Radio-Electronics Japanese transistor replacements

 Radio-Electronics
COLOR TV CAMERA HI-FI LAB TESTS

Build it Yourself
MATV SPLITTERS See How They Work

USING YOUR SCOPE

 To Speed Service Jobs
LIQUID-CRYSTAL CLOCK
 Has 2-Inch Readouts

sc6si Yd 39ddQs978

Anic

PTS ELEGTBONICS Precision Tuner Service

LET US TAKE CARE OF YOUR TUNER PROBLEMS...
PTS will repair any tuner-no matter how old or new. Fastest Service -8 hour-in and out the same day. Overnight transit to one of our strategically located plants. Best Quality-you and your customers are satisfied
PTS uses only ORIGINAL PARTS! No homemade or makedo, inferior merchandise (this is why we charge for major parts!),
You get your tuner back in ORIGINAL EQUIPMENT condition.
PTS is recommended by more TV Manufacturers than any other tuner company and is overhauling more tuners than all other tuner services combined.

VHF, UHF \$10.95
UV-COMBO 17.95
IF-SUBCHASSIS 12.50
Major parts and shipping charged at cost. (Dealer net!)

PTS ELECTRONICS, INC.

hOME OFFICE
ALABAMA
ARIZONA
CALIFORNIA CENTRAL
CALIFORNIA NORTH
CALIFORNIA SOUTH colorado FLORIDA NORTH FLORIDA SOUTH INDIANA
kANSAS
LOUISIANA
MASSACHUSETTS EAST MASSACHUSETTS WEST MICHIGAN
MINNESOTA
MISSOURI
NEW JERSEY
NEW YORK
NORTH CAROLINA
OHIO SOUTH
OHIO CENTRAL
OHIO NORTH
OKLAHOMA
OREGON
PENNSYLVANIA WEST PENNSYLVANIA EAST TENNESSEE TEXAS SOUTH TEXAS NORTH VIRGINIA WASHINGTON WISCONSIN

BLOOMINGTON. INDIANA 47401 BIRMINGHAM, ALABAMA 35222 PHOENIX, ARIZONA 85061 LOS ANGELES, CA. 90023 SACRAMENTO, CA. NO. 95841 SAN DIEGO, CA. SO. 92105 ARVADA, COLORADO 80001 JACKSONVILLE, FLA. NO. 32210 MIAMI, FLA. SO. 33168 BLOOMINGTON, IND. 47401 KANSAS CITY, KANSAS 66106 METAIRIE, LA. 70003 SILVER SPRINGS, MD. 20910 SOMERVILLE, MASS. 02144 SPRINGFIELD, MASS. 01103 DETROIT, MICH. 48235 MINNEAPOLIS, MINN. 55408 ST. LOUIS, MO. 63130 E. PATERSON, N. JERSEY 07407 BUFFALO, NEW YORK 14212 CHARLOTTE, N. CAR. 28205 CINCINNATI, OHIO 45215 COLUMBUS, OHIO 43227 PARMA, OHIO 44134 OKLAHOMA CITY, OK. 73106 PORTLAND, OREGON 97213 PITTSBURGH. PA. 15202 UPPER DARBY.PA. 19082 MEMPHIS. TENN. 38118 HOUSTON. TEXAS 77032 LONGVIEW. TEXAS 75601 NORFOLK, VA. 23504 SEATTLE, WASH. 98108 MILWAUKEE, WIS. 53215

5233 S. HIGHWAY 37
524 32ND ST. SO.
2412 W. INDIAN SCHOOL RD 4184 PACIFIC WAY
4611 AUBURN BLVD.
5111 UNIVERSITY AVE
4958 ALLISON ST
1918 BLANDING BLVD
12934 N.W. 7TH AVE.
5233 S. HIGHWAY 37
3116 MERRIAM LANE
2914 WYTCHWOOD DR.
1105 SPRING ST.
52 HOLLAND ST.
191 CHESTNUT ST.
13709 W. 8 MILE RD. 815 W. LAKE ST. 8456 PAGE BLVD. 158 MARKET ST. 993 SYCAMORE ST. 724 SEIGLE AVE. 8180 VINE ST.
4003 E. LIVINGSTON AVE.
5682 STATE RD.
3007 N. MAY
5220 NE SANDY BLVD
257 RIVERVIEW AVE. W.
1742.44 STATE RD.

3614 LAMAR AVE.
4324-26 TELEPHONE AVE
MOPAC RD.
3118 E. PRINCESS ANNE RD. 432 YALE AVE.
3509 W. NATIONAL

812-824.9331 205.323 .2657 $.602 \cdot 279.8718$ 213-266-3728 . $916 \cdot 482 \cdot 6220$ 714-280.7070 303-423-7080 904-389.9952 305-685-9811 .812 .824 .9331 .913-831-1222 504-885-2349 301-565-0025 617.666.4770 . $413.734-2737$ 313-862-1783 612-824-2333 314-428-1299 .201-791-6380 .716 .891 .4935 704-332-8007 513-821-2298 614.237.3820 216.845-4480 405-947-2013 503-282-9636 412-761-7648 215-352-6609 901.365.1918 $.713-644 \cdot 6793$ 214-753-4334 804-625.2030 206-623-2320 $.414-643-8800$

1 YEAR gUaRaNtEE

Precision (ins Tuner Service

Two 4,096 word Memory Boards (kit)

Altair 8K BASIC Language. This language was chosen for the Altair Computer because of its versatility and power and because it is easy to use (comes with complete documentation). Altair 8K BASIC has many teatures not normally tound in BASIC language including an OUT statement and corresponding INPut function that allows the user to control low speed devices (machine control without assembly language). Leaves 1750 words in 8 K machine for programming and storage.

NOTE: Altair BASIC comes in either paper tape or cassette tape. Specity when ordering.

Interface Board Options. The Paralle/ Interface Board is used to connect the Altair 8800 to external devices that send and receive parallel signals. Manv line printers require a Parallel Interface Board. The RS232 Serial Board is used to connect the Altair 8800 to external devices that send and receive $\mathrm{K} \mathbf{S} 232$ serial signals Most Computer terminals require an RS232 Serial Interface Board. The TTY Serial Interiace Board is used to connect the Altair 8800 to an ASR- 33 or KSR- 33 teletvpe (20 milliamp current Ioop) The TTL Serial Interiace Board is for custom interfacing. The Audio Cassente Interiace Board is used to connect the Altair 8800 to any cassette tape recorder. It works by changing the

Your choice of Inferface Boards (kit)

Atfcir 8M BASIC Language

electrical signals from the computer to audio tones. It can be used to store unlimited amounts of information coming out of the computer and it can be used to put intormation back into the computer.

PRICES:	
Altair Computer hit with complete assembly instru	ctions \$ \$39
Assembled and tested Altair Computer	\$621
1,024 Word Memory Board	\$176 hit and \$209 assembled
\$,096 Word Memory Board	\$264 kit and $\mathbf{5 3 3 8}$ assembled
Full Parallel Interface Board	\$92 kit and \$114 assembled
Serial Interface Board (RS232)	\$ 119 kit and \$ 138 assembled
Serial Interface Board (TTL or JIY - teletype)	\$124 kil and \$146 assembled
Audio Cassette Interface Board	\$128 kit and \$174 assembled
4K BASIC language (when purchased with Altair, 4,096 worls of memory and Interface Board)	\$60)
8K BASIC language (when purchased with Altair, two	
4,096 word memory hoards and Interface Board) \$75	
COMTER II	\$780 kit
Teletype ASR-33	\$1500 (assembled only)

Input Output Devices. The Comter II Computer lerminal has a lull apha-numeric hevboard and a highlv-readable 32 -character display. It has its own internal memorv of 256 characters and complete cursor control. Also has its own built-in audio cassette interface that allows you to connect the COMTER II to any tape recorder for both storing data from the computer and teeding it into the computer. Requires an RS232 Interface board.

The Standard ASR-33 Teletvpe prints 10 characters per second. It has a built-in paper tape reader and punch. Has standard 120 day Teletype warranty. Requires a Serial TTY Intertace board

NOTE: The Altair 8800 can be comected to any number of input/output devices other than the ones listed above.

MAIL THIS COUPON TODAY
Enclosed is check for
BankAmericard \# $\quad \square$ or Master Charge \#
\square \$995 BASIC System Special with tollowing Interlace Board: Parallel
Serial RS232 \square Serial TIY \square Serial TTL \square Audio Cassette
\square Altair $8800 \square$ Kit \square Assembled \square Ohtions (list on separate sheet)
include $\$ 8$ ior postage and handling
\square Please send free Altair System Catalog
NAME \qquad
ADDRESS
CITY \qquad STATE \& ZIP
Credit Card Expiration date
MilS/6328 Linn. NE, Albuquerque, NM 87108 505/265-7553
6328 Linn. N.E., Albuquerque, NM $87108505 / 265-7553$
Warranty: 90 days on parts tor kits and 90 days on parts and labor for assembled units Prices, specifications and delivery subject to change

Whistles while you work.

We're taking a big part of the nuisance out of the spaghetti bowl of tangled wires that haunts every soundman. With the Shure A15TG Tone Generator, tracing a lost connection through a clutter of cables strung between microphones, mixers and amplifiers becomes an easy job. Simply plug the selfpowered A15TG on one end of a cable and it puts a tone on that particular line. To find the other end, simply monitor the lines until you find the one that whistles. It's that easy. This new Tone Generator is only one of the many problem solvers in the Shure A15 Series. For more information about this series, write us. Or buy a Shure A15TG Tone Generator and just whistle.
Shure Brothers Inc.
222 Hartrey Ave., Evanston, IL 60204
In Canada: A. C. Simmonds \& Sons Limited

Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
More than 65 years of electronics publishing

BUILD ONE OF THESE

33 Glant Liquid-Crystal Clock
One IC and 2-inch high readouts combine to create a very simple digital clock. by George J. Whalen

42 Color TV Camera Costs About $\$ 400$
Part II-Circuit details and camera-head adjustments. by Gary Davis

TELEVISION

24 Equipment Report
Miller-Stephenson Cobra Spray attachment
58 Step-By-Step Troubleshooting Charts
Color problems don't have to be difficult. by Stan Prentiss
63 Service Clinic
Scan-derived DC power supplies. by Jack Darr
69 Reader Questions
R-E's Service Editor solves reader problems.

HI-FI
 AUDIO

STEREO
36 R-E Tests The Kenwood KR-5400
A very special kind of Lab-Tested report we think is the most complete one you can find. by Len Feldman

39 R-E Tests The Crown VFX-2
Electronic crossover for bi-amplification and tri-amplification hi-fi systems. by Len Feldman

45 Tape Deck Electronics
How to make the reels go round without jamming the tape. by Len Feldman

22 Equipment Report
B\&K 520 transistor tester
24 Equipment Report
Heath IO-4530 $10-\mathrm{MHz}$ triggered-sweep scope
52 All About Oscilloscopes
Part III: Operating your scope properly, plus measurements you can make. by Charles Gilmore

GENERAL ELECTRONICS

4 Looking Ahead

What's new in the world of electronics.
by David Lachenbruch
55 State-Of-Solid-State
A new monolithic power amplifier and a monolithic function generator. by Karl Savon
60 R-E's Transistor Replacement Directory More substitutes for Japanese Transistors. by Elizabeth \& Robert F. Scott

DEPARTMENTS

106	Advertising Index	87	New Literature
12	Advertising Sales Offices	78	New Products
$\mathbf{8 8}$	Books	95	Next Month
14	Letters	109	Reader Service Card
6	New \& Timeiy	96	Service Questions

ON THE COVER

If you've always wanted to build a digital clock, but thought they were too complicated, try this one. It's a snap to assemble and has giant 2-inch high numerals. see page 33

INSIDE THE KENWOOD KR-5400 receiver. For all the facts on how well it works see our complete lab-test report on page 36.

INPUT AND OUTPUT WAVEFORMS from a BCD counter are only one of the things you'll learn to measure with your scope.
... see page 52

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Phone: 212-777-6400. Sec-ond-class postage paid at New York, NY and rate: U.S.A. U.S. possessions and Canada $\$ 975$, Pate: U.S.A., . . possessions and Canada, $\$ 10.75$. Single copies 75c. © 1975 by Gernsback Publications, Inc. All rights reserved. Printed in ublications, Inc. Alt reserved. Printed in
,
Subscription Service:Mail all subscription orders, changes, correspondence and Postmaster Notices of undelivered copies (From 3579) to RadioElectronics Subscription Service, Boulder, CO 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^0]
looking ahead

Conservation sacrifice

Two controversial "improvements" in color-TV sets may be sacrificed on the altar of energy conservation. These are the power race, which is seeing ever-increasing highvoltage to force more brightness from the picture tube, and the trend toward 110degree wide-angle short picture tubes. The nation's television manufacturers have met with Commerce Department officials and have been assigned the "voluntary" goal of reducing the power consumption of the average television set-both color and monochrome-by 40% below the 1972 level by 1976. The original goal was 25%, easily accomplished by the already nearly complete switch to solid-state. But government officials changed their tune and persuaded the industry to switch to the far tougher target of 40%. In the opinion of some top industry engineers, this means changing priorities for the near future.

The high-power race is something which most manufacturers haven't been too excited about anyway-it's been a defensive maneuver to avoid being out-brightened by the competition. The eventual switch to 110 -degree tubes in color has always been a foregone conclusion. It happened in black-and-white, resulting in more compact cabinets. In Western Europe, 110-degree tubes are the general rule. But the wider deflection angle requires higher power, and although there will be some 110-degree tubes introduced in the near future, it's now probable that the majority of television manufacturers will stick predominantly with $90-$ degree deflection in order to meet the government guidelines.

VTR tape economy

Speaking of Sony, last month I reported on its Beta-
max home videocassette recorder. Now it has been introduced into the United States market. The first unit to be sold here will be a combination videocassette recorder and 19 -inch color-TV set, with a list price of $\$ 2,295$, to be offered in a few large cities here this fall. It's now learned that one of the secrets of Betamax's extreme conservation of magnetic tape is the elimination of the guardband between the diagonal video tracks. The color phase-polarity is reversed on every other line, permitting the tracks to abut directly against one another. Any remaining crosstalk between tracks is eliminated by the use of a comb filter.

In videotape, particularly videotape designed for the home, the name of the game is economy of tape. Last month I gave some examples of the tape economy of various systems, and mentioned the fact that RCA's developmental MagTape SelectaVision had undergone a major revision which almost doubles its tape economy. (The figure given last month was for the original system.) The home videocassette race may well be won by the unit that gobbles up the least area of tape per hour, whether it's $1 / 4$-inch, $1 / 2$-inch or $3 / 4$-inch tape. Therefore, I've prepared the following table, based on published specs, of the various videocassette and cartridge systems in the order of increasing approximate usage of tape to record for an hour. The systems marked with asterisks are developmental and subject to change. They are all helical scan except the German BASF Longitudinal Video Recording (LVR) system that lays down 28 longitudinal tracks on $1 / 4$-inch tape, and American Videonetics that uses an eight-head assembly revolving at $7,200 \mathrm{rpm}$, laying down a track nearly perpendicular to the tape. The Akai $1 / 4$-inch unit, although still an open-reel machine, is included here because the tape could easily be placed in a cassette or cartridge. EIA-J

Type 1 is the standard Japanese cartridge recorder.

System	Speed (ips)		q. ft./ hour
Sony Betamax	1.57	$1 / 2$ "	20.6
*BASF LVR	120.00	$1 / 4$ "	26.8
*RCA			
MagTape	1.53	$3 / 4$ "	28.7
v-Cord			
(Japan)	3.75	$1 / 2 /$	46.9
Cartrivision	3.8	$1 / 2{ }^{1}$	47.5
*Amer.			
Videonetics	2.88	$3 / 4$ "	54.0
Akai	10.0	$1 / 4$ "	62.5
Philips VCR	5.6	$1 / 2^{\prime \prime}$	70.0
Sony U-Matic.	3.75	$3 / 4 / 2$	70.3
ElA-J Type 1.	7.5	1/2"	93.8

New TV projectors

Sony, the mini-TV specialist, has introduced two maxiTV projection systems--one for home and the other for industrial-educational use. Scheduled for immediate marketing in New York, Chicago and Los Angeles is a onepiece furniture-housed home projection TV with a Kodak Ektalite screen that measures 40 inches diagonally. The picture is projected from a special 12-inch Trinitron receiver through a lens-and-mirror system. The receiver is housed in a pull-out drawer. When the set is not in use, a vertical flexible tambour door-like that used on a roll-top deskcovers the screen. Sony says the brightness is 20 foot-lamberts, adequate for viewing in a dimly lit room and nearly twice the brightness of Sony's earlier industrial-institutional unit with a slightly smaller screen. The price is $\$ 2,500$. Two other home projection systems are on the marketthe Muntz Home TV Theater with a $30 \times 40-\mathrm{in}$. screen (about 35 inches diagonally) at $\$ 1,995$, and the Advent Videobeam two-piece unit whose screen measures about seven feet diagonally.

The other Sony projection system has a screen measuring 12 feet diagonally and uses three specially made 12 inch Trinitron picture tubes as light sources-one for each color. The green tube projects directly onto the screen through a lens system, while
the red and blue images are combined using a dichroic mirror and projected through a second lens system. Altogether, the system uses 13 lenses: This system is claimed to have a projected picture more than 20 foot-lamberts in brightness. The screen is placed 11.5 feet from the projector. The system costs about $\$ 23,300$, as compared with $\$ 44,000$ for the G-E Light-valve projector, with which it competes.

Quintaphonics

The first movie claiming to have "Quintaphonic sound" is the Columbia release, "Tommy." The sound system, developed by John Mosley, uses a QS matrix to produce four channels from two magnetic sound tracks, feeding speakers at the corners of the theatre. A third track provides the fifth channel, which is fed to a speaker system directly behind the screen. Over 50 theaters have been equipped with decoders and addtional amplifiers and speakers.

Pay-TV via bird

United Artists-Cablevision, which owns cable TV systems serving 182,000 subscribers, plans to feed special closedcircuit pay-TV programming to its system by space satellite. It will install earth stations at each of its system locations to receive programming from the Home Box Office, a pay-TV nework. The first earth station will serve CATV systems in Fort Pierce and Vero Beach, FL, later this year. It will be followed in 1976 by installations serving Fort Smith, AR; Laredo, TX; Yuma, AZ; El Centro, CA, and Pasco and Kennewick, WA.

[^1]
New Mallory Ni-Cad Batteries. Rechargeable 1000 times.

Mállory BC-1 Chatger draws anly two walts.

Team these long-life nickel-cadmium cells with an automatic Mallory Charger, and you can recharge them 1000 times, or more.
You'll be sure of having fresh D, C, and AA batteries, while saving morey, time and trouble. Mallory Rechargeable NickelCadmium Batteries keep on coming back for more in electronic calculators, tape recorders, radios, cameras, toys, other battery-powered products.
Keep a spare set of Mallory Ni-Cads on hand,
and ycu'll never run out of battery power again. They rechaige to full strength, two or four at a time. And ınlike ordinary dry cells that lose voltage during discharge, Mallory Ni-Cads with a full charge maintain operating voltage during the entire work cycle. You get maximLm power, coniinuously, for top product perforrance.

For the long run, Mallory Recha-geable Ni-Cads .. . the 10c0-time batteries. Get them now at your Mallory Cistributor.

new etimely

New non-impact printer writes with laser beam

A new non-impact printer just tested by RCA for the US Army uses a laser to transfer digital communications alphanumerics onto ordinary paper. The messages are transferred by a process in which the laser scans its beam across a dye-coated plastic ribbon in contact with the paper. Called TLP (tactical line printer), the system has seven speeds$55,110,220$ and 440 lines-per-minute for serial input and 273,605 and 900 lines-per-minute for parallel input.

The TLP is interfaced to receive digital communications from a wide variety of sources, including satellite ground terminals. It decodes the digital data received and stores it in a buffer memory one line at a time. It then produces an electrical signal that modulates the laser's intensity as it scans the plastic ribbon, producing a series of dots. The dots form the characters as the laser continues to scan, reproducing a line in 19 horizontal scans.

Advantages of the TLP are claimed to be less maintenance, since a laser has no moving parts to break down; cost savings through use of ordinary paper, and quietness, since the printer is a non-impact type.

Dr. Coolidge, inventor of tungsten filament, X-ray, dies at age 101

Dr. William D. Coolidge, retired General Electric vice president and director of research, died February 3 after a short illness. He was 101 years old last October.

Born on a small farm in Massachusetts, Coolidge attended the Massachusetts Institute of Technology. He graduated in 1896, $\$ 4,000$ in debt for the money borrowed to put him through college. He then worked as an assistant in physics at M.I.T. Obtaining a scholarship, he studied in Germany, receiving his PhD (summa cum laude) from the University of Leipzig in 1899. Returning to M.I.T., he taught until 1905, leaving to join General Electric.

Within two years, Dr. Coolidge succeeded in producing a ductile form of the notoriously brittle and unworkable metal, tungsten. Drawn into thin filaments, it became the ideal material for electric lamp filaments. By 1911 it had replaced the brittle and short-lived materials heretofore used and ushered in an era of cheap, long-life electric lamps that could be used in any position and that would withstand the shock of automobile operation and other rough usage.

The tungsten filament led to another

MARTIN L. LEVINE OF RCA EXAMINES COPY FROM THE NEW PRINTER that uses a laser. An enlarged view of the characters is shown in the background.
invention-the Coolidge X-ray tube. A cold-cathode, gaseous type of X-ray tube already existed-mostly as a laboratory curiosity. The tubes were erratic and tended to change their characteristics each time they were used. The Coolidge tungsten filament hot-cathode tube could be evacuated to a high vacuum and the output predetermined and accurately controlled. Patented in 1916, the new Coolidge tubes also used tungsten in the "target" or anode.

DR. COOLIDGE as he appeared at 81 .
During World War I, Drs. Coolidge and Irving Langmuir-also of General Elec-tric-developed the first successful submarine detector. After the war, he went on to develop new high-voltage X-ray tubes, with potentials up to 2 million volts

Dr. Coolidge became director of the General Electric Research Laboratory in 1932. Under his direction, the laboratory developed, among other things, the sodium vapor lamp, Fernico glass seals for vacuum tubes, the electric blanket, "invisible" glass, new permanent magnet alloys and high-quality magnetic steel.

During Warld War II, he was associated with the atomic bomb project. He retired in 1944, having remained two years beyond normal retirement age because of the need for top scientists during the early stages of the war.

On his 100th birthday, G-E employees presented Dr. Coolidge with a huge birthday cake decorated with 100 tiny tungsten lamps (Radio-Electronics, March 1974, page 12) and with the tungsten anode of an early Coolidge X-ray tube at its center.

Besides his PhD from Leipzig (renewed with a Golden Anniversary PhD in 1949),
(continued on page 12)

Get the newsbefore it's news with a"behind-the-scenes"Scanner Radio from
 Pocket-size Realistic scanners seek and lock-in on exciting police, fire and emergency calls, even continuous weathercasts** There's one to cover the action in your area - 11 models in all.

PRO-6 - VHF-Hi and VHF-Low Electronically scans up to 4 crystal-controlled channels on 148-174 or 30-50 MHz . Stops on each active channel until conversation ends, then resumes scanning. You don't miss a thing-it's like 4 radios in one Lighted channel indicators, switches for bypassing any channels, scan/manual switch, variable volume and squelch, built-in antenna, earphone jack. With 4 "AA" cells. Requires up
to 4 crystals.
$\# 20-171.1195$
PRO-4A - VHF-Hi Band
Like the PRO-6, but covers VHFHi only.
*20-174
99^{95}
PRO-5 UHF "Metro" Band
Same as the PRO-4A, but covers 450-470 MHz used in many larger cities. \#20-169.
Accessories Available. Plug-in antenna. 12VDC adapter. AC adapter/battery charger, rechargeable batteries.

FREE New 1976 Radio Shack Catalog

OVER 2000 PRODUCTS EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR Stereo • Quadraphonic • Phonographs TV Antennas •Radios • Citizens Band Kits - Recorders - Tape - Tools Auto Tune-Up • Electronic Parts Test Instruments • More!

164 pages of the finest in home and hobby electronics Respected brand names like Realistic. Micronta Archer Science fair - and theyre available only at Radio Shack stores and dealers natronwide' See what's really new in electronics by getting this catalog now

SEND FOR YOURS TODAY!
FILL OUT COUPON BELOW

Scans up to 16 crystal-controlled channels, in any combination, on $30-50$ and $148-174 \mathrm{MHz}$ VHF and $450-512 \mathrm{MHz}$ UHF. Like having 16 radios in one! Lockout buttons and indicator lights for each channel. manual selector, squelch, variable scan rate, scan-delay in/out button, $12 V D C / 120$ VAC operation. mobile mounting bracket
229^{95} Requires up to 16 crystals. U.L. listed \#20-165

Police-frequency listening may be regulated by local authorilies

Master Charge or Bank Americard at participating stores

P2EA $1517 C^{\circ}$ Radio'shaek
 A TANDY CORPORATION COMPANY

OVER 3000 STORES - 50 STATES • 7 COUNTRIES Retail prices may vary at individual stores

Prepare for a high-paying career in Complete Communications Including CB design, installation and maintenance...in actual practice

The field of communications is bursting out all over. In Citizens Band alone, estimates predict a growth in equipment sales from $\$ 514$ million in 1973 to $\$ 1.2$ billion dollars in 1982 ! That means a lot of openings in service and maintenance jobs. NRI can train you at home to fill one of those openings. . . including your FCC license and solid-state 2-way radio service.

NRI's Complete Communications Course will qualify you for a First Class Commercial License or you get your money back! It covers AM and FM Transmission Systems, Teletype, Radar Principles, Marine Electronics, Mobile Communications, and Aircraft Electronics.

You will learn to service and/or adjust CB Johnson Transceiver and AC power supply for hands-on experience as well as your own personal use.

With NRI's training program, you can learn this important skill easily, at home in

Get 2-way radio training with this solid-state 23-channel transceiver and power supply!
 will be up-to-theminute when you experiment with this solid-state transceiver unit. Mount it in your car or use it with your AC power as a base station. You get "hands-on" experience that puts your course theory into practice the practical way.
your spare time. You get 8 training kits, including your own $31 / 2$ digit digital multimeter for digital experiments and precise measurements. You'll learn from bite-size lessons, progressing at your own speed to your FCC license and then into the communications field of
 your choice.

Only NRI offers five choices in TV/Audio Servicing

NRI can train you at home to service and repair commerciallybuilt color and blackwhite TV, hi-fi equipment, AM-FM radios and sound systems. You can choose from 5 courses, starting with a basic servicing course with 65 lessons... up to a Master Color TV course, complete with $25^{\prime \prime}$ diagonal solid state color TV in handsome woodgrain cabinet. All courses are available with low down payments and convenient monthly payments to fit your budget. And all courses provide professional equipment along with NRI-designed kits for hands-on training. With the Master Course, for instance, you receive your own $5^{\prime \prime}$ wide band, solid-state triggered sweep oscilloscope, TV pattern generator, $31 / 2$ digit digital multimeter, and a high quality NRI $25^{\prime \prime}$ diagonal solid state television receiver expressly designed for color TV training.

YOU PAY LESS WITH NRI TRAINING AND YOU GET MORE FOR YOUR MONEY

NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuition costs and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.

Step into the digital age with NRI's Complete Computer Electronics Course

Digital electronics is the career area of the future ... and the best way to learn it is with NRI's Complete Computer Electronics Course. You can become a computer or digital technician with NRI's unique and fascinating home training . . . while you build and use a real digital computer in your home ! This is no beginner's "logic trainer". It's a complete programmable digital computer. And it's just one of ten kits you receive, including a professional digital multimeter for experiments and precise measurement. It's the quickest and best way to learn digital logic, and computer operation.

NEARLY ONE MILLION STUDENTS IN 60 YEARS have learned at home the nri way .. .

Mail the insert card and discover for yourself why NRI is the recognized leader in home study training. No salesman will call. Do it today and get started on that new career.

> For APPROVED UNDER GIBILL
> For the career minded, we are approved for veterans benefits. Check box on card for details.

MAIL THE INSERT CARD FOR YOUR FREE NRI CATALOG
 No salesman will call

NRI SCHOOLS

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue. Washington, D.C. 20016

Radio-ElectronicS.

Hugo Gernsback (1884-1967) founder

M. Harvey Gernsback

editor-in-chief and publisher
Larry Steckler, CET, editor
Robert F. Scott, W2PWG, CET, technical editor
Arthur Kleiman, associate editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
David Lachenbruch, contributing editor
Karl Savon, semiconductor editor
Vincent P. Cicenia, production manager
Sarah Martin, production assistant
Harriet I. Matysko, circulation director
Arline R. Bailey, advertising coordinator

Cover photo courtesy Walter Herstatt
Cover design by Louis G. Rubsamen
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, NY 10003 (212) 777-6400

President: M. Harvey Gernsback
Secretary: Bertina Baer
ADVERTISING SALES

EAST

Stanley Levitan, Sales Manager Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, IL 60646
(312) 792-3646

PACIFIC COAST/Mountain States

Jay Eisenberg
(415) 467-0125

Dr. Coolidge held honorary doctorates from at least half a dozen universities in North and South America. He held 83 patents, was a member or honorary member of a large number of scientific societies and received numerous awards and medals from institutions and societies in the United States, Britain, Chile and other countries, including the honorary M.D. degree of the University of Zurich, an honor seldom bestowed on an American layman.

Night-vision bifocals
 help firefighters

Helicopter fire-fighters of Los Angeles County have been made more effective in forest-fire missions with the help of special night-vision goggles.

Helicopters have proved their worth in daytime fire-fighting, especially in fighting forest fires. They can be even more effective at night, when temperatures and wind speeds often drop and fire spread is slower. But while a fire itself is conspicuous, it does a poor job of lighting up its surroundings. Ability to see the area and size-up the situation gives the fire-fighter an edge he cannot have if "working in the dark."

The two-pound goggles, made by ITT Electro-Optical Products Division, Roanoke, VA, use any low-level light source -firelight, starlight, moonlight or artificial light-to give the wearer an electronically amplified picture of whatever's beneath. The goggles are bifocal, so the pilot can read his instrument panel as well as study the terrain below.

In more than 50 missions to date, the Los Angeles County Fire Department reports, the fires have been brought under control sooner than would have been possible under daytime flying conditions.

One cable for power and video in latest CCTV camera

The recently introduced RCA VidiPlex CCTV camera, model TC1025, has made installation easier by using a common cable for the video signal and power supply. The camera consists of two units -a camera head and power supply connected by an RG-59/U cable. The single conductor carries 24 -volts $D C$ to the camera head and the video to the monitor.

LATEST IN RCA'S TC1000 FAMILY has 2:1 interlace and one cable for video and power.

A 2:1 interlace scanning network, as used in standard broadcast work, improves vertical resolution and prevents picture crawl, often objectionable in ran-dom-interlace surveillance cameras. Images from several cameras can be presented simultaneously on the same screen, and cameras can be locked together. R-E

FIRE-FIGHTING HELICOPTER PILOTS of LOS Angeles County wear these bifocal light-FIRE-FIGHTING HELICOPTER PILOTS of Los Angeles Count mite flying over dangerous mountain terrain to fight forest fires, while at the same time keeping an eye on the cockpit instruments.

no strings

 attached
new Weller" cordess soldering iron GOES ANYWHERE

A professional quality tool. Weller's feather-light and fingertip-handy WC-100 Cordless Soldering Iron allows you to make connections anywhere...without dependence on an AC cord and outlet.

The heart of the WC-100 is its high-energy. long-life, nickel-cadmium battery which springs into action at the touch of your finger, heating the tip to over $700^{\circ} \mathrm{F}$ in just 6 seconds And no danger of accidental discharge. Weller's exclusive sliding safety switch breaks the circuit when your finger is removed, won't lock in "on" position, and does lock in "off" position for added safety while restoring energy with fastpower recharger (UL listed).

Loosen two slotted set screws and you've got instant choice of four tips. regular, long-reach, fine-point, or miniature ...each mounted on an extra-strong stainless tube to resist bending. Tip is continuously illuminated by the built-in light which focuses on the work area, a special advantage under poor lighting conditions.

Try this for size! It's a full-scale photo of the compact WC-100. And the real thing is waiting for you at your dealer or distributor...right now Need to know more? Request literature.

Weller-Xcelite Electronics Division The Cooper Group

P. O. BOX 728, APEX, NORTH CAROLINA 27502

- POWER FOR THE PROFESSIONAL
- ECONOMY KITS FOR THE HOBBYIST A MODEL AND A PRICE FOR EVERYONE

Breadboard Prototesting with 5 Volt.
1 AMP Regulated Power Supply included!
A total ready-to-use power breadboard prototest device with a built-in regulated, short-proof power supply. Just plug-in and start building! 2 extra floating 5 -way binding posts for external signals. Selfcontained with power switch indicator lamp and power fuse. 24-14 pin DIP capacity. Attractive two-tone quality case. All metal construction. $93 / 4$ "L x $61 / 2^{\prime \prime} \mathrm{W} \times 23 / 4$ "H. 5 lbs . Order today!
Add $\$ 2.50$ shipping/hemdlias

A modestly priced kit for the economy-minded experimenter...

PROTO BOARD 100

A low cost, big 10 ic capacity breadboard kit with all the quality of QT sockets and the best of the Proto Board series ... complete down to the last nut, bolt and screw. Includes 2 QT-35S Sockets; 1 QT.35B Bus Strip; 2 5-way binding posts; 4 rubber feet; screws, nuts, bolts; and easy assembly instructions.

Add $\$ 1.50$ shipplne/handling.

PROTO-CLIP for Power-On, Hands-Off Signal Tracing. No more shorting leads. Costs less than ...

Bring IC leads from pe board for fast signal tracing and troubleshooting. Inject signals. Wire unused circuits into boards. Scope probes and test leads lock onto Dynagrip inset (see circle) for hands-off testing. Plastic construction eliminates springs, pivots. Non-corrosive nickel/silver contacts for simultaneous low resistance connections. PC.14, 14 -pin Proto Clip, $\$ 4.50$ ea. PC.16, 16 -pin Proto Clip, $\$ 4.75$ ea. Add 75 ¢ shipping/handling.
Order today off-the-shelf from CSC or local distributor, Charse: BAC,
MC, AX. Write for free catalog. Free English/Metric Slide Rule with each order. Dealer inquiries invited.

Foreign Orders add 15\%.

Patents Pending Made in USA
Prices sublect to change

 Continental Specialties Corp.
 Box 1942, New Haven, CT 06509 - 203/624-3103

Fix it with SK. The RCA quality replacement.

Count on top quality in SK replacement semiconductors. Because they carry the name RCA, a top manufacturer of OEM devices. Same strict AQL standards, same strict Director of Quality Assurance. That's how we protect you from callbacks, so you can make more profitable use of your time. RCA's higher-than-ever 410 to 1 replacement ratio will help you save time too. Your key to fast, easy replacement is RCA's new 1975 SK Replacement Guide. Get your copy at the RCA distributor where you buy SK parts.

[^2]

FAST RELIEF FROM SOLID STATE HEADACHES

There's nothing else like the Hickok Model 215 Pocket Semiconductor Tester.

- It's simple to use - no set
up - no data books.
e It automatically determines lead configuration.
- LED displays indicate if semiconductor is GOOD or BAD and identifies base lead (gate for FET's) and whether NPN or PNP. - Operates on 9 V batteries. - Weighs only 12-ounces and fits in your pocket.
We back the Model 215 with the best warranty in the business two full years.
The Model 215 or our bench Model 220 are values you have to see to believe. Ask your Hickok distributor for a demonstration or contact us for more information.

the value innovator
INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue - Cleveland, Ohio 4410 B (216) 541-8060 . TWX: 810-421-8286 Circle 9 on reader service card

LETTERS

(continued from page 14)
in the interest of the public good?
Suppose a customer takes me to court on fabricated charges. Assuming I am innocent and no conviction takes place, who compensates me for the time and income I lost as a result of being unable to work? Who protects me from members of the public (and there are many) whose hobby it is to take advantage of servicemen? THE POLICIES OF YOUR OFFICE ARE TOO ONE-SIDED! Why don't you introduce an amendment to current licensing regulations that would force the complainant to compensate the technician for his lost time and income if no criminal acts have been proven beyond doubt?

Your recent proposal that would allow the customer to sue the serviceman because he could not keep an appointment is sheer lunacy. If this becomes law, one of two things will take place. One possibility is that the large majority of independent servicemen will leave New York City, thus leaving the major service companies in control. I need not mention that their service rates are often more than iwice those of many independents, but, as in the past, this should not interest you. Have you never heard of dishonest service procedures among the major companies? For your information, it is widespread. WHY HAVEN'T THEY BEEN LICENSED?

The other alternative is that the independent technicians will change their style of business from repairing the television receiver in the customer's house whenever possible to a pickup and delivery service. This will have to be done so as not to be late for appointments made hours or even days ago. Neither the technician nor the customer would like this arrangement. Prices will inevitably have to be raised because of the increased expense of transit.

First and foremost, you must keep in mind the fact that it is impossible for a service technician (especially television) to predict accurately how long a service call will take. It could be as short as fifteen minutes, or as long as five hours, depending on the difficulty of the repair (which is almost always unpredictable). Therefore, when a service technician prepares his daily schedule of appointments, he can only estimate the part of the day he will probably be at each customer's house (early or late afternoon, etc.). No matter how well planned a daily work schedule is, a longer stay than anticipated at the home of one or more customers due to unexpected repair problems encountered on one of the many highty inferior television receivers presently on the market can totally destroy the rest of the day's schedule.

In conclusion, therefore, 1 would like you to consider the aforementioned reasons and how they would make your recent proposal (allowing consumers to sue servicemen for missed appointments in the already overcrowded court system) impractical, unfeasible, UNBEARABLE, economically disastrous and just plain stupid. THERE iS NO NEED TO

WAGE YOUR PERSONAL VENDETTA AGAINST SERVICE TECHNICIANS!! However, I am sure you will find that as you increase your attacks on the television and other service industries, you are only hurting the public, who you were appointed to protect. Service organizations will oppose you every step of the way with increased strength as you continue to rob the livelihood of their members. The majority of people in the television service industry (contrary to the picture you and your office have drawn) are honest and very hard working. The last thing they want to do is take advantage of the public, since respect and proper treatment of them keeps my fellow technicians and I in business.
Jack Berger
Jack's TV
Brooklyn, NY

COSMOS BURGLAR ALARMS

Regarding your article on COSMOS Burglar Alarms Part 1, appearing in the April issue of Radio-Electronics, I would like to see the following features added to your list of "requirements of the ideal burglar alarm."

The alarm should automatically reset after the Auto-Turnoff has occurred. If the alarm was falsely triggered, it would remain off after resetting. But if a door is left open, the alarm should reset after auto-turnoff and then trip again and remain on continuously until someone shuts off the power to the alarm or shuts the door.

It should have a time-delay turn-on connected through one door to allow the user to set the alarm inside the home and have $20-30$ seconds to exit. It should also have the same delay when returning to enter the home through the selected door without triggering the alarm.

The control and electronic alarm generator should operate from the same 12 VDC battery supply.

There should be a means of tripping both a 12 VDC electronic alarm generator and a 120 VAC circuit to turn on lights by use of solid-state electronics, such as solid-state relays using LED triggering, rather than mechanical relays. The battery powered alarm should be backed up by a 120 VAC combination 12 VDC, 4 A regulated and filtered charger/eliminator to charge a gelled cell or nickel cadmium type battery.

If these features are included in the circuitry, you truly have the "ideal burglar alarm system."
David Blum
Philadelphia, PA
R-E

The whole neighborhood wondered what Frank Mallon was up to in his workshop.

Word had it he was up to something mighty peculiar. And when he didn't show up for bowling practice one Wednesday night, the Wabash Cannonballs (that was the name of his neighborhood team) began to wonder, too.

So it was that a bunch of the boys decided to pay their "star" a visit, and talk him out of his workshop and back into action.

It didn't happen that way, though.
Matter of fact, it was Frank Mallon who talked the Wabash Cannonballs out of their bowling night and down into his workshop. What was it... what could be exciting enough to keep a bunch of ten-pin tigers from their favorite pastime? One of the most fascinating learn-athome programs in the world, that's what!

Actually build and experiment with the new generation color TV in Bell $\boldsymbol{\mathcal { E }}$ Howell Schools' fascinating learn-athome program. It will help you develop new occupational skills as an electronics troubleshooter.

You'll set up your own electronics laboratory to learn first-hand, the technology behind such innovations as digital-display wristwatches and tiny pocket calculators.

In fact, as part of the program, you'll actually build and experiment with a $25^{\prime \prime}$ diagonal color TV incorporating digital features.

But most important of all will be the new skills you'll develop all along the way... the kind of skills that could lead you in exciting new directions. While we cannot offer assurance of income opportunities, once you've completed the program you can use your training:

1. To seek out a job in the electronics industry.
2. To upgrade your current job.
3. As a foundation for advanced programs in electronics.

Go exploring at home, in your spare time. No traveling to class. No lectures. No one looking over your shoulder.

Bell \& Howell Schools wants to introduce you to the modern way to learn. It means you'll be able to develop new skills in your own home-on whatever days and hours you choose. So you don't have to give up your present job or paycheck just because you want to learn new occupational skills.

What's more, we believe that when you're exploring a field as fascinating as electronics, reading about it is just not enough.

That's why you'll get lots of "hands on" experience with some of the most impressive electronic training tools you've ever seen.

No electronics background necessary.

That's one of the advantages of this program. We start you off with the basics and help you work your way up, one step at a time. In fact, with your first lesson you receive a Lab Starter Kit to give you immediate working experience on equipment.

You build and perform exciting experiments with Bell G Howell's Electro-Lab ${ }^{\infty}$, an exclusive electronics training system.

First comes the design console. After you assemble it, you'll be able to set up and examine circuits without soldering.

