse Generator David H. Sandrock
46 Trigsweep Upgrades Inexpensive Scopes Thomas B. Mills
53 Making Up Resistor and Capacitor Decades ... Glenn H. Dorsey
54 Zeroing-In Your Signal Generator M. R. Gordon
60 Build Yourself a Scope-Mobile John A. Tiso
62 Equipment Report: Eico 380 Color Bar Generator; Knight KG-685 Color Bar Generator

TELEVISION
50 2.5-GHz Microwave ETV Systems George Sitts
72 ABC's of Color TV Jack Darr

ELECTRONICS
44 Simplest Tachometer/Dwellmeter Duane H. Sweet

GENERAL
*26 Electronics Puts to Sea Clement S. Pepper

THE DEPARTMENTS
12 Correspondence 92 Noteworthy Circuits
93 New Books 86 Technotes
85 New Literature 88 Try This One
79 New Products 40 What's Your EQ?
69 New Semiconductors, 40 50 Years Ago
Microcircuit & Tubes 76 Reader's Service Page
4 News Briefs

p 30—LO-COST DIGITAL VM
p 39—SCOPE SWITCHER
p 44—AUTO TUNEUP METER
p 50—MICROWAVE ETV
p 54—TRANSMITTER DRIFT
p 60—SCOPE-HOLDER

POSTMASTERS: Notices of undelivered copies (Form 3579) to Boulder, Colo. 80302.

*COVER FEATURE

p 26—Electronic instrumentation and communications are rapidly gaining importance far below the surface of the world's oceans.

LAB EQUIPMENT

p 41—A home-brew pulse generator places this sophisticated instrument in reach of almost anyone's wallet.

Member, Institute of High Fidelity. Radio-Electronics is indexed in Applied Science & Technology Index (formerly Industrial Arts Index)
GERNSBACK SCHOLARSHIP AWARD ACHIEVED BY EDWARD LANDAU

The 1966-67 Hugo Gernsback Scholarship awarded annually to a New York University student was won this year by Edward Landau of Bronx, N. Y. The $1,000 grant is presented to a student chosen by NYU's College of Engineering faculty.

Member of a Radio-Electronics-reading family and graduate of the Bronx High School of Science, Mr. Landau entered New York U in September, 1963, and has just completed his junior year. He is a member of Eta Kappa Nu, the electrical engineering honor society, and of Tau Beta Pi, the national engineering honor society. He is president of the local chapter of Eta Kappa Nu.

Not confining himself to engineering activities, he is also a member of the social fraternity Pi Lambda Phi, in which he has held the offices of secretary and treasurer. He is also active on the Orientation Committee at NYU and has twice run the program for transfer engineers. "I also enjoy playing handball and football," he says, "and when I have some free time I like to read a good science-fiction book."

NEW VIDEO RECORDER USES NON-PHOTO CELL

The new video recording device developed by CBS Labs does not use recording discs as was rumored last March. Instead, according to Television Digest, it operates with a narrow "non-photographic film" in a cartridge.

The March report by Jack Gould in the New York Times was denied by CBS spokesmen. They stated that CBS was doing no work whatever on a TV recording system. Now it appears that it was not developed for TV, but as a wideband storage device. CBS is still not commenting, but the band width is known to be wide enough to record TV and will presumably accommodate color.

The nature of the "non-photographic film" has not been made public. Engineers are speculating about the thermoplastic film demonstrated by General Electric in 1960, which could record TV at 5 inches per second on a video track only 1/50 inch wide. Other engineers have mentioned the tape recording process described by Dr. Gy Almassy in a paper at the 6th International Instruments and Measurements Conference in Stockholm, (Radio-Electronics, January 1965, page 8). He described a technique of high-speed recording on a permanently polarized plastic tape—an actual tape electret.

GALLIUM ARSENIDE CRYSTALS PRACTICAL WITH NEW TECHNIQUE

Dr. James Hillier, vice president of RCA Laboratories, has announced that for the first time a practical technology has been developed for the use of gallium arsenide alloys in semiconductor devices. This, he says, promises to be a third major technology complementing the earlier methods for making practical devices from germanium and silicon.

Methods that produce germanium and silicon crystals (such as allowing and diffusing) have given poor device results for gallium arsenide. As a result there has been little progress with that material. The work has been carried on for a number of years. The method is known as vapor phase growth and is carried in a vacuum. All the materials are prepared separately in gaseous form. They are then mixed and allowed to flow over a solid crystal of gallium or one of its alloys. The crystal is kept a little cooler than the gases so they condense on its surface. This forms a true extension of the crystal, differing from it only in that it contains the required impurities.

Experimental devices already produced by the new technology include:

- The first semiconductor laser to generate physical light at room temperature.
- A Gunn-effect microwave source that has operated at 40 GHz, the highest frequency yet achieved this way.
- The brightest electroluminescent diodes yet developed.
- An electro-optical modulator that can modulate a visible laser beam transversely at the rate of 100 million bits per second.
- Experimental varactor diodes with the highest combination of cut-off frequency and voltage breakdown yet achieved.

NEW ELECTRON-BEAM WELDER NOW WORKS IN OPEN AIR

Electron-beam welding, previously possible only in a vacuum chamber, can now be carried out in free space with a new portable, out-of-vacuum electron beam welder developed by Westinghouse. Besides working in open air, the device has been designed so that the welding head can be brought to the work, a new feature in electron-beam welders.

In the new welder, an extremely powerful beam of electrons is ejected into the air through a specially designed orifice system and then shielded...
ELECTRONICS
WHERE CAN YOU EQUAL THIS OPPORTUNITY
TO EARN A GOOD PAYING JOB IN A FAST GROWING FIELD?

DeVry's "BIG 3" AIDS TO PROGRESS ARE DESIGNED TO SPEED YOU QUICKLY TO A REAL FUTURE IN ELECTRONICS

1. EFFECTIVE TRAINING!
Learn AT HOME in spare time, or day or evening in one of our RESIDENT SCHOOLS.

ELECTRONICS is one field that spells OPPORTUNITY in big capital letters for many men 18 to 45. This widespread but FAST GROWING field offers trained men some of today's finest, good-paying job opportunities — or a chance to start a profitable servicing shop!

Even if you don't have previous technical experience or an advanced education, DeVry's "BIG 3" aids to progress may very well be YOUR stepping stones to a BETTER FUTURE. You can learn at home in your spare time, while keeping your present job. Or, in a day or evening program in our U.S. or Canadian resident school, you can develop the very skills needed to make wonderful progress. We even work to get resident students part-time jobs to help with tuition or living expenses, if necessary.

2. INDUSTRY RECOGNITION!
DeVry programs, prepared with industry's help, are "JOB-AIMED."

Regardless of how you complete your educational program with DeVry, you can count on industry-recognized, effective training aimed directly at providing on-the-job-type "know-how." This is followed by actual EMPLOYMENT SERVICE to help you get started in Electronics. Or, if you are in the field already, remember that a DeVry recommendation has meant plenty of ADDED DOLLARS in income to many who made themselves more valuable to employers.

See for yourself how you, too, may prepare for the INCOME, the PRESTIGE and the FINE FUTURE that goes with the title of Electronics Technician. Mail the coupon NOW for facts without obligation.

WE PREPARE YOU NOT FOR ONE JOB BUT FOR JOBS IN MANY DIVISIONS OF THE FASCINATING FIELD OF ELECTRONICS

MOVIES, TEXTS AND EQUIPMENT HELP YOU LEARN FASTER

DeVry includes training movies AT HOME, "programmed" texts, and many shipments of Electronic parts — to help you learn quickly, remember more.

Mail Coupon Today!

NAME ___________________________ AGE ____________________
ADDRESS ________________________ CITY ____________________
APARTMENT ______________________ STATE ______ ZIP CODE __________

☐ Check here if you are under 16 years of age.

DeVry Technical Institute
4141 Belmont Avenue, Chicago, Ill. 60641

Send coupon for these two free booklets, "Pocket Guide to Real Earnings," and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

☐ Space & Missile Electronics ☐ Communications
☐ Television and Radio ☐ Computers
☐ Microwaves ☐ Broadcasting
☐ Radar ☐ Industrial Electronics
☐ Automation Electronics ☐ Electronic Control

[Check here if you are under 16 years of age.]

Home Study and Resident School Training Available in Canada

www.americanradiohistory.com
from air by a cloak of lightweight helium molecules. The equipment uses 13 kw at 150,000 volts. The tube is pumped continuously to maintain internal vacuum.

Electron-beam welding produces a joint with the minimum of heat, therefore welds made by the process weaken the metal less than any other type.

PORTABLE SPEECH SCRAMBLER NOW ON MARKET

A low-cost speech-scrambling system has been announced by Litton Industries. It is intended for people who may have reasons to believe their telephones are being tapped, and especially for law-enforcement uses. It is particularly useful for investigations where detectives want to keep their communications off regular police channels. It could also be used in businesses, such as the oil industry, where certain bits of information could be very important.

To operate the device, known as Tel-Lips, the user simply drops the telephone handset into a special cradle in the case, and operates with a handset that forms part of the privacy unit. A similar device at the other end unscrambles the conversation.

The device is not considered a secure communications device in the military sense since security to such specifications would increase the cost many times. So a special feature was added. An alphabetic keyboard on the device makes it possible to send coded messages. The user simply states that an alphabetic word is to be sent, then depresses the proper buttons in the correct order. The corresponding button on the listener's Tel-Lips lights up as each button is pressed. The buttons on each pair of units may have the letters arranged in different sequences, to make deciphering extremely difficult.

An unauthorized interceptor who does not know the correct keyboard configuration has about one chance in 100,000 for recognizing the entire sequence, according to Phineas J. Icenbice, director of the group that developed the unit.

PHILCO ADDS TUNING EYE TO COLOR TV RECEIVERS

The new Philco color TV line includes a visual tuning indicator, resembling those used on stereo sound receivers. Converging green light bars indicate when the set is tuned exactly to the correct point for best color. The tuning indicator appears on the top model of the 23-inch line, all the 25-inch receivers and combinations and on the 21-inch color sets above $489.

AUTO SALES HURT BY COLOR TV?

According to a New York consulting economist, the boom in color TV sales may be more responsible for any decline in auto sales than the belated discovery by prospective buyers that cars are not entirely safe. A typical color set, he says, costs about $500 or more. A car costs about $3,000 with an average $1,000 trade-in. Therefore a car requires about 4 times as much cash or credit as a color TV. This year about 3.2 million more color sets will be sold than in 1965. Thus, the TV industry could conceivably be responsible for affecting the sales of some 800,000 cars.

CALENDAR OF EVENTS

Automatic Controls Conference, August 17-19, University of Washington, Seattle, Wash.

NEA (National Electronic Associations, Inc.), August 18-21, Sheraton Motor Inn, Winston-Salem, N. C.

WESCON (Western Electronic Show and Convention), August 23-26; Sports Arena, Los Angeles, Calif.

NATESA (National Alliance of Television and Electronic Service Associations) Convention, August 25-28; Sherman House, Chicago, Ill.

IEEE 16th Broadcast Symposium, September 22-24; Mayflower Hotel, Washington, D. C.

New York Hi-Fi Music Show, September 22-October 2; New York Trade Show Building, New York, N. Y.

Radio-Electronics Adopts Hertz

Radio-Electronics is now using the term hertz in place of cycles in all references to frequency. Hz, kHz and MHz, abbreviations for hertz, kilohertz and megahertz, are replacing cycles, kc and mc in all recently edited material.
Tips on replacing electrolytic capacitors

Finding the right electrolytic capacitor for a replacement job often becomes a matter of juggling three factors: what the circuit originally called for, what you can get quickly from a distributor, and what you have on hand in your shop. Here are a few hints that may help to make your life easier.

The important parameters about an electrolytic are voltage rating, capacitance, temperature rating and size. You have a certain amount of leeway on all four of these... and knowing how far you can stretch safely may save you a lot of shoe leather looking for the exact replacement.

Let's take voltage first. You can always substitute a capacitor with higher voltage rating than that originally required, with absolutely no harmful effects (except maybe on your pocketbook, because you may pay for extra capability that you don't need). But you should never replace with a voltage rating lower than the original.

How about capacitance? Our advice—don't go too far from -10% +50% of the original value. You've probably heard that standard industry specs allow tolerances of 10% low and up to 150% high. Actual manufacturing practice at Mallory, is to make capacitors to considerably tighter tolerances... because most radio and TV manufacturers won't tolerate the wider variations. Too small capacitance is apt to raise hum levels. Too high capacitance may lead to surge damage to silicon rectifiers.

On the temperature score, you don't have to worry if you use a Mallory FP-WP, TC, TT, or MTA type, because they're all rated for 85°C (except for three odd-ball TC's), and that's plenty for home instruments or industrial electronics. Our wax-filled cardboard tubulars are rated 65°C. The few cents extra that you might spend for a Mallory capacitor, compared to the cheapest ones you could buy, will assure you of several times longer service life.

How about size? Don't be surprised when you find that in many instances the Mallory replacement is smaller than the original capacitor (naturally, it will still fit chassis cutouts). That's because of our new techniques for deep-etching aluminum to increase the effective area of the anode. So we can get about nine times more microfarad-volt rating inside a given container than with plain foil.

One final tip. Our new Capacitor Replacement Guide makes it a cinch to find the exact part number to specify, to replace just about any electrolytic you may encounter. Ask your Mallory Distributor for a copy, or write Mallory Distributor Products Company, a division of P. R. Mallory & Co. Inc., P. O. Box 1558, Indianapolis, Indiana 46206.

www.americanradiohistory.com
Discover the ease and excitement of NRI's

3 DIMENSIONAL METHOD

of ELECTRONICS

TV-RADIO TRAINING

10 HOME-STUDY PLANS TO CHOOSE FROM

Ask men whose judgment you respect about NRI's three dimensional method of home-study training. Ask about the new, remarkable NRI Achievement Kit. Ask about NRI custom-designed training equipment, programmed for the training of your choice to make Electronics come alive in an exciting, absorbing, practical way. Ask about NRI "bite-size" texts, as direct and easy to read as 50 years of teaching experience can make them. Achievement Kit . . . training equipment . . . bite-size texts . . . the three dimensions of home-study training; the essentials you must have to make learning easier, more interesting, more meaningful. You get them all from NRI.

Whatever your interest . . . whatever your need . . . whatever your education . . . pick the field of your choice from NRI's 10 instruction plans and mail the postage free card today for your free NRI catalog. Discover just how easy and exciting the NRI 3-DIMENSIONAL METHOD of training at home can be. Do it today. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

BEGIN NOW AN ABSORBING ADVENTURE—LEARN ELECTRONICS THE EASY NRI WAY—MAIL CARD TODAY

OVER 50 YEARS OF LEADERSHIP IN ELECTRONICS TRAINING
1 Start Fast with NRI's New Remarkable Achievement Kit

The day you enroll with NRI this new starter kit is on its way to you. Everything you need to make a significant start in the Electronics field of your choice is delivered to your door. It's an outstanding way of introducing you to NRI training methods... an unparalleled "first dimension" that opens the way to new discoveries, new knowledge, new opportunity. The Achievement Kit is worth many times the small payment required to start your training. No other school has anything like it. Find out more about the NRI Achievement Kit. Mail the postage-free card today.

2 NRI "Bite-Size" Lesson Texts Program Your Training

Certainly, lesson texts are a necessary part of any training program... but only a part. NRI's "bite-size" texts are simple, direct, well illustrated, and carefully programmed to relate things you read about to training equipment you build. Here is the "second dimension" in NRI's training method. Here are the fundamental laws of electronics, the theory, the training of your choice, presented in a manner you'll appreciate. And in addition to lesson texts, NRI courses include valuable Reference Texts related to the subjects you study, the field of most interest to you.

3 Custom-Designed Training Kits Make Learning Come Alive

Electronics becomes a clear and understandable force under your control as you build, experiment, explore, discover. Here is the "third dimension"... the practical demonstration of things you read about in NRI texts. NRI pioneered and perfected the use of training kits to aid in learning at home. NRI invites comparison with equipment offered by any other school, at any price. Prove to yourself what 750,000 NRI students could tell you... that you get more for your money from NRI than from any other home-study Radio-TV, Electronics school. Mail postage free card for your NRI catalog. (No salesman will call.)

AVAILABLE UNDER NEW GI BILL—If you served since January 31, 1955, or are in service, check GI line in postage-free card.
Need an Exact Replacement Control?

Your Centralab Fastatch® II Distributor Has Over 9 BILLION* In Stock!

With the Fastatch II system, your Centralab distributor can supply any of 9,936,500,000 different exact replacement control combinations. You'll see that these replacements look like the original, because they have:

EXACT length shafts for single, dual concentric and twin controls.
EXACT shaft end (round, half round, knurled, slotted, etc.)
EXACT mounting hardware (doghouse, twist-tab, reverse, etc.) and, of course, exact resistance and taper.

Although they look like the original, these controls will outperform the original—thanks to Centralab's patented snap-together permanent-locking, anti-backlash construction.

See your Centralab Fastatch II distributor whenever you need a replacement control. Whether for color or black and white TV, hi-fi, stereo, or radio, he can supply it!

For additional information on the Fastatch II Control System, write to Centralab, Distributor Products, P. O. Box 591, Milwaukee, Wisconsin 53201, TWX: 414-731-8731. In Canada: Centralab Canada Ltd.

Centralab
DIVISION OF GLOBE-UNION INC.
Circle 11 on reader's service card

Correspondence

SLIPS!

Dear Editor:

The May 1966 What's Your EQ? (page 48) wasn't fair. I disagree with your solution to the "Black-Box Equivalent" problem. The problem establishes a reference for current direction—i.e., the current arrow is shown pointing to the left, therefore current is going from "+" to "-" inside the battery. Fine. Next, the problem states: "... note the resultant current readings in the reference direction shown..." The solution given on page 89 would cause current to flow in the opposite direction from that shown in original problem. The problem would have been correct if it had read:

E = 12V, I = 2A
E = 6V, I = 0
E = 0V, I = -2A,

instead of:

E = 12V, I = 2A
E = 6V, I = 0
E = 0V, I = 2A.

My correction to the first problem may be too picky, but I get frustrated when I can't find an answer and it turns out the hangup is caused by an ambiguous problem.

S. Strahm
Los Gatos, Calif.

[The solution we printed is indeed incorrect. It says the flow is "2 amps" for the given conditions. Since in one case, the flow is opposite to that of the other, one must be -2 amps and the other +2 amps. Your analysis is correct if you assume correctly that electron flow is out of the negative terminal of a battery. Wish we could blame the printer...!—Editor]

"MORE ON..."

Dear Editor:

Re: your May 1966 editorial "Color TV Has a Problem," I heartily second the motion that something be done about the annoying hue changes. I would like to air another gripe, although it is far less important than the hue changes. If black-and-white commercials must be shown during a color program, why doesn't the controlling facility switch off the color burst during those transmissions? The
The microphone with backbone...

now has a staunch new companion!

In just a few short months the Electro-Voice Model 676 has gained quite a reputation as a problem solver—no matter what the odds. Now the 676 has a teammate. The Model 674 has the same unique backbone that rejects unwanted sound...an exclusive with Continuously Variable-D (CV-D) TM microphones from Electro-Voice. And the improvement in performance is dramatic.

Troubled with feedback or interfering noise pickup? Most cardioid microphones cancel best at only one frequency—but CV-D insures a useful cardioid pattern over the entire response range. And its small size means the pickup is symmetrical on any axis.

Bothered by rumble, reverberation, or loss of presence? A recessed switch lets you attenuate bass (by 5 or 10 db at 100 Hz) to stop problems at their source. And there's no unwanted bass boost when performers work ultra-close. CV-D eliminates this "proximity effect" so common to other cardioids.

Wind and shock noise are almost completely shut out by the CV-D design. Efficient screening protects against damaging dust and magnetic particles, and guards against annoying "pops".

As for overall sound quality, only expensive professional models compare with the 676 and 674. The exclusive Acoustalloy diaphragm gets the credit. It's indestructible—yet low in mass to give you smooth, peak-free, wide-range response with high output.

The Model 676 slips easily into its 1" stand clamp for quick, positive mounting. The fine balance and shorter length of the 676, and absence of an on-off switch makes it ideal for hand-held or suspended applications.

The Model 674 offers identical performance but is provided with a standard mounting stud and on-off switch. Either high- or balanced low-impedance output can be selected at the cable of both microphones.

Choose the 676 or 674 in satin chrome or non-reflecting gray finish for just $100.00. Gold finish can be ordered for $10.00 more (list prices less normal trade discounts). There is no better way to stand up to your toughest sound pickup problems. Proof is waiting at your nearby E-V sound specialist's. Or write for free catalog of Electro-Voice microphones today.

An important footnote: There is no time limit to our warranty! If an E-V microphone should fail, just send it to us. If there's even a hint that our workmanship or materials weren't up to par, the repair is no charge—even decades from now! Fair enough? Patent No. 3,115,207

ELECTRO-VOICE, INC., Dept. 862E, 613 Cecil Street, Buchanan, Michigan 49107

Circle 12 on reader's service card
CORRESPONDENCE continued
b-w picture may have a sickening tint since the receiver's color circuits are activated. The commercials are bad enough without this. The situation seems worse now than a year ago. Have the engineers tired of flipping switches?

CHARLES W. BATTLE
Plano, Tex.

FUTURE OF SERVICING

Dear Editor:
I have been buying Gernsback books and Radio-Electronics for years and I wonder if you would answer some questions which are disturbing me.

Transistors are said to be 10 times as reliable as vacuum tubes. Since transistors are being used increasingly, won't this reduce servicing to something like one-tenth its present volume?

Also, the June issue tells about a chip in some black-and-white and color TV sets. This tiny chip replaces 26 components and RCA claims it is virtually indestructible. It seems to me this means the end of the service tech, especially if these chips can be replaced by a do-it-yourselfer.

How do you feel about the future of the radio-TV service technician? I am very pessimistic.

JAMES DONOVAN
Whittier, Calif.

[I'm optimistic about the future of radio and television technicians, Jim. It's true that individual sets need less than half as much servicing as they did 10 or 12 years ago. And transistors are cutting that even further—though not by 10 as you've been led to believe, because other components still are part of the circuits. What you're overlooking is that there are 3 times as many sets as there were 10 or 12 years ago.

Integrated circuit (IC) chips are another matter; their dependability is at least 10 times better than that of transistors. But, once again, they will be responsible for more TV sets (and radios and hi-fi sets).

A do-it-yourselfer can replace tubes, but have you seen a transistor checker in the drug store or grocery yet? A faulty IC is even more likely to require diagnosis by a trained technician with good test equipment. Transistors and IC's should be good news to service technicians.

But more important, Jim, is the far future—5 or 10 years from now. When horses and buggies went out of style, wise blacksmiths became mechanics. When tubes go out of style, wise technicians will become solid-state specialists. When radios and TV's go out of style, wise servants will learn to repair the other equipment that will be in use. Now's a good time to start!—Editor]
Imagine.

Instant Movies in Sound
(produce your own or tape them off the air)

The new Sony Videocorder is a complete Home TV Studio: a video tape recorder, built-in monitor, and optional camera outfit. Takes TV pictures and sound right off the air, and puts them on tape. And with the TV camera attached, and microphone plugged in, you can do the same with live action. When you're done—presto, switch, rewind, playback! And there, on the TV monitor screen, is the same picture with the same sound, as easy as operating an ordinary tape recorder.

First Unit ever designed for the home. There's nothing really new about taping sight and sound. TV stations have been doing it for years. But the equipment costs tens of thousands of dollars. That's a long way from home.

But, when you can bring the complete system—recorder and monitor—down to under $1000, plus an optional $350 for the camera outfit, you're home. And that's exactly what Sony did. They achieved the most exciting home entertainment concept since television.

New recording/playback technique. Known as a pioneer in transistor developments, Sony is also one of the foremost producers of tape heads and tape transport mechanisms and the tape itself. Sony also manufactures TV picture tubes and vidicon tubes. Sony drew from this veritable storehouse of specialized experience to create this all-new, all-Sony TV tape system for the home. It was out of this same resourceful know-how that the ingenious idea of alternate-field recording and repeat-field playback was conceived. Combining it with helical tracking, it made possible the development of a unit that would use standard 1/2-inch video tape at conventional 71/2 ips speed, yet capable of storing more than 60 minutes of program material on a 7-inch reel. The dream of a home TV tape recorder became a reality.

Unlimited applications. The Videocorder adds a thrilling new dimension to home entertainment. Want to relive some telecast event? Watch a space launch again? A ball game? Some selected program? Tape it with your Sony Home Videocorder. You can even use a timer attachment to record a program while you're out. For, once it's on tape, you can watch it at any time. And you can erase the recorded material, and reuse the tape over and over again. What's more, any tape recorded on one Sony Videocorder can be played back on any other Sony Videocorder.

Moreover, you're not limited to watching playback on the built-in Sony 9-inch screen monitor. You can connect the Videocorder to any monitor, regardless of size. A competent TV technician can even adapt your Videocorder to work with your TV set.

And with the optional camera outfit, you can record picture and sound of live events—family functions, social shindigs, community activities—you name it. You can also apply it to your business or profession or your hobby interests.

Now available. Prices start under $1000. The basic Sony Home Videocorder (TCV-2010) is priced at $995 complete with 9-inch screen monitor/receiver. A deluxe version (TCV-2020) in oiled walnut cabinet, and equipped with built-in timer for taping programs in your absence, is priced at $1150. Optional camera outfit, including tripod, microphone and cable, is $350. A full hour's tape costs $39.95.

Visit your Sony dealer today for an unforgettable demonstration. For free booklet describing the many uses for your Videocorder write: Sony Corp. of America, 580 Fifth Ave., N. Y., N. Y. 10036.

Sony® Videocorder
"I can repair any TV set with a soldering iron, long-nose pliers and a vom." (Hey, get him! Who does he think he is? Darned smart-Alec!) That's all right; it got your attention, didn't it? That's all I wanted.

Actually, anybody can do what I just said I could. All you have to do is replace all the parts until you hit the right one. Of course, it takes about a week for each set, and you won't make a heck of a lot of money. But you can do it.

This brings us to the point of this discussion. Why do we have so much test equipment, and what good is it? Well, for one thing, if everybody's as suggestible as I am, they can't resist it.

I'll frankly admit to being test equipment happy, and most of you are just like me. However, there is one very good reason why we should have the right test equipment. It's called "money." With the right equipment, that steak can be a lot thicker!

Ohm's law is simple arithmetic; so's this. How much we make depends on how many TV sets we get out of the shop in one working day. This depends on how long it takes us to diagnose and repair each one. Now we're getting somewhere! The right test equipment can cut the diagnosis time in half or less. Diagnosis is what takes the time. The actual repair of any TV set is a matter of replacing a resistor, capacitor, tube, etc., and should take about 5 minutes at the most.

We've run several articles on test equipment selection, and it's still a matter of personal choice. This is the way it ought to be. I've got my way of working; you've got yours. For us, they're the ones that give us the best results. That's what customers pay off on—results. Put another way, test equipment gives us what we can't get in any other way: information. Information about what's going on in a given circuit, and why it is happening.

As long as we have equipment that will measure the basic quantities we work with—ac and dc volts, resistance, capacitance and waveforms—we can add whatever specialized equipment we happen to like. The basic criteria for picking any piece of test gear is this: Will it do a certain job faster and easier? Will it save money? If the equipment meets these standards, buy it!

There's one important factor that I didn't mention: interpretation. The most elaborate test gear in the world won't fix a TV set. All it can do is tell us what's wrong with it, and it won't even do that unless we interpret its readings properly. The day of the "automatic set tester" is far in the future.

Correct interpretation depends on only one thing: a full, solid knowledge of the circuits in that TV chassis, all the way from one end to the other. This isn't as hard as it sounds. They are all

NEW B & K MODEL 606 DYNA-JET

TESTS LATEST TUBES QUICKLY AND ACCURATELY PORTABLE/LOW COST/PROFESSIONAL

This new B&K Tube Tester provides the sockets and the features you need to test the latest color and component receiving tubes, as well as older types.

You can test for all shorts, grid emission, leakage and gas; and check cathode emission the accurate way—under simulated load conditions! Each section of a multiple section tube is checked. With the Model 606, you won't reject the good tubes, and you'll quickly find the bad ones, reducing call backs, selling more tubes, and increasing service profit.

You'll find "tough dogs" and weak tubes with the exclusive adjustable grid emission test, which has a sensitivity of over 100 megohms. Tube sockets have phosphor bronze contacts for long, trouble-free life. Complete tube listings are provided in a handy reference index.

This efficient instrument, in a small, handsome, leatherette covered carry case, will perform professionally on house calls or the service bench. Its low price will soon be paid for with increased profit.

Net $79.95

B & K MANUFACTURING CO.
DIVISION OF DYNASCAN CORPORATION
1801 W. BELLE PLAINE AVE. - CHICAGO, ILL. 60613

Canada: Atlas Radio Corp.
Export: Empire Exporters, 123 Grand St., New York 13, U.S.A.

Circle 16 on reader's service card.

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 154 West 14th Street, New York 10011.
Why does one of these men earn so much more than the other?
More brains? More ambition?

No, just more education in electronics.

You know that two men who are the same age can work side-by-side on the same project, yet one will earn much more than the other.

Why? In most cases, simply because one man has a better knowledge of electronics than the other. In electronics, as in any technical field, you must learn more to earn more. And, because electronics keeps changing, you can never stop learning if you want to be successful.

But your job and family obligations may make it almost impossible for you to go back to school and get the additional education you need. That's why CREI Home Study Programs are developed. These programs make it possible for you to study advanced electronics at home, at your own pace, on your own schedule. You study with the assurance that what you learn can be applied on the job to make you worth more money to your employer.

CREI Programs cover all important areas of electronics including communications, servomechanisms, even spacecraft tracking and control. You're sure to find a program that fits your career objectives.

You're eligible for a CREI Program if you have a high school education and work in electronics. FREE book gives all the facts. Mail coupon or write: CREI, Dept.1408-D, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.

Send for Free Book

Accredited Member of the National Home Study Council

CREI
Founded 1927

AUGUST, 1966
Here is RCA's new WR-50B RF Signal Generator—wired or kit. It looks just like the old WR-50A, but the resemblance ends there. It has all the features you liked in the older model...plus 3 new ones you'll find in red below:

- Wide frequency range from 85kHz to 40MHz in 6 overlapping ranges plus harmonics for higher frequencies
- Built-in crystal calibrating oscillator circuit with front panel crystal socket
- Internal 400 Hz audio oscillator
- NEW—Sweep output at 10.7 MHz with return trace blanking for sweep alignment of FM receivers
- NEW—Sweep output at 455 kHz with return trace blanking for sweep alignment of new transistorized AM radios
- Individual inductance and capacitance adjustments for each range
- Modulation level control
- Two-step RF attenuator switch plus a continuously-variable attenuator control
- NEW—additional switch for further attenuation of crystal oscillator output
- The Optional Distributor Resale Price is only $65.00. Kit Form, $45.00, includes pre-assembled range switch with pre-aligned coils and trimmers. See the RCA WR-50B at your authorized RCA Test Equipment Distributor.

The Most Trusted Name in Electronics
Finco's Swept-Element Antenna challenges all competition. Its unique design assures the finest color and black and white TV reception—plus superb FM and FM Stereo sound quality.

300-ohm models for normal reception areas from $16.95 to $54.50
75-ohm models for poor reception areas from $18.65 to $62.80

FREE!

All Finco CX-VL, CX-UVF and UVF Antennas come with a Free Indoor Set-Mounted Transformer, VHF-UHF Transformer Splitter or VHF-UHF Splitter.

The Finney Company
34 West Interstate Street, Dept. RE, Bedford, Ohio
must use the scope. Suppose we do have raster and picture, but the picture floats calmly up and down without stopping. No sync. Our screwdriver or voltmeter isn’t going to do us a bit of good here. We must find the point where the sync is getting lost. So we go to the point where it starts, in the video amplifier plate, and follow it (Scope) through the various sync separator and sync amplifier stages till we get to where it must be on the sync input of the vertical oscillator. (Circuit knowledge).

We don’t stop to take dc voltage or resistance measurements until we find a place where there is trouble. For example, if we have a good signal on the grid of a tube, but none on the plate, we put down the scope, and take dc voltage measurements to find out what’s going on. There are times when the scope will point directly to a bad part. For another example, if we find a capacitor with plenty of sync on the input side, and none on the load side, we know the chances are very good that this capacitor is open.

There’s the usual alternative—a short on the load side—but from experience, the odds are in favor of an open capacitor, so we check that first. Incidentally, all these service techniques work just as well with transistorized circuits as with tubes.

So, after all this, I finally get to the point: See how the right use of the right test equipment can lead you directly to the trouble? In just a few logical steps, we can pin down a defect to a certain stage, then to a circuit, then to a part. To do this quickly and accurately, you’re going to have to use the best test instrument of all—that little old brain of yours! Without it, no test equipment reading is any good at all!

"Lines" in Admiral 17XP3 TV
I’ve got a lot of slanting horizontal lines in an Admiral 17XP3 TV. I thought this set had retrace blanking? W. S., Norman, Okla.

It does. The blanker is a printed-circuit plate, pretty hard to find, but it’s there. If it’s bad, and you can’t get an exact duplicate, make up one from separate parts, as in the diagram.

Where the action is you’ll find the hot new...

Hallicrafters CB-20 "Reacter"—$99.95!

Yours today—the ruggedest, cleanest, most powerful basic CB transceiver that ever rode the range!

You get Hallicrafters’ field-proven, solid-state design—compact, fool-proof. You get high-order modulation, superb sensitivity and built-in noise suppression. You get five-channel convenience. In short—you get performance equal to that of equipment more than double the price.

Quality through craftsmanship is the whole idea at Hallicrafters

Export: International Division, Canada: Available through Gould Sales Co.

Get the full story from your Hallicrafters authorized CB outlet today!

