SPECIAL SECTION-How To Service GB Radios
 Radio-Electronics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

Make A Panel Meter A DICHTAL VOM It's Easy To Do

More Build-lt linfo PROGRAMMABLE DRUMS Are Fun To Play

ALSO:

Z-80 Computer Corner
R-E Lab Tests BIC Beam Box Jack Darr's Service Clinic Hobby Corner
State Of Solid State
More Hobby Computer Listings
Equipment Reports-
\star Sabtronics Digital Meter

* Motorola HEP

Microcomputer Kit

* Temna Mindh'
 8LOnY Y 41 96Ms000g 570 4 70295

What's New In
POLICE-RADAR DETECTORS
A Picture Story

Build This Portable FREQUENGY COINTER With 4-Digit Readout

Gould Oscilloscopes They have a name for reliability

Ask electronics people what the Gould name means to them and most would agree that reliability stands high on the list. In fact we are sure enough of our reliability to give you a 2-year warranty on our entire line of oscilloscopes.
Of course, performance is also important, so we offer you four oscilloscopes covering a frequency range from DC to 50 MHz , plus a unique digital storage model with options for hard copy and binary output.

There's a Gould scope to suit your needs.
Economy is also a consideration. Gould oscilloscopes are competitively priced. But because we build them for the long haul, your instrument pays dividends through years of trouble-free service. Reliability says it all and that's what the Gould name is all about. So when you're looking for reliability, look for our name. For oscilloscopes and other fine instruments, you can rely on Gould.

For details write Gould Inc.,
Instrument Systems Division,
3631 Perkins Avenue,
Cleveland, Ohio 44114. Or call the number below.
FOR BROCHURE CALL
TOLL FREEAT
(800) 325-6400.

EXTENSION 77.
In Missouri: (800) 342-6600
\% GOULD

Write, or circle our reader reply number for a catalog describing our complete line of computer hardware and software.

NOW AVAILABLE IN BOTH KIT AND ASSEMBI_ED FORM.

fact:
 you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects.
Take, for example, the Shure SM58 and SM59 microphones:

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

SPECIAL
SECTION

49 What You Need To Know About Servicing CB Radios by Forest Belt
50. Repair Low Cost CB's Profitably
52. Efficiency in CB Service Estimates
53. DC Trouble Up Front
58. Transmitter Keying
61. Servicing Synthesizers
63. 23-Channel PLL

35 Portable Frequency Counter
Palm-sized 30 MHz counter with a 4-digit LED display that delivers 6-digit resolution. by Gary McClellan

40 Digital Multimeter
Start by building a $31 / 2$-digit panel meter; add a few shunts and range switches, and end up with a digital multimeter.
by Dr. E. H. Borneman and Robert Benward
45 Programmable Drums-Part II
Conclusion of a 2 part series for a hi-fi add-on that lets you tap out a beat with your fingertips. by John S. Simonton, Jr.

68 Z-80 Computer Corner
A look at the different interrupts available with the Z-80 CPU by William Barden, Jr.

70 Mainframe Roundup-Part II
Conclusion of who makes what and what it is they make.
by Chester H. Lawrence

TELEVISION

4 Looking Ahead
Tomorrows news today. by David Lachenbruch
76 Hobby Corner
A game circuit you can play with. by Earl "Doc" Savage
88 Police Radar Detectors
A look at the latest equipment.
100 Teaching Digital Counters To Count
How to make a decade counter IC count by some number other than 10. by Fred Blechman

Service Clinic
Vertical OTL (Output Transformerless) output stages. by Jack Darr
Service Questions
R-E's Service Editor solves reader problems.

ON THE COVER

This month's feature construction project is a hand-held portable frequency counter. The unit measures to 30 MHz with a 90 mV sensitivity. The readout is a 4-digit LED display that provides 6-digit resolution. A must for any workbench. The complete construction details start on page 35 .

A BASIC DIGIT AL PANEL METER. Turn to page 40 to see how to build this and then turn it into a complete digital multimeter.

B.I.C.'s MODEL FM-10 BEAM BOX indoor FM antenna. R-E's Hi-Fi Lab puts it through its paces. For a complete report, turn to page 66.

Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York NY 10003. Phone: 212-777-6400. Second-Class postage paid at New York, NY and additional mailing offices. One-year subscription rate: U.S.A. and U.S. possessions $\$ 9.98$, Canada, $\$ 12.98$. Other countries, $\$ 14.98$. Single copies $\$ 1.00$. 1978 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices o undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322.
A stamped self-addressed envelope must accompany al submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^0]Another videodisc: Matsushita Electric of Japan, the world's largest manufacturer of television sets and parent company of Panasonic and Quasar, has demonstrated a new videodisc system that uses discs strongly resembling standard LP audio records, and made with standard record-pressing equipment and materials. It is a mechanical system with grooves recorded in the "hill-and-dale" method. A twist stylus system uses a piezoelectric material to convert mechanical vibrations into voltage fluctuations.

Matsushita calls its system Visc and has developed two variations-both use two-sided 12 -inch vinyl records, but one plays for 30 minutes per side, the other for one hour per side. In either variation, the disc revolves at 450 rpm and contains two high-fidelity audio channels as well as a color video program. Matsushita is targeting the player to sell for $\$ 480$ to $\$ 600$ on the Japanese market, and discs themselves to sell 20% to 50% more than an audio L.P record. The diamond stylus is said to be capable of more than 1,000 hours life.

Matsushita says marketing schedules will depend upon the support of programming companies throughout the world. The specs and parameters of the Visc system appear to be so close to those of the RCA capacitance system that the question of potential compatibility was certain to arise-and did. An RCA disc spokesman was asked this question; his reply was that, except for the fact that the center holes on the two discs are different sizes (RCA's is large, Matsushita's is audio-disc size), there should be no reason why Matsushita and RCA discs couldn't be played interchangeably, given some other minor modifications. Both sides insisted their development work was completely independent of each other.

Abstract

AM stereo closer: An AM stereo system now seems inevitable, and some authorities predict that the parameters of the chosen system could be available before the end of '78. The industry-wide National AM Stereo Radio Committee completed its field-test report as 1977 ended and submitted it to the FCC. The document covered three systems that were submitted for testing (by Belar, Magnavox and Motorola). Although the report made no recommendations, it noted that all three systems were capable of providing good stereo with fidelity close to that of FM, that they all used economically feasible transmitters and receivers, and required little more bandwidth than mono AM and were compatible with existing AM receivers. Two other AM stereo systems, not submitted to the committee for testing, have also been proposed to the FCC by Harris Corporation and by Kahn Communications.

FTC and video games: After a year's investigation, the Federal Trade Commission has tentatively cleared most video games of responsibility for causing injury to TV sets. Based on its inquiry, the FTC stated that "reasonable" use of video games should not damage TV screens. It added the warning, however, that prolonged use of some sets might imprint patterns on some screens, particularly on black-and-white sets. The FTC conceded it had received no consumer complaints, but some special
tests conducted by the National Bureau of Standards found that some games with high modulation settings could imprint a pattern on a monochrome set after 100 to 200 hours of use, but these games would not affect color sets until at least 350 hours of use.

The Commission recommended that consumers purchase games with low-modulation video signals, and those that create constantly changing patterns, colors and brightness levels when turned on but not being used in play. Players are urged to adjust the TV for a normal broadcast picture before turning the game on, and to turn the game off when not in use. The FCC said it would continue to monitor TV games-with special emphasis on the new programmable types-for possible imprint problems.

FM car radio costs: Why does the cheapest auto manufacturer's FM-AM radio cost around \$140 or \$150 when you can buy a portable FM-AM radio for $\$ 10$ or $\$ 15$? Why does a monophonic FM-AM car radio cost about twice as much as a standard AM car radio? The National Association of Broadcasters and the Corporation for Public Broadcasting admitted they didn't know the answers, but decided to find out whether there was any hanky-panky involved. Because both of these groups endorse legislation that requires that all radios sold in the U.S. contain both FM and AM bands, they were also interested in determining whether large-scale production could reduce FM car radio prices.

Booz, Allen Applied Research made the study for them. The final report specifically studied original-equipment radios that were supplied with three domestic and two import-band autos. The sticker price for the AM-only radios ran $\$ 66$ to $\$ 80$, while the low-end FM-AM radios for the same cars ran $\$ 135$ to $\$ 154$. It was discovered that the difference in price between the FM-AM radios and the AM radios didn't represent just profit, but, indeed, the FM section added substantially to the cost. The investigation determined that the markup on an FM-AM radio was about 15% better than that on a lowend AM radio, but that most of the price differential "is directly related to manufacturing cost."
The study didn't offer much hope for any substantial reductions in prices, even if AM-only radios suddenly were outlawed. Additional economies of scale in producing FM-AM radios "are not expected to be significant," said the report, "since AM-FM radio production is currently well over 6 million units per year."

The report did hold out the prospect of price reductions for mono FM-AM radios of from $\$ 15$ to $\$ 30$, or an average of 15%, if all radios were FM-AM. The logic was that FM-AM radios would then occupy the bottom of the line and would carry the bottom-of-the-line profit ratios currently experienced by AM-only radios. The eventual increased use of IC's should chop off another \$11 to \$30, the report forecast.

MODULE REPAIRS

TSC has been repairing private brand TV modules for over 3 years.
Expanded facilities now include modules for

- RCA
- GE
- ZENITH
- W.T.GRANT
-J.C.PENNEY
- WESTERN AUTO
- GAMBLES
as well as Zenith IF subchassis.

For free Price List and complete information write or phone; tSC HEADQUARTERS, BLOOMINGTON, IND. or anv of the TSC locations listed below.

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

TUNER REPAIRS

VHF OR UHF ANY TYPE. \qquad ..(U.S.A.) $\$ 10.95$ UHF/VHF COMBINATION. \qquad (U.S.A.) $\$ 17.95$

MAJOR PARTS AND SHIPPING CHARGED
AT COST

- FAST, EfFICIENT SERVICE AT ANY OF THE CONVENIENTLY LOCATED SERVICE CENTERS LISTED BELOW.
- ONLY ORIGINAL FACTORY PARTS USED
- All tuners ultrasonically cleaned, repaired and realigned.

EXACT REPLACEMENT

- Exact Replacement Tuners are available at a cost of \$14.95 and up.
(U.S.A. Oniy)
- Send in your original tuner for comparison purposes to any of the Centers listed below.

- UNIVERSAL REPLACEMENT TUNER \$13.95.......... (U.S A Only)
- This price buys you a complete new tuner built specifically for this purpose.
- All shafts have a maximum length of $10^{1 / 2^{\prime \prime}}$ which can be cut to $1^{1 / 2} 2^{\prime}$
- Specity heater type parallel and series 450 mA or $\mathbf{6 0 0} \mathrm{mA}$.

SAME DAY SERVICE - ONLY ORIGINAL FACTORY PARTS USED

If you want to branch out into the TV Tuner Repair Business write to the Bloomington Headquarters about a franchise

new etimely

RCA receives patent to manufacture amorphous silicon solar cells

Dr. David E. Carlson, head of the Photovoltaic Device Section of the RCA Corporation Energy Systems Research Laboratory, recently was granted a U.S. patent for "a semiconductor device having a body of amorphous silicon." Based on initial lab tests, it is believed that hydrogenated amorphous silicon soiar cells will be able to produce electricity at costs competitive with conventional power sources by the mid to late 1980's.

RCA envisions that amorphous silicon cells could be used by developing nations lacking more sophisticated power distribution capabilities. Solar cell power supplies could be adapted to small village areas that

AMORPHOUS SILICON SOLAR CELLS can be produced leas expensively than conventional crystalline cells, and are expected to be a costeffective anawer to future power requirements. Shown is Dr. David E. Carlson of RCA laboratories operating the glow-discharge equipment used in manufacturing hydrogenated amorphous silicon solar cells.
receive adequate sunlight but whose electricity requirements are modest. After the technology is improved, amorphous solar cells could be used by more developed nations, particularly where large amounts of DC power are required.

The chief advantage of amorphous silicon cells is their low cost. The material used (a sand derivative) is easily available; a glow-discharge fabrication process is used similar to that used in conventional fluorescent lights; and very thin layers of the material can be spread on large substrates of inexpensive glass or steel sheeting. And because the arrangement of amorphous silicon atoms is not as orderly as that in crystalline solar cells, the material is easier to grow and deposit on inexpensive substrates.

Although conventional silicon cells work more effectively, they are more expensive to fabricate than amorphous silicon cells. Crystalline silicon requires higher process-
ing temperatures $\left(1100^{\circ} \mathrm{C}\right)$, compared with the lower $300^{\circ} \mathrm{C}$ required by amorphous silicon cells. Crystalline cells are also thicker. Amorphous cells can be manufactured in 1-foot-square entities, compared with conventional cells that use 3 -inch-diameter wafers.

Last "Radio Central" antenna tower demolished

In 1921, President Harding threw a switch that officially opened "Radio Central," the world's most powerful radio station, and ushered in a colorful era in radio communications. In December, 1977, the last of the 12 giant antenna towers erected in Rocky Point, N.Y., for "Radio Central" by RCA came crashing down . . . the 410foot tower had become a dinosaur in an age of advanced communications technology.

The Rocky Point facility was the principal station that linked the U.S. with the rest of the world, transmitting messages to Europe, Central and South America. In the early 1920's, longwaves were necessary for such long-distance transmission, and the state-of-the-art mandated the erection of high steel towers to support the antenna structures. The Rocky Point facility had 12 such towers that stretched over a three-

ROCKY POINT, NY, FACILITY as it appeared in the early 1920's.
mile area on the eastern end of Long Island. Each tower was 410 feet high and weighed 150 tons.

When shortwave transmission rendered the towers obsolete, they were all taken down except for one, which was used for a while to support aviation beacon lights and high-frequency radio antennas. When this no longer became necessary, the order went out to demolish "the last of the giants," thus closing a chapter in communications history.

TI to have 16K EAROM by mid-1978

Texas Instruments has announced to its customers that it plans to make available in
sample quantities by mid-1978, the first American-made Famos-type 16K EAROM (Bectrically Alterable Read Only Memory). The device is reported to have an access time of 450 ns . The EAROM differs from an EPROM in that it can be erased and reprogrammed entirely by electrical signals, whereas an EPROM is erased by ultraviolet light.

Nippon Electric Company presently manufactures an 8 K EAROM, but it is not yet available in quantity; and General Instrument Corporation makes EAROM's in the nitride family-the fastest device having an access time of 600 ns . Intel is also reported to be working on an 8 K device that is erased by ultraviolet light.

The TI EAROM is organized as 2048 words by 8 bits and requires three power supplies-one each for read, write and erase.

Computerized system used in road testing

Performance-testing wheeled vehicles normally consists of someone sitting on the passenger side taking down data manually under sometimes nerve-racking and uncomfortable conditions.

Lamar Instruments has now produced an automated computerized road test system that eliminates the necessity for a datataker. It also reduces costs and simplifies data collection for single-seat vehicles such as motorcycles and race cars.

The Lamar road test system weighs only 25 lbs , and consists of a microcomputer, keyboard, cassette tape recorder for program inputs, a fifth wheel for feeding basic speed and distance data to the computer, and a printer. The LCD display reads out speed in mph , time in seconds, distance in feet and the engine's rpm.

COMPUTERIZED ROAD TEST SYSTEM from Lamar Instrumenta. Also shown is the optional VHS-THT tester consisting of two telescopes with photocells. As the vehicle passes the line of sight of each telescope, the computer is triggered. When used on a alalom run (a weaving course marked by pylons), the computer prints out the elapsed time to pass both photocells and the average speed.

A decided improvement over the old method of data gathering is provided by the printer, which produces a permanent continued on page 12

Chances are, someone you know just bought a professional $31 / 2$ digit DMM kit for less than ${ }^{570}$.

Thousands of people have already bought the Sabtronics Model 2000 ... for two main reasons. First, its incredible accuracy, range and professional features. And second, the incredibly low price of $\$ 69.95$

People everywhere appreciate this bench/portable multimeter. They depend on its basic DCV accuracy of $0.1 \% \pm 1$ digit, its readings to ± 1999 and its five functions giving 28 ranges, overload protection and 100% overrange.

The 2000 is automatically appealing to hobbyist and professional alike With automatic overrange indication, automatic polarity, even automatic zeroing.

Best of all, it's easy to assemble. All the parts you'll need, including the high-impact case, come right along with the clear, step-by-step instructions

The result is a professional quality $31 / 2$ digit DMM that you could have paid a lot more than $\$ 69.95$ for possibly receiving a lot less. But this one's from Sabtronics, specialists in digital technology

Maybe you should order yours before you turn the page.

sabtronicss

PO. E0x64683 Dallas, Texas 75206 (214) 369-7310

GUARANTEE:

Our guarantee to you; examine the 2000 DMM kit for 10 days. If you're not satisfied, return it unassembled for a full refund of purchase price.

SPECIFICATIONS:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1000 V
AC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1000 V
DC current in 6 ranges 100 nA to 2 A
AC current in 6 ranges 100 nA to 2 A
Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges
AC frequency response: 40 Hz to 50 KHz
9 mm ($36^{\prime \prime}$) LED display
Input impedance: $10 \mathrm{M} \Omega$
Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$
(203W $\times 165 \mathrm{D} \times 76 \mathrm{H} \mathrm{mm}$)

Only NRI

25"
 DIAGONAL
 designed

 Quadraphonic
course costing hundreds of dollars more. And only NRI courses in Color

Two home training schools give you a hobby-kit Color TV to assemble. Two others give you a commercial set right off the shelf. Neither was designed to teach you how to repair Color TV's. Only NRI invested the time and money to design equipment with learning in mind!
No other home training school gives you both a solid state Color TV and SQ" Quadraphonic Receiver complete with four speakers . . . all in one course. In fact, to even match this kind of thorough training at another school, you'd have to take an extra TV/Audio servicing let you learn on equipment designed specifically for training
It's the only way you can (1) get the feel of typical commercial circuitry, (2) learn bench techniques while building complete units from the 'ground' up, (3) perform over 35 "in-set" experiments during construction, and (4) end up with a $25^{\prime \prime}$ diagonal solid state Color TV with cabinet and a 4channel Audio Center.

NRI passes the savings on to you
NRI engineering eliminates the cost of buying from an outside source. We pay no salesman's commission. Students are enrolled by mail only. The savings are passed on to you in the form of low tuition fees, extras like the TV's console cabinet and the Quadraphonic System; professional test instruments like a $5^{\prime \prime}$ triggered sweep oscilloscope, CMOS digital frequency counter, and integrated circuit Color TV pattern generator. You can pay hundreds of dollars more for similar courses and not

[^1]
gives you this for-learning

 ...plus complete Audio Center.get a nickel's worth more in training and equipment.

More know-how per dollar

It all boils down to the quality of training you get for your money. In our 62-year history, more than a million students have come to NRI and we're fully approved for career training under the G.l. Bill. We know the right way to make home training pay dividends for you Some of those "right" things are bitesize lessons to ease understanding and speed learning ... personal consultation, and prompt grading of all tests ... a full-time staft of engineer/instructors to help if you need it . . . the right kind of kits and experiments to give you hands-on training... and fully protessional programs oriented to full or part-time career needs.

Also CB, Computer, \& Other Courses NRI offers not one, but five TV/Audio servicing courses so you can tailor your training to your budget. Or you can study other opportunity fields like Digital Computer Electronics, Citizens Band Radio, Communications, Aircraft or

\begin{abstract}

new etimely continued from page 6

record of reduced and formated data that can be compared on the spot with other data or printed directly on a report, thus eliminating many hours (sometimes days) eliminating many hours (sometimes days)
of reducing raw data to a comprehensible of reducing raw data to a comprehensible
state. state.
The basic system sells for $\$ 4995$, with all the necessary hardware and software for
training workshops for magnavox field-service personnel

editorial

Radio-Electronics.
Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Stec̣kler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, manaaina editor

letters

CHALLENGE TO CIRCULAR

 POLARIZATIONThe November 1977 article on the benefits of circular polarization (CP) as a means of exorcizing TV ghosts made interesting reading. However, the CP systems will not go unchallenged as sole contenders for ghost-free viewing.

A new LSI circuit, recently codeveloped by Toshiba and NHK and ultimately intended for installation in new receivers, has been proved capable of attenuating ghosts of up to $27 \mu \mathrm{~s}$ delay by a reduction of 30 dB . These figures compare quite favorably with CP transmitting/receiving antenna systems.

Basically, the circuit examines the ordinarily stable intervals between equalizing pulses in the composite video signal to determine the presence of ghost images that would show up here as smaller trailing pulses. Through multiplexing and analog memory techniques, voltages accurately derived from the amplitude and amount of delay of the ghost pulses are applied to vary the gain on each of 64 MOSFET
weighting circuits fed in parallel with a sample of the video signal. The outputs of the weighting circuits in turn feed 64 CCD delay lines, each having a predetermined delay time. The outputs of the delay lines are added and then applied as negative feedback to the composite video signal in a form having sufficient amplitude and delay to cancel the ghosts

Although practical mass fabrication of the discrete device is still many months off, its implementation could radically alter the outlook for widespread use of the CP system.
JAMES DAMON
Kincaid Electronics Corp
Alexandria, VA

BIORHYTHM CLOCK

Concerning the article on page 33 of the November 1977 issue ("Biorhythm Clock") many people feel that things seem to run in cycles. However, the concept that these cycles start at the exact moment of birth and hold constant throughout life is some-
what fantastic. For instance, the internal "clock" of a 30 -year-old adult would have "clock" of a 30-year-old adult would have to be absolutely accurate to within 0.0533%
for the shortest biorhythm to even predict for the shortest biorhythm to even predict
between peak and "switching" days at all. between peak and "switching" days at all.
Does the human Biorhythm Clock always Does the human Biorhythm Clock always start the same whether a child is born prematurely or late? Why does the clock always start at a neutral or "switching" point as implied by the chart? One would think that evolution would tend to all the biorhythms starting at a peak for maximum survival of an otherwise helpless infant. Might it not be possible that biorhythms start at conception? Or how about their even being inherited? It seems logical that such rhythms could synchronize with the mother's.
It is hard to imagine that illness, accidents, etc., have no effect on the Biorhythm Clock. How could the curves peak exactly as predicted no matter how badly one felt? Somehow, it all sounds like astrology
If one believes in biorhythms, it would seem much more logical to keep a diary of continued on page 22

(13) wire wrapping center

DIP IC INSERTION

 TOOL WITH PIN STRAIGHTENERMODEL MODEL
INS 1416

WIRE DISPENSER MODEL

PRE-CUT PRE-STRIPPED WIRE

WIRE WRAPPING KIT

$\$ 15.45$

$$
\begin{aligned}
& \text { gives you this } \\
& \text { for-learning } \\
& \text { Aus complete } \\
& \text { Audio Center. }
\end{aligned}
$$

get a nickel's worth more in training and equipment.

More know-how per dollar

It all boils down to the quality of training you get for your money. In our 62 -year history, more than a million students have come to NRI and we're fully approved for career training under the G.I. Bill. We know the right way to make home training pay dividends for you

Some of those 'right' things are bitesize lessons to ease understanding and speed learning ... personal consultation, and prompt grading of all tests ... a full-time staff of engineer/instructors to help if you need it . . . the right kind of kits and experiments to give you hands-on training ... and fully professional programs oriented to full or part-time career needs.

Also CB, Computer, \& Other Courses

NRI offers not one, but five TV/Audio servicing courses so you can tailor your training to your budget. Or you can study other opportunity fields like Digital Computer Electronics, Citizens Band Radio, Communications, Aircraft or

new etimely

record of reduced and formated data that can be compared on the spot with other data or printed directly on a report, thus eliminating many hours (sometimes days) of reducing raw data to a comprehensible state.

The basic system sells for $\$ 4995$, with all the necessary hardware and software for acceleration and braking tests. Additional software for aerodynamic drag, road horsepower and other vehicle handling and driver performance parameters are being developed. For further information, write Lamar Instruments, 1024 17th Street, Hermosa Beach, CA 90254.

LED's developed for daytime display

As everyone knows, conventional LED displays are difficult, if not impossible, to read in bright light or in the sun. Now, however, Hewlett-Packard has designed a discrete light-emitting diode that it claims can compete with LCD's, incandescent, gas discharge and other displays used for daytime applications.

The red and yellow 7-segment LED displays can be viewed in direct sunlight or in ambient lighting up to 10,000 foot-candles in intensity. To achieve that performance, a high-contrast gray package was developed along with high-efficiency chips having large, active pn junctions.

For direct viewing in sunlight, a commercially available acrylic neutral-density gray filter blocks out the sun's rays. The LED displays are expected to have many automotive, avionic, instrument and measurement applications.

Casio introduces compact new mini-calculators

At a recent media conference, Casio, Inc., manufacturers of electronic calculators, displayed three new compact, fully

CASIO LC-78 MINI-CARD CALCULATOR is no bigger than a credit card, yet offers four math functions, percent and memory.
functional mini-calculators: the model $L C$ 78, the model $M Q-2$ and the model $A Q$ 810.

The simplest, and smallest, calculator is

TRAINING WORKSHOPS FOR MAGNAVOX FIELD-SERVICE PERSONNEL

IN DECEMBER, MAGNAVOX held a series of four, week-long service workshops at its Fort Wayne division headquarters. These seminars were aimed at giving field service personnel "hands-on" experience with Magnavox's new videocassette recorder. Here, Howard Shoudy (rear), service training specialist, shows VCR circuitry to Jim Fritsche (left), Cleveland division and Bill Nurge (right), Dallas division. A January series is planned for dealers and independent service technicians at selected sites throughout the country.
the model LC-78(shown) which is about the size of an ordinary business card and weighs 1.4 ounces. It features an 8 -digit LCD readout, four basic math functions, plus percent and memory.

The model MQ-2 is slightly larger and weighs 1.6 ounces. Its capabilities include an 8-digit calculator and watch/calendar that displays the year, month, date and day; its time memory can show the exact time in two time zones, and its calculator includes four math functions and percent.

The model AQ-810 consists of a calculator complete with memory, percent and square root. This unit can perform time calculations. The timer function contains two "beep" reminders. The eight-digit readout displays hours, minutes, seconds and AM-PM. It is powered by two silver oxide batteries that give the user 3000 hours of continuous use.

Focusing system uses linear IC

Honeywell, Inc., has recently designed an automatic-focus system for cameras. This focusing system, called the Visitronic module, will doubtless find increasing applications in the camera field, particularly in view of the increasing demand for home videotape TV cameras and in automated equipment. The module will be incorpo-
rated into the Konica C35AF camera that will be introduced next spring.
The process resembles conventional split-image focusing. In the automaticfocus linear IC, two separate images are focused on a pair of photodiode sensor arrays placed at opposite ends of the body of the IC. Each array receives the image via a separate mirror-one mirror is fixed on one array, the other is linked to the camera lens and scans down the scene. At the point at which the output signals from the detector arrays nearly match, the camera lens moves into focus position.

For this match to take place, each sensor array is divided into four quadrants, each producing a separate current output signal that is fed into one of eight logarithmic amplifiers (which are sensitive to voltage mismatch). The amplifiers feed each signal to four absolute-value circuits, at which point each signal is fed to a summing circuit. The latter then inverts the signal so that when the two images match, a summing circuit output signal known as a correlation signal reaches a peak.

The correlation signal is fed into a peak detector, whose output signal then turns on a solenoid that moves the lens to focus at the best point. The entire process takes place in the instant it takes to press the. shutter button.

ELECTRONICS BODK CLUB

invites you to take this 1,626-page electronics circuits library for only

Only $\$ 1.99$ for all four! Regular List

ELECTROWC CIRCUIT DESIGN HANDBOOK - 4th Edition

This new fourth edition contains 639 proven circuits for all types of functions, selected from thousands on the basis of or iginality and practical application. This detailed compilation of practical design data is the answer to the need for an organized gathering of proven circuits that can easily serve as stepping stones to almost any kind of circuit you might want to build... adapted or modified to suit your own specific needs. Here is a GiANT of a book-an $81 / 2 \times 11^{\prime \prime}$ hardbound volume of 416 pages, with 19 BIG sections of tried and tested circuits, which will serve as "imagination triggers" for anyone who has an interest in electronic circuit design and construction. 416 pps., $81 / 2 \times 11^{\prime \prime} .966$ ill. List Price $\$ 17.95$.

MASTER HANDBOOK OF HAM RADIO CIRCUITS

A rich collection-a super collection - of over 100 practical, unique, tested dircuits created by hams for hams! Contains some of the most usable, most ingenious ham radio circuits around - all have been built and tested by hams - some are brand new, some are oldies but goodies that are well worth remembering, and some are sosped-up versions of the tried and true-but they're all useful...to the novice operator and to the extra-class licensee. There are circuits for voice communications, for CW, for radioteletype, for SSTV...for just about anything and everything you want. If there's a new circuit that hams are hooked on, if thees's an innovation that operators are excited about, chances are it's in this book! 392 pDs., 301 illus. List Price $\$ 12.95$.

moege guide to modern electronic circuits

Composed entirely of electronic circuits and descriptions of how they work and how they sometimes fail, including essential theory, troubleshooting tips, signal flow info, and other data designed to help you better understand and more quickly repair the great majority of those tricky electronic circuits seen every day. The material is categorized according to the equipment in which you're most apt to find the circuits described. And an extraordinarity large Index lists and cross-references each circuit, subcircuit, circuit element, and carcuit function so you can find it in seconds! 216 pps., 92 illus. List Price \$7.95.

master handbook of 1001 practical electronic circuits

 Here are IC and transistor circuits for practically anything and everything - with ALI the data needed to put them to work. It's the ideal schematic sourcebook for all active technicians, engineers, experimenters, amateurs - for anyone who must occasionally or regularly construct or adapt electronic circuits for any purpose whatsoever. Each circuit diagram has every component carefully labeled, and every schematic is accompanied by all the into you naed to construct the circuit for use in your own individual application. It there are coils to be wound, you'll find full and complete coil-winding detaits right there on the spot. If special parts are required, you won't have to invest a lot of time and effort before the fact, for it's all there before you in condensed captions. The circuits included are completely up-to-date, and have been designed, built, tested, reworked as necessary, and perfected. You'll find any circuit you're ever likety to need in the pages of this rich volume. Includes an ultracomptete 22 page cross-reference index so you can quickly find the circuit you need. The schematics are classified according to general application. If you're in the business of servicing/ repairing commercially built electronic equipment, you're going to especially appreciate the comprehensive Appendix of IC substitutions, which includes base diagrams for most popular ICs, and gives you all the info you need to adapt the IC packages of one manufactures to the circuit applications of another. 602 pps., over 1250 illus. List Price $\$ 12.95$.Price $\$ 51.80$ Top-Quality Binding Contains Thousands of Circuits Over 2,600
illustrations

\checkmarkContains over 600,000 words

with a Trial Membership in the Book Club that Saves you 25% to 75% on a wide selection of electronics books

et us send you these four practical, timeL and-money-saving books as part of an unusual offer of a Trial Membership in Electronics Book Club.

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics.

These handsome hardbound books are indicative of the many other fine offerings made to Members... important books to read and keep...volumes with your specialized interests in mind.

Whatever your interest in electronicscomputers and microprocessors, radio and TV servicing, audio and hi-fi, industrial electronics, communications, broadcasting, electronics as a hobby-you will find Electronics Book Club will help you get the job you want, keep it, improve it or make your leisure hours more enjoyable. With the Club providing you with top quality books, you may broaden your knowledge and skills to build your income and increase your enjoyment of electronics, too.

This Special Offer is just a sample of the help

Facts About Club Membership

- The 4 introductory books carry a publishers retall price of - The 4 introductory books carry a publishers retal price of
$\$ 51.80$. They are yours for only $\$ 199$ (plus postage and handingi with your Jrial Membership
- You will receive the Club News describing the current Selection. Alternates and other otterings. every 4 weeks (13 times a year)
- If you want the Selection. do nothing it will be sent to you automatically if you do not wish to receive the Selection. or if you want to order one of the many Atternates oftered. you simply give instructions on the reply form (and in the envelope) provided. and return it to us by the date spectited This date allows you at least 10 days in which to return the form it. because of late mall delivery, you do not have 10 days to make a decision and so receive an unwanted Selection, you may return it at Club expense.
- Personal service for your account-no computers used! - Io complete your Irial Membership, you need buy onty four additionai monthty selections of alternates during ine next 12 months You may cancel your Membership any lime atter. you purchase these four books
- All books-including the Introductory Otter-are tully returnable atter 10 days if you re not completely satistied. - All books are oftered al low Member prices plus a small postage and handling charge.
- Continuing Bonus If you continue after this Trial Membership. you will earn a Dividend Certificate for every book you purchase. Three Certificates, plus payment of the nominal sum of $\$ 1.99$ will entite you to a valuable Book Dividend of your ctioce which you may choose from a list provided Members.
and generous savings the Club offers you. For here is a Club devoted exclusively to seeking out only those titles of direct interest to you. Members are annually offered over 50 authoritative books on all phases of electronics.

This extraordinary offer is intended to prove to you, through your own experience, that these very real advantages can be yours... that it is possible to keep up with the literature published in your areas of interest... and to save substantially while so doing. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway... without the savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 4 -volume Electronics Circuits Library for 10 -day inspection. YOU NEED SEND NO MONEY! If you are not delighted, return them within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pz 17214

editorial

Report From The Winter CES

Having just returned from the 1978 Winter Consumer Electronics Show, I should be brimming with news of the wonderful new consumer electronics products to appear this year. But I was disappointed. There were lots of electronics at what turned out to be the largest show of its kind, but very little that was really new.

Video tape recorders are a boom market. More manufacturers are announcing new models and fantastic sales. Projection TV is another boom area, but the price tag keeps the total numbers down. However, Panasonic has joined this race and several other major brands are expected to climb on the bandwagon shortly.

The home computer is alive and well. Even more new units are appearing and each has its own built-in attractions. However, there is one point that seems to be escaping some buyers. If you want a TV game, don't buy a home computer. It's true that you can play some rather elaborate games with a computer, but programmable TV games remain under $\$ 200$ while home computers start at \$595.

There were no flat-screen TV's; no 3-D TV's; very little 4-channel stereo; and no startling breakthroughs. There were smaller calculators; cheaper calculators; more new TV manufacturers; lots of new companies offering me-too products; and hundreds of add-on telephone products.

To summarize, the electronics business is alive and well. Perhaps exciting, really new products will appear this June at the Summer Consumer Electronics Show. Meanwhile, the manufacturers and dealers seem to believe that they are going to sell a bundle of consumer electronics this year, and I think that they are right.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steçkler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor

Sonia Greenbaum, copy editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Michael Wilson
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen

The Ralph Bergen Co.
6319 N. Central Ave
Chicago, IL 60646
(312) 792-3646

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blvd., 4th Floor.
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Pubhishers Representative Co., 214-387-2424

LEARN Microprocessor Operation, Interfacing and Programming with

The New
 HEATHKIT

 Microprocessor Course!Explore the fascinating field of computer technology!

Here's the newest, easiest and lowest-cost self-instruction microprocessor course ever! What's more, it's the fastest way to really learn about this fascinating field with applications in every phase of our everyday lives. From automotive diagnostics to the microwave oven in the kitchen to the computers that are taking on more jobs in the home, schools, government, business and industry!
Working with the popular 6800 microprocessor, you'll explore this exciting field in 3 easy steps! In step 1, using proven self-instruction text materials, you'll learn about micro-computer basics, number systems and codes, computer arithmetic, programming, 6800 capabilities and interfacing and more. In step 2, with the aid of audio visuals included, you'll go deeper into programming, designing with microprocessors and semiconductor memories. Then, in step 3, you'll actually perform 19 "hands on" experiments with the optional trainer designed to reinforce the theory you've mastered to that point!

The ET-3400 Trainer kit, designed to accompany your course, features the popular 6800 microprocessor. It is actually a miniature digital computer in itself, complete with a: 1K ROM monitor program; 6 digit LED display for address and data readout; 17-key hexadecimal keyboard for entering programs, data and control; 256 bytes of RAM (expandable to 512 bytes with the chips supplied in the course); breadboarding socket; 8 buffered LED's for display of logic states; 8 SPST switches for binary input plus an on-board power supply with $+5,+12$ and -12 volt outputs.

The Course comes complete with 62 electronic components, including a 6280 PIA, two 2112 RAM's, a 1406 digital-to-analog converter, 741 and 301 op amps and more. Includes audio visual aids such as an audio cassette, colorful flip charts and programmed learning text material in two deluxe permanent binders.

Complete the optional exam and receive a Certificate of Achievement and 8.0 Continuing Education Units (CEU's) - a nationally accepted means of recognizing participation in non-credit adult education. (Note: Microprocessor Course requires completion of Digital Techniques Course or equivalent knowledge.)

FREE
 SOLDERING IRON!

Included with your Course at no exira cost - this pencil-style soldering iron that's perfect for printed circuit work - a $\$ 7.95$ comparable value - yours FREE!

8
 MONEY-BACK GUARANTEE!

If you are not 100% satisfied with your Heathkit Course, we will refund the full purchase price of the course text material, less trainer.

NEED DIGITAL TECHNIQUES TRAINING?

Comprehensive Digital Techniques Course - the background you need to understand computer and modern electronics technology! Digital fundamentals, semi-conductor devices for digital applications. Boolean algebra, flip-flops and registers, sequential and combinational logic circuits, digital design and an introduction to computers and more! The course includes programmed instruction text, audio-visual aids, parts for experiments and more.
Digital Design Experimenter/Trainer lets you perform all the experiments in your course, then develop and test your own projects.
Features solderless breadboard sockets, 4 binary data switches, 2 "no bounce" switches to pulse logic circuits, 3 -frequency pulse clock generators, 4 LED's for visual indication of logic states plus 3 regulated power supplies. Upon completion of the optional final exam, you receive a Certificate of Achievement and 4.0 Continuing Education Units.

ORDER EES-3201 (Course and Trainer Kit)
$\$ 119^{95}$
(Add $\$ 3.64$ shipping and handling)
SAVE TIME--ORDER BY PHONE Call (616) 982-3411

ATH	
Schlumberge	Heath Company, Dept. 020-392 Benton Harbor, Michigan 49022
Gentlemen: Please send me the item(s) checked below and include my FREE Soldering Iron.	
\square Microprocessor Course and Trainer (ETS-3400) \$269.95 ($+\$ 3.06$ shipping \& handling)	
\square Microprocessor Course only (EE-3401) $\$ 89.95$ (+ \$2.23 shipping \& handling)	
\square Microprocessor Trainer kit only (ET-3400) \$189.95 ($+\$ 1.69$ shipping \& handling)	
\square Digital Techniques Course and Trainer kit	
	\$3.64 shipping \& handling)

letters

CHALLENGE TO CIRCULAR POLARIZATION

The November 1977 article on the benefits of circular polarization (CP) as a means of exorcizing TV ghosts made interesting reading. However, the CP systems will not go unchallenged as sole contenders for ghost-free viewing.

A new LSI circuit, recently codeveloped by Toshiba and NHK and ultimately intended for installation in new receivers, has been proved capable of attenuating ghosts of up to $27 \mu \mathrm{~s}$ delay by a reduction of 30 dB . These figures compare quite favorably with CP transmitting/receiving antenna systems.

Basically, the circuit examines the ordinarily stable intervals between equalizing pulses in the composite video signal to determine the presence of ghost images that would show up here as smaller trailing pulses. Through multiplexing and analog memory techniques, voltages accurately derived from the amplitude and amount of delay of the ghost pulses are applied to vary the gain on each of 64 MOSFET
weighting circuits fed in parallel with a sample of the video signal. The outputs of the weighting circuits in turn feed 64 CCD delay lines, each having a predetermined delay time. The outputs of the delay lines are added and then applied as negative feedback to the composite video signal in a form having sufficient amplitude and delay to cancel the ghosts.

Although practical mass fabrication of the discrete device is still many months off, its implementation could radically alter the outlook for widespread use of the CP system.
JAMES DAMON
Kincaid Electronics Corp.
Alexandria, VA

BIORHYTHM CLOCK

Concerning the article on page 33 of the November 1977 issue ("Biorhythm Clock") many people feel that things seem to run in cycles. However, the concept that these cycles start at the exact moment of birth and hold constant throughout life is some-
what fantastic. For instance, the internal "clock" of a 30-year-old adult would have to be absolutely accurate to within 0.0533% for the shortest biorhythm to even predict between peak and "switching" days at all.

Does the human Biorhythm Clock always start the same whether a child is born prematurely or late? Why does the clock always start at a neutral or "switching" point as implied by the chart? One would think that evolution would tend to all the biorhythms starting at a peak for maximum survival of an otherwise helpless infant. Might it not be possible that biorhythms start at conception? Or how about their even being inherited? It seems logical that such rhythms could synchronize with the mother's.

It is hard to imagine that illness, accidents, etc., have no effect on the Biorhythm Clock. How could the curves peak exactly as predicted no matter how badly one felt? Somehow, it all sounds like astrology.

If one believes in biorhythms, it would seem much more logical to keep a diary of continued on page 22

(2) wire wrapping center σ^{2}

WIRE DISPENSER
MODEL
 \$3.49*

WIRE WRAPPING KIT
PRE-CUT PRE-STRIPPED WIRE

*MINIMUM ORDER $\$ 25.00$. SHIPPING CHARGE $\$ 1.00$, N.Y. GITY AND STATE RESIDENTS ADD TAX

The most important piece of electronic equipment you'll ever own.

Yours to examine FREE for 15 days.

includes all the Latest

 TERMINOLOGY FOR SUCH FIELDS AS:- Communications
- Microelectronics
- Fiberoptics
- Reliability
- Computers
- Medical

Electronics

LOOK at all the valuable "extras" this one handy reference volume contains:

- Hundreds of easy-to-grasp ILLUSTRATIONS AND DIAGRAMS - positioned with the terms they depict - and clearly captioned for quick understanding.
- CROSS-REFERENCED to aid you in locating those terms which you might look for in more than one place. Example: When looking up "Esaki diode" you'll be referred to "tunnel diode."
- Helpful PRONUNCIATION GUIDE of more than 1100 often-mispronounced electronic terms showing syllabic division as well as the newest, most-accepted pronunciation of each term.
- A newly-revised list of SEMI-CONDUCTOR SYMBOLS AND ABBREVIATIONS for use in semiconductor device data sheets and specifications
- Clearly-illustrated SCHEMATIC SYMBOLS
- GREEK ALPHABET. A special table lists the letters along with technical terms for which these letters are used as symbols (Name and Designates).
819 Pages of crystal-clear definitions. Over 18,500 terms defined and alphabetically arranged. Size: 5-1/2 $\times 8-1 / 2$.

- Authoritative - Comprehensive - Completely up-to-date

BE OUR GUEST. Examine the

 MODERN DICTIONARY OF ELECTRONICS free for 15 days. Discover why book reviewers and some of the most demanding electronics experts around are calling it the most complete, up-to-date, authoritative dictionary ever compiled for this exacting field. And get a FREE $\$ 4.95$ bonus book.Since rolling off the presses this giant reference is already being hailed as THE dictionary of the industry by thousands of electronic engineers, technicians, experimenters and hobbyists from coast to coast. So don't be surprised if it becomes one of the
most dogeared, coffee-stained books on your reference shelf.

Users tell us that one of the things that sets it head and shoulders above other electronic dictionaries is all the valuable extra information it contains. But see for yourself. Send for the modern dictionary OF ELECTRONICS today. If you don't agree it's one of the most important pieces of electronic "equipment" you could own, simply return it within 15 days and owe nothing. And no matter what you decide, you'll get a free copy of "How to Read Schematic Diagrams" to keep... as our "thank you" gift.

FREE TRIAL COUPON

How to Read Schematic Diagrams" A $\$ 4.95$ value... keep it-even if you decide to return the dictionary. SAVE postage and handling costs. Full payment enclosed (plus tax where applicable). 15-day retum privilege still applies.
(Prices subject to change without notice)

Yes. Please rush me the MODERN DICTIONARY OF ELECTRONICS (\#21488*) for my free trial. I understand if not completely satisfied I may return it within 15 days and owe nothing Otherwise, it's mine to keep for only $\$ 18.95$ plus postage and handling and local taxes (where applicable).

