IC FUNCTION GENERATOR EXPERIMENTS-BUILD A 2650 COMPUTER

Radio-Electronics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
it's programmable
DIVIDE BY ANYTHING frequency divider automatic color TV HEATH PROGRAMMER changes channels for you

get your ears on

CB PREAMPLIFIER

boosts sensitivity

new radio rules
WARC 79 can affect you

Pinball Computer

Your home, apartment or office can become an action entertainment center with America's first commercial-home pinball machine.

It's you against a computer. And the action and excitement from Fireball, your own computerized pinball machine, is nothing short of spectacular.

Fireball's computer replaces many of the mechanical, scoring. conventional electronics and sensing devices of a standard pinbali machine. It's a dramatic change in pinball devices and the start of a new consumer electronics revolution.

DESIGNED FOR ACTION

Fireball contains flippers, bumpers, thum pers, flashing lights, sounds and a full-sized playfield. The glass covering the playfield is safe, shatterproof and specially tempered.

From one to four players can compete. Turn the unit on and simply program the com puter with the number of players by pressing the start button up to four times. Each play er's score is kept separately in a memory and appears on the display for each player's turn and at the ?nd of the game.

The bat is automatically ejected and you pull the funger to project it into action. The ball bour es from side to side from bumper to thuntysr. Lights flash and the scoring begins. Yc use the separately controlled flippers by jressing the flipper controls on the sides of the playfield which are low enough so that ever a five year old can reach them.

Flip a switch and Fireball can be programmed for beginner or advanced skills altraagh pinball is the only game everybody knows how to play with in seconds after they step up to a machine.

'WE'RE IN THE MONEY"

The thrill of winning a bonus score or extra ball is enhanced by Fireball's songs and scoring tones. The computer'ṣ synthesizer plays seven songs-everything from "We're in the Money" when an extra ball is awarded to "The Party's Over" when the game ends. Various scores sound five additional tones making the game a total sight and sound experience. A volume control lets you keep it loud at a party or turned down in quieter surroundings.

COMMERCIAL PARTS AND FEATURES

Fireball contains the same heavy duty devices and scoring features as a commercial pinball machine. The game has a tilt feature-tilt Fireball and a tilt sign glows and the scoring stops. The full-sized, full-color commercial play field even has a special friction silk-screened surface so the ball will roll and not slide. Fireball differs from an arcade unit only by the start button which has replaced the coin slot and its new electronics. In fact, all future commercial machines will resemble Fireball within a year.

MANY NEW FEATURES

Fireball's computer is as powerful as the million dollar 1 BM computer sold in 1964. The solid-state LED scoreboard replaces the old electromechanical pinball scoring wheels so Fireball's backboard is thinner and its scoring more reliable. Its memory not only keeps track of everybody's score but the exact playfield configuration and extra bonus ballssomething present-arcade games can't do.

The American-made Bally Fireball-the first computer pinball machine designed for both home and office entertainment centers.

Although the playfield is just as large as the commercial machines, the entire unit has less weight, less bulk, and practically no service requirements making it ideal for the home or office. It lakes up a space 2 feet by 4 feet and weighs 160 pounds.

HOW TO JUSTIFY PINBALL

(TAKE THIS TEST)
If you paid more than $\$ 600$ for eithei your TV set, stereo system or pool table-you should consider a pinball machine. You'll have more fun and action than watching TV. listening to your stereo or playing pool.

And when guests pop in, your Fireball will be the talk and highlight of their visit. Your TV and stereo are used primarily for private viewing or listening. Your pinball machine is for alltimes-from your personal family enjoy. ment to big parties. It's the great new idea in home entertainment.

TAX DEDUCTIBLE

Consider Fireball for your office as either an executive toy or a free new benefit for your office or factory employees during their breaks. You get both an investment tax credit and depreciation. Fireball combines participation, action and entertainment. A pinball machine is so intriguing that people pour dollars into them at arcades. It requires skill, sharpens responses and can become the single most talked about entertainment product in your home or office.

LASTING PLAY VALUE

Fireball, unlike the new TV games, is partially a game of chance and thus can never be mastered. Even an experienced professional can lose to a youngster. A daughter can beat her father, grandma can beat grandpa and the surprise of an upset is what adds to the long lasting play value. A professional pinball machine is an amusement game that you rarely get tired of-no matter how good you get, na matter how long you've played. Ask any arcade operator. His customers will tire of his video games which he continually rotates with newer models but his pinball machines are played and played and played.

Don't be confused. There are other games made by toy designers selling for one half the price. Fireball is not a toy and is built by a company that specializes in pinball machines. With all its sophistication it is the most servicefree, quality pinball machine ever produced.

When you buy an expensive product you must be absolutely satisfied that you get the service and a solid company standing behind your purchase for many years to come. Fireball is backed bya substantial company, Ballyin business since 1931 and now the world's largest manufacturer of coin operated amusement games. JS\&A is America's largest single source of space-age consumer products and also a substantial company-further assurances that your investment is well protected.

A FRANK DISCUSSION OF SERVICE
Fireball is a solid-state computer with its electronics condensed on integrated circuitsall hermetically sealed and all pre-tested for a lifetime of service. Fireball is also self-diag. nostic. Let us say something goes wrong with the system. Simply press the test button on the back panel of your machine and the exact
problem is displayed on your scoreboard in digits. Check the instruction booklet and simply remove the designated plug-in circuit board, light bulb or part and send it to the service department closest to you for a brand new replacement. Even your TV or stereo isn't that easy to repair.

Please don't think service requirements are common. They're not. But we wanted to assure you that service was such an important consideration in its design that Fireball practically repairs itself. And any defective component will be replaced free-of-charge during its one year limited warranty.

SHIPPING AND THE TRIAL PERIOD

Each Fireball comes in two sections with four metal legs. The two sections quickly bolt together with the top portion also plugging into the bottom to make all electrical connections. Within minutes after it arrives, your unit is ready to operate.

Attach the metal legs, plug it in and start playing. Don't even read the instructions on how to play it-you should know how within minutes. Then after you've played Fireball for awhile, go to your local arcade and play a standard $\$ 1500$ pinball machine. It's only then that you'll realize how much more value you are getting with Fireball.

But let's be realistic. What if you don't like what you get? Simple. A toll-free call to JS\&A and we'll arrange for the pick-up of your unit and we'll pay all the pick-up and return costs. And you can play Fireball for one month before you make up your mind.

A GUARANTEE OF SATISFACTION

The cost for your own pinball machine is $\$ 795$ (Illinois residents add $\$ 39.75$ sales tax) plus the freight which you pay upon receipt and which will run approximately $\$ 34$ from our facilities in Northbrook to Los Angeles or less if you live closer. You can order Fireball with any major credit card by calling our tollfree number or you can send your check for $\$ 795$ to the address shown below. We will then promptly ship your unit and advise you.
We back Fireball with an outstanding service program made possible by plug-in commercial components. We provide the opportunity to use Fireball for one month without obligation and if 1) it does not live up to every one of your expectations 2) for any reason you get tired of playing it, or 3) you don't find it more challenging after one month than when you first played it, give us a call and we'll pick it up at your door at our expense and refund your money. We provide fast service turnaround time should service ever be required and we have been in business for aver a decade providing the same conscienticus service that has built our company into America's largest single source of quality space-age products.

Why not let the fun and action of your very own pinball machine add to your home or office entertainment picture? We'll make just trying Fireball the best entertainment move you've ever made. Order one at no obligation today.

Dept. AA One JS\&A Plaza
Northbrook, III. 60062 (312) 564-9000 CALL TOLL.FREE. . . . $800 \quad 323-6400$ In Illinois call (312) $498-6900$ © © Js\&A Group. Inc.. 1977

With so many new and unproven brands on the CB bandwagon, the reasons for buying Realistic are clearer than ever. Seventeen years' experience and sales of a million sets annually have shown us what it takes to be a leader:

Intelligent, reliable engineering. Easy-to-find sales and service - to the tune of 4800 Radio Shacks in the USA alone. And low prices that are possible only because Radio Shack is a do-t-yourself company, from factory to warehouse to sales counter

Take a look at our new high-performance mobile transceiver, the TRC-467. Advanced phase-lock loop circuitry generates all 40 channels with an electronic precision far beyond the limits of the multi-crystal sets.

Three ceramic IF filters improve the selectivity for a whopping 80 dB of adjacent-channel rejection. An automatic noise limiter cuts pulse interference, and it's switchable for maximum clarity on stronger signals.

Illuminated signal strength/RF output meter and channel selector, LED modulation indicator - conveniences that make your CB easier and more fun to use. With dynamic plug-in microphone, adjustable mobile bracket, and power cables for any vehicle with 12 VDC positive or negative ground

Come in today and see the TRC-467. Designed, manufactured and sold only by "the" CB experts - Radio Shack. Just 119.95*.
the magazine for New ideas in electronics
Electronics publishers since 1908

BUILD ONE OF THESE

37 Divide By Anything (Cover Siory)
It's a programmable frequency divider. by George Baumgras

45 Build A 2650 Mlcrocomputer
Part II: Troubleshooting and assembly. by Jeff Roloff

60 Make This Speaker Phone Yoursell
Easy project offers hands-off phone use. by Jules Gillder
66 Experiments with IC Function Generators Part III: More circuits using the XR-2206. by R.M. Marston

70 Boost Performance With This CB Preamp
Simple solid-state unit plugs between your
CB antenna and rig. Enhances receiver performance. by George Sante

general ELECTRONICS

4 Looking Ahead
Tomorrow's news today. by David Lachenbruch
24 Komputer Korner
Microcomputer interfacing and internal registers within the 8080 chip.
by David Larsen, Jon Titus, and Peter Rony
30 VIZ Pulse Generator (Equlpment Report) We test the new VIZ WR-549A

77 New Radio Rules
Special report tells how WARC '79 can affect you. by Stanly Leinwoll

HI-FI

STEREO

42 Now Way To Room Equalization
Shure equalization analyzer speeds setup of graphic equalizers for overall flat response. by Len Feldman

56 R-E Lab Testa Nikko Integrated Amplifier. Nikko TRM-750 rated "excellent" in overall sound quality.

58 R-E Lab Tests Heath Preamp Heath AP-1615 earns a "very good" in our lab.

ON THE COVER

Programmable divider provides a wide range of frequency division by using three cascaded 555 -timer IC stages. The divisor is selected by three 10-turn potentiometers and indicated by an LED readout. Complete story starts on page 37 of this issue.

THIS KEYBOARD CONTROLS channel selection and programs a new TV set to automaticelly switch channels for you. It's an important part of Heath's programmer systom. For full detalls turn to page 49.

TELEVISION

49 Heath Programmable Color TV
Automatic circuitry changes channels for you. Digital program readout on the screen. Discover how it works. by Art Kloiman

81 Jack Darr's Service Clinic
How does your service shop rate? by Jack Darr
87 Reader Questions
Radio-Electronics Service Editor helps solve reader problems.

Advertising Index	$\mathbf{7}$	New : Timaly
Advertising Offices	$\mathbf{8 8}$	New Products
Letters	$\mathbf{8 2}$	New Literature
Market Center	$\mathbf{9 8}$	Free Information Card

Radio-Electronics, Published monthly by Gernsback Publications, Inc.. 200 Park Avenue South, New York, NY 10003. Phona: 212-777-6400. Second-class postage pard at Now York, NY and additional mailing offices. One-year subscription rate: U.S.A., U.S. possessions and Canada, $\$ 8.75$. Pan-American countries, $\$ 10.25$. Oher countries, $\$ 10.75$. Single coples $\$ 1.00$. Prinsoack Publications, Inc. All rights reserved. Printed in U.S.A.

Subecription service: Mal all subscription ordersi changes, correspondence and Postmaster Notices of Subscription Service, Box 2520, Boulder, CO 80302.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired thould they be reiected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or pholographs while in our possession or otherwise.

[^0]
looking ahead

Microwaves and health: Government and private agencies are trying to determine what actually is a "safe" dose of microwaves-a subject in the spotlight since the discovery that the American Embassy in Moscow was being bombarded with low-intensity microwaves. The only existing standard today for safe exposure is 10 milliwatts-per-square-centimeter, established by the American National Standards Institute. Some tests indicate that this might be too high.

Is public health endangered by broadcast and other microwave transmissions? Initial results of studies indicate it is not. At ground level in immediate vicinity of broadcast transmitters at Mount Wilson, California (where the antennas of all Los Angeles TV stations are located), one study showed the maximum ambient radiation was four milliwatts and that the principal source of microwave radiation is UHF broadcast stations. If the safe level is found to be much lower than 10 mW , officials of the government's Office of Telecommunications Policy say some stations may be required to reduce their power. However, at present, experts feel that hazardous exposures are found only in occupational situations where people work on microwave-emitting equipment.

Backtalk on the cable: A major experiment in twoway cable TV will start this year in Columbus, Ohio. Warner Cable will offer the service to almost 100,000 homes there. It will feature a $7 \times 6 \times 2$-inch home terminal that will permit subscribers to select programs, play interactive games, take tests, register their opinions instantly and "actually participate at home in TV programs and events." Warner Cable President Gustave Hauser says he expects to "see people participating in game shows, schools competing against other schools, communities against communities and so forth." Warner, which recently acquired video game producer Atari Inc., declined to give further details.

2-way game, 1-way cable: But you don't necessarily need a two-way cable system to play an interactive CATV game. Ralph Baer of Sanders Associates, who is regarded as the inventor of the video game, told a recent meeting of Gametronics in San Francisco that tests on cable TV systems in Boston and Akron showed several ways in which video games could interact with cable.

One experiment involved the CATV transmission of a colorful hockey playing field with four players moving at random-two goalies and two forwards. Game equipment developed by Sanders recognized the field and players, introduced them into the game logic circuitry and permitted interaction between the transmitted symbols and the viewer-manipulated locally generated players. He said CATV could also be used with microprocessor games, with digital data on game rules, character symbols and the like transmitted to storage equipment at the receiver terminal-in effect,
programming the game via CATV. Another possibility would be viewer participation in quiz games sent over one-way cable.

Baer also forecast two-way game playing between homes by telephone connection and prerecorded home VTR or videodisc programs for interactive games. He predicted that game-playing capability would eventually be built into every home VTR or videodisc player.

CB stability promised: CB manufacturers and dealers are still reeling from the rough transition from 23- to 40channel units, which caused severe dislocations and even a few bankruptcies. Now they're apprehensive that just when things get going again they'll be clobbered by new FCC efforts to move CB to a permanent home upstairs in the higher frequencies. But FCC Chief Engineer Ray Spence recently told the PC 77 trade show that the industry can "look forward to a period of stability with no new surprises." Other FCC spokesmen conceded the Commission was making long-range studies for new personal communication spectrum space, but said no action was planned which would eliminate the current $27-\mathrm{MHz}$ band.

The FCC has proposed a ban on linear amplifiers in the $25-35-\mathrm{MHz}$ band. These devices, designed for amateur radio, are being used illegally to boost power in CB equipment. The FCC has made no proposal to ban linear amplifiers in other ham bands, but it did propose a type-acceptance program for all amateur radio equipment, presumably to help block the manufacture of amplifiers that could easily be modified for CB use. The FCC proceedings are expected to be protracted, with amateur radio groups strongly opposed.

Another major problem faced by the CB industry is trying to convince prospective customers that 40channel transceivers have as much "talk power" as the 23 -channel transceivers. All manufacturers agree that rumors are rampant that the FCC rules make 40channel transceivers less powerful. It's not true, but, like many rumors, it has some basis in fact. This is that some CB manufacturers lacking in engineering resources have reduced the percentage of modulation in order to meet the Commission's new tighter specifications. But the vast majority of well-known brands are said to provide full power and full modulation in their new transmitters. The entire problem-if you can call it a problem-undoubtedly has been exaggerated by dealers stuck with large quantities of 23 -channel transceivers who have been bad-mouthing the 40 -channel gear.

VTR fever rises: In a series of fast-breaking developments, the home videocassette recorder has taken a giant leap toward becoming the next major mass-market consumer electronic product in the United States, and the search for a "standard" system was sharply narrowed down:

Convenience is only half the story.

SBE TOUCH/COM 40

SBE adds the ultimate tuxury to 40 -channel operation: the convenience of microphone control trat puts all CB functions right in the palm of your hand. Quickly scan up or down throuch all 40 channels, or nove channel by channel with the 2 -speed channel selector. Identity your channel with the extra-large, high-intersils LED readout, slearly visible even in bright daylight. Adjust volame and squelch with the tick of a fing 3 . And to transmit, simply push the "Press-10-Talk" control. It's all on the mizrophone.

Bul the convenienc 3 of TOUCH/COM 40 is only hall he story. With such sophisticated leatures as SEE's "Speech Spander voiceoperated modubation tevel control, "Anti-Blast" audio burst protection circuit, 4-pole IF filler, del:a tune, and MIC gain control, Touch/Com 40 ollers top perio -mance under the toughest operating conditions, plus dependability backed by 100 per cent quality control.
And that's the half o' the siory that is the most importent to you.

Better Communications through Creative Tachnology

[^1]international O=FICES E.S Gculd Marketing Co. Lid., Montreal, C nada/Linear Systems S.A. Geneva 1. Switzerlard

Digital Watch Breakthrough

There are several big changes taking place in digital watches. Here are all of them in one product.

Your digital watch is either too thick, uses up batteries quicklv, has just a few functions or is hard to read under certain lighting conditions. You still have to press a button, flick your wrist, or hold your watch at just the right angle to read the time.

The digital watch industry has gone through four years of rapid change, but the disadvantages cited above have finally been resolved in one totally new product-the Sensor Laser 440 Digital. The Laser 440 is so different that it represents a dramatic departure from conventional digital watches.

NO BUTTON TO PRESS

There is no button to press since the display glows in the dark. A glass ampoule, charged with tritium and phosphor and sealed by a laser beam, is placed behind the new CDR (crystal diffusion reflection) display. When room lights dim, the self-contained tritium light source will compensate for the absence of light by glowing brightly and illuminating the display.

No matter when you wear your watch-day or night-just a glance will give you the correct time. There's no button to press, no special viewing angle required, and most important, you don't need two hands to read the time.

CHANGE YOUR OWN BATTERIES

The Laser 440 is only 8 millimeters thickthinner than many of the so called thin digitals being advertised today. The new CDR display draws 100,000 times less current than an LED watch when displaying the time so your single commercially-available Union Carbide battery lasts years longer. In fact, part of our warranty includes all the batteries you'll ever need, free of charge, for five full years. To replace a battery, simply open up the battery hatch on the back of your watch, tap out the old battery and drop in the new one.

Most digital watches have dozens of electronic components. The Laser 440 has only six-two integrated circuits, a crystal and three micro. capacitors. All components are bonded directIy on the printed circuit board. By hermeticalIy sealing the integrated circuits and using fewer components, the Laser 440 is considerably more reliable than other watches that do not vet have this complete integration.

The new Sensor Laser 440 digital watch glows in the dark so there's never a button to press to read the time in darkness or in sunlight.

THE ULTIMATE ACHIEVEMENT

Other manufacturers have devised unique ways to produce a watch you can read at a glance. The $\$ 300$ LED Pulsar requires a snap of the wrist to turn on the display, but the Pulsar cannot be read in sunlight and its display uses 100,000 times the current of the Sensor display. The $\$ 400$ Longine's Gemini combines both an LED and liquid crystal display. (Press a button at night for the LED display, and view it easily in sunlight with the liquid crystal display.) But you must still press a button to read the time. All these applications of existing technology still fail to produce the ultimate digital watch: one you can read under all light conditions without using two hands. Until the new Laser 440 .

-

And if you've owned a digital watch for a year, chances are you've had it in for repair more than once-a very common consumer complaint. The Laser 440 is so service-free and has such high quality that it should rarely. if ever, require service. It is backed by a solid five-year warranty-your assurance of our commitment to this outstanding new product.

The Laser 440 has both time and stop watch functions. Six digits are on display-four large digits and two small ones. You choose between hours, minutes and seconds or hours, minutes and date by pressing a button. The Laser memory remembers the number of days in a month and resets automatically on the first day of the new month.

The 440 is also available in an 11 function chronograph (stop watch) and is truly the ultimate Laser timepiece. You can time two separate laps of a multilap race keeping one lap in memory. You can accumulate time; you can view the time of one lap while con-
tinuing to time a lap stored in memory. As a business executive, you can time long dis tance phone calls and interviews. Lawyers can keep track of their services, and doctors can time the vital signs of their patients. Even while the chronograph is functioning, you can still view the time-something even many of the expensive digital chronographs cannot do.

BUILT DIFFERENTLY

All wires have been replaced with circuitry printed on one single thin surface. On this same surface are two integrated circuits which use gold contacts and are hermetically sealed to protect their several thousand micro components. The American-made Laser is shock resistant and uses a tough mineral glass crystal to protect the rugged electronics from the everyday water and humidity tortures normally given any watch.

NEW QUARTZ BREAKTHROUGH

Digital watch accuracy depends on the quartz crystal. Even the best crystals change frequency with shock or age (especially when first produced). The Laser 440 uses the new and very expensive, tuning fork crystal. It is first aged to not shift frequency more than five parts per million per year (more accurate than most radio or TV time signals) so the extreme accuracy you expect is built into your watch from the first day you wear it. The crystal is cushioned and solidly bonded to the crystal carrier eliminating all fine wires that may break from shock. In short, the advanced design of the crystal will assure guaranteed accuracy greater than 5 seconds per month-year after year after year.

The Laser 440 is ideal for pilots because of its cockpit visibility and chronograph functions, perfect for the businessman who de pends on his watch for split-second accuracy and the ultimate watch for anybody who wants unquestionably the finest digital watch ever offered at any price.

The Laser 440 is not only thin but is designed to conform to the contour of vour wrist. A bulky digital watch can become annoying to wear-especially if you have a thin wrist.

HOW WE PROVIDE
 THE FINEST SERVICE

Can our company provide better service than even your local jeweler? We think so. If your Laser malfunctions during its unprecedented five-year warranty, just call us on our toll-free line. We have made arrangements with United Parcel Service to pick up your Laser at your door, at our expense, and we give you a loaner watch to use while your Laser is repaired. You pay nothing to have your watch serviced during its five year warranty (that is if service is ever required) and we are as close as your phone or door.

WHO WILL BACK YOUR

5 YEAR LIMITED WARRANTY
Two solid companies are behind your new Laser. JS\&A is America's largest single source of space-age products-a substantial company and a leader in electronics for over a decade. Our commitment to the consumer and to service is a matter of record. Check with the Better Business Bureau in your very own community, the Northbrook, Illinois Chamber of Commerce (312) 498-5555, or any of the 100 national magazines and newspapers in

The expensive metal bracelet has the equivalent of 92 finelv-hinged links and is complete Iy adjustable. Simply slide the adjustment mechanism to the most comfortable position on the band for your wrist size and lock it in to place. Then, whenever you have to put on your watch, simply hook the strap into the already pre-set adjustment mechanism and snap it shut. It's fast and simple and gives you the most comfortable fit of any watch by conforming exactly to the contour of your wrist.
which we advertise. We realize that a quality watch warranteed for five years is a serious investment and our reputation for service and customer satisfaction must be unsurpassed. Most important, check with our customers. For almost two years we have sold and serviced the Sensor watch. We are proud of our record and will gladly share it with anyone who inquires.

The Sensor Laser 440 is manufactured exclusively for JS\&A by Micro Display Systems, a leader in the new emerging watch tech nology and a well-financed company backed by one of the world's major manufacturers.

STANDING BEHIND A PRODUCT

The Laser 440 is everything you would want in a digital watch: a major advance in digital watch technology, all the really impor tant functions you'll need, a service contract so solid that you'll never have to leave your home if service is ever required, and a product of unsurpassed quality and accuracy. But it is only after you receive it that you will convince yourself of its beauty, its design, its fit and the accuracy of our claims. For that reason we give you a one month trial period. Wear the Laser 440 for one full month. Check its accuracy, its feel and show it to others. Compare it to all other digitals. If you are not rotally convinced that the new Laser is the finest digital watch at any price, then return it for a prompt and courteous refund.

To order your Laser 440 for a personal trial, simply call our toll-free number below and give us your credit card number or send us your business or personal check. There are no postage or handling charges (Illinois residents add 5% sales tax) and it will be sent to you promptly by United Parcel Service unless you specify otherwise.

A REVOLUTION IN TECHNOLOGY

There is a revolution taking place in the watch industry. Some digitals are getting thinner, some have dozens of new functions and some claim exceptional visibility. None have all the features in one quality timepiece. The new Laser 440 does. Order yours at no obligation today.
White Gold With Time and Date $\$ 139$
Gold-plated With Time and Date 159
White Gold With Chronograph 199
Gold-plated With Chronograph .
.219
JS\&A ranked first among all watch manufacturers in total unit sales of quality digital watches during 1976.

JS A.
Dept. RA One JS\&A Plaza
Northbrook, III. 60062 (312) 564-9000
CALL TOLL-FREE. . . 800 323-6400
In Illinois call (312) 498-6900
© IS\&A Group. Inc., 1977

new etimely

Zworykin elected to Inventors Hall of Fame

DR. VLADIMIR K. ZWORYKIN as the appeared when the invented the tube he is holding-the iconoscope that made our present television transmitting technology possible.

Dr. Vladimir Kosma Zworykin, television pioneer, has been elected to the National Inventors Hall of Fame, joining such notables in the communications world as Marconi, Bell, Morse, and Edison, and the three inventors of the transistor.

Vladimir Zworykin was graduated in 1912 from the St. Petersblirg Institute of Technology, where he made his first contact with television as student-assistant 10 Professor Boris Rosing. Afterward he did post-graduate work at the College de France in Paris, returning to Russia at the outbreak of war in 1914.

Coming to the United States after World War I, he first worked for Westinghouse, and received his Ph.D in Physics from the University of Pittsburgh in 1926. In 1929 he joined RCA as director of the Electronic Research Laboratory. In 1947 he was elected a vice president and consultant for RCA Laboratories, and after his retirement in 1954 was made an honorary vice president and provided with an office at the David Sarnoff Research Center

Infrared light controls home slide projectors

In keeping with the trend toward the use of infrared light for remote control of electronic domestic equipment, Siemens says, they have come up with an idea for controlling home slide projectors. The
simplicity of slide projectors makes circuitry much less complex than for, say, a TV set. Only four channels are needed, two to move the slide cassette forward and back, one for the projection lamp and one to control room lighting (a floor or table lamp is hooked into the circuit).

The Siemens device uses pulses transmitted sequentially on a fundamental frequency of 31.25 kHz . The pulse lengths, starting at 1.5 ms , are staggered by 0.5 ms from one channel to the next. Three infrared output diodes are driven by a Darlington circuit. Range is about 15 meters, and the low power consumption permits sending 30,000 instructions with a single 9 -volt battery.

NEW INFRARED REMOTE CONTROL. Channels are Lamp (electric light for room Hilumination) Projactor, Forward and Back.

In the receiver, a photodiode, a tuned circuit and transistor pick up the infrared signals and pass them to an integrated circuit that was originally developed as a video IF amplifier and is thus a low-priced item. A decoder then suppresses all plises of less than 1 ms to clear out interference and noise. The individual signal lengths are then examined and allocated to their correct channels.

Engineering Consortorium offers computer courses

The 1977 Professional Growth in Engineering Spring Program of the National Engineering Consortorium features Minicomputer, Microcomputer and Modern Signal Processing as well as Design and Production of Hybrid Circuits. Eight programs are being presented during the week of May 22-27, 1977, at Pheasant Run Lodge, St. Charles, IL.
continued on page 12

Almost half of the successful TV servicemen have home study training and with them, it's NRI 2 to 1. It's a fact! Among men actually making their living repairing TV and audio equipment, more have taken training from NRI than any other home study school. More than twice as many!

A national survey*, performed by an independent research organization, showed that the pros named NRI most often as a recommended school and as the first choice by far among those who had taken home study courses from any school. Why? Perhaps NRI's 62-year record with over a million
students . . . the solid training and value built into every NRI course . . . and the designed-forlearning equipment originated by NRI provide the answer. But send for your free NRI catalog and decide for yourself.
 solid state color TV with console cabinet. As you build it, you perform stage-by-stage experiments designed to give you actual bench experience. And you get a Quadraphonic system with 4 speak:ers. NRI's instruments are a cut above the

25" Diagonal Color TV... And 4-channel Quadraphonic Stereo.

As a part of NRI's Master Course in color TV/Audio servicing, you build a $25^{\prime \prime}$ diagonal

Two Famous Educators... NRI and McGraw-Hill.
NRI is a part of McGraw-Hill, world's largest publishers of educational material. Together, they give you the kind of training that's geared for success. practical know-how aimed at giving you a real shot at a better job or a business of your own. You learn at home at your convenience, with "bite-size" lessons that ease learning and speed comprehension. Kits designed to give you practical bench experience also become first-class professional instruments you'll use in your work.
sweep $5^{\prime \prime}$ oscilloscope, CMOS digital frequency counter and digital integrated circuit color TV pattern generator. They're top professional quality, designed to give you years of reliable service. You can pay hundreds of dollars more for a similar course and not get a nickel's worth extra in training and equipment.

Widest Choice of Courses and Careers.

NRI doesn't stop with just one course in TV/Audio servicing. You can pick from five different courses (including an advanced color course for practicing technicians) so you can fit your training to your needs and your budget. Or, you can go into Computer Technology, learning on a real, digital computer you build yourself. Communications with your own 400 channel digitally-synthesized VHF transceiver. Aircraft or Marine Electronics. CB, Mobile Radio, and more.

Free Catalog...
 No Salesman Will Call.

Send the postage-paid card for our free color catalog showing details on all NRI electronics courses. Lesson plans, equipment, and career opportunities are fully described. Check card for information on G.I. benefits. No obligation, no salesman will call. Mail today and see for yourself why the pros select NRI two to one!

If card is missing, write,

new etimely

Introduction to Micro/Minicomputers, May 22-24.

Microcomputer Basics and Programming, May 22-24.
Successful Design/Project Management of Micro/Minicomputer Systems, May 22-24.

Modern Signal Processing Design Techniques, May 22-24.

Microcomputer Architecture Interlaces and System Design, May 25-27.

Micro/Minicomputer Software Development and Systems Diagnostics, May 25-27.

Minicomputer Architecture, Intertaces Programming and Applications, May 25-27.

Design and Production of Hybrid Circuits, May 25-27.

The National Engineering Consortorium. Inc., is a nonprofit educational group serving the engineering community. Registration fee for each program is $\$ 395$, for two programs $\$ 595$. The registration fee includes the notes, lunch and dinner. Interested individuals may write the NEC Registrar, 1211 West 22nd St., Oak Brook, IL 60521, or phone (312) 325-5700.

INTERNATIONAL EXCHANGE OF IDEAS

AUSTRALIAN ABORIGINE, on visit to the University of Kansas, after demonstrating the art of the boomerang (and the ceremonial decoration required with it) to students of the William Allen White School of Journaiism, leams something of American television technology using an Asian (Sony Videocorder) camera.

H. Potts, J. Peelee, R. Kulp are Gernsback Award winners

Harold R. Potts, Jr., John Peelee and Raymond B. Kulp, all correspondence students of the Capitol Radio Engineering Institute, are the Gernsback Award winners this month. The Gernsback Memorial Award is a check for $\$ 150$ presented to an outstanding student in each of eight leading electronics home-study schools each year. Through the generosity of manufacturers, two supplemental awards of test instruments are given to the
second-place and third-place student in each school.

Mr. Potts of Havelock, NC, says:
"My background goes back to my high school days. I was introduced to the world of electronics with a course in Basic Electricity. I enrolled in Electronics II the next year. But when I graduated, I realized I couldn't afford college right away. My alternative was to join the services, attend their schools and gain practical experience, then attend college under the GI Bill after my discharge. In 1974 I enlisted in the Marines with guaranteed training in electronics.
"Since then I have attended Basic Electronics classes for three weeks, and the Precision Measurement Equipment Calibration and Repair School in Denver, for 33 weeks. At my present duty station 1 have taken various classes on test equipment.
"I am currently involved with the core program of CREI and intend to go on to as many electives as I can. I receive technical training once a week at my laboratory and now I even instruct on some of them."

Mr. Peelee, of Springfield, VA, also started electronics as a freshman in high school, supplementing school courses with a night course in black-and-white and one in color TV repair, both given by the Fairfax Co. schools adult education division. At the end of his junior year, he worked part time for a local repair company. He started with CREI half way through his senior year, and on graduation started his own repair business. Now an electrical engineering student at the University of Virginia, he says 'I am fixing electronic equipment this summer (1976), taking two electives at George Mason University, finishing CREI and getting a first class radiotelephone license. I will be graduated from UVA with a BSEE next May."
Raymond Kulp, second runner-up, works for Ford Aeroneutronics in Lansdale, PA. He reports:
"My CREI course has helped me in my work many times, especially the lessons on solid-state devices. An example is a problem we were having with a power supply. There was a Zener diode regulating a supply that always caused an FM oscillation problem. I found the Zeners used were the soft-knee type and the Zener point at the high end was right on the knee of the curve, giving little regulation on the high end. We have since gone to a sharp-knee Zener and the problem has virtually disappeared."

Mr. Potts receives the $\$ 150$ Scholarship Award, Mr. Peelee a digital multimeter from B \& K, and Mr. Kulp a Special Service Multimeter from VIZ.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder

M. Harvey Gernsback, KOD-6694
editor-in-chief and publisher Larry Steckler, KTX-3644, CET, editor
Robert F. Scott, CET, W2PWG,
KXK-8533, technical editor
Arthur Kleiman, KTZ-3288, managing editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Rudolph F. Graf, contributing editor
George Whalen, contributing editor Vincent P. Clcenia, production manager Dale Allinson, production assistant Harriet 1. Matysko, circulation director Sheila Wertling, circulation assistant Arline R. Balley, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Walter Herstatt
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Radio-Electronics magazine is published by Gernsback Publications, Inc. 200 Park Ave. S., New York, NY 10003 (212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, KZA-5580
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen, KXD-8396
Jim Reilly
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, IL 60646
(312) 792-3646

PACIFIC COAST

Mountain States
Jay Eisenberg, KYF-3277
J.E. Publishers Representative Co.,

8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST

J.E. Publishers Representative Co.,

214-387-2424

Super Case

Vaco means value and variety.
Like our Super Case. A great value with great variety. 48 professional problem-solving zools from screwdrivers and nutd-ivers to pliers, wrenches, crimping tools, and more! All right at hand. And all unconditionally guaranteed.

You'll find the Supe= Case and all the other fine Vaco tools in cur exciting new 64-page Bicentennial Catalog. FREE for the asking! Just write:

Vaco Products Ca, 510 N. Dearborn St., Chicago, Illinois 60610.

B\&K-PRECISION Model 1248-\$175

Use it as a portable analyst

to tocalize TV problems at the customer's location. The 1248 has nine precise color patterns, with RF, IF, video, sync and sound outputs for signal substitution to let you locate the problem faster. Patterns are digitally generated. IF and RF outputs crystalcontrolled. With carrying case.

B\&K-PRECISION
Model 1230-\$98

Compact and rugged!

Discrete TTL IC reliability and all metal case construction are just two of the ways the 1230 is built to last. Pattern quality compares with much larger generators. Generates 9×11 dots, 9×11 crosshatch, gated rainbow and purity. Just $13 / 4 \times 5 \times 73 / 4$ ". AC powered.

Both available from your authorized distributor, or write for detailed specifications.

DIGITAL ALARM CLOCK

I built the "Digital Alarm Clock" that appeared in the November 1976 issue. Works fine and I am pleased. I used the complete kit of parts and "case" that were available.
I made a few changes that might interest you. They were improvements, naturally. I mounted a normally-open pushbutton on top in place of S2, the snooze switch. I mounted S1 and S3 on the rear of the PC board and added a $2 \times$ 6×8-inch wooden base to hold the clock upright. I used the vacant space left by moving S2 to add a SPST switch (RUNSTOP) in series with the lowest position of S3 (FUNCTION). Now when I turn the alarm off, I don't accidentally put the clock in stop mode. Lastly, I found the display brightness excessive at night although the automatic brightness feature was working correctly. I added a switch in series with the + lead of C 4 , the +95 volt filter. Opening this produces some display flicker but greatly reduces the brightness by cutting the display duty-cycle even further. Hence I now have six brightness levels in two ranges.
Too bad the cost of this circuit is so high. It has all the features I wanted so I paid my money and got what I wanted; alarm, snooze, seconds display but smaller than the rest of the display, automatic brightness control, no LED's, and visible at night (no LCD). I may switch to a transformer for the +17 -volt supply to cut the power consumption a bit.
The only gripe relates to the oxidized leads on the Mostek MK50252 chip and no socket. Either leads should be solderable or sockets should be used. A bit of sandpapering solved the problem, but not without fear of zapping the chip.
O. C. BARR

Richland. WA

AUTOMOBILE PROJECTS

As one of millions of tinkering hobbyists, I enjoy both automotive and electronic pursuits. I have been meaning to write you to thank you for the Electronic Ignition I found in your May 1976 issue.