G-E 73 Radio Power Supply Circuit
A friend (?) gave me an old GE-73 radio. The power supply has been very severely worked over—wires clipped, parts missing. I can’t find a diagram of it. Can you help?—S. O., Fresno, Calif.

Yes. Full service data on this chassis are in Rider’s Troubleshooter’s Manual, Vol. 12, page 37. This is a rather wild power supply circuit, by today’s standards, but it worked. The diagram shows how it’s hooked up.

They don’t give the size of the electrolytics on the diagram, but I’d use something like a dual 10-µF and one separate 10-µF. The negative leads are separated. (See point A.)

END
Analyzing Failures in Solid-State CB Transceivers

Today, the Citizens-band transceiver is no longer a toy. It’s a compact, 23-channel, solid-state unit with very sophisticated transmitter circuitry that may include electronic switching of the antenna from the transmitter to the receiver. Many units have crystal-controlled dual-conversion receivers using a frequency synthesizer. Since a typical transceiver may carry a price tag over $200, the CB user wants his unit to be repaired by an expert technician, and there is a growing need for such experts in the service industry. This article is just one of many from the special section on CB and Communications in September Radio-Electronics. This feature goes on to describe some of the newer and possibly unfamiliar circuits and offers extra servicing know-how.

SIX CB SERVICING TIPS
Experience is the best teacher and September Radio-Electronics will bring you six unique case histories, each providing important servicing tips based on practical shop experience. A few of the problems covered include what to do when your receiver oscillator drifts and sometimes cuts off altogether; what’s wrong when your equipment does not transmit, but receives OK, and clicks when the mike button is pressed; and what to do when receiver sound is intermittent and transmit audio is OK.

COMMUNICATION PACK FOR THE FREE LANCER
Here’s a unit that has everything in it except the kitchen sink. It’s the Free-Lance’s Communi-Pac—a complete portable communication center. The author of this exciting feature built the unit to handle specialized problems when out chasing a story. He demonstrates how you can assemble a unit to suit your individual needs. He devised the Communi-Pac as a single package to eliminate the need to lug several separate pieces of equipment. It contains a Citizens-band transceiver, a marine-band receiver, a tape recorder and an AM-FM radio. An aircraft-tower receiver that can be added as a modification is still in the planning stage. You’ll find out how the unit is assembled and why particular instruments were selected—in September Radio-Electronics.

DO YOU UNDERSTAND SQUELCH?
Most receivers used in mobile communication have a squelch circuit. This applies to both auto and marine two-way radio systems. A squelch circuit does not eliminate interference noise (as does suppression, filtering, and shielding) or reduce its volume (as does a noise limiter). The squelch silences receiver hiss until a signal is received. There are only three basic ways they operate and they’re all explained in clear detail in September Radio-Electronics.

AN ALL-PURPOSE SUB BOX
If you have ever built, wired, assembled, serviced or experimented with a transistor circuit, you will have a special appreciation for this piece of test equipment. If not, file this story where you can find it the day you do your first work with transistors. It combines several test items in one compact case. Read all about it next month.

These are just 5 of the 25 top-priority features on CB, COMMUNICATIONS, TELEVISION, TEST INSTRUMENTS, ELECTRONICS, AUDIO/HI-FI/STEREO, EQUIPMENT REPORTS COMING YOUR WAY IN SEPTEMBER RADIO-ELECTRONICS

On Sale August 23rd at newsstands and electronic parts jobbers

AUGUST, 1966

The Model 501 provides all the substitutes for electronic components you want and need in your every day work... Carbon Resistors — Electrolytics — Power Resistors — Capacitors — Diodes — Silicon Power Rectifiers.

SQUELCH?...places a complete range of components at your fingertips for fast substitution...

Model 501 COMPONENT SUBSTITUTE...the instrument acclaimed by servicemen, engineers and school shops now available in a wire-it-yourself KIT!

Model 501K...$25.95
Model 501W...$39.95

See the Model 501 of your distributer...or write for complete specifications...or call IN CANADA; William Cole, Canadian Distributors, 315 Roslyn Road, Mississauga, Ontario

For the best service, only Mercury Electronics Corporation
315 Roslyn Road, Mineola, N.Y. 11501
IN CANADA: William Cole Co., Ltd., Bridgeport, New York, N.Y. 10023

ELECTRONICS CORPORATION

Circle 21 on reader’s service card

www.americanradiohistory.com
SOMEONE SHOULD DEVELOP AN EASY WAY
TO LEARN ELECTRONICS AT HOME

RCA INSTITUTES DID!

Here is a whole new approach to learning electronics at home! RCA Institutes, one of the nations' largest schools devoted to electronics, has developed a faster, easier way for you to gain the skills and the knowledge you need for the career of your choice. Here for the first time, is a student-proved, scientifically designed way to learn. If you have had any doubts in the past about home training in electronics—if you have hesitated because you thought you might not be able to keep up—or that electronics was too complicated to learn—here is your answer! Read how RCA Institutes has revolutionized its entire home training ideas!
Electronics Puts to Sea!

Undersea discovery promises to be second only to space exploration in worldwide importance. Electronics is playing a significant part in opening up this new frontier. You'll want to follow this glamorous activity.

By CLEMENT S. PEPPER

ON A SUNNY AFTERNOON IN EARLY MAY this year, at the Navy's Underwater Sound Laboratory at New London, Conn., two modern systems of undersea testing apparatus were officially launched: research submersible Star II and Star III were lowered into the Thames River just east of Long Island Sound.

Both vessels are slated for the fascinating field of oceanographic exploration. They carry extremely advanced undersea navigating and locating devices, sophisticated intercommunicating systems, and impressive panels of undersea testing instruments. Star III, the larger of the two, can carry up to 500 additional pounds of special testing apparatus for almost any imaginable underwater test.

For decades, scientists have been making measurements in the oceans. Only lately, however, have electronic systems really gone down into the seas as working tools. Oceanographers who venture beneath the ocean's surface have navigation and communication needs that still are not fully met by any existing system.

Topographical mapping, observing trends in currents, taking temperatures, testing salinity, and an enormous volume of other tasks were handled in years past from surface ships. This picture is changing dramatically. The ocean floor is not yet carpeted with instrumentation, but it is becoming so.

The transistor started the trend. An early application was in preamplifying hydrophone signals. Oscillator, amplifier, control and logic circuitry quickly followed. Low-cost silicon transistors—and now low-cost integrated circuits—are incorporated into buoy systems, deep-towed instrumentation vehicles, and sea-floor instrument packages. Solid-state systems have long operating lives, and require only small battery packs.

A good portion of ocean research is involved in one way or another with acoustics. Sound is so far the only means of communication and information transmission other than through cables.

But sea water isn't a very dependable carrier of sound waves. The sound waves just can't travel in nice straight lines as they do in the air.

Sound waves travel faster in denser material. Beneath the sea, sound velocity varies from about 4,700 to 5,100 feet per second, depending on water conditions. From surface to sea floor, ocean water varies in temperature, density, pressure, salinity and distribution of life. The resulting speedups and slowdowns in velocity produce almost unpredictable bends in the sound "rays." Imagine switching on the headlights of your car and seeing the beams bend away in a series of smooth curves. That is what can happen under the ocean when you aim an acoustic beam at a distant target. The beam might even split, and one part be ducted along an unseen "sound channel" for many miles.

The upper regions of the ocean consist of two temperature zones: (1) a surface zone subject to atmospheric influences, and (2) a thermocline of rapidly decreasing temperature. The surface zone is a region of thermal instability, and it is here that sound-path predictions are not only important but difficult to produce.

Underwater sound is also affected by reflection. Upward-traveling sound waves are reflected into the sea at the surface. Since the surface is in constant motion, the reflections occur in all directions. Some of the reflected sound gets back to the source as reverberation. From the sea floor, smooth sand reflects sound very effectively, whereas soft mud is especially poor. Not surprisingly, a smooth rock bottom is best.

Another problem in sonic communications underwater is background noise—any sound that interferes with the reception of the wanted signal. Ambient noise originates in the sea. In the deep ocean, the predominant source is the combined effect of waves, wind and rain at the surface. In coastal waters, snapping shrimp and certain fish can become so conversational at times as to drown out all other sounds.

Nearest submersible, the Star III, is scheduled for undersea retrieval operations, as well as for use in oceanographic research.

Chart I—Manned Research Submersibles

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
<th>Crew Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvin</td>
<td>Reynolds Alum. Co.</td>
<td>3,600</td>
</tr>
<tr>
<td>Alvin</td>
<td>Litton Industries</td>
<td>3,600</td>
</tr>
<tr>
<td>Alvin</td>
<td>Electric Boat Div.</td>
<td>3,600</td>
</tr>
<tr>
<td>Benthos</td>
<td>General Dynamics</td>
<td>3,600</td>
</tr>
<tr>
<td>Benthos</td>
<td>Newport Submarine</td>
<td>3,600</td>
</tr>
<tr>
<td>Deep Star</td>
<td>Westinghouse</td>
<td>3,600</td>
</tr>
<tr>
<td>Deep Star</td>
<td>Locustide Missiles</td>
<td>3,600</td>
</tr>
<tr>
<td>Pisces</td>
<td>International Hydodynamics Co. Ltd.</td>
<td>3,600</td>
</tr>
<tr>
<td>Star I</td>
<td>Electric Boat Div.</td>
<td>3,600</td>
</tr>
<tr>
<td>Star II</td>
<td>Electric Boat Div.</td>
<td>3,600</td>
</tr>
<tr>
<td>Star III</td>
<td>Electric Boat Div.</td>
<td>3,600</td>
</tr>
</tbody>
</table>

RADIO-ELECTRONICS

Hugo Gernsback, Editor-in-Chief

www.americanradiohistory.com
NEW CAREER PROGRAMS
BEGIN WITH "AUTOTEXT" INSTRUCTION METHOD!

Start to learn the field of your choice immediately!

No previous training or experience in electronics needed!

With this new revolutionized method of home training you pick the career of your choice—and RCA Institutes trains you for it. RCA's Career Programs assure you that everything you learn will help you go directly to the field that you have chosen! No wasted time learning things you'll never use on the job! The Career Program you choose is especially designed to get you into that career in the fastest, easiest possible way!

And each Career Program starts with the amazing "AUTOTEXT" Programmed Instruction Method—the new, faster way to learn that's almost automatic! "AUTOTEXT" helps even those who have had trouble with conventional home training methods in the past. This is the "Space Age" way to learn everything you need to know with the least amount of time and effort.

CHOOSE A CAREER PROGRAM NOW
Your next stop may be the job of your choice. Each one of these RCA Institutes Career Programs is a complete unit. It contains the know-how you need to step into a profitable career. Here are the names of the programs and the kinds of jobs they train you for. Which one is for you?

Television Servicing. Prepares you for a career as a TV Technician/Serviceeman; Master Antenna Systems Technician; TV Laboratory Technician; Educational TV Technician.

FCC License Preparation. For those who want to become TV Station Engineers, Communications Laboratory Technicians, or Field Engineers.

Automation Electronics. Gets you ready to be an Automation Electronics Technician; Manufacturer's Representative; Industrial Electronics Technician.

Automatic Controls. Prepares you to be an Automatic Controls Electronics Technician; Industrial Laboratory Technician; Maintenance Technician; Field Engineer.

Digital Techniques. For a career as a Digital Techniques Electronics Technician; Industrial Electronics Technician; Industrial Laboratory Technician.

Telecommunications. For a job as TV Station Engineer, Mobile Communications Technician, Marine Radio Technician.

Industrial Electronics. For jobs as Industrial Electronics Technicians; Field Engineers; Maintenance Technicians; Industrial Laboratory Technicians.

Nuclear Instrumentation. For those who want careers as Nuclear Instrumentation Electronics Technicians; Industrial Laboratory Technicians; Industrial Electronics Technicians.

Electronics Drafting. Junior Draftsman, Junior Technical Illustrator; Parts Inspector; Design Draftsman Trainee Chartist.

SEPARATE COURSES
In addition, in order to meet specific needs, RCA Institutes offers a wide variety of separate courses which may be taken independently of the Career Programs, on all subjects from Electronics Fundamentals to Computer Programming. Complete information will be sent with your other materials.

LIBERAL TUITION PLAN
RCA offers you a unique Liberal Tuition Plan—your most economical way to learn. You pay for lessons only as you order them. No long term contracts. If you wish to stop your training for any reason, you may do so and not owe one cent until you resume the course.

VALUABLE EQUIPMENT
You receive valuable equipment to keep and use on the job—and you never have to take apart one piece to build another. New—Programmed Electronics Breadboard. You now will receive a scientifically programmed electronic breadboard with your study material. This breadboard provides limitless experimentation with basic electrical and electronic circuits involving vacuum tubes and transistors and includes the construction of a working signal generator and superheterodyne AM Receiver.

Bonus From RCA—Multimeter and Oscilloscope Kits. At no additional cost, you will receive with every RCA Institutes Career Program the instruments and kit material you need to build a multimeter and oscilloscope. The inclusion of both these kits is an RCA extra.

CLASSROOM TRAINING ALSO AVAILABLE
RCA Institutes maintains one of the largest schools of its kind in New York City where classroom and laboratory training is available in day or evening sessions. You may be admitted without any previous technical training; preparatory courses are available if you haven't completed high school. Coeducational classes start four times a year.

FREE PLACEMENT SERVICE
In recent years, 9 out of 10 Resident School students who used the Free Placement Service had their jobs waiting for them when they graduated. And many of these jobs were with top companies in the field—such as IBM, Bell Telephone Labs, General Electric, RCA, and radio and TV stations and other communications systems throughout the world.

SEND ATTACHED POSTAGE PAID CARD FOR COMPLETE INFORMATION, NO OBLIGATION. NO SALESMAN WILL CALL. FREE BOOK INCLUDED. CHECK HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, Inc., Dept. 2R-E 86
A Service of Radio Corporation of America
350 West 4th St., New York, N.Y. 10014

The Most Trusted Name in Electronics
Other research

Much ocean research is not related to acoustics. Electronic instruments abound.

Some oceanographers study water temperature, salinity, density and the movements of currents through electronic sensors and recorders.

A number of institutions are seeking fuller knowledge of the geology of the sea floor. In seismic experiments, sound waves passing through the ocean’s underlying structure are carefully recorded. High-precision echo sounders make detailed graphic displays of rock and sediment layers.

Thermistor probes measure temperature differences at the sea/seafloor interface and to a sediment depth of several feet, for heat-flow studies. Proton-precision magnetometer sensors towed behind ships detect variances in the magnetic field of the earth.

Acoustic pingers, attached to coring devices, heat-flow probes, and deep-sea cameras monitor the descent of the equipment and permit highly accurate measurement of their depth for intricate control, even in very deep water under adverse sea conditions.

Government projects

The oceans have always been vital to defense. Antisubmarine warfare (ASW) is an important part of the Navy’s job of protecting the oceans. To keep up and improve ASW weapons and systems, the Navy spends $2.5 billion a year. About $5 million of it is spent on research and development, much channeled into industrial and university laboratories all over the country, often in programs aimed only at pure scientific research.

At sea, the Navy gathers data by an extensive network of station ships, ships passing through, ocean buoys, and aircraft. All this material is transferred through communication centers to data-processing units for analysis. The centers provide detailed charts forecasting seasurface temperature, layer depths, vertical gradients, detection ranges, sonar environmental factors.

Another important Navy project has been the development of a deep-ocean test range for submarines, their weapons, and ASW devices. The project, termed AUTEC, is located in the Tongue of the Ocean, a deep-water channel just east of Andros Island in the Bahamas. The Navy will be able to test several systems simultaneously over a vast area in water that varies from 4,200 to 6,000 feet in depth.

Consider the work that had to be done to develop this range. About 100 sediment cores were taken and analyzed. Bottom photographs were made, many of them stereo. Some 10,000 temperature and salinity observations were made, time-and-space related by simultaneous recordings using a number of ships. Subsurface moored buoys telemetered temperature, pressure and sound-velocity readings to shore stations. A thorough study was made of ocean currents from surface to floor. All this took thousands of dollars worth of test instruments.

Role of electronics

Oceanic work is also sponsored by other agencies of the Federal Government, and by state universities, scientific institutions, and commercial concerns. There is intense interest in sea-floor minerals, the oil that underlies the continental shelves, sea food, and water sports. About 25 bills related to undersea projects were placed before Congress last year. There has even been talk of a Federal agency comparable to NASA to coordinate and direct the undersea effort.

Nothing like the sums associated with the space effort has been spent on undersea exploration. But the tempo of activity is rising and this low-budget picture is changing.

Instrumentation emphasis is on systems which collect diverse data automatically for long periods of time—frequently from moving ships, often on the sea floor itself. Analog data may be displayed graphically on chart recorders. Digital systems store data in more compact form, transmit it with fewer errors, and record for longer time intervals on less power.

Keep in mind, too, the unorthodox environment this equipment has to live in. Sea water is very corrosive. Metal containers must be protected by anodizing, epoxy coatings, or protective paints.

It’s cold—just above freezing everywhere below the surface zones. The waters are alive with tiny creatures possessed with peculiar appetites.

There are no electrical outlets on the sea floor. Circuits have to manage on microamperes for long-term operation from battery packs.

Pressure at depth is enormous: at 20,000 feet the pressure is 8,800 lb on every square inch of exposed surface. Total force on a typical instrument container may be millions of pounds. The majority of undersea electronic testing instruments are housed in pressure cases of stainless steel or aluminum. For use near the surface, some are packaged in epoxy. Where pressure is not too great, some devices may be in oil-filled containers vented to the sea.

Much research is being done to develop electronics parts which can themselves be subjected to great ocean pressures without harm. A number of semiconductor chips and thin-film devices are used in this way. Surprisingly, a number of ordinary commercial resist-
ors, capacitors and other components can take considerable pressure. Electrical connectors and cables capable of withstanding 20,000 psi (lb per square inch) for long periods are made by several companies.

Undersea test instruments

One basic measurement package is shown at right top in the photo. The instruments measure pressures, temperature and salinity. Pressure measurement provides depth information, since the other two must be measured at known depths. Such precise measurements are required for accurate predictions of sound velocity at specific locations and depths.

In the salinometer, true salinity is measured. Sensors built into the unit make direct compensation for temperature and pressure.

Each device in this package employs a Paraloc (a Bisset-Berman trade name) oscillator. The salinometer circuit is diagramed at right (center). A sea-water loop connects two toroids. The resistance of this sea-water loop will vary with salinity, temperature and pressure. The toroids are part of the Paraloc oscillator's frequency-determining circuit, and the loop's resistance variations result in corresponding frequency variations. The temperature- and pressure-compensating networks are also part of the frequency-determining circuit.

The top-mounted unit you see in the photo (right, top) is a frequency mixer and telemetering transmitter. The various sensor outputs are multiplexed and sent up a cable to receiving equipment on a ship. FM detectors develop proportional dc signals to drive recorder stylus.

Wave-measuring systems are important in developing harbors and beaches, as well as in learning about the formation and distribution of ocean-wave patterns. Wave motions are sensed by differential-pressure transducers (right, bottom) with built-in hydraulic filters. The filter time constant can be adjusted to detect the type of wave it is to observe. For example, sea swells which produce rapid pressure changes can be recorded while slowly changing pressures, such as those produced by tides, have negligible effect. The pressure waves are converted to electrical signals by a resistance-type strain gage. A typical strain gage has a resistance of 350 ohms and an output of 25 mV full scale, and can measure waves 22 feet from trough to crest.

Instrumentation-buoy systems can record data on magnetic tape for computer input. In one, a subsurface buoy is attached to a short line so that the anchor holds it below the surface. This protects it from storms, collisions and curiosity seekers. A locating buoy rides on the surface.

One firm has developed a digital instrumentation system that can be adapted to record just about any parameter you might wish to measure. Data are recorded in digital form by light pulses on camera film or magnetically on tape. The film or tapes can be processed to provide the researcher with a graphic plot, decimal printout, or magnetic tape that fits his own data systems.

Ocean-current meters are important to the interpretation of other data being gathered. The one shown on the opposite page (center, left) is a common type. The current sensor is a Savonious rotor, used almost universally because of its simplicity, reliability and accuracy. The rotor is linear up to about 5 knots and accurate within 0.1 knot, depending on the electronics. Inside the case are follower units: The vane follower drives a binary encoding disc, which is interposed between a light source and fiber-optic light-pipes. The light-transmitting pipes pass light "bits" developed by the disc to the camera. The rotor-follower gear train drives a cylindrical light chopper, perforated so that a pulse is generated on each first and tenth revolution. Another set of light pipes carries this information to the camera.

All data are recorded on standard 16-mm film. Every hundred feet of film permits 5,000 minutes of recording rotor speed, plus vane and compass direction. The film advances 0.24 inch per minute, but only when directed to do so by the precision clock timer. Battery life is based on using the 100 feet of film over an interval of one year.

In the really deep

A number of government and university laboratories are developing deep-ocean test instruments. The Deep-Tow system (right, top) of the Scripps Institution of Oceanography is a general-purpose instrument vehicle operating close to the sea floor. Several sensors observe bottom and near-bottom conditions in fine detail. Instruments can measure magnetic field, pressure, temperature, vehicle pitch and roll, differential pressure, and water velocity. Some of these measurements are vehicle-position information; the remainder are scientific data. Instrumentation can be revised as specific data needs arise.

The vehicle may be towed to within 100 feet of the bottom in water many thousands of feet deep. This imposes positioning problems, since the two cables may be as much as 30,000 feet long. What's more, all power for the electronics, control signals and data signals must be carried in the tow cable. This cable is electrically equivalent to RG-58/U coax, with an added outer braid of tough stainless steel. The cable length causes great

Diagram:

- **INPUT VOLTAGE**
- **OUTPUT VOLTAGE**
- **SE A-WATER LOOP**
- **PRESSURE TRANSDUCER**
- **TEMP COMP OCT**
- **INPUT TOROID**
- **OUTPUT TOROID**
- **PRESSURE TRANSDUCER**
- **DIFFERENTIAL PRESSURE TRANSDUCER**

Legend:
- **SEA PRESSURE**
- **CAPILLARY**
- **RESERVOIR**
- **RESERVOIR**
- **DIFFERENTIAL PRESSURE TRANSDUCER**

Note:

The hydraulic filter in this pressure transducer is adjustable, selects period of wave measured.
signal loss, overcome by boosting the input. High-level control signals go down simultaneously as weak data signals come up—a potentially serious crosstalk situation. Signals are carried on FM and SSB with a frequency span from 500 Hz to 235 kHz. Ingenious circuitry detects which way signals are traveling on the line and picks out the weak incoming signals even in the presence of high-intensity outgoing signals.

The accuracy of the data obtained depends, not only on the quality of the sensors, but equally on knowledge of how the vehicle is oriented and of its "swimming" patterns. Assume for example that the bottom is flat and 100 feet below. If the vehicle path follows a low-frequency oscillation of 10-foot peak-to-peak vertical amplitude, the uncorrected data for the sea floor will appear to have a rolling characteristic identical to the oscillation. Pitch and roll accelerometers and a highly sensitive differential-pressure gage keep the shipboard circuits informed of what is going on below. Timing corrections are made to the gaging signals for the scanning sonar, and the graphic recorder is automatically corrected to reveal measurements for the flat bottom as they really are.

The data obtained from Deep-Tow or any other submersibles are of little value unless the exact location of the submerged vehicle is accurately known. A transponder system provides vehicle-position information. The transponders are interrogated by the towfish with a 3-msec pulse on separate calling frequencies, and answer on identical response frequencies. Relative vehicle position is determined by comparing round-trip times to each transponder. Reliable range is a good 5 miles. More sophisticated systems, such as used on the new Star II and Star III, tie into the surface-ship Loran system to give precise geographic locations.

A deep-sea instruments capsule (above, right) measures and records deep-sea tides and temperatures. The unit is designed to float freely from a surface ship in depths up to 20,000 feet, remain on the bottom from several days to several months, then return to the surface upon command from the ship. Two 21-inch-diameter aluminum spheres (with 1-inch walls that can withstand the 9,000-psi pressure) house the instruments and provide buoyancy. Lead-acid automobile batteries, mounted on an angle-iron frame and connected to the spheres by 60 feet of cable, provide ballast and power. The capsule is recalled from the bottom by a coded acoustical signal from the ship, which activates an explosive disconnect from the battery ballast.

To recover a deep-sea capsule, the ship is navigated by Loran to within 5 miles of the capsule on the bottom.

Undersea electronics' future

A number of well-known institutions and government agencies support research projects. About 6,000 companies provide and use the electronic items needed to probe the ocean depths. Altogether, business in the oceans is worth some $3 billion each year, and going up.

Technicians and engineers design, build, test, use, repair and maintain thousands of dollars' worth of underwater test instruments. And many more thousands of dollars are spent for instruments to keep the underwater stuff operating—oscilloscopes, voltmeters and the like.

Manufacturers of deep-sea electronic instruments say their most valuable asset is know-how. That means people. Opportunities for top-notch technicians and engineers are excellent.

Only a few years have passed since the first Vanguard flew into orbit—and a giant industry was born. But nobody lives on the moon, nor will for a while. Meanwhile, the ocean covers 70.8% of our world. A source of food, of mineral wealth, of scientific knowledge just waiting to be developed... by electronics!
The Poor Man's Digital Voltmeter

By CARL DAVID TODD

Many of the advantages of a lab digital-reading voltmeter can be yours with this unique instrument—at one-fifth to one-tenth the price!

IF YOU'RE A SERIOUS EXPERIMENTER OR CIRCUIT DESIGNER, you’ve certainly had times when you wanted to measure voltages with a little better precision (or at least better resolution) than you could with the usual vom or vtvm. It would also be helpful if the meter had a built-in memory and could indicate even slight changes in the voltage under test.

These wishes can be granted with a digital voltmeter (dvm), but the price of even the cheapest is well beyond the means of most experimenters and small electronic laboratories.

The Poor Man’s Digital Voltmeter, or pmdvm, meets both those demands at a price of less than $65 with all-new components. With a little shopping and some help from the junk box, the cost can be held to less than $20.

The Poor Man’s Digital Voltmeter measures voltages to three digits with an overall accuracy of better than 0.5% if properly calibrated. The sensitivity is 1 megohm per volt and the range of about 1 mV to 1,000 V covers most requirements.

The instrument is rugged and will withstand very severe overloads without damage or shifting calibration for more than a few seconds. Full operating accuracy comes with only 10 to 30 seconds warmup. The instrument is small enough to be carried around. In addition to providing the increased accuracy and resolution, digital readout decreases fatigue, with its possible errors, from continual interpolation of meter readings. It also eliminates parallax (viewing-angle) error.

The pmdvm does not claim the accuracy possible with more sophisticated digital voltmeters, but it will serve the purpose in many applications and illustrates the basic principles used by its more expensive cousins.

How a dvm works

Let’s look inside the usual digital voltmeter and see just what happens when it is used to read a voltage.

There are three main sections in the dvm (Fig. 1): a precisely adjustable voltage, an indicator, and a comparator.

Fig. 1—(Above) Basic operation of digital voltmeter.

Fig. 2—(Center) Basic circuit of “Poor Man’s” version.

Fig. 3—(Far right) The reference supply and polarity switching.
The precision reference supply must be a very stable source of voltage adjustable to equal exactly the unknown input voltage, for the simplified case shown in Fig. 1. Attenuators and voltage dividers are normally added to expand the range of a single reference supply.

The indicator or readout section indicates the equivalent value of the output of the reference supply. This is usually done by lighting lamps to illuminate digits in a dial display.

The comparator must decide when the precision reference supply has been correctly adjusted to a value exactly equal to the unknown input voltage.

In operation, the precision reference supply is varied automatically until the comparator indicates equality of the reference and unknown voltages. When the two voltages are the same, the adjustment stops and the readout indicating the value of the reference supply voltage now indicates also the value of the unknown voltage.

The actual manner in which the reference supply is varied may fall into one of several general approaches such as a voltage ramp, binary to analog converter, etc. The comparator may also have one of several possible forms but the basic operations just described are accomplished in one way or another.

The poor man's approach

We can greatly simplify the dvm by substituting a man for much of the automatic adjusting circuitry. The operator can adjust the reference supply voltage by hand until the comparator circuit indicates that the output voltage equals the input voltage.

All we really need, then, is a power supply that we can adjust with a knob, and that will indicate the output voltage accurately. The comparator must be sensitive enough to indicate small errors. It can drive a simple meter movement.

In the pmvdvm, we have a variable voltage supply that can be adjusted with a 10-turn potentiometer. The pot has a dial that indicates the position of the wiper in digits, and thus the output voltage. A very sensitive null detector drives a center-scale meter movement. Other features are added to make the instrument more useful.

The schematic (Fig. 2) looks much different from the block diagram in Fig. 1. Actually, it is the same except for the use of a shunt or summing method for the comparator. We could use the direct or series comparison method, but the differential null detector required would be more complex and expensive than the single-sided circuit used in the pmvdvm.

To see how it works, assume that we have an input voltage of +1.45 we wish to measure. This will produce a positive current in the null detector of 145 nA, if we can assume that the null detector input voltage will be kept very low in comparison with the voltage under test. If we adjust the reference supply until a negative current, also 145 nA, is injected into the null detector, the net sum of the currents is zero and the meter will indicate a null or zero. The dial on the reference-supply pot would indicate the digits 1, 4 and 5, and the reference supply would actually be delivering 0.145 V into the 1-megohm resistor.

Let's take a close look at the detailed circuit diagram for the reference power supply (Fig. 3). The power source is a single mercury cell, a very economical way to get a fairly accurate and quite stable reference voltage.

A calibrate potentiometer in series with the mercury cell and the adjustment potentiometer divider drops the excess battery voltage beyond the 1 volt desired across the pot. It also compensates for slight errors in resistor tolerances and other factors.

A reversing switch, S2, is included so that we can change the polarity of the reference supply and meter current and hence the polarity of the input signal that may be measured.

Switches S3 and S4 are shown in their normal (hold) position, from which they are changed only when we wish to read an input voltage. S3 is a spring-return switch and samples the input voltage by completing the reference-supply ground-return path and removing the shunt path from the null detector meter. This saves the battery when it is not actually needed to supply a reference. It also prevents continual overdrive of the meter movement when the input and reference voltages are unequal and producing a net current into the null detector.

AN R-E EDITOR REPORTS ON THE PMVDVM

"The digital voltmeter was tried on voltages varying from 1.5 to several hundred, and found through these ranges to compare favorably with an ordinary vtm.

"One effect not seen in vtm's was noted: the meter was affected by any ac component of the voltage measured; thus, with points where there was considerable ac in addition to the dc voltage, the meter might read higher than normal (or with prads reversed, lower). The author suggests that this might be eliminated by using the isolating probe he describes in his article, and points out that this effect is due to the 60-Hz chopper and is presumably much more noticeable on 60-Hz ripple than on ac of other frequencies."
S4 does exactly the same thing as sampling switch S3, but allows the instrument to be actively measuring the input voltage for a time without requiring that we hold S3 down. This mode is referred to as tracking.

These two switches are combined into a single READ switch with a toggle action on one side of center and momentary action on the other.

The potentiometer is a 10-turn type with a tolerance of 5% in end-to-end resistance. This error is compensated for in the calibration adjustment. More important is its linearity, usually 0.25%, but available better than 0.05%. The indicating dial can be one of the simpler designs made for 10-turn potentiometers, or one of the more elaborate units with a fine digital readout as shown in the photograph of the complete unit.

The schematic diagram of the null detector circuit used for the comparator is shown in Fig. 4, the complete schematic. Basically, this is a two-stage transistor amplifier (Q2, Q3) with a shunt-chopper-modulator (Q1) before it and a shunt synchronous detector (Q4) following it.

![Circuit Diagram](image)

NOTE—SEE PARTS LIST FOR VARIATIONS

Fig. 4—Circuit does not include the range trimming resistors mentioned in the text and shown in Figs. 2 and 5.

BATT—1.345-volt mercury cell
(Mallory RM-4R)
C1—10 µF, 100 volts (Sprague “Vitamin Q” low-leakage paper type 9EP1059152 or equivalent)
C2—6 µF, 6 volts
C3—100 µF, 6 volts
C4—10 µF, 6 volts
C5—500 µF, 6 volts
C6—25 µF, 16 volts
C7—500 µF, 25 volts

Capacitors C2 through C7 are electrolytic.

D1, D2, D3, D5—germanium diode: IN270, IN34
D4—Zener diode, 14 volts, 1 watt (Sarkes Tarzian VR14 or similar)
D6, D7—silicon rectifiers, 100 p.v. or higher, any current rating (IN4001, IN1692, IN3754, etc.)
J1, J2—Jack-top (5-way) binding posts
M—zero-center microammeter, 75-0-75 µA or higher sensitivty (Simpson 27, Triplet C5 3217, etc.) 100-0-100 µA meter can be used with very slight loss of sensitivity.

Q1—2N3053 (RCA) (Not all similar n-p-n silicon transistors behave well as choppers. Be careful with substitute types.)
Q2, Q3—2N2925 (G-E)
Q4—2N3015 (RCA, TI, Motorola) (almost any medium to high gain p-n-p germanium will work)

R1—10,000 ohms, 1%, 1 watt
R2—100,000 ohms, 1% (Texas Instruments CD1MR)
R3—7—1 megohm, 1% (Texas Instruments CD1MR)
R4—10 megohms, 1% (Texas Instruments CD1MR)
R5—100 megohms, 2% (Aerovox CPX5) (Newark)
R6—1,000 megohms, 3% (Vic-toreen HVAW)
R8—10-turn helical potentiometer, 10,000 ohms, with digital turns-counting dial.

Q1, used as a chopper, is connected in an inverted mode—that is, its emitter and collector terminals are transposed. As the base of Q1 is driven alternately positive and negative, it will be turned off and on accordingly. When Q1 is conducting or off, the net input current applied to the null detector is shunted to ground. The current is applied to the amplifier during the half-cycle that Q1 is turned off.

The result is a pulsating dc voltage between the emitter and collector terminals of the chopper transistor. It is coupled to the transistor amplifier through C1.