Next, you'll put together a digital multimeter. This instrument measures voltage, current and resistance, and displays its findings in big, clear numbers like on a digital clock.

Then comes the solid-state "triggered sweep" oscilloscope. An instrument similar in principle to the kind used in hospital operating rooms to monitor heartbeats. You'll use it to analyze the "heartbeats" of tiny integrated circuits. The "triggered sweep" feature locks in signals for easier observation.

You'll build and work with

 Bell \& Howell's new generation color TV... investigating digital features you've probably never seen before!This $25^{\prime \prime}$ diagonal color TV has digital features that are likely to appear on all TV's of the future.

As you build it, you'll probe into the technology behind ail-electronic tuning. And into the digital circuitry of channel numbers that appear right on the screen! You'll also build in a remarkable on-the-screen digital clock that will flash the time in hours, minutes and seconds.

And you'll program a special automatic channel selector to skip over "dead" channels and go directly to the channels of your choice.
You'll also gain a better understanding of the exceptional clarity of the Black Matrix picture tube, as well as a working knowledge of "state-of-the-art" integrated circuitry and the 100% solid-state chassis.

After building and experimenting with this TV, you'll be equipped with the kinds of skills that could put you ahead of the field in electronics know-how.

We try to give more personal attention than other learn-at-home programs.

1. Toll-free phone-in assistance. Should you ever run into a rough spot, we'll be there to help. While many schools make you mail in your questions, we have a toll-free line for questions that can't wait.
2. In-person "help sessions". These are held in 50 major cities at various times throughout the year, where you can talk shop with your instructors and fellow students.

So take a tip from Frank Mallon. Find out more about the first learn-at-home program that could stir up your neighborhood!

Mail this postage-paid card today

 for full details!Taken for vocational purposes, this program is approved for Veterans' Benefits.

If card has been removed, write:

An Electronics Home Study School DeVfry institute of technology

- BELL E HOWELL SCHOOLS 4141 Belmont Chicago. Illinois 60641

"Electro-Labe" is a registered trademark of the Bell \& Howell Company. 696R3

wEST GERMANY
16 formulations in handy aerosol cans that clean, protect and insulate in the repairing and service fields, and during electronic and electrical equipment production. Call or send for catalog and price information. Liberal quantity discounts.

REGMO DATA
 Authorized United States Distributors

612/925-3800
6992 Oxford St., Mpls., MN 55426

B \& K Model 520 Transistor Tester

Circle 107 on reader service card

THE B \& K MODEL 520 IS AN INNOCENTlooking piece of test gear. Nice cabinet, dark panel with plain lettering, and three test leads with little blobs on the end. (Remember these blobs; they are something.) Inside the case, all kinds of things happen. This is a fully automatic transistor tester, in-circuit or out. Well, maybe not fully automatic; you do have to hook it up and turn it on. After that, things happen all by themselves.

The big problem in transistor testing has always been "Which connection is which?" These black beasts with three legs are all too often completely unidentified. To make a test. we must know which is which. The model 520 will tell you, and then test the transistor for the things we need to know. All you do is hook it up, and then move one switch. This will tell you whether it's good or not. Move another one, and it'll tell you what kind it is, and then read the leakage.

Those blobs are very special test leads. Each one has a tiny hook on the end, spring-loaded. The tips are so small that you can get into practically any transistor chassis and make connections to the leads. The hooks hold firmly, so that the rest of the job is "hands-off." For those chassis where they jammed the transistor tightly against the PC board, you can use the special probe with sharp pointed tips and get it from the wiring side.

The first test is for quality. All you have to do is move the TEST switch to each of its six positions. This changes the three connections around to every possible combination. The arrangement is shown by colored triangles, visible in a window on the panel. When you hit the right one, the

520 says "Beep!", and a LED on the panel lights up. This tells you that it's good and that it's either a PNP or NPN. No beep, no go; the transistor is either shorted or open.

This test can be made either in-circuit or out. The only time you'll have troubles in-circuit is in circuits where the transistor is shunted by a very small resistor or a big capacitor.

After this, leave the TEST switch in the correct position. Turning the function switch to the left will tell you whether this transistor is silicon or germanium; two more LED's read this out. Turn the FUNCTION switch to the right, and it reads the leakage-I ${ }_{\text {cfs }}$ or $I_{b e s}$ for bipolar transistors, and $I_{\text {tiss }}$ for FET's. The meter scale is specially designed non-linear type, so that you can read a wide range of currents on a single scale.

There are four scales; small-signal silicon, power silicon, small-signal germanium and power germanium. The acceptable minimum leakage for each type is shown. Leakage in-circuit is not significant, due to shunting. Out-of-circuit leakage tests are definite. For out-of-circuit tests you can use the test leads or a socket on the panel.

The model 520 will test all bipolar transistors, including one that has been very hard to check-the Darlington-pair transistors in a single case. It will also check FET's, SCR's and diodes of any kind. Fine for matching diodes for AFC, etc.

For either in or out of circuit tests, you can identify the base arrangement of the transistor by looking at the little window. This shows the color of the lead connected to each element. This can be a very valuable feature, not only for transistor testing per se, but for identification of circuit test points that you need to know! The same test can be used to check diode rectifiers and detectors. It will identify the cathode lead on those unmarked diodes! This can be very handy. Video detector diode and similar types can be checked for leakage. This can cause a very fine "dog" symptom.

Quite by accident, I discovered another test. I was going through a small stereo amplifier, with a one-channel dead complaint. I hooked the 520 probes to an output transistor, and found that it would also check speakers! I could hear the "puttering" sound of the clock oscillator in the speaker. (Scared me for a minute!)

This one can turn out to be a real timesaver in any kind of solid-state work. Nowadays, that is definitely the name of the game.

R-E
(continued on page 24)

Circle 11 on reader service card

New 21"usos, Heathkit digital-design Color TV

Popular Electronics editors called the digital-design GR-2000 "the color TV "of the future." Now you can enjoy the same technology and features in the new GR-2050 with the convenient, popular 21-inch picture tube.
On-screen electronic digital channel numbers - big, bright, bold, and easy to read, even from across the room. On-screen electronic digital clock time - low cost insurance against missed programs. In 12 or 24 hour format, 4 or 6 digits. Silent, electronic, touch-tuning, thanks to the combination VHF-UHF varactor tuner. No knobs to turn, nothing to wear out. Just touch to tune... on the front panel or the Remote. Programmable digital counter/channel selector - a computer-like programming board for you to pre-program any 16 stations, UHF or VHF, or both, in any order, even repeating if you wish. Touch the tune button and the counter silently sweeps up or down through all 16 channels, stopping when you release the button.
Exclusive fixed ten-section LC bandpass filter-does away with adjusted traps yet eliminates interference from adjacent channel, etc. And it never needs instrument alignment.
100% solid-state - with more ICs than any other set and a black negative matrix picture tube for brighter, more vivid pictures.
Easy to build with modular circuits. Easy to service with built-in digital dot generator, check-out meter, and slide-out service drawer. Build the GR-2050 TV of the future ... Remote, $\$ 89.95$. Cabinets from $\$ 119.95^{*}$

New Model Railroad Control Center/ Power Supply provides acceleration and braking of unsurpassed realism plus power for two HO or N -gauge engines and accessories. Throttle slide control plus 5-position Brake switch (Run, Release, Normal, Quick-Service, Emergency), and Mode switch (Momentum or Direct). Adjustable pulse width and frequency allow accurate control at low speeds, eliminate 'jack rabbit" starts. Voltage control optimizes for each engine. One circuit board; builds in two evenings. Kit RP-1065, \$79.95*.

New 21⁄2-digit Heathkit DMM - only $\$ 79.95$

Full function capability. Four overlapping AC \& DC voltage \& current ranges plus five resistance ranges with accuracy of 1% on DCV, 1.5% on $\mathrm{ACV}, 1.5 \%$ on AC \& DC current, and 2% on resistance. Ranges: (full scale) DCV, 2, 20, 200, 1000V; $\mathrm{ACV}, 2,20,200,700 \mathrm{~V} \mathrm{rms}(25 \mathrm{~Hz}$ to 10 kHz); DC current, 2, 20, 200, 2000 mA ; AC current, 2, 20, 200, $2000 \mathrm{~mA}(25 \mathrm{~Hz}$ to 10 kHz); Ohms, 200, 2k, 20k, 200k, 2000k ohms. Lighted panel indicators show overrange, positive and negative DC voltages and current at a glance. All solid-state design uses IC circuitry for a clear non-blinking display with up-date every 16 msec . One megohm input impedance with overload protection on all ranges; automatic decimal positioning; isolated floating ground; universal banana jack inputs; 120 or 240 VAC operation; one circuit board for easy assembly; blue \& white heavy-duty metal case.

New Digital Tachometer is faster than any meter-type tach. Numbers whirl by to show peak performance level your engine reaches. Great for monitoring best cruising RPM for your car, camper, boat (inboard or outboard), planes, cycles, mowers, tractors, even stationary engines. 2-digit electronic readout shows RPMs from 100 to 9900 in 100 RPM steps. For 4, 6, or 8 cyl., 4 -cycle engines; 2, 3, or 4 cyl. 2-cycle engines; 2, 3, or 4-rotor Wankel engines; conventional, C-D, or factory electronic ignitions (12 v . neg. grnd. only). Black die-cast case with bracket. Kit Cl-1079, \$49.95*.

Kit IM-1212, \$79.95; Assembled SM-1212, \$125*.

New Breakerless Ignition Adapter develops timing signal electronically so your car is timed correctly at all speeds and stays correct for longer periods. For use with C-D ignition systems only, it replaces the points of all pre-1975 GM V-8 and V-6 engines, and all AMC V-8s with external dwell adjustment. Unit mounts under hood; sensor mounts in distributor without removing points (switch returns engine to point timing when you wish). Operates from $-37.2^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Easy to build. Kit CP-1051, \$44.95*.

Send for FREE

 Catalog

HEATHKIT ELECTRONIC CENTERS -
Units of Schlumberger Products Corporation
Retail prices slightly higher.
ARIZ:: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City. San Diego (La Mesa), Woodland Hills; COLO:: Denver; CONN.: Harford (Avon); FLA.: Miami (Hialeah), Tampa; GA.: Atlanta; ILL:: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley): MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis (Bridgeton); NEB.: Omaha; N.J.: Fair Lawn; N.Y.: Buffalo (Amherst), New York City, Jericho (L.I.), Rochester, White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus, Toledo; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston; VA.: Nortolk (Va. Beach); WASH.: Seattle; WIS.: Milwaukee.

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch
\$10.95 NET Model 540S Soldering Iron Length $81 / 2^{\prime \prime}$ Weight 2 oz .

- Light shows when it's on
- 2 heats-20w and 40wfor any job
- Ironclad tips for longer life
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Converts to a desoldering iron with low cost attachment

The Pencil Desoldering Iron with Operating Light, and $\mathrm{On} / / \mathrm{dle} / \mathrm{Off}$ Switch
$\$ 15.95$ NET

EQUIPMENT REPORTS

(continued from page 22)

Miller-Stephenson Chem. Co. Products With Cobra Extension Nozzle

Circie 108 on reader service card
the miller-stephenson chemical co. (Box 628, Danbury, CT 06810) has come up with some goodies for the TVradio technicians, including one really ingenious, and very handy, new device. This company makes a long line of chemical compounds for industrial use, of all kinds, even "canned air" (for cleaning delicate instruments, etc.) and a static eliminator, En-Stat, plus a cleaner for plastics, metal and glass.

The goodies include Contact Re-Nu, a very effective contact cleaner. There is a magnetic head cleaner for all kinds of tape-heads-from computers down to 8track stereo's. There is also a Quik-Freeze spray for those thermal intermittents, and a pure Freon Degreaser for cleaning up those filthy PC boards. There are others, including a flux-remover for PC boards that would be useful either in service or production work. This comes in two strengths-normal and heavy duty for those really dirty jobs.

The new device is their handy Cobra extension-nozzle kit. This has a small plastic tube, about 30 inches long, and a handle about the size of a felt-tip pen. A standard spray-nozzle with a 6 -inch tube can be slipped over this. You hook it on the spray-can by pushing the coupler over the little metal pipe you see when you pull the nozzle that comes with the can off. Special latches hold it in place. To turn the Cobra on, just push it to one side and latch it.

To spray, just push the end of the Cobra handle to one side. The small size plus the long tubing makes it very easy to get into tight places in TV sets. I cleaned up a very dirty Contrast control in the tuner mounting assembly of an old set; it was so well concealed that I could barely see the thing.

For cleaning up spots on PC boards so that you can see your work, read color codes, etc., or for cleaning entire boards, there is a pure Freon Degreaser compound. This can be used with the Cobra extension nozzle. A special brush-handle can be plugged onto the Cobra handle. This is how; by pushing the handle, the solvent can be applied as needed while the brush loosens caked deposits and dirt. I cleaned up a couple of sets that were really dirty, and the boards looked like new. For cases where you suspect leakage across a board in a sensitive area, this is

a dandy.

These products can be a real time-saver for the professional radio-TV and electronics man. They come in 16 -ounce cans, which last a long time. They're available at many radio-TV supply houses, especially the Industrial Electronics suppliers.

Heathkit $10-4530$ 10-MHz Triggered-Sweep Oscilloscope

Circle 100 on reader service card
it's time to replace your venerable but time-worn multi-tube oscilloscope with a more reliable solid state instrument. If your scope is devoted to TV servicing or other limited bandwidth lab work, the new Heathkit 4530 is a good candidate.
For $\$ 300$ a single-trace $10-\mathrm{MHz} 3-\mathrm{dB}$ bandwidth scope can be assembled with good sensitivity and a choice of XY operation or calibrated, automatically triggered horizontal sweep. The 4530 has a device complement of 44 transistors, 22 diodes, and 9 integrated circuits.

The vertical or Y channel input feeds an attenuator with a parallel, 1 megohm40 pF input impedance. A series of ceramic trimmer capacitors compensate the attenuator over each decade of its $10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ range. Following the attenuator, an FET source follower is used as the vertical amplifier input device. The high gate impedance of the follower prevents loading and inaccuracies of the input attenuator. There are a total of 11 vertical gain positions in a 1-2-5 sequence. DC coupling is used over the entire input level range. The AC coupling switch position rolls off the response 3 dB at 2 Hz .
The horizontal X amplifier has at $1-\mathrm{MHz}$ 3-dB bandwidth with a sensitivity range of 0.02 to $2 \mathrm{~V} / \mathrm{cm}$ in three decade steps. A compensated attenuator is also used in the horizontal channel with a similar 1 meg-ohm- 40 pF input impedance.
One of the strongest features of the 4530 is its modern triggered sweep. Trigger inputs are conditioned by filtering options and then switch a 741 op -amp discrete FET current source combination to generate an accurate linear sweep. A transistor switch discharges the time-base capacitor to ground during retrace, and the constant current source charges it negatively during trace. TTL 7400 gates and a 72710 voltage comparator are set up to trigger in the automatic mode at zero crossings of the sync input waveform. Trace scan begins on either the positive or negative slope of the sync waveform by inserting the right number of (continued on page 26)

LIVE IN THE WORLD

 OF TOMORROW ...TODAY!And our free 180 PAGE CATALOG is packed with exciling and unusual values in electronic. hobby and science items - plus 4.500 finds for fun. sludy or protit... for every member of the family

A BETTER LIFE STARTS HERE
 \checkmark

41/4" ASTRONOMICAL TELESCOPE
See moon craters, rings of Saturn, double stars. New equatorial mount. f/10. $1 / 4$ wave mirror (Pyrex 8). Gives theoretical limit of resolution Rack \& pinion focusing. Aluminum Rack \& pinion focusing. Aluminum ube, $6 x$ finder, 1 F.L. $45 \times$ Kellner achromatic eyepiece and Barlow lens to double \& triple power up to
135 X . Free Star Chart plus 2 Books 135X. Free Star Chart plus 2 Books.
Stock No. $85,105 \mathrm{EH}$.
 6"' REFLECTOR TELESCOPE (48X to 360X) 6" WITH CLOCK ORIVE
3" DELUXE REFLECTOR (30 to 90 X) 3" DELUXE REFLECTOR (30
STANDARD 3" REFLECTOR
\rightarrow - \rightarrow -
AM RADIO FITS IN/ON YOUR EAR! wear it inconspicuously everywhere, Listen as you work (lawn, yard, of fice). watch (game, beach) or wait Instant music. news, sports. No gimmick, our $6 / 10$ oz. Technological wonder has integrated circuit, 11 transistors, patented territe antenna/
tuner/volume dial. Uses normal silver
luner/ volume dial. Uses normal silver oxide hearing aid batt. (incl) for approx. 100 hrs. playing.
New batt. to slip in avail. at drug stores (about. 50 c) No lengthy wires, bulky cases. or power-packs! (about 50c). No Stock No. 42,275 EH
$\$ 14.95 \mathrm{Ppd}$.

NEW VISUAL EFFECTS

PROJECTOR

Revolutionary 2-WHEEL set lets you create wild far-out visual effects with no worry about nuts \& boltsyou change programming as fast as you drop in a new disc! Attach any 35 mm camera to program use your

tating images, bleemer effects, Kaleidoscopic patterns. 3-D plus mind-blowing Moire effects right on your screen. Incls 2 internal drive motors, 3 -way Kaleidoscope Lens, Hexido. scope, Lenticular Wheel, Moire Wheel, instrs.
Stock No. 72,071EH
$\$ 99.95$ Ppd.

WHICH ARE YOUR CRITICAL DAYS?
Can Bio-rhythm tell you? were not sure, but were told that vast mood Shifis are caused by your bodys can be charted anead to possibly warn you of "critical" days. Some
 your physical emotional \& intellectual phythms converging at the right or wrong time. Compute your cycles with our Biorhythm kit and judge for yourself. Incls Charting kit, metal Dialgraft Calc. instrs.
Stock No. 71.949
1 YR. PERSONALIZED REPORT - BY GOMPUTER
$\$ 11.50 \mathrm{Ppd}$.
$\$ 15.95 \mathrm{Ppd}$.

He-Ne LASERS
$\$ 115.00$ up!
Top quality tasers feature TEMoo mode, internal mirror plasma tubes w/ $10,000 \mathrm{hr}$. life, self-starting cold aluminum cathodes, low noise \& stability and more for demanding lab work. 18 -mo. mfr. wty. 115 v AC
(A) 0.5 mW ... 0.88 Beam Dia., 1 mRad Diverg.

79,070 EH ($2.6 \times 8.5 \times 14.8^{\prime \prime}$)
073 EH
$\$ 115.00 \mathrm{Ppd}$ (C) 4.0 mW . O. Beam Dia., 1.1 mRad Diverg $=79,079$ EH ($3.9 \times 5.5 \times 15.6^{\prime \prime}$) $\$ 150.00$ Ppd. $\$ 485.00$ Ppd.

QUALITY DETECTOR UNDER $\$ 40$

 New Edmund developed, fully transistorized BFO unit capable of lo cating quarter at $18^{\prime \prime}$-powerful 6 trans. oscillator-amplifier circuit. Easily compares to others priced 50% higher! Aluminum pole and housing-not plastic! $6^{\prime \prime}$ waterproof housing-not plastic! ${ }^{\circ}$ waterproofsearch coil (Faraday shielded to elim. outside interference); long 50 hr battery (9v) life; powerfut 2" speaker; 1-knob on-off tune control. Perfect bal. ance; lightweight (2 ib). Great buy!
Stock No. 80,222EH
\$ 39.95 Ppd. Stock No. $80,222 \mathrm{EH}$
Deluxe Unit w/Earphones, Meter No. 80,134EH (1t" Coil) $\$ 169.00 \mathrm{Ppd}$.

SOLAR ENERGY CUBE!

Unique demonstrator dramatically shows how sunlight converts to kinetic energy. Clear plastic Solar Energy cube placed nt silicon with its 3 hown erse motor to whirl the cells powers the motollo produces prop 525 ma same cells found 1.5 v DC. 825 ma . Same cells found in our mighty panels. Speed directly related to sunlight available. Nothing to wear out! Great for executives, hobbyists, teachers
No. 42,287EH . . . (4X4X4")
$\$ 19.95$ Ppd.

NEW! KIRLIAN PHOTOGRAPHY KIT!
Experiment in the fascinating new field of "Kirlian electrophotography" -images obtained on film without camera or lens by direct recording of electric charge transmitted by animate \& inanimate objects. Each change corresponding aura said to change corresponding to physical changes. Kit incls portable darkions lated from power source: instructions
No. 71,938 EH
"HIGH VOLTAGE PHOTOGRAPHY" by H. S. Dakin No. 9129 EH (60-PG.) PPBK BK.)
DELUXE KIRLIAN PHOTOGRAPHY SET

KNOW YOUR ALPHA FROM THETA!
For greater relaxation, concentration, listen to your Alpha-Theta brain. waves. Ultra-sensitive electrode headband slips on/off in seconds-eliminates need for messy creams, etc. Atch'd to amplifier, filters brain waves, signals beep for ea. Alpha button simulates Alpha sound, audio \& visual (LE.) feedtack button simulates Alpha sound, audio morn. pletely safe. Comprehensive instruction booklet.
No. 1635 EH ($8 \times 3 \times 4$ "; 24 oz.)
LOW COST "STARTER" UNIT
$\$ 134.50 \mathrm{Ppd}$.
$\$ 55.00$ Ppd.
DELUXE "ON" TIME MONITOR MEASURES \& RECORDS \%

 180 PAGFS - MORE THAN 450 UNUSUAL Completely new 1975 edition. New items, categories, illustrations. Dozens of electrical and electromagnetic parts, accessories. Enormous selection of Astro.
nomical Tetescopes. Unique lighting and ecological nomical Telescopes. Unique lighting and ecological
items. Microscopes, Binoculars, Magnifiers, Magnets, items. Microscopes, Binoculars, Magnifiers, Magnets,
Lenses, Prisms. Hard-to-get surplus bargains. IngenLenses, Prisms. Hard-to-get surplus bargains
ious scientific tools. 1000 's of components. ious scientific tools. 1000
EDMUND SCIENTIFIC CO.
EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N.J. 08007
Please rush Free Giant Catalog "EH"; Please rush Free Giant Catalog "EH"
Name
Address City

State

COMPLETE AND MAIL WITH CHECK, M. O. OR CHARGE NO. EDMUND SCIENTIFIC CO.

How Many Stock No.

EQUIPMENT REPORTS

(continued from page 24)
inversions in the signal path. The sync can be derived from the vertical input channel, through the external trigger connector, or from the $60-\mathrm{Hz}$ line from a tap on a power transformer winding.

Like its big brothers, in the automatic trigger mode the 4530 displays a base line in the absence of a trigger signal. If the trigger source is idle, the automatic baseline generator initiates sweep at a $40-\mathrm{Hz}$ rate. To synchronize below 40 Hz , the trigger level switch is advanced from its detented position selecting the NORMAL sync mode. Auto-baseline circuitry is disabled and the trigger level is continuously variable over the range of -0.6 to +0.6 volts. As you might guess, these limits are determined by forward-biased silicon diode junctions. Sweep speed range is from $0.2 \mathrm{sec} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$ in seven decade steps. The 5 X magnifier pull-out switch increases the gain of the horizontal amplifier five times by reducing the emitter resistance of the output differential cascode amplifier. DC, AC, and TV sync coupling is selected by a front panel switch. The TV position inserts an integration network to filter out the vertical sync. Video signals can then be locked in easily at a frame or field rate.

Regulated low voltage power supplies use a 4501 dual regulator IC for plus and minus 15 volts. Zener diodes drop these potentials to lower 5- and 12 -volt sources for the TTL logic and comparators. The

CRT voltages are all derived from a 1375 volt Zener stack.

Kit construction went smoothly. About half of twenty plus hours were spent putting together the main circuit board. It holds everything but the high voltage power supply and the front panel components. The three large vertical gain, horizontal gain, and sweep speed rotary switches are printed circuit types and mount directly on the main board without cluttered wiring. The low-capacitance switch inputs are brought out on non circuit board terminals so they can be routed to the input connectors by nondevious routes.

Separate assembly and operating manuals are included with extensive calibration and troubleshooting procedures. Detailed flow charts attempt to cover the majority of circuit problems. Our sample did not trigger horizontally when first completed. The trouble was traced to a defective holdoff monostable IC. A second fault impaired the retrace blanking. This problem was caused by an intermittent Zener diode. It is to Heath's credit that the only malfunctions in such a complex kit were due to two easily replaced components and not to a miswiring or a design related problem.

The scope appearance is quite professional and it is obvious it was meant to emulate well-known top drawer lab equipment. BNC connectors are used for the X, Y, and trigger inputs. An $8 \times 10 \mathrm{~cm}$ graticule and CRT window cover the face of the 5 inch round CRT. About half of the four corner reticle squares are not
scanned because of the tube shape. The CRT is surrounded by a substantial shield as well as mu-metal wrapping around the gun.

The $10-4530$ measures $6.937 \times 12.8 \times$ 19.2 inches ($17.7 \times 32.5 \times 49 \mathrm{~cm}$) not including its detented dual-purpose carrying and support handle. It weighs 22.5 pounds (10.2 Kg). Power consumption is 65 watts from 120 or 240 volt nominal supplies.

The new Heath scope will be a welcome addition to the low budgeted service or circuit development organization by bringing a good deal of the feel of a high grade lab instrument within its grasp. It does not have the high brightness or VHF bandwidth of a $\$ 3000$ Tektronix or Hewlett Packard scope, but it does have the same basic functional control philosophy with solid no-nonsense operating ease. I think Heath has been successful with the IO-4530 by providing the most instrument per dollar they know how.

R-E

Automatic fransistor tester works in-circuit when ofthers can't

TESTS IN ONLY 9 SECONDS Tests diodes, SCR's and unijunctions, too. Avoids time wasting unsoldering of good transistors that lested bad in circuit and then good out-of-circuit because of erroneous testing. B\&KPrecision 520 Dynapeak ${ }^{(T M)}$ even.tests automatically incircuit with shunts of 10 ohms or 50 mfd . Random lead connection; turn the switch-the rest is automatic: Pulsating audio tone and LED indicates good device; PNP/NPN, Ge/Si shown by LED. No-charts leakage tests. Tests transistor action, not just junction or diode characteristics. Write today!

PRODUCTS OF DYNASCAN
1801 W. Belle Plaine Avenue • Chicago, IL 60613

BZV PRECISION
PRODUCTS OF DYNASCAN
1801 W. Belle Plaine Avenue Chicago. IL 60613

Color Generator doubles as portable Analyst

51

MODEL 1248 \$175

Now you can localize TV problems at the customer's location without bench equipment! Service CCTV and Videotape too! The 1248 is a rocksteady nine-pattern IC color generator-with RF, IF, video, sync and sound outputs that let you substitute signals to find the problem. Digitally generated patterns. Crystal-controlled IF and RF outputs. With carrying case; dependable AC operation.
In stock at your distributor.

1801 W. Belle Plaine Avenue - Chicago. IL 60613
Circle 16 on reader service card

Reliable dual-trace scope useful to 30 MHz .

MODEL 1472 $\$ 599$

We nominally rate the 1472 at $15 \mathrm{MHz}(-3 \mathrm{~dB})$, but it easily syncs and displays a 30 MHz signal with sure triggering. It automatically selects chopped or alternate trace display to avoid flickering at any sweep speed . . . so even with 11 sensitivity ranges from 10 mV to $20 \mathrm{~V} / \mathrm{cm}$ and 19 sweep ranges from $0.5 \mu \mathrm{SEC}$ to $0.5 \mathrm{SEC} / \mathrm{cm}$, it's easier to use than most scopes. The 1472 has $24 n$ SEC risetime and can be used in X-Y mode with matched phaseshift and sensitivity inputs.
In stock at your distributor.

10MHz 5" scope with easier calibration and voltage measurement

Model 1465
Here are some B\&K extra touches. Besides DC-to10 MHz bandwidth, triggered sweep, automatic sync, $16.6 \mathrm{mV} / \mathrm{cm}$ vertical sensitivity, DC-coupled amplifier and front-panel Vectorscope capability, Model 1465 also has 5 X magnification to increase sweep speed $100.2 \mathrm{usec} / \mathrm{cm}$ for complex waveform analysis. And Cali-Brainº which collapses horizontal sweep to let you measure instantaneous peak-to-peak voltage easily while simultaneously displaying the full-scale voltage range. Now in stock at your local distributor or write Dynascan.

Circle 17 on reader service card

Affordable frequency counter for jobs that have always needed one

With a good autoranging frequency counter you can watch oscillator adjustments, monitor RF and audio trequencies preciselv, do fast production lesting, check critical countdown chains, calibrate signal generators, check pull-in range of AFT circuits and CB frequencies accurately. The 1801 is good because its accuracy is typically better than 10PPM; it typically reads 10 Hz 60 MHz and is guaranteed to read $20 \mathrm{~Hz}-40 \mathrm{MHz}$. It's auto-matic-there's just one control and gate times, decimal points and scalings are automatically selected for best speed and accuracy. And it's fast-the display is refreshed up to 5 times per second.
In stock at your distributor.

$B K_{\text {Preclsion }}$

PRODUCTS OF DYNASCAN
1801 W. Belle Plaine Avenue Chicago. IL 60613

If you've ever said...

Send for a free Career Guidance Booklet that could start you on the road to success in a rewarding new career.

It happens to all of us, sooner or later. No matter what kind of job we have.

One day, it suddenly strikes home that we're going to have to work for a living, the rest of our lives. And most of us are horrified at the thought ol lorever being locked into the jobs we now hold
"Surely." we tell ourselves, "there must be a way to get more satisfaction out of working. Surely, there must be a way to find a job that's more rewarding.'
"Surely," in other words, "there must be a better way to earn a living!"

If you, too, have been thinking these same thoughts, you'll find one of our free Career Guidance Booklets very helpful at this time. We invite you to send for one.

Your free booklet will describe the opportunities for higher income and greater job security you might expect in one of the career fields listed on card or coupon. It will also explain why ICS can prepare you for this new career field...right in your own home...in your spare time...regardless of your education or past experience.

Of course, no school - not even ICS - can guar-

way to earn a living.."

antee you a better job. We can't make you smarter than you already are, and we can't make you ambitious if you're lazy.

But ICS can give you the first-rate training you need - especially if you're interested in one of the growing careers where ICS concentrates its training. Like Electrician. Engineer. Auto Mechanic. TV Repairman. Air Conditioning Serviceman. (Check your choice on card or coupon.)

Along with your Career Guidance Booklet. you'll also receive a free Demonstration Lesson that lets you see for yourself why preparing for a more rewarding career - the ICS way - may be a lot easier than you think.

Please bear in mind that ICS has a long and distinguished record of success. In fact, since 1890, millions of men and women around the world have turned to ICS for career training.

More than 70 of America's largest 100 corporations (including Ford. U.S. Steel, Mobil Oil, GE and RCA) use ICS training for their own employees.

Earn a College Degree

You could even earn a college degree from the ICSCenterfor Degree Studies, which is authorized by the Pennsylvania Department of Education to grant the Associate in Specialized Business Degree in Accounting and Business Management.

These are growing career fields in which job openings are expected to increase in the years ahead.

ICS Associate Degree programs are the basic equivalent of most four-year college programs in Accounting or Business Management-minus liberal arts courses and electives. If you already have some college education, you may be able to receive advanced standing toward your degree. With a degree from ICS, you'll be able to apply with pride for jobs that call for college training.

An Ideal Way to Learn

Whether you choose a degree program or a nondegree program, as an ICS student, you study at home, on your own schedule. You waste no time traveling to and from class. And you never have to miss a paycheck.

But you're never alone. Skilled instructors are
always ready to help you.
If you ever have doubts or problems or just want to talk to an instructor, you can call ICS from anywhere in the continental United States, day or night, using our special toll-free Dial-a-Question ${ }^{*}$ service.

So if you want more - more money, more security, more day-to-day satisfaction and more future - our free Career Guidance Booklet and free Demonstration Lesson can help you get started in the right direction. Just check the box next to the field that interests you most and mail the postpaid card or coupon today. There's no obligation.

Remember, it's your life. You might as well make the most of it.
(c) 1975 Intext. Inc.

Weil give you atreat

 if you pickup the tab.
SYLVANIA

NEW SCREEN \& GUN
PICTURE TUBE

Sav-a-Tab' 75 is now under way, so we hope you've been saving Sylvania tube box tabs all alongthe tabs marked "WALTHAM" at the end of each box.
And this year we're adding a new dimension. One serial number label from a color-tube carton will earn you the equivalent of 20 receiving tube tabs. (You'll find the label on the upper left-hand
corner of every color-tube carton.)
Sav-a-Tab ' 75 ends at midnight, Nov. 30, so get your catalog of treats right now. See your local Sylvania distributor or write Sylvania Award Headquarters, P.O. Box 1000, Fenton, Missouri 63026.

GTE SYLVANIA

> Two-inch high numerals sandwiched between two clear glass panels makes this liquid crystal display a magical mystery and the clock a real conversation piece

by GEORGE J. WHALEN

blackstone and houdini, the master illusionists, would have been batlled by the high-technology legerdemain that makes the Magi-clock work! On a clear panel, transparent as a sheet of glass, the time of day mysteriously appears in two-inch high whitish numerals. Two digits accurately report the hours and two digits mark the passage of the minutes. Yet, there is no sign of wires or connections to the "floating" numerals! While the Magi-clock tells the time, it keeps the way it works a secret.

In just one enjoyable evening, you can assemble this extraordinary time-keeping conversation piece. Construction is made easy by the use of a single LSI integrated circuit, requiring but a handful of external components, and a large liquid crystal display that plugs into a mating connector on the printed circuit board. Powered directly from the AC line without bulky, heavy transformers, the Magi-clock is compact and light enough to build into any enclosure you can conceive of. And, its accuracy is as good as the closely-controlled $60-\mathrm{Hz}$ power line frequenzy. The line frequency is held to $+.02 \mathrm{~Hz},-.05 \mathrm{~Hz}$. Thus, the Magi-clock can deliver better than 0.1% accuracy over time periods up

10 an hour. Long time accuracy is maintained because accumulated cycles-persecond errors are periodically corrected by the power company.

The time-keeping heart of the Magiclock is a type C 1200 monolithic MOS integrated circuit manufactured by LSI Computer Systems, Inc. (see Fig. 1). Time set, logic, dividing for seconds, minutes, and hours, seven-segment decoding, and display drivers and switches, are all built into this unique "chip." Circuit functions use MOS p-channel enhancement and ionimplanted depletion mode devices.

The liquid-crystal display panel (LCD) is an optically-transparent "sandwich" that has many components that don't meet the eye at first glance. Figure 2-a reveals its inner secrets. Two glass panels (called front-plane and back-plane) make up the front and back of this device. The inner faces of the two panels are thin-film metallized with tin oxide or indium oxide. On one, the film has been deposited to produce the seven-segment patterns of the numerals, as well as a colon and starburst, together with thin-film metal conductors that lead down to a "connector" edge. Thus, each film-metallized segment is individu-
ally addressable (Fig. 2-b). The other glass panel is metallized over its entire inner surface.

The two metallized glass panels don't touch. They are separated by a normally transparent fluid called a nematic liquid.* A seal about the outer edge keeps the panels separated and prevents the liquid from leaking out. The assembled LCD appears to be transparent when not excited, since the metallizing film on the glass plates and the nematic liquid have about the same refraction index.

The L.CD "sandwich" is a field-effect device. (Fig. 3.) Applying an electric field between the back metallized panel and any front metallized segment causes a molecular reorganization of the "crystalline" structure of the nematic liquid. Normally,

[^3]these long, cigar-shaped molecules are in a parallel alignment and are free to slide past each other. In this unperturbed state, the crystal molecules don't scatter light, and so, the liquid appears transparent. However, when disturbed by an electric field, the well-ordered structure is upset; molecules organize randomly, thus scattering light passing through the LCD sandwich. This causes the affected area of the LCD to turn milky white. Thus, the LCD, when properly "addressed" by the output of the clock IC, provides an easily seen display of time by scattering light, rather than emitting light, as in other forms of digital readout devices.

The process of cycling the transmissivity of the crystals produces dynamic scattering, so that the LCD's light transmission properties at any instant depend upon the voltage applied between the front-plane and back-plane electrodes.

How it works

Components external to the clock IC are shown in Fig. 4. AC power is applied to a voltage divider ($\mathrm{R} 1-\mathrm{R} 4$), that supplies an 11 -volt RMS $60-\mathrm{Hz}$ count input to pin 22 of the IC, provides the input to a fullwave rectifier (D1-D4) and filter (Cl) to supply DC operating potential to the IC, and supplies a nominal 40 -volt RMS potential for excitation of the LCD segments, with transient over-voltage protection afforded by Zener diodes D5 and D6.

Referring now to Fig. 1 for events going on inside the IC; the $60-\mathrm{Hz}$ line frequency signal goes from pin 22 to the timing chain, where it is divided several times to generate binary coded decimal (BCD) equivalents of seconds, minutes and hours pulses that are fed to the SEven-segment matrix to be decoded. Outputs from the matrix go to the High-voltage drivers that control the analog switches. The SEVEN-SEGMENT MATRIX is a complex decoder/driver. Here, the inputs from the timing chain, which are in the form cf four BCD inputs for the first significant digit of the minute display, are decoded to excite the right number segments. For the second significant digit of the minute display, only three BCD inputs are needed, for here we are only counting from zero thru five, rather than from 0 to 9 as in the first sig. nificant digit. BCD outputs from the hours section of the timing chain are similarly decoded by the matrix.

The TIME SET GENERATOR receives a $2 \cdot \mathrm{~Hz}$ input from the timing chain, and, depending on whether you close MINUTE SET switch S2 or hour SET switch S1, it generates a signal that advances the minutes or hours portion of the display at a $2-\mathrm{Hz}$ rate.

The carry inhibit signal from the time SET GENERATOR serves a very important function. It makes sure that setting the minutes does not affect the hours display and vice versa. In other words, the minutes display goes to 00 after it reaches 59 , but does not advance the hours setting. Simi-

FIG. 1-BLOCK DIAGRAM of LSI Computer Systems Inc. C1200 clock IC.
FIG. 2 (right)-CONSTRUCTION of liquid crystal display device is shown In a. Metallizing pattern and connections of liquid crysial display with diagram of voltages applied to the cathode (front-plane) and the anode (back-plane) is shown in b.

FOIL PATTERN for the printed circuit board shown fullsize.

FIG. 3 (top)-THE CRYSTAL MOLECULES in the nematic liquid are disorganized by an electric field.
FIG. 5 (right)-PIN CONNECTIONS for LSI Computer Systems Inc. C1200 MOS clock IC.

FIG. 4-SCHEMATIC DIAGRAM shows the C1200 IC and the external components necessary for the clock.
larly, the seconds input to the minutes portion of the timing chain has no effect when minute set switch $\mathbf{S} 2$ applies a signal to pin 25.
The reset output of the time set generator is used when the IC is used as an elapsed time indicator. To do this, hour set S1 and minute set S2 must be
closed at the same time. This automatically generates a reset pulse which sets the timing chain-subseconds, seconds, minutes and hours-to zero. When both switches are released, simultaneously, the chip starts from an all-zero reference and counts "up", to add one minute to the time displayed every sixty seconds.

PIN CONNECTIONS C1200

LCD SEGMENT OUTPUTS

60 Hz COUNT INPUT
SUPPLY
SUPPLY
MINUTE SET INPUT
ONE SECOND FLASH OUTPUT AM OUTPUT INOT USED)

PARTS LIST

R1, R4-8200 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R2, R3-2000 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R5, R9-2000 ohms, 1 W, 5\%
R6-680 ohms, $1 / 2 \mathrm{~W}, 5 \%$
R7-1500 ohms, $1 / 2 \mathrm{~W}, 5 \%$
R8-2200 ohms, $1 / 2 \mathrm{~W}, 5 \%$
$\mathrm{C} 1-25 \mu \mathrm{~F}, 50 \mathrm{~V}$, electrolytic
C2-. $05 \mu \mathrm{~F}, 50 \mathrm{~V}$, ceramic
D1, D2, D3, D4-1N916 or equal
*D5, *D6-Zener diode, $51 \mathrm{~V}, 10 \%, 1 \mathrm{~W}$
(1N4757 or equal) (Part MGC-51)
*IC1-C1200 (LSI MOS clock IC)
(Part MGC-C1200)
S1, S2-spst, momentary contact (see text for details)
*LCD1-Liquid crystal display (Part MGC50)
*Socket for display (Part MGC-116)
*28-pin IC socket (Part MGC-28)

- Circuit board (Part MGC-48-7)

AC line cord with plug
*These parts are available from Inventive Electronics, Box 53, Wykagyl Station, New Rochelle, NY 10804. Price of the partial kit containing all parts marked with an asterisk is $\mathbf{\$ 6 5}$ postpaid.

The cathode (front-plane) voltage input to the LCD goes through the ANALOG switch that is on at any given time so AC is applied to the appropriate segment of the LCD. The anode (back-plane) voltage is applied via three contacts on the display (see Fig. 2-b). Cathode and anode voltages are always 180° out of phase and identical in amplitude. There is no DC component present, for the life of an LCD is appreciably reduced if it is operated from a DC source, or from AC with a DC component. However, DC is required to perform the logic operations in the chip and is supplied from the full-wave supply consisting of low voltage diodes, D1, D2, D3, D4 and filter capacitor Cl .

The two Zener diodes (D5, D6) are required for over-voltage protection of the IC. D5 limits the supply to 51 volts and D6 limits the voltage applied to the hour set and minute set inputs (pins 26 and 25) to 51 volts, peak-to-peak. C 2 acts as a high-frequency filter. It eliminates the high-frequency component of transients on the AC line.
(continued on page 92)

Radio-Electronics

,

Tests Kenwood KR-5400

by LEN FELDMAN

CONTRIBUTING HI-FI EDITOR
the kenwood model kr- 5400 2-Channel receiver is a medium priced model in that company's broad line of stereophonic all-in-one receivers. The unit just above it in price and power (at 50 watts continuous power-per-channel) is their model KR6400 , which costs $\$ 70$ more. The next lowest unit in power and price would be the KR-4400, with an output of 25 watts-perchannel and a retail price of $\$ 299.95$. At its price, the KR-5400 offers a variety of control features that should appeal to the serious audiophile who requires this amount of power in an all-in-one receiver.