However, that only whet my appetite! I began searching the library's stacks for digital speedometers, tachometers, etc., and came away disappointed. Available plans featured dissimilar displays, too few common parts and no common power supply seemed adaptable.

So, I have a suggestion for you! How about a series of construction articles for the following projects: Digital speedometer, digital tachometer, digital odometer, digital clock (with digital stopwatch, rally \& race), water temperature gauge with LED display, transmission oil temperature
with LED display, oil pressure gauge with LED display, ammeter with LED display, manifold vacuum gauge with LED display. LED display ignition monitor (displaying kV output from the coil), LED display digital dwell meter (unless you can arrange a diode and LED triggered replacement for the points in your ignition system), a central computer with exhaust emissions monitor to diagnose and troubleshoot problems.

The reason I mention a series of articles on these is simply that budget constraints preclude the purchase of all the parts in one lump sum. Monthly purchases would be most amiable.

An LED-tuned AM/FM Stereo and CB Monitor radio would be ideal as an addendum to these, especially with lowdistortion op-amp construction.
As to construction techniques, I recommend Vector board, breadboarding and/ or wire-wrapping followed by immersion in clear epoxy for heat sinking and vibration proofing.
You could continue the series with radar and laser speedtrap detection devices, anti-theft and alarm devices, (to protect our investments), navigation-type computers for us rally nuts, accelerometers for us drag racing nuts (accelerating and braking both), accelerometers to measure side G-forces, an on-board computer terminal, computer and microprocessor and the list is endless.

Pardon my verbosity but I want my own digital dashboard (and have wanted for so long) and the juices flow when I think too long on the subject.
JON CUMMINGS
Colorado Springs, CO
We agree! However, the one neverending problem plaguing construction articles of this type is in the area of transducers. No one seems to be supplying transducers of this type to hobbyists. We would like to hear from any readers with ideas on this subject.-Editor

0000PS!

It was unfortunate to see our 23channel CB Analyzer model GN-1375B in the New Products section of your February 1977 issue of Radio-Electronics.

Nikoltronix Co. was the first company to produce CB analyzers (1975) and the 23 channel CB Analyzer has established itself as the most compact, complete, and contemporary CB analyzer on the market. Since 1975, the 23-channel CB Analyzer has been continuously modified so as to meet the needs and requirements of the changing CB market; it is now equipped to service 40 -channel CB radios since No-
continued on page 16

One Call.

Your Mallory distributor's got them all.

Take the search and wait out of your electronic parts finding.

Go straight to your Mallory distributor, by phone or in person.

Get to know the convenience and economy of simplified single-source buying. To
deliver exactly what you want in parts, quality, and quantity. Immediately from stock on hand, or in most cases within 24 hours from the factcry.

Your Mallory distributor goes all out for his Number 1 VIP . . you. Get in touch with him soon. Mallory Distributor Products Company, a division of P. R. Mallory \& Co. Inc., Box 1284, Indianapolis, Indiana 46206. (317) 856-3731.

Capacitors • Controls • Fastening Devices • Resistors • Security Products • SemicondLctors • Solderless Terminals • Switches

If your cartridge is more than three years old, don't replace your stylus!

Don't get us wrong. There is ncth ng worse than playing you-records witt 3 worn stylus. And no better $w \in$, lo restore jcur old unit to its original glory than a new diarrenc.
But frankly, there have been sighificant st-ides mace recently in the phono cartrisge fiels. And the new cerrodges of todzy stand head and shoulders ε t=ve even the finzst of a lew short years ago.
Here's the choise: Get fresh-tut outdatedperfcrmance witt a replacement stylus, o enjoy all the benefits ol modern carr dse research and developmeר: For just a fev dollars mere. You'll find that vou can update ycur system for far less that ysu might irr agine. It's probably the most dramatic single improvement you can make.
For instance, AuđiJ-Technica clfers Universal ${ }^{\text {M }}$ cartridges equ pped with a gen-ine Shibata stylus and our Lriquely effec:ivミ Dual Magnet ${ }^{\text {* }}$ system beginning at just \$75.CC list. Or yod can replace your present cartridge with a fresh new Audio-Technica esrtridge with highly-po ished elliptical tip for as little as \$4500 list.

Are these new models worth the differense? Absclutely. You il be amazec at what you hear from teday's gen3*ation of prono cartridges. improved frequency response. Lover distertion. Better separatior Less record wear. Truly better sound.

A new Audio-Technica carlidge. Your best value in hi-fi.

AUDIO-TECHNICA U.S., INC., Dept. 57E, 33 Shlawassee Avenue, Fairlawn, Ohlo 44313
Available In Canada from Superior Electronics, Inc.

LETTERS
continued from page 14
vember 1976 (a photograph of the new 40 channel CB Analyzer model GN-1375B is enclosed).

Thus, it is apparent that the 23 -channel GN-1375B does not belong in the New Products section of your magazine

Your mistake, although unintentionat, has caused great confusion among those who are familiar with our products and reputation as the originator and teader in CB Analyzers.
Hopefully, we have ellminated the confusion and misunderstanding.
GEORGE D. NIKOL
Nikottronix Co.
Chicago, IL

GI VIDEO GAME IC

I reatly enjoyed the article "IC Application of the Month" in the January 1977 issue. This was a very timely article as many of us would like to have a TV game but can't afford one of the commercial versions. Please publish more articles such as this one. Better yet, make it a regular feature.

However, there is one problem. Where can one purchase the AY-3-8500-1 IC? l've tried all the supply houses in the Colorado Springs and also in Denver, but no one has the IC nor does anyone know of a source for the IC. Would you please publish the price and the address of a source? Also, in the future please publish a source for some of the more difficult to get parts, please.

Keep up the great work.
KARL S. PERRY
Widefield, CO
Check the advertisements in the back of this issue for a supplier. We know James Electronics has some in stock. Check their ad for price and ordering information. There may be other suppliers as well.-Editor

BIC FORMULA

The article on the BIC Formula 7 Monitor Series Speaker in the February 1977 issue is of interest. I would hasten to continued on page 22

HOBBY-WRAP WIRE.WRAPPING, STRIPPING, unWRAPPIMG TOOL FOR AWE 30 (.025 SQUARE POST)

HOBBY-WRAP WIRE-WRAPPh STRM wg, unwrapping tool for awg 30 (.025 SQUARE POST)

 professional performan prices. PLUS nearly 400 other superb, easylete line of digital saving products. You'll find a complements, plus useelectronic clocks and wealher car, home or office.
ful and unique items courses are now in use by the thouOur learn-at-nome courses ard low-cost way to teach sands! A really effective and fun, for knowledge, or yourself about electronics for selection of popular for profit. We also have a wide sel in electronics. 3348 provides

NEW! Electronic Circuits

Learn-at-Home Course

The latest in our series of programmed learning courses - the Electronic Circuits Course provides an explanation of most common circuis for circuit dethe "hands-on" experience amplifiers, power supsign and development. Covers amits, modulation and deplies, oscillators, pulse circuis, integrated circuits. modulation with emphasio records and 110 elecincludes text material, aud experiments with the optronic parts for 18 difer.

tional electronic 32 -Band VHF/UHF

Automatic Scanning Monitor Listen to ALL the action-automaticallannels in the combination of 8 crystal-con bands, and $450-500 \mathrm{MHz}$ $30-50$ and 146-174 MHz fire, ambulances, Amateur 2UHF band, for police, fire, ancy vehicles, U.S. GOV't meter FM, marine, emerge, Has extra-large lighted weather stations and more. .hannel feature and chanchannel indicators, priority channelena for all three nel lockout buttons, built-in antenna. Built-in speakbands, provision for external ant
er, volume and squelch controls. Timing Light NEW! CI-1096 Delumeter and Advance with buil, easy way to keep tabs on your car's engine timing and distributor advance functions for smompact operating and better fuel ecodvance meter and tachunit houses a timing light, 60° mechanical or vacuum ometer. Measures up to 60 RPM and indicates enadvance from 1500 to 4500 RPM enon flash tube lets gine speed to 4500 RPM. Brialight. Inductive pickup you set timing even in dug wire for easy hookup.

NEWI Advanced Test and

Service Equipment that makes kitbuld
chance. And all backed
fail' promise. Find out a
and FUN of kitbuilding.

Three new test instruments will bring adv. The IG-1275

There are many more exciting products to read freezer oo! Home convenience items like intercoms and a alarm, a touch-control light switch, Automotive instruunique programmable doorbe equipment, model airments and accessories, mar, security systems and more. craft Radio Control gear, secur Radio equipment and Plus our world-famous aments.
test and service instrumenty 400 quality, fun-to-build These are among the neaw Heathkit catalog. Kits for kits described in All with the world-famous Heathkit every interest. All with step-by-step instruction guide assembly manual - a seasy and leaves nothing to that makes kitbuilding easy our "We won't let you chance. And all backed by the satisfaction, savings
ice capability to an

LETTERS

continued from page 16
point out that an SPL meter in the actual sound field is inherently better than any built-in audio power monitoring system. Room effects such as the carpet, drapes, furniture, number of people, etc., all alter the developed SPL which cannot be estimated solely at the speaker terminals. Resonance effects play a large part as an elementary study of room acoustics will show.
Thus an SPL meter in the field is worth more than two audio power meters at the source (for stereo systems). Furthermore, a modern SPL meter can cost less than the electronics presented for the BIC system. While audio power level monitoring is generally a good idea to protect speaker systems and people from gross overdrive, a field SPL meter is cheaper in this case and provides a much better estimate of the amount of ear damage anticipated in the listening environment.
There is a great tendency these days to digitize everything in sight, including now, the speaker power-input level with blinking LED displays. A pointer reading VU meter and single op-amp driver can do the same job here cheaper and probably better.
RALPH W. BURHANS
Ohio University
Athens, OH

Treat yourself to a new direct reading DVM today.

A COMPLETE LINE OF DVMs TO FILL YOUR EVERY NEED OR WANT.

You can be sure more times in more circuits, under more adverse conditions, with greater versatility, accuracy, and meter protection than any other digital multimeters on the market today; and for less money too. 10 Day Free Trial: Try any of these famous DVMs for 10 days. If the DVMs in use don't prove exactly what we say, return them to your Sencore FLPD Distributor.

CIRCLE 14 ON FREE INFORMATION CARD
Want more information? We would like to tell you all about the Sencore DVMs by sending you a 24 -page Sencore News, a six-page brochure, and the name of your nearest Sencore Distributor today . simply write or circle reader's service number. 3200 Sencore 1)rive, Sioux Falls. SD 57107

MODULE REPAIRS

TSC has been repairing private brand TV modules for over 2 years.
 Expanded facilities now include modules for
 - RCA
 - GE
 - ZENITH
 - W.T.GRANT
 - J.C. PENNEY
 - WESTERN AUTO
 - GAMBLES

as well as Zenith
IF subchassis.
For free Price List and complete information write or phone; TSC HEADQUARTERS, BLOOMINGTON, IND. or any of the TSC locations listed below.

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

TUNER REPAIRS

VHF OR UHF ANY TYPE \qquad .(U.S.A.) \$10.95 UHF/VHF COMBINATION \qquad (U.S.A.) $\$ 17.95$

MAJOR PARTS AND SHIPPING CHARGED AT COST

- fast, efficient service at any of the conveniently LOCATED SERVICE CENTERS LISTED BELOW.
- ONLY ORIGINAL FACTORY PARTS USED
- All tuners ultrasonically cleaned, repaired and realigned.

EXACT REPLACEMENT

- Exact Replacement Tuners are avallable at a cost of $\$ 14.95$ and up.
P.
- Send in your original tuner for comparison purposes to any of the Centers listed below.

- UNIVERSAL REPLACEMENT TUNER $\$ 13.95$.......... (U.S.A. Only)
- This price buys you a complete new tuner bullt specifically for this purpose.
- All shafts have a maximum length of $10^{1 / 2^{\prime \prime}}$ which can be cut to $1^{1 / 2^{\prime \prime}}$.
- Specity heater type parallei and series $\mathbf{4 5 0} \mathrm{mA}$ or $\mathbf{6 0 0} \mathrm{mA}$.

${ }^{F_{L_{A}}}$	NOW AVAILABLE-TUNER SERVICE PARTS CATALOG OF ALL SARKES TARZIAN VHF AND UHF TUNERS, INCLUDING EXPLODED VIEW DRAWINGS OVER 200 PAGES. ORDEA YOUR COPY TODAY SENO $\$ 2.50$ WTH ORDER TO BLOOMINGON HEAD OFFICE.

SAME DAY SERVICE - ONLY ORIGINAL FACTORY PARTS USED

WATCH US GROW

Four affordable, deluxe counters - one for every need.

MODEL 380.

1 Hz to $80 \mathrm{MHz} .10 \mathrm{ppm} \$ 269$
MODEL 380X.
1 Hz to 80 MHz . 1 pom . $\$ 419$
MODEL 385.
1 Hz to 512 MHz. 10 ppm $\$ 545$
MODEL 385X.
1 Hz to 512 MHZ. $10 \mathrm{pom} \$ 699$
Perfect for communications, CB, audio and digital work. servicing and laboratory applications.
Full 7-digit display with automatic decimal, full autoranging. SPEED READ mode updates display 5 times each second to aid tuning and adjustments.
Resolution is 1 Hz to 10 MHz , and 10 Hz to 80 MHz . Models 385, 385X feature a built-in prescaler to take you all the way to 512 MHz . Models 380X, 385X incorporate temperature compensated crystal oscillators with 1 ppm accuracy.
See these exciting new counters at your distributor now!

the value innovator

INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue • Cleveland, Ohio 44108 (216) 541-8060 - TWX: 810-421-8286 CIRCLE 12 ON FREE INFORMATION CARD

KIMPUTER KORNEL

PETER R. RONY, DAVID G. LARSEN, and JONATHAN A. TITUS*

IN THIS COLUMN, WE WILL INTRODUCE YOU TO additional details concerning the operations of an 8080A-based microcomputer that are controlled by software. It is the software instructions, or steps, that actually indicate to the microcomputer the tasks that it must perform. Just as you may start the day with a list of things to be done and a sequence in which they should be accomplished, the microcomputer, too, must be provided with a sequential list of program steps.

In general, we may not be familiar with what each microcomputer instruction does within the microprocessor chip. This does not deter us, however, from using them in all of our programs. Many of us are not familiar with the inner workings of an internal combustion engine, an automatic transmission, or a Xerox machine; our lack of knowledge does not prevent us from using them daily.
All of our programs are stored in fast semiconductor memory, either read/write memory or programmable read-only mem-

Software instructions that contain several instruction bytes require two or three sequential fetch-and-execute actions. Again, exactly what is done within the microprocessor IC is not of interest to us, only the overall effect. All software is executed sequentially, one step after another, unless we purposely transfer control to instruction bytes located elsewhere in memory.
To conveniently handle the large number of software instructions in the 8080 A microprocessor instruction set, it is customary to group them into several instruction groups. The Intel 8080 Microcomputer Systems User's Manual subdivides the instruction set into five groups:

- Data Transfer Group-these instructions move data between registers or between memory and registers
- Arithmetic Group-add, subtract, increment or decrement data in registers or in memory
- Logical Group-and, or, exclu-

FIG 1
ory. The microprocessor IC fetches an instruction byte from the memory and then executes it. Each software instruction requires at least one fetch-and-execute action.

[^2]sive-or, compare, rotate or complement data in registers or in memory

- Branch Group-conditional and unconditional jump instructions, subroutine call instructions and return instructions
- Stack, I/O and Machine Control Group-includes 1/0 instruccontinued on page 26

KOMPUTER KORNER
continued from page 24
mell as instructions for maintaining the stack and internal control flags
Before we can make much sense of these instructions, we must know more about the internal architecture within the 8080 itself. We shall present such information in steps. since it can be overwhelming if tackled all at once.

Shown in Fig. 1 is a schematic diagram that depicts the significant aspects of the internal architecture within an 8080 or 8080 A IC. Our emphasis in the diagram has been an accessible 8 -bit and 16 -bit registers that store information within the IC. You should exclude from consideration the Data Bus Buffer/Latch and the Address Buffer, which we show here to make the point that these are internal circuits that interface the internal digital circuitry with the outside world. i.e.. the 8-bit bidirectional data bus and the 16-bit address bus. As you learn about the 8080. you will be specially interested in the accumula. tor, flags. program counter, stack poimer. and general purpose registers that are designated B. C. D. E. H. and L.

We will not say much about the insiruction register. since its function is automatic and we have litule control over it. The function of the instruction register can be best understood with the aid of Fig. 2, which shows that it is an 8 -bit register that temporarily stores the 8 -bit instruction code for an instruction that is to be executed. Within the micropro-
cessor IC, an instruction decoder converts the instruction code into a series of actions that. logether. cause a microcomputer operation to occur. The individual actions are clocked by the ϕ_{1} and ϕ_{2} clock signals that are input at pins 22 and 15 , respectively, on the 8080 IC.

The general purpose registers B, C. D. E. H. and L are used for many varied purposes. e.g. the storage of an 8 -bit constant. the storage of a 16 -bit pointer address, the storage of an intermediate result in an addition or subtraction. etc. Each general purpose
register contains eight bits and can exchange data directly with the 8 -bit external bidirectional data bus. Simple 8080 instructions permit you to transfer eight bits of data from one register to another: from a pair of registers to the program counter: from a register to the accumulator: and from a register to a memory location, and vice versa. You can use the contents of a register to perform addition. subtraction. and, or, exclusive-or, and compare operations with the contents of the accumulator. The contents of each register can be incremented or decremented. Register pairs, such as register H and register L. can be incremented or decremented as a 16 -bit word.

The accumulator also acts as a general purpose register, but it has some special characteristics not possessed by the other six registers. The result of any arithmetic or logical operation is stored in the 8 -bit accumulator. The I/O instructions (IN and OUT) transfer data only between the accumulator and external $/ / O$ devices. The contents of the accumulator can be transferred to any other general purpose register or to a memory location. and vice versa.

The five flags-zero, carry, parity, sign, and auxiliary carry-are flip-fiops that indicate that certain conditions have arisen during the course of an arithmetic or logical instruction. Such flags are used by the microcomputer in making decisions, i.e., with conditional jump. call, and return instructions: in multipleprecision arithmetic operations; and in logical masking operations.

The program counter is a 16 -bit register in the 8080 IC that contains the address of the continued on page 28

SUB TUNER

VHF AND UHF TUNER FOR RAPID TESTING OF ALL CHANNELS. CALIBRATED GAIN ADJUSTMENTS PROVIDE FOR SIGNAL STRENGTH COMPARISON.

DIGITAL GENERATOR

CRYSTAL CONTROLLED FOR GENERATING STABLE PATTERNS WHEN CONVERGING RED, GREEN AND BLUE GUNS. IDEAL FOR LINEARITY, PIN CUSHION, CENTERING, FOCUS AND ALL PICTURE ADJUSTMÉNTS.

40 MHz OUTPUTS

IF SIGNALS FROM DIGITAL GENERATOR AND SUB TUNER FOR STAGE-BY-STAGE ANALYZING AND TROUBLE SHOOTING.

The VHF/UHF section of the Ferret allows direct substitution of the TV's tuner for fast. positive localizing of front end trouble.

The crystal controlled digital circuitry assures complete accuracy of both the vertical and horizontal frequencies. Accurocy is better than $.005 \%$. Output from the generator may be coupled thru the tuner section or directly to the IF-video stages. Resolution is limited only by the picture quality of the TV receiver. Operates from 105 to 125 volts 50.60 Hz .

GENERATOR SECTION

CONVERGENCE ADJUSTMENT
 STATIC AND DYNAMIC CON.

 VERGENCE. BEAM ADJUSTMENTS.
SOLD THRU DISTRIBUTORS ONLY

EICO 390 SWEEP/FUNCTION GENERATOR

■. 2 Hz to 200 KHz

- Sine, Square, Triangle
- Linear \& Log Sweep

Now you can afford a Function Generator that will meet all your signal requirements! The 390 generates discrete sine, square, and triangle waveforms over a very broad frequency range. You have a choice of either linear or logarithmic sweep with slow. medium, or fast rates. The 390 also allows for external frequency control through a rear panel input. With its 50 -ohm output impedance and calibrated attenuator the 390 can handle everything from checking the response of an audio amplifier to driving digital circuits.
Model 390 assembled $\$ 169.95$

EICO 388 PORTABLE COLOR BAR PATTERN GENERATOR

- Battery Operated with LED Indicator - IC Digital Circuit Design
- RF Adjustable, Channels 2, 3,4

The 388 is truly the most advanced pocket-size portable color generator in the field today. A single MOS LSI IC provides 9 digitally controlled, stable patterns. The 388 operates by simply connecting its output cable to the TV's VHF terminals. Two matrix slide switches select any one of the 9 patterns.
Crystal controlled chroma and timing oscillators assure precision, accuracy and stability. The 388 is powered by two 9 -volt transistor batteries.
Model 388 assembled $\$ 89.95$

FREE EICO CATALOG

For latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send 50¢ for fast furst class mail service
EICO. 283 Malta Street, Brooklyn, N.Y. 11207
Leadership in creative electronics since 1945.

KOMPUTER KORNER
continued from page 26
next instruction byte that must be executed in a program. You can load the program counter register either from a register pair or, more likely, from two instruction bytes in sequence located in memory.
region of memory that is allocated for the storage of temporary information, usually the contents of the internal registers within the 8080 IC.

This summarizes our brief discussion of the internal architecture of the 8080 microprocessor. Keep in mind that there are seven 8 -bit registers, two 16 -bit registers and five flags, the contents of which you can control using software. Much of what an 8080 microcom-

DEFINITIONS

accumulator-The register within a computer where the results of all arithmetic and logical operations are placed.
address bus-A unidirectional bus over which digital information appears to identify either a particular memory location or a particular 1/O device.
bidirectional data bus-A data bus in which digital information can be transferred in either direction. With reference to an 8080Abased microcomputer, the bidirectional data path by which data is transferred between the microprocessor chip, memory, and input-output devices.
fetch-In a computer, the collective actions of acquiring a memory address and then an instruction or data byte from memory.
flag-A single flip-flop that indicates that a certain condition has arisen as, for example, during the course of an arithmetic or logical operation in a computer program.
general purpose registers-In the 8080 microprocessor, the 8 -bit B, C, D, E, H, and L registers.
program counter-In a computer. the register that contains the address of the next instruction byte that must be executed in a computer program.
register-A short-term digital electronic storage circuit the capacity of which is usually one computer word or byte.
software-The totality of programs and routines used to extend the capabilities of computers. Examples include compilers, assemblers, narrators, routines, and subroutines.
stack-A region of memory that stores temporary information, usually the contents of the internal registers within a microprocessor chip.
stack pointer-A register that contains the address of the last byte that has been placed on the stack in an 8080 microcomputer.

The stack pointer is a 16 -bit register that contains the address of the last byte that has been placed on the stack. The stack is a
puter does is to move 8-bit bytes from one location to another. This will become more apparent in subsequent columns.
about $\$ 250$ in 1977 dollars). The same three-minute call can be placed today for $\$ 4.05$.

Computers now made useful for small-business man

Altair Software Distribution Co. is putting out software packages to fit the needs of retail stores, small wholesale distribution centers, industrial users and professional firms, among others. Altair is a subsidiary of MITS, microcom puter manufacturer of Albuquerque, NM.

The packages are designed to allow a purchaser to select the components of a system that will fit his needs closely. The accounting system, for example, is composed of four packages, General Ledger, Payroll. Receivables and Payables. The Word Processing package is a flexible text editor system that allows contracts or other lengthy documents to be stored, edited and printed. Documents can call for inserts from other files, making repetitive letters, etc., easy to produce.

The Inventory Management package is a flexible data-base management system that allows a business to keep complete inventory records "on line." In its off-theshelf form, it is structured for a typical retail store whose inventory reorder policy is based on minimum reorder points. R-E

Original operators celebrate
 50 years of overseas phone

Two retired overseas telephone operators commemorated a half century of transatlantic telephone service with a call placed January 7, 1977, exactly 50 years after the first overseas phone call got through.

Ms. Rose de Palma, 73, one of the four original transatlantic operators for AT\&T's Long Lines, called Ms. Isabel Ivy Baker, with whom she had worked from the earliest days of the transatlantic telephone. Ms. de Palma, brought from Florida to make the historic call, had retired from the Bell System in 1966 after 46 years of service. Ms. Baker, now 74 years old, left the British Post Office in 1940 and now lives in Thornton Heath, Surrey, England.

The two old-time operators reminisced before turning the phones over to dignitaries of AT\&T in New York and its opposite number, the British Post Office in London.

The 1977 call was dialled by International Direct Distance Dialing, a service that permits one-fourth of all Bell System subscribers to dial direct to as many as 36 countries. There have been a few other changes in 50 years. The cost of a threeminute call in 1927 was $\$ 75$ (equivalent to

An Extraordinary Offer to introduce you to the benefits of Membership in

All 2- and 3-book sets count as
only one of your 3 Selections.

Way we send you your choice of these 3 practical, usual offer of a Trial Membership in Electronics Book Club?

Here are quality hardbound volumes. each especially designed to help you increase your know-how. earning power, and enjoyment of electronics. Whatever your interest in electronics you'll find Electronics Book Club offers practical. quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you. through your own experience. that these very real advantages can be yours...that it is possible to keep up with the literature published in your areas of interest. and to save substantially while so doing As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway ...without the substantial savings offered through Club Membershlp.

To start your Membership on these attractive terms. simply fill out and mail the coupon today. You will receive the 3 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY! If you are not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.
Electhonics book clue, P.O. Boz 10 , Blue hidoe Summil, Pa. 17214

Facts About Clyb Membérship

- The 3 introductory books of your choice carry publishers retal prices of up to $\$ 62.70$. They are yours for only
each (plus postageenandling) with your Trial Membership. each (plus postage handling) with your Trial Membership.
- You will receive the Club News. describing the curren - Yelection. Alternales and other offiferings. every 4 weeks (13
- If you want the Selection, do nothing: it will be sent to you automatically. It you do not wish to recelve the Selection, or fl you want to order one of the many Alternates offered, you
simply simply give instructions of tede and return it 10 us oy the date specilied. This date allows you at least 10 days in which to return the form. M. because of late mail delivery, you oo not have 10 days to make a decision and so receive an unwanted Selection, you may return it al Club expense. - Personal service for your accoun--no compulers used! - To comprete your mal membership. you need buy only tour adotitional monthly selections or alternates during the
next 12 months You may cancel your Membership any time afler you purchase these four book
- All books-including the introductory OHter-are fully re - All books are ollered at low Member prices. plus a sma postage and handling charge.
- Conlinuing bonus: If you contunue ather this Trial Membership, you will earn a Oividend Centificate lor every boon you purchase. Three Certhicates, plus payment of the
nominal sum of $\$ 1,99$, will entitle you to a valuable Book Dividend of your choice which you may choose from a list provided Members

ELECTRONICS BOOK CLUB

P.O. Box 10

Blue Ridige Summit, Pa. 17214
Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 3 books circled below. understand the cost of the books I have selected is only 99c each, plus a small shipping charge. If not delighted, I may retum the books within 10 days and owe nothing, and have my Trial Membership cancelled. agree to purchase at least lour additional books during the next 12 months, after which I may cancel my mem. bership at any time.

101	132/627/672			563/636		628/637	
	652		14	743		749	
754	785	800	836	841	855/885	891	970

\qquad
Address
City
State
$2 i p$
p \qquad

equipment report

VIZ WR-549A Pulse Generator

CIRCLE 88 ON FREE INFORMATION CARD
everything is going digital lately. so for design work or servicing of digital equipment, a reliable source of controllable pulses is needed. All digital circuitry works on pulses of varying shapes, widths and frequencies. Test equipment must be capable of developing the exact one needed for, a given circuit. VIZ Manufacturing Co., 335 E. Price St., Philadelphia. PA 19144, has introduced their $W R-549 \mathrm{~A}$ pulse generator that meets all of these requirements.

It's a tiny thing, but versatile. It can develop pulses that are continuously variable over a range from 5 Hz to 5 MHz . Pulse width and repetition rate are independently adjustable. The output is TTL compatible and also suitable for CMOS. The output has a range up to 15 volts P-P, and an impedance of 100 ohms. The risetime of the pulses is held to 20 nanoseconds on all ranges. Frequency can be set to within $\pm 5 \%$ of the dial setting with the two front-panel controls set to their CAL (counter clockwise) positions.

A novel method of pulse generation is used in the WR-549A. It uses two separate oneshots. Each of these is timed independently of the other by a selector switch and a set of precision capacitors. Each one-shot triggers the other. So, both pulse-widths may be adjusted independently from 100 nanoseconds to 0.1 second. To achieve maximum sharpness of the pulse (minimum risetime), edge-triggering is used. The trailing edge of the pulse from the first pulse-generator fires the second one. In turn, the trailing edge from the second generator is coupled back to the first, which sets this one off again,
completing a cycle
The outputs of the two generators are combined in a buffer amplifier. The front. panel level control sets the P-P voltage of the pulses, having no effect on their frequency or duty-cycle.

The first pulse-generator one-shot determines the duration of the positive-going pulse, and the second determines the duration of the ofl-time between two successive positive going pulses.

Precision timing capacitors are used for each generator, Two 6 -position rotary switches select the capacitors. These go from 100 nanoseconds to 10 milliseconds. A continuously-variable control can be used to set the pulse-width exactly.
The $W R-549 A$ is AC powered with a tightly regulated DC power supply, and complete isolation from the line. Standard IC's and transistors are used. The instruction manual gives full and simple directions for checking the calibration, and adjustment if necessary. A troubleshooting chart is also provided.
This can be a very handy instrument, not continued on page 32

TIGER . 01

Introduced three years ago, our "Tiger .01" is still one of the finest amplifiers available in its power class. This amplifier introduced our 100\% complementary circuit which has become a standard feature in many of the better amplifiers. This combined with an output triple produces a circuit that can honestly be rated as having less than $.01 \% \mathrm{IM}$ distortion at any level up to 60 Watts. Relatively low open loop gain and a conservative amount of negative feedback results in clean overload characteristics and good TIM characteristics.
Other features are volt-amp output limiting, plus three fuses and an overheat thermostat. Despite the "budget" price an output meter is standard equipment. Each channel measures $4 \frac{1}{4} \times 5 \times 14$. Four will mount in a standard width relay rack for four channel systems.

SPECIFICATIONS

60 Watts -4.0 or 8.0 Ohm load Minimum RMS from 20 Hz to 20 KHz with less than $.05 \%$ Total Harmonic Distortion.
IM Distortion
less than 01% Damping Factor

Hz to $20,000 \mathrm{~Hz}$
 \#\# 207/B Amplifier (single channel) \$110.00 PPd \# 207/B Amplifier - Ki:
\$ 77.50 PPd

Unique full-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes-lake your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with o full-size 8 -digit display
This one does. What's more, becouse it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $\$ 19.95$. And for that, you get not anly a high-calibre calculator, but the fascination of building it yourself.
How to make 10 keys do the work of 27
The Sinclair Instrument wrist calculator offers the full range of orithmetic functions. It uses normal algebraic logic ('enter it as you write it ${ }^{\prime}$. But in addition, it offers a \% key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory. All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centered, numbers- which make up the vast majority of key-strokes-ore topped in the normal way. 2. Hold the switch to the left to use the functions to the left obove the keys. 3. and hold it to the right to use the functions to the right obove the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readilyavallable hearing-aid batleries to give weeks

Assembling the Sinclair Instrument wrist calculator
The wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It lakes about three hours to assemble. If anything goes wrong, Sincloir Instrument will replace any damaged components tree: we want you to enjoy assembling the kit. and to end up with a valuóble and useful calculator.

only for digital work but for general servicing as well. It is an excellent source of very accurate squarewaves for audio test work and can be used for ringing tests of coils. transformers, and so on. it can also be used as a source of a clock signal for digital circuitry. As I discovered, it is also nice for checking other things. After connecting it to a scope getting a set of L-shaped things for a trace, I found out that someone had been dinkering with the frequency compensation of my scope-probes! Quite a lot of useful things in a compact package.

R-E

Thanks to you it works ... FOR ALI OF US

atveriziong contriturted
for the public pood
United Way

Lightguide telephone system evaluated

A cable of hair-thin glass fiber lightguides is being run under Chicago streets to test the transmission of telephonecustor ars' voice, data and video signals under actual working conditions. In 1976 a similar system was checked out in Atlanta, GA, under simulated field conditions. The present test, eyaluating more accurately the potentialities of the new technology, will help determine how near it is to being economically and technically practical.

A lightguide cable will carry voice, video and data signals about 0.8 kilometers (one-half mile) from the Brunswick Building in Chicago's Loop to the Franklin central office of Illinois Bell, and from there 1.4 kilometers (about nine-tenths of a mile) to the Wabash central office.

If Yourre The Kind Who Demands TheBest. We've Got To Hand It To You

This is the one with the smooth working, machined, undercut mating parts (1) that can't slip out.

This is the one with the reinforcing flange (2) that practically eliminates stress breakage.

This is the original. The first of its kind and still the best of its kind. CHANNEL. LOCK. Be sure you get the real thing. Look for the trademark. on the handle.

Channellock, Inc., - Meadvilie. Pa. 16335
CHAN NEL LOCK
The ORIGINAL Tongue.'N-Groover

The fiber lightguides, approximately 0.005 centimeters (about 2 mils) in diameter, are made of extremely pure silicaglass coated to protect them from mechanical injury and combined into flat ribbons of 12 fibers. Two of these ribbons are enclosed in the cable that protects them in under-street installations. Each pair of fibers can carry 576 simultaneous telephone conversations or their equivalent in video or data channels.

TWENTY-FOUR SLIM LIGHTGUIDES arranged in two ribbons of twelve each in a specially designed cable, will be used as the understreet lightguide conduit in the 1977 tests in Chicago.

The signals are fed into the cables by gallium-aluminum-arsenide lasers made by Bell Labs. Light-emitting diodes will also be used. Though not as powerful sources as lasers, they are expected to be adequate over the short distances involved in the Chicago tests.

Reception is with a special silicon "avalanche" photodetector that is part of a continued on page 34

FROM KIT TO CAR

 IN 80 MINUTES!Electronic ignition is "In." Update vour car with the TOPS in power, efficiency and re liability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution
The TIGER can be built and installed in vour car in 80 minutes. The TIGER is uniquel
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

$$
\begin{aligned}
& \text { Simpli-Kit } \$ 21.95 \\
& \text { POST PAID U.S.A. }
\end{aligned}
$$

WE ACCEPT:
Mastercharge or Bank Americard
Send check or money order with order to:

TrI-Star Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501

CIRCLE 20 ON FREE INFORMATION CARD

Performance features at a price you can affordand fully backed by Tektronix

Only Telequipment offers you:

TEKTRONIX GUARANTEE

The Telequipment family of oscilloscopes is fully guaranteed by Tektronix, the world's leading oscilloscope manufacturer. This guarantee means that during your first year of ownership, if there are any defects in Telequipment parts or workmanship, you can bring your oscilloscone to any of 35 Tektronix Service Centers across the United States for fast repair by experts-free of charge.

PERFORMANCE FEATURES YOU NEED AT A PRICE YOU CAN AFFORD

Model D61a Designed for portability and easy operation, the D61a is a dual trace 10 MHz 'scope for only $\$ 595$. For easy, accurate viewing, the D61a features automatic triggering and bright, stable waveforms on an $8 \times 10 \mathrm{~cm}$ display.

Model S61 NEW from Telequipment, the S61 is a 5 MHz single trace oscilloscope featuring automatic triggering and $8 \times 10 \mathrm{~cm}$ display for $\$ 375$. This lightweight (14 lb .) instrument has a straightforward. easy to read front control panel - well suited for education applications.

Model D32 When you demand an extremely portable 'scope, the D32 is ideal. Battery or ac line operated, this 10 MHz dual trace 'scope weighs only 10 lbs . An optional shoulder strap or attaché carrying case can be used to take your scope into the field. The $\$ 750$ price includes batteries and probes.

IDEAL FOR MANY APPLICATIONS

If you're servicing pocket calculators, TV, radio, microwave oveาs, alarm systems or dozens of other consumer products, Telequipment 'scopes can do the job for you. Easy viewing and operating make Telequipment ideal for classroom use :oo.

TELEQUIPMENT...