Name

Address
City
State \quad Zip

DESIGNING WITH TTL INTEGRATED
CIRCUITS. By IC Applications Staff of Texas Instruments, Inc. 322 pp., 399 illus. For general, technical, and non-engineer managers all the information you need to get the most out of TTL devices-their design, economics, features, performance, applications. $637 / 458$ Pub. Pr., $\$ 28.50$ Club Pr., $\$ 19.50$
J. B. Peatman. 540 pp., over 400 illus. You'll now do both your day-to-day as well as your best, most creative design work around a microcomputer. This 100% specific how-to book makes it simpler than you've imagined and will open up a whole new world of "smart" instruments design for you!
491/380 Pub. Pr., \$21.00 Club Pr., \$16.50

INTEGRATED CIRCUITS AND

SEMICONDUCTOR DEVICES. By G. J Deboo and C. N. Burrous. 2nd Ed. 479 pp., illus. Expand your career quickly and easily! All you need is your high school algebra and this widely acclaimed text to give you a firm working knowledge of the new circuits and devices and their new uses
$162 / 468$ Pub. Pr. $\$ 16.95$ Club Pr., $\$ 12.95$

RAPID PRACTICAL DESIGNS OF AC-

TIVE FILTERS. By D. E. Johnson and J. L Hilburn 264 pp., illus in addition to all the designs you found in the authors' earlier Manual of Active Filter Design, you have here lots of higher-order designs-from infinite gain MFB to 3 rd- and 5 th-through-8th-order designs! Each chapter is self-contained.
767/556 Pub. Pr., \$18.00 Club Pr., \$12.95

DICTIONARY OF SCIENTIFIC \& TECHNICAL TERMS. McGran-Hill 452/571 Pub. Pr., $\$ 39.50$ Club Pi., $\$ 29.50$

CALCULUS FOR ELECTRONICS. 2nd Ed. By A Richmond.
$523 / 517$
Pub. Fr
man S13.95 Club Pr., $\$ 9.95$

OPERATIONAL AMPLIFIERS: Theory \& Practice. Byd K Roberge
$772 / 371 \quad$ Pub. Pr., $\$ 1.95$ Club Pr.. $\$ 16.95$

SWITCHGEAR AND CONTROL HANDEOOK. By R. W. Smeaton 584/397 Pub. Pr.. $\$ 32.50$ Club Pr., $\$ 24.95$

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS. 10 th Ed. By D. J. Fink and J. M. Car 209/731 Pub. Pr.. $\$ 44.50$ Club Plf., $\$ 28.50$

THE POTENTIOMETER HANDBOOK. By Bourns inc. 066/906 Pub. Pr., \$21.50 Club Pr., \$16.95

BUCHSBAUM'S COMPLETE HANDBOOK OF PRACTICAL ELECTRONIC REFERENCE DATA. By W. J Buchsbaum.
770/271 Pub. Pr., $\$ 16.95$ Club Pr., $\$ 13.50$
OPTOELECTRONICS APPLICATIONS
MANUAL. By Hewlett-Packard.
286/051 Pub. Pr., $\$ 19.25 \quad$ Club Pr., $\$ 14.50$
STANDARD HANDBOOK OF ENGINEERING CALCULATIONS. T. G. Hicks
$\mathbf{2 8 7 / 3 4 1}$ Pub. Pr., $\$ 24.95$ Club Pr., $\$ 17.95$

A USER'S HANDBOOK OF D/A and A/D CON VERTERS. By E. R. Hnatek
767/149 Pub. Pr., $\$ 24.95$ Club Pr., $\$ 18.50$

offer to new members of the and Control Engineers' Book Club

ELECTRONICS ENGINEER'S HAND-

BOOK. Editor-in-Chief, D. G. Fink. 2,104 pp 2,026 illus. Huge in every sense, this instantreference volume gives you every latest essential in the field, 2.100 formulas and equations, a 2.500 -item bibliography, and every illustration you need to clarify all of modern electronics! 209/804 Pub. Pr., $\$ 45.50 \quad$ Club Pr., $\$ 33.50$

CIRCUITS. By D. F. Tuttle, Jr. 820 pp., 1,148 Illus. It's all here-complete coverage of circuits, what they are, their true nature, and how to analyze them! Topics range from RD and RLC circuits to networks and Laplace transformations
655/91X Pub. Pr., \$21.50 Club Pr. . $\$ 16.95$

PROFESSIONAL ENGINEERS' EXAM-

 INATION QUESTIONS AND ANSWERS.By W. S. Latonde, Jr., and W. J. Stack-Staikidis. 3rd Ed. 601 pp., 276 illus. Over 500 questions and complete answers-suitable for all states-prepare you for passing your exams for the E.I.T. certificate and your P.E license $360 / 936$ Pub. Pr., $\$ 16.50 \quad$ Club Pr.. $\$ 13.75$

APPLICATIONS OF OPERATIONAL

AMPLIFIERS. By J. G. Graeme. 256 pp.. illus. Written with your needs as a designer in mind, this guide on new op-amp technology and its applications was prepared by the Burr-Brown people. This alone would make it one of your most valuable working aids!
238/901 Pub. Pr. 519.50 Club Pr. $\$ 11.95$

HANDBOOK FOR ELECTRONICS EN-

GINEERING TECHNICIANS. By M. Kaufman and A. H. Seidman. 520 po., 695 illus. Rely on this technician's godsend for all your work with analog and digital integrated and discrete circuits. Here are the stift brush-up you want and the solutions to every possible problem
334/013 Pub. Pr. . $\$ 21.50$ Club Pr.. $\$ 15.95$

APPLYING MICROPROCESSORS. Edited by L. Altman and S.E Scrupski. 200 pp., $81 / 2 \mathrm{x}$ if, illus. Keep yourself constantly abreast with the new hardware, the new software. and the new applications with this Electronics magazine book that advances your technology be yond the previous book Microprocessors You're now into second and third generation devices and their almost unlimited uses 191/603 Pub. Pr., \$15.00 Club Pr.. $\$ 12.50$

DIGITAL INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER AND OP-

 TOELECTRONIC CIRCUIT DESIGN.Edited by B. Norris 206 pp., 400 illus. Having this vast amount of case-tested data, proven shortcuts, worked-out circuit designs, and circuit diagrams handy saves you valuable time for your other, more vital, areas of creative de-sign-and cuts down costs in all areas! 637/539 Pub. Pr., $\$ 16.50$ Club Pr., $\$ 12.50$

ELECTRONICS DESIGNERS' HAND-

BOOK. Edited by L.J. Giacoletto. 2nd Ed $2,344 \rho \rho ., 1,686$ illus. Now doubled in size and with 90% of its material new, this famous classic (first edition by Landee, Davis, Albrecht) has been thoroughly revised and updated to give you not only the how and the why of all your design work but also the how much of every design step you take!
231/494 Pub. Pr., $\$ 47.50$ Club Pr., $\$ 37.50$

HANDBOOK OF ENGINEERING FUN-

DAMENTALS. By a team oi specialists headed by O.W. Eshbach (deceased) and M. Souders. 3rd Ed. 1.562 pp., illus. Yes, this is the famous Eshbach classic, ready in its present edition to save you untold time and work by giving you the latest facts, techniques, drawings, and data needed to solve problems faster than ever!
769/842 Pub. Pr., \$31.50 Club Pr. $\$ 24.95$

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB saves you both time and money!

Here is a professional book club designed to meet your on-the-job engineering needs by providing practical books in your field on a regular basis at below publisher prices. If you're missing out on important technical literature-if today's high cost of reading curbs the growth of your library-here's the solution to your problem.

The Electronics and Control Engineers' Book Club was organized for you. to provide an economical reading program that cannot fail to be of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editors and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections.

How the club operates: Every month you receive free of charge The Electronics and Control Engineers' Book Club Bulletin. This announces and describes the Club's featured book of the month as well as alternate selections available at special members' prices. If you want to examine the Club's feature of the month. you do nothing. If you prefer one of the alternate selections-or if you want no book at all-you notify the Club by returning the card enclosed with each Bulletin.

As a Club member. you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually. there will surely be at least four you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

Special $\$ 1.89$ bonus book comes to you with your first club selection

MAIL COUPON TODAY

ELECTFONICS AND CONTROL ENGINEERS' BOOK CLUB PO Bor 582 Princeten Road, Hightstown. New Jersey 08520

Please erroll me as a member and send me the two books indicated. I am to receive the bonus book at the introductory price of $\$ 1.89$ plus my first selection, plus tax, postage and handling. If not completely satisfier, I may return the books within 10 days and request that my membership be cancelled If I keep the books. I apree to take a minimum of three additional books during the next two years at special Club prices (guaranteed 15\% dis count, often more), I will receive the Club Bulletin 13 times a year I want to examine the featured selection, Ineed take no action. will be shipped automatically. if, however, I want an alternate selection-or no book at all-I simply notify the Club by returning the convenient card always enclosed. I will always have a minimum of ten days in which to return the card and you will credit my accounl fully, includng postage, it this is not the case. Mem bership in the Club is continuous tut cancellable by me at any time after the foup-book purchase requirement has been flled This order sublect to atceptance by McGraw-Hill Orders from outside the continental U.S. must be prepaid. All prices sublect to change without notice Offer good for new members only

WRITE BELOW

Code No. of $\$ 1.89$ boom
Code \# of 1 st selection

NAME
ADDRESS
CITY
STATE \qquad 2IP
EXTRA SRVINGS: Remit in full with your order, plus any local and EXTRA SRVINGS: Remitinfull will wall regular postage and han dling charges

E33342
 STAPLE GUNS CUT WIRE \& CABLE installation costs
without cutting into insulation! SAFE: Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

No. T-25-Fits wires up to $1 / 4^{\prime \prime}$ in diameter.
Same basic construction and fastens same wires as No. T-18.
Also used for RADIANT HEAT WIRE

Uses T-25 staples with $1 / 4^{\prime \prime}$ round crown in $9 / 32^{\prime \prime}$ $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$ and $9 / 16^{\prime \prime}$ leg lengths

NEW! Intermediate No. T-37-Fits wires and cables up to $5 / 16^{\prime \prime}$ in diameter. ame basic construction as Nos. T. 18 \& T- 25

Also used for

CATV and DRIVE RINGS in stringing wires.

Uses T. 37 staples
with $5 / 16^{\prime \prime}$ round crown in $3.8^{\prime \prime}$. $1 / 2^{\prime \prime}$ and $9 / 16^{\prime \prime}$ leg lengths.

No. T-75-Fits wires and cables
up to $1 / 2^{\prime \prime}$ in diameter.
RADIANT HEAT
CABLE,
UF CABLE, WIRE CONDÜT COPPER TUBING or any non-metalic sheathed cable.
Also used as DRIVE RINGS in stringing wires.
Uses 7.75 staples with $1 / 2^{\prime \prime}$ flat crown in $9 / 16^{\prime \prime}$, $5 / 8^{\prime \prime}$ and $7 / 8^{\prime \prime}$ leg lengths.

LETTERS

continued from page 16
one's feelings, moments of efficiency, successes, etc., for several months. This would tend to show where the real peaks occurred. Then the clock could be set on a more rational basis. After all, we are all a little different. It would be truly amazing if the most consistent human trait (within a fraction of a percent) would be these Biorhythm Clock cycles

PETER LEFFERTS

San Martin, CA

Your lefter indicates a general lack of enthusiasm for the biorhythm concept, which may be due to your not having been able to investigate the overwhelming amount of material on the subject. Of the 14 books I've run across, 1 recommend two. They are: Is This Your Day? by George S. Thommen (Avon paperback) and The Complete Book of Biorhythm Life Cycles by Dr. Robert E. Smith (Ardvark Publishers, New York). Both books are available at most bookstores.

Your comment regarding the extreme accuracy implied in life cycles that start at birth and stay on-schedule throughout one's lifetime is not so "fantastic" when one considers the "accuracy" of the universe, solar system, earth rotation, seasons, endocryne rhythms, etc. The swallows leave and come back to Capistrano on definite days each year. With the overwhelming influence of "rhythms," or cycles, on everything from the infinity of the universe to the tiny atom, it would certainly be surprising if all living things did not exhibit similar effects.

It was not the intention of the article to prove the existence of biorhythm cycles, just to provide an electronic device to display this information without constant calculation or reference to tables.
FRED BLECHMAN
l'll go along with the last paragraph in your letter and acknowledge that you have an interesting electronic project . . . lots of other applications too. Furthermore, I won't credit you with or complain about your "inventing" biorhythms.

Just for discussion, let's consider that most of the cycles in birds, animals, plants, etc., are not tied to the DAY they are born (if the swallows at Capistrano came back based on a rhythm starting the day they were born, the return would be spaced but over a month or so and wouldn't excite anyone. We have those very same swallows building nests in the eaves of our houses. They come back two to three days after Capistrano . . . but their family-raising is nowhere near that predictable!) According to the American Scientist (and other sources), such cycles are "corrected' by the actual daily or seasonal cycles.

Now, how about human cycles? There is no way of predicting the day five years from now when a female will start her "monthly" cycle. Emotion, health, etc., have a big effect. The age of maturity is not predictable. The nine-month gestation period is rather erratic.

Here's another thought. Many times "predictions" tend to become self-fulfilling. If a fortune teller, "the stars," or a comput-
er says today is an individual's good day, often he gets hyped up . . . and sure enough, he has a good day. (This has been proven with experiments involving teachers' attitudes towards their students.)

But

 fortune tellers (for obvious reasons) emphasize the good possibilities.It is true I did not research the literature on biorhythms, but commonsense has some place, too.
PETER LEFFERTS
San Martin, CA

Abstract

\section*{AMPAK ERROR}

Thank you for featuring Pacer's Ampak in the December 1977 issue ("New Products''). But apparently an error was made in setting up the feature. The first line reads: "measures $1-8 \mathrm{amps}$ DC." However, this should read "1-800 amps DC." MICHAEL HUBER General Manager, Pacer Industries, Inc. Chippewa Falls, WI

0000PS!

There are errors in the schematic of the digital capacitance meter on page 38 of the December 1977 issue. Capacitor C3 is . 001 $\mu \mathrm{F}$ as in the parts list; not $.01 \mu \mathrm{~F}$. The number 6 pins of displays DIS1, DIS3 and DIS4 should go to R42, R43 and R44, respectively, instead of to the points indicated in the diagram.

BRICKLAYING TECHNIQUES

Walter Cardwell's IC bricklaying techniques (December 1977 issue) lend themselves particularly well to an application no one mentioned in the articlecomputer memory construction.

Memory IC's are usually connected to each other in parallel, except for the input, the output and, sometimes, the chip select pins. To make a $1 \mathrm{~K} \times 8$ memory using eight 2102 's, for example, trim only the input and output pins, as in the article. Stack the IC's one on top of the other, and solder the common leads together

For nK $\times 8$, trim the IC select pin on the bottom of each $1 \mathrm{~K} \times 8$ block, and stack the blocks. If you must have sockets, you can use Molex pins soldered to each IC to hold the one above it. However, this technique will not be as sturdy as direct soldering, and the stacks will be taller. On the plus side, this method allows easier cooling. Of course, the heat-sinking methods described in the article should be used where necessary. For memory expansion, Mr. Cardwell's method saves the cost of a rather expensive PC board.
EVERETT B. OGDEN
Delmar, NY

VIDEO MODULATOR

Please advise any of your readers who plan on building the video modulator (Ra-dio-Electronics, August, 1977, page 33) that the "complete" kit of parts does not include the printed circuit board for the switch nor the bottom RF shield.

In addition, Delta Electronics also charges postage and handling. This is not mentioned in the parts list on page 34 ELMER P. VANDENBURGH
La Grange, IL

A dollar says Sound Guard ${ }^{\text { }}$ keeps your Bach, Blues and Boogie perfectly preserved.

equipment reports

Motorola Educator II Microcomputer Kit

CIRCLE 101 ON FREE INFORMATION CARD
THE MOTOROLA EDUCATOR II HEP KIT IS AN M6800 microcomputer system learning tool designed with future expansion in mind. Data is entered through eight toggle switches, and the system is controlled by three additional center-off, spring-loaded toggle switches. The binary data-output display consists of cight discrete LED's. A ninth LED is extinguished when the processor is running. To power the unit an external 5 -volt, 1-amp supply such as
the Motorola $\mathrm{HK} / 00 /$ is required. A beginner should start out by confronting data and instructions on a bit-by-bit basis with the toggle switches. As he advances, the computerist will seek more convenient modes of operation, and can add more sophisticated keyboard and display systems through two 44-pin edge connectors

The Educator II microcomputer board uses a HEP version of the M6800 (HEP C4801), two IC's with 512 words of RAM that contain utility programs, 128 words of user RAM and a C4821 peripheral interface adapter (PIA) with 16 inputs and outputs, and some handshaking leads.

The M6800 is a popular microprocessor with a versatile architecture that uses two 8-bit accumulators, a 16 -bit index register, a 16 -bit program counter, a 16 -bit stack pointer and an 8-bit condition code register (CCR).

The ROM firmware, DBUG, has routines for loading, reading and running user programs. It also contains a cassette tape routine. This produces an audio output and deposits specified portions of RAM into an external cassette tape recorder. A complementary read routine is intelligent enough to search a tape
for a file number indicated by the data-switch settings.

The M6800 microprocessor recognizes the software interrupt instruction (SWI) code 3 F . When the microprocessor encounters this instruction, a vectored jump to DBUG saves the status of the accumulators, index register, program counter and CCR in RAM locations 00 F 4 through 00 FA . This is an invaluable troubleshooting aid. You can, by inserting SWI instructions in crucial locations in the program, interrupt program execution at those places so that you can inspect the registers and memory contents.

The 128 words of RAM provided with the kit are assigned addresses from 0080 to 00 FF , with the last 14 locations, F2 through FF, reserved for use by the DBUG firmware. There is enough board space for an additional 128 words from 0000 to 007F. Larger blocks of memory can be added externally using one of the 44-pin connectors and proper address decoding.

To read memory, the upper and lower bytes of the address to be inspected are entered with the data switches and the LOAD LEAST SIGNIFICANT and load most significant switches.

Finding the right semiconductor replacement is easy with....

The examine switch is then used to sequentially inspect memory locations starting at that address. Memory contents are read out in binary by the 8 data LED's. Each time you depress the examine switch, the lower byte of the address being examined is displayed on the LED readout. Releasing the switch displays the memory contents. Storing programs or data into memory is similar except that the store switch is used and data is entered by the data switches. Running a program is a bit more complicated since the program starting address must first be stored in the DBUG program counter storage locations $00 \mathrm{F9}$ and 00 FA . Then the go/halt switch is toggled to initiate processing.

The manual includes kit assembly instructions, an explanation of the microcomputer hardware, some theory of number systems, suggestions on writing programs, operating instructions and application programs. A schematic and a firmware listing are included. However, only one of the two pages of firmware is listed, but this may be due to the early edition of the manual. The other page is easily read out using the EXAMINE facility.
turn page
 Instruments Corp.

SPECIFICATIONS	
Pesietance Meacurement Range	0.001 ohm • 11 M ohm 0.1 ohm. $10 \mathrm{hm}, 100 \mathrm{hms} .100$ ohms. 10Kohms. 100 Kohms. 1 Mohm 8 ranges
Over-Range	10\%
Resolution	1 mohm
Accuracy	$\begin{aligned} & 1 \text { ohm- } 100 \mathrm{Kohm} \text { range } \pm(0.5 \%+ \\ & 0.1 \%, \mathrm{~F} . \mathrm{S}) \\ & 1 \text { Mohm range } \pm(1 \%+0.1 \% \text { F.S }) \\ & 0 \text { 1onm range } \pm(2 \%+0.1 \% \text { F.S. }) \end{aligned}$
Residual Resistance	approximately 3 monm
Capacitance Metaurement Zange	10F- 11000 uF 100 pF . $1000 \mathrm{DF} .0 .01 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F} .10 \mu \mathrm{~F}$. $100 \mu \mathrm{~F}, 100 \mu \mathrm{FB}$ ranges
Over-range	10\%
Resolution	1pF
Accuracy	$\begin{aligned} & 100 \mathrm{pF} .100 \mu \mathrm{~F} \text { range } \pm(0.5 \%+0.1 \% \\ & \mathrm{FS} \text { S } \\ & 100 \mathrm{pF} \text { range } \pm(1 \%+01 \% \mathrm{FS.} .) \\ & 1000 \mu \mathrm{Frange} \pm(3 \%+0.1 \% \mathrm{~F} . \mathrm{S}) \end{aligned}$
Residual	approximately 30F

- Highly accurate 3 unit digital readout.
- Measures inductance (L), Capacitance (C), and Resistance (R), within $\pm 0.5 \%$ accuracy.

Inductance Measurement Range	Q. 1ukenry-1100H $10 \mu \mathrm{HK}, 100 \mu \mathrm{H}, 1 \mathrm{mH}, 10 \mathrm{mH}, 100 \mathrm{mH} .1 \mathrm{H}$, 10 H .100 H 8 ranges
Over-range	10\%
Resolution	C. $1 \mu \mathrm{H}$
Accuracy	
Loss Factor Ranges (D)	C.O1 302 ranges Accuracy $\pm 10 \%$ of reading +3 minor divisions of scale) 1 KHz
Frequency	$1 \mathrm{it} .1 \mathrm{KHz} \pm 50 \mathrm{~Hz}$ Ext. $50 \mathrm{~Hz}-40 \mathrm{KHz}$
Power Supply	2.9VEatty (0066 p cr AC adapter
Size and Weight	$33 / e^{\prime \prime} \mathrm{H} \times 9^{1 / 2^{\prime} \mathrm{W}} \times 6^{3 /} /{ }^{\prime \prime} \mathrm{D} ; 5 \mathrm{lbs}$

212-687-2224 THE TEST EQUIPMENT SPECIALISTS TOLL FREE HOT LINE 800-223-0474

54 West 45 Street. New York, N.Y. 10036

RCA's all new 1978 Replacement Guide!

RCA's biggest and most complete Guide, ever. Our comprehensive line of replacement transistors, rectifiers, thyristors, integrated circuits, and high voltage triplers has now grown to over 750 SKs that replace 143,000 domestic or foreign semiconductors. And it's all under one cover.
It's an encyclopedia of solid state replacements. The new Guide includes 387 SKs which have been added to the line since February 1977. It contains 240 pages that represent thousands of hours of engineering know-how.
Everything you need to stay up-to-date. The new Guide covers consumer, TV, Hi-Fi, CB and industrial applications. And more importantly, they're available from your RCA SK distributor. And remember, too, that every RCA SK is backed up by RCA. They're Top-of-the-Line quality.
Ask your RCA Distributor for a copy of the 1978 SK Replacement Guide. Or write, enclosing $\$ 1.50$, (check or money order) to: RCA Distributor and Special Products Division, PO Box 85, Runnemede, NJ 07078.

Kit assembly is straightforward, but, as with all computer kits, it requires meticulous soldering technique. The PIA with its complex control and data-direction register structure is described adequately. Each microprocessor instruction and the six addressing modes are described in detail.

Inevitably, when you debug programs, you must add or delete instructions. Assuming there is sufficient memory space, deleting instructions can be as simple as overwriting with no-operation commands. Adding instructions, though, means moving every instruction following the added instruction. The alternate technique of inserting patches or jumps to other parts of memory is both slow and wasteful of memory. The manual presents one short application program that moves all the instruc-
tions down one memory location, starting at the location where the addition is to be made, and inserts the added instruction at that point. The program can be executed repeatedly so multiple word instructions or a series of instructions can be inserted sequentially by depressing GO as many times as required. A delete-data program works similarly, taking out one word at a time by moving all subsequent program steps up one byte and overwriting the instruction being removed. (lt's a big help.)

Educator II looks like a good way to get going with a capable microprocessor that has the capability to grow. The HEP Kit is priced at $\$ 169.95$. For more information, write Motorola HEP/MRO Operations, 705 West 22nd Street, Tempe, AZ 85282.

R-E

Mindblower Model PS69RD Stereo Speaker/ Amplifier

CIRCLE 102 ON FREE INFORMATION CARD
WHEN I WAS ASKED TO TEST TENNA CORPoration's Mindblower, model PS-69RD, car stereo speaker/amplifier system, I took one look at the spec sheet and flinched. At that time, the mere thought of 60 watts of audio30 watts rms-per-channel-in a car that I would be driving was indeed mindblowing. I couldn't conceive of anyone using, or even wanting, 60 watts of audio for a car stereo setup.

I reluctantly agreed to test the Mindblower when I realized that I could install it at the same time as the model XTAL XA-909 FM stereo radio/cassette player 1 had just bought to go in my 1973 Gas Guzzler. I had not yet selected the stereo speakers for the rear-deck installation, so why not use the Mindblower instead? It could be installed with the same amount of labor.

When the amplifier/speaker system arrived from the factory, I was impressed with its appearance. The system consists of two heavy wide-range 6×9-inch speakers, chrometrimmed black plastic grilles and a small control unit.

The back of each speaker (see photo) has an oblong case that covers and protects the 30 watt amplifier that is arranged around the heavy ceramic speaker magnet. A glance at the owners' instructions showed that the installation would be fairly simple. I'd need help at only one point-someone had to crawl into the trunk and hold the speakers in place while I inserted the mounting screws from inside the car.

Installation was a breeze

Everything went smoothly. The FM radio/ cassette player was hung under the dashboard on a Mount 'n Lock CB installation bracket. (The bracket is fastened to the dashboard with four heavy bolts. The car stereo is held in the Mount in Lock bracket by two locking nuts that must be unlocked with a key before the radio can be removed.) The Mindblower control box was mounted close by. Each speaker/ amplifier unit has four leads. Two leads are for power-one fused for the 12 -volt positive supply and one for the power ground; the other leads are for audio. Only three wires run back to the speakers-the +12 -volt line and the two hot speaker leads. The negative power lead and the audio return leads are grounded to the car's chassis close to one of the speakers.

The three leads from the control box were tucked up behind the dashboard and run across to one side, down behind one of the kick panels, inside the channel under the door sills and under the rear seat into the trunk area. My car, like many others today, has cutouts for 6 $\times 9$-inch speakers in the metal underside of

FEATURES

- Shor twave, CB , ham radio, ships at sea, overseas phone calls, etc.
- Hi Fi, SWL, commercial, industrial and government uses.
- oHigh level RF front end for excellent inter. modulation rejection and sensitivity.
- Crystal filters in first and second IF amplifiers, ceramic filter in third IF.
- Quartz crystal tuning accuracy at all frequencies, no crystals to buy.
- Built in power supply for 110-120 or $220-240$ VAC switchable, $50-60 \mathrm{~Hz}$.

SPECIFICATIONS

- Low Phase Noise Synthesizer
- Solid state, phase locked, digital synthesis tuning.
- Extreme ease of tuning at all frequencies.
- No mechanical tuning dial error or backlash.
- Switch selectable 4 or 8 kHz RF bandwidth.
- Built in monitor speaker with external speaker connectors.
- Switchable impulse no ise limiters for AM and SSB.

- Frequency coverage	50 kHz to 29.7 MHz , continuous. Digital synthesis in 5 kHz steps, fine tune for $\pm 5 \mathrm{kHz}$.
- Reception modes:	AM, upper sideband, lower sideband, CW.
Sensitivity for $10 \mathrm{dBS}+\mathrm{N} / \mathrm{N}$:	100 kHz 200 kHz $300 \mathrm{kHz}-29.7 \mathrm{MHz}$ CW. SSB $10 u \mathrm{~V}$ 2.0 uV 0.5 uV CW, SSB AM $30 u \mathrm{~V}$ $6.0 u \mathrm{~V}$ 1.0 V AM
- Selectivity:	-3 dB @ $\pm 2 \mathrm{kHz}$ or $\pm 4 \mathrm{kHz}$ and $-60 \mathrm{~dB} @ \pm 5 \mathrm{kHz}$ or $\pm 6 \mathrm{kHz}$
- Dimensions \& Wt.:	$(\mathrm{W} \times \mathrm{D} \times \mathrm{H}) 17.5 \times 14.5 \times 5.1$ inches. Shpg. Wt. $19 \mathrm{lbs} .(8.7 \mathrm{Kg})$
- Frequency stability:	Within $\pm 40 \mathrm{~Hz}$ in any 8 hour period at a constant ambient of 25C. after 30 minute warm up.
a Circuitry:	43 integrated circuits, 18 transistors, 16 FETs and 54 diodes.

Order factory direct.
 Exclusive rent/own plan available in U.S.

 Nationwide
 800/854-7769
 California
 800/472-1783

In Canada
wSI Sales Company 18 Sheldon Avenue North Kitchener, Ontario. N2H 3M2
Great Metropolitan Sound Co. Ltd.
120 Eglinton Avenue East Toronto, Canada M4P 1 E2

McKay Dymek Co.
111 South College Ave
Claremont, CA 91711
the rear deck. All I had to do was crawl into the trunk and use an icepick to punch up through the speaker mounting holes into the car. The holes are guides for positioning the grille and for cutting away the pressed board and leatherette finish on the rear deck. With my son in the trunk holding the speakers, I was able to get the four mounting screws for each speaker through the grilles and into the speed nuts on the speaker frames. Tightening the screws was a problem.
(The rear window on my car has a very sharp slope and is quite rounded on the sides. This feature. along with the positions of the speaker cutouts, made it impossible to use any of the standard screwdrivers that I owned.) A borrowed 3 -inch stubby Phillips screwdriver enabled me to tighten two serews in each speaker. The other two screws were left loose while 1 spent several weeks finding and buying an offset (right-angle) screwdriver

Great sound

The control box has a two-position slide switch to select the output mode and a potentiometer to control bass boost and volume level. The switch, when in the Stereo position, lets you hear your stereo radio or tape player output at about the volume level that would be available minus the Mindblower. The output voltage of the radio or tape player is attenuated so that when the signal passes through the Mindblower, it emerges at about the normal level. The switch placed in the Power position lets the full radio or tape deck output voltage drive the Mindblower amplifiers up to maximum power output. This voltage is tapped off a frequency-selective network by the poten-
tiometer
At first, on drives around town, I listened to FM radio and tapes with the switch in the Stereo position. The car-filling sound was great. The sensation was similar to listening through stereo headphones. The bass was solid and the highs crisp-a credit to the Mindblower and the FM radio.

On a long drive at highway speeds, road and wind noises intruded on the radio's sound I was annoyed when I found that outside noises were still interfering even with the volume control set at maximum. Then, I remembered the Mindblower mode switch and threw it to POWER. Wow! What a difference. I now had the volume to override outside noises. Maximum power was available with the potentiometer fully clockwise in the POWER PLUS position. Bass boost is added to the output when the control is in its fully counterclockwise bass POWER position

The sound is clean at all levels. The maximum volume level can be set with the potentiometer on the control box. You can set intermediate levels with the radio's volume control I was surprised to find the Mindblower very tolerant of audio input driving power. Overload distortion was not noticeable until the set's volume control and the level control on the Mindblower were both advanced to maximum. Backing off either control reduced the distortion without appreciably reducing the volume level.

I'm convinced

There is a place for high-power audio in car radio systems. It is a must if you want to listen 10 music with the same case and freedom from
distractions that you have in your living room On the road, you seldom realize just how loud you are playing the radio until you stop at a light or toll booth. The sound now is often overpowering. This gives a good indication of the sound level you need to overcome outside noises

Is high-power audio for you?

If you should ask if high-power stereo in your car is for you, l'd say yes! For no matter how you feel about loud music in the quiet of your listening room, you need more power if you want the same ratio of signal to outside noise that you enjoy at home.

There are other audio power boosters available, but the Mindblower is the only one I know of that combines the amplifiers with especially tailored hi-fi speakers. So, if you want boosted audio, consider this system. It goes in real casy and the sound is mighty good. The price is also right at $\$ 69.95$ from Tenna Corporation, 19201 Cranwood Parkway, Cleveland, OH 44128 , or available at your local car stereo dealer
(Note: If you go for the Mindblower or any other audio power booster that requires placing the amplifiers under the seat or in the trunk, do not rely solely on the fuse in the car's accessory circuit and the fuse at or in the amplifier. Use an independent fuse just for the amplifier and connect it to the hot supply lead as closely as possible to the car's fuse block Select a fuse that is just heavy enough to hold up under maximum-volume power drain.)

The Mindblower has two fuses: one in the hot line about 6 inches from each speaker/ contimued on page 32

A P BROUCHT YOU SOLDERLESS BREADBOARDING. NOW WEVE ADDED POWER.

Introducing POWERACE, the new line of ACE All Circuit Evaluators.

POWERACE-for fast, solderless circuit building and testing. All models will accept all DIP sizes-plus TO-5's and discretes with leads to $032^{\prime \prime}$ diameter. POWERACE 101 has a variable 5-15 VDC 600 ma Power supply. POWERACE 102 features a fixed 5VDC 1 amp power supply; and FOWERACE 103 has a fixed 5VDC 750 ma power supply, a fixed +15 VDC 250 ma power supply, and a fixed -15 VDC power supply at 250 ma .

Order from your A P distributor today. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Faster and Easier is what we're all about.

कA P PRODUGTS INGORPORATED
Box 110 • 72 Corwin Drive, Painesville OH $44 \mathrm{C77}$ (216) 354-2101 TWX: 810-425-2250

"If you're going tolearn electronics, you might as well learn it right!"

You've probably seen ad vertisements from other electronics schools. Maybe you thimk they're all the same. They're not:

CIE is the largest independent home study school in the world that specializes exclusively in electronies.

Meet the Electronies Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return

That's why it makes so much sense to go with number one ...with the specialists . . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for the ir training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Becanse we're specialists, we have to stay alhead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it . . .

Our step-by-step learming includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\otimes}$ Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Dur specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up. . no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the government administered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work . . to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17 th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oseilloscope screens are simulated.

YES . . . I want the best of everything! Send me my FREE CIE school

 catalog - including details about troubleshooting courses - plus my FREE package of home study information.Print Name
Address \quad Apt.
City
State_ 7ip___
Age_ Phone (area code)
Check box for G.I. Bill information: \square Veteran \square Active Duty
MAIL TDDAY:

EQUIPMENT REPORTS
 continued from page 27

amplifier. A few days after I installed the system in the car, some rip-off artist broke into the car and tried to steal the FM radio/cassette player. He would have made it if he could have defeated the Mount 'n Lock bracket. In his attempt, he yanked on the cabled wires running back from the Mindblower control box. The power cable insulation was cut on a sharp metal edge in the channel under the rear door so the 12 -volt lead shorted to the chassis. When I turned on the ignition, the current drawn was high enough to melt and ignite the wire insulation for its entire length between the fuse block and the short, but it was not
high enough to blow the fuse until after the fire gained headway. An 8 -amp fuse in the line directly at the fuse block would have prevented the fire and a costly replacement of much of the wiring behind the dashboard.

R-E

Sabtronics Model 2000 Digital Multimeter

IF YOU DON'T ALREADY OWN A DMM, OR IF YOU own a bulky bench type and are looking for a battery-powered portable, take a serious look at the Sabtronics model 2000. (Sabtronics International Inc., Box 64683, Dallas, TX 75206.) It has impressive specifications and many features that a few years ago could be found only in expensive lab instruments. These

CIRCLE 114 ON FREE INFORMATION CARD
include a basic DC accuracy of 0.1%, a $31 / 2-$ digit readout, automatic polarity, automatic zeroing and automatic overrange indication. The model 2000 is available only as a kit at $\$ 69.95$.

The front panel of the model 2000 is uncluttered and easy to understand. In the upper center-half is the $31 / 2$-digit 0.36 -inch-high LED display. Directly below this are 9 pushbuttons. The POWER on-off switch is red and located to the far left. Next, from left to right, are the AC, VOLT, AMP and OHM function switches. These switches are grey. The volt, AMP and OHM switches are interlocked so only one can be depressed at any one time. The AC pushbutton is not interlocked and selects either AC or DC measurements (AC when depressed). You use the AC pushbutton in conjunction with the VOLT, AMP and OHM pushbuttons to select $A C$ volts, $D C$ volts, $A C$ current, DC current and resistance. (The AC pushbutton has no effect on the ohms function.)
To the right of the function pushbuttons are four range pushbuttons that are white. Three select the full-scale reading and the fourth is a $\times 10 \mathrm{multiplier}$. The basic full-scale resistance ranges are $100,10 \mathrm{~K}$ and 1 M . Using the $\times 10$ multiplier expands the number of resistance ranges to six- $100,1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ and 10MEG. There is a 100% overrange capability on all ranges. So, for the 10 -megohm resistance range, the upper measurement limit is 19.99 megohms

The basic full-scale current ranges are 10 $\mu \mathrm{A}, 1 \mathrm{~mA}$ and 100 mA . The $\times 10$ multiplier extends the number of ranges to six- $10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1 amp . With the 100% overrange capability on all ranges, the 1 amp scale will read to 1.999 amps. Two amperes is also the maximum allowable input current. The ranges and upper measurement limit holds true for both the AC and DC current scales.

Voltage ranges are selected just like the current and resistance ranges, with the basic full-scale ranges being $100 \mathrm{mV}, 10$ volts and I $k V$. No, the $\times 10$ multiplier won't extend the upper measurement limit to 10 kV . The maximum allowable input voltage is 1 kV . In fact, the 100% overrange capability on the 1 kV scale is academic. Using the $\times 10$ multiplier permits you to select full-scale voltage ranges of $100 \mathrm{mV}, 1$ volt, 10 volts, 100 volts and 1 kV . This holds true for both the DC and AC voltage ranges.
At the far right of the front panel are the input jacks. The COMMON input jack is black and the volt-ohm-amp input jack is directly above it and red. Both of these jacks accept banana-type plugs. Test leads are extra. An optional set of 36 -inch black and red test leads are available from Sabtronics for \$3.50, part No. TL-36P. The probes that come with the optional test leads are the standard barreltype.

We've got the longest running feature onTV.
 Our Color Bright 85° picture tube warranty is the

longest in the industry. We can offer it because we're confident that a Color Bright 85 picture tube will probably last longer than five years.

The warranty is a great selling tool that builds customer confidence in your quality work. Plus, it lets you form a long-term customer relationship with each picture tube you replace.
"Limited warranty. naturally. It does not cover labor for replacing a tube

The Color Bright 85 picture tube offers economy with the high quality standards you expect from Sylvania. Couple that with the new 5 -year warranty: and you'll find the Color Bright 85 is an easy sale.

And it can be better for you in the long run.

GIB SyLVANIA

BUILD <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Portiable</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$30-\mathrm{WHII}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Portiable |
| :--- |
| $30-\mathrm{WHII}$ |</table-markdown></div> Frequency Countrer

You can hold it in the palm of your hand. Yet it reads to 28-Mhz and better, has a $70-m V$ sensitivity and a 4-digit readout that delivers 6-digit resolution.

GARY McCLELLAN

how would you like to have a frequency counter that measures frequencies to 30 MHz , and is small enough to fit in your coat pocket! Sure you would, and for good reason; counters are becoming more popular every day.
Our pocket counter may be small, but it has grown-up features. The maximum frequency it will measure is 23 MHz typical, with $70-\mathrm{mV}$ sensitivity. However, you can go as high as 30 MHz with $90-$ mV sensitivity. The input impedance is the standard 1 megohm, meaning you can use scope probes on this counter for easier circuit checking. Oh yes, overloads can happen and this counter is protected from most of them. It will take 120 volts AC right from the wall outlet without harm! The unit is powered by four rechargeable NiCad batteries, and since the current drain is low, they will last a long time. The batteries also help make this counter portable, like a calculator.
The heart of any counter is its timebase, and this one has a crystal-controlled timebase, just like the big counters. We use a color TV burst crystal (3.58 MHz) in our unit and this gives good accuracy. You can normally expect better than \pm 0.005% accuracy with $\pm 0.003 \%$ typical, depending upon the frequency being measured. Like other counters, the higher the frequency you measure, the better the accuracy. The display is all LED-4
digits of 0.112 -inch-high display. Don't let that display fool you either! With just a flip of the three-position range switch you can get up to two digits more, for a total of six digits with the power consumption of four digits! Quite a counter!

The pocket counter is easy to build. It has nine IC's, most of which are CMOS and the rest are low-power Schottky. So all of a sudden the counter is easier to build and the power drain is reduced to about a half watt. You should be able to build this project in about three evenings or less. A PC board makes the job easy. And all parts mount on this board, except for a few switches, jacks and the battery that must go on the case. Special arrangements have been made to bring you a lowcost kit to make the construction task easier. Or, if you prefer, the PC layouts are shown so you can roll your own. Nearly all of the parts are available through mail order houses, and the few harder to get parts are available either from the author or from several suppliers mentioned later on.

How it works

The counter uses the classic "window counting" technique that is the basis for almost all frequency counters in use today. Figure 1 is a block diagram of a counter based on this technique. This basic counter has four sections; input
amplifier, gate, timebase and decade counter/display section. Here's how it works. Input signals are squared up by the input amplifier and are applied to the gate section. It is necessary to square up the input signals because digital circuitry does not respond too well to analog-type signals such as sinewaves. The timebase circuit puts out three synchronized signals in this order: gate-enable, data transfer (latch) and reset. The gate-enable signal is applied to the gate section, causing the signal from the input amplifier to pass through it. This is called the window, and the time the gate allows the input signal to pass through is precisely determined.

The gated signal is then counted up by a string of of decade counters, wired in series. Usually, there are at least 4 decades total, with 6 decades being typical. The signals from these counters are then applied to a display latch that transfers the output from the counters to the displays upon command from the transfer line from the timebase. This reading is frozen at the displays while the decade counters are reset to zero and the count sequence is repeated. The latches are very important, because without them you would see the decade counters count up, stop briefly at the correct count, then reset to zero and repeat. This is the basic frequency counter, and there are few

FIG. 1-BLOCK DIAGRAM shows the four sections of the basic counter: input amplifier, gate, timebase, and decade counter display.
designs that are very different.
Now let's take a look at our counter. It is just like the basic counter. Figure 2 is a block diagram of the unit. You should be able to identify the input amplifier, the counter/display and the timebase, but the gate will be difficult. The gate section is part of the input amplifier and will be discussed further on. There are some divider sections following the input amplifier. Their purpose is to divide the input signal so that it will run the counter/display section. A CMOS LSI IC (IC5) handles the counting at this point. Its maximum frequency range is about 2 MHz , so with the dividers (normally called prescalers) it is easy for a $2-\mathrm{MHz}$ IC to count over 20 MHz . By the way, that CMOS counter saves you twelve TTL IC's or about 184 soldered connections! This is the secret of a successful counter that anyone can build.

Operation of our counter is just like the window counting method first described. The only difference is the frequency dividers that scale down the input frequency for the CMOS counter/display IC. Normally you don't find them in other counters; instead you change the the timebase frequency by tapping off dividers there to get the different ranges. Our counter provides $\mathrm{Hz}, \mathrm{kHz}$ and MHz ranges just like the big counters, but with fewer parts and low power drain.

The circuit

Now let's dig deeper into the circuitry. Checking the schematic (Fig. 3) you'll find that the input signal appears at Q1, a FET source follower. Diodes D1 and D2
form the overload protection network. The signal passes from the follower, which is there to give a high- Z input, to ICl, a quad nand gate. The first section is biased for amplifier operation by R4 and the stage provides about $10 \times$ gain or so. Surprisingly, TTL gates make stable amplifiers. Not hi-fi but fine for counters. The next two stages (gates, really) act as the Schmitt trigger, squaring up the signal to proper TTL levels. Resistor R6 sets hysteresis or trigger point. The final section, IC1-d, is the gate, with transistor Q7 and resistor R19 controlling its on and off times. These two parts convert the CMOS (think low current) timebase output to the low-power Schottky TTL (think higher current) gate input. From there, the signal is divided down by 10 in IC2, by 10 again in IC3 and by 100 in IC4. Low-power Schottky 74LS90's in
the first two spots insure high-frequency operation and low power drain. A typical 74LS90 will go to $35-40 \mathrm{MHz}$ and draw about 5 mA .
Compare that to a standard 7490 that goes to $20-25 \mathrm{MHz}$ and draws 25 mA ! Switch S1 is the range switch. It selects the proper range by switching different places in the divider network. From there, the selected signal goes to IC5, a National Semiconductor MM74C926 counter array that counts the signal, latches it and drives an LED display. This IC houses 4 decade counters, 4 latches, a display driver and multiplex logic.

Now let's take a look at the rest of the counter. The timebase consists of IC6, IC7-a, IC8-a and IC9. A color-TV crystal, XTALl, generates the reference frequency, with IC6 providing the associated oscillator and counting down to 60 Hz . This signal drives IC7, a divide-by-60 counter, to get the necessary 1 -second timebase. IC7 also provides part of the reset and latch signals as well. The $1-\mathrm{Hz}$ output drives IC8, which converts it into a 1 -second-on and 1 -second-off pulse for the gate section. Finally, the IC9 gates create the reset and latch (or transfer) pulses necessary for proper operation of the counter. Sections IC7-b and IC8-b are wired to form an overrange indica-tor-that's the circuitry you see wired to LEDI. IC7-b acts as an inverter, causing the SR flip-flop of IC8-b to energize on negative edge of the waveform that ap-

INSIDE VIEW OF BASIC COUNTER shows just how easy a construction job it is. Most components go right on the circuit board.

FIG. 2-BLOCK DIAGRAM OF THE COUNTER described in this article. The gate section is different than that shown in Fig. 1 and there are some additional divider stages.

FIG. 3-FULL SCHEMATIC OF THE COUNTER makes it easy to follow the circuit description. Resistor
R18 (10K) was inadvertently omitted. It connects between Q2's base and pin 13 of IC8-b.

All resistors $1 / 4$-watt carbon film type unless noted.

R1-1 megohm
R2, R17, R18-10,000-ohm resistors
R3, R8-R14-270-ohm resistors
R4-680 ohms
R5, R7-470 ohms
R6-15,000 ohms
R15-15 to 22 megohms
R16-100 ohms, $1 / 2$ watt
R19-2200 ohms
$\mathrm{C} 1-0.1 \mu \mathrm{~F}, 200$-volt tubular
C2-30 pF disc
C3-22 $\mu \mathrm{F}, 6$-volt tantalum
C4-47 $\mu \mathrm{F}, 6$-volt tantalum
C5, C6-0.2 $\mu \mathrm{F}, 10$-volt disc ($0.1 \mu \mathrm{~F}$ OK)
C7-22 pF mica
C8-either a $6-25-\mathrm{pF}$ trimmer or a 6-18-
pF trimmer plus 12-pF mica cap (C8-a)
D1, D2-1N4148
D3-1N4002
DIS1-5082-7405 display (Hewlett-
Packard). Poly Paks 92 CU 199
LED 1-NSL5053 LED National or similar Q1-MPF 102 FET
Q2-Q6-2N2222 transistors
Q7-2N3905 PNP transistor or similar

IC1-SN7400 IC, Active Electronics
IC2, IC3-SN74LS90 IC, Active Electr.
IC4-MC14518P CMOS IC dual BCD upcounter
IC5-MM74C926N CMOS IC (National)
Tri-Tek or Liberty Electronics
IC6-MM5369N CMOS IC (National)
IC7-MC14566CP CMOS IC timebase generator (Motorola) or HEP C4055P
IC8-CD4013 CMOS IC
IC9-CD4081 CMOS IC
J1-BNC female coax connector
J2-RCA phono socket
S1-single-pole, 3-position toggle switch, C\&K 7211 (Poly Paks 92CU3016)
S2-SPST, normally open pushbutton switch, C\&K 8121-J81-3-2 or similar
BATT1-5-volt NiCad battery pack; 4 -size AA cells in holder
XTAL1-3.579545-MHz color TV crystal Misc.-LMB CR531 case, model 302 PC board, display bezel, 12 -volt wall plug transformer with RCA plug (battery charger), $3 / 8$-in. threaded spacers, etc.
Note: A kit of all above parts is available from Gary McClellan and Co., Box 2085, 1001 West Imperial Hwy., La

Habra, CA 90631. Complete kit of all parts and unpunched case, $\$ 39.95$ postpaid. California residents add state and local taxes as applicable. PC board only, $\mathbf{\$ 5 . 9 5}$ postpaid. Write for prices on other parts.