The Kenwood model KR-5400 is shown in Fig. 1. The upper section of the panel has a long, blacked-out dial scale area which becomes illuminated in soft blue when power is applied. The signal-strength meter, located at the upper right of this area is only illuminated when AM or FM reception is selected, and the dial pointer itself becomes illuminated in red when radio reception is selected by means of the program selector switch. The FM and AM dial scales are well calibrated with notations at every 2 MHz for the perfectly linear FM dial scale and a reference logging scale located below the AM and FM scales. To the right of the dial scales are the large tuning knob coupled to an effective flywheel tuning system, and a dual concentric master volume and balance control. The balance control section of this dual control takes the form of a lever that can be swung to favor left or right channel output. A mechanical detent helps establish its center position. This lever tends to be hidden because of the color scheme of the panel and its position under the master volume control and the user who fails to read the owner's manual might well wonder, at first, if balancing facilities were overlooked entirely.

The lower section of the gold colored aluminum panel has a rugged looking lever-type power on off switch at the left. This is followed by a six-position speaker selector switch (which includes an off position for headphone listening as well as choices for any one of three pairs of speakers which can be connected to the receiver or combinations of main and either remote pair of speakers operating together), separate bass and treble tone controls, a mode switch (with settings for left, right, stereo, reverse and mono-mix), a program selec-
tor switch and six push buttons. The buttons are used to actuate either of the two tape monitor circuits, FM muting, low-and high-cut filters and loudness circuitry. Along the lower edge of the panel there is the usual headphone connection jack as well as a microphone input jack. Only a single microphone can be connected to the receiver and its signal will be reproduced monophonically through both speakers.

The cabinetry of the KR- 5400 consists of a pair of walnut side panels mounted to
a metal enclosure, the top surface is well ventilated with slots. The rear panel of the receiver is shown in Fig. 2, and a diagram illustrating all the various components which can be used with the unit and how they are connected is shown in Fig. 3. The rear panel is equipped with the usual input and output jacks (two turntables can be connected), antenna terminals for FM and AM external antennas, an FM detector output jack (for future use with FM fourchannel adaptors), in and out jacks for the

TABLE I
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer Kenwood
Model \#KR-5400
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND
FREEDOM FROM INTERFERENCE
IHF sensitivity, Mono: ($\mu \mathrm{V}$)
Sensitivity, Stereo ($\mu \mathrm{V}$)
50 dB quieting signal, Mono ($\mu \mathrm{V}$)
50 dB quieting signal, Stereo ($\mu \mathrm{V}$)
Maximum S/N ratio, Mono (dB)
Maximum S / N ratio, Stereo (dB)
Capture ratio (dB)
AM suppression (dB)
Image rejection (dB)
IF rejection (dB)
Spurious rejection (dB)
Alternate channel selectivity (dB)
FIDELITY AND DISTORTION MEASUREMENTS
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$) Harmonic distortion, 1 kHz , Mono (\%)
Harmonic distortion, 1 kHz , Stereo (\%)
Harmonic distortion, 100 Hz , Mono (\%)
Harmonic distortion, 100 Hz , Stereo (\%)
Harmonic distortion, 6 kHz , Mono (\%)
Harmonic distortion, 6 kHz , Stereo (\%)
Distortion at 50 dB quieting, Mono (\%)
Distortion at 50 dB quieting, Stereo (\%)
STEREO PERFORMANCE MEASUREMENTS
Stereo threshold ($\mu \mathrm{V}$)
Separation, 1 kHz (dB)
Separation, 100 Hz (dB)
Separation, 10 kHz (dB)
MISCELLANEOUS MEASUREMENTS
Muting threshold ($\mu \mathrm{V}$)
Dial calibration accuracy ($\pm \mathrm{kHz} @ \mathrm{MHz}$)
EVALUATION OF CONTROLS,
DESIGN, CONSTRUCTION
Control layout
Ease of tuning
Accuracy of meters or other tuning aids
Usefulness of other controls
Construction and internal layout
Ease of servicing
Evaluation of extra features, if any
OVERALL FM PERFORMANCE RATING

R-E Measurement 3.0	R-E Evaluation acceptable
16.0	acceptable 4.0
35.0	very good
69	good
59	very good
1.5	good
65	very good
72	excellent
90	very good
85	excellent
63	excellent
	very good
$+0,-2.0$	
0.1	good
0.2	excellent
0.07	excellent
0.45	excellent
0.20	good
2.0	very good
1.75	acceptable
0.40	good
	excellent
16.0	
44	acceptable
35	excellent
33	excellent
	excellent
20	
200	acceptable
	acceptable

Kenwood KR-5400 Stereophonic AM/FM Receiver

SUMMARY OF MANUFACTURER'S PUBLISHED SPECIFICATIONS:

TUNER SECTION (FM)

IHF Sensitivity: $1.9 \mu \mathrm{~V}$. S/N Ratio: 68 dB . Quieting Slope: 48 dB at $4 \mu \mathrm{~V} ; 60 \mathrm{~dB}$ at $10 \mu \mathrm{~V}$; 68 dB at $50 \mu \mathrm{~V}$. Selectivity: 65 dB . Capture Ratio: 1.5 dB . Image Rejection: 70 dB . IF Rejection: 90 dB . Spurious Rejection: 90 dB . Harmonic Distortion: (mono): 0.3\%; (Stereo): 0.5%. Stereo FM Separation: (1 kHz): $35 \mathrm{~dB} ;(10 \mathrm{kHz}): 27 \mathrm{~dB}$.

TUNER SECTION (AM)

Sensitivity: (ext. antenna): $18 \mu \mathrm{~V}$. Selectivity: 30 dB . Image Rejection: 60 dB . IF Rejection: 40 dB . S/N Ratio: 45 dB .

AUDIO AMPLIFIER SECTION

Continuous Power Output: (Both channels driven, 8 ohm loads, 20 Hz to 20 kHz): 35 watts-per-channel. Rated Harmonic Distortion: 0.5%. Rated IM Distortion: 0.5%. Frequency Response: 10 Hz to $40,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Phono Equalization: RIAA $\pm 1 \mathrm{~dB}$. Damping Factor: 50 (at 8 ohms). Input Sensitivity: (Phono): 2.5 mV ; (Aux \& Tape): 150 mV . Record Output Level: 150 mV . Hum and Noise: (Phono $1 \& 2$): 70 dB ("A" Weighting); (High Level Inputs): 90 dB ("A" Weighting). Tone Control Range: (Bass): $\pm 10 \mathrm{~dB} @ 100 \mathrm{~Hz}$; (Treble): ± 10 $\mathrm{db} \pm 10 \mathrm{kHz}$. Low Filter: $-5 \mathrm{~dB} @ 100 \mathrm{~Hz}$. High.Filter: $-10 \mathrm{~dB} @ 10 \mathrm{kHz}$.

GENERAL SPECIFICATIONS

Power Requirements: $120 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 240$ watts maximum consumption. Dimensions: 18-15/16 $\times 5$-15/16 high \times 13-9/16 deep. Weight: 25.4 lbs. Retail Price: $\$ 379.95$.
two tape monitor circuits (as well as a DIN connector for one of those monitoring circuits) and two unswitched plus one switched AC convenience receptacles. Speaker terminals for three possible pairs of speakers are of the spring-loaded piano key type that require only the simple insertion of stripped wire ends into a tiny hole that appears when the terminal keys are depressed.

Four additional jacks at the lower left of the rear panel are labelled 4-CHANNEL IN
and out. They are, in reality, the components of a third tape monitor circuit and permit the user to introduce a 4 -channel matrix decoder without giving up either of the other two front-panel actuated tape monitor circuits. To use this facility, it is necessary to move a rear panel slide switch to the position identified as "separate". This circuit interruption should not be confused with the preamp-amp separating switches which are supplied on some costlier receivers. The circuit separation in this

case occurs ahead of all tone control and volume or balance control action, whereas the preamp-amp arrangements on some receivers actually occur after all preamplification and control functions have taken place.

The two tape monitoring circuits of the Kenwood KR-5400 provide a high degree of versatility for the serious recordists. You can record any program source onto one or two tape recorders simultaneously (See Fig. 4A) or you can dub from one tape recorder to another (See Fig. 4B) and monitor recorded results on the second recorder. When recording to two recorders at once, only the recorder connected to the "Tape Mon B" jacks can be simultaneously monitored.

Circuit configuration and features

An internal view of the chassis of the KR-5400 is shown in Fig. 5. Eight separate circuit modules are used in its construction. of which three major ones can be seen in the photograph. The entire FM tuner circuitry is contained on one large PC board. This circuit contains the front end, which consists of an FET RF amplifier plus two conventional transistors used as local oscillator and mixer circuits. Tuning is by means of a three-gang variable capacitor. A two-gang capacitor is used for AM tuning and bi-polar discrete transistors are used for the AM front-end circuitry. Some of the IF FM section is shared by the AM IF circuits, and a total of four bipolar transistors followed by an IC and a conventional ratio detector are usect in this section. All but one stage of the IF section are tuned by means of conventional interstage transformers. The multiplex stereo decoder consists essentially of a single IC circuit which includes a phase-locked-loop arrangement and requires no adjustable tuned circuits for optimizing separation.

Phono and microphone preamplification
is accomplished by IC's on a separate well shielded module, with equalization selectable depending upon the setting of the program selector switch. Thus, microphone use, besides being limited to monophonic reproduction, cannot be "mixed" with any other program source. Tone control circuits also use IC's (one for each channel) and are of the popular negative feedback type. Both power amplifier circuits are mounted on a single PC board which includes the output transistors (complemen-tary-symmetry NPN-PNP pairs) that mount through a single large heat sink directly to the PC board itself. Input stages are differential amplifiers and each power amplifier is completely direct coupled.

FM tuner measurements

Results of our FM performance measurements are tabulated in Table I, and readers can compare measured results with manufacturer's published claims, where applicable. Although IHF sensitivity fell short of the $1.9 \mu \mathrm{~V}$ claimed, we cannot fault tuner performance on this score, since with only $4 \mu \mathrm{~V}$ applied, S / N ratio reached an acceptable 50 dB . We were also rather surprised at the better than average selectivity measured for this tuner that, after all, uses a "bare minimum" threegang tuning capacitor and a not terribly sophisticated IF design. What did disturb us somewhat was the rather high level of sub-carrier product output from the stereo FM section, which was only about 45 dB below full modulation. Kenwood claims carrier suppression of 60 dB . Of course, this high frequency output is not audible, nor will it adversely affect tweeters (the energy is too low), but it may cause some problems with tape recorders having lower than usual bias frequencies. While stereo separation was excellent, the presence of "beats" when attempting to measure THD at high audio frequencies in the stereo mode resulted in the rather high 2.0% reading shown in Table I.

Amplifier performance measurements

Amplifier measurements are tabulated in Table II. Specifications quoted by Kenwood are in complete compliance with the new FTC rules on power disclosure, and these numbers more than met in our individual measurements. Had Kenwood wanted to be a bit less conservative, they could well have elected to rate the power output of each channel at 37 watts instead of 35 and still met FCC requirements. In fact, in just about all respects, the amplifier section of the KR-5400 rates a bit better than the tuner section. The only criticism we might levy against the unit is in its equalization characteristics, which departed from correct RIAA values by as much as 3 dB at the low end, providing more bass boost at 50 Hz and 30 Hz than is called for. Slight counterclock wise rotation of the bass control easily rectifies this discrepancy. if phono reproduction seems excessively bassy to you.

Since Kenwood elected to quote hum-and-noise figures using an " A " weighting network (which takes into account the audibility factor of hum-and-noise), we did likewise and came up with 72 dB as opposed to the 70 dB claimed. Even without this correcting network, the phono

TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer Kenwood Model
\#KR-5400
AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY	R-E Measurement	R-E Evaluation
RMS power/channel, 8 -ohms, 1 kHz (watts)	39	good
RMS power/channel, 8 -ohms, 20 Hz (watts)	37	excellent
RMS power/channel, 8 -ohms, 20 kHz (watts)	38	very good
RMS power/channel, 4-ohms, 1 kHz (watts)	50	very good
RMS power/channel, 4 -ohms, 20 Hz (watts)	45	very good
RMS power/channel, 4-ohms, 20 kHz (watts)	49	very good
Frequency limits for rated output (Hz-kHz)	18-23	excellent
DISTORTION MEASUREMENTS		
Harmonic distortion at rated output, $1 \mathrm{kHz}(\%)$	0.14	very good
Intermodulation distortion, rated output (\%)	0.55	good
Harmonic distortion at 1 watt output, $1 \mathrm{kHz}(\%)$	0.10	good
Intermodulation distortion at 1 watt output (\%)	0.05	excellent
DAMPING FACTOR, AT 8 OHMS	50	excellent
PHONO PREAMPLIFIER MEASUREMENTS Frequency response (RIAA $\pm \ldots \mathrm{dB}$)	3.0	acceptable
Maximum input before overload (mV)	135	very good
Hum/noise referred to full output (dB) (at rated input sensitivity)	72	excellent
HIGH LEVEL INPUT MEASUREMENTS		
Frequency response ($\mathrm{Hz-kHz}, \pm \ldots$ dB)	10-40, 1	excellent
Hum/noise referred to full output (dB)	87	excellent
Residual hum/noise (min. volume) (dB)	90	very good
TONAL COMPENSATION MEASUREMENTS		
Action of bass and treble controls	See Fig. 6	good
Action of secondary tone controls		
Action of low frequency filter(s)	See Fig. 7	good
Action of high frequency filter(s)	See Fig. 7	acceptable
COMPONENT MATCHING MEASUREMENTS		
Input sensitivity, phono 1/phono 2 (mV)	2.5/2.5	
Input sensitivity, auxiliary inpu (s) (mV)	143	
Input sensitivity, tape input(s) (mV)	143	
Output level, tape output(s) (mV)	143	
Output level, headphone jack(s) (V or mW)	N/A	
EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN		
Adequacy of program source and monitor switching		very good
Adequacy of input facilities		excellent
Arrangement of controls (panel layout)		very good
Action of controls and switches		very good
Design and construction		good
Ease of servicing		very good
OVERALL AMPLIFIER PERFORMANCE RATING		very good

hum measured a very high 65 dB referred to full output and based on the 2.5 mV input sensitivity.

Tone control range is plotted in Fig. 6 and is typical of this type of circuitry. Action of the low- and high-cut filters is plotted in Fig. 7 and, while the choice of cut-off and slope of the low filter helps to correct for rumble problems without seriously affecting musical bass response, the same is not true of the treble cut filter which does little more than duplicate the action available from the regular treble control.

Utilization and listening tests

As is true of all honestly designed power amplifiers, the Kenwood KR-5400 "sounds" more powerful that it really is. We had no trouble driving low-efficiency acoustic supension speaker systems to 100 dB sound-pressure-level in our 14×21 foot listening room. Action of all controls is smooth and there is no turn-on popping noise, thanks to a relay which is included in the protection circuitry of the receiver that delays application of audio signals to the speakers for a few seconds after

turn-on.
FM reception was good, at least in our location, using a s-element outdoor antenna. The signal-strength meter is not of great help in proper tuning (a center-of-

TABLE III
 RADIO-ELECTRONICS PRODUCT TEST REPORT OVERALL PRODUCT ANALYSIS

Manufacturer Kenwood
Retall Price
Price Category
Price/Performance Ratio
Styling and Appearance
Sound Quality
Mechanical Performance

Comments:
$\$ 379.95$
Medium
very good
excellent
very good good

The amplifier performance of the Kenwood KR-5400 merits a higher rating than does the tuner performance of this receiver. Its power output capability (for this price category) is high, and adequate reserve power is avallable at the important low-frequency extremes. High cut filter action is no more useful than the treble control, however, because of its low turnover point and lis minimal $6 \mathrm{~dB} /$ octave slope.
Given the option of only one tuning meter, we would have preferred to see a center-of-channel meter for FM tuning. Tuning feel, however, is very smooth and in typical moderate to strong signal locations, FM performance will be adequate, desplte the rather sparse front-end design and the use of conventional interstage tuned transformers in the IF section. The stereo multiplex section is extremely stable and separation was excellent, though the presence of high amounts of sub-carrier products in the output may create problems when taping FM programs on some recorders. We recommend using the high-cut filter for such taping operations if audible "beats" are encountered in completed recordings. The phase-lock-loop circuit used in the stereo MPX section will insure continued stable separation and no alignment should be necessary for this section. The FM IF section may need periodic allgnment, however.
The linear FM dial scale (present on all Kenwood recelvers and tuners) is a welcome feature and makes station finding easier.
Compared to some phono preamp IC's we have tested in other receivers, the one used in the KR5400 has excellent overload capabilities and, with the low residual phono hum measured, record reproduction will have adequate, If not superb, dynamic range. The slightly exaggerated bass equalization can be compensated for by a slight bass-cut setting on the bass control. In summary, an excellent amppreamp section plus an adequate tuner.

by LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

AUDIO PERFECTIONISTS HAVE LONG RECOGnized the virtues of bi-amplification and tri-amplification in high fidelity sound reproducing systems. For the uninitiated, bi-amplification means using two separate amplifiers to drive the woofer and tweeter of a loudspeaker system, or as many as
three or four power amplifiers if three- and four-way speaker systems are used. By doing away with the usual passive crossover network normally included with multi-driver speaker systems, certain problems of phase distortion and IM distortion are often eliminated and, in many cases, a better balance between low-, midand high-frequency sonic energy can be created in the listening room.
channel meter would have been preferred), but tuning is nevertheless relatively easy and bandwidth seems great enough so that the lowest distortion settings are consistently obtained without using any auxiliary equipment as a check. Calibration was off by about 200 kHz at the low end of the dial. but right on target from about 94 MHz up to 108 MHz . Stereo switching occurs at about the right signal strength, though muting threshold is adjusted a bit too high for our taste. By not using the muting feature we were able to receive about three additional stations with acceptable quieting that would otherwise have been blocked by the muting circuit.

Our capsule summary, along with overall comments, is tabulated in Table III. No unusual heat problems were encountered while operating the Kenwood KR-5400 for extended time periods and it passed its FTC pre-conditioning tests easily. While lacking some of the circuit sophistication of more expensive receivers, the Kenwood performed well in its price category and compares very favorably with competitive units in that same price range.

R-E
can be interconnected to provide tri-amplification facilities for a single audio channel. So, if you plan to use three-way speaker systems with an electronic crossover (and three power amplifiers per channel), two of these Crown units would be required for stereo reproduction. Figure 2 shows how the device would be interconnected in a two-way speaker system set-up. Figure 3 shows a single channel of amplification connected to feed a threeway speaker system.

The front panel of the VFX-2 contains eight rotary controls; four for each stereo channel. A selector switch either removes a given filter from the circuit (in its "off" position) or chooses a frequency multiplication factor of $\times 10, \times 100$ or $\times 1000$. Adjacent to each selector switch is a rotary control calibrated from 2 to 20. Thus, low- and high-pass corner frequencies (frequencies at which response is down 3 dB) can be adjusted from 20 Hz to $20,000 \mathrm{~Hz}$.

As a a first experiment, we adjusted the low- and high-pass controls of channelone so that the corner frequencies coincided at 1000 Hz and plotted the response from the output jacks labelled Low pass output and high pass output. The frequency response observed at each output are combined in the graph shown in Fig. 4.

While this is perhaps the most popular application of the VFX-2, it can also be used as an audio bandpass filter, thanks to a novel switching arrangement available on the rear panel (see Fig. 5). The rear panel includes a pair of balanced or unbalanced inputs at the right, with adjacent screwdriver controls which permit adjustment from unity gain to +15.5 dB and a pair of unity gain inputs (with no gain adjustments). There are pairs of normal and inverted high-pass output and pairs of normal and inverted switchable outputs that, depending upon the setting of the pair of adjacent slide switches, provide either a low-pass output or bandpass output.

The reason for the normal or inverted output becomes clear when you consider that the power amplifiers used with the system may or may not have equal numbers of phase-inverting amplifier stages. If the number is unequal, then applying in-phase signals to the bass and treble amplifiers in a bi-amplified system would result in out-of-phase outputs to the speakers. By providing normal and inverted outputs on the VFX-2, this problem is easily solved.

Additional possible response curves and applications, together with front panel control settings and rear panel required connections and switch positions are illustrated in Fig. 6.

Circuit Description

The Crown VFX-2 Electronic Filter/ Crossover consists primarily of two identical channels of active IC operational amplifier tunable filters. A schematic of one of the channels is shown in Fig. 7. Operational amplifier ICl-a, functions as a balanced gain amplifier. The unity-gain output of ICI-b is applied to the input circuit of IC2-a (high-pass filter) only or to that circuit plus the input circuit of IC4-a (low-pass filter) depending upon the position of the crossover-filter switch. The output from IC1-b can also go directly to

SUMMARY OF MANUFACTURER'S PUBLISHED SPECIFICATIONS

Frequency Response: 18 Hz to $38 \mathrm{kHz} \pm 0.5$-dB into 600 -ohm load.
Inputs: Bridging input, 20 K ohm balanced or 10 K ohm unbalanced, and 1 M ohm unbalanced; both using $1 / 4 \mathrm{in}$. standard phone jack.
Output: 10 volts maximum before overload; 2.5 volts rated.
Gain: 0 to 15.5 dB from balanced/unbalanced input.
Hum and Noise: More than $100-\mathrm{dB}$ below rated output, with $0-\mathrm{dB}$ gain, over entire audio spectrum from 20 Hz to 20 kHz .
IM Distortion: Less than 0.01% at rated output
Filter Characteristics: Separate 18-dB Butterworth highpass and lowpass, with adjustable corner frequencies. Can be internally cascaded to form band pass and band reject filters.
Controls: (front panel) Range and vernier controls for corner frequencies (high and low pass), power on/off switch. (rear panel): Screwdriver-adjustable input attenuators for each channel.
Dimensions: 19 -in. wide (standard rack mount) $\times 31 / 2$-in. high $\times 53 / 4$-in. deep.
Power Requirements: 2 watts at 120 or 240 VAC, $50-400 \mathrm{~Hz}$.
Weight: 6 lbs. Retail Price: $\$ 249.00$

RADIO-ELECTRONICS PRODUCT TEST REPORT OVERALL PRODUCT ANALYSIS

Manufacturer Crown International

Model \#VFX-2

Retail Price
Price Category
Price/Performance Ratio
Styling and Appearance
Sound Quality
Mechanical Performance

Comments:
$\$ 249.00$
Medium
Good
Excellent
Excellent
Good

As might be expected, based on the dynamic range capabilities and low distortion measurements made, the VFX-2 introduces no audible distortion or noise of any kind. We would have liked to see some sort of level controls for regulating low-amplifier output relative to high-amplifier output. Since such controls are not provided, readers who plan to use the VFX-2 in a home audio system should make certain that their individual stereo power amplifiers have input level controls so that woofer and tweeter levels can be adjusted. A study of the internal construction and layout of the VFX-2 indicated that it is built to professional standards, uses top grade components, and should remain trouble free for many years. Even used as a simple bandpass filter (for high-cut scratch filtering and/or low cut rumble filtering), the unit proved far more effective than the usual "high cut" and "low cut" filters normally found in integrated amplifiers or receivers, thanks to its steeper (18 dB -per-octave) slopes and more precise filter action.

the LOW PaSS OUTPUT jack depending upon the position of the range switch.

The range switch determines the apappropriate group of 5% matched capacitors to be used in the filter stages. Highvernier potentiometer (R14, R16, R18) and low-vernier potentiometer (R23, R25, R27) are matched sets of three 15 K ohm resistive elements used to determine the corner frequency of each filter. The signal from IC1-b is applied through selected RC filter components to dual operational amplifier IC2-a that, along with IC2-b and IC3-a, forms a 3-pole highpass 18 dB /octave Butterworth filter. This delivers the non-inverted high-pass output, while operational amplifier IC3-b delivers the high-pass inverted output.
(continued on page 73)

by GARY DAVIS

Last month we presented the color processing, block diagram, and general layout of a low-cost color TV camera. This month we will cover the camera heads in detail, including adjustments and registration.

The vidicon tube

Each camera head consists of three basic units. The vidicon-tube assembly,
the video preamp and the deflection components. Before we discuss the camera circuitry, let's briefly examine the operation of a vidicon image pickup tube. The tube contains a signal plate of a conducting metallic film, so thin that it is transparent. One side of this plate is coated with a thin layer of photo-conductive material, such as amorphous selenium. The optical

This month the circuit head adjustments are we'll show you how to connect
 line, except where noted, are duplicated for red video channel. A black-and-white TV receiver supplies the operating voltages, sync and blanking signals to the camera head.

CAMERA $\$ 400$

details and camera
covered. Next month, the camera head to a color monitor
between successive scans, a charge leaks through the photo-conductive material in proportion to the illumination. The charge deposited on any particular spot of the photo-conductive material the next time it is scanned, is enough to replace those electrons that have been lost by leakage since the last passage of the beam. The total current of the electron beam and the capacitance of the photo-conductive material is in series with the external load resistors.

The preamp

In this camera so much light is absorbed by the color filters and prism, that only a very low level of light actually strikes the vidicon photo-conductive surface. Therefore, the video amplifier must work with a very low signal-to-noise ratio. The schematic diagram of the preamp circuits are shown in Fig. 2. Transistor Q1 should be a low-noise type 2N4126, and may
have to be individually selected for low-noise content after the camera is in operation. One should not be satisfied with the signal-to-noise ratio until with sufficient illumination, the pictures are about as noise-free as those received from a local commercial TV station. It will probably not be necessary to individually select the other amplifier transistors.

FIG. 3-COLOR AMPLIFIERS and sync circuit. The video and sync outputs are connected directly to the color difference amplitiers and sync separator of the color monitor.

The video amplifier should be mounted inside a metal box to shield the amplifier from extraneous signals. It is important to use short leads and the amplifier should be mounted on the focus coil assembly so that the signal lead from the vidicon target connector to the video preamplifier input is no longer than one inch in length. In dealing with low signal levels at the vidicon output, ground loops and sufficient grounding between components becomes extremely critical. A general rule would be to ground everything possible with short ground leads, including the lens mount and the lens. Good results with my camera were obtained with an unshielded wire for a target lead. However, in metropolitan areas or areas with strong RF signals, a shielded wire may be necessary.

Vertical sync is added to the cyan signal through diode D1 at Q1. The addition of vertical sync slightly tilts the video waveform. However, it has negligible shading affect on the picture. Capacitors C10 and C12 boost the high-frequency response to increase the upper frequency limit of the entire video amplifier. Low-frequency negative feedback is introduced to each stage individually by connecting the bias resistor to the collector load resistance. This arrangement further en-
hances the relative high-frequency response of each stage. The entire video amplifier has a voltage gain of approximately 300 . The color amplifier and sync circuits are shown in Fig. 3.
. 191 DIA. HOLES

SUPPLIED MAY BE MOUNTED IN ANY OF 4 POSITIONS

FIG. 4-DEFLECTION ASSEMBELY of type CY101 for 1-inch vidicon tubes.

All resistors are $1 / 2$-watt 10% unless noted
*R1-270,000 ohms
*R2, R9, R21-potentiometer, 1 megohm, linear taper
*R3-potentiometer, 2 megohms, linear taper
*R4-68,000 ohms
*R5, *R10, R34-220,000 ohms
*R6, R29, R35-4300 ohms
*R7-100 ohms
*R8, *R11, R23-150 ohms
*R12-3000 ohms
*R13, *R20, R28, R33-100,000 ohms
*R14-1200 ohms
*R15-270 ohms
*R16-300 ohms
R17-3300 ohms
R18, R19-potentiometer, 125 ohms, wirewound
R22-5600 ohms
R24-1500 ohms
R25-180 ohms
R26-33,000 0 hms
R27-18,000 ohms
R30-1000 ohms
R31-120,000 ohms
R32-2200 ohms
${ }^{*} \mathrm{C} 1,{ }^{*} \mathrm{C} 4-.22 \mu \mathrm{~F}, 300 \mathrm{~V}$
*C2, C24-. $056 \mu \mathrm{~F}, 200 \mathrm{~V}$
*C3-5 $\mu \mathrm{F}, 150 \mathrm{~V}$, electrolytic
*C5-.02, 100V
C6, C7-100 $\mu \mathrm{F}, 150 \mathrm{~V}$, electrolytic
C8-4 $\mu \mathrm{F}, 25 \mathrm{~V}$, electrolytic
*C9, * ${ }^{\text {C }} 15-50 \mu \mathrm{~F}, 25 \mathrm{~V}$, electrolytic
*C10, *C12-. $0015 \mu \mathrm{~F}, 25 \mathrm{~V}$
*C11-2 $\mu \mathrm{F}, 25 \mathrm{~V}$, electrolytic
*C13, C25-1000 $\mu \mathrm{F}, 25 \mathrm{~V}$, electrolytic
*C14, C22-2 $\mu \mathrm{F}, 150 \mathrm{~V}$, electrolytic
C16-25 $\mu \mathrm{F}, 225 \mathrm{~V}$, electrolytic
C17, C20-250 $\mu \mathrm{F}, 25 \mathrm{~V}$, electrolytic

Deflection and focus assembly

Due to the fact that the red camera head sees a mirror image of the actual scene, the phase of the deflection signal to the red yoke must be taken into

ARTS LIST

C18-. $01 \mu \mathrm{~F}, 50 \mathrm{~V}$
C19-0.5 $\mu \mathrm{F}, 200 \mathrm{~V}$
C21-. $0022 \mu \mathrm{~F}, 50 \mathrm{~V}$
C23-. $33 \mu \mathrm{~F}, 150 \mathrm{~V}$
C26-. $0082 \mu \mathrm{~F}, 150 \mathrm{~V}$
D1-1N914 diode
D2-D7-400PIV, 2.5A rectifier (GE504 or equal)
*Q1-2N4126 transistor
*Q2, *Q3, *Q4, Q5-Q8-2N4125 transistor
L1-222 mH inductor
*V1-7735 vidicon tube
T1-10K-2K impedance matching transformer (Radio Shack No. 2731378 or equal)
T2-10-turns on TV flyback (see text)
T3-117V primary; 24V, 1.2A secondary
Vidicon filament transformer 117 V primary; 6.3V CT, 3A secondary
*Two each of the components are required to construct both video channels.
MISC-two $4 \times 21 / 2 \times 15 / 8$ in. aluminum mini-boxes (Bud no. CU3002A) $1 / 2$ in. plywood mounting board, aluminum sheet metal for camera case, lenses, yokes, deflection coils, lens mounts, vidicon sockets, color filters, prism, wire, solder, etc.
NOTE: the following parts are available
from Denson Electronics, P.O. Box 85,
Longview St., Rockville, CN 06066. Two
yokes and focus coils no. CY101-1547,
two vidicon sockets, two Comsicar 32939 lenses, two size C lens mounts. The following parts are available from Edmund Scientific Co., 91 Edscorp Bldg., Barrington, N.J. 08007. One 2×2 in. Plexiglas red no. 2423 color filter, two 2×2 in. Plexiglas green no. 2414 color filters, one cube prism.
consideration. Focus coil windings for both vidicon tubes should have the purple wire grounded (see Figs. 2 and 4), and the white/purple wires connected to -12 V . On the vertical windings, yellow is not used. White wires are connected to their respective height controls R18 and R19. The green wires are connected together and common to T1. On the horizontal windings, the red wires are connected together. The cyan black wire is connected to point A2. The red channels' black wire is grounded. Both gray wires of the electrostatic shield should also be grounded. The blue wires are not used. With this wiring arrangement, the deflection assembly should be mounted with the focus coil lead exit-holes for the cyan channel opposite the mounting board. The red-channel focus coil lead exit holes should be next to the mounting board. This arrangement applies to type CY101-1547 deflection assembly available from Denson Electronics.

The vertical deflection coils require 6 V P-P for proper deflection as shown on waveform B1. Each horizontal deflection coil requires 30 to 40 V P-P as shown on waveform A2. It should be noted that for proper operation, the camera requires waveforms and voltage amplitudes as shown. They are supplied by a small B/W monitor.

Blanking and sync

Transformer T1 supplies both the vertical sync and the vertical blanking signal. The center tap of the 2 K secondary is grounded. Phasing should be observed with an oscilloscope insuring that the positive going pulse is applied to test point C 1 . Capacitor C 8 stretches the pulse and sets the amplitude to 7 V P-P. Capacitors C6 and C7 then apply the blanking pulse to cut off the vidicon cathodes during vertical retrace. C8 may have to be selected for use with some types of vidicons if black retrace lines appear in the picture. The other half of the secondary feeds a negative-going vertical sync pulse to diode D1. Polarity of diode D1 should be observed as shown on the schematic. A horizontal sync pulse is taken from point A2 and fed to the monitor separately.

Initial vidicon tube adjustments

The following adjustments are made with all voltages and scanning signals applied to the camera from the B / W monitor. Potentiometer R3 serves as a focus control. Initially, the beam control R9 should be adjusted for maximum resistance. The target control should be adjusted for about 40 to 50 volts at the center terminal. The focus control should be set about midway. The beam control should be adjusted until blobs of light and dark areas ap(continued on page 74)

To meet the severe demands placed upon today's tape transports, manufacturers have, among other things, introduced logic control. Here's how they work.

LAST MONTH I DISCUSSED TAPE EQUALIZATION AND BIAS AND their effect on frequency response, signal-to noise ratio and distortion of a tape recorder. These, and other purely electronic characteristics of tape recording and playback have been thoroughly covered in the high-fidelity literature in recent years. Considerably less emphasis has been given to the tape transport mechanism itself-the elements in a tape deck that mechanically position and move the magnetic tape over the tape heads.

Actually, the demands made upon a high-quality tape transport mechanism are much more severe than those upon a phonograph turntable of equivalent quality. The turntable is called upon simply to turn at a constant speed. The tape transport, in addition to moving tape at relatively slow speeds, must also be able to rewind or forward wind large and small reels of tape at very fast speeds and must be able to bring all motion to a safe stop without spilling, ripping or in any way damaging the tape.

From the earliest, purely mechanical, one-motor transport systems equipped with all kinds of friction-braking devices, multiple belts and other schemes subject to wear and misadjustment, the tape recording industry has progressed to a variety of fail-safe all-electronic, computer-logic activated transport systems that have no brake shoes or other friction devices-no mechanical linkages or gadgets to wear out.

A typical example of sophisticated electronics brought to bear on the mechanical functioning of a tape transport is to be found in Crown International's 800 series tape transport (Fig. 1). Its belt-driven capstan is powered by a hysteresis synchronous motor. In addition, two reel motors take care of tape-up and tape-feed tension, fast forward, rewind and braking.

In play, take-up tension is controlled by an AC voltage applied to the take-up motor, while feed tension is controlled by an AC voltage applied to the tape-feed motor. In fast forward or REWIND, the pulling motor is fed a full 117 VAC while the opposite motor has only 35 VAC applied for a slight holdback tension. All of these actions, including automatic shut-off whenever tape runs out or whenever a transparent segment of tape passes through, are governed by fully electronic command signals derived from digital electronic circuitry that is detailed in the schematic diagram of Fig. 1. Crown's excellent owner's manual gives the user a complete insight into the functioning of the transport and its electronics, and from it we were able to derive the following explanation of the various sections of the circuitry.

Tape sensing

The tape sensor feeds a "stop" command to the computer
(commands, memory and gates sections) whenever the tape runs out or a transparent length of tape is sighted. This is done by positioning a photocell (PCl) on one side of the tape path and a lamp on the other (See Fig. 1.). Light reaching the photocell causes its resistance to decrease, turning on transistor Q11 and presenting a low ("O") voltage to the input of inverter ICl-f. The output of this inverter is then a high (" 1 ") voltage which gives the "stop" command through transistor Q12.

The tape sensor circuitry also incorporates a dual-speed function. A longer time span, is required before the stop command is issued when the transport is in play than when it is in FAST-WIND since the tape is moving at a slower rate. When operating in PLAY, transistor Q10 is turned on, placing capacitor C19 in the photocell circuit and increasing its time constant. In any mode but play, the circuit senses a transparent length of tape or senses when the tape runs out in from 1 to 3 milliseconds. In play, it takes more than 10 ms for the stop command to be issued. This prevents an erronious stop command caused by poor splices or pinholes in the tape.

Motion and direction sensing

Since the direction and speed of the tape has a direct bearing on reel tensions and reel braking, a system of motion and direction sensing had to be devised for the transport. Circuitry for this function is shown in the upper left block of Fig. 1. Mechanically, the motion sensor uses a pair of slotted discs that modulate a light beam in front of one of two photcells (PC2 and PC3). The first disc rotates with the tape-feed reel motor shaft and causes the light to flash on the photocell whenever this shaft rotates. The second disc forms an aperture

TRANSPORT SECTION of Crown series 800 tape recorders. Audio electronics is a separate circuit.

If you are too busy to go to college to learn advanced electronics, CREI brings college level training to you. CREI programs give you practical engineering training that you can apply in your work to move ahead to higher paying jobs. And CREI lets you specialize in exactly the area of electronics you want. You have a chcice, dependiriy on your qualifications, of 18 different programs.

Not only are CREI programs college-level but arrangements are available for you to earn college credit applicable to advanced degrees.

Only CRDl offers you a choice of 18 programs in advanced clectronics

For over 45 years CREI programs have been recognized by leading technical organizations as effective home study training in advanced electronics.

NEW OPTIONAL LAB PROGRAM

CREI now offers a supplementary ELECTRONIC DESIGN LABORATORY PROGRAM to make learning advanced electronics easier and to give you actual experience to use in your work. Only CREI offers this completecollege type laboratory program. You learn to actually design electronic circuits. At the same time you get extensive experience in tests and measurements, breadboarding, prototype
building and other areas important to your career.
Qualifications to Enroll. To qualify for enrollment in a CREI program, you must be a high school graduate (or equivalent). You should also be working in electronics or have previous training in this field.
Send for FREE book. If you are qualified, send for CREI's newly published book describing your career opportunities in advanced electronics. This full color book is filled with facts about career opportunities for you.

FIG. 1-ELECTRONIC CONTROL section of the transport system.
between the first wheel and the photocells, masking one cell while revealing the other. This second disc is fastened to a ball bearing that rides the rotating shaft and is free to turn with it until it encounters a stop where it exposes either the forward or the rewind photocell, depending upon the direction of motor rotation.

The photocells have one common lead that supplies power to them. Each cell is connected to the input of a set-reset direction-sensing flip-flop (IC6-a and IC6-d). This flip-flop stores the direction information received from the last light pulse seen by the photocells. If the last photocell illuminated was the forward cell then the flip flop remains in the set state. Storing this direction information makes it available even during the dark half of a light flashing sequence. When light flashes on one of the photocells, its resistance changes, developing a pulsating DC voltage on supply resistor R17. This voltage is coupled via C14 to Q6 where it is amplified. Because the photocell output decreases with increasing frequency, emitter resistor R20 is bypassed by C16 to increase the gain of Q6 at higher frequencies.

Transistor Q6 drives a detector circuit that provides a low voltage (" 0 ") when pulsating DC is detected. A threshold detector made up of Q8, Q9, R23, R24 and R25 measures the voltage stored on capacitor C17. As motion occurs, transistor Q7 is intermittently turned on by the pulsating DC voltage from Q6. This causes C 17 to be discharged at a rate higher than it is being charged by R22, turning off the threshold detector. Time constants are arranged so that motion can be sensed almost immediately. But to sense a lack of motion (stop condition), a short delay formed by the time constant network R22 and C17 must elapse. This permits high braking to continue even after rotation has slowed down to a rate too low to be detected by the motion sensor.

Tape lifter and pressure roller pull in

Tape guides and heads are positioned so moving tape does not contact the heads except when the transporter is in play. A tape-lifter assembly provides enough tape to the head con-

FIG. 2-TAPE LIFTER assembly moves tape against the heads during play mode.

FIG. 3-SAME SOLENOID used in tape lifting also applies the pressure roller against the tape capstan during the play mode.
tact area when the transport is in play. A cross section of the tape lifter assembly is in Fig. 2, while Fig. 3, shows the same tape lifter solenoid applying the tape pressure roller during play. Powered through relays from the same power supply that is used for the braking system, the pressure roller and tape-lifter solenoid relaxes after pull-in due to an electronic circuit in series with the solenoid coil.

The voltage drop across transistor Q1 (see Fig. 1) is essentially the same as the voltage on capacitor C9. At turn on, C 9 is at zero volts and begins charging towards a value determined by voltage divider R6 and R7. During the beginning of this charge cycle, the solenoid becomes seated. Once seated, its power requirements are substantially reduced. For this purpose, lamp 11 (shown in the "commands" section of Fig. 1) is wired in parallel with Q1. If the "play" lamp (I1) is on, it indicates proper operation of the solenoid relaxing circuit, in addition to its more obvious indicating function.

FIG. 4-VOLTAGES SHOWN without parentheses are applied to reel motors during rewind. Voltages in parentheses are applied during fast forward.

MAXIMUM TORQUE

RUNNING TORQUE

AFTER " $3-5$ " SEC.
FIG. 5-VOLTAGE WAVEFORM sequence for high starting torque.

HEAVILY-LOADED
REEL TENDS TO
DIRECTION OF TRAVEL

LIGHTLY-LOADED REELSTOPS EASILY CONTINUE TURNING
FIG. 6-IMPROPER BRAKING differential will result in tape spillage under this condition.

LIGHTLY-LOADED REEL STOPS EASILY

DIRECTION OF TRAVEL

HEAVILY-LOADED REEL TENDS TO CONTINUE TURNING
FIG. 7-IMPROPER BRAKING differential will result in stretched or broken tape under this condition.