 THE CHOICE FOR YOUPerformance "eatures at a price you can afford, plus full backing by Tektronix make Telequipment a wise choice when you're looking for low-cost oscilloscopes.

For more information about
Telequipment oscilloscopes, contact your nearest Tektronix Field Sales Office, or write Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077. For immediate information, call Bill Glaze at Tektronix:

(503) 644-0161, extension 7163.

CIRCLE 24 ON FREE INFORMATION CARD
receiver module with circuitry to process the signals for transmission through the regular telephone network. Transmission is in the infrared, at 0.82 micron, and losses through the lightguide are about 6 dB-per-kilometer, or about 10 dB -per-mile. The modulator circuit can turn the laser transmitters completely on and off 44.7 million times a second, giving a 44.7megabit digital information rate

More shows and conferences for

 computer hobbyistsThe magazine Personal Computing is sponsoring three computer conferenceshows this Spring, and is planning more shows for later in the season.

The Western Personal Computer Show was held on March 19 and 20, in Los Angeles. The Eastern show is May 7 and 8 in Philadelphia, and the New England show is June 18 and 19 in Boston. Exhibitions, seminars, special presentations and tutorial workshops will be featured at all the conferences.
Later shows are being planned for the South, Southwest, Canada and Europe.

Special areas of the exhibition halls are being set aside for personal computing in education, in the home, in ham radio and in small businesses.

Court upholds Magnavox video

 games patentsThe United States District Court for the Northern District of Illinois has ruled that the Magnavox patent on coin-operated video games is valid and that the rights of Magnavox, a subsidiary of North American Philips, have been infringed. The
ruling was against the Chicago Dynamics Industries and Seeburg Corp.

In previous suits against Atari, Inc., and Midway Mfg. Co., consent judgments were entered and the two companies entered into licensing agreements with Magnavox. Further suits are pending against Allied Leisure Industries, Inc., for both its coinoperated and home video game units; and against the Radio Shack division of Tandy Corporation that sells home video game units to consumers.

CB COMES TO TOWN IN TEXAS

"WE MONITOR CHANNEL 19," announces a motor inn in Fort Worth. The Insert shows a desk clerk acknowledging a room reservation request Irom a motorlst. The CB radio is a wallmounted Realistic TRC-30A.

WIRE WRAPPING TOOL
For AWG 30, . $025^{\prime \prime}$ ($0,63 \mathrm{~mm}$) sq. post, "MODIFIED" wrap, positive indexing, anti-overwrapping device

save time and money by joining the

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB

> Tere Is a professional book club designed to meet your on-the-job engineering needs by providing practical books in your on a begular basis at below publisher prices. If you're missing out on important technical literature-if today's high cost of reading curbs the growth of your library-here's the solution to your problem.

> The Electronics and Control Engineers' Book Club was organized for you, to provide an economical reading program that cannot fail to be of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editors and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections

> How the club operates: Every month you receive free of charge The Electronics and Control Engineers' Book Club Bulletin. This announces and describes the Club's featured book of the month as well as alternate selections avallable at special members' prices. If you want to examine the Club's feature of the month, you do nothing. If you prefer one of the alternate selections-or if you want no book at all-you notify the Club by returning the card enclosed with each Bulletin.

> As a Club member, you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually, there will surely be at least four you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

MAIL THIS COUPON TODAY

electronics ano control engineers' book club
ELECTRONICS ANO CONTROL ENGINEERS BON Jer 08520 Please enroll me as a member and send me the two books indicaled. I am
 the
the books within 10 days and request that my memberhtip be cancetled. It
ikeep the books, I agre to take minimum ol three additional books during Theep te books, I agree lo lake a minimum of three addilional books during
Theenext two years at spectal Club prices (guaranleed 15% discount, often
the The nexi two years at special Club prices (quaranleed 15% discount, ottin
more). I will recelve ine Club Butletin 12 times a year. 111 wan to examine more). I will recelve the club Butletin action It will be shipped sutomatically.
the lealured selection, I need take no action
 the Ctub by returning the conventent card always enclosed. I will atways have
an minimum of len days io which ta return the card and you will credit my ac.
 Is continuous but eance lable by me at any time atter the four-book purchas Orders from oulside the continental U.s. musi be prepald. All prices sublect to change wilhout notice. Offer good for new nembers only.

Write Code \# of $\$ 1.89$ bonus

NAME

ADDRESS
CITY
STATE 2IP
EXTRA SAVINGS: Remit in full with your srder, plus any local and state tax, and McGraw.Hill will pay all posiage and handling charges. E33324

We've got

the longest running feature onTV.

Our Color Bright 85° picture tube warranty is the longest in the industry. We can offer it because we're confident that a Color Bright 85 picture tube will probably last longer than five years.

The warranty is a great selling tool that builds customer confidence in your quality work. Plus, it lets you form a long-term customer relationship with each picture tube you replace.
Limited warranty, naturally. It does not cover labor for replacing a tube.

The Color Bright 85 picture tube offers economy with the high quality standards you expect from Sylvania. Couple that with the new 5 -year warranty** and you'll find the Color Bright 85 is an easy sale.

And it can be better for you in the long run.

GII SyLVANIA

Wide range of frequency division is made possible by three cascaded 555-timer IC
stages. The divisor is selected by three 10-turn pots and indicated on an LED display

GEORGE BAUMGRAS

FREQUENCY DIVIDING CIRCUITS ARE WIDELY USED FOR TIMEBASES, test equipment functions, music synthesizers and digital applications to name but a few. If we want a specific output, a crystal oscillator/digital counter combination affords the best accuracy, usually at the price of high package count and limited choice. The programmable version offers considerable improvement in choices available, but the price goes upmany switches and a long list of codes are necessary. A properly calibrated wave generator is an alternative, except that accuracies better than $\pm 3 \%$ usually cannot be expected unless monitored by an expensive digital counter. The circuits described here do nothing new; rather, they perform this common task at a fraction of the usual complexity without sacrificing accuracy. A few design applications and the construction of a multi-purpose test instrument will be described-many other unique applications in your field of interest should become obvious.

The basic circuit (Fig. 1-a) is a very simple, stable and reliable means of dividing fixed frequencies with absolute
accuracy, using the versatile 555 timer IC. Depending on the RI and Cl values selected, the input will be divided by some whole number from 2 to at least 500 with off-the-shelf components. With selected parts, careful layout and a wellregulated power supply, much higher divisors are practical. Figure $1-b$ is a flexible 1 -second timebase which demonstrates package count reduction to an absolute minimum. The line frequency can be any commonly available, and by adjusting the value of the 50 K potentiometer, the output can be adjusted to $0.5 \mathrm{~Hz}, 2 \mathrm{~Hz}$ or any of several other choices.

By comparison, the conventional TTL timebase requires at least one transistor and two IC's to accomplish the same purpose. You can try out this circuit very quickly on a prototype breadboard, or even on a TTL IC tester if you can isolate pins 2,6 and 7 from the LED logic-state indicators. Figure 1 -c shows the input and output waveforms for $a \div 4$ using a 555 timer. The values of R and C can drift slightly due to temperature and aging without affecting operation; also long-term supply-voltage variations have no effect.

How the basic circuit works

A 555 timer IC connected in the familiar monostable configuration (Fig. 1-a) will output a positive voltage at pin 3 for a selectable time period, if pin 2 is briefly triggered below $1 / 3$ of the supply potential. The duration of this pulse is approximately equal to $\mathrm{RI} \times \mathrm{Cl} \times 1.1$, provided pin 2 remains high. Adding C2, R2, R3, D1 and D2 changes this circuit to an efficient divider. When a negative-going pulse through C2 drops the voltage across R2, pin 2 goes low because of the decreased current through R3 and triggers the internal comparator. Pin 3 now flips to near the power-supply level and most of this voltage is fed back to pin 2 through D2 and across R3 which prevents triggering during the time T.

When Cl discharges enough, pin 3 drops to the low level, pin 2 is clamped at about half the supply due to the voltage divider R2, D1 and R3, and cannot be triggered until the next pulse comes along. During time T, the IC will not respond to an input pulse and thus divides by responding to only 1 -of-N trigger commands. The rate of division (N) can be calculated by: $f_{\text {in }}(\mathrm{Hz}) \times T$ (secs).

The value of R1 can be varied by means of a potentiometer and a few switched resistors so that a wide range of divisors may be continuously selected, using one capacitor. If a multiturn potentiometer is used for RI, resolution is excellent and the output pulse width can be varied considerably. If various values of Cl are also switchable, one divider can be set up to handle any input up to at least 1 MHz . If a single output is wanted, however, cascaded variable-R1 dividers are more useful. If three are cascaded, the output is determined by: $f_{\text {ut }}$ $\div(N \times N \times N)=f_{\text {oul }}$.

The variable modulo test unit

The schematic in Fig. 2 uses the basic principle of Fig. 1-a for each of its three cascaded sections. The divisor for each is selected by a 10 -turn panel-mounted potentiometer, a fourposition range switch and a single capacitor. The internal frequency is generated by IC1-b and IC1-c, controlled by a plug-in crystal which can be any conceivable value to 1 MHz . This is fed to the NAND Schmitt triggers IC2-a and IC2-d. The external input goes to the high impedance input of ICI-a and to ICI-d, limited to TTL levels. This source is also conditioned by IC2-b and IC2-c.

Both sources are selected with SI, and either one may be prescaled by IC3, a divide-by- 10 counter, if desired. The output pins of S1 go to S2 and the first variable modulo divider, IC4. The output of IC4 carries to IC5 and from there to IC6-all three outputs are also routed to panel output jacks.

THE BASIC OIVIDING CIRCUIT. $\div N=f_{I N} \times T . T=R I \times C 1 \times 1.1$. CI SHOULO BE AS SMALL AS PRACTICAL, BUT NOT LESS THAN 500pF.

A LINE FREQUENCY TIME BASE USIMG ONE IC. DUTPUT MAY BE CALIBRATEO WITH A PERIOO ME TER, OR BLINKER LED IN OPTIONAL AOO-ON CIRCUIT MAY BE COMPARED WITH THE SECONOS REAOOUT OF A OIGITAL CLDCK.
b

SYNCHRONIZEC TRIGGERING
TIMING FOR $\div 4$ IS SHOWN TI 1μ SEC. T2 IS THE PIN 3 "ON" TIME ESTABLISHEO BY R AND C. WHICH CAN VARY AT LEAST $1 / 2$ CLOCK CYCLE WITHOUT AFFECTING THE OUTPUT RATE

FIG. 1-FREQUENCY DIVIDER circulte using the 555-timer IC. The basic frequency divider is shown In a. A 1-second timebase circuit that divides the line frequency is shown in b. Input and output waveforms for $\quad \|+4$ circuit using a 555 is shown in c.

Resistors all 5\% $1 / 4$-watt unless noted
R1-22 megohms, $1 / 2$ watt, 10%
R2, R3, R4-10,000 ohms
R5 thru R13-220,000 ohms
R14 thru R21-22,000 ohms
R22, R23, R24-330,000 ohms
R25, R26, R27-1200 ohms
R28-180,000 ohms
R29, R30, R31-68 ohms
R32-5100 ohms
R33-22,000 ohms (see text)
R34-180 ohms
R35 thru R39-not used
R40, R41, R42-1 megohm variable (Beckman Helipot model 57 with shaft attached or equal)
CI-20-pF disc
C2-30-pF disc (or optional 4-40 variable)
C3-500-pF mica, 5\%
C4-0.047- $\mu \mathrm{F}$ disc
C5-0.001- H F disc
C6, C7, C8-0.05- F F disc

PARTS LIST

C9, C10, C11, C12-100-pF disc
C13 thru C18-22- $\mathrm{F}, 10 \mathrm{~V}$, tantalum
C19-2.2- $\mathrm{FF}, 10 \mathrm{~V}$, tantalum
$\mathrm{C} 20-1-\mu \mathrm{F}, 10 \mathrm{~V}$, tantalum
$\mathrm{C} 21-4000-\mu \mathrm{F}, 15 \mathrm{~V}$, electrolytic (0.9"
diameter $\times 2^{\prime \prime}$ maximum)
D1 thru D9-1N914 or 1N4148
D10-HEP177 or HEPR0804
D11-LED, 0.18' diameter
IC1-CD4001BE quad 2-input NOR gate
IC2-74132 quad NAND Schmitt trigger
IC3, IC10, IC11, IC12-7490 decade counter
IC4, IC5, IC6, IC9-555 timer
IC7-7473 dual JK flip-flop
IC8-7402 quad 2 -input NOR gate
IC13, IC14, IC15-5082-7300 (or -7302)
decoder/latch/display (Hewlett-
Packard)
IC16, IC17, IC18-LM309H 5V regulator
IC19-LM340-5T 5V regulator
Q1-HEP50 or equal
S1, S2, S3, S4, S5-double pole, 4-
position slide (Continental Wirt or equal) PC type
S6, S7-SPDT slide (Continental Wirt or equal) PC type
T1-power transformer: primary 117 VAC; secondard $8 \mathrm{~V}, 0.7 \mathrm{~A}$
XTAL1-1 MHz, plug-in type (see text)
One IC socket, 24-pin Wire-Wrap type
Eight IC sockets, 14 -pin Wire-Wrap type
Four IC sockets, 8-pin Wire-Wrap type
Crystal socket type HC6U (.05' pins spaced .487')
Eight Banana sockets, black
Eight Banana sockets, colored
Cabinet, LMB 007-946 or equal
Circuit board
AC line cord
Three Knobs for $1 / 8-i n$. shaft
Plastic window, $1 \times 2 \times 0.05^{\prime \prime}$
No. 22 stranded insulated wire
Grommet for line cord
Assorted hardware
Solder

FIG. 2-PROGRAMMABLE FREQUENCY DIVIDER has 3-digit LED display to indicate the divisor of the three $\mathbf{5 5 5}$ divider stages.

Divider C can be switched by S6 to either the carry output of B or to a $60-\mathrm{Hz}$ half-wave source, but in the latter mode, divider C will not show its divisor in the display. To use this option, divide 1 MHz by $(100 \times 100 \times 100)$ for a $1-\mathrm{Hz}$ output at C . Change the C input switch to the $60-\mathrm{Hz}$ position and the output will remain 1 Hz . Similarly, for a $2-\mathrm{Hz}$ output, divide by $100 \times 100 \times 50$, or for a $0.5-\mathrm{Hz}$ output divide by $100 \times$ 100×200 and so on. This arrangement provides a separate selectable timebase which remains constant while A and B are varied.

The display will directly read the divisor for each section, except as noted above, which makes a frequency counter unnecessary. However, a pocket calculator will be helpful. Since the readout is a ratio rather than a frequency, display updating, for simplicity, must occur at a rate proportional to the output of the section being read. For this reason a dual flip-flop, IC7, is used to sequence the count, latch and reset functions in order to provide the minimum time slot for each.

The divide-by type of readout is preferred since it is much simpler to build-in than a counter capable of reading from 500 kHz to 0.1 Hz and requires only three digits without decimal points. Also, the time between pulses out may be read directly, because the readout is reciprocal. If, for example, the input is 1 MHz and the display reads 100 , then the output is 10 kHz and the pulses are $100 \mu \mathrm{~s}$ apart. An LED blinker next to the display is actuated by the C output and IC9 and conveniently indicates visually the slower rates only. When setting the larger divisors for C it may take around 20 seconds for the display to update, which occurs after every fourth blink, and this indicator can be very helpful.

The symmetrical squarewave $\div 2$ and $\div 4$ outputs from IC7 are connected to panel jacks and subdivide the output of the section being read; the divisor for these outputs is determined by mentally doubling or quadrupling the readout. This arrangement makes possible nine related output frequencies at any setting of the variable controls by selecting display switch positions, or five frequencies output simultaneously without switching.

The input and output lines for either A, B or C are selected by S2. The selected output is buffered and inverted by IC8-c and drives the clock input of IC7-a which in turn causes $\bar{Q} 1$ to go low, toggle IC7-b and enable IC8-a (Table 1). The selected input is buffered and inverted by IC8-b and IC's 10,11 and 12 start to accumulate the count from IC8-a. Another output

COMPONENT PLACEMENT diagram showing PC board dimenslons.

TOP-SIDE foll pattern.
pulse from IC8-c again clocks IC7-a, disabling IC8-a and stopping the count. The Q outputs of IC7-a and IC7-b are now at logical 0 and IC8-d applies a positive voltage to the base of the transistor through R4 and C5, where it is inverted to a logical 0 at the latch inputs of the display IC's, and update occurs.
The next output pulse causes IC7 to go into a holding mode and the latch enable goes high. The final output pulse of this sequence again clocks IC7-a, causing the Q1 output of IC7-a and the Q2 output of IC7-b to go to a logical I and reset the decade counters. Each set of four pulses repeats the process to keep the display updated as the divisor is varied by the control knob.

The power supply uses a full-wave rectifier to improve filtering by capacitor C21. IC19 supplies regulated voltage to
all IC's except IC4. IC5 and IC6. These are individually regulated by IC I6, IC17 and ICI8 to avoid voltage variations originating elsewhere in the circuit that can cause poor resolution and instability. Capacitors C16, C17 and C18 are located on the board for a similar purpose.

Construction detalls

The three variable potentiometers should each be checked for smooth and gradual resistance change as the shaft is rotated the final two turns on each end. Select the best one, marking the "good" end, and use it for divider A. The other two are not as critical, but do use the same end when wiring them for B and C. It makes no difference which way the knobs turn to set the divisor, but they should all be the same.

The single circuit board mounts nearly all the components on its top surface, capacitor C21 mounts on the bottom side and IC19 is bolted to the cabinet rear panel. Brass nuts (No. 356) soldered to the six switch mounting plates attach the assembled board to the panel rear surface and spaces it $5 / 8-$ inch away. The enclosure can be a cabinet $9 \times 6 \times 3$-inches minimum, or the type noted in the parts list. Raise the display IC's (and the LED) from the board surface just enough to contact the back side of the plastic window by means of a 24 pin wire-wrap socket, which also permits soldering on both sides of the board.

All of the 14 -pin sockets are also the wire-wrap type. Raise them just enough to allow soldering, then clip off the excess pin length. Insert the switches in the board and screw them to the front panel to insure proper alignment and height before soldering them in place. Once the fit is established, assemble the remaining sockets and parts, then solder capacitor C21 to the bottom of the board.

Wire leads for the input, 5 outputs, 2 grounds, 3 potentiometers and IC19 should be installed next (a total of 17 wires), leaving them long enough for connection later on. After installing the IC's, test the circuit in case there is an accidental short somewhere, using a variable regulated power supply. Attach the positive lead to IC 19's regulator output connection (marked TEST) and the negative lead to one of the ground wires, then gradually apply a maximum of +5 volts. The display should light at least partially, and current drain should be about 350 mA . If a crystal is plugged in, ICI should oscillate and the waveform at pin 10 can be observed on an oscilloscope. At this time it is also advisable to test the other crystals to be used. If any of them do not work, try a smaller value for R 33 , or replace ICI. One of the crystals can be trimmed by the optional capacitor C 2 at a later time.

The assembly can now be mounted to the machined, painted and lettered cabinet. Install the 3 potentiometers and 12 banana jack sockets and wire them to the board, keeping the leads as short as practical. The regulator, IC 19, is attached to the rear panel for grounding and heat-sinking and connections completed. Splice extra wire to the transformer leads if necessary and assemble it. Connect the power switch and line cord to the primary and the secondary leads to the board. If all has gone well, the Variable Modulo Frequency Divider is now ready for use.

Using the dividers

Each divider section should be considered as a separate unit that performs best at the frequency for which it was designed. Although the total package can, for example, divide 1 M Hz by many whole numbers from 2 to more than $10,000,000$, not all the divisors in between can be obtained.

The reason for this is simple: specific values of R and C establish a time period which remains constant regardless of the input, while the ratio of input to output varies with frequency. The method of determining any output is: $\mathrm{f}_{\text {in }} \div \mathrm{N}$ $=f_{\text {out }}$, as demonstrated by the following example: $1 \mathrm{MHz} \div$ $(100 \times 100 \times 100)=1 \mathrm{~Hz}$. If we change the divisor of A (or B) then the divisor of B (or C) will also change because of the
fixed time period as in the next examples: $1 \mathrm{MHz} \div(200 \times$ $50 \times 100)=1 \mathrm{~Hz}$, or $1 \mathrm{MHz} \div(100 \times 200 \times 50)=1$ Hz .

It is nearly impossible to state how many different outputs can be obtained from the cascaded dividers because of the many factors and options involved-only guidelines may be given. To begin with, the basic plan is to extract 1 Hz from I MHz , or divide by $1,000,000$ as in the above examples. If each section divides by 100 , then A input is $1 \mathrm{MHz}, \mathrm{B}$ input is 10 kHz and C input is 100 Hz . But also any section will divide its stated input by anything from 2 to 500 .

Accordingly there must be initially 4500 choices available, some of which are duplicates. Several thousand more may be added by varying the original $\div 100$ to some odd higher or lower value for A (or B) to result in a new input to B (or C). We can again add many thousands of choices to the list by changing crystals, best done by using odd values. A 971.52 kHz crystal is a good choice for one of these, as explained further on. The prescaler can be easily reconnected as a $\div 9$ or $\div 7$ to add still another option.

Instead of the crystal oscillator, we can use an existing TTL source, or a wave generator, prescaled if necessary, but regardless of the source, accuracy will be the same as the input. Based on these calculations, the availability of something close to what we want becomes dependent on the number of odd-ball crystals on hand plus a little ingenuity in setting the divisors-perhaps 100,000 choices might be a reasonable estimate.

Applications

One interesting use for this project, and the basic circuit, is in the field of music synthesis. Using the $971.52-\mathrm{kHz}$ crystal mentioned earlier, set the dividers at $\mathrm{A}=\div 232, \mathrm{~B}=\div 8$ and $C=\div 8$, which will result in nine octaves of note C present or selectable at the five outputs, as shown in Table 1. The

OCTAVE \#	OUTPUT AT	fout	$\mathrm{f}_{\text {truo }}$ *
8	A	4187.5	4186.0
7	$A+2$	2093.7	2093.0
6	$A+4$	1046.8	1046.5
5	B	523.44	523.25
4	$B+2$	261.72	261.63
3	$B+4$	130.86	130.81
2	C	65.43	65.40
1	C +2	32.71	32.70
0	C +4	16.35	16.35
*For note C. Equally tempered music scale			

outputs must of course be further processed to become usable. The frequencies given do not necessarily hold true for all scales and instruments, and are stated only as typical.

The wide range of available outputs is very useful for calibrating tone generators and other frequency sources, as well as for tuning tank circuits, notch filters and the like. Assembly manuals for kits usually specify the use of an accurate frequency source for calibrating (oscilloscopes, counters, etc.). If one output is made to gate a strobe lamp, very accurate RPM measurements can be simplified. Motor speeds (where RPM depends on frequency) can be continuously varied over a wide range.

R-E

SPECIAL CONSTRUCTION ISSUE

The June issue of Radio-Electronics will feature five construction projects. These will include a music synthesizer that generates music from pink-noise sources, a pushbutton telephone dialler with expandable memory, an LED wall-clock, a quadriphonic oscilloscope adapter for your hi-fi system and an IC Identifier/Tester for your workbench.

New Way To

Graphic equalizers are commonly used to tailor from Shure Brothers permits rapid

NOW That audio amplifiers, preamplifiers, FM tuners and even phono pickups have been refined to the point that they deliver ruler-flat frequency response at barely measurable distortion levels, the audio industry has turned its attention to the final pair of culprits in the quest for uniform frequency re-sponse-the loudspeaker and your own listening room. By far the worst offender of the two is the listening room itself, although there are still plenty of "hi-fi" speakers around that have dips and bumps in their response curves even when measured in an anechoic chamber (which is, admittedly, not the way most of us listen to music).

To solve the problem of speaker response and room acoustics, the audio industry has suddenly discovered a device that professional sound contractors have been using for many yearsthe graphic equalizer. The reasoning goes something like this: if we acknowledge the fact that no speaker actually delivers "flat response" from 20 Hz to $20,000 \mathrm{~Hz}$ and, if we also admit that our listening rooms emphasize certain frequency bands while attenuating others (depending upon their dimensions, furnishings, surface absorption coefficients and a host of other variables), why not introduce the inverse of the "actual" net response curve into the electronics of the system and thereby create a total system (room included) that will "sound" absolutely flat?

Equalizers

It was clear at the outset that the conventional bass and treble controls, long a fixture on hi-fi amplifiers and receivers, were not up to the job. These controls operate over nearly one-half of the audio spectrum each. The bass control alters response from around $500-\mathrm{Hz}$ downward, while the conventional treble control boost or cuts all frequencies above around $1,000 \mathrm{~Hz}$. It is fairly obvious that this kind of tonal adjustment cannot possibly eliminate the narrow-band bumps and valleys that
often exist in a high fidelity system.
Having tested and measured a number of graphic equalizers on the test bench, I have long been convinced that using this type of product in a home hifi system can result in audibly improved musical reproduction in just about any listening room. Unfortunately, having visited a number of dealers and friends who own octave and third-octave equalizers, I must confess that in most cases the devices are not achieving their desired results. The problem seems to be that most users of graphic equalizers are tuning them by ear. Some graphic equalizers are supplied with special test records that are supposed to help you to set up the device for the flattest overall response. But again, unless you have a perfectly "calibrated ear", the final settings of those slide levers or knobs becomes largely a hit-and-miss proposition. Of course, professional sound installers often use real-time analyzers and calibrated microphones to "tune" a room and a system to within a few decibels of "flat", but such equipment, until recently, has cost several thousand dollars.

I recently became aware of a product developed by Shure Brothers, Inc. that, from its description, seemed able to do a good job of "room tuning" and costs under $\$ 500.00$. Since I had always been somewhat in doubt about the response of my own reference listening set-up, I decided to attempt to equalize it. Some of the things I learned are worth repeating.

Actual response

Just to prove a point that has been made many times before, I decided to examine the response of my total system (including the room) by sweeping single-tone frequencies, from 20 Hz to 20 kHz , through my system and picking up the results by means of a calibrated microphone positioned where I normally sit when listening to music. The "sad" results are shown in the spectrum analyzer photo of Fig. 1. Hardly
anything to be proud of. Besides the obvious and severe roll-off beginning just above 5 kHz or so, the series of "holes" at the low end of the response curve (some of which were greater than 20 dB in amplitude) seemed incurable. And even in the region above 500 Hz , where the "average" response settles down to a reasonable degree of flatness, there are multiple narrow-bandwidth peaks and valleys that ride up and down over a range of more than 10 dB . So much for single-tone testing of room acoustics!
Happily, our own human hearing comes to the rescue here. It has been proven that when we hear a very narrow

FIG. 1-TOTAL FREQUENCY RESPONSE of hifi system, inciuding listening room.
"peak" or "valley" in the response curve (some say that one third of an octave is the limit), we do not aurally perceive it as an abberation in frequency response flatness. For this reason, such frequency response tests are best performed using "pink noise" instead of sweeping, single tones.

So, with that in mind, I borrowed a pair of Shure SR-107 octave-band equalizers (see Fig. 2), and the same company's newly developed model M615 equalization analyzer, shown in Fig. 3.
The analyzer kit includes a calibrated microphone, model ES 615 and the analyzer itself. The analyzer contains a internal source of pink noise, whose

Room Equalization

the response of the hi-fi/listening room combination. A recent introduction adjustment of the graphic equalizer to obtain an overall flat response

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

level can be adjusted, a microphone amplifier and a series of octave-wide amplifiers that are used to activate two rows of LED indicators, one above the octave notations and one below. The pink noise source is fed to the system under test. Pink noise, when listened to over loudspeakers, sounds a bit like the rushing noise you hear when you tune between FM stations, except that it is carefully tailored to contain equal energy in each octave of the audio spectrum. The microphone is positioned where you would normally listen to your hi-fi equipment. An additional control, known as a hi-lo envelope control on the analyzer determines the amplitude "window" of the system.
If the energy of a given octave is louder than the nominal average level. the LED above that octave number will

FIG. 2-SHURE MODEL SR107 octave equalIzer.

FIG. 3-SHURE MODEL M615 equalization analyzer.
light, while octaves of energy that are lower than average will cause an LED below the octave numbers to light. When the envelope control is rotated fully clockwise, the spread between lower LED illumination and upper LED illumination is $\pm 6 \mathrm{~dB}$. Thus, even with no equalizer in your system, if its
response was within $\pm 6 \mathrm{~dB}$ from 32 Hz to 16 kHz , all the lights would be off. The procedure involved in proper equalization involves reducing the setting of the envelope control and, as various lights come on (either on the "high" or "low" side), appropriate controls on your equalizer are tweaked until the lights go off. If you are able to gradually rotate the H-LO ENVELOPE control fully counterclockwise and succeed in getting all the lights to extinguish, the response of your system (on an octave by octave basis) as heard at the microphone's position, would be flat within $\pm 1 \mathrm{~dB}$.

Just for fun. I rotated the envelope control fully counterclockwise before inserting the equalizers into the system. Sure enough, the light indicators gave me a good clue as to how far things were off. In Fig. 4, the $32-\mathrm{Hz}$ octave shows up

FIG. 4-ECUALIZATION ANALYZER shows the total frequency response of hi-fl system prior to equalization.
as being deficient in energy content, the $63,125,250,500,1 \mathrm{~K}$ and 2 K lights show too much energy in those bands, while the $4-\mathrm{kHz}$ light is off (showing correct "average" level) and the $8-\mathrm{kHz}$ and 16 kHz lights show that energy in those octaves is too low. Before even attempting to add correct amounts of equalization, I carefully rotated the envelope control clockwise, to determine approximately how much equalization would be needed for each octave. Since the envelope control is roughly calibrated in dB , I was able to plot the approximate octave response of my system prior to
equalization, as shown in Fig. 5.

Equalizer set-up

Next came the job of actual equalization. It came as no surprise to me that the equalization settings required for the

FIG. 5-APPROXIMATE OCTAVE RESPONSE of hi-fi syatem prior to equalization.
left channel differed in several respects from those required for the right channel. This also suggested the importance of having a graphic equalizer with separate levers or controls for each channel (not all equalizers are so built). The best I was able to do resulted in the individual octave settings shown graphically in Fig. 6. Figure 6-a shows the plotted

FIG. 6-CONTROL SETTINGS of equalizer. The froni-panel control settings for the left channel is shown in and the right channol in b.
settings applicable to the left channel and Fig. 6-b shows the settings for the right channel.
At this point, I decided to find out what the actual response of the two graphic equalizers were. So I connected
them to the spectrum analyzer which was swept from 20 Hz to 20 kHz in the usual log-sweep mode. The resultant response curve of the left-channel equalizer is shown in Fig. 7, and it

FIG. 7-ACTUAL EQUALIZER RESPONSE with the control settings shown In Fig. 6-b.
corresponds quite closely to the point-by-point or octave-by-octave settings shown of Fig. 6-a.

Connecting the equalizers into the audio chain and, again using pink noise, I observed the face of the Shure analyzer and noted that all lights were extinguished with the exception of the 32 Hz and 16 kHz indicators. (The 63 Hz indicator blinked every now and again, briefly, as I moved about the room, but was off when I returned to my "listening" chair.) The indicator lights are shown in the photo of Fig. 8.

FIG. 8-EQUALIZATION ANALYZER shows total frequency response of hi-fi system after equalization.

Having a good source of pink noise at my command, I decided to measure overall response using this form of wideband noise and the sweep filters of the spectrum analyzer (which were set to their narrowest bandwidth). First, I measured overall response with the equalizers bypassed. The results are shown in the upper trace of Fig. 9. Then the sensitivity of the analyzer was lowered (but with levels unchanged) so that a second trace could be displayed without superimposing it on the first sweep, and both left- and right-channel equalizers (preset as outlined before) were switched into the system and the sweep was repeated. The much improved results are shown in the lower trace of Fig. 9.

Still aware that single-tone sweeps have their problems, I nevertheless

FIG. 9-TOTAL FREQUENCY RESPONSE of hifi system without equalization is shown in upper trace. Lower trace shows response after equalization.
decided to have another go using this method and, while those narrow-band bumps and valleys still showed up in Fig. 10, a comparison between Fig. 10 and Fig. I shows that even using this crude measurement approach, a great amount of improvement is evident.

You may recall that I never did

FIG. 10-SINGLE-TONE FREQUENCY RESPONSE of hi-fi system after equalization.
your system. Suppose, for example, that my system had been perfect even without equalization except for those end upper and lower octaves. I might have pushed the 32 Hz and 16 kHz levers up to their extremes, but if I had done so, my amplifier would probably clip and distort at those extreme frequencies.

If I was lucky enough to hear the distortion before my tweeter burned out (or my woofer-cone ruptured). I would have had to "back off" on my volume control or lowered the effective power output average of my entire system by an enormous factor. Table I shows the effective available amplifier power of different amplifiers having different nominal power ratings when one or more equalization levers are set to different degrees of boost in an attempt to flatten the response of a system. Note that if a mid-frequency lever is boosted only 3 dB for example, the effective power available from the system (without clipping) becomes half of the amplifier's actual power rating. And, in an extreme case where 10 dB of boost at some specific frequency is required, a 200-watt amplifier becomes, effectively, no more powerful than a 20 -watt amplifier with a flat response.

So, while we are convinced that system equalization can do wonders for a hi-fi system when used in moderation, over equalization to compensate for system deficiencies that are beyond helping can cause more damage and grief than no equalization at all.

The experience gained with the Shure equalization analyzer also convinced us

TABLE 1-EFFECTIVE AMPLIFIER POWER (watts) based upon various amounts of boost (dB).

AMPLIFIER RATING (WATTS)	+1 dB	+2 dB	+3 dB	+4 dB	+6 dB	+8 dB	+10 dB
20	15.8	12.6	10.0	7.96	5.0	3.16	2.0
30	23.7	18.9	15.0	11.94	7.5	4.74	3.0
50	39.5	31.5	25.0	19.90	12.5	7.90	5.0
100	79.0	63.0	50.0	39.80	25.0	15.80	10.0
150	118.5	94.5	75.0	59.70	37.5	23.70	15.0
200	158.0	126.0	100.0	79.60	50.0	31.60	20.0

succeed in bringing the 32 Hz and 16 kHz octaves to a "flat" response. Referring to Fig. 6 once more, you will also note that I settled for only +6 dB at the highest octave and less than +4 dB at the lowest octave. Perhaps you are wondering why 1 didn't crank these endoctave controls up to their full $+12-\mathrm{dB}$ capability. This brings us to a possible trouble area caused by equalization.

Moderate amounts of equalization can do wonders for the sound of your hi-fi system and, indeed, having now heard the difference between a properly equalized system and one which is not, I would not be without an equalizer from this point onward. But improper use of an equalizer can cause real havoc with
that despite our long years of listening to hi-fi systems, attempting to equalize a system "by ear" can be a hopeless task. We hope that now that correct procedures are available as inexpensively as they are, that more and more audio dealers will offer in-home equalization service to serious audiophiles when they buy a graphic equalizer. Once we became familiar with the analyzer, actual correct setting of our equalizer controls took no more than about five minutes, and, despite the fact that none of the controls for either channel was set more than $6-\mathrm{dB}$ away from "flat" (and most were displaced considerably less than that), we could not help marvelling at the improvement we heard. R-E

COMPUTER PROJECT

Build 2650-Based Microcomputer

 System
Abstract

Part II. Built on a single printed-circuit board, this 2650 microcomputer contains a video and cassette tape interface and resident supervisor program. Add a keyboard, video monitor, cassette tape recorder and power supply for a complete working system

JEFF ROLOFF

Last month. A description including specifications and schematic appeared.

This month, an in-depth look at the troubleshooting procedures plus the component placement diagram is given.

Troubleshooting

After applying power to the PC board, the first thing to check is the power-supply voltage. If the output of an adequate (5 volts, 3 amperes) power supply is pulled down by connecting it to the board. there is either an IC put in backwards (if the supply is not pulled completely to ground) or else the powersupply lines are shorted somewhere on the board. If an IC is plugged in backwards, it will become very warm immediately after the power is applied. If the supply is actually shorted to ground, the process is much more tedious since you must inspect both supply lines to discover the point of the short. If quality IC's were purchased, the majority of problems are caused by solder or etch shorts. For this reason, it is a good idea to check the whole board for little solder spatters.

Logic and display circults

The logic section of the board is the next part of the board to test. You need a scope for this part. and its bandwidth should be above 1 CMHz . (You can also send the board into Central Data to
have a trained technician test it for $\$ 15.00$ an hour.) Connect the scope to the composite video signal that appears on plug 5, pin 5, of the board. Observe the sync pulses that appear at the zerovolt level. There should be one short sync pulse (down from 0.5 volt) every $63.5 \mu \mathrm{~s}$, and one long pulse every 16.667 ms . If either of these two trains of pulses are not there, or have the wrong frequency, you must check the Timing Chain and Sync Generator section of the circuitry.