ADDRESSES OF SUPPLIERS LISTED

Poly Paks

Optoelectronics

Tri-Tek Electronics

Liberty Electronics (Indust. Dist'r)

Active Electronics

PO Box 942 South Lynnfield, MA 01940
PO Box 219
Hollywood, FL 33022
6522 North 43rd Ave. Glendale, $A Z$ 85301 124 Maryland St. El Segundo, CA 90245
PO Box 1035 Framingham, MA 01701

FIG. 4-FULL-SIZE FOIL PATTERN of one side of the 2-sided circuit board. Used with Fig. 5 you can make your own circuit board.

FIG. 5-THE OTHER SIDE OF THE CIRCUIT BOARD. This fullsize pattern used with the one on Fig. 4 can be used to make your own circuit board for this instrument.
pears at the overrange output (pin 14) of IC5.

Now that you know how it works, let's get started on the construction!

Put one together

Construction of this counter is pretty easy if you take your time. Also, use of a PC board is strongly recommended. If you wish, you can duplicate one from the patterns in Figs. 4 and 5, or buy one from the author.
The first step is to locate the parts. Sources are given in the parts list for the tougher ones to help you get the components without a lot of problems. Write the sources for more information and prices if you desire. One thing that's important here: you must use quality parts. That means NO JUNK! Cheap reject "retested" type parts will cause you more problems than you can believe when it's time to check out this counter! A word to the wise is sufficient.

Start construction by stuffing the PC board. It contains nearly all of the parts, and when you finish stuffing, you can test it prior to putting it into the case.

Study Figs. 6 and 7 before you start. Probably the best way to begin is to install the diodes, D1 and D2. Place the board in the position shown with the side saying "COMP". in the corner face up. Install the two diodes as shown and solder. The next step is to install the transistors. This will require a little extra care, as the holes do not exactly match the leads coming out of the transistors. That means you will have to bend a lead
on most of the transistors-an easy task. Install FET Q1 first. Notice how the flat side faces. Next, add the PNP transistor, Q7. This one plugs directly into the three holes with no bending. The same is true of Q2. It mounts near the top of the board. Finish up by installing the four transistors near the center of the board. Bend the emitter lead on two transistors so that it goes between the base and collector leads, then place each transistor in the Q4 and Q5 spots on the board. The emitter leads go to the foil bus on the other side of the board, the collector leads point toward the center of the board and the base leads point toward the top edge of the board. Transistors Q3 and Q6 are installed last. They go in place without bending. The base leads face the exact center of the board, and the collectors face the top edge. So much for the transistors.
The next step is to install the display. Do LED 1 first, noting that the flat spot faces the center of the board. You can substitute almost any LED here, so don't feel stuck with the one specified. Then add DIS1. This is a rather tricky part, and there should be a dot showing pin 1 on the reverse side. If not, you may have to try it and reverse it later if you get strange readings. To make life easier all readouts supplied with the kit have an unused pin (pin 4) cut and you simply orient the readout as shown. (If you use the Hew-lett-Packard display specified, pin 1 is notched as shown on the inset in Fig. 3.-Editor)

Next, you can install the resistors.

Stick them in as shown. Leave about $1 / 8$ inch on the 22 -megohm resistor leads because the crystal will mount on them. Oh yes, this resistor is part of a $\$ 5.95 \mathrm{kit}$ offered by Optoelectronics and others. It is called a "clock timebase" kit and features many other parts you will be using. Keep the rest of the leads short.

Continue with the capacitors. Since only four mount on the component side, no comment is necessary! If your clock timebase kit included a $12-\mathrm{pF}$ mica capacitor, install this transistor at the place marked C8.

Then install the crystal, XTAL1. Bend its leads over so that they can touch R 15 (22 megohms). Make sure the plastic body of the crystal is snug against the resistor, then solder the leads. Take a piece of bare wire and quickly solder it to the metal case of the crystal. Bend the wire over the end of the board and solder it to the foil. See the illustrations.

The next step is to install the IC's. Use Molex pins for IC5, and don't install this part until just before testing the board. Use a low-power grounded-tip soldering iron for all work here; this is especially important. Remember you are working with CMOS! Double-check for proper placement and proper orientation when you are done.

Now turn the board over as there are some components to be installed on the reverse side. See Fig. 7. Start with the capacitors. Install C 4 first, with the positive lead on pin 14 of IC 1 and the minus lead on the large foil running near this IC. This capacitor is a $47-\mu \mathrm{F}$ unit. Be sure

FIG. 6-PARTS PLACEMENT DIAGRAM shows exactly where all the parts mount on the topside of the circuit board. Diagram also shows how the two foil patterns overlap. View is from the top side of the circuit board with the bottom toil pattern shown in the lighter shade of grey.

FIG. 7-PARTS PLACEMENT DIAGRAM for the bottom side of the circuit board.
to keep those leads short! Then install C5 ($0.2-\mu \mathrm{F}$ disc) between pin 5 of IC2 and the large foil running near the IC's. Remember that the large foil running around the edge of the board is ground! Last, add C6 ($0.2-\mu \mathrm{F}$ disc) between pins 8 and 2 of IC6 (MM5369). Then add trimmer C 8 to complete the job.

Now add the jumpers. Even though the board is double-sided, some jumpers are unavoidable. Use insulated wire. Check Fig. 7 carefully.

Next, add the remaining five resistors. Install the three 270 -ohm resistors first, from display to IC5 (MM74C926). Then add R19(2.2K) between pin 4 and pin 13 of IC1. Cut two lengths 1 inch long of spaghetti tubing and slip them over the leads of R17 (10K). Then connect it between pin 1 of IC8 (CD-4013) and the base pad of transistor Q7.

Set the module aside temporarily and turn to switch S1. Check Fig. 3 for details and then attach leads cut to the lengths indicated. Add the jumper. Solder the switch leads to the places indicated. Check over your wiring at this point around the switch, and if everything's OK, proceed to the last step.

Finish up the module by adding a $1 / 2-$ inch piece of insulated wire to pin 5 of IC2. This is the power lead and it goes to S2. Then add a 2 -inch piece of wire from the large foil (ground, remember) near-
by. This is the negative battery lead.
That's it for the bulk of the construction. Check your wiring at this point for the usual things-errors and shorts, and correct them if necessary. You may want to proceed to checkout at this point to test the module, then return to finish the box.
Get out the box and lay out the front for the various parts. Use the module you built to determine sizes, etc. Note the cutout in the board. Switch S2 fits in this spot, so don't forget. Turn to the top of the box and lay out the two jacks and switch. Place them as far from the front of the box as you can. This will allow more clearance between the parts and the module when it is installed. Clean up the box and label it
Install the four $3 / 8$-inch spacers in the box with $4-40 \times 3 / 4$-inch screws. Then add the display bezel, jacks J1 and J2 and switch S2. Drill holes to match the mounting screws in the module and then drop it in, display facing the box. Secure it with lockwashers and $4-40$ nuts. Install S1, noting that the jumper faces the adjacent edge of the box. Then add Cl , the $0.1-\mu \mathrm{F}, 200$-volt tubular capacitor between J1 and the pad marked in on the circuit board.

Next, wire switch S2. Attach the short wire that comes from pin $5, I C 2$ to it. Also, add resistor R16 (100 ohms) and
diode D3 (IN4002) between the other switch contact and J2. Cover these parts with a short length of spaghetti tubing. This will prevent problems later! Finish up by installing the four-battery pack between ground on the module and S2. The switch is positive, of course; don't forget!

Checkout and calibration

The checkout part is easy and takes little time. If you have the module only, connect it to a $0-250-\mathrm{mA}$ meter and 5 volt power supply. If all's well, the meter will read about 100 mA and the display will light. It will first show a jumble of numbers and then in a few seconds read $00-00$. This is normal and the next step is to touch the pad marked in with your finger. You will probably get a jumble of numbers and the LED will blink. If not, flip S1 until you get results. Next, connect a signal generator set to around 10 MHz to the in pad and advance the output level. Flip Sl through its three ranges and you will get a reading close to what the generator is set to. Even without calibration, this counter is surprisingly accurate! If all is well at this point, install the module in the box and proceed to "calibration."
If you already installed your module in the box, you can still perform the simple
continued on page 124

3½-Digit DMM

The digital panel meter has the same relationship to the DMM as the D'Arsonval panel meter has to the analog multimeter. Build your own multimeter using a DPM

DR. E. H. BORNEMAN AND ROBERT BENWARD

A DIGITAL PANEL METER IS THE HEART OF every digital multimeter. This article describes a relatively simple circuit for a 2-volt DPM (Digital Panel Meter) using readily available IC's that can be easily converted into a digital multimeter (DMM) by adding some voltage-divider and current-shunting circuits. The resulting instrument, including power supply, can be simply packaged to become a very functional and rather attractive digital multimeter.

DPM circuit and operation

The basic DPM circuit is shown in Fig. 1. It uses a minimum number of parts, with most of the circuitry in two IC's; one a signal conditioner, the other a digital processor. These IC's include an onboard clock and a medium quality internal reference ($40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). The measuring system uses dual-slope integration with its advantages of noncritical clock frequency, high rejection of AC signals and use of noncritical components.

The 8052 signal conditioner has three phases of signal conversion, these being auto-zero, integrate input and integrate reference. At the end of a measurement the system automatically reverts to autozero mode until a new measurement is started. If no overload has occurred in the previous measurement, it takes 10 milliseconds for the auto-zero to null. At power-on or after an overload it takes 100

INTERIOR OF A DIGITAL MULTIMETER based on a version of the digital panel meter in the head photo above. The DPM (at left) used point-to-point wiring on perforated board. See Fig. 8 for layout drawing.

FIG. 1-DIGITAL PANEL METER SCHEMATIC. The unit is simple and easy to construct; using either point-to-point wiring or a couple of PC boards.

All resistors $1 / 2$ watt, 10% or better
R1, R2, R4-R25, R31-470 ohms
R26-1500 ohms
R27-R30, R34, R35-100,000 ohms
R32-9000 ohms
R33-1000 ohms
R36-10,000 ohms
R38-1000 ohms, miniature
potentiometer
All capacitors 10 volts DC or higher C1, C3-1 $\mu \mathrm{F}$, Mylar

DPM PARTS LIST

$\mathrm{C} 2-0.22 \mu \mathrm{~F}$, polypropylene
C4-300 pF, disc
C5-0.1 μ f, tantalum or metalized film
C6-. $0015 \mu \mathrm{~F}$, disc
C7-10 $\mu \mathrm{F}$, electrolytic
$\mathrm{C} 8-1 \mu \mathrm{~F}$, electrolytic
C9-0.01 $\mu \mathrm{f}$, disc
Semiconductors
D1, D2-1N914 diode
DS 1-+1 LED digit, Litronix DL701 or equal

DIS2-DIS4-7-segment LED digit, Litronix DL707 or equal
LED1-Red LED, 0.2-in. diameter
Integrated circuits
IC1-IC3-7447 BCD/7-segment decoder/ driver
IC4-7404 hex inverter
IC5-8052 signal conditioner
IC6-741 op-amp
1C7-7101 digital processor
milliseconds to null.
None of the circuit component values are critical in determining the accuracy of the instrument. For example, the reference capacitor and auto-zero capacitor (C 1 and C 3) are both shown as $1.0 \mu \mathrm{~F}$. These rather large values minimize the effect of PC board leakage. The $0.22-\mu \mathrm{F}$ value of the integration capacitor C 2 is selected for PC board considerations alone, since the very small leakage at the integration input is nulled at auto-zero. It

The following are available from Hobbi House, 969 Ball Ave., Union, NJ 07083 (800-631-7485).
Digital Panel Meter, includes all parts listed in the DPM Parts List plus PC boards, $\$ 29.95$.

Set of PC boards for DPM (2 boards), \$6.95.

Digital Multimeter, includes all parts listed in DMM, DPM and Power Supply Parts Lists, \$49.95.
is very important that this capacitor have very low dielectric absorption.

The DPM is calibrated by putting a standard mercury cell across the input (any convenient reference source less than 2 volts can be used) and adjusting the 1 K pot until the reference voltage is correctly displayed on the readout.

Initially the DPM circuit was built on a perf board, but the later models were constructed on two PC boards with one board containing the displays and the second, with a 15 -pin edge connector, containing all the circuitry.

The foil pattern for the main PC board is in Fig. 2. The parts are positioned as shown in Fig. 3. Figure 4 is the pattern for the display board. Figure 5 -a shows the jumpers that are installed from the front side of the board. Figure 5-b shows the locations of three jumpers connected to the 7 -segment displays. The drawings in Fig. 5-c show how the jumpers can be added. The main and display boards are
joined by 26 jumpers as detailed in Fig. 3 and Fig. 5-d.

Start with scraps of leads clipped off the resistors and other components that have been installed. Insert the leads from the foil side of the display board and solder in place. Insert the unattached lead ends in the holes in the main board, adjust the boards so they are close together and at right angles. Solder one end, check board alignment and then solder the other. Solder the connections between the ends.

Electrical characteristics of the DPM are as follows:

Power supply: +5V@200mA; +15 V @ 25 mA ; -15 V @ 25 mA.
Linearity (full scale): 0.1 count typ.;
+1 count max.
Rollover [differential in equal
$(+\mathbf{V}=-\mathbf{V}=\mathbf{2 V})$]: 0.1 count typ.; +1 count max.
Noise (full scale): -0.05 counts
Leakage current into input: 5 pA typ.; 30 pA max.

FIG. 2-FULL-SIZE FOIL PATTERN for the main board. The "fingers" on the right fit into a female PC board connector for connections to the DMM switching circuitry.

FIG. 3-HOW COMPONENTS ARE PLACED on the main board. Nole the location of jumpers, iC positioning and electrolytic capacitor lead polarity.

FIG. 4-DISPLAY BOARD foil pattern is full-size. Jumpers must be installed on both sides of the board as detailed in another figure.

The power supply for the DPM must deliver regulated outputs of +5 volts, +15 volts, and -15 volts DC. A circuit diagram for the power supply is shown in Fig. 6.
Although rather low currents are required for the DPM, the output currents supplied by this circuit will operate all the additional functions of the multimeter circuitry to be described. Good regulation is required (0.1%), so three voltage regulator IC's are used.

Conversion of DPM into digital

 multimeterThe basic DPM can be converted into a

b DISPLAY BOAAD BACK
FIG. 5-MOUNTING AND JUMPER DETAILS for display board. Drawing cshows how back-of-board jumpers are formed while d, along with Fig. 3 shows how boards are joined by jumpers.

digital multimeter by adding the circuitry shown in Fig. 7. This circuit uses pushbutton DPDT switches. However, these can be replaced with a multisection rotary switch. Functions performed by the digital multimeter are listed in the following table.

DC volts: 2, 20, 200, 2000

All resistors $1 / 4$ watt, 5% unless noted R1-9 megohms, $1 / 2$ watt, 1% or better R2- 900,000 ohms, $1 / 4$ watt, 1% or better R3- 90,000 ohms, $1 / 4$ watt, 1% or better R4- 9000 ohms, $1 / 4$ watt, 1% or better R5-1000 ohms, $1 / 4$ watt, 1% or better R6-0.1 ohm, 10 watts (20 watts optional) 1% or better
R7-1.0 ohm, 10 watts, 1% or better R8-10 ohms, 1 watt, 1% or better R9-100 ohms, $1 / 2$ watt R10, R30-30,000 ohms R11, R21- 1 megohm R12- 10 megohms

AC volts: 2, 20, 200, 2000 (RMS) Ohms: 2K, 20K, 200K, 2 megohms, 20 megohms
Direct current: $200 \mathrm{~mA}, 2 \mathrm{~A}$, 10A
Alternating current: $200 \mathrm{~mA}, 2 \mathrm{~A}$, 10A (RMS)
The circuit shown in Fig. 7 connects directly into the input of the 2 -volt DPM.

POWER SUPPLY PARTS LIST Capacitors 25 volis DC or higher
 C1, C9- $100 \mu \mathrm{~F}$, electrolytic
 $\mathrm{C} 2-\mathrm{C} 7-4.7 \mu \mathrm{~F}$, tantalum
 C8-2200 $\mu \mathrm{F}$, electrolytic
 C10, C11-400 $\mu \mathrm{F}$, electrolytic
 Semiconductors
 D1-D5-1N4001 diodes
 IC1-7815 positive 15 -volt regulator
 IC2-7805 positive 5 -volt regulator
 IC3-7915 negative 15 -volt regulator
 S1-SPST switch
 T1-power transformer, 8-10-volt, 0.5-A
 secondary
 LM1-117-volt pilot lamp
 F1-0.25-ampere fuse

FIG. 6-POWER SUPPLY DIAGRAM. Three sol-id-state voltage regulators set the levels of voltages needed to operate the multimeter.

Accuracy of the multimeter functions depends on the precision resistors used in the voltage-divider and current-shunt circuits. I recommend 1% or better, to take advantage of the inherent high accuracy of the DPM. Unless otherwise indicated, all other resistors in the circuit are $1 / 4$ watt, 10%.

ADD-ON MULTIMETER PARTS

R13-6200 ohms
R14-750 ohms
R15-4300 ohms
R16- 910 ohms
R17-1000 ohms, miniature
potentiometer
R18-4700 ohms
R19, R23-3300 ohms
R20, R22-9100 ohms
R24-470,000 ohms
R25, R26-10,000 ohms
R27, R29-5100 ohms
R28-2500 ohms, miniature potentiometer

All capacitors $\mathbf{2 5}$-volts DC or higher

$\mathrm{C} 1-.01 \mu \mathrm{~F}$, ceramic
C2-150 pF, ceramic

C3-C5-4.7 $\mu \mathrm{F}$, tantalum

Semiconductors

D1, D2-1N914
D3-D6-1N4003
D7-6.2-volt Zener diode
Q1, Q2-2N3904
IC1, IC2-LM308 op-amps

Miscellaneous

S1, S3-S9-DPDT pushbutton switch or equivalent
S2-4-pole DT pushbutton switch or equivalent

FIG. 7-CIRCUITRY TO CONVERT DPM TO DMM includes function selector a witching, multiplier and shunt resistor networks and a few active components.

FIG. 8-HOW BASIC PARTS ARE LAID OUT in a typical instrument case. The DPM connects to the multimeter circuit through an edge connector and a short length of cable.

> Part II-An electronic musical instrument accessory with a difference. Novel programming capabilities give you unusual time signatures along with bridges and introductions.

LAST MONTH, AS WE BEGAN THE STORY ON this unique musical instrument accessory. we covered its applications, circuity and theoretical operation. Now, we'li go forward with construction details. A PC board simplifies construction.

Assembly

For easy assembly, the drum set has been designed so that everything, except for the audio output jack and the sync input tip jack, mount directly on the circuit board. This minimizes point-topoint wiring (although there is still some) and produces an exceptionally easy unit to work on. For all practical purposes there are no wires tying the circuit board to panel-mounted controls; in fact, the case is simply a shell to hide the components.
A circuit board is mandatory. You can etch your own PC board using Fig. 5 as a guide. Boards are also available commercially, as are complete kits (see parts list.)

Note that the touch-switch pads that form the bulk of the unit controls are a part of the PC board. In the commercial version of this board. the touch pads are covered with a colored ink; contrasting color designates the control areas. If you make this board at home, transfer lettering can be applied directly to the touch pads and a strip of thin transparent tape applied over that. Since the touch switch-

JOHN S. SIMONTON, JR.
es do not require direct contact to operate, the insulating layer provided by the tape will suffice but it must be kept as thin as possible.

Once you have the board the way you want it, mount the parts: Resistors and capacitors first; then solid wire jumpers (note there are several of these, as indicated by the solid lines connecting points in Fig. 6); then semiconductors, diodes, transistors, IC's, etc. Observe the orienta-

INSIDE VIEW OF THE UNIT shows how parts are positioned on the circuit board. Nots that this is a one-sided board.

FIG. 5-MAIN PC BOARD foil pattern shown hall-size.

FIG. 6-COMPONENT PLACEMENT DIAGRAM. Wiring of the PC mounted controls and switches are shown in Fig. 7.
tion of electrolytic capacitors, semiconductors and IC's.

Because CMOS logic is used, the common rules of good practice must be followed when installing these parts. In general, avoid static build-up-Do not wear nylon clothes, use a grounded soldering iron and don't run across the carpet before picking up the parts.

After mounting all the electronic components, mount potentiometer R130 and slide switches S3 and S4. Mount a 3-lug tie strip somewhere in the vicinity of these controls (such as under one of the S4 mounting screws as shown in Fig. 7). Note that the two program and bridge LED's are mounted on their own circuit board. The foil pattern for the LED board
is shown in Fig. 8. This board also mounts resistors R128 and R129 and is held in place by the mounting shaft of PROGRAM pushbutton S2, as shown in Fig. 9.

There are numerous connections that are made with stranded, insulated wire on the component side of the circuit board. Points with the same letter prefix are connected together (A1 to A2, etc.).

All resistors $1 / 2$ watt, 10% or better, unless noted.
R1, R5, R41, R46, R58, R60, R62, R64, R67, R121, R127-10,000 ohms
R2, R65-6800 ohms
R3, R4, R11, R12, R19, R20, R27, R28, R35, R36, R51-2.2 megohms
R6, R8, R14, R22, R30, R38, R43, R52-1 megohm
R7, R15, R23, R31, R39, R48-50,000ohm trimmer, PC mount
R9, R17, R25, R33-18,000 ohms
R10, R18, R26, R34, R42-3.9 megohms
R13, R108, R110, R112, R115, R117. R122-R125-33,000 ohms
R16, R24, R32, R56-330,000 ohms R21-39,000 ohms
R29, R57, R61, R63-68,000 ohms
R37, R101-R104, R106, R107, R11815,000 ohms
R40, R45, R114-220,000 ohms
R44, R113, R128, R129-2200 ohms
R47, R116-82,000 ohms
R49- 100 ohms
R50, R54, R55, R119-150,000 ohms
R53-27,000 ohms
R66, R94-R 100-47,000 ohms

R68, R105-4700 ohms
R69-R93-680,000 ohms
R109, R120-470,000 ohms
R126-47 ohms
R130-500,000-ohm log-taper potentiometer with SPST switch
C1, C11, C16, C21, C33, C48, C54, C55-
$.01 \mu \mathrm{~F}, 50$ volt, ceramic disc
C2, C3, C12, C13, C17, C18, C34, C52$.001 \mu \mathrm{~F}, 50$ volt, ceramic disc
C4, C9, C14, C19, C22, C23, C32, C35-C47, C49-. $005 \mu \mathrm{~F}, 50$ volt, ceramic disc
C5, C10, C15, C20, C24-C26, C31$.05 \mu \mathrm{~F}, 50$ volt, ceramic disc
C6-C8, C27, C28-500 pF, 50 volt, ceramic disc
C29, C57-2.2 F , 10 volt, electrolytic
C30, C50, C $51-1 \mu \mathrm{~F}, 10$ volt, electrolytic
C53-100 pF, 50 volt, ceramic disc
C56-33 $\mathrm{F}, 10$ volt, electrolytic
D1-D47-1N914 or 1N4148
LED1, LED2-light-emitting diodes (Texas Instruments TIL209B or equal)
Q1-2N27 12 specially selected noise transistor
Q2-Q8, Q11, Q12-2N5129

Q9, Q10-2N5139
IC1, IC2-LM3900 or CA3401
IC3-IC11-CD4001 quad NOR gate
IC12-CD4024 seven-stage counter
IC13-CD4013 dual-D flip-flop
IC14, IC15.-2112 256×4 RAM
S1-SPST switch ONR 130
S2-SPST momentary-contact pushbutton
S3, S4-SPST slide switches
J1-insulated tip jack, red
J2-2-conductor phone jack
Misc.-two 9 -volt battery clips, one battery holder for 4 penlight cells (Keystone type-182 or equiv.), one lug-type terminal strip (one lug grounded, two insulated).
The following are available from Paia
Electronics, 1020 Wilshire, Okllahoma
City, OK 73116:
Order No. 3750-Complete kit including all parts, case, step-by-step instructions. $\$ 79.95$ plus $\$ 3.00$ shipping.
Order No. 3750PC-Set of two etched, drilled and silkscreened circuit boards.
$\$ 15.00$ plus $\$ 1.00$ shipping.
Oklahoma residents add state and local taxes as applicable.

FIG. 7-CONTROLS AND SWITCHES are mounted on the main PC board. Point-to-point wiring to the main board is shown in Fig. 6.

There are 13 pairs of these points, designated from A to N (except for I)

Finally, perform the wiring between the controls and the remaining designated points on the circuit board and install the battery snaps, as shown in Fig. 7.

Testing and calibration

The capacitive touch switches used in the programmable drum set require a moderate-quality earth ground to operate properly. In most cases, the ground established to the amplifier through the audio output cable will suffice.

After carefully checking for misplaced components, solder bridges and cold solder joints, turn the tempo control fully counterclockwise past the "click" and turn all six internal trimmer potentiometers (R7, R15, R23, R31, R39 and R48) to their minimum sustain position (opposite the direction of the arrows in Fig. 6). Place the SCORE switch in the 1 position and turn the save switch off.

Load the 6 -volt battery pack with four AA penlight cells, making sure to observe the orientation of the batteries. Connect this battery pack to the snap attached to

FIG. 8-LED BOARD foil pattern shown luill size.

FIG. 9-LED BOARD is mounted directly to the main PC board. Point-to-point wiring to main PC board is shown in Fig. 7. Components are mounted on foil side of board.

FIG. 10-FOX TROT is used as a programming example in text.
the on-off switch on the TEMPO control. Connect another 9 -volt transistor radio battery to the remaining snap (see Fig. 7).

Using a jumper cable, connect the phone-jack output of the drum set to an instrument amplifier or the auxiliary input of a hi-fi amplifier.
Turn the power on by advancing the TEMPO control clockwise. When the unit is first turned on, you may (if the volume
of the amplifier is set high enough) hear a burst of noise lasting about one second. This is normal.
One or both LED's may also come on when power is first applied. Touching the RESET pad should extinguish these LED's.
To test the drum oscillator circuits sustained-oscillation capability, advance the internal trimmers one at a time in the sustain direction (the direction of the arrows) until the drum circuits start oscillating. Once you have established that an oscillator is capable of sustained operation, retard its trimmer control fully (opposite the direction of the arrow) before testing the next oscillator. Note that trimmer R48 is an adjustment of the noise source used in the snare drum circuits; it does not produce a tone but rather a steady hiss as it is advanced.

To adjust the drum sound oscillators, touch reset and then press the PROGRam button. The program LED then indicates that you are in the program mode. Advance the TEMPO control clockwise approximately three-fourths of its total rotation.

At this point, pressing any of the drum sound pads should produce a repeating percussion sound in the amplifier's speaker. Adjust the rate at which this sound repeats with the TEMPO control.
With a finger on the wood block pad, adjust trimmer R7 in the sustain direction (the direction of the arrow) until the sound approximates that of a wood block.
Similarly, touch clave and adjust R15; touch том and adjust R23; and touch CONGA and adjust R31. Touch ACCENT BASS and adjust R39; then touch bass and confirm that the bass drum sound is heard, although at a lower volume level than ACCENT BASS.

Touch the SNARE pad and adjust R48 until the noise source approximates that of a snare drum. It may be necessary to adjust том control R23 to obtain the maximum realism from the SNARE generator.

Touch reset and the program LED goes off (this resets the unit's internal event counter to zero); then press PROGRAM again to reactivate the PROGRAM LED. Tap each drum sound control pads in turn, accent bass, TOM, CONGA, clave, bass, snare, wood block and REST. Do not hold these pads down long enough for the sound to repeat, only long enough for a single drum sound to be generated. Finally, touch the repeat pad (to indicate the point at which the pattern is to repeat) and, finally, the PLAY pad. At this point the drum set should begin playing back the entered pattern.

Having verified the unit's ability to store a program, you are ready to test the bridge pattern. Reset the unit, and while resting a finger on the BRIDGE pad, touch RESET again. (Note: The activation of the
bridge circuit is sequence-sensitive; this can only be activated by touching RESET while the BRIDGE pad is being touched). The bRIDGE LED will come on, indicating that you are in the bridge mode. Push the program button (observing that the proGRAM LED lights), and you are ready to program the bridge.

Program some easily recognized pattern (such as four clave beats) then touch repeat and reset.

Touch PLAY, and the test pattern of all drum sounds programmed previously should be heard. Allow this pattern to play for a couple of cycles, then touch bRIDGE. When the pattern playing reaches the repeat stage, the unit should switch to the bridge pattern (as indicated by the BRIDGE LED lighting) and, as long as the pad is touched, should continue to play. Release the bridge pad. The bridge LED may not immediately extinguish, and the unit may not immediately shift back to the main pattern. This shift should only occur at the point in the bridge pattern where it would ordinarily repeat.

Using the drum set

Before discussing the operation and use of the controls, the following points need mentioning:

1. Battery current drain is a significant 100 mA in full operation and 30 mA in the save mode. Therefore, use the save sparingly and turn the unit off when not in operation. The penlight batteries should be good for ten hours of intermittent operation, and the 9 -volt transistor radio battery should have essentially shelf life.
2. There is a natural tendency to enter patterns "in tempo" by beating out the rhythm on the touch switches. This is not the way that it is done. Any pattern must have REST's entered with it for proper drum-beat spacing.

The operation of the controls is as follows:

- tempo-This knob, at the righthand edge of the control panel, sets the tempo at which a programmed rhythm pattern plays back. Clockwise rotation of the control increases the tempo.
The power switch is a part of this control, and rotating the control fully counterclockwise past the "click" turns off the power. The power should be turned off any time that the unit is not being played or programmed.

The TEMPO control also sets the rate at which drum sounds are repeated during programming. In the program mode, continuously activating a drum pad will cause that sound to be repeated at a rate set by the TEMPO control. Each drum sound heard will also be entered into memory.

- save-The save switch holds a programmed pattern for short periods of time. Sliding the save switch to the on position allows the TEMPO control to be rotated to
the full-power off position without losing the scores currently programmed into memory. The save switch should be left off any time it is not being used to actually save a score.
- score-The score switch allows two independent rhythm patterns (each with its own bridge pattern) to be programmed and selected for playback.
- program-Pressing the program pushbutton puts the unit into the programming mode for pattern entry or modification. The pROGRAM LED will light anytime the unit is in the programming mode.
- control-There are four touch pads: reset, repeat, play and bRIDGE. Get in the habit of touching the reset pad every time before anything else is activated. This control resets the internal event counter that determines the next programmed event; it also takes the unit out of the program or bridge modes.
The primary function of the repeat pad is to enter into memory the point at which the currently programmed pattern is to repeat. This pad can also be used during playback to go back to the beginning of a pattern without stopping the unit entirely. This is useful for special effects, introductions, etc.

Touching the play pad reproduces the programmed pattern selected by the SCORE switch at a rate set by the TEMPO control. This control pad latches so that a single tap will start the unit, which will then continue to play until stopped by touching the RESET pad.

The bridge pad is used one of two ways, depending on whether you are programming a score or playing one back. To program the bridge, the following sequence must be followed: RESET (always reset before anything else), then while touching the bridge pad, tap the reset again (the bridge LED should light, indicating the bridge mode); then push PROGRAM (the bridge LED should still be on) and now the program LED should light indicating the program mode. The bridge pattern can then be programmed in the same manner as a main score.

During playback, touching the bridge pad at the time of the repeat will cause the drum circuitry to begin playing the bridge rather than the main score. The bridge key does not latch, and you must touch it at the time of the repeat in order for the unit to shift to the bridge pattern. When the repeat point of the bridge pattern is reached, the unit will shift back to the main score unless the BRIDGE pad is still being touched, in which case the bridge pattern will be repeated.

- Drums-The eight touch pads on the left side of the panel control the drum sounds: bass, ACCENT bass (down-beat, etc.), TOM, SNARE, CONGA, WOOD BLOCK, CLAVE and, most important, rest.

Forest Eelt Tells...

What You Need To Know About Servicing Citizens Band Radios

TABLE OF CONTENTS

Repair Low-Cost CBs
Profitably. 50

Efficiency in CB Service
 Estimate. 52

DC Trouble
Up Front 53
Transmitter Keying . . . 58

Servicing
 Synthesizers 61

23-Channel PLL 63

What happened to CB radio? Nothing you need worry much about. Sales dragged for a while, but most signs indicate there will be a significant improvement by Spring this year.

Servicing dwindled hardly at all. Those dealers who backed up their sales with service have suffered very little. They don't sell as many CB radios as during boom times, but they do move plenty of accessories. And they certainly attract their share of repairs among the $\mathbf{2 5}$ million CB radios already in use.

The number of radios is growing, too. More than 200,000 new CB license applications reach the FCC every month - even in so-called bad times. This means that service needs are also growing. If you already repair CB radios, or plan to, or even wonder if you should, you must be aware of certain factors that affect the business now. This special section should help you meet some of the new circumstances in CB servicing.

The New Heathkit Catalog has everything from Personal

the new Digi-Scale electronic "weighing machine". Big, bright LED's show your weight with more precision than normal scales and there are no springs or weights to compromise performance. Unlike cheaper digital scales, this one uses a precision strain gauge for the utmost in accuracy. The digital readout may be mounted on the wall or just about anywhere.
GD-1186, only $\$ 39.95$

Low-Cost Starter Series Test Bench

These five starter instruments are an economical low cost way to your first bench. They're intended for (but not limited to) the beginner and you'll be surprised at the features and performance these new instruments have to offer! There's the IG-5280 RF Oscillator with 320 kHz to 220 MHz frequency range, the IM-5284 high performance multimeter that reads volts, ohms and DC current, the IT-5283 Signal Tracer for RF, $A F$ and logic tracing, the IB5281 RCL Bridge for design and experimentation and the IG-5282 Audio Oscillator with a 10 Hz to 100 kHz frequency range. And to power the 5280 series, you can build the IPA-5280-1 power supply. Only $\$ 37.95$ each, $\$ 24.95$ for the power supply.

Heathkit/Dana Electronic Speed Control Fits Most Cars

Long distance drivers will really appreciate the CS1048. It makes the most of famous Dana Corp. technology and a crystal clear Heath instruction manual for easy installation. Electronically maintains your auto's speed uphill or downhill.

Learn all about the Microprocessor with this new Self-Instruction Course
Our EE-3401 Microprocessor Course (\$89.95) is your key to learning about microprocessors. Features Heath's famous individualized learning techniques to provide you with a thorough background in microprocessor operation, interfacing and programming. Accompanying software and hardware experiments provide "hands-on" experience with the companion ET-3400 6800 Microprocessor-based trainer (\$189.95).

Build this new Stereo Hi-fi Receiver for top performance and value

Experience the subtle shadings of the symphony, cool jazz, and the driving beat of rock all with this stereo performer from Heath. 35 watts, minimum RMS, per channel into 8 ohms with less than 0.1% total harmonic distortion from $20-20,000 \mathrm{~Hz}$. The AR-1429 is perfect for the budget conscious stereo buff who requires a high quality system. It has all the features of a high-priced receiver and the performance too. Phono hum and noise are -65 dB . FM sensitivity is $1.8 \mu \mathrm{~V}$. Has provision for optional Dolby ${ }^{\text {m/ }} \mathrm{FM}$ module. AR-1429, only $\$ 319.95$

A perfect kit for the first time kitbuilder. This super-accurate timepiece has an attractive blue four-digit display that dims automatically according to ambient light. It also has the features you need in a clock; 24-hour "smart" alarm, snooze switch, alarm-on indicator and power failure indicator. GC-1107, only $\$ 27.95$

Read more about these and nearly 400 other unique and exciting kit products - all in the big, NEW, Heathkit Catalog.

Entertainment to Personal Computing

Complete "Total Concept" Personal Computer Systems and Systems Software: Economy, power and service backup from a single source!

Heathkit Computers and System Software are designed for complete continuity from top to bottom. The 8080A based H8 computer is a good example. It features a front panel ROM monitor program readout, 8-bit operation, a heavy duty power supply and a host of other user benefits. Like all Heathkit Computers, it's easily expanded. Includes BASIC, assembler, editor and debug software for only $\$ 375$.
Our most sophisticated computer, the H11, utilizes the famous DEC LSI-11 CPU for 16 -bit operation. Has a $4096 x$ 16 read/write MOS semiconductor memory and 38 high speed data, address, control and synchronization lines. Executes and includes the powerful $400+$ PDP-11/40 instruction set. It also includes a complete software package for only $\$ 1295$.

Heathkit Peripheral Devices follow the same total concept philosophy. Our H9 12" CRT ASCII Video Terminal has all standard serial interfaces, auto scrolling, erase mode, long and short form and plot mode displays and ASCII 67key keyboard for just $\$ 530$. If you need hard copy, the LA36 DEC Writer II is perfect. Fully compatible with the H 8 and H11, this incredible terminal has a 7×7 dot matrix print head, selectable 10, 15 and 30 CPS print speeds, half or full duplex operation and much more for a low $\$ 1495$. Our low cost mass storage peripheral is the H10 Paper Tape Reader/Punch. Precise ratchet/ solenoid drive, 50 CPS max read rate, 10 CPS max punch rate and the features of similar units that cost far more than $\$ 350$.

 Get your copy of the latest HEATHKIT CATALOG Nearly 400 exciting electronic kits

AVAILABLE LOCALLY IN THESE MARKETS

ARIZONA: Phoenix, 85017, 2727 W. Indian School Rd., Phone: 602-279-6247; CALIFORNIA: Anaheim, 92805, 330 E. Ball Rd., Phone: 714-776-9420; El Cerrito, 94530, 6000 Potrero Ave., Phone: 415-2368870; Los Angeles, 90007, 2309 S. Flower St., Phone: 213-749-0261; Pomona, 91767, 1555 Orange Grove Ave. N., Phone: 714-623-3543; Redwood City, 94063, 2001 Middlefield Rd., Phone: 415-3658155; Sacramento, 95825, 1860 Fulton Ave., Phone: 916-486-1575; San Diego (La Mesa, 92041), 8363 Center Dr., Phone: 714-461-0110; San Jose (Campbell, 95008), 2350 S. Bascom Ave., Phone: 408-377-8920; Woodland Hills, 91364, 22504 Ventura Blud., Phone: 213-883-0531; COLORADO: Denver, 80212, 5940 W. 38th Ave., Phone: 303-422-3408; CONNECTICUT: Harttord (Avon, 06001), 395 W. Main St. (Rte. 44), Phone: 203-678-0323; FLORIDA: Miami (Hialeah, 33012), 4705 W. 16th Ave., Phone 305-823-2280; Tampa, 33614, 4019 West Hillsborough Ave., Phone: 813-886-2541; GEORGIA: Atlanta, 30342,5285 Roswell Rd., Phone: 404-2524341; ILLINOIS: Chicago, 60645, 3462-66 W. Devon Ave., Phone: 312-583-3920; Chicago (Downers Grove, 60515), 224 Ogden Ave., Phone: 312-852 1304; INDIANA: Indianapolis, 46220, 2112 E. 62nd St., Phone: 317-257-4321; KANSAS: Kansas City (Mission, 66202), 5960 Lamar Ave., Phone: 913 362-4486; KENTUCKY: Louisville, 40243, 12401 Shelbyville Rd., Phone: 502-245-7811; LOUISIANA: New Orleans (Kenner, 70062), 1900 Veterans Memorial Hwy., Phone: 504-722-6321; MARYLAND: Baltimore, 21234, 1713 E. Joppa Rd., Phone: 301-661-4446; Rockville, 20852, 5542 Nicholson Lane, Phone: 301-881-5420; MASSACHUSETTS: Boston (Peabody, 01960), 242 Andover St., Phone: 617 531-9330; Boston (Wellesley, 02181), 165 Worcester Ave. (Rt. 9 just west of Rt. 128), Phone: 617-237-1510; MICHIGAN: Detroit, 48219, 18645 W. Eight Mile Rd., Phone: 313-535-6480; E. Detroit, 48021, 18149 E. Eight Mile Rd., Phone: 313-772-0416; MINNESOTA: Minneapolis (Hopkins, 55343), 101 Shady Oak Rd., Phone: 612-938-6371; MISSOURI: St. Louis (Bridgeton), 63044, 3794 McKelvey Rd., Phone: 314-291-1850; NEBRASKA: Omaha, 68134, 9207 Maple St., Phone: 402-3912071; NEW JERSEY: Fair Lawn, 07410, 35-07 Broadway (Rte. 4), Phone: 201-791-6935; Ocean, 07712, 1013 State Hwy. 35, Phone: 201-775-1231; NEW YORK: Buffalo (Amherst, 14226), 3476 Sheridan Dr., Phone: 716-835-3090; Jericho, Long Island, 11753, 15 Jericho Turnpike, Phone: 516-3348181; Rochester, 14623, 937 Jefferson Rd., Phone: 716-244-5470; White Plains (North White Plains, 10603), 7 Reservoir Rd., Phone: 914-761-7690 OHIO: Cincinnati (Woodlawn, 45215), 10133 Springfield Pike, Phone: 513-771-8850; Cleveland, 44129, 5444 Pearl Rd., Phone: 216-886-2590; Col umbus, 43229, 2500 Morse Rd., Phone: 614-475 7200; Toledo, 43615, 48 S. Byrne Rd., Phone: 419-537-1887; PENNSYLVANIA: Philadelphia, 19149, 6318 Roosevelt Blvd., Phone: 215-288-0180; Frazer (Chester Co.), 19355, 630 Lancaster Pike (Rt. 30), Phone: 215-647-5555; Pittsburgh, 15235, 3482 Wm. Penn Hwy., Phone: 412-824-3564; RHODE ISLAND: Providence (Warwick, 02886), 558 Greenwich Ave., Phone: 401-738-5150; TEXAS: Dallas, 75201, 2715 Ross Ave., Phone: 214-826-4053; Houston, 77027, 3705 Westheimer, Phone: 713-623-2090; VIRGINIA: Alexandria, 22303, 6201 Richmond Hwy., Phone: 703-765-5515; Norfolk (Virginia Beach, 23455), 1055 Independence Blvd., Phone 804-460-0997; WASHINGTON: Seattle, 98121, 2221 Third Ave., Phone: 206-682-2172; WISCONSIN: Milwaukee, 53216, 5215 W. Fond du Lac, Phone: 414-873-8250.

MAIL COUPON TODAY

or bring it in person to any of the 50 Heathkit Electronic Centers (Units of Schlumberger Products Corporation) listed at right, where Heathkit products are displayed, sold and serviced. (Retail prices on some products may be slightly higher.)
Prices are mail order net F.O.B., Benton Harbor, Michigan. Prices and specifications subject to change without notice.

FIG. 3-TRANSISTOR REGULATOR IS rare for inexpensive $C B$ radios, and usually includes a Zener diode.
it's only a half-watt resistor, the heat may change its value. Eventually, the resistor chars or, if the resistance decreases, the current may rise high enough for the fuse to blow.
Second, Zener diodes open. It may not be noticeable unless some critical stage malfunctions because of varying voltage. Hence, in any set with Zener diodes, it is wise to include some
measuring voltage across each diode. . . within 5 percent of the Zener rating. Schematic diagrams usually list the voltage to expect across each Zener.

Transistor voltage regulator

Enough low-cost sets use transistor regulators that you should know what to expect of them. Figure 3 is a diagram of the usual transistor circuitry. Actually, the regulating action begins with the Zener diode in the transistor base circuit.

Transistor Q1 operates as a series regulator. The output, which stabilizes at about 8.6 volts, depends on the voltage drops across Q1 and R1. The internal resistance of Q 1 is determined, of course, by the emitter-base bias.

Suppose that more current is being drawn at the Q1 output. Emitter voltage tends to become slightly less positive. The Zener holds the base voltage steady so that the net bias on NPN transistor Q1 becomes greater in the forward direction. This, in turn, lowers the series resistance of Q1, bringing the output voltage back up to 8.6.

Now, suppose less current is drawn. The voltage at the Q1 emitter rises, thus reducing the forward bias on transistor Q1. Less conduction in Q1 is the equivalent of increasing its effective resistance. Less current can flow and the output voltage drops back to equilibrium at 8.6 .

Equally important, this regulator cures input-voltage fluctuations. Even if the input voltage alters, the Zener diode prevents the base bias from varying. The output voltage would tend to follow the input-voltage variation up or down, but it cannot do so because of the regulating action described above.
To troubleshoot, measure the voltage across the Zener diode. If the voltage is high, replace the diode; if low, open the emitter lead of the transistor. If the voltage then rises back to normal across the Zener, the fault may be in the transistor; test it while the lead is loose. Or, you may have to trace a short along the regulated DC supply line.

That about covers what you might find in the DC supply sections of a low-cost transceiver.

R-E

Transmitter Keying

SWITCHING FROM RECEIVE TO transmit modes (called transmitter keying) is relatively simple in low-cost CB transceivers. There are three switching methods: relay switching, simple electronic switching and transistor electronic switching.

Changing from the receive to transmit modes involves four basic operations:

1. Disabling the receiver. Usually, this is done most simply by removing the DC voltage supply from the receive stages. That's how a relay does it. But there are also other means, as discussed later on in this article.
2. Activating the transmitter. A relay can simply apply the DC voltage to the transmit stages. Electronic switching uses other ways to activate the stages.
3. Disconnecting the speaker. The audio stages and output transformer double as modulator components for AM transmitting. And if the speaker were on, it would cause acoustic feedback to the mike.
4. Transferring the antenna connection from the receiver input to the transmitter output. This switchover is simple with a relay. Electronic keying requires a different approach.

These are the fundamental alterations that switch the receive mode to the transmit mode. The CB operator initiates them by pressing the mike button. Figure 1 -a shows how this is done when a relay system is used.

Roughly one-fourth of low-cost CB transceivers incorporate relay keying.
Most mike push-to-talk (PTT) buttons have two sections. Figure 3-a

FIG. 1-THREE SETS OF CONTACTS ON relay accomplish the four receive-to-transmit switchover operations.
shows a double-pole single-throw (DPST) version. One set of contacts feeds the mike's output voltage to the mike amplifier stage; the others are keying contacts. They ground one end of the keying-relay coil. Since the other end connects to the 13.8 -volt DC supply line, closing the mike-switch contacts energizes the relay coil.