Powering the reel motors

During fast rewind and fast forward, full 117 VAC is applied to that reel motor which is doing the pulling, while the trailing motor is fed approximately 35 VAC, as in Fig. 4.

To get fast, smooth starting when going into play, extra power is applied to the reel motors to help them overcome stationary inertia. If this extra torque is not reduced gradually, a wobble appears in the tape motion. To provide this dropback, a two terminal network is placed in series with the reel motors. The impedance of this network is very low for a second or so, increasing to its maximum value after about three seconds. The network consists of resistor R2 shunted by an
(continued on page 89)

All About OSCILLOSCOPES

PART III-Operating the oscilloscope properly is covered plus several measurements that can be made

by CHARLES GILMORE*

USING MOST TEST-EQUIPMENT IS STRAIGHTforward and little knowledge is required by the user when moving from one manufacturer's product to another or when performing simple tasks. The oscilloscope does not follow this pattern.

The many types of oscilloscopes available and the relative complexity of all oscilloscopes in comparison to other testinstruments make it necessary for the user, especially the casual or infrequent one, to follow some simple initial operating rules. If they are not followed, you'll waste a lot of time and effort while attempting the apparently simplest of procedures. Therefore, in this article we will establish initial operating rules for an oscilloscope. Once mastered, you'll know how to use a seemingly more complicated and sophisticated instrument such as a triggered scope.

A trace on the screen

When using a new or unfamiliar oscilloscope, the first step is to get a trace. Plug in scope. Turn it on and let it warm up. Some oscilloscopes, especially those using vacuum tubes, require as much as one to two minutes before any trace can be obtained. All scopes should be allowed additional warm-up time before use to eliminate trace drift. After warm-up, set the time base (horizontal or sweep frequency) switch to a medium sweep-speed and place the aUTO/NORMAL switch (triggered oscilloscopes) in the auto position. Turn up the intensity control with the vertical and horizontal position controls set at the center of rotation. A trace in the form of a horizontal line, should appear. If, at full intensity, there is no trace, look for a general lighting or glow at one of the edges. This gives an indication of the offscreen direction of the trace. Then use the vertical and horizontal position controls to center the trace on the screen.

If this technique does not work, a more systematic approach may be used. Return the vertical and horizontal position controls to their midway points. Now systematically rotate the horizontal position control in small increments. After each correction of the horizontal position control, move the vertical-position control through its entire range to locate the trace. Do not rotate the vertical-position control quickly or the beam may cross the CRT face too rapidly to be seen.

[^4]
Beam adjustments

Once you've got the trace, switch the time base to the external horizontal position. A dot rather than a line should now appear on the face of the CRT. Adjust the focus, intensity and astigmatism controls for the smallest roundest dot possible. This procedure insures the sharpest trace. The FOCUS, INTENSITY, and ASTIGMATISM COntrols all interact. When in use, trace brightness variations may require refocusing.

Displaying a waveform

Adjust the vertical and horizontal position controls to center the trace vertically and to start the trace at the left side of the CRT. Set the time base at a mid-range position, for internal trigger or synchronization (either + or -). Triggered scopes should be in the auto mode.

Once you have a trace, a signal must be connected to the scope to observe a waveform. Obviously, you need some form of cable or probe to connect the signal to the vertical input jack. Then the vertical input switch is used to select the AC or DC position, depending upon the information desired from the trace. A common error is to leave the vertical input selector AC-DC-Ground switch in the GROUND position. If uncertain about the relative amplitudes of AC and DC components of the input waveform, use the AC position first. Select an attenuator setting commensurate with the expected input signal amplitude. If the amplitude is unknown, use the highest attenuation level (lowest sensitivity) possible. Adjust the attenuator to produce a trace from $1 / 2$ to $3 / 4$ of screen height. When performing initial adjustments, keep both the vertical attenuator and the horizontalvariable controls in their calibrated positions. Leaving these controls in their uncalibrated positions is a frequent source of error.

Once you have a trace, set the time-base switch to display a few cycles of the input waveform. The trace may not be stable at this time; however, you should be able to see enough of the unstabilized trace to determine an approximate time-base setting. With this setting, a triggered scope in the auto position may need level-control adjustment to produce a stable pattern. Some scopes use the level control in the auto position and some do not. With the recur-rent-sweep oscilloscope, the coarse and fine time-base controls are set to produce the desired number of cycles of display.

If there is a sync-level control, you may have to adjust it to stabilize the trace.

Triggering in the automalic mode

The auto mode of triggering is the one that is most frequently used. Auto triggering has the advantage of maintaining a trace (baseline) when triggering is lost because of low-signal levels.

Auto trigger is designed to trigger relatively simple waveforms above 100 Hz to an upper-frequency limit near that of the scope's vertical bandwidth. If the frequency of the waveform is out of this range or the waveform is complex, normal mode is preferred.

In the AC-coupled auto mode, a trigger signal is generated when the displayed waveform passes through the zero voltage point of the AC portion of the waveform. AC-coupling should be used, as the auto mode is not designed for low-frequency work. Below the frequency that is the automatic trigger-rate of the baseline generator, the automatic baseline generator takes over between cycles of the displayed waveform. When this occurs, normal mode should be used.

When DC-coupled automatic triggering is used (not available on all oscilloscopes), a triggering signal is generated as the displayed waveform passes through an imaginary line representing zero volts. The user must be sure that the signal does pass through this zero-volt line to get triggering. To determine where this imaginary line is, set the vertical input selector switch to the ground position. This operates the automatic baseline generator and establishes a trace whose position is the zero-volt imaginary line. Varying the vertical position control varies this line that represents the triggering point. DC-coupling of the automatic mode may be required when examining signals with low duty cycles, or those with a DC offset greater than their AC amplitude. Figure 14 shows the effect of varying the vertical position control with AC and DC trigger coupling in the automatic mode.

If $A C / D C$ trigger coupling is not available on a particular oscilloscope and DC coupling is necessary to properly trigger the waveform, switch to normal triggering. Such scopes consider auto triggering ACcoupled and normal triggering DC-coupled.

Slope control

The sLope control permits the user to

b

FIG. 14-WAVEFORMS shown in a are AC triggered. Wavelorms in b are triggered via DC coupling.

FIG. 15-EFFECT OF TRIGGERING on positive edge is shown in a, while negative edge is shown in b .

a

b

c

d

FIG. 16-THE EFFECT of varying the trigger level control while observing a triangle wavelorm.
select triggering on either the positive- or the negative-going slope of the waveform. Figure 15 shows the effects of slope adjustment. One of the most important uses of the slope switch is when examining pulses where the desired point for observation is on one edge or another of the waveform. Slope selection followed by trace expansion with the time-base control will permit detailed examination as shown in Figure 15. The slope control is independent of trigger mode or coupling.

Triggering in the normal mode

Normal mode triggering is useful when you want to trigger at a specific point on the displayed waveform. When normal mode is used, the level control is used as well as the coupling and slope controls. Figure 16 shows the effect of varying the level control on a triangle waveform. The normal mode is needed only when the signal cannot be properly triggered in the auto mode. An oscilloscope being used at the limits of its frequency capability requires the normal mode for good triggering.

At the opposite end of the frequency spectrum, the normal setting is also required. As noted above, the automatic baseline generator may interfere with lowfrequency triggering in auto mode, and on some oscilloscopes there is no way to truly DC-couple the trigger signal in the auto mode. In this case, signals that are extremely low in frequency or those having DC-offsets greater than their AC amplitude must be triggered in the normal mode. This is especially true of older scopes. In some modern oscilloscope designs, the difference between automatic and normal
modes is simply one of an automatic baseline generator. In these instruments, the reason for using the normal mode may be no more than keeping a trace off the CRT when no signal is applied or for very high frequency operation.

Vertical measurements

The simplest of all vertical measurements is peak-to-peak amplitude. Figure 17 shows a waveform with a $3-\mathrm{cm}$ vertical

FIG. 17-A RAMP SIGNAL displayed on an oscilloscope with a calibrated vertical attenuator.
amplitude. The vertical attenuator is set at 0.2 volts-per-cm to produce this display; therefore, the waveform amplitude is 0.6 volts ($3 \mathrm{~cm} \times 0.2 \mathrm{~V} / \mathrm{cm}$). Remember, the measurements are peak-to-peak voltage measurements. An oscilloscope cannot make rms or average measurements directly. Such measurements must be calculated by knowing the peak-to-peak amplitude and dividing by 2.828 (for triangle waveforms only) to arrive at an rms value.

For the square wave (50% duty cycle), the peak-to-peak value is its rms value. However, with more complex waveforms, conversions involve extensive calculations.
If the oscilloscope has DC-coupling, DC voltages can be measured. A measurement of a DC plus an AC voltage can also be determined. Figure 18 -a shows AC-coupling with the waveform centered on the screen. The oscilloscope is set to $10 \mathrm{mV} /$ division. A sinewave signal is measured at 60 mV peak-to-peak. In Figure 18-b, the
a

b

FIG. 18-MEASUREMENT of the peak-to-peak amplitude of an AC signal riding on a DC offset voltage.
input attenuator reduces the sensitivity of the oscilloscope to $1 \mathrm{~V} /$ division. DC coupling shows the AC waveform to be riding on a DC signal of 3 volts. Using the ground position of the vertical input coupling switch is a common way to establish the zero-volt reference line.

Horizontal measurements

While vertical measurements yield signal amplitude, horizontal measurements give a measurement of time. Most triggered oscilloscopes with calibrated time bases specify the time-per-division. As most measurements involve more than one division, a multiplication of the time-perdivision settings and the number of divisons involved is required.

If the magnifier is used, the final period measurement must also include the magnifier multiplier.
The period of a waveform is defined as the time required for the waveform to completely repeat itself. With a triggered oscilloscope having a calibrated time base, this measurement can be easily made. Suppose that the length of a sawtooth waveform is 5 divisions. The time base setting for the display is 0.5 ms -per-division. The period of the waveform is 0.5 ms -perdivision multiplied by 5 divisions, or 2.5 ms . The reciprocal of period will yield frequency, in this example, 400 Hz .

Risetime measurements

As previously indicated, risetime is the time required for the leading (positive
going) or trailing (negative going) edge of a wave to pass from 10% to 90% of its full amplitude. When measuring rise-time, it is preferable to expand the trace, by adjusting the timebase, to spread the rise or fall of the signal over as many horizontal divisions as possible. A slope of 45° is the most desirable although it is not always achievable.

The signal should also be spread over as many vertical divisions as possible. Use the variable vertical attenuator to reduce the amplitude of the signal to an integral number of divisions (five for example.) Such an adjustment facilitates measuring the 10% and 90% amplitude points. Using the variable vertical attenuator may introduce some error in the risetime measurements. - Do not use this adjustment if extreme accuracy is desired, or if the measurement is near the risetime specification of the oscilloscope.

Dual-trace measurements

When using a dual-trace scope, the operator must decide on alternate or chopped mode and trigger source selection (channel 1 , channel 2 , or mixed).
Some dual-trace scopes require the operator to select between chopped and alternate modes. Other scopes do this automatically. The optimum point to switch from chopped to alternate mode will vary slightly with the waveforms to be observed. However, changeover as the timebase reaches 1 ms -per-division is a good choice.

Chopped mode at fast timebase rates will produce a square wave on the CRT with no signals applied to the oscilloscope. This can be confusing. Triggering selection usually offers the alternatives of one of the two vertical input channels, or the combination of both channels. If the two signals to be observed are time (phase) related, but have a frequency difference, triggering should be selected from the lowest frequency channel. For example, Figure 19 shows a dual-trace display of the

FIG. 19-INPUT AND OUTPUT waveforms from a BCD counter. Triggering is on the trailing edge of output waveform.
input and output waveforms of a BCD TTL counter. The upper trace is the input and the lower is the output. Triggering is selected to be on the negative slope of the lower waveform, thus insuring only one sweep for each output pulse.

If two signal channels have no time or phase relationship and may have a frequency difference, the combination mode may be desired.

One of the most common uses of the dual-trace scope is to compare an output waveform to an input waveform for general changes in the wave-shape. The position controls may be used to superimpose
the input and output waveforms, making differences quite noticeable.

Another useful dual-trace measurement is to determine time differences. Figure 20 shows 300 -ns delay between the leading edge of the upper and the leading edge of the lower pulse. A common source of error in time measurements is improper trig-

FIG. 20-MEASUREMENT of delay time between two pulses. Triggering must be from upper waveform.
gering source selection. The triggering must be made from the start signal. Using the stop signal as a trigger source would yield a measurement of stop to start time, which may or may not have meaning. Think in terms of cause and effect when selecting the trigger source for such measurements.

X-Y frequency measurements

An application that is older than the oscilloscope itself is a measurement of frequency by the use of the Lissajous pattern. It can be shown geometrically, that plotting two sinewaves of the same frequency, but with a 90% phase-shift, will result in a circle. This leads to a technique for frequency measurement. A reference frequency is applied to the horizontal axis of an oscilloscope (operated in the X-Y mode) and an unknown frequency of the same amplitude is applied to the vertical axis. When a perfect circle or, for all practical purposes, something close to a perfect circle, is achieved, the two frequencies are identical.
The difference between the frequencies of the X and Y signals, for small differences, may be measured by watching the circle alternately collapse and expand (rotate). Two circles will be produced each second for each cycle of difference. For example: suppose the horizontal axis is supplied with a 100 kHz reference frequency and the unknown frequency is applied to the vertical axis. If, in the course of 10 seconds, four perfect circles are made, there is a two cycle per 10 seconds or 0.2 Hz difference between the two frequencies. The measurement does not determine whether the reference frequency is higher or lower in frequency.

This technique does determine that the frequency difference is less than a certain amount. Such a technique is frequently used for setting oscillator frequencies within a certain tolerance. The upper-frequency limit of this technique is depen-
dent on the reference frequency available and the horizontal frequency capability of the oscilloscope.

The Lissajous technique may be expanded to measure frequency ratios. Figure 21-a shows the pattern created when the vertical frequency is twice that of the horizontal frequency. Figure 21-b shows

FIG. 21-L̆ISSAJOUS PATTERNS for a two-toone frequency relationship between horizontal and vertical signals.

FIG. 22-LISSAJOUS PATTERNS FOR (a) 0° (b) 45°, (c) 90°, (d) 135°, and (e) 180°.

FIG. 23-PHASE ANGLE measurement. The X and Y amplitudes must be equal for the relationship to hold.
the opposite case, where the horizontal frequency is twice that of the vertical frequency. Fairly complex frequency ratios may be measured by this technique, but as the ratios grow larger, it is more difficult to maintain sufficient pattern stability long enough to determine the ratio. For most cases, limits of 5 to 1 are fairly reasonable. Lissajous patterns do represent a fairly realistic form of frequency measurement. The 60 cycle power line provides a reference with frequency stability in the order of .1 to $.01 \%$. (continued on page 86)

> This month we will look at a monolithic power amplifier and a monolithic function generator.

by KARL SAVON
SEMICONDUCTOR EDITOR

THE INTEGRATED-CIRCUIT AUDIO POWẼ amplifier has been kicking around for a few years now. It's only recently though, that the full potential of the IC has been used. The beauty of the latest circuits is that they have effective burn-out protection built right in. They are nearly impossible to destroy. Nearly, because there is always someone who with seemingly little effort can do the impossible. Even though an amplifier is protected against shorts and elevated temperature, it can never be protected against excessively high power supply voltage. If a power supply is connected to an IC terminal and the control knob turned high enough, something is going to break down and pfft, there goes the IC. Cooking an amplifier chip beyond the maximum allowable junction temperature with an outside heat source is another way to destroy it.

When a manufacturer says an amplifier is fully protected, he means it will not be destroyed within the bounds of reasonable, sometimes unstated common sense qualifications. Usually the conditions are listed under the absolute maximum ratings. And if you expect 7 watts of audio out of a 14 - or 16-pin dual-in-line package, and you forget to attach it to a large enough heat sink, the amplifier may not burn out, but neither will it amplify.
The nice thing about self-protected amplifiers is that you don't have to get carried away overdesigning heat sinks to protect against what might happen under abnormal conditions.

SGS-ATES 10-watt fully protected amplifier

The TCA940 monolithic power amplifier is perfect for low-cost stereo, tape recorder and radio applications. It typically delivers 10 watts into 4 ohms, but at 10% distortion. A more practical rating is 7 watts into 4 ohms at 1% THD. Working into an 8 -ohm load the power output for 1% dis-
tortion is about 5 watts.
Two separate protection systems are built into the chip. One responds to accidents, the kind that happen when your screwdriver shorts the amplifier output terminals. You knew you shouldn't have been working with the amplifier turned on, but then you are a meticulously careful worker. . . . The other guards against the longer lasting problem, like external component failure. It reacts to chip overheating.

A short-circuit protection circuit limits the peak current in the output transistors. The schematic diagram in Fig. 1 doesn't show the protection cir-

FIG. 1-TCA940 SCHEMATIC DIAGRAM. Vout is biased at precisely $V_{\mathbf{\prime}} / 2$.
cuit details but shows a limiting circuit block connected across both the upper and lower output transistors Q14 and Q15. They are also connected in series with the bases of pull-down devices Q12 and Q16. In most IC audio amplifiers only the upper output transistor is protected. It is the one subjected to the most abuse.

The usual output short is to ground and it is the upper transistor that is overloaded. The lower transistor limiting circuit in the TCA9.40 gives protection against shorting the output
terminal to the power supply. Shorts on the speaker side of the output coupling capacitor will also overload Q15. Trying to force the output voltage to follow a decreasing input swing, the lower output transistor attempts to absorb the large amount of charge on its now purely capacitive load.

The only other thing known about the limiting circuit is that it controls peak power. As the collector-to-emitter voltage across either output transistor increases, the limiting current decreases. Fig. 2 shows this characteris-

FIG. 2-GRAPH FOR THE TCA940 shows the current limiting vs, collector voltage.
tic. At 7 volts, the limiting current is 2.6 amps , and the power is $7 \times 2.6=$ 18.2 watts. At 14 volts, the limiting current is 1.4 amps , and the power is $14 \times 1.4=19.6$ watts, pretty much the same. I know 19 watts is much higher than the 8 -watt absolute maximum power dissipation rating of the TCA940.

Remember though, that this is a short-circuit protection scheme. It limits the peak dissipation of the output transistors to prevent destruction of the transistors before the chip temperature has had time to change. It protects against failure due to local destruction of the devices or the metalization. The circuit has thermal
capacitance, the ability to soak up short bursts of peak energy. The transient-power capability of the circuit is much greater than its steadystate limitations.

If the overload is continuous or has a high duty cycle, the temperature of the chip rises rapidly and the second

SGS-ATES TCA940 monolithic power amplifier delivers 10 watts into 4 ohms.
protection system comes into play. With a 4-ohm load and $110^{\circ} \mathrm{C}$ chip temperature, the power output is sharply restricted, and it is completely shut down if the temperature gets as high as $125^{\circ} \mathrm{C}$. The protection knee and final shutdown temperatures increase to $125^{\circ} \mathrm{C}$ and $135^{\circ} \mathrm{C}$ when working into 8 ohms. Q6 is the temperature sensing transistor which is located close to the output transistors. Zener D5 and emitter follower Q5 bias the base of Q6 through resistor divider R6-R7 at a voltage which is below the turn-on threshold of Q6.

The base-to-emitter junction voltage of a silicon transistor has a negative temperature coefficient; the turn-on threshold reduces at about $2-\mathrm{mV}$ per ${ }^{\circ} \mathrm{C}$. When the chip warms up, Q6 will turn on as its threshold voltage decreases below the voltage across R7. The collector current in Q6 pulls down

FIG. 3-TCA940 IN AUDIO AMPLIFIER application. Resistor \mathbf{R}_{c} Is connected for gain stabilization.
the drive to the base of output driver Q13 through D6.

Figure 3 shows the IC connected to the external components and power supply making a complete audio amplifier. C_{t} and C_{z} are frequency compensation capacitors. C_{t} is five times C_{z} 's value and C_{z} 's capacitance depends on the bandwidth and the AC coupled feedback resistor R_{r}. A graph on the data sheet gives the component values.

In the schematic (see Fig. 1) you can see R 2 , a 4 K resistor, connected between the output pin 12 and the pin 6 feedback emitter of Q2. The typical open-loop gain of the amplifier is 75 dB or about 5600 times. For normal closed-loop gain in the range of 40 dB , the gain can be calculated by taking the inverse of the feedback factor R_{t} / $\left(R_{f}+R_{2}\right)$ which is $1+R_{2} / R_{f} . R_{2}$ has a tolerance of $\pm 30 \%$ plus a positive temperature coefficient of 0.2% per degree C.

The gain of the amplifier changes almost as the resistor does. If better gain stability is needed, an external resistor can be connected from the feedback resistor to the output load, shown by the dotted lines in Fig. 3. The added resistor R_{c} shunts the internal R2 lowering the parallel combination of the two. Choosing the external resistor at least ten times smaller than $\mathbf{R} 2$ makes the gain mostly dependent on the ratio of R_{t} and R_{c}.

To keep the gain up when the low external series feedback resistor is used, the value of R_{f} must also be lowered. Adding \mathbf{R}_{c} gives a gain stability of $\pm 1 \mathrm{~dB}$. Cd, the $100 \mu \mathrm{~F}$ DC blocking capacitor, keeps the DC feedback from being affected by manipulations in AC feedback components. Notice that the amplifier does not have a differential input stage arrangement. The internal biasing of the amplifier sets the DC output at pin 12 at precisely one-half of the power supply voltage. Input terminal 8 is returned to ground through a 100 K resistor. Since the bias current in the base of Q1 is only $0.5 \mu \mathrm{~A}$, the drop across the resistor is negligible and the base can be considered grounded. One end of R2 is returned to $V_{\text {out }}$ and the other is $2 \mathrm{~V}_{1}$ (junction-voltage-drops) above ground because of the series aiding Q1-Q2 base-emitter junctions. V_{1} is the nominal 0.7 volt PN junction voltage.

The current in R 2 is then $\mathrm{I} 2=\left(\mathrm{V}_{\text {out }}\right.$ $\left.-2 V_{1}\right) / R 2$. I2 flows through Q 2 into Q3. The current in Q3 is the same as the current in D4 which is ($V_{0}-4 V_{1}$) $/(R 4+R 5)$. Setting $V_{\text {out }}=V_{\mathrm{s}} / 2$ we get: $\left(V_{8} / 2-2 V_{1}\right) / R 2=\left(V_{6}-4 V_{1}\right)$ $/(R 4+R 5)$ Multiplying the top and bottom of the left hand expression by 2: $\left(\mathrm{V}_{\mathrm{e}}-4 \mathrm{~V}_{\mathrm{f}}\right) / 2 \mathrm{R}_{2}=\left(\mathrm{V}_{\mathrm{E}}-4 \mathrm{~V}_{\mathrm{s}}\right)$
$/(R 4+R 5)$ and the necessary biasing condition is: $\mathrm{R} 4+\mathbf{R 2}=\mathbf{2 R} 2$ and $\mathbf{R 2}=\mathrm{R} 4=4000$ ohms.
R_{4} and C_{n} is a Boucherot Cell for high-frequency stability, and bootstrap coupling capacitor C_{e} raises the input impedance to the upper output transistor to keep the upper part of the output waveform symmetrical.

The TCA940 is mounted in a 12 pin dual-in-line plastic package with two large tabs that conduct heat from the chip to an external heat sink. SGSATES calls it the FIN DIP package. In small quantities the TCA940 costs $\$ 5.25$ each.

More information including a printed board layout is available from SGSATES Semiconductor Corp., 435 Newtonville Avenue, Newtonville MA 02160.

EXAR monolithic function generator

A function generator is a versatile general-purpose signal source. It has a choice of output waveforms including sine wave, square, pulse and triangle signals. The linear triangle wave is

EXAR'S XR2206C FUNCTION GENERATOR is capable of AM, FM, FSK, and PSK.
great for checking amplifier linearity or measuring triggering points of level sensitive trigger circuits. Sine waves of course are the common denominator source for most frequency and distortion measurements. Pulse and square waves give quick checks on transient response. Did you ever wish you could check a TV yoke but you didn't own a yoke tester, well I have. Drive the yoke from the pulse output of a waveform generator through an isolating resistor. The damped response displayed on a scope will tell you the condition of the coils.

The heart of modern function generators is a wideband voltage-controlled oscillator or VCO. One type of oscillator linearly charges and discharges a capacitor with constant current sources and sinks. Square and pulse waveforms are byproducts of this oscillator; they are used to switch between the charge and discharge cycles. Emitter-coupled astable oscillators with current source emitter loads are popular forms of this oscillator.

Curve fitting techniques using diodes to sense levels on the triangle wave is the basis on one method of sine wave conversion. A sine wave can be constructed from straight line segments of different slopes. Surprisingly few breakpoints are needed to produce lowdistortion sine waves. The gradual exponential cutoff response of a partially degenerated differential amplifier is a method more suitable to IC techniques.

Another way of doing it is to start with a sine wave. Two integrating amplifiers in a closed loop is the basic hook-up. Analog multipliers inserted between the amplifiers give a means of frequency control.

Still a third method is to digitally generate a staircase or other stepped function from a binary counter. Digi-tal-to analog-converters then complete the signal processing by putting together the desired waveshapes.

A second auxiliary oscillator adds flexibility to the function generator as a frequency sweeper or burst gater.

The IC function generator replaces a lot of expensive and complicated circuitry. Most of the needed circuitry to build a precision function generator is on the EXAR XR-2206C chip. It is capable of AM, FM, FSK, and PSK. It can be used as the VCO element in a phase-locked loop.

The diagram in Fig. 4 shows the four

FIG. 4-EXAR'S XR2206C FUNCTION GENERATOR has four basic elements.
basic elements of the EXAR chip. Integrated circuits have excellent current matching capabilities but are rather poor in absolute tolerances. External parts are used for the frequency determining elements for the RC oscillator. A 0.01 to $100 \mu \mathrm{~F}$ timing capacitor is connected between IC terminals 5 and 6. Resistors between 1 K and 2 meg ohms connected to pins 7 and 8 complete the frequency determining network. EXAR uses the emitter-coupled oscillator type. Either of the two resistors is selected by the current switch controlled from the frequency-shift keying input, pin 9. Mark and space FSK frequencies can be generated by feeding pin 9 with a digitally coded modulation signal. The oscillator fre-
quency is equal to $1 / \mathrm{RC}$. The current out of the selected terminal can be controlled by a voltage applied through a resistor network to change the frequency. Pins 7 and 8 are lowimpedance circuit points biased internally to about +3 volts. Oscillator frequency is expressed in terms of the control current and the value of the capacitor: $\mathrm{f}=0.320 \mathrm{I} / \mathrm{C}$. The frequency range is 0.01 Hz to 0.5 MHz minimum. The typical high-frequency limit is 1 MHz .

The sweep range of the oscillator is 2000 to 1 . With a 10:1 frequency sweep, the sweep linearity is 2%. A wider 1000:1 sweep range gives 8% linearity. Depending on the choice of resistor value, the temperature stability is typically $\pm 20 \%$ parts-per-million per degree centigrade between 0 and $75^{\circ} \mathrm{C}$. Supply sensitivity is also excellent, $0.01 \% / \mathrm{V}$. VCO outputs feed the multiplier and sine shaper. Sine shaping is done by the differential amplifier method. Square and pulse shaped outputs are derived from another VCO output. Pin 1 is the amplitude modulation input. The output is linearly controlled by variations of the pin 1 voltage around $\mathrm{V}^{+} / 2$. The signal output at pin 2 is 0 when the pin 1 voltage is half the supply. Above $\mathrm{V}^{+} / 2$, the output increases. Voltages below $\mathrm{V}^{+} / 2$ increase the output amplitude but with opposite phase. Double sideband modulation and phase shift keying can be generated using this input. Carrier suppression is 55 dB with double sideband. 100% amplitude modulated signals are generated with 2% linearity up to the 95% modulation point. The pin 2 output is buffered from the sine shaper by a unity gain amplifier.

Output waveform symmetry is adjusted by a resistor between terminals 13 and 14. An open connection between the terminals gives a triangle output at pin 2. Distortion is optimized by connection and adjustment of a 25 K grounded potentiometer between pins 15 and 16. Typical distortion is 2.5% without the adjustment and 0.5% with.

Variable duty cycle pulses and sawtooths are generated by tying pins 9 and 11 together. The oscillator will automatically switch from one time determining resistor to the other on each oscillator half cycle. The differing half-cycle periods produce a non-symmetrical pulse. The triangular output at pin 2 will also be non-symmetrical or sawtooth shaped.

The XR2206C operates from dual ± 5 to ± 13 volt or single 10 to 26 volt power supplies. It is priced at $\$ 5.50$ in small quantities.

EXAR also markets an older type the XR-205. The 205 does not have
the current switch or the 2000:1 sweep range of the 2206 but has wider frequency coverage to 4 MHz . It is only available in a prime version and is more expensive than the commercial version of the 2206. The 2206 has the lower sine distortion and better triangle linearity of the two chips.

For further information contact R-OHM Corporation, EXAR Integrated Systems, P.O. Box 4455, Irvine, California 92664.

Panasonic bucket brigade device

Matsushita Electronics Corporation has announced the MN-3001, a dual 512 stage BBD. Using P-channel sili-con-gate processing, the device is built from a chain of tetrode MOS transistors and MOS capacitors. These devices form an analog shift register where time sampled voltages are transferred down the string of capacitors.

You probably have seen some news items on variable speed tape recording systems, ones in which the playback speed is adjustable without a change in apparent voice tone and with no loss of intelligibility. An electrical delay line is the system's basic element. Bucket brigade delay lines will also be used for audio reverberation effects, electronic organ chorus and vibrato effects and radio security scrambling systems.
The two 512 element delay lines connected in series give a maximum time delay of 51.2 milliseconds when clocked at a 10 kHz rate. When hooked in parallel the output voltage is doubled.
The MN-3001 operates from 0-15 volts and clock frequencies of 10 to 800 kHz .

New quad timers

First there were dual and quad opamps. Now we have the Quad Timer. The Signetics NE/SE 553 and 554 have four timers on a chip with monostable time delays from microseconds to hours. Monolithic timers are used for time interval generators, sequential timing and pulse modulation. I have never seen as many design ideas in the electrical engineering magazines applied to any other type device with the exception of the op-amp. An external resistor and capacitor determines the time delay.

Both devices have current output capabilities of 100 mA . The difference between the 553 and 554 is that the first sinks current and the second sources current. The timers are both edge triggered. No coupling capacitors are needed in sequential applications where the timers are chained.

They are packaged in 16 pin dual-in-line plastic and operate from 4.5 to 16 volts.

R-E

Step-by-step TV Troubleshooters Guide

Color problems are not difficult if you follow a logical step-by-step troubleshooting procedure and circuit analysis.

by STAN PRENTISS

the two problems that stump service technicians the most are undoubtedly high voltage and color. Either one is solvable with a little patience, proper circuit analysis, and good test equipment. For instance, if a color receiver is hybrid or all tubes, the horizontal output tube drive voltage will have an exponential shape and usually measure about 250 volts AC. A transistorized horizontal output stage, being current driven, will have a rectangular shaped voltage, probably with a few transient spikes, and an amplitude of perhaps 10 volts fully loaded as it passes through the inevitable currentdriver transformer to the base of the horizontal output transistor. If there is no high voltage and the drive waveforms are good, or the luminance section isn't driving the picture tube to cutoff, then the problem is with the horizontal output tube or transistor, a B-boost or shunt capacitor, the deflection yoke, or possibly the flyback trans-
former itself. Standard voltage and waveform checks will usually isolate the trouble. At the moment, however, we've got a color problem. The problem is not to difficult to solve if handled systematically.

When color comes \& goes

The complaint on this Sears 562.10481 amounted to the simple statement that the "color comes and goes." And, indeed, a look at the picture tube with an on-the-air colorcast confirmed the obvious: color most assuredly came and went, and even when it remained for a few minutes, the color control could, by no means, produce saturation. Tint responded reasonably well well but would not phase fully from flesh tones through green and magenta. So here were a pair of puzzlers worth attention.

A schematic of the chroma section is shown in Fig. 1. There's an L501 chroma takeoff coil-centertapped for
better impedance matching; a pair of chroma bandpass transistor amplifiers (Q501, Q502) their transformers (T501-T502) plus burst and the subcarrier oscillator. Of course there are the usual demodulators and RGB-Y outputs in this hybrid receiver but, in this instance they are eliminated from our search by immediate voltage checks and prompt tube substitutions. There was a slight increase in overall waveform amplitude, but nothing worthwhile, and cathode, grid, and plate potentials were well within the 10$15 \%$ tolerance. So it's back to the chroma and color sync circuits for investigation and analysis. And since these are basically transistor amplifiers, the only real way to do this is by examining signal passage, beginning with the 8 KR 8 (V201-a) video amplifier. First, however, I decided to do something a little different-and that was to quickly decide whether the problem is in the subcarrier portion of the color

TROUBLESHOOTING CHART (color problems)

© SLGL LSOONV
circuits or in the bandpass amplifiers.

Identifying the problem

So why not hook up a dual-trace oscilloscope at the R-Y and B-Y grids of the picture tube, put a clean color bar signal through the tuner, and see what the Y-Y (some say X-Y) vector pattern (Fig. 2) looks like. Since, with this method, you can actually see the entire operation of the chroma circuits. Therefore, with the scope's vertical amplifiers set for 20 volts/division, the pattern is very small, has lots of looped petals in the wrong places, and the blanking pulse is smeared. True, some of these contortions can be forced with misadjusted fine tuning, but that isn't our basic problem. The chroma amplifiers, themselves, are adding to the collective woes with low voltage output, although the subcarrier oscillator remains steady and in sync. Out of sync, the patterns spin, and if the color oscillator quit, there would be no vector pattern at all. Now both output amplifiers seem to be operating satisfactorily because neither the red vertical nor blue horizontal portions are affecting the small but relatively stable oval display. So our problem really becomes threefold: we want to straighten up the pattern with fine tuning, troubleshoot the chroma amplifiers, probably re-align the chroma amplifiers and touch-up the burst transformer for at least an overall 70 -degree phase shift. This really isn't as difficult as it sounds -so let's go.

Signal analysis

With a 2 -volt input into the 8 KR8 chroma-sync amplifier from the video detector-as specified by the schematic -you want maximum swing from the plate of V201a to drive the 1st chroma bandpass transistor Q501. So a new 8KR8 (if this one's an original) often helps. The acc potentiometer R556 can next be adjusted for Q501 maximum output. Now, if these changes don't do the trick, and the vector pattern hasn't expanded considerably in all directions, return the scope to normal operation and go after both bandpass amplifiers

Since the input signal at the base of Q501 is only 30 mV and that at the base of second chroma bandpass amplifier Q502 has no visible amplitude, let's go to the collectors of both transistors and look at the AC waveforms as well as the DC levels simultaneously. The upper trace of Fig. 3, shows an amplitude of less than 1 volt at the collector of Q501, but with a normal DC collector operating potential of some 11 volts. There's about the same condition at the collector of Q502, shown in the lower trace of Fig. 3. Here the scope's vertical setting amounts to 10 volts/division, and exhibits an AC amplitude of a little over 8 volts, with

FIG. 2-POOR VECTOR PATTERN and distorted blanking bar was taken with a sensitivity of $20 \mathrm{~V} /$ div including the $\times 10$ attenuation of the low-capacity probes.

FIG. 3-COLLECTOR WAVEFORM of transistor Q502 is shown in the upper trace. Lower trace shows the waveform at the collector of Q501.

FIG. 4-NORMAL WAVEFORM at the collector of Q502 is shown in upper trace. Normal B-Y waveform is shown in lower trace.
a DC output of 45 volts. There are also DC readings of 5.9 volts at the base and 5.2 volts at Q502's emitter. These "slightly-off" base-emitter measurements, however, are nothing to become excited about since you don't know either the accuracy of the original meter readings, or whether a low impedance shunt may have taken place when the meter-whatever it was-was connected across the lower junctions of the transistor. But collector readings are usually pretty well on target, with one outstanding exception: instead of Q502's collector amplitude being 20 volts AC as specified, the output is less than half, even with bandpass transformer T502 impedances included. So, both the first and second chroma bandpass amplifiers-as the vectorscope in-dicated-seem to have AC problems.

Of course, it could be worse. For the most part, DC voltages are holding, so the power supplies are fine, and passive components such as bypass and coupling capacitors, resistors, and transformers are doing their filtering, signal flow, and impedance matching jobs. A quick ohmmeter shunt across the color control-with the set off, of courseverifies there are no problems here. Consequently, there remains but one principal action to take, and that is change one or both transistors since apparently there is leakage.

Cleaning up

Cross referencing the 2SC351 and 2SC500 in the transistor stock lists produces substitutes. Now, there's little to do but wick off all old solder about the original units with a 40 -watt iron and some braid, and the new semiconductors are ready for insertion. This is easily done when the chassis bottom screws have been removed, along with the paper side chassis insulator. When both transistors are soldered securely, and (continued on page 76)

R-E's Substitution guide for replacement transistors
 PART XXIX
 by ROBERT \& ELIZABETH SCOTT

ARCH-Indicates the Archer brand of semiconductors sold only by Radio Shack and Allied Radio stores. Allied Radio Shack, 2725 W. 7th St., Ft: Worth, Texas 76107
DM-D. M. Semiconductor Co., P.O. Box 131, Melrose, Mass. 02176
G-E-General Electric Co., Tube Product Div., Owensboro, Ky. 42301
ICC-International Components, 10 Daniel Street, Farmingdale, N.Y. 11735
IR-International Rectifier, Semiconductor Div., 233 Kansas St., El Segundo, Calif. 90245
MAL-Mallory Distributor Products Co., 4760 Kentucky Ave., Indianapolis, Ind. 46241
MOT-Motorola Semiconductors, Box 2963, Phoenix, Ariz. 85036
RCA-RCA Electronic Components, Harrison, N.J. 07029

SPR-Sprague Products Co., 65 Marshall St., North Adams, Mass. 01247
SYL-Sylvania Electric Corp., 100 1st Ave., Waltham, Mass. 02154
WOR-Workman Electronic Products, Inc., Box 3828, Sarasota, Fla. 33578
ZEN-Zenith Sales Co., 5600 W. Jarvis Ave., Chicago, III. 60648

Radio-Electronics has done its utmost to insure that the listings in this directory are as accurate and reliable as possible; however, no responsibility is assumed by Radio-Electronics for its use. We have used the latest manufacturers material available to us and have asked each manufacturer covered in the listing to check its accuracy. Where we have been supplied with corrections, we have updated the listing to include them. The first part of this Guide appeared in March 1973.