The Timing Chain and Sync Generator circuit contains a crystal-oscillator as the basic timing source. (A complete schematic appears in last month's issue of Radio-Electronics.) This is a standard oscillator with the $14.192640-\mathrm{MHz}$ crystal used as the main feedback element. The signal from this oscillator is buffered using three other inverters from IC53. The first divider network that this signal goes to is formed by IC50, IC5I and IC52. These three IC's are used to divide the master clock down to a signal that has a period of $63.5 \mu \mathrm{~s}$. The three counters are all fed by the same clock, so that all of the outputs change state the same instant. The enable pins of the two low-order counters are fed from the previous counter stage(s) in an arrangement that forms a 10 -bit syncronous binary counter. Pins I, 2 and 13 of IC54 monitor the states of this counter. When all three of
the monitored lines are high, the clear line is activated which resets all of the counters.

The D1, D2 and D4 outputs of IC52 provide the first three binary divisions of the master clock. Since the characters are eight-dots wide, output D4 has the width of one character (it is the divide-by-eight output). The last output of this counter, along with all of the outputs of IC50 and IC5I (designated the ' C ' outputs) provide a count of the current character position on the display. While it is counting from 0 to 79, the characters are actually appearing on the screen. While counting from 80 to 112 (during which the counters are reset). the display is in the process of horizontal blanking.

The horizontal sync signal is generated by IC62-a. The sync signal is eight character-spaces wide, which is about $4.5 \mu \mathrm{~s}$. Also, the three dot signals that come from IC52 (DI-D4) are all OR'ed together to form the LOR signal that is used in the Display Generator circuit to load the data from the character generator into the shift register once for every character. The LOR signal has a duty cycle of $1 / 8$ (negative duty cycle, that is), and it goes low for this one dot period at the very beginning of each character.

Now that the signals are defined for all of the areas of each scan line, the up and down position on the screen must be defined. The three other counters
(IC55-IC57) serve this function, IC55 is used to count down by 12 and the other two are connected to count down by 21 . The input that enables the first counter is the EOL signal that reset the previous counters at the end of a scan line. The output of this counter is monitored at pins 3 and 4 of IC54, to determine when 12 scan lines have been counted. When this event has occurred, its output at pin 6 drops and resets the counter. The reason that it counts to 12 is that there are 12 scan lines for each character line on the screen (i.e., vertically there are 12 dots for each character). The L.I. L2. L4 and L8 outputs of this counter are used to determine which scan line of a character line is currently being displayed. From lines 0 to 7 , the display section is actually displaying a character (since the actual character size is eight-dots tall). while from lines 8 to 11 , the display is blanking between lines.

The reset line for IC55 is used to clock the next two counters that determine the character line being displayed. The counters (IC56 and IC57) are both reset by IC54-b when a count of 21 character lines is reached. From character lines 0 to 15 . the display is actually showing characters on the screen (or at least it can be), while from character lines 16 to 21. the vertical blanking is in effect. Vertical sync is generated in this time period by IC62-b. Pins 4 and 5 of IC64a are inputs to the gate that mixes the vertical and horizontal sync signals to form the composite sync signal.

The video-blanking signal is composed of a horizontal blanking and vertical blanking signal. The horizontal blanking signal is generated by IC64-b and IC66-b. The output of 1C66-b is high when C64 and C16 are both high (at character position 80) and later changes back to low when EOL is present. Any of the four inputs to NOR gate IC70 indicate that the screen should be
blank when they are high. So there are three other signals that indicate that the screen should be blanked and all of them are OR'ed together to form the master blanking signal. The verticalblanking area is indicated by L.NI6. Any one of the four scan lines between character lines is indicated by L8. The dispmem line is high whenever the processor is accessing the display RAM. Wrong character patterns would appear when the display RAM is accessed, so we just blank the screen during this small interval to cover up the few out of place dots. The display access signal is low whenever the screen is to be blanked. This signal is delayed one more character time (to make up for the delay in accessing the RAM and character generator in the Display Generator circuit) by IC65, using pins 2 and 5. If the processor is accessing display memory, pin 8 of IC65 is low and is a one character-time delayed version of the imsplay access signal. This in turn keeps Blank video (pin 5 of IC65) low a little after display access disappears to make up for the recovery time required by the RAM. The blank video signal goes to the output shift register and keeps the output data low by clearing the register.

If these circuits are operating correctly, a good video signal should be present that can be connected to a video monitor. Figure 1 shows the composite-video

FIG. 1-COMPOSITE VIDEO SIGNAL supplied to video monifor.
signal. If the sync signal is correct, the monitor should immediately lock onto the video signal and display a stable picture. If the picture does not lock-in, try lowering the value of the 330 -ohm
resistor (R9) in the video output stage (such as 220 ohms) and lower the value of the 100 -ohm resistor hooked to the base of the two transistors. This will adjust the sync level and the total videooutput level to suit your monitor. If you have a standard monitor, you will not have to do this since the output signal is standard.

If the characters on the screen waver. there is still a problem with the Timing Chain and Sync Generator circuit. Check this circuit out again. looking for any imperfections in the signals that indicate a bad IC or a shorted line. This probably won't happen. since a fault in the circuit usually causes major problems and not just a little wavering on the screen.

Now that a pattern appears on the screen, it must be identified. If it is a prompting character (a period) and the cursor appears in the upper left corner of the screen, the whole system is probably working. All that is needed is to hook up an ASCII keyboard and tape recorder to the correct plugs and see if commands can be entered into the monitor. (The procedure for testing the cassette interface is given later.) If you have either random characters on the screen or just 16 solid horizontal bars. the processor section of the board is probably not working. This prevents the supervisor program from being read in and thus the screen is not cleared.

Processor

The Processor and Bus Driver circuit divides the master clock by 12 to obtain the CPU clock. The divide-by-6 counter IC58 starts its count at 10 and counts up to 15 . After the count of 15 , inverter IC53-a connected to the carryout line and load input is used to load the 10 and start the division again. Flip-flop IC66 divides this carry signal by 2 to obtain the square CPU clock. The

All resistors $1 / 4$ watt, 5%.
R1-R6, R14, R18-10,000 ohms
R7, R8, R16, R17-1000 ohms
R9-330 ohms
R10-150 ohms
R11-82 ohms
R12-100 ohms
R13-620 ohms
R15-470 ohms
R19-20,000 ohms
R20-68,000 ohms
R21, R22-20,000-ohm trimmer potentiometer
C1, C2, C11-100 pF, disc
C3, C14-100 $\mu \mathrm{F}, 16$ volt, electrolytic
C4, C8-0.01 $\mu \mathrm{F}$, disc
C5, C6, C7, C9, C15-C29-0.1 $\mu \mathrm{F}$, disc
C10-0.0022 $\mu \mathrm{F}$
C12, C13-0.056 $\mu \mathrm{F}, \pm 10 \%$ polyester film
D1, D2-1N914 diode
D3-1N4729 Zener
D4, D5-1N4148 diode
Q1, Q2-2N5139 transistor

PARTS LIST

IC1-2650 microprocessor (Signetics)
IC2-IC10, IC21, IC22, IC78, IC79-74126
IC11, IC64, IC69-7408
IC12-7414
IC13, IC17-3624, pre-programmed PROM containing supervisor program
IC14-IC16, IC18-IC20, IC48-3624, PROM (see text)
IC23, IC24, IC65, IC75, IC77-7474
IC25, IC71, IC76-7400
IC26-9344, 4-bit by 2-bit multiplier (Fairchild)
IC27-IC29-74157
IC30-IC45-2102-1, RAM (Signetics)
IC46, IC47-74125
IC49-3624, pre-programmed PROM character generator, upper case
IC50-IC52, IC55-IC58-74163
IC53-74S04
IC54-7410
IC59-7432
IC60-74166
IC61, IC68-7411

IC62-7420
IC63, IC67-7404
IC66-74109
IC70-7425
IC72-555, timer
IC73-74123
IC74-CA3130
XTAL1-14.192640 MHz series-resonant crystal
MISC.-One 40-pin DIP socket for IC1,
six 16 -pin DIP sockets and printed-
circuit board.
The following parts may be ordered from: Central Data Company, P.O. Box 2484, Station A, Champaign, IL 61820.

IC49-3624, pre-programmed PROM
character generator, upper case, $\$ 27$.
IC13, IC17-3624, pre-programmed
PROM containing supervisor program, $\$ 27$ each.

PC board, predrilled and etched, $\$ 30$
An assembled and tested microcomputer board, $\$ 325$
frequency of this clock is about 1.183 MHz , and if the faster version of the 2650 is put into the board, the counter's inputs can be changed to increase this frequency. The CPU clock signal is gated through IC1I-a with the stop CROCK signal that allows you to externally stop the clock by bringing the line low. The timing relationships of the microprocessor is shown in Fig. 2.
Pin 16 of the 2650 is the reset input, and the RESET signal is generated using a Schmitt trigger and an R-C time constant. Capacitor C3 is initially discharged and the reset line is therefore high. As the capacitor charges through resistor R6, the output of the inverter will change to a low level allowing the processor to operate-
starting at address zero in memory. All of the outputs of the processor, except for RUN/WAIT. are buffered with tri-state drivers or an inverter in the case of the serial output line.

The tri-state drivers have their enable pins available for data bus override operations. For instance bringing the ADDR DISABLE line low causes all of the address buffers to be disabled. This allows another device to take control of the address bus. The same is true for the data and control buses. So, by bringing these three enable lines low, you can effectively disconnect the 2650 from any external memory.

The serial input and serial output lines come directly from pins on the processor that can be inspected or set by
special processor instructions. This allows the system to get by without a UART and also allows high flexibility as far as output rates and formats.

The data bus buffers are tri-state buffers, with either the in or the out buffers being enabled at one time. If the \vec{R} / w line is low, the processor is reading data, so the input buffers are enabled. If this line indicates that the processor is outputting data to the data bus, then the output buffers are enabled. Although buffers are not needed, they were put in so that any memory added to the system would not need to have its own set of buffers.

In the area of expansion. Central Data offers a S 100 compatable bus board. It generates signals derived from

FIG. 2-2650 MICROPROCESSOR timing relationships.
the 2650 board that will interface directly with any standard 8080 static RAM board or I/O board. The board has room for five edge connectors, and is plug expandable with extender boards.
Locating a problem in the Processor and Bus Driver circuit requires inspection all of the address and data-bus lines to be sure that all of the signals are at standard TTL levels. If one line is stuck either high or low, carefully clip the pins of the IC's that this line runs to until the problem clears. The last pin that was clipped is the one holding the line, so replace the IC. Before cutting the IC pins, check the power supply on all of the IC's that the line runs to. Also, if any of the IC's are tri-state buffers, check to be sure that they are not gating data onto the line at the wrong time (an enable pin may be stuck in the enable state.)

If the processor's bus checks out, then you check to be sure that the RAM interface to the processor is working since that would also cause the random characters to appear on the screen. Initially, when the supervisor program is executed (right after reset), it clears the screen by sending the ASCII code for a blank (H 20) on the data bus to the RAM, and then sequentially accessing all of the display positions and writing the data. Therefore, right after a reset, the dISPMEM line should undergo many transitions. If it doesn't, check out gates IC61-a and IC69-a that are used to generate this signal from the address lines. Note that the dispmem line indicates what page the processor is access-ing-if it is the 4 K page where the display RAM resides, this line is high.

If the dispmem line checks out, then look at the write-pulse generating circuitry. IC61-a (pins 1,2,12 and 13), along with flip-flop IC23-a, is used to generate a signal that is high at pin 5 of IC23-a for the first CPU clock cycle following the low to high transition of the OPREQ-signal. This is gated with \bar{R} / W line and the CPU clock by IC6I-b. This signal finally goes through one last gate that turns on the write line of the RAM's if the processor is accessing the display memory page. This write line should have high activity right after the power is tuned on.
If these signals check out, then check the data-bus drivers IC46 and IC47. They are used to gate data from the
display memory onto the data bus so that the processor can read the contents of the RAM. It is helpful to have a dualtrace scope for this, so that the input to the buffers and the output can be observed at the same time. Then check to see that the input and output of the buffers are the same when the enable is high.
There is almost nothing that can go wrong with the character generators, their operation is simple. IC49 is the one that is used for the normal operation of the board, with IC48 being an optional character generator for lower case, graphics, or other characters. Therefore, when supervisor program is the only thing that is running, it only selects character generator IC49. For this reason, the chip enable on IC49 (pin 20) should be low whenever the video is not blanked. This is easily checked with a dual-trace scope. If the other character generator is selected, and it is absent, a block of all on dots will appear on the screen. So, if you have several of these selections in a line, you will have a big horizontal bar on the screen rather than characters. Two of the output lines of the RAM may also be shorted, which would cause some characters not to be displayed. Again, a dual-trace scope is needed to check the data-out lines against one another to see if any look shorted.
The output shift register is IC60. It is loaded with the character generator's outputs at the first horizontal-dot position of each character, and then sends the eight-bit word out serially at the master-clock rate. Note that the clear line on IC49 is driven by the BLANK VIDEO line from the Timing Chain and Sync Generator circuitry.

The addresses for the display RAM are multiplexed by the Display Memory Address Switch. If the display access line is low, the processor's address lines are selected to address the display RAM. This is the case when the display is being blanked (and thus the processor tries to access the display memory, raising the dispmem line and dropping the display access line). The other case is when the display RAM is addressed by the Timing Chain. The signals Cl to C64 are gated in, along with LNI to LN8, to select the correct address.

If the gating circuit for the ROM is not working properly, the supervisor program will not run. The output at pin

12 of IC-67 goes low whenever the ROM is selected. When using the supervisor program, this line will always be low when the dispmem line is also low. In other words, the supervisor only has two places to operate from, it will always be selecting one of these places.

The I/O ports 8 are also enabled using a good deal of gating circuitry. If the data bus doesn't have the right signal levels, check the two groups of data-bus buffers to be sure that they are not gating data onto the bus. This could happen if the enable pins are locked in a high state. Either a write data or a write control instruction will access the output port.
If the circuitry checks out, the supervisor program must be working for all of the operations except the tape routines. It is a simple matter to set up the cassette-tape interface and once it is set, it will stay perfectly aligned until it is changed. The potentiometer for the 555 -timer should be adjusted so that the output of the 555 is a $4800-\mathrm{Hz}$ squarewave. This is divided by two by the first flip-flop (pins 3 and 5 of IC77), and again by the second half of this same IC. The serial output line is clocked through part of IC75, and then this output is used to gate on one of the two frequencies. The R-C network at the output of IC76 (pin 11) is used to decrease the output-voltage level and change it into a more rounded signal. The demodulator section is just a monostable and operational amplifier.
continued next month

NOAA updates list

The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has updated its list of stations to about the end of last year. The network is the sole government operated system for communicating weather, disaster or other warnings direct to the public. Weather receivers are available at most electronic stores.

The broadcasts are at $162.40,162.475$, or 162.55 MHz . A listing (by state, call letter and frequency) of the stations in service available free by writing to the National Weather Service, Silver Spring, MD 20910.

Zenith gets a patent for improved electron gun

Zenith's EFL (Electrostatic Focus Lens) has received Patent No. 3,995,194, granted to Zenith research and development engineers Allen Blacker and James W. Schwartz.

The EFL gun extends the focusing action over a longer distance by using four electron lens elements, instead of only two as in most electron guns. This concentrates the beam to produce a spot size as much as 60 percent smaller than in conventional gun systems. The new inline gun is housed in the narrow neck of the company's 19-inch 100-degree picture tube.

R-E
 It's the first set on the market with programmable automatic channel selection. Enter a series of time/channel combinations on the keyboard, and the set automatically switches to the channel at the programmed time

ART KLEIMAN
MANAGING EDITOR

back in 1974. The heath company shook the foundations of the TV industry with the introduction of the GR-2000 color TV receiver. That set contained unique features found in no other set at the time, including silent all-electronic varactor tuning. touch-to-tune channel selection, touch volume control, on-screen digital channel readout, on-screen digital clock readout and a fixed L-C IF bandpass filter. (See the February 1974 issue of Radio-Electronics for a full report on the GR-2000.)

Heath's latest introduction-the GR-2001-contains features that set it apart from the rest of today's industry. This is the first TV set to feature programmable automatic channel selection and automatic antenna rotator control. With the programmable channel selection feature (offered as an optional accessory, the GD-1185), the user programs a time/channel combination and the TV set automatically switches to that channel at the programmed time. Two blocks of 16 (for a total of 32) time/channel combinations can be programmed at any one time. The automatic antenna rotator control. also offered as an option. automatically orients the antenna to a programmed direction when a channel is selected. It replaces the control portion of a standard antenna rotator system.

The GR-2001 includes all the features that made the GR-2000 unique. In fact. the two receivers are basically the same.

One difference that is immediately apparent is the method of channel selection. On the GR-2000, two pushbuttons scan the channels up and down until the desired channel is reached. The new GR-2001 has a 3×4 calculator-type keyboard containing the numerals $0-9$. Channel selection is accomplished by entering two digits on the keyboard. The remaining two keys function the same as on the GR-2000-they scan the channels.

As far as the chassis is concerned, it remains basically the same as the GR2000. Some modifications have been made for improved performance. Heath redesigned the audio circuitry for better sound and included phase-locked-loop circuitry to eliminate the vertical and horizontal hold controls.

The programmable automatic channel selection feature really caught our attention. This one feature sets this set aside from all others on the market. The circuitry for this optional accessory is complex. containing 60 IC's mounted on four printed-circuit boards, not counting the on-screen digital clock option that must be included for this accessory to function. Since the feature is unique. let's take a look at how the channels are programmed.

Channel programming

In addition to the 3×4 keyboard used for channel selection, there are 8 pushbuttons and a rocker switch used
for operating the programmer. Three of these pushbuttons are used for mode selection and the other five are used for entering data into the programmer.

FIG. 1-NUMERICAL KEYBOARD is used for channel selection. The eight keys localed above the numerical keyboard are used to control the automatic channel selection leature. Channels can also be scanned using the two keys with the arrowhead designations.
Figure I shows the layout of the keyboard and eight pushbuttons. The rocker switch selects between two memory banks and is located behind a door on the front panel.
Programming the time/channel data is a matter of manipulating the mode.
data entry and channel selection keys. First, the programmer must be switched to the memory-access mode by depressing the ma key. A front-panel ma indicator light verifies this. To program the time, the t key is depressed. The onscreen display now reads "00:00:" and the numerical keys on the keyboard are used for entering the desired time. As the time is entered, the on-screen display simultaneously shows it. If a mistake is made in entering the time, it can be corrected by simply re-entering the correct time. The channel information is entered next by depressing the CH key and entering the channel on the numerical keys. When the ch key is depressed, the on-screen display converts to six digits for simultaneous display of the programmed time and channel. If the time/channel combination entered is correct, it is transferred to memory by depressing the E/R key. The on-screen display is blanked except for the two colons to verify storage of the data in memory. Depressing the E / R key a second time displays the stored time/ channel combination.
To program another time/channel combination, the mc key is depressed. This steps the memory through the 16 locations. The on-screen display shows the data in each location as the memory is stepped, When an appropriate memory location is found (one not containing a desired time/channel combination), a new time/channel combination can be programmed as previously described.

The data in a memory location can be changed by accessing that location using the mC key and entering a new time/ channel combination. If no new data is to be entered, that memory location can be cleared by depressing the CL key. The on-screen display is blanked and the TV set will not respond to this memory location.
The memory is divided into two sections, each has a capacity of storing 16 time/channel combinations. A frontpanel rocker switch is used to select between the two memory banks. When all the desired time/channel combinations have been programmed, the PC mode key is depressed. This turns control of the TV set over to the programmer and channel changes are made according to the programmed data. A front-panel PC indicator light verifies that the TV set is under the control of the programmer.
It is not necessary to program the time/channel combinations in sequential order. When the PC mode key is depressed, a memory-access cycle is initiated. All 16 memory locations are scanned and a channel change corresponding to the programmed time that is previous to and closest to the actual time is made. The memory is again accessed for the channel corresponding

TABLE I-PROGRAMMING SEQUENCE for automatic channel selection feature.

PRESS KEY	ON-SCREEN DISPLAY	REMARKS
MA	Shows last instruction executed.	MA lamp lights.
MC	Changes as memory is cycled.	Will continue to cycle memory until a location is reached which is empty or which contains an instruction that is no longer needed.
CL	All six digits blank.	This operation is optional.
T	00:00:	Time shift register is now cleared.
7	00:07:	
0	00:70:	
0	07:00:	This time is now in the time shift register.
CH	07:00:00	Channel shift register is now cleared.
1	07:00:01	
6	07:00:16	Channel 16 is now in the channel shift register.
E/R		Instruction is entered into memory.
E/R	07:00:16	Instruction is read out of the memory. This operation is optional.
MC	Changes as memory is cycled.	Cycles memory until a suitable location is found.
CL	: :	This operation is optional.
T	00:00:	
8	00:08:	
1	00:81:	
4	08:14:	
CH	08:14:00	
9	08:14:09	
9	08:14:99	
E/R	: :	
E/R	08:14:99	
MC	Changes as memory is cycled.	
CL	: :	This operation is optional.
CH	: :00	The channel may be entered before the time, if desired.
1	: 01	
1	: 11	
T	00:00:11	
1	00:01:11	
2	00:12:11	
3	01:23:11	
0	12:30:11	
E/R	: :	
E/R	12:30:11	This operation is optional.
PC	Shows actual time from Clock Accessory	Channel changes are made according to stored instructions. PC lamp lights.

to the next latest time. When the actual time equals the programmed time, the channel change occurs.

The TV set can be returned to manual operation by depressing the mo mode key. A front-panel indicator light verifies that the TV is in the manual mode.

The channels can now be selected by using the numerical keys or the up- and down-scan keys. The on-screen display shows the selected channel and time. The TV set can also be returned to manual operation automatically by the programmer. This is accomplished by

FIG. 2-PROGRAMMER changes channels automatically in accordance with programmed time/ channel combination stored in random access memory.

HEATHKIT MODEL GR-2001 color TV set.
programming in the desired time and the code " 99 " as the channel. The TV set will return to manual operation at the programmed time and remain in the manual mode until a programmed channel change occurs. Table I lists a typical programming sequence.

How it works

Figure 2 shows a block diagram of the programmer. To program a time/
channel combination. the programmer is set to the memory access mode by depressing the ma key. The programmed time in the form of BCD data from the numerical keyboard is temporarily stored in the hours and minutes shift-registers after the T key is depressed. Channel information is stored in the channel shift-register after the CH key is depressed. The outputs of the shift registers are connected to a
multiplexer circuit for on-screen display of the programmed time and channel.

If the programmed time/channel combination is correct, it is stored in the random-access memory by depressing the E/R key. The memory location is determined by the front-panel selector switch and the 4 -bit number in the instruction address counter. Any memory location can be selected by depressing the MC key, which increments the instruction address counter. Depressing the E / R key a second time retrieves the contents of the memory location and stares it in the shift registers. The data is now displayed on the TV screen and can either be updated by programming a new time/channel combination or cleared by depressing the CL key. The CL key clears both the shift registers and the memory location.

Automatic channel selection takes place when the PC mode switch is depressed. The BCD data representing the actual time is demultiplexed and each time a change in the minute digit is detected, the data is stored in the timedown counter. Also, the time/channel combination in the first memory location is transferred to the respective shift registers. The actual time and the programmed time are compared by the 16 -bit comparator. If the actual time and programmed time are equal, the continued on page 93

The better the training島易 the better you'll

IN-CIRCUIT TRANSISTOR TESTER

(Simulated TV Reception)

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath GR-2001 computerized color TV ($25^{\prime \prime}$ diagonal) with varactor diode tuning and digital read-out channel selection; (optional programming capability and digital clock avail.).

Also pictured above are other units $-5^{\prime \prime}$ solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL Ficiza SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Sludy Schools 4000 So. Figueroa St. Los Angeles, Calif. 90037

Radio-Electronics Tests Nikko

TRM-750 Integrated Amplifier

LEN FELDMAN

CIRCLE 99 ON FREE INFORMATION CARD

CONTRIBUTING HI-FI EDITOR

THE NIKKO MODEL TRM-7SO INTEGRATED AMplifier. shown in Fig. 1, is a medium powered combination preamplifier. control center and power amplifier that could well serve as the central electronic component in a moderately priced high-fidelity system. Its front panel simplicity belies the fact that the unit has a great deal of control flexibility. Starting at the upper left. a rotary switch selects main or remote speakers and includes an off position for headphone-only listening. A series of four pushbuttons follow. including HIOH and i.ow-cut filter switches. a mono/srereo switch and an audio muring switch that reduces output levels by a fixed 20 dB for listening interruptions such as phone or doorbell answering without having to alter preferred seltings of the huge step-type volume control just to the right of it. Notations around the perimeter of this knob indicate dB's of attenuation. relative to the maximum clockwise setting.
A pair of three-position lever-type switches. located to the right of the volume control, handle selection of the two available tape monitor circuits and tape dubbing from either of two connected tape decks to the other. This dual-switch arrangement for tape monitoring and tape dubbing is by far the easiest for a user to understand. In our opinion. this arrangement is superior to those multi-position rotary switches that are sometimes used for these functions and can be quite confusing. A program selector switch with settings for two phono and auxiliary inputs plus a tuner input is located at the upper right of the panel. Controls along the panel's lower section include a toggle switch for power on/orf, bass and rreble rotary controls. a loudness switch. rotary balance control and a mixing-Level control that adds selectable amounts of microphone signal to other program sources. The microphone jack associated with this control is located at the

lower-right corner of the panel, while the usual Phont jack is over at the left. near the powt:R switch.

The rear panel of the TRM-750 (see Fig. 2) contains the appropriate input jacks for PHONO. TUNER. Al'X and TAPE. corresponding sets of tape-out jacks (as well as paralleled DIN sockets), a ground (oNi)) terminal. three convenience AC outlets (two switched. one unswitched) and conventional knurl-screw terminals for speaker wire connections. In addition. there are preamplifier-output and main-amplifier input jacks that are interconnected by stiff-wire jumpers which can be removed when separate use of the two major portions of the unit is desired. Instead of a fuseholder. there is a tiny circuit-breaker reset button to restore amplifier operation in the event of an overload condition.
Figure 3 shows the variety of components (including two turntable systems) that may be interconnected with the TRM-750 amplifier. While no schematic diagran of this amplifier was supplied with the owner"s manual. some idea of layout and internal construction may he obtained by referring to the photo in Fig. 4. Since readers may mistakenly conclude that the speaker outputs are

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Rated Power Output: 45-watts per channel into 8-0hm loads. Power Bandwidth: 20 Hz to 20 kHz . Rated Harmonic Distortion: 0.15%; less than 0.1% at 1 -watt output level. Rated IM Distortion: Less than 0.2%; less than 0.1% at 1 -watt output level Damping Factor: 50 at 1 kHz into 8 -ohm load. Input Sensitivity: Phono 1 \& 2, 2.5 mV Aux, Tuner and Tape, 180 mV ; Mike, 2.5 mV ; Main Amplifier, 1.3 volts. S / N Ratio: Phono, 72 dB (IHF A-weighted); Aux, Tuner and Tape, 95 dB (IHF A-weighted). Bass Control Range: $\pm 12 \mathrm{~dB}$ at 70 Hz . Treble Control Range: $\pm 10 \mathrm{~dB}$ at 10 kHz . Filter Response: low, -8 dB at 70 Hz ; high, -7 dB at 10 kHz . Audio Muting: -20 dB Maximum Power Consumption: 240 watts. Dimensions: $15-3 / 4 \mathrm{~W} \times 5-5 / 8 \mathrm{H} \times$ $12-3 / 16$-inches D. Net Weight: 23.1 Ibs. Suggested Retail Price: $\$ 249.95$.
capacitively coupled (since only one large filter-capacitor can is visible in the photo). we should clarify that the single capacitor-can actually houses two separate capacitors. each of which filters one polarity of the dualpolarity output supply required for direct speaker coupling at the output stages.

Most of the circuit components are mounted on a single major circuit board that is screened with component designations for ease of identification and servicing. What appears to be an ample heat-sink structure is vertically mounted and separated from the main circuit board. Wiring is carefully harnessed and dressed. and low-level preamplifier circuitry is as far removed from the power-supply transformer area as is physically possible within the dimensional limitations of the amplifier.

Laboratory measurements

The amplifier was able to produce 60 watts of continuous sinewave power per channel. driving 8 -ohm loads with a 1 kHz test signal. Considering the fact that the FTC rating for this product is only 45 watts-per-channel. that constitutes a very considerable extra margin of power. Even at the frequency extremes of 20 Hz and 20 kHz . power output was 55 watts for the rated harmonic distortion figure of 0.15%. These and other measured results are summarized in Table I. Actual frequency limits at which rated power could be attained at rated distortion were 11 Hz and 47 kHz -far beyond the 20 Hz to 20 kHz power bandwidth specilied hy Nikko in their owner's manual.
RIAA phono equalization was within I dB of the specified curve from 30 Hz to 15 kHz . Maximum voltage to the phono input hefore overload distortion was observed measured an adequate 150 mV , while the signal-to-

noise rattio was 71 dB referenced to an input sensitivity of 2.5 m V . Using an A -weighting filter for the signal-to-noise measurement. we obtained a better reading of 77 dB .

Tone-control range of the bass and rreble controls is shown in the scope photo of Fig. 5 in which a frequency plot was made from 20 Hz to 20 kHz for flat and extreme settings (boost and cut) of the two tone controls.

High- and low-cut filters are of the 6 dB -peroctave type and. while they provide very little noise reduction at the frequency extremes. their -3 dB points are sufficiently removed from critical center frequencies so that their use does not materially affect much of the musical program content (see Fig. 6).

In measuring the action of the coudness control (see Fig. 7). we were impressed with the fact that the $d B$ notations around the volump control were quite accurate, so that we had only to set the control for $0 \mathrm{~dB} .-10$ dB. -20 dB . etc.. to ohtain the traces shown in Fig. 7. which are 10 dB apart. Signiticant bass- and treble-loudness compensation does not begin until the volust control is some $20-\mathrm{dB}$ below its maximum setting. and then remains fairly constant at all lower wolume

TABLE I
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Nikko
Model: TRM-750

AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY

RMS power/channel, 8 -ohms, 1 kHz (watts)
RMS power/channel, 8 -ohms, 20 Hz (watts)
RMS power/channel, 8 -ohms, 20 kHz (watts) Frequency limits for rated output ($\mathrm{Hz}-\mathrm{kHz}$)
DISTORTION MEASUREMENTS
Harmonic distortion at rated output, $1 \mathrm{kHz}(\%)$
intermodulation distortion, rated output (\%) Harmonic distortion at 1 -watt output, 1 kHz (\%)
intermodulation distortion at 1 -watt output (\%)
DAMPING FACTOR, AT 8 OHMS
PHONO PREAMPLIFIER MEASUREMENTS
Frequency response (RIAA $\pm \ldots$ dB)
Maximum input before overload (mV)
Hum/noise referred to full output (dB) (at rated input sensitivity)
HIGH LEVEL INPUT MEASUREMENTS
Frequency response $(\mathrm{Hz}-\mathrm{kHz}, \pm \ldots \mathrm{dB})$ Hum/noise referred to full output (dB) Residual hum/noise (min. volume) (dB)
TONAL COMPENSATION MEASUREMENTS
Action of bass and treble controls
Action of low frequency filter(s)
Action of high frequency filter(s)
COMPONENT MATCHING MEASUREMENTS
Input sensitivity, phono $1 /$ phono $2(\mathrm{mV})$
input sensitivity, auxiliary input(s) (mV)
input sensitivity, tape input(s) (mV)
Output level, tape output(s) (mV)
Output level, headphone jack(s) (V or mW)
EVALUATION OF CONTROLS,
CONSTRUCTION AND DESIGN
Adequacy of program source and monitor switching
Adequacy of input facilities
Arrangement of controls (panel layout)
Action of controls and switches
Design and construction
Ease of servicing

R-E	R-E
Measurement	Evaluation
60	Excellent
55	Excellent
56	Excellent
11-47	Superb
0.022	Excellent
0.055	Excellent
0.043	Very good
0.028	Excellent
53	Excellent
1.0	Good
150.0	Very good
71	Very good
7-40, 3	Excellent
80	Very good
90	Very good
See Fig. 5	Very good
See Fig. 6	Poor
See Fig. 6	Poor

OVERALL AMPLIFIER PERFORMANCE RATING
2.5/2.5

200
200
200
$0.467 / 8$ ohms

TABLE II

RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Nikko
Model: TRM-750

OVERALL PRODUCT ANALYSIS

Retail price	$\$ 249.95$
Price category	Low
Price/performance ratio	Excellent
Styling and appearance	Very good
Sound quality	Excellent
Mechanical performance	Very Good

Comments: The Nikko model TRM-750 belongs to that special group of separate components which disproves the theory that it is necessary to expend an enormous amount of cash to put together a system consisting of a separate funer and amplifier. If you were to add a tuner in the $\$ 150.00$ to $\$ 200.00$ price range to this amplifier, you would come up with a system having a suggested retail price of between $\$ 400.00$ and $\$ 450.00$ - not very much more than you might expect to pay for an all-in-one receiver in the same power category. Nor are you likely to find such a receiver with all the control features and flexibility (microphone input-mixing, tape dubbing and monitoring in either direction and dual phono inputs), since receiver manufacturers tend to down-grade control features as power ratings are lowered. We were impressed with the quality of construction of this unit, and with its very conservatively rated specifications, all of which were met or exceeded. Ability to separate the preamplifier and main-amplifier sections makes this an ideal unit for driving speakers in a multi-amplifier (electronic crossover) system. In such systems, the included mainamplifier section would be perfect for driving midrange or tweeter elements, where a larger power amplifier is used for woofer powering. Used as the sole amplifier in a stereo system, driving medium efficiency speakers, the TRM-750 provided clean tight sound with no trace of clipping distortion or overload even at $110-\mathrm{dB}$ soundpressure levels in our $20 \times 14-\mathrm{ft}$ listening room. On the test bench, after having been subjected to high-powered tests and FTC preconditioning tests, thermal conditions were stable and there was no overheating of the output circuitry or power transformer. All in all, a neatly executed amplifier design.
sellings. Additional flexibility is provided by the -20 dB miting switch. If a user finds that the program-source signals are so great
that too much loudness compensation is present. he or she can turn the muting switch on. This will require a higher setting of the

master volume control. but less loudness compensation will result. It's somewhat like having two input sensitivities for all the program sources connected to the amplifiereach 20-dB apart.

Summary and listening tests

Comments regarding the overall performance of the Nikko model TR.M- 750 will be found in Table II along with our brief overall product analysis and evaluation. In our view, the Nikko model TRM-750 offers good value for its price and includes control features equal to those found on many higherpowered integrated amplifiers selling for considerably more money. Especially for the audiophile who has no desire to use FM as a program source (at least initially), the TRM750 offers a good alternative to an integrated receiver of similar power rating at considerably less cost.

R-E

Heath AP-1615 Preamplifier

WHILE MORE AND MORE MANUFACTURERS seem intent upon designing and manufacturing so-called "high end" separate components at escalating prices. the Heath Company of Benton Harbor. Michigan, goes about its merry way introducing product after product that offer amazingly good performance quality at a price that amazes even the experts. The latest of these to pass through our test laboratory is the simple looking. straightforward preamplifier shown in Fig. 1. At first glance, you might guess that some knobs and switches are missing. The fact is that the model AP-1615, like many other new control centers, is devoid of frills and even lacks bass and treble controls. A growing group of audio buffs believes that in a properly matched component

CIRCLE 50 ON FREE INFORMATION CARD
system there should be no need for bass and treble controls at all and. as Heath suggests in their advertising copy. if you do require tonal compensation you can do a much better job of tonal tailoring with their matching model AD-1305 five-band. two-channel graphic equalizer (tested for Radio-Electronics in the December 1976 issue) or with any other of the many equalizers which have been appearing on the market lately.

[^3]The major rotary controls seen at the right of the front panel of the model A P1615 are the baLance control. the SF.lector switch (with provision for two sets of PHONO inputs. TUNER. AUX and tape inputs) and the master volume control. A series of six two-position toggle switches at the left of the panel handle HIGH- and low-cut FILTERS. mono $L+R$ reproduction. tape dubbing (accompanied by front panel tape-out and tape-in jacks). tape monitoring and output cut-off or defeat. A phone jack is included below the output defeat switch that permits headphone listening while input to the power amplifier and speakers is shut off. The POWER on-off pushbutton and the power indicator light are located at the extreme left of the panel.