The keying relay contains at least three sets of contacts. One contact set (shown in Fig. 1-b), transfers the DC supply voltage from the receiver to transmitter stages; this takes care of the first two changeover operations in our list of four. Another set of contacts disables the speaker (Fig. 1-c). In some designs, the relay transfers the output of the audio power stage from the speaker to the transmitter RF section, changing the audio function to modulator. In other schemes, the contacts merely unground the speaker or one transformer winding to eliminate speaker sound.

And finally, Fig. 1-d shows that one set of contacts moves the antenna connection from the receiver input to the transmitter output.
There's a specific procedure you use to troubleshoot different keying troubles. For relay keying, you start by pushing the relay armature, using your finger or an insulated rod. If the transceiver shifts to transmit, the contacts are working; concentrate on the keying circuit.

The coil cord causes more keying trouble than any other component. Open the mike and check the voltage on the relay side of the mike switch. Is it missing? The coil cord or plug may be open. Or the relay or its connection to the $D C$ voltage line are open. Try keying with a jumper lead: First jumper the keying contacts at the coil cord, at the plug and finally right at the relay.
Occasionally, you may find a relay that pulls in OK when you press the mike button; the receiver stops, but the transmitter doesn't start. Yet, pressing the relay with your finger does start the transmitter. Either the relay contacts are dirty and need burnishing, the relay coil is partially shorted or the relay is misadjusted. A new relay proves the surest cure for any of these defects.

Electronic keying

Keying without a relay saves the cost of an expensive component - the relay. Actually, all four changes can be accomplished with one set of switch contacts-in the mike. Figure 2 is a diagram of one design that incorporates a number of techniques found in other models although not always together.
Two principles allow the electronic keying arrangement shown in Fig. 2 to turn the receiver off and the transmitter on: (1) Apply proper DC operating voltage to the transistors in a stage, and the stage operates. Remove the voltages, and the stage stops. (2) In typical circuitry, you can turn off any NPN transistor by applying a high positive voltage to its emitter circuit. This is termed a kill voltage. Return the emitter circuit to ground potential, and the stage turns on again.
Figure 2 shows how this happens. This keying design uses one DC voltage bus in two ways. The same voltage serves both as a kill voltage and as a supply voltage. Source point 4 in the Fig. 2 diagram marks the voltage (6.1)

SOME MICROPHONES USE A LEAF switch (right), while others use a plungertype DPDT switch.
used for transmit-receive keying.
Study the supply line bus first. This DC branch supplies voltage to the collector of the receive mixer, as well as bias for the base. It is not necessary to show the other receiver stages on the diagram; the 6.1 -volt supply goes to each of them. Note that the emitters of these receiver stages go to ground through the usual resistor.
Pressing the mike switch to its transmit position grounds point 4 . The voltage drops to zero. Resistor R4 limits the current so the short doesn't overload the DC input. Of course, the receiver stages can't operate with zero voltage fed to their collectors and bases. Releasing the mike button restores the voltage, and the receiver works.
Turn your attention now to the connections along the bus labeled the "kill line." First, look at the transmit buffer stage. The collector voltage on this transistor comes from source point 1 . The bias voltage develops through selfbias. But the stage can't operate - with 6.1 volts positive on the emitter, the stage is dead.

But move that mike-switch contact from the receive mode to the transmit mode, and the voltage goes to zero. Grounding the emitter circuit this way brings the stage to life.
The same operating principle controls
the transmit oscillator IC. This IC turns on when the mike switch grounds one of its pins. The rest of the time, during the receive mode, the positive kill-line voltage deactivates the transmit oscillator IC.

Generally, only two or three transmitter stages need to be kept off during the receive mode. The driver and final stages can stay idle and draw a bit of current from their DC voltage supplies with no harm done. These stages do not really operate until driven by the RF drive signal from the transmit oscillator and buffer stage. The mike amplifier is usually included among the switched stages, kept off during the receive mode so that no mike sound can reach the audio stages.

Cutting off the receiver and turning on the transmitter takes care of switchover operations Nos. 1 and 2 listed earlier. Now let's consider a third operation: the antenna.

There's really no need to transfer the antenna. You can connect the transmitter's RF output to the same point as the receiver input, and leave it. However, the receiver input needs protection from the transmitter's RF power. Diode D2 and the kill line (see Fig. 2) provide such protection.

With 6.1 volts on its cathode, diode D2 is reverse-biased and exerts no effect on the base circuit to which it's connected. Closing the mike switch grounds the cathode, and D2 becomes conductive.

The last transfer operation concerns the speaker switchoff. Figure 2 shows how this is done: Pressing the mike switch to the transmit position ungrounds the speaker or the audio transformer.

Switching other stages

The keying setup shown in Fig. 3 probably needs little explanation. You know that applying a positive voltage to the NPN transistor emitters holds them cut off. So, in this system the mike switch grounds the emitters of

FIG. 2-MIKE SWITCH GROUNDS A COMBINATION SUPPLY and kill bus to change set to transmit mode.

FIG. $3-K$ ILL LINES FOR TRANSMIT OR RECEIVE ARE grounded by mike switch. Same lines connect crystals through diodes.
either the receive or transmit stages.
There's one additional refinement - a transmit lamp connects to the transmit side of the mike switch. The diode keeps the source 6 voltage from reaching the lamp, because the source 1 voltage is more positive, which keeps the diode backward-biased. Grounding the mike switch places the full source 1 voltage across the lamp/resistor, and the lamp glows. The same switch contact takes the source 6 voltage to zero as the diode finds forward bias (cathode-grounded).

In one model, an added trick lets the designer use only one transistor for both the transmit and receive oscillators. Here's how it works.

Consider voltage source 6 first. Applying this voltage to the D3 cathode keeps the diode open. Transmit crystals therefore have no effect on the oscillator. Meanwhile the source 4 voltage is grounded, and diode D4 conducts. Diode D4 connects a receive crystal to the oscillator (whichever crystal the channel selector chooses).
Pressing the mike switch reverses the situations: Source 6 is grounded, D3 conducts and a transmit crystal connects to the oscillator. Source 4, at full voltage, cuts off diode D4, blocking any receive-crystals effect.

Transistor keying

A few transceivers incorporate a transistor to make the change from the receive mode to the transmit mode. One simple arrangement appears in Fig. 4. This diagram shows that PNP transistor Q1 does not conduct as long as the base DC circuit stays open; no bias can develop. Closing the mike switch completes the base return path. Transistor Q1 conducts and places the voltage at source points 4 and 5 .

You already know how the two voltages work. Source 4 feeds a DC supply voltage to the transmitter stages. If the mike switch is open, there is no DC voltage at source 4 and the transmitter stays off. Meanwhile, the lack of voltage at source 5 leaves the receiverstage emitters at near-zero volts, which is about the same as grounding them; and the receiver works.

With the mike switch closed, transistor Ql conducts, voltage at source 5 kills the receiver stages, and voltage at source 4 activates the transmitter. It's as simple as that.

Some designers prefer switching the DC supply voltage between the receiver and transmitter stages. Yet, they want to avoid the cost, bulk and mechanical problems of a relay. So, you find quite a few low-cost CB models including a transistor and diode or several transistors to accomplish the voltage switchover.
Figure 5 shows another simple ar-

FIG. 4 - ELECTRONIC SWITCHING, WITH transistor turning on supply vol tages, appears only in a few low-cost sets.
rangement. First, let's suppose the mike switch is open. A connection to the 8.6 -volt regulated line places a high positive voltage on the emitter of PNP transistor Q1. However, with the base circuit open, Ql cannot conduct. Source 5 develops no voltage, which means the transmit stages cannot operate, since they depend on source 5 for their voltage supplies.
Source 6 obtains voltage through the 390 -ohm resistor. Diode Dl cannot conduct, since its cathode faces an open mike switch. Source 6 feeds the receiver stages, and they operate.

Now, with the mike switch closed, two things happen. First, grounding the Dl cathode causes Dl to conduct. This conduction shorts out the 6.5 volts at source 6 , dropping it to zero. Without any operating $D C$ voltage, the receiver stages stop working.

Second, completing the base-bias circuit allows Q1 to turn on. The 8.6volt supply travels easily to source point 5 , and from there to the transmit stages; so, the transmitter operates.

About the most complex transistor keying system you'll find, (at least in low-cost radios) is shown in the diagram of Fig. 6. Again, to visualize how this system works, imagine the mike switch is open. A strong positive bias is applied to Q1 through resistor R1. While conducting, Q1 applies a positive DC supply from the 13.6 -volt input line to the diode Dl anode. The forward-biased diode applies the voltage to source point 7 and the receiver stages.

Resistor R 2 carries the voltage down to the base of Q3. This voltage turns on Q3, which then acts as a short at the base of Q2. With no base bias, Q2 cannot operate. Hence source point 9 develops no DC voltage, and the transmit stages remain inactive. Closing the mike switch shorts the base of Q1 to ground. Without a base bias, Q1 then stops conducting, volt-

FIG. 6-MULTITRANSISTOR KEYING SYSTEM FEEDS VOLTage to transmit stages (mike switch closed) or to receiver stages (switch open).

Servicing Synthesizers

How to troubleshoot both the PLL and the multi-crystal types.

THERE IS ONE SECTION IN A CB transceiver that operates whether you are transmitting or receiving - the frequency synthesizer. This section initiates internal RF signals for both receiver and transmitter.

Inexpensive CB radios are predominantly 23 -channel sets. Very few use a phase-locked loop. Some 80 percent incorporate frequency synthesizers, by
far the most popular being the 64-4 type of synthesizer. This version consists of a master oscillator with six crystals, a receive oscillator with four crystals and a transmit oscillator with another four crystals. A few low-priced transceivers use a 6-4-2 synthesizer, having six and four crystals in two synthesizer oscillators, and one each in the receive and transmit oscillators.

FIG. 1-THE 6-4-4 SYNTHESIZER FALLS MAINLY IN TWO FREQUENCY GROUP. ings: $\mathbf{3 7 / 1 0 / 1 0}$ (the most popular) and $17 / 9 / 10$, using a $10-\mathrm{MHz}$ high IF signal.

How synthesis works

Synthesizer operation is easy to understand, no matter in what kind of CB radio. It involves simple heterodyning.

The block diagram of Fig. 1 shows the type of syntehsizer used by a majority of low-cost 23-channel CB radios; the most common crystals for this type of radio are shown. You are safe in stocking up on these crystals. . . you'll use them.
First, study the operation of this synthesizer during the transmit function; the receive oscillator is off, and the transmit oscillator is on.
For example, assume the channel selector is set for CB Channel 9. To discover which crystals are activated, consult the crystal combination chart in Fig. 1. (Each Sams PhotoFact Schematic contains a similar chart.)
In our example, crystals X3 and X11 are the ones involved in transmitting the Channel 9 signals. (Remember, the receive oscillator is off.) The signals generated by the synthesis oscillator and the transmit oscillator meet in the transmit mixer, where they heterodyne. Subtracting the crystal X11 frequency from the crystal X3 frequency, (37.700 minus 10.635) gives 27.065 MHz -the output of the transmit mixer.
Release the mike button and the set returns to the receive condition. This cuts off the transmit oscillator and activates the receive oscillator. The synthesis oscillator continues to operate. The Channel 9 crystal combination for receive is crystals X3 and X7.
However, the Fig. l block diagram shows that the signals from these two crystals do not heterodyne together directly. Instead, the synthesis oscillator signal goes to the first receive mixer, where it heterodynes with whatever incoming CB signals are present. Since the channel selector is set at Channel 9 , here's what happens if there is a Channel 9 signal present.
Crystal X3 produces a $37.700-\mathrm{MHz}$ signal. If that signal heterodynes in the first receive mixer with a $27.065-\mathrm{MHz}$ signal the resulting high IF signal is 10.635 MHz . This high IF signal mixes in the second receive mixer with a signal from the receive oscillator. Since crystal X7 is selected when the switch is at Channel 9 , the $10.635-\mathrm{MHz}$ signal heterodynes with a $10.180-\mathrm{MHz}$ signal.

FIG. 2-THE 6-4-2 SYNTHESIZER HAS HIGH- AND LOW-FREQUENCY SYNTHESIS oscillators, and separate single-frequency receive and transmit oscillators.

The difference is 0.455 MHz - of 455 kHz , the low intermediate frequency.
Using the same method, you can figure out how any other channel operates. The crystal combinations chart will show you which crystals are used in any channel position. The $37 / 10 / 10$ crystal frequency arrangement shown in Fig. 1 is typical and the most common. However, there is another set of frequencies that is used fairly often17/9/10. Frequencies for each of these crystals are listed in the box in Fig. 1. Crystals in the vicinity of 17 MHz control the synthesis oscillator; crystals near 10 MHz operate the transmit oscillator; and those near 9 MHz control the receive oscillator. If you see many of these sets, it's probably a good idea to carry one each of these crystals also.
Most of these receivers are doubleconversion units. On schematic diagrams, the high IF is labeled either 10 MHz or 10.7 MHz , depending on the synthesizer crystals. Either way, the receive oscillator then heterodynes that high IF signal down to the second or low IF, which is always 455 kHz .

The so-called $10.7-\mathrm{MHz}$ high IF signals are actually at 10.6 MHz , but they are listed that way because $10.7-\mathrm{MHz}$ IF coils are common. The coils can be aligned at whatever frequency the synthesis crystals beat the incoming CB signal down to: Slightly above 10.6 MHz in 37/10/10 combinations and barely above 10 MHz in the $17 / 9 / 10$ arrangement. Occasionally, 37/10/10 models will have a ceramic-tuned filter instead of coils between the two mixers. Almost always, it is listed as a $10.7-\mathrm{MHz}$ filter, but it actually centers a bit below that frequency.
To be sure you understand the synthesis system shown in Fig. 1, use your
calculator to go through the following 17/9/10 example: Assume the channel switch is set to Channel 19. Crystals X 5 and X 9 control the synthesis and receive oscillators, respectively.

Incoming signals mix with the $17.165-\mathrm{MHz}$ synthesis signal to create high IF signals. Only a $27.185-\mathrm{MHz}$ (Channel 19) signal places a 10.020 MHz signal into the second receive mixer. And that's the only high IF signal that can heterodyne 9.565 MHz (from crystal X9) and produce the correct low IF signal of 455 kHz . Any other incoming CB signal produces the wrong intermediate frequencies and is rejected.

In the transmit mode, crystals X5 and X13 heterodyne in the transmit mixer. Together their $17.165-\mathrm{MHz}$ and $10.020-\mathrm{MHz}$ signals produce a $27.185-$ MHz signal, the carrier for Channel 19.

Another synthesizer

Figure 2 shows a type of frequency synthesizer found in some low-cost CB's. I call it a 6-4-2 synthesizer. But you might also call it a $23 / 14$ system because of the approximate number of crystal frequencies in the two synthesis oscillators. Again, it pays to keep this dozen crystals on hand. (Two crystals belong in the transinit and receive oscillators.)

Both synthesizer oscillators operate continuously when the set is on, for both transmit and receive functions. Let's choose Channel 23 for example. I recommend you run through the heterodyne calculations to see how this synthesizer operates in the transceiver. Fire up your calculator.

For Channel 23, the Fig. 2 chart names crystals X6 and X10. Crystal X 6 holds the high-frequency synthesis
oscillator at 23.540 MHz . Crystal X 10 holds the low-frequency synthesis oscillator at 14.990 MHz . This synthesis mixer is additive; its output signal is 38.530 MHz .

In the transmit mode, the receiver mixer and oscillator are disabled. The transmit stages are all turned on. An $11.275-\mathrm{MHz}$ signal mixes with the $38.530-\mathrm{MHz}$ signal in the subtractive transmit mixer. Subtracting 11.275 MHz from 38.530 MHz gives 27.255 MHz , the carrier frequency for Channel 23.

In the receive mode, the transmit stages are off and the receive stages are on. As in the other systems, the synthesizer frequency beats in the first receive mixer signal with incoming CB signals from the receiver's input RF amplifier. The only CB signal that produces the correct $11.275-\mathrm{MHz}$ high IF is the $27.255-\mathrm{MHz}$ signal. You can check it on your calculator. Just subtract 27.255 MHz from the $38.530-$ MHz sy nthesizer signal.

Next, the $11.275-\mathrm{MHz}$ IF signal heterodynes in the second receive mixer stage with an $11.730-\mathrm{MHz}$ signal from the receive oscillator. Your calculator will show the difference is 0.455 MHz -which is the $455-\mathrm{kHz}$ low IF signal.

Just as an exercise in understanding double-superhet receivers, use your calculator to see what happens to any other incoming signal, beating with the Channel 23 synthesizer signal. Suppose that the antenna is receiving signals from Channels 2, 4, 8, 9, 12, 17, 19 and 23. Choose any one of these signals and run it through the two mixers.

For example, try channel 9. Subtracting 27.065 from 38.530 (with the synthesizer set for Channel 23) gives an IF signal of 11.465 MHz . The high IF signal transformer, since it is tuned to 11.275 MHz , tries to reject this signal, but a small portion probably gets through to the second mixer.

In the second mixer, whatever is left of this $11.465-\mathrm{MHz}$ IF signal mixes with the $11.730-\mathrm{MHz}$ signal from the receive oscillator. The difference frequency is 0.265 MHz , or 265 kHz . That's a long, long way from 455 kHz . There is no way a $265-\mathrm{kHz}$ signal can make it through the low IF amplifiers. Thus, the set has rejected the original Channel 9 signal.

If you work out any of the other signals except Channel 23, you'll see that the same thing happens to them. On the other hand, if you change the channel selector switch to choose a new combination of synthesizer crystals, the incoming signal frequency for that channel will heterody ne ultimately to exactly 455 kHz .

Troubleshooting synthesizers

Three instruments are all you need
to troubleshoot, diagnose or analyze synthesizer faults: a digital multimeter (DMM), a frequency counter and a calculator.
With synthesizers, only two kinds of components give the most trouble. The worst offenders are transistors; the second most troublesome are crystals. In an oscillator that is running off-frequency, the fault is probably a crystal. If the output voltage is too weak or missing, you can usually blame the transistor. Occasionally, a switch or other component can cause the voltage problem.
Your frequency counter is the first instrument to reach for. Figures 1 and 2 show test points. In some CB models, these test points are brought to test-point posts on the PC board. In other models, you might have to hunt the base of a transistor for the test connection. Be sure your frequency counter is sensitive enough to be locked by the signal, which in some oscillators may not exceed 20 to 40 volts P-P.
Use the crystal combinations chart in Fig. 1 to find the proper arrangement for the 6-4.4 synthesizer. Connect the frequency counter to test point 1. Set the channel selector to enough different channels to verify all six crystal frequencies in the synthesis oscillator. None should vary more than 1000 Hz from the indicated frequency. A crystal with a marginal frequency might leave the transmitter legal but not received well by other CB stations. Likewise, it might make the receiver operate marginally, even while testing OK for sensitivity
Furthermore, anytime a crystal varies by 1000 Hz , you can expect it to shift more. Replacing such a crystal is your best insurance against a quick callback.
Second, use your frequency counter to test the output of the transmit oscillator (TP2). If no test point is provided, go to the base of the transmit mixer. If the mixer input point is the same for both signals, one may override the other, and the result may confuse the counter. You might conclude that one oscillator is running and the other isn't.
You have two alternatives. Some technicians keep a $0.1 \mu \mathrm{~F}$ capacitor,

FOURTEEN CRYSTALS are a sign that the synthesizer is 6-4.4; the 6-4-2 synthesizer needs only twelve crystals.
with test leads attached, for killing an oscillator. You just clip the capacitor jumper from the oscillator base to ground. That lets only the signal from the other oscillator show up at the mixer input.

The other alternative is to move the frequency counter to test point 3. If all six synthesis oscillator crystals are OK, any discrepancy in the $27-\mathrm{MHz}$ output votlage from the transmit mixer must be caused by either a bad mixer or a faulty crystal in the transmit oscillator. If the signal is merely off-frequency, blame the crystal. If the mixer transistor is defective, you might find either no output voltage at all or only from one or the other oscillator.
In any case, these three fast frequency checks show you the condition of the synthesis oscillator, transmit oscillator and mixer.

Test point 4 lets you verify the frequency of the receive oscillator. If it's wrong, the proper low IF cannot be developed by signals in the first mixer.

With a strong input signal and a sensitive frequency counter, you can check the high IF at the first-mixer input. If you don't know what the exact frequency should be, get out your calculator. From the frequency of whatever synthesis crystal the channel selector switch has chosen (see Fig. 1), you subtract the assigned frequency for that CB channel. The difference is the IF you should expect. In a $37 / 10 / 10$ synthesizer, a normal
high IF signal ranges from 10.595 MHz to 10.635 MHz . In the $17 / 9 / 10$ configuration, the IF frequency is from 10.0 MHz to 10.04 MHz .

If you suspect a transistor is causing the problem, you can check it quickly by analyzing voltages with your DMM or by taking the base lead loose and measuring forward and backward with the ohmmeter. You also save time if you use a quick-check ty pe of in-circuit transistor tester

Troubleshooting a 6-4-2 synthesizer (see Fig. 2) differs only slightly. First, you check all the crystals in the HF oscillator by connecting the frequency counter at test point 1 . Then, check the IF oscillator crystals at test point 2 . Finally, verify that these crystals are heterodyning to the right frequencies, by connecting the frequency counter at test point 3. If all crystals are OK in both oscillators, all you have to do is check one combination just to be sure the mixer is working properly. Here's where your calculator comes in handy, because service schematic diagrams seldom list synthesis-mixer outputs.

For example, suppose the channel selector is set at Channel 12 . The switch connects crystals X3 and X10 to their respective oscillators. Since the mixer is additive, your frequency counter at test point 3 should read close to 38.380 MHz .

Then, move to test point 4. Any discrepancy in frequency here, with the synthesizer frequency at test point 3 being correct, indicates there is a fault in the transmit-oscillator frequency. Or, perhaps the same $38-\mathrm{MHz}$ frequency shows up at test point 4 ; that means the oscillator isn't working.

Ordinarily, the best place to start festing the receiver side is at the receive oscillator, in both 6-4-4 and 6-4-2 synthesizers. In Fig. 1, the receive oscillator test point is No. 4; in Fig. 2, it's test point 5. Use a frequency counter to find out whether or not the oscillator is work ing accurately.

If your frequency counter is not sensitive enough to check the oscillator output directly, try checking at a mixer output. In the receiver, this may still not suffice, because there may be less signal following the mixer than out of the oscillator

23-Channel PLL

YOU MAY RUN INTO SOME TROUble trying to understand how low-cost sets with a phase-locked loop (PLL) work. Many diagrams are misleading. They don't really indicate the way a PLL operates. A block diagram shows
separated portions of an integrated circuit, without ever showing the internal connections that interrelate the separate sections. The block diagram shown here will try to circumvent this problem.

You may already know how a PLL operates, but here's an explanation. This circuit is common in low-cost 23-ch annel sets; it uses either the PLL01 A integrated circuit or the PLL-02A IC. A few other PLL IC's are used;
they work about the same.
The heart of any PLL system is a DC-tuned oscillator, called a voltagecontrolled oscillator (VCO). The main job of a VCO is to provide the internal signal for the receive and transmit mixers. In 23 -channel sets, the same VCO frequency is used for both transmit and receive modes. Only resetting the channel selector switch changes the VCO's output frequency.
A phase-locked loop tuning system takes its name from the loop formed by the stages controlling the VCO frequency. A sample signal from the VCO is fed to a loop mixer and heterodyned against the signal from an overtone oscillator. The overtone oscillator runs on the third overtone of an $11.8066 \cdot \mathrm{MHz}$ crystal; its output is therefore nominally 35.42 MHz .
The VCO can run at almost any frequency. But for the sake of example, let it run at 37.66 MHz . This frequency, mixed with the signal from the overtone oscillator, produces a loop signal at 2.24 MHz .
This $2.24-\mathrm{MHz}$ signal is fed through a buffer amplifier, to a programmed downcounter or divider, which is part of a TTL-type IC.
A specially designed channel selector switch connects a particular combination of high and low voltages to certain pins in the IC. In our example, suppose the channel selector is set at CB Channel 1. High and low voltages program the divider to down-count by a factor of 224
A $2.24-\mathrm{MHz}$ loop signal fed into this 224 down-counter produces an output signal at 0.01 MHz , or 10 kHz . And that output signal is fed to a phase detector.
Meanwhile, a reference signal is being developed by a reference oscillator that is controlled by a $10.24-\mathrm{MHz}$ crystal. Passing through a buffer stage, this signal is fed to another divider, inside the IC, which produces a fixed 1024 down-count. Hence, the reference oscillator and the 1024 divider produce a tightly controlled reference signal at 10 kHz .

This $10-\mathrm{kHz}$ reference signal proceeds - still inside the IC - to the same phase detector that receives the downcounted loop signal. The phase detector checks to see if both signals match precisely in frequency and phase. If they do, as in the example just described, the DC voltage output DC of the phase detector stabilizes. Do not make the mistake of thinking that the voltage output goes to zero; it does not. The phase detector simply holds a ramp voltage at some specific value. This DC voltage is applied to the voltagecontrolled oscillator, and determines its frequency.

To understand how this PLL system

TYPICAL 23-CHANNEL PHASE-LOCKED LOOP CAN BE TESTED WITH DC CLAMP vol tage connected to test point 5, so you can control the voltage-controlled oscillator (VCO) manually.
controls the VCO frequency, let's turn the channel selector switch to Channel 9. As you know, the channel selector switch chooses the high and low voltages that are applied to the programmed divider inside the IC. Rearranging the high and low voltages reprograms the variable divider to a new down-count factor. For Channel 9, because of the divider's inner design this down-count factor is 234

You know immediately that the $37.66-\mathrm{MHz}$ VCO frequency will not provide the right loop signal. In order for the phase detector to receive a $10-\mathrm{kHz}$ signal from the programmed counter, a $2.34-\mathrm{MHz}$ signal must come down the loop from the loop mixer. Mixing a $37.66-\mathrm{MHz}$ signal from the VCO with a $35.42-\mathrm{MHz}$ signal from the overtone oscillator results in a signal of $2.24-\mathrm{MHz}$, not 2.34 MHz .
The $2.24-\mathrm{MHz}$ signal on the loop line is now divided by 234 instead of 224. Obviously, this cannot produce a $10-\mathrm{kHz}$ signal for comparison with the reference. The phase detector senses this discrepancy. It sets its ramp voltage in motion, which then starts swinging the VCO frequency. Only when the VCO frequency reaches 37.76 MHz does the phase detector stabilize the ramp voltage.

Why a VCO frequency of 37.76 MHz ? Because this is the frequency which, when it is beat against the overtone oscillator signal of 35.42 MHz produces a $2.34-\mathrm{MHz}$ loop signal. And this is the only loop-signal frequency that will divide perfectly to 10 kHz in the programmed down-counter. In addition, the phase detector can lock only at that frequency. Any slight shift in the VCO frequency throws the
phase detector off, and its ramp voltage automatically corrects the VCO frequency
The PLL diagram shows where the VCO output goes. When the transmitter is keyed, the output mixes with the transmit oscillator. In the case of Channel 9, in which the VCO is stabilized at 37.76 MHz , the subtractive transmit mixer heterodynes 37.76 MHz and 10.695 MHz to produce a frequency of 27.065 MHz , which is the Channel 9 carrier frequency.

When the receiver is operating, the VCO output mixes with incoming signals from the receiver RF amplifier. From here on, operation is similar to CB receivers using synthesizers. In this case, only a frequency of 27.065 MHz will mix with the $37.76-\mathrm{MHz}$ signal from the VCO to produce a $10.695-$ MHz high IF signal. And that is the only signal that can beat in the second mixer with a $10.24-\mathrm{MHz}$ signal and produce a $455-\mathrm{kHz}$ low IF signal. You may have noticed, a sample of the $10.24-\mathrm{MHz}$ reference signal is fed to the second mixer instead of a receive oscillator signal.

Troublehunting in PLL

That's how a 23-channel PLL system works. Now, how do you troubleshoot it? Here's a step-by-step procedure that uncovers virtually any defect you are likely to encounter in a PLL.
First, here's a point to remember Suppose you narrow down a trouble to the inside sections of an IC. This means replacing the entire IC. Some sections are contained in more than one IC, and some discrete stages use transistors. Adapt your techniques to suit.
Start measuring DC voltage at test
point 4 . The service schematic should indicate the voltage there within a few tenths of a volt. If this voltage is wrong, the VCO can be far off-frequency or even pushed to the point where it stops oscillating. The PLL system shown in the block diagram states that 1.7 volts is nearly correct. So, the voltage should fall somewhere between 1.3 and 2.1. Much voltage outside that range indicates trouble, but this does not necessarily show where the trouble is.

Next, clamp the DC voltage line at test point 4 . Choose a well-filtered and well-regulated DC power supply. Connect its output to test point 4 . If there is no test-point post, clip this output to the DC voltage line that feeds the capacitive diode controlling the VCO frequency. Clip your multimeter to the same point and adjust the DC supply to approximately 1.7 volts, or whatever value the schematic calls for.
Now connect a frequency counter to the VCO output (test point 2). The frequency should fall somewhere within the limits specified for that VCO. Sets having PLL-01A IC's run the VCO at a frequency of 21 MHz , and the discrete-reference oscillator operates at 6.4 MHz. The PLL-02A and most other 23-channel systems operate the VCO near a $38-\mathrm{MHz}$ frequency, with a $10.24-\mathrm{MHz}$ frequency reference.

Actually, the VCO shown here operates from 37.66 MHz to 37.95 MHz . If the proper voltage does not bring the VCO into this frequency range or very close, the VCO needs servicing or adjustment.

Next, if the frequency is alsmot correct, adjust the clamp voltage-without regard to its specific value-to make the VCO operate at some steady frequency. The precise frequency doesn't matter much as long as you can measure it and it holds steady.

For example, assume your counter reads 36.710 MHz . Move the counter to test point 3 , the overtone oscillator output. If the loop-mixer input is missing or is not precisely at 35.42 MHz , there's your trouble; cure it.
Take out your calculator; it's an important servicing tool. Keep it handy because you'll be doing several calculations.

Whatever frequency comes from the overtone oscillator, subtract that from the measured frequency of the clamped VCO. Suppose, for example, that the DC-clamp voltage has set the frequency of the VCO oscillator at 37.705 MHz . Simultaneously, your frequency counter shows the overtone oscillator output at 35.422 MHz . Your calculator tells you that the difference between the two frequencies, which is or should be the output of the loop mixer, is 2.283 MHz .

Your frequency counter ought to find that $2.283-\mathrm{MHz}$ frequency at the mixer output or at test point 3 following the buffer stage. If it doesn't, there's trouble in the mixer or buffer stages. If this signal is wrong or missing, you'll have to cure the trouble before you proceed.

Next, check the dividing action of the programmed divider or downcounter in the IC. But, you say, the output goes to the phase detector, which is also inside the IC. How can you check this? Most monolithic PLL IC's include internal test points that are brought out to blank pins. Therefore, you can check the divider action with your frequency counter.
Remember that the $2.283-\mathrm{MHz}$ $(2283-\mathrm{kHz})$ frequency is the signal that enters the programmed downcounter. Set the channel selector to any channel you wish. The system is disabled, because of the DC clamp voltage on the VCO control line, so dialing the switch does not affect the VCO. Just for example, set the switch for Channel 1. The divider factor there is 224 for Channel 1 . Therefore, the divider should divide by 224 whatever frequency enters.
With your calculator, divide 2283 kHz by the factor the channel switch has selected, which is 224 . Your calculator tells you that the output of the programmed divider should be 10.192 kHz . If you had chosen some other channel, the divider factor would be different, and the frequency at test point B would also be different. However, your calculator would tell you what it should be. For instance, with Channel 9 and a divider factor of 234 , the output frequency should be 2283 kHz divided by 234 , or 9.756 kHz .
Now let your frequency counter verify whether or not the programmed down-counter produces the correct frequency (in this case 10.192 kHz). Connect the counter to whichever IC pin corresponds to test point B on the IC you're working with. If the frequency is within a couple of Hz , the programmed divider is working correctly. If the symptom complaint has been that one or two channels are incorrect, verify the down-count for those channels.

When your frequency counter verifies everything your calculator has told you around to this point in the loop, then everything so far is working OK. Now, check out the reference side of the PLL. The frequency counter at test point 1 indicates whether the reference crystal is on-frequency and if the oscillator and buffer are working. Most systems in low-cost 23 -channel CB's operate with a $10.24-\mathrm{MHz}$ reference frequency. (An exception is those
using the PLL-01A IC, which operates with a $6.4-\mathrm{MHz}$ reference frequency.)

Then, if the reference stages are working, check the fixed divider inside the IC. Again, there is a no-connection pin that forms the output test point (test point A) for the fixed divider. Your frequency counter should verify the exact down-count, whether from 6.4 MHz or 10.24 MHz , always to exactly 10.0 kHz . If this frequency deviates more than 1 or 2 Hz , find the trouble.
Incidentally, if your frequency counter shows the fixed-divider out put test point is 16 kHz , either the wrong IC or a wrong-frequency reference crystal have been installed. By the same token, if the counter reads almost exactly 6.25 kHz , you have the same trouble.
Finally, check the phase detector by first connecting the clamp voltage close to the VCO. Then, break the DC line voltage somewhere between the clamp voltage and the DC voltage output of the IC's phase detector section. Now, with the VCO still held stable by the clamp voltage, connect your DC voltmeter to the phase-detector out put; the DC voltage here should be steady, and close to the value shown on the set's schematic.
If everything checks out OK around the PLL, the phase detector should pull the VCO right onto frequency and lock it there when you remove the clamp voltage. If it doesn't, the fault is in the phase detector or ramp-voltage section of the IC. In either case, the IC must be replaced.
However, suppose that earlier troubleshooting found that dividers were defective. It is important that you check both of them if you find one bad. Why? Because the DC voltage input, (Vcc input) might be at fault. Usually, normal voltage is somewhere on the order of 5 or 6 . It must be close to correct, or the IC cannot operate normally. If you find that IC action is defective and replace the IC when actually the only trouble was in the Vcc input, the new IC wouldn't work either.

Radio-Electronics

Tests

CIRCLE 95 ON FREE INFORMATION CARD Model FM-10 Beam Box Antenna

LEN FELDMAN CONTRIBUTING Hi-FI EDITOR

I HAVE FOR MANY YEARS BEMOANED THE FACT that most purchasers of good FM tuners and receivers seldom realize the full potential from their investment. That's because they do not, or cannot, install an adequate directional outdoor antenna specifically designed for FM signal reception. The usual 300 -ohm T-wire packed with most hi-fi tuners and receivers, while theoretically suitable for proper FM signal reception, gencrally suffers in performance because it is seldom positioned for best reception and often ends up casually tossed behind the tuner or under a rug. The so-called "rabbit ear" antennas, although they can be oriented for best signal reception, are cumbersome and inconvenient to place properly.

Several FM radio manufacturers have attempted to design and market indoor antennas that incorporate booster RF amplifiers and other electronic schemes. The trouble with most of these schemes is that along with amplifying the desired signal, they amplify background noise as well. Most FM front ends have about as good a noise figure as can be obtained, and increased signal strength is hardly ever a problem unless you live many, many miles from an FM station.
The real problem in FM reception, especially stereo FM reception, lies in trying to feed a proper signal to the antenna terminalsone that is free of interfering reflections, known as multipath. TV viewers are all too familiar with signal reflections, since they cause multiple images to the right of the main picture. In FM reception, such signal reflections cause distortion, loss of stereo separation and, in extreme cases, increased background noise. The solution, of course, is a directional antenna.
B.I.C.'s new model FM-10. Beam Box, is, as far as we know, the first indoor FM antenna of its kind. Figure 1 shows it is physically designed to look like other high-fidelity components. In fact, it can be positioned alongside, under or above the rest of the components in

your system. One of the key features of this new indoor FM antenna is that its reception patterns can be altered without physically rotating the entire unit. A BEAM DIRECTION switch at the right of the front panel hooks up to pairs of antenna elements so that four Figure 8 reception patterns can be obtained, each displaced from the next by 45 degrees. The reception patterns generated by the different switch settings are shown in Fig. 2.

To use The Beam Box, connect its rearpanel output terminals to the tuner or receiver antenna terminals either by using the 300 -ohm transmission line supplied, or, if 75 -ohm coaxial operation is desired, by a suitable length of this type of cable terminated in a standard connector that must be purchased separately. If your tuner is equipped with a signal strength meter, first tune to the desired frequency and then use the BEAM DIRECTION switch to choose the beam pattern that results in the greatest deflection of the signal strength meter. Next, the BANDWIDTH control, next to the BEAM DIRECTION switch, is turned from its broadband position to its narrowband or sharp position. When this is done, a four-section vari-able-tuning capacitor, with its associated coils and other passive front end parts, is introduced as part of the antenna circuitry.

When the BEAM DIRECTION switch is sel to the narrowband position, The Beam Box acts, in effect, as a front end in front of your tuner's own front end, and therefore contributes significantly to image rejection, spurious response rejection and, to a lesser degree, selectivity. You simply turn the TUNING control until

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Frequency Range: 88 MHz to 108 MHz . Antenna Gain: -5 dB (narrowband); -12 dB (broadband). Receiving Elements: four 8 th-wavelength extruded aluminum elements Output Impedance: 300 -ohm balanced or 75 -ohm unbalanced (coaxial) connection. Standing-Wave Ratio (VSWR): less than 1.5:1, narrowband. Bandwidth, in narrowband position, 3 MHz at $-3-\mathrm{dB}$ points. Dimensions: $141 / 2 \mathrm{~W} \times 41 / 2 \mathrm{H} \times 14 \frac{1}{4}$ inches D. Nel Weight: 8.5 lbs . Accessories: 44 -inch length of 300 -ohm transmission line, terminated at each end with spade-lug connectors. Suggested Retail Price: $\$ 89.95$.
signal reception is optimized, observing the signal strength meter or, if none is available, listening for the cleanest, least noisy FM reception. The owner's manual suggests that after the initial optimization, it is advisable to recheck using the BEAM DIRECTION switch, since occasionally a different directional pattern can further improve reception once the other controls have been set.

Lab measurements

Two sets of experiments were conducted to determine the usefulness of The Beam Box. Our laboratory is equipped with a precision field-strength meter, the Blonder-Tongue model 4127 that reads directly in microvolts. This meter was first hooked up to a standard 300 -ohm wire dipole antenna of the type normally supplied with most tuners or receivers. The dipole antenna was placed in a fixed position and not reoriented during the tests (much as it would be used in a typical installation). Several received signals were tuned to on the field-strength meter and readings were recorded.

Next, The Beam Box was connected to the field-strength meter and tuned to the same signal frequencies. The received signal strength was again recorded. Results of these tests are listed in Table I and, as can be seen, in most instances, signal strengths received using an optimally adjusted and tuned Beam Box were greater than those received using the nominally positioned standard dipole anten-na-despite the fact that The Beam Box (by virtue of its 8 th-wavelength elements) actually has less theoretical gain than a half-wave dipole antenna. Even in the few instances where signal strengths were greater using the dipole antenna, subsequent listening tests revealed that reception quality was superior when The Beam Box was used, once again proving that the signal quality counts more than actual signal strength.

Our second experiment involved measuring the residual background noise of an FM received signal. FM noise reduction is not
$\left.\begin{array}{|c|c|c|}\hline & \begin{array}{c}\text { TABLE I } \\ \text { Station Frequency } \\ (M H z)\end{array} & \begin{array}{c}\text { Signal Strength }(\mu \mathrm{V}) \text { Using } \\ \text { B.I.C. Beam Box Tuned } \\ \text { And Set For Best } \\ \text { Reception }\end{array}\end{array} \begin{array}{c}\text { Signal Strength (} \mu \mathrm{V}) \text { Using } \\ \text { Fixed Wire-Dipole Tacked } \\ \text { To A Wall }\end{array}\right]$
*These stations exhibited severe multipath reception problems when the fixedposition dlpole antenna was used.

	TABLE II
RADIO-ELECTRONICS PRODUCT TEST REPORT	

always a function of signal strength. There are a few FM tuners and receivers around (notably, those manufactured by Harman Kardon) that do provide what is called a quieting meter instead of the usual signal strength meter. To simulate this kind of indication, we connected a bandpass filter (tuned to around 100 kHz) to the detector output of a tuner. The output of the filter was connected to the vertical input of an oscilloscope. Since the filter allows only moise components in the $100-\mathrm{kHz}$ region to pass through, the audio modulation of the received signal does not affect the display. This sort of display gives a good indication of quieting or noise content in a received FM signal.

We tuned to a relatively weak signal, using The Beam Box, with the beam direction switch and tuning controls set arbitrarily. Figare 3 shows the high level of background noise (lack of quieting) that resulted. We then opti-

mized the beam direction, switched to the narrowband position, and tuned the tuning control on The Beam Box and the noise quickly diminished, as shown in Fig. 4. By way of comparison, we then connected a standard dipole antenna to the same tuner, which

remained tuned to the same frequency. Figure 5 shows the noise pattern that resulted, which was considerably greater than the noise pattern obtained when the properly tuned Beam Box was used. We then connected a six-element outdoor antenna, properly oriented by a rotator, and observed the noise pattern shown in Fig. 6. Obviously, if money is no object, such an installation would still outperform The Beam Box, as you might have guessed.

Our overall product summary is found in Table 2, together with summary comments concerning The Beam Box. For those who might wonder why we rated the price-performance ratio as excelient, the only thing that beats the performance of The Beam Box is a carefully installed, highly directional outdoor antenna. However, the cost of such an installation (including the price of the antenna and accessory parts, cable, mast and, likely a rotator if all your station signals originate from points about the compass) might well be double or triple that of The Beam Box. R-E

computer corner

Z-80 A close look at the three different interrupts available in the Z-80
 WILLIAM BARDEN, JR.

LAST MONTH. WE LOOKED AT THE VARIOUS addressing modes of the Z-80. This month, we'll examine three different ways the Z-80 can be interrupted.

Interrupts

The Z-80 has two interrupt inputsINT, which typically comes from an external device requesting I/O (Input/ Output) service; and a nonmaskable interrupt, NMI. The nonmaskable interrupt is the least sophisticated of the two; so, NMI will be examined first.

The NMI interrupt cannot be disabled by the Dl (D isable Interrupt) instruction. This means that even if the NMI line to the Z-80 is brought to a logic 0 level, the CPU will always act on the interrupt. The NMI signals important system conditions that must be acted on immediately, such as system power failure or system reset. Whenever the NMI line is brought to a logic-low level by external circuitry, the CPU executes a RESTART instruction to memory location 0066 H . You will recall that a RESTART instruction automatically saves the contents of the program counter by pushing it into the stack, and the restart instruction initiated by the NMI interrupt performs the same action. The NMI is not implemented in the 8080 microprocessor.

The INT interrupt operates in three modes, selected by prior execution of one of three special mode instructions-IMO, imI or im2. For this type of interrupt to occur, the interrupt enable flip-flop must be set. The interrupt enable flip-flop is set or reset by two interrupt control instructions, El and DI (Enable Interrupts and D isable Interrupts). As in the 8080 -based and other microcomputers, there are times when interrupts are permitted and other times when interrupts must be inhibited. An obvious example of a time when interrupts must be disabled is when a previous interrupt has just occurred and is in the first stages of being processed. If a second interrupt was to occur while the status of CPU flags and registers is being saved in the stack, the second interrupt might destroy the previous contents of the CPU registers and status flags. Another example of an interrupt-disable period is when the system is first initialized. If an interrupt were allowed to occur before system devices were reset and
initialized, a spurious or unexpected interrupt might result and be erroneously processed.

If an imo instruction has been exccuted, the Z-80 is in mode 0 which is identical to the 8080 interrupt mode. If the interrupt enable flip-flop is set and signal $\overline{\mathrm{INT}}$ is brought down to a logic 0 level, the CPU enters an interrupt state and signals the interrupting external device by the $\overline{\mathrm{IORQ}}$ signal together with the $\overline{\text { M1 }}$ signal. When the interrupting device receives these two signals, it responds and the Z-80 behaves in a fashion identical to the 8080. A restart instruction is jammed onto the data bus. Encoded within the one-byte restart instruction is a three-bit field with a value of 0 through 7 and the CPU transfers control to memory location $0,8,10 \mathrm{H}$, $18 \mathrm{H}, 20 \mathrm{H}, 28 \mathrm{H}, 30 \mathrm{H}$, or 38 H , depending upon the value of the field $(0,1,2,3,4,5$,

6, or 7). At the same time, the CPU saves the contents of the program counter in the stack. The eight locations typically contain jumps to interrupt processing routines elsewhere in memory, since eight bytes is not really enough memory to process most interrupts. At the end of interrupt processing, a Return (RET) instruction pops the address of the interrupted instruction from the stack and transfers control back to the main program at the point of interruption.

When interrupt mode 1 has been initiated by execution of an IM1 instruction, an interrupt on the INT input pin while the interrupt enable flip-flop is set causes a restart to location 38 H . Why is this mode convenient? Because mode I needs no external hardware to jam the RESTART instruction onto the data bus at the proper time. The CPU automatically transfers control to the proper location, as in the case of the NMI interrupt. This mode is not implemented in the 8080 microprocessor.

FIG. 2

The remaining interrupt mode, mode 2 , is the most powerful interrupt mode of the three. Using this mode, up to 128 interrupt levels can be used in the Z-80 system. A table of addresses representing up to 128 interrupt processing routines is stored anywhere in memory. Figure 1 shows this table, in which each entry consists of two bytes representing the address of the interrupt processing routine. Register I is previously loaded with an eight-bit value representing the address of the start of the table divided by 256_{10}. For example if the table started at 2000 H , register I would be loaded with 20 H .