2S3518	NA	NA	NA	NA	TR-17	PTC 107	NA	NA	RT-183	ECG 160	NA	NA
2 S 363	NA	NA	GE-20	NA	TR-21	PTC 136	NA	NA	RT-114	ECG 123\%.	NA	NA
2 S 375	NA	NA	NA	NA	NA	PTC 109	NA	NA	NA	ECG 102	NA	NA
$2 \mathrm{S381}$	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A		NA	NA
2S471-1	NA	NA	GE-50	NA	TR-17	PTC 107	NA	NA	RT-183	ECG 160	NA	NA
2 S 494	NA	SK 3114	RT-115	ECG 159	NA	NA						
25501	RS276-2009	T-50	GE-61	ICC-50	TR-21	PTC 139	HEP-50	SK 3122	RT-102	ECG 123A	WEP 736	ZEN 100
2S502	RS276-2009	T-50	GE-61	ICC-50	TR-21	PTC 139	HEP-50	NA	RT-102	ECG 123A	WEP 736	ZEN 100
2S503	RS276-2009	T-50	GE-62	ICC-50	TR-21	PTC 139	HEP-50	SK 3122	RT-102	ECG 123A	WEP 736	ZEN 100
2S512	RS276-2023	T-52	GE-20	ICC-52	TR-53	PTC 133	HEP-52	SK 3039	RT-113	ECG 108	WEP 56	NA
2S608	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A	ECG 123A	NA	NA
2S644	NA	NA	GE-16	NA	TR-51	NA	NA	NA	RT-127A	NA	NA	NA
25701	RS276-2021	T-51	GE-60	ICC-51	TR-53	PTC 132	HEP-51	SK 3124	RT-100	ECG 123	WEP 53	ZEN 101
2S702	RS276-2021	T-51	GE-60	ICC-51	TR-53	PTC 132	HEP-51	SK 3124	RT-100	ECG 123	WEP 53	ZEN 101
$2 \mathrm{S703}$	RS276-2021	T-51	GE-60	ICC-51	TR-53	PTC 115	HEP-51	SK 3124	RT-100	ECG 123	WEP 53	ZEN 101
$2 \mathrm{S711}$	RS276-2009	T-53	GE-18	ICC. 53	TR-25	PTC 125	HEP-53	SK 3124	RT-100	ECG 123	WEP 53	ZEN 102
2 S712	RS276-2009	T-53	GE. 18	ICC-53	TR-25	PTC 125	HEP-53	SK 3124	RT-100	ECG 123	WEP 53	ZEN 102
2 S 731	RS276-2023	T-52	GE-17	ICC-52	TR-25	PTC 101	HEP-52	SK 3122	RT-102	ECG 123A	WEP 53	NA
2S732	RS276-2023	T-52	GE-17	ICC-52	TR-25	PTC 101	HEP-52	SK 3122	RT-102	ECG 123A	WEP 53	NA
25733	RS276-2023	T-52	GE-17	ICC-52	TR-65	PTC 101	HEP-52	SK 3122	RT-102	ECG 123A	WEP 53	NA
2 S741	RS276-2021	T-51	GE-11	ICC-51	TR-87	PTC 139	HEP-51	SK 3024	RT-114	ECG 128	WEP 243	ZEN 101
$2 S 742$	RS276-2021	T-51	GE-63	ICC-51	TR-87	PTC 117	HEP-51	SK 3024	RT-114	ECG 128	WEP 243	ZEN 101
25743	NA	NA	GE-18	NA	TR-78	PTC 117	NA	SK 3045	RT-110	ECG 154	WEP 712	NA
25744	RS276-2021	T-51	GE-11	ICC-51	TR-87	PTC 139	HEP-51	SK 3025	RT-114	ECG 128	WEP 243	ZEN 101
25745	RS276-2021	T-51	GE-63	ICC-51	TR-87	PTC 117	HEP. 51	SK 3024	RT-114	ECG 128	WEP 243	ZEN 101
$2 \mathrm{S746}$	NA	NA	GE-18	NA	TR-78	PTC 117	NA	SK 3045	RT-110	ECG 154	WEP 712	NA
2S828(0)	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A	NA	NA	NA
2S838(E)	NA	NA	NA	NA	TR-724	NA						
2S930C	NA	NA	NA	NA	TR-51	NA	NA	NA	RT-172	ECG 160	NA	NA
2S930(D)	NA	NA	NA	NA	TR-51	NA	NA	NA	RT-172	NA	NA	NA
2S930(E)	NA	NA	NA	NA	TR-24	NA	NA	NA	RT-114	ECG 108	NA	NA
2 S 945	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A	ECG 123A	NA	NA
2S1014D1	1 NA	NA	NA	NA	TR-76	NA	NA	NA	RT-197	ECG 152	NA	NA
2S1760	NA	NA	GE-2	NA	NA	NA	NA	NA	RT-123	ECG 102	NA	NA
253010	NA	T. 715	GE-21	ICC-715	TR-88	NA	HEP-715	SK 3025	RT-115	ECG 129	WEP 242	ZEN 106
2S3020	NA	T-715	GE-21	ICC-715	TR-52	NA	HEP-715	SK 3114	RT-115	ECG 159	WEP 717	ZEN 106
2 S3021	NA	T-52	GE-22	ICC-52	TR-52	NA	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2S3030	NA	T-722	GE-22	ICC-722	TR-52	NA	HEP-722	SK 3114	RT-115	ECG 159	WEP 717	ZEN 110
253040	NA	T-717	GE-22	ICC-717	TR-52	NA	HEP-717	SK 3114	RT-115	ECG 159	WEP 717	NA
$2 \mathrm{S3187}$	NA	NA	NA	NA		PTC 102	NA	NA	NA	NA	NA	
2 S3210	RS276-2023	T-52	GE-21	ICC-52	TR-52	NA	HEP-52	SK-3114	RT-115	ECG 159	WEP 717	NA
$2 \mathrm{S3220}$	RS276-2023	T-52	GE-21	ICC-52	TE-52	NA	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2 S 3221	RS276-2023	T-52	GE-22	ICC-52	TR-20	NA	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2S3230	RS276-2023	T-52	GE-22	ICC-52	TR-52	NA	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	NA
2 S 3240	RS276-2023	T-52	GE-22	ICC-52	TR-52	NA	HEP-52	SK 3114	RT-115	ECG 159	WEP 717	
2 S 3324	NA	NA	NA	NA	TR-05	PTC 102	NA	NA	NA	ECG 105	NA	NA
2 S3370	NA	NA	GE-52	NA	TR-05	PTC 102	NA	NA	RT-123	ECG 105	NA	NA
2 S3734 Y	NA	NA	NA	NA	TR-87	NA	NA	NA	RT-187	ECG 128	NA	NA
2S6344	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A	ECG 123A	NA	NA
256371	NA	NA	NA	NA	TR-21	NA	NA	NA	RT-107A	ECG 123A		
2 S6387	NA	NA	NA	NA	TR-83	NA	NA	NA	RT-107A	ECG ${ }_{\text {NA }}$	NA	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$
2S6856	NA	SK 3040	RT-110	ECG 154	NA							
2SA01	NA	NA	NA	NA	TR-11	NA						
2SA12	RS276-2004	T-253	GE-50	ICC-253	TR-12	PTC 109	NA	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 304
2SA12(D)	NA	T-253	NA	NA	TR-12	PTC 109	HEP-253	NA	RT-123	ECG 158	NA	
2SA12A	RS276-2004	T-253	GE-1	ICC-253	TR-12	PTC 109	NA	SK 3006	RT-188	ECG 102A	WEP 250	ZEN 304
2SA12B	NA	T-253	GE-50	ICC-253	TR-12	PTC 109	HEP-253	SK 3008	RT-123	ECG 102A	WEP 250	ZEN 304
2SA12C	RS276-2004	T-253	GE-1	ICC-253	TR-85	PTC 109	HEP-253	SK 3006	RT-188	ECG 102A	WEP 250	ZEN 304
2SA12D	NA	T-254	GE-50	ICC-254	TR-85	PTC 109	HEP-254	SK 3006	RT-188	ECG 102A	WEP 250	ZEN 305
2SA12H	RS276-2004	T-250	GE-50	ICC-250	TR-85	PTC 109	HEP-250	NA	RT-123	ECG 102A	WEP 250	ZEN 302
2SA12V	NA	T-253	NA	ICC-253	TR-12	PTC 109	HEP-253	SK 3006	RT-188	ECG 102A	WEP 250	ZEN 304
2 SA13	RS276-2004	T-250	GE-50	ICC-250	TR-17	PTC 109	HEP-250	SK 3005	RT-183	ECG 160	WEP 637	ZEN 302
2SA14	RS276-2004	T-250	GE-1	ICC-250	TR-17	PTC 109	HEP-250	SK 3005	RT-183	ECG 160	WEP 637	ZEN 302
2SA15	RS276-2004	T-250	GE-50	ICC-250	TR-85	PTC 107	HEP-250	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 302
2SA15-6	NA	NA	NA	NA	NA	PTC 107	NA					
2SA15H	RS276-2004	T-250	GE-50	ICC-250	TR-85	PTC 109	HEP-250	NA	RT-123	ECG 102A	WEP 250	ZEN 302
2SA15R	NA	NA	NA	NA	TR-05	PTC 107	NA	SK 3005	RT-117	ECG 100	NA	NA
2SA15V	RS276-2003	T-635	GE-1	ICC-250	TR-17	PTC 107	HEP-250		RT-118	$\text { ECG } 100$	WEP 254	ZEN 311
2SA15V/ R	- NA	T-253	NA	ICC-253	TR-85	PTC 107	HEP-253	SK 3005	RT-118 RT-117	$\begin{aligned} & \text { ECG } 100 \\ & \text { ECG } 100 \end{aligned}$	WEP 254 WEP 254	$\begin{aligned} & \text { ZEN } 311 \\ & \text { ZEN } 304 \end{aligned}$
2SA15Y	NA	T-635	GE-2	ICC-635	TR-85	PTC 107	HEP-635	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 302
2 2SA16	RS276-2004	T-250	GE-50	ICC-250	TR-85	PTC 107	HEP-250	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 302
2 SA17	RS276-2021	T-251	GE-1	ICC-251	TR-85	PTC 145	HEP-251	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 303
2SA17H	RS276-2021	T-251	GE-50	ICC-251	TR-85	PTC 109	HEP-251	NA	RT-123	ECG 102A	WEP 250	ZEN 303
2SA18	RS276-2021	T-251	GE-50	ICC-251	TR-85	PTC 109	HEP-251	SK 3005	RT-123	ECG 102A	WEP 250	ZEN 303
$N A=N O T A$	AVAILABLE											(tum page)

R-E's Service Clinic

Scan-derived DC power supplies

They're easy to service if you know how they work
by JACK DARR
SERVICE EDITOR

SEveral of the later model solidstate color-TV chassis have come up with an interesting feature. This is called by quite a few different names (one even calls it an "electronic power supply!"). Probably the most descriptive term is Admiral's "scan-derived power supply." It's really simple; all it means is that some or all of the operat-

FIG. 1-DC VOLTAGES are derived from flyback.
directly from the AC line through a rectifier, but originate in the horizontal output transformer. One little Sony portable supplies the picture tube heater from a winding on the horizontal driver transformer!

There is a good reason for this. Since the operating frequency is so much higher, the transformer can be made much smaller. Filtering is also simplified. You can use a much smaller capacitor at 15.75 kHz than you need at 60 Hz . Since the voltages needed for solid-state circuits are lower, it's not nearly as hard as it sounds.

The actual power used does come from the AC line, of course. This can be as simple as a half-wave rectifier often fed directly from the AC line, sometimes from a power transformer. Here, the power transformer could be a simple 1:1 isolation transformer. This DC supply feeds the horizontal oscillator and output stage. Extra windings on the flyback transformer provide the operating voltages for the rest of the
warm. The high-voltage and sound circuits are "turned down" to the point where they stop working.

Adniral's M10 chassis is a good example of this type of circuit. Figure 1 shows the three scan-derived DC power supplies. The +120 volts comes from a regulated DC power supply, fed by the +145 volts DC from the AC line circuit. This +120 volts drives the horizontal oscillator and output stages. At turn-on, this is the only DC voltage present. As soon as the oscillator starts driving the output stage, everything else starts too. In a solid-state circuit, this is almost instantaneous.

The +235 volt supply provides the higher voltages needed for the picturetube grids and the three video driver stages. The picture tube screen grids are fed from a tap on the focus voltage, which in turn comes from a tap on the voltage tripler used in the high-voltage supply.

The +33 volt supply is fed by a posi-
(continued on page 68)

Have you ever asked yourself, "Can Imake it in Electronics?"

 CIE maybe the answer

 CIE maybe the answer if you have a technical if you have a technical aptitude and a serious aptitude and a serious desire to get ahead. desire to get ahead.

Right now, you're reading a technical magazine with articles that require a certain amount of electronics know-how. And that says a couple of things about you.

First, you're involved in Electronics ... on the job, or as a hobby.

Second, you obviously realize the importance of staying up-to-date on the latest technical applications and developments. Reading a technical magazine helps, but it takes more than that to get you where you want to be . . . if you're serious about Electronics.

How can you afford

...not to continue with your electronics training?
You know the answer to that as well as we do.
To achieve continuing success, you have to keep building more knowledge into the Electronics background and experience you already have. You have to sharpen the tech skills you've already got and add new ones.

And one of the most logical ways for you to get what you need is to seriously consider an in-depth electronics training program that could help you achieve your ambitions in Electronics.

How can you afford

An excellent and convenient way for you to develop and expand your electronics knowledge is to "let the school come to you.'

CIE's independent education plan does just that. Because we can effectively train you with an "education by mail" electronics training program that makes sense. And it makes sense for these reasons:

You can master career Electronics without missing one day of work. Without sacrificing one paycheck! Because you study in your free time ... setting the study pace that best fits your schedule. You decide when and where you want to study. So you can go right on enjoying your leisure time because there are no rigid classroom schedules to be met. Youre in control!

How can you afford

. . . the expense of the additional education you need?
A lot depends on which CIE course best fits your educational goals and background. We have a variety of electronics courses at beginner, intermediate, and advanced college-level. And there's a convenient payment plan available for every course. But, one way to evaluate your investment in CIE is this . . y you can graduate from CIE for about the cost of one year's tuition at some colleges or universities.

How can you afford

... to learn Career Electronics from anyone other than an electronics speciatist?

If you are serious about your career in Electronics, you owe it to yourself to investigate the home study school that devotes its entire curriculum and instructional efforts to Electronics. That's CIE - Cleveland Institute of Electronics.
We have specialized exclusively in Electronics education-by-mail for more than 40 years. Just Electronics. Nothing else. And, the courses we offer today are the result of these years of teaching experience and proven methods of training . . . all based on the expert guidance of our

specialized Electronics Instruction Staff. Our lessons reflect this specialized experience. No frills. No unnecessary fancy stuff. Instruction is thorough . . . designed to meet the demands of electronics employers.
Each CIE course is built on the principle that the best way for you to learn and retain what you've learned is to explain; then to check your understanding; then to reinforce your comprehension with practical applications. In some courses, you will perform experiments and tests with your CIE Experimental Electronics Laboratory using authentic electronic components and gear. And, if you select a course that includes Color TV technology, you will not only build and keep a big screen Color TV which features digital circuitry... you'll also learn how to troubleshoot your TV.
The course you select will be a complete educational program, designed by experts to give you the best in Electronics independent home-study education. It will not be a "snap" course. No easy exams. It will make you work... and think. So that when you've earned your CIE Diploma, you'll really know your stuff.
In education just like in the "real world" of Electronics, your success depends on you and the effort you make. That's a real plus in CIE independent home-study ... you build a strong foundation of self-discipline. And thar pays off!

How can you afford . . . to stop now?

There is a lot more to CIE than this advertisement can tell you. And because you're looking for the best, we think it's well worth your while to find out what CIE is
all about. Detailed Courses of Study outlines. In-depth training programs in Electronics Technology, Broadcasting, Industrial, Color TV, Engineering, and ist Class FCC License preparation. Special CIE Student Services.

All this information is available to you, FREE, when you mail the card or coupon to us. For your convenience, we'll try to have a school representative contact you to review the benefits of CIE training and assist in course selection. And as soon as we hear from you, we'll mail a complete package of information, including our school catalog, G. I. Bill details, special FCC License information. All the facts you need to start your Electronics career program with CIE.

Send TODAY for CIE'S FREE information.

 ALLISON

"OPTO-ELECTRIC"

Never wears out or needs any Maintenance!

The Allison OPTO-ELECTRIC System eliminates the Points and Condenser, replacing them with an OPTO-ELECTRONIC TRIGGER, using a Light-Emitting Diode and Phototransistor. As there are NO moving parts in rubbing contact...Timing adjustments are PERMANENT. The onty "TRUE" Electronic Ignition...that you can buy for urider $\$ 100$.

- Gives 40-Times more Timing Accuracy than ANY system using "Mechanical" Breaker-Points! UNLIMITED RPM! "Electronically-Controlled" DWELL automatically supplies HIGHEST Performance at both Low and High speeds. Spark strength does not fall off at high RPM. POSITIVE SPARK helps eliminate "Misfire" for faster acceleration and improved Engine Performance! Smoother running (No timing fluctuation as with Magnetic Units). Easier Starting under any condition! Sparkplugs LAST 3 to 10-Times LONGER
AII SOLID-STATE Components. UNAFFECTED By Temperature Moisture, or Vibration! Highest grade materials Guarantee you solid. Dependable Performance.

\star Perfect Timing and Dwell never change.

Pays tor itsett! Eliminates ignition Tune-Ups forever! INFINITE LIFE" ...Once installed ...Never needs replacing. - PERFECT TIMING INCREASES Engine Efficiency and Gas Mileage. SAVES Precious Fuel! Allison gives you MAXIMUM Engine Efficiency 100% of the time... and that's the name of the oame for BETTER Gas Mileage and Economy

SERVICE CLINIC
(continued from page 63)
tive-going pulse from the flyback winding. This is rectified, filtered, and protected against negative transients by the shunt diode D105. The same pulse is used to feed D1001 which in turn goes through an IC voltage regulator to get the regulated +24 volt supply. Diodes D1002 and D1,003 provide negative-transient protection for this. F1000, a 1.5 A fuse, protects both of these supplies. The +120 volt and +235 volt lines as well as the AC input are also fused, back in the power supply.

Figure 2 shows the part of the
you apply exactly 120 volts $A C$ to the set, and adjust the $B+120 \mathrm{VadJ}$ control until the regulator output voltage is exactly +120 volts. The high-voltage will then be correct, and the other DC voltages as well.

Servicing

This kind of circuit may look like a can of worms, especially on the full schematic. They're not all that hard to service. A few quick checks of key test points will lead you right to the cause of any trouble. To begin with, check the unregulated $145 \mathrm{~V} \mathrm{~B}+$ from the line power supply. This must be there before anything else can happen.

After this, check the output of the +120 volt regulator circuit. To check

FIG. 2-DC POWER comes from AC line through a regulator.
power-supply circuit. When the set is turned on, there is no scan-derived +235 volt supply at first. The unregulated +145 volt B^{+}from the AC line and rectifier is applied to the two pass transistors in the regulator. Start-up diode D902 will conduct, applying voltage to the Zener diode D901. This starts the regulator conducting, thus feeding power to the horizontal circuits for the split second needed to get them going. When the scan-derived +235 volts appears, it reverse biases the start-up diode and it has no further function. The +235 volts is divided down by R900 and R909, and clamped by the reference Zener to control the voltage regulator.

In this type of circuit, there is no adjustment in the high-voltage supply itself. Regulation is taken care of by controlling the +120 volt supply with the reference diode D901. This voltage is applied to the pass-driver transistor's base through the variable resistor R901. To set up the regulator circuit,
this stage for the correct regulator action, read the emitter voltages of the two pass transistors. This should be exactly +120 volts. To make sure that both transistors are working properly, carefully put the negative lead of the VOM on the junction of the two emitter resistors, R112/R113. Then read the voltage on each emitter; this will be about +0.5 to +0.6 volt. These voltages must be within 0.1 volt of each other. Too much difference means that one of the pass transistors isn't working too well.

If this checks out, go to the horizontal oscillator stage. Make sure that the oscillator is running. A failure of any of the small transistors in this stage will disable the whole thing. Next, check the horizontal output transistor. The quickest way of checking all of these is to read any one of the three scan-derived DC voltages. If even one of these is normal, the oscillator and output stages are working.

For example, if the +33 volt supply
is all right, but you have no +24 volt supply, the driving pulse must be there. You would have something like a bad rectifier diode, faulty IC regulator, etc. If the 1.5 A fuse F 1000 is open, this will kill both of the low-voltage supplies. This would point to something like a short in either one, or a short in one of the loads fed from them. These can be checked out in a short time by disconnecting things.

For a complete description of these circuits, see Admiral's Service News Letter, January and March 1975. For the complete schematic, Admiral Service Data S1349. Thanks, Admiral! R-E

reader

 questions
INTERCHANGEABLE TUBES?

This Dumont 41P01 portable looks just like the picture in Sams, on the outside. When I took the back off, I found the enclosed tube lavout pasted inside. Sams shovs a 5 HA7/5HC7 tubes, and this one has a 6LX8. A factory man says that it should be one of these two; he has no record of a 6LX8. Sams does show a 6LX8 as all alternate. Who's
right here?-H.P., Brooklyn, NY.
Sams is. If your set has a 6LX8, and it is obviously a "factory job", this was a modification at the factory. Incidentally, in this set, you must use the type of tube you found in there! The 5HA7 and 5HC7 are not interchangeable, I'm fairly sure! The tube manual says these are "dual dissimilar triodes" and the triodes are reversed between the 12 FQ base of the 5 HA 7 and the 12 FR base of the 5 HC 7 . The $6 \mathrm{LX8}$ is a triode-pentode with a 9DC base (9pin).

NO HIGH VOLTAGE, HOT 6JE6

There is no high voltage in this Emerson 822A and the 6JE6 gets redhot when the high-voltage lead is connected to the picture tube. Disconnerted, this lead checks 25.30 kV . Everything around the high-voltage circuit seems OK. Help would be appre-ciated.-S.M., Wilmington, DE.

Help is on the way! Take the highvoltage lead off the picture tube and tuck it away somewhere. Now measure all of the DC voltages on the picture tube base, especially the cathode and control grid voltages. From the reaction, your picture tube is biased so much positive on the grids that it's
drawing far too much beam current. This can be due to the control grid voltages being too much positive, or to the cathodes being too far negative! You might have an open video peaker, L17, in the cathode circuit. This has happened.
(Feedback from reader; this was it! Replaced by Miller 7600, and it worked. Even a blind pig gets an acorn once in a while!)

SKILL IS ALL RIGHT IN ITS PLACE

I need a power transformer for " Tonecrest radio-stereo. No mumbers at all on the chassis, and it's made in Canada. I've looked everywwhere but can't find any information. The owner is bugging me for this; help!-F.Y., Los Angeles, CA.

Check the Sams Photofact Folder 673-6 for a Clairtone C303. The power transformer has exactly the same part number and the tube lineup is the same as the one you sent! Unbelievably, this was in the second folder I checked. I crossed the name Tonecrest and got Clairtone and some more, and started looking. Skill is all right in its place, but a little luck beats it any day! Try a Triad R127A or Thordarson 26R112. Should match perfectly.
(continued on page 77)

Everything you need for complete tape recorder testing. Ferrograph RTS-2 with Auxiliary Unit

Versatile all-in-one precision test system

It's a Sine Wave generator ... Millivoltmeter ... Wow \& Flutter bridge . Harmonic Distortion analyzer that you can learn to use in minutes. Requiring only two leads, setup time is minimal.
Pushbutton controls provide rapid, precise operation. Compact and lightweight, it's ideal for recording and broadcast studios, testing labs and service shops.

Vastly expanded operation

By combining the RTS-2 with the ATU Auxiliary Unit, you're ready for the most sophisticated audio testing. - Monitors pre-recorded test alignment tape with

RTS-2 Test Sel - $\$ \mathbf{1 3 0 0}$ ATU Auxiliary Unif - $\$ \mathbf{5 5 0}$
Combination offer (both units) - \$1800 Carrying cases optional
built-in speaker unit - Balanced and unbalanced input/output. Switches between left/right input/output channels. Provides matching impedances for 8Ω, 200!, 600! impedances, or unloaded. - Compares input/output signals - NAB weighted noise filter network for S / N measurements - Oscillator output may be set in 10 dB increments over 40 dB range by pushbuttons - Designed for use with virtually any test equipment.

New, Convenient Payment Plan!

Try this unique, complete test system Free for 30 days. Write for details.

For only $\$ 39.95$
Our new FG-2 Function Generator kit gives you all five af the most useful waveforms for design and testing at one fourth the cost of previous similar instruments. Thanks to improved IC's the FG-2 now features amplitude stability of $\pm 1 \mathrm{db}$ over any range, Sine wave distortion of less than 1% from 20 Hz . to $20,000 \mathrm{~Hz}$. and an output of 4.0 Volts peak-to-peak with adjustable offset. The offset selector lets you put the positive peak, negative peak, or the center of the waveform on DC ground. The DC coupled circuit keeps the waveforms in exactly the same position no matter what the level control setting.

Gray impact plastic case $51 / 4 \times 63 / 4 \times 21 / 2$. 115 Volts 60 cycle power supply included.

FG-2 Function Generator Kit
shipping weight $3.0 \mathrm{lbs} \$ 39.95 \mathrm{PPd}$
GET OUR
NEW 1975 CATALOG
listing this and other unique kits
"F R E E"
by simply circling our number on the reader service card.

MATV Splitters

Splitters are relatively simple devices, but they are a potent weapon in the MATV system designers arsenal.

by JAMES E. KLUGE*

SPLITTERS, LIKE THEIR NAME implies, divide a signal voltage into two or more identical parts. Each part contains all the information that was contained in the original signal before splitting. All that is lost in the splitting process is power level.

Branching feeder lines

Splitters provide a way to branch an MATV system into several routes or feeder lines. Each feeder then services a portion of a building, such as a wing or a floor or a row of mobile homes if in a large mobile-home park.

2-WAY SPLITTER

Insertion loss

Since a whole equals the sum of its parts, a signal split into two parts has half the power in one part, the other half in the other part. Thus, a signal reduced from full power to half power experiences a 3-dB loss. Likewise, the dual outputs of a 2 -way splitter should be $3-\mathrm{dB}$ less than the input signal. Actually, the loss measures 3.5 to 4.0 dB depending on frequency. In addition, to the $3-\mathrm{db}$ splitter loss, high-f requency losses in the splitter components account for another 0.5 to 1.0 dB .

[^5]SIMPLIFIED DIAGRAM and complete schematic of 2-way splititer. Two-way line splitter divides the Input signal from a single 75 -ohm coaxial line into two separate 75 -ohm trunk lines, each containing all Information on the input signal.

If a single run or loop of coaxial cable supplied an entire building or mobile-home park, cable loss would become excessive and many line amplifiers would be required to power it. On the other hand, splitters located at a central point could supply several feeder lines branching out toward the extremities of the building or areas. Cable loss, then, would be limited orily to the longest feeder line.

Isolation

Because line splitters employ transformer action, high isolation exists between outputs. The high isolation helps prevent interference, spurious signals and reflections that appear on one output line from getting onto the other output line. Typical isolation value for a good splitter is 18 to 20 dB between outputs.

2-, 4-, and 8-way splitters

Basically, the splitter is a 2 -output device. Four-way splitters consist of a

BOOSTER COUPLER CONTAINS broadband amplifier feeding a 4－way line splitter．Power cord goes to $118 \mathrm{~V}, 60 \mathrm{~Hz}$ source providing power to amplifier．
pair of 2－way splitters fed from each of the two outputs of another 2 －way splitter．Such an arrangement gives us four outputs from one input．The in－ sertion loss doubles but the isolation

LEARN THE SECRETS OF YOUR TELEPHONE

 Current News It ens．Code Numbers Illustrations．Games．Facts．Plans Projects • Mistory ．Comics ．Stories Facts prieviously Tel．Co．confiden tial is now published in TEII ove rear mberripion rate faird sisus theo．Garadian TELI
ALL OF THE CONSTRLCHOS PLANS ABOE PLIS A INE YEAR STB SCIPTIOSTO JELEPHOME EIECTROKICSINE SROESARMAILD

IE TETML MEPEOTS S：4AかAIRMAIID

The complete reference book to your LEGAL RIGHTS as a telephone sub． scriber．Study toll evasion，tariffs wiretapping，customer provided equip． ment，and many morel

CASH IN ON THIS NEW MINI－SCOPE AT \＄49500

IT＇S THE WORLD＇S BEST SCOPE VALUE！

－DC． 5 MHz bandwidth
－Only 3＂high X 5＂wide
－Weighs less than 5 lbs－Triggered sweep－All solid state design

－Lab accuracy \＆quality－ 8×10 div display area
－Fits in a tool kit or brief case－Compact，rugged construction
－Up to 100 nsec／div sweep rate－ 1 year warranty－ 50 mV ／div sensitivity

From a Leader in Mini－Portable Oscilloscopes

INTERESTED？Call Hal Wardein at（714） $279-6572$ or write to us at 7170 Convoy Court．San Diego，CA 92111.

 equipment from stock. 96 fact-filled pages loaded with 100's of highest quality professional alarm products, technical notes, diagrams.

ONE-STOP SUPERMARKET SELECTION INCLUDES:

ultrasonics, radar, infrared, undercarpet mats, magnetic contacts, smoke \& heat detectors; Controls; Alarms: bells, sirens, phone dialers, lights, guard panels. Large selection of tools, relays, wire, holdup alarms, books. Fills need for industry, alarm cos., businesses, homes, institutions. Order your copy today

mountain west alarm 4215 n. 16th st. phoenix, az. 85016 (602) $263-8831$

Circle 26 on reader service card

Our 23rd year of service to the World's finest craftsmen and technicians.

A carefully selected and tested assortment of unique, hard-fo-find pools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many fools and measuring instruments available nowhere else. One of the most unusual and complete pool catalogs anywhere. Get your copy of the NC FLASHER today.

M. Mioncl 2000 wes Union Ave. Dept.c8A Camera

Circle 27 on reader service card

8-WAY SPLITTER
EIGHT-WAY LINE SPLITTER divides the input signal into eight individual signals each containing all information on the input signal.
remains the same. Likewise, an 8-way splitter has two 4-way splitters fed from each of two outputs of a 2 -way splitter.

Splitters can also be inverted to combine two signals into one. Applications include combining two antenna down-

SIMPLIFIED

SIMPLIFIED SCHEMATICS of two different inductive two-way splitters are shown in the diagram above.
leads into one or the outputs of two amplifiers into one line.

Splitters are commonly available in 2 -way and 4 -way versions with 8 -way types being less common. However, most any combination can be had by combining 2 -way and 4 -way splitters in cascade.

Booster couplers

If splitter loss (insertion loss) is a problem, you many want to consider booster couplers. A booster coupler is símply a broadband amplifier followed by a splitter, usually a 4 -way. Most booster couplers have a high input capability of the order of +34 dBmV for 7 VHF channels and 5 UHF chan-

WINEGARD MODEL LS-275C two-way splitter.
nels. The gain, usually 6 dB between the input and each output, overcomes the cable and splitter losses to maintain high line levels.

Most splitters and booster couplers are 82-channel VHF/UHF types.

WINEGARD MODEL LS-475C amplified 4way splitter.

There are VHF-only types also available. Booster couplers require 117 V , 60 Hz AC power, restricting their location somewhat while line splitters, being passive can be located anywhere.

HI-FI LAB TESTS

(continued from page 41)
The high-pass output signal from IC3-a is also applied through the crossover-filter swikh to the selected RC filter components. Operational amplifiers IC4-a, IC4-b and IC5-a form a three-pole, lowpass 18 dB /octave Butterworth filter. This filter produces the non-inverted low-pass output, while operational amplifier IC5-b creates the low pass inverted output.

Measurements of primary interest in a product of this type are accuracy of filter response characteristics, distortion, and phase response. Figure 8 is a plot of response of the high pass filter section for

two extreme settings of corner frequencies, namely 20 Hz and 20 kHz . Figure 9 shows the response characteristics of the low-pass filter section when it is set to these same frequencies. Superimposing the plots will show that the -3 dB point in both cases corresponds exactly to the 20 Hz or 20 kHz points desired.

IM distortion was measured for each of

the two channels. In both cases we measured less than 0.01% at 9 volts output and this reading (the limit of our test equipment) remained constant down to outputs of as low as 30 millivolts or so, increasing to about 0.02% for lower outputs. Signal to noise ratio for unity gain in each channel measured 107 dB , prob-

ably a good deal better than the S / N ratio of any power amplifier.

Phase response of the low- and highpass filters, when set for a corner frequency of 1 kHz , is plotted in Fig. 10 and is typical of the phase characteristic that one would expect from a 3 -pole Butterworth filter configuration.

R-E

The brain boggles at what old Johann could have done with his own console, preamp, 8 -in-2 out mixer, octave equalizer, electrostatic speakers, or 24 inch woofer.
Come boggle with us.

(5) ${ }^{\text {Audio }}$ box 30 R

 ATOMETOTSP 19081Craig Stark of STEREO REVIEW says: "Top quality. only U.S. publication devoted to the serious audiophile constructor.
Name
Stree
City
State
Zip

Circle 28 on reader service card

You don't have to buy a new car to get an electronic ignition.

Let's face it. After 37 years, even a Phantom III can use a lift. That's why I put a Delta Mark Ten B Capacitive Discharge Ignition on my Phantom ... to give her a spark I'd pit against any ' 75 model car. I went to Delta because they aren't Johnny-come-latelys. Delta's been making electronic ignition systems for over a decade.
Whatever kind of car you drive, you can give it the same great Delta performance I gave mine.

- Mark Ten B Capacitive Discharge Ignition Systems are manufactured by Delta Products, Inc., a company with a conscience, and with a proven record of reliability both in product and in customer relations.
- The Mark Ten B really does save money by eliminating the need for 2 out of 3 tune-ups. Figure it out for yourself. The first tune-up or two saved pays for the unit, the rest is money in your pocket. No bunk!
- Because the Mark Ten B keeps your car in better tune, you actually can save on expensive gasoline.
- With a Mark Ten B, spark plugs stay clean and last longer . . . fouling is virtually eliminated.

I want to know more about Mark Ten B CDI's. Send me complete no-nonsense information on how they can improve the performance of my car.

Name
Address
City

$?_{--\infty}$DEITA PRODUCTS, INC.
P.O. Box 1147, Dept. RE, Grand Junction, Colo. 81501 303-242-9000

[^6]Standard Mark Ten
$\$ 64.95 \mathrm{ppd}$ $\$ 49.95$ ppd
Circle 29 on reader service card

COLOR TV CAMERA

(continued from page 44)
pear on the monitor screen. Adjustment of the focus control R3, the optical lens focus and the target control R2, should bring the scene into sharp focus with sufficient contrast. Due to the series arrangement of R3 and R2, some interaction will be encountered. The focus control should always be the last one adjusted. In normal operation, only the focus controls will have to be re-adjusted.

Initial adjustments of the deflection assembly

If the camera images appear offcenter and cannot be brought into registration with the PM alignment magnet adjustments (see Fig. 4), the yoke windings must be demagnetized. Momentarily, connect the yoke windings across a variable DC voltage power supply set to about 12 volts. Reverse the leads and lower the power supply setting about 1 volt. Keep reversing the windings and momentarily magnetizing the yoke at decreasing 1 volt increments. At below the 1 volt point, the residual magnetism that remains should be within the corrective range of the yoke PM alignment magnets.

The objective of this process is to get the magnetism levels at a low enough point so that all registration and centering adjustments for both the yokes can be made by simply rotating the alignment rings. With both camera heads in proper focus optically and electrically, it will be necessary to loosen the yoke hold-down screws, Fig. 4, to allow rotation of the yoke within the focus coil, to correct for vertical axis errors. It should also be remembered that exact positioning of the lens mount will alter the axis of the lens, changing the apparent vertical or horizontal centering in relation to the other channel.

The best construction approach will probably be to simply build each camera head as a black and white unit, thoroughly testing it without using the prism or color filters. When results are satisfactory, initial color registration can be attempted. Insert the color filters behind the lens mount. The edges can simply be taped in place. Be sure to allow the camera to warm up sufficiently before performing registration adjustments. Place the test pattern in front of the prism at the minimum distance at which you want the camera to focus. Adjust both lenses for nearest focus. Slide the cyan vidicon tube back and forth until the sharpest focus is
attained. Re-adjust the electrical focus for sharpest image. Then using the adjusted cyan image as a reference, slide the red vidicon back and forth for best focus. Tighten the vidicon tube clamp (see Fig. 4). Adjust red electrical focus for sharpest image. Adjust the red alignment magnets to bring both images in register. It will be necessary to rotate yoke, adjust vertical scan amplitude and perhaps select values for resistor R22 for best registration. It will be necessary to repeat adjustments several times initially. The above adjustments can be made while viewing the picture in either cyan or red. When it is necessary to view a single channel, simply close the iris on the undesired channel.

Final color adjustments

As mentioned last month, the easiest way to adjust color is by adjusting the lens iris controls on a white test pattern with color stripes. Both images together should produce a good white from the test pattern. When the proper levels are set, the other colors should appear in the correct order. The only discrepancy will be with yellow, which may appear as a yellowish-beige. To insure good color fidelity, the red, blue and green controls on the color monitor must be adjusted to produce a per-

KICK OUT THOSE "TOUGH DOG" TIME - =an CONSUMING AM-FM STEREOS before they eat up all your profits.

WITH THE ONLY COMPLETE AM-FM STEREO ANALYZER ON THE MARKET TODAY...WITH ALL SIGNALS AT BETTER THAN FCC SPECS

ALL 12 SIGNALS THAT YOU NEED TO WALK THE TROUBLE OUT OF ANY AM, AM-FM, AUTO RADIO, OR THE BIGGEST HI FI IN THE BUSINESS.

TAKES THE FEAR OUT OF STEREO SERVICING BY ISOLATING PROBLEMS IN MINUTES WITH:

MONITORED BY DUMMY LOADS AND 2 D'ARSONVAL METERS FOR POWER OUTPUT AND TRUE SEPARATION TESTS.
SEE YOUR SENCORE FLPD DISTRIBUTOR FOR A 10 DAY FREE TRIAL.

NOW
Backed By Sencore's
100% Made Right
Life Time Guarantee
\longrightarrow 3200 SENCORE ORIVE,
\longrightarrow SIOUX FALIS, SOUTH DAKOTA 57IO7
fect gray raster with the camera on and operating, but with both iris controls closed. These adjustments will of course, be critical due to the fact that the tint control has no effect with this particular set up. Due to the high amount of light loss through the prism (each tube receives only 30% of incoming light), a very high amount of illumination will be required for good color fidelity. I use No. 2 photo-flood blubs. If the scene has a slight pinkish cast, or the yellow appears too pink, it is possible the light bulb is too close to the subject. The camera sensitivity could be greatly increased with a higher efficiency prism or perhaps a mirror optic system which would overcome much of the light loss encountered with the present prism.

It is anticipated that some camera builders may be able to locate high efficiency prisms or low light loss semisilvered mirrors. It is possible by using a more complex mirror arrangement to put both camera heads in line, thereby making a somewhat smaller and more compact camera. Inasmuch that this is the first known home experimenter or amateur type of live color camera, it is recognized that many modifications, changes and improvements could be incorporated by individual camera builders. For example, by using the camera in conjunction with a commercial N.T.S.C. color encoder, some inherent color deficiencies may be correctable.

Next month we will cover construction of the color monitor sync circuits, red and cyan amplifiers, as well as modification of the two TV sets for use with the camera.

R-E

Ultrasonic measurement system

 will aid medical researchersA new ultrasonic measuring system developed recently by RCA will provide medical researchers with previously unavailable precise measurements of ultrasonic diagnostic devices. In so doing, it may increase and speed up the use of ultra-high-frequency sound in detecting malignancies in human tissue.

Ultrasonic techniques have been preferred for many types of research because they enable body tissue features to be observed that can't be seen by X-ray or optical techniques. But up to now, researchers had no way of knowing precisely the intensity of the waves they were using. This created difficulties in determining exactly what effect increasing or decreasing the intensity or frequency of the sonic waves had in detecting malignancies or tissue malformations.

To measure the output of an unitrasonic transmitter with the new technique, it is placed in a water tank containing a gold-plated pellicle $15-\mathrm{cm}$ in diameter and a few millionths of a meter thick. The pellicle, or membrane, is so thin as to be transparent to sound and follows exactly the microscopic motions of the
water that make up the sound waves passing through it, vibrating in proportion to the intensity of the sound waves reaching it.

Its motions are sensed by scanning a laser beam across the pellicle horizontally and vertically. The reflected beam is minutely altered (phase-modulated) by the pellicle's vibrations. An interferometer compares the modulated beam with an unmodulated reference laser beam and produces electric signals that can be measured by conventional electric meters.

When the system is used to measure ultrasonic waves passing through tissue, the waves are transmitted through or reflected from the specimen and imaged, or
focused, onto the pellicle by plastic acoustic lenses. The pellicle is so tightly coupled to the water that its vibrations at any point are determined by the amount of sound that reaches that point. That amount depends on how much sound was imaged through the specimen. Mapping the small motions of the pellicle with the laser interferometer technique provides an image of the specimen on the cathode-ray display tube.

With a 15-milliwatt laser, the system has a potential sensitivity of about 5 nanowatts-per-square-centimeter, corresponding to a membrane displacent of .007 angstroms at 1.5 MHz . The system has a wide frequency response-about 0.5 MHz to approximately 10 MHz . R-E

NTERNMROONL FREQUENCY MEIER for festing mobile transmiffers and receivers

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator - Measures FM Deviation
The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended
MHz . The range covers 25 to 1000 frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}(.000125 \%$ special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

Write for catalog!

10 Patterns: Full \& Gated Rainbow, 4 Crosshatch, 4 Dot, Die Casted $1 / \mathrm{g}^{\prime \prime}$ Aluminum Case.

10 Patterns: B\&W Bars, White Field, 4 Crosshatch, 4 Dot.

2 Patterns: 20×16 Crosshatch, 320 Dots, weight only 17 oz .

FULL 15 DAYS MONEY BACK GUARANTEE

See Your Distributor or Write:
ELENCO ELECTRONICS INC.
8744 W. North Ter., Niles, III. 60648
312-564.0919 MODEL S6-
\square My check or money order enclosed.
\square COD-Add $\$ 2.50$ mailing 2 handling.

STEP-BY-STEP

(continued from page 60)
the receiver again plugged into a line isolation transformer, the waveforms swing out tall and steady. Top trace in Fig. 4, now has more than 20 volts AC swing with a DC level in excess of 40 volts, and with the color control only half open. This waveform should swing to 40 volts with the color control turned fully clockwise-and it does. As a backup, and without using double photo exposure, the B-Y output of this set is also shown in the lower trace of Fig. 4 at 50 volts/division. Therefore, it is riding at a DC level of just over 150 volts, the 3 rd and 9 th bars are at zero reference, and the overall waveform, including the $10-\mu \mathrm{s}$ blanking pulses amounts to a total amplitude of 120 volts.

Now, with the tuner set on channel 3-which accomodates most color bar generators-the vector pattern turns out as shown in Fig. 5. Naturally I did a little fine tuning immediately after transistor replacement, and touched up the two bandpass transformers and chroma input coil L501 for best waveform symmetry, no petal crossovers, and put the R-Y third bar at about 90 degrees. You may enlarge this pattern, of course, by merely adjusting your oscilloscope's vertical ampliflers-if you have a modern scope. The smaller display, however, looks cleaner, and makes a somewhat better photograph than does a more spread out pattern. In vector-aligning chroma stages, you always start with the chroma takeoff coil, get your narrow petal width, then continue with the first and second bandpass transformers, in that order. Usually, the entire pattern is shaped by these three circuits, with burst and the 3.58 MHz coils having to operate on tint phase settings and R-Y, B-Y demodulator references that select color injection into the various segments of the combined luminancechroma picture. Consequently, since this is an RBG-Y color difference set where luminance goes to the cathodes of the picture tube and chroma to its grids, the color-video mix takes place in the tube itself.

Color faults aren't that tough

Color problems aren't really all that difficult, if you'll remember there are three basic signal paths that must be operated on in the chroma sections. These signal paths are as follows:

1. The $3.08-4.08 \mathrm{MHz}, 1 \mathrm{MHz}$ color bandwidth information.
2. Burst amplifier enabling pulses from either the sync separator (Japanese sets) or from the flyback (U.S. sets).
3. Burst, itself, that normally enters the first bandpass amplifier (along

FIG. 5-NORMAL VECTOR PATTERN is shown aligned and with full amplitude.
with color), is amplified and then put to the burst amplifier for color sync processing.
If all three inputs are identified and followed through their respective stages of amplification and demodulatioh, there is no way you can miss finding a chroma problem. But digging with an aged VOM or VTVM, especially in solid state circuits, won't resurrect the dead. You'll find it takes an oscillo-scope-and a very good one-every time. In chroma circuits, your AC amplitudes-let's forget the term peak-to-peak, it's confusing-and your DC levels should be investigated simultaneously for competent signal analysis. And a good vectorscope will tell all. The final waveform, Fig. 5, now has scope amplifiers set at 50 volts/div., for R-Y, B-Y picture tube inputs, where they should be for most all color receivers. If you have to drop to 20 volts, as we did in Fig. 2, somebody's in trouble . . . Let's hope it isn't you. But even troubles like this are simple if logical troubleshooting procedures are followed.