The amplifier, Q2 and Q3, is a conventional R-C-coupled circuit, except that in the first stage the base bias voltage is applied through R12, which has one end bootstrapped up by signal voltage obtained from the emitter of Q1. The signal at the emitter is in phase with the input voltage and about equal in amplitude. This technique decreases the loading effect base-biasing resistor R12 has on the input resistance of the amplifier.

An error signal from the ac power supply is applied to the emitter of Q2 via R24 and R17. This allows us to adjust...
the output voltage to zero even though the chopper stage is somewhat imperfect and generates a very small ac voltage even when there is no input. The zero adjustment will also compensate for small amounts of hum pickup at the input which would otherwise look like an input signal.

The output of the amplifier is capacitively coupled to a shunt demodulator which acts like a rectifier but whose conduction is controlled by the drive current applied to the base of Q4, rather than the polarity of the ac voltage across it. This arrangement produces an average output current that is of one polarity if the base drive is in phase with the ac collector voltage of Q3, and of the opposite polarity if the amplifier output voltage is out of phase with the drive signal. This is done to retain a sense of polarity of the dc input current.

Note that no attempt is made to control carefully the voltage gain of the amplifier. We want the gain to be as high as possible since we are interested merely in determining whether an input current is present and, if so, of what polarity.

Germanium diodes D2 and D3 are placed across the meter to limit the maximum current through it to about three times the full-scale value and thus prevent damage during a substantial unbalance.

The simple power supply produces power for the null detector as well as the two-phase ac signal needed for the zero-adjustment circuit. Zener diode D4 is used not so much for dc regulation as to remove ripple. It can be replaced by a 2,000-μF capacitor if desired.

Since the null detector cares only how much net input current it is receiving, the summing resistor for the input voltage can be made variable for range switching. Since the voltage from the reference power supply is variable up to 1 volt, the full-scale current is 1 μA. Thus we have an input sensitivity of 1 megohm per volt. Six ranges (R1–R6) are calculated on this basis.

R1 through R6 are specified as precision units. However, their exact values are not as important as the fact that they must have a very close decade relation to each other for high accuracy on each range.

The range-switching scheme in Fig. 5 permits you to use multiplier resistors (R1 through R6) that are not exact multiples of 10 by switching in small “trimmer” resistors in series with R7 and R8. This allows for individual compensation of the voltage ranges. The values are selected for correct full-scale calibration on all ranges with just one setting of the calibrate control. The trimmer resistors will normally be only a few percent of the value of R7 so ordinary carbon-composition units can be used.

Physical layout is not critical, but the low-level input of the null detector should be isolated from the ac line or other possible sources of external pickup. The input stages and as much of the input stage as practical should be shielded. Coupling capacitor C1 should be shielded with grounded copper foil as shown in the photo of the circuit board.

Also, since the input to the null detector consists of very small currents, any leakage paths must be avoided. Otherwise, sensitivity will drop. If printed circuits are to be used in high humidity, appropriate guard rings must be included. Ceramic switches were used in the original for lower leakage.

If an insulating material is to be used for the front panel, ground the shaft of the reference-supply potentiometer and the range switch to avoid coupling hum into the circuit from your hand.

My pmvdvm was built in a 7½ x 8½ x 3-inch Bakelite case with a tempered hardboard panel. I put the power supply in one corner and the null detector at the opposite end.

Before calibrating the instrument, we must set the zero adjustment. This is done by placing a short across the input terminals, setting the range switch to the .01V position and adjusting the zero potentiometer to give a meter reading of zero (center).

Calibration requires a known voltage. A not-too-old mercury cell can be assumed to have a terminal voltage of 1.345 V. If you have a really accurate dc meter, use it to set up your calibrating reference. The known voltage is applied to the input terminals of the pmvdvm with the range switch set to the appropriate position.

The trimming resistors may be omitted if the range resistors are sufficiently accurate. If you intend to use them, they should be chosen during calibration. First, insert a trimming resistor for the 1V range with a value equal to a percentage of the 1-megohm resistor which represents the greatest tolerance of any of the range resistors to be used. (For
example, if the greatest tolerance is 5%, the trimming resistor would be about 50,000 ohms.) A known input voltage of 1V or less is applied to the pmvdvm. (If a mercury cell is to be used for calibration, it will be necessary to use a voltage divider consisting of two equal precision resistors.) Next, adjust the calibration potentiometer to give a zero reading on the null detector meter with the read switch in the track position and the dial indicating a value equal to the input voltage. This calibrates the 1V range.

The other ranges are then calibrated in a similar manner except that you select trimming resistors to give a null rather than adjusting the calibration potentiometer. A decade box is convenient for this. Each range is independent and must be calibrated individually. When you have calibrated one range, it can be used to measure a voltage for calibration of an adjacent range.

As with any other voltage measurement, the range switch must first be set to the proper position. If you don’t know even the rough order of magnitude of the unknown voltage, then set the range switch high. A rather large overload will not damage the instrument; up to 100 volts may be applied to the .01V range without any problem.

With the read switch placed in either the sample or track position, adjust the reference-voltage dial to give a zero reading on the meter. Read the value of the voltage from the dial. If the reading is less than one-tenth of full scale, change the range switch to the next lower range and readjust the dial to give a more accurate reading.

The null meter can be marked to indicate that the dial and range combination setting is too high or too low. This aids immensely in balancing. If you can’t get a balance and the null meter indicates that the dial setting is too high even when at zero, then the polarity switch is in the wrong position.

 Normally you will want to use the sample position of the read switch since this automatically disconnects the reference cell and shunts the null detector whenever you are not actually adjusting the dial. To monitor a voltage continuously, place the read switch in the track position.

Note that a reading is held on the dial until a new adjustment is made. This “remembers” the input voltage.

To compare two voltages to determine which is the larger, first connect one of them to the pmvdvm and balance for a null. Switch the pmvdvm to the second voltage, and the null detector meter will indicate whether the dial setting, which now represents the value of the first voltage, is higher or lower than the second. While the exact sensitivity will depend on the gain of the amplifier, a difference of only 5 mV out of 10 V produces a noticeable deflection in the meter. This represents a difference of only 0.5%.

The pmvdvm can be used as a sensitive null detector for Wheatstone bridges and such. Set the voltage dial to zero and the range switch in the .01V position (for maximum sensitivity). In this range, a voltage as low as about 30 µV produces a noticeable deflection on the meter.

Several attachments will extend the pmvdvm’s usefulness even further. The first is a circuit to allow the pmvdvm to measure ac voltages.

The simplest arrangement (Fig. 6) is merely a half-wave rectifier consisting of diode D1 and filter capacitor C1. Another diode, D2, and a current source made of a 1.5-volt battery and a 10K resistor have been added to compensate for the small forward voltage drop across the rectifier diode. This would otherwise cause an appreciable error in measuring voltages even as high as 100 V. By adding the compensating circuit, we can use the circuit shown in Fig. 6 down to several volts with fair accuracy.

Since the output voltage will be in terms of the peak input voltage, the pmvdvm will read the equivalent peak value of the ac input voltage. If the input voltage is a sine wave, then we must divide the peak voltage by 1.414 (or multiply it by 0.707) to get the rms value.

A second possible ac converter circuit is shown in Fig. 7. This approach is especially useful when it is necessary to measure ac line voltages accurately. A voltage divider in the attachment performs the necessary peak-to-rms calculation so that the dial on the pmvdvm will indicate the ac voltage directly in terms of ac rms volts. The voltage divider and the larger filter capacitor will cause substantial loading on many circuits but do not present any problem when measuring line voltages, etc. Be very careful to connect the ground lead of the pmvdvm to the ground side of the line to avoid possible shock (which could be lethal) since the knob is connected to the instrument ground.

Neither circuit should be used for more than about 200 volts input. A higher-voltage converter can be made with a higher-voltage diode and filter capacitor. The voltage-divider resistors in Fig. 7 can be increased for the high-voltage converter since the loading of the pmvdvm input (which is 1 meg/V) will be less. Also, the compensating diode may be eliminated since the error contributed by the forward voltage drop of the rectifier will be small in comparison with the larger input voltage.

Another attachment, which you may wish to design into the instrument rather than use as an accessory, is a probe with an isolating resistor in it. A resistance of 100K can be inserted in the probe and then the .01V range eliminated with the 0.1V range resistor (R2) made equal to zero. A 1-µF capacitor should then be connected from the meter side of the 100K isolating resistor to ground to act as a filter. An isolating resistor probe may be used with the basic instrument if you adjust the reading to compensate for the error it causes. For example, a 100K isolating resistor causes a 100% error in the 0.1V range, a 9% error in the 1V range, but only a 1% error in the 10V range.

If we add a series resistor equal to the range resistor, then we must multiply the dial reading by 2 to get the actual voltage. This technique can be used to compensate for loading effects on high source resistances by letting the source resistance be a portion of this external resistor.
Is That Distortion in Your Scope?

If a wave seems to increase in frequency at the right of the screen—or if all traces have flat tops—it sure is!

By WILLIAM DARRAGH

IF YOUR SCOPE PATTERNS START LOOKING FUNNY—ESPECIALLY ON ALL JOBS—THEN IT'S TIME FOR A CHECKUP. IT'S HARD TO FIND DISTORTION IN AN AMPLIFIER IF THERE'S MORE IN YOUR OWN SCOPE!

Amplifier circuits in the scope are exactly the same as those you'll find in a TV, so they suffer from the same kinds of troubles. Vertical amplifiers in a hand-built scope are nothing but video amplifier circuits. Fortunately, they're easy to check. All you need is a reasonably pure audio signal. Feed it into the scope and check the patterns. A sine-square audio signal generator, or a sine-wave generator plus the Monterey "Squaremaker" (reviewed in a test equipment report, April 1965) will do the job.

There are two kinds of distortion: vertical and horizontal. From my experience with scopes over the years, I'd say vertical trouble seems to be the more common. However, you can easily have horizontal trouble, or both vertical and horizontal at the same time. (In other words, scopes are just like any other electronic equipment!) Many scopes use push-pull amplifiers in both circuits; unbalance in them can cause some odd-looking distortions, like one-sided waveforms.

First, of course, change the tubes and check the supply voltages. This often cures a lot of trouble. The other troubles will be plate or screen resistors changed in value, or leaky coupling or bypass capacitors. These can often cause the same kind of distortion. Fig. 1 shows a pattern caused by a change in the plate resistor of one vertical amplifier tube in a push-pull stage. I've seen the same pattern caused by slight coupling-capacitor leakage. Notice the excessive slope only on the tops of the square waves.

Fig. 2-a shows a similar one-sided pattern on a sine wave. This was caused by a plate resistor that had gone far above normal value. Fig. 2-b shows exactly the same effect, but much worse. Half of the wave is actually turned up instead of just being flattened. Both the same thing, but in different degrees.

Fig. 3 shows a high-frequency square wave, about 16 kHz. The thickening of the horizontal parts of the pattern is due to 60-Hz hum. At the sweep frequency used here, it won't show up as the familiar rippling in the waveform. To check, just turn the sweep frequency back down to 30 Hz and you'll see the characteristic wavering, or ripple in the pattern.

This one happened to be the fault of a tube with some leakage, but anything that lets 60-Hz hum into the vertical amplifier signal path will cause the same pattern. The waveform will have a slight jitter, vertically—that's your clue. The jitter is the cause of the blurring of the vertical lines, although there will be some ripples in the photo. A normal square wave should have sharp, clean horizontal rounding on square waves above 10 or 15 kHz if your scope's response falls off at about 200 kHz.

Trouble in the horizontal circuits will show up as a nonlinearity of the sweep. If the normal sawtooth is distorted, the beam can't travel at the same speed all the way across the screen (Fig. 4). Note how the pattern crowds at the right. The beam is traveling more slowly on that side, so we get more cycles crammed into the same space.

The horizontal amplifier has the same kind of trouble that the vertical does: leaky capacitors, drifting resistors, bad tubes, etc. Use a sine-wave test signal, and set the sweep rate to display about 8 or 10 cycles, as in Fig. 4. You can use a square wave for this, but I think the sine wave shows it a little plainer.

This particular pattern was caused by a bad plate resistor and leaking coupling capacitors. The patterns will be practically the same for either kind of defect.

Finally, let's say that the scope is OK and the amplifier is OK (the generator is OK, too!), but you still have distortion! You get a pattern like Fig. 5. What's going on here? The answer is simple; you're not doing it right. This is a typical pattern caused by feeding in too much signal and overloading the vertical amplifier of the scope! Notice that both tops and bottoms of the sine waves are flattened.

To check, turn down the output of the signal generator. If the pattern goes back to a good sine wave, then that was it. This same thing can also happen in audio amplifiers: I've done it on numerous occasions!

Therefore, for a quick check, feed the signal generator directly into the scope and make sure that they're both OK. This will show up on your rat-killin' with confidence that your equipment is all right. END

AUGUST, 1966

Fig. 1—One-sided sloping of square wave shows up leaky or open coupling capacitor or a bad plate-load resistor.

Fig. 2—Two versions of what happens if one side of push-pull vertical deflection amplifier goes out of whack: a—slight flattening; b—serious clipping of bottom and flattening of top. In scope with retrace blanking, strong retrace line like this would usually indicate open blanking-pulse coupling capacitor or bad blanking amplifier, if any.

Fig. 3—Broad, blurred trace as in this square wave usually means hum in vertical amplifier. A 30-Hz sweep shows blur for what it is: 60-Hz jitter on trace.

Fig. 4—This is horizontal nonlinearity, which shows up as crowding of the trace toward right of screen. Trouble could be in oscillator or horizontal amplifier.

Fig. 5—Two-sided distortion can be caused by overloaded vertical deflection amplifiers, but can also mean much lower than normal B-plus or weak push-pull deflection amplifier (often a twin triode). The return trace is not blanked.
VIBRATION AND SHOCK—NATURE'S

By WILLIAM F. KERNIN*

Vibration fields due to specific-impulse and frictional factors, these spurious effects do plenty to shake up—sometimes even destroy—the "black boxes."

To investigate these forces and design electronic equipment to survive them, the intensity and specific characteristics of the vibration and/or shock must be defined. That is where the vibration pickup and its associated electronic instrumentation play their roles. Let's examine typical equipment used to analyze these two very similar effects and determine how we can use it to define and catalog our twin topics.

The most common device used to transform mechanical motion into an equivalent electrical signal is the piezoelectric crystal accelerometer. Fig. 1 shows two general-purpose devices suitable for many applications. Basically, a pickup of this type consists of a piezoelectric crystal which is mechanically preloaded, using a spring-and-mass arrangement. Any movement in the sensitive axis of the pickup causes a variation in its electrical output. The signal obtained from the pickup is fed to a companion amplifier by means of a low-noise, single-conductor shielded cable.

Various amplifiers with very high input impedance are available commercially for use with crystal accelerometers. One type uses a modified cathode-follower input stage to produce an input impedance variable from 100 to 1,000 megohms, depending on the circuit design and the user's selection of resistor values.

Fig. 2 shows a typical input stage and its associated amplifier circuitry. Because input grid resistor R_n is returned to ground through the cathode-load resistor R_l, the output-signal voltage is common to both input and output; thus a large degree of feedback is obtained. The feedback level is great enough to raise the input impedance from an expected value of 20 megohms, suggested by R_n, to a value of 200 megohms or higher. The actual impedance depends on the value of grid resistor R_n and the overall gain of the cathode follower—a value always less than 1. As gain approaches 1, the input impedance rises to a very high value. Very high input impedances are necessary because the crystal accelerometer is a high-impedance voltage-producing device. It must be lightly loaded to maintain its sensitivity and response to low frequencies.

A gain control and voltage amplifier follow the input stage, allowing low-level signals to be boosted to a usable value. The output of this circuit then feeds indicating instruments of somewhat lower impedances: an audio frequency vtvm, scope, or tape recorder.

*Instrumentation technician, Engineering Labs, Bell Aerospace Co., Division of Bell Aerospace Corp., Buffalo, N.Y.
WRECKING CREW

for example. Also, this output can drive an additional power amplifier that in turn drives a low-impedance recording galvanometer or other type of direct-writing recording device.

To determine the frequency response of a cathode-follower/amplifier and its crystal accelerometer—particularly at frequencies as low as 1 Hz or so—the setup shown in Fig. 3 can be used. In this circuit, a 10Ω resistor is connected in series with the pickup case. The combination feeds the input of the cathode-follower and amplifier, feeding a nominal load. A low-frequency oscillator is connected across the 10Ω resistor as shown, using a 5100Ω series resistor. The dc scope is used first to set the input level across the 10Ω load, then to measure the relative output level for each frequency. Gain at 1 kHz is found first and used as a reference level. Other frequencies can then be checked as desired to obtain a complete response curve.

In a typical test setup used to measure environmental vibration levels, three accelerometers are used—one for each plane (horizontal, vertical and lateral). The pickups can be stud-mounted or cemented directly to the component under test. In most cases, cement offers the best solution. Caulk Grip Cement—a dental product—is a good, general-purpose adhesive that sets sufficiently strong for vibration work in 30 minutes or so. For high-temperature work, as encountered on some points of a rocket engine, Armstrong type A-1 adhesive may be used. Fig. 4 shows a typical "black box" on which three accelerometers have been cemented prior to testing.

After mounting, each pickup is connected to its accelerometer amplifier through low-loss cable. A small rubber washer on the connector helps prevent shaking loose the cable. For high-humidity or altitude-chamber work, the connector is coated with a liquid silicone rubber (General Electric RTV-20) that cures at room temperature. When the test is over, the pliable rubber coating can be peeled off easily. As a final precaution, the miniature cable from the pickup is taped down close to the pickup and elsewhere along its length to prevent it from whipping around during testing.

Depending on what use is to be made of the test signal, the output of each amplifier can feed a scope, meter, tape-recorder channel, or recording oscillograph. Fig. 5 shows some equipment that may be used, singly or in combination.

Before a setup can provide meaningful data, the equipment must be calibrated, beginning by finding the pickup sensitivity. For most purposes, vibration and shock are measured in G's, one G being equivalent to normal gravitational force. The pickup to be checked is mounted on a small shake table which will provide known variable G forces. Its output is checked against that of a standard pickup—also mounted on the table—at different frequencies. The sensitivity of the test pickup is then expressed in millivolts rms per G peak.

Pickup sensitivity is affected by the characteristics of the cable connecting it to its amplifier, by the amplifier's input capacitance, and by the pickup's internal capacitance. Thus, complete cali-

![Fig. 3 — Setup for checking overall response. Scope or vtvm can be used for measurements.](image)

![Fig. 4 — Vibration is checked in three planes by pickups on top, side and rear of equipment.](image)
Vibration information may read like this for a typical unit:

- **E** (sensitivity) = 20 mV rms/G pk
- **C** (pickup) = 900 pF
- **C** (cable) = 87 pF (3 ft of cable)
- **C** (amp input) = 23 pF

If, when setting up a test, a different length of cable is used, the pickup sensitivity must be corrected using the following equation:

\[E_{\text{ran}} = \frac{E_{\text{calib}} - C_{\text{pickup}} + C_{\text{earth cable}} + C_{\text{amp}}}{C_{\text{pickup}} + C_{\text{earth cable}} + C_{\text{amp}}} \]

Thus, any convenient length of cable may be used and the calibration sensitivity corrected correspondingly, as long as the cable capacitance and amplifier input capacitance are known. The low-noise cables supplied with most pickups are normally tagged with their total capacitance values.

Continuing our hypothetical calibration: If for a particular test the expected level may reach ±10 G's, this suggests maximum possible signal of 10 × \(E_{\text{ran}} \) (200 mV rms, using the sample calibration data). Using an audio oscillator, a signal of approximately 1 kHz is fed into the input of the accelerometer amplifier at the expected 10-G level (200 mV rms). The amplifier gain control is then adjusted for some convenient output value—1 volt on a vtm, 10 scale divisions on a scope, the maximum acceptable input for a tape recorder, or 2-in. deflection on the recording oscilloscope. The system has then been calibrated so that a level of ±10 G's peak seen by the pickup will produce an easily read, known output. All pickup channels are calibrated this way, and the system is ready to go.

There are any number of applications for an accelerometer system in the measurement of vibration and shock levels. For example, the system can be used to obtain vibration information from apparatus under actual operating conditions, as in the recording of vibration levels on a rocket engine during hot-test firing. In actual tests of this type, multi-channel tape recorders record highly varied vibration data ranging from dc signals to high-frequency vibrations. A permanent record of the rocket test run is obtained on tape, and it can be reduced, analyzed or transformed into any form desired.

Vibration-inducing devices

After actual operating or environmental levels are determined, much vibration testing is concerned with applying G forces to components, black boxes, and systems at known levels to reveal any defects, or to qualify the equipment.

A common instrument used for such testing is an electrodynamic vibration exciter. This type of shaker consists of a massive driver—a voice-coil-driven table—field-coil arrangement. It is powered by high-energy amplifiers or a controllable, variable-speed motor-generator set. Equipment to be tested is mounted on the shaker head. Standard pickups are then mounted on the device under test so that forces applied can be recorded and used later for reference or evaluation.

A more elaborate type of shaker is the random-vibration machine. Instead of steady frequencies, this instrument employs a band of frequencies with no definite repeatability characteristics—random noise—to drive a specially designed shaker head through powerful amplifiers. Failures often show up during random-noise tests that might never be discovered in steady frequency tests. (See "Big Noise", Radio-Electronics, Aug. 1963.)

Maintenance on vibration test equipment is basically a matter of common sense. The pickup should be kept clean to afford good mechanical contact; the connector must also be clean as possible. The miniature cables are tough, but no undue strains or sharp bends should be allowed, especially at the connector ends. Avoid excessive temperatures near the pickup. To shield a pickup from a nearby radiating heat source, several layers of shiny aluminum foil have proved quite helpful as a rough reflective cover. The cathode-follower/amplifier circuitry is not complex and can be serviced with standard signal-tracing techniques when trouble develops. To insure optimum operation and accuracy, the pickups and associated circuitry should be calibrated as often as possible; once a month is considered adequate.

While the typical industrial electronics technician may seldom see much vibration testing equipment, he should be aware of the basic principles and circuitry involved. Not only may this information come handy when he does encounter such devices, but it may lead to further study and open new areas of new business through direct contact with those actively engaged in vibration testing.
This inexpensive, easy-to-build electronic switch converts your oscilloscope to dual-beam model

By RANDALL K. KIRSCHMAN

An oscilloscope switch, sometimes called simply an electronic switch, allows simultaneous viewing of two separate signals on an oscilloscope. It can be a very useful accessory in many situations. Unfortunately, most scope switches are fairly complex and costly. The average experimenter would not use one often enough to warrant the expense. Here is a solution: a scope switch that uses only a few parts and takes very little time to assemble.

The diagram shows the circuit. None of the part values is critical, but the two channels should be matched, especially R1 and R2, R3 and R4, C1 and C2, D1 and D2. Also the two sections of the multivibrator should be matched (R7 and R11, R8 and R10, C3 and C4). The diodes can be inexpensive ones, such as 1N34A's. All component leads should be kept short. Other than that, there is nothing special about the construction of this unit.

The switch operates very simply. The two transistors, Q1 and Q2, and associated parts form a common-emitter multivibrator that produces square waves at about 5 kHz. R9 controls the frequency of the switching square wave by affecting bias on the transistor bases.

The two diodes, D1 and D2, are switched on and off alternately by the square wave. When the square wave goes positive, D1 is forward-biased and conducts; signal 1 is connected to the output. At the same time, D2 is reverse-biased and open. When the square wave becomes negative, D1 conducts and signal 2 is connected to the output. This switching is very rapid—at the square-wave frequency—and the two input signals look as if they are simultaneous.

Schematic of the simple electronic switch. Square-wave generator can be substituted for the transistor multivibrator.
on the scope screen. Potentiometer R6 adjusts the amplitude of the square wave going to the diodes, and thus places the input signals farther apart on the scope screen.

Once the unit is built, check out its operation. Connect the two signals to be observed to the inputs of the switch. Use a shielded test cable between the output of the switch and the vertical input of the scope.

Synchronize the oscilloscope sweep with one of the input signals and not with the switching signal. This may be done by connecting one of the input signals to the scope’s external sync post.

The oscilloscope should have good frequency response or else the switching signal will be distorted and the traces will not be clean.

The test signal connected to input 1 will be the upper trace on the scope screen. Potentiometers R1 and R2 vary the amplitudes of the test signals applied to the diodes. Adjust potentiometer R9 so that the traces look continuous on the scope screen and the switching square waves are hardly noticeable.

As might be expected of such a simple device, this switch has a few limitations. One is that the two traces cannot be superimposed or overlapped without crossmodulation and distortion. Also the input attenuators, not being frequency-compensated, are useful only to about 100 kHz.

The terminal labeled square-wave output was added so that the switch could also be used as a square-wave source.

The multivibrator can be eliminated by using an external square-wave source to operate the switch. If the switch is used this way, the external square wave can be fed in at the square-wave output terminal.

WHAT'S YOUR EQ?

Tapered Network

The diagram shows an example of a tapered ladder network that extends to infinity. What is the input resistance?

—Paul J. Nahin

??? Circuit

Under the conditions shown in the diagram, can you determine the wave-form and range of the output voltage developed between terminal A and ground? The internal resistances of both input voltage sources are assumed to be negligible. Also, the resistance and self-potential of the diodes are negligible.

—Kendall Collins

Conducted by E. D. Clark

Three puzzles for the student, theoretician and practical man. Simple? Double-check your answers before you say you've solved them. If you have an interesting or unusual puzzle (with an answer) send it to us. We will pay $10 for each one accepted. We're especially interested in service sticklers or engineering stumpers on actual electronic equipment. We get so many letters we can't answer individual ones, but we'll print the more interesting solutions—ones the original authors never thought of.

Write EQ Editor, Radio-Electronics, 154 West 14th Street, New York, N. Y. 10011.

Answers to this month's puzzles are on page 91.

50 Years Ago

In Gernsback Publications

In August 1916

Electrical Experimenter

The Vacuum Detector and How It Works

A 100-KW Radio Frequency Alternator

Sending on Short Wave (150 meters)

Radio-Electronics Is Your Magazine!

Tell us what you want to see in it. Your suggestions may make it a better magazine for the rest of the readers as well as yourself. Write to the Editor, Radio Electronics, 154 West 14th St., New York, N. Y. 10011.

The Incas weren't so far advanced after all—that's only a black and white antenna.
Build Your Own Pulse Generator

IN DESIGNING, DEVELOPING, TESTING AND operating radars, televisions, computers, telemetric devices and hundreds of other kinds of equipment, a pulse generator is often required. This instrument, which can be used for most pulse-testing, costs only a fraction of what you'd pay for a commercial generator. It provides pulses from 1 μsec to 10 μsec wide over a frequency range of 10 Hz to 100 kHz when triggered by an external audio oscillator having an output level of approximately 10 volts rms. A single-pulse switch also is provided, and a variable-delay circuit allows the pulse to start after the scope-trigger pulse. This useful feature allows the leading edge of the output pulse to be observed easily on the scope screen. Delay is variable from 1 μsec to 1 msec. Pulse amplitude is 25 volts, and rise time is 0.1 μsec; positive and negative pulses are available simultaneously.

The pulse-forming circuit for the generator (V1 in the schematic) is a modified cathode-coupled multivibrator, or Schmitt trigger. Circuit operation depends on dc-level changes, and the multivibrator has no built-in time constants. R4 establishes the static condition, with V1-a saturated and V1-b at cutoff.

The input signal, a sine wave fed from the external oscillator at any frequency within the specified range, reduces the plate current of V1-a during its negative half-cycle, and the plate voltage rises. (The initial positive half-cycle, of course, has no effect, because V1-a is already saturated.) This voltage rise is coupled through R6 to the grid of V1-b and drives the stage out of cutoff. As V1-b begins to conduct, increasing the voltage dropped across common cathode resistor R8, the plate current of V1-a drops still lower. The action is regenerative and increases rapidly until V1-a is cut off and V1-b is conducting fully. When V1-b saturates, its plate voltage rests at a low value. This regenerative step provides the scope-trigger pulse and also triggers the delay multivibrator. V1-b remains saturated until the input signal swings toward its positive half-cycle and allows V1-a to conduct, at which time the circuit switches back rapidly to its original condition. The next negative half-cycle starts the trigger action once again.

With no input signal and with the single-pulse switch open, C3 charges to about half the B+ voltage through R2. When the switch is closed to generate a single pulse, C3 is shorted to ground.

Build it for under $50—far less than a comparable manufactured instrument. What will you do with it? Read on! David H. Sandrock

PULSED-GENERATOR SPECIFICATIONS

Pulse rate: 10 Hz to 100 kHz input using external sine wave at generator; single pulse also available.
Pulse width: 1 μsec to 10 μsec in four ranges; 1-10 μsec, 10-100 μsec, 100-1,000 μsec, 1,000-10,000 μsec.
Pulse amplitude: positive or negative 25-volt pulses across 470 ohms. Outputs separate and simultaneous.
Pulse delay: 1 μsec to 1 msec in three ranges; 1-10 μsec, 10-100 μsec, 100-1,000 μsec.
Input trigger level: input sine wave of 10 volts rms.
Scope-trigger output: negative step of about 10 volts peak.
Power requirement: 117 volts, 60 Hz, 40 watts.

This initiates a negative-going waveform that triggers the circuit through C2 in the same manner as for an external trigger signal. One pulse is generated each time the switch is closed.

V5 is a cathode follower for the scope trigger used to prevent the capacitance of the scope and connecting leads from loading the trigger circuit and increasing its rise time.

The negative-going signal from the plate of V1-b is coupled to the plate of V2-a through disconnect diode D1 and through timing capacitor C6 = a = b, or = c to the grid of V2-b. Under static conditions—no input signal—V2-a is normally cut off, and V2-b is conducting heavily. The negative pulse applied to the grid of V2-b reduces the plate-current flow in that stage and causes a decrease in the voltage dropped across common cathode resistor R12. The grid of V2-a then becomes positive to its cathode, driving the stage to saturation. The plate voltage of V2-a drops sharply, and the resulting negative pulse is coupled through C6 to the grid of V2-b, holding that half of the MVG (multivibrator) cut off for a time determined by the time constant TC = C6 x (R13 + R14). As the negative voltage at the grid of V2-b decays, the stage begins to conduct again, and the MVG switches back to its original state.

(D3 is a clamp diode that prevents the grid of V2-b from going positive, a circumstance which might keep the circuit from being triggered.)

The plate load for V2-b is an inductor (L) shunted by a diode. The rapid current alternations caused by the MVG action shock-excite the inductor into oscillation. When V2-b is first cut off the plate voltage rises, the first half-cycle of oscillation is positive and is shorted out by D2. When V2-b saturates, and its plate voltage drops after the time determined by the time constant selected, the first half-cycle of oscillation is in the negative direction. It is this pulse that is passed through disconnect diode D4 as a trigger pulse for width multivibrator V3.

This section of the generator oper-

Panel of pulse generator shows its "black-box" nature—no clutter of controls.
Major chassis components are called out here. Controls on rear are setup adjustments.
trigger, output amplifier and voltage dividers flows through this regulator circuit. R30 is connected between the -105-volt line and the cathode of V7 to prevent the VR tube from acting as a relaxation oscillator. Capacitor C14 is a filter for the 220-volt supply.

Construction is not difficult. Any reasonable layout can be used, and lead dress is not especially critical. The only exception is to keep the leads short between the timing-switch capacitor assemblies and their respective tubes.

When soldering the disconnect and clamp diodes, be sure to provide some form of heat sink to avoid damage. (Pliers or an alligator clip on the lead being soldered will do.) You must use a cardboard sleeve or tape wrapping to cover main filter capacitor C13 because the can is 105 volts negative to chassis. C13 also must have an insulated mounting plate.

Maximum plate current drawn by the pulse generator is about 42 ma, and a transformer capable of delivering that current at 325 volts is required. Any transformer with a center-tapped plate winding supplying 590–650 volts at 50 ma will work well. It also must provide the 5-volt and 6.3-volt filament windings as noted on the schematic.

I used a 9 x 6 x 5-inch utility cabinet, and the chassis, formed of galvanized steel, was bolted to the front panel. Panel lettering was done with a lettering pen and India ink, and a protective plastic coating was sprayed over it. The back of the cabinet was left off for ventilation.

Final checkout requires only an oscilloscope and the AF generator which normally will be used as an input trigger. Turn the generator on, allow it to warm up for about 5 minutes, then set output-level potentiometer R24 for maximum output voltage. Apply to the input terminals a 10-kHz sine-wave signal of 10 volts rms. Trigger the scope with the same input signal, place the scope probe at pin 6 of V1, and adjust R4 for a symmetrical square wave.

Next, clip the probe to pin 6 of V2 and trigger the scope from the pulse generator's scope-trigger output. Set delay switch S2 at the minimum-delay position (150 µf) and R14 for minimum delay (minimum resistance). Adjust R11 for a stable trigger-pulse output. Run R14 from minimum to maximum to see if the pulse is stable over the entire range. If not, adjust R11 until it is.

To adjust the width MVB, connect the probe to pin 6 of V3. Set the width controls—S3 and R21—to minimum and adjust R16 for minimum pulse width. Check for pulse stability over the range of R21, and readjust R16 if necessary. Check to see that the pulse can be delayed through the complete low range.
Simplest Tachometer/Dwellmeter

This project started when a friend asked for a tach circuit for his boat. I had a couple of circuits around, and knew of units in autos, so I thought I could get one working.

I started with a simple one-transistor model. It turned out very temperature-sensitive, and could not be used on my friend's eight after the parts had been selected for my six. Before starting to build one of the more complicated and larger monostable multivibrator circuits, I decided to give the project a little more thought.

Studying the circuits made it obvious that the object was to generate a square wave, and then let the meter measure its average current (in the case of the dwell meter), or the average current per unit time from a changing number of constant-height pulses in the tach circuit. (Remember that if the current through a d'Arsonval meter varies so rapidly that the pointer cannot follow, it will assume a position determined by the average current.)