With mode 2 previously set by an IM2 instruction and the interrupt enable flipflop set, an interrupt on the INT pin causes the same IORQ and M1 response as mode 1. The difference is that the interrupting device supplies an eight-bit value representing the lower-order eight bits of the interrupt vector, while register I supplies the eight higher-order bits of the interrupt vector as shown in Fig. 2. The CPU treats the two bytes as a 16 -bit memory address and puts the contents of that memory address and that memory address plus one into the program counter, thus effectively transferring control to the interrupt vector address retrieved from the table. Note that the least significant bit of the address from the $1 / \mathrm{O}$ device must always be a logical 0 , so that the resulting address points to the first word of the interrupt vector table entry. Using mode 2 , up to 128 external $1 / \mathrm{O}$ devices could cause 128 unique interrupts with a subsequent transfer of control to 128 different interrupt processing locations. Obviously, external logic is required to properly establish the priority of these devices so that only one interrupt can occur at a time. Mode 2, of course, is not implemented in the 8080 .

Next month, we'll discuss how to interface the Z-80 to I/O devices and to additional memory.

R-E

"That's remarkable, Doc!-How'd you know that I'm an electronics technician?"

HELP US FIGHT FOR YOUR LIFE

Exercise Regularly

American Heart Association t. WE'RE FIGHTING FOR YOUR LIFE

Are You still using an Audio Generator that has a Crank?

IF SO.THEN
LOK AT THE
270
Lit

br HICKOK

Sines, Squares, Triangles to 500 kHz

- and much, much more
A new, versatile service and lab instrument - the feature packed Model 270 Function Generator- gives you much more wavetorm generating capability than you'd expect firits low price. This compact, precision unit puts stable, callbrated, fingertips. But that's not all. With external connections you can produce logic pulses, sweeps and ramps. amplitude and frequency modulated outputs, phase and frequency shift keying signals, tone bursts, and a host of mixed signal outputs. It's even a stand-alone wideband inverting amplifier!

REG. \$199.
SAVE $\$ 20$
$\$ 179.00$
Complete with Deluxe
Carrying Case
Offer expires
May 30, 1978

212.687.2224

THE TEST EQUIPMENT SPECIALISTS

TOLL FREE HOT LINE 800-223-0474 ${ }_{\text {ELECTRONCS }}$ ADVANC

Hobby Computer Mainframes

this directory grew too large to fit into a single issue. So this concluding section had to be held over for this month. Before starting this section we have one correction and one addition to last month's section. The address for the Mits Division of Pertec was incorrect; the proper address is PCC Microsystems, 21111 Erwin St., Woodland Hills, CA 91367.

Also, some gremlins resulted in the listing for ECD not appearing in alphabetical order. So here it is now, at the top of this month's list.

ECD

Makes Micromind, an assembled ready-to-use machine with 8 K of memory built around a 6500 A microprocessor. Comes complete with an 80 -key software definable keyboard; I/O interface board; high-detail graphics and character display processor; power supply, RF modulator and connections for up to four tape recorders plus TV or monitor. Price, $\$ 987.54$. Available from ECD Corp., 196 Broadway, Cambridge, MA

Southwest Technical Products

Complete line of hobby computer equipment. Includes 6800 computer complete with 4 K of memory. Kit, $\$ 395$. Additional memory, $\$ 100$ for $4 \mathrm{~K} ; \$ 250$ for 8 K . Terminal monitor CT-64 features 64 -character lines, upper-and-lower-case letters, switchable control character printing, word highlighting, full cursor control, 110-1200 Baud serial interface. Kit, \$325; 12MHz monitor, $\$ 175$.

MF-60 dual mini-floppy kit with controller, chassis, cover, power supply, two disc drives, $\$ 995$. MF-6X kit expands unit to four drives, $\$ 850$. Other peripherals include PR-40 alphanumeric line printer that prints 40 characters per line at 75 lines-per-minute. Price, $\$ 250$. Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216

Space Byte

A single-card self-contained 8085 CPU for the S - 100 bus. Operates at 3 MHz using $450-\mathrm{nS}$ memory. Two on-board RS232C serial I/O ports with software-selectable Baud rates. Also 16K RAM boards with on-board voltage regulators for S-100 systems. Prices not available. Space Byte Corp., 1720 Pontius Ave., Suite 201, Los Angeles, CA 90025

Spectrum 8

Complete in one cabinet, this computer system includes 8085 microprocessor, video terminal that produces 80 characters by 24 lines, cassette drive unit, keyboard and software and 16 K RAM. Price, \$2195. Spectrum 8, 3750 E. Foothill Blvd., Pasadena, CA 91107

STM Systems

Baby I microcomputer you can fit into an attache case. 6502based system with 2 K of RAM $\$ 850$, assembled only. With 4 K with power supply and controller, $\$ 750$. STM Systems Inc., P.O. Box 248, Mont Vernon, NH 03057

Szerlip Enterprises

No main frame here, only a PROM setter for 1702 A and 2708 PROM's. Plugs into S- 100 computer. Complete kit, $\$ 210$; assembled, \$375. Szerlip Enterprises, 1414 West 259 St., Harbor City, CA 90710

Technical Design Labs

ZPU card for S-100 bus machine features Z-80 microprocessor with iwo on-board clocks. Kit, $\$ 269$; assembled, $\$ 345$. Z16 memory module with 16 K on board, but can be purchased in 4 K increments. Uses 4200 memory IC's. 4 K kit, $\$ 169$; 8 K , $\$ 295$; $12 \mathrm{~K}, \$ 435 ; 16 \mathrm{~K}, \$ 574 ; 4 \mathrm{~K}$ expansion kits, $\$ 140$. Systems monitor board, $\$ 295$ for kit, $\$ 395$ assembled. Xitan microcomputer systems. Xitan Alpha I mainframe with ZPU board, system monitor board $\$ 769$ for kit, $\$ 1039$ assembled. Alpha 2 expands Alpha 1 by including Z 16 memory module and software package. Kit, \$1369; assembled, \$1749. Technical Design Labs, Research Park, Building H, 1101 State Rd., Princeton, NJ 08540

Technico I

Single board 16 -bit 9900 microprocessor. Just hook up power supply and terminal. Kit, \$299; assembled, \$399. Comes with 1 K of PROM, 512 bytes of RAM. Expands on-board to 6 K , can address up to 32 K words. Technico, Inc., 9130 Red Branch Rd., Columbia, MD 21045

Telpar

Model PS-40 printer offered as a silent Teletype alternative. Offered with multifunction interface ($\mathrm{F}-8$ microprocessor). Assembled only, $\$ 400$. Power supply, $\$ 100$; case, $\$ 100$. Telpar, Inc., 4132A Billy Mitchell Rd., P.O. Box 796, Addison, TX 75001

Thinker Toys

Developers of the WunderBuss, a 20 -slot S-100 busboard that includes a Noiseguard noise-squelching system. Kit, \$76, with 10 edge connectors, $\$ 120$; with 20 edge connectors, $\$ 154$. Also available: an $8080 \mathrm{CPU} /$ front panel kit, $\$ 250$. Speakeasy I/O board kit (three cassette channels, parallel and serial ports), $\$ 120$. 8 K dynamic RAM kit, $\$ 159$; assembled, $\$ 188$. 4 K static memory kit, $\$ 109$. Thinker Toys, 1201 10th, Berkeley, CA 94710

TLF

Assembled microcomputer with 8 K of memory, 2 K of control PROM, tape controller, buffered external bus and 110 Baud serial interface. Fully assembled and tested for the Mini 12, a 12-bit machine, $\$ 895$. A 24 -line parallel interface also available. Digital cassette storage system complete with two tape drives, \$795. TLF, P.O. Box 2298, Littleton, CO 80161

Vector Graphic

Hobby computer systems and accessories, including Vector 1 computer consisting of custom cabinet, 18 -slot motherboard S 100 bus, power supply, 8080 CPU board, PROM/RAM board with 1 K RAM, room for 2 K ROM. Kit, $\$ 619$; assembled, $\$ 849$. 8 K memory boards assembled, $\$ 265$ and $\$ 275$. Vector Graphic, Inc., 790 Hamshire Rd., Westlake Village, CA 91361

Xybek

A Prammer memory board on an S-100 bus card. Contains up to 1792 bytes of EPROM, 256 bytes of RAM, an integral EPROM programmer. Kit, \$209; assembled, \$289. Extension kit, \$15. Xybek, P.O. Box 4925, Stanford, CA 94305 R-E

Now you can save money and get the counter you want-

A frequency counter should deliver all the performance you expected when you placed the order. If the counter is a B\&K-PRECISION you'll be getting that plus some equally important benefits-a price that you can easily afford and off-the-shelf delivery.
B\&K-PRECISION has engineered a line of fullfeature frequency counters to suit most
applications. All have been conceived as cost-effective answers to frequency measurement needs in communications, lab, field and plant applications. Every B\&K-PRECISION counter features: autoranging, liberal input overload protection, a minimum of 1 Hz resolution, conservative specifications, and easy-to-read LED displays.

At the top end of our line is the new Model 1850, very conservatively rated at 520 MHz . Features include: TCXO time base... Period measurements from 5 Hz to 1 MHz ... Leading zero suppression...Bright . $43^{\prime \prime}$ LED display. Gate times from 10 ms to 10 seconds... $\$ 450$.
The $\mathbf{1 8 2 0}$ Universal Counter is one of the most versatile counters available at any price. Frequency measurement typically extends beyond 100 MHz ...Period measurements from 5 Hz to $1 \mathrm{MHz} \ldots$ Period average, auto and manual positions . . Elapsed time measurements to 9999.99 seconds (plus overflow) Totalizes event counts to 999999 (plus overflow)... \$260.

At only $\$ 120$, the 1827 portable frequency counter is slightly larger than a pocket calculator. 30 MHz guaranteed; 50 MHz typical Battery saver for all-day field use . . Full range of optional accessories available.
The 1801 is a rugged frequency counter designed for production line and maintenance applications. Readings to 40 MHz guaranteed; 60 MHz typical . . . Easy to use and read...Wide range input eliminates the need for level adjustments... $\$ 200$.
Isn't it time you stopped sacrificing features and performance for price? See your local distributor for immediate delivery.

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

NATIONAL Exicill SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles. Calif. 90037

hobby corner

Abstract

A basic game roller or chase circuit that's the basis for many games. Plus some simple modifications to change the odds. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

YOU KNOW, HALF THE FUN OF THIS ELEC. tronics hobby is building a circuit and then seeing what else you can make it do. This month's circuit can be changed in a number of ways.

Many games require a spin of a counter or a toss of the dice to determine the order of play and/or the number of moves per turn. Here is a circuit that will do that job at the push of a button. The parts are few and inexpensive and construction is within the capability of virtually anyone. We'll start with a basic circuit and then change it around.

Game circuit

The basic game roller circuit shown in Fig. 1 uses only three IC's. The 555 timer, án astable multivibrator, produces a very rapid series of pulses whenever switch $S 1$ is open. These pulses are counted in groups of 16 and converted into binary form by the 7493.

Now if you have the facility of reading binary numbers quickly, you could stop with the 7493 and simply put an LED on each output line. Most of us, however, take too much time to convert mentally from binary to decimal numbers, so an electronic converter is added. The 74154 is a 1 -of- 16 decoder/demultiplexer that is wired here so that each of its 16 output
lines goes low sequentially and in step with the binary count delivered by the 7493. When the switch is closed, only one LED remains on. It is only necessary, then, to determine which line is low by noting which of the 16 LED's is glowing. Notice in the schematic that only one current limiting resistor (R3) is used for all the LED's since only one is on at any one time.

Thus, Fig. 1 is a spin counter that indicates any number from 1 to 16 . The clock is designed to be fast enough so that the number on which the count stops is quite random. In fact, the LED's are switching on and off so fast that they all appear to be glowing dully. For this reason, the player cannot make the count stop where he would like.

The speed of the clock can be changed easily. Reducing the value of Cl, Rl or R 2 will increase the rate. Increasing one of these values will decrease the rate. You may wish to substitute a pot for R 2 to make it easier to change the frequency (a 250 K pot will provide a wide adjustment range).

Adaptations

Another interesting use for this circuit is to make a "traveling light" sign. If you line up all 16 LED's and slow the clock, it

FIG. 1
appears that the light is traveling down the line. Additional LED's would make the device even more eye-catching.

Fortunately, it happens that each output pin of the 74154 will carry a number of LED's. Since each LED you add will increase the current only about 0.1 mA , you don't even need more limiting resistors. Use two or more LED's on each output and connect them as shown in Fig. 2. (Figure 2 shows the connection for output pin No. 1 only. The other output

FIG. 2
pins are connected similarly.) The only caution is that you may have to match the LED's on each output. If one LED draws all the current (and light) from the other LED's on the same output, put it on another pin where it is more evenly matched.

Now arrange your LED's in a $1-16$, $1-16,1-16$, etc., order. If you have 4 LED's on each pin, it will appear that 4 lights are traveling down the line. Of course, the display is made more interesting if you form a circle or rectangle or some other shape. By turning the pot you've substituted for $R 2$, you can vary the speed with which the lights move.

So far, we have done nothing to change the probabilities or odds that one number (LED) will come up any more often than another. There has been an equal chance for every number. The following modifications will change that.

First, let's connect two outputs together as shown in Fig 3. A low level at either

FIG. 3
output pin No. 1 or No. 2 will light both LED's. If both of the LED's represent numbers, your rule of play could call for continued on page 79

A major advance in cassette deckdesign. The new Sansulisc-5100.

If yol're looking for acassette deck has combines the zonvenience of he traditional zassete sleck with tre tonal exce lence of oper reel, you zeedn't liox ary further. Because the sacsui SC-5100引ives you D oth. And more.

Here's why. Performar ce meets the siandards Jf today's riost advanced component sustems fill nusical signa's are reproduced clearly and wi-houl alistortion becalse of the wide frequency, response 20-17,000-k , chromium), exsellent sign al-to-nose ratio (67 dB , with D Diby *), cond unusually low wew and rlutter (0.05%, NRMS).

The Sこ-51JC is ultra-convenient to Lse Sclenoid operation permils sontrols -rat easily resiond to tour ightest touch. Anc with the electronicalycontrolled tape trensport you get automatic play and repea:. The illuminated memorv counter is also automatic

For added convenier ce the SC-51ica when used with a timer, wil record off your tuner or receiver unattended. Or it will wake you genly ir the monng with your favorite mus c.

The SC-51C0 offers cillit e features you'd

A whole new world dinusice pleasure.

service clinic

Vertical OTL (Output TransformerLess) output stages adapted from audio amplifier technology-how they work and how to troubleshoot them.
 JACK DARR, SERVICE EDITOR

MANY SOLID-STATE TV SETS USE COMPLE-mentary-symmetry and stacked ("totempole" or quasi-complementary-symmetry) vertical output stages. Basically, these stages are alike, but in the comple-mentary-symmetry stages, transistors of opposite polarity are used. There are variations in the DC power supply, but the circuit operates the same. The advantages are obvious. The circuits don't need a big, expensive vertical output transformer, because they're all OTL (Output Transformer L ess) circuits.
These simple circuits can develop some peculiar symptoms. For instance, how about a vertical sweep that covers only the top or bottom half of the raster, yet is perfectly linear?
The OTL circuits are the same as the output circuit used in so many audio amplifiers, with minor differences. They work in Class B. Each transistor conducts on only one half-cycle of the input signal, and cuts off completely on the reversepolarity half. One transistor sweeps the top half of the raster and the other transistor, the bottom half. Therefore, the reason it is possible to have a linear halfraster is that one transistor isn't conducting at all! This is usually due to an open transistor or a bad connection.

How it works

A typical example of this comes from the Admiral M45 chassis and is shown in Fig. 1. Note the waveforms in the upper right-hand corner. The top and bottom waveforms (waveforms a and c) taken across the emitter resistors show very clearly how first one then the other transistor conducts. The center waveform (waveform b) is the combination of the top and bottom waveforms, taken to ground from the junction of the emitter resistors where the vertical yoke is connected.
Since the first two signals were taken across a resistor, the voltage peaks are directly proportional to the current through the resistor and yoke winding. These transistors are termed the top ramp and bottom ramp vertical output transistors because they generate a ramp voltage (linearly rising sawtooth), and the two together give the complete sawtooth that is needed to scan the whole screen.

During the top half of the scan, the top transistor is turned on, and the bottom transistor is cut off completely. In the middle of the screen, the top transistor is turned off, and the bottom transistor finishes the job.

The following question has puzzled many technicians, present company included: The top transistor is connected to $B+(145$ volts). Current flows through it and the yoke. If this current is cut off during the bottom half of the scan. from what source does the bottom-half transistor get its DC voltage supply?

The answer is simple. Note capacitor C606 ($220 \mu \mathrm{~F}$) in series with the vertical yoke return to ground. While the current flows through the top transistor, capacitor C606 charges. When the top transistor cuts off, capacitor C606 discharges through the bottom transistor, and away we go.

This is only one valuable clue in finding problems. If the DC power supply is normal, both transistors are good, but you still have no vertical sweep, check the capacitor to see if it is open. Not only will you lose the DC voltage at the midpoint,
but the vertical yoke winding will have no return to ground. In normal operation, you will read about +59 volts DC at the junction of the output-transistor emitter resistors. The middle waveform (waveform b) in Fig. 1 is a pulse sawtooth waveform with a voltage of about 100 P P. Your meter reads this voltage as the charge on the capacitor, therefore it is lower.

As in the audio circuit, the crossover (the midpoint in the cycle where the transistors switch conduction) is very important. In audio, you can have a little crossover distortion and maybe not hear it, but you can see it in a raster. Several different networks are used in these circuits just for this purpose. Figure 1 shows a familiar circuit: the two series diodes between the output bases correct the bias ratio and provide turn-on and turn-off at just the right time.

A feedback loop taken from the yoke connection (junction of the emitter resistors) is fed back into the first stages for S correction. This corrects any tendency of the predriver stages to be nonlinear or show a droop in the rising part of the sawtooth. Note also that the vertical yoke winding does not go directly to ground through the return capacitor. A small sawtooth voltage is picked off across a small resistor (R615 and R616 in paral-

lel); this is fed back into the Miller charging circuit used in the vertical oscillator circuit, which is not shown in the Fig. 1 diagram.
This circuit develops a very linear sawtooth waveform. The correct signal. shown in waveform e of Fig. 1, is a voltage waveform taken across a resistor again so that it is directly proportional to the yoke current.
DC voltage readings plus raster observations help greatly in finding circuit troubles. Check all of them, especially the DC voltage at the junction of the outputtransistor emitters. This voltage will read about +59 DC . If this reading approaches normal, the output stages are probably working.
Another odd problem affecting lincarity occurs if bootstrap capacitor C608 in the base of the top transistor (Q101) is open. Capacitor C608 provides a little regenerative feedback to raise the gain of transistor Q101. Other linearity problems can be caused by a drift in the value of resistors in the feedback loops or by open bypass capacitors, etc.

You can use a scope to check the waveforms for amplitude and distortion and determine just where the trouble lies. Follow the feedback loops back to where they are used, and you can pin down the cause of any distortion very quickly.

The OTL circuit uses a single-ended DC power supply; the clue is that one of the output transistors always goes to ground. Another clue is the big coupling capacitor (C606) in series with the yoke winding. This will hold true whether the circuit is complementary-symmetry, a "totem pole" using identical NPN or PNP transistors, or a quasi-complemen-tary-symmetry circuit using identical output transistors and complementarysymmetry drivers.

You will also find the same circuit using dual-polarity DC power supplies. which is almost always used with comple-mentary-symmetry transistors. This circuit will not have a big yoke-coupling capacitor; the yoke returns directly to ground. Equal and opposite DC voltages are supplied to the output transistors. A circuit similar to the one shown in Fig. I would probably show something like +60 volts on the top (NPN) transistor collector, and -60 volts on the bottom (PNP) transistor. These are ballpark figures, or course, since the actual voltages depend on the design, type of transistor. screen size, etc. What is important to remember is the ratio between the DC voltages, bias voltage and so forth. Another handy hint is to check all the controls for reaction. If you find one that has no reaction at all or an incorrect reaction, check the circuitry around this control thoroughly and find out why.

An OTL is a good circuit, and one in which it is not at all hard to diagnose problems, if you know how it works and what it does when it isn't working! R-E

service questions

NO BOOST VOLTAGE
 I can't get any boost voltage on this Admiral H1-1A portable. The tubes are good and supply voltage is normal. Any idea?-G.V., E. Hartford, CT

Check the deflection yoke. If it has a light blue plastic mount and is marked "Made In Taiwan," it could be bad as many of these have been.
(Confirmed by reader!)

HIGH-VOLUME SPEED LOSS

When the record is first started on this Panasonic SG-635, everything is fine. When a loud passage comes in, the furntable slows away downl I don't get itlH.K., Garretfsville, $\mathbf{O H}$

I didn't either until I looked at the schematic. The turntable motor is not driven from the AC line, but from the DC power supply. Apparently it has enough output to keep the turntable running until the amplifier starts to draw more current. This is normal; this type of amplifier takes only small currents nosignal, but current drain goes up drastically on loud passages.
WE PUT THE
WICKWHERE IT

$$
\begin{aligned}
& \text { IN A UNIQUE, BUILT-IN } \\
& \text { DESOLDERING TOOL-YOURS } \\
& \text { FREE, AS A LIMITED-TIME }
\end{aligned}
$$

INTRODUCTORY OFFER TO SD5.
imagine having desoldering wick, right where you can get at it fastest, when you
 need it most . . . while you're soldering. It's our new patentpending, refillable SD5 solder/ desolder system with $2 \frac{1}{2}$ inch heat-resistant, telescoping Teflon* probe.

Snapped right into the center of a pound spool of our high quality 16,18 or 21 gauge MIL-spec solder is D5 - our easy-to-use desoldering tool. D5 contains 5 feet of pure copper wick that lets you see the absorption of solder ... so you never overheat boards or components by working with a used portion of wick. Its non-activated, pure waterwhite rosin flux coating quickly removes all solder, without corrosive residue.

Nothing beats the D5 dispenser tool for easy desoldering without
-Reg DuPon Iradematk
BELONGS
burnt fingers. Its $21 / 2$ inch probe reaches right into tight areas. And by applying tension to the probe, you can shape or "web" the wick to provide a greater absorption surface. You also use less wick, dis pensing the right

Modular constituction - OS 1001
is removable

 SD5 is the total system for maximum
 soldering/desoldering efficiency. Alone the D5 tool is perfect for times when you want to pocket the wick and leave the solder behind. And D5 is also refillable ... just snap out the Teflon* probe and plug in a D5 refill, available in two gauges -. 10 inch and .06 inch. The Chemtronics modular solder/desolder system can be purchased separately as half or one-pound spools of solder, D5 desoldering tool and D5 wick refill. Or as a complete SD5 unit witt, free D5 desoldering tool. Take advantage of this limited-time offer at your Chemtronics distributor

Check the DC power-supply output and motor voltages. They are regulated. You should read 9.1 volts at the powersupply output (at all times) and +3.25 volts across the motor and on the regula-tor-transistor collector. There may be very low or open input filter capacitor in the DC power supply.

SUDDEN COLOR CHANGE

This Truetone WEG-4419A-47 will intermittently change color to a reddish, bluish, etc., raster. If's never shown the same color twice. The voltage-regulating transistor runs hot, and the DC voltages are off. The +30.7 volt line is only about 20.

A/so, while checking, my probe slipped and I blew the Zener diode ZD601. Since I can't find a replacement, I could use help.-M.D.O., Mena, AR

Get those DC voltages back up to normal, and your problem will probably go away. The Zener diode is shown as a 31 -volt type, but an RCA SK- 3095 will replace it. Check the regulator transistor. This can be replaced by an RCA SK3054. Also, don't overlook the "Regulator Protector" (error-amp) transistor Q602; an SK-3124 will replace this.

The 30.7 -volt line feeds the color amplifier transistors. If this voltage is quite low, these transistors will clip the signal

badly and distort the colors. Heat-related shifts in the regulated DC voltage cause changes.

TUBE HEATER OUT

Although I have high voltage, sound and so on, I can't get the screen to light on this Sony TV-500U. The picture-tube heater doesn't show any glow; is it supposed to?-C.V., Jessup, PA

This isn't one of those tubes with "dark heaters." I'd say it should definitely show a light. The circuit uses a small tertiary winding on the horizontal driver transformer to supply the picture-tube heater. Since you have high voltage, this transformer ought to be good. Check that winding for the voltage, which will be AC. Check the continuity on the picturetube base, from pin 1 to pin 3, the heater terminals. Try hooking a small 12 -volt bulb across the driver transformer tertiary; if the bulb lights up, then the picture tube is open.

POWER TRANSFORMER NEEDED

I need a substitute power transformer for an amplifier made by Aims Amplifiers, Inc., which is not in business any more. This model "Dual Twelve" has two 12AT7's, tour 7025's, and two 6550's, and is rated at 120 watts into 4 ohms.-W.M., Newark, DE

From the schematic you sent, plus the ratings on the tube manual, this should be fairly easy. It seems to have a bias winding on the high-voltage secondary, which would be normal for a high-power amplifier using 6550's. I'd recommend using a Thordarson 24R38.

However, the 6550 tubes listed in GE's tube manual are rated at 20 watts per tube. This should be about 40 watts pushpull, not 120 watts! Sounds like someone was being a touch optimistic with power ratings. (If so, no wonder the power transformer blew out.)

TRACE PROBLEM

I have a trace problem in a Precision ES-550 scope. After about half an hour, it broadens until the intensity and focus controls won't correct if. What's doing this?-A.M., Lowell, IN

Look at the network of high-value resistors from the high negative voltage supply, to the intensity, focus and astigmatism controls, to ground. Some of these resistors are probably off value. If the 1.0 -megohm resistor between the slider of the INTENSITY control and the CRT cathode has gone away up in value, it will cause the symptom you describe.

This is obviously a thermal; you can speed up the process by heating up each resistor with a soldering iron, after a cold start. Alternate: Cool each one after the trouble shows up.

CHECKING OLD TUBES

I'd like to know how you can check the older tube types, like Nos. $80,43,45$, efc.,
in a late-model tube tester.-K.F., Raleigh, NC

With great difficulty! It is true that these are "only tubes," pentodes, etc. But you'd have to make up a socket panel and then connect it to your present tube tester. You'll have to identify the plate, grid, cathode, etc.

An easier way is to check them incircuit. For example, if there are 250 volts AC on the plates of an No. 80 tube, but only about 100 -volts DC output, the tube is weak or the input filter capacitor is open.

The same thing applies to any amplifier tubes. If the plate voltage is too high (supply voltages and load resistors normal), the tube is low in emission. Check the grid voltage to make sure the tube isn't biased-off. (Watch out for tubes like the 45 's, which used a very high bias, up to $30-40$ volts negative on the grids!)

HORIZONTAL OSCILLATOR
 This GE FS-chassis portable won't light

 up every time it's turned on. However, once you touch anything in the horizontal oscillator circuit, it starts. After it's going, it never stops. What is causing this?M.M., Chicago, ILThe schematic shows this is the same Colpitts circuit used in several other portable makes. The most common cause of this symptom is the two capacitors across the oscillator coil: $\mathrm{C} 262 / \mathrm{C} 263, .0027 \mu \mathrm{f}$ and $.0068 \mu \mathrm{f}$. Try new ones in here.
(Feedback: "These capacitors were both good on the test. However, an eyelet in the PC board at one end of C263 wasn't very good! Same results. Thanks.")

NO VERTICAL SWEEP

This T935 Magnavox came in with no vertical sweep. A new tube didn't help. The DC voltage was very low on the input half-plate. I can inject a signal to the halfplate and get full sweep, floating. All resistance readings look good.-L.N., Philadelphia, PA

All vertical multivibrator sweep circuits are basically the same: A two-stage RC-coupled audio amplifier with its tail in its mouth. Translation: A very heavy feedback from output to input to make it oscillate. Since the "amplifier" is obviously working, the problem is one of the parts in the feedback loop.
(Feedback on the feedback: "Yep. Capacitor C410, $0.001 \mu \mathrm{f}$ to ground, had shorted.")

OUTPUT TRANSFORMER SUB

I need a substitute for the output transformer in an old Motorola record-player console. The part number is 25C60394A03-E. I've checked with the local distributor and parts houses; no luck. Can you help?-L.B., Narragansett, RI

A Triad $\mathrm{S}-55 \mathrm{X}$ is an exact duplicate for that part number.

Presenting your portable automatic solid state

Now, nobody likes to be called a Job Hopper, but the new, patented TF46 Portable Super Cricket can literally help you hop from job to job through solid state circuits faster than any other transistor tester on the market today. For the first time you can automatically analyze 162,000 different transistors and FETs, in or out of circuit at any job location in the world. Here are four reasons why.

It's 100\% automatic.

Connect the test leads any way you want right in circuit and rotate the large permutator knob until the Cricket "chirps". Read any transistor or FET as Good or Bad on the meter with the patented phase-inversion automatic Cricket test. It even identifies the transistor leads! It virtually thinks for you.

It takes no set-up information.

None at all. It tests over 162,000 transistors and FETs with the same, simple test, and can easily be used by a non-technical maintenance person.
It provides Leakage \& Gain tests

to completely analyze any transistor or FET.

The only portable tester that includes transistor Beta, FET Gm, and full leak. age checks to totally check all parameters, and catch troubles other miss.

You can now test solid state circuits anywhere.

The TF46 is fully battery operated for the field, or AC operated for the bench with the optional 39G90 Power Adapter. You know what else? The TF46 automatically turns itself off after 10 minutes of testing in the field to save the batteries.
Hop to it. Call your local Sencore Full Line Promotional Distributor, or order your TF46 Job Hopper with the coupon below.

I WANT TO buy it. Send \qquad TF46s
to me at $\$ 225$ each.
\square Check/M0 enclosed.Send C.0.D. Also send:
_ PA208 Power Adapter \qquad $\$ 9.95$
$39 G 85$ Touch-Test Probe \qquad $\$ 10.00$
\square I WANT TO TRY IT. Have my nearest Sencore distributor bring the TF46 to me. \square SEND FULL SPECIFICATIONS.

NAME:
COMPANY:
STREET:
CITY:
STATE: \qquad ZIP:

PHONE:

Solid-State Update

Microcomputers

Microkit has produced the M8-40 Microemulator and M8-41 Debug and EPROM programmer as a $\$ 1,250$ package.
The Microemulator plugs into a CPU socket. It can be used for debugging development systems, production testing and maintenance of microprocessor systems in their own environments. The
system has a monitor; emulator mode; single step and trace execution; hardware breakpoints; and 2708/2704 EPROM programming
The programmer is available for 8080 , 6800 and Z-80 microprocessors. Microkit, Inc., 11205 S. La Cienega Blvd., Los Angeles, CA 90045.
The Signetics 2651 Programmable Communications Interface (PCI) is a

combination Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) and baud rate generator that is compatible with the $2650,8080, \mathrm{Z}-80$ and 6800 microprocessors.

The USART function takes the parallel output data of a microprocessor and converts it into a serial bit stream. Received serial data is converted into a 5 to 8 -bit word for entry through the microprocessor's data bus. Asynchronous false starts caused by noise are detected, and the number of start bits, and odd, even or no parity selection is implemented. Baud rates from 50 to 19.2 kilo-bits-per-second can be program-selected.

The 2651 interface should prove useful in intelligent terminals, communication controllers, data concentrators and frontend processors.

Texas Instruments' TL505 is an A/D converter designed to work with microprocessors such as the TMS 1000 in such applications as high-impedance sources, weight scales, and thermal, light and moisture sensors.

The TL505 has 0.1% accuracy, onchip reference voltage, auto zero and high-impedance MOS inputs. Threedigit BCD conversions are completed in 500 ms by the TL505/TMS 1000 combination.

Microprocessors

There have been some recent developments in National Semiconductor's SC/ MP 8-bit and PACE 16 -bit microprocessors. First, for those who cannot see the logic of hooking a $\$ 3000$ terminal to a $\$ 100$ evaluation/development board, a new low-cost SC/MP keyboard kit has been developed. The calculator-like device has a keyboard with hexadecimal and system control keys, and a built-in sixdigit hex display. The buffer, decoder and driver circuits mount on the empty portion of the SC/MP kit board. A new ROM replaces the original kit bug ROM.

The ABT (abort) key terminates the command in process and returns the system to a wait loop. The mem key displays the next memory address and its contents. The term key terminates the present mode and then enters data at specified addresses. And the go key followed by

TERM begins program execution at the last referenced address.
The price of the ISP-8K/400 keyboard kit is $\$ 95$, including a hand-held wirewrap tool.

National has also released the $\$ 499$ ISP-8P/301 low cost development system for the SC/MP microprocessor. The basic LCDS system comes with a 16 -key hex keyboard, three control switches and a six-digit hex display. The CPU card supplied with the system plugs into one of four available sockets.

Programs can be entercd, examined and run in continuous or single instruction modes, and can operate through a teletype using SC/MP DEBUG.

National's SC/MP II, which is an N channel version of the older P-channel microprocessor, is twice as fast and uses only one-fourth the power of the earlier type. Only a single +5 -volt supply is needed as compared with the +5 - and -7 -volt supplies used by the PMOS microprocessor. Typical instruction execution time is $5 \mu \mathrm{~s}$.

The PACE 16-bit microprocessor costs $\$ 20$ ordered in quantities of 100 , and $\$ 13$ in 5000 lots. These prices represent a 50% price reduction, and prices are expected to drop even more in 1977. The cost of the PACE microprocessor is now onehalf that of the General Instruments microprocessor and one-fourth that of the Texas Instruments device.
National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, CA 95051

Watch circuits

RCA has three new CMOS timing circuits 'for liquid-crystal watches, the CD22001H, CD22002H and CD22003H.

The first two are two-button, five-function circuits that display hours, minutes, month, date and seconds on a $31 / 2$-digit display. The CD 22002 H can be reset by pressing both switches simultancously. This resets the watch and disables the high-voltage (4.5 volts) display supply for minimum current drain during storage. The CD22003H also includes a 15 -minute stopwatch.

The RUN II mode displays alternating hour/minute and month/date. Thirty and 31 -day months are corrected automatically, but February is fixed at 28 days so that resetting is necessary only during leap year.

Schottky TTL's

Motorola has signed a second-source agreement with Fairchild Camera and Instrument Company that provides for a technology exchange.

Motorola plans to produce low-power Schottky TTL products; while Fairchild will second-source Motorola's M6800 microprocessor.

Motorola has been successfully making
Turn page

To find out how much better our cartridge sounds, play their demonstration record!

Audio-Technica cartridge that meets your cost and performance objectives. Then listen.

Find out for yourself that when it comes to a duel between our cartridge and theirs...we're ready. Even when they choose the weapons!

What you'll hear is the best kind of proof that our Dual Magnet design and uncompromising craftsmanship is one of the most attractive values in high fidelity. For their records... and yours!

Dept. 38E, 33 Shiawassee Avenue, Fairlawn, Ohio 44313
In Canada: Superior Electronics, Inc

MORE THAN

 900 PRODUCTSdetectors, controls, sounders, locks, tools

EVERYTHING NEEDED TO PROTECT HOME, BUSINESS, INSTITUTION

Huge selection of high quality professional alarm products. 64 fact-filled pages with detailed specs, diagrams, technical notes. Products range from basic switches, controls, bells, sirens to most sophisticated detectors 4 radar, modulated or passive infrared, microwave, ultrasonics, ion, data links using pulse code multiplex, FSK radio, automatic phone dialers, leased line connections and display panels. Full selection of tools, relays, wire, foil, terminals, books.
WRITE FOR FREE CATALOG TODAY!
(Outside U.S., send $\$ 1.00$.

mountain west alarm

 box 10780 •phoenix, az 85064 (602) 263-8831 CIRCLE 13 ON FREE INFORMATION CARD

FROM KIT TO CAR
IN 80 MINUTES! IN 80 MINUTES!
Electronic ignition is "in." Update vour car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive dis charge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
POST PAID U.S.A.
WE ACCEPT
Mastercharge or Bank Americard. Send check or monev order with order to:

TriJStar Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501

selected Schottky devices to prove compatibility with Fairchild's LS process, and now plan to produce all Schottky LS products offered by the industry as well as introducing new devices.

BIFET op-amps

Texas Instruments has added four new devices for a full line of five BIFET operational amplifiers. The devices have a high slew rate, low input bias and offset current and offset voltage selection.
The TL080 and TL081 are single amplifiers, that have offset-voltage null capability. The TL081 includes internal frequency compensation.

The dual TL 082 and TL083 types have internal compensation, and the TL083 has offset voltage nulling.

The devices add to the previously announced TL084 quadruple operational amplifier. Commercial prices range from 52ϕ to $\$ 1.30$ each in 100 quantity.

Game modification

Those who have been following game circuit developments are no doubt aware of the General Instrument AY-3-8500 TV games IC. Figure 1 shows a modification (courtesy of R. Dowden, Ashland, VA) that lets you play against the machine in the so-called "cybernetic mode." With the switch in the cybernetic position, the ball output on pin 6 of the AY-38500 is connected to the reset input of the D-type flip-flop and the filtered junction of the two 4009 inverters is connected to the set input of the flip-flop. The flip-flop is set on each vertical sync pulse and reset by the ball pulse. The output then has a pulse width that is proportional to the vertical deflection of the ball. The complemented output of the flip-flop connects to the return side of the paddle position capacitor and switches it to ground whenever the flip-flop is set. This automatically controls the right-hand paddle to keep it in the same vertical position as the ball.

Using the capacitor connected to the right-hand paddle on pin 11 permits initial adjustment by using "Pelota," one of the IC's six games.

The paddle potentiometer varies the skill of the machine and creates a weak left-side handicap

"Maybeit will go away."

American Cancer Society:

CIRCLE 24 ON FREE INFORMATION CARD

FOCUS PROBLEM

The picture tube in this Magnavox T935-04 was replaced with an 18VAKP22. Now I can't get any focus. There are three taps on the chassis: +550 volts, +280 volts and ground. It won't focus on any of themI-L.N., Philadelphia, PA

There are two different types of picture tubes used in this Magnavox series. Some use the "standard" bipotential tube (25 kV high voltage, 5 kV of focus), but others use a low-focus voltage Einzel-lens tube.
The 18VAKP22 is a bipotential tube and needs 4 to 5 kV for focus. If you add the stock focus-dropping network it should work. Use the flyback modification kit, No. 171321-1. which uses a voltage tripler.

FM INTERFERENCE TV

I'm an engineer at an FM stereo station operating at 3.2 kilowatts on 97.7 MHz . We were getting complaints from residents that we were upsetting Channel 10 with our second harmonic. We took the station off the air until we could get this checked. The measured second harmonic at the transmitter was something like $100-d B$ down!

After much searching, the cause of the problem was found. Broadband TV antenna boosters were being overloaded. The input stages were actually being driven into Class C and doubling our carrier! This not only created problems for the user but it radiated into neighbors' sets.

The cure was to install FM traps between the antenna and the booster input; boosters with built-in FM traps also worked well.
(Many thanks to Tim Metzger, Jewett City, CT, for this information.-Ed.)

SUB FOR TRANSISTOR

This Sears 518.41960357 chassis blows the 1.5 -amp fuse. Transistor 0500 seems to be bad. I can't find a listing for it. I ordered one from Sears but haven't heard from them yet. Can't find any shorts in the DC voltage supply.-W.G., Kingston

Transistor Q500 is not bipolar! It's a PUT (Programmable Unijunction Transistor). Sylvania shows it under the OEM part number and says to use an ECG6402 (which is a PUT.) The key is that the gate goes to the anode, not to the cathode as in an SCR (Silicon Controlled Rectifier).

There is another PUT in the DC regulator circuit. It gates on the SCR to control the +114 -volt supply line. I suggest you monitor the +114 -volt line. If it goes too high, this will make all the circuits fed from it take too much current, thus possibly causing the blown fuse. We have heard from other technicians who have run into PUT's; one said he had checked it every way he could think of, but when he changed it, that fixed it!

How do you really use a multimeter?

Usually at your bench, in the shop, shared with others. And, if it's a Fluke multimeter, you use it with confidence.

Now you can carry that same bench precision on the job. Introducing the new Fluke 8020A DMM for only $\$ 169$.*

This rugged beauty packs more fieldvaluable features than any other DMM available, at any price. And that means field versatility when you need it most.

The 8020A has six resistance ranges, including a 20 megohm range for those special high-resistance TV components. Plus, you can measure focus dividers, pcb and capacitor leakage clear up to 10,000 megohms with the new conductance function. And conductance allows you to measure transistor beta-unique
with the 8020A
Ever damaged your meter in the flyback circuit? Rest easy. The 8020A is MOV-protected to 6000 V against hidden spikes and transients

Your 8020A comes with a full-year warranty, with worldwide service backup. Regardless of what happens to it, we'll fix it inexpensively and quickly, making the 8020 A a truly cost-effective investment.

Call (800) 426-0361, toll free. Give us your chargecard number for immediate delivery. Or, we'll tell you the location of the closest Fluke office or distributor. (Buy ten 8020 As for only \$1521!*)
${ }^{*}$ U.S. price only.

Command Performance: Demand the Fluke 8020A. 1807-7007

ELECTROLERT FUZZBUSTER II is a multiband detector that covers both the X and K bands. It sells for $\$ 129.95$, mounts on the dash and plugs into your cars cigarette lighter.

RADATRON XK RADAR SENTRY is two-band unit. Offers both visual and audio warnings; has front-panel sensitivity control.

TYPICAL POLICE RADAR UNIT. The antenna can be remotely positioned when necessary. It reads out directly in MPH.

ARTHUR FULMER SUPER SCOUT also covers both K and X bands. Plugs inta lighter or permanently wired in with eupplied connectors. Red light and beep alarms.

WHISTLER RADAR EYE multi-band detector. The closer the radar the faster the alarm light blinks and the laster the audio beep. Price is \$159.95.

BEARFINDER TWO + TWO uses two separate antennas-one for K band, one for X band to provide maximum sensitivity. Both audio and visual alarms are provided.

WHISTLER RADAR EYE blocks false triggering from 2-way radio, CB and microwave transmissions. It will sel you back $\$ 99.99$.

These radar-sensing devices are intended to warn you of the locations of police-radar. They are not a substitute for staying below the posted speed limit.

AUTOTRONICS SUPER SNOOPER cietects all types of police-radar. Automatic sensitivy control anc audia alarm with wolume control.

RIGEL SIDEWINDER warne If radar e ther aheac of or be ind your vehicle. Price is $\$ 129.95$. The Jrit detects bott X and K band radar.

Advanced Electronics

Should your

 career inelectronics
go beyond
TV repair?

CREI prepares you at home for broader and more advanced opportunities in electronics plus offers you special arrangements for engineering degrees

There is no doubt television repair can be an interesting and profitable career field. TV repair, however, is only one of the many career areas in the fast growing field of electronics.

As an indication of how career areas compare, the consumer area of electronics (of which TV is a part) makes up less than one-fourth of all electronic equipment manufactured today. Nearly twice as much equipment is manufactured for the communications and industrial fields. Still another area larger than consumer electronics is the government area. That is the uses of electronics in such areas as research and development, the space program, and others.

Just as television is only one part of the consumer field, these other fields of electronics are made up of many career areas. For example, there are computer electronics, microwave and satellite communications, cable television, even the broadcast systems that bring programs to home television sets.

As you may realize, career opportunities in these other areas of electronics are mostly for advanced technical personnel. To qualify for these higher level positions, you need college-level training in electronics. Of course, while it takes extra preparation to qualify for these career areas, the rewards are greater both in the interesting nature of the work and in higher pay. Furthermore, there is a growing demand for personnel in these areas.

Unlike most other home study schools, CREI programs are devoted exclusively to preparing you for careers in advanced electronics. All of CREI programs are college level. And CREI gives you both theory and practical experience in advanced electronics.

Unique Design Lab

A unique feature of CREI training is its Electronic Design Laboratory Program, which trains you to actually design circuits. It also helps you understand the theories of advanced electronics and gives you extensive practical experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Choice of Programs

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to
 CAPITOL RADIO ENGINEERING INSTITUTE

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

DIGITAL PERFORMANCE YOUCAN REIYON.

The Hickok Model 334 DMM is a rugged, non-temperamental, hardworking tool that's easy to use and easy on your eyes. Hickok has established a unique reputation in digital electronics during the past 10 years. The Model 334 is another example of our engineering expertise an economical lab quality instrument with exceptional durability and accuracy.

- Easy reading, green fluorescent display
- $31 / 2$ digit - auto polarity
- 26 ranges including 200 mV AC \& DC ranges
- Fast response 2.5 readings/sec

```
Basic Accuracies (% of reading)
    DC Volts; }\pm0.2% ( \pm0.5% on 200V
        1200V ranges)
    AC volts; }\pm0.5% ( 圤.0% o
        200 mV, 2V ranges)
    OHMS; \pm0.5%
    DC Current; }\pm1.5
    AC Current; }\pm2.0
```

Ask to see the Model 334 at your Hickok distributor. It's a no compromise DMM at a price you can afford.
$\$ 18900$
new products

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

HIGH-FIDELITY SPEAKERS, models AR-17, AR18. Both speaker systems contain an 8 -inch acoustic-suspension woofer and $1 / 4-$ in. ring-radiator tweeter with a crossover frequency at 2000 Hz . The model $A R-17$ has a low-frequency response of -3 dB at 50 Hz and the model $A R-18$ is -3 dB at 62 Hz . Power handling capability is 100 watts continuous per channel being driven to

clipping 10% of the time. Cabinets each measure $10 \times 181 / 2 \times 8^{3 / 4}$ in. The model AR- 17 comes in oiled wainut veneer and the model AR-18(shown) comes in walnut grain vinyl veneer. Manufacturers' suggested retail price for model AR-17, $\$ 95$; model $A R-18, \$ 65$. Speakers are sold only in pairs.-Teledyne Acoustic Research, 10 American Dr., Norwood, MA 02062.

CIRCLE 116 ON FREE INFORMATION CARD

PAPER TAPE READER, Byte Reader, is designed for the home computer hobbyist. A Lite Optimizer circuit senses intensity of external light source and adjusts photo transistor sensitivity levels. LED's visually indicate data being sent to the

computer. Kit sells for $\$ 69.95$; assembled: $\$ 84.50$. Add $\$ 3$ shipping and handling; California residents include state or local taxes as applic-able.-Microtronics, Box 7454 N , Menlo Park, CA 94025.