R-E

HELP
 ANIERICA WORK. Hire the disabled vet.

He can handle most jobs as well as anyone else. Maybe even better. So if you have a job to give. call the National Alliance of Businessmen. Get people off the welfare rolls. and on the payrolls.

- payins.

Circle 62 on reader service card

READER QUESTIONS

(continued from page 69)

TRANSISTOR REPLACEMENT?

I need a horizontal output transistor for a Westinghouse V-2483-1 chassis. The part number is 29V069C01, and it isn't listed. No one seems to know what to use in here. Can you help?म.M., Pittsburgh, PA.

You're right; this one isn't listed in any of my seven transistor guides either. However, from the schematic and the ratings, something like an RCA SK-3111 ought to do, or a Motorola HEP-S7005. Both of these seem to have ample safety factors. For the best way, use a variable-voltage line transformer when you turn it on the first time, with current meters, etc. Saves a lot of trouble!

A ROLLS-ROYCE RADIO RELAY?

I want a relay circuit, like the one used in Rolls-Royce cars, that will switch the speakers from radio to tape automatically when the rape deck is turned on. Do you know where I could get this?-L.G., Astorin, NY.

You'll need a 12 -volt DC, 4PDT relay. Hook it up as shown. The relay connects the four speakers to the radio

when it is not energized. Connect the relay coil lead to the tape-deck motor connection so that when the tape-deck is turned on, it energizes the relay.

WHERE'S THE OTHER
 TRANSISTOR?

I can't find the other transistor in the horizontal output stage of this little GE TA chassis. It shows it on the print I have, but I can't find it in the schematic! What's going on?-A.B., Key West, FI.

You have the horizontal output transistor in there. There are no more transistors in this circuit. You're being caught by one that's got a lot of people. What you're looking for is the damper diode! In this set, this is a GE Part ET57X34, and it is in a TO-3 transis-
tor case! It is mounted right alongside the horizontal output transistor, on the heat-sink.

NO HIGH VOLTAGE

If I take the plate-cap off the horizontal output tube in this Zenith 19CC19, all voltages are normal except the high voltage, of course. If I put this cap back on, everything goes to pieces. It squeals, the high voltage starts to build up and the 26LX6 gets red hot. Horizontal frequency goes avay off. Can't get any help from anyone else; how about you?-P.K., Cherry Hill, NJ.

We'll sure give it a good try! This sounds familiar. These are exactly the kind of symptoms you get when you have a filter capacitor open in the wrong place (meaning the $\mathrm{B}+$ feed to the horizontal oscillator/output stages. This allows a feedhack to be set up. This can cancel out the horizontal oscillator, cause a loss of drive and all of the other goodies you see.

Easy check; just scope all of the DC voltage supply lines. You should see nothing at all on them, except a nice straight line. Any horizontal-frequency pulses mean trouble. Replace capacitors.

R-E

new products

Abstract

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

SOLDERING IRON TIPS. Vented Tunnel Tips solder and desolder, all with the same tip. New design optimizes capillary action to enable both functions alternately and continuously. Only the use of "flux" is essential to maintain capillary action. The unique design

permits the tip to surround the connection to both solder and desolder. Tips range in price from $\$ 1.98$ each to $\$ 2.28$ each and are available for American Beauty, Ungar, Hunter, Esico, Kwickie, Wall-Lenk and Weller soldering irons.-Joe Nicosia, c/o Gunmaster, Box 743, Kings Park, NY 11754.

Circle 31 on reader service card
MAGNETIC NUTDRIVERS. With fixed handles are available in four styles, each in two sizes. The line also includes two sizes of interchangeable shanks which fit in all Series-99 handles, both regular and ratchet types. The permanent Alnico magnet in the

insulated socket holds fasteners firmly for easy, one-hand driving. Styles range from a $31 / 2 \mathrm{in}$. midget pocket clip to a super long $203 / 4$ in. driver, all in $1 / 4$ and $5 / 16 \mathrm{in}$. hex openings. Intermediate lengths are 7 and 10 in . Handles are color-coded red or amber. -Xcelite, Apex, NC 27502.

Circle 32 on reader service card
3½ DIGIT DVM, model DVM32. Portable unit is powered by standard "C" cells, rechargeable, or optiona! $115 / 230 \mathrm{~V}$ line-cord power-adaptor. "Auto-off" circuit turns the LED display off between measurements on any range, when in the AUTO position. A continuous display is available in the normal ON position. The unit has a basic 0.5% DC volts accuracy with 1 mV resolution backed by a 15 -megohm input impedance. A 200K isolation resistor in the probe further reduces potential loading error. DVM Lo Power ohms mode uses. . 08 V test voltage that will not trigger semiconductor junctions during resistance measurements. Accessory high-voltage probe will extend the 2000 V range to 40 kV for complete measuring capabilities.

Specifications: DC VOLTS: 4 Ranges; 0 to
1.999, 19.99, 199.9, 1999. AC VOLTS: 4 Ranges; 0 to $1.999,19: 99,199.9,1000$ volts RMS. Accuracy: 1.5% at 60 Hz from $1 / 4$ scale to full scale, 3% from $1 / 10$ to $1 / 4$ scale plus or minus 1 dB from 40 Hz to 3 KHz . Input Impedance: 1.8 megohms shunted by 18pF. OHMS: Low Power: 5 Ranges; 0 to 199.9 ohms, $1.999 \mathrm{~K}, 19.99 \mathrm{~K}, 199.9 \mathrm{~K}, 1.999 \mathrm{meg}-$

ohms. Accuracy: 1\%. Maximum Test Voltage: 80 millivolts. OHMS: High Power: 5 Ranges; 0 to $1.999 \mathrm{~K}, 19.99 \mathrm{~K}, 199.9 \mathrm{~K}, 1.999$ megohms. 19.99 megohms. Accuracy: 1% on all ranges except 5% on 19.99 megohms. Maximum Test Voltage: 800 millivolts. DC CURRENT: 4 Ranges; 0 to $1.999,19.99,199.9,1999$ milliamps. Accuracy: 1%. AC CURRENT: 4 Ranges; 0 to $1.999,19.99,199.9,1999$ milliamps. Accuracy: Same as AC volts.

Unit weighs $21 / 4 \mathrm{lbs}$., measures 7 in . wide $\times 5 \mathrm{in}$. high $\times 4 \mathrm{in}$. deep. Complete with direct-input probe. The price is \$198.00.Sencore, 3200 Sencore Drive, Sioux Falls, SD 57107.

Circle 33 on reader service card
DIGITAL MULTIMETER KIT, model IM-2202. $31 / 2$ digit display features automatic polarity indication and decimal point placement. Continuous rotation range switch and four pushbutton function switches select any of the ranges. Portable unit is powered by four rechargeable nickel-cadmium batteries and

a built-in charging circuit for up to eight hours of continuous operation. The unit can also be operated from 110 or 220 VAC. 26 ranges include full scale ranges of 100 mV to 1000 volts $D C, 100 \mathrm{mV}$ to 750 volts $A C$, $100 \mu \mathrm{~A}$ to 1000 mA and 100 ohms to 1000 K ohms. 100% overrange capability allows measurements up to 1.999 on all ranges except 1000 VDC and 750 VAC, giving full 2A or 2 megohm capability. Overrange is auto-
matically indicated by a flashing " l " display.
If Lab standard is used for calibration, DC accuracy is $\pm 0.2 \%$. For AC, accuracy with a lab standard is $\pm 0.5 \%$ to 10 kHz . Internal standards supplied with the kit allow easy field calibration to $\pm 0.5 \%$ for DC and $\pm 1 \%$ for AC. Heath Company, Benton Harbor, MI 49022.

Circle 100 on reader service card
TRANSISTOR CHECKER, model 688. Test semiconductors in or out of circuit. Use this unit with your oscilloscope and touch the semiconductor with the probe. The waveform tells its condition at a glance. Switch

selection for "in" or "out" of circuit testing. Checks all diodes and transistors (except MOS FETS). 5-Way binding posts for interconnection to the scope. Prices: $\$ 14.95$ kit, $\$ 22.95$ assembled.-Eico Electronics, 283 Malta Street, Brooklyn, NY 11207.

Circle 34 on reader service card
TEST JIG CABLE AND ADAPTER KITS. Six new models, one each for servicing RCA, Admiral, Magnavox, Philco, Sylvania and Zenith color-TV. Use with RCA color test jig. Each adaptor packed in plastic case that's

stackable. Shoe box size cases have sliding drawer to make handy storage assembly when no longer needed for the storage of the test jig kit.-RCA Distributor and Special Products Div., P.O. Box 100, Deplford, NJ 08096.

Circle 35 on reader service card
DIGITAL MULTIMETER. mode/ PM2513. LSI circuit performs part of the analog circuit functions, the A/D conversion and the digital signal evaluation, reducing the total number of circuit components. A $31 / 2$ digit, seven segment LED display with automatic decima! point. Functions selected by push-buttons, ranges with a rotary switch. AC and DC voltages are measured in 5 ranges, from 0.1 to 600 V and 0.1 to 1000 V , respectively. Resolution is $100 \mu \mathrm{~V}$ in the 0.1 V range and accuracy is $\pm 0.2 \%$ full-scale $\pm 0.3 \%$ of reading for $D C$ and $\pm 0.2 \%$ full-scale $\pm 1 \%$ of
reading for $A C$. Errors due to the instrument loading are reduced by a 10 megohm input impedance. Five AC and DC current ranges extend from $100 \mu \mathrm{~A}$ to 1A full-scale, with a resolution of $100 \mu \mathrm{~A}$ in the lowest range. Accuracy for both current and resistance measurements is 0.2% full-scale $\pm 1.5 \%$ of reading.

Unusual feature is built in provision for temperature measurements which can be

made with an optional probe. Surface temperature measurements cover $-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$, with a resolution of $0.1^{\circ} \mathrm{C}$ and an accuracy of $\pm 1^{\circ} \mathrm{C}$.
Unit is powered by 6 standard 1.5 V size C batteries. To increase battery life, the circuitry is normally at rest and switched on by means of a special push button for 25 seconds each time a measurement is taken. Optional rechargeable battery pack or normal line voltage is available. Unit measures 7.3 in . high $\times 6 \mathrm{in}$. wide $\times 2.6 \mathrm{in}$. deep and weighs 3 pounds including batteries. Price is $\$ 245.00$. The optional temperature probe, model PM9247 is \$75.00, a rechargeable battery pack is $\$ 15.00$.-Philips Test \& Measuring Instruments, Inc., 400 Crossways Park Drive, Woodbury, NY 11797.

Circle 36 on reader service card
CASSETTE DECK WITH DOLBY. model CT. F6161. New cassette deck offers front panel access for cassettes and all operating controls. As a result, the newly designed unit can be mounted in only $51 / 2$ inches of shelf height or may be stacked above or below other components. Designed for use with available cassette tapes, the unit presents low distortion and high signal-to-noise ratio and dynamic range. Transport system is

powered by an electronically controlled DC servo motor for high starting torque and is immune to voltage or load fluctuations. Features include built-in selectable Dolby noise reduction for up to 10 dB signal-to-noise improvement. Separate bias and equalizatlon switches for standard, low noise, Chrome and Ferri-Chrome tapes. Illuminated VU level meters plus record mode indicator light. Automatic stop at end of tape travel in play, record and fast wind modes. Three-digit tape counter. Pause control, separate dual mic and line inputs, line outputs and DIN connector. Built-in monitoring amplifier and headphone jack. Specifications include: Frequency response: 30 to $13,000 \mathrm{~Hz}$ (40 to $11,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$, standard tape): 30 to
$16,000 \mathrm{~Hz}$ (40 to $12,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ Chromium Dioxide tape). Signal-to-noise ratio: 58 dB with Dolby on; 48 dB Dolby off (standard tape). Wow and flutter: Less than 0.12\% (WRMS). Equalization: Standard or $70 \mu \mathrm{~S}$ (Chrome), selectable. Fast forward or rewind time: Less than 80 seconds (C-60 tape). Input sensitivity: 0.2 mV or 90 mV , Mic; 60 mV to 9 V , Line; 6 mV to 2.7 V DIN. Output level: 300 mV . Line and DIN; $40 \mathrm{mV} / 8$ ohms, Headphone output. Power Requirements: 120V, $60 \mathrm{~Hz}, 16$ watts. Size. $17-13 / 32$ in. $W \times 5-$ $7 / 16$ in. $H \times 13$ in. D. Price: $\$ 299.95$.-U.S. Pioneer Electronics Corp., 75 Oxford Drive. Moonachie, NJ 07074.

Circle 37 on reader service card
23-CHANNEL CB TRANCEIVER. model CB 720. One of two new entries in the CB field features automatic noise limiter, rotary volume on/off control, public address pushbutton control, illuminated signal-radio frequency meter, rotary squelch control, built-in

noise suppression and color-coded channel selector with lighted channel-indicator. Mobile unit will work with either positive or negative ground, has an external speaker jack, a quick mount snap on microphone bracket, and a very convenient antenna connector. Comes complete with all necessary wiring and mounting hardware. Boman Industries, 9300 Hall Road, Downey, CA 90241.

Circle 38 on reader service card

BUBBLE ETCHER. Designed to satisfy the printed circuit requirements of small shops. The bubble etcher offers semi-automatic operation and requires only periodic inspection of the board. Vigorous bubbling action provides fast etching while reducing the possibility of staining or undercutting. Unit consists of an etching tray connected to an aquarium air pump that provides bubble agitation of the etchant. The tray and bubble

source are designed to maximize etching rate as determined by the pressure and velocity of the bubbles. The unit is built of $1 / \mathbf{B}^{\prime \prime}$ acrylic which allows etchant temperatures of up to $200^{\circ} \mathrm{F}$. The unit measures $11 \times 5 \times 71 / 4$ inches which permits etching of boards up to 6×8 inches. A splash guard protects the surroundings. The unit comes complete and ready to use, except for an easily obtaināble aquarium pump. The price is $\$ 12.00$ excluding pump, $\$ 17.50$ including pump.-Trumbull, 833 Balra Drive, El Cerrito, CA 94530.

Circle 39 on reader service card

Discover your Alpha Brainwaves with this professional Biofeedback System.
Lowest Cost Brainwave Monitor EICO introduces a price breakthrough in the fantastic new field of brainwave biofeedback... a completely safe, battery operated, biofeedback system that offers features and sensitivity comparable to professional models costing much more.
You Will Be Amazed At What You Hear The BW-300 will detect your alpha brainwaves (which occur when you are totally relaxed) and produce a tone varying in frequency according to your mental state.

100\% Solid State Circuitry

Reliable All Solid State IC Circuit Design features an active filter that isolates alpha brainwaves and a high-gain low-noise amplifier providing 5-microvolt sensitivity for easy alpha recognition. The BW-300 is supplied with stethescopic earphones, electrodes headband, contact cream and

KIT 34^{95}
instructions.
WIRED 59.95

FREE EICO CATALOG

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 \notin$ for fast first class mail service.
EICO-283 Malta Street, Brooklyn, N.Y. 11207
Leadership in
creative electronics $\triangle \square \square \square$
\square

CHECK-A-COLOR JIG. model CK 3000, is factory tested, fully assembled and ready to use. It can be used on the bench with 48 separate brand name TV sets with anode voltages up to 30,000 volts, and permits fast efficient servicing of 7,000 different solidstate, tube and hybrid color-television chassis. The jig can handle 70° and 90° tubes,

hybrid, transistor and SCR circuitry with a wide range of impedances. A built-in alternate focus supply also permits testing of focus voltages as low as 4.5 kV . A complete set of programmers for the patented yoke circuit is furnished for correct matching to six different receiver deflection outputs. The unit contains a 90° slotted-mask, in-line color picture tube with 13 inches of viewable area and leaded strontium X-ray inhibiting glass. The self contained unit is portable, weighing less than 25 pounds, making it easy to move from one bench to another. Available as optional accessories are adapter kits for the seven most popular TV brands and discrete adapters for 41 more. GTE Sylvania, 70 Empire Drive, West Seneca, NY 14224.

Circle 40 on reader service card
CASSETTE EDIT/REPAIR KIT. Permits recordists to repair a broken cassette tape, yet avoid the almost impossible problems associated with disasembling sealed or screwheld shells. Repairs can be made without disturbing the casette components. The handy kit can repair most tape breaks. How-

ever, it cannot fix mishaps in which the tape has pulled free from the hub or broken within six inches of a hub. The kit doubles as a precision editing block. One side has a diagonal cutting guide for normal splicing and a butt cutting guide for close editing. A five-inch channel groove holds the tape. Six adhesive-tipped polyester picks for retreiving tape ends lost inside the cassette housing and six pieces of $150-\mathrm{mil}$ splicing tape, pre-cut to proper length are contained inside the kit along with a fully illustrated instruction booklet. Price: \$3.10.-ERK, Dept. MA, Box 33600, St. Paul, MN 55133.
Circle 64 on reader service card

Circle 65 on reader service card

CURVE TRACER, model IT-1121. Accurately displays operating parameters of virtually all types of semiconductors including bipolar transistors, diodes, SCR's triacs, FET's, etc. Intended for use by TV service technicians, hobbyists and anyone else who works with

electronic circuits. A semiconductor curve tracer is a valuable aid in selecting devices for specific applications or for sorting, inspecting and testing. It's particularly useful in identifying unknown semiconductors. Price: $\$ 89.95$ as a kit.-Heath Company, Benton Harbor, MI 49022.

Circle 100 on reader service card
PRESS ON LABELS identify DIP socket pins and circuit board hole locations quickly and easily. The 14 -pin DIP markers, models MS9 , have double sequential number lines from 1 to 7 on one side and from 8 to 14 on the adjacent side. They're all printed on 0.1-in. centers to match the lead spacing of conventional DIP components. Similar strips are

available for 16-pin DIP's (MS-10) and pairs of single line strips, numbered 1 to 7 and 8 to 14 for 14 -pin DIP's (MS-9A), as well as 1 to 8 and 9 to 16 for 16-pin DIP's (MS-10A). All strips are adhesive-backed and self adhering. They come on backing cards. Prices vary from $\$ 1.98$ for the MS-9 and MS-10 for a package of 36 , to $\$ 2.45$ for the MS-9A and MS-10A for a package of 36.-Vector Electronic Co., Inc., 12460 Gladstone Avenue, Sylmar, CA 91342.

Circle 47 on reader service card
BATTERY CHARGER, model GP-1044. A 15A automatic battery charger that can deliver dead battery starts within one minute. A practical solution to dead battery problems in cars, boats and campers using 12 -volt lead-acid batteries of automobile size or larger. Unit is completely automatic in the

normal mode, bringing the battery to full charge then automatically shutting down, turning on again only to compensate for normal battery leakage. Pressing a spring loaded switch for not more than one minute gives a 50A boost-surge that puts enough energy into a dead battery to start an (continued on page 86)

LEADER Rutrmatic Dual Channel/Dual Trace 5" Scope/Vectorscope

- Autamatic Trigger - Putomatic Horizontal Sweep - Autumatic Vertical Input

And that means virtually error-fres, easy operation. You can oven read betwoen ranges in any position as with analog VTVM's. Features: separate and simult. sweep display, Ch 1 : atternate, chopped, auto/norm lrigger; 10 MHz b'width; $10 \mathrm{mVp}-\mathrm{p} / \mathrm{cm}$ to $20 \mathrm{Vp}-\mathrm{p} / \mathrm{cm}$ vert. sen-
sitivity, 11 calib. steps; $0.5 \mu \mathrm{~S} / \mathrm{cm}$ to $0.23 / \mathrm{cm}$ sweep range, 18 steps callb X5 sweep mag.; XY \& vectorscope display. Compact, lightweight with low power consumption.

$\$ 56995$ complote whn prober
 MODEL LEO.506 teet laads.

$\square=$ D D \quad - Put Us To The Test"

Instruments Corp. 151 Dupont SL. Plainview, L.I., N.Y. 11803 (516) 822-9300
Circle 67 on reader service card

Now...the most enjoyable do-it-yourself project of your life-a Schober Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skill (or lack of it) how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.

Five superb models with kit prices from $\$ 575$ to around $\$ 2,300$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished protessional. And there are accessories you can add any time after your organ is finished - lifelike big auditorium reverberation, automatic rhythm, presets, chimes, and more.
Join the thousands of Schober Organ builderowners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives - first assembling, then learning to play the modern King of instruments through our superiative instructions and playing courses.
Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!

[^7]Circle 68 on reader service card

ELECTRO-LAB

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units - $5^{\prime \prime}$ solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

12 REASONS YOUR CAR NEEDS TIGER CDI

Instant starting in any weather - Eliminates tune-ups - Increases gas mileage - Increases horsepower 15% - Improves acceleration and performance - Spark plugs last up to 70,000 miles - Reduces engine maintenance expense - Amplifies spark plug voltage to 45,000 volts Maintains spark plug voltage to 10,000 RPM - Reduces exhaust emissions - Dual ignition switch - An Unconditional LIFETIME GUARANTEE Installs in 10 minutes on any car with 12 volt negative ground - No rewiring - Most powerful, efficient and reliable Solid State gnition made

SATISFACTION GUARANTEED or money back

TIGER 500 assembled \$5 3.95
 TIGER SST assembled \$42.95 Post Paid in U.S.A.

Send check or money order with order to:

TH:Star Corporation

P. O. Box 1727 B
Grand Junction, Colorado 81501

DEALER INQUIRIES INVITED

Circle 69 on reader service card

fiss electronics

008A MICROCOMPUTER KIT

8008 CPU, 1024×8 memory; memory is expandable. Kit includes manual with schematic, programming instructions and suggestions; all ICs and parts supplied except cabinet, fuses and hardware.
includes p.c. boards

- \$375.00

MANUAL ONLY, $\$ 25.00$ (No Discount on Manual)

008A-C AUDIO CASSETTE ADAPTER KIT

Kit includes all ICs, p.c. board, schematic and instructions. Will interface most audio cassette recorders to the 008A Micro-computer. NOT intended to interface with any other computer.

- $\$ 100.00$

008A-K ASCII KEYBOARD INPUT KIT

Kit includes keys, p.c. board, ICs, schematic and instructions. This kit is intended to interface ONLY with the RGS Electronics 008A Microcomputer

- $\$ 135.00$

TRANSISTORS

NPN General purpose TO-92 $\$.08 ; \$ 5.95 / 100$ PNP General purpose TO-92 \$.08; \$5.05/100 Other transistors and JFETS available at our usual low prices; all are tested, good units. Specs available in our flyer.

RGS ELECTRONICS, 3650 Charles St. Ste K, Santa Clara, CA 95050
(408) 247-0158

We sell many ICs and components not listed in this ad, included most of the 7400 series; send a stamp for our free tlyer.
TERMS OF SALE: All orders prepaid; we pay postage on all U.S. orders. Handling charge of $\$ 1.00$ on U.S. orders under $\$ 10.00$, foreign orders under $\$ 25.00$. California residents please include sales tax. Please include name, address, and zip code on all orders and fiyer requests.
*DISCOUNTS: 10% OFF ORDERS OVER $\$ 25.00-20 \%$ OFF ORDERS OVER $\$ 250$.
prices sbject to change without notice.
Circle 70 on reader service card

NEW PRODUCTS

(continued from page 81)
operable engine. A thermo-sensing auto-matic-resetting circuit breaker protects against over-charging in the boost mode. Price: $\$ 49.95$ as a kit.-Heath Company, Benton Harbor, MI 49022.

Circle 100 on reader service card
SOLDERING IRONS. Featherweight units have heat-resistant or shielded pencil-like handles and extra long cords. Weight varies from $13 / 4 \mathrm{oz}$. to less than 1 lb , even in the

heavy-duty models. Pre-tinned lips of plated copper are replaceable and range from 25 to 175 watts. Price is from $\$ 5.50$ to $\$ 14.00$. Weller, The Cooper Group, Apex, NC 27502. Circle 48 on reader service card

OSCILLATOR, model 200. Battery-powered audio (sinewave) test oscillator is housed in extruded aluminum case and features 21 pushbutton selectable frequencies that range from 30 Hz to 20 kHz . Output levels of 0 dBm or -50 dBm are available by

pushbutton selection with level tracking of $\pm 0.5 \mathrm{~dB}$ over entire frequency range. Output is transformer isolated, balanced, floating and presents an impedance of 600 ohms at the high level setting and 150 ohms at the low level setting. $211 / 6 \times 41 / 6 \times$ 33/1. in.; \$129.95.-IBT Laboratories, Inc., 5200 Myer Court, Rockville, MD 20853.

$$
\text { Circle } 49 \text { on reader serice card }
$$

ELECTRONIC WATCHDOG. Provide insurance for yourself when out of town. If the door of your hotel or motel is opened, a piercing alarm will sound. If the intruder tries to deactivate the unit by standing it upright again or by pushing the only button visible, the unit will not shut off. You are the only one who knows the secret of deactivation. 100% solid-state circuit; elec-
tronic osciltator (2900 Hz) produces over 80 dB audio alarm; battery powered with

two 9 -volt transistor batteries; $2 \times 9 \mathrm{in}$; less than 8 oz ; $\$ 30.00$.-Harris Electronics, 271 Mimosa Way, Portola Valley, CA 94025. Circle 50 on reader service card

SCOPES

(continued from page 59)

X-Y phase measurements

Within the frequency limitations of the horizontal and vertical amplifiers, the X-Y oscilloscope can be used to make phase measurements. The phase measurement technique is similar to the Lissajous frequency measurement. To measure phase, horizontal and vertical amplitude measurements are taken, from which phase angle is computed. For phase measurements. horizontal and vertical display amplitudes must be identical and horizontal and vertical frequencies the same. Independently adjusting each channel, using the variable attenuator, to set the display amplitude at an equal number of divisions is a simple method of assuring identical amplitudes. Figure 22 shows the various 45° phase relationships.
As shown in Figure 23, the exact phase

FIG. 24-A 1° PHASE SHIFT measured on an $X-Y$ oscilloscope.
relationship may be calculated. Phase measurements made on an X-Y oscilloscope must include any phase difference between the X and Y channels of the oscilloscope at the measurement frequency. For comparison purposes, Figure 24 shows a 1° phase-shift.
(continued next month)

EMPLOTER SUPPORT OF THE GUARD \& RESERVE

new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

FM TWO-WAY RADIO correspondence course is described in this 8 -page pamphlet. The booklet outlines the contents of 40 lessons and 13 reference texts are included with the course offered by Motorola Training Institute. The course covers $F M$ two-way radio from the service technicians point of view.-MTI, College Hill Rd., Summerdale, PA 17093.

Circle 42 on reader service card
MICROPHONE SELECTION AND APPLICATION GUIDE. The Music-Maker's Manual of Microphone Mastery presents tips from leading sound engineers on how to select and use microphones plus guidelines for on-stage miking situations. The brochure describes in non-technical terms how to professionally mike voices and instruments with listings of soundman-proved techniques for handling especially troublesome sound pickup situations. Also fealured are recommended microphones for specific instrumental and vocal styles, microphone positioning hints and a description of a variety of accessories that protessional entertainers find helpful-Shure Brothers Inc., 222 Hartrey Avenue, Evanston, (L60204.

Circle 43 on reader service card
RECORD CARE BOOK. Just For The Record. A 28-page book that deals with topics such as the problems of dust and static, how to handle records properly, playing records with changers and automatic turntables, rejuvenating old records, the treatment of 4 channel records, and many other areas that will prove invaluable to anyone who collects and plays records. In addition to offering specific tips on record cleaning, storage and maintenance, the book presents data on stylus and iurntable platter care. It also explains the effects of record cleanliness on tracking force. Methods of static elimination are also described.-Elpa Marketing Indus. tries, Inc., New Hyde Park, NY 11040.

Circle 44 on reader service curd
A REVOLUTION IN IGNITION SYSTEMS. A 24-page booklet that traces the history of conventional ignition systems describes component functions and details the relatively recent move to electronics. The balance of the book describes the manufacturer's Tiger capacitive discharge ignition system and presents comparative data on transistor and conventional ignition systems.-Tri-Star Corp., P.O. Box 1727, Grand Junction, CO 81501.

Circle 45 on reader service card
BREADBOARDING DEVICES is the subject of this 14 -page coloriul brochure. The full line of this manufacturer's breadboarding products range from a $\$ 5$ Proto-clip for pow-er-on-hands-off signal tracing through a logic monitor and on to a variety of breadboarding assemblies. All should be of interest to both the experimenter and industrial technician.Continental Specialties Corp., 44 Kendall St., New Haven, CT 06512.

LOOKING FOR INNOVATION? LOOK TO PAIA KITS.
Some recent examples . . .
The GNOME, The only Electronic Music Micro-Synthesizer available in a hand held, battery powered package.
\$48.95 shipping wt. 4 lbs. The PYGMY, battery powered practice/ headphone/stage amp. 8 watts peak power driving super-efficient 5 " accoustic suspension speaker.
\$39.95 shipping wt. 6 lbs. NEW 24 HOUR DEMO-LINE for a oneminute recorded demo of PAIA Synthesizers (405) 843-7396. Catalog requests or charge orders also acceptable.

FREE CATALOG
PAIA Electronics, Dept. R 1020 W. Wilshire
Blvd., Oklahoma City, OK 73116

MATHEMATICS
 ELECTRONICS

We are proud to announce two great new courses for the electronic industry.

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE: you sign no contracts - you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE
DEPT. RE-875|P.O. BOX 1189 PANAMA CITY, FLA 32401

Circle 71 on reader service card
Circle 72 on reader service card

New Value For The CostConscious Buyer 5995.00 includes:
 - 10 MHz at $10 \mathrm{mV} / \mathrm{div}$ •Dual Trace
 -Compact Size (4"X 9" X 11") •Probes and Batteries

If your requirement dictates a portable oscilloscope with dual trace and 10 MHz at $10 \mathrm{mV} / \mathrm{div}$ sensitivity, but your budget demands frugality, then you should consider the new TELEQUIPMENT D32. It offers $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ in 9 calibrated steps, automatic selection of chopped or alternate mode, depending on sweep speed setting, plus automatic selection of tv line or frame display. It also offers a choice of battery or ac line operation . . with up to 4 hours continuous operation from 6 rechargeable, 'D' cell batteries. The batteries, two probes, and a molded front-panel protective cover are all included as standard equipment.

We feel the D32, at only 10 lbs ., is well suited as a servicing tool. Especially for industrial manufacturing, computer peripherals, and voice communication equipment. And it should be considered for servicing the rapidly increasing number of consumer electronic products.
If you agree and would like a demonstration at your convenience and in your environment, or simply additional information, contact your local Tektronix Field Office or write: Tektronix, Inc., P.O. Box 500, Beaverton, Oregon, 97077.

\mathcal{A} Major \mathcal{A} dvance...

*INSURES PROPER COMBUSTION *EASIER STARTING
*LONGER POINTS and PLUG LIFE
*INCREASE MILEAGE up to 40%
*EASY INSTALLATION (12v neg. gnd.)
Labtronics' Multiple Restrike ($M-R$) Ignition produces a high energy repetitive spork on each power stroke to effectively ignite the air/fuel mixture. M-R statistically insures more complete combustion - resulting in greater energy and increased efficiency. Send for Labtronics' free literature on the $M-R$ system. Better yet, experience $M-R$ and enjoy the pleasure and the economy of a well-performing engine.

- Model vi 579.95 - 1 Year Warranty
 -Model VI-B $\$ 59.95$

-Brochure 30 Day Money
P.P.D.in U.S.A. Back Guarantee

Send Check or Money Order 10
Labtronics, Incorporated
3635 Hillside. Ypsilanll. Michigan 48197
DEDICATED TO EFFICIENCY
Circle 75 on reader service card

MODEL SAIL \& POWER BOATING... BY REMOTE CONTROL, by George Siposs. TAB Books, Blue Ridge Summit, PA 17214. 192 pp. $81 / 2 \times 51 / 4 \mathrm{in}$. Hardcover $\$ 7.95$; Softcover $\$ 4.95$.

This handbook covers all types of model boating-sail and powered, electric and in-ternal-combustion engines. There is no attempt to teach the reader how to assemble one particular type of boat model and it doesn't advocate one specific method of construction. Instead, the author considers all modern techniques and includes enough theory to insure that the reader will understand the basic principles behind the operations of various models and systems. The principles of radio control and radio-control signals are explained in non-technical language. The basics of a control system are enumerated and techniques such as installation, isolating trouble and repairing water damage are covered too. Sail boats, electricpowered boats and internal-combustion en-gine-powered boats are all covered. To help the beginning hobbyist, there is a chapter on the workshop including recommendations for tools and other useful gadgets.

ELECTRONIC MUSIC PRODUCTION, by Alan Douglas, TAB Books, Blue Ridge Summil, PA 17214. $148 \mathrm{pp} .81 / 2 \times 51 / 4 \mathrm{in}$. Hardcover \$7.95; Softcover \$3.95.

Although relatively in its infancy, electronic music has already had considerable influence on musicians and composers in all fields. In this book, the tremendous potential of electronic music is described in its freedom from the limitations of conventional instruments and notation. The author suggests rather than displacing human performers, electronic music will provide the basis of a completely new art form in its own right with its own language, performers and devotees. The book deals first with the properties of conventional music, going on to show how their limitations may be overcome by electronic means. The three principal methods of synthesizing music electronically are described with examples of the latest equipment.

AUTO STEREO SERVICE \& INSTALLATION, by Paul L. Dorweiler \& Harry E. Hansen. TAB Books, Blue Ridge Summit, PA 17214. 252 pp. $81 / 2 \times 51 / 4 \mathrm{in}$. Hardcover $\$ 8.95$; Soft cover $\$ 5.95$.

For the service technician eyeing the growing field of auto stereo system installation and service, this is an extremely useful book. It covers every phase of installation including mounting and adjustment of FM stereo receivers and tape players and it tells how to get rid of troublesome interference caused by the automotive environment. Also included are 48 complete schematics representing 13 major manufacturers plus many other servicing diagrams and sketches. The largest part of the book is devoted to servicing. The subject of general maintenance covers the mechanical aspects which consume much of the technician's time-dial cord and lamp replacement (illustrated, of course), replacing controls, cleaning and adjusting tape players, demagnetizing and tape splicing.

R-E

TAPE DECK ELECTRONICS
(continued from page 51)
SCR circuit placed in a full-wave bridge D9 through D12 (See "Hi-Torque Circuit" section of Fig. 1). The SCR is fired during the starting interval, applying full voltage to the appropriate motor. As capacitor C11 charges, transistors Q3 and Q4 reduce the triggering rate of Q5 which fires the SCR. This reduces the SCR's duty cycle until ultimately, Q5 ceases to trigger the SCR completely as the collector current of Q4 becomes zero. The voltage waveforms at the output of the SCR go through the progression shown in Fig. 5 in from three to five seconds, but the final waveform is sinusoidal which results in smooth motor operation.

Electrical braking

When attempting to bring the reels to a stop, a differential braking action must be used. This means that the reel which is feeding out tape should have greater braking action applied to it than the reel which is taking up the tape. Figures 6 and 7 show two typical conditions requiring differential braking. In Fig 7, a heavily loaded tape feed reel would tend to continue its rotation if stopped in FAST FORWARD, while the takeup reel, having little momentum, would stop almost immediately. This would cause tape spill. Conversely, in Fig. 8. a heavily loaded takeup reel would tend to continue rotating longer than the lightly loaded feed reel and this might stretch or even tear the tape. Some manufacturers have solved the problem by eliminating braking completely from the takeup reel. However, this creates a great deal of tension on the tape unless very soft braking is applied and reel size is limited to 7".

Obviously, in a differential braking system such as the one in the Crown 800 transport, more braking must be applied to the tape feed reei than to the takeup reel, but this differential must have specific limits. It must be great enough to prevent a loop from forming under the conditions shown in Fig. 5 but not so great that the tape can stretch or tear under the conditions shown in Fig. 8. Furthermore, because fast winding must take place in both directions, the function of tape-feed and takeup reels must be reversible. In Fig. 8-a, tape is travelling from left to right and the left reel should have the higher braking force. In Fig. 8-b, tape is running from right to left and the right reel is now the tape feed reel and should have the higher braking force.
The electrical braking system of the transport operates by feeding direct current through the reel motors (DC "freezes" these motors while AC makes them turn). DC is provided for

FIG. 8-IN FORWARD direction of tape travel (a), heavier braking is required on the tape-feed reel, while in the rewind mode (b), heavier braking must be applied to the take-up reel.
the motors in both the stop and standby modes, but the "stop" current is higher. This is done by shorting a series resistor. The required differential action is provided by placing a lesser voltage on the takeup motor than on the tape-feed motor.
Since the stopping torque of such a motor with DC applied is proportional to its rate of rotation, stopping tension due to the differential DC voltage is greater at the start of the braking interval than when the tape has nearly stopped. This means that ideally, the amount of differential voltage should be automatically variable during the braking cycle. One way to do

Think of it as the best tester in your bag. Only \$299

Now you can get a high periormance Model 8000A Digital V.O.M. from Fluke, America's foremost maker of quality digital mutimeters, especially designed for TV, radio, stereo and audio service. No other digital V.O.M. gives you the resistance range to check breakers and switches, the high resolution voltage to look at emitter base and other transistor voltages, excellent ac accuracy and full accuracy with a 30 second warm-up.
Measures in 26 ranges $100 \mu \mathrm{~V}$ to $1200 \mathrm{~V}, 0.1 \mu \mathrm{~A}$ to 2 A , and 100 millis to $20 \mathrm{meg} \Omega$ with a basic dc accuracy of 0.1%. Full year guarantee. Low cost options include rechargeable battery pack, printer output, deluxe test leads, HV, RF \& 600 -amp ac current probes, carrying case, and rack mount. Unique self zero eliminates offset uncertainty. Electronics securely mounted in highimpact case. Service centers throughout U.S.. Canada, Europe and Far East for 48-hour turnaround repair.

FLபKㅌ
P. O. Box 7428,

Seattle, Washington 98133.

Get all the details from your nearest Fluke sales office. Dial toll-free 800-426-0361 for address of office nearest you.

Circle 77 on reader service card

Accuracy like a VTVM... Convenience like a VOM...

NEW BATTERY-OPERATED FET
SOLID-STATE VOLT-OHMMETER $=116$
Easy-to-build KIT
$\$ 38,90=116 \mathrm{~K}$
Factory-Wired \& Tested
$\$ 40.49=116 \mathrm{~W}$

Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an AC outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on batteryoperation and small size. Excellent for both bench and field work.
Compare these valuable features:

- High impedance low loading: 11 megohms input or. DC, 1 megohm on $A C$. 500 -times more sensitive than a standard 20,000 ohms-per-volt VOM - Wide-range 33, 330 , $400 \mathrm{P} . \mathrm{P}$ AC voltage ranges. 0 .3. $0.1,2,12,120,1200 \mathrm{~V} ; 4 \mathrm{DC}$ voltage ranges: $0-1.2,12,120,1200 \mathrm{~V} ; 4$ Resistance ranges: $0-1 \mathrm{~K}, 0.100 \mathrm{~K}, 0-10 \mathrm{meg}, \mathrm{c}, 0.1000$ meg. 408 ranges: -24 to +56 DB .
Sensitive easy-to-read $41 / 2^{\prime \prime} 200 \mathrm{mic}$. amp meter. Zero center position available. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High-impact bahe. pite case with handie useable as instru. me case with handie useable as instrustep assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. $51 / 4 \% H \times$ $63 / 4^{\prime \prime} \mathrm{W} \times 27 /{ }^{\prime \prime} \mathrm{D} .3$ lbs.
this is to have the series resistor value increase with time as the tape is stopping. Crown provides this effect very simply as shown in Figs. $10-\mathrm{a}$ and $10-\mathrm{b}$, by using a device with a high posi-tive-temperature-coefficient-an incandescent lamp assembly.

High-level relay switching

Three relays control the high-level AC line voltage used in the reel motors and in the pressure-roller (tape lifter) solenoid. The relays are all controlled by the logic circuits. Table I shows

$\begin{aligned} & \text { MACHINE } \\ & \text { MODE } \end{aligned}$	RELAYS			TYPICAL VOLTAGES		
	Op(RY)	FWOIRY24	(RWDIRY3)	TU Motor	PO Motor	Sol. (RY4)
STANDBY	0	0	0	+6 VDC	+16.5 VDC	0
PLAY (LG reel)	1	0	0	$\begin{array}{r} 112 \mathrm{VAC} \\ 80 \mathrm{VAC} \\ \hline \end{array}$	$\begin{array}{r} 100 \mathrm{VAC} \\ 71 \mathrm{VAC} \\ \hline \end{array}$	54 VDC 34.5 VDC
PLAY (SM reel)	1	0	0	$\begin{aligned} & 78 \text { VAC } \\ & 55 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 69 \mathrm{VAC} \\ & 49 \mathrm{VAC} \end{aligned}$	54 VOC 34.5 VOC
F RWD	1	0	1	37 VAC	117 VAC	0
F.FWD	1	1	0	117 VAC	37 VAC	0
RWD BRAKES	0	0	1	+52 VDC	+ 13 VDC	0
FWO BRAKES	0	1	0	+13 VDC	+52 VDC	0
RWD \& FWO (Jockeying)	1	1	1	117 VAC	117 VAC	0
"O" = Relaxed S " 1 " = Pulled-in S	State	Test C Line Voltage Reels unloaded	Conditions: $=117 \mathrm{VAC}$ and free	No a Mete	$\begin{aligned} & \text { ccessories bei } \\ & \text { r-20,000 } \$ 2 \end{aligned}$	ing powered voit VOM

TABLE I-Condition of the three high-level switching relays shown in Fig. 1 during various operating modes of the transport.
what happens in each of the machine's operating modes and how each relay applies the proper voltages to each reeling motor and the solenoid. The "operate" relay (RY1) is energized for all tape-moving modes. This relay determines whether the reel motors are powered by AC (moving) or DC (braking) voltages, and switches on the pressure roller/tape lifter solenoid when the other interlocking relays are de-energized. The rewind relay (RY3) chooses the proper braking differential and reel voltages for rewind, interlocks solenoid power, and activates

the high-rewind braking mode. The forward relay (RY2) selects proper voltages for fast-forward, interlocks solenoid power, and activates the high-forward braking mode.