The rear panel of this preamplifier (see Fig. 2) is equipped with two unswitched convenience $A C$ receptacles. one switched receptacle, a line fuse, a chassis-ground terminal and the necessary input and output jacks associated with the selector and tape-monitoring positions on the front panel. Since only one set of tape-monitor jacks is

provided, if a graphic equalizer is used. it must be connected between the main outputs of the preamplifier and the inputs to an associated power amplifier.

Figure 3 shows the internal layout of the AP-1516. All power-supply parts. including the power transformer, are well shielded in a separate housing seen

at the upper right corner of the chassis. Virtually all other electrical components are mounted on a large printed-circuit board that occupies the entire right section of the chassis. The two rotary potentiometers associated with the balance and master volume controls are mounted directly to the PC board while the selector switch has its wafers positioned so that they are closest to the circuit points on the main PC board with which they are involved electrically. Visible just behind the balance control is a relay unit for turn-on delay of the audio signals after the power switch is depressed to prevent thumps from reaching (and possibly damaging) loudspeakers.

We were supplied with a wired unit for test purposes. but the model A P-1615 is available only in kit form to the general public. While our sample unit was not accompanied by Heath's construction and owner's manual. we can attest to the fact that layout of the unit makes assembly and wiring extremely simple. Components used are of the highest grade and a minimum of point-to-point wiring is involved in the construction of this product. We would estimate that an experienced kit-builder might be able to complete the construction of this control center in two evenings or so, while the novice might require a third session.

Laboratory measurements

Table I summarizes measured results obtained with the model AP-1615. Although phono overload capability was better than claimed, with readings of 120 mV (as against 100 mV claimed). it was not considered to be outstanding compared with some of the overload figures we have been obtaining lately on the current crop of preamplifiers and amplifiers. Still. it is unlikely that continued on page 95

TABLE I
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Heath
Model: AP-1615

PREAMPLIFIER PERFORMANCE MEASUREMENTS

RATED OUTPUT LEVEL REFERENCE: 1.5 volts	R-E	R-E
DISTORTION MEASUREMENTS	Measurements	Evaluation
Rated output, 20 Hz (\%)	0.008	Excellent
Rated output, 1 kHz (\%)	0.006	Excellent
Rated output, 20 kHz (\%)	0.015	Very good
PHONO PREAMPLIFIER MEASUREMENTS		
Frequency response (RIAA \pm _ dB)	0.2	Excellent
Maximum input before overload (mV)	120	Good
Hum/noise referred to full output (dB) (at rated input sensitivity)	70	Very good
HIGH LEVEL INPUT MEASUREMENTS		
Frequency response ($\mathrm{Hz-kHz} \pm \pm \ldots \mathrm{dB}$)	20-20, 0.2	Excellent
Hum/noise referred to full output (dB)	85	Very good
Residual hum/noise (minimum volume) (dB)	87	Good
TONAL COMPENSATION MEASUREMENTS		
Action of low frequency filter(s)	See Fig. 5	Excellent
Action of high frequency filter(s)	See Fig. 5	Very good
COMPONENT MATCHING MEASUREMENTS		
Input sensitivity, phono $1(\mathrm{mV})$	2.0	
Input sensitivity, auxiliary input(s) (mV)	185	
Input sensitivity, tape input(s) (mV)	185	
Output level, tape output(s) (mV)	185	
EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN		
Adequacy of program source and monitor switching		
Adequacy of input facilities		Good Very Good
Arrangement of controls (panel layout)		Very Good
Action of controls and switches		Very good
Design and construction		Excellent
Ease of servicing		Exceriont

OVERALL PREAMPLIFIER PERFORMANCE RATING
Very good

TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufaclurer: Heath
Model: AP-1615

OVERALL PRODUCT ANALYSIS

Retail price
Price category
Price/performance ratio
Styling and appearance
Sound quality
Mechanical performance
$\$ 129.95$
Low
Very Good
Excellent
Excellent
Very good

Comments: Whenever a new trend becomes apparent in the world of audio, the Heath Company seems able to come up with a product to further that trend along almost as quickly as anyone else, and that's no small feat when one considers that besides coming up with a new design, the company has to translate that design into a unit that can be successfully built even by a novice kit-builder. There have been several examples of "straight-line" preamplifier-control units recently, in which all frills are eliminated and emphasis is placed upon pure performance and ultra-low distortion. The model AP-1615 preamplifeir is just such a unit and, as such, it will appeal to the purists among audiophiles who would rather not have built-in tone controls and a profusion of other knobs or controls. Compared with other examples of such preamplifiers, the pricing of the model AP-1615 is extremely attractive, even when one considers that it is supplied only in kit form. As has been our experience with Heath products in the past, all specifications were either met or exceeded by some margin. As for the sound reproduced by the model AP-1615, we could detect no audible distortion under all listening conditions, nor was there any coloration caused by abberations in the frequency response, which is extremely wideband. As usual, construction is straightforward and should pose no problems for kit-builders. The front-panel dubbing jacks will be appreciated by tape recording enthusiasts who are in the habit of copying tapes from a friend's machine. Such extras as are provided are not apparent from the front panel but manifest themselves in the actual performance of the preamplifier unit itself (e.g., the delayed turn on which prevents "pops" and "thumps" from reaching your speakers before supplies have stabilized). The Heath model AP-1615 certainly provides the means whereby serious audio enthusiasts can create a true system of separates with barely a dent in their pocketbooks.

BuILD
 Amplifier For Hands-Oif Telephone

Simple add-on accessory allows you to converse Acoustic coupling eliminates direct

JULES GILDER

no ioubt you've had occasions when you placed a call to, or received a call from, someone you haven't spoken to for a long time, and other members of the family want to speak also. Or you were busy doing something and got annoyed because you had to drop everything and talk to someone on the phone for half an hour.

A speaker phone telephone amplifier can be useful in both these situations. No longer need members of your family argue to talk first on the phone. Now everyone can sit around the telephone and talk together with whomever is on the other end. The speaker phone will also allow you to carry on a conversation while you're still busy moving furniture or painting the walls.

And like most of the other projects in this series of articles. the speaker phone requires no direct electrical connection to the telephone line. All coupling is made either by acoustic or magnetic means.

How it works

The heart of the speaker phone is a three-transistor amplifier that takes the millivolt level signals produced by the telephone pickup coil and amplifies them to room-filling volume. The schematic is shown in Fig. 1. The power supply is shown in Fig. 2.
Just about any telephone pickup coil can be used for the speaker phone, but one of the newer ring-shaped devices is recommended because this particular coil gives a stronger signal. The coil is designed so that it will fit snugly over the receiver portion of the telephone handset, where it will pick up the audio signals to be amplified by induction.

The induced signals are applied to the volume control and then to the voltage amplifier made up of transistors Q1 and Q2. The amplified signal is applied to Q3 where the current, and hence the total power level of the signal. is increased. Power transistor Q3 is capable of handling large currents. The need for an output transformer is eliminated by Q 3 because its large currenthandling capability means that it can interface directly with a speaker.

So far we have talked about picking up a signal and amplifying it so that everyone in the room can hear it. That constitutes only half of the speaker phone. The other half of the speaker phone requires that people be able to talk into the phone from a remote location. This can be done in two ways. The first is by using another amplifier to pick up the sound generated in a room via a microphone. The second is to acoustically design the speaker phone so that sound focused in the direction of the device will be concentrated and fed into the mouthpiece of the telephone.

The first approach is most desirable but leads to many problems, the biggest of which is feedback oscillation. This of course could be eliminated by using voice-controlled switches, but that would mean conversations would have to be carried on in an artificial manner where one person would have to wait until the other stopped talking before he could be heard.
Simultaneous conversation with an amplified input is possible, but it requires complex circuit design and would considerably raise the cost and difficulty of construction.

To keep things simple, we'll do what most of the manufacturers of speaker phones do, and design the unit so that sound focused in the direction of the speaker phone is concentrated and directed towards the microphone of the telephone. This is not as difficult as it may sound. It is simple and involves constructing the enclosure so sound is deflected upwards.

FIG. 1-THREE-STAGE AMPLIFIER raises the level of signals picked up by an induction coil-not a microphone, the mike symbol is an error-to room-filing level

Construction

The enclosure for the speaker phone is very important, for it is more than a case to hold the electronic circuit. It is a functional part of the design of the device.

To start with, build a thin, plywood box 10 inches wide, 4 inches deep, and $21 / 2$ inches high. Cut two holes in the top $31 / 4$ inches in diameter and made on center lines that are located 2 inches from each end.

These holes will be used to allow the handset to drop into the speaker phone and properly position it. With the box assembled and these two holes cut, mark one hole, either one, "microphone" and the other one "receiver." This can be done lightly in pencil and is only necessary to make instructions easier. On the front vertical wall of the box on the microphone side, draw a rectangle that measures $314^{\prime \prime} \times 2^{\prime \prime}$ and place the rectangle so that it is $1 / 4$ inch from each of the three edges. Once marked, use a saber saw to cut out that rectangle.

This is the opening that will be used to direct sound into the microphone of the telephone. If you want, you can put a piece of grille cloth over the opening to improve its appearance, but make sure it is thin so that it will not severely attenuate the voice signals entering.

Next, $31 / 2$ inches from the inside of the microphone end of the box, place a barrier made from a piece of wood $4^{\prime \prime} \times 2 \frac{1}{2^{\prime \prime}}$. This will prevent sound entering the microphone opening from being dispersed throughout the box. To further concentrate the sound, take a thin piece of flexible plastic and cut it into a rectangle $314^{\prime \prime} \times 5^{\prime \prime}$. This is the deflecting plate and should be inserted in the microphone compartment on a diagonal whose bottom is in the front of the box (where the rectangular opening is) and whose top is at the back of the

FIG. 2-OPTIONAL POWER SUPPLY FOR TELEPHONE AMPLIFIER. Output voltage ta determined by Zener diode. Power ta taken from 117 VAC line.
box. The deflecting plate will need to be bent to be inserted. Bend it so the curvature of the plate is toward the bottom of the box.

Now, any sound entering the microphone compartment will be deflected upward toward the mouthpiece of the telephone. If done properly, you'll be surprised at just how effective this acoustic coupling can really be.

Proceed to the receiver end of the box. Here work is less critical. Mount a piece of thin plywood, cut into a $31 / 4$-inch square, directly underneath the receiver hole so that when the receiver is placed in it, the surface of the wood is parallel to the receiver of the handset. The square can be held in position by fastening it to spacers, dowels, or wooden blocks. Next, mount the pickup coil on the top of the wooden syuare so that when the receiver is placed in the box. it will come into contact with the coil.

That's the hard part. The easy part is to fabricate the printed circuit-or use perfboard if you wish-and construct the three-transistor amplifier. Mount the volume control at a convenient spot on the front panel along with an on/off switch. Mount the circuit board, on spacers, at another convenient location. At a third convenient location mount a battery holder for the six penlight batteries.

The output of the amplifier should be fed to a miniature jack located on the side of the case. The speaker is in a little enclosure of its own and connected to the amplifier via a shielded cable and a miniature plug.

Installation and operation

To install the speaker phone, it is simply necessary to place the handset of the telephone into the device, making sure that the microphone and receiver portions are inserted into the proper holes. Turn the unit on. You should immediately hear the dial tone coning through the speaker. If you don't, check the volume control and the coupling between the induction coil and the receiver.

Phone a friend and talk to him using the speaker phone. Try standing at various distances and at various angles from the microphone opening. Ask him to tell you which positions are best. R-E

Advanced Electronics

Be the "New

 Professional"in electronics CREI trains you at home
for one of the most important
career levels in electronics-
plus offers you special
arrangements for engineering

Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however, a third and very important level. It is that of the engineering technician or practical engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.

The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.
The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.
The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.

CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-

Career Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80 , fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

Gl Bill
CREI prograns are approved for training of veterans and servicemen under the G.I. Bill.

XR-2206 IC Function Generator Circuits

 Part II. The XR-2206, IC is a versatile function-generator with
 many applications. Here are some of the more interesting circuits you can try.

R. M. MARSTON

LAST MONTH. WE LOOKED AT THE PERFORM ance characteristics of the XR-2206 IC and its application in sine, triangle and squarewave applications.

This month. we'll look at pulse, ramp AM and FM applications.

Function generators

The circuits shown in Figs. 2 thru 8 can be combined in a variety of ways to make different types of waveform generators. Figure 9, for example, shows how some of the circuits can be combined to make a simple fixed-amplitude function generator that provides sine, triangular and square waveforms. Here, the squarewave output is taken directly from pin 11 of the 1 C , and is produced simultaneously with the sine or triangular waveform at pin 2, which are selected by switch \mathbf{S} I.

Alternatively, Fig. 10 shows how some of the circuits can be put together to help make a low-cost high-performance function generator that covers I Hz to 200 kHz in five switched ranges. Frequencies are selected by range switch SI and FREQUENCY control RI. Each range of SI covers a full decade plus 100% overrange at its upper frequency. The circuit has THD adjustment of the sinewave, and produces a typical distortion of 0.5%.
The sine/triangular output of the IC is taken from pin 2, and all outputs are fed to a simple variable attenuator network via the Q1-Q2-Q3 buffer stage. The sine/triangular output can be centered on precisely zero volts using OFFSET control R8, and R3 sets the maximum sinewave output level, which should be set at 2 volts RMS.

The procedure for initially setting up the circuit when it is first built is as follows. First, set the attenuator controls to give maximum output, set the circuit to the sinewave mode at about 1 kHz and then adjust R8 to give zero offset of the output signal. To do this, connect a $0-2.5$ volt DC meter to the output of the circuit, and then adjust R8 for zero reading. Next, connect a $0-2.5$ volt AC meter to the output of the circuit, and adjust R3 to give a sinewave output of approximately 2 volts RMS. Finally, adjust R4 and R6 to give minimum distortion of the sinewave, as previously described, and then recheck the DC offset and output amplitude. The setting up procedure is then complete and the circuit is ready for use.

Pulse and ramp waveforms

Figure 11 shows the practical connections for using the XR-2206 as a vari-
able-slope ramp generator circuit. Here, the squarewave output (pin-11) is connected to the FSK input ($\operatorname{pin} 9$) of the IC. The circuit action is such that, when pin 11 is high, timing capacitor Cl charges via R I, until a threshold voltage is reached, at which point pins 11 and 9 switch abruptly to the low state. When this happens, the timing capacitor recharges in the reverse direction via R2 until pins II and 9 go high again. The process then repeats. The circuit, therefore, automatically switches between timing resistors on alternate half cycles, and produces a linear ramp output waveform at pin 2. The risetime and falltime are independently controlled by R1 and R2. The operating frequency of the circuit is given as:

$$
f=\frac{2}{C I(R \mid+R 2)}
$$

The circuit shown in Fig. If develops a variable duty-cycle squarewave at pin

FIG. 9-SIMPLE FUNCTION GENERATOR provides sinusoidal, triangular and square waveforms.

FIG. 10 -HIGH-PERFORMANCE FUNCTION GENERATOR has a frequency range of 1 Hz to 200 kHz . The sinewave output has a distortion of 0.5 percent and an amplitude of 5.6 -volts P-P maximum. The triangular waveform has a linearity of 1 percent and a maximum peak-to-peak amplitude of 12 volts. The squarewave output has a risellme of $\mathbf{2 0 0} \mathbf{n s}$, a fallime of $\mathbf{1 0 0} \mathbf{~ n s}$, and a maximum outzut of $\mathbf{1 6}$ volts P-P.

FIG. 11-RAMP GENERATOR provides varlable-slope output slgnal.

FIG. 12-PULSE GENERATOR provides variable duty-cycle output signal and has an output buffer.

II simultaneously with the ramp waveform. The squarewave, however, is of fixed amplitude and is not suitable for directly driving low-impedance external loads. If required, the XR-2206 can be used specifically as a pulse or variable duty-cycle squarewave generator as shown in Fig. 12. Here the SEt-level control is eliminated from the pin-3 terminal of the IC, and the pulse signal at pin 11 is made available to external loads by the Q1-Q2 emitter-follower stage and level control R7.

Alternatively, the circuits shown in Figs. 11 and 12 can be combined to form a practical variable pulse or ramp generator by using the connections shown in Fig. 13. Here, the desired waveform can be selected by SI. the waveform shapes are varied by RI and $R 2$, and the waveform amplitudes are controlled by R8.

The versatility of the Fig. 13 circuit can be increased, if desired, by replacing the existing pulse output stage with the one shown in Fig. 14. This circuit enables either positive, negative or symmetrical output pulses to be selected by S2, a 2 -pole 3 -position switch. Here, load resistor R4 is replaced by a pair of $2.7 \mathrm{~K}, 5 \%$, resistors. With switch S2 in position 1, the pulse output of the circuit is effectively taken from the junction of these two resistors, so the output switches between the fully positive and the half-supply or zero voltage levels. The circuit, therefore, provides positive output pulses. In position 2 of $\$ 2$, the output is effectively taken from pin 11 of the IC and symmetrical output pulses are available. In position 3, the output is again taken from pin 11 of the IC but the top end of R4 is connected to the zero-voltage line. The output switches
between the zero and negative supply voltage, and negative output pulses are available from the circuit.

FSK modulation

When the FSK input terminal of the

XR-2206 IC (pin 9) is open circuit or externally biased above 2 volts with respect to the negative supply voltage. the pin- 7 timing resistor is automatically selected and the circuit operates at a frequency determined by the timing

FIG. 13-PULSE AND RAMP WAVEFORM generater provides variable outpul signals.

FIG. 14-MODIFIED OUTPUT STAGE for circuit shown in Fig. 13 provides either positive, negative or symmetrical output pulses.

FIG. 15-BASIC FSK sinewave generator.
capacitor and the pin-7 timing resistor. When pin 9 is connected to the negative supply voltage or is biased 1 -volt below the negative supply voltage rail, the pin8 timing resistor is automatically selected and the circuit operates at a frequency determined by the timing capacitor and the pin- 8 timing resistor. The XR-2206 IC can thus be frequencyshift keyed (FSK) by simply applying a suitable keying or pulsing signal between pin 9 and the negative supply. Figure 15 shows the practical connections for making a simple FSK modulated sinewave generator or 'warbletone' generator.

If required, the keying signal can be referenced to the ground or zero-volt line by using the 3 -transistor add-on circuit shown in Fig. 16. Here, with the

FIG. 16-FSK MODIFICATION to the circult shown in Fig. 15 references the FSK input to the common or ground line.
keying signal at the zero-volt level, all three transistors are cut off. When this occurs, pin 9 of the IC is effectively open circuit, and the output frequency is controlled by timing resistor R1. When the FSK input keying signal is high, transistors Q1 and Q2 conduct, causing Q3 to saturate. When Q3 saturates, pin 9 shorts to the negative supply and the output frequency is controlled by R2. The FSK facility controls both signals appearing at the pin 2 and pin 11 output terminals.

Amplitude modulation

The output-signal amplitude at pin 2 of the XR-2206 can be modulated by applying a DC bias and a modulating signal to pin 1, as shown in Fig. 17. The internal impedance at pin 1 is approximately 200 K ohms, so this pin should be connected to the negative supply to prevent unwanted pick-up when the AM facility is not in use.

The signal amplitude varies linearly with the applied voltage at pin 1 when this voltage is within 4 volts of the halfsupply value. In split-supply circuits, of course, the half-supply value equals
zero volts. When pin I is at the halfsupply value, the amplitude of the signal at pin 2 is approximately zero. When the pin-1 voltage is increased above the half-supply value. the signal at pin 2 rises in direct proportion. When the pin-1 voltage is reduced below the half-supply value, the pin-2 signal again rises in direct proportion, but the phase of the output signal is reversed. This last-mentioned feature can be used for phase-shift keyed (PSK) and sup-pressed-carrier AM generation.

The pin-1 terminal can also be used to facilitate gate-keying or pulsing of the

FIG. 17-AMPLITUDE MODULATION is accomplished with this add-on circuit.

FIG. 18-FREQUENCY-SWEEP CONNECTION provide a 6:1 trequency range.

FIG. 19-FREQUENCY MODULATION CONnection for the XR-2206.

FIG. 20-CONSTANT-SENSITIVITY FM connection.
output signal at pin 2. This can be achieved by biasing pin 1 at approximately half-supply voltage to give zero output at pin 2, and then imposing the gate or pulse signal on pin 1 to raise the pin 2-signal to the required turn-on amplitude. The total dynamic range of amplitude modulation is approximately 55 dB .

Frequency modulation

The output frequency of the XR-2206 is proportional to the total timing current $\left(\mathrm{I}_{\mathrm{T}}\right)$ drawn from pin 7 or 8 , and is given by:

$$
\mathrm{f}=\frac{320 \times \mathrm{I}_{\mathrm{T}}}{\mathrm{C}} \mathrm{~Hz}
$$

where I_{T} is in milliamperes and C, the timing capacitor, is in microfarads. Pins 7 and 8 are low-impedance terminals and are internally biased at +3 volts with respect to pin 12. The frequency varies linearly with I_{T} over the range of $1 \mu \mathrm{~A}$ to 3 mA . The frequency can be varied either by wiring a variable current-determining resistor between pin 12 and the timing terminal, or by applying a variable voltage in the range 0 to +3 volts between pin 12 and the timing terminal using a current-limiting resistor, or by a combination of these two techniques.

Figure 18 shows the basic connections of a simple frequency-sweep circuit with a 6:1 frequency range. Here, a sawtooth frequency-sweep signal that has a peak amplitude of 2.5 volts is applied between pin- 12 and pin- 7 timing terminal. When the instantaneous peak value of the sawtooth voltage is zero, 3 volts is developed across R1, and the frequency is the same as in the case of a simple resistance-controlled XR-2206 oscilla-
tor. When, on the other hand, the instantaneous peak value of the sawtooth voltage is 2.5 volts, only 0.5 volt is developed across RI, and the R1 current and, therefore, the frequency is reduced to only $1 / 6$ th of that of the case we have just looked at.

Figure 19 shows the essential connections of a simple FM generator. Here, in the absence of a modulating signal, the output frequency is determined by R1 and C 1 , as in the case of a conventional XR-2206 oscillator. When the modulating signal is connected to the FM input, the timing currents and, therefore, the output frequency of the circuit are modulated.
A weakness of the simple circuit shown in Fig. 19 is that, for a given amplitude of the modulating signal, the percentage of frequency deviation varies with the setting of the RI frequency control. This snag is overcome in the constant-sensitivity circuit of Fig. 20. A dual-ganged potentiometer is used with one arm used as the RI frequencydetermining control and the other arm as the R2 FM-SENSitivity control, so that the sensitivity is automatically adjusted to track with the frequency setting.

It should be noted that the frequencysweep and frequency-modulated signals appear at both pins 2 and 11 .

Power supplies

Finally, a few notes on choosing power supplies for the XR-2206 IC. It should be noted that the XR-2206 has built-in voltage regulation circuitry controlling the VCO, and that the amplitude of the output signal at pin 2 is not significantly influenced by variations in circuit supply voltage. Consequently, there is little advantage in using higher supply-voltages than are absolutely ne-

FIG. 21-REGULATED SPLIT-VOLTAGE power aupply provides a $6 \mathrm{~V}-0-6 \mathrm{~V}$ output.

FIG. 22-BATTERY SUPPLY with split $6 \mathrm{~V}-0-6 \mathrm{~V}$ output.
cessary for correct operation. In most cases, single-ended or split 12 -volt supplies are adequate.

Figure 21 shows the practical circuit of a line powered Zener-regulated 12 volt split-supply ($6 \mathrm{~V}-0-6 \mathrm{~V}$) circuit. Figure 22 shows the alternative connections for using a battery power supply. The XR-2206 draws a typical current of about 15 mA when used with these supplies.

CB PROJECT

Preamplifier For Long Distance Reception

Pull in those weak signals with this add-on device for your CB transceiver

george sante

A CB TRANSCEIVER IS A COMBINATION OF A receiver and a transmitter. The transmitter power output is limited to 4 watts, so the only thing you can legally do to improve the transmitted signal is to improve the antenna system.

The receiver portion is a horse of another stripe. Chances are that when you originally shopped for a transceiver.

PARTS LIST
All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1-1200 ohms
R2-5100 ohms
R3-8200 ohms
R4-1500 ohms
R5-100 ohms
R6-560 ohms
R7-27 ohms
R8-270 ohms
R9-150 ohms
R10-1 megohm
R11-1000 ohms
C1, C2, C5, C6-. $001 \mu \mathrm{~F}$ disc
C3-25 $\mu \mathrm{F}, 12$ volt, electrolytic
C4-. 01 disc
C7-100 $\mu \mathrm{F}, 3$ volt, electrolytic
D1, D4-1N4001
D2, D3-1N914
Q1, Q2-2N3563
Q3-2N4123
RY1-DPDT relay, 320 ohm, 12 volt DC
The following parts are avallable
from Guardsman Electronics, Box
215, Brooklyn, NY 11207.
Etched and pre-drilled printed circuit board, $\$ 4.00$ postage prepaid.

Complete parts kit, including PC
board, all components, and case,
\$14.95 postage prepaid.
New York State residents add state and local sales tax as applicable.
you learned that it was in the receive functions that the money-making differences occurred. A straight receiver with only a volume control and squelch costs
a lot less to produce than one with noise limiting, noise blanking, and an RF amplifier. These additional circuits, while they improve the reception con-

FIG. 1-CB RF PREAMPLIFIER connects between antenna and antenna terminal on CB Iranscelver.

siderably. can add appreciably to the cost. However, here's one way that the receiver portion of your transceiver can be upgraded so that the down-in-themud signals come through loud and clear, crisp and healthy. This add-on RF preamplifier makes any receiver really pull in the signals.

The RF preamplifier connects between the antenna and the antenna terminal on the transceiver. It has no switches or controls, so it can be mounted out of the way. The unit is
powered by the 12 -volt electrical system in your car.

Figure 1 shows a schematic diagram of the preamplifier. Circuit operation is as simple as it looks. Transistor Q1 is the preamplifier stage. Emitter-follower Q2 is used for impedance matching purposes. When the transmitter is suitched on, the preamplifier is bypassed so that the output signal is connected directly to the antenna. Diodes D3 and D4, and associated components monitor the signal level from the antenna terminal of

FIG. 2-FOIL PATTERN, shown full-size.

FIG. 3-COMPONENT PLACEMENT diagram. Resistor R8 mounts on foll side of PC board.
the transceiver. When a high-level signal is detected, Q3 is driven into saturation which energizes relay RY1 to bypass the preamplifier.

Construction

Building the preamplifer is easy as all the components are mounted on a PC board. For those who like to roll their own, the foil pattern is shown in Fig. 2. If you prefer, you can purchase a ready-to-use PC board for $\$ 4.00$ (see parts list) and save yourself the work.

Begin the assembly by mounting all of the components to the PC board and soldering them in place, removing excess leads. The component placement diagram is shown in Fig. 3. The predrilled pre-etched PC board is treated with solder resist where solder is not to be used. however, caution must be taken to avoid solder bridges from the foil paths to other paths. A good way to work is to put a component in place, solder the leads carefully, then check to see that no unintended shorts occur and remove all solder splashes. Clip the lead wires close to the board surface, then install the next component.

Now there's been one design change in this unit, and correcting for it is no problem at all. However, it's a change that you should make for better operation.

Resistor R8 should not be connected to its indicated position on the circuit board. Leave it till last, then bend the wire leads at right angles to the resistor body, and connect this resistor on the foil side of the board to ground near the emitter lead of transistor Q3 and the

You've probably seen ad vertisements from other electronics sehools. Maybe you thimk they're all the same. They're not:

CIE is the largent independent home study school in the world that specializes exclusively in electronies.

Meet the Electronies Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one . . . with the specialists... with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was avallable when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows emplovers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're special. ists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it.

Our step-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\circledR}$ Lessons teach you the principles in logical steps.

But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mall it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up . . no slow learners hold you back. If you're a beginner, you start with the basics If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of ClE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day. You find out quickly how well you're doing!

CEE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

Móre than half of CIE's courses prepare you to pass the governmentadministered exam. In continting surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work
to build a carcer. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Nail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17 th S:reet, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

MAIL TODAY:

CB PREAMPLIFIER assembles on a single PC board. Coaxial cable is used to connect the PC board to the antenna input and output jacks.

CIRCUITRY AND COAXIAL CONNECTORS are neatly Installed In a $5 \times$ $11 / 2 \times 11 / 2$-lnch sheet melal case.
nearest terminal of resistor R 7 , as shown in Fig. 3. The correct connection for this resistor is also shown on the schematic.
When you've got the board fully wired, mount the power input terminalstrip and the two coaxial connectors to the chassis. Before putting the board in place, wire the leads to the proper terminals as this will be easier to accomplish before the board is put in place.

Now check the board once again. then set it, component side down, foil side up, on the stand-offs and fix it in place with the two screws. Place the cover in position and fasten it with sheet
metal screws.
To install the unit, connect a short length of coaxial cable from the transceiver to the preamplifier, then connect the transceiver's antenna to the other end. The unit requires a switched source of 12 -volts DC. The best place to pick this up in a mobile rig is to connect the red, or positive lead, to the hot side of the switch on your transceiver's volume control. In this way, the preamplifier will be on only when the transceiver is turned on. The black lead can be connected to any convenient ground.
There are several means for mounting
that are available for consideration. If your transceiver has its antenna connector on one side, a right-angle coaxial connector can be used to connect the preamplifier and support it at the same time, concealing it behind the transceiver. If you prefer, or if this is not available to you, try to locate a couple of sheet metal screws on the back of your transceiver and use these to mount the preamplifier.

Remember too, that you are effectively adding length to your transmission line, and it's a good idea to check the VSWR after installation.

Police to get radios, funding for highway safety program

A new program, National Emergency Aid Radio (NEAR), will make Federal Highway Safety funds available for the purchase of radios for installation in state police base stations, highway patrol cars and other state agency vehicles. Volunteer CB emergency groups are to be included in the program if federal funding is to be made available. However, no funding is to be made to volunteer groups.

Besides the purchase of equipment, existing Highway Safety funds may be applied, under the program, for planning and organizing, training and training material, public information and education, and statistical data gathering and evaluation, including operating costs, expenses and staff.
This new program of the U.S. Department of Transportation has been warmly welcomed by the organized CB'ers. REACT (Radio Emergency Associated Citizens Teams), possibly the largest of the emergency-oriented CB associations with over 1,500 affiliated local volunteer emergency teams, states: "We foresee this cooperation as strengthening the role of local REACT teams."

Since the states will be required to include public service groups in the planning of the program and its implementation, and REACT is a national volunteer organization closely meeting the requirements of the NEAR program, organization spokesmen feel that cooperation between the two will ease and accelerate the process of setting up an efficient system. "The development of State councils of REACT teams in over half the states provides a direct representative input to the state NEAR organization," REACT says.

Microprocessor courses offered by National Semiconductor

Courses in Microprocessor Fundamentals will be given at National Semiconductor's Western Microprocessor Training Center, 1333 Lawrence Expressway, Santa Clara, CA, June 6-9. A course in Advanced Programming will be given May 9-12.
Courses in the application of National's PACE microprocessor will be offered at the Center, June 13-16. SC/MP (Simple, Cost-effective MicroProcessor) application courses will be given May 2-5 and June 20-23. Class hours are 10 am to 5 pm.

The fee for the four-day courses is \$395. Registration information is obtainable from local National Semiconductor sales offices or from National's Western Microprocessor Training Center in Santa Clara, CA, (408) 247-7924.

TV games vs tube damage

A suggestion that some TV games could be harmful to the picture tubes of TV sets was hotly challenged by Gary Blondefield, marketing manager for National Semiconductor's game components, at least insofar as his products are concerned.
National's Adversary game, now in volume production, uses the MM57100 video game circuit and the LM1889 TV modulator circuit. Mr. Blondefield stated that these combine to form a sophisticated computer-like system that provides a consistent video presentation when the television set is changed from the broadcast TV signal to the signal generated by the game. The presentation is so consistent, Mr. Blondefield stated, that none of the controls on the set need to be changed when switching from one signal to the other. "If the set is adjusted to receive a good-quality broadcast signal, the game colors and intensities will also be very good," he said.

1979 WORLD RADIO COMFERENCE How It Will Afiect You

The World Administrative Radio Conference will convene in Geneva in 1979 to discuss possible changes in the allocation of the entire radio spectrum-including the hobby services. Any action taken could directly affect hams, CB'ers and broadcasters.

On September 24. 1979. what may be the most important radio conference ever held is scheduled to begin in Geneva. Switzerland. The World Administrative Radio Conference (WARC-79) will be convened by the International Telecommunication Union (ITU) and will meet for ten weeks to review and revise the provisions of the Radio Regulations dealing with the allocation of frequency bands for the entire radio spectrum. from 10 kHz to 40.000 MHz , and beyond.

The last international conference to deal with the electromagnetic spectrum on so broad a scope took place in 1947. and it is likely that WARC-79 will be the last conference of the iwentieth century with the authority to change frequency allocations so extensively.
During those momentous ten weeks every service using radio waves will come under scrutiny by the conference delegates. who will represent some 150 countries. Although more than two

STANLEY LEINWOLL

years remain before WARC-79. extensive preparations for this vital conference have been under way in many countries. Here in the United States, preparatory work began in late 1975. and will continue into 1979.

It now appears that WARC-79 will make extensive revisions affecting all or most services using the electromagnetic spectrum, including the hobby services, international broadcasting, amateur radio, and possibly Citizens Band (CB) radio. Since the changes involving these services could be significant, the remainder of this article will attempt to assess the nature of possible WARC-79 action, and the impact it could have on these services.

Current allocations

Table ! shows how short-wave frequencies in the 3 to 30 MHz range are allocated under current regulations.

Twelve different services are assigned groups of frequencies in various regions of the short-wave spectrum to permit selection of optimum frequencies for different propagation conditions. (For example, during periods of darkness, lower frequencies are more commonly used than during daylight hours; frequency requirements also change from season to season, as well as over an 11 year sunspot cycle.)

It can be seen from Table I that in the Western Hemisphere a total bandwidth of 2150 kHz is allocated solely to international broadcasting. Radio amateurs have been assigned a bandwidth of 2800 kHz exclusively, and another 500 kHz on a shared basis. Some of the shared bands are allocated to two or more services simultaneously. One notable example of such sharing involves the 7 -$\mathrm{MHz}(41$-meter) band. which is used by broadcasters in Europe, Africa and Asia, and amateurs in North and South America. The 400 kHz used by CB'ers is

| TABLE I-ALLOCATIONS of the high-Irequency spectrum. Radio Regulations, Geneva, 1959. |
| :--- | :--- | :--- |

actually part of the spectrum allocated to the fixed and mobile services, and assigned by the FCC to $C B$ radio.

International broadcasting

Of all the services using the shortwave spectrum, international broadcasting is in the most difficulty at present. Over 80 countries operate more than 1.500 transmitters carrying broadcasts to an estimated quarter of a billion listeners. Currently, more than 22.000 frequency-hours are scheduled daily in the seven bands allocated between 5950 and 26.100 kHz .

The amount of spectrum allocated to broadcasting can handle about half the assignments on the air today. The situation is even worse than that because during prime-time listening hours, the spectrum is even more severely overloaded.

This situation has resulted in very serious interference. This can be seen from Fig. I which is a spectrum usage chart for the $6-\mathrm{MHz}$ band prepared by technical monitors operating at various locations in central Europe. The frequency in 5 kHz increments is shown on the left and time is shown across the top. Broadcasters using frequencies in the 6 MHz band are indicated by the heavy horizontal lines and are identified in accordance with standard abbreviations.

Inspection of the chart indicates that during peak listening hours in the European area. the $6-\mathrm{MHz}$ band is vastly overloaded. Two broadcasters operating simultaneously on some frequency is commonplace. and the broadcasts are spaced only a few kHz apart. All of these broadcasts reach European re-
ceivers, resulting in extensive mutual interference.

Figure 1 is indicative of conditions that exist today throughout much of the world in most of the bands allocated to international short-wave broadcasting. Because the bands are overcrowded. interference levels are intolerably high. and near-chaos exists in many areas of the world. In some parts of the spectrum. there are times when reception comes through as a barrage of meaningless jibberish.

The growth of broadcasting

With the advent of the cold war, many countries recognized that shortwave radio represented the most economical means of reaching great masses of people in most of the world. As the struggle for governmental power increased, even greater emphasis was placed on radio as a means of providing free access to information in totalitarian societies. The Soviet Union, on the other hand. expanded its propaganda efforts and rapidly increased the number of transmitters it had on the air.

As the number of transmitters in use grew and interference levels mushroomed, broadcasters began seeking means of strengthening their services. The most obvious remedy was to use more powerful transmitters and highergain antennas. Fifteen years ago there were approximately twenty $250-\mathrm{kW}$ transmitters in operation. Today there are over three-hundred transmitters with power ranging from 250 to 1000 kW .