It occurred to me that there might be a very simple method of doing this. The points, in making and breaking the ground (Fig. 1), should be generating a square wave, although the height would be questionable because of varying battery condition and points resistance, etc. Adding a Zener diode, however, should clamp the square wave to a constant amplitude. Then a simplified count-rate meter could serve as the tach. The advantage of the diode circuit is that only one lead is required from the points. The other connection, a ground, can be made anywhere on the car. Since battery voltage is not needed to activate transistors or tubes, and the diode voltage is our working voltage, battery condition has been eliminated as a parameter.

The remaining problem was to make a respectable square wave from the waveform across the points.

The circuit is shown in Fig. 2, along with the wave shapes at various points. The 6-volt Zener is arranged so that, with a 12-volt negative-ground system (where the voltage goes positive when the points open), the diode gives a 6-volt positive-going square wave. The resistor sets the current through the diode. The inductor is a 100-mH low-resistance toroid, which keeps the current from changing too rapidly and filters out the spikes.

Originally, I planned to use an L-C filter with a capacitor to ground between the inductor and resistor. However, the waveform was better without the capacitor, because the combination caused ringing on the negative half when the points closed. An R-C filter will not do the job properly either.

After obtaining a reasonable square wave, the rest is easy.

The dwell angle is defined as the time that the points are closed during each plug firing, and is specified by the manufacturer. (It is what you set when you gap your points.) The points must open and close once to fire each cylinder; this corresponds to one cycle of our square wave. During one revolution of the distributor (360°), the points must open and close once for each cylinder. The number of degrees allotted to each cylinder, then, is

\[\text{Degrees per cylinder} = \frac{360°}{\text{No. of cylinders}} \]

This will be the number of degrees for a full-scale reading on the dwell meter for a given motor. The meter pointer will be at full scale for minimum dwell (points always open) regardless of the number of cylinders. But the scale markings must be changed to suit 4-, 6-, or 8-cylinder engines. As an example, if the points never opened (maximum dwell), there would be no voltage across the Zener, and the average current would be zero. If the points never closed (minimum dwell), there would always be 6 volts across the Zener and maximum current through the meter. If the points closed for half the time, the average current would be half the maximum, etc.

The tach circuit is a little different. It is a simplified count-rate meter. The circuit in Fig. 3. Here, we take the square wave and differentiate it into spikes of constant height and width with C1 and R1. Each spike is short compared to the total time of the shortest square-wave cycle at highest rpm. Now, as the time per cycle changes with rpm, the size and shape of the pulse do not change and, therefore, the average current is proportional to frequency or rpm. Diode D2 aids in discharging C1. The values of C1 and R1 are the critical ones here. If the product C1R1 is too large, the spike will become an appreciable part of the one cycle, and the readings at high rpm will "flatten out," because average current will no longer be proportional to rpm. If C1R1 is too small, the spikes may be too small, and a full-scale meter reading will not be obtainable. The values shown allow operation to 5,000 rpm, with four-, six-, or eight-cylinder autos, without changing any.

For steering column or under-dash installation, this box configuration can be modified.

By DUANE H. SWEET

Working without tubes or transistors, this dependable unit is insensitive to temperature or battery variations.

Fig. 1—Simplified diagram of a conventional automobile ignition system.

Fig. 2—The Zener diode delivers a 6-volt square wave to dwell indicator.

Fig. 3—Tachometer indicator, which is used with squaring circuit of Fig. 2.

RADIO-ELECTRONICS
thing except the overall calibration.

Recalibration is a necessary evil with all electronic tachs when changing to an auto with a different number of cylinders. For all the cylinders to fire, the crankshaft must do two revolutions, no matter what the number of cylinders (four-cycle engines only). The distributor, however, does only one revolution in this time, or a revolution per revolution of the crankshaft. This means you get two spikes from a four-cylinder engine, three spikes from a six- and four spikes from an eight for every revolution of the crankshaft. So, the average current is different in each case. Here, we have the opposite problem from that of the dwell meter. With the dwell meter, the current stayed the same and the scale changed. With the tach, the scale remains the same and the current through the meter must be changed. This could make matters difficult, but it turns out to be a simple task.

One advantage of this circuit is that it's easy to calibrate. Since we have a squaring circuit built in, any positive-going waveform, larger than 6 volts, from a source that can supply about 15 ma. and has an accurately known frequency in the proper range, will do nicely. Offhand, I can think of nothing more common than the 60-cycle power line! By adding a 15,000-ohm resistance in series with the input, as in Fig. 4, to compensate for the increased voltage, we have a source of 3,600 cycles per minute. Since we get more than one pulse per revolution from our engine, we must calculate what this is equivalent to.

Calibrating rpm = \(\frac{3,600}{N} \)

The meter is set at 1,800 rpm for use with a four-cylinder engine, at 1,200 for use with a 6- and at 900 for use with an eight. (In some units, three calibrating controls are used. A switch selects the proper one.) Because of capacity tolerances, some units may not reach 1,800 rpm for calibration on a four-cycle engine. C1 should be increased until the unit can be calibrated.

I have built two units: one with a 50-µA meter, and one that plugs into my multimeter, which has a 100-µA movement. The 50-µA movement has a convenient scale for 0-5,000 rpm, but the scale divisions are not convenient for the dwell meter. The multimeter, on the other hand, has convenient scales of 3, 6, 12 on a large 4½-inch scale. I use the 6-scale, even though I have to read it in reverse, for 60° dwell, with one division per degree. For the tach I use the 6 and 12 scales for 6,000 rpm and 1,200 rpm. The lower range is good for setting idling and other low-rpm adjustments. You get it by increasing the value of C1.

I have checked the accuracy of the unit with the 50-µA meter on the 0.5000 scale and found it to be within 2% of full scale. This was done with a power audio oscillator, which could furnish the current. I have not checked the accuracy of the low-rpm scale on the multimeter unit yet. The dwell meter has been checked by several people who have carefully gapped their points, and then taken a reading: the reading has been within the manufacturer's specifications every time.

As far as temperature stability is concerned, the unit was taken to 120°F by placing it 9 inches in front of an electric heater, and then to 22°F by placing it in the freezer. At no time did the reading change more than 1% or 50 rpm.

Construction is noncritical. The meter will probably be the most expensive item in the unit. A bit of digging may turn up a surplus meter, or a new one can be bought from Lafayette Radio Electronics Corp. or other mail order firm. For about $5. If you use your multimeter, you can eliminate this expense. The choke may be the hardest thing to find—here, you may have to experiment. The choke does not have to be a toroid. Almost any low-resistance one of more than 50 mH, and less than 500 will probably do. A single-pie rf choke of about 100 mH worked well. Since it has rather high resistance, its resistance was subtracted from the value of R1 to keep the total value about 3,900 ohms. Miller No. 960, 961 or 860 will do nicely. I know of one unit built with all new parts for less than $10. END

Fig. 4—Complete unit, with two tachometer ranges and one dwell range. For positive-ground electrical systems, no change is necessary; just connect metering circuit to car so that the red binding post is positive.

Wiring and layout are not at all critical.

AUGUST, 1966

REFERENCES

www.americanradiohistory.com
Trigsweep Upgrades Inexpensive Scopes

Easy-to-build solid-state triggered-sweep unit works with any scope, gives sweep rates to 1 microsecond per inch

By THOMAS B. MILLS and WILLIAM O. HAMLIN

MOST MODERATE AND LOW-PRICED OSCILLOSCOPES have free-running sweeps. The trace is held still by setting the sweep speed to a submultiple of the input frequency. Laboratory instruments, on the other hand, have a triggered sweep—the sweep speed is constant rather than variable. The sweep is started by the input signal so there is no synchronizing problem, and usually the trace is blanked out until the sweep starts. When sweep time is a simple, constant number such as 1 or 10 µsec per division, it is easy to measure pulse shape, width, rise and fall times, and even frequency, without Lissajous patterns.

You can easily add triggered sweep to your scope. This Trigsweep* unit plugs into the horizontal input jacks, blanking goes to the Z jack, and away you go. Any scope that has wide bandwidth is ideal for this modification. In the EICO 460, all necessary connections can be made at the front panel. Other scopes for easy Trigsweep conversion are the Knight-Kit KG-635 and the Heathkit IO-12.

The circuit

Fig. 1 is the Trigsweep's schematic diagram. The input amplifier lets you control the level of input at which triggering begins, whether it is on a positive or negative excursion of the input, 180° phase shift, and selection of plus or minus dc levels. Input levels from 100 mV to 50 volts rms can be handled. Larger voltages require an attenuator.

Switch S3 controls operating mode. On TRIG the screen is blank until an input signal is present; on AUTO, free-running sweep allows adjustment of intensity and focus. The AUTO oscillation immediately syncs to input signals.

Trigger multivibrator Q3–Q4 has a square-wave output which is differentiated and clipped by D1 to give a sharp positive spike. This drives the sweep start-stop multivibrator, Q5–Q6.

Q6's collector is normally low, holding Q7 on, and there is no sweep output. The stability control is set so

*Copyright, Solid-State Services, 1720 Kimberly Drive, Sunnyvale, Calif.

Semiconductor Kit and Etched Boards

Drilled etched circuit boards for the Trigsweep are available for $4.95 each. A kit of all semiconductors except the power supply diodes (D4, D5, D6 and D7) are available for $12.95. Fairchild semiconductors are supplied. Order boards or semiconductor kits from Solid-State Services, 1720 Kimberly Drive, Sunnyvale, Calif. 94087.
the voltage on Q5 is just below cutoff. A trigger spike will turn Q5 on, turn Q6 and Q7 off, and the sweep starts. Sweep capacitor C₁ charges linearly through R25 and R26 due to the gain of Q8 and Q9 (called a Miller sweep). Switching of C₁ is shown in Fig. 2.

The current through Q10 falls as the charge across C₁ increases, thus developing the sweep voltage. Both positive and negative sweep outputs are available to take care of the horizontal input phase requirements of any scope. Sweep for the scope should be taken from either the plus or minus output, not both, for a left-to-right sweep.

Q11 and Q12 stop the sweep when Q10’s emitter voltage nears -20 and holds off or prevents triggering until sweep flyback (retrace) is complete. This circuit is called a “one-shot” multivibrator because Q12’s collector stays low at the end of the sweep until C2 discharges. The holdoff voltage is applied through a feedback loop to the base of Q5. Holdoff should be about 10% of sweep time, so C₁ is made a

Fig. 1—Complete schematic of Trigsweep.

Q₁, Q₂, Q₉—2N3638 or 2N2953 2N3665 or 2N2711
Q₅, Q₆ = " "
Q₇ 2N3638 or 2N2953 or 2N3665 or 2N2711
Q₉ 2N3638 or 2N2953 or 2N3665 or 2N2711
Q₁₀ 2N3665 or 2N696
Q₁₀, Q₁₁-2N3691 or 2N2711
Q₁₂ 2N3665 or 2N696

R₁₁—15,000 ohms
R₂₂—25,000 ohms
R₂₃—1,000 ohms
R₂₄—pot, 500,000 ohms, linear
R₂₅—100,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₆—500,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₇—100,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₈—4.7K 0.33K 3.3K
R₂₉—4.7K 3.3K 3.3K
R₃₀—1,8K 1K 1K
R₃₁—3.3K 3.3K 3.3K
R₃₂—1.8K 1.8K 1.8K
R₃₃—3.3K 3.3K 3.3K
R₃₄—4.7K 3.3K 3.3K
R₃₅—1.8K 1K 1K
R₃₆—3.3K 3.3K 3.3K
R₃₇—1.2K 1.2K 1.2K

R₁₈—15,000 ohms
R₁₉—pot, 25,000 ohms
R₂₀—pot, 500,000 ohms, linear
R₂₁—100,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₂—500,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₃—100,000 ohms, 1% (Aerovox CPSX½ or equiv)
R₂₄—4.7K 0.33K 3.3K
R₂₅—4.7K 3.3K 3.3K
R₂₆—4.7K 3.3K 3.3K
R₂₇—4.7K 3.3K 3.3K
R₂₈—4.7K 3.3K 3.3K
R₂₉—4.7K 3.3K 3.3K
R₃₀—4.7K 3.3K 3.3K
R₃₁—4.7K 3.3K 3.3K
R₃₂—4.7K 3.3K 3.3K
R₃₃—4.7K 3.3K 3.3K
R₃₄—4.7K 3.3K 3.3K
R₃₅—4.7K 3.3K 3.3K
R₃₆—4.7K 3.3K 3.3K
R₃₇—4.7K 3.3K 3.3K

Metal case (8 x 6 x 4½ in. used here), perforated phenolic circuit board, hardware, transistor sockets if desired

August, 1966
Fig. 2—Timing capacitor and hold-off-capacitor networks for Trigsweep. Timing capacitors C_{A1} through C_{A4} should be high-stability, close tolerance types. C_{A5} is trimmed with C_{B5} for highest range to compensate for stray capacitance, so tolerance is not critical there. The switch should be of the low-capacitance type.

C_{A1}—1 µF Mylar or metalized paper, 5%
C_{B1}—0.005 µF
All these capacitors can have voltage ratings of 50 or higher. For C_{B} capacitors, tolerance of 2% or better will do no harm, for the sake of timing accuracy. Tolerance of C_{B} capacitors is not critical.

C_{B1}—0.005 µF
C_{B2}—100 pF
C_{B3}—1000 pF

Fig. 3—These waveforms are at correspondingly numbered points on Fig. 1 schematic.

Calibration

Calibration sets sweep length vs time to give you an exact time base. To calibrate, set the variable sweep speed and calibration controls to zero (zero resistance) and set multiplier switch S_4 to $\times 1$. Apply an accurate signal source with known frequency to the sweep trigger input and scope input—for instance, 1 kHz or 10 kHz. Adjust horizontal gain so the sweep covers the screen from the left to the right limit lines on the graticule. Set the sweep switch to an appropriate position: position 1 for 60 Hz, position 2 for 1 kHz, position 3 for 10 kHz, etc. Adjust R_2 for exactly 8 cycles or 10 cycles between the 4-inch or 10-centimeter marks respectively. (Most service scope graticules are marked in inches but laboratory scopes are in centimeters.) The time base can now be read (switch position 2 and 1-kHz signal) as 2 msec (.002 sec) per inch or 1 msec per centimeter.

Next calibrate the highest sweep speed with C_{B6} (Fig. 3). Use a 1-MHz accurate signal source and set C_{B6} for 8 or 10 cycles from left to right (inches or centimeters, respectively). Each different size for each speed (Fig. 2).

Blanking transistor Q13 is driven from the collector of either Q6 or Q7. Drive from Q7 provides a negative blanking signal for CRT cathode control, and from Q6 the opposite phase for CRT grid control. The Eico 460 has the CRT cathode connected to the Z-axis jack. You can disconnect the scope's internal blanking with a switch when the built-in free-running sweep is not to be used.

The Trigsweep input will load high-impedance circuits under observation. Because of that you'll find it better to take the trigger signal from the scope's vertical amplifier at some low-impedance point. The existing tap-off for internal sync is fine. The signal can be taken conveniently from the internal/external sync switch on the scope through a 0.1-µF capacitor. Just add a banana jack on the scope's front panel.

All transistors are silicon planar (11 n-p-n's and 2 p-n-p's). The diodes are also silicon. Transistor characteristics are not critical except for voltage ratings, which must be over 40-volt breakdown (30 volts for the p-n-p's). Current gains over 100 are recommended. Q10 should be a medium-power type (1 watt). The waveforms of Fig. 3 will help in troubleshooting—if you have trouble.

A right-side view is shown in the photo. The box for the sweep unit is larger than necessary (8 x 6 x 4½-inch LMB box) to give plenty of panel space for controls. The power supply and unblanking-amplifier circuit board is on the left side.
time the scope is used, set horizontal gain to cover the 4-inch or 10-cm sweep length for correct time vs distance.

Available sweep times are listed in Table I for the calibration setup above. Table II shows the relationship between time and frequency.

If you are accustomed to thinking in frequency rather than time, you will be surprised how easy it is to invert your reference, especially when you no longer have to dialle a frequency control to sync the picture. Time of 1 cycle equals 1 divided by frequency (T = 1/f), or vice versa (F = 1/T). Therefore, switch position 1 at .02 sec per inch equals F = 1/.02 = 50 Hz. That is, 1 cycle per inch at 50 Hz or 2 cycles per inch at 100 Hz. Position 5 at 2 µsec/in, gives F = 1/(2 × 10^-6) = 0.5 MHz for 1 cycle per inch and 1 MHz gives 2 cycles per inch.

To measure frequency, set the sweep speed for a convenient number of cycles on the screen. To read, total the time and divide by the number of cycles and invert the number. For instance (see table), if at position 4 with the expansion switch at × 5, your unknown signal results in 10 cycles across 3 inches, the total time is 3 inches × 100 × 10^-6 sec per cycle. Frequency is F = 1/30 × 10^-6 = .033 MHz, or 33 kHz.

TV vertical scan can be observed on switch position 1 with four pulses per sweep, while position 2 and × 5 will show two pulses per sweep.

A TV horizontal scan line will best be observed on position 4, which will stretch the 63-µsec TV horizontal line over the whole 80 µsec (20 µsec × 4 in. = 80 µsec).

It is important to remember that the Trigsweep unit takes the trigger signal from TV vertical, TV horizontal or signal generator circuits. Trigsweep has the advantage of giving you the time relationship between the point of triggering and point of observation. Thus you can measure delay through stages and networks. Better yet, you easily keep track of what you are looking at. After a little experimentation and practice, triggering will be like duck soup.

When you are looking at single-pulse phenomena, the time between the start of sweep and the pulse of interest is important. The sweep may begin its excursion too late for the leading edge to be seen. Lab scopes take care of this by including built-in delay lines in the vertical circuit. With the Trigsweep, just select the trigger source carefully. For instance, the 9-µsec horizontal sync pulse of a TV signal can be stretched over almost an inch on position 5, × 1, by using the horizontal flyback pulse for triggering. The plus or minus input selection and trigger level control give you flexibility on where the triggering will start.

The ability to see fast rise times on the scope without jitter makes measurement of amplifier bandwidth easy. Drive the amplifier under test with a good square-wave source from which you can also trigger the Trigsweep. Observe the waveform at the input to see if it is really square or limited by the scope’s bandwidth. Now observe the waveform at the output and measure its rise or fall time (see Fig. 4). Approximate bandwidth is 0.35 divided by this time (Δf = 0.35/1). For instance, a 35-kHz bandwidth audio amplifier will have a rise time of 10 µsec (½ inch on position 4, × 1). For tuned amplifier systems, a square-wave-modulated signal at the passband frequency is required. The modulated output is fed to the scope’s vertical input.

Table I

<table>
<thead>
<tr>
<th>Sweep speed switch pos</th>
<th>×1</th>
<th>×5</th>
<th>Freq for 2 cycles/inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02 sec/.01 sec</td>
<td>0.1 sec/.05 sec</td>
<td>100 Hz</td>
</tr>
<tr>
<td>2</td>
<td>2 msec/1 msec</td>
<td>10 msec/5 msec</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>3</td>
<td>200 µsec/100 µsec</td>
<td>1 msec/0.5 msec</td>
<td>10 kHz</td>
</tr>
<tr>
<td>4</td>
<td>20 µsec/10 µsec</td>
<td>100 µsec/50 µsec</td>
<td>100 kc</td>
</tr>
<tr>
<td>5</td>
<td>2 µsec/1 µsec</td>
<td>10 µsec/5 µsec</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency</th>
<th>Time</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1 µsec</td>
<td>10,000 MHz</td>
<td>60.0 µsec</td>
<td>16.7 kHz</td>
</tr>
<tr>
<td>.2</td>
<td>5,000 MHz</td>
<td>70.0</td>
<td>14.3</td>
</tr>
<tr>
<td>.3</td>
<td>3,333 MHz</td>
<td>80.0</td>
<td>12.5</td>
</tr>
<tr>
<td>.4</td>
<td>2,500 MHz</td>
<td>90.0</td>
<td>11.1</td>
</tr>
<tr>
<td>.5</td>
<td>2,000 MHz</td>
<td>100.0</td>
<td>10.0</td>
</tr>
<tr>
<td>.6</td>
<td>1,667 MHz</td>
<td>200.0</td>
<td>5.00</td>
</tr>
<tr>
<td>.7</td>
<td>1,429 MHz</td>
<td>300.0</td>
<td>3.33</td>
</tr>
<tr>
<td>.8</td>
<td>1,250 MHz</td>
<td>400.0</td>
<td>2.50</td>
</tr>
<tr>
<td>.9</td>
<td>1,111 MHz</td>
<td>500.0</td>
<td>2.00</td>
</tr>
<tr>
<td>1.0</td>
<td>1,000 MHz</td>
<td>600.0</td>
<td>1.67</td>
</tr>
<tr>
<td>2.0</td>
<td>500 kHz</td>
<td>700.0</td>
<td>1.43</td>
</tr>
<tr>
<td>3.0</td>
<td>333 Hz</td>
<td>800.0</td>
<td>1.25</td>
</tr>
<tr>
<td>4.0</td>
<td>250 Hz</td>
<td>900.0</td>
<td>1.11</td>
</tr>
<tr>
<td>5.0</td>
<td>200 Hz</td>
<td>1.00 m sec</td>
<td>1.00 kHz</td>
</tr>
<tr>
<td>6.0</td>
<td>167 Hz</td>
<td>2.00</td>
<td>500 Hz</td>
</tr>
<tr>
<td>7.0</td>
<td>143 Hz</td>
<td>3.00</td>
<td>333</td>
</tr>
<tr>
<td>8.0</td>
<td>125 Hz</td>
<td>4.00</td>
<td>250</td>
</tr>
<tr>
<td>9.0</td>
<td>111 Hz</td>
<td>5.00</td>
<td>200</td>
</tr>
<tr>
<td>10.0</td>
<td>100 Hz</td>
<td>6.00</td>
<td>167</td>
</tr>
<tr>
<td>20.0</td>
<td>50.0 Hz</td>
<td>7.00</td>
<td>143</td>
</tr>
<tr>
<td>30.0</td>
<td>33.3 Hz</td>
<td>8.00</td>
<td>125</td>
</tr>
<tr>
<td>40.0</td>
<td>25.0 Hz</td>
<td>9.00</td>
<td>111</td>
</tr>
<tr>
<td>50.0</td>
<td>20.0 kHz</td>
<td>10.00 m sec</td>
<td>100 Hz</td>
</tr>
</tbody>
</table>

Fig. 4—Definition of terms used in measuring a pulse—easy to do with “one-shot” display from the Trigsweep.

August, 1966
2.5-GHz Microwave ETV Systems

Another blossoming application of microwaves is calling out for qualified installers, operators and techs

By GEORGE SITTS

IF YOU'RE AN ANTENNA WATCHER, you might notice a new species sprouting on your neighborhood school. A growing number of school systems are using the new Instructional Television Fixed Service established by the FCC in the 2.5-GHz (2,500 MHz) band. All types of formal educational systems, from the smallest public and private grade schools to the largest university centers, are taking advantage of this new service.

Educators use low-power transmission in the microwave bands to connect a central ETV center with designated schools within a region.

The FCC first proposed the new instructional television service in mid-1962 for the transmission of instructional programs. Many education administrators who wanted to use TV thought that the cost of cables between schools was making it impractical for them. However, the proposal received general approval and was tested in the Plainedge, N.Y. school district using a 2.000-MHz transmission system produced by Adler Electronics Inc.

The test sparked much comment, in and out of the educational field. Commercial television broadcasters, whose TV auxiliary service band was being used for the test, liked the idea: however, they suggested it be instituted in the 2.5-GHz band. They pointed out that 31 channels could be allocated there, whereas only 20 channels were available in the 2-GHz band, and many of these were already being used by commercial TV broadcasters.

On September 9, 1963, the Commission decided on the 2.5-GHz frequencies. It specified a maximum power of 10 watts per channel, with additional power to be authorized only on proof of need. After further experiments in the field, Adler Electronics suggested that multiple frequency assignments (a school system may request up to four channels) be spaced so that the output signal, when heterodyned with a single local oscillator, would fall exactly on vhf TV channel frequencies. Adler also recommended that the output signals be close enough to each other in frequency to allow them to be received by a single broadband preamp. The FCC, which up to that time had been assigning only every sixth channel, evaluated the suggestions and began assigning alternate channels to multiple-frequency educators in May, 1964.

The first school system to use the new service was Plainview-Old Bethpage school district in Long Island. They applied for a license in early January, 1964 and were in single-channel operation by October, 1964. By the time the Plainview system was on the air, over a dozen other public and private school systems had formally applied for construction permits. By February 1966 there had been so many applications for the 31 channels that the Commission proposed new rules to limit the number of channels for a single licensee to four.

The FCC does not distinguish between licenses for an originating station...
and for a repeater station. A separate license good for up to the four-channel maximum is granted for each repeater. Some school systems now hold as many as seven 4-channel licenses, presumably for one originating station of four channels and six 4-channel repeating stations.

This much activity, particularly in heavily populated areas, could cause serious intersystem interference. The FCC has recognized the problem. It suggests directional receiving antennas and locating transmitters where receiving antennas will not be aimed toward other similar transmitters.

The FCC expects new applicants to use as many state-of-the-art refinements as possible to eliminate potential interference from their own or neighboring systems. Cross-polarization, counter-rotating circular polarization, patterned transmitting antennas, careful selection of operating frequencies and transmitter location are all part of careful engineering in this microwave service.

To protect future space communications, the FCC does not allow "periscope" type transmitting antenna systems—ones that use a high-gain antenna aimed vertically up a tower at a tilted reflective screen.

In school systems with only a few schools, or schools conveniently located, a directional transmitting antenna system is used. It may be a series of microwave dishes, each aimed at a particular school or string of schools, or it may be a specially constructed antenna covering 90° or more. In larger school systems, a separate antenna for each school is impractical, and a high-gain omnidirectional antenna is used. Typical horizontal power gains of an omni antenna are 12 or 13, giving adequate signal to directional receiving antennas located beyond 12 miles, as long as they are line-of-sight from the transmitting antenna.

In fact, line-of-sight seems to be the secret of 2.5-GHz TV transmission. If the transmitting antenna does not have line-of-sight to schools even a few blocks away, it is not likely the signal will be received there unless a receiving antenna tower is erected.

Often, to cover nearby schools as well as distant schools, about 1 dB of the transmitter output is spent in null-fill transmission. Designed into the transmitter antenna, null-fill is a low-power, low-gain circular pattern aimed downward from the transmitting antenna to schools that would otherwise be underneath the almost horizontal plane of the main power beam.

In places where coverage to all schools in a district is practically impossible from a single transmission point, the FCC has provided for repeater stations.

A typical repeater will receive the signal or signals of the originating station on a high-gain, tower-mounted microwave dish antenna. The signal is then fed down the tower to the repeater transmitter where a crystal-controlled oscillator heterodynes the signal or signals to a new frequency. Still in the 2.5-GHz band, the new frequency is then amplified and reradiated from a transmitting antenna system.

How the equipment works

Transmitters for the new service consist of two major parts, the modulator and the 2.5-GHz transmitter. The modulator is much like in closed-circuit television. It accepts a composite video signal and an audio signal and converts them to a crystal-controlled vhf television signal at about 1 volt across 75 ohms.

The 2.5-GHz transmitter portion may be located some distance from the modulator, connected to it by coaxial cable. The transmitter accepts the vhf signal and beats it against a microwave oscillator whose frequency is chosen so that it produces an output on the assigned transmission frequency when it is added to the vhf signal frequency. Unwanted beat frequencies are trapped out. The output is fed to a traveling-wave tube for amplification, then sent via coaxial cable or waveguide up the tower to the transmitting antenna.

At the receiving site the signal is fed to a converter located on the mast with the receiving antenna. A local oscillator in the converter, crystal-controlled at the same frequency as the transmitter's oscillator, is beat against the incoming signal, leaving a difference signal which is the same as the vhf signal from the modulator. This vhf signal can
then be amplified and distributed via a vhf master-antenna system for reception on any ordinary TV receiver.

In school systems that transmit on several channels, a single fixed-frequency transmitter oscillator is used for all channels, with differences in transmitted frequency coming only from the differences in vhf carrier frequencies from the several modulators. Thus, one broadband 2.5-GHz receiver with one local oscillator can convert several signals to separate vhf channels.

Schools are relatively free to use systems as they wish, as long as they follow a few token rules of operation. They must use the facility principally for instructional and cultural material for formal education of students. During idle periods, however, the system can handle such administrative traffic as conferences with personnel, distribution of reports and assignments and exchange of data and statistics. Stations are not bound by any equal-time provisions or any limited hours of operation. They are, however, tied to technical standards like those of commercial broadcasters: including EIA sync, 525-line standard, amplitude modulation (A5) for transmission of visual signal, and frequency modulation (F3) for transmission of audio signal.

Vestigial-sideband transmission of the visual signal is not required, as in commercial television, but the lower sideband cannot exceed the amplitude of the upper sideband. Stations must maintain the 4.5-MHz sound carrier separation, maintain the visual carrier within 60 kHz and check (not measure) its frequency at least once a month. A roughly calibrated receiver is acceptable for measuring a submultiple of the carrier, usually accessible within the transmitter.

Call letters consisting of three letters and two digits (like KNZ-70) must be transmitted at sign-on and sign-off, and hourly during operation.

What do you need to get in?

An operator with a Third-Class Radiotelephone Permit (no broadcast endorsement needed) may turn the transmitter on and off, make routine meter readings and adjust output power and modulation. A First- or Second-Class Radiotelephone licensee is required for any other tests, repairs or adjustments while the transmitter is in operation. Technicians with First’s or Second’s need not be employees of the school district, and may conceivably be outside technicians contracted for service.

The station must keep two logs. One, an operating log, must list the date and time of each period of operation and the time of any interruptions. The other, a maintenance record, logs all repairs, adjustments, maintenance, tests and equipment changes. The maintenance log must also show the date and time of these repairs, and the name and qualifications of the technician doing the maintenance.

Who is using the system?

Detroit, Michigan, is typical. Holder of a uhf (channel 56) license for several years, the school district had experimented with instructional television and found it effective but limited, due to its one-program-at-a-time restriction. In November 1965 they added two 2.5-GHz channels to the uhf channel. The district can now repeat programs during the day, which eliminates schedule problems due to different class times in the district’s 60 schools.

The initial investment for transmission equipment was about $20,000 for the first channel and $15,000 for the second. A uhf channel of comparable coverage would cost about $50,000. Receiving equipment costs about $1,200 per school.

An installation at the University of California at Berkeley is broadcasting medical programs in color to hospitals in the San Francisco area.

The Catholic Schools of Brooklyn, N. Y. use two channels of 2.5-GHz to broadcast instructional programs produced by diocesan personnel to 240 elementary and high schools in Brooklyn and Queens. Perhaps typical of large-school TV systems, diocesan studios are in one wing of a Catholic high school. Licensed for eventual 4-channel transmission, the system’s remote-controlled main transmitter and 180-foot antenna are behind the school. A repeater transmitter with a 100-foot antenna is located on the roof of another Catholic high school in Queens.

Programs produced in the Brooklyn studios are recorded on videotape and later transmitted, two at a time, to the schools. Each program, averaging 22 minutes, is transmitted between 10 and 15 times each school year to accommodate the various school’s schedules. Instructors use the programs to teach basics of such subjects as social studies, science, art and music. Program producers make no attempt to replace the classroom teacher. Rather, they plan programs to supplement a busy teacher with audio-visual materials he would normally not have time to obtain and edit for class use.

In Houston, Texas, the Spring Branch Independent School District operates a two-channel system. A good example of a smaller network, Spring Branch spent $70,000 for studio, videotape and transmitting equipment, plus another $142,000 for receiving antennas, converters, master antenna systems and 325 receivers for the district’s 24 schools.

The studio is a remodeled schoolboard meeting room. Students do camera work and videotaping on half-day schedules. A full-time TV engineer/technician handles technical operation and maintenance. Presently, Spring Branch uses one channel mainly for transmitting rented films and the second for locally produced programs.

Instructional Television Fixed Service has caught on. Florida, South Carolina and Nebraska are planning cables, repeaters and high-band microwave relays between central studios and regional transmitters in preparation for installation of a statewide 2.5-GHz service.

Because many educators with construction permits are completing their installations and actually broadcasting, other educators have been watching their programs and visiting their sites. Many of these “wait and-see’s” have filed for permits of their own. Educational television on 2.5-GHz is going places.
Making Up Resistor and Capacitor Decades

By GLENN H. DORSEY

RESISTOR AND CAPACITOR DECADES ARE standard in computers and measuring instruments such as bridges and meter multipliers. Commercial precision decades usually use individual exact values for each step, but it is possible to get the same decade values with only four precision resistors or capacitors. The small additional cost for the extra contacts needed on a rotary switch is much more than offset by the saving from being able to use fewer precision components. In 0.1% and .01% laboratory standards, the saving can be considerable.

For series resistors giving a decade from 0 (shorted) to 1 through 10, the classic 1-2-3-4 ratio of resistors can be used with a standard 2-pole 11-position rotary switch and some tricky connections. The simplified schematic of the switch and the four resistors is shown in Fig. 1. Table I shows a tabulation of the necessary connections. Fig. 2 shows connection details. Notice that the resistors are all permanently connected in series to the input and output terminals, while the switch contacts short out the unused values.

Another series switching system that doesn't require special switch contacts or wiper arms is the all-series connection of 10 equal units. The switch arm shorts out up to 10 of the units to make a decade switch. This requires 10 resistors, but they are all of equal value (Fig. 3).