CIRCLE 117 ON FREE INFORMATION CARD

15-FUNCTION TOOL KIT, model 96006, comes in a heavy-duty vinyl case imprinted to simplify tool identification. The kit includes an interchangeable screw- and nutdriver series and the Plike-a 4-in-1 electrical tool that performs all plier, crimp-

er, stripper and cutter functions. Included in the screwdriver-nutdriver series are a handle, a 4 -in. extension, $3 / 16-\mathrm{in}$. and $1 / 4$-in. slotted screwdrivers, No. 1 and No. 2 Phillips screwdrivers and $3 /$ 16 -in. through $3 / 8$-in. nutdrivers. Kit measures $6 \times$ $81 / 2 \times 1$ in. Suggested retail price: \$21.19.Hunter Tools, 9674 Telstar Ave., El Monte, CA 91731.

CIRCLE 118 ON FREE INFORMATION CARD

DIP JUMPERS, flat cable/conductors for jumpering within a PC board, making interconnections, interfacing I/O signals, etc. Available in 14-, 16-, 24 -, and $40-\mathrm{pin}$ single-ended or double-ended assemblies and in 6-, 12-, 24 -, and 36 -inch

lengths. Copper alloy jumpers mate with standard IC sockets, cable is grooved top and bottom and conductors are made of No. 28 AWG tin-
coated copper.-A P Products, Inc., Ken Braund, 72 Corwin Dr., Box 110, Painesville, OH 44077.
CIRCLE 94 ON FREE INFORMATION CARD

METAL DETECTOR, TR Earth Challenger (stock No. 80,262) is a fully transistorized, balanced instrument that combines quality and power with low cost. Made of rugged aluminum and weighing

$2 \mathrm{lb} ., 6$ oz., unit features electronic housing and 6in. waterproofed search coil. Nine-volt transistor battery included. Deluxe version of TR Earth Challenger (stock No. 80,251) comes with tele-
scopic shaft and 10 -turn metal/mineral tuner. TR Earth Challenger, \$39.95; Deluxe TR Earth Challenger, \$59.95.-Edmund Scientific, 7782 Edscorp Bldg., Barrington, NJ 08007.
CIRCLE 119 ON FREE INFORMATION CARD

POWER AMPLIFIERS, models CP120, CP500 and CP50OM, are dual-channel units that can be operated independently or as a bridged unit. The model CP 120 (shown) is rated at 61 watts-perchannel, 122 watts in the bridged mode. The model CP500 and model CP500M are both rated at 255 watts-per-channel, 510 watts bridged. The model CP500M also contains peak-reading meters, a blown-fuse indicator and a thermal protection indicator.

Three PowerLock threshold settings (full, half and quarter power) protect against overload and reduce clipping. Other features include $1 / 4-\mathrm{in}$. phono jack inputs and rugged all-steel construction for on-the-road use. Prices: model CP120, \$339; model CP500, \$649; and model CP500M, \$779.-Technical Audio Products Corp., 3810 148th Ave. N.E., Redmond, WA 98052.
CIRCLE 120 ON FREE INFORMA TION CARD
MULTIFAMILY LOGIC PROBE, modeI LP-2, is designed to test and troubleshoot digital circuits such as gates, clocks, CPU's, UART's, etc. Pulse detection and pulse stretching provides instant readout of logic levels, positive and negative transitions, pulse symmetry (duty cycle), and abnormal circuit conditions for major logic families, including TTL, DTL, HTL and CMOS. Gives pre-
cise measurements (within 0.15 V) of logic levels and transitions, with positive go/no-go conditions. No adjustments are necessary; just set a single switch for logic family, attach clip leads and touch probe to circuit in question.

Built-in pulse stretcher can be used to detect pulses as short as 300 ns . Unit probe features plug-in connector system and phono jack, and space is provided in front of the model LP-2 for interchangeable tips. The unit measures $5.8 \times$ 1.0×0.7 inches and bears a manufacturer's resale price of $\$ 24.95$.-Continental Specialties Corp., 44 Kendall St., Box 1942, New Haven, CT 06509.

CIRCLE 50 ON FREE INFORMATION CARD

MICROCOMPUTER, Horizon 1, is a single floppy disc drive mainframe featuring the Z-80A microprocessor and includes 16 K bytes of memory and 12-siot mother-board with serial terminal interface. (With a second disc drive, unit is called

MATHEMATICS

Electronics
Enemernine mathenatics advaneed mathematiles
These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.
In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

 P.O. BOX 1189PANAMA CITY, FLA 32401
CIRCLE 10 ON FREE INFORMATION CARD

MODEL 101 AUDIO TEST SYSTEM consists of two sinef square/triangle function generators, pulse generator, frequency counter and $A C$ voltmeter. As a system it will generate a frequency response plot on an X.Y recorder or scope.

Time base generator offers symmetrical or independent control of the positive and negative sides of the ramp providing a duty cycle of 1% to 99%. Frequency range is .002 Hz to 100 k Hz . Amplitude is 16 Vpp into 500 ohms with ± 5 VDC offset. The time base output drives the X axis of an X.Y recorder. Manual mode provided for setup.

Audio sweep generator provides manual frequency adjustment or \log or linear sweep of 20 Hz to 20 k Hz . Blanking mode provides zero reference line on an X-Y recorder or tone burst. Amplitude is 16 Vpp into 500 ohms or 10 Vpp into 8 ohms

Puise generator frequency range is 002 Hz to 800 k Hz Pulse width is adjusted independent of frequency from 4 seconds to 40 nanoseconds. Outputs are complementary TTL.
AC voltmeter has full scale sensitivities from 1 mV to 250 V. Fast or slow, peak or true RMS and log or linear modes are provided. Output drives Y axis of X.Y recorder

Frequency counter is 6 digit, 50 or 60 Hz line triggered, and reads either internal or external. Sensitivity is 10% of voltmeter full scale at 20 kHz , or $1 / 2$ second undate.

Dimensions: $8 \times 14 \times 3$. Shipping weight: $9 \mathrm{lbs} \$ 695$. Stock to 30 days. Warranty: 1 year, 3 year $\$ 70$ Master Charge and Visa. Specs and operating information on request

1894 Commertenter W. \#nas San Bernardino, Ca 92408 (714) 889.7623

MM200 SPECIALFEATURES

FUSED INPUT PROTECTION A 1 amp fuse protects DC and AC currents circuits while a 50 milliamp fuse protects the resistance circuit from damage. The two fuses, easy to replace, avoids the components breakdown when wrong or overranging signals are applied.
FULL Y BATTERY OPERATED A battery gives you eight hours of operation and is rechargeable in 16 hours. The AC/DC converter will also recharge the battery while using the instrument (recharging time in this case is longer).
BRIGHT LED DISPLAY A $0.3^{\prime \prime}$ bright LED display allows you to use the instrument in the field or in the laboratory in any type of light condition.
FULL 2000 COUNT PLUS OVERRANGE Direct readout up to 1999 counts. Two flashing bars on the first LED indicates an overrange condition in the measurement.
LOW COST The cost of the MM200 is $\$ 119.95$ which includes two test leads and an $A C / D C$ converter. The rechargeable battery is optional and its cost is $\$ 15.00$.

a subsidiary of dumont oscilloscope laboratories, inc. (A Carter Company)
 40 FAIRFIELD PLACE WEST CALDWELL, NEW JERSEY 07006 PHONE (201) 575-8670

Horizon 2.) System is also S-100 bus-compatible for use with a wide variety of peripheral boards. System includes full extended BASIC, with sequential and random disc files, formated output, line editor, strings and machine language CALL.

Options for the Horizon computer include additional disc drives, floating point arithmetic boards, 24 -line by 80 -character upper and lower case VDC board, and 16 K memory board with parity option. Choice of blue metal or wood chassis cover. Horizon 1 kit, $\$ 1599$; assembled, $\$ 1899$. Horizon 2 kit, $\$ 1999$; assembled, $\$ 2349$. Options: 16K RAM kit, \$399; assembled, \$459. Parity option kit, \$39; assembled, \$59. Floating point board kit, $\$ 259$; assembled, $\$ 359$. 280 board kit, \$199; assembled, \$259.-North Star Computers, Inc., 2465 Fourth St., Berkeley, CA 94710.

CIRCLE 82 ON FREE INFORMATION CARD
handles, Blades, KITS, Series 99. Complement of five handles accomodate 85 nutdriver, screwdriver and special-use shafts. Series also includes multitool and handy-roll kits and sets in plastic cases, plus high-carbon steel blades and

precision-formed steel head sockets. Patented spring device in handle holds blades firmly for easy insertion and removal-Weller Xcelite Electronics Div., The Cooper Group, Apex, NC 27502.

CIRCLE 98 ON FREE INFORMATION CARD

FREQUENCY COUNTER, model 7208, offers full 8-digit LED display and operation to 60 MHz with $1-\mathrm{Hz}$ resolution. Model 7208A, with optional prescaler, can operate to 600 MHz . Unit features selectable gate times (1 sec and .1 sec), and 115

[14 Hest fictronics

VAC or 12 VDC operation (jack included). Housed in metal cabinet, the instrument measures $51 / 2 \times$ 6×2 inches. Model $7028(60 \mathrm{MHz})$ assembled: \$169.95; kit: $\$ 119.95$. Model 7028A (600 MHz)

assembled: $\$ 199.95$; kit: $\$ 149.95$.-L avis Electronics, 636 Sheridan Drive, Tonav anda, NY 14150.

CIRCLE 121 ON FREE INFORMATION CARD

DUAL-TRACE 25-MHz SCOPE, model LBO 515 , offers continuously variable delay from 1μ s to 5 seconds. Sensitivity is 5 mV -per- division and risetime is 14 ns . Unit features rectangular CRT with internal graticule; high accelerating voltages; selectable sync; automatic, normal, single-trace and reset modes with $20-\mathrm{Hz}$ to $10-\mathrm{kHz}$ frequency

rejection. Overall accuracy for both channels is $\pm 3 \%$.
Includes beam rotator, trigger for both channels and polarity-inversion switch for Channel 2, front-panel astigmatic control, and $\times 10$ magnification. Priced less than $\$ 1400$ and is complete with probes and accessories.-Leader Instruments Corp., 151 Dupont St., Plainview, NY 11803.

R-E
CIRCLE 99 ON FREE INFORMATION CARD

Now you can safely plug away without the problems of overload or coming up short.

SGL WABER ${ }^{\circledR}$ Multiple Outlet Strips

You can do it thanks to SGL WABER ${ }^{\text {e }}$ -the finest quality multiple outlet strip available! There are 240 versatile models-each unit exceeds National Electrical Code standards and is safety tested. Ideal for organizing your work area and having extra outlets when and where you need them. Over 2000 electronic distributors carry the SGL WABER line. Send for your free 24 page catalog today!

SGL WABER Electric

A division of SGL INDUSTRIES, INC.
DEPT. H-300 Harvard Avenue
Westville, NJ 08093 (609) 456-5400

new lit

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

PARTS CATALOG, Quality Semiconductors And Electronic Parts, Catalog No. 10, contains 14 pages of transistors, linear IC's, CMOS units, plugs, test accessories, frequency counters (kit and assembled), clocks (kit and assembled) and many different tools and replacement parts. A handy order form is included.-Aldelco, 2281 Babylon Turnpike, Merrick, NY 11566.
CIRCLE 103 ON FREE INFORMATION CARD
CONDENSER MICROPHONES, MS2420, brochure describes three condenser replacement mikes specifically designed to cover 97% of today's cassette requirements. Full details and specifications are included.-Workman, Box 3828, Sarasota, FL 33578.
CIRCLE 104 ON FREE INFORMATION CARD
COMPUTER PRODUCTS, 30 pages, contains complete descriptions of computer kits, including manufacturer's 6800 system, software, terminal system, audio cassette interface, alphanumeric
printer, joystick, etc. All products are designed to be compatible with ail computer systems for maximum flexibility.-Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216.
CIRCLE 105 ON FREE INFORMATION CARD
SPEAKERS, Truth in Listening, 14-page full-color catalog that defines the characteristics of accurate sound reproduction as well as describing manufacturer's line of hi-fi speakers. Complete specs, charts, photos and drawings accompany the text. Catalog is available from manufacturer or AR dealers.-Teledyne Acoustic Research, 10 American Dr., Norwood, MA 02062.
CIRCLE 106 ON FREE INFORMATION CARD
TEST EQUIPMENT "WISH BOOK," 1977-78 Edition, 23 pages, features five new instruments on the front cover: a CB analyzer, video analyzer, DMM, $230-\mathrm{mHz}$ frequency counter and portable tester. Full descriptions of these and other test
units are accompanied by large clear photos and complete specs.-Sencore, 3200 Sencore Dr., Sioux Falls, SD 57107.
CIRCLE 107 ON FREE INFORMATION CARD
WORD PROCESSING SYSTEMS, The Microcomputer and Word Processing-A Cost Effective Analysis, is an article analyzing the cost effectiveness of various microcomputer wordprocessing systems and compares several popular IBM systems with an MITS microcomputerbased system using a Selectric terminal output. It is estimated that current microcomputer word processing is cost-effective at a correspondence level of from 300 to 400 letters per month. Send a 24』 SASE.-Center for the Study of the Future, Dept. B, 4110 N.E. Alameda, Portland, OR 97212.

AUDIBLE SIGNAL DEVICE BROCHURE describes the Sonalert tine of signalers that has a wide variety of applications such as in automo-

Clever Kleps
Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\$ 1.39$ Kleps 20. Same, but $7^{\prime \prime}$ long.
$\$ 1.49$
Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
$\$ 1.79$ Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long. \$. 99 Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
\$ 89 All in red or black - specify. (Add 50¢ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components. Available through your local distributor, or write to:

Kleps 40

Kleps 1

The acclaimed Equinox $100^{(8)}$ mainframe kit ($\$ 799$) is now a complete S-100 system.
Because now there is an Equinox $100^{\text {© }} 1 / O$ interface kit (\$120) that handles the hard work of interfacing all your.
peripherals.
And Equinox $100^{\text {se }} 4 \mathrm{~K}$ memory kits ($\$ 109$). Assembled 8 K memory boards (\$188). EQU/ATE editor/assembler and BASIC-EQ*i software on cassettes.
It all goes together. It all works together. It's all together now at special system prices.

See The Equinox System at your local computer shop. Call toll-free to 800-648-5311. BAC/MC accepted. Or write Equinox Division, Parasitic Engineering, P.O. Box 6314, Albany California 94706.

THE EQUINOX SYSTEM ${ }^{93}$ When you put it together, it's really together.
bile, aircraft, and marine warning systems, airport metal detectors and medical instruments.

Sonalert signalers produce either a soothing pleasant tone or chime, or a more strident blast in cases of emergency. Four tone frequencies, three loudness levels and seven modes or rhythms can be combined to produce more than 30 distinct sound variations. Power requirements are low-a low-power transistor, SCR or integrated circuit can do the trick. The devices are also solid-state, thus ensuring many years of trouble-free ser-vice.-Mallory Capacitor Co., Div. P.R. Mallory \& Co., Inc., Box 1284, Indianapolis, IN 46206.
CIRCLE 108 ON FREE INFORMATION CARD
1978 ENGINEERING MANUAL AND PURCHASING GUIDE NO. 780 is a 234-page catalog crammed with electronic parts and equipment. It contains such essentials as wire, cable, test equipment, trimmers and pots, switches, timers-even a low-cost microcomputer system. Also included are cross-references and complete manufacturer indexes. Price: $\$ 1$.-Allied Electronics, Dept. C-78, 401 E. 8th St., Fort Worth, TX 76102.

MINI-CATALOG No. MC-477 shows a full line of silicon rectifier bridges, diodes, high-voltage rectifiers, assemblies and TV high-voltage diodes. Also featured are high-voltage devices, industrial multipliers and X-ray assemblies. Electronic Devices, Inc., 21 Gray Oaks Ave., Yonkers, NY 10710.

CIRCLE 109 ON FREE INFORMATION CARD
TEST INSTRUMENTS Catalog No. BK 78 contains 40 illustrated pages of DMM's, frequency counters, high-voltage probes, oscilloscopes and many other test instruments. Each device is thoroughly described and complete specifications are given.-B\&K-Precision, Dynascan Corporation, 6460 W. Cortland Ave., Chicago, IL 60635
CIRCLE 110 ON FREE INFORMATION CARD

HEATH/SCHLUMBERGER INSTRUMENTS Cat-
alog No. 811-23 contains 32 pages of test devices for hobbyists and service personnel. Among new products listed are frequency counters, an FET multimeter, a lin/log swept-function generator and a low-cost voltage-controlled function generator. Oscilloscopes, distortion analyzers, VOM's and VTVM's and color TV service equipment are just some of the many devices described.Heath/Schlumberger Instruments, Dept. 570010 , Benton Harbor, MI 49022.
CIRCLE 111 ON FREE INFORMATION CARD
CATALOG SHEET describes the Kager KL 3000 Soldering Pistol, a lightweight, easy-to-operate instrument that permits single-handed operation. The solder is incorporated in the gun and is fed to the tip by squeezing the trigger. The rate of feed and the amount of solder necessary for a particular joint are automatically selected for precision work. The problem of dry joints is almost completely eliminated because the object to be soldered is heated first by the tip prior to applying the solder. Many different brands of solder can be used with this instrument, and nonscaling tips are provided in different sizes and shapes. This pistol is adaptable to both fine soldering and continuous production-line work.-KAGER International, 1180 S. Beverly Drive, Los Angeles, CA 90035.

CIRCLE 112 ON FREE INFORMATION CARD

FIVE BROCHURES describing complete testinstrument product lines are designed for point-of-sale and direct mail. Each brochure contains six pages of product benefits, uses and applications, photos and specifications. Titles include: "Digital Multimeters," "Communications \& CB," "'Oscilloscopes \& Power Supplies," "Transistor \& Tube Testers," and "TV \& Radio Test Equipment. "-Sencore, Inc., Promotion Mailing Dept., 3200 Sencore Drive, Sioux Falls, SD 57107. R-E CIRCLE 113 ON FREE INFORMATION CARD

CIRCLE 41 ON FREE INFORMATION CARD

Teaching Diglital counters To count

FRED BLECHMAN, K6UGT

DIGITAL COUNTING CIRCUITS ARE BECOMing the standard means for measuring almost any variable, such as time, frequency, voltage, current, resistance, temperature and events. The conventional readouts used with digital devices normally display in decimal format. However, the counting circuits themselves usually count in binary code, a system that is based on powers of 2 . Since the count is displayed decimally, typical IC counters automatically reset to 0 after the decimal count of 9 , running from 0 to 9 and then repeating. Also, the counter outputs trigger the next highest digit, (whenever more than one digit is used) to carry the count. Thus, 09 becomes 10 on the next count, and 199 becomes 200

However, if you want the count to go back to 0 at some point other than 9 , how do you program the counter to do this? While this is "duck-soup" for the digital engineer, most experimenters and newcomers to digital electronics find this confusing, and there is little information available in recent literature. The explanation and examples that follow should lift the veil of mystery from digital counting circuits and allow you to apply these principles to your own special needs. Just bear in mind that the following explanation is not intended to be all-inciusive.

IC counters

Although different IC counters are available for special purposes, the most popular is the 7490 decade counter. Actually, it contains divide-by- 2 and divide-by- 5 sections in one package; these sections can be wired, as shown in Fig. 1, to form a divide-by-10. Note that pins 2, 3 , 6,7 and 10 are grounded for normal counting. (Actually, either pin 2 or pin 3, and either pin 6 or pin 7 must be grounded; but it's best to ground them all for decade counting.) A logical-high (about 5 volts) output at pin 12 rep-

FIG. 1-7490 IC connected as a divide-by-10 counter.

DECIMAL NUMBER	PIN NUMBER			
	11	8	9	12
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

FIG. 2-BCD OUTPUTS from 7490 IC when connected as a divide-by-10 counter as shown in Fig. 1.
resents a decimal count of 1 : pin 9 is a decimal count of 2 ; pin 8 is a decimal count of 4 ; and pin 11 is a decimal count of 8 . Normally, these pins are a logical low--nearly at ground potential-when off. Now, as the 7490 is triggered at pin 14 with a negative-going pulse, a high output appears at pin 12 on the first count, at pin 9 on the second count, and on both pin 12 and pin 9 on the third count. On the fourth count, only pin 8 is high; pin 9 , pin 11 and pin 12 are low. On the fifth count, pin 8 and pin 12 are high. On the sixth count, pins 8 and 9 are high. What is happening is that the counter is "adding" decimally with a single output or combinations of outputs. Figure 2 shows this counting sequence.
The 7490 resets to 0 at the next count

FIG. 3-TYPICAL AND-GATE IC's. The 7408 Quad 2-input and gate IC is shown in a. The 7411 Triple 3-input AnD gate IC is shown in b, and c shows the 7421 Dual 4 -input and gate IC.
after 9 when wired as shown in Fig. 1. Pins 2 and 3 are two reset pins that are normally used to set the counter to 0 when the counter is first turned on. The internal reset circuitry is designed so that when both pins 2 and 3 go high, the 7490 resets to 0 . For normal counting, either (or both) pins 2 or 3 must be low.

It now becomes simple to reset the 7490 at the desired count. To reset to 0 at

FIG. 4-DIVIDE-BY- $\mathbf{3 6}$ counter. The 7490 's count from $\mathbf{0 0}$ to 35 and are then reset to 00 .

FIG. 5-DIVIDE-BY-77 counter. The counters are reset by the anD gate after they reach a count of 76.

FIG. 6-DIVIDE-BY-77 counter. Same circuit as Fig. 5 except with a different arrangement of AND gates.

FIG. 7-ANY NUMBER of decade counters can be programmed. Here, three decade counters are connected to divide-by-777.
the second count (so that the 7490 counts 0 to 1 and back to 0), simply connect a jumper from pin 9 to pin 2 , and remove the ground from both pins 2 and 3.
(Leaving a pin unconnected is the same as connecting it to a high level). For a count of 3 (0 to 2), connect pin 2 to pin 9 and pin 3 to pin 12. For a count of 4 ,
connect pin 2 or pin 3 to pin 8, and leave the other reset pin unconnected. For a count of 5 , connect one reset pin to pin 8 and the other reset pin to pin 12. For a count of 6 , connect the reset pins to pins 8 and 9 .

When you want the decade counter to reset after a count of 7 , you need to have some way to sense when three pins (pins 8,9 and 12) are all high at the same time. Although other circuitry could be used, it is easier to use standard AND gates to trigger the reset terminals with a high output when all inputs to the AND gate are high. Figure 3 shows several typical and gates. You could, for example, connect pins 8,9 and 12 to the three inputs of one 7411 and gate (Fig. 3-b), and then use the output from the and gate to trigger reset pin 2 of the 7490 , leaving pin 3 unconnected. This would give you a count from the 7490 of 0 to 6 and back to 0 on the seventh count.

When there is more than one digit, logic gates are a necessity, since you may have to sense the state of several counteroutput lines. For example, suppose you wanted to reset to 0 after 35 countsthat is, from 00 to 35 and back to 00 . The reset would occur at the 36 th count. Figure 4 shows one way to do this. Here's what happens. With each negative-going pulse into pin 14 of the units counter, the count advances one count. At the count of 09 , output 8 and output 1 (pins 11 and 12) are high. On the very next count, all outputs go low. The negative-going output at pin 11 is directly coupled to pin 14 of the tens counter, and it advances one count to 10 . This happens again at 20 and 30. A 7421 four-input AND gate is connected to sense when the tens counter is at 3 and the units counter reaches 6 . At that instant, all four inputs to the and gate are high, so the output goes high and directs the reset pins on each counter to return the count to 0 . Only at the count of 36 are all four inputs to the 7421 gate high; until then, the 7421 output is low and the 7490's count normally.

Figure 5 shows another example, this time using both sections of the 742 ! IC. Here, at the count of 77 , the high output on pin 6 of the 7421 resets the counters to 00 , so that they count from 00 to 76. Here's how it works: The 4-2-1 outputs of each 7490 are connected to the 7421 inputs, as shown in Fig. 5. When the tens counter is at a count of 7 , three inputs of IC3-a are high, but the output at pin 6 is still low since the fourth input (the output of IC 3-b) is still low. When the units counter reaches a count of 7 , all the inputs to and gate IC3-b are high (note that IC3-b pin 13 must be jumpered to any of the other input pins of IC3-b); output pin goes high, providing the last needed high input for IC3-a to output a high on pin 6, thus resetting the 7490's.

This could also be done by using all three and gates of the 7411 IC. (See Fig. continued on page 106

Put Professional Knowledge and a
COLHEEDEREL
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-78.

Grantham College of Engineering 2000 Stoner Avenue
 P. O. Box 25992

Los Angeles, CA 90025

Worldwide Career Training thru Home Study

 CIRCLE 9 ON FREE INFORMATION CARD
You Can Count On DAVIS!

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERSS
If you need a reliable counter at an affordable price. the CTR 2 is the answer.

- 8 Digit . 3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler
- Automatic Dp Placement
- TCXO Std ± 2 ppm
- Input Diode Protected
- $12 \mathrm{~V}-\mathrm{DC}$ Operation (Optional)
- Oven Controlled Crystal (Optional) $\pm .5 \mathrm{ppm}$
- S̄electible Gate Times

CTR-2-500 (range- 10 Hz to 512 MHz)
CTR-2-1000 (range-10 Hz to> 1000 MHz)
500 MHz Kit CTR-2-500K
$\$ 249.95$
500 MHz Assembled CTR-2-500A 349.95
1 GHz Kit CTR-2-1000K
399.95

1 GHz Assembled CTR-2-1000A $\quad 549.95$
OPTIONS:

(02) Oven Crystal	$\$ 49.95$
$(03) .43^{\prime \prime}$ LED	10.00
(04) 12 V -DC	10.00
(05) 10 sec. Time Base	10.00

(05) 10 sec . Time Base $\quad 10.00$

DRDTB

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda, NY 14150
716/874-5848

EQUIPMENT REPORTS

continued from page 32

The front panel itself is black with white legends, and it's well designed with the human operator in mind. There are just enough legends to know what you've selected without confusing the issue. The ranges are "keyed" to the function switches by white lines, so you can tell instantly which set of ranges goes with each function.

The case is a light blue and measures $8 \times$ $61 / 2 \times 3$ inches. There's a tilt stand on the underside of the case. When set, the stand raises the front of the instrument for easy viewing on a workbench. With the stand retracted, the instrument lies flat on the work surface.

Power is supplied either by batteries or from an external power supply kit. A plastic battery holder is provided that accepts four C-cells. The model 2000 draws about 120 mA from a 4 to $6 \frac{1}{2}$ volt DC source. This translates into an operating time for standard zinc carbon batteries of 8 hours. Switching to alkaline batteries increases the operating time to 25 hours. If you desire, you can also use a NiCad battery pack. Sabtronics offers two different size NiCad battery packs as optional accessories. The $N B$ 1200 is a sub-C size NiCad pack that sells for $\$ 12.95$ and will power the model 2000 for 10 hours. The $N B-500$ pack is made up of AA size NiCad batteries that will power the model 2000 for 4 hours. The $N B-500$ sells for $\$ 7.75$.
To recharge the batteries, the EP-12V External Power Kit is required. It consists of a separate PC board with a voltage regulator, charging circuit and external power jack. The assembly mounts on the inside of the rear panel of the model 2000. Access to the external power jack is provided through a hole in the rear panel. External power comes from an AC power adapter. This is one of those calcula-tor-type plug-and-transformer modules with a long wire that has a plug on the end of it. The AC power adapter must supply 8.5 to 15 VDC at 150 mA . Sabtronics offers two AC power adapters as optional accessories: The $A C-115$ for 115 VAC and the $A C-230$ for 230 VAC . With the External Power Kit and the AC Power Adapter, the sub-C size NiCad battery pack can be recharged in 16 hours. This combination also supplies enough to power the model 2000 directly from the line voltage.

Specifications

For those readers who like specifications (and who doesn't), here goes: The 100 mV and 1 volt DC ranges have a $100 \mu \mathrm{~V}$ and 1 mV resolution, respectively, and both have a $\pm 0.1 \% \pm 1$ digit accuracy. At the opposite end of the DC voltage range is the 1000 V range with a 1 volt resolution and a $\pm 0.5 \% \pm 2$ digit accuracy. The input impedance for the DC voltage ranges is 10 megohms and the response time is 0.5 seconds.

The lowest AC voltage range is 100 mV with an accuracy of $0.3 \% \pm 2$ digits at 60 Hz and a frequency range of 40 Hz to 50 kHz . The highest AC voltage range, 1000 VAC , has an accuracy of $1 \% \pm 2$ digits at 60 Hz and a frequency range of 40 Hz to 500 Hz . At the two ends of the DC current ranges, $10 \mu \mathrm{~A}$ and 1 amp , the resolution is 10 nA and 1 mA , respectively, while the accuracy is $0.1 \% \pm 2$ digits and $1 \% \pm 1$ digit, respectively. The 10 $\mu \mathrm{A} \mathrm{AC}$ current range has an accuracy at 60 Hz of $1 \% \pm 5$ digits and a frequency range of 40

Hz to 500 Hz . The I amp range has a 60 Hz accuracy of $0.8 \% \pm 2$ digits and a frequency range of 40 Hz to 20 kHz . Response time on the AC current ranges is 5 seconds maximum. Maximum input current on all ranges is 2 amps, overcurrent protection provided by a fuse.

Now for the ohms ranges. The lowest ohms range, 100 ohms, has a resolution of 0.1 ohms with an accuracy of $0.1 \% \pm I$ digit. This accuracy also holds for the $1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ ranges. The 100 -ohm range uses a measuring current of 1 mA . At the opposite end of the scale is the 10 -megohm range with a resolution of 10 K ohms and an accuracy of $0.5 \% \pm 5$ digits. The 10 -megohm range uses a measuring current of 100 nA . Open circuit voltage for the $\times 1$ ranges $(100,10 \mathrm{~K}$, and 1 MEG$)$ is 100 mV . For the $\times 10$ ranges $(1 \mathrm{~K}, 100 \mathrm{~K}$ and 10 MEG$)$, the open circuit voltage is 1 volt. Alt the resistance ranges are protected against a maximum input voltage of 250 VDC and 250 VAC RMS. Input protection is provided by a 2 -amp fuse.
Did I forget anything? Oh yes, the input
continued on page 108

PANAVISE TILTS, TURNS, AND ROTATES TO ANY POSITION. IT HOLDS YOUR WORK EXACTLY WHERE YOU WANT IT.
PanaVise has great strength yet is gentle enough to firmly hold delicate objects.

Quite possibly the finest new tool you will buy this year, PanaVise is built to exacting professional standards. We guarantee it!
Illustrated is the Electronics Vise Model 396. Three other bases and a wide variety of heads are available. All interchange! Buy a basic unit, then add on to create your system.

Available through your dealer.
Write for a free catalog.

(D) $\Delta \sqrt[N]{\Delta} \sqrt{\Delta}$ EE Dept. 5E

10107 Adella Ave,, South Gate, CA 90280 In Canada: 25 Toro Rd., Downsview, Ont. M3J 2A6
switches arranged so that the maximum coming off the divider into the DPM input is always 2 volts.

The AC volts input goes through the same voltage divider and then into a "precision rectifier circuit" that converts the signal into DC to feed the input to the DPM. The 2.5 K pot in this circuit lets you calibrate the output of the precision rectifier on a one-time basis against a standard AC input signal.

The ohmmeter circuit is shown in simplified form in Fig. 9. Here, one leg of the op-amp contains a standard reference voltage that is adjustable through the 1 K pot to exactly 1 volt. The other leg contains the portion of the voltage divider that is active for measuring a particular resistance range. In the illustration the $1-\mathrm{meg}$ resistor shown is used to measure 2 megohms full scale. Since the op-amp operation dictates that the inputs to both legs must be equal, and since the outputs are common, exactly 1 volt must also appear across the 1 -meg resistance. This constant voltage forces a constant current through the resistance being measured; in this particular case 2 megohms. The 2 volts developed across the 2 -megohm resistor is then fed into the DPM, registering a full-scale reading. Other resistance values for the unknown will, of course, produce proportional voltages feeding into the DPM.

The resistance circuit is calibrated on a one-time basis by adjusting the IK pot with a standard resistor across the input. When the DPM registers the correct reading of resistance, it has been calibrated. An alternate method is to adjust the pot so that exactly 1 volt appears across the 750 -ohm resistor (R14) at the output of the op-amp.
The direct current input is taken off the three shunt resistors, R6, R7 and R8. Each resistor develops exactly 2 volts across it for maximum scale readings. Note that the high current scale is limited to 10 amps only because of the low wattage (10 watts) of the $0.1-\mathrm{ohm}$ resistor (R6). If you make this a 20 -watt resistor, you can read 20 A full scale. These resistors should be at least 1 percent tolerance or better for good measurement accuracy.

The multicontact pushbutton switches shown in the circuit diagram are of course the easiest to wire, although layered rotary switches can also be used. The correct decimal point for each scale can be displayed by connecting pin 6 of the appropriate display number (DS-2, 3 or 4) through the appropriate scale switch to ground through a 470 -ohm resistor.

The entire DMM circuit can easily be layed out and assembled on a $41 / 2 \times 6$ inch piece of perforated circuit board with 0.1 -inch hole spacings.

For faster service

In fact, you didn't need much of anything except a willingness to work 16 hours a day. For $8 \&$ an hour. Under brutal conditions.

But times have changed drastically. Life for the working man is more

challenging. Safer. More stimulating. And far more rewarding. Why?
Many things have helped. Especially an endless flow of technological improvements and discoveries. Many of which came from college campuses, and from college-trained men and women.

We must sustain this flow of ideas. Only in this way, can we increase the productivity that will maintain and increase our standard of living. America's colleges need your help. They are in deep financial trouble.

GIVE TOTHE COLLEGE OF YOUR CHOICE. MOW.

Council tor Financial Add 10 Education Inc CF:
680 Fith Avenue New Yo:k. $\mathrm{N} Y$ 10019
Ad A Public Service Of This Magazine And
Cond
The Advertising Council.

FOR FAST TROUBLE SHOOTING

- VHF/UHF Subber - I.F. Video Trouble Shooter - Convergence Generator - Oots and Cross-Hatch Patterns The "SG-785" is a muiti-functional instrument for fast, efficient troubie-shooting and adjustment of all Color and B\&W tus. It is ideal for both shop and field work. (Cables included.)

108-02 OTIS AVENUE, CORONA, N.Y. 11368

new books

COUPLING OF EXTERNAL ELECTROMAGNETIC FIELDS TO TRANSMISSION LINES, by Albert A. Smith, Jr. Wiley-Interscience, Div. of John Wiley \& Sons, 605 Third Ave., New York, NY 10016. 132 pp. 6×9 inches. Hardcover $\$ 14.50$.

Electromagnetic radiation causes not only disruption in communications but can pose a very real hazard to humans and equipment. This book examines some of the problems involved in coupling electromagnetic fields to transmission lines and offers application data in the form of solved examples and spectrum profiles. The material presented is applicable to coupling problems in communications, data processing, and in power, telephone and control systems. Teachers will find the book useful in graduate or advanced undergraduate classroom work. Several appendices, bibliography and an index make up the back of the book.

CMOS COOKBOOK, by Don Lancaster. Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268.416 pp. $51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 9.95$.

This is another in the "Cookbook" series that presents the reader with all the nuts-and-bolts material needed to understand and use CMOS integrated circuits. The material presented is long on real-world applications, is detail-oriented and the easy-to-read style is not overloaded with mathematical formulas and theory.

Chapter 1 discusses CMOS circuitry basics: how it works, how to power it, how to use it. Chapter 2 presents an index of 100 CMOS devices, complete with schematics and detailed descriptions. Other chapters cover logic, multivibrators, clocked logic and JK flip-flops. These IC's can be used in a wide variety of applications, including TVT's, digital instruments, logic trainers, digital watches and frequency counters.

1) Variable dc output. 2) Full 10 -amp rating over $0-12 \mathrm{v}$ range. 3) Super filtering over entire output. 4) Dual range. 5) Heavy overload capacity. 6) Fully enclosed steel cabinet. 7) Large, easy-to-read meters. 8) Full year warranty.

21 Stock Models from 6 to 125 vdc. See Your Distributor. Custom OEM Power Supplies Engineered to Your Requirements.
FREE BULLETINS! See Gold Book \& EEM for Full Line Data.
EPSCO, Inc. 920-R Westwood, Addison, IL 60101-312/543-0410
$\stackrel{\leftrightarrow}{\lambda} \quad$ Performance-Proven Regulated \& Semi-Regulated DC Power Supplies

A QUICK LOOK AT BASIC, by Donald D. Spencer. Camelot Publishing Co., Box 1317, Ormond Beach, FL 32074. 64 pp. $51 / 4 \times 83 / 4$ inches. Softcover $\$ 4.95$.

This book presents the BASIC programming language. Written in easy nontechnical style, the material offers those with little or no computer background an opportunity to learn BASIC in just a few hours. Exercises and examples are given to supplement and reinforce the text

TAPE RECORDING FOR THE HOBBYIST, Fourth Edition, by Art Zuckerman. Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268. 160 pp. $51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 4.95$.

This book uses nontechnical language to explain the ABC's of how to select and use a tape recorder, add special effects (including instructions on how to create your own effects from everyday household objects), and edit tapes. The reader is instructed in what to look for in the controls and special features of an instrument, and how to match tape with the machine. Chapters also include suggestions on using a recorder to tape parties and special events, and to create sound-track accompaniment for film. The final chapter tells you how to care for your recorder.

COMPUTER DICTIONARY, by Donald D. Spencer. Camelot Publishing Co., Box 1317, Ormond Beach, FL 32074. 160 pp. $51 / 4 \times 8 \%$ inches. Softcover $\$ 5.95$; hardcover $\$ 9.95$.

All students of computer science/data processing in schools and colleges, teachers, businessmen, programmers, systems analysts and other computer users will find this dictionary a handy addition to their reference library. Simple clear, nontechnical language is used to define terms.

R-E

"POOR BOY" TUNER SUB омı $\$ 19.95$

Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellient performing yet very low cost sub for the technician who has to get all he can for his money .. a "Poor Boy's Sub" for only $\$ 19.95$.
This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95 \ldots$. We searched for a tuner that needed no cabinet and no controls... one that the tech could scounge the knobs from most any old TV It took over two years but we finally found it. The gain is excellent ... Battery drain is very low (only 18 mils). It's self biasing so there is no R.F. gain control to fiddle with... It works equally well on tube or transistor sets ... b/w or color and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's IF cable to the "Poor Boy" and view the picture . . That's it . . . no set up controls to confuse you.
We compared the "Poor Boy" with other subs costing over twice the price and tound it to work just as well on al/the comparison tests we made . . . and often a lot easier to use ... Even though instructions aren't needed ... you get those too.
The "Poor Boy" is small enough to easily hold in one hand ... no wires or controls dangling around. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$, and we even pay the shipping (how about that?) or we will ship COD. (\$1 85 C.O.D. Fee)

Try it for 10 days ... If not completely satisfied . . . return for full refund. Call us toll free 1-800-433-7124.

all orders shipped the same day received!

TEXAS TUNER SERVICE

4210 N.E. 28TH STREET, FORT WORTH, TEXAS 76117

 TEXAS CUSTOMERS PHONE (817) 834-8201Please rush me the "Poor Boy" Substitute Tuner.
I understand that I can return it within 10 days for a full refund if '
1 I'm not completely satistied .. with no questions asked.$\square 1$ am enclosing full amount of $\$ 19.95$ and will not be charged, shipping.Ship C.O.D. and I will pay an extra $\$ 1.85$ shipping and C.O.D
1 \qquad

INTERNATIONAL FM 2400 CH
FREQUENCY MEIER for testing mobile transmitters and receivers

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Altenuator Ior Full Range Coverage as Signal Generator
- Measures FM Deviation

The $\mathbf{F M}-\mathbf{2 4 0 0 C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. 000125% special 450 MHz crystals available).

Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH (meter only) $\$ 595.00$
RF crystals (with temperature correction) ... 24.00 ea. RF crystals (less temperature correction) 18.00 ea. IF crystals
catalog price

International Crystal Manufacturing Company, Inc 10 North Lee Oklahoma City Oklahoma 73102 CIRCLE 89 ON FREE INFORMATION CARD

COUNT TO ZERO
continued from page 101
6.) This illustrates that different gate arrangements can be used-just so long as the output does not go high until the desired count.

For larger numbers-three digits or more-the same approach can be used, but more gates must be used. Figure 7 shows how to count from 000 to 776 and back to 000 at the next count (777). This can be termed a worst-case example, since it requires three outputs from each 7490 counter.

You can use Nand gates, such as the $7400,7410,7420$ and 7430 instead of AND gates, but inverters (such as the 7404) would be needed between the 7490 and the inputs of the Nand gates. The 7490 outputs are high, and the NaND gate inputs must all be low to get the high output needed to reset the 7490 's. A simpler approach, using NAND gates and inverters, is to use an inverter between each NAND output and the reset pins.
Sometimes you can reset two digits without using gates, if the desired reset count is $1,2,4$ or 8 at each 7490 . For instance, a reset at the 18 th count to 0 (17 to 00) could be done by separating the reset pins, as shown in Fig. 8. Since both reset pins on each 7490 must be

FIG. 8-AND GATES are not always necessary, depending on the desired count. For a divide-by-17 application, the 7490's can be wired as shown.

FIG. 9-DIVIDE-BY-60 counters are commonly used in clock circuits. The 7490's can be wired without using and gates as shown.
high to reset to 0 , this occurs only when the count goes to 18. At all other times, one reset pin on each 7490 is low.

Another resetting requirement is needed for minutes and seconds counting in digital clock circuits. Here the next count after 59 is 00 instead of 60 . Figure 9 shows the circuit for this. The units counter automatically resets to 0 after a count of 9 , but the tens counter will not
reset until the 6 count, since only then are both reset pins high.

Common CMOS 4000 series counter IC's do not lend themselves as neatly to this simple system since many of them don't have BCD outputs and dual reset pins. But they too can be programmed to count, if you give it a little thought and have an understanding of the basic techniques discussed in this article. R-E

YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facilities you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6.inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate
hook-up.

Features:
Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Universal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.
Dynamic test for all transistors as signal
amplifiers (oscillater check) in or out of circuit. Develops test signa! for AF, IF circuit. Develops test signa! for AF, IF,
or RF circuits. Signal traces all circuits. or RF circuits. Signal traces all circuits.
Checks condition of diodes. Measures Checks condition of diodes. Measures
battery or other transistor-circuit power. supply voltages on 12 -volt supply voltages on 12 -volt scale. No ex.
ternat power source needed. Measures ternal power source needed. Measures
circuit drain or other DC currents to 80 circuit drain or other DC currents to 80
miliamperes. Supplied with three external leads for in-circuit testing and a pair of test leads for measuring voltage and current. Comes complete with instruction manual and transistor listing.

EMC, 625 Broadway, New York 12, N.Y.
Send me FREE catalog of the complete Send me free catalog of the complete
value-packed EMC line, and name of value-packed EM
local distributor
name RE-3

ELECTRONIC DRUMS

continued from page 48

A programming example

For example, Fig. 10 (See page 47.) shows a simple shuffle/fox trot tablature. The most basic principle is that since the shortest note that is used is an eighth note, and since the tempo clock, once set, pulls events out of memory as a constant tempo, each event from memory will represent an eighth note. The quarternote accented bass will actually be entered into memory as an ACCENT bass followed by a REST

To prepare for programming, first touch RESET, press the PROGRAM button (acknowledged by program LED), then enter the score on the drum pads like this:

ACCENT BASS/REST / SNARE / REST / BASS / REST / REST / SNARE and, since this line must be repeated again and again, finish off by touching REPEAT

Tricks \& things

There is more versatility and power in the drum set than the control labeling tends to indicate. Here are some discoveries that we've nade; other possibilities are only limited by the imagination of the user.

Using the bridge as an intro-You can begin playing with the bridge rather than the main score by placing the unit in the bridge mode then touching PLAY

Playing a manual tempo-You can play a score to a manual tempo by tapping on the rest pad in the tempo that you want. Each tap advances the event counter and causes any programmed drum sounds to play. The rest pad can also be used as a nonlatching play key. Simply touch this pad continuously and the unit will play at the rate set by the TEMPO control.

Playing only a portion of a score-The repeat pad can be used in the play mode to cause a pattern to begin again before the programmed repeat point is reached. Simply tap the pad. If you are touching the BRIDGE pad at the same time, the unit will switch to the beginning of the bridge.

Editing-Some limited editing is possible by single-stepping to the point to be changed using the rest pad. When you get to the event that is to be changed, put the unit in the program mode (in this case, do not reset-simply press the PRogram button) and alter the events desired.

External synchronization/manual play-The pin jack on the rear of the case provides a means of either foot-switch controlling the unit or synchronizing to external events. A 5 -volt trigger applicd to this input causes the clock to run at the rate set by the TEMPO control. If the triggers applied to this input are short, the event counter will advance one event for each pulse.

R-E

P184-4T with batteries and recharger, $\$ 80.00$ (includes P184)
P184-4T1 110 V AC, $\$ 89.00$ (includes P184). Tefze wire, 23 gage, various colors, $\$ 4.18 / 100 \mathrm{ft}$. If not available locally, factory order -adc $\$ 2$ handling charge.

ELECTRONIC COMPANY, INC., 12460 Gladstone Av., SyImar, CA 91342 phone (213) 365-G661, twx 910-496-1539 571177

CIRCLE 79 ON FREE INFORMATION CARD

CIRCLE 14 ON FREE INFORMATION CARD

Ty this exeting new hobby! Euila your own electronic concert organ. It's easy. No techrical kncwledge required Jusi follow the clearly pictured instructions of the fomsous Wersi do-it-yourself system. Choose from seren cifferent models. Sen $=\$ 2.00$ (refindable) with coipor for colorful 104 prge catalog.

CIRCLE 60 ON FREE INFORMATION CARD

CIRCLE 46 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

continued from page 102
impedance on the AC voltage ranges is 10 megohms shunted by 25 pF . Also, the sample rate is 4 per second.