In many cases, interference levels were so great that even high power was ineffective, and broadcasters, attempt-
ing to capitalize on whatever good frequencies they had, began to synchronize transmitters. Some broadcasters presently use as many as three transmitters simultaneously on a single frequency, each beamed in a different direction. Such techniques were made possible through the use of high-gain narrowbeam antenna systems developed after World War II.

These techniques did not help, and in desperation, another solution was found by a number of broadcasters-they moved out-of-band. As indicated previously, the services using the shortwave spectrum are allocated discrete bands of frequencies. Table Il shows the bands currently allocated exclusively to international broadcasting.

TABLE II-INTERNATIONAL BROADCASTING frequencies in $\mathbf{k H z}$.

$$
\begin{gathered}
5950-6200 \\
9500-9770 \\
11700-11975 \\
15100-15450 \\
17700-17900 \\
21450-21750 \\
25600-26100 \\
\hline
\end{gathered}
$$

Frequencies outside these bands are not assigned to broadcasting, and any country adhering strictly to the Radio Regulations would not consider use of such frequencies for broadcasting. However, there is a section of the Radio Regulations, Paragraph 115, that allows for the possibility of such use, as follows:
"Administrations of the Members and Associate Members of the Union shall not assign to a station any frequency in derogation of either the Table of Frequency Allocations given in this Chapter or the other provisions of these Regulations, except on the express condition that harmful interference shall not be caused to services carried on by stations operating in accordance with the provisions of the Convention and of these Regulations."
Paragraph 115 gives countries the right to use any frequency in the spectrum for any service, provided it does not cause harmful interference to the service operating in accordance with the regulations.

Fortunately, there has been a sharp reduction in the use of frequencies in the fixed services-that is, point-to-point communication via teletype, facsmile. telephone, data, etc. This has come about because of the advent of satellite communications as well as the expanded use of cable facilities to carry traffic generated by the fixed services. RCA Global Communications, Inc., for example, has shut down virtually all of its domestic short-wave plants and has discontinued its high-frequency operations. So, the combination of decreased

BROAOCAST NETWORKS

B8C	BRIT. BROADCASTINGCORP.	
	ASC CYP MLA	GREAT BRITAIN ASCENSION ISLAND CYPRUS MALAYA
VOA	VOICE OF AMERICA	
	COL MVA MAN mun OKI RHO Kav TAN wof	COLOMBO MONOVIA. liberia MANILA. PHILIPPINES MUNICH OKINAWA RHODESGREECE kAVALLA TANGER WOOFFERTON
RFE	RADIO FREE EUROPE	
	$\begin{aligned} & 818 \\ & \text { HOZ } \\ & \text { LIS } \end{aligned}$	$\begin{aligned} & \text { BIBLIS } \\ & \text { HOLZKIRCHEN } \\ & \text { LISBON } \end{aligned}$
RLN	radio liberation NETWORK	
	$\begin{aligned} & \hline \text { BAR } \\ & \text { LPH } \end{aligned}$	BARCELONA LAMPERTHEIM

COUNTAY SYMBOLS

AFG	AFGHANISTAN
AFS	SOUTH AFRICA
AGL	angola
ALB	albania
ALG	Alger
AND	andorra
ARG	ARGENTINA
ARS	SAUDI ARABIA
ATN	NETHERLANDS ANTILLES
AUS	AUSTRALIA
AUT	AUSTRIA
8	BRAZIL
BEL	BELGIUM
BGD	BANGLADESH
BOL	bolivia
BUL	bulgaria
CAN	CANADA
CBG	KHMER REPUBLIC
CHL	CHILE
CHN	CHINA-NATIONAL
$\mathrm{CHP}^{\text {P }}$	PEOPLE'S REP. OF CHINA
CLM	COLOMBIA
CLN	SRI LANKA
CME	CAMEROON
CNR	CANARY ISLANDS
COG	CONGO REPUBLIC
CTI	IVORY COAST
CTR	costa rica
CuB	cuba
CVA	Vatican state
CYP	CYPRUS
DAH	DAHOMEY
DL	GERMANY.WEST
DM	GERMANY-EAST
DNK	denmark
DOM	DOMINICAN REPUBLIC
E	SPAIN
EGY	EGYPT
EQA	ECUADOR
ETH	ETHIOPIA
F	france
FNL	FINLAND
G	GREAT BRITAIN
GAB	GABON
GHA	GHANA
GRC	greece
GRL	GREENLAND
GTM	gUatemala
GUI	GUINEA
HNG	hungary
HOL	NETHERLANDS
HTI	HAITI
1	italy
IND	INDIA
ins	Indonesia
108	Grenada
IfN	IRAN
IRO	IRAO
ISL	iceland
ISR	ISRAEL
J	Japan
JOR	JORDAN
KOR	KOREA SOUTH
KRE	KOREA NORTH
KWT	KUwAIT
L8N	lebanon
L8R	LIBERIA
Ley	LIEYA
Lux	LUXEMBOURG
MCO	MONACO
MDG	malagasy republic
MEX	MEXICO
MLA	MALAYSIA
MLI	MALI
MLT	malta
MNG	MONGOLIAN PEOPLE'S REPUBLIC
moz	mozambioue
MRC	MOROCCO
NCG	nicaragua
NIG NOR	NIGERIA
NOR NZL	NORWAY
OCE	TAHITI

use of the fixed bands, and Paragraph 115. gave broadcasters entrance into what would have been forbidden territory.

Broadcasters have been quick to fill the spectrum void as other services vacated it. At present. the number of broadcasters moving into bands allocated to other services is increasing rapidly. although many countries such as the Federal Republic of Germany and Portugal. for example, have interpreted the Radio Regulations more rigidly. and have refused to permit operation in bands other than those specifically allocated to broadcasting. At present. the United States operates only inband.

For these countries, in-band interference continues to be severe, and the only hope for improving their services is for a formal expansion of the bands allocated to international broadcasting by WARC-79. What are the prospects for such an expansion? They appear to be good.

The outlook

There appears to be universal acceptance of the fact that the short-wave broadcasting bands are severely congested. and that at the same time point-to-point use of the fixed bands is decreasing. The principal resistance to this concept comes from military representatives. who claim that even though satellite and other modern methods of long-range communication have largely replaced the need for high-frequency circuits, the frequencies are nevertheless required for use in emergency situations. Defending this position will be difficult. Extensive monitoring operations in the fixed bands to determine usage is now under way. It is showing that large portions of these vitally needed bands are either now in use by broadcasters. or lying dormant, unused by anyone. In light of this, many broadcasters have begun to contact. educate, and work for support among other noncommitted countries for expansion of the bands at WARC-79.

It is reasonable to expect that WARC79 will expand the bands by approximately 50%. This will not solve the problem, but it will remedy it. Hopefully, WARC-79 will also provide for the broadcasters to continue to move into the spectrum allocated to the fixed services, as the role of satellites continues to increase in the future. This could be done by continuing Paragraph 115 and by allocating the space immediately adjacent to the broadcast bands to services that are most likely to benefit from expanded availability of satellites and cables.

Table III repeats what is currently allocated, and indicates what is needed to improve the broadcasters situation, as well as a prediction of what is apt to

TABLE III-CURRENT ALLOCATIONS, needed allocations and a prediction of what is to come out of WARC-79.

Present (kHz)
5950-6200
9500-9770
11,700-11,975
15,100-15,450
17,700-17,900
21,450-21,750
25,600-26,100

Needed (kHz)
$5750-6200$
$7300-7700$
$9400-9900$
$11,500-12,000$
$13,600-14,000$
$15,050-15,700$
$17,500-18,000$
$21,450-21,850$
$25,600-26,100$

WARC-79 Projection (kHz)
5750-6200
7100-7500
9400-9800
11,600-12,000
15,050-15,600
17,600-18,000
21,450-21,850
$25,600-26,100$

TABLE IV-AMATEUR RADIO ALLOCATIONS requested by ARRL and current allocations.
Worldwide Allocations Requested by ARRL for WARC-79 (in KHZ)

$3500-4000$	$3500-4000$
$7000-7500$	$7000-7300$
$10,100-10,600$	
$14,000-14,500$	$14,000-14,350$
$18,100-18,600$	
$21,000-21,500$	$21,000-21,450$
$24,000-24,500$	
$28,000-29,700$	$28,000-29,700$

come out of WARC-79 for international broadcasting. The table lists only the bands that are shared, such as 80 and 41 meters. A new broadcasting band in the region between 13,600 and $14,000 \mathrm{kHz}$ is proposed because the spread between the $11-$ and $15-\mathrm{MHz}$ bands is too great to permit smooth operational transition during sunrise and sunset periods.

Amateur radio

Amateur radio has its own severe congestion problems. The number of amateurs now operating in the United States is close to 300,000 , and growing. In the short-wave portion of the spectrum, the amateurs have only five bands ($80,40,20,15$, and 10 meters), and during certain periods interference levels are extremely high. It is obvious that relief would be most welcome.

The American Radio Relay League, the official amateur organization in this country, has requested new allocations at WARC-79. These requests as well as the present amateur allocations in the U.S. are listed in Table IV.

If the allocations requested by the ARRL are approved. the total bandwidth for the amateur service will be over 5 MHz , or approximately 19% of the entire short-wave spectrum. Although this appears high. it must be remembered that the requested space will have to serve the group for the remainder of the 20 th century. Many people believe that as more sophisticated methods of communication become available (including higher capacity satellites). decreasing use of the short-wave spectrum will occur by all services other than broadcasting-ama-
teurs and CB'ers. In light of this. the request for over 5 MHz of spectrum does not appear unreasonable.

Current sentiment appears to be running against the amateurs. This is unfortunate, because the list of accomplishments to the radio art by this group can fill a book. and its contributions include pioneering discoveries. training much needed technical manpower. and untiring and dedicated service to humanity during times of great disasters.
There are two serious problems. however, that the amateurs must overcome to protect their interests. First. the number of amateurs varies significant from country to country. The bulk of the world's amateurs are in only two countries, the United States and Japan. In many countries the number of amateurs is in the tens or hundreds, and many foreigners have called amateur radio an American hobby. Consequent$l y$, considerable anti-amateur sentiment has been developing. particularly among Third-World countries.

The United States. long a staunch supporter of amateur radio. will have only one vote at WARC-79. Although it will have the right to reserve-that is. refuse any part of the new regulations that are unacceptable-its influence will be limited. As a result, amateur radio could be dealt a severe blow if WARC79 sentiment runs against it.
The second problem facing the amateurs is more restricted, dealing with the 41 -meter band. The band is shared. as we have indicated before being allocated to amateur radio in this hemicontinued on page 86

R-E's Service Clinic

Your service shop

How does it rate?

JACK DARR
SERVICE EDITOR

This column is for the service technician's problems-TV, radio, audio or industrial electronics. We answer all questions submitted by service technicians on their letterheads individually, by mail, and the more interesting ones will be printed here.

If you're really stuck, write us. We'll do our best to help you. Don't forget to enclose a stamped, selfaddressed envelope. If return postage is not included we cannot process your question. Write: Service Editor, Radio-Electronics, 200 Park Avenue South, New York, NY 10003
heres a doit.yourself test for find. ing out just how smart you really are (without letting anyone else know, even your wife). It has nothing to do with your competence as an electronics technician: that is taken for granted. The test tells you how efficient you are-how much you get out of each hour in your working day. If you're a one-man-gang, like so many of us, you're the only producer on the force. So, if you want to get the best results, your efficiency rating must be high. Anything that reduces your efficiency reduces your output and your income.

Efficiency involves nothing but good common sense. Like all other successful processes. it was worked out over a period of a good many years by trial and error. In other words, I learned all about this by first doing it wrong and then finding out how to do it right. In many cases. I had to try quite a few wrong ways before I found one that worked much better. As far as I know, I have made all of the possible mistakes. If I left out any, let me know and I'll try them too. This evaluation will work with electronics shops from the one-man shop on up. I can guarantee one thing from several years of experience in finally doing it right: it will work and it will make life easier.

To begin take a close look at the working area-the bench. Are all of the necessary and frequently-used test instruments set up so that you can reach them easily, read them and use them? If the answer is yes, add 10 points. If the answer is no-if you have to get up and move to reach an instrument used often-take off 10 points.

Now how about your most frequently used hand-tools? Are they placed on the bench where you can get them quickly when needed? Yes? Add another 10 points. If you have to move to get them, or dig them up where you dropped them after the last job, deduct 10 points. In the same category, how about the special tools? For one very good example. where's that extra long Spintite wrench you need to get the tuner out of certain TV sets very quickly? There are several of these. If you don't have any of them, take off another 10; if you do, and have them where they can be gotten quickly, add 10 .

How about service data? Check the
bench and the rest of the shop. Are your Sams Photofact folders all over the place? If you find them lying on the bench and the set for which they were pulled has been delivered some time ago, take off 10 points for each one. This applies to factory and all other data. If all data folders are properly filed except those on sets currently being worked on, add 10 .
Still on the bench: Are there any repair parts stored on the bench, where access to them can be blocked by sets being repaired? If so, take off 10 points. If the parts are neatly stored on the side of the shop opposite the bench, where you can get them by just turning around, add 10.

Staying with the parts stock for a while, do you have a full stock (say at least two each) of all stock EIA values of resistors and capacitors filed by size and working voltage, wattage, and so on in cabinets so that you can find the size you need in the least possible time? This applies to resistors and capacitors, but could be used for tubes and transistors as well. If you do, add 10 points. If your stock is incomplete, so that you have to stop work and run all over town to find a $0.0039 \mu \mathrm{~F}$ capacitor, take off 25 points. (That'll teach you to keep up a good working stock.)
Now back to the bench itself. If this is at least 20 -feet long, how many sets (radio or TV, etc.) are on it at the present? If the bench is at least 20 -feet long, and it is set up so that all the test equipment used for TV is at one workposition, and the test equipment used for radio, audio, etc., is at another, add 25 points. Now comes a stinger.

How many of the sets on the bench are being worked on? If there are only two, add another 25 points. If there are $a n y$ sets on the working surface that are waiting for parts, take off 50 points. Check to see how long each one has been there; take off 10 points for each dav. All units waiting for parts should be taken out of the work area, plainly tagged, and stored in a special place. While you're at it, check the tags. If all sets in the shop have plainly written tags, with all the necessary information, add 25 points. If there are any sets without tags of any kind, take off 25 for each one.

Now let's check the overall layout of

MATHEMATICS
 ELECTRONICS
 ENGINEERING MATHEMATICS ADVANCED MATHEMATICS

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men. from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

 P.O. BOX 1189PANAMA CITY, FLA 32401
CIRCLE 34 ON FREE INFORMATION CARD

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Nieps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4$ " long. Kleps 20. Same, but $7^{\prime \prime}$ long.

> ong. exible. Kleps 30 . Completely flexible. Forked-tongue grippe cepts banana plug or bare lead. $6^{\prime \prime}$ long.
1.39
1.49
$\$ 1.79$ Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4$ " long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. 41/2" long. phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long. $\$.89$ All in red or black - specify. (Add 50¢ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components. A vailable through your local distributor, or write to:

the shop. If you have a work area that includes the bench, parts and servicedata storage: plus two storage areas (one for incoming sets and the other for finished jobs waiting for delivery) and a smaller area for sets awaiting parts, add 100 points.

Check the "in-shop mobility" of the work. If each set is on a wheeled cart of the same height as the bench so that one man can move it easily from storage area to work area, add another 50 points. If sets are stacked on top of each other, or chassis laid out on the floor, take off 25 points. (That should be a -50 pointer, but I'm beginning to feel sorry for you.)

One more little but handy one. If each set being worked on or awaiting parts has all of the knobs, bolts, loose parts and defective parts removed and neatly stored in a small box with the set. add 20 points. If parts are scattered on the bench, take off 20 ; and if parts are on the floor, take off 30 .

Finally, check the record-keeping system. If your shop tags are designed so that you can get all of the data you need from them instantly, without a lot of scratch-paper bits and pieces, add another 50 points. Finished jobs awaiting pickup or delivery should have the job ticket filled out with the price. labor done, parts replaced and everything else pertaining to that job.

SUPER SIGNAL SOURCE!

${ }^{5} 55$ кit ${ }^{\$} 75$
 assembled
 . 52.20 om

 FOR: Designers, Service Techs, anyone working with electronics! FEATURES: 1 Hz to 100 KHz in 5 ranges, at constant amplitude - Sine and triangle adjustable to 20 vp -p into 600 ohms - Sine distortion is $.5 \%$ typical - Voltage controlled sweep of sine and triangle waves - TTL square wave has a fully adjustable pulse and drives 600 ohms - Frequencies of lower than 1 Hz and greater than 100 KHz are obtainable - short proof and guaranteed for 1 full year • Small, only $3^{\prime \prime} \mathrm{H} \times$ $61 / 4^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{D} \cdot$ State-of-the-art design!DEALER INQUIRIES INVITED

helectronix
8100 St . Clair Ave.
N. Hollywood, CA 91605
(213) 767-5624

CIRCLE 61 ON FREE INFORMATION CARD

The New Programmable Clock Kit from Digital Concepts. \$29.95

EVERY PROJECT IN THIS BOOK IS ANOTHER REASON TO OWN CSC'S QT SOCKETS AND BUS STRIPS.

With QT solderless breadboarding sockets and bus strips. you can build twice the projects in half the time. Because making connections or circuit changes is as fast as pushing in - or pulling out - component leads. No special clips or jumpers required. either. When you're building circuits just for the fun of it. you can take them apart in minutes - not hours So you save money by re-using parts. while eliminating heat damage to expensive components. Interlocking QT Sockets and Bus Strips are infinitely expandable. too: start small and "grow" breadboards as large as you wish.

For as little as $\$ 3.00$. you can get a lot more out of your time in electronics - so why not treat yourself to a QT Socket today?

Variety - 10 models from 70 to 590 solderless tie points feature snap/lock design to expand or contract your breadboard to fit every circuit and budget requirement Versatility - Use with virtually all types of parts. including resistors capacitors. transistors DIP s TO 5 s LED s transformers, relays pots. eic Niost plug-in directly and instantly. in seconds No special jumpers required - just lengths of $=2230$ AWG solid hookup wire Molded in holes let you mount QT units securely on any flat surface with 4-40 flat head screws or 632 self tapping screws. from behind panel
Economy - Sockets are priced as low as $\$ 300^{*}$ Save more money by elimınatıng heat and mechanical damage to expensive parts re using components Speed - For fast circuit layouts. QT Sockets have 5 interconnecting tie poirits per terminal Bus Strips feature 2 separate rows of interconnecting terminals Both connect and disconnect easily without damage to socket or parts Visibility - All parts are instantly and easily visible and accessible for quick signal tracing circuit analysis and diagramming Durability - Higher temperature sockets with abrasion resistant glass filled plastic. rated better than $100^{\circ} \mathrm{C}$ Screw down-andinterlocked design provides high mechanical strength Reliability - Ruggedly designed to professional engineering standards for heavy day-in. day-out use Non corrosive prestressed nickel silver contacts insure more secure mechanical and electrical connections Vinyl backing prevents shorting when mounted on conductive surfaces

CONTINENTAL SPECIALTIES CORPORATION

See your CSC dealer or call
203-624-3103 (East Coast) or 415-421-8872 (West Coast) major credit cards accepted.

SERVICE CLINIC

continued from page 82
Here's one more. If you have a habit of getting into long discussions with customers (or friends or passers-by, etc.) and spending half an hour or more telling jokes. discussing competitors. tough-dog service jobs, the state of the economy. etc.. etc.. take off 100 points! Save this for service meetings and coffee-breaks.

These are simple things. It does not take up much time to set up your shop so that you get the maximum return from the time you spend in it. It does take quite a lot of will-power. I can
vouch for this personally. It's so easy to be sloppy. However, an efficient shop is a heck of a lot easier to work in. and you"ll get a much greater return for the time you spend on each job. When vou find an area where efficiency can be improved. do it: stop and fix it just as if it was a flat tire (which it is, when vou think of it).

The plus and minus "points" are more of a gag than anything else. However. if you will give your shop this test and keep a scratch pad score. it can help. If you come out with a pretty good score on the plus side. good for you. If you come out with a score that is ald on the minus side. boy are you sloppy?

Be just as honest in evaluating yourself as you are in analyzing a case of TV trouble. It'll pay off in increased income. reputation and customer satisfaction. (They get their sets back faster.)

reader questions

TRANSISTOR VOLTAGES

Atter an arc in the focus circuit of this solid-state sel, I'm having a lot of other problems. There is a raster, but it's blank. The collector voltage on the lirst video amplitier is zero and the DC voltages on the AGC transistors are all the same. My ohmmeter shows a good junction on all of them. The DC voltage on both sides of the video detector are also the same.-B.C., Thurmont, MD.

After an arc, you can have all kinds of problems in solid-state circuitry. often in places far from the location of the arc. Here are some hints: A transistor. like your first video transistor, with the collector going to ground through a resistor, should have some DC voltage if it is conducting. No voltage and the transistor is cut off or open.

DC voltages the same on all three elements of a transistor usually means

that it is shorted; you may be reading the junction of the gate diode that is shunted across it-same for the video detector diode. The cure is the same for all: take them OUT of the circuit and repeat the checks.

12AX7 TUBES BLOW OUT

The owner brought this Pilot 610 amplifier in saying that he'd replaced both 12AX7 driver tubes. Within a few minutes, the new tubes flashed up and went oul. These tubes use a DC heater voltage. I checked the circuitry; it didn't seem that the voltage went up, it actually dropped a little. This problem is in both the left- and right-channel driver tubes. I don't understand it. Any advice would be appreciated.-R.Z., Glenside, PA.
To put it mildly, this is an odd circuit. The use of DC heater voltages on preamp and driver tubes to avoid hum isn't uncommon. but this is the first time I've ever seen them get this DC voltage from the cathode circuit of the output tubes. (See diagram.) Never afraid to make obvious statements, I'd say that the reason for the burnout was that too much current was being drawn through the tubes. Since the source of this current is the (common) cathodes of the ECL86 tubes, I would check the bias voltages on them as well as checking all four of the output tuhes for possible internal shorts.

There are two 1800 -ohm resistors
shunted across the $12 \mathrm{AX7}$ heaters. Be sure that these are OK. It would be a very good idea to break this circuit and hook in a DC milliammeter (on the 0 1000 mA scale). Now plug the amplifier into a variable-voltage transformer and bring the line voltage up slowly. Normal

current for the $12 \mathrm{AX7}$ heaters is 150 mA . Since they are in series, the current would be the same in each. Watch the current; if it goes above 150 mA with the line voltage well below normal, the fault is still there.

Incidentally, the Mullard data sheet shows the ECL86 as a 9 -watt output type. Maximum plate currents for both sections is only 42.7 mA . They are being pushed prelly hard with +320 volts on the plate and screen; this might have caused an internal short. R-E

SAVE GAS! SAVE on TUNE-UPS! MODERNIZE and Bring Your Car "UP-TO-DATE" with the MOST EFFICIENT Ignition ever invented!

* The "XR 700" is a COMPLETELY NEW Ignition System that ieplaces the inefficient Breaker-Points and Condensor with a highly AELIABLE, Invisible "Infra red" Light Beam which CONTAOLS the latest design Solid State POWE R MOOULE This new "Patented" Invention produces the HIG HEST ENERGY, Langest Ouration Spark of ANY Ignition System manufactured TOOAY!
* CUSTOMERS REPORT. "THE XR- 700 MOAE THANPAYS FOR ITSE LF ...and KEEPS ON SAVING MONE Y with.. * INCREASEO "GAS-MILEAGE" up to 30\%! * ELIMINATJNG COSTLY "TUNE-UPS!" * IMPROVEOENGINE PERFORMANCE!
* QUICKER STARTING IN AN Y WEATHER
* FASTER ACCELERATION...SMOOTHER RUNNING * PLUGS LAST UP TO 4-TIMES and LONGER!
* THE XR 700 has NO moving parts to wear out...never needs adjustment! Engineered to OUTLAST Your Cal ...So RELIABLE So PERFECTE O...that we give You a LIF ETIME WARRANTY even if you change Cars, we will supply the necessary Parts FREE

黄 FITSALLENGINES.. Oomestic or Foreign ..4. 6 oI 8 Cylinder - EASY INSTALLATION...Completely Factory ASSEM8LEOI
 CIRCLE 1 ON FREE INFORMATION CARD

CIRCLE 18 ON FREE INFORMATION CARD

WARC-79
contimued from page 80
sphere, and to broadcasting in Europe, Asia, and Africa. Many European communicators with whom I have spoken feel that 41 meters should be allocated exclusively to broadcasting on a worldwide basis, and they can be expected to fight to accomplish this at WARC-79. As previously indicated, the United States could reserve on such an act, but the best that could be hoped for would be continued amateur use in this country but with increasing levels of interference as Europeans use 41-meter frequencies to transmit to the Americas. Hopefully, a compromise solution can be found. in which both the broadcasters and amateurs are assigned 41 meter channels exclusively, at the expense of the fixed services. Such an arrangement could result in the assignment of $6800-7300 \mathrm{kHz}$ to the broadcasters; as an example.
In addition to expanded and exclusive use of 41 meters. the amateurs are asking for three new bands-10, 18, and 24 MHz -1o accommodate their growing needs. This request is certain to bring the requirements of the broadcasters, with an estimated quarter of a billion listeners worldwide, into conflict with those of the less than one million

Our whole family helped assomble this wonderful Schober Organ... and now we all play if!

Talk about real tamily fun! We all worked logether. tor a few hours almost every day. Almosi too soon. our Schober Organ was tinished. Our keen-eyed daughter sorted resistors. Mom soldered transistor sockets. although she d never soldered anything betore And it did our hearts good to see the care with which our son - he's only 12 -installed the transistors. Me? I was the quality control inspectar-they let me do the final wiring Our completed Schober Organ compares favorably with a "ready-made one costing twice as mucht (The five models range from $\$ 650$ to \$2850.)

Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a 12 -inch
LP record hat lets you hear as well as see Schober quality
The fchofer Organ Corp., Dept. RE-162
43 West 81 st Street, New York. N.Y. 10023
Please send me Schober Organ Catalog,
Enclosed please find $\$ 1.00$ for 12-inch L.P
record of Schober Organ music.
NAME
ADDRESS
CITY CIRCLE 48 ON FREE INFORMATION CARD

PROFESSIONAL AIDS
SHELF FILES KEEP MAGAZINES, catalogs, manuals, JOURNALS, DIRECTORIES and REPORTS NEAT, ORGANIZED

Eliminate the clutter of loose magazines, catalogs, etc. Fin
what you want. when you want by utillzing these handy shelf or
desk top files
Available in 6 sizes from Reader's Digest to newspaper size Constructed of heavy duty
Attractive blue

front panel Ad

identification labels

included.
Popular letter size: $111 / 2 \times 9 \times 33 / 4$
10 for $\$ 15.89$
25 or 528.97 Other sizes avallable
Shipped pre-pald Request Catalog
PROFESSIONAL AIDS CO 1 S. WACKER DR., SUITE 477R CHICAGO, ILL. 60606

OESK TOP INSTANT OATA SYSTEM FIND THOUSANDS OF FAGTS AT COMPUTER SPEED

The modern rapid way to locate count less facts at your desk without thumb ing thru files. Specially coded cards are used to record any information you want close at hand - technical data formulas, abstracts, case hist., bibll ographies. Obtain just what you need in seconds-any group separates auto. matically simply by inserting a rod. No slow Inefficient cross filing . . no me chanical parts . . no special training minimum set up time

30 DAY MONYY BACK GUDRMTIEE Basic $\$ 3800$ POSTPAIO
package package (200 cards. hand notcher sorting rods. Additional cards:
1000 for $\$ 57.00$ FREE
literature ON REQUEST postpaid. Sample Card Available Information Retrieval System, Div. of PROFESSIONAL AIDS CO. 1 S . WACKER DR., SUITE 577R CHICAGO, ILL. 80806

> Convert DC battery to AC ..power TV, CB, PA, tools, etc. from car, boat, trailer, plane

Convert 12 VDC to 117 VAC 250 watt output Protects battery and unit - relay insures 100% reverse polarity. Protects appliance and unit against overloads if output is shorted or overloaded.
Inverter automatically turns off and turns back on when short is removed.

Warns of low battery charge - indicator light signals low battery charge, shorted output or overload
Instant starting of motor, lights, equipment with "Start" switch. Less battery drain - even at high output loads. Includes leads for battery hook-up.
Stocked at your distributor.
Request FREE Bulletin TI-B and Prices

EPSCO, Inc., 920-R Westwood, Addison, IL 60101

amateurs in the world.

Amateurs and CB'ers

The United States will strongly support amateur radio at WARC-79. In addition to the great contributions made by the group. economic and political considerations are also a factor. The electronics industry provides equipment and supplies for some 300,000 American hams. giving this industry a substantial boost. The amateurs in this country are well organized and represent a significant voting bloc-factors that assure continued U.S. support of the group.

Although the survival of amateur radio is not at stake. there appears to be little likelihood that the amateurs will obtain any additional spectrum space. Furthermore. the loss of the 41 -meter band is a possibility, and this is a contingency the amateurs will have to be prepared to cope with in Geneva.

On the other hand. Citizens-band radio is safe and will not be affected by WARC-79, unless the portion of the band (26 and 27 MHz) currently allocated to the fixed and mobile services are unexpectedly reassigned. This is highly improbable. Furthermore, the manner in which CB radio has mushroomed has made it a major economic and political factor. even more so than amateur radio. It seems inconceivable. therefore. that the frequencies currently allocated by the FCC to CB radio will be affected by WARC. 79.

R-E
R-E TESTS HEATH
continued from page 59
medium output cartridges would ever deliver greater transient peaks than 100 mV even when playing highly modulated discs and so this does not constitute a limitation in performance. On the other hand, it was virtually impossible to overload the high-level input stages of the unit as we ran out of voltage from our signal source at an input level of 10 volts with still no evidence of first-stage

distortion. The subsonic filter action is barely visible in our spectrum analyzer scope photo of Fig. 4 (sweep extends from 20 Hz to 20 kHz whereas the
subsonic filter has a $-3-\mathrm{dB}$ point of 15 Hz). Howevel, the action of the high-cut filter is clearly visible and is seen to have the 12 dB -per-octave slope and the $7-\mathrm{kHz}$ rolloff or $-3-\mathrm{dB}$ point, as claimed. The $-70-\mathrm{dB}$ signal-to-noise ratio in phono is referred to the actual input sensitivity of 2.0 mV and is an unweighted measurement-not as high as measured for some of the new superpriced preamplifiers but high enough so that record listening is not marred by audible noise, or hum.
Our overall product analysis and summary comments for the Heath model AP-1615 are contained in Table
II. Whether you choose to build a matching power amplifier from Heath (they suggest their model AA-1640, a powerful 200 watt-per-channel unit that sells in kit form for $\$ 449.95$ less meters, $\$ 499.95$ with power meters) or plan to use any other high-quality ready-made power amplifier, the Heath model AP1015 is certainly worth its modest priceeven if you figure in your own labor rate.

Red Cross.
 The Good
 Neighbor.

You can improve the sound of any CB transceiver-23 or 40 channel-with a "KRIKET*" external speaker. AFS' acoustic design provides greater voice intelligibility, overcomes transceiver and road noise.

Lets you hear what's on the air more clearly than you believed possible.

Available at CB dealers everywhere.

- ais/ N

World Wide Headquarters Acoustic Fiber Sound Syatems, Inc. 7999 Knue Road Suite 116 Indianapolis. IN 46250

Exclusive Canadian Distributor Persona Communications L.T.D. 1149 Pioneer Road Burlington Ontario. Canada (4 16) 629-5373

All AFS*/KRIKET* speakers are manufactured in the U.S.A. using American materials and crattsmen.
Copyright 1976 Acoustic Fiber Sound Systems, Inc.

new products

More information on new products is available from the manufacturers of items identified by a Free Information number. Free Information Card follows page 98.

DIGITAL MULTIMETER, mode/ LM-40, is a full 4 -digit DMM. Sensitivity for DC and AC volts is as great as 100 mV , and for resistance, sensi-

tivity is 100 milliohms. DC voltage accuracy is 0.1%. AC and DC voltage ranges of 1, 10, 100 and 1000 volts are provided. Resistance ranges
include 1, 10, 100, 1000 and 10,000 kilohms. Fuseless protection on ohms and optional current shunts are availabie for AC and DC current measurements providing ranges of 0.1 . 1. 10, 100, 1000 and 2000 milliamperes. The instrument comes complete with test leads, rechargeable batteries and a charger, and features automatic zeroing. The unit measures $1.9 \times 2.7 \times 4$ inches. Power consumption is less than 3 watts. Priced at $\$ 190.00$ - NonLinear Systems, Inc., P.O. Box N, Del Mar, CA 92014.

CIRCLE 76 ON FREE INFORMATION CARD
SERVICE KIT, model 99SMW, is a 26 -piece tool kit for electronics technicians, featuring a wire stripper/cutter and 25 -watt soldering iron. The tool set fits into a roll-up, plastic-coated canvas case and also includes long nose and diagonal cutting pliers, adjustable wrench, and an assort-
ment of the Series 99 quick-change regular and stubby blade screw and nut drivers, plus both

regular and stubby handles, extension blade and reamer.-Weller-Xcelite Electronics Div., The Cooper Group. Apex, NC 27502.
CIRCLE 77 ON FREE INFORMATION CARD

8K STATIC MEMORY BOARD. Altair and Imsai compatable. Access time of 500 ns maximum. Current required, less than $200 \mathrm{~mA} / 1024$ words maximum. Memory chip is AMD 91L02 APC or equivalent. Voltage supply: +5 volts to +10 volts. Address select: DIP switch accessable from top of board-no need to remove board to

YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! all the facilities you need to check the transistors themselves - and the radios or other cir. cuits in which they are used - have been ingeniously engineered into the compact, 6-inch high case of the Model 212, It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-Up.

Features:

Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Uni. versal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.
Dynamic test for all transistors as signal | amplifiers (oscillat or check), in or out of circuit. Develops test signal for AF, IF, or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit power. supply voltages on 12 -volt scale. No external power source needed, Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three exter. nal leads for in-circuit testing and a pair of test leads for measuring voltage and current. Comes complete with instruction manual and transistor isting.

EMC, 625 8roadway, New York 12, N. Y. Send me FREE catalog of the complete value-packed EMC line, and name of local distributor.
NAME \qquad RE-5

ADORESS
\qquad
GITY ZONE STATE

Interested in HAM Radio?

Then your magazine should be CQ, the country's oldest and largest independent ham monthly. CQ is aimed at the
 operator; it has all the latest info on DXing, contests, propagation, and much more. You'll find Bill Orr on antennas, Irwin Math on gadgets and Herb Brier on dope for the novice.
CQ is where it's at in ham radio today. And we'll even make it easy for you to save extra bucks by using the handy coupon below. Regularly \$1.25 a copy or $\$ 7.50$ for a year, it will cost just $\$ 5.95$ for a full twelve issues with the discount coupon.

relocate. Power regulators: 4 each 7805. Walt states: none. CPU runs at maximum speed

Buffered address and data out lines buffer disable line for transparent loader. Priced at $\$ 239.00$ for kit: $\$ 335.00$ assembled-Vector Graphic Inc., P.O. Box 4785, Thousand Oaks CA 91359
CIRCLE 78 ON FREE INFORMATION CARD

FUNCTION GENERATOR, model 12, has exter nal frequency control VCO, DC to 1 MHz

Remote frequency-shift keying, frequency modulation, remote tone bursis. simultaneous sine. triangle and squarewaves. Has a selectable
function output-continuously adjustable amplitude and DC offset. 1 Hz to 1 MHz . Priced at $\$ 79.95$ for the kit and $\$ 124.95$ for wired.-A E Corp., 65 Wellesley Ave., Needham, MA 02194. CIRCLE 91 ON FREE INFORMATION CARD

ELECTRICAL OUTLET STRIP, SGL Power Master, instantly multiplies the number of avallable electrical outlets at any given location Handy

and ready to use; just plug in. Saves hours and effort of wiring a work area. Especially designed for the hancyman's workshop, it can be used in any part of the home, apartment or garage.

Put Professional Knowledge and a
COLLECEDEGRE
in your Electronics Career through
 DEGREE
by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-77.
Grantham College of Engineering 2000 Stoner Avenue
P. O. Box 25992

Los Angeles, CA 90025
Worhdwide Career Training thru Home Study CIRCLE 13 ON FREE INFORMATION CARD

PULSATING...VIBRATING... "CLEANING MACHINE"

You have never seen anything like Vibra-Jet, our new patent pending aerosol pulsating device. Just plug it into a can of Tun-OWash and you get strong vibrational solvent impacts that instantly penetrate heavy grease, gunk and baked-on contaminants. Vibra-Jet action even washes away dirt on horizontal surfaces . . . makes Tun-O-Wash more effective, leaving tuner parts and controls "vibrantly clean."
Vibra-Jet is made of strong durable polyurethane construction. Works in all positions and comes complete with 26 in. hose and 12 in . probe for hard-to-reach parts.