[An advantage of this approach is that the power dissipation of the decade is easy to figure. Assuming you use 1-watt resistors, the maximum dissipation with 1 ohm in-circuit is 1 watt; with 2 ohms, 2 watts; and so on. With the method of Figs. 1 and 2, the maximum dissipation is tricky to figure because the resistor values are unequal. For example, to get 3 ohms, the 1- and 2-ohm resistors are switched in series. If you apply 3 volts across the series pair, the 1-ohm resistor dissipates 1 watt but the 2-ohm resistor is forced to dissipate 2 watts. The maximum safe voltage that can be applied to the decade box when set for 3 ohms is 2.4 volts.—Editor]

The choice depends on the cost and availability of the precision resistors. Two to five decades are usually combined for laboratory decade boxes, one box usually starting with a lower decade of 0.1-ohm steps, and a higher-resistance box using 1,000-ohm steps. Laboratories sometimes keep each decade in a separate box, so that fewer decades are tied up in temporary bridges and breadboard test setups.

Capacitor and conductance (parallel-resistor) decade switches are different. The elements must be switched in parallel. Two sets of unit ratios will yield zero and 1 through 10 values with a 3-pole 11-position rotary switch: 1-2-3-5 and 1-2-2-6 (Table II). With a 4-pole rotary switch, unit ratios of 1-2-3-4 and 1-2-2-5 may be used for the same results. Four-pole, 12-position combinations are given for 0-11 are given in the last two columns. These different switching combinations are given so that decades can be designed around available values. Fig. 4 shows actual connections for a 3-pole 1-2-3-5 decade.

Parallel-resistor decades are used as conductance controls in computers, constant-current or constant-voltage supplies, feedback loops, etc. Conductance or impedance decades for any need can be designed by using a unit value as a starting point, then choosing the other values according to the ratios given in the tables.

Some decades, instead of going from 1 to 10, go only to 9, with the idea that the last unit between 9 and 10 will be supplied by the next smaller decade. This cuts the cost of the higher decades somewhat, especially if 0.1% or .01% laboratory standard values are used. On the other hand, some decades go to 11 units instead of 10, the extra step giving more flexibility in a great many applications.

Aug, 1966

END

The choice depends on the cost and availability of the precision resistors. Two to five decades are usually combined for laboratory decade boxes, one box usually starting with a lower decade of 0.1-ohm steps, and a higher-resistance box using 1,000-ohm steps. Laboratories sometimes keep each decade in a separate box, so that fewer decades are tied up in temporary bridges and breadboard test setups.

Capacitor and conductance (parallel-resistor) decade switches are different. The elements must be switched in parallel. Two sets of unit ratios will yield zero and 1 through 10 values with a 3-pole 11-position rotary switch: 1-2-3-5 and 1-2-2-6 (Table II). With a 4-pole rotary switch, unit ratios of 1-2-3-4 and 1-2-2-5 may be used for the same results. Four-pole, 12-position combinations are given for 0-11 are given in the last two columns. These different switching combinations are given so that decades can be designed around available values. Fig. 4 shows actual connections for a 3-pole 1-2-3-5 decade.

Parallel-resistor decades are used as conductance controls in computers, constant-current or constant-voltage supplies, feedback loops, etc. Conductance or impedance decades for any need can be designed by using a unit value as a starting point, then choosing the other values according to the ratios given in the tables.

Some decades, instead of going from 1 to 10, go only to 9, with the idea that the last unit between 9 and 10 will be supplied by the next smaller decade. This cuts the cost of the higher decades somewhat, especially if 0.1% or .01% laboratory standard values are used. On the other hand, some decades go to 11 units instead of 10, the extra step giving more flexibility in a great many applications.

Aug, 1966

END

The choice depends on the cost and availability of the precision resistors. Two to five decades are usually combined for laboratory decade boxes, one box usually starting with a lower decade of 0.1-ohm steps, and a higher-resistance box using 1,000-ohm steps. Laboratories sometimes keep each decade in a separate box, so that fewer decades are tied up in temporary bridges and breadboard test setups.

Capacitor and conductance (parallel-resistor) decade switches are different. The elements must be switched in parallel. Two sets of unit ratios will yield zero and 1 through 10 values with a 3-pole 11-position rotary switch: 1-2-3-5 and 1-2-2-6 (Table II). With a 4-pole rotary switch, unit ratios of 1-2-3-4 and 1-2-2-5 may be used for the same results. Four-pole, 12-position combinations are given for 0-11 are given in the last two columns. These different switching combinations are given so that decades can be designed around available values. Fig. 4 shows actual connections for a 3-pole 1-2-3-5 decade.

Parallel-resistor decades are used as conductance controls in computers, constant-current or constant-voltage supplies, feedback loops, etc. Conductance or impedance decades for any need can be designed by using a unit value as a starting point, then choosing the other values according to the ratios given in the tables.

Some decades, instead of going from 1 to 10, go only to 9, with the idea that the last unit between 9 and 10 will be supplied by the next smaller decade. This cuts the cost of the higher decades somewhat, especially if 0.1% or .01% laboratory standard values are used. On the other hand, some decades go to 11 units instead of 10, the extra step giving more flexibility in a great many applications.

Aug, 1966

END

The choice depends on the cost and availability of the precision resistors. Two to five decades are usually combined for laboratory decade boxes, one box usually starting with a lower decade of 0.1-ohm steps, and a higher-resistance box using 1,000-ohm steps. Laboratories sometimes keep each decade in a separate box, so that fewer decades are tied up in temporary bridges and breadboard test setups.

Capacitor and conductance (parallel-resistor) decade switches are different. The elements must be switched in parallel. Two sets of unit ratios will yield zero and 1 through 10 values with a 3-pole 11-position rotary switch: 1-2-3-5 and 1-2-2-6 (Table II). With a 4-pole rotary switch, unit ratios of 1-2-3-4 and 1-2-2-5 may be used for the same results. Four-pole, 12-position combinations are given for 0-11 are given in the last two columns. These different switching combinations are given so that decades can be designed around available values. Fig. 4 shows actual connections for a 3-pole 1-2-3-5 decade.

Parallel-resistor decades are used as conductance controls in computers, constant-current or constant-voltage supplies, feedback loops, etc. Conductance or impedance decades for any need can be designed by using a unit value as a starting point, then choosing the other values according to the ratios given in the tables.

Some decades, instead of going from 1 to 10, go only to 9, with the idea that the last unit between 9 and 10 will be supplied by the next smaller decade. This cuts the cost of the higher decades somewhat, especially if 0.1% or .01% laboratory standard values are used. On the other hand, some decades go to 11 units instead of 10, the extra step giving more flexibility in a great many applications.

Aug, 1966

END
Zeroing-In Your Signal Generator

A simple 5-MHz oscillator and a little patience will give you a calibrated generator you can trust

By M. R. GORDON

LIKE ANY PRECISION INSTRUMENT, your rf generator—including dip meters and sweep/marker generators—must be accurately calibrated if they're to be useful. Here's how to avoid the common pitfalls in calibrating them.

Quartz-crystal oscillators are unquestionably the best secondary standard of frequency. An rf generator may have a built-in quartz-crystal oscillator, but if not, you can construct an external oscillator shown in Fig. 1. Parts layout is not critical. The rf choke is fixed in the original equipment. If you use a peaking coil with an adjustable core, you can trim the crystal frequency over a small range. A 5-MHz crystal is used. This oscillator provides useful harmonics to 200 MHz.

Various indicators can be used for calibration—an amplifier and speaker, an electron-ray (eye) tube or an oscilloscope. Since a scope has a sensitive vertical amplifier, and is readily available, let's take it first. In the simple test setup shown in Fig. 2-a, the demodulator probe detects the beat between the signal generator and crystal oscillator. Its output is fed to a scope, which may be operated on its internal sawtooth or on a 60-Hz sine-wave sweep. It may even be operated with no horizontal deflection. Most operators prefer 60-Hz sine-wave deflection, which gives the pattern shown in Fig. 2-b.

Between calibrating points, there is only a horizontal trace on the screen. As you approach a beat, the pattern builds up. At the zero-beat point, the pattern collapses abruptly to a horizontal line. If you pass the zero-beat point, the pattern suddenly builds up again. The zero-beat point is very critical—when you're there you know you're exactly on the crystal frequency or one of its harmonics.

The beginner often has difficulty deciding which crystal harmonic a zero-beat indicates. It isn't hard. Remember that the 5-MHz beat will be the strongest because 5 MHz is the crystal's fundamental frequency. Its second harmonic—10 MHz—will be the second strongest beat; 15 MHz will be third, etc. The strength of the beat signal is indicated by the height of the beat pattern.

If your rf generator is out of calibration, merely tune it to the strongest beat indication—5 MHz on the dial. Most rf generators have trim capacitors for calibrating the instrument on each band. Adjust the correct trimmer to make the generator dial read exactly 5 MHz. Next, tune to the second strongest beat indication—at 10 MHz. Touch up that calibrating trimmer. In this manner, you can easily check out the generator at 5-MHz intervals over its entire range.

Next, you might wonder how the generator can be calibrated below 5 MHz, since the crystal oscillator in this example has no output below 5 MHz. Most rf generators have a substantial harmonic output. So, if a generator is set to 2.5 MHz, its second harmonic will zero-beat with the crystal fundamental. Below 5 MHz, the strongest harmonic beat occurs at 2.5 MHz (5 MHz/2), the next strongest on 1.666 MHz (5 MHz/3), etc. By observing the sequence of strong beats, you can identify which harmonic you are working with. Note that if you reduce the scope gain sufficiently to make weaker beat patterns invisible, the possibility of confusion is reduced.

Since the crystal oscillator has harmonic outputs, as does the rf generator, it is obvious that harmonics can also zero-beat with harmonics—causing interharmonic beats. These are comparatively weak, but can be annoyingly apparent when the scope gain is turned up. Table 1 shows calibration points over the entire range of a typical signal generator.

![Fig. 2-a—Diagram of test setup for calibrating signal generator; b—beat pattern.](image-url)

Table 1—5-MHz Calibration Points

<table>
<thead>
<tr>
<th>Band I</th>
<th>Band II</th>
<th>Band III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var. Osc.</td>
<td>2nd Harmonic</td>
<td>Var. Osc.</td>
</tr>
<tr>
<td>*3.33</td>
<td>*6.67</td>
<td>*5.00</td>
</tr>
<tr>
<td>3.46</td>
<td>6.92</td>
<td>3.50</td>
</tr>
<tr>
<td>3.64</td>
<td>7.28</td>
<td>3.75</td>
</tr>
<tr>
<td>4.00</td>
<td>8.00</td>
<td>4.09</td>
</tr>
<tr>
<td>4.79</td>
<td>9.58</td>
<td>4.87</td>
</tr>
<tr>
<td>5.48</td>
<td>11.97</td>
<td>5.56</td>
</tr>
<tr>
<td>5.71</td>
<td>13.42</td>
<td>5.83</td>
</tr>
<tr>
<td>6.43</td>
<td>16.86</td>
<td>6.64</td>
</tr>
<tr>
<td>7.00</td>
<td>19.20</td>
<td>7.14</td>
</tr>
<tr>
<td>7.50</td>
<td>21.50</td>
<td>7.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*15.00</td>
<td>*30.00</td>
<td>*5.00</td>
</tr>
<tr>
<td>16.00</td>
<td>32.00</td>
<td>6.00</td>
</tr>
<tr>
<td>17.00</td>
<td>34.00</td>
<td>7.00</td>
</tr>
<tr>
<td>18.00</td>
<td>36.00</td>
<td>8.00</td>
</tr>
<tr>
<td>19.00</td>
<td>38.00</td>
<td>9.00</td>
</tr>
<tr>
<td>20.00</td>
<td>40.00</td>
<td>10.00</td>
</tr>
<tr>
<td>21.00</td>
<td>42.00</td>
<td>11.00</td>
</tr>
<tr>
<td>22.00</td>
<td>44.00</td>
<td>12.00</td>
</tr>
<tr>
<td>23.00</td>
<td>46.00</td>
<td>13.00</td>
</tr>
<tr>
<td>24.00</td>
<td>48.00</td>
<td>14.00</td>
</tr>
<tr>
<td>25.00</td>
<td>50.00</td>
<td>15.00</td>
</tr>
<tr>
<td>26.00</td>
<td>52.00</td>
<td>16.00</td>
</tr>
<tr>
<td>27.00</td>
<td>54.00</td>
<td>17.00</td>
</tr>
<tr>
<td>28.00</td>
<td>56.00</td>
<td>18.00</td>
</tr>
<tr>
<td>29.00</td>
<td>58.00</td>
<td>19.00</td>
</tr>
<tr>
<td>30.00</td>
<td>60.00</td>
<td>20.00</td>
</tr>
<tr>
<td>31.00</td>
<td>62.00</td>
<td>21.00</td>
</tr>
<tr>
<td>32.00</td>
<td>64.00</td>
<td>22.00</td>
</tr>
<tr>
<td>33.00</td>
<td>66.00</td>
<td>23.00</td>
</tr>
<tr>
<td>34.00</td>
<td>68.00</td>
<td>24.00</td>
</tr>
<tr>
<td>35.00</td>
<td>70.00</td>
<td>25.00</td>
</tr>
<tr>
<td>36.00</td>
<td>72.00</td>
<td>26.00</td>
</tr>
<tr>
<td>37.00</td>
<td>74.00</td>
<td>27.00</td>
</tr>
</tbody>
</table>

ASTERISK (*) INDICATES THE STRONGER CALIBRATION POINTS

![Fig. 1—A very simple crystal calibrator.](image-url)

54

RADIO-ELECTRONICS

www.americanradiohistory.com
generator. The strongest beat in the tabulation occurs at 5 MHz, as would be expected, because this is fundamental vs fundamental.

As you tune the generator below 5 MHz, you will observe many interharmonic beats. A comparatively strong one occurs at 4.44 MHz. Here, the 9th harmonic of the rf generator is beating against the 8th harmonic of the crystal. Again, a weaker interharmonic beat occurs at 4.5 MHz. Here, the 10th harmonic of the generator is beating against the 9th harmonic of the crystal.

Consider the beat pattern at 15 MHz. This is a strong beat because the 3rd harmonic of the crystal is beating against the fundamental of the rf generator. A comparatively strong interharmonic indication occurs at 16.67 MHz, where the 3rd harmonic of the rf generator is beating against the 10th harmonic of the crystal. A weaker interharmonic beat occurs at 16 MHz. The 5th harmonic of the generator is beating against the 16th of the crystal.

If the rf generator had no harmonic output, no interharmonic beats could be obtained. A zero beat could then be found only when the generator fundamental was tuned to a crystal harmonic frequency. No ordinary rf generator is that pure. Of course, if the rf generator and crystal oscillator both had strong harmonic outputs to infinitely high frequencies, you would encounter an infinite number of interharmonic beats. Actually, crystal harmonics higher than the 50th are generally too weak to produce a scope pattern. Hence, the number of interharmonic beats you can reach with individual generators and crystal oscillators depends on their circuit characteristics.

In most shops, the accuracy of the secondary frequency standard (quartz crystal) is taken for granted. On the other hand, it is wise to calibrate the crystal oscillator occasionally against an extremely accurate primary standard, such as the National Bureau of Standards station WWV. Highly precise radio and audio modulating frequencies are broadcast from the WWV transmitter now at Ft. Collins, Colo. The station operates on 2.5, 5, 10, 15, 20 and 25 MHz. Calibration accuracy is maintained to 1 part in 100 million.

To calibrate a crystal oscillator, tune in WWV at a convenient frequency, such as 5 MHz. Place the crystal oscillator near the receiver, and adjust the quartz crystal for zero-beat as indicated by the falling squeal from the speaker. The quartz crystal in Fig. 1 can be tuned to some extent by a slug in the 85-μH choke coil, or by a trimmer capacitor connected across the quartz crystal. The more expensive crystal holders have an adjustable plate, which tunes the crystal by varying the separation between plate and crystal.

In any event, the crystal must be ground to a frequency that permits tuning through its nominal frequency (5 MHz in this example) when used in a specific oscillator circuit. Quartz-crystal manufacturers are traditionally cooperative in recommending suitable crystals to be used in a given oscillator circuit. Or you may prefer to buy a ready-made crystal oscillator, which operates at a precise and precalibrated frequency.

Using TV-station carriers

Television broadcast stations maintain accurate carrier frequencies which can be used to calibrate vhf signal and marker generators. Connect an rf sweep generator and scope to the tuner of a tv receiver as shown in Fig. 3. Two resistors (R1-R2) attenuate the antenna signal, which is also fed to the tuner. The response curve is shown. The picture and sound carrier frequencies appear as markers on the response curve. The values of the two resistors must be chosen to give conveniently sized markers—try values ranging from 1,000 to 100,000 ohms. If the resistors are too small, the markers will be excessively large and the pattern will be contaminated with video information. If too large, the markers will be too small to be useful.

Next, place the output cable from the vhf generator near the TV lead-in. A third marker will appear on the response curve, moving along the curve as the generator is tuned. When the generator marker reaches the same spot as the picture-carrier marker, the generator frequency is exactly equal to the picture-carrier frequency. This procedure provides spot checks of vhf frequencies on all active channels. Table 2 lists the frequencies provided by TV stations.

Beginners often mistakenly assume that, if an rf generator is accurately calibrated at one point in the band, the output frequencies will also be accurate at other points on the tuning dial. The ability to maintain accurate calibration over the entire band depends on the L-C ratio of the oscillator circuit. Some rf generators have oscillator tanks with both trimmer capacitors and coil slugs. If you turn the slug into the coil to increase the inductance, the original frequency can be restored by reducing the value of trimmer capacitance. But the dial will track differently at each end, and one end is affected more than the other.

Hence, you should make three spot checks—near the center of the dial on each band and near each end. If tracking is unsatisfactory, change the L-C ratio and recheck calibration. This can be rather tedious, but there's no other way to bring the tuning dial in at both ends and at the center. It is advisable to avoid calibration attempts at the extreme ends of the dial, as unavoidable "end" effects are sometimes encountered.

To adjust the L-C ratio, use the trimmer at the high-frequency end and the slug at the low-frequency end. If the oscillator coil does not have a slug, you can expand the spacing between the last few turns to reduce inductance (raise frequency), and vice versa. You will note that tanks are often space-wound near one end. Small self-supporting coils can be squeezed or compressed, as required.

Finally, note that oscillator tuning capacitors usually have a slotted plate. The segments are adjusted at the factory to obtain optimum tracking over all bands. This is necessarily a compromise adjustment which should not be changed in the shop.

No generator can be calibrated for complete accuracy on all bands. You can, however, be confident that all bands can be made to fall within rated accuracy by the calibration procedures explained above.

Table 2—TV Station Markers

<table>
<thead>
<tr>
<th>Chn.</th>
<th>Freq. (MHz)</th>
<th>Video-Carrier Freq. (MHz)</th>
<th>Sound-Carrier Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>54-60</td>
<td>55.25</td>
<td>59.75</td>
</tr>
<tr>
<td>3</td>
<td>60-66</td>
<td>61.25</td>
<td>65.75</td>
</tr>
<tr>
<td>4</td>
<td>66-72</td>
<td>67.25</td>
<td>71.75</td>
</tr>
<tr>
<td>5</td>
<td>76-82</td>
<td>77.25</td>
<td>81.75</td>
</tr>
<tr>
<td>6</td>
<td>82-88</td>
<td>83.25</td>
<td>87.75</td>
</tr>
<tr>
<td>7</td>
<td>174-180</td>
<td>175.25</td>
<td>179.75</td>
</tr>
<tr>
<td>8</td>
<td>180-186</td>
<td>181.25</td>
<td>185.75</td>
</tr>
<tr>
<td>9</td>
<td>186-192</td>
<td>187.25</td>
<td>191.75</td>
</tr>
<tr>
<td>10</td>
<td>192-198</td>
<td>193.25</td>
<td>197.75</td>
</tr>
<tr>
<td>11</td>
<td>198-204</td>
<td>199.25</td>
<td>203.75</td>
</tr>
<tr>
<td>12</td>
<td>204-210</td>
<td>205.25</td>
<td>209.75</td>
</tr>
<tr>
<td>13</td>
<td>210-216</td>
<td>211.25</td>
<td>215.75</td>
</tr>
</tbody>
</table>

Fig. 3 (a)—Calibrating setup for TV range; b—markers produced by TV broadcast signal.

AUGUST, 1966

END
This important job (and its big salary) is reserved for a qualified electronics technician. It can be you!

It's a fact. There are thousands of jobs like this available right now for skilled electronics technicians. What's more, these men are going to be in even greater demand in the years ahead. But how about you? Where do you fit into the picture? Your opportunity will never be greater... so act now to take advantage of it. The first step? Learn electronic fundamentals... develop a practical understanding of transistors, troubleshooting techniques, pulse circuitry, micro-electronics, computers and many other exciting new developments. Prepare yourself now for a job with a bright future... unlimited opportunity... lasting security... and a steadily-increasing salary.

Over 15,500 ambitious men are using Cleveland Institute Electronics Training Programs as a stepping stone to the good jobs in electronics. Why not join them? You will learn at home, in your spare time, and tuition is remarkably low. Read the important information on the facing page. Then fill out the postage-free reply card and drop it in the mail today. Without obligation we'll send you all the details. But act now... and get your high-paying job just that much sooner.
How You Can Succeed In Electronics

... Select Your Future From Five Career Programs

The “right” course for your career
Cleveland Institute offers not one, but five different and up-to-date Electronics Home Study Programs. Look them over. Pick the one that is “right” for you. Then mark your selection on the reply card and send it to us. In a few days you will have complete details ... without obligation.

1. Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

2. First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

3. Broadcast Engineering
Here’s an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

4. Electronic Communications
Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this “compact” program ... Carrier Telephony too, if you so desire.

5. Industrial Electronics & Automation
This exciting program includes many important subjects such as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

An FCC License ... or your money back!
In addition to providing you with comprehensive training in the area indicated, programs 1, 2, 3, and 4 will prepare you for a Commercial FCC License. In fact, we’re so certain of their effectiveness, we make this exclusive offer:

The training programs described will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License ... or your money back!

CIE’s AUTO-PROGRAMMED lessons help you learn faster and easier
Cleveland Institute uses the new programmed learning approach. Our AUTO-PROGRAMMED lessons present facts and concepts in small, easy-to-understand bits ... reinforce them with clear explanations and examples. Students learn more thoroughly and faster through this modern, simplified method. You, too, will absorb ... retain ... advance at your own pace.

Lifetime job placement service for every CIE graduate ... at no extra cost
Once enrolled with CIE, you will get a bi-monthly listing of the many high-paying interesting jobs available with top companies throughout the country. Many Cleveland Institute students and graduates hold such jobs with leading companies like these: American Airlines, American Telephone and Telegraph, General Electric, General Telephone and Electronics, IBM, Motorola, North American Aviation, New York Central Railroad, Raytheon, RCA and Westinghouse.

CIE lessons are always up-to-date
Only CIE offers new, up-to-the-minute lessons in all of these subjects: Logical Troubleshooting, Laser Theory and Application, Microminiaturization, Single Sideband Techniques, Pulse Theory and Application, Boolean Algebra.

Full accreditation ... your assurance of competence and integrity
Cleveland Institute of Electronics is accredited by the Accrediting Commission of the National Home Study Council. You can be assured of competent electronics training by a staff of skilled electronics instructors.

NEWS FOR VETERANS: New G. I. Bill may entitle you to Government-paid tuition for CIE courses if you had active duty in the Armed Forces after Jan. 31, 1955. Check box on reply card for complete information.

CIE
Cleveland Institute of Electronics
1776 E. 17th St., Dept RE-22, Cleveland, Ohio 44114

AUGUST, 1966
Build Yourself
A Scope-Mobile

Push-pull your scope where you need it with this wheeled wagon

By JOHN A. TISO

THE OSCILLOSCOPE IS VERY LIKELY THE most bulky item of test equipment you own. For many of us, bench and shelf space is a luxury that must be allocated like water on a desert. But proper use of the scope demands that it be located where it can be adjusted and viewed comfortably and conveniently.

The Scope-Mobile gets the instrument off the bench, freeing valuable working space, and allows individual positioning for most comfortable operation. Additional benefits? Easy portability to any point in the shop, and extra space for instruments and accessories frequently used with the scope. There are, of course, commercially available scope racks, but they are intended for laboratory instruments and are expensive.

Construction

Dimensions and details, naturally, can be tailored to your own requirements. The unit pictured here was built to be used with a 5-inch service scope next to a desk-high workbench. It should work as well with many other arrangements. You will find that most 5-inch service oscilloscopes have overall dimensions pretty much alike.

All parts should be cut to size and rough-sanded before they are assembled with wood screws and glue. Use simple butt joints and check frequently to make sure that all parts are “square”. Begin by making the lower section, which is like the framework for a box kite; that is, a top and bottom piece of ½-inch plywood separated by the four 1½ x 3 x 17-inch uprights, one at each corner. The shelf is installed next, supported by the 1 x 2-inch shelf cleats, its exact location being determined by whatever you intend to put on it. A notch must be made at each corner of the shelf so that it will fit between the four uprights.

The adjustable tray is made separately and secured to the previously assembled lower section by a continuous

```
BILL OF MATERIALS
1/2-in. plywood:
  3 pcs 16 x 5 1/2 in.
  1 pc 15 1/2 x 15 1/2 in. (shelf)
1 pc 14 1/2 x 4 in. (tray back)
1 3/4 in. long (caster supports)
  2 pcs 1 x 2-in. shelf cleat 14 inches long
  1 aluminum bar 1/4 x 1/4 x 20 in.
  1 15 1/2-inch length of 1/8 x 1/8-in. piano hinge
  4 casters 2-in. diam. or larger
  4 Teenuts for 10-24 screws
  4 10-24 x 1-in. round-head machine screws
Wood screws, glue, etc.
```

With top down, Scope-Mobile is neat and compact. There’s plenty of room for other instruments, like signal generator and etc.
(piano) hinge at the rear, and with two aluminum bars, 3/4 x 1/8 x 10 inches in the front. Adjustment holes are drilled every inch along the length of each bar (see detail). It's a good idea to clamp the bars together and drill the holes through both simultaneously to insure accurate alignment. Attach the bars as shown with machine screws and threaded metal inserts called Teenuts, which are driven into the wood. This will permit repeated adjustment of the tray angle without fear of stripping threads in wood.

Final steps

After the tray is installed, check to see that the hinge doesn't bind, and that the adjustment holes line up properly. The holes drilled in the bottom of the tray (see top-view drawing) are not absolutely essential, but will help keep the scope cool when it is in use for long periods. Use casters at least 2 inches in diameter, readily available at any hardware store.

(CUT YOUR TIME IN HALF with KWIKETTE* Soldering-Aids)

...the revolutionary connectors that practically let you do "in-circuit" component testing!

(six times actual size)

The KWIKETTE SOLDERING AID is not just another wire spring connector! It has a Copperweld wire inner core, an intermediate layer of flux, and an outer jacket of solder... all you need is heat!

KWIKETTES are now being packed with Sprague Atom® Capacitors at no extra cost to you! Whenever you need tubular electrolytics, insist on pre-packaged Sprague Atoms from your parts distributor and you'll automatically get your KWIKETTE component connectors... the biggest boon to the service technician since the soldering gun!

FREE TRIAL PACKAGE!

10 free KWIKETTE Soldering Aids are yours for the asking! Simply send your postcard request to KWIKETTE Center, Sprague Products Co., 81 Marshall Street, North Adams, Mass. 01247, Don't forget to include the name of your Sprague Distributor.

WWW.AMERICANRADIOHISTORY.COM
EQUIPMENT REPORT

EICO 380 Color Generator
Circle 25 on reader's service card

Among the many color generators available, here is a new one with a number of features that are different. On the front panel of the model 380, you'll find two sets of controls not common to color-bar generators.

The set in the upper left corner are hold controls marked HORIZONTAL and VERTICAL. Some color-bar generators momentarily trip out of sync, especially under varying temperatures. For that reason the divider adjustment controls are placed somewhere accessible to the user. Often the user doesn't know how to set the dividers properly. (The instruction booklet generally tells how, but who reads that?)

On the Eico unit, the horizontal hold adjusts the rate of the first down counter, controlling the 31.5-kHz timing signal. The vertical control is in the last counter, the one whose output is 60 Hz. With these controls on the front of the unit, there is little trouble with pattern twist or jitter. If a divider does drift off while the unit is sitting on top of a hot color set, you just twist a front-panel control to bring it back into sync.

The other pair of controls, in the upper right corner, are size controls. They control the size of lines and dots in monochrome video patterns. Labeled horizontal and vertical, they control exactly that. With the function switch set for dots and the unit connected to TV receiver the horizontal control will cut dot size to as thin as a single line of the raster. Two lines are better for most convergence, and sometimes you'd rather have a dot three lines thick. The width of the dot can be adjusted with the vertical control.

If you want to see the action of these controls better, put horizontal lines only on the screen and turn the horizontal size; then switch to vertical lines and adjust the vertical size. If you want to watch the effect of both, put a crosshatch on the screen.

The horizontal knob can make the horizontal lines or the dots 5 raster...
Zowie! Here's big news for “Mister Right”—the independent service dealer who carries Sylvania tubes.

Every time you order Sylvania picture or receiving tubes from a participating distributor, you receive Sylvania Means Business (SMB)-Mister Right dealer certificates. They're redeemable for an exciting selection of gifts. For yourself, your family, your home.

You get certificates for your purchases of receiving tubes and every Silver Screen 85°, color bright 85™ or Color Screen 85 picture tube.

So you're a winner in two ways: big profits and top-quality prizes. Sylvania Means Business.

See your participating Sylvania Distributor for all the details. Sylvania Electronic Tube Division, Electronic Components Group, Seneca Falls, New York 13148.
lines high. On the unit we analyzed, the vertical control could almost triple the size of the vertical lines. The narrowest setting was about 1/8 inch, and the widest about 3/8 inch.

There's another feature: All transistor circuits except the power supply are mounted on two hinged printed boards. Removing four small Phillips screws lets them swing out. This accessibility makes it easy to reach the components for troubleshooting. With no schematic in the instruction booklet, however, only the simplest troubleshooting can be undertaken by the service technician.

The model 380 supplies an NTSC-type color pattern (a single bar), and can display yellow, red, magenta, blue, cyan, green and white. Q, I, R — Y, and B — Y signals are also available.

There are dot, crosshatch, vertical-line and horizontal-line patterns, as well as a blank-screen pattern for purity tests which eliminates the need to turn the contrast down to free the screen of snow.

The block diagram shows how part of the instrument works. You can see two of the circuit boards in this simplified sketch. Following the first divider, the 31.5-KHz signal is counted down first by a 5-step divider and next by a 7-step divider. The common thing is to divide first by 7 to obtain a 4,500-Hz signal, and then divide by 5 to reach 900 Hz. Eico has chosen to divide first by 5, resulting in a 6,300-Hz signal, then by 7 to reach 900 Hz for horizontal lines and for dividing further to 60 Hz for vertical sync.

Another important difference is in

Rear view of the Eico 350 color bar generator. Controls are on the front panel. Almost all other components are on circuit boards that are hinged so both sides are accessible.
4 easy ways to increase your know-how on microelectronics and solid state!

How to Build Tiny Electronic Circuits

By Morris Moses. Explains "miniaturized" electronics to the hobbyist, experimenter and service technician. Not only takes the mystery out of "making it smaller", but is a veritable "how to do it" of electronic miniaturization. Covers: subminiaturization, microminiaturation, high-frequency coupling, molecular electronics, meter amplifiers, tone generators, semiconductor thermometers, making tools, preamplifiers, comparators, oscillators, transistors, transistors and transistors, techniques, modules, practical projects and devices, construction and repair hints. 192 pages.

Order #117 Softbound $4.15

Getting Started With Transistors

By Louis E. Garner, Jr. Transistor Know-how begins with this volume. Shows how transistors began, how to read electronic diagrams, how transistors work, facts on oscillators, transistor types, diodes, phototransistors, rectifiers, transistor ratings, testing transistors, Excellent text, diagrams and photographs carry you through every phase of transistor to give you a complete grasp of the subject. 160 pages by an expert in the field.

Order #116 Softbound $3.95

Fundamentals of Semiconductors

By M. G. Scroggie. Provides a complete back- ground in semiconductor devices, beginning with basic facts on electrical conduction through transistors, rectifiers, photodiode devices, thermistors, varistors, field effect devices, diodes, etc. Supplies enough theory in a simple way to make it possible to understand more advanced literature. Also explains how the special properties of semiconductors are being applied in many kinds of useful devices. Dozens of charts, diagrams and photos. 166 pages.

Order #92 Softbound $2.95

Printed Circuits

By Morris Moses. Build-it-yourself circuits for miniature amplifiers, receivers, and many other transistor devices. Written especially for the radio ham, TV and radio service technician, and the home experimenter. Specializes in practical techniques and methods. Shows how to repair printed circuit and subminiature assemblies. 224 pages jam-packed with illustrations.

Order #81 Softbound $2.90

To be able to give you some hints about its operation, we put the model 380 to work. First was a crosshatch pattern. In filling with the holds controls we noticed a wavy effect—a sort of fast "breathing" of the line pattern. Same thing on dots. This occurred only if the vertical hold control was not set properly. There are two or three settings of the control that result in almost-stable lines, but only one setting that provides solidly locked lines without this breathing or wavy effect.

Stability of the generator we tested was excellent. The vertical lines were as straight and true from bottom to top as could be. Synchronization of the pattern was rock-solid. This certainly is handy when you're trying to concentrate on a center dot. It's hard enough to keep up with the center dot from the back of the set, without its jumping around to different positions on the screen. A slight flag-waving at the top of the vertical lines when the unit was turned on cold disappeared every time after about 3 minutes of operation.

We found the best way to set the receiver's fine tuning was on a color pattern. Set the function switch for color, and set the color switch for yellow. Turn the fine tuning until color appears and the TV sound starts hissing (ignore buzz or hum). Tune back until the hiss just disappears; the hum will remain. If it annoys you, turn it down.

When you have set the fine tuning, adjust the color or chroma control of the set so the color bar isn't overly saturated with yellow. Adjust the receiver's phase (hue or tint) control for a rich yellow. To get it properly, turn the hue control toward red, and then come back just barely to yellow. If the hue control of the color set won't reach yellow, set it at mid-range and make internal phase adjustments according to the manufacturer's instructions.