Assembly and use

Assembling the model 2000 was a breeze. The instruction manual contains step-by-step procedures with plenty of illustrations. Little is left in the way of guesswork. It took me about 9 hours to assemble the unit. However, you should accept this figure with a grain of salt, since I'm not sure whether my ability with a soldering iron compares with that of the tortoise or the hare.

After the assembly procedures have been completed, the unit must be calibrated. The instruction manual contains two separate calibration procedures. The first calibration procedure is prepared for the kit builder who has no other test equipment other than the model 2000. The procedure uses data supplied by Sabtronics on four resistors and a voltage reference. There is also an AC peak detector circuit consisting of a diode and a capacitor that must be built for calibrating the AC voltage scales.

To calibrate the model 2000 to within published specifications, the second calibration procedure must be followed. This procedure requires a meter calibrator such as the Fluke model 760. a $41 / 2$-digit DMM such as the Hewlett-Packard model HP3465.A, and an AC signal generator

Anytime you acquire a new test instrument, it takes time to get used to it. With the simple
front panel layout of the model 2000, it took almost no time to become familiar with it. I've used the model 2000 to troubleshoot numerous circuits and it performed perfectly. The model 2000 now occupies a permanent corner on my workbench and its sleek blue case adds a little decor. If you're thinking of acquiring a new DMM, take a look at the model 2000. R-E

Sencore Model CB42 CB Analyzer

CIRCLE 115 ON FREE INFORMATION CARD

Ever Since I was a teen-aged technician, I've been crazy about "analyzers"--instruments that could make all kinds of tests. Of course, when I was a teen-ager, the sets were simpler and so were the analyzers. I still have several different types on my bench. These versatile instruments can be real timesavers.

The Sencore people have come out with an Analyzer for CB radios, the model CB42. This instrument has an RF signal generator that

SPECIAL REPORT:

Jack Darr, Service Editor of Radio-Electronics writes: Oneida's Nu-Color Picture Tube Restorer 'Lives up to its name'
This device is designed to restore color to old picture tubes with one or more weak guns.

I had a trade-in Wards TV, with a picture tube so bad it had to be seen to be believed. The blue gun read almost normal enission; the green gun would come up to the bottom end of the BAD sector on the meter: and the red gun just barely wiggled the needle.
The $N u$-Color model 90A is a plug-in device that is inserted between the picture tube and socket, like a brightener. However, it is not a brightener, at least in the
 usual sense of the word. Between its plug and socket is a little box with three color-coded slide controls, one for each color.

Starting with all controls at the off position, I plugged the Nu Color in and turned the set on. As expected. the raster was a bright blue. I adjusted the controls of the $N u$-Color and came up with a good- looking color-bar pattern. Twiddling the grey scale and the NuColor controls gave an excellent color picture. Reds saturated normally, with the color control all the way up and all other things looked very good! 'This device lives up to its ciaims and its name; it certainly did "restore the color" to this old dog.

As Oneida is careful to explain, the $N u$-Color is not intended as a "cure-all" for color troubles, but it will help correct problems due to unbalanced picturetube emission. The device can be installed and adjusted in the home with very little trouble.
For details write: Dalton Smith, President, Oneida Electronic Mfg. Co., Box 678, Meadville, Pa. 16335

WHAT WOULD YOUR PERSONAL COMPUTER SAY IF IT COULD TALK?

GET SPEECH POWER

WITH THE COMPUTALKER SPEECH SYNTHESIZER

S-100 BUS
ASSEMBLED CIRCUIT BOARD COMPLETE WITH SOFTWARE FOR PHONETIC INPUT
430.00

CALIF RESIDENTS ADD 6\% SALES TAX
WRITE FOR INFORMATIVE LITERATURE
COMPUTALKER CONSULTANTS
P.O. BOX 1951, DEPT. R, SANTA MONICA, CA 90406
covers from 375 kHz to 12 MHz for IF's and a CB RF signal generator that covers all 40 channels with provisions for five more channels. Both of these generators can be modulated by 400 or 1000 Hz AM , or zero. Or external modulation or a dual-frequency special audio signal ($500 / 2400 \mathrm{~Hz}$). The modulation percentage of both can be set to zero, 30% or 100%. The attenuator will drop the signal level from 1.0 volt to a minimum of $0.1 \mu \mathrm{~V}$

There is also a 7 -digit frequency counter with dual inputs, one has a 50 -ohm impedance (built-in 12-watt dummy load) and the other has a 1.0 -megohm impedance for high sensitivity. The counter also indicates the RF or IF output frequency. An RF wattmeter with digital readout, a digital readout plug-in crystalchecker that shows the fundamental frequency of any crystal from 1.0 MHz to 20.0 MHz . A modulation-percentage readout, for both positive and negative modulation percentages and a special readout on any channel that displays the percentage of error of the transmitter frequency. A microphone-tester that doubles as a substitute speaker; a built-in oscillator/ mixer circuit that beats the $27-\mathrm{MHz}$ CB frequencies down to about 1.0 MHz . The oscillator/mixer circuit permits you to use just about any narrowband scope. The model CB42 also features a very simple receiver sensitivity test and an equally simple signal-to-noise ratio receiver test. A switch-selected speaker-load 4. 8 or 16 ohms with an audio wattmeter readout that can read up to 20 watts. I hope I haven't left any out, although I might!

Imagine each of these instruments in its own case. You'd have a stack of boxes that would cover up the average service bench. Sencore has managed to put them all in one 11×14 inch box! The only instrument you would need beside the model CB42 would be a scope for looking at modulation waveforms. Any scope will do.

Every function and test on the model CB42 can be selected individually by the controls, which are very plainly marked. Input-output jacks are in a row along the bottom of the panel. The RF signal generator is a crystal controlled digitally programmed phase-lockedloop with a crystal accuracy of 1.0 ppm . It has a knob that selects either of two bands, Channels :-23 and 24-40. Actually 45 since there are five spare positions not hooked up, but can be easily connected if they're ever needed. The IF generator covers from 375 kHz to 12.0 MHz in five ranges; the frequency of these are read out on the display. The IF tuning knob is a three-turn pot, for easier setting of exact frequencies. The RF/IF output has its own jack, with 50 -ohm output impedance.

For transmitter frequency tests, the CB rig is connected to the 50 -ohm input, and the switch set to external frequency/ 50 -ohm load. In the next position of the switch, the 1.0 megohm high sensitivity input of the frequency counter is connected to the jack on the panel. If you set the CB tuning knob of the RF generator to the same frequency as the CB set and turn to the next position of the switch, the readout will give you a direct reading of the percentage of-frequency. The signal generator's PLL is accurate to within 1.0 ppm , and the readout has a rated accuracy of $.001 \%$ Since FCC specs call for only $.005 \%$ tolerance, these are well within limits. These tests work in the same way for SSB transmitters
A very versatile test instrument that can certainly speed up any kind of CB radio work and pay for itself in the number of jobs you can get out in a day.

R-E

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

SPECIFICATIONS

ELF if features an RCA COSMA COS/MOS 8 -bit microprocessor ad dressable 1064 k bytes with DMA, inRAM, full hex keyboard 256 byte Rutpul display 5 slot plug-in expansion outpur display, slor plag-in expansion poses and a double-sided plated-through PC board plus RCA 1861 video IC to display any segment of memory on a video monitor or TV screen.

Use ELF II to ... PLAY GAMES using your TV tor a videodisplay CREATE GRAPHICS pictures. alphanumerGRAPHICS pictures. alphanumerDESIGN CIRCUITS using a microprocessor ... the possibilities NOW AVAILABLE
ELF 11 explodes into a giant when you plug the GIANT BOARD" into ELF's expansion bus. This powerful board includes cassette //O. RS 232-C/TTY, 8 bit $\mathrm{P} \quad \mathrm{I} / \mathrm{O}$ and system monitor/ editor meaning your ELF II is now the heart of a full-size system with unlimited computing power! $\$ 39.95$ kit. $\$ 2$ p\&h. page to 64 k . $\$ 89.95 \mathrm{kit} \$ 3$ p 8 h page to 64 k . $\$ 89.95 \mathrm{kit}$. $\$ 3 \mathrm{pdh}$ 32 rototype (Kluge) Board accepts up to 32 I.C.'s of various sizes. $\$ 17.00 \mathrm{kit}$. $\$$ Pkh.
S2pan.

- Gold
postpaid
Comine Soon!

Tiny Basic

ASCIIKEYBOARD* CONTROLLER
BOARD * D-A, A-D CONVERTER CABINET

RCA COSMAC microprocessor/mini-

NETRONICS R\&D LTD.. Dept RE

333 Litchfield Road. New Milford. C't 06776 Phone (203) 354-9375 Yes! I wamt to rum programs af controllers, etc. (soon to be home and have enclosed: available as kits). Manual inCOSMAC ELF II kit. Featured I POPULAR ELECTRONICS. Includes all components plus verything you need to write and run machine language programs plus the new Pixie chip hat lets you display video graphics on your TV screen. Designed to give engineers practice in computer programming and microprocessor circuit design, ELF II is also perfect for college and college-bound students (who must understand computers for any engineering. scientific or business career). Easy instructions get you started right away even if you've never used a computer before!
As your need for computing power grows, five card expansion bus (less connectors) allows memory expansion, program deto D and D to A converters to D and D to A converters.
PROM. ASCII keyboard inputs. PROM. ASCII keyboard inputs. CIRCLE 69 ON FREE INFORMATION CARD

Introductory Offer-FREE AC ADAPTOR
The first and only lab accuracy portable DMM Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/ AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5% DC accuracy, 10 Meg ohm input impedance, low voltage drop in all current ranges and auto-matically-flashing overrange indi cator. Assembled \$109.95
FREE '78 EICO CATALOG
Check reader service card or send 50 c for first class mail. See your local EICO Deaier or call (516) 681-9300, $9: 00$ a.m.-5:00 p.m. EST. Major credit cards accepted
EICO-108 New South Rd. EICD Hicksville, N.Y. 11801

8700 Processor: 6503 MPU . Wear free "Active Keyboard". Micro-Diagnostic. Extensive documentation. FullySocketed
Piebug Monitor: User Subroutines. Relative address cakulator. Pointer High-low. Back-step key
Cassette Interface: Load \mathcal{E} Dump by file *. Positive indication of operation. Tape motion control
Applications systems from $\mathbf{\$ 9 0}$ (10unit quantity)
Development systems from $\$ 149$ (single unit)
TELL ME MORE i want to see for
myself that the 8700 is The Answer.
) Please send documentation $\$ 10$ enclosed.
) send price lists \& FREF Catitlog of other : PAL kits.
\ddress:

City:
State:

WANTED.

Courageous people to work for no pay. Frequently the hours and conditions are inconvenient or difficult. Occasionally even dangerous. No reward, beyond the gratitude of the people you help. Apply at your local Red Cross Chapter.

Sinclair 3½ Digit Multimeter Batt. oper. 1 mV and 1 NA resolution. Resistance to $20 \mathrm{meg} .1 \%$ accuracy. Small, portable, completely assem. in case it portable, completely assem. in case
guarantee. Best value ever!
$\$ 59.95$

Not a Cheap Clock Kit \$14.95 Includes everything except case 2-PC boards. 6-50"LED Displays. 5314 clock chip, transtormer, all components and fuil instructions. Same clock kit with $.80^{\prime \prime}$ displays.

Digital Temperature Meler Kit Indoor and ouldoor. Automatically switches back and forth. Beautiful. $50^{\prime \prime}$ LED readouts. Nothing like it available. Needs no additional parts for complete. full operation. Will measure -100° to $+200^{\circ}$ F, air or liquid Very accurate. Complete instructions. $\quad \$ 39.95$

Clock Calendar Kit \$19.95 CT7015 direct drive chip displays date and time on . $6^{\prime \prime}$ LEDS with AM-PM indicator. Alarm/doze feature includes buzzer. Complete with all parts, power supply and instructions, less case.

[^2]60 Hz Cryslal Time Base $\mathrm{Kil} \$ 4.75$ Converts digital clocks from $A C$ line frequency to crystal time base. Outstanding accuracy. kit includes: PC board, MM5369, crystal, resistors. capacitors and trimmer.
New Cosmac Super "ELF RCA CMOS expandable microcomputer w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resident monitor on ROM. Pushbutton selection of all four CPU modes. LED indicators of current CPU mode and four CPU states. Single step op. for program debug. Built in pwr. supoly. 256 Bytes of RAM, audio amp \& spki Detailed assy man w/PC board \& Spkr. Detailed assy. man. w/PC board \& $\$ 106.95$ High socketed. Comp. Kit 8.95: Low address disp iay potion option 8.95; Low address display option 9.95; Custom hardwood cab. ; drilled front panel 19.75 Nicad Battery Backup Kit w/all parts 4.95 Fully wired and tested in cabinet 151.701802 software xchng
club, write for info
RCA Cosmac VIP Kit 275.00
Video computer with games and graphics.

Original Cosmac "ELF" kit	
All parts and instructs.	$\$ 89.50$
Board only	14.95

Video Modulalor Kit $\$ 9.95$ Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with full instructions

Paralronics 100A Logic
Analyzer Kil \$199.00
Converts an oscilloscope into a digital tester and analyzer. Trace computer program flow, monitor 1/0 sequences, etc. Trouble shoot all digitai. CMOS and MOS families. 128 bit truth table (8 by 16 bits). Complete with case, parts and instructs. Model 10 Trigger Expander Kit expands Model 100A to 24 bits $\$ 229.00$. Modet 150 Bus Grabber Kit \$369.00, a one board logic analyzer for S-100 bus applications. Instant access to $56 \mathrm{~S}-100$ bus signals. Complete kit with all parts and signals.
instructs.
2.5 MHz Frequency Counter Kit Complete kit less case $\quad \mathbf{\$ 3 7 . 5 0}$ 30 MHz Frequency Counter Kit Complete kit less case $\quad \$ 47.75$ Prescaler Kit to $350 \mathrm{MHz} \quad \$ 19.95$

Stopwaich Kil

$\$ 26.95$
Full six digit battery operated. $2-5$ volts. 3.2768 MHz crystal accuracy. Times to 59 min., $59 \mathrm{sec} ., 991 / 100 \mathrm{sec}$. Times std. split and Taylor. 7205 chip, all compo nents minus case . Full instruc. White or
black plexiglass case.

Auto Clock Kit
$\$ 15.95$ DC clock with $4-.50^{\prime \prime}$ displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated comp. instructs. Add $\$ 3.95$ for beajitiout dark gray case. Best value ąrywnete.

CLASSIFIED COMMERCIAL RATE (for firms or individuais offering commercial products or services). $\$ 1.50$ per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 854 per word . . . no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at
$10 \$$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted unth advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue cioses on preceding working day.

PLANS \& KITS

HOBBYIST give your project the professional look. PRINTED CIRCUIT boards from your sketch or artwork. Affordable prices. Also fun kit projects. Rush free details. DANOCINTHS, Box 261, Westland, M1 48185
67 kHz sCA kits for extended FM reception. includes drilled Bakelite case, 110 volt power supply parts, wired and tested PC board. Quality product. $\$ 47.50$. Fully wired $\$ 60.00$. MUsic AsSOCIATED, 65 Glenwood Rd., Upper Montclair, NJ 07043 (201) 744-3387
CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed $\$ 1.00$; includes year's subscription to Electronic Newsletter. DON BRITTON ENTERPRISES, PO Box G, Waikiki, HI 96815
NEGATIVE Ion Generator. Plans- $\$ 10.00$, Kit$\$ 165.00$. (Detalls $\$ 1.00$.) GOLDEN ENTERPRISES, Box 1282-RE, Glendale, AZ 85311
MINI-laser plans $\$ 1.00$, science projects catalog 104. MOTEN, 323 S. Franklin, \#804, Chicago, II 60606
LINEAR AMPLIFIER: Ham only $2-30 \mathrm{MHz}, 100$ watt, solid-state. FREQUENCY COUNTER: 300 MHz, miniportable/mobile, memory! voxCOMPRE8SOR: Splatter free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Kits, others, catalog available. PANAXIS PRODUCTIONS, Box 5516-F3, Wainut Creek, CA 94596

BUSINESS OPPORTUNITIES

INVENTORS, protect your idea for under $\$ 5$, complete instructions, $\$ 2$. MARCHE CONSUL: TANTS, Box 382431, Houston, TX 77088
CABLE FM STATION. No investment, excellent spare time income, others operate for you. Details free. BROADCASTING, Box 5516-F3, Walnut Creek, CA 94596

HIGHLY

 ELECTRONIC FACTORYInvestment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do. Barta-RE-C, Box 248, Walnut Creek, CA 94597.

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: MARK8, 92-R, Brighton 11th, Brooklyn, NY 11235
"RENT lease TV's anyone can! Easy to start and operate, even from your home." Send $\$ 2.00$ for basic information! PERAYs' TV LEASING, 308 N. McClelland St., Santa Maria, CA 93454

EDUCATION \& INSTRUCTION

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025
UNIVERSITY degrees by maill Bachelors, Masters, Ph.D's . Free revealing details. COUNSELING, Box 317-RE3 Tustin, CA 92680
TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415
TR8-80 users group-join now-monthly newsletter $\mathbf{\$ 1 7 . 0 0}$ first year. MAR8H, 621 13th So., Onalaska, WI 54650
THE VIdeo Amateur is a new publication of, by and for the video enthusiast. Look to us for service tips, modifications, bargains on video gear and a wide exchange of products and information. Send for a free copy to: P.O. Box 250, Coyote, CA 95013

FOR SALE

FREE catalog. IC's, Semi's. CORONET ELECThONIC8, 649A Notre Dame W., Montreal, Que., Canada, H3C-1H8. US Inquiries.
RECONDITIONED test equipment. $\$ 0.50$ for catalog. WALTER'8 TEST EQUIPNENT, 2697 Nickel, San Pablo, CA 94806
TELEPHONE recording equipment and other 'unusual' electronic devices. Free information. GARRISON, Box 128-B, Kew Gardens, NY 11415

RADIO \& TV tubes 36Φ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105
SERVICEMEN-Cleaners, lubricants, adhesives for all electronic repairs. Write for free catalog. PROJECTOR-RECORDER BELT CORP., Box 176, Whitewater, WI 53190 800-558-9572 ex. WI

NiCad Rechargeable "AA"Cell
 PEN-LITE BATTERY $\begin{array}{ll}\text { BA-341 } & \bullet 1.2 \text { Volt } \\ \text { EA. } & \bullet \text { Famous }\end{array}$

- Famous

Volume Controls, Ple of 12 Assorted VC-274 Hantware, I H. Assorted HW- 076
Capacitors, Low Vothate Elect 50 pc . CD-407
Terminal Stips, Solder Type, 40 Asstad. XM-501.
Resistors. 100 Assorted Carton RR-017
Cassette Tape. Phe of 3-30 Minute TA-879
8. Irack Tape. 40 Minute TA.907

UW Varactor Tuner. With Data Sheet XM-676
LED. Rtal 2 Voft. 10 ma. Pkg. 5 PR 233
Mi-Cad Battery Pack (3 "M" cohs) BA-327
Cassette Lapel mike. 3.5 mm Plug mim- 174
3^{3} Recording Tape. Pug. of 5 [125' to 300^{\prime}) TA- 928
Stidemount for Car Stereo or C8 AL- 149
6 V to 12 Volt DC Convertior [12V Acc. on 6V Batt IAU 297
2" Pu Speaker. 8100 hm 2 for $1.00 .5 S .295$
AM Pushbutton Auto Radio. 12 Voit, AU- 580 .
Knobs, Kit of 25 As sorted KN-0.30
Telechron Digital Clock, 117 VAC SW-853
$59 *$
$50 k$
2.50
69
794
794
494
1.49
594
3.50
1.00
1.00
1.99
4.99
794
10.99
694
3.99

CIRCLE 85 ON FREE INFORMATION CARD

SEE IN THE DARK

IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness. No shipments to Calif. Comes complete with built in IR source and adjustable focus lens. SPL-21 \$199.00
CHARACTER GEINERATOR CHIP
Mernory is $512 X 5$ producee 64 five by seven ASCH oharacters. New by National, w/epece
TOUCHTONE ENCODER CHIP
Compatible $w /$ Bell syrtem. Ideal for repeater work. W/epece
SMOKE-FIRE-INTRUDER ALARM 12 VDC w/5 inoh loud bell, w/instructions.
Fine biz. for car, camper, boat. home W/ingtructions
CATALOG SP-10 NOW READY

CATALOG SP-10 NOW READY
cumbomer paye all poetage
MESHNA, PO BOX 62, E. Lynn Ma 01904

JUMBO LED READOUT ARRAY

By Bowmar. 5 character common cathode. Designed for use with mult $\$ 1.95$ plexed clock chips
4 digits in 1 pack! 3W. AUDIO AMP
 Assembled \& test ed. Not a kit. Has tapped outout for either 4,8 or 16
OHMS. With sche-

CMOS SPECIAL!

CD4001-5/\$1. CD4011-5/\$1. CD4013-3/\$1. CD4040-\$1, each CD4042-2/\$1. CD4049-3/\$1.

FILTER CAP

Mini Size. Axial. 1,000 MFD. 16 WVDC. $4 / \$ 1.00$ RED LED READOUT FILTER Very handy. Can be used with our calculator displays. $21 / 4 \times 1 / 2$

6/\$1

OPCOA LED READOUT

SLA-1 Common Anode. 33 inch character size. The or-
iginal high efficiency LED dispolay.
75c ea.
4/\$2.50

TRANSFORMER
12 Vac. 60 MA . PRI-115 VAC 60 Hz . Perfect for clocks or power supplies!

Small Size.
$\$ 1.95$
OPCOA LED
READOUT
SLA-1 Common Anode. 33
inch character size. The or-

iginal high efficiency LED
display.
75c ea.
75.

27081 KX8 EPROMS 2708 Prime new units from a major mfg. 450 N.S. access time. Equivalent to 4-1702 A's in 1 package! 450 ns \$15.75 each MOTOROLA 7805R Voltage Regulator Same as standard 7805 except 750 MA output. TO-220. 5VDC output. 44c each 10/\$3.95

4 K STATIC RAM'S 2114. The new inclustry
standard. Arranged as 1 K $\times 4$ Equivalent to 4.21 $\begin{array}{ll}\text { L02's in } & 1 \text { package! } 18 \\ \text { Din DIP. } \\ 2 \text { chios give } 1 K \times 8 .\end{array}$ 2 for $\$ 24$. 8 for $\$ 85$

LED IC Counter Kit

You Get: 1-7490; 1-7475 1-7447; 1-Led Readout. All this for $\$ 1.99$ (Led Readout is famous SLA-1. . 33 in By Opcoa.)

741C OP AMPS Mini Dip. Prime new units. Has computer Mfg's house number 12/S2. 100 for $\$ 15$	DISC CAPACITORS 1 MFD 16 V . P.C leads. Most bopular 20 for $\$ 1.00$	Full Wave Bridge 4 Amp 200 PIV 69c ea. 10/5.75
Jumbo Red Leds New by G.E. Like MV5024. Number SSL-22. $6 / \$ 1 . \quad 25 / \$ 3.75$	Motorola PNP Power! 2N4905. TO-3 case. 90W. VCEO-60; HFE 100 max at 2.5A. Good mate for the 2N3055. 75c each. 4/\$2.50 PRIME!	TI POWER TRANSISTORS TO-220. VCEO 60V. 30W TIP29A-NPN TIP30A-PNP

P. O. BOX 401247 •GARLAND, TEXAS $75040 \bullet(214) 271.2461$

5V. NI-CAD Battery 4 cell Pack. Rated 500
MAH. NEW!
\$3.95 pack
CMOS QUAD
Bilateral Switch CM4116. By Soli tron. An improved CD4016. $3 / \$ 1$.

2N3904-House No. TO-92. NPN. VCEO-45. HFE 100 to 300 10 for $\$ 1.00$

Motorola Quad Op. Amp MC3401. Pin for Pin Sub for popular LM3900. 3/\$1.00

CIRCLE 42 ON FREE INFORMATION CARD

The PLAYMASTER 4040 is a sophisticated, advanced design incorporating the latest developments, yet uses relia-
 strikes and they need to be replaced, you'll have no trouble buying spares.
ONLY $\$ 105$.

SPECIALS OF THE MONTH I.C.SOCKETS ON SALE It

14 PIN S/T	10 FOR	$\$ 2.00$
16 PIN S/T	10 FOR	$\$ 2.40$
14 PIN W/W	10 FOR	$\$ 3.50$
16 PIN W/W	10 FOR	$\$ 4.00$
28 PIN S/T	5 FOR	$\$ 3.50$
28 PIN W/W	5 FOR	$\$ 4.50$

T.I. LED DISPLAY SPECIAL

TIL 305 (ink $\begin{gathered}5 \times 7 \\ \text { Alphanumeric }\end{gathered} \$ 3.50$ ea. TIL 311 Hexadecimal
with Logic
$\$ 4.50$ өа.

TIL 306
7 Seg
with Logic
(Counter. Latch. Decoder, and Driver built-in)

TIL 308
(Latch, Decoder, and Driver built-in)
"FISHER" 30 WATTS STEREO AMP KIT (15W x 2)

Kit includes: 2 pcs. Fisher PA301 Hybrid IC all electronic parts with PC Board. Power supply: +16 V DC (not included). Power band with (KF = 1\% \pm $3 \mathrm{~dB})$. Voltage gain: $33 \mathrm{~dB}, 20 \mathrm{~Hz}-20 \mathrm{KHz}$.

FVFVFVFVFVNVF
-NLY 32.50 eech kit
ONLY $\$ 23.50$ eech

All orders add 10% postage for out of state. Overseas countries add 15% of total order for postage

END CHECK OR MONEY ORDER TO

FORMULA INTERNATIONAL INC.

- $\underset{12603 \text { CRENSHAN BOULEVARD. HAWTHORNE, CALIFORNIA 90250 }}{ }$
for more information please call 1213) 679.5162
More information olease call !213) 679.5162
STOAE HOURS ta-7 Monday. Saturday

CH2 AMP KIT

Uses STK-015 Hybrid Power Amp Kit includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control, all electronic parts as well as PC Board. Less than 0.5\% harmonic distortion at full power $1 / 2 \mathrm{~dB}$ response from $20-100,000 \mathrm{~Hz}$. This am plifier has QUAS --Complimentary class B output. Output max is watt (10 watt RMS) at 4Ω

SHOP YOUR NEARBY RADIO SHACK FOR qUALITY PARIS AT LOW PRIGES!

Top quallty devices, fully functional, carefully inspected. Guaranteed manufacturer's quality control procedures. These are not rejects, not to meet all specifications, both electrically and mechanically. All are fallouts, not seconds. In fact, there are none better on the market! made by well known American manufacturers, and all have to pass Count on Radio Shack for the finest quality electronic parts.

TTL Digital ICs
First Quality
Made by
National
Semiconductor and
Motorola

Linear ICs

By National Semiconductor and Motorola - first quality

Type	Cat. No.	ONLY
301 CN	276.017	496
324 N	276-1711	1.49 1.49
339 N	${ }^{276-1712}$	1.49
${ }^{386 C N}$	276-1731	996
${ }^{555 C N}$	${ }^{276-1723}$	799
${ }_{556 C N}$	276-1728	1.39
566 CN	276-1724	1.69
567 CN	276.1721	1.99
${ }_{723 C N}$	276-1740	694
741 CN 741 H	- 276 27-007	4994
3900 N	276-1713	994
3909 N	276-1705	999
3911 N	276-1706	1.99
${ }^{4558 C N}$	276-038	796
75491	276-1701	994
75492	276-1702	996
7805	276-1770	1.29
7812 7815	276-1771 $276-1772$	1.29 1.29

Resistor and Capacitor Packs

Resistor and capacitor kits in handy plastic storage boxes you can use over and over again. Stock up! $1 / 2$ Watt. 10% Tolerance Resistors. 271-601 50WVDC Ceramic Disc Capacliors. $272-601$ 35WVDC Radial Lead Capacitors. 272-602 35wVDC Axial Lead Capacitors. 272-603

PC Board Accessories

8-piece photographic PC board processing kit - fa easiest way to produce perfect printed circuit projects. 276-1560
Etch-Resist Marking Pen 276-1530 $\quad 12.95$

Etchant Solution $276-1535$	1.19

PC Board Assortment. 276-1573 198

Pkg. of 350/9.95
Plig. of 350/9. 95
Pkg. of $175 / 9.95$
Pkg. of $36 / 9.95$

Tantalum Capacitors

Maximum capacity in smallest size. Low ESR, highiy stable electrical characteristics and low leakage. Radial leads.

Cat No.	$\mu \mathrm{F}$	Each	Cat. No.	$\mu \mathrm{F}$	Each
272-14C1	0.1	39 c	272-1407	2.2	45\%
272-1402	0.22	39\%	272-1408	3.3	45¢
272-14C3	0.33	39c	272-1409	4.7	49e
272-1404	0.47	39¢	272-1410	6.8	498
272-1405	0.68	$39 ¢$	272-1411	10.0	49
272-1406	1.0	39 c			

Build an LED Digital Clock

12-HR LED Clock Module. Just add a transformer and switches for a complete clock with 0.5" LED display. 277-1001 Transformer for above. 120VAC 60 Hz . 273-1520 SPST Miniature Pushbution Switch. 275-1547 3.99 Display Cass. $1^{13 / 16} \times 3^{7 / 8} \times 4^{7 / 16} 6^{\prime \prime}$. $270-285$

Power Supply Parts

6-Amp Full-Wave Bridge Rectifier. 50 PIV.
276-1180
50V
3.Amp Power Rectitier. 300 A surge 276-1141 …...ectrolyaic Capacitors $3300 \mu \mathrm{~F}$ at 35V. 272-1021
5000
g. 2/69e $5000 \mu \mathrm{~F}$ at $35 \mathrm{~V} .272-1022$ Heavy-Duty Tiansformers. All for $120 \mathrm{VAC}, 60 \mathrm{~Hz}$

Computer Chips

The CPU and Memory IC's you need for building your computer.

8080A Microprocessor. An 8-bit Na tional Semiconductor chip in a 40-pin DIP. 100\% Prime
276-2510

2102 Static RAM. 1024-word by one bit read/write memory. Under

Power Supply Parts -

LED Digital Displays

Produce Power from Light
$2 \mathrm{~cm} \times 4 \mathrm{~cm}$. 0.5 V at 100 mA . $276-120$ 2.99

50252. 12-hour clock. 24-hour alarm chip. With full specifications. 276-1751 6.99 7001. 12-hour calendar alarm clock $I C$. With all data. 276-1756

8K ECONORAM II＂：kit $\$ 135,3$ kits for $\$ 375$ ， assembled and tested $\$ 155$ ． This is the board that thousands of owners
swear on．not at．There are lois of reasons．such as unique addressing options，reliability，full bufler
ing fast access lime ing．fast access lime，a full sel of sockets ．but prob
ably the most populat feature is the price，which is ably the most popular feature is the rrice．which is
all the more remarkable because of the high level of quality．One owner reviewed this board in the $1 / 77$
issue of Kilobaud．closing with the words＂If youre not convinced by now that the Econoram il is one of
the best memory buys on the market today，you the by memo be buys on the market today you
really y the to one tugh cookie－etither hat or
you work for someone else who makes memory
boards．

12K ECONORAM VI ${ }^{\text {m：}}$ ：$\$ 235$
We proudly wetcome our newest memory
board family member，designed fom board family member．designed from the
ground up for full compatibility with the ground up for full compatibility with the
Heath Company H8．Organized as two indepen－ Heath Company
diem blocks．one $8 K$ block and one $4 K$ ．Has the
same diem blocks．one $8 K$ block and one $4 K$ Has the
same basic teatures as out ECONORAM 11^{m} all
staicic design，switch selected protect static design．switch selected prorect and phantom．
sockets fior all ICs．full buffering－plus the required hardware and edge connector to mate mechanically
with the 18 You can have our 12 K board for the Winh the 18 You can have our 12 K board for the
price of the Heath Company＇s 8 K ．With the ner
formance you have come to expect from products carrying the ECONORAM lrade mark．

8K ECONORAM III＂：\＄149
The first $8 \mathrm{~K} \times 8$ dynamic ram that per－ forms well enough to merit the
ECONORAM name．Not a kir tested．and ready to run in your $\mathrm{S}-100$ machine （Altair etc）．Low power Configuration as 2 sep arate $4 k$ blocks Zero wail states with 8080 CPU ．In
－
CPU POWER SUPPLY
$\$ 50$
a sLot motherboard al1／2A，blas supply．
10 SLOT MOTHERBOARD
390
18 SLOT MOTHERBOARD
$\$ 124$
and active termination circuitry
ACTIVE TERMINATOR
329.50

Plugs into S ． 100 buss motherboards lacking active
termination to clean up the glithes associated with

MORE COMPUTER ITEMS
Altair／IMSAI Extender Board Kit．＂We are proud to distribute this Mullen Computer Boards pro－ duct for the S .100 buss．A must for servicing，taking
measurements．burning in．etc．Integral logic probe． measurements．burning in．etc．Integral logic probe with needle point non－skid tip and special edge con－
nector for easy probing；＂CK－006． $\mathbf{3 3 5 . 0 0}$ ．Also avalle＂Relay／Opto－Isolator Control Also Kit．＂ 8 reed relays respond to 8 bit word Board Kit． 8 reed relays respond ts 8 bit word： 8 opto
isolators accept inputs for handshaking or solators accept inputs for he ndshaking or further
ontrol．With applications notes；＊ $\mathrm{CK} .011 . \mathbf{1 1 7 2 0 0}$ ．

DB－25 RS－232
SUBMINI－D CONNECTORS
Male plug．\＃CK－1004， 33.95 ；female jack，
＂CK－ 1005 ，$\$ 3.95$ ；plastic hood CK－1005，$\$ 3.95$ ；plastic hood for male connector CK－1006． $\mathbf{5 0 . 9 0}$

EDGE CONNECTORS
CK－1001 100 pin edge connector with gold plated level wrap posts．Mates with Altair／IMSAl eripherals． $\mathbf{5 5}$ each or $5 / \mathbf{3 2} 2$.
CK－1002：Same as above，but with soldertail pins 0．25＂centers（mates with IMSAl motherboard）． 5 each or $5 / 522$.
CK－1003：Same as above，b，with soldertail pins 0．14 centers（mates with Altair motherboard）． 6 each or $5 / \mathbf{2 7 . 5 0}$ ． ตロロロロロロロロロロロロロロロロロ BOOKS

CAY
＂Some Common BASIC Programs＂by Lon Poole and Mary Borchers．If yau＇ve got BASIC．here are some programs to play witt＊BK－21002．$\$ 7.50$
The Adam Osborne and Associates Books We offer An Introduction to Microcomputers，＂volumes
and 2．plus＂ $\mathbf{8 0 8 0}$ Programming for Logic and 2．plus＂ $\mathbf{8 0 8 0}$ Programming for Logic Design＂at a special combination price of $\mathbf{\$ 2 5 . 0 0}$
（order \＃BK－1001）．Also available： 6800 Program． ming for Logic Design．＂＂BK－5001． $\mathbf{7 7 . 5 0 \text { ．}}$

YES，YOU CAN BUILD
${ }^{\text {an }}$ ELECTRONIC ORGAN

That has a PIPE ORGAN SOUND
With DEVTRONIX osay to build asaomblies． Own the ulimate in organ design asound at in the cost of commercial organs． Several modela to ehoose from． BROCHURE AND DEMO RECORD $\$ 1.00$ Go Deutranix Dept． 8 5872 Amapola Dr San Jose，CA 95129

CARBON film resistors－ $1 / 4 \mathrm{~W}, 5 \%(1-4 \mathrm{M} 7$ ohms） 3.5 c each． $50 / \mathrm{value}-\$ 0.85$ ．Postage，handling $\$ 1.00$ ．Other components．Free catalog，resistor sample．COMPONENTS CENTER，Box 295R， West islip，NY 11795
BUILDING7 Try our top quality electronic parts in your circuits．Ho CB＇S，TV＇S，or Ham sets－juat parts．BRAND X，Rt．3，Box 223，Ontario，OR 97914
8EEKING Japaneee Transistors for CB and ste－ reo repair？Request complete list．Compare 1 to 9 prices：2SC710．59，2SC517 3．95，2SC799 3．60， 2SC 1306 4．40，2SC1678 2．25．TA7205P 3.90 ， BA521 3．70，BA511 3．40．FUJJ－SVEA ENTER－ PRISE，Dept．RE，P．O．Box 40325，Cincinnati，OH 45240

SNT400 SERIES IC BENT PIN SPECIAL

We have a large lot of SN 7400 series ICs，and some linears，that have been removed from wire wrap boards．The only defect we have been able to find are bent pins．The lot includes the entire series of SN7400s，gates，MSIand LSI．We are selling them in lots of 125 for $\$ 10.00$ ，mixed，（no choice），but guarantee a satisfactory mixture that must please you or your money back
STOCK NO．4591R 125 pc．lot of ICs $\$ 10.00 \quad 3 / 25.00$

gates rechargeable batieries

GATES RECHARGEABLE ENERGY CELLS，in banks to give the following ratings： $6 \mathrm{~V} 10 \mathrm{AH}, 8 \mathrm{~V} 5 \mathrm{AH}, 12 \mathrm{~V} 2.5 \mathrm{AH}$ ，and supplies in case of power were used in computers as back up supplies in case of power line failures．The batteries were perjod－ are good for up to 2000 of usage．Maufacturers specs say cells are $900 d$ for up to 2000 charge cycles．We supply application and charging data．May come in plastic case，or cells，as per photo．

STOCK NO．5572 R

STOCK NO．5573R
STOCK NO．5574R 6 Volt 10 Amp．Hour battery $22.50 \quad 2 / 40.00$ 8 Volt 5 Amp．Hour battery 19.50 2／37．00 12 Volt 2．5 Amp．hour battery 12.50 2／23．00 12 Volt 5 Amp．hour battery $22.50 \quad 2 / 40.00$

MAIL ORDER
 DEITA EEECTRONICS

P．O．Box 2， 7 Oakland St． Amesbury，Mass． 01913 617－388－4705

OVER THE COUNTER SALES ROOMS ATLANTA，GA．DELTA ELECTRONIC HOBBIES 5151 Buford Hwy．Doaraville，（Atlanta）Ga． 30340
BOSTON，Mass．DELTA ELECTRONICS WAREHOUSE OUTLET 590 Commonwealth Ave．Boston，Mass． 02215

Electronic Warning Flasher Kit

This battery operated device continuously emits bursts of intense light．Great safety device for bicycle riders，skiers，hikers， boaters \＆campers．Comes complete w／all electronic parts，quality glass－epoxy P－C board \＆easy to understand instructions． Uses high－output xenon flash tube which flashes 2 times per second when batteries are fresh．Operates continuously for 12 hours on 2 alkaline＂C＇＂batteries．You need only to supply the batteries and，if desired，a battery holder \＆case．

$\mathrm{C} 23207^{\$} 6.95$
（ 3 for $\$ 18.00$ ）

STROBE TUBE ASST．

Brand new fac
 tory prime

strobe tubes．
Assortment of
5 strobe tubes，
w／schematics
C23280
\＄ 2.00
5V REED RELAY SPST $\$ 1.00$ 5V REED RELAY SPDT 1.50 JUMBO YELLOW LED 5／\＄1．00 78 L 05 5V REG． $5 / \$ 1.00$ 400V 8AMP SCR HSE\＃3／1．00

CMANEY
－Minimum order \＄5．00
Please include \＄1 for postage
Yelectronics
－Visa，MC and COD accepted．
－Phone orders are welcome．
P．O．BOX 27038．DENVER ，CO． 80227 Ph：（303）973－1052
Send for our FREE GIANT CATALOG of unique items＇

3050 VALMONT ROAD BOULDER,COLORADO 8030I Ph: (303) 442-1212

Giant catalog The best bargain on this page 1!!-Our brand new 1977 gianı catalog packed with dozens and dozens of super buys on electronic unique compontains such ectric motors, Caps, wire, resistors, diodes switches, LED's, transformers, transistors, and much, much more. Perhaps we have just the itern you've been looking for		DIGITAL READOUTS HP $\$ 7730.3^{11}$ character(RED) Conmon Anode. for $\$ 4.95$		LOGI-CASE Universal instrument enclosure with a wide variety of applications. Unique interior plexi4" PC boards. Great fol packing a lot of components invo a very small shace. Adds a very professional towch to any project. Made from $1 / 8^{\prime \prime}$ thick anodized, extruded aluminum. So tough that you can run over it without damaging it !!!! The Logi-Case comes with a reverstween transparent red or smoke grey. Now available in two popular sizes:
4127 OPT	I2V RELAY		$9 / 18 \mathrm{v} \quad 1$	
			WIND	
		$\left.\begin{array}{lll}5 \mathrm{~K} \text { olim, vertical }\end{array} \begin{array}{lll}\mathrm{PCV} .502\end{array}\right) .20$		Small: $41 / 2 \mathrm{~L} \times 31 / 4 \mathrm{D} \times 13 / 4 \mathrm{H}$. Large: $6 \mathrm{~L} \times 41 / 2 \mathrm{D} \times 2 \mathrm{H}$.

		TELEPHOOE UIRE			
	Insulating T0-3 Washer SUPER CODVUCTING! LTHRTASER. 10 For	$\begin{aligned} & \text { Iv, } 600 \text { ? } \\ & \text { New by Sprague. Great for ex } \\ & \text { perimenting w/high voltage. } \\ & \text { Axc } 160 \ldots70^{4} \end{aligned}$	203055		POUER RELAY Poter \& Bum 4.00
SNAP SWITCH snap switch bv Cherry. Rated 250 VAC. MSW-523. 45	RIBBOO CABLE \qquad 6 RIB-006 24 R1B-024 .85 7.95				

MICRO SWITCH $C$$\qquad$ 95^{+}						
		pots w/insulated otection against (TVR.505)		MOTOR	$\begin{aligned} & \text { Bran } \\ & \text { SPDI } \\ & \text { MST } \end{aligned}$	
			55ζ			POT
			$\begin{aligned} & \text { your chice, } \\ & 255 \text { for } \end{aligned} 1.00$			COMPONENT CARRIER 10/25 ${ }^{\text {d }}$
I/50V CAP		BARRIER BIOK 			1800 uf CAP 1800 uf at Branit new. Brand ne PCL-184 55^{4}	
	. Oluf minicap	47pf mini CAP UMC $047 \quad 10$		TYPE MKM		

Brand new factory surplusas used in dishwashers, etc. Great for building automated garden watering system, lab work, service and industrial applications. While they last. G2425U.

Silicone Treated RECORD CLEANING CLOTH WITH EACH ORDERI

IF YOUR ORDER TOTALS \$10.00 OR MORE, ASK US FOR THREE OF THESE! G117MS.

m

"LOOKK AT-THESESESPECIALS':-

Crtercsting 24 VDC
ICREMENTAL STEPPER MOTOR!

som Out to
Hincic:
E $\frac{1,0}{\mathbf{E}}$ EPOX
Besutiful double and sir gle sided
ccoper clad glass epoxy toard.
and In $2 t$ fibrel. Ready for e ching.
Neatly cut in convenien: rect<angles of various sizes. Suitab
fo most popular projec s.

Radiotelephone

DECODER ESCAPEMENTGY
Removed from Weste... Electric
Radiotelephones Unusual. excel. Radiotelephones Unusual, excellent for experimenters. This pre
cision electromechanical fevice cision electromech anical tevice
accepis electrical impu ses and through a ratchet and pawi actio
advances a code wheel The per sequence of pulses will cause the code wheei to complete a cir cuit and thus ring a bell or other device. Improper pulse sequence is ignored. Changeable code. Ex. cellent con
GO16SU.

G339TP - 1 pound of Single-Sided Boards. $\$ 2.95$
G338FT - 1 pound of Doub e Side Boards. $\$ 2.95$

Special Scoop

Another ETCO buyout! 13 :
oz. spouted "gun cartridge" of Gpouted "gun cartridge" rubber adhesive/sealant so popular for industrial applica tions and home handyman use. A multitude of applications. Stock is limited.
G056CH G056CH

2K" PLASTIC CONE HI FI TWEETERI

494 $10 / 54.49$ 100/539.95 A Fbulous buy! Originally des!gned to U.E. Gov't spec as a dy namic mike car. Trie ge, these units turn out 10 have supers specs as ultrahi fi iweeters. Impe-
dar ce 8.16 ohms, Response 35 to 215 KHz. Power: 10 watts ponse 3.5 10 21.5 KHz. Power: 10 watts peak, over 1 wat cor tinuous. Each cornes with an 8000
ohm transformer which is easily dis. ohm transformer
car jed. G024SP.

ELECTRONICS

AIRPAX DC CIRCUIT BREAKERS!

AlRPAX IgIUTS $\$ 995$

Brand new factory surblus. Both Brand new factory surblus. Both rom
dels have built in SPDT switch for "tattleatale" pilot light. Quantities G079MS - No. UPLI-1RO-588-01 25 Amp Trip G086MS - No. UPL1-1RO-266-07

"Ir-Wall" Lrarcem Sub Staino
We scoopes up 300 ol thes? 3rand new in Jividua ly cartoned unics. Manufactred ber Bern's Air King Cors. of
 return slide switch anc multipole rotary sevitzh. Meal for custorr intercom and bagkgrcund mus c i ista lations
for home, Jffice or haspita. An unusual factory surplus item. Stocx up now white we have 'em. C25:SP.

Burroughs Burroughs "Panaflex"

41 CONTROL "NAKED" KEYBOARD!

Rush Your Order Today To . . . ETCO ELECTRON CS CORP. U.S.A. North Country Shoyping Center,
Route No. 9, Pattshurgh, N.Y 12901

S.D. SALES NEW

EXPANDABLE EPROM BOARD

16K or 32K EPROM $\$ 49.95$ w/out EPROM Allows you to use either 2708's for 16K of Eprom or 2716's for 32K of Eprom KIT FEATURES:

1. All address lines \& data lines buffered
2. Quality plated through P.C. Board, including soider mask and silk screen.
3. Selectable wait states.
4. On board regulation provided
5. All sockets provided w/board.