> FREE! FREE! FREE! FOR A LIMITED TIME ONLY, Vibra-Jet will be of fered free with the purchase of 2 cans of Tun-O.Wash or Super Tun-O-Wash
> Pick up our "Cleaning Machine" . . . it will be the best time saving investment you've ever made.
> Available at participating Chemtronics distributors

inches wide by $31 / 4$ inches deep.-CornellDubilier Electronics, 150 Avenue L. Newark. NJ 07101
CIRCLE 79 ON FREE INFORMATION CARD

WIRE-WRAPPING KIT, model WK-2-B, includes wire-wrapping tool WSU-30 that wraps and unwraps 30 AWG wire on .025 -inch square pins,

it also strips AWG wire, using handy built-in stripper. The wire is insulated silver-plated copper. Supplied in the kit are a 50 -foot roll plus precut and stripped wire in insulated lengths from 1 to 4 inches, stripped 1 inch on each end. Available with blue wire as model WK-2B, white wire as WK-2W, yellow wire as $W K-2 Y$, and red
wire as WK-2R.-OK Machine and Tool Corp., 3455 Conner Streel, Bronx, NY 10475.
CIRCLE 82 ON FREE INFORMATION CARD

CB/RF GENERATOR, model 256, is designed for 40 -channel transceivers. Five-band frequency tuning covers Channels 1 through 40 on an expanded tuning range for easy, precise channel selection. Frequencies of 100 kHz through 16 MHz are covered on the other four bands to provide all IF requirements including: 455 kHz , 10.7 MHz , and any other, current or future. A calibrated/attensated output control provides RF signal output of $100,000 \mu \mathrm{~V}$ down to less than $1 \mu \mathrm{~V}$ for receiver sensitivity checks. The attenuated output is variable in $20-\mathrm{dB}$ steps and by a $20-\mathrm{dB}$ cont.nuously-variable control calibrated in microvolts. Internal modulation at a

frequency of 1 kHz is variable from 0 to 100%, calibrated at 30%. Priced at $\$ 199.00$-Hickok Electrical Instrument Co., 10514 Dupont Ave., Cleveland, OH 44108.
CIRCLE 83 ON FREE INFORMATION CARD

DVM KIT CONVERTIBLE INTO MULTIMETER

features - basic 2 RANGE DVM ACCURATE TO 1\%. CIRCUITS FOR ADDITIONAL VOLTAGE RANGES, OHMS, D.C. CURRENT, AND A.C. VOLTS CAN BE ADDED. PARTS MOUNT ON EDGE CARD CONNECTOR P.C. BOARD. DISPLAY BOARD HAS EASY TO READ $1 / 3^{\prime \prime}$ LED'S AND CAN BE REMOTE MOUNTED.

BASIC D.V.M. KIT \$39.90
Send Chect Or Monoy Order. Add $\$ 1$ lor Postage and Handling in U.S. N.J. Residents Add 5\% Tax.
J. B. Electronics Inc.

Box 321
Short Mills, N.J. 07078

you'll never put down.

It's RCA's all new 1977 "Top of the Line" SK Series Replacement Guide. The most comprehensive list to date of transistors, rectifiers, thyristors and integrated circuits - 381 RCA types, including 68 brand new, that will replace 123,000 domestic or foreign semiconductors in entertainment and industrial equipment. The 68 new types have enabled us to increase our replacement capability by over 11,000 additional industry devices. You can't afford to be without it. The 1977 Replacement Guide is a complete, accurate information source for your Solid State replacement needs. The book represents thousands of hours of engineering know-how. Keep in mind, too, that RCA SK replacement semiconductors measure up to strict AQL standards.
Get yours now. RCA's SK Replacement Guide. Contact your RCA Distributor. Or send $\$ 1.50$ (check or money order) to RCA Distributor and Special Products Division, PO Box 85, Runnemede, NJ 08078.

THE GENERAL TEIEVISION SERVICER

Patents Pending covering 13 unique fealures

YOUR PORTABLE, COST EFFECTIVE SOURCE OF A CONVENTIONAL COLOR BAR PATTERN GENERATOR,
A SUBSTITUTE TUNER AND MOST USED FUNCTIONS OF AN ANALYST, PLUS:

- Extra wide range RF/IF attenuator for testing receiver sensitivity.
- GRAY QUAD pattern for gray scale tracking checks/adjustments
- COLOR BARS pattern with 6th bar marked to make your job easier.
- 3.56 MONITOR pattern for oscillator frequency checks with no need to short the AFPC test point.
- RED RASTER pattern for checking and adjusting purity at the flip of a switch.
- HATCHDOTS - versatile composite pattern for dynamic \& static convergence plus other checks.
- High level, 75 ohm video output.
ALL THIS FOR ONLY \$299.95!
Write for more information on the ATC-10 General Television Servicer, or try it at our risk. - 30 DAY SHOP TAIAL -
(If not 100% satisfied in every way. return for instant refund in full.)

American Technology Corporation

225 Main Street, Dept. 5C Canon City, CO 81212
For your convenience, we accept Master Charge, BankAmericard and COD phone orders. Same day shipment! (303) 275-8991

new lit

More information on new lit is available from the manufacturers of items identified by a Reader Service number. Use the Free Information Card following page 98
ELECTRONICS CATALOG, 148-page illustrated catalog is specially tailored for the radio/TV service techniclan, electronic technician, CB user and hobbyist. Included are test equipment, CB equipment, tools, service and repair kits, tubes, phono cartridges and needles, speakers and microphones, antennas, components and many other servicing aids. Free coples of the catalog are available on request.-Fordham Radlo Supply Co., 855R Conklin St., Farmingdale, NY 11735
CIRCLE 85 ON FREE INFORMATION CARD
AR GUIDE TO LOUDSPEAKERS, 36-page book describing manufacturer's line of speakers, including the AR-10 $, ~ A R-11, A R-12, A R-14$, and AR-16. In addition, the booklet describes AR's philosophy of music reproductlon and explains what goes into the design, production and testing of these features. It is available for $\$ 1.00$ from the manufacturer, or free from AR dealers. The dealers' list will be sent free on request.Acoustic Research, 10 American Dr., Norwood, MA 02062
CIRCLE 86 ON FREE INFORMATION CARD

mODEL 100A AUDIO RESPONSE PLOTTING SYStEM and general purpose sweep/tone burst/pulse generator consists of two sine/square/riangle function generators, pulse generator, frequency counter and peak amplitude measurement sections. It is primarily intended to generate a Trequency response plot on an X. Y recorder or scope.

Time base generator offers symmetrical or independent control of the positive and negative sides of the ramp providing a duty cycle of $.7 \%$ to 99.3%. Frequency range is 0035 Hz to 100 kHz . Amplitude is 15 V . 5 VOC offset. The time base output drives the X axis of an X - Y recorder. Manual mode provided for setup.

Audio sweep generator provides manual frequency adfustment or $\log /$ linear sweep of 20 Hz to 20 kHz . Blanking mode produces zero reference line onn X - Y recorder or tone burst. Amplitude is 15 Vpp into 500Ω or 10 Vpp into 8Ω

Pulse generator frequency range is .0035 Hz to 525 kHz . Pulse wideth is adjusted independent of frequency from 4 seconds to 40 nanoseconds. Outputs are complimentary TTL
Peak amplitude measurement section measures internal or external signals from mike to power amp tevel. Amplitude output drives V axis of X - Y recorder.

Frequency counter is 6 digit. line triggered, and reads either internal or external. Sensitivity is 50 mv peak at 20 kHz .

Dimensions: $8 \times 14 \times 3$. Shipping Weight 9 lbs. S550, stock to 30 days. Warranty: 1 year.

1894 Commercenter W. $=105$ San Bernardino. Ca 92408 CIRCLE 5 ON FREE INFORMATION CARD

QUICK CHARGE IRONQUICK CHANGE TIPS ISORTIIPQuick Charge Cordless Soldering Iron recharges in $3-41 / 2$ hours. Uses any of Wahl's 16 snap-in tips.
Low voltage, battery powered, ground free isolated tip design.

WAHL CLIPPER CORPORATION

ORIGINATORS OF PRACTICAL CORDLESS SOLDERING,
Sterling, Illinois 61081 (815) 625-6525
"Manufacturing Excellence' Since 1919"

FREE burglar fire

 alarm catalog
over 900

 systems, detectors, controls, sounders, tools, locks, supplies
TO PROTECT HOMES, BUSINESSES, INDUSTRY

Huge selection of hard-to-find security equipment from stock. 64 lact-filled pages loaded with 100 's of highest quality professional alarm products, tectinical notes diagrams

ONE-STOP SUPERMARKET SELECTION INCLUDES:

ultrasonics, radar, infrared undercarpet mats, magnetic contacts, smoke \& heat detectors; Controls; Alarms: bells, sirens, phone dialers, lights, guard panels. Large selection of tools, relays, wire, holdup alarms, books. Fills need for industry, alarm cos., businesses, homes, institutions. Order your copy today. (Outside U.S. send $\$ 1.00$.)

mountain west alarm 4215 n .16 th st. phoenix, az. 85016 (602) 263-8831

CIRCLE 3 ON FREE INFORMATION CARD

HEATH COLOR TV

continued from page 51
generator to issue signals to change the channel, defeat the automatic fine tuning, activate the squelch circuitry and activate the on-screen display for displaying the new channel and lime.

If the programmed time and actual time are not equal. then the instruction address counter is incremented to the next memory location. The programmed time/channel combination in the second memory location is stored and compared to the actual time.

After the programmed time in ald 16 memory locations is compared to the actual time, the time-down counter is decremented so that the BCD data in it represents a time that is one minute earlier than the actual time. The programmed lime in all 16 memory locations is compared to the new time in the time-down counter. If equality is detected, the process stops.

The process of decrementing the time-down counter and comparing it to the programmed time continues until equality is detected. When the process stops, the BCD data in the shift registers represent the time that the TV set made the last channel change and the channel to which the change was made. This data is displayed on the TV screen when the ma key is depressed.

OUR EQUALLY TEMPERED D/A CONVERTER MAKES IT EASY!
$5+$ octaves of control voltage from 6 bits of data.
hand-shaking logic
use with any processor. drives even the simplest linear oscillators \& filters.

8780 D/A CONVERTERKIT. $\$ 34.95$
(plus $\$ 1.00$ poslage for mail orders) 8782 EHCODED KEYBOARD s 109.95 .. wt. 201dss. COMPLETE SYMTHESIZER PACKAGES AS LOW AS $\$ 239$ MODULES VCO'S. VCF'S, MOISE SOURCES, 8 MORE - keyboards shipped freight collect detalls in our FREE CATALOG DEPT 5-R
1020 W. WILshire blvo. OKLAHOMA CITV, OK 73116

CIRCLE 7 ON FREE INFORMATION CARD

Croults happen Faster and Easier with Super-Strip:

As little as 7

Now, whenever you'd like to give a circuit a try, you can build it up nearly as fast as you can dream it up with Super-Strips ${ }^{\text {TM }}$, the faster, easier and less expensive solderless breadboards from A P Products. When you build your circuit on a SuperStrip, everything stays as good as new. Once you're through, you can use everything again and again. Instantly. Put a Super-Strip to work for you. Eight distribution lines handle signal and power, and 128 five-tie-point terminals can handle 9 ICs and then some. It's a whole lot easier than printing a circuit and a whole lot handier than haywire.

Part Number	Model Number	Terminal Type	Price Each
923252	SS-2	nickel-silver	$\$ 17.00$
923748	$\mathrm{SS}-1$	gold-plated	$\$ 18.90$

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Bcok.

INTERNATIONAL FM 2400 CH
FREQUENCY MEIER for testing mobile transmitters and receivers

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band - Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

The $\mathbf{F M}-\mathbf{2 4 0 0 C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.
The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}(.000125 \%$ special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

.$\$ 595.00$ | RF crystals (with temperature correction) | ... |
| :--- | :--- |
| RF crystals (less temperature correction) | 24.00 |
| 18.00 | ea. | if crystals.

.catalog price

International Crystal Manułacturing Company, Inc. 10 North Lee, Oklahoma City Oklanoma 73102 CIRCLE 70 ON FREE INFORMATION CARD

LOOKING AHEAD
continued from page 4
(1) Sony formally unveiled its new two-hour Betamax (you read about it in last December's Radio-
Electronics), which gets double the playing time from a standard Betamax cassette (492 feet of half-inch tape). (2) Zenith announced it would put its own-brand home VTR on the market this year, using the new Sony format and, at least initially, buying decks from Sony. (3) The two developers of the V-Cord II format, Sanyo and Toshiba, announced they would switch over to the new Betamax, and both plan to market decks here this year. (4) RCA said it would also offer a home VTR this year, but was silent as to which format it would use.

The new Betamax deck resembles the current one. A one- and two-hour switch permits it to play back tapes recorded in the current one-hour mode, or to record in the one-hour mode if desired. For two-hour recording, tape speed has been cut in half to 0.785 IPS, track width has been halved to 29.2 micrometers and new noise-reduction circuitry has been added that is claimed to make possible the same 250 -line color resolution and $45-\mathrm{dB}$ color signal-to-noise ratio as the current model. The net result is a machine that overcomes the earlier model's deficiency of short playing time, and which, in effect, cuts tape costs in half-since a $\$ 16$ cassette will now record and play for two hours instead of one.

Revolutionary Nee Wring "Poncil" Marass Interconnections
in $1 / 3$ the Time!

- Create Finished Wired Clircults in Hours, Not Days
- For Breadboarding, Prototypes and Production
- Interconnects Circult Elemente In Digital and Analog Clrcults
Easy for anyone - just hook up your components using the insulated "solder thru" wire (your choice of blue, red, green or clear). Wire reeds off a replaceable spool thru the P173 tool body and out of a steel tip so fine it easily routes wire around even the smallest I.C. lead. A touch of the iron, with solder, completes the joint.

 P173 Mow Supplid with no 200 spoots of AW6 soldem At your Vector distributor $\$ 950$
Mall orders. add is shipping ared handiun orders, add si shipping anta handiung
Californua residents add 6 man sales ian

SHOP YOUR NEARBY RADIO SHAEK FOR QUALIIY PARTS AT LOW PRICES!

Top quality devices, fully functional and carefully inspected. Guaran teed to meet all specifications, both electrically and mechanically. All are made by well known American manufacturers, and all have to
pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Count on Radio Shack for the finest quality parts

TTL Digital ICs
First Ouallty Devices Made by National Semiconductor and Motorola

8080A Microcomputer Chip
 Direct Plug-In Replacement for Intel 8080A
 17^{95}

A CPU with a 16 -bit address bus capable of addressing up to 65 k bytes memory and up to 256 I/O ports. "TRI-State" data bus gives it DMA and multipro cessing capability, and all buses are TTL compatible. Handles up to 244 instruc tions of variable length, with 6 general purpose registers plus an accumulator 40-pin DIP. 100\% Prime. 276-2510

276.059
 19P?
 $\begin{array}{ll}\text { Req } & \text { SALE } \\ 58239 \\ 5239 & 199 \\ 199\end{array}$

Linear ICs
First Qually Devices by and Motorola

74C and 4000 Series CMOS ICs

by
uctor

Plasicic Face Plates. 2anam
Red Tint. 270-299

$$
\begin{aligned}
& \text { mouning hotes } 276.153 \\
& \mathrm{~T} \text { Soldentess ic Emperim }
\end{aligned}
$$

\qquad
Boara Pi \qquad
\qquad

Operates on the scan principle utilizing TTL logic. With repeat key. negative/positive going data valid strobe, latch outputs, shift and shiftlock capability. True/false ASCII outputs, 6 extra control keys. With all necessary parts, including TLL components. Does not include test jigs. optional features or case and hardware. See store sales persons for parts list 277-117. Complete Pkg.

Sale 49.95

-Pin. 276-1995. Reg
Sale 2/594 Pin. 270-10. Reg. 2 tor \$. 69 Sale 2/99-6-PIn. Sale 2/996 18.PIn. 276-1998. Reg. Sale 996
WHY WAIT FOR MAIL DELIVERY?
IN STOCK NOW AT OUR STORE NEAR YOU! A TANDY COMPANY • FORT WORTH, TEXAS 76107

SEND FOR

frat Catilog WITH ALMOST 3000 ITEMS

INCLUDING B\&K, EICO, RCA, FLUKE, SENCORE, SIMPSON, HICKOK and LEADER plus a complete line of tubes, tools and electronic supplies at prices you won't believe.

FORDHAM

AADIO SUPPLY CO., IMC
855R Conklın St. Farmingdale. N Y 11735 Tel (516) 752-0050

CIRCLE 46 ON FREE INFORMATION CARD

market center

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.40$ per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85 e per word no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 104 per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

BUSINESS OPPORTUNITIES

RECTILINEAR Research Corp. would appreciate comments from interested parties on the feasibility of offering our highly rated models 5 a and 7 a fully assembled, wired and tested, Iess cablnet, at very substantial savings. Freight prepaid within UPS zone. Detailed drawings for enclosure included. Franchised and non-franchised dealers can participate. To assist in this survey, write: Kit Division/RE, RECTILINEAR, 107 Bruckner Boulevard, Bronx. NY 10454-212/585-9400

HIGHLY
 PROFITABLE
 ELECTRONIC FACTORY
 Investment unnecessary, knowiedge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do. Barta-BO, Box 243, Walnut Creek, CA 84507.

$5500 / 1000$ immediately, stutfing envelopes, free supplies, rush stamped self-addressed envelope. D. CONRAD CONPANY, 206 Cedar, Rosemere, Quebec, Canada, J7A-2W4. U.S. inquiries invited

WANTED

WANTED
QUICK cash ... for electronic equipment,
components, unused tubes. Send list now!
BARRY, 512 Broadway, New York, NY 10012,

EDUCATION \& INSTRUCTION

TELEPMONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415

CB'ers-Be a "Ham"-We'll teach you! Life

 membership: \$4.00-AMERICAN RADIO COUNCIL; Box \# 1171-F; Garland, TX 75040HIGHLY effective degree program in electronics engineering. Advance rapidly! Our 31st year. Free literature. COOK'S INSTITUTE, Box 20345 , Jackson, MS 39209

GRANTHAN's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations, $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025

ELECTRONICS courses, radio-television, FCC licenses. Home study, GENN TECHNICAL INSTITUTE, 5540 Hollywood Blvd., LOs Angeles, CA, 90028, or RA-TEL ELECTRONICS, Post Box 167-P. Toronto, Ontario, Canada, U.S. inquiries invited.
BÜRGLAR/fire alarm experts needed for cars, homes, industry. Learn high-profit systems installation at home spare time. Simple, quick, complete. Free information by mail. No salesmen. SECURITY SYSTEMS MANAGEMENT SCHOOL (homestudy), Dept. 7339-057, Little Falls, NJ 07424

PLANS \& KITS

ARTISAN organ kits feature all new modular construction with logic-controlled stops and RAM Preset Memory System. Write for brochure to A O K MANUFACTURING INC., P. O. Box 445B, Kenmore, WA 98028

[^4]\title{

5-D|ETT LED CLILK CYLDTMN KT

\section*{FOR THE BUILDER THAT WANTS THE bEST. FEATURING 12 OR 24 HOURTIME' - $29 \cdot 30-31$ DAY CALENDAR. ALARM SNOOZE AND AUX. TIMER CIRCUITS

FOR THE BUILDER THAT WANTS THE bEST. FEATURING 12 OR 24 HOURTIME' - $29 \cdot 30-31$ DAY CALENDAR. ALARM SNOOZE AND AUX. TIMER CIRCUITS Will alternate time (8 seconds) and date (2 seconds) or may be wired for time or date display only. with other functions on demand. Has buils-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute Snooze alarm, alarm set G timer set indicat $V A C / 60 \mathrm{~Hz}$ power pack with cord and IOD quality components through-out
 PRINTEO CIRCUIT BOAROS IOr CT. 7001 Kits sold separately driled assembly info. PC Boards are
 Dexabill
 KIT - 7001 W WITH 6-. ${ }^{\text {" DIGITS }}$ KIT - 7001 C WITH 4 . ." DIGITS $^{\text {E }}$ 3° DIGITS FOR SECONDS KIT 7001X WITH 6 . $6^{\prime \prime}$ DIGITS $\$ 42.95$

assemblass, solder plated and
Fiberglad with component layour.
screened Specily tor 7001 B, C or X - $\$ 7.95$

KITS ARE COMPLETE (LESS CABINET, WITH PC BOAROS, POWER SUPPLY, IC \& SOCKET 16 TRANSISTORS, 9 SWITCHES

12/24 HR.OPERATION BIG. $4^{\prime \prime}$ DIGITS - $50 / 60$ HZ OPERATION.

KITINCLUDES

- INSTRUCTIONS

- QUALITY COMPONENTI
-50 OR 60 HZOPERATION 保
- 12 or 24 HR OPERATION

6 LED Readouts(FND. 359 Red
Transistors
3 Surthes
5 Canacitor
5.orodes

 24. Molex pins board and a cabinet. if desired

PRINTED CIRCUIT BOARD FOR KIT $\$ 850-4$, SCREEN PRINTED DRILLED AND SOLDER PLATED FIBERGLASS
MINI-BRITE RED LED'S (FOR COLON IN CLOCK DISPLAY)Pkg. of 5- $\$ 1.00$ MOLDED PLUG TRANSFORMER $115 / 10$ VAC (WITH CORD) $\$ 2.50$

MLBLE LADCLAKK

MODEL
12 VOLT AC or ODEL 12 VOLT AC or DC []TJ5
2001 POWERED

- JUMBO A" REO LEDS EEMIND AED FILTER LENS WITH CHROME RIM - SET TIME FROM FGONT VIA HIDDEN SWITCHES - 1224 Ht . TIME FORMAT STVLISH ChABCOAL gRAY CASE OF mOLDED hoh TEMP. PLASTIC BAIDOE POWER INPUT CIECUITAY - TWO WIRE NO POLARITY HOOK.UP - OPTIONAL CONNE CTION TO BLANK DISPLAY IUEe When Koy OH in Cer, Etc.I - MOP OVALIMO BMACKET MCLUOED

PLEXIGLAS CABINETS

Great tor Clocks or any LEO
Oigital prolect Clear-Ae Oígital project Clear-Red Chassis serves as Bezel to disolays.
CABINET I
$3^{\prime \prime} H, 61 / 4{ }^{\prime \prime} W, 51 / 2^{\prime \prime} D$ CABINET II 21/2"H, 5"W.4"D AED ORGREY PLEXIGLAS FOR DIGITAL BEZELS 95° ea $4 / \$ 3$

SCHOTTKY TTL		L PRESCALE			
$74 \mathrm{S00}$ ¢ 35		$\begin{array}{ll} 11 \mathrm{C90DC} & 515.95 \\ 95 \mathrm{H} 90 & 9.95 \end{array}$			
74 SOb					
74504.55					
7450560 VOLTAGE					
$74 \mathrm{SO9} 55$ REGULATORS					
745822 - 45					
74 S 40 . 45					
$74550-45$					
74560 85 8815 TO. 125 74564 55 7815 TAB 125					
74.574 85 $78 L 15$ Y0.5 .75					
74 S 75 175 7824 TO.3 125					
74578 150 723 DIP					
74S 3680					
$\begin{array}{ll}74 \mathrm{~S} 107 & .95 \\ 74 \mathrm{~S} 112 & 95\end{array}$					
74511314001702 EPiom 88.95					
74 S 114 95 5203 EProm 58.95					
74 S133 75 SWITCHES					
745134	75	ROCKEA SPOT			
745138175 MINISLDEESPDT 5/51					
74S139 ${ }^{\text {7 }}$					
$\begin{array}{ll}74 S 153 & 1.95 \\ 745155 & 1.95\end{array}$		MINI SPDT $* 130$			
		TOGGLE DPDT ${ }^{150}$			
$\begin{array}{ll}745155 & 1.95 \\ 745156 & 1.95\end{array}$		IC SOCKETS			
$\begin{array}{ll}745157 & 180 \\ 745158 & 250\end{array}$		PINS 1.24	25100		
$745174 \quad 2.50$		8 \% 25 5	\$22 520		
$745175 \quad 2.50$		$14 \quad 25$	228		
$\begin{array}{lll}745181 & 2.95 \\ 74588\end{array}$		16 28	$25 \quad 23$		
$\begin{array}{ll}745181 \\ 74882 & 1.95\end{array}$			$28 \quad 26$		
$\begin{array}{ll}745182 & 1.95 \\ 7<\$ 251 & 2.75\end{array}$		24.50	${ }^{45} 40$		
DIGITAL		$28 \quad .60$	$\begin{array}{ll}.55 & 50\end{array}$		
CLOCK IC's					
		3.579545 MHZ \$ 195			
MM5375A8 395 CT. 7001 CT. 3002 MM5369 250					
		COW POWER			
LED DRIVERS		FAIRCHILD			
$\begin{aligned} & 7447 \\ & 7448 \\ & 74.49 \\ & 75.492 \end{aligned}$		124	\$1.95		
	95	25099	1.75		
	65	1100.199	1.60		
	65	200-499	1.45		
		Over 500	1.40		

marand

ORDER BY PHONE OR MAIL COD ORDERS WELCOME Orders Under $\$ 15$ Add $\$ 1.00$ Handing
Fla. Res. Please Add 4% Sales Tox.

AUTO BURGLAR

 ALARM KIT
Atamazam uot inati

 (1) KIT \#ALR-1 $\$ 9.95$ \#ALR-1WT WIRED \& TESTED

FREQUENCY COUNTER KIT
 8 LARGE .4" RED LED DIGITS

"ONLY 8 IC's! © XTAL TIME BASE truly "State of the Art" counter using quallity components throughout
KIT INCLUDES: DETAI
TOP OUALITY FIBERGLASS DOUBLE SIDED PC BOARD, IC'S WITH SOCKETS AND ALL PARTS LESS POWER SUPPLY AND CABINET. 50 MHZ COUNTERKIT 5 VOLT REGULATED 1 AMP $\$ 69.95$ 350 MHZ PRESCALERKIT 650 MHZ PRESCALERKIT CABINET [\& MTG HARDWARE] WPSL-650 $\$ 29.9$ [CABINET WILL HOUSE WFC-50, WPS-02, AND A PRESCALER]

DELIVERIES TO START IN MAY, 1977

Fairchild Super Digit

 FND. 359

 100/ $\$ 79.00$ SETOF 6 FNO-359 WITHMULTIPLEX PC BOARD $\$ 6.95$NYLON WIRE TIES 8. TiE-WRAP
4. TIE WRAP

PLUG TRANSFORMERS 12 VaC ar 150 MA
12 VaCat 500 MA

VARIABLE REGULATED 1 AMP POWER SUPPLY KIT - VARIABLE FROM 4 to $14 V$: 123 IC REGULATOR CURRENT LIMITING AT I Am

IT IS COMPLETE INCLUDING ORILLED \& SOLOER PLATEO FIBERGLASS PC BOARD ANO | FORMER) KITMPS.01 $\quad \$ 8.95$ |
| :--- |
| TRANSFORMER $24 V C T$ will |

OPTOELECTRONICS, INC.
BOX 219 • HOLL YWOOD. FLA. 33022 • (305) 921 -2056

relephone forma kEYBOARD By Chomerics \# EF-21360	kils to operale from 12 VDC . 1"×2"PC Board Power Rea : $5-15 \mathrm{~V}$ (2.5 MA. TYP.) Easy 3 wire hookup Accuracy: $\pm 2 \mathrm{PPM}$ \#TB-1 (Adjustable) Complete Kit $\$ 495$ Wir \& Cal $\$ 9.95$
$\begin{aligned} & \$ 4.95 \\ & 6 /{ }^{2} 28 \end{aligned}$	5AMP BRIDGE G $\$ 1.95 \mathrm{ea}$ $3 / \$ 5.00$

 TERMS: Add 50c orders under $\$ 10$; add postage when indicated. Cal res add tax. Master charge•/BankAmericard` call 415-562-0636.
charge"/BankAmericard call il15-562-0636.
12V 8A supply СВ, HAM...539.95

+ POSTAGE. Now you can connect CB and ham transceivers...auto tape players....portable TVs... to your AC house current: also makes a superb lab or bench supply. Crowbar overvoltage protected, short protection, 0.05 V regulation, adjustable output $11-14 \mathrm{~V}$, and EASY ASSEMBLY - - heat sinks, power transistors etc. mount on board. A SUPER SUPPLY!! 50iNew-SPDT HHEswitch

PARTS
 NEW AND SURPLUS PARTS
 IC's-RES-CAPS-SWITCHES
 P.C.BOARDS \& CHEMICALS COMPUTER PARTS
 ORGAN/SYNTH. KEYBOARDS LCD WATCH PARTS

MUSIC SYNTHESIZER KITS KITS FOR MUSICIANS AUDIO KITS AND PARTS POWER SUPPLIES
WE CAN ASSEMBLE \& TEST COMPUTERS \& OTHER KITS

CUSTOM CIRCUIT BOARDS-
DESIGN AND FABRICATION CIRCUIT BOARD COOKBOOK METAL FAB. \& MATERIALS CIRCUIT BOARD LAYOUT

SEND 13\& STAMP

DEP. 3. 日0x 26き31 S.L.C., UT. 84125

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsiblity for errors that may appear in the index below.

Free Information Number Page
Acoustic Fiber Sound Systems 87
Allison.. 85
40,90 American Technology.................................. 92
4 AP Products.. 93
Audio-Technica .. 16
62 B\&K-Div. of Dynascan............................... 14
2 Channellock .. 32
30 Chemtronics ... 90
CIE-Cleveland Institute of Electronics 72-75
8 Cobra-Div, of Dynascan.................. Cover IV
36 Continental Specialties................................. 83
Cowan Publishing .. 88
CREl-Div. of McGraw-Hill Continuing
Education ... 62-65
51 Digital Concepts .. 82
31 Dynaco .. 22
87 Eastern Industries (Gem's) Cover III
26 Edmund Scientific 116
67 E1CO.. 28
E\&L Instruments... 84
11 Electronics Book Club 29
EMC-Electronics Measurements 88
42 EPSCO ... 86
5 Fidelity Sound .. 92
GFN Communications 31
13 Grantham College of Electronics 89
GTE Sylvania-Consumer Renewal 36
100 Heath .. 18-21
61 Helectronix .. 82
12 Hickok Electrical Instruments 24
18 Ignition Systems .. 86
34 Indiana Home Study Institute 82
70 Intemational Crystal...................................... 94
JB Electronics .. 91
JS\&A Cover II. I. 6, 7
16 Kedman... 90
60 Mallory... 15
74 McGraw-Hill Books .. 35
3 Mountain West Alarm Supply 93
6 National Camera Supply 84
National Radio Institute (NR1)-Div. of McGraw-Hill Continuing Education Center.
.. 8.11
National Technical Schools52-55
17,22 OK Machine \& Tool 34. 17
7 PAIA ... 93
29 Pearce-Simpson-Div. of Gladding................ 27
21 PTS... 25
65.66 Professional Aids... 86

Radio Shack .. 2, 95
RCA Distributor \& Special Products..........91
35 Rye Industries .. 82
28 SBE... 5
14 Sencore... 22
48 Schober Organ .. 86
69 Southwest Technical Products 30
24 Techni-Tool .. 34
39 Tektronix .. 33

Active Electronics .. 104
AMC Sales.. 106
Amateur Radio Supply 110

	American Used Computer 110
	American Surplus Trading...................... 112
53	Babylon Electronics 108
	Karel Barta .. 96
	Burdex Security...................................... 104
	CB \& Uncle Sam 96
	CFR Associates...................................... 110
	Command Productions 96
	Cormell Electronics 110
	Dage Scientific Instruments 104
27	Delta Electronics 114
	Devtronix Organ Products 106
71	Digi-Key ... 111
46	Fordham Radio Supply............................. 96
56	Formula International 101
54	Godbout Electronics 98
	Information Unlimited 106
58	International Electronics 105
9,10	James Electronics 102, 103
	Lab Science ... 110
	Lakeside Industries 106
49	Lin... 112
37	Meshna ... 108
38	New-Tone.. 112
68	Olson Electronics 96
52	Optoelectronics 97
	Parasitic Engineering 110
	P.P.G. .. 106
23	Poly Paks ... 107
55	Quest ... 10
73	Radio Hut ... 109
72	SD Sales .. 115
63	JB Saunders.. 113
47	Solid State Sales.................................... 114
	Speakerlab .. 104
15	Surplus Center.. 104
19	Trico Electronics.................................... 108
32	TV Tech Aids 106
57	Utep Marketing...................................... 98
	Wersi Electronics 96

name (please print)

(ple ase print)
address
$\overline{\text { city }}-\overline{\text { state }}$ zip code

Mall to: Radlo-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COLO. 80302

RADIO-ELECTRONICS

There is only one

They can try and copy our ad, BUT
They can't copy our service!

50 PCS. RESISTOR ASSORTMENTS S1.75 PER ASST.

$\$ 2.95$
$\$ 2.95$
52.95

		LINEAR		(mishiv	
(1m3014	35 35				1.75
(1)302\%	75	${ }^{\text {Lumzon }}$	1.1 .5	Lurssen	${ }_{35}$
	1.00		328 4	(142)119	195
Lurorch	${ }_{35}$	1×3 OM	1.39	LH20014	295
300-M	1.00	Inzeocr	1.05	Lu3065M	69
Im300cN	1.00	LuSin	179	(m3500\%	55
边	${ }_{98}$	Me501\%	1700	Cusecs	125
(1)300	1.15	MESIOA	6.00	Lms556M	18s
LM314	90	меร314	300	4 -55580	1.00
(м311\%	90	ME536\%	600	(17235	. 80
H3318CN	1.50	Nestiol	600	cmess	25
$\mathrm{Ma}_{3} 19 \mathrm{~N}$	130	messon	79	Ousb	9
Lu3200-5	1.35	NES500	∞	Tssicm	49
	13	${ }^{\text {m S } 56008}$	5.00	${ }_{7}$	139
LW3200 - 15	, 35	Mebcre	5.00	${ }^{754535 N}$	${ }_{19} 39$
LM32	1.75	NSSSSH	125		79
M3,		NS 566 c	1.25	7392CN	${ }_{9} 9$
4×3201.12	1.75	NESSTM	19	${ }^{7599 C N}$	89
L43200. 15	1.75	NeStin	1.50	aca	
	1.75	Imrocen		${ }^{\text {c/3013 }}$	
	1.75	(1) 70 \%	29	cames	
-m24N	180	Imrion	79	Ca3399	135
Lu339\%	1.70	Lurlis	39	Ca3036	130
Lusaoc.s	1.98	19723	S5	Cams	3,23
(мзлок.	1.95		,	Ca3000	${ }_{8}$
${ }_{\text {L }}$	195	เm>3\%	1.00	${ }^{\text {casine }}$	2.00
Lus300. 15	1 ¢	Implion	35	Casoen	
)	IMral dav	39	Canos	${ }^{8} 5$
Im300\%-5	1.75	cmatim	7	caves	${ }^{3.75}$
	,				295
IM3007.12	1.75	Lmzan	39	C0123	215
¢ихзот 15	15	[m1303m	9	CN3130	3
0.188	${ }^{1,75}$	Lmizan	1.19	${ }^{\text {casinc }}$	${ }^{1.25}$
Cus30	100	(m1307N	\%	RC194	5.95
315	65	minow	295	RCalis	325

WIRE WRAP CENTER HOBBY-WRAP TOOL-BW-630

WIRE WRAP CENTER HOBBY-WRAP TOOL-BW-630 - Battery Operated (Size C) - Weighs Only 11 Ounces Standard DIP Sockets (. 025 inch) $\$ 34.95$ \qquad
WIRE-WRAP KIT - WK-2-W WRAP • STRIP • UNWRAP - Tool for 30 AWG Whe - Roll of 50 Fr . White or Blue 30 AWG Wire - 50 pes each $\$^{\prime \prime} .2 \cdot 3^{\prime \prime} \& 4^{\prime \prime}$ lengths pre stripped wire $\$ 11.95$
CUTTER CRIMPER TOOL (CS-8) - Plier Nose (serrated taw) - Scissors Action Cutting - Bolr Cutters (-40, 5.40, 6.32. 8-32 (0-32. 10-24) - Crump Stations (7mm Auto - 22-20 to - "Up-Front" Wire Curting -Scissors Action Stripping (No. 22.20 to No. 10) - Crimp Stations - insulated (2w-20 to Actual Size - $81 / 4$ " length $\$ 8.50$

Active Electronic Soles Corp.