The logic circuitry

The logic circuits of the 800 transport use six Motorola MC-700P series IC's, ten transistors and eight diodes. Figure 10

FIG. 9-DURING HIGH BRAKING (a), or relaxed braking (b), the differential voltage between reel motors varies automatically as the resistance of the incandescent lamp changes after a DC voltage has been applied.
is a block diagram of the controlling elements of the machine. The memory section of the computer takes and stores, in three flip-fiops (IC5-b, -c; IC5-a, -d and IC6-b, -c), the last command given to it while erasing all previous commands. The stop bus is used to erase previous commands by resetting all three flipflops to their standby state. Set-reset flip-flops are made of the MC-724P two-input gates by cross coupling their inputs and outputs, as shown in Fig. 11.

FIG. 10-CONTROLLING ELEMENTS of the Crown 800 tape transport.

The appropriate diode (D17. D18 or D19—Fig. 1), coupled from the play, rewind or forward commands provides a signal to the stop bus for each of these commands. In addition to furnishing the reset signal, the diode also causes the flip-flop to go to the desired state upon removal of the command because the reset command extinguishes before the input command, due to the forward voltage drop of the diode.

The "on" state of the rewind and fast forward flip-flops gives a high voltage output ("l") while the operate flip-flop provides a low voltage (" 0 ") when in the "on" state. For any command other than stop, both flip-flop outputs are an " 0 ". This is because both set and reset inputs of the associated flip-flop are activated -one by the command; the other by the stop bus. Therefore,
(continued on page 93)

bLOCKBUSTER VALUES

FREE \$1 BUY WITH EVERY 10 YOU ORDER Only applies to " $\$ 1$ " Buys

FREE GIFT WITH EVERY ORDER
CANADIANS: Ordering is easy-we do the paperwork-try a small order

WESTINGHOUSE ALL TRANSISTOR HOME/OFFICE MESSAGE CENTER

Leaves messages for other for replay . . . Built in speaker/ microphone for talk-into convenience. . Records up to 3 message is waiting Control adjusts playback shows when a affecting recording volume . . . Capstan Drive: $\quad \mathbf{7 9 5}^{95}$ affecting recording volum
BRAND NEW SOLD AS IS

 PIECES Wires connlete with
DENSEREETROLYTIC CON
DENSITAble LHPes D5-.0033 DISC CERRAMIC CAPACITORSC. KK.
50-ASST. TERMINAL STRIPS
 ZENER DIODE - MOTOROLA

 OENSERS Popullat ralues TRANSISTOR RAOIO as-is. potluck
TAPE RECOROER
assorted types good, bad 200 ASST. $1 / 2$ W RESISTORS Top Brands, Short Leads. Excellent Selection
\qquad 25-ASST $1 / 4$ WATT RESISTORS$100-$ ASST $1 / 2$ WATT RESISTORSstand, choice ohmages, some in 5%tand est Walt resistors
 SO-PRECISION RESISTORSSO-PRECISION RESISTORSasst. list-price $\$ 50$ less 98%
$20-A S S O R T E O$ WIREWOUN RESISTSRS, 5. 10,20 Watt SP'ST, SPDT. DPDT, OtC.25-SYLVANIA HEAT SINKS 20-ASSORTED TV COILS
I.F. VIDEO sound radio, etc.I-ELECTROLYTIC COND.200/300/100/100 MFD-25V
I-ELECTROLYTIC COND $100 \mathrm{MFD}-300 \mathrm{~V}$

$20 / 20 \mathrm{MFD}-450 \mathrm{~V}$
 \square 40-ASST. TUBE CAR

 2-ELECTROL
300/60 midd-150Y
 4-ELECTROLY
 $75 / 30$ mfd- 150 Y IC COND

 ELECTROLYTIC CONDENSERS 2-ELECTROLYTIC COND1000-Afd. 25 V V
250-ASST SOLDERING LUGS
hest types and sizes
250-ASST WOOD SCREWS
finest popular selection ${ }^{250}$ - Asst Self Tadoing SCREWS
$\square 100-A S S T 6 / 32$ SCREWS and $100-6 / 32$ HEX NUTS
$100-A S S T$ B/32 SCREWS and $100-8 / 32$ HEX NUTS 100-ASST $2 / 36$ SCREWS and $100-2 / 56$ HEX NUTS
$100-A S S T ~ 4 / 40 ~ S C R E W S$ and $100-4 / 40$ HEX NUTS 100-ASST 5/40 SCREWS
and $100-5 / 40$ HEX NUTS 500-ASSORTED RIVETS 300 ASSORTED WASHERS 100-ASST RUBBER BUMPER $100-A s s t$ RUBBER GROMMETS best sizes $15-01 P P E$
$.01-600 \mathrm{~V}$ $15-D 1 P P E$
$.033-600 \mathrm{~V}$ 15-DIPPED 15-DIPPE .047-400V

$15-$ Molded Tubular Capaeltors

 15-DIPPE .0039 400 V1^{100}
1^{100}
1^{100}
1^{100}
4^{100}
1^{100}
1^{50}

Test Equip. Special Discount Pric ByS $5 \angle / C D D^{3}$ SETCOME

\square MERCURY COMPACT TUBE TEST ER Model \#Mo Miniatur in performance
TELMATIC Tuner-Mato KT-730 Portable "Subst1-Tune Instant Tuner Chech
EJ-190
EJ-190-Master Rigs-

KLEPS "CLEVER" TEST PROOS

"Third-hand" lest prods, reach into
out of way places - Insulated out of way Places - Insulated - cannot
slid banana plug-noo soldering.

\square \square \square \square \square \square \square
 \qquad

4- TV ALIGNMENT TOOLS 1^{00} Gor Color TV COLOR ALIGNMENT 2^{79} TOOLS Most pohular type TV TWIN LEAD-IN
300 ohm $500^{\prime}-\$ 7100^{\circ}-\$ 1.50,50^{\circ}$ CO-AX CABLE RGSSU (Biack) 250 - $\$ 10.100^{\prime}-84.50 .50$
$5-D U A L$
DIODE-MOST POPULAR TYPES Common Cothode or Serles connected
COEGENCE RECTIFIER-
For COLOR TV 4 Cell-
Ssed in RCA-Philco, etc. Replace RCA part \#120818 COLOR PA Mrit M 135932

- Good for most sets 261150 List Price- $\$ 36.75$
6-Top Brand Silicon RECT $1 \mathrm{amp} . \mathrm{I} 1000 \mathrm{PIV}$
5-PNP TRANSISTOR 5-NPNTRANSISTORS general purpose, TO-5 case 25-ASSORTED TRANSISTORS 10 25-ASSORTED TRANSISTORS $5-9$ VOLT MOTORS2-ELECTR hobbylst
OENSERS ALITIC CON. 100 ELECTROLYTIC CONDENSER
2-ELECTROLYTIC CONDENS. ERS $80 / 100 / 60 \mathrm{MFD}-160 \mathrm{~V}$ 2-ELECTROLYTIC COND 300/30/4-MID- ${ }^{\text {Mid }}$ $100 \mathrm{mId}-100 \mathrm{~V}$ 50 COId- 75 V
2-ELECTROLYTIC COND
 SO-ASST. CERAMIC CON. DENSERS Most desirahle palues
4-50' HANKS Hook-Up Wire $\square_{\mathrm{PIN}}^{1235}$

IO-SETS PHONO PLUGS 2 PIN JACKS RCA LJDE
B-MINI PILOT BULBS With

1^{00} 1^{00}

For Transistor \& minlature work 1

SHANNON MYLAR RECORDING TAPE

\square \square \square \square \square \square

110° TV OEFLECTION YOKE
for all "COMBINATION SPECIAL 6^{95} RCO DEFLECTIONYOKE

MARKET SCOOP COLUMN

7TUBEAM-FM STEREO
AMPLIFIER CHASSIS
AMPLFIER CHASSIS
Completely dssemiled-AS IS 22^{50} Keenk slitht adjustments Trace o Eteh your awn circults- 9^{95} easy to use instructions
ISASSORTEO IC'S
For Experimenters 1^{00} TRANSISTOR RAOIO. NEW 3^{9} Silicon NPN HV TRANSISTOR RCA-SK-3021-Hep-240 RCA-SK-3026-Hep-241 1_{0}^{00} Transistor Specials-Your Choice
SK3006. SK3018, SK3020 кк3122. sk3124, Transistor Specials_Your Cholice 1^{9}
$\mathbf{S K 3 0 0 9}$. $\mathrm{SK} 3024 . \mathbf{S K} 3040$ SK3009. SK3024. SK3040
TACHOMETER 21/4" Sq. Panel

 with universal plugs-200 Ohms -
VU I": PANEL METER
$0-20 \mathrm{db}$ Scale 100' GREY SPEAKER WIRE1^{29}

41 mc

Latest Compact
Model good for all 41 mc TV's. brand new -

Best TUNER "SARKES TARZIAN" ever made - last word for stability, definition \& smoothness of operation, An opportunity-to improve and bring your TV Receiver up-to-date

795 Complete with Tubes

WESTINGHOUSE FM TUNER 299 \# 476-V-015DO 1 Transistor
WESTINGHOUSE FM TUN (12DT8 Tube)
UHF TUNER-Transistor TyDe Gged in all TV sets TOR TYPE MOdel $=85 \times 4$
ADMIRAL TVTUNER
ADMIRAL TV TUNER
Model \#94C393-1 (2HA5-4LJ8)
Model \# T94C441-3 (Tras Model \# T94C441-3 (Transistor) \# 7A 120-1 (4GS7-2HA7 Tubes) G.E.-TV TUNER (2GK5-4IJ8) PHILCO UHF/VHFTUNER GETVTUNER
ET 86玉196. (6GK5-6HL8) set mounting TV Antenna Back 5 section rods. BLUE LATERAL Masnot Assy. Replacement for most color TV's s-10K-2 WATT BIAS POTS
insed in solid state application sed in solid state application
COLOR CON VERGENCE Assy. Universal type good for most sel
COLOR-TV RECTIFIER-Used in most color sets 6500 \& F 3 for
2 COLOR-TV CRT SOCKETS Wired leads, for all color TV's $\begin{array}{ll}\text { 3-RCA } 110^{\circ} \text { CRT SOCKETS } & 100\end{array}$ 4- $36^{* \prime}$ Hi-F, CABLES KCA Mold
ed Phone plug at one end stripped and tinned leads on orher end
 or all ty Pe TV'S (BIK. \& Wht.)
90° TVDEFLECTION YOKE for all type TV's (HIK. \& Whe.)
70° FLYBACK TRANSFORMER Or all tye TV's (BIk \& Whe.)
70° TVDEFLECTION YOKE or all type TV's (BIk. of Wht.)
BYMPIC \& SHARP FLY. BACK Part \#8FT592 Equiv Thordarson \#Fly339 90° COLOR YOKE FO Rectankular

\square For all round color CRT

\square DELMONICONIVICO COLOR

SARKES TARZIAN TUNER

WAHL-CORDLESS SOLOER
IRON Cornblete with Auto15^{55}

Charger Fust Heatinge Compact
5-Audio Output TRANSFORM
100
Sub-min for Trans Radios
5-I.F. Coil TRANSFORMERS
456-k

Top quality Special buy
I2" UNIVERSAL SPEAKER
TOD Quality.
10' PHILCO SPEAKER MaEnet
ToD Quality Large Magnet -
B $^{\prime}$ UNIVERSAL SPEAKERLarge Magnel-Special Buy
3' $^{\prime \prime}$ UNIVERSAL TWEETER $\begin{array}{ll}1 \text { OZ MAEREt TWEETER } \\ 21 / 2^{\prime \prime} \times 4^{\prime \prime} \text { SPEAKER } & 129\end{array}$
 69°

 S SPEAKER-7 WAY
SWITCH Wall Moun
STANCOR POWER
STANCOR POWER

(IPT-48)-110V Pri.-12V' Sec.
Used in many transistor
Tower supplys
I'ower supplys
COMPLETE CONVERGENCE
COMPLETE CONVERGENC
ASSY -Inc. Yoke. Board \&
Plug Conn. Adaptable
to mosi 90. sets
COLOR DELAY LINE-Used
In most rolor gets
$\begin{array}{ll}\text { CONTROLS WIth Swlith } & 1 \\ \text { IO-ASSORTED VOLUME }\end{array}$

With plug \& volume control

2-12BH7 RCA

\square TUBES
2^{49}
IO-ASST DIODE CRYBTALS
1N34, IN48, INGO, 1N64, EtC.
\square TUBE \& CONTINUITYCKR.
\square
(Tests fuses, heaters. lamps. Etc.)
VARCO Sterso Cartrideo-CN-72
With mounting bracket. flipover 2^{95}
needle
needle Meadphones Hi-Fi quality
Completo with Stereo plug
io STANDARD TRANSISTORS
NPN \& PNP 2N404, 2N414.
25° Shielded MIKE CABLE
25' Shiolder
Grey $25 / 1$

Minlmum Order $\$ 5.00$
dvantage to customer
Please specify refund on shipping overpayment desired: \square CHECK \square POSTAGE STAMPS \square MERCHANDISE (our choice) with advantage to cis
$3: ~$

то

YOUR SCOPE
Lack of multi-channel capability on an otherwise good scope can cost many expensive and frustrating hours when working with modern electronic circuits or servicing complex equipment. Combining the latest in iinear and digital semiconductor technology, MODE 4 will permit your unmodified single-channel scope to display up io 4 channels of analog or digital signal at a fraction of the single-channel scope price.

- Gain [individual channels]: x. 01 to x 100 in decade steps
- Frequency Response: DC to 10 MHz
- Serial or parallel multiplexing capability
- $Z_{i n}$: $300 \mathrm{~K} / 20 \mathrm{pf}$
- Display Modes: From 1 to 4 channets
- Vin: 100 v p-p / 100 vode max.
- Size: 3" H. $\times 8^{\prime \prime}$ W. $\times 5^{\prime \prime} D$

MODE 4 price $\$ 189.00$ including standard $1 / 0$ cables and test clips [Shielded I/O and min. coax connectors $\$ 10$ more.]
BASIX, 1067 Seneca Street, Bethieherm, Pa. 18015 Circle 80 on reader service card

New compact 24-piece kit of electronic tools for engineers, scientists, technicians, students, executives. Includes 7 sizes screwdrivers, adjustable wrench, I 2 pair pliers, wire stripper, knife, 2 alignment tools, stainless rule, hex-key iset, scissors, 2 flexible files, burnisher, miniature soldering iron, solder aid, coil ; of solder and desoldering braid. Highest | quality padded zipper case, $6 \times 9 \times 13 / 4^{11}$ 1 inside. Satisfaction guaranteed. Send check, company purchase order or charge BankAmericard or Mastercharge. We pay the shipping charges.
JTK-6 TOOL KIT. $\$ 49.00$ I
FREE CATALOG 112 pages of hard-to-find iprecision tools. Also contains 10 pages of useful "Tool Tips" to aid in tool selection. Send for your free copy today!

JENSEN TOOLS and ALLOYョ 4117 N. 4414 STRERT, PHOENIX, ARIZONA 85018

DIGITAL CLOCK
(continued from page 35)

Obtaining parts

The liquid-crystal display and the C1200 LSI Computer Systems clock IC are specially designed components, not easily obtained through usual distribution channels. Accordingly, arrangements have been made to supply, by mail, a kit containing these special and other hard-to-get components of the Magiclock to readers of Radio-Electronics. The kit includes the etched and drilled printed-circuit board (MGC 48-7), Liquid-Crystal Display (MGC-50), 40-pin connector (MGC-116), C1200 MOS/LSI clock integrated circuit, 28-pin IC socket (MGC-28), and two 51volt Zener diodes (MGC-51). The Magiclock kit, priced at $\$ 65.00$, postpaid, is available from: Inventive Electronics, Box 53 Wykagyl Station, NY 10804.

Other components of the Magi-clock are available locally at any electronics distributor. Do not substitute values for those given, as voltage division is quite critical to proper operation.

Construction

Begin by laying out and soldering-in components other than the IC. Leave this component in its protective foam until everything else has been wired. (Be sure to read the precautions in handling before you attempt to install the IC.)

The use of a PC board makes construction easy. The sockets for the LSI integrated circuit and for the display, as well as all other components (except for D5 and D6) mount flat on top of the PC board, as shown in Fig. 5. Carefully observe the polarities of the six diodes and
to proper operation of the clock.

Checkout

Perform these checks before installing ICI or the LCD. Do not install either of these components until everything is checked.

After connecting the socket, the line cord, the wires to the switches, and all other components, give the PC board a careful visual once-over. Look for cold solder joints and potentially destructive solder or rosin bridges between pads. Protect your investment by making sure that the right resistor is in the right place. (Remember: you can blow the IC in a few microseconds if something's wrong and you don't bother to check.) If everything looks OK, you're ready for the recommended voltage checkout, which must be done before you install the IC and the LCD in their respective sockets.

AC voltage checks

Plug the line cord into a 117 -volt AC outlet and measure the voltage across R2 and across R3. You should read between 9 and 12 volts AC across each resistor, and the two readings should be about equal. If these voltages aren't right. remove power and check resistors R1, R2, R3, and R4. One or more may be the wrong value or out of tolerance.

Now, plug the line cord in again and measure the voltage across RI and across R4. Each reading should be not less than 42, nor more than 48 volts AC. If either voltage is out of tolerance, remove power and thoroughly check resistance values in the divider.

DC voltage checks

Measure the voltage from the junction

FIG. 5-COMPONENT LAYOUT of printed circuit board. An IC socket is used for easy assembly.
note that the two Zeners are soldered in place on the underside of the board. The display socket must be inserted with its part number facing the edge of the PC board so the display can plug in correctely. For S1 and S2, you can use either toggle switches or momentary-contact, normally open, pushbutton switches. For our Magiclock, we used toggle switches that nest neatly into cavities cut in the two wooden cleats, that support the PC board. Switch location is optional and not at all critical
of R2 and R3 noted as point X on the schematic, to the VDD point on the PC board (see Fig. 4) You should read about -28 volts DC. (VDD is negative with respect to X.) Next, measure from the VSS point to X. You should read about +19 volts DC. (VSS is positive with respect to point X.) Now, measure from VDD to VSS. The meter should indicate the sum of the two previous readings (approximately 47 volts DC) with VSS positive with respect to VDD. (Continued page 94)

TAPE DECK ELECTRONICS

(cominued from page 90)
in the case of the rewind and fast forward flip-flops, where a " 1 " output is necessary, diode OR gates are used to feed the commands around the flip-flops during the command (reset) interval. Diodes D20, D21, D22 and D23 do this job.

Each of the command inputs to the memory circuit has a capacitor to ground placed across it to protect the input from stray pulses and to assure that there is enough time for proper

FIG. 11-A PAIR of two-input gates of a Motorola MC-724P IC are cross-connected as shown to form set-reset flip-flops.
setting of the flip-flop after removal of the command. Resistors are also used to shunt any external leakage currents to ground and to hold each input's stray positive pulse immunity at a maximum.

Each of the three high-level switching relays previously discussed is controlled by a transistor (Q13, Q14 or Q15) that in turn is controlled by its associated gating circuit. The 12 IC gates are the heart of the computer's interlocking and coordinating system. Each gate in Fig. 1 is identified by a number. If the gate is on in a given mode, its output is called " 0 " (low voltage); if off, it is assigned a " 1 " (high voltage) in Table II.

MACHINE MODE	GATES											
	1	2	3	4	5	6	7	8	9		11	12
STANDBY	$\begin{gathered} \text { Os } \\ \text { Possibly } \bar{x} \end{gathered}$	$\begin{gathered} \text { Os } \\ \text { Possibly } x \end{gathered}$	1	1	1	0 p	1	O_{3}	04		04	5
PLAY	$0_{6 x}$	0_{6}	1	1	0_{6}	1	1	O_{3}	O_{4}	O_{3}	0	1
REWIND	1	$0_{\text {R }}$	01 R	1	05	Op8	08	1	0_{4}	1	O_{4}	1
FORWARD	$0_{5}{ }_{\text {x }}$	1	1	0_{2}	0_{F}	$0^{\text {P9 }} 9$	O_{9}	O_{3}	1	O_{3}	1	1
REWIND BRAKES	1	0_{x}	0_{1}	1	1	Op8	08	1	0_{4}	1	04	Ot
FORWARD BRAKES	$0 \bar{x}$	1	1	O_{2}	1	Opg	09	O_{3}	1	O_{3}	1	0_{5}
RWD \& FWD (Jockeying)	${ }^{0} \mathrm{~F}$. Possibly \bar{x} and/or 5	$\left.\begin{array}{\|c\|} \hline 0 \mathrm{R} . \\ \text { Possibly } \\ \mathrm{x} \text { and/or } \mathrm{s} \end{array} \right\rvert\,$	OR	O_{F}	$0_{\text {RF }}$	Op89	089	1	1	1	1	1

TABLE II-On or off state of each of the twelve logic gales is labulated for the various operating modes of the Crown 800 transport.

[^8]
Put Professional Knowledge and a COLLEGE DEGREE

in your Electronics Career through

HOME STUDY

Earn Your

DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.
The Grantham correspondence degree program in electronics is comprehensive. It begins with basics, written in very simple language, and continues through the B.S.E.E. degree level. Throughout the entire program, heavy emphasis is placed on clear explanations written in great detail, progressing from the simple to the complex, in easy steps.
Our free bulletin gives complete details on the curriculum, the degrees awarded, the requirements for each degree, and how to enroll.

GRANTHAM SCHOOL OF ENGINEERING

 2000 Stoner Ave., Los Angeles CA 90025 - Telephone (213) 477-1901
Worldwide Career Training thru Home Study Mail the coupon below for free bulletin.

Grantham School of Engineering RE 8-75 2000 Stoner Ave., Los Angeles. CA 90025

I have been in electronics for \qquad years. Please mail me your free bulletin which gives details concerning your electronics degree programs.

We carry
 B\&K, EICO, RCA, SENCORE, FLUKE, HICKOK and LEADER. We sell them at *\% off.

* Our prices are so low the manufacturers forbid us to advertise them. Write and find out how much you can save

Complete line of tubes, tools and electronic supplies

FREE CATALOG

RADIO SUPPLY CO., INC.
558 Morris Ave., Bronx, N.Y. 10451
Tel: (212) 585-0330
Circle 83 on reader service card

MACHINE LANGUAGE PROGRAMMING

Jor the
8008
(and SIMILAR MICROCOMPUTERS)
Written to provide you with the detailed knowledge you need to know in order to successfully develop your own MACHINE LANGUAGE PROGRAMS! This information packed publication discusses and provides numerous examples of algorithms and routines that can be immediately applied to practical problems. Coverage includes:
detailed presentation of the 'boob' INSTRUCTION SET - FLOW CIIARTING MAPPING - EDITING AND ASSEMBLING DEBUGGING TIPS © FUNDAMENTAL PROGRAMMING TECHNIQUES: LOOPS, COUNT. ERS, POINTERS, MASKS O- ORGANIZING TABLES - SEARCII AND SORT ROUTINES MATHEMATICAL OPERATIONS • MULTIPLEPRECISION ARITIMETIC • FLOATING.POINT PACKAGE - MAXIMIZING MFMORY UTILIZATION • I/O PROGRAMMING - REAL-TIME PROGRAMMING PROGRAMMING FOR "PROMS"•CREATIVE PROGRAMMING CON: CEPTS.
Virtually all techniques and routines illustrated also applicable to '8080' and similar types of micro/minicomputers, with appropriate machine code substitution. Orders now being accepted for immediate delivery at the LOW price of just $\$ 19.95$.* Add $\$ 3.00$ if PRIORITY mailing service desired. (*Domestic prices.) Order direct from-

SCELBI COMPUTER CONSULTING, INC.

1322 REAR - BOSTON POST ROAD MILFORD, CONNECTICUT 06460 master Charge accepted. master Charge customers must suhmit Card \#, Bank \#, Expiration Date, and card holder's fersonal signature. DON'T DELAY——ORDER TODAY!

DIGITAL CLOCK
(continued from page 92)

Finally, measure the voltage drop across R6. The reading should be at least 8 volts, DC, but not more than 9 volts, DC.

If any reading is not in tolerance, carefully check each resistor value and replace any that are out of spec.

Installing the liquid crystal display

Disconnect the AC plug and carefully insert the LCD panel into its socket. Line it up so that contact areas on the lower edge of the glass are exactly opposite the spring contacts of the socket. In this way, you make sure that when the display is firmly seated, all socket contacts will properly mate with the LCD's connector edge. Don't insert the IC yet.

Plug in the AC line cord. If the LCD is properly inserted, the colon will appear on the display. If it doesn't, the LCD is not making proper contact. Reinsert the LCD or move it slightly to one side or the other, until the colon lights. Now pull out the AC plug again.

Installing the LSI clock chip

Having come this far, you are within minutes of seeing your Magi-clock in operation. Don't rush things now! Read and heed the next paragraph's precautions as you prepare to install ICI.
Any MOS IC device must be handled carefully, for it can be damaged by high-

PIN FUNCTION and pin identification for the C1200 clock chip from LSI Computer Systems.
voltage static charges produced by casual, ordinary handling. For this reason, it is shipped with all of its pins pressed into a piece of conducting foam rubber, where it should remain until you're ready to plug it into the socket on the PC board. Don't handle the device immediately after you walk across a dry rug with rubber-soled shoes, comb your hair or put on a nylon sweater, for you can easily build up static charges of several thousand volts and unwittingly ZAP the IC. Before
removing the IC from its protective foam, touch a grounded object to discharge any body capacitance charge. Never, never, never attempt 10 insert or remove the MOS IC while power is on. If you need to resolder a connection after the IC is plugged-in, run a ground wire to the iron's tip to drain away destructive charges. Follow these precautionary steps and your IC is sure to survive.

After pulling out the power line plug, wait a few seconds for filter capacitor C1 to dissipate its charge through R6, R7 and R8. Now insert the integrated circuit into its socket. Be sure to plug it in correctly as shown in Fig. 5. If you insert the socket incorrectly, you'll damage it the instant power is applied-so, do it right the first lime.

Connect the AC line cord. A random number display will appear on the LCD. It may even flash at a $1-\mathrm{Hz}$ rate. Now, you're ready to set the time and that is very simple.

Setting time and using your clock

Close the minute set switch and you will see the minutes change rapidly-two minutes each second. As the correct minute digit appears, open the switch. The hour digits are set the same way with the hoUr SET switch and that is all there is to it!

The clock can be set precisely from the time signal sent over the radio or telephone. Close the hour set and minute SET switches at the same time. Release them both at the instant the time signal is heard. Then set the minutes and hours independently to the correct time as before. The clock is now accurately synchronized to the time tone.

For elapsed time indication close both switches and release them simultaneously. The display will start from 0:00 and count elapsed time in one minute steps.

If there has been a power interruption (as is theoretically the case when the clock is first plugged in) the entire display may flash at a $1-\mathrm{Hz}$ rate signalling that the time displayed is not correct. When either time set switch is activated, the display will stop flashing.

If you plug in the clock immediately after bringing it indoors on a very cold day, the display may not read correctlyone or more "extra" segments may light up. This happens because of condensation between the IC or LCD sockets' closely spaced "lands" on the PC board, or moisture between the contact areas on the LCD itself. Normal drying in warm room air should alleviate the problem. Plug in the clock and let it operate for 15 to 30 min utes to restore normal operation.

Back-lighting the display

If you add a small fluorescent or incandescent light source behind the LCD the visibility of the large time numerals will improve. The light should be mounted out of direct line of sight, so as to cast light on the display, without the lightsource itself being visible through the LCD panel. An angle-mounted plane mirror is a good choice for refiecting light onto the display. Choose one about the same width as the LCD panel and about half its height. Alternatively, aluminum foil can be used as a flexible, easily worked reflector. R-E

next month

SEPTEMBER 1975

- Build This Electronic Doorbell

IC project uses a PROM to "record" up to 32 musical notes. Two circuit boards make the unit easy to build and you program the particular music you want your unit to play.

- Installing TV-MATV Antennas

Put antenna theory to practical use to solve reception problems when you put up that next TV-MATV antenna system.

- All About Oscilloscopes

Part IV: The final section of this article describes many interesting oscilloscope applications. Bet you'll find at least one you've never seen before.

- Hi-Fi Lab Test Reports

Two more new reports on some of the latest hi-fi gear around.

- Signal-To-Noise-What does it mean?

If you have always wondered what signal-to-noise ratio is and how it affects hi-fi sound, don't miss this article by Len Feldman, R-E's Contributing High-Fidelity Editor.

PLUS

> Jack Darr's Service Clinic
> Step-By-Step Troubleshooting Charts
> State-Of-Solid-State
> Radio-Electronics' Replacement Japanese Transistor Directory

Everything needed to build a complete decade counter ($0-9$) including a printed circuit board. Operates from a 5 Volt D.C. supply. Can be used in hundreds of applications.

See your nearby CALECTRO distributor for all the most popular digital displays and integrated circuits. Also, get your copy of the new CALECTRO DIGITAL PROJECTS HANDBOOK!

Circle 84 on reader service card

312. FASCINATING PAGES:

A FLICK OF THE SWITCH

new 1930-1950 book

- Re-live the great days of radio broadcast and the beginnings of TV-electronics.
- Browse through 1,000 pictures and interesting old ads.
- Discover the rewards of radio collecting and restoration.
- Own a First Edition of this valuable reference book.

This new book includes broadcasting, home radio-TV, Amateur radio, World War II radio-electronics, the radioman, collecting and "how it works." $\$ 9.95$ hard-cover, $\$ 6.95$ handbook.

Other valuable books are Vintage Radio (1887-1929) \$7.95 hard-cover, $\$ 5.95$ handbook; Radio Collector's Guide (1921. 1932) \$4.95; 1927 Radio Encyclopedia $\$ 12.95$ hard-cover, $\$ 9.95$ soft-cover; 1926-1938 Radio Diagrams, \$7.00. Also, we'll furnish any pre-1951 diagram for $\$ 3.50$. 10-day return privileges.
 Peninsula, CA., 90274. Postage paid. Cal. residents add 6% tax.

Name
Address
City
FREE Radio Age Guide with each order FREE
NEW VINTAGE RADIO BOOK

service questions

NO SYNCS

This was one of mine. "Friend" (?) brought in large Quasar TS-938. Says "I've changed all the boards that would have anything to do with it, and I've still got problems!". It looked as if there was no horizontal or vertical sync. So, we drove it into the shop. "Up scope!".

I found plenty of horizontal sync on Q5, the sync separator; also at the output of the sync amplifier. However, it was jittering badly. The video signal to the sync separator was also jittering. The scope showed an odd glitch on the horizontal sync. However, the oscillator itself was apparently in good condition. The picture never fell into slanting lines, just floated back and forth.

I saw what seemed to be enough horizontal sync at the output terminal on the sync panel, so let's see if it is getting to the horizontal-output panel. Tracing this through the cabling, I pulled the output panel. Oh, oh! One of the numerous contact pins in the vertical array on the left side was pushed back at least half an inch. Tilting the panel, my little flashlight showed that the contact this was supposed to make was plainly labelled hor sync input! A little tricky work with a pair of longnoses pushed the pin back in line with the rest. Putting the board carefully back, the trouble was over! Evidently this pin had been slightly bent, and when the board was replaced, it got pushed back far enough so that it wasn't making contact at all. The jitter of the video signal was probably due to the upsetting of the AGC.

ELECTRIC FENCE

My solid-state electric fence charger went out. I found an open electrolytic capacitor; the one that discharges to produce the shock. It's a 100 mF 150 volt type. I replaced it with a $150-\mathrm{m}$ F 200-volt type. Is this OK? Seems to work about the same as it did.-B.R., Temple, TX.

I'd buy that any day. You can never go wrong by choosing a replacement capacitor with a higher voltage rating than the original. In most applications, you can generally use a larger capacitance than the original. Just don't use a smaller one or one with a lower voltage rating.

R-E

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.40$ per word minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) $85 \notin$ per word . . . no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as al caps) at $10 c$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e. August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

BUSINESS OPPORTUNITIES

TV Sales \& Service, established 23 years. Annual Gross: $\$ 24,000.00$. Free with purchase of prime property in heart of Pasadena. Beautiful climate. Reasonable. Owner retiring. P. O. BOX 4162, Pasadena, CA 91106

PLANS \& KITS

FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind synthesizers, wind chimes, many others. PAIA ELECTRONICS, Box B14359, Oklahoma City, OK 73114
CIRCUIT collections: 20 useful circuits you can build. Includes schematics, parts list, description, \$3.98. RJE COMPANY, 28 Park Street, Jamestown, NY 14701

UNIVERSAL TTL/DTL CMOS IC tester;

 100,000 test operations in 0.66 seconds. Will test $16 / 14$ pin digital IC's. Circuit is easy to understand and build. IC's needed cost less than $\$ 20.00$; all are TTL. Plans $\$ 1.35$, NORTHSTAR ENGINEERING, 3617 North Crede Drive, Charleston, WV 25302CONVERT any television to sensitive, bigscreen oscilloscope. Only minor changes required. No electronic experience necessary. lliustrated plans $\$ 2.00$. SANDERS, Dept. A-25, Box 92102, Houston, TX 77010
BUILD that electronic organ you always wanted at a price you can afford. Third edition of "Organ Builder's Guide", pictured product kit line, circuits, block diagrams, design rationale using IC divider and independent generators with diode keying. $\$ 3.00$ Postpaid. Also, free brochure on keyboards DEVTRONIX ORGAN PRODUCTS, Dept. B, 5872 Amapola Drive, San Jose, CA 95129

UNUSUAL digital plans for games, test equipment, others. Free info. T. WONG, 103 E. Broadway, Dept. 4A, New York, NY 10002

EDUCATION \& INSTRUCTION

LEARN design techniques. Electronics design Newsletter. Digital, linear construction projects, design theory and procedures. Annual subscription $\$ 6.00$, sample copy $\$ 1.00$. VALLEY WEST, Box 2119-A, Sunnyvale, CA 94087
FREE educational electronics catalog. Home study courses. Write to: EDUKITS WORKSHOP, Dept. 270G, Hewlett, NY 11557

WANTED

QUICK cash for your used Altair 8800, TV Typewriter, interfaces, software, etc. Contact us for service, parts, and free applications information. ALCOVE, 230 Main, North Reading, MA 01864, (617) 664-4271
QUICK cash \qquad for electronic equipment,
componenis, unused tubes. Send list now! BARRY, 512 Broadway, New York, NY 10012, 212 Walker 5-7000
WANTED qualified, experienced electronics instructor to prepare correspondence lessons on radio, transistor TV, color TV. Instructor can do the job right at his home. Apply by Air-mail. State remuneration requíred. UNIVERSAL RADIO INSTITUTE, P.O. Box 42, Owen Road, Singapore, 8.

ELECTRONIC ENGINEERING \&

 INSTRUCTIONSELF-STUDY CB radio repalr course. There's money to be made repairing CB radios. This easy-10-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. RE-075, 531 North Ann Arbor, Oklahoma City, OK 73127

FOR SALE

ELECTRONIC Ignition: Capacitor, transistor, pointless. Auburn sparkplugs, Information 10¢. ANDERSON ENGINEERING, Epsom, NH 03234
ELECTRONIC Components: Premium grade at minimum cost. Wide selections purchased from liquidating companies. Send 254 to CLOSEOUT BULLETIN, 340 Vivian St., Longmont. CO 80501
LOW-noise resistors $-1 / 4 \mathrm{~W}, 5 \%$, carbon film from 10-3.3 megohms for $31 / 2 \&$ each. Fifty of one value for $\$ 1.25$. 1 N 4148 diodes for $6 ¢$ 754 postage. Free samples/specifications COMPONENTS CENTER-RE, Box 134, New York, NY 10038

RADIO-ELECTRONICS

4½ DIGIT DIGITAL VOLTMETER

DVM CHIP

 reset for all counter stazes, tranfer pulse generator to
set the Iatches. To 400 Khz operation. TTL compatible.

$\$ 14.95$

4-DIGIT AM-PM FLUORESCENT CLOCK PANEL MPANEL Made By

YOU ASKED FOR IT! Found only at Poly Paks at thio

 clock conatruetion dlakrams, P.C board
A DIGITAL CLOCK BUILEER'S SPECIAL.

 Ofers maximum efficiency in quiet air delivery. Widely ment. Direct drive motors 100 CFM. Open
shaded pole motor, driving
marringtion $21 / 2$ Overal size of houaing os
lbs. 3 = $10 / 32 \mathrm{mtg}$. holes.

INDUSTRIAL SPEED CONTROL \square S4.95
 drills. brush type motors. etc. 115 vac. rated at 1100
watts. With variable speed or dimming control in watts. With variable speed ${ }^{\text {or }}$ dimming
heavy-duty aluminum case. $3 \times 25 \times 2$. With diagram and hookups.

This unit is deaigned amme
us 60 watt tuner amn unit,
excent 20 -watt tuner amp

LED MITY DIGIT "DCM'S'

form a .

.8. TOUCH TONE \$4.95 KEYBOARD KIT

AM-FM-MULTIPLEX
5

60.WATT STEREO TUNER AMPLIFIER!

\section*{| ON |
| :---: |
| 7 |
| 17 |}

MICROPROCESSORS! ROMS! RAMS! MEMORIES!

 al. 7 asegment. Cold : OR-
NGE. Anode voltage 100 GE. Anode voltage 100 xed, to a $18-\mathrm{pin}$ multi-
cont
an (soldering too) For culators, etc. Glass

MONSANTOI XCITONI LITRONIXI OPCOAI

5 for $\$ 1$

national

$\$$

FOR SALE

MANUALS for Govt. surplus radios, test sets scopes, List 504 (coir BOOKS, 7218 Roanne Drive, Washington, Du 20021

PRINTED CIRCUIT

PHOTO ETCH KITS; DATAK PRODUCTS;
TAPE RESIST; ALPHA NUMBERIC
COMPONENT DESIGNATIONS; ARTWORK;
CARBIDE DRILL BITS; BUBBLE ETCHERS
SEND S.A.S.E. FOR FLYER
TRUMBULL
833 BALRA DR.,EL CERRITO,CA. 94530
BURGLAR alarm dialing unit automatically calls police. \$29.95. Free literature. S\&S SUPPLY, Box 12375G, North Kansas City, MO 64116
TV transmitter. RCA TT-2AH. Excellent condition. Reasonable. P. O. BOX 4162, Pasadena, CA 91106

FREE catalog. IC's, Semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que. Canada, H3C-1H8. US Inquiries
RADIO \& TV tubes $36 \not \&$ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, CA 92105

MINIATURE TRANSMITTEB

WIRELESS MICROPHONE Among world's smallest. Improved solid state design. Picks up and transmits most sounds without wires thru FM radto up to
300 ft . Use as mike. music amp.. baby sitter. 300 ft . Use as mike music amp.. baby sitter. burglar alarm, hot line. etc. For fun, home and business. Batt. incl. Money back guar,
$8 / \mathrm{A}$. M/C cds. COD ok Oniy $\$ 14.95$ plus 50C POSt and hdig. AMC SALES. Dept. 19 Box 928, Downey, Ca. 90241 .
CANADIAN discount and factory clearouts catalog. Top brand stereo equipment, calculators, test gear, CB \& communications, telephones. Factory dumps-government surplus. Amazing bargains. Unusual items. Rush \$1. ETCO-RE, 521 5th Ave., NYC, 10017

MEMORY SYSTEM \$125.00

1024 core memory system, 1024 words memory, 8, 9, or $10 \mathrm{~b} / \mathrm{ts} / \mathrm{word}$. Random access, with all logic, register, timing, control, core select and sense functions in one package. New with 60 page booklet includes schematics, Measures only $9 \times 4 \times 1$ inches. Good start for mini-computer.

TONE GEN. BOARD

3 Octave tone gen, board from Magnus Organ, Unused with instructions \& amp. \$9.95 2 for $\$ 18$

PIANO KEYBOARD \$9.95

2 Octave keyboard

For use with above organ or synthesizer, etc.