When yellow is okay, rotate the color switch to green. You should see green with no further adjustment of the TV receiver—provided your phase adjustments are correct.

You can use the 380 to adjust de-modulators by the R - Y and B - Y method suggested by some color-set manufacturers. As an example: Feed an R - Y signal into the set, connect 100K disabling resistors from the blue and green CRT grids to ground. Then adjust the demodulator for brightest red, with the hue or tint control centered.

The instruction manual with the unit tells how to service color sets, using the generator. There are three paragraphs on checking the generator with a scope, and three typical waveforms of the signals generated by the unit.—Alan James

Price: $159.95

August, 1966

ASSEMBLE YOUR OWN ALL-TRANSISTOR
Schober ELECTRONIC ORGAN

3 NEW MODELS

Recital $1500
Console II $850
Spinet $550

This is the all-new, all-transistor Schober Recital Model—the most versatile electronic organ available today. Its 32 voices (plus amazing "Library of Stops"), 6 couplers and 5 pitch registers, belies professional workmanship, yet makes learning easy for beginners. Comparable to ready-built organs selling from $500 to $6000.

The pride and satisfaction of building one of these most pipe-like of electronic organs can now be yours...starting for less as $550. The Schober Spinet, only 39¾ inches wide, fits into the smallest living room. The new, all-transistor Schober Console II is the aristocrat of "home-size" organs ... with two full 61-note manuals, 17 pedals, 22 stops and coupler, 3 pitch registers and authentic theatre voicing.

And you save 50% or more because you're buying directly from the manufacturer and paying only for the parts, not costly labor.

It's easy to assemble a Schober Organ. No special skills or experience needed. No technical or musical knowledge either. Everything you need is furnished, including the know-how. You supply only simple hand tools and the time. You can buy the organ section by section...so you needn't spend the whole amount at once.

You can begin playing in an hour, even if you've never played before—with the ingenious Pointer System, available from Schober. Thousands of men and women—teenagers, too—have already assembled Schober Organs. We're proud to say that many who could afford to buy any organ have chosen Schober because they preferred it musically.

Send for our free Schober Booklet, describing in detail the exciting Schober Organs and optional accessories; it includes a free 7-inch "sampler" record so you can hear before you buy.

Schober Organ Corporation
43 West 61st Street, New York, N. Y. 10023
Also available in Canada, Australia, Hong Kong, Mexico, Puerto Rico, and the United Kingdom

THE SCHOFER ORGAN CORP., DEPT. RE-44
43 West 61st Street, New York, N. Y. 10023
☐ Please send me FREE Schober Booklet and free 7-inch "sampler" record.
☐ Enclosed from $2.00 for 10-inch quality LP record of Schober Organ music. ($2.00 refunded with purchase of first kit)

Name__________________________
Address_______________________
City___________________________ State_________ Zip No._________

Circle 31 on reader's service card

www.americanradiohistory.com
Knight KG-685
Color-Bar Generator
Circle 26 on reader's service card

There are quite a few color/bar generators around now—enough so that one more wouldn’t seem to be news. But this one, has something different—a staircase pattern for gray-scale tracking. Besides that, the KG-685 includes a small service light that can be clipped on the back of the set and turned on by a switch on the front panel.

Patterns provided by this unit include the staircase gray-scale pattern already mentioned, a blank-screen pattern for tuning, crosshatch, dots, vertical lines, horizontal lines, and a keyed-rainbow display with yellow-orange at the left and green at the right of the screen. The blank screen pattern is useful for purity checks; you don’t have to turn the contrast down.

The KG-685 includes a simple gun interrupter, with separate switches for each color. 100K shunt resistors are connected to the color CRT grids through a color-coded cable. A black lead in the same cable connects to ground.

The KG-685 can be connected either to the antenna terminals of a receiver, with the signal fed into channel 2 or 3, or composite video and sync can be taken from a pin jack on the front of the unit and fed directly into the television receiver following the video detector. If you use the generator’s rf output, a slug-tuned oscillator permits setting it to an unused channel. For testing the unit, we used channel 3 in the New York area, since it is vacant.

In the counting circuit, a 189-kHz crystal-controlled transistor oscillator initiates the chain, an arrangement common to most modern color generators. The staircase signal is developed before the signal is sent into the dividers, as you can see from the block diagram. The staircase is shaped by two diodes, using the emitter circuit of the first unijunction divider as a discharge path. The schematic shows the arrangement. The 189-kHz pulses are shaped in Q1 (an ordinary transistor driver) and fed through an adjustable capacitor to a pair of diodes. Unijunction transistor Q2 is a 6-step divider. Diodes D1 and D2 act with the input circuit of Q2 to create two 6-step rising waveforms for each horizontal line. They can be fed to the pattern-selector switch and mixed with sync to form a gray-scale video signal with 12 shaded bars. The Q2 unijunction divider also develops a 31.5-kHz
Left and center photos show a vertical hook that grew worse as the generator warmed up. Normal pattern at right was obtained by touching up the 31.5-kHz tuning control inside the rear of the instrument, using a small tuning tool.

output that is fed along to succeeding unijunction dividers.

Horizontal lines are taken from the 900-Hz divider, and are gated by the 15,750-Hz divider. Vertical lines come directly from the 189-kHz oscillator. A 3.56-MHz crystal-controlled oscillator develops the offset-subcarrier rainbow pattern. With a signal from the 189-kHz oscillator fed to the color keyer, a rainbow bar pattern is developed by cutting the 3.56-MHz oscillator signal off and on as it is fed to the pattern switch.

The horizontal lines, staircase signals, vertical lines, and keyer signals are all available at various contacts of the pattern switch. The switch, as it is turned to its various positions, selects the pattern or combination of patterns for the monitor. As in most pattern generators, a diode connected at one point of the pattern switch makes the cross-hatch pattern into a dot pattern by clipping out the horizontal and vertical lines and leaving only the intersections.

Sync is made up from signals from the 15,750-Hz and 60-Hz dividers. Sync is fed into the monitor and to the video output along with a video signal.

The 4.5-MHz oscillator is also coupled with video and sync, but is activated only when a switch on the front panel is turned on. The adjustable vhf oscillator feeds the modulator and combines with whatever composite video signal is chosen by the pattern switch. The output vhf signal is fed to a fixed rf cable—no connectors.

Power supply is a full-wave rectifier, with output regulated by a transistor and Zener diode. The pilot lamp is in series with the regulator.

The little service light is a No. 44 lamp connected to a 6.3-volt ac winding on the power transformer.

When we hooked the KG-685 to a color receiver, we noticed a hook at the top of the screen whenever we were showing vertical lines. In the instruction booklet, Knight says this is normal. It got worse in the unit that we had. It looked at first like the left-hand photo, and soon like the center photo. The receiver's horizontal hold control only made it worse. Turning the generator off and back on straightened the lines temporarily, but the cycle soon became annoying.

With a tuning tool, we touched up the 31.5-kHz frequency adjustment. This stopped both the twist and the original hook at the top. The final result was the solid pattern you see in the right-hand photo.

Once that slight adjustment was made, the KG-685 was as stable as any unit we have ever used. We didn't run the unit through true heat-and-cold tests, but a service technician carrying the unit in and out of the cold and setting it on top of a warm color receiver might experience a bit of this divider-frequency shift.

The instruction manual with the unit is unusually thorough. Four pages of color photos show how to use the KG-685 for purity, static convergence and dynamic convergence setups. Most of the book is devoted to step-by-step-instructions—complete with check-off boxes—on how to service a color receiver. A very complete maintenance section, plus a schematic and parts list, show how to maintain the KG-685—including adjusting counters and calibrating other adjustments. If you set the counters in the KG-685, follow the sequence exactly.

The manual winds up with a thorough circuit description and a section on trouble-shooting the instrument. With this manual, you won't likely have to send this unit back to the factory for adjustment or repair.—Larry Allen

Price: $89.95

DON'T GET CAUGHT WITH YOUR BATTERY DOWN!

Leave your car parking lights on? Not sure? Here's a simple unit that keeps an eye on your lights for you. An easy and inexpensive way to save a battery. Build it with standard components for less than $5. Get step-by-step instructions with complete schematic in RADIO-ELECTRONICS.

Build the lights-on reminder from plans in September

RADIO-ELECTRONICS

POWER-PACKED! Engineered for rugged business use!

Excellent performance, dependability and operational convenience provided by FM-40 reflect the experience and design ability that has made Sonar the undisputed leader in this demanding field of business radio art. Created for business because of Voice-Power designed circuitry • Compact and lightweight • Easily installed for long-life vehicles • Smartly styled for office use • Noise-free squelch for clear communications • Accessory plug for Sonar Call, selective Calling System • Accessory plug for high power Linear Amplifier • 12 VDC & 117VAC • 1 year warranty • Size: 4¾"H × 9½"W × 11¼"L • Weight: 10 lbs.

Circle 34 on reader’s service card

Sonar

CITIZENS

BAND

2 WAY

RADIO

Perfect for Portable and Mobile use...

IDEAL FOR BUSINESSMEN, FARMERS & WAREHOUSE USE

14 Transistors • 2 Watts • 2 Channels • Solid State Design Powerful and dependable performer. Compact, hand held 2-way radio, transistORIZED and for long life. Delivers a sharp clear signal over a long range. Fully Crystal controlled for precise operating frequencies. 100% modulation, automatic noise limiter • adjustable squelch • self contained nickel cadmium batteries • provisions for external antenna, mike and earphone • 12VDC, Wi. 2 lbs. • compatible with all systems.

Model 7-2 $139.95

Price includes: 1 pair of crystals, nickel cadmium batteries, 12VDC charger, leather case, earphone

SONAR RADIO CORPORATION
73 Wortman Ave., Brooklyn 7, N.Y. Dept. 496
Please send me complete information on Model "7-2" CB radio.

Name

Address

City Zone State

Circle 35 on reader’s service card
NEW SEMICONDUCTORS, MICROCIRCUITS & TUBES

This month we have a rather exciting range of new devices varying from microminiature amplifiers and a new color picture tube to several new diodes. The new development in color tubes has perhaps the most immediate interest to service technicians and owners of color TV sets.

An RCA development, the new rectangular color tubes have a temperature-compensated shadow-mask assembly which overcomes problems caused by expansion while the CRT is warming up. This eliminates the usual warmup period required before convergence and color-temperature adjustments can be made. In tubes produced prior to development of the new assembly, the electron beam register changes as the CRT warms up, each time the set was turned on. This results in a period of impure color and whites. In the new tubes, increase in shadow-mask temperature — due to electron bombardment — causes the mask to move minutely closer to the screen to maintain good color registry.

The new shadow-mask assembly will be used in all new RCA 25-, 19- and 15-inch color tubes, marketed under the RCA Perma-Chrome trademark.

HF AND UHF NOISE DIODE

The Signalite 6144/TT-1 noise diode is designed as a noise source for hf and uhf measurements and matches 50-ohm coax cable. Its coaxial construction provides wide-band operation into either tuned or untuned circuits.

Maximum anode voltage ratings: 300 volts dc, 100 mA; maximum dissipation 30 watts. Heater rating: 3.2 volts ac or dc, 2.5 amps. Frequency range up to 3,000 MHz. Dynamic impedance 16,000 ohms minimum. Overall length 2.9 in. diameter 0.375 in.

Available from Signalite, Inc., Special Products Div., 1933 Heck Ave., Neptune, N. J.

IC AND MICROELECTRONIC AMPLIFIERS

The Westinghouse WC 183 integrated circuit is a low-power audio amplifier for radio, recording and paging system, dictating equipment, hearing aid and other battery-powered audio applications. The amplifier, consisting of an 8-transistor balanced circuit with internal dc feedback, is fabricated on a single monolithic silicon chip. A three-stage class-A high-gain preamplifier is followed by a class-B output stage for an overall gain of 75 dB and 55% efficiency.

An optional rolloff capacitor limits response to voice frequencies for communication. A simple external feedback network can be added to extend response well beyond the audio range for hi-fi applications. Input and output impedances are compatible with available mikes, cartridges, and speakers. Quiescent current drain less than 1 mA from 1.5-volt battery.

The WC 183 is available from Westinghouse distributors for $10.50 each in lots of 1 to 49.

Solitron Devices' TMS 1301 hybrid microelectronic dc amplifier occupies less than 0.1 cubic inch. It is especially designed for applications where conventional IC amplifiers are difficult to stabilize. The amplifier operates from a 24-volt center-tapped dc supply and has a minimum dynamic range of ± 8 volts. Bandwidth is 1 MHz and gain is 1,000 with 4 mV input. The TMS 1301 sells for $195.00.

HIGH-SPEED TRIGGER FOR SCR'S

The Ovonic Threshold Trigger (OTS) is a new type of semiconductor trigger device for solid-state power control. Developed by Energy Conservation Devices, 1675 W. Maple Road, Troy, Mich., it features inherent symmetry and exceedingly fast switching speed. The basis of the OTS is a new semiconductor material that is vacuum-deposited as a thin film between two conductors. This thin film can be instantly changed from a high-impedance blocking state to a low-impedance conductor and back again simply by varying the applied voltage above or below a threshold level.

With switching speed less than 2 nsec, OTS's insure fast high-current pulses for quick gating of SCR's. The fast switching also allows smaller capacitors and simpler pulse transformers in trigger circuits and permits OTS's to be used well above 60 Hz.

OTS's are ideally suited for a wide-range of solid-state power control applications. Their symmetry makes them well suited for ac applications involving inductive loads such as fluorescent light dimmers, motor controllers and circuits with transformers. Other possible applications include staircase and square-wave generators and transient suppressors. OTS's are available with threshold ratings of 10, 20 and 30 volts.

END
How To Get A $570 Stereo Recorder For $400

Build The New Heathkit®/Magnecord® 1020!

You Save $170!

Thanks to Heath, you can now save $170 on the new Magnecord 1020 4-Track, Transistor Stereo Tape Recorder by building it yourself. And the only difference between this Heathkit version and the original is the $170 you save (think of all the tape you can buy with that!).

All parts are made at the Magnecord factory... under a quality control system that meets the demanding requirements of the National Aeronautics & Space Administration (NASA).

Add to this Magnecord’s years of pioneering and developing tape equipment for the broadcasting and recording industries, and you have a sophisticated recorder that will give you years of professional quality and reliability.

Professional Recording Facilities

With the 1020, you can record “live” from microphones, or from auxiliary sources like tuners, phonographs, TV’s, etc., and playback in 4-track stereo or mono at either 7½ or 3¼ ips. And you can make sound-on-sound, or sound-with-sound (mixing) recordings, or create interesting echo effects.

Professional Tape Transport

The tape transport is powered by 3 separate motors. The hysteresis synchronous capstan motor has a dynamically balanced flywheel and a ball-bearing inertial stabilizer mount for constant, accurate speed. Two permanent split-capacitor type motors drive the reels. With the convenient push-button controls, you can change operational modes instantly and gently with the touch of a button. Compliance arms insure correct tape tension at all times.

The military-type differential band brakes are solenoid operated for instant, gentle stops. And when the tape runs out an automatic switch shuts off all motors and retracts the tape pressure roller eliminating unnecessary motor wear and prevents deformation of rollers. The tape gate and pressure roller also are solenoid-operated for positive action.

3 Professional Tape Heads

Selectable 1/4 track erase, record and play. Engineered and tapped to a precise hyperbolic curve for smooth low frequency response... made with a deep gap, deposited quartz for high frequency response and long life. Removable shields afford double protection against external magnetic fields. Protective, snap-mounted head covers provide easy access for cleaning and demagnetizing. And for quick, accurate editing, there are center-line marks.

Other Professional Features

All parts mount on a thick, die-cast main-plate that won’t warp, reduces wear, provides rigid support and stable alignment. Two V.U. meters for visual monitoring of signal levels from either tape or source... allows quick comparison of source with recorded signal. Inputs for microphones and outputs for headphones are all front-panel mounted for easy access. Digital counter with push button reset. Low impedance emitter-follower outputs deliver 500 millivols or more to amplifier inputs. Individual gain controls for each channel. And all solid-state circuitry... 21 transistors and 4 diodes... your assurance of cool, instant operation, long reliable life.

Famous Heathkit Know-How

Speeds Assembly

Simple step-by-step instructions with generous use of giant pictorials guide you every step of the way. You just wire two circuit boards and do the easy mechanical mounting for the transport components.

And to make construction even easier, the connecting wires and shielded cables are pre-cut, stripped, and marked... even the connectors are installed where necessary: just plug them in! The only soldering you do is on the circuit board! Total assembly time is around 25 hours... that's like getting $7 an hour for your efforts.

Get today’s best buy in a professional stereo tape recorder... order the Heathkit version of the Magnecord 1020 now!

Kit AD-16, deck & electronics, 45 lbs... $399.50

ADA-16-1, walnut base, 8 lbs... $19.95

ADA-16-2, adapter ring for cabinet or wall mounting, 2 lbs... $4.75

ADA-16-3, slides, (combine with walnut base for tape drawer), 7 lbs... $9.95

FREE!

World’s Largest Kit Catalog

108 pages! Describes this and over 250 kits in stereo hi-fi, color TV, organs, ham, test, CB, marine, home and hobby. Mail coupon, or write Heath Company, Benton Harbor, Michigan 49022.

Heath Company, Dept. 20-8, Benton Harbor, Michigan 49022

☐ Enclosed is $ _____________ plus shipping. Please send model(s) _____________

☐ Please send FREE Heathkit Catalog.

Name ____________________________

Address ____________________________

City __________________ State __ Zip ____________

Prices and specifications subject to change without notice. HF-194

AUGUST, 1966

Circle 37 on reader’s service card
Wanna know more about color? If so, here's an article that'll clue you in

By JACK DARR

A LOT OF WORDS HAVE BEEN WRITTEN ABOUT COLOR TV. Sad to say, most of them have been long and unfamiliar. With the help of some hairy mathematical formulas, they bred a huge litter of confusion among you men who have to work with color TV sets. Right? So, here is an article that covers the same basic principles, but in words of one syllable or less. Any math you find will be of the "my wife's checkbook" variety.

To service color TV sets, you have to know how they work: the basic principles. Actual circuitry is pretty simple, just as it is in black-and-white. Some of you more advanced men may think we're getting a little childish at times, but if you already know all about it, what are you doing reading this article, huh?

Where The Color Signal Comes From

A black-and-white TV camera makes a picture by changing the light values of the scene into electrical signals. White is full output, black is no output. This is the video or brightness signal.

In color TV we need something else. Besides telling how bright an object is, we've got to tell what color it is. We still need the b-w signal, so that we can pick up the color signal on a b-w set. (This is "compatibility.") We have to have the color signals, too, and we have to put them in the same "space" (same band of frequencies) we once used only for b-w. So, we pull a sneaky: we make a b-w signal out of the color signals themselves!

A color camera has not one tube but three. With a system of special mirrors, each tube sees only one color: red, blue or green. At the receiver, the picture tube is a 3-in-1 type, almost like three tubes in one bottle. It can make red, green or blue pictures on the same screen with three independent electron guns.

Those are the two ends of our system. Now, let's see what we have to do to make not only color pictures, but black-and-white pictures too, using only red, green and blue light.

Colors of Different Kinds

First, let's talk about colors. Paint, ink and dye are subtractive colors. When white light—which is all colors—falls on a red flag, everything but the red is absorbed—subtracted. Only the red is reflected, so we see red. Red is a primary color in paint or ink or dye—one that we can't get

SUN

SUNLIGHT=RED+GREEN

BLUE

GREEN

BLUE & RED

ABSORBED

Www.americanradiohistory.com
by mixing any two other colors.

But we're dealing in light, and we have additive colors. The primaries are different. Mix blue and yellow paint, and you get green. Mix blue and yellow light, and you get white! In light, green is a primary color, and yellow is a mixture of red and green! The phosphors on a color picture tube make light in three primary colors: red, blue, and green. Actually, we could use any of three primaries that when mixed together would produce white.

In color TV we can make any imaginable color just by using different proportions of our three primaries. You can actually make more colors than you can with the finest printing inks! The big problem here, of course, is to make a pure white using only colored light. (Black is pretty easy: All we have to do is turn everything off!) After some little trouble, the engineers found out that they could make white if they used a mixture of 30% red, 50% green, and 11% blue light. The odd percentages come out that way because of the response of the human eye to light of different colors. We see this odd-numbered mess as a nice pure white!

So, all we need to do is operate all three electron guns in the color picture tube together, keeping them in that 30–59–11 proportion, and vary their intensity as a group the same as we would the single gun of a b-w picture tube. Then we come out with a nice black-and-white picture. Now we can watch b-w programs on a color TV set, and the systems are compatible.

Making the right colors: saturation

There's one more thing we have to do in color programs: not only reproduce a color (hue) like blue or orange or purple, but also reproduce how bright that color is. Red, for instance, can come in any of many shades from a deep, rich rose-red to a pale pink. The redness of a red, or the blueness of a blue, is called saturation. For pure red we just turn the red gun full on and turn the other two off. But if we need a pink we have to "add some white" to the red. This is like mixing paints.

Let's say that our color is a "half-saturated pink." All right, we've got 50% red and 50% white. Turn the red gun on to half of its maximum intensity. That's 50% of our pink. Now, we need half white. Well, white is 30% of our 59% green and 11% blue, as we said before. So, we divide these figures in half, and get 15% red, 29.5% green, 5.5% blue (which still makes white because the proportions are unchanged). We add that mix to the red signal already there, and we get a beautiful pink rose, sweeter, more subtle, whichever the thing is.

This method works with all colors or combinations of colors. Our percentages always come out 100%; here, we have 50% pure red, plus (15 + 29.5 + 5.5 = 50) 50% white, which adds up to 100%, even in my wife's checkbook.

This is saturation. All it means is how much white there is in a particular color. The percentage of saturation is the ratio of pure color to white, and that's all there is to it.

In a color TV circuit, we have a color control. All this does is increase the "volume" of the color: full on, maximum color; half on, half "volume" on the color. Works just like a volume control does in the sound.

Adding the color signals

Our camera and transmitter output must be arranged so that no matter what kind of receiver we use, we get a good picture. So, we use the combined color signal as a b-w (video) output. The value of this signal, at any given instant, is the equivalent of a b-w signal. This is actually what you'd see if a color camera were looking at a scene that was all black-and-white or if a b-w camera were looking at this scene!

On a color program, the color signals will vary, of course, according to the color of the object the camera's seeing. However, the instantaneous total value of the camera's output still corresponds to the brightness of the object—in other words, is a b-w video signal. However, we have to add in the color information—the information that is the difference between the output of the red, the green and the blue camera tubes—and do it in such a way that it won't interfere with the regular b-w video signal.

We can't add it as another AM signal. That would be like pouring milk and water into the same pitcher and trying to pour milk out of one side and water out of the other. So, we change them to a form that we can mix and then separate later on. We use phase modulation instead of amplitude modulation.

At the transmitter, we use two balanced modulator circuits, plus a subcarrier oscillator at 3.579545 MHz (called 3.58 MHz from now on). We feed the red and blue color signals into these, having delayed one of them 90° in phase or, in effect, made it a fraction of a microsecond later than the other. The modulators convert the original color signals into (in effect) frequency-modulated signals. The subcarrier is cancelled out in each modulator. All we get out is the sidebands: the only information-carrying part of each signal. The carrier itself is not transmitted, to save postage. This sounds like a bad joke, but it's true. If we did transmit the unmodulated carrier, it would not only use up some of our transmitter power, but also create beat frequencies and other odd effects. We've got enough of those to contend with as it is.

But we'll need that subcarrier when we get to the receiver, for use as a reference. You can't say a signal is "90° lagging" unless you have a reference point! It's got to be 90° from something. So, we build a crystal-controlled 3.58-MHz oscillator into the receiver and lock it in phase with the one at the transmitter by sending along little samples of the 3.58 MHz that generated the nonsuppressed sub-

AUGUST, 1966
LET BROWNING SHOW YOU HOW TO MAKE GOOD MONEY SELLING THE BEST CITIZENS BAND RADIO EQUIPMENT ON THE MARKET.

Write for full details on how you can cash in on the increasing demand and rising sales of Browning CB radio equipment. Here are some of the advantages of operating a Franchised Browning Sales and Service Center.

- Exclusive territory — protected sales and profit.
- No competition from large mail-order distributors.
- Complete sales aids, catalogs, plus continuous national advertising by Browning.
- Technical assistance from the factory whenever you may need it.
- In-warranty service backed by Browning.
- Substantial parts discount for your servicing needs.
- Prestige of selling the industry’s finest equipment... the Eagle base station, the Raven mobile unit.

MANY TERRITORIES AVAILABLE,
WRITE TODAY:

LABORATORIES, INC.
DEPT. E1, 1269 UNION AVENUE, LACONIA, NEW HAMPSHIRE

Circle 38 on reader’s service card

GAS WELDING TORCH

Uses OXYGEN and LP GAS

- Completely self-contained.
- Produces 5000° pin-point flame.
- Welds, brazes, solders.
- Hundreds of lightweight uses.
- Suggested list — $19.95.

GET COMPLETE DETAILS AT MOST INDUSTRIAL DISTRIBUTORS, OR WRITE TO MICROFLAME, INC.

MICROFLAME, INC.
7800 COMPUTER AVENUE
MINNEAPOLIS, MINNESOTA 55424

Circle 39 on reader’s service card

carrier. These are little shots, about 8 cycles each, and they’re sent sitting on the back porch of each horizontal sync pulse. At the receiver, this burst is separated from the rest of the TV signal and fed into a phase-detector circuit that controls the receiver oscillator.

Now we have reinserted the 3.58-MHz signal, and can separate the phase-modulated signals. For example: If we had two marching bands, one in red uniforms and the other in blue, marching at the same speed, we could run them together so that every other man had a different color uniform. First a red bandsman, then a blue one, then another red one, and so on.

If we want to get them separated again, all we have to do is stand alongside and grab every other man and make him turn aside, as the band goes past. Which color bandsman we get depends on when we grab. This is a matter of timing, which is another way of saying phase. We can put a circuit in the receiver that will do the timing for us, comparing our “grabber” to the reference in the TV transmitter so we can separate the red and blue signals.

Now, we can— What? Someone asked, “What happened to the green? You’re separating only red and blue! We’ve got to have some green, haven’t we?” Yes, indeed. I thought you’d never ask! We want to save all the TV-signal space we can. So we send only the red and blue signals from the transmitter! However, we can get the value of the
green signal back by an operation that is theoretically pretty ingenious, but actually pretty easy.

Our "whole signal" out of the camera is red, blue and green, right? If we take away the red and blue, we have green left. We can say that the whole signal equals 1. (Or, if you want to, the video.) In the receiver, we have our two signals, red and blue. So, we simply "subtract these from 1," and use the value we have left as green, which it is! This mixing and unmixing is a process you can call matrixing if you like long words, and it used to take about 9 tubes and a hatful of parts. Now, we do it with 3 little triodes and about 12 parts.

\[R + B + G = 1 \]

\[1 - R - B = G \]

There is one more control besides the color control on a color-TV receiver that affects the color. It is called hue or tint and about the best we can say is that it affects "the color of the color!"

When we get to the receiver, the color signals are in the form of phase-related signals. These are compared to a locked-in reference-oscillator signal, and the phase of each signal tells it what color to be. The amplitude tells it how much color to be (saturation) but it's the phase that determines what color (hue) it will show—red, green, purple, etc.

So, we add one more control—the hue control. All it does is vary the phase of the reference oscillator signal just a wee bit. It doesn't take much; only a very few degrees of shift make the colors change a lot.

In all color sets, we use the color of a human face for our reference. In any other colored object, we don't really know whether it's a bright red or a pink, but we do know about what people ought to look like. So, to get the hue control set properly, we simply turn it until the people look people-colored, and there we are.
The following free advertising material is available through

RADIO-ELECTRONICS READER’S SERVICE

ALLIED RADIO CORP. Circle 33
Catalog.

AZTEC ENGINEERING (Pg. 84) Circle 114
Information on Ministeel 1 & 11 transistorized blocking oscillators for troubleshooting.

B & K MANUFACTURING CO. (Pg. 16) Circle 16
Test equipment catalog AP-22.

BROOKS RADIO & TV CORP. (Pg. 88-89) Circle 120
Information sheets and price lists of tubes and parts.

BROWNING LABORATORIES, INC. (Pg. 74) Circle 38
Details on operating a franchised Browning CB Radio Equipment Sales and Service Center.

CASTLE TV TUNER SERVICE, INC. (Pg. 70) Circle 36
Information on complete tuner overhaul by mail.

CENTRALAB (Pg. 12) Circle 11
Catalog on color TV controls, capacitors, packaged circuits.

CLEVELAND INSTITUTE OF ELECTRONICS (Pg. 1) Circle 8
Booklet describing Electronics Slide Rule and Instruction Course, and Electronics Data Guide.

CORNELL ELECTRONICS CO. (Pg. 96) Circle 126
Catalog and price list of tubes and parts.

DeVRY TECHNICAL INSTITUTE (Pg. 5) Circle 9
Booklets “Pocket Guide to Real Earnings” and “Electronics in Space Travel”.

EDLIE ELECTRONICS, INC. (Pg. 92) Circle 123
Catalog.

EICO ELECTRONIC INSTRUMENT CO. (Third Cover) Circle 149
Catalog.

ELECTRO-VOICE (Pg. 13) Circle 12
Catalog of Electro-Voice microphones.

ELECTRONIC CHEMICAL CORP. (Pg. 85) Circle 116
Information on “No-Noise” aerosol service chemicals.

FINNEY CO. (Pg. 19) Circle 19
Information on Finco 75 ohm Color Ve-Log Antenna.

GENERAL RADIOTELEPHONE CO. (Pg. 84) Circle 115
24 page catalog on equipment available.

GRANTHAM SCHOOL OF ELECTRONICS (Pg. 93) Circle 124
Brochure on FCC license preparation.

H & L ENGINEERING (Pg. 83) Circle 112
Information on transistorized sub-carrier detector for music only programs broadcast on FM channels.

HALICRAFTERS CO. (Pg. 20) Circle 20
Information on Halicrafters’ CB-20 transceiver.

HEALD’S ENGINEERING COLLEGE (Pg. 91) Circle 122
Catalog and registration application.

HEATH COMPANY (Pg. 71) Circle 37
Catalog.

INTERNATIONAL CRYSTAL MFG. CO., INC. (Pg. 98) Circle 128
Information on International Model MO-23 Citizen’s Radio Transceiver.

INTERNATIONAL RADIO EXCHANGE (Pg. 83) Circle 113
List of equipment in stock.

MALLORY DISTRIBUTOR PRODUCTS CO. (Pg. 7) Circle 10
Capacitor Replacement Guide.

MERCURY ELECTRONICS CORP. (Pg. 21) Circle 21
Specifications on Mercury Model 301 Component "Substitutor in a wire-it-yourself kit.

METRIMPEX (Pg. 75) Circle 40
Information on portable TV tester.

MICROFLAME, INC. (Pg. 74) Circle 39
Details on Gas Welding Torch.

MULTICORE SALES CORP. (Pg. 80) Circle 107
Information on Erzin Multicore 5-Core solder.

MUSIC ASSOCIATED (Pg. 80) Circle 108
Information on Music Associated’s sub-carrier detector for “music only” programs on FM Broadcast Band.

OXFORD TRANSDUCER CO. (Pg. 66) Circle 32
Automotive Speaker Catalog.

POLY PAKS INC. (Pg. 97) Circle 127
Information on semiconductors.

PYRAMID ASSOCIATES, INC. (Pg. 82) Circle 111
List of tubes.

RCA INSTITUTES (Pg. 22-25) Circle 22
Home Study Career Catalog.

SAMS, HOWARD W. & CO., INC. (Pg. 14) Circle 14
Information on Photofact-of-the-Month.

SAMS, HOWARD W. & CO., INC. (Pg. 62) Circle 28
Booklist.

SCHOBER ORGAN CORP. (Pg. 65) Circle 31
Booklet and F” sampler record.

SENCORE (Pg. 67) Circle 119
Information on Sencore TC131 Semi-automatic Tube Checker.

SONAR RADIO CORP. (Pg. 69) Circle 34
Information on Business Radio FM-40 and BR-21 matching amplifier.

SONAR RADIO CORP. (Pg. 69) Circle 35
Information on Model T-2 CB radio.

SONY CORP. OF AMERICA (Pg. 15) Circle 15
Booklet on many uses of Videocorder.

SPPRAGUE PRODUCTS CO. (Pg. 61) Circle 27
Catalog.

SPPRAGUE PRODUCTS CO. (Pg. 61) Circle 27
Trial package of 10 Kwikette soldering aids.

TRIPLETT ELECTRICAL INSTRUMENT CO. (Second Cover) Circle 7
Information on complete line of V-O-M’s.

UNITED RADIO CO. (Pg. 95) Circle 125
Parts catalog.

UNIVERSITY SOUND (Pg. 81) Circle 109
“The Lively Sound” Catalog.

WARREN ELECTRONIC COMPONENTS (Pg. 85) Circle 117
Information on silicon rectifiers.

WELLER ELECTRIC CORP. (Pg. 86) Circle 118
Information on Weller Dual Heat Soldering Gun.

WINEGARD CO. (Pg. 91) Circle 121
Information on TV antenna pre-amps.

XCELITE, INC. (Pg. 14) Circle 13
Catalog 162.

76

RADIO-ELECTRONICS

Here’s how you can get manufacturers’ literature fast:

1. Tear out the post card on the facing page. Clearly print or type your name and address.

2. Circle the number on the card that corresponds to the number appearing at the bottom of the New Products, New Literature or Equipment Report listing in which you are interested. For literature on products advertised in this issue circle the number on the card that corresponds to the number appearing at the bottom of the advertisement in which you are interested, or use the convenient checking list in the column at the left.