Telephone Orders \& Enquiries (617) 879-0077 New Cataloge available on request MINIMUM ORDER $\$ 10.00$
NOW IN CANADA
5647 Ferrier at.
Montreal, Quebec
U.S. GOV'T ELECTRONIC SURPLUS

CIRCLE 15 ON FREE INFORMATION CARD
BUILD YOUR OWN SPEAKERS

COLOR bar generator, 16 different patterns with single MOS IC. Complete, detailed plans $\$ 2.00$ TV tennis game plans $\$ 2.00$. ARS SYSTEMS, POB 61922, Sunnyvale, CA 94088

Burglar - Smeke Fire Alcirm Cufciog

- Billions of dollars lost annually due to lack of protective warning alarms.
FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service

Box 82209 Dept. RE Lincoln, Ne. 68501

SPRING SALE

GENERAL ELECTRIC TUBES

 NEW \& BOXED 73\% OFF LIST

CAREON FILM RESISTORS

IN STOCK- A FULL LINE OF QUALITY 3W 5\% RESISTORS STANIARD VALUES FROM 2.7 ohm to 4.7 Mbh
5 for . 2510 for $.40 \quad 100$ for $\$ 1.60 \quad 1000$ for $\$ 14$. (no mix of values) 100 per value for 1000 price

Memory	Photocells	Bipolar
		, 1

		Zener Diodes
$\begin{aligned} & \text { RESISTORS } \\ & \text { III } \\ & 1 / 2 \text { W } 5 \text { s } 108 \\ & \text { Popular Vailues } \\ & 100 \text { Asst. } \end{aligned}$		

******************** 150Mhz PRESCALER
 CWWLEEE INSTRUCTIONS......... 312.95 650mbz option - Divilo by 100 OR 1000 | incluoss |
| :---: |
| ECL chip |

* MONTHS SPECIALS * 747 DNAL 741 OpAAP . 65 * regulators

1 AMP To-220 tab

* * * * *

5, 12,22 - $-5,-12,-24$ each . 75 1 MF TO-3 $+5,+12,+24$ घect 1.100
free INTEL data book s25 orde

LAST CHANCE!

Order before May 31, 1977 or you have to pay more! 4 or 6 Digit Alarm Clock 0.5' FND503 Display Kit Kit includes 2 PC Boards, IC. Transtormer. Transistors Switches, all necessary parts with detailed instructions.

4 Digits \$12.50
6 Digits $\$ 14.50$

4 Digit Jumbo Display Alarm Clock Kit

Using FSC 8000 0.8' display and MM5316. This kit pro: vides all the features of play, sleep output, etc

SPECIAL CNLY \$19.50

Inter-Com Board

Output Power 1W.
2 small speakers make it workl $\$ 3.00$ each or 2 for $\$ 5.00$ TRANSFORMERS

Car-Shaped Radio 10'

MOTOROLA RECTIFIERS
MDA962-2
100V 12 A Bridge . . $\$ 2.00$ ea IN1202A Used 200V 12A
I.C.S.

MM5375 AA or AB
6 Digit Alarm Clock Chip $\$ 3.00$ each
2102A.6 \$1.75 2107B-4 \$5.95
Fairchild 0.25" LED's
. 20 ea., 6/1.00, 100/\$13.00
MINIATURE
SLIDE SWITCH
DPDT 20 each
DPD -.20 ea
$1.75 / 10 \mathrm{pcs}$

Unused computer terminals in original factory boxes. Made for airline ticketing \& seating reservations. 17 inch B/W CRT in modernistic housing. 41 lines of data, 52 characters per line, generated by diode matrix (graphic) technique. Self contained power supply. Keyboard, free standing, reed switches, 54 data keys, 28 special keys. Logic unit (not shown) 1024 by 6 bit core memory, printer 1/O interface, communications 1/O interface. Due to several years storage, though unused, you may have to tinker, clean contacts on circuit boards, etc. We furnish free with each, one operational manual, one book of schematics. Sold "as is", all sales final. The price is a give-a-way. Check with order please (for immediate shipping certify your check. Shipped truck (238 lbs) you pay shipping on arrival. These have been interfaced by local customers with KIM-1 and IMSAI (no doubt can be interfaced with many others.
$\$ 180.00$
JOHN MESHNA JR, PO BOX 62, E.LYNN MASS 01904 CIRCLE 37 ON FREE INFORMATION CARD

CANADIANS! AP Superstrip II universal breadboard, $\$ 18.95$ postpaid. B.C. add 7%. Money order to WOLVERTON ENTERPRISES (Dept RE), 5, South Hyte Avenue, Burnaby, B.C. V5B 3H6 U.S. inquiries invited

MAKE professional-quality PC boards with sllkscreen techniques. Complete step by step infor mation, $\$ 4.95$ Postpaid. TERRATRONIC RE SEARCH, Box 513M. Quincy. IL 62301

BACK issue magazines. Over 200 titles, 1890 to 1976. Send stamped envelope. Free list. EVERYBODY'S BOOKSHOP, Dept. RE, 317 West 6th, Los Angeles, CA 90014

Looking for \square RF Products
AMATEUR RADIO SUPPLY SEATTLE 6213 13th Ave. So., 98108 (206) 767.3222
$60 / 600 \mathrm{MHz} 7$-digit portable frequency counter battery or electric $\$ 299.00 .500 \mathrm{MHz}$ prescaler +10 or $+100 \$ 59.95$. CBS, Box 1356, Cocoa Beach, FL 32931

Not a Cheap Clock Kit \$17.45 Includes everything except case. 2.PC
boards. 6. $50^{\prime \prime}$ LED Displays. 5314 clock chip. transformer, all components and full instructions. Same clock kit with. 80^{-} displays.

Digital Temperature Meter Kit switches back and lorth. Beautiful).50" LED readouts. Nothing like it available Needs no additional parts for complete full operation. Will measure -100° t

+200 F air or liquid. Very accurate | Complete instructions. |
| :--- |
| $\begin{array}{l}\text { + } \\ \text { Cory }\end{array}$ |

8080A Microcomputer Kit 8080A CPU. Crystal Clock, I/O Bufters,
RAM and PROM D/A-AD Converter PROM Programmer. Memory expandable Complete documentation incl. assembly instruct.. programming etc. $\quad \$ 195.00$

1977 IC Update Master

Manual
grated circuit data selector from all manu tacturers. 1264 page master rel. quide to the latest IC's including microprocessors and consumer circuits. 17,000 cros references for easier sourcing of hard to get parts. $\$ 30.00$ with free update service thru 1977. Domestic postage add $\$ 2.00$

Frequency Counter Kit covers audio. ultrasonic and low amateu high sensitivity +25 milivolts channel high sensitivity ± 25 millivolts. Crystal higher treack. 6 - 0° prescaled for structions. Less power supply. $\$ 40.00$
Stopwatch Kit \$26.95
Full six digit battery operated. 2-5 volts 3.2768 MHz crystal accuracy. Times to 59 minutes, 59 seconds, $991 / 100 \mathrm{hrs}$ Times standard, split and taylor. 7205 chip. all components minus case. full instruct.

COSMAC 'ELF' RCA CMAS Microcomputer
Comot isers Manual 57.5 Complete kit of parts to build the ELF
including CDP1802 and users manal Including CDP1802 and users manual as
listed in August 76 Pos. listed in August 76 Poop. Elect. minus
power supply and board. $\$ 92.00$

Foreign $\$ 6.00$

60 Hz Crystal Time Base Kit $\$ 4.75$ Converts digltal clocks trom AC line frequency to crystal time PC board. MM5369, crystal, resistars. capacitors and trimmer

Clock Modules

Complete alarm clocks ready to hook up with transformer and switches. Very com pact with $.50^{\circ}$ and $84^{\prime \prime}$ digits.
MA1002
102P3 Transtormer
MA1010A. C or E
102P2 Transformer
Special translormer and six switches when

Stopwatch/Timer Kit \$55.00 4 Digit. 7 function programmable stopwatch timer. Two PC boards, components and case. Crystal controlled. this kit is
excellent for rally and events as well as navigational, photography and for appliance conto

Auto Clock Kit \$15.95 DC clock with 4.50 displays. Uses Na tonal MA 1012 module with alarm option Crystal time base PC boards and full instructions. Add $\$ 3.95$ for a Deautiful
dark gray case ready to install. This is dark gray case ready to install. Ti.
the best value available anywhere!

TERMS: $\mathbf{5 5 . 0 0}$ min, order U.S. Funds. Calli residents add 6% tax. BankAmericard and Waster Charge accepted.

FREE: Send for your copy of our 1977 QUEST CATALOG. Include 13c stamp.

LNCOR. 15311 S. Broadway, Gardena, California 90248 (213) 532.8809

We have 400,000 reels of great recording tape to unload.

$\$ 30.00$ gets you thirty reels ($\$ 225$ value): or $\$ 12.50$ gets you ten reels ($\$ 80$ value). Call for quantity prices. These are government surplus, and fully guaranteed, professional quality mylar tapes on $101 / 2$ plastic reels. , "/4" wide, 1 MIL with 3600 feet per reel.

Sounds crazy? We can sell

 brand name tapes at these ridiculous prices because we're the only supplier who bought up 400.000 reels.
Mail your order, name and

 address. with check or money order (N.Y. residents: add tax) to
american SURPLUS TRADING

 CIRCLE 49 ON FREE INFORMATION CARD| CP SPECALS-RF. DRUERS-RF. POWER OUTPUTS-FET | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 SC 481 | 1.85 | 2 SC 767 | 5.75 | 2SC866 | 5.85 | 2SC1449.1 | 1.60 | 40081 | 1.50 |
| 2 SC 482 | 1.75 | 2SC773 | . 85 | 2 SC1013 | 1.50 | 2 SC 1475 | 1.50 | 40082 | 3.00 |
| 2 SC 495 | 1.10 | 2SC774 | 1.75 | 2SC1014 | 1.50 | 2SC1678 | 5.50 | 2 SC608 | 4.85 |
| 2 SC 502 | 3.75 | 2 SC 775 | 2.75 | 2SC1017 | 1.50 | 2SC1679 | 4.75 | SK3046 | 2.15 |
| 2 SC 517 | 4.75 | 2SC 776 | 3.00 | 2SC1018 | 1.50 | 2SC1728 | 2.15 | SK3047 | 3.75 |
| 2SC614 | 3.80 | 2SC777 | 4.75 | 2 SC 1173 | 1.25 | 2SC1760 | 2.15 | SJ2095 | 3.50 |
| 2 SC615 | 3.90 | 2SC778 | 3.25 | 2SC1226A | 1.25 | 2SC1816 | 5.50 | SK3048 | 3.25 |
| 2SC616 | 4.15 | 2 SC 797 | 2.50 | 2SC1237 | 4.50 | 2SC1908 | 70 | | 1.25 |
| 2 SC 617 | 4.25 | 2SC798 | 3.10 | 2SC1239 | 3.50 | 2SC1957 | 1.50 | SK | 25 |
| 2SC699 | 4.75 | 2SC781 | 3.00 | 2SC1243 | 1.50 | $2 \mathrm{SF}^{\text {8 }}$ | 3.00 | 2SK19 | 1.75 |
| 2 SC 710 | 70 | 2SC789 | 1.00 | 2SC1306 | 4.75 | HEP.S 3001 | 3.25 | 25×30 | 1.00 |
| $2 \mathrm{SC711}$ | 70 | $2 \mathrm{SC796}$ | 3.15 | 2SC1306-1 | 4.90 | 2 SD235 | 1.00 | 2 Sk 33 | 1.20 |
| 2SC735 | 70 | 2 SC799 | 4.25 | 2SC1307 | 5.75 | MRF8004 | 3.00 | | |
| 2 SC 756 | 3.00 | 2SC802 | 3.75 | 2SC1307-1 | 6.00 | 4004 | 3.00 | 3SK40 | 2.75 |
| 2SC765 | 9.50 | 2SC803 | 4.00 | 2SC1377 | 5.50 | 4005 | 3.00 | 3SK45 | 2.75 |
| 2SC766 | 10.15 | 2SC839 | . 85 | 2SC1449 | 1.30 | 40080 | 1.25 | 3SK49 | 2.75 |
| | | | | | | | | | |
| 2 SA52 | . 60 | 2SB187 | 60 | 2SC458 | 70 | 2SC815 | . 75 | 2SC1569 | 1.25 |
| 2SA316 | . 75 | 2SB235 | 1.75 | 2SC460 | . 70 | 2SC828 | . 75 | 2SC1756 | 1.25 |
| 2SA473 | . 75 | 2SB303 | 65 | 2SC478 | . 80 | 2SC829 | . 75 | | |
| 2SA483 | 1.95 | 2SB324 | 1.00 | 2SC491 | 2.50 | 2SC830 | 1.60 | 2SD30 | 95 |
| 2SA489 | . 80 | 2S8337 | 2.10 | 2SC497 | 1.60 | 2SC839 | . 85 | 25045 | 2.00 |
| 2SA490 | . 70 | 2SB367 | 1.60 | 2SC515 | 80 | 2SC945 | . 65 | 2SD65 | . 75 |
| 2SA505 | . 70 | 2SB370 | . 65 | 2SC535 | 75 | 2SC1010 | . 80 | 2SD68 | . 90 |
| 2SA564 | . 50 | 2SB405 | . 85 | 2SC536 | . 65 | 2 SC1012 | 80 | 2SD72 | 1.00 |
| 2SA628 | . 65 | 2SB407 | 1.65 | 2SC537 | . 70 | 2 SCl 1051 | 2.50 | 2SD88 | 1.50 |
| 2SA643 | . 85 | 2SB415 | 85 | 2SC563 | 2.50 | 2SC1061 | 1.65 | 2S0151 | 2.25 |
| 2 SA647 | 2.75 | 2S8461 | 1.25 | 2SC605 | 1.00 | 2SC1079 | 3.75 | 2SD170 | 2.00 |
| 2 2A673 | . 85 | 2S8463 | 1.65 | 2SC620 | . 80 | 2SC1096 | 1.20 | 2SD1 80 | 2.75 |
| 2SA679 | 3.75 | 2S8471 | 1.75 | 2SC627 | 1.75 | 2SC1098 | 1.15 | 2SD201 | 1.95 |
| 2SA682 | . 85 | 2SB474 | 1.50 | 2SC642 | 3.50 | 2 SC1115 | 2.75 | 2SD218 | 4.75 |
| 2SA699 | 1.30 | 2SB476 | 1.25 | 2SC643 | 3.75 | 2SC1166 | 70 | 2S0300 | 2.50 |
| 2SA699A | 1.75 | 2SB481 | 2.10 | 2SC644 | 70 | 2SC1170 | 4.00 | 2S0313 | 1.10 |
| 2 SA705 | . 55 | 2SB492 | 1.25 | 2SC681 | 2.50 | 2SC1172日 | 4.25 | 2SD315 | 75 |
| 2 SA815 | . 85 | 2SB495 | . 95 | 2SC684 | 2.10 | 2SC1209 | . 55 | 2SD318 | 95 |
| 2 SA816 | . 85 | 2SB507 | . 90 | 2SC687 | 2.50 | 2 SC 1213 | . 75 | 2SD341 | . 95 |
| | | 2SB511 | . 70 | 2SC696 | 2.35 | 2 SC 1226 | 1.25 | 2SD350 | 3.25 |
| 2SB22 | . 65 | | | 2 SC 712 | 70 | 2SC1243 | 1.50 | 2SD352 | . 80 |
| 2SB54 | . 70 | 2 SC 206 | 1.00 | 2SC713 | 70 | 2SC1293 | 85 | 2S0380 | 5.70 |
| 2SB56 | . 70 | 2SC240 | 1.10 | 2SC732 | 70 | 2 SC 1308 | 4.75 | 2SD389 | . 90 |
| 2SB77 | . 70 | 2SC261 | . 65 | 2SC733 | . 70 | 2 SC1347 | . 80 | 2SD. 390 | 75 |
| 2SB128 | 2.25 | 2 SC 291 | 65 | 2SC739 | . 70 | 2SC1383 | 75 | 2SD437 | 5.50 |
| 2SB135 | . 95 | 2SC320 | 2.00 | 2SC715 | 1.75 | 2SC1409 | 1.25 | | |
| 2SB152 | 4.50 | 2 SC 352 | . 75 | 2SC762 | 1.90 | 2SC1410 | 1.25 | MPS-U31 | 4.00 |
| 2SB173 | . 55 | 2SC353 | 75 | 2SC783 | 1.00 | $2 \mathrm{SC1447}$ | 1.25 | MPS8000 | 1.25 |
| 2SB175 | 55 | 2SC371 | 70 | 2SC784 | 70 | 2SC1448 | 1.25 | | |
| 2SB178 | 1.00 | 2SC372 | 70 | 2SC785 | 1.00 | 2SC1507 | 1.25 | | |
| 2SB186 | . 60 | 2SC394 | . 70 | 0 2SC793 | 2.50 | 2SC1509 | 1.25 | | |

POWER-TRANSISTORS HIGH-VOLT. TV. TYPE

$\begin{array}{lllllllll}8 U 204 & 1300 V & 3.90 & 8 U 207 & 1300 V & 5.40 & 2 S C 11728 & 1100 V & 4.25\end{array}$

1N270	. 10	2N960	. 55	2N2219A	. 30	2N2913	75	2N3740	1.00	2N4401	. 20
1N914	. 10	2N962	. 40	2N2221	. 25	2N2914	1.20	2N3771	1.75	2N4402	. 20
		2N967	50	2N2221A	. 30	2N2916A	3.65	2N3772	1.90	2N4403	. 20
2N173	1.75	2N1136	1.35	2N2222	. 25	2N3019	. 50	2N3773	3.00	2N4409	. 20
2N178	. 90	2N1142	2.25	2N2222A	. 30	2N3053	. 30	2N3819	. 32	2N4410	. 25
2N327A	1.15	2N1302	. 25	2N2270	. 40	2N3054	. 70	2N3823	. 70	2N4416	. 75
2N334	1.20	2N1305	. 30	2N2322	1.00	2N3055	. 75	2N3856	. 20	2N4441	. 85
2N336	. 90	2N1377	. 75	2N2323	1.00	2N3227	1.00	2N3866	. 85	2N4442	. 90
2N338A	1.05	2N1420	. 20	2N2324	1.35	2N3247	3.40	2N3903	20	2N4443	1.20
2N398B	. 90	2N1483	. 95	2N2325	2.00	2N3250	. 50	2N3904	. 20	2N4852	. 55
2N404	. 30	2N1540	. 90	2N2326	2.85	2N3375	6.50	2N3905	. 20	2N5061	. 30
2N443	1.75	2N1543	2.70	2N2327	3.80	2N3393	. 20	2N3906	25	2N5064	. 50
2N456	1.10	2N1544	. 80	2N2328	4.20	2N3394	. 17	2N3925	3.75	2N5130	. 20
2N501A	3.00	2N1549	1.25	2N2329	4.75	2N3414	. 17	2N3954	3.50	2N5133	. 15
2N508A	. 45	2N1551	2.50	2N2368	. 25	2N3415	. 18	2N3954A	3.75	2N5138	. 15
2N555	. 45	2N1552	3.25	2N2369	. 25	2N3416	. 19	2N3955	2.45	2N5198	3.75
2N652A	. 85	2N1554	1.25	2N2484	. 32	2N3417	. 20	2N3957	1.25	2N5294	. 50
2N677C	6.00	2N1557	1.15	2N2712	. 18	2N3442	1.85	2N3958	1.20	2N5296	. 50
2N706	. 25	2N1560	2.80	2N2894	. 40	2N3553	1.50	2N4037	. 60	2N5306	. 20
2N706B	. 40	2N1605	. 35	2N2903	3.30	2N3563	. 20	2N4093	. 85	2N5354	20
2N711	. 50	2N1613	. 30	2N2904	. 25	2N3565	. 20	2N4124	. 20	2N5369	. 20
2N711B	. 60	2N1711	. 30	2N2904A	. 30	2N3638	20	2N4126	. 20	2N5400	. 40
2N718	. 25	2N1907	4.10	2N2905	. 25	2N3642	. 20	2N4141	. 20	2N5401	. 50
2N718A	. 30	2N2060	1.85	2N2905A	. 30	2N3643	. 15	2N4142	. 20	2N5457	. 35
2N720A	. 50	2N2102	. 40	2N2906	. 25	2N3645	. 15	2N4143	. 20	2N5458	. 30
2N918	. 35	2N2218	. 25	2N2906A	. 30	2N3646	. 14	2N4220A	. 45	C103y	. 25
2N930	. 25	2N2218A	. 30	2N2907	25	2N3730	1.50	2N4234	. 95	C103d	40
2N956	. 30	2N2219	. 25	2N2907A	.30	2N3731	2.75	2N4400	. 20	c106b1 C106di	. 50
SILICON UNIJUNCTIONS				INTEGRATED CIRC.				RECTIFIERS			
2N2646	. 50	2N4871		UA703			. 40			10	100
2N2647	. 60	2N4891	. 5	709 C	OP. A		. 25	5 IN40		. 60	5.00
2N6027	. 55	2N4892	. 5	741C	OP. A		. 25	5 IN40		. 70	6.00
2N6028	. 70	2N4893	. 5	7400			. 15	5 IN40		. 80	7.00
D5E37	. 25	2N4894	5	TA706	61P		3.50	- IN40		. 90	8.00
2N2160	. 65	MU10	40	TA720	05P		8.00	IN40		1.00	9.00
2N4870	. 50			UPC10	001h2		6.00	IN40		1.10	10.00
				Ne555			1.25	5 IN40		1.20	11.00

DIGIT AL INTEGRATED CIRCUITS

	2100		${ }^{\text {sisc }}$		
	${ }_{\substack{2407 \\ 2109}}$	${ }_{32}^{29}$		60 60	
	${ }_{\substack{12121 \\ 2122}}^{122}$	$3{ }_{3}$		${ }_{60} 6$	
		¢0,	Tsal	${ }_{\text {a }}^{80}$	
	${ }^{212128}$	39	${ }_{\text {max }}$	${ }_{\text {coser }}^{108}$	
	, 712131	87		2.18	
	2014	${ }_{162}$			
	$\underset{\substack{21288 \\ 7150}}{ }$	12.15	mos		${ }_{4}^{4520}$
	(1451	${ }_{68} 5$			4280 4885
${ }^{2416} 24$	72158				
20120	${ }^{21155}$	${ }_{69}^{69}$	4200	22	
(1,2124	${ }^{12159}$	${ }_{69}$, $\times 2$	22	
${ }^{12050}$	${ }_{\substack{2 \\ 72165}}$	${ }_{87}$	(0x	1,22 22	
	7162	${ }_{87}$	-306	${ }^{78}$	
(172. 27	20104	${ }^{\circ}$	910	4	
	${ }^{71465}$	12	\%	${ }_{22}^{22}$	
	$\xrightarrow{21170}$	${ }_{1 / 4}$	213	\$8	
	coin	97	2016	${ }^{6}$	
${ }^{7342} 5$	¢176	${ }_{7}^{78}$	\%017		
			-013		
${ }^{1366} .69$		2.16	(027	${ }^{23}$	
		${ }_{2,18}$	207	123	
1450 20	2,185		cos		
		3.39	,	22	
${ }^{1354} 80$	${ }^{2} 190$	1.22	80\%		
7250 720	第,		(0,	39	
${ }_{7680} 28$	${ }^{24193}$	8	¢0,	1.13	
		87	(200	${ }_{150}$	
	24198	${ }_{87}^{87}$	8038	3,9	
	2,198	, 48	8035		
	241998	1, 1.88	4091	78	
come	72279	5	(eat	${ }^{38}$	
${ }^{7} 7{ }^{\text {7ase }}$	23036	${ }^{66}$	Sos	9	
(7888 278	23366 7365	${ }_{86}^{66}$	\%096	${ }^{185}$	
7290.431		${ }_{30}^{65}$	(1350	.125	
		${ }^{56}$		$\xrightarrow{125}$	
	${ }_{\text {anem }}^{\text {gnos }}$	${ }_{86} 6$,	${ }_{\text {i, }}^{1.25}$	
	$\underbrace{\text { cose }}_{\text {eng }}$	${ }_{56} 6$		(188	
TERMS					
ALL PRICES SUBNECT TO CHANGE WITHDUT NOTICE ALL MERCHANDISE SUDECT TO FRIDR SALE 24 HR SHIPMENT FOR CASHIERS CMECK OR MONEY ORDER PERSONAL CHECKS ALLOW TIME FOR CLEARANCE MINIMUM ORDER $\$ 5,00$ NO COD'S POSTAGE \& HANDLING ADD 51 $31 / 2 \%$ STATETAX ICOLO. RES.I					

Potentiomitir hex muts

Complete kit of 4 TV games, and all necessary parts to display on your TV set. The games are HOCKEY \& SOCCER at 2 levels of skill. The display on the TV screen is on channel 3 or 4. It shows a field, either hockey or soccer, and 2 players. The puck or ball is set in motion, and the players attempt to move the ball or puck to the enemy goal. The players are controlled by 2 joy sticks, one for each player. In the hockey game,the puck stays with the player who gets it, and can be moved by moving the player, or pushing the 'shoot' button, which then shoots the puck in the direction it was going. The other player attempts to block the shot, and shoot it in the other direction. Each time the puck hits the the wall, it 'pings', and when a goal is scored, it 'pongs'. The score is displayed by 2 LED readouts, which automaticaly score up to 8 each. Scoreboard can be reset at any time by pushing the reset button. The skill needed can be controlled by pushing the 'novice or skilled' button
The soccer game is played the same as above, except that the ball goes as if it were kicked each time it touches a player. Scoring and skill is controlled the same as the hockey game above.
We provide the logic board, shown in the upper left photo, the LED READOUTS, the power transformer, the speaker the line cord, the case and interface cube, shown in the photo to the right. The interface cube is actually a miniature TV transmitter, which puts the games on your TV set. This interface meets FCC requirements. In short, we provide everything you need to put this game on your TV set. An hour with some wire, solder and soldering iron is all you need We have about 2000 sets, but only about 1000 bases for the case, so the first 1000 orders get the base. Otherwise, you will need a piece of masonite or ply wood $71 / 2^{\prime \prime} \times 175 / 8^{\prime \prime}$

STOCK NO.M5495 $\$ 27.50$ complete kit as above
 2/50.00

MINIMUM ORDER $\$ 5.00$. Include sulficient postage, excess refunded. Send for new 88 page Catalog 15, bigger than ever.
 BANKAMERICARD and MASTERCHARGE now accepted, minimum charge $\$ 15.00$. Please include all numbers. Phone orders accepted.
CIRCLE 27 ON FREE INFORMATION CARD

JUMBO LED CAR CLOCK

\$16.95
KIT

THE HOTTEST SELLING KIT WE EVER PRODUCED! You requested it! Our first D.C. operated clock kit. Professionally engineered from scratch. Not a makeshift kluge as sold by others.
Features:
A. Bowmar Jumbo -. 5 inch LED array.
B. MOSTEK - 50250 - Super Clock Chip.
C. On board precision crystal time base.
D. 12 or 24 Hr . Real Time Format.
E. Perfect for cars, boats, vans, etc.

50,000 SATISFIED CL
KIT CUSTOMERS CAN
BE WRONG!
F. P.C. Board and all parts (less case) included.

THIS MONTH'S SPECIALS
AMD - 8080A $\$ 14.95$
Z.80 CPU 49.95

82S129 1K PROM
2.50

60 HZ CRYSTAL TIME BASE

S.D. SALES EXCLUSIVE!

KIT FEATURES:
$\$ 5.95$
A. 60 HZ output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS Clock Chips.
C. Super low power consumption (1.5 ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of $A C$ line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham filed days.

2/\$10.00
G. Small size; can be used in existing enclosures.

Kit includes Crystal, Divider IC, PC Board, Plus all necessary parts and specs.

1702A 2K EPROM

We tell it like it is. We could have sald these were factory new. Dut here is the stralght scoop. We bought a load of new commont 1702 A's in sockets. We arefully oinoved the parts verified carelully reinoved the parts, verified their quality. and are offering them first served. Satistaction guaranteed! U.V. Eraseable. $\quad \$ 6.95$ ea. 4/S25

UP YOUR COMPUTER!

21 L02.1 1K LOW POWER 500 NS STATIC RAM Time is of the essence! And so is power. Nat only are our HAM's faster than a speeding bullet but they are now very low power. we are pleased to pffer prime new 21 Lo2 low power and super fast RAM's. Allows you to STRETCH your power supply farther and at the same time keep the wait light ofl.

S.D. SALES EXCLUSIVE

\$12.95 MOS 6 DIGIT UP-DOWN COUNTER $\$ 12.95$ 40 PIN DIP. Everything you ever wanted in a counter chip. Features: Direct LED segment drive, single power supply (12 VDC TYPE.), six decades up/down, pre-loadable counter, separate pre-ioadabie compare register with compare oscilla. tor, CMOS compatible leading zero blanking. 1 MHZ . count input irequency. Very himited quantity! WITH DATA SHEET

SIX DIGIT LED ALARM CLOCK KIT
We made a fantastic kit even better. Redesigned to take advantage of the latest advances in l.C. Clock technology. Features Litronix Dual $1 / 2$ inch displays, Mostek 50250 super clock chip. Single 1 . C. segment driver, SCR ditit drivers. Greatly siniplif. ied construction. More reliable and easier to build. Kit includes all necessary parts (except case). P.C.B. or XFMR optional.
ALL NEW DESIGN!
AC. Board- $3.00 \quad$ KFNR $-\$ 1.50 \quad 9.95$

COMPUTER POWER SUPPLY

SUPER POWER FOR ANY AM RADIO

Antenna assist has pulled in stations up to 1000 miles* oft! No wires, clips, grounding. Solid No. 72,095EH $\$ 19.95$ Ppd. ULTRA SELECT.A.TENNA OUVER 1000' MILES) No. 72,147EH \$24.95 SUBJ. TO LOCAL COND.
SAVE $50 \% 18 \times 20$ MONOCULAR

Top quality Spy Scope, a $\$ 30$ value, now \$14.95! Special purchase saves you $50 \% 100 \%$ coated optics; 393 ft . field of
view. Only 2 oz.-stores in view. Only 2 oz.-sto
pocket, purse. glove box. pocket, purse. glove box.
No. 1568 EH .. $\$ 14.95$ Ppd.
SEE MUSIC IN PULSATING COLOR

3-Channel Color Organ lets you modulate 3 independ strings of colored lamps w intensity of your music. "Audio light show flashes, responds to rhythm pitch'

No. 42,309EH (ASSEMBLED)
 . $\$ 18.50$ Ppd

 No. 42,336EH (UNASSEMBLED)........ \$15.95 Ppd.NASA-CHOSEN FOR APOLLO/SOYUZ

The Astronauts used this super
20×60 binocular (moditied) io 20×60 binocular (moditied) to view Earth! Big 60 mm objective lenses; $173-f t$. field of view at
1060 yds. Relative brightness. 9.0. Fully coated optics, more! No. 1556EH(9y/4x81/2; 47.5 0z) $\$ 99.95$ Ppd. 110V FUEL MISER RECLAIMS HEAT
 Save your 40% wasted heat to warm a basement, garage, rec
im . at no extra cos! Direct it your way instead of up the chimney. fan-forced clean hot air via easy ducting!
No. 19,194EH (5 DIA.) Shpg. $17 \mathrm{lb}, . . \$ 121.50$ FOB No. 19,195 EH (6° DIA.)
BUILD ALPHA MONITOR: $\$ 37.50$!

No. 61,069EH (KIT)
No. $71.809 E H$ (FULLY ASSEMBLED) $\$ 37.50$ Ppd
PRO ELECTRONIC SOUND CATCHER

Parabolic mike w/ $18 \frac{3 / 4}{}{ }^{\prime \prime}$ trans. parent reflecting shield \& 2 I.C.'s in amplifier magnifies signals 100 X over omni-direction mikes. Catch sounds never bef. heard: highest signal to noise
ratio doss. $51 / 2 \mathrm{lb}$.
No. 1649EH (REO. 29 V BATT.) S299.00 Ppd 15% EFFICIENT SOLAR CELL!
targest, most powerful ever for terrestrial use, to build solar panels where max. power pe unit area is req. Output up to 12 w per sq . ft . Produces 8 A @ $.45 v_{j} .38 w$ output. $2^{\prime \prime} \times 2$ " $9 q$ 202
No. 42.514EH.\$39.95 Ppd

CAN'T SLEEP, RELAX? TRY THIS!

 Electronic sound conditioner simulates
sounds of ocean surf $\&$ paing sounds of ocean surf \& rain
"white" sound helos mask un wanted noise. Medical tests proved analgesic effects! No. 71,997EH \$89.95 Ppd
QUALITY DETECTOR UNDER $\$ 40$

Our fully transistorized BFO unit can locate a quarter at $18{ }^{\prime \prime}$ Powerful 6 trans.-oscillatoramplifier circuit. Comp. to
others priced 50% more! Alumiothers priced 50% more! Alumi-
num, just 2 lb . No. 80,222EH \$39.95 Ppd

EDMUND SCIENTIFIC CO.

300 Edscorp Bldg., Barrington, N.J. 08007 • (609) 547-3488 America's Greatest Science - Optics • Hobby Center

Spring Specials

CB TRANSCEIVER
 PORTABLE CB ANTENNA UNIVERSAL LOCK MOUNT OUTDOOR REFLEX HORN

The 40-channel Cobra 29XLR. From the sleek brushed chrome face to the matte black he̛ưșing, it's a beauty. But its'beauty is more than skin deep. Because inside, this CB has the guts to pack a powerful punch.

The illuminated 3-in-1 meter tells you exactly how much power you're pushing out And pulling in. It also measures the system's efficiency with an SWR check. In short, this Cobra's meter lets you keep an eye on your ears.

The Digital Channel Selector shows you the channel you're on in large LED numerals that can be read clearly in any light There's also switchable noise blanking to reject short-pulse noise other systems can't block The built-in power of DynaMike Plus. Automatic noise limiting
and Delta Tuning for clearer reception.
And the added protection of Cobra's nationwide network of Authorized Service Centers with factory-trained technicians to help you with installation, service and advice.

The Cobra 29XLR. It has 40 channels. And it has what it takes to improve communications by punching through loud and clear on every one of them. That's the beauty of it obra Punches through loud and clear.

Cobra Communications Products DYNASCAN CORPORATION
6460 W. Cortland St. Chicago, Ilinois 60635

PUNCH AND BEAUTY

[^0]: As a service to readere, Radio-Electronics pubtehes avallable plant or Information reiating to newaworthy products, wechniquet and ecientific and technological developments. seruse of toa

[^1]: For complete ir formatior, visit ycur nearest SBE Dealer, or write SBE, Inc. 220 Airport Blvd., Watsonville, CA 95076

[^2]: * Mr. Titus is president of Tychon, Inc., a microcomputer consulting firm in Blacksburg, Virginia. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic Institute \& State University.

[^3]: MANUFACTURER'S PUBLISHED SPECIFICATIONS:
 Rated Output: 1.5 V . Input Sensitivity: Phono, 2.0 mV ; High Level, 180 mV . Input Overload: Phono, 100 mV ; High Level, over 10 volts. Hum and Noise: Phono, 65 dB ; High Level, 85 dB . Frequency Response: Phono (RIAA), $\pm 0.5 \mathrm{~dB}$; High Level, ± 0.2 $\mathrm{dB}, 20 \mathrm{~Hz}$ to 20 kHz . Harmonic and IM Distortion: Less than 0.05% from 20 Hz to 20 kHz . Channel Separation: 50 dB at 1 kHz . Filter Cutoff Points: Low, -3 dB at 15 Hz ; High, -3 dB at 7 kHz , both 12 dB -per-octave. Power Requirements: 120/240 VAC, $50 / 60 \mathrm{~Hz}$. Dimensions: $171 / 2 \mathrm{~W} \times 4-9 / 16 \mathrm{H} \times 8-1 / 8-$ inches D. Shipping Weight: 12 lbs . Price: Kit only, \$129.95.

[^4]: 5TH anniversary package deal: TVT-III system (4 page capability): includes basic kit, screen read, manual cursor, U.A.R.T., plus power supply $\$ 160$. One per customer. Offer expires June 30, 1977. Postage free shipping (US only) starting with catalog \# 9 or this ad. SASE for inquiries. Free catalog. ELECTRONIC DISCOUNT SALES, 138 N. 81st Street, Mesa, AZ 85207

 Bi-LINEAR amplifier, $3-30 \mathrm{MHz}, 100$ watt mobile. Construction plans, $\$ 3.00$. IGOR, Box 5516-FE Walnut Creek, CA 94596