MULTI-USE XFMR \$8.95

Output 18 V @ $6 \mathrm{amp} ; 17 \mathrm{~V}$ @ 6 amps; 10 V @ 10 amp. Brand new. $\$ 8.95$ ea., 2 for $\$ 15$; 10 for $\$ 50$.
BELLTONE PAGER
Made for Bell System. Clip-on belt or pocket pager-recelver Used condition, complete radio receiver on freq. of 35 Mhz with reed-decoder tone alert. An interesting \& useful experimenters gadget. Limited quantity.
\#SP-125 \$5.00 each 6/\$25

Please add shipping cost on above
FREE catalog

Meshra surplus p.O. Box 62 MATERIAL 19 ALLERTON STREET E. LYNN MASS. 01904

Circle 101 on reader service card

NEW Canadian Magazine, "Electronics Workshop"' $\$ 5.00$ yearly, sample $\$ 1.00$. ETHCO, Box 741^{\prime} " A ", Montreal
SURPRISE! Build inexpensively, the most unusual test instruments, futuristic gadgets using numerical readouts! Catalogue free GBS, Box 100B, Greenbank, WV 24944

CATALOG

GOVERNMENT SURPLUS ELECTRONIC EQUIPMENT For 1975
 Address: Attention Dept. RE
FALR RADIO SAMES 1016 E. EUREKA - Box 1105 - LIMA, OHIO. 45802

JEEPS \$52.50! Cars \$31.50! 100,000 Items! -Govt. surplus complete information-Your area $\mathbf{\$ 2 . 0 0}$ money back guarantee!!! GOVT. INFO. SERVICE, Dept RE-7, Box 623, South San Francisco, CA 94080
RECONDITIONED test equipment. $\$ 0.50$ for catalog. WALTER, 2697 Nickel, San Pablo, CA 94806
PHOTOGRAPHIC timer digital readout, crystal time base, alarm, footswitch, guaranteed. CASCADE LABS, 5637 Bayview Ave., Richmond, CA 94804
UNDERSTAND digital electronics-calculators, microprocessors, clocks. New programmed learning courses. Design of Digital Systems, 6 volumes, only $\$ 14.95$. Digital Computer Logic, 4 volumes, $\$ 9.95$. Both $\$ 19.95$. Unconditional refund if dissatisfied. CAMBRIDGE LEARNING ENTERPRISES, BOX 428, FDR Station, New York, NY 10022

IMPORTED JAPANESE TRANSISTORS

ALL TRANSISTORS ORIGINAL FACTORY MADE

2SA100			\$1.25	$2 \mathrm{SC778}$	
				${ }_{25 \mathrm{Cl} 99}$	
	. 80				
	05				
	1.05				
	80				
SA35					
SA4					
$2 \mathrm{SA5}$					
SA6	1.50	$2 \mathrm{SC37}$	8		
S	1.45	2 SC 3			
2		2 Sc		2SC	
	1.95	${ }^{2}$ SC4		2SC	
				2scl	
A68	. 85	-25C4			
2SA69	. 45	2SC	. 80	2sc1	
	1.75		75		
			4.75		
				${ }_{2 S}$	
${ }_{25815}$	1.05		75	S	
	. 65	2SC538A		-2SD	
			15		
		${ }_{2} 5$ C6634A		2SD	
		- 2		2 SO	
2	. 70	2 SC 732	80	2 20234	105
	75		80		
			80		

- KIT TR24

Kit Contains 24 *)Mark Transistors you \$ave $\$ 23.28$ SPECIAL 8-TRACK HEAD \$3.95 $4-$ Playback Replacement Head for Practically Alt Auto and Home 8
Track Tape Players. Orders Less Than $\$ 10.00$ Add $\$ 1.00-$ Others Post
paid. Calif. Residents Please Add 6% Sales Tax Send Order and Make Check or Money Order 1o:
West Pacific Electronics West Pacific Elect W. LOS ANGELES, CALIF. 90025

LISTEN TO

 Spectacular 4-Channel Sound!Vista SQ Decoder Exclusive CBS Licensed

IC's FOR SUPERB FIDELITY AND CHANNEL SEPARATION WITH FULL LOGIC AND WAVE MATCHING

All Parts Except Case and Power Supply. +20 V 75 mA IC Regulated Power Supply Kit Available. Only $\$ 5.00$ when ordered with a decoder kit.

Shlpped prepaid in USA NY State add Tax $\$ 2.00$ additlonal for CANADA
PHOTOLUME CORPORATION
118 East 28th STREET, New York, N.Y. 10016

> ALTAIR 8800 USERS!!
> FREE SOFTWARE!...well, almost free We will send octal \& Assembly language for postage \& handling. If you buy one. of our modules, we ll send them FREE
> Package 1: Resident assembler, system monitor, and text editor for the Altair 8800. Really an OS for Assembly language! For example, you can store and cal programs by name.
> Package 2: BASIC language interpreter this one should be ready by Oct. 75 . We are working very hard at putting the
Monitor, Assembler into a fast 16 K ROM monitor Assembler into a 75 S SEND FOR module for delivery in Oct. OUR HARDWARE
> Remember, if you don't continue to buy our neat modules we won't be able to provi plug te the 8800 bus. Check dhese 2KRO - Erasable, reprogrammable PROM 2KRO
module. Kit, $\$ 50$; assembled, $\$ 75$.
> $3 \mathrm{P}+\mathrm{S}-1 / \mathrm{O}$ module, 2 parallel $1 / \mathrm{O}$'s plus a
> serial interface for TTY and RS232.
> Kit. $\$ 125$: assembled, $\$ 165$. $4 K R A-4096$ word STATIC high speed MBI - Mother board, 16 card slots
> BT1 \quad Busg Terminator module. Kit, $\$ 30$. $100 \mathrm{PC}-100$ pin edge connector, $\$ 8.50$ COMING SOON ! !
> MMM-1 - The first in a series of Music Maker Modules will provide tuo computcr controlled tones that go directly to an audio amplifier! Free driving softurare. PPM - Smart PROM programmer. Let us know if you need to program 1702A's or 5203 's or both. About $\$ 150$. 8800 Plugin. TC+I - Fully computer controlled cassette transport and controller/interface.
This is a really nice one! About $\$ 300$ kit. This is a really nice one! About $\$ 300$ kit time down to . 01 sec. Alarm and Real Time lnterrupt too. About $\$ 100$.
> more, if we can do it, lines of 64 charac more, if we can do it, lines of 64 characallocation \& very fancy iext editing soft ware included. About $\$ 125$!
> Send for our FREE flyer or order now from:
> PROCESSOR TECHNOLOGY CO.
> Dept. R, 2465 4th St., Berkeley. CA 94710 (415) 549-0857

CB SPECIALS

2SC710	.70	2SC799	4.25
$2 S C 711$.70	$2 S C 1013$	1.50
$2 S C 735$.70	$2 S C 1014$	1.50
$2 S C 756$	1.50	$2 S C 1017$	1.50
$2 S C 773$.85	$2 S C 1018$	1.50

JAPANESE TRANSISTORS

2SC 12372.00 2SC1239 2.80 2SC1243 1.50 2SC1306 5.25 2SC1377 6.75 $2 S C 1449$
2.50

2SC1678 5.75 2SC1679 5.75 2SC1957 3.50 $\begin{array}{ll}2 S D 235 & 1.00 \\ \text { MRF8004 } & 3.00\end{array}$ $\begin{array}{ll}4004 & 3.00 \\ 4005 & 3.00\end{array}$ $\begin{array}{ll}4005 & 3.00 \\ & 3.00\end{array}$

2SA52	60	2SB370	1.10	2SC478	80	2SC829	75	2SC1509	1.25
2SA101	70	2S8379	. 65	2SC482	1.75	2SC833	70	2SC1569	1.25
2SA103	70	2S8380	70	2SC491	2.50	2SC838	70	2SC1756	1.25
2SA221	60	2S8405	1.00	2SC495	70	2SC839	85	2SD30	95
2SA473	85	2SB407	2.10	2SC497	1.60	2SC930	65	2SD45	2.00
2SA495	65	2SB415	1.05	2SC515	80	2SC945	65	2SD64	75
2SA497	. 55	2S8461	1.25	2SC535	95	2SC1010	80	2SD65	75
2SA505	65	2SB463	1.65	2SC536	65	2SC1012	80	2SD68	70
2SA562	70	2SB471	1.75	2SC537	70	2SC 1013	1.50	2SD72	1.00
2SA607	2.25	2SB474	1.75	2SC563	2.50	2SC1014	1.50	2SD88	1.50
2SA613	1.00	2SB481	2.10	2SC564	. 70	2 SC 1018	1.50	2SD 120	85
2SA643	85	2SB492	125	2SC568	. 70	2SC1030	3.25	2SD130	1.50
2SA647	2.75	2SB495	95	2SC582	. 85	2SC1051	2.50	2SD 141	2.25
2SA673	85	2SB605	2.00	2SC591	2.50	2SC1061	1.65	2SD151	2.50
2SA679	2.25	2SB606	2.00	2SC605	1.00	2SC1079	3.95	2SD170	2.00
2SA682	95	2SC15	65	2SC619	70	2SC 1096	1.20	2SD180	3.00
2SA699	1.30	2SC24	65	2SC620	80	2SC1098	1.15	2SD198	2.50
2SA699A	2.00	2SC32	65	2SC627	1.75	2SC1115	2.75	2SD201	2.50
2SA705	55	2SC33	65	2SC644	70	2SC1166	70	2SD218	5.00
2SA714	2.50	2SC41	4.00	2SC645	85	2SC1170	4.00	2SD235	1.00
2SA720	70	2SC49	80	2SC681	2.50	2SC1172	425	2SD261	80
2SA733	65	2SC56	95	2SC684	2.10	2SC1173	1.25	2SD291	85
2SB22	65	2SC143	3.50	2SC687	2.50	2SC1213	75	2SD292	85
$2 \mathrm{SB54}$	70	2SC154	3.75	2SC696	2.35	2SC 1226	125	2SD300	250
$2 \mathrm{SB56}$	70	2SC162	3.75	2SC710	. 70	2SC1237	2.00	2SD313	120
2S877	70	2SC163	4.50	2SC711	. 70	2SC1239	2.80	2SD315	75
2SE128	2.50	2SC 185	1.00	2SC712	70	2SCi293	85	2SD318	95
2SB135	95	2SC202	1.00	2SC713	. 70	2SC 1308	5.00	2SD341	95
2SB152	4.50	2SC206	1.00	2SC732	70	2 SC 1317	60	2SD350	3.50
2SB172	. 55	2SC240	1.10	2SC733	. 70	2SC1325	5.00	2SD352	. 80
2SB173	55	2SC261	65	2SC735	70	2SC 1347	80	2SD380	6.00
2S8175	55	2SC291	65	2SC739	70	2SC1377	6.75	2 SD389	95
2S8178	1.00	2SC320	75	2SC756	1.50	2SC1383	75	2SD390	75
2SB186	. 60	2SC352	75	2SC774	1.75	2SC1393	60	2 SD437	6.00
2SB187	. 60	2SC353	. 75	2SC775	2.00	2SC1409	2.75	2SD458	80
2SB235	1.95	2SC371	. 70	2SC778	3.00	2SC1410	2.75	2SD1111	3.50
2S8303	65	2SC372	70	2SC783	1.00	2SC1446	1.25	2SD1115	3.75
2S8324	1.00	2SC380	. 70	2SC784	. 70	2SC 1447	1.25	2SK19	225
2S8337	2.10	2SC387	70	2SC785	1.00	2SC1448	1.25	2SK30	125
2SB364	65	2SC394	70	2SC792	3.00	2SC1450	1.00	2SK40	1.60
2SB365	65	2SC458	70	2SC793	2.50	2SC1454	2.75	3SF11	3.14
2SB367	1.60	2SC460	70	2SC828	. 75	2SC1507	1.25	SG609	4.95

[^9]ALL PAATS GUARANTEEO AND TESTED ON PAEMISES
 $\begin{array}{llll}\text { 2N173 } & 2.00 & \text { 2N918 } & .1 \\ \text { 2N178 } & .90 & 2 N 930 & .1 \\ 2 N 327 A & 1.25 & 2 N 956 & .20 \\ 2 N 334 & 125 & 2 N 960 & .4 \\ 2 N 336 & 90 & \text { 2N962 } & 4\end{array}$
3.10
5.00
20
35 $\begin{array}{rrr}0 & 2 N 1540 \\ 0 & 2 N 1543 & 3.0 \\ 0 & 2 N 1544 & .8 \\ 5 & 2 N 1549 & 1.0 \\ 5 & 2 N 1551 & 3.50\end{array}$

| .90 | $2 N 2325$ | 2.10 | 2N3247 | 3.50 | 2N3856 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3.00 | $2 N 2326$ | 3.00 | 2N3250 | .40 | 2N3866 |

$\begin{array}{llllll}\text { 2N2325 } & 2.10 & \text { 2N3247 } & 3.50 & 2 N 3856 \\ \text { 2N2326 } & 3.00 & \text { 2N3250 } & .40 & 2 N 3866\end{array}$
19
19
 $\begin{array}{lrlll}\text { 2N404 } & .20 & 2 N 1137 A & 1.65 & 2 N 2221 \\ \text { 2N443 } & 1.05 & 2 N 1142 & 1.95 & 2 N 2221 A \\ 2 N 456 & 1.15 & 2 N 1143 & 1.75 & 2 N 221 \text { an }\end{array}$ $\begin{array}{lrlrl}\text { 2N456 } & 1.15 & \text { 2N1143 } & 1.75 & \text { 2N2222 } \\ \text { 2N501A } & 3.50 & 2 N 1302 & 25 & \text { 2N2222A } \\ \text { 2N508A } & .35 & 2 N 1305 & .30 & \text { 2N2270 } \\ \text { 2N512B } & 2.50 & 2 N 1377 & 1.25 & \text { 2N2322 } \\ \text { 2N555 } & & 2 N 1420 & 18 & \text { 2N2323 }\end{array}$

New- Tone Electronics P.O. BOX 1738 A BLOOMFIELD, N.J. 07003
5% OFF ON ORDERS OVER $\$ 50.00$ 10% OFF ON ORDERS OVER $\$ 100.00$ $\mathbf{1 5 \%}$ OFF ON ORDERS OVER $\$ 250.00$

TTL

7400	$\$.16$	7451	$\mathbf{S . 2 1}$	74154	$\$ 1.25$
7401	.17	7453	.20	74155	1.07
7402	.17	7454	.17	74156	1.07
7403	.17	7460	.17	74157	.99
7404	.19	7464	.35	74158	1.19
7405	.20	7465	.35	74160	1.39
7406	.35	7470	.30	74161	1.25
7407	.35	7472	.30	74162	1.39
7408	.19	7473	.35	74163	1.39
7409	.23	7474	.35	74164	1.59
7410	.16	7475	.57	74165	1.59
7411	.26	7476	.39	74166	1.49
7413	.55	7483	.99	74170	2.30
7415	.35	7485	1.10	74173	1.49
7416	.35	7486	.40	74174	1.62
7417	.35	7489	2.48	74175	1.39
7420	.17	7490	.62	74176	.69
7422	.26	7491	.97	74177	.84
7423	.29	7492	.71	74180	.90
7425	.27	7493	.60	74181	2.98
7426	.26	7494	.94	74182	.79
7427	.29	7495	.79	74184	2.29
7430	.20	7496	.79	74185	2.29
7432	.23	74100	1.30	74187	5.95
7437	.35	74105	.44	74190	1.35
7438	.35	74107	.40	74191	1.35
7440	.17	74121	.42	74192	1.25
7441	.98	74122	.45	74193	1.19
7442	.77	74123	.85	74194	1.25
7443	.87	74125	.54	74195	.89
7444	.89	74126	.71	74196	1.25
7445	.89	74411	1.04	74197	.89
7446	.93	74445	1.04	74198	1.79
7447	.80	74150	.97	74199	1.79
7448	1.04	74151	.79	74200	5.90
7450	.20	74153	.99		

O48 bil programmable ROM UV erasable $\$ 14.95$
MAN3M LED DISPLAY

- DIGIT LED DISPLAY

 On multiplexed subsitale, comm. cathode compatable with all 8 digit derimal chips. 7 segment right hand derimal. red with clear magnigisg ${ }^{\prime \prime}$ " $1 /$ " hish CLOSEOUT ON CALCULATOR CHIPS

These early model calculator chips have been superseded and are now oltered at this lowest pice
 \$3.40
WITH PURCHASE OF ANY OF THE ABOVE -

AUGUST SPECIALS
DIGITAL CIRCUITS (DIP PKG)
7448
$7474 \quad$ Dual D flip-flop
74107 Dual J-k flip-flop Relrig monoslabl
Relig monosis
mulivib w/clr
LINEAR CIRCUITS (DIP PKG)
$380 \quad \begin{aligned} & 2 \text { wall dudio } \\ & \text { amplifler }\end{aligned}$
POCKET CALCULATOR KIT
5 function plus constant addressable memory with display plus overtion display plun Overfion -
baltery saver - uses standard or rechavgeable batteries - all necessaly palts in ready to assemble form - instructions included

CALC KIT	\$12.95
ASSHMBLED	14.95
Stt of alkaline batt.	2.00

OUR 10\% DISCOUNT HAS BEEN DEDUCTED FROM ALL PRICES REGARDLESS OF AMOUNT OF ORDER.

MEMORIES

1101
1103
2102
520
526
5261
5262
7
8
7

7+100	\$ 25	74151	5. 29	74190	31.49
74102	. 25	74155	. 33	7+191	1.45
74103	. 25	7+171	. 25	74193	1.69
74104	. 25	74172	. 39	74195	1.69
74106	. 25	74173	. 49	74198	2.79
7410	. 25	74174	. 49	741164	2.79
74120	. 33	74178	. 79	7+1 165	2.79
74130	${ }^{3}$	74185	1.25		
74142	1.49	74186	. 69		
MICM SPEED TTL					
741100	3.25	74121	5.25	74155	\$ 25
741401	25	$7+1122$. 25	74160	25
$74 \mathrm{H}^{1} \mathbf{4}$	25	74130	25	74161	. 25
744108	25	74140	25	74162	25
74110	. 25	741450	25	74H72	39
741111	25	741152	25	74H74	19
741420	25	74H53	. 25	741476	. 49
8000 SERIES					
8091	\$ 53	8214	31.49	8811	1. 59
8092	. 53	8220	1.49	8812	. 89
8095	1.25	8230	2.19	8822	2.19
8121	80	8520	1.16	8830	2.19
8123	1.43	8551	1.39	8831	2.19
B1 30	1.97	8552	2.19	8836	.25
8200	2.33	8554	2.19	8880	1.19
8210	2.79	8810	. 69	8263	5.79
				8267	2.59
9000 SERIES					
9002	3. 35	9309	3.79	9601	3. 89
9501	1.03	9312	79	9602	. 79

\$000A	3. 39	4019A	369	4066A	31.19
*001A	. 39	4020A	1.98	+068A	49
40024	. 39	4021A	1.89	4069A	49
4006 A	1.95	40234	19	+071A	40
40074	. 40	+0.24	1.45	+0724	40
40084	1.98	4025A	. 39	+07 JA	40
40094	. 69	4027A	.98	4075A	40
4010A	69	4028A	1.69	4078A	40
2011	. 39	40304	. 79	+0814	40
40131	. 69	40354	1.89	+062A	40
4614A	1.98	40.24	1.89	45284	1.60
4015a	1.98	+0494	79	45854	2.40
40164	. 69	*0504	. 79	4047A	2.75
${ }^{74600}$	5 22	7×674	\$1.04	74< 162	\$293
34 CO	26	74676	1.34	7+C163	2.66
${ }^{7} \mathrm{CO4}$	4	74×107	1.13	74C164	2.66
7 COOb	. 68	746151	2.61	74.173	201
$74 \mathrm{Cl0}$	15	74 Cl 154	3.15	\% 4 C 195	2.66
74 C 20	15	7+C157	1.76	80 C 95	1.15
74 C 42	1.61	746160	2.48	80C97	1.13
74×71	1,04	746161	2.93		

LINEAR CIRCUITS

Pos V Res (super 723)	10.5	\$ 71
Hi Perl Op Amp	mDIP TO. 5	29
Voll tollower	10.5	. 53
Neg V Reg	10. 5	80
Pos \vee Reg	10.5	71
Op AMP (super 741)	mDIP IO. 5	6
Mlero Pwi Op Amp	mDIP IO-5	89
5V iA regulaior	10.3	1.35
\checkmark follower Op Amp	10.5 mDIP	1.07
Mi perl V Comp	MDIP IO-S	95
Mi Speed Dual Comp	DIP	1.13
Neg Reg 5.2.12. 15	10.3	1.04
Precision Timer	DIP	1.70
Quad Op Amp	DIP	1.52
Quad Comparator	DIP	1.58
Pos Voli Reg ($5 \mathrm{~V}-6 \mathrm{~V}$		1.79
$8 \mathrm{~V}-12 \mathrm{~V}-15 \mathrm{~V}-18 \mathrm{~V}-24 \mathrm{~V}$)	10.280	1.04
ACC/Squekh AMPI	10.5 or DIP	71
Af-If Srrip derector	DIP	2.93
AM/FM/SSE Strip	DIP	53
Pos. V. Reg	mDIP	2.42
2w Stereo amp	DIP	1.16
2w Audio Amp	DIP	1.13
.6w Audio Amp	mDIP	1.52
to Noise Dual preamp	DIP	152
Lo Noise Dual preamp	DIP	71
Prec V Reg	DIP	89
limer	mDIP	89
Dual 555 Immer	DIP	1.49
Phase locked toop	DIP	2.48
Phase tocked toop	DIP	2.48
Phase tocked toop	DIP IO. 5	2.38
Punction Gen	mD\|P 10.5	2.25
Tone Decoder	mblp	2.66
Operational AMPt	10.5 or DIP	26
HI Speed volt Comp	DIP	35
Dual Difterence Compar	Dip	.26
\checkmark Reg	DIP	62
Dual Hi Perl Op Amp	DIP	1.07
Comp Op AMP	mDIP 10-5	32
Dual 741 Op Amp	DIP OIIO-5	71
Freq Adi 741	mDIP	35
im Aulpa Stereo liemod	DIP	1.07
fs Mulpu Siereo Demod	DIP	. 74
Dual Comp Op Amp	mDIP	62
Siereo muliplexet	DIP	2.48
Dual IM 211 V Comp	DIP	1.70
TV-PM sound System	DIP	
FM Del-LMIR \&		. 62
Audio predmp	DIP	. 71
Quad Amplifier	DIP	35
Core Mern Sense AMPI	DIP	71
Core Merm Sense Amp	DIP	71
9 DIC led Cath Divi	DIP	2.25
Dual tine Driver	${ }^{\text {dip }}$	1.95
Dual Perepheral Driver	mDIP	. 35
Dual Peripheral Driver	mDIP	35
(351) Dual Periph [Drivet	mDIP	35
Quad Seq Driver tor 160	DIP	. 71
Hen Digir Driver	DIP	80

Hen Digir Diver

Satisfaction guaranteed. Shipment will be made via first class mail within $\mathbf{3}$ days from receipl of order. Add $\$.50$ to cover shipping and handling for orders under $\mathbf{\$ 2 5 . 0 0}$. Minimum order $\$ 5.00$. California residents add sales tax.
INTERNATIONAL ELECTRONICS UNLIMITED


```
All IC's new and fully tested, leads plated
with gold or solder. Orders for $5.00 or more
are shipped prepaid, smaller orders--add 55c.
California residents add Sales Tax......IC's
shipped within 24 hours. P.O. BOX 4l,72?
SACRAMENTO, CA
95841
                            916 3342161
```

Circle 93 on reader service card

LOOK FOR

ISSUE OF

RADIO-

ELECTRONICS

AT YOUR

NEWSDEALER

AUG. 19

COAX CONNECTOR KITS . . . BY MAIL.
Finest quality. Solderless. Made by AMP . . . the world's foremost name in connectors and application tooling of all types. Kits assembled by AMP Special Industries, especially for R\&D lab technicians, maintenance personnel, and other communications installation and repair people. Three different kits, each with its own crimping tool and supply of connectors in a sturdy metal box. Connectors may be reordered by mail as required. Total satisfaction, or money instantly refunded at any time. An unbeatable value!

Specify quantity of each kit by kit number. Send check, purchase order or BankAmericard number. Be sure to include applicable sales tax. Postpaid. Free catalog with each order or circle Reader Service Number
KIT
PRICE
NUMBER TYPE
$\$ 49.95$
1-601834-0 BNC for RG-58 Cable (Tool + 20 connectors) \$49.95 BNC for RG-59 Cable (Tool + 20 connectors) $\$ 49.95$ 1-601834-6 UHF for RG-58, RG-59 Cable (Tool +25 connectors)

AMP

SPECIAL
INDUSTRIES
Division of AMP Products Corporation
Valley Forge, Pa. 19482
A subsidiary of AMP Incorporated.
Circle 88 on realer service card

GOMPARE QUR PRIGES wit othens

CLOCK CHIPS

MM 5314
$\$ 3.50$
MM 5316
$\$ 4.00$
CT $7001 \quad \$ 6.50$
MEMORIES
1103 A 1024 bit RAM MOS $\$ 2.20$
2101-2 1024 bit 650 US $\$ 4.00$
8080 COMPUTER
ON CHIP $\$ 120.00$
HP 0.3" 7 SEGMENTS LED DISPLAYS
\$1.60
FAIRCHILD FND70 0.275'
7 SEGMENT DISPLAYS $\$ 1.00$
DL 747 0.6" DISPLAY
$\$ 2.60$
DL 707 0.3" DISPLAY $\$ 2.00$

ALSO IN STOCK-ALL TYPES OF CMOS, TTL, IC, TRANSISTORS, CAP ACITORS, RESISTORS, DIODES, SCR
AND TRIAC AT THE LOWEST PRICES!
MAIL ORDER ACCEPTED
FORMULA INTERNATIONAL INC. 12603 CRENSHAW BLVD. HAWTHORNE, CA. 90250

For Information PLEASE CALL (213) 679-5162

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

R
74
21
10
14,15,16,17,18,19
PAGE

$$
\begin{aligned}
& \text { EADER SER VICE CARD NO. } \\
& \text { A.D.R. Audio } \\
& \text { Allison Automotive } \\
& \text { Alpha Electronics } \\
& \text { Audio Amateur }
\end{aligned}
$$

Basix
$\begin{array}{r}88 \\ \cdots \\ \hline 68\end{array}$
$B \& K$ Division of
92
Bell \& Howell Scho
Shools ...18-21
Castle Radio \& TV Corp. . 91
Casvice Corp.
Cover IV
CIE, Cleveland Institute of Electronics
64.67

Continental Specialties Corp. 14 CREI. Division of McGrawHill Continuing
Education Center
Data Precision Corp
Delta Products Corp
EDI. Electronic Dis-
tributors Inc.
46-49

Edlie Electronics
Edmund Scientific $\quad 77$
EICO, Electronic Instrument, lnc.
Elenco Electronics Inc
EMC Marketing
Measurement Corp.
Enterprise Development Cor
Fluk
Fordham Radio Supply Co.
GC Electronics
General Electric Co.
Grantham School of Electronics
GTE Sylvania Elecironic Components
Heath Co.
Hickok Electrical Co.
ICS. International Cor
Indiana 2 28-31
International Crystal Mfy. Co.
Jensen Tools \& Alloys
Jerrold Electronics ...Cover ${ }^{921}$
Labtronics. Inc. Leader
Mallory Distributor Co.
MITS, Micro-Instrumentation
Telemetry Systems, Inc. 1
MTI, Motorola Training Institute

80
Mountain West Alarm Supply Co.
National Camera Co.
National Technical
Schools
NRI Schoo
NRI Schools, Division of McGraw-Hill Continuing PAIA Elation Center

71	PAIA Electronics
84	Polaris, NY
1	PTS Electronics Cover II
5	Radio Shack
8	RCA Solid State Division
11	Regmo Data Corp.
70	RGS Electronics
	Scelbi Computer
68	Schober Organ
30	Sencore
3	Shure Bros.
23	Southwest Technical Products
76	Telematic $\quad888$
73,90	Tektronix, Inc.
24	Teletronics Company of America
69	Tri-Star
	Vintage Radio
25	Vu-Data Corp.
6	Weller-Xcelite Electronics

READER SERVICE MARKET CENTER
88
89.91 AMP Special Industries

93
94
Digi-Key
Fair Radio Sales PAGE ATV Research 106
Babylon Electronics
Command Productions
Digi-Key
Formula International, Inc. 106
Bill Godbout Electronics . 104
Gunmaster Electronics
International Electron Unlimited
James Electronics
Lesco Electronics
Meshna Electronics. John Jr.
New-Tone Electronics
Photolume Corp.
Poly Paks
Processor Technology Co.
Processor Technology
Saxitone Tape Sales
Solid State Sales
Trumbull
106
$500-\mathrm{MHz}$ prescaler assembled and tested complete with cabinet and power supply $\$ 99.95$. $200-\mathrm{MHz}$ counter kit less cabinet $\$ 139.95$. DAVIS ELECTRONICS, 636 Sheridan Dr., Tonawanada, NY 14150. (716) 879-5848-9

CASSETTES

Plain white cassette labels. Norelco cassette cleaners, famous brand cassettes. Send for open reel and cassette discount catalog.
Cassette Labels (Multiples of 10)
Norelco Cassette Cleaner

- Scotch Cassefte SC9OHE
- Buy 10, SCgoHE, oet 5 free

Plus Postage by Wehht and Zone.

1.9	10.99	100	1000	10 M
	.02	.015	.01	.006
.65	.60	.55	.50	.45
2.72	2.55	2.44		

Minimum Order $\$ 5.60$
OPEN REEL STEREO TAPE BUYERSI
At last! An open reel catalog, including thles, songs, etc. of 95 long play, 2-3 hour albums by American Airlines or Ampex 4 track stereo tapes. Send $\$ 1.00$ - and we will also mail you a 140 -page Harrison stereo tape guide - $\$ 0$ you'll get both for $\$ 1.00$ - and this $\$ 1.00$ is refundable on your first $\$ 10.00$ purchase of open reel
stereo tapes at our 30% discount.
Wive cot the "Sinitit" The Prices lan the aderess io Prowe it
Saxitone's Bicentennial Tape Shoppe
1776 Columbia Rd., N.W., Wash. D.C. 20009

MOSTEK MK50250 "beeper" alarm clock IC \$5.95-Jumbo 0.6" 747 LED display \$1.95$0.33^{\prime \prime} 707$ display 85 \&-Complete clock kits including power supply and PC boards available. All new, guaranteed parts. Catalog 25申, redeemable. DIAMONDBACK ENGINEERING, PO Box 194, Spring Valley, IL 61362
INTEL 8080, 8-bit CPU: \$155. Intel 8008, 8bit CPU: \$26.50. MM5203Q-1, 2K bit REPROM: $\$ 12.50 .2102-2,1 \mathrm{~K}$ RAM: $\$ 4.50$. AY5 1008 , TTY terminal RX: $\$ 5.50$. AY5-1010, TTY terminal TX: $\$ 5.50$. AY5-2376, 9-bit KYBD ENCOD: $\$ 9.50$. XR205, function generator: $\$ 10.50$. XR210, FSK mod/demod: $\$ 6.00$ XR2240, Prog. timer: $\$ 4.75$. SP425-09, 9-digit display: $\$ 2.50$. VA210C, $10-\mathrm{GHz}$ Klystron: $\$ 30.00$. Main \& Memory PCB. (TVT-II): $\$ 39.50$ Catalog 10¢. ELECTRONIC DISCOUNT SALES, Dept. RE, 138 N. 81st, Mesa, AZ 85207
ELECTRONIC ignitions-Mark 10B $\$ 36.95$. Tri-Star: SST-\$27.95, 500-\$33.95. Satisfac tion guaranteed. G.E.E. SALES, 12525 SE 188th PI., Renton, WA 98055

A NEW Instrument to use with your scope

MULTITRACER

BOX 14. LESCO ELECTRONICS, SKOKIE. ILL 60076

SOLDERING IRON USERS

NEW! SAME SOLDER TIP

- SOLDERS - DESOLDERS - resolders

EXCELLENT FOR P.C. WORK
Type A $1 /{ }^{\prime \prime}$ dia., 6-32 threads
$\$ 1.98$

Type H $1 / 4 "$ dia., Plug Type Tip 2.28
GUNMASTER, Box 743, Kings Park, N.Y. 11754
ELECTRONIC parts! New! Solid State devices Free flyer: DARTEK ELECTRONICS, Box 2460, Dartmouth, Nova Scotia, Canada U.S. inquiries

The American
Red Cross.
The Good
Neighbor:

And our FREE 180 PAGE CATALOG is packed with exciting and unusual values in electronic. hobby and science items - plus 4.500 finds for fun. study or protit... Ior every member of the tamily
 \square
 A BETTER LIFE STARTS HERE
 LIVE IN THE WORLD OF TOMORROW . . . TODAY!

3-CHANNEL

COLOR ORGAN KIT
Easy to build low-cost kit needs no echnical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of olored lamps (i.e. "Iows"-reds, midnet hi-fi, radio, power lamp etc. \&
plug ea. lamp string into own channel (max, 300w ea) Kit fea plug ea. lamp string into own channel (max. 3 neon indicators, color intensity controls, controlled individ SCR circuits: isolation transformer; custom plastic housing: instructions
5tock No. 41,831 EH
$\$ 18.95$ Ppd.

AM RADIO FITS IN/ON YOUR EAR!
Wear it inconspicuously everywhere, listen as you work (lawn, yard, office), watch (game, beach) or wait. Instant music, news sports. No gimmick $-6 / 10$ oz. technological wonder w/integrated circuit, 11 transistors, patented ferrite antenna/tuner/volume dial. Works best outdoors. Uses hearing aid batt. (incl)-up to 100 hrs . playing. New batt. to slip in avail. at drug stores (about 50\&). No lengthy wires, bulky cases, or power-packed!
Stock No. 42,275 EH $\$ 14.95$ Ppd.
 PRO ELECTRONIC SOUNO CATCHER
Parabolic mike w/ $183_{4}{ }^{\prime \prime}$ reflecting shield \& 2 I.C.'s in amplifier magnities signals $100 \times$ that of omni-direcmile off; OB's huddle strategg: sounds never before heard. Super directivity
 gives highest signal to noise ratio poss. Safe: auto. cuts off ear damaging noises. Earphones, tape recorder output, tripod socket. Req. two $9 v$ trans. batt. (not incl).
No. 1649 EH ($51 / 2$ LB.)
$\$ 299.00$ Ppd.
RIG EAR "TOY" MODEL $\mathbf{¥ 8 0 , 1 7 6} \mathbf{E H}$ \$32.25 Ppd.

AN ALPHA MONITOR FOR $\$ 34.95$
Yes, because you built it! Use your ability to tune in your brainwaves, an aid to relaxation, concentration. kit incls. everything you need (except $9 v$ trans. batt.) 10 own a portable self-cont. BIOFEEDBACK unit for a pittance: steth. earphones, electrode headband, solid-state circuitry; 5 microvolt sensitivity, more! Compl. assembly instructions $\&$ op. manual. With tasic No. 61,069 EH (KIT) $\$ 34.95 \mathrm{Ppd}$. No. 71,809 EH (FULLY ASSEMBLED) $\$ 55.00 \mathrm{Ppd}$.

RUN A WORKING STEAM ROLLER!
Authentic English hand-crafted model made of heavy-gauge metal. powered by steam so you can run it forward. backward, regulate speed, pull other models, lock roller and run engine independently. Just set steering or use the $12^{\prime \prime}$ extension steering rod and drive it yourself! The fun even includes a traditional black chimney for the exhaust, which can power the inighty whistle. To run, fill the safe vaporizing spirit lamp w/wood alcohol (not incl)
No. 71,934 EH (4 lb.; $101 / 4 \times 6 \times 7$ ")

TOTAL KIRLIAN

PHOTOGRAPHY SET
Explore "aura" photography w/ superb new self-contained Rirlian Electrophotography Research Unit Terrific value introduced at \$9.95 (140 in Sept.) Has every. thing but vinyl photo changing sheet or polaroid firm for photos up to 5x7" all without camera or lens variable voltape 12 v up to $5 x$) all whe satety design-fully encased in glastic o 32 kv . Uitimate satety design-fully encased in plastic No. 72.104 EH (3x5\% Mstrs)
No. 72,104 EH ($3 \times 5 / 4 \times 71 / 2)$
$\$ 99.95 \mathrm{Ppd}$.

LOW COST
7X INFRA-RED VIEWER
For Intra-red crime detection surveillance, security system align. ment, I.R. Detection, laser check ing, nite witection \& conv, to visible spectrum selt cont scope w/every. spectrum. Selt cont. scope w/everything incl. .R. light source. 6 or $12 v$ power 6032 L.R. conver tero 10 , fo infinity adjust. triplet eyepiece. Focuses from 10 to intinity.
No. 1659 EH ($11 \times 141 / 4 \times 3^{\prime \prime}$)
No. 1648 EH
\$275.00 Ppd.
$\$ 225.00 \mathrm{Ppd}$.

SUPER POWER

 FOR ANY AM RAOIONew antenna assist turns a tiny transistor into a tiger, has pulled in stations 1000 miles away! Just set it beside your radio (no wires, slips, grounding) and fine-tune Select-A-Tenna's dial to same frequency - "Gangbusters"! Terrific for sportsmen, vacationers. Great for clearing weak signals in radio depressed areas, off-coast islands, stations in crowded frequencies. Solid state-uses no electricity, batts., tubes. Works almost forever
Stock No. 72,095 EH

ELECTRONIC OIGITAL

STOPWATCH: $\$ 69.95$
A price breakthrough! New pocket size 4 oz. timer acc. to $\pm 2 \%$ of last digit ($1 / 100 \mathrm{sec}$. increments) Compares with others twice the price! Instant error.free read-outs to 9999.99 sec . (over ${ }^{23 / 4} \mathrm{hr}$.). ulates). Mechanical pushbutton \& electrical remote on/offs w/ any $3.5-150 \mathrm{v}$ AC/OC source. Plug-in jack. Incls. 9 v batt Solid state.
No. 1943 EH ($21 / 4 \times 41 / 2 \times 7 /{ }^{*}$)
. $\$ 69.95$ Ppd.
OELUXE 2 EVENT STOPWATCH ($\pm 0.01 \%$ OF LAST DIGIT)
OELUXE 2 EVENT STOPWATCH ($\pm 0.01 \%$ OF LAST DIGIT)

MAIL COUPON FOR GIANT F:IF CATALOG

 180 PAGES - MORE THAN 4500 UNUSUAL
Completely new 1975 edition. New items, categories,

 illustrations. Dozens of electrical and electromagnetic parts, accessories. Enormous selection of Astro. nomical Telescopes. Unique lighting and ecological items. Microscopes, Binoculars, Magnifiers, Magnets, Lenses, Prisms. Hard-to-get surplus bargains. Ingenious scientific tools. 1000's of comporients.EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N.J. 08007
Please rush Free Giant Catalog "ÉH".

Name

Address
City
Cly \quad State ___ Zip ___

COMPLETE AND MAIL WITH CHECK, M. O. OR CHARGE NO.

 EDMUND SCIENTIFIC CO.300 Edscorp Building, Barrington, NJ. 08007

The Hottest New Product Since The Calculator...

- Makes every set on your lloor a remote control modelUniversal-Attaches to any set in minutesChanges channel instantly and fine tunesTurns set on/off
\square Silent push-button varactor-diode tuning12 channels
\square Amplifies signal and eliminates direct pick up ghostsFor homes, apartments, bars, hotels/motels, schools, hospitals and nursing homes.

Packaged in a sturdy, colorful, self-selling carton

a GENERAL INSTRUMENT company
headouarters \& eastern office 200 witmer Rd., Horsham, Penna. 19044, (215) 674-4800 SOUTHERN OFFICE 1 Perimeter Place, Suite 101, Atlanta, Georgia 30339, (404) 432-3102 WESTERN OFFICE 1255 Veterans Blvd., Redwood City, Calif. 94063, (415) 365-5050 MIDWESTERN OFFICE 1334 Atlantic Street, North Kansas City, Mo. 64116, (816) 842-1555

Pioneers of TV Tuner Overhauling Originators of Complete TV Tuner Service
Castle offers the following services to solve All your television tuner problems.

When our inspection reveals that original tuner is unfit for overhaul, and it is not available from our stock of outright replacements, we offer to make a custom replacement on exchange basis. Charge for this service is $\$ 15.95$ for uhf tuner and $\$ 17.95$ for vhf tuner.
If custom replacement cannot be made we will custom rebuild the original tuner at the exchange replacement price.

All replacements are new or rebuilt. All prices are f.o.b. our plant. Add shipping and handling of $\$ 1.25$ on all prepaid orders. We will ship C.O.D.

CASTLE TV TUNER SERVICE, INC.
5715 N. Western Ave., Chicago, III. 60645 - Ph. 312-561-6354

[^0]: As service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible varlances in the qually and condition of materials and workmanship used by readers, Radio-Electronics technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics

[^1]: by DAVID LACHENBRUCH
 CONTRIBUTING EDITOR

[^2]: RCA Solid State, Box 3200, Somerville, N.J. 08876.

[^3]: *An LCD's performance is based on the behavior of certain organic chemicals which simultaneously exhibit both liquid and crystal properties. These nematic liquids are transparent in the liquid state until their thread-like molecules are disturbed by the presence of an electrical field-a phenomenon discovered in 1888, but regarded as a laboratory curiosity until late in the 1950's when investigations of practical uses began.

[^4]: *Design Engineer Heath Company, Benton
 Harbor, Mich.

[^5]: - Technical Editor

 Winegard Company

[^6]: Mark Ten B,
 assembled Mark Ten B, kit

[^7]: The SACleober Organ Corp., Dept. RE-141 143 West 61st Street, New York, N. Y. 10023 - Please send me Schober Organ Catalog 8 Enclosed please find $\$ 1.00$ for 12 -inch L.P. record of Schober Organ music.

 - NAME

 ADDRESS
 CITY \qquad STATE ZIP

[^8]: Whenever a gate output is " 0 ", the set of numbers or letters following the " 0 " indicate which gate or control sources had supplied the necessary " 1 " output to its input to cause it to be " 0 ". The letters of the control sources used in the table correspond to:
 $R=$ Rewind flip-flop in the memory circuit ($1=$ RWD)
 $F=$ Forward flip-flop in the memory circuit ($1=$ FWD)
 $\mathbf{P}=$ Play flip-flop in the memory circuit $(0=$ FWD $)$
 $X=$ Direction sense circuitry ($1=$ RWD, $0=$ FWD $)$
 $X=$ Direction sense circuitry $(1=$ FWD, $0=$ RWD $)$
 $\mathrm{S}=$ Motion Sense circuitry $(1=$ stop, $0=$ Motion $)$
 Because the last direction of machine motion is not unique in the standby or jockeying (fast forward followed quickly by fast rewind) states, gates 1 and 2 have X or \bar{X} possible. Also, since there may not be any motion at all during jockeying, S is possible during this mode.

 ## What does it all mean?

 Clearly, modern electronic techniques, and particularly those from the world of digital electronics, play a vital part in the operation and performance of a top-performing tape transport such as Crown's 800.

 R-E

[^9]: 20\%. of on Repliciement orders of 25.00 or more. Abo