3. Mail the card to us (no postage required in U. S. A.)

www.americanradiohistory.com
NEW PRODUCTS

More information on new products is available free from the manufacturers of items identified by a Reader's Service number. Turn to the Reader's Service Card facing page 76 and circle the numbers of the new products on which you would like further information. Detach and mail the postage-paid card.

\[Hz = \text{Hertz} = \text{cycle per second}; \text{kHz} = \text{kilocycles}; MHz = \text{megacycles} \]

25-CHANNEL MOBILE TRANSCEIVER, model H-525. 23 CB channels plus 2 crystal-controlled positions ready to operate on H.E.L.P. channels. Crystals supplied; 19 transistors, 7 diodes, 1 thermistor. 5-watt performance, 455-kHz mechanical filter, 5-position delta tuning, variable squelch, automatic series-gate noise limiter, speaker. Operates on 12 volts dc (6 volts dc or 117 volts with optional power supplies). 2.5 x 6 x 8 in.–Lafayette Radio Electronics

Circle 46 on reader's service card

5-WATT 23-CHANNEL CB TRANSCEIVER KIT, model GW-14. 14 transistors, 6 diodes, minimum 3 watts rf output, 3 watts audio modulating power. Front panel 5-meter, squelch control, and built-in PM speaker, gimbal mounting bracket. Sensitivity: 3 mV for 10-dB signal plus noise-to-noise ratio. Draws 0.75 amp transmitting, 0.12 amp on receive. Turner ceramic pual-to-talk mike, dc power cables, crystals for one channel. Assembly time about 8 hours. 23 x 7 x 10% in., 12-volt negative-ground.–Heath Co.

Circle 47 on reader's service card

PILOT LIGHTS, BND series (left in photo) available in high and low intensity; mount in \(\frac{3}{4} \)-in. hole. BNE and BNF series (center and right in photo) have similar characteristics; BNF lens system extends farther beyond panel. All operate on 75 Vac.–Also Electronic Products

Circle 48 on reader's service card

AUDIBLE WARNING ALARM, the Headlight Switch. Transistorized circuit operates speaker with sound similar to radio "time tone" which warns driver when he has left headlights or parking lights on. Tested from -60° to 160°F For 12- and 6-volt negative/positive ground cars.–Electronic Products Co.

Circle 49 on reader's service card

DYNAMIC MICROPHONE, model M-213. Fits any stand with \(\frac{3}{4} - 27 \) thread. Impedance 50,000 ohms. Response 50-11,000 Hz. Sensitivity –55 dB. Chrome finish. 6% x 1% in. diameter.–Olson Electronics.

Circle 50 on reader's service card

VIDICON CAMERA, model ST-2. Horizontal resolution center, 800 lines; corner, 600 lines. 2:1 scanning interface.

AUGUST, 1966

TV TECHNICIANS

Does Your Present Job Offer These RCA Benefits?

☐ Working with new advanced technologies in color TV, solid-state circuitry, closed-circuit TV, sound systems and other related electronic products.

☐ A sales commission program that puts extra money into your pocket.

☐ Regular pay increases.

☐ Paid Hospital-Surgical and Major Medical Program for you and your family.

☐ Paid Life Insurance; Paid vacations and holidays.

☐ Liberal retirement plan.

☐ Company-supplied tools, vehicle and test equipment.

You owe it to yourself to investigate positions open at the RCA TV Service Branch in your area, or at 150 other Branches throughout the U.S.

Trainee positions also available for individuals with a basic knowledge of electron theory. No related work experience necessary.

Just fill out the coupon and mail to:

Mr. D. A. Giordano
Dept. YC-34
RCA Service Company
Building 201-1
Camden, New Jersey 08101

An Equal Opportunity Employer M & F

The Most Trusted Name in Electronics

[Reasoning for TV Tech Positions]

Name__
Address______________________________________
Phone__
Years of technical schooling:_____________________
Military__________ Civilian______________________
Years of TV Technician Experience_______________

79

www.americanradiohistory.com
sweep circuits. Power drain is 35 watts. Normal composite video output is 75 ohms, 2 volts peak-to-peak. Video bandwidth is 12 MHz; variable aperture correction; 36 transistors plus 16 microcircuits, 6770-gauss focus field. Picture degradation is 5% for input power 100-130 volts ac, 0-70°C. 13 lb less lens. Transmission distance is 5,000 ft over RG-11/U. Integrated circuitry.-Diamond Electronics

Circle 51 on reader's service card

SHORT-WAVE RECEIVER KIT, model GR-54, has 3 bands: 3 bands that cover 2 to 30 MHz; broadcast band 350 to 1,350 kHz; AM; aeronautical and radio navigation band 180 to 420 kHz. 6-tube, 6-diode superhet with 2 silicon diode rectifiers; tuned rf stage; half-lattice crystal filter; diode detector for AM; built-in signal-strength indicator; electrical bandspread tuning; and ave; built-in 4 x 6 in. FM speaker; built-in AM antenna; transformer-operated power supply. Front end can be aligned with or without instruments.-Heath Co.

Circle 52 on reader's service card

6-STATION INTERCOM, Model MPI-6, can handle 3 private conversations or 6-station conference. Master-to-remote enables master station to communicate with up to 5 remotes separately or in
6-station conference. Master unit has 5-station selector control, 3-way talk-listen-dictate switch and volume control. 117 volts ac, 60 Hz. 8 lb.-Lafayette Radio Electronics

Circle 53 on reader's service card

AUDIO AMPLIFIER, T-J108, uses FET transistor. Designed as microphone preamp, doubles as booster or line amplifier. Other transistors used are silicon planar. External passive equalizer (Universal Audio 508-B) is enclosed in active feedback loop of amplifier so T-J108 output can be boosted or attenuated at high and low frequencies without loss or gain. 1½ x 3 x 1¾ in., can be mounted in line with conventional vertical facaders.-Universal Audio Products

Circle 54 on reader's service card

SOLDER AND SOLDERLESS TERMINAL ASSEMBLY. Solderless terminal consists of tightly coiled plated spring slipped over plated brass stamping, which is feed-through terminal with de-
tents for insertion in phenolic board, using terminal insertion tool or long-nose pliers. Use brass stamped terminal alone for solder terminal. Serrations on vertical slots allow several wires to be positioned before soldering.-Aladin Kits Co.

Circle 55 on reader's service card

ANTENNA MATCHING NETWORK, model M-1. Insert tuning unit between transmitter and antenna line-in, remove 2 snap-in plugs, adjust each with screwdriver for 1:1 VSWR. For 11-meter band, 10 watts input, accepts standard PL 259 connectors. ½ x 2 x ½ in.—Gold-Line Co.

Circle 56 on reader's service card

SINE-SQUARE WAVE GENERATOR, model 638. Sine-wave output: range, 20 Hz to 200 kHz in 4 overlapping bands; response flat within ±1.5 dB, accuracy ±5%, distortion less than 0.05% full output, to 100 kHz; output 0-10 volts rms across 600-ohm load; output impedance, nominal 30 ohms, max 1,550 ohms. Square-wave output: 20 Hz-200 kHz, rise...
time 0.15 usec; output 0-10 volts peak-to-peak into 600 ohms. Power: 117 volts ac, 50-60 Hz, 50 watts. 8.5 x 11.5 x 7 in., 15 lb.—Precise Electronics
Circle 57 on reader's service card

dipped Mylar-paper capacitor values, 10 exact original equipment values.—Arco Electronics
Circle 60 on reader's service card

NO COMPETITORS
Nobody else but EMC designs in so much value

THE MODEL 213 saves you time, energy, money! ■ Checks for shorts, leakage, intermitten ts, and quality ■ Tests all tube types including magic eye, regulator, and hi-fi tubes ■ Checks each section of multi-purpose tubes separately ■ Gives long, trouble-free life through heavy-duty components, including permanently etched panel ■ Keeps you up to date with FREE, periodic listings on new tubes as they come out ■ Your best dollar value in a tube tester. Available in high-impact bakelite case with strap: $28.90 wired; $38.90 in kit form. Wood carrying case (illustrated) slightly higher.

EMC, 625 Broadway, New York 12, N.Y.
Rush me FREE catalog describing all EMC value-loaded test instruments and name of local distributor.

NAME __________________________
ADDRESS _________________________
CITY __________ ZONE ___________ STATE

Electrical Measurements Corporation
625 Broadway, New York 12, New York
Export: Pan-Mar Corp., 1270 Bway, N. Y. 1, N. Y.
PYRAMID ASSOC., INC.
1525 S.W. 15th Ave.
Miami, Florida 33149

Circle 111 on reader's service card

PYRAMID ASSOC. $ NEW
70 + 5 OFF

Circle 61 on reader's service card

ELECTRONIC TUNING DEVICE/ METRONOME, the Tempo-Tuner comes in 3 models, 8179 for band, 8180 for orchestra, 8181 for guitars. Each unit has 4 preset reference tones most useful in its specified application plus a 5th reference tone variable in pitch over 2½ octave range. Output jack for PA and hi-fi. Volume switch controls both tones and metronome sound. Battery-operated, 7 x 6 x 3½ in.—H. & A. Selmer, Inc.

Circle 62 on reader's service card

TACHIOMETER, model 36R-13V, designed for rpm measurement of diesel engines in field or shop, is powered from battery for the equipment being tested. Reads 0-12,000 rpm by pointing head at any revolving object. Head has magnets for easy mounting in any location.—Pioneer Electric & Research Corp.

Circle 63 on reader's service card

23-CHANNEL CB TRANSCEIVER, called PLUS 23, 5 watts input with 100% modulation. Incorporates MOS FET in receiver section. "S" signal strength displayed on back-lighted 10-in. edgewise scale, factory-calibrated to read S9 at 100 mV. 22 silicon transistors, heavy noise-clipping switch, external PA jack, 8 x 2 x 10 in.—Pace Communications Corp.

Circle 64 on reader's service card

ATTENTION PARTS JOBBERS: If you do not have your supply of FREE guides on hand, get a batch today without charge, to give away to the electronics men in your area. Simply write on your business letterhead:

Sales Manager, Gernsback Library, Inc.
154 West 14th Street, New York, N. Y. 10011

EXCHANGE THIS COUPON AT YOUR ELECTRONICS PARTS JOBBER FOR YOUR FREE COPY OF THE GUIDE:
"How to Read Capacitor Codes"
COMPLIMENTS OF GERNSBACK LIBRARY, INC.

NEED HELP WITH CAPACITOR CODES?

HOW TO READ CAPACITOR CODES

This comprehensive guide tells all. Come in now for your free copy.

Just take the coupon below to your electronic parts jobber for your FREE copy. Look for this window sign:

YOURS FREE! This valuable illustrated guide:

It's called "How to Read Capacitor Codes". It cuts through the chaos of color coding and shows exactly what all the colored stripes and dots on capacitors mean. Filled with diagrams and tables. It's yours, without charge, compliments of Gernsback Library Paperbound Electronics.

www.americanradiohistory.com
VIDEO TAPE RECORDER, model TCV-2020, is deluxe model of Sony's original unit. Timing device can be preset, turns machine on automatically to record television program for later viewing. Video camera available. Walnut cabinet.

-Sony Corp. of America
Circle 63 on reader's service card

HANDSET CRADLE SWITCH, Part No.'s 14412G (black), 14512G (beige) accommodate all standard te-

QUICK-CHANGE P-A SYSTEM SAVES $$

Want big P-A performance for little cost? Take your cue from this multipurpose system that didn't strain a small-town budget. Practical experience feature tells all. Shows what equipment to use and how to use it.

Coming in September
RADIO-ELECTRONICS

ATTENTION! CB OPERATORS save on citizens radio equipment

Discontinued Models From International Radio Exchange

Select that extra transceiver for mobile or base installation, or equip a new station. Our stock includes International types as well as other makes.

Write Today for A Complete List of Equipment in Stock

INTERNATIONAL

RADIO EXCHANGE 18 NO. LEE, OKLA. CITY, OKLA. 73102 Division Of International Crystal Mfg. Co. Dealing in Used Citizens Radio Equipment

Circle 113 on reader's service card
phone handsets. Thermoplastic material. Available in white on special order. Inside housing is 4-pole double-throw switch. Contacts rated for 1 amp, 100 watts max ac noninductive loads.—Switchcraft Inc.

Circle 68 on reader’s service card

STEREO HEADPHONES, model PH-108. Each foam-rubber padded ear-cup houses miniature dynamic speaker. Impedance: 8 ohms. Response: 40 to 12,000 Hz.—Olson Electronics.

Circle 69 on reader’s service card

WORK POSITIONERS, Line-Master series LM-200. Chrome-plated, preloaded to hold position while unlocked. Dry-lubricated speed thread operates at 6 turns per inch. Multipurpose vise jaws have nonslip face on one side and V-grip on reverse. Available with lead wire holder.—Sandefur Engineering Co.

Circle 70 on reader’s service card

PA DRIVER UNIT, PD-30T, has built-in transformer and watts/impedance switch, can be used as replacement driver on any industry-standard horn having 13-in.-18 threads. 30 watts continuous power, 40 watts equalized to frequencies above horn cutoff. Response 120–14,000 Hz. Sound level, 126 dB measured 4 ft on axis with horn at 30 watts input. Switch positions on 70.7-volt line: 1.8, 3.7, 7.5, 15, 30 watts; on 25-volt line: 1.8, 3.7, 7.5, 15 watts. Impedances: 2,500, 1,300, 666, 333, 167, 89 45 ohms. 44-in. diameter x 4% in.—Atlas Sound

Circle 73 on reader’s service card

AZTEC ENGINEERING COMPANY
R.D. #2 Lebanon, N.J.

Name: ___________________________
Address: ________________________

Dealer & Jobbers’ Inquiries invited.

Circle 114 on reader’s service card

WANTED DEAD OR ALIVE SERVICE DEALERS

IS YOUR SERVICE DEPARTMENT DEAD? REVIVE IT WITH A GENERAL CG-3 $75 PER MONTH

Take advantage of 2-way communication sales which have hit an all-time high of over $50 million. As we both know, service is the backbone of the 2-way communications industry. Time and knowledge is what you sell. Increase your gross profits by giving quicker service——

TRY AND BUY
GENERAL Direct Readout Frequency Counter—it is the fastest instrument in the industry——

SAVE TIME—MAKE MONEY
GENERAL is the only company that will take a trade. Submit now and be ready. Send for 24 page catalog.

GENERAL RADIO TELEPHONE CO.
3501 W. Burbank Blvd., Burbank, California

Circle 115 on reader’s service card
LITERATURE

All booklets, catalogs, charts, data sheets and other literature listed here are free for the asking with a Reader's Service Card facing page 76 and circle the number of items you want. Then detach and mail the card. No postage required!

AMPLIFIERS CATALOG, 8 illustrated pages, series on solid-state amplifiers, assembled in kit-form. Special section on "What to Look for in Amplifier Specifications," explaining importance of intermodulation distortion measurements and square-wave analysis in quality determination.—Acous-tech, Inc.

Circle 74 on reader's service card

LAMINATIONS CATALOG, PD-122A, 92 pages, revised and expanded. Diagrams and specifications for laminations for transformers, motors, transformer hardware, drawing metal cases and magnetic shields, plus special magnetic products.—Arnold Engineering Co.

Circle 75 on reader's service card

BOOKLET, "Temperature and Radiation Effects on Permanence," 16 pages, information from company's research and government reports, plus 11 pages of schematic diagrams and tables.—Bakelite.

Circle 76 on reader's service card

SILICON N-P-N POWER TRANSISTOR BROCHURE, RCA 2N3787, 2N3789 (formerly development type Nos. TAZ2509, TAZ2509A and 40375, is a 2N3878 factory-attached on heat sink for use with solid-state amplifiers. 13 loose-leaf- punched pages of characteristics and graphs of maximum operating area.—RCA Electronic Components & Devices

Circle 77 on reader's service card

Circle 78 on reader's service card

COLOR-TV COMPONENT GUIDE, ETR-4286, pocket-size, 66 pages, covers 35 manufacturers of TV sets. Lists by individual chassis, G-E replacement capacitors, diodes, transistors, rectifiers, crystals, receiving tubes, picture tubes.—General Electric Electronic Components

Circle 79 on reader's service card

TECHNICAL BULLETIN, MCT181, "Techniques for Testing Thermistors," 8 pages. Covers resistance, temperature coefficient of resistance, voltage, time for thermistor to pass current after application of voltage in given circuit, dissipation constant, thermal time constant.—Victory Engineering Corp.

Circle 80 on reader's service card

REPLACEMENT COMPONENT SELECTOR, 200GLD. Looseleaf-punched, 64 pages. Features dc aluminum electrolytics, capacitor hardware, ceramic capacitors, mica capacitors, paper and film tubulars, ac capacitors, interference filters, relays, vibrators, power supplies and transistor systems. Indexed.—Cornell-Dubilier Electronics

Circle 81 on reader's service card

TECHNICAL BROCHURE, 6-page foldout, describes the DMS-3200 digital measuring system and 4 plug-in units: dc voltmeter, 1-MHz counter, ohmmeter, capacitance meter.—Hickok Electrical Instrument Co.

Circle 82 on reader's service card

MINIATURE AUDIO CONNECTOR CATALOG, No. C-503. Illustrated 8-page folder gives specs, prices, mating chart for more than 90 plugs and receptacles in Switchcraft/Preh line.—Switchcraft, Inc.

Circle 83 on reader's service card

Circle 84 on reader's service card

BOOKLET, "Installation Instructions for Wiring with Scotchflex Brand Flat Cable System." 10 pages, shrink-pocket size.—JMC Corp.

Circle 85 on reader's service card

LIGHTWEIGHT HEADSETS, model RE-200 miniature dynamic earphone element. 4-page brochure describes how you can design your own headsets with the RE-200 element, 4 mike elements, various cords and accessories.—Roeanwell Corp.

Circle 86 on reader's service card

TECH NOTE, JTV-4A, "How to Design Speaker Enclosures." One page, with resonant frequency and duct-tube-length tables.—Jensen Mfg. Div.

Circle 87 on reader's service card

1966 CARTRIDGE REPLACEMENT MANUAL, SAC-25, 24 pages, 3-hole-punched. Cross-references 5,000 sections: Sonotone cartridges to competitive cartridges; Sonotone cartridges to phonographs. Free limited time.—Sonotone Corp.

Circle 88 on reader's service card

REPLACEMENT COMPONENT SELECTOR, 65 pages, revised, includes addition of 16 major replacements and products now marketed through this firm's General Line Distributors.—Cornell-Dubilier Electronics Div.

Circle 89 on reader's service card

TOOL CATALOG, 20 pages, universalpunched, shows complete line of solid- and slipjoint pliers, alloy wrenches, snips, wrench sets, punches, chisels.—Key-Weber Tools.

Circle 90 on reader's service card

Write directly to the manufacturer for information on the items listed below:

SILICON RECTIFIER HANDBOOK, 216 pages. Describes and analyzes rectifier circuits for both single and multiphase systems, rectifier voltage multipliers and circuits for regulation, arc suppression, other special applications.—$1.60 to Technical Information Center, Motorola Semiconductor Products, Box 955, Phoenix, Ariz. 85001.

POT-TRIMMER-DEAL CATALOG, 120 pages of precision controls with photos, diagrams, specs. Each precision and trimming potentiometer shown in cutaway form.—Write directly to Amphenol Controls Div., 120 S. Main St., Janesville, Wis. 53545

END

AUGUST, 1966

NEW LITERATURE

85
No wonder soldering is easiest with a

Weller®
DUAL HEAT SOLDERING GUN

TWO TRIGGER POSITIONS FOR INSTANT SWITCHING TO HIGH OR LOW HEAT.

SPOTLIGHT GIVES AUTOMATIC ILLUMINATION OF WORK AREA.

COUPPER TIP FOR BETTER HEAT TRANSFER, LONGER LIFE.

TIP HEATS INSTANTLY WHEN TRIGGER IS PULLED.

LONG REACH LETS YOU GET INTO TIGHT PLACES.

Weller Dual Heat Soldering Guns and Kits come in wattages from 100 to 325—-are priced from $6.95 to $12.95 list. See these precision guns at your electronic parts distributor or hardware dealer.

WELLER ELECTRIC CORP., EASTON, PA.
WORLD LEADER IN SOLDERING TECHNOLOGY
Circle 118 on reader's service card

TECHNOTES

THE CASE OF THE GOOD/BAD CAPACITOR

While aligning a DuMont RA-113 TV set, I found it impossible to adjust the 4.5-MHz trap in the grid circuit of the video amplifier. The trap consists of a fixed 47-pF mica capacitor and an adjustable inductor in a parallel-resonant circuit. I removed the capacitor and checked it only to discover that it had the correct value and no leakage.

My suspicion then turned to the inductor. It too appeared to be good. Its 12 turns (wound in a single layer on the coil form) were evenly spaced and did not touch at any point. The adjustable core was intact and moved freely inside the coil form when the adjusting screw was turned.

Continuity measurements and visual inspection do not always tell the whole story of the condition of an inductor, so I decided to make some further checks. I connected a new 47-pF capacitor across the coil and used my grid-dip oscillator to see if the combination would resonate at 4.5 MHz. To my surprise, it did. I then connected the 47-pF capacitor from the set across the coil and repeated the test. It was now impossible to obtain a resonance indication on the grid at any fre-

quency. There was no doubt now: the capacitor was bad. Yet, it had passed all tests on my capacitance checker with flying colors. Replacement of the capacitor permitted adjusting the trap.

After pondering the matter for some time, I came up with what seemed a logical explanation for the discrepancy between the results of my capacitance checker and the actual condition of the capacitor. The basis for the explanation lies in the difference between the frequency at which my capacitance checker tests capacitors (60 Hz) and the frequency at which the trap is adjusted. The capacitor probably had a high internal series resistance due to poor contact between the capacitor plates and the plate holding tabs. At the 60-Hz test frequency, the reactance of the capacitor was so high (56.5 megohms) that it swamped the series resistance, causing the capacitor to check good. At the trap frequency of 4.5 MHz, however, the reverse was true, with the result that the capacitor acted essentially as a resistor. Under this condition, resonance could not be obtained and the trap could not be adjusted.

The moral is clear: Capacitors used in rf circuits are best checked by substitution.—Peter J. Profera, W2YAX

EICO 950A R-C BRIDGE

I recently experienced a puzzling problem with an EICO model 950A R-C bridge and comparator. Test voltage and electrolytic ranges worked perfectly, but the "eye" tube acted strangely on resistance, capacitance and comparator ranges. As the proper reading was approached from the left-hand side of the dial, the eye would open as expected, but it would not close again when this point had been passed. Voltage

www.americanradiohistory.com
FREE ALLIED 1967 CATALOG

ALLIED ELECTRONICS FOR EVERYONE 1967

OUR 46TH YEAR
CATALOG 250
NEW PAGE 107

CHOOSE FROM THE WORLD'S LARGEST SELECTION IN ELECTRONICS...AND SAVE!

Buy from the world's largest electronics supplier. Use the Allied Credit Fund Plan to enjoy what you want NOW—no money down, 24 months to pay.

RUSH THIS CARD NOW!

NEW 514-PAGE ALLIED CATALOG

TOP SAVINGS ON THE BEST IN ELECTRONICS FOR EVERYONE...

- Famous Knight-Kits
- Stereo Hi-Fi
- Tape Recorders & Tape
- CB 2-Way Gear
- Walkie-talkies
- FM-AM & AM Radios
- Short Wave Radios
- Portable TV
- Phonographs, Accessories
- Amateur Gear
- Intercoms & P.A.
- Automotive Electronics
- Test Instruments
- TV Antennas & Tubes
- Power Tools
- Parts
- Hardware
- Tubes
- Transistors
- Batteries
- Books

NO MONEY DOWN—24 MONTHS TO PAY!
Low Monthly Payments to fit your budget.

DO A FRIEND A FAVOR—give him this card to send for his FREE ALLIED CATALOG.

NAME—PLEASE PRINT

ADDRESS

CITY

STATE 2H ZIP

www.americanradiohistory.com
RUSH THIS CARD TODAY

FREE

NEW 1967

ALLIED CATALOG

514 pages! See everything new in electronics...featured first at Allied, the world's largest electronics headquarters!

New! for the audiophile...
Knight-Kit® Deluxe Stereo FM-AM Tuner. Easy-to-build solid-state design.

New! for the ham operator...
Knight-Kit® 6-Meter Amateur Transceiver with universal solid-state power supply.

New! for the CB user...
KNIGHT® 2-Way Radio. Compact solid-state design at amazingly low cost!

New! for the serviceman...
Knight-Kit® Portable Solid-State Color/Bar Pattern Generator. A top value!

New! for everyone...
Ampex 6200 HVR Home Videotape Recorder. Make videotapes at home!

New! for TV and FM owners...
Antenna and Rotor Systems for color and black-and-white TV...FM, too!

Plus... hundreds more new and exclusive items, and scores of special Allied values!

NO MONEY DOWN!
Enjoy the things you want now, while you take 24 months to pay for them on the Allied easy-on-the-budget Credit Fund Plan.

ALLIED RADIO
P.O. BOX 4398
CHICAGO, ILLINOIS 60680

DO A FRIEND A FAVOR—give him this card to send for his FREE ALLIED CATALOG

CHOOSE FROM THE WORLD'S LARGEST SELECTION IN ELECTRONICS...AND SAVE!
Buy from the world's largest electronics supplier. Use the Allied Credit Fund Plan to enjoy what you want NOW—no money down, 24 months to pay.

RUSH THIS CARD NOW!
and resistance checks revealed nothing abnormal. A bit of reasoning gave a solution. The eye-tube filter capacitor (4 µF 150 volts) had opened. DC plate voltage, therefore, was present at the eye tube only half the time (the rectifier is a half-wave-connected 6X5). When the bridge was unbalanced and the "difference" voltage applied to the eye-tube grid was out of phase with the pulsating plate supply, the eye could not close, because it was not even glowing! Its fluorescence pulsed on and off 60 times a second, along with the plate supply voltage. Replacement of the capacitor cured the trouble.—**Garry Boross**

NO SOUND FROM TRANSISTOR PORTABLE

When transistor radios don't work at all, try the earphone jack. When the earphone is plugged in, the speaker is disconnected through a spring leaf on the jack which sometimes become dirty or tarnished. Clean it with contact cleaner or scrape it lightly.—**Jerry Jensen**

CRT REPLACEMENT: OLYMPIC 3P41

The picture tube in this model is mounted with four corner angle brackets and an adjustable ring. These parts are coated with a compound to keep them from loosening during shipment.

To avoid breaking the plastic brackets, dissolve the compound before loosening the hardware to replace the tube. Almost any shop solvent will do.—**Olympic Service Bulletin 65-3**

BROWN ELECTRONIK RECORDER MODIFICATION

Anyone who has had to remove the chart-tensioning mechanism of Brown Electronik recorders knows the grief involved in assembling the spring-loaded ball bearing into its nylon housing. Try this:

Drill a hole through the nylon ¼ inch from the opening and at a right angle to it. A No. 50 bit is about right. Compress the spring and insert a small solid wire into the hole. Put the ball in place and secure it with a piece of tape. Install the assembly, pull out the tape and wire, and the job is complete.—**William P. Turner**

ADMIRAL 19UE88 WITH STRANGE VERTICAL

This one had intermittent vertical trouble. The bottom of the raster would pull up about 4 inches and the top would spread out. Voltages checked OK. But when any test instrument was connected to the circuit, the set would return to normal. The symptoms seemed like those from shorted turns in the vertical output transformer. I changed the transformer and the set worked perfectly for 3 days. Again the trouble came—and went.

Parts were pushed and prodded in the vertical section, but nothing showed. When a test prod touched any part of the circuit, the set would return to normal. This sounded like a capacitor being shocked into proper operation. I placed a soldering iron near the capacitors to see if one might be defective. Sure enough, C408 was the culprit. Replace it with a 1,600-volt unit.—**Homer L. Davidson** END

THE ALL NEW SENCORE TC131 SEMI-AUTOMATIC TUBE CHECKER

After thousands of requests here is the "counter/bench" version of the famous Sencore Mighty Mite Tester; designed for the ultimate in tube checking thoroughness and operational simplicity! Designed for two-way use— as a professional shop tester and customer self-service unit. Tests over 2500 tubes— including Nuvisors, Compactrons, 10-pins, Novars, Magnovals and foreign tubes with a big 6-inch meter for easy reading. Semi-automatic; simply turn function control to any test and watch lighted arrow on meter automatically stop on right scale. User can't go wrong — no guess work — everything is read right on the meter (no tricky neon lights to misread); only 3 set-up controls. Easy to read, speed-indexed set-up cards make every test fast and sure. Like the famous Mighty Mite, the TC131 uses 100-megohm grid leakage sensitivity to spot those "tricky" tubes other testers miss; tests inter-element shorts and makes cathode emission tests under full operating levels. A real profit maker as a counter checker or self service tube seller in your shop . . . and it's only $129.95.

See your distributor about the big TC131 trade-in deal.

professional quality — that's the difference

SENCORE

426 SOUTH WESTGATE DRIVE • ADDISON, ILLINOIS

Circle 119 on reader's service card
TRY THIS ONE

HOOK HOLDS SOLDERING PENCIL

When you have a “three-hand” soldering job and no way to hold the pencil or iron steady, try this: Put the pencil or iron tip through a cuphook screwed into the bench top. If necessary, pinch the cuphook with pliers to give it a closer fit over the tip.—John A. Comstock

ADD BLOCKING CAP TO RF GEN

Most inexpensive rf signal generators are usually without a blocking capacitor in the output lead. Service data usually remind you to use a blocking capacitor in series with the hot lead of your rf generator. But what if you forget, and connect the generator direct to a B-plus point? More than likely you would do considerable damage to your rf generator. I installed a 0.05-μF 600-volt capacitor permanently in my Eico model 315 rf generator. The schematic shows how to install one. It applies to most service generators in that price range.—George E. Lytle

REPLACING A MYSTERY RESISTOR

If you run across an open wire-wound power resistor that needs replacing, and it’s marked only with somebody’s part number, or not at all, try this.

With one or two whacks of a sharp knifeblade, chip away a bit of the porcelain outer sheath as nearly in the center of the resistor as you can. Several turns of the resistance element should be bared. Then, with your ohmmeter, measure the resistance from the midpoint to the “not-open” end. Double the reading, and there’s the value of the whole resistor to within 5% or 10%.

David Wilder

MORE PRECISE AUDIO LOAD

The “Tote-A-Load" described by William F. Kernin in the March Radio-Electronics ("Make a High-Power PA Load," p. 78) can be improved by changing the switch to a 2-pole 3-position unit. Mr. Kernin shows two forms of the load box, one providing 4 and 8 ohms, the other 8 and 16. With a 2-pole 3-position switch, all three load values are available in one unit (see the diagram). Power levels remain the same as in Mr. Kernin’s units: 150 watts at 4 and 16 ohms, 75 watts at 8 ohms. If more power is needed for large installations, 50-watt resistors will provide 150 watts at 8 ohms, and 300 at 4 and

"MOVING-IN PARTY" YOU—HELPED US BUILD A BIG INVENTORY! THESE AMAZING BUYS—ARE YOUR DIVIDENDS

FREE $1 BUY WITH EVERY 10 YOU ORDER Only applies to "51" Buys FREE GIFT WITH EVERY ORDER

- 8 - ASS'T LUCITE CABINETS $1
- 3 - TOP HAT SILICON RECTI- $1
- FIERS 7500-6000V top quality...
- 100 - MIXED DEAL "JACKPOT" $1
- Condensers, Transistors, Diodes...
- 20 - SO. YARD GRILLE CLOTH $1
- most popular brown & gold designs
- 20 - EXPERIMENTER'S COIL $1
- "JACKPOT" assorted for 100 uses
- 20 - ASS'T PILOT LIGHTS $1
- .04, .06, .08, .09, etc.
- 50 - ASS'T. DISC CERAMIC $1
- CONDENSERS popular numbers
- 3 - ELECTROLYTIC CONDEN- $1
- SERS 0.1, 0.15, 0.25
- 10 - ASS'T. RADIO ELECTRO- $1
- LYRIC CONDENSERS
- 50 - ASS'T TUBULAR CON- $1
- DENSERS 0.01 to 0.5 to 600
- 20 - STANDARD TUBULAR $1
- CONDENSERS .017 0006
- 20 - BENDIX CONDENSERS $1
- 0.02-2000V 0.15 value
- 2-1/2 MEG VOLUME CONTROLS $1
- with switch. 5'9' shell
- 5 - ASS'T 4 WATT WIRE $1
- WOUND CONTROLS

IMMEDIATE DELIVERY... Scientific light packing for safe delivery at minimum cost.
HANDY WAY TO ORDER: Pencil mark or write amounts wanted in each box, place letter F in box for Free $1 BUY. Enclose with check or money order, add extra for shipping. Tearsheets will be returned as packing slips in your order, plus lists of new offers.

Please specify refund on shipping overpayment desired: ☑ CHECK ☑ POSTAGE STAMPS ☑ MERCHANDISE (our choice) with advantage to customer

Circle 120 on reader's service card

RADIO-ELECTRONICS
16 ohms. Incidentally, if one of the original circuits is used where only two load values are needed, switch S need not be a spdt as specified, but can be a spst type.

This unit will not only be useful as described in Mr. Kernin's article, but also as an external load when using a wattmeter for measuring the output of a high-power amplifier. For instance, the Heath Audio Analyzer's internal load resistors are rated at 25 watts continuous or 50 watts intermittent, the Eico 261 ac Volt-Watt Meter has internal load resistors rated at 40 watts, but both instruments are calibrated up to 150 watts for use with external load resistors. With several stereo amplifiers running 60 to 100 watts per channel, external load resistors are necessary. As Mr. Kernin indicated, the 4-, 8-, and 16-ohm loads are actually about 4% high if 25-ohm resistors are used. This less than the normal tolerance of most power resistors. If a bridge is available, the resistance of each parallel group of three resistors can be measured and Rs (see diagram) calculated to bring each group to exactly 8 ohms. Assuming each of the large resistors is exactly 25 ohms, Rs should be 200 ohms to bring the nominal values to exactly 4, 8, and 16. If high accuracy is desired, 1% power resistors are available (Allied Radio Corp.) but are rather expensive. For most uses, standard power resistors will be accurate enough to give a good indication of the power of the amplifier.

If a wattmeter is not available, the equation given by Mr. Kernin is correct for a sine wave (\(P = E/R\)), and there is no reason for "the hi-fi boys to shudder." If the load resistance is known, the voltage across the load can be measured, and the output is a good sine wave, the power calculated by this equation should agree with that measured on a wattmeter.—W. J. Stiles

SHAFT-CUTTING ACCESSORY

The photo shows a handy tool that I developed as an aid to cutting and finishing switch and potentiometer shafts. It is made from a 2-inch square piece of 1/4-inch aluminum stock. Drill a 3/16-inch hole in the center. Hack saw a slot from one edge through the center a short distance beyond the hole.

CANADIANS: Ordering is easy . . . we do the paperwork . . . try a small order

HIGHWAVE AM-FM PORTABLE RADIO

Nearly in Every Home & Chrome 14 Transistors — A Powerhouse of Quality Reception with AFC Operates on a 4 "C" Cells 22" Telexmunity FM Antenna & Personal Florentine attachment Slimline refinement — not better than any Known Brand selling for even twice the price

8"x3½"x3½" — 4 lbs

COMPLETE . . . $19.50

IBM COMPUTER SECTIONS

8 assorted Units we call for $1 and are loaded with over 150 valuable parts.

- IBM—Transistors Condensers, Resistors, Dot Shakes, Elastics, Etc.
- 8 for $1
- 100 for $10

BROOKS RADIO & TV CORP. 487 Columbus Ave., New York, N. Y. 10024

AUGUST, 1966

FAIR RADIO SALES

P. O. Box 1105 • LIMA, OHIO • 45802

BIG CATALOG

World's "BEST BUYS" in GOVT. SURPLUS

Electronic Equipment

FULL OF TOP QUALITY ITEMS—

Transmitters, Receivers, Power Supplies, Inverters, Filters, Meters, Cables, Keyers, Phonies, Antennas, Chokes, Dynamotors, Blowers, Switches, Test Equipment, Headsets, Amplifiers, etc. SEND 25¢ (stamps or coin) for CATALOG and receive 50¢ CREDIT on your order. Address Dept. BE.
What you don’t know about TV, Transistors & Test Instruments, may be costing you a promotion or a pay raise!

Get these three income-boosting books... a $15.55 value only $1.99 by joining the Electronics Book Club today!

WHY SHOULD YOU JOIN!?
Whatever your interest in electronics—radio and TV servicing, audio and hi-fi, industrial electronics, communications, electronics as a hobby—you'll find that the Electronics Book Club will help you get the job you want, keep it, improve it, or make your leisure hours more enjoyable. By broadening your knowledge and skills, you'll build your income and electronics enjoyment as well.

WHAT BOOKS ARE OFFERED?
From Gernsback Library and other leading publishers come the country's most respected books in the field of electronics. All are deluxe, hard-covered books of permanent value, offered at considerable cash savings to members, regardless of higher retail prices.

HOW THE CLUB WORKS
The Electronics Book Club will send you, every other month, the News Bulletin describing a new book on a vital area of electronics. As a member, you alone decide whether you want a particular book or not. You get 3 books now for $1.99 and need take only 4 more within a year, from a wide selection to be offered. And the Club saves you money on the books you take, regardless of higher retail prices.

HOW TO JOIN
Simply mail the coupon today. You will be sent your three handbooks—BASIC TV COURSE, FUNDAMENTALS OF SEMICONDUCTORS and THE OSCILLOSCOPE (regular retail price $15.55). We will bill you $1.99 (plus a few cents postage) if you are not pleased with the books, send them back within 10 days and membership will be cancelled. Otherwise you will enjoy these benefits:

- Get three books immediately for $1.99 (regular $15.55 value).
- Free 10-day examination privilege.
- Continuous cash savings.
- Free charts and reports given with many books.
- You alone decide which books you want. Books are returnable.
- Club Books are practical working tools, written by experts.

Please enroll me in the Electronics Book Club and send me the 3 income-boosting handbooks: BASIC TV COURSE; FUNDAMENTALS OF SEMICONDUCTORS; THE OSCILLOSCOPE. Bill me only $1.99 plus shipping (for this $15.55 value). If not pleased, I may return the books in 10 days and membership will be cancelled.

As a member, I need only accept as few as 4 additional books a year—and may resign any time after purchasing them. All books will be described to me in advance, every other month, in the Club Bulletin, and a convenient form will always be provided for my use if I do not wish to receive a forthcoming book. You will bill me the special Club price for each book I take (plus a few cents postage)—regardless of higher retail prices. Offer good in U.S.A. and Canada only.

Get these three income-boosting books... a $15.55 value only $1.99 by joining the Electronics Book Club today!

BASIC TV COURSE
By George Kravitz. Perfect introduction to TV, in clear, non-mathematical language. Starting with the forming of the picture, the book shows how the picture tube works, the television signal, the television receiver, antennas and tuners, how the video IF works, the video detector and AGC, the video amplifier at work, how the sync section works, horizontal output and high voltage supply, how the sound section works, how transistor portable TV's work. 224 pages, completely illustrated. Retail Price $5.75.

FUNDAMENTALS OF SEMICONDUCTORS
By M. G. Scroggin. Provides a complete background in semiconductor devices, beginning with basic facts on electrical conduction through transistors, rectifiers, photoelectric devices, thermistors, varistors, diodes, crystal sets, etc. Supplies enough theory in a simple way to make it possible to understand more advanced literature. Also explains how the special properties of semiconductors are being applied in many kinds of useful devices. Dozens of charts, diagrams and photos. 160 pages. Retail Price $4.60.

THE OSCILLOSCOPE
By George Zwick (Revised Edition). Teaches you how to operate the scope, how to use it for alignment and shows you how to solve every type of service testing problem you are likely to encounter. Demonstrates how to interpret waveforms correctly, how to use scope probes, how to measure low input voltages, how to perform specific experiments using the oscilloscope, etc. 224 illustrated pages. Retail Price $5.20.

Gernsback Library, Inc., Electronics Book Club, Dept. RE 86
154 West 14th Street, New York, N.Y. 10011

Please enroll me in the Electronics Book Club and send me the 3 income-boosting handbooks: BASIC TV COURSE; FUNDAMENTALS OF SEMICONDUCTORS; THE OSCILLOSCOPE. Bill me only $1.99 plus shipping (for this $15.55 value). If not pleased, I may return the books in 10 days and membership will be cancelled.

As a member, I need only accept as few as 4 additional books a year—and may resign any time after purchasing them. All books will be described to me in advance, every other month, in the Club Bulletin, and a convenient form will always be provided for my use if I do not wish to receive a forthcoming book. You will bill me the special Club price for each book I take (plus a few cents postage)—regardless of higher retail prices. Offer good in U.S.A. and Canada only.

Name
(Please Print)

Address

City State Zip Code

SAVE: Enclose your $1.99 now with this coupon and we will pay postage. Same return guarantee privilege; prompt refund if not satisfied.
WHAT'S YOUR EQ?

These are the answers. Puzzles are on page 40.

Tapered Network

If the first section of the network is removed, the remaining portion looks like Fig. 1. This new network is identical to the original except that each of the resistors has been multiplied by 1/2.

When the ac input voltage rises to +50 volts or more, the left-hand diode stops conducting and the effective resistance between point A and ground is 2 megohms (R2). The voltage divider (R1-R2) limits the maximum output voltage to +50 volts—just half the input.

As the ac input voltage drops below zero, the current through R3 and the left-hand diode increases. This decreases the current through the right-hand diode and as a result, the output voltage decreases. When the ac input voltage reaches —50 volts or more, the right-hand diode is nonconducting and the output voltage is zero.

More Rows

Mr. T. A. Kasinski came up with this variation to the solution of the "Which Row" puzzler (Oct. '65).

It is possible to determine which row contains the 200-ohm resistors not only from five, but from six rows.

Do not connect this sixth row at all. If your measurement is 1,500 ohms, the sixth row contains the 200-ohm resistors. If the measurement is greater than 1,500 ohms, the original solution applies.

<table>
<thead>
<tr>
<th>R</th>
<th>1 + 1/2 + 1/2 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>R² - 1/2 R - 1</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>1/4 (1 + √17)</td>
</tr>
<tr>
<td>= approx. 1.28 ohms</td>
<td></td>
</tr>
</tbody>
</table>

? ? ? Circuit

When the ac input voltage is zero, both diodes conduct. R2 and R3 are effectively in parallel, forming an effective resistance of 3/4 megohm between point A and ground. Since R1 is in series with this 3/4 megohm, the output at point A is 25 volts.

ELECTRONICS Engineering-Technicians

Bachelor of Science Degree, 30 Months
Save Two Years' Time

- Radio-Television Plus Color Technician (12 Months)
- Electronics Engineering Technology (15 Months)
- Electronics Engineering (B.S. Degree)
- Electrical Engineering (B.S. Degree)
- Mechanical Engineering (B.S. Degree)
- Civil Engineering (B.S. Degree)
- Architecture (B.S. Degree) (36 Months)

Approved for Veterans

DAY AND EVENING CLASSES

Write for Catalog and Registration Application. New Term Starting Soon.

Your Name
Address
City
State

Write for Catalog and Registration Application. New Term Starting Soon.

Circle 122 on reader's service card
NOTEWORTHY CIRCUITS

REDUCE RIPPLE IN HEATHKIT PS-3

The Heath PS-3 (as well as some other regulated power supplies) obtains negative grid bias for the regulator amplifier from a half-wave rectifier. The voltage is filtered and then regulated by two VR tubes in series. VR tubes are not perfect rectifiers so a few tenths of a volt of the power-supply ripple appears across them. The ripple is fed to the grid of the amplifier, and consequently appears in the output.

One way of reducing this ripple is by converting the half-wave rectifier to full-wave by adding another rectifier tube as shown on the diagram. (If you wish to use a solid-state rectifier, you must replace the existing rectifier tube as well, to maintain symmetry.) This increases the fundamental ripple frequency from 60 to 120 Hz, making the filter more effective. This change increases the supply voltage, so it may be necessary to increase the resistance in series with the VR tubes to maintain the correct VR-tube current. —Charles Erwin Cohn

VHF-UHF TV COUPLER

A pair of couplers are needed whenever you wish to use a single lead-in with separate vhf and uhf TV antennas. See Fig. 1. Here is a coupler (Fig.

by converting the half-wave rectifier to full-wave by adding another rectifier tube as shown on the diagram. (If you wish to use a solid-state rectifier, you must replace the existing rectifier tube as well, to maintain symmetry.) This increases the fundamental ripple frequency from 60 to 120 Hz, making the filter more effective. This change increases the supply voltage, so it may be necessary to increase the resistance in series with the VR tubes to maintain the correct VR-tube current. —Charles Erwin Cohn

BREAKER-POINT CHECKING AID

In a military overhaul depot, mechanics working on aircraft magnetos had difficulty checking breaker-point spring tension. The procedure required that the contacts "break" or open within rigid spring-tension limits. This was
NEW BOOKS

This latest addition to the ARRL roster of technical publications is written especially for the ham interested in 50 mc and above. Mainly theory, design and construction of tuners, converters, excklers, frequency multipliers and amplifiers, test instruments and antennas for use between 50 and 500 mc, but includes material on circuits and equipment up to 2,300 mc. Well illustrated in the usual QST/ARRL-Handbook style.

This senior-year-college or first-year-graduate textbook discusses, in its first chapters, information theory, randomness and probability theory in language that can be understood by many students at lower levels.

HOW TO BUILD PROXIMITY DETECTORS & METAL LOCATORS, by John Potter Shields. Howard W. Sams & Co., Inc., 4300 W. 62 St., Indianapolis 6, Ind. 5½ x 8½ in., 128 pp. Paper, $2.50

The book is largely devoted to the type of proximity detectors used in intruder alarms for activating window displays, etc. One chapter treats elementary metal locators, and another is devoted to advanced metal locators, including some interesting material on Hall-effect devices as metal locators, and on one that responds only to moving ferrous metal objects.

The book is aimed at the layman or businessman, with a brief introduction describing technical features of video tape recorders and the differences between various recorders now in use or projected for the future. The book was written before the present low-priced video tape recorders (Amplex, Sony, etc.) appeared on the market.

Begins with the camera (after a short introductory chapter) and goes through to the monitor or display tube in the first two chapters. Nine other chapters are devoted to system expansion, recording, and applications such as education, industry and research. There is a chapter on circuits, one on microwave relays, and another on lenses, lighting and wiring.

AUGUST, 1966

SCHOOL DIRECTORY

Learn Electronics for your SPACE-AGE EDUCATION at the center of America's aerospace industry. No matter what your aerospace goal, you can get your training at Northrop Tech, in sunny Southern California.

COLLEGE OF ENGINEERING. Get your B.S. degree in engineering in just 36 months by attending classes year round. Most Northrop Tech graduates go on to project work for them the day they're graduated.

A & P SCHOOL. Practical experience on real aircraft. One-year course prepares you for your A & P certificate. WRITE TODAY FOR CATALOG.

NORTHROP INSTITUTE OF TECHNOLOGY
1199 W. Arbor Vista, Inglewood, Calif.

GET INTO ELECTRONICS

V.S.T. training leads to success as technicians, field engineers, specialists in communications, missile divisions, TV, radio, television, radar and research. Get advanced courses in theory & laboratory electronics. Engineering Electronics, Communications, Radar and Electronic Technology courses. Book visible. Apply, degree, Jr. & Sr. College trained. Graduates in all branches of electronics with major emphasis on missiles. Write or apply for course and salary information.

VALPARAISO TECHNICAL INSTITUTE
Department G. Valparaiso, Indiana

LEARN Electronics AT HOME

Practice design automation systems from transistors to complete electronics. College level. Home study courses taught by you can earn you degrees. Earn more in the highly paid electronic industry. Computers, missiles, theory and practice. All furnished. Over 2,000 students have graduated at our Chicago campus if desired. Proven 1954. Catalog.

AMERICAN INSTITUTE OF ENGINEERING AND TECHNOLOGY
1139 W. Fullerton Pkwy., Chicago, Ill. 60614

start your career here

Tri-State graduates hold important engineering and business administration posts throughout the U. S. Tri-State is a small, perfectly-oriented college in the beautiful town of Angola. Modern, well-equipped labs . . . new library and residence halls . . . 360-acre campus - small classes - 4-year tradition. Fully accredited. Modest costs. Four-quarter year permits degree in three years. One-year Tech-Comb. 29 mos. B.S. degree. For Catalog, write Director Admissions indicating career interest. Graduate Placement recommended.

TRI-STATE COLLEGE
2486 College Avenue, Angola, Indiana

Circle 124 on reader's service card

Get Your First Class Commercial
F.C.C. LICENSE
and earn your
A.S.E.E. DEGREE

Now is the time to Move Up! Increase your salary and prestige by acquiring the knowledge and documents that industry pays for. Get your F.C.C. first class commercial license, and then continue (if you wish) for your A.S.E.E. degree.

Grantham offers resident training in which each semester prepares you for an occupational objective as follows: Semester I—communications technician with first class F.C.C. license; semester II—television technician; semester III—computer technician; and semester IV—electronics engineering technician with an A.S.E.E. degree.

Grantham offers home study training in (1) F.C.C. License Preparation, and (2) Electronics Technology.

The A.S.E.E. degree can be earned by 16 months of resident training, or by a combination of the Electronics Technology course by home study and two semesters (18 months) in residence.

Get the facts from our free catalog. Write or phone us at one of the addresses listed below. Ask for Catalog 67-E.

Grantham School of Electronics
1505 N. Western Ave., Hollywood, Calif. 90027
(Phone: HO 9-2787)
408 Marion Street, Seattle, Wash. 98104
(Phone: MA 2-7227)
818-18th St., NW, Washington, D.C. 20006
(Phone: 298-7460)

Just bear with me another moment, Sir, while I make a few more adjustments.

LASER RESEARCH CO.
Just Published

How 88,648 Heavy Smokers Stopped Smoking

NEW YORK—The Anti-Tobacco Center of America has just published a booklet which explains how 88,648 heavy smokers (of whom many are physicians) have stopped smoking without straining their will power. This booklet is available free of charge to smokers. All you need to do is to send your name and address to The Anti-Tobacco Center of America, Dept. 641-X, 866 Fifth Avenue, New York 1, New York. This offer is open while the supply of these booklets lasts.

GENERAL

TV SERVICE ORDER BOOKS for use with your rubber stamp, duplicate or triplicate. Low cost. Write for FREE 32 PAGE CATALOG and Special Rubber Stamp Offer. GELRICH PUBLICATIONS, 6565 W. Higgins, Chicago, Ill. 60656.

FREE ELECTRONICS (new and surplus) Parts catalog. We repair multimeters, BIGELOW ELECTRONICS, Bluffton, Ohio 45817.

CONVERT ANY TELEVISION to sensitive Big-Screen Oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2.00. RELCO-A25, Box 10563, Houston 18, Texas.

New scientific transistor instrument detects burned coins, treasures. Will detect gold, silver, copper, iron, etc. $19.95 up. Free catalog. RELCO-A25, Box 10563, Houston 18, Texas.

PRINTING PRESSES, Type, Supplies. Lists 52. TURNBAUGH SERVICE, Mechanicsburg, Pa.

WANTED

QUICK CASH for Electronic EQUIPMENT COMPONENTS, unused TUBES. Send list now! BARRY, 512 Broadway, New York, N. Y. 10012, 212 WALKER 5700.

MERCURY, platinum, gold, silver, FRE circular. MERCURY REFINERS, Norwood, Mass.

WANTED, tapes etc. of excerpts of old radio programs. DON SCHMIDT, Rt. 2, Vaupaca, Wisc.

SERVICES

METERS—MULTIMETERS REPAIRED and calibrated. BIGELOW ELECTRONICS, Box 71-B, Bluffton, Ohio.

CLASSIFIED COMMERCIAL RATE (for firms or individuals) offering commercial products or services: 60¢ per word, minimum 10 words.

NON-COMMERCIAL RATE (for individuals who want to buy or sell personal items): 30¢ per word . . . no minimum.

Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or objectionable ads not accepted. Copy for October issue must reach us before August 10th.

WORD COUNT: Include name and address. Name of city (Des Moines) or state (New York) counts as one word each. Zone or Zip Code numbers not counted. (We reserve the right to omit Zip Code if space does not permit.) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols or groups such as 8-10, COD, AC, etc., count as one word. Hyphenated words count as two words. Minor over-wordage will be edited to match advance payment.

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

Allied Radio Corp. .. 67-68
Aztec Engineering Company 84
B & K Manufacturing Co. (Div. of Dacuson Corp.) 16
Brooks Radio & TV Corp. 88-89
Browning Laboratories, Inc. 74
Capitol Radio Engineering Institute, The 17
Castle TV Tuner Service, Inc. 70
Centralab (Div. of Globe Union Inc.) 12
CLASSIFIED ... 94-97
Cleveland Institute of Electronics 1, 56-59
Cornell Electronics Co. 96
DeVry Technical Institute 5
Edile Electronics, Inc. 92
EICO Electronic Instrument Co., Inc. Third Cover ... 13
Electronic Chemical Corp. 85
Electronic Measurement Corp. (EMC) 81
Fair Radio Sales ... 89
Finney Co. .. 19
General Radiophone Co. 84
Gernsback Library Inc. 65, 82, 90, 97
H & L Engineering .. 83
Hallcrafters ... 89
Health's Engineering College 91
Heath Company .. 71
International Crystal Mfg. Co., Inc. 98
International Radio Exchange 83
Mallory Distributor Products Company (Div. of B. Mallory & Co., Inc.) 7
Mercury Electronics Corporation 21
Microflex, Inc. .. 74
Moffett Sales Corp. 80
Music Associates ... 80
National Radio Institute 8-11
Oxford Transducer Company (A Division of Oxford Electric Corporation) 66
Pety Paks .. 97
Pyramid Assc., Inc. 82
RCA Components & Devices Fourth Cover 18
Test Equipment ... 18
RCA Institutes, Inc. 23-25
RCA Service Corp. 79
Sams & Co., Inc., Howard W 14, 62
Sarkes Tarzian, Inc. (Tuner Service Div.) 64
Schaefer Organ Corp., Inc. 65
Sencore .. 87
Sennheiser ... 69
Sonic Radio Corporation 15
Sony Corp of America 61
Squage Products Company 61
Syvania (Subsidiary of General Telephone & Electronics) 63
Tauszian, Inc Sarks (Tuner Service Div.) 64
Triplet Electrical Instrument Company, The 63
United Radio Co. ... 95
University Sound (Div. of LTV Ling Altec, Inc.) . 81
Warren Electronic Components 85
Weller Electric Co. 86
Winegard Co. .. 91
Xcelite, Inc. ... 14

MARKET CENTER Anti-Tobacco Center of America Chemtronics Edmund Scientific Co. Lampkin Laboratories Inc.

SCHOOL DIRECTORY American Institute of Engineering & Technology Grantham School of Electronics North Carolina College of Science & Engineering Tri-State College

Valparaiso Technical Institute

www.americanradiohistory.com
Hi-Fi COMPONENTS, Tape Recorders, at guaran-
teed "We will not be undersold" prices. 15-day
moneyback guarantee. Two-year warranty. NO
Catalog. Quotations Free. HI-FIDELITY CENTER,
239R East 149th St., N.Y., N.Y. 10027

WRITE for highest discounts on components,
recorders, tapes, from franchised distributors.
Send for FREE monthly specials. CARSTON,
1586 R Second Ave. N.Y.C. 10028

HI-Fi Equipment at lowest discount. Catalog,
MENDOTA MUSIC CO., Mendota, Minnesota
STEREO TAPES. Save up to 60% (no member-
ship fees, postpaid anywhere USA). Free 60-page
Catalog. We discount batteries, recorders, tape
accessories. Beware of slogans "not undersold," as
the discount information you supply our com-
petitor is usually reported to the factory. SAXI-
TONE, 1776 Columbus Road, Washington, D. C.
20009

HI-Fi Equipment Dealer. Wholesale Cost
Catalog, MACALESTER CORPORATION, 355 Ma-
calester, Saint Paul, Minnesota 55105.

TAPEMATES makes available to you ALL 4
TRACK STEREO TAPES—ALL LABELS—post
paid to your door—at tremendous savings. For
free brochure write TAPEMATES CLUB, 5850
RE West Pico Blvd., Los Angeles, Calif. 90019

CUSTOM COVERS for 7" reel TAPES. Make
your tape library "Bookcase Ready!" Order
from catalog. color or assorted. Beige-Grey-Ochre-Salmon Olive.

on your order—full savings. Catalog. Discount
is our low prices on all your needs. AIREX RADIO
CORPORATION, 930 S. Avalon Ave., Los Angeles
26, Calif. 90019

CONVERT YOUR RADIO into a "legal" low-
powered broadcasting station. Simplified
 Kendrick's RECORDING DEPARTMENT

825A, W. 205th St., New York City

Business cards, "raised letters" $3.95 postpaid.
SAMPLES, ROUTH RE12, 2633 Randle-
man, Greensboro, N. C. 27406.

GOLD EMBOSSED Business cards. Samples.
MTL PRINTCRAFT, Box 947, Chicago 60690

BUSINESS OPPORTUNITIES

INVENTIONS-IDEAS developed: Cash/Royalty
sales. Member UNITED STATES CHAMBER
OF COMMERCE, Raymond Lee, 130-U W. 42nd
New York City 10036

american cancer society

It could lead to skin cancer.
Learn more about this, the most
common form of cancer. Our
paraphil "Cancer of the Skin"
has the facts. Learn the dangers
of over-exposure to the sun. Our
film, "Sense in the Sun," has the
story. Both are available free
from your local ACS Unit.
It's your hide. Save it.

One car only?

The truth is, it can lead to skin cancer.

It's more serious than you think.

Learn more about this, the most
common form of cancer. Our
paraphil "Cancer of the Skin"
has the facts. Learn the dangers
of over-exposure to the sun. Our
film, "Sense in the Sun," has the
story. Both are available free
from your local ACS Unit.
It's your hide. Save it.

CLASSIFIED ADVERTISING ORDER FORM

For complete data concerning classified advertising please refer to box elsewhere in this section.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

(20 Non-Commercial Rate) $9

No. of Words (or 60 Commercial Rate) $=

Total Enclosed $=

Payment must accompany order unless placed through approved advertising agency.

NAME

ADDRESS

CITY

STATE

ZIP

SIGNATURE

MAIL TO: RADIO-ELECTRONICS, CLASSIFIED AD DEPT., 154 West 14th St., New York, N.Y. 10011

AUGUST, 1966

Circle 125 on reader's service card

95

www.americanradiohistory.com
FREE CATALOG of 200 special slide rules and calculating aids. DYNALSLIDE, 1566 Sherman Ave., Evanston, Illinois 60201.

PROFESSIONAL ELECTRONICS PROJECTS—Organs, Timers, Computers, etc.—$1 up. Catalog 256. PARKS, Box 25565, Seattle, Wash. 98125.

TUBES. "Oldies", latest. Lists free. STEINMETZ, 7519 Maplewood, Hammond, Indiana, 46344.

BEFORE You Buy Receiving Tubes, Transistors, Diodes, Electronic Components & Accessories ... send for Giant Free Zalvron Current Catalog, featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed. One Year Guarantee—all at BIGGEST DISCOUNTS in America! We serve professional servicemen, hobbyists, experimenters, engineers, technicians. Why PAY MORE ZALYTRON TUBE CORP., 4691 Jericho Turnpike, Mineola, N. Y. 11502

TV CAMERAS, transmitters, converters, etc. Lowest factory prices. Catalog 101. VANGUARD, 196-23 Jamaica Ave., Hollis, N. Y. 11423.

SURPLUS PARTS CATALOG. Send for free catalog listing hundreds of up-to-date electronic components at down-to-earth prices. ELECTRONIC CONTROL DESIGN COMPANY, P.O. Box 1322-P, Plainfield, N. J. 07061.

RADIO & TV TUBES 33¢ each. One year guarantee. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, California 92105.

FREE ELECTRONICS CATALOG. Tremendous bargains. Send postcard. ELECTROLABS, Department C-257-G, Hewlett, New York 11557

MONEY BACK OFFER—Send back with your order. We guarantee not to divide.

Circle 126 on reader's service card

TV CAMERA KITS including printed circuit and transistor models $18.95 each Send 10c for 1966 catalog. ATV RESEARCH, Box 396-N, So. Sioux City, Nebr. 68776

NEW Soldering efficiency—"One Hand" automatic no waste gun INFORMATION DESK A, Box 208, Hamilton, Montana 59840

WHOLESALE: Microphones 89c, Transformers 49c, Speakers 49c, Hundreds of items, Catalog 59c. SAN DIEGO ELECTRONICS CENTER, Dept. RE, 702 Market, San Diego, California.

COLORTV RESEARCH, Parts, Equipment and very Unusual items. Unbelievable Prices. Catalog 59c. MICHIGAN ELECTRONICS CENTER, Dept. RE, 702 Market, San Diego, California.

GOVERNMENT SURPLUS

EDUCATION INSTRUCTION

HIGHLY-effective home study course for FCC commercial grade exams. Free literature! COOK'S SCHOOL OF ELECTRONICS, Craigmont, Idaho 83523.

FCC LICENSE in 6 weeks. First Class Radio Telephone Results Guaranteed. ELKINS RADIO SCHOOL 2603E Inwood, Dallas, Tex.

SLEEP LEARNING. Hypnotism! Tapes, records, books, equipment. Details, strange catalog FREE RESEARCH ASSOCIATION, Box 24-HD, Olympia, Wash.

BROADCASTING, Communications Electronics $1495.00. 6-week, self-paced course taught by experts. Written assignments. Correspondence. Details. Write: Dept. 4, GRANTHAM SCHOOLS, 1505 N. Western, Hollywood, Calif. 90027.

REI First Class Radio Telephone License in (5) weeks. Guaranteed. Tuition $295.00. Job placement thru RI SHOP FOR A FUTURE, 1336 Main Street, Sarasota, Fla.

HOME RADIO COURSE only $26.95. Free literature Send postcard, E-U-KITS, Department 256 G. Hewlett, New York, 11557.

ENGINEERING and Electronics—send $1.00 for 100 page Career Opportunities. C.I.T., Suite 655, 263 Adelaide Street West, Toronto, Canada.

GET YOUR FREE CAPACITOR CODE GUIDE

Gernsback Library, publishers of practical paperback handbooks on all phases of electronics, has prepared a limited supply of valuable guides called: "How to Read Capacitor Codes". It shows you exactly what all the colored stripes and dots on capacitors mean. You can get a copy of this guide FREE, simply by going to your parts jobber and asking for a copy. Nothing to buy. If your jobber does not have a supply on hand, tell him to write on his business letterhead for a batch from: Gernsback Library, Inc., 154 West 14th St., New York, N.Y. 10011.
the
International MO-23
citizens radio
transceiver hides...

under the dash in the console in the glove compartment

The MO-23 remote control unit is so small it will rest on the palm of your hand (1½" H x 4" W x 2½" D). You can install the MO-23 under the car dash . . . in the glove or console compartment. Compare this versatile mobile two-way radio with other makes. See for yourself how little space this unit really requires. Technically speaking, the MO-23 combines the best advantages of tubes and silicon transistors.

CHECK THESE FEATURES:

- 23 Crystal Controlled Channels
- Miniature Solid State Remote Control
- Illuminated Channel Selector
- Transmit/Receive Trunk Unit
- Transistor Power Supply

Ask your dealer to show you the International MO-23. We think it’s a great new transceiver. You will too!

WATCH FOR INTERNATIONAL “FLYING SHOWROOM ’66”.
WELCOME ABOARD!

Circle 128 on reader’s service card
Engineered for Professional Quality and savings up to 50%

Whether you want the creative pleasure and thrill of build-it-yourself, or factory-assembled professional quality equipment ready-to-use—you save up to 50% with EICO.

no-compromise engineering. Be super-critical. Compare EICO with anybody else. The more critically you judge, the more you'll see for yourself that your best buy is EICO.

COLOR TV LAB

Three compact portable instruments for shop or home Color TV servicing. Add one more and you're set for FM-MPX stereo.

New Model 360 Solid State NTSC Color Generator generates exact NTSC color signals individually and all required dot patterns. Super-compact. 4 pounds light, instant operation. $199.95 wired only.

New Model 361 Sweep/Marker Generator for easiest, fastest visual alignment of color or B&W TV and FM RF and IF circuits. Five sweep ranges from 3-220mc. Four marker ranges from 2-220mc. Crystal marker oscillator. Post injection of markers. $99.95 kit, $149.95 wired.

New Model 435 Direct-Coupled Wideband Scope. Top-quality DD-43mc scope with 3" flat-face CRT. Zener calibrator. Outperforms $5 scopes three times its size. Facilitates on-location color TV and other servicing. $99.95 kit, $149.95 wired.

New Model 342 FM Multiplex Signal Generator. Design lab quality. Both composite audio and FM RF outputs. Inputs for stereo audio source for stereo demonstrations. Critical A/B listening tests. $149.95 wired.

Model 460 Wideband Direct-Coupled 5" Oscilloscope. DC-4.5mc for color and B&W TV service and lab use. Push-pull DC vertical amp, bal. or unbal. input. Automatic sync limiter and amp. $89.95 kit, $129.50 wired.

Model 232 Peak-to-Peak VTVM. A must for color or B&W TV and industrial use. 7 iron-skip ranges on all 4 functions. With Uni-Probe. Kit $29.95 kit, $49.95 wired.

Model 753 The one and only SSB/AM/CW Tri-Band Transceiver Kit. The best ham transceiver buy for 1966. Radio TV Experimenter Magazine, 200 watts PEP on 80, 40 and 20 meters. Receiver offset tuning, built-in VOX, high level dynamic ALC, solid state VFO. Unequaled performance, features and appearance. Sensationally priced at $199.95 kit, $299.95 wired.

New Model 356 All Solid-State Automatic FM MPX Stereo Tuner/Amplifier. "Very satisfactory product, very attractive price"—Audio Magazine. No tubes, not even push-pull. Delivers 112 watts IHF total to 4 ohms. 75 watts to 8 ohms. Completely prewired and pre-aligned RF, IF and MPX circuitry, plus shielded transistor sockets. $219.95 kit (optional walnut cabinet $14.95), $235.00 wired including walnut cabinet. UL approved.

New Model 754 Solid State Universal Engine Analyzer Tune up, troubleshoot any car or boat—electronically as professionals do. Self-powered, self-contained 888 checks total ignition/electrical system on all 6-cyl, 4, 6. 8-cyl. engines. + or - ground. Latest all-professional solid state precision circuitry. Complete with comprehensive manual, test leads, batteries. $199.95 kit, $299.95 wired.

FREE 1966 CATALOG

EICO Electronic Instrument Co., Inc.
131-01 39th Ave., Flushing, N.Y. 11352 RE8
Send me FREE catalog describing the full EICO line of over 200 best buys, and name of nearest dealer. I'm interested in:

[] test equipment [] ham radio
[] stereo/hi-fi [] Citizens Band radio

Name ________________________
Address ______________________
City ________________________ State ________

Circle 149 on reader's service card

Over 3,000,000 EICO instruments now in use! Preferred by engineers, scientists, technicians and students.

www.americanradiohistory.com
Are you ready for today's color?

RCA offers you a replacement color picture tube that meets OEM specs

RCA Hi-Lite picture tubes are all-new... glass, gun, the works! They're RCA's best... the same quality... the same tubes... that go into original equipment sets. And because they incorporate the latest technological advances of the world's largest color picture tube manufacturer, you literally "up-date" your customer's color set each time you install one. Here is picture brightness and color fidelity at its finest, available for the service trade in 19-inch and 25-inch rectangular and 21-inch round tube types.

RCA Electronic Components and Devices, Harrison, N.J.

The Most Trusted Name in Electronics