WE CAN SUPPLY 450ns 2708 's AT $\$ 11.95$ WHEN PURCHASED WITH BOARD.

32K FOR $\$ 475$ EXPANDORAM KIT 24K FOR $\$ 367.00$

Buy an si00 compatible BK Ram Board and upgrade the same board to a maximum 32 K in sleps of 8 K at your option by merely purchasing more ram chips from S . Sales! At a guaranteed price - Look at the leatures we have built into the board

16K FOR \$259.00

4K LOW POWER RAM KIT

Fully Buttered - on board regulated reduced power consumption utilizing
low power $21 \mathrm{~L} 02-1500 \mathrm{~ns}$ RAMS low Dower 21 LO - I SII IC 's. Quality pockets through PC board. Add sio for 250ns PAM operation

The Whole Works - $\$ 79.95$

Low Cost Cassette Interface Kit

INTERFACE CAPABILITY
Control, data and address in puts ulilizes low power Schotiky devices

WER REQUIREMENTS $+8 V D C 400 \mathrm{MA} \mathrm{DC}$
$+18 V D C 400 \mathrm{MA} \mathrm{DC}$ -18VDC 30MA DC on board regulation is provid ed. On board (invisible) refresh s provided with no wait ststes orcyce stealing required. MEMORY ACCESS TIME
IS 375 ns. Memory Cycle Time is 50 con .

6 DIGIT ALARM CLOCK KIT

Features: Litronix dual $1 / 2^{\prime \prime}$ displays, Mostek 50250 super clock chip, single l.C. segment driver, SCR digit drivers. Kit includes all necessary parts (except case). Ximr optional Eliminate the hassle AC XFMR - $\$ 1.50$ Case $\$ 3.50 \quad \$ 12.95$

Bowmar 4 Digit LED Readout Array Full $1 / 2$ " Litronix Jumbo Dual Digit LED Displays
4 JUMBO $50^{\prime \prime}$ DIGITS ON ONE STICK! WITH COLONS \& AM/PM INDICATOR
 $\begin{array}{cc}\text { OL } 7218 \mathrm{CA} . A & \mathrm{DL} 727 . \mathrm{C} . A \\ 99 \mathrm{C} & \$ 1.29\end{array}$

RAMS
$21 \mathrm{LO2}-500 \mathrm{NS}$
$21 \mathrm{L02} 250 \mathrm{NS}$
$2114-4 \mathrm{~K}$
$1101 \mathrm{~A}-256$
$1103-1 \mathrm{~K}$
MK $4115-8 \mathrm{~K}$
$74 \mathrm{~S} 200-256$

CPU's	
$z-80$ includesmanuat	2995
$z-804$ includes manual	3495
8080A CPU 8 BIT	1195
8008 CPU 8 BIT	695

COUNTER CHIPS

MK50397 6 Digit elapsed timer MK50250 Alarm clock MK50380 Alarm chip MK50395 6 digit up/dn MK5002 4 digit counter

NEW FROM S.D.
"VERSAFLOPPY''тм KIT
the versatile floppy disk controller ONLY \$149.00

$\star \star \star \star$ SUPER FLOPPY SPECIAL $\star \star \star \star$

 S. D. Sales.' VERSAFLOPPY s-100 CONTROLLER board plus SHUGART SA 400 FLOPPY DISK DRIVE INCLUDING CABLE FOR ONLY $\$ 479.00$
MICRO-DIP

$\$$
New - Series 2300 The World's Smallest Coded BCD Duai-In-Line Switch! PC Mount 2300 O2G BCD $1-2-4-8$
2300 12G BCD $1-2-4-8$ Compliment

Thermistors 1.5 K ohm Tantalum Caps 1 mfd . 20 VOC P.C. Leads Flat Pack IC Assort Electrical Coil 13 T Type C - 10 T Type C $121 \$ 1.00$ 2 Transistor Audio Timmer Pots 10K, 20K, 25 K , Min sc Caps For Bypass
.01 mfg- 100 WUDC . 01 mfg Leads 1
New Cambion Jacks
Part \#450.4352 Part \#Plated
Gold Plate CHOOSE \$1. FREE MERCHANDISE FROM ASTERISK ITEMS ON EACH $\$ 15$ ORDER

MUSICAL HORN

One tune supplied with each kit. Additional tunes - 36.95 each. Special tunes available. Standard tunes now available: Dixie - Eyes of Texas - On Wisconsin - Yankee Doodie Dandy - Notre Dame - Pink Panther - Aggit War Song Anchors Away - Never on Sunday - Yellow Rose of Texas Deep in the Heart of Texas - Boomer Sooner - Bridge over River Kwal
$\begin{array}{ccc}\text { CAR \& BOATKIT } & \text { HOME KIT } & \text { Special Design } \\ \$ 34.95 & \$ 28.90 & \text { Case } \$ 3.50\end{array}$
Case $\$ 3.50^{\circ}$

8K LOW POWER RAM - $\$ 159.95$
Fully assembled and tested.
Not a kit. Imsai - Altair -S-100 Buss compatible, uses low power static $21 \mathrm{~L} 02-500 \mathrm{~ns}$
fully buffered on board regulated, quality platect through PC ed, quality plated through PC
board, including solder mask 8 pos. dip switches for address select

 LED indicethe date or iuxilion

DIGITAL LED READOUT

THERMOMETER - $\mathbf{\$ 2 9 . 9 5}$

Features: Litronix dual 172" displays Uses Silicoaix LD131 single chip CMOS A/D converter, Kit includes alt neces sary parts kexcepl caselided 0-1490 F

Jumbo LED Car Clock Kit
FEATURES:
A. Bowmar Jumbo 5 inen LED array - MOSTEK - 50250 - Super clock chip C. On board precision crystal time base D. 12 or 24 hour Real Time tormat. E. Perfect for cars, boats, vans, otc.
F. PC board and all parts (less case F. PC board and all parts (less case) inc Alarm option - $\$ 1.50$
AC XFMR - $\$ 1.50$

MICROPROCESSOR

NO COD's. TEXAS RESIDENTS ADD 5\% SALES TAX ADD 5\% OF ORDER FOR POSTAGE HANDLING. OR DERS UNDER $\$ 10$. ADD 75 c HAND LING.FOREIGN ORDERS - U. S LING.FOREIGN
FUNDS ONLY!

PORTABLE FREQUENCY COUNTER continued from page 39
checkout. Make sure that the batteries are fully charged, then connect a $0-250$ mA meter across S 2 and perform the test as described.

There are two ways you can calibrate your counter. Both are pretty easy, but they do require quality equipment that is in calibration. Try to beg or borrow the best equipment to be mentioned you can if you don't have it already. The accuracy of your counter will depend on it!
The first method is probably the best. You'll need a counter that has an accuracy to at least $\pm 0.001 \%$. Let it warm up
for a few minutes (the calibration counter) and attach a X10 scope probe to its input. Ground the probe ground to the case of your counter, and touch the probe tip to the large pad on the board marked cal. Press S2 and hold it for about a minute. Note that the batteries should be fully charged! Then adjust the trimmer (C8) for a reading of $3,579,545 \mathrm{~Hz}$. There will be some jitter in the last digit, but try to get it close to a " 5 " as you can. You must be within $\pm 179 \mathrm{~Hz}$ to meet the accuracy spec. That's it!

The other method is to connect a known signal to the input of the counter and adjust the trimmer until you get a proper reading. Take a signal generator/

counter combination and attach it to the input jack J 1 . Then set the generator to $10,000,000 \mathrm{~Hz}$ or exactly 10 MHz . Next, set S1 to the MHZ position, and press S2. The display will show a jumble of numbers and then two seconds later show a reading close to 10 MHz . If not, adjust the output level on the signal generator until it does. Adjust trimmer C8 for a reading of $10-00$. Flip S 1 to KHZ and you should get $00-00$ with the overrange lamp lit. If not, adjust C8 until you do.

Now put it to work

Using this counter is a snap! Simply unsnap it from your belt (get a surplus calculator case) or take it out of your toolbox and connect it to the signal you want to check. Press S2 and hold it for at least six seconds for two readings. Meanwhile, set Sl to MHZ to get a reading, flipping it to KHZ or HZ for a reading if necessary. Presto! In seconds you have a reading of four digits!

If your frequency is 1 MHz or greater. you can get up to six digits of resolution by combining two ranges. Here's how to do it: Say you are measuring a frequency of 10.125 MHz . On the mhz position of S2 you will get 10-13, with the dash mark indicating the decimal point printed on the case. On the kHz position you will get a reading of $25-00$ plus overrange (OR). Here's how to combine the readings:

$$
\begin{aligned}
& 10-13 \\
&+ 25-00 \\
& \hline 10-125-00
\end{aligned}
$$

That's all there is to it. But remember to always drop the least-significant digit from the MHz range (that's the " 3 ") when combining the two ranges. As you can see, we actually got seven digits of resolution in this digit. But actually, there will be some jitter in this digit during the measurement, making its usefulness rather limited. You can perform the same stunt of combining readings on the kHz and Hz ranges, too. But in this case three numbers will overlap.

A few last words concerning the display of this counter. Decimal points were left out of the display to save power, and as a result, were printed on the case. Also, a digit was blanked in the readout to emphasize a decimal on the MHz and KHz ranges. On the Hz range, the decimal is at the far right end of the display, so you ignore the gap. With a little practice you will get used to this arrangement.

MARCH 1978

Our New and Expanded Comprehensive 1978 Catalogue (144 pages) is finally available.

Please write for your complimentary copy.

\author{

Active Electronic Sales Corp. OVER-THE-COUNTER SALES, 12 Mercer Rd., Natich, Mass. 01760 Behind Zayres on Rte. 9 Telephone Orders \& Enquiries (617) 879-0077
 \begin{tabular}{lll}
\hline IN CANADA \& 5651 Ferrierst. \& 44 Fasken Dr-Unit 25

$\mathbf{2}$ Locations \& | Montreal, Quebec |
| :--- |
| Tel. (514) 735-6425 | \& | Rexdale, Ontario |
| :--- |
| Tol. (416) 675-3311 |

\hline
\end{tabular}

}

MINIMUM ORDER $\$ 10.00$ * ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING * Canadian customers add 15% for exchange and handling. All federal and provincial taxes extra. Foreign customers please remit payment on an international bank draft or international postal money order in American dollars

CIRCLE 86 ON FREE INFORMATION CARD

VARIABLE POWER SUPPLY KIT \$1195
 - Continuously Variable from 2 V to over 15 V

- Short-Circuit Proof
- Typical Regulation of 0.1%
- Electronic Current Limiting at 300 mA
- Very Low Output Ripple
- Fiberglass PC Board Mounts All Components
- Assemble in about One Hour
- Makes a Great Bench or Lab Power Supply
- Includes All Components except Case and Meters ADD \$1.25 fOR POSTAGE/HANDLING

OTHER ADVA KITS:

MORE SPECIALS

RCAI950 N 15 V @ 50 mA VOLTAGE REGULATOR IC Very easy to use. Makes a neat Highty Requlated 15 V Supply for OP AMP's, etc. With Data Sireet and Schematics 8 -pin mDIP and 2 bypass capacitors RC4136 Quad 74 ${ }^{\circ}$ Low-Noise Op Amp mDIP LM 1304 FM Multiplex Stereo Demodutator DIP LM2111 FM IF Subsystem (IF AnnP, Det, Limiter) DIP 1N6263 Hot Carrier Diorte 0,4V@1mA 0.1ns DO. 35 51.95
0.99 9.1, 10, 12, 15, 16.18, 20, 22, 24. 27, or $33 \mathrm{~V}(: 10 \%) 1$ Wat $3 / 5100$ - MONEY-BACK GUARANTEE - ALL TESTED AND GUARANTEED

ELECTRONICS
BOX 4181 ER, WOODSIDE, CA 94062 Tel. (415) 851-0455

PET owner need information? Send SASE for details. TIS, Box 921, Los Alamos, NM 87544

PADNTED CARCUST
Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards
Send stamp \& address label for flyer TRUMBULL
833 Balra Dr., El Cerrito, CA 94530
ELECTRONIC components, communication and test equipment. Stamp for catalog. E. FRENCH, Box 249, Aurora, IL 60507

LEARN MICROCOMPUTER PROGRAMMING
At home. At your own pace. Complete course consist ing of 10 lessons, problems, solutions, practical examples in 8080,8085 assembly language. $\$ 49.95$ Write or call for FREE BROCHURE.
LOGICAL SERVICES, INC., 711 Stierlin Road
Mountaln View, CA 94043
(415) 965-8365

Why is this the
 LARGEST SELLING low cost COUNTER KIT?

This counter is such a great seller because people like you have found that, feature for feature, the CT-50 gives you more for your money. Advanced LSI and CMOS circuitry has; lowered power consumption, increased performance, and reduced cost. Complate push button operation makes using the CT-50 a snap, and automatic decimal point positioning gives you quick, reliable readings. Battery operation is also possible becuase the CT-50 runs equally as well on 12 V 0 C as it does on 110 VAC . For ultra-accuracy we offer the CB- 1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for .001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional quality at the unheard of price of $\$ 79.95$? Order yours today!

SPECIFICATIONS
Sensitivity: less than 10 mv
Frequency range: 5 Hz to 60 MHz , typically 65 MHz Gatetime 1 second, $1 / 10$ second, with autamatic decimal point positioning on both direct and presacie
Display: 8 digit red LED $4^{\prime \prime}$ height
Accuracy: 2 ppm, internal TCXO standard
Input: BNC, 1 me
prescale odtion
power prale obtion
Power: $110 \vee$ ac 5 Watts or $12 V$ dc@ 300.400 ma
Size: Approx. $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ high Size: Approx. $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum

CT-600, 600 MHz prescaier option for $\mathrm{Cr}-50$, add .
$\$ 29.95$

MINI-KITS

SIX DIGIT

12/24 HOUR CLOCK KIT

Here's a clock you can be proud of. The best looking, most complete kit on the buttons, jumbo.$^{\prime \prime}$ readouts, and extruded aluminum case available in 5 colors. All parts included. Colors: gotd silver bronze black, blue (specify) Clock Kit, DC-5.
$\$ 22.95$ Alarm Clock, 12 Hr ., DC. 8
24.95 Mobite Clock, DC-7 25.95 Clock with HAM ID timer DC. $10 \quad 25.95$ Assembled and tested clocks available, add $\$ 10.00$ to Kit price.

600 MHz
PRESCALER
Extend the range counter to 600 MHz . Works with all counters. Less than - 10 or -100 . Wired, tested, PS-1 B $\$ 59.95$
Kit, PS.1 B . . . $\$ 45$

CALENDAR ALARM CLOCK Has every feature one could ever ask for.
Kit includes everything except cose.
buila FEATURES:

Comp
DC-9 $\$ 34.95$

TV TYPEWRITER KIT

CAR
 CLOCK
 KIT

$12 / 24$ Hour $12 \cdot$-Volt AC or $D C$
High Accuracy (1 minute/month)
6 6

- 6 Jumbo 4 "LED readouts
- Display blanks with lgnitio
- Case mounting bracket Included
- Super instructions - Super instructions
Complete Kit. OC-I

Auto dimmer for DC. 11
........ $\$ 2.50$
741 OP AMP SPECIAL Prime, Mini-dip 10/\$2.00

ICs		LINEAR	
5314 Clock	\$2.95	555	
7001 Clock	6.95	556	75
5369 Cnos	1.95	566	1.49
7447	. 79	567	1.49
7473	. 35	1458	50
7475	. 50	LED O	IVER
7490 A	. 55	75491	50
74143	3.50	75492	. 50

VIDEO MODULATOR KIT Converts ony TV to video Monitor, Super stoble tunable over Ch. 4.6.
Runs on $5-15 \mathrm{~V}$. accepts std. video
signal. Best unil on
Complete Kit, Vo-1

- CAR 8TOLEN CAR CAN BE LOCATED CAR STOLEN CAR CAN BE LOCATED PROTECT AUTOMOBILE, BOAT. TRAILER, AIRPLANE, HOME
OFFICE LEARN HOW ITIS FOOL PROOF OFIGE. LEARN how this FOOL PROOF radlo alarm can CORRECT
a BIG FAUT in most existing sitent alarms to-day. SEND FOR FREE intormation on what this BACK UP AL ARM SYS TEM can and will do. or send $\$ 15.00$ Check or Money Order. 6% tax Calif. for a
CONFIDENTIAL BACK UP ALARM REPORT. PLANS INCLUDED CONFIDENTIAL BACK UP ALARM REPORT. PLANS INGLUDED on needs and protection. PRINT name and address and send to
FOWLER ALARMS. P.O. Box 64466 RE-3. Los Angeles. Call! FOWL
90064

AMAZING ELECTRONIC PROJECTS and PRODUCTS:
Lasers Super Powered, Burning. Cutting, Rifle, Pistol, Pocket. See in Dark-Shotgun Directional Mike-Unscramblers - Giant Tesla-Stunwand-TVisrupter-Energy Producing, Surveillance, De tection. Electrifying, Uitrasonic, CB, Auto and Mech. Devices, Hundreds More-Ail New Plus tion Unlimited, Box 626, Lord Jeffery Court, Am. herst, N.H. 03031.

BETAMAX 2-Hour Video Cassette Recorder. \$200 under list. Cassettes and prerecorded mov ies at discount prices. A\&D ELECTRONICS, 5331 Thrasher Drive, Cincinnati, OH 45239
COMPUTER, peripheral, technical reports; project supplies; kits. Send \$1 for THE CPU HOBBYIST, Box 738-RE, College Park, MD 20740
IC's-100 assorted 7400 series-all marked $\$ 12.50 \mathrm{ppd}-$ send stamp for bargain list. GULL ELECTRONICS, 12690 Rte. 30, N. Huntingdon, PA 15642

medallion by Miplamp PUSHBUTTON COMBINATION AMFM Stereo-8Track 40 channel CB

Reg. List Price $\$ 399.95$

12995
Model 63.540 While Supply Lasts
FULL POWER TOP OF THE LINE

- L.E.D Shows Dperating Radio Mode CB Channel, and 8-Track Program
- CB Monitor, Transmit/Receive Light Adjustable Squelch
- Automatic or Manual Tape Programming
- Local Distant Switch for FM
- Midland Nationwide Warranty
- 7 "wide $\times 7$ "deep $\times 2 \frac{1}{4}$ "high w/custom with custom trim plate
Accessories
AM/FM/CB Antenna/mounts
like reg. car antonnal List $\$ 39.95$, $\$ 29.95$
Nedathon 5% Co Axial Speakent
10 oz . megnets List $\$ 39.95$

LESLE EDELMAN

U.S. Rt. 309, Box 547, Montgomeryville PA 18936 'Phone Orders Call (215) 322-8599

Name
Address
City \qquad State Zip BankAmericard, Master Charge are accepted Card Number

CIRCLE 56 ON FREE INFORMATION CARD

G-DIGTT LEI CIILK EMETITR KTT

FOR THE BUILDER THAT WANTS THE BEST FEATURING 12OR24 HOURTIME

 29-30-31 DAY CALENDAR. ALARM. SNOOZE AND AUX. TIMER CIRCUITS Will alternate time (8 seconds) and date (2 seconds) or may be wired for time or date display only, with other functions on demand. Has built-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute snooze alarm, alarm set \& timer set indicators. Includes 110KIT - 7001 B WITH 6 . $\mathbf{5 "}^{\prime \prime}$ DIGITS
KIT - 7001C WITH 4-. 6° DIGITS \& 2. 3° DIGITS FOR SECONDS IT - $7001 \times$ WITH 6 - 6 DIGITS
$\mathrm{VAC} / 60 \mathrm{~Hz}$ power pack with cord and top quality components through-out.

KITS ARE COMPLETE (LESS CABINET)
PRINTED CIRCUIT BOARDS for CT-7001 Kits
Specilv for 7001
soid separately with assembiy info. PC Boards are
drilled Fiberglass. solder plated and screened
B. Cor X• 57.95

Variable regulated 1 AMP
POWER SUPPLY KIT VAhIABLE FROM 4 to 14 V
Short CIRCUIT pROOF 723 IC REGULATOA 2N3055 PASS TRANSISTOR current limiting at : amo KIT IS COMPLETE INCLUDING ORILLED ${ }^{8}$ SOLDER PLATED
FIBERGLASS PC BOARD AND FIBERGLASS PC BOARD AN
ALL PARTS Less TRANSFORMER KITMPS-01 88.95
 RAASFORMER $24 V C T$ WII provide 300 mA at 12 Vana

OPTOELECTRONICS, INC.
BOX 219 HOLLYWOOD, FLA. 33022 PHONE [305] 921-2056 / 921-4425
MOL

	BOARD WIRE KI	Each kit conians 350 wires cut to 14 dilfterent lengths T $\mathrm{trom} 0.1^{\prime \prime}$ to 50 Each wire is strippes anc the leats are bent 90° to easy insenion Wire length is classititeo by coiot casing All wire is solid tinned 22 gauge with PVC insulation The wres tome packed in a cortventent plastic box.	
Tis SOCKET Mates with two rows of $.025^{* s q}$. or dia. posts on patterns of 100" JUMPERS centers and shieided receptacles. Probe access holes in back. Choice of $6^{\prime \prime}$ or $18^{\prime \prime}$ length.			
Part No.	No. of Contacts	S Length	Price
924003.18 R	26	$18^{\prime \prime}$	\$ 5.38 ea -
924003-06R	26	6	4.78 ea
924005-18R	40	$18^{\prime \prime}$	8.27 ea
924005-06R	40	$6^{\prime \prime}$	733 ea
924006-18R	50	18	10.31 ea
924006-06R	50	$6^{\prime \prime}$	9.15 ea.
PIJUMPER Solder 10 PC boards for instant plug-in access via socket-connector HEADERS jumpers. $.025^{\prime \prime}$ sq. posts. Choice of straight or right angle.			
Part No.	No. of Posts A	Angle	Price
923863-R	26 St	straight	\$1. 28 ea
923873-R	26 ri	right angle	1.52 ea
923865-R	40 St	straight	1.94 ea
923875-R	40 rim	right angle	2.30 ea
923866-R	50 str	straight	2.36 ea.
923876-R	50 rig	right angle	2.82 ea.

INTRA-CONNECTOR

with standard $10^{\prime \prime} \times .10^{\circ}$ dual row connectors (i.e. 3m, Ainsley etc.) Permits quick testing of inaccessible lines

Fin INTRA-SWITCH

Permits instant line-by-line switching for diagnostic or $Q A$
testing. Switches actuated with pencil or probe tip Mates with testing. Switches actuated with pencil or probe tip. Mates with Switch puttons recessed to eliminate accidental switching.

Pan No.: 15 - 26	No. ol con	: 26	Price \$ 13.80
CRYSTALS These frequencies onty			
Part ${ }^{\text {a }}$	Frequency	Case/Style	Price
CYiA	1000 MHz	HC33 u	5595
Cr24.	2.000 MHz	HC33 H	\$5.95
CY2. 0	2.010 MHz	HC33/U	5.99
CY34	4.000 MHz	HC18/	5495
CY7A	5000 MHz	HC18	5495
CY12A	10.000 MHz	HC18 ${ }^{\text {d }}$	5495
Cr14A	14.31819 MHz	HC18U	\$495
Criga	19.000 MHz	HC18 ${ }^{\text {U }}$	5495
Cr22A	20.000 MHz	HC18	S: 95
CY30B	32.000 MHz	HC18 4	5495

MICROPROCESSOR COMPONENTS

PARATRONICS

Logic Analyzer Kit
Model 100A
$\$ 229.00 / \mathrm{kit}$
Analyzes any type of digital syster
Checks data rates in excess of 8
million words per second

- Trouble shoot TTL. CMOS. DTL. RTL. Schotky and MOS families
- Displays 96 logic states up to 8 digits wide

CRT. Octal or hexadecimal format

- Tests circuits under actual operating conditions

Easy lo assemble - comes with step-by-step construction
(Model 100A Manual - 54.95)

BKA pRECISION

	- 3" high LeD Disolay - Batiery or ac operation - Auto zerang - 1mve tva. O ohm resolution - overange readina - 10 meg indut impendence - DC Accuracy 190 Iypica Hanges: DC Volage 0.1000 V AC vorage 0.1000 v Fite Resbonse $50-400 \mathrm{~Hz}$ OC/AC Curren: 0.100 mA Res stance 0-10 meg ohm Size 6 4"x44"x 2^{n}
Model 2800	Accessories:
\$99.95	AC Adapler BC-28 $\quad \$ 9.00$
Comes with lest	Rechargeable Batteries BP-26 $\quad 20.00$
ceads boeraling manual and spare luse	Carrying Case LC-28 7.50

CONTINENTAL SPECIALTIES

\section*{| PB |
| :--- |
| P |
| P |
| P |
| P |}

E들 \quad QT PROTO STRIPS

NEW! BULB-ENERGY SAVER

DIGITAL STOPWATCH

NEW, adjustable, three output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television electronic assembly. Documentation included. Perfect for microprocessor and all electronic applications. $\$ 17.95$ plus $\$ 3.50 \mathrm{~S} \& \mathrm{H}$. Master Charge, BankAmericard. Free brochure. MADISON ELECTRONICS, 369, Madison. AL 35758. Satisfaction guaranteed

INTO TV ANTENNA SYSTEMS?
 YOU'LL BE INTO TASCO!

Below wholesale prices on a full line of antenna installation surplus shipped from stock. Unbelievable prices on connectors, wall plates. splitters, transformers, amplifiers, etc. Write for free catalogue. Order now \& compare. TASCO. PO Box 30143 Houston Tex 77009

STATE Of The Art test instruments, kits, and plans. Free brochure. Dealer inquiries invited. PENTEC, P.O. Box 148, Whitehall, PA 18052
NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICs, P.O. Box 82, Skokie, IL 60076

DON'T MISS ANY

Get every single issue of Radio-Electronics delivered right to your door, and before it appears on the newsstand. Use this coupon and subscribe now.
Mail to: Radio-Electronics
sUBSCRIPTION OEPT.,P.O. BOX 2520,
BOULDER, COLO. 80322

Send for Free Hobbi House Catalog 969 BALL AVE., UNION. N.J. 07083

lowest prices

MA1003 MOBILE CLOCK MODULE (National) ${ }^{5} 18^{95}$ complete

Attaches directly to $9-12 \mathrm{~V}$ Battery. Automatic Nighttime Dimming. Fluorescent Display gives Color Choice (Red. Blue. Green or Yellow) when used w/corresponding Color Filter. Includes - Module. Switches. \& Filter ALUMINUM CASE WITH FILTER. (switches included with clock kit). In Silver. Bronze. Black and Gold. Filter colors - red. blue, green. or yellow. \$5.75

Complete Clock Kit $\$ 9.95$
 4 DIGIT 1224 HOUR

Includes: PC Board, 5316 Clock Chip, all components and Power Supply.
Displays hours and minutes
Switch to minutes and seconds ... AM-PM Indicator Elapsed Timer Fluorescent Display Options: If aiarm function desired add $\$ 2.50$ (includes speaker and all components) Plexiglas Case Kit (red or blue)
$\$ 2.00$
Big Bright - 5" LED Alarm Clock
6 Digit AC or DC or Elapsed Timer Kit
\$19.95 Complete

PC Board Drilled and silk screened (includes Xtal Time Base Circuitry) $\quad 5375$ Nat Clock Chip and Fairchild Displays . includes EVERY part required for clock and all options except Cabinet and Crystal Time Base components if desired

- Brightness Control - 24 Alarm with snooze - Freeze feat on every mode - 12 Hr 60 Hz oper. \bullet Field Tested over 1 yr • 0.60 Min Elapsed Timer
Complete Instructions - Schematics. pictorials. layouts
Options - XTAL Time Base Components. $\$ 2.95$ when purchased with clock. Wood Clock Cabinet, $\$ 4$ with clock purchase.

Regulated Power Supply Kit, $\$ 14.95$ complete
2 Amp@=15 and - 15 volts Current Limiting \& Thermal Shutdown Protection.
Includes: Transformer ... Bridge Rectifier ... Filter Caps ... 4-way Binding Posts . . Heat Sink \& Line Cord... Voltage Regulators .. Pass Transistor ... Resistors ... Diodes ... etc ... Complete Instructions and Circuit Diagrams.

Bridges				
VOLT	2 AMP	4 AMP	6 AMP	$\mathbf{2 5}$ AMP
$\mathbf{5 0}$	$\$.60$	$\$.70$	$\$.80$	$\$ 1.30$
$\mathbf{1 0 0}$.70	.80	.90	1.40
$\mathbf{2 0 0}$	80	.90	1.00	1.60
$\mathbf{4 0 0}$	1.00	1.10	1.20	
$\mathbf{6 0 0}$	1.25	1.35	1.40	

Your Home for Quality Kits, Projects and Components Toll-Free Wats Line - 800-631-7485• Open Saturdays In New Jersey Call (201) 964-5206

High Power Transistors $\quad 2 / \$ 1.00$

2N 3055 NPN (ITT TO 3 Case)
DTS 410 NPN (GE TO 3 Case) equiv. to ECG 162

Voltage Regulators.
Positive - To 220 Pkg
7805. 7806.7812. 7815.7824

Negative - To 220 Pkg $\$ 1.00$

To - 3 Pkg. - LM309K $\$ 1.25$

Dry Reed Switch

Capsules 25/\$1.98
Glass Sealed 5 amp 115 VAC
1C Sockets $\$ 1.00$
8. 14 16. 18 Pin $5 \$ 1.00$

24 \& 28 Pin $\$ 1.00$
40 Pin 251.00

Clock Chips
MM5314 or MM5316 $\$ 3.50$
M M5387 (H. Cur 5316) or
MM 5375
$\$ 3.95$
Capacitors
500 MFD at 50V 4/\$1.00
500 MFD at 15 V
6/51.00
Sound Actuated Switch $\quad \$.85$
6 Ft. Line Cords $\quad 6$ for $\$ 1.00$

6 DIGIT LED
STOP-WATCH KIT
S29.95 Complete
Split Time and Taylor Time
Features: Reads mins secs.
and $1 / 100$ sen sec., 6 bright
easily readable digits. Needs
only one $9 V \times$ ISTOR battery.
Kit includes: Hand-held case
for above, PC board, and all
components except battery.

250 K Slide Volume Controls . . 4/\$1.00 By Mallory

2 Amp Circuit Breaker \qquad 2/\$1.00
Front Panel Mount through $1 / 2$ dia hole
120 VAC. 32 VDC. Trips at 2.7 amps.
Grain of Wheat type chic. min. Display Lamp - red or white

10/\$1.00
60 Hz . Crystal Time Base Kit . . . \$4.95
Use with Digita! Clocks for 12 VDC or Portable Operation.
Kit includes: PC Board. 5369 Divider Chip. 3.5795 MHZ XTAL and all other parts plus complete instructions.

70 Volt Line Transformer \$2.90
Power Rating - 10 watts. Model TR-1
Primary Volts: 70.7 - Primary Taps: 0.63
$1.25,2.5,5$, and 10 W . Secondary mpedance: 4 \& 8 ohms. Primary and Secondary Terminations: $8^{\prime \prime}$ color coded leads $1^{5 / 6 " H}, 1 / 16 \mathrm{D}$. 2 " W Base $23 /{ }^{3 /}{ }^{\prime \prime}$ W

6' Pioneer Pincushion Speakers \$3.95 pair
3.2 ohms, $71 / 2$ watts

Heavy Duty Alligator Clip Test Lead Set . S2. 49 Set of 10 color coded leads with insulated alligator clip on each end.

Jumbo Red LED's
. 10/\$1.00, 100/\$9.00

25 PK. LED's Asstd Sizes \&
Colors
\$2.50

Multi-Range Digital
Voltmeter Kit
$\$ 29.95$
0 to - 2 Volts DC - 0 to - 2 Volts DC

- Latest technology DVM chip set
- High Noise Rejection
- Non Critical Comp.
- Accuracy to within 001

Contains - P.C. Boards: 4-large 50 Fairchild Readouts: Display Drivers: OpAmps: Inverter all electronic comp Switches. Pots Complete instructions and specs
Also includes Set/Precision Resistors for increasing Voltage to 200 Volts
Requirements: Power Supply w +5 V +15 V and -15 V

Multi-Meter Kit,
$\$ 49.95$
complete with Power Supply

AC/DC Wall Plug
Adaptor-Charger
$\$ 1.00$
120 volt input 6VDC 130 MA output.

Transformer, 6.3 voits at $1.2 \mathrm{amps} . \$ 1.49$
6 Digit LED Alarm Clock Kit and Elasped Timer Indicator . . . \$13.95 Red Display
Complete kit includes: National 5375AB Clock Chip. Transformer: PC Boards. Drilled and Silk Screened: SLA-7 Red 33 High Brightness Displays: All components: Instructions and pictorals.
Features: Hrs. Min.. and Sec ... 12 Hr format with 24 hr. Alarm ...Snooz Feature ... AM PM Indication ... 60 min . elapsed Timer ... Freeze Capability
Power Fail Indicator
Options: Wood grain case $\$ 4.00$ when purchased with kit

Potentiometer Assortment . 12/\$1.00 Includes 1 K to 100 K . Tab mounts, printed circuit. duals. push-pulls nylon and metal shafts (long and short)

IN 4148 Switching Diodes . . . 50/\$1.00 Factory prime. laped and reeled
5 Volt, 6 Amp Power Supply Kit .S12.95 Fixed 6 Amp. 5 volt 1\% Regulation Adjustable: $5-12$ volts Unregulated Short Circuit Protection, Current Limiting.
Complete Kit includes: Transformer. Zegulator. Resistors. 4 Way Bınding Posts. Heat Sink Comp. Grade Filter Cap. Output Power Transistors. Capacitors. Bridge Rectifier. Line Cord. complete instructions and Diagrams

7 SEG LED Displays \$. 59 ea., 10/\$5.00 $33^{\prime \prime}$ Type 707 MAN-1 14 Pin Dip, Common Annode or Cathode.

Terms and Conditions

Orders Shipped Within 24 Hours
S5.00 Minimum Order Telephone C.O.D.s accepted.
S15.00 Minimum Bank Americard
MasterCharge order
Add \$1.00 Postage for orders under \$10.00
Outside Continental U.S. add postage U.S. Funds.
N.J. Residents add 5% Sales Tax Money Back Guarantee

Why Wait?

The Tarbell Cassette Interface

- Plugs directly into your IMSAI or ALTAIR*
- Fastest transfer rate: 187 (standard) to 540 bytes/second
- Extremely Reliable - Phase encoded (selfclocking)
- 4 Extra Status Lines, 4 Extra Control Lines
- 37-page manual included
- Device Code Selectable by DIP.switch
- Capable of Generating Kansas City tapes also
- No modification required on audio cassette recorder
- Complete kit \$120, Assembled \$175, Manual \$4

TARBELL ELECTRONICS

20620 S. Leapwood Ave., Suite P, Carson, Ca. 90746 (213) 538.4251

California residents please add 6% sales tax ALTAIR is a trademark/tradename of MITS, INC. CIRCLE 22 ON FREE INFORMATION CARD

PO BOX 41778

Sacramento, Ca.

95841
BABYLOM =

Money back gwararitee - $\$ 5 \mathrm{minimum}$ order. we pay post on orders lor $\$ 10$ or more. All payment must be in U.S. funds Foreign orders must include post BAC \& MC ore 4811 MYRTLE AVE

BLDCTRONTC STSTENS p．o．box 212 Burlingame CA 94010 （403）374－5984

RS－232／TTL INTERFACE

－Converts serial to parallel and parallel to serial
－Low cost on board band rate generator
－Band rates： 110,150 ，
$300,600,1200$ ，and 2400
－Low power drain +5 volts and
－ 12 volts required
－T＂Tl compatible
－All characlers contain a starl bit， 5 to 8 data bits， 1 or 2 stop bits，and either odd or even parity．
－All connections go to a 14 pin gold plated edge connector
－Board only $\$ 12.00$ ；with parts $\$ 35.00$

8K
 STATIC RAM

Part no． 300
－8K Altair bus memory
－Uses 2102 static memory chips
－Memory protect
－Gold contacts
－Wait states
－On board regulator
－S． 100 bus compatible
－Vector inpul option
－TRI state buffered
－Board only S22．50；with parts
$\$ 160.00$

Part no． 232
－Converts TTL lo RS－232，and converts RS－232 to TTL
－Two separate circuits
－Requires -12 and +12 volts
－All connections go to a 10 pin gold plated edge connector
－Board only $\$ 4.50$ ；with parts $\$ 7.00$

TAPE Parino． 111

 INTERFACE－Play and record Kansas Cily Standard tapes
－Converts a low cost tape recorder to a digital recorder
－Works up to 1200 baud
－Digital in and out are TTL－serial
－Output of board connects to mic．in of recorder
－Earphone of recorder connects to input on board
－Requires +5 volts，low power drain
－Board \＄7．60；with parts $\$ 27.50$
－No coils

POWER SUPPLY

Part no． 6085
－Board supplies a regulated +5
volts at 3 amps．，$+12,-12$ ，and -5
volis at 1 amp．
－Board has filters，rectifiers，and regulators
－Power required is 8 volts AC al
3 amps．，and 24 volts AC C．T．at 1.5 amps．
－Board only S12．50

TIDMA

Part no． 112
－Tape Interiace Dired Memory Access
－Record and play programs with out bootstrap loader（no prom） has FSK encoder／decoder for direct connections to low cost recorder at 625 baud rate，and direct connections for inputs and outputs to a digital recorder at any baud rate．
－S． 100 bus compatible
－Comes assembled and tested for $\$ 160.00$

APPLE I MOTHER BOARD

Part no． 102
－ 10 slots－ 44 pin（．156）con－
nectors spaced $3 / 4$＂apart
－Connects to edge connector of computer
－Pin 20 and 22 connects to X \＆
L for power and ground
－Board has provisions for by
pass capacitors
－Board cost $\$ 15.00$

Parl

no． 107
RF
MODULATOR
－Converts video to AM modu－ lated RF，Channels 2 or 3
－Power required is 12 volts AC
C．T．，or +5 volts IDC
－Board \＄4．50；with parts \＄13．50

TELEVISION TYPEWRITER

Part no． 106

－Stand alone TVT
－ 32 char／line， 16 lines，modifi cations for 64 char／line inchuded
－Parallel ASCII（TTL）input
－Video output
－IK on board memory
－Output for computer con－ trolled curser
－Aulo scroll
－Non distructive curser
－Curser inputs：up，down，leff， right，home，EOL，EOS
－Scroll up，down
－Requires +5 volts at 1.5 amps ， and 12 volts at 30 mA
－Board only $\$ 39.00$ ；with parts $\$ 145.00$

MODEM

Mention part number and description．For parts kits add＂A＂to part number．Shipping paid for orders accompanied by check，money order，or Master Charge，BankAmericard，or VISA number，expiration date and signature．Shipping charges added to C．O．D．orders．Caliiornia residents add 6.5% for tax． Parts kits include sockets for all ICs，components，and circuit board．Documentation is included with all products．Dealer inquiries invited． 24 Hour Order Line：（408）374－5984．

E21

CATCH-A•PULSE II LOGIC PROBE 10 Nsec SPEED AT 3.5 to 15 V

 EEves ${ }^{\text {ONLY }} \$ 39.95$- Compatible with RTL, OTL, חL, CMOS. MOS, and Microproces sors using a 3.5 to 15 V power supply. Thresholds automatically programmed Automatic resetting memory. No adjustment required Visual indication of logic levels, using LEDS to show high, low. bad leve or open circuit logic and puises. Highly sophisticated shirt-pocket portable [protective tip cap and removable coil cord) Eliminates need for heavy test equipment. A definite savings in time and money for engineer and technician
- 10 Nsec pulse response
- Open circuit detection
- Multi-family
- Replaceable tip 8 cord
- High input impedance

Speclal PAK-II \$45.95 • Pulse stretching
CATCH-A-PULSE II
Includes a standard colled cord
COILED CORD with E.Z micro hooks
ADAPTER for using Caten-A.Pulse on logic families whose power supply is 15 V to 25 V

SHIPPING- add $\$ 1.00$ per Pak.
A P ELECTRONICS
Box 19299, San Diego, CA 92119, (714) 447-1770

CIRCLE 1 ON FREE INFORMATION CARD

Mutual radio programs via Westar satellite

The Mutual Broadcasting System and Western Union have recently agreed to allow Mutual's network radio programs be broadcast over Western Union's Westar satellite system. The agreement, which is awaiting FCC approval, will enable Mutual to transmit its radio programs via satellite to more than 500 100-foot receiving antennas, connected directly or indirectly to the broadcast company's 780 affiliate stations.

The advantage of satellite transmission, as opposed to land-line transmission, is that "radio signals will have a 15 kHz quality equalling that of FM stereo," states Gary J. Worth, Mutual's executive vice president in charge of the satellite program. Transmission quality would be substantially improved, since present land transmission typically involves a $5-\mathrm{kHz}$ signal, with some branches receiving only 3.5 kHz signals. The agreement will let Mutual use up to six $15-\mathrm{kHz}$ program audio channels.

Both Mutual and Western Union asked the FCC to allow programs to start being transmitted from Washington, DC, to its nationwide affiliates. If the FCC gives its consent, it is expected that this service could start around mid-1978

Future stereo recordings to use digital techniques

Digital techniques will very soon replace analog techniques in stereo recordings. Even now, several Japanese manufacturers are marketing laser-based systems that play back discs whose audio signal has
been pulse-code modulated (PCM)
It is expected that mass-produced PCMbased recordings will use standard $30-\mathrm{cm}$ discs because they can be produced as inexpensively as in analog recordings, However, the key lies in system standardization, and until unanimity is reached on specifications, PCM discs will be impractical and tape will be the medium used.

Alex DeKoster, senior acoustic engineer at Acoustic Research, Inc., Norwood, MA, feels that although mass-market PCM systems will start off being expensive, "demand will force the price down." However, he predicts that it will take about three or four years for the system first to catch on, then another five or six years for the price to come down.
In digital recording systems, frequency response and dynamic range are independent of the characteristics of disc or tape, and there is no channel crosstalk. Signals are retimed during playback, eliminating wow and flutter. In all PCM systems announced thus far, frequency response is flat within a fraction of a dB to 20 kHz , and the dynamic range is at least 85 dB , or better than that of any listening room and 20 dB better than that of most analog systems.

The chief virtue of PCM techniques is that all the necessary components are available. For instance, video tape recorders have reached a stage of development where they can be used as a basic building block; semiconductor lasers appear ready to be mass produced; and phase-lockedloop synthesizers and crystals are in good supply. There is even the possibility of a price reduction on key components. R-E

Interface all your I/Os with one low-cost board!

Talk about easy interfacing for your Altair, IMSAI or Equinox 100! Plug in The Speakeasy ${ }^{\text {TM }}$ interface board and you've got 3 cassette I/O channels with individual motion control
. a bi-directional parallel port for keyboard, paper tape reader or printer... a serial port for teletype/

RS232... and RAM/ROM software to drive it all. $\$ 120$ kit by Morrow's Micro-Stuff (\$4 handling; Cal. Res. add tax, Write for specs.

Thinker

Toys
1201 10th St. Berkeley, CA. 94710

Order it at your local computer shop.
Or phone BAC/MC orders to (415) 527-7548.
CIRCLE 66 ON FREE INFORMATION CARD

Our new test equipment catalog. Free!

With this catalog you can browse through one of the nation's largest electronics warehouses, packed floor to ceiling with the finest test instruments. Everything from probes to dual trace scopes; and everything at sensational savings made possible only by mail order selling. Volume pricing on orders over $\$ 500$ gives you even greater

COMPLETE KIT $\$ 35.95$ ASSEMBLED $\$ 45.95$

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number	
86	Active Electronics 126
62	ADVA Electronics 126
	Advance Electronics 25.69.84.99
2	Aldelco .. 86
3	AP Products .. 27
61	Arrow Fastener 22
38	Audio-Technica 85
72	Aranti...Cov. IV
1	AVR Electronics 136
63	Babylon Electronics................................ 134
	Karel Baria ... 111
84	B \& K Precision Dynascan 71
41	Castle Electronics................................... 99
	CFR Associales 120
57	Chaney Electronics 116
88	Channellock ... 82
75	Chemironics 81
	CIE-Cleveland Institute of Electronics. 28.31
	Command Productions 111
91	Communications Electronics 97
	Computalker Consultants 108
29	Continental SpecialtiesCov. III
	Cornell Electronics 116
	CRE1-Dir. of McGiran Hill Continuing Education 90.93
	Dage Scientific Instruments 132
51	Davis Electronics 102
68	Deforest Electronics 96
49	Delta Electronics 116
	Devtronix Organ Products 116
40	Diamondback Electronics...................... 120
52	Digi-Key ... 125
42	DRC Electronics.................................. 112
	Edmund Scientific 33
6	Eico .. 109
5	Electronics Book Club 13
12	Electronics \& Control Engineer's Book Club-McGraw Hill Book Division 18-21
30	Electronics Systems 135
	EMC-Electronics Measurements 106

KIT: \$34.95
ASSEMBLED : $\$ 39.95$
ECONOMY CAR CLOCK

- complete with case. brackets timest it pushbuttons

- alarm option

3½ DIGITAL CLOCK
TIME!
$\$ 59.95$
KIT-UNFINISHED CASE

- 7 hours and minutes display - time set push buttons - alammpeatuae

TV.WALL CLOCK

- 25 viewing distance
. 6 hours \& minutes
- 3" Sfconos

KIT: S19.95ASSEMBLED: \$26.95
PENOULUM

$\$ 14.95$
case witmbrackei S3.75

	MARK FOSKETS'
	SOLID STATE TIME
	P.O. BOX 2159
	DUBLIN, CALIF. 94566
	ORDERS (415) 828-1923
	bankamericard
master charge	320
CALIFORNIA	AESIDENTS ADD 6% SALES TAX

CIRCLE 81 ON FREE INFORMATION CARD

IF YOU'RENOT DESIGNING WITH A CSC PROTO-BOARD,LOOK AT ALLYOU'RE MISSING.

AVANTI Invents the Saturn" Base

The reason the "Saturn" is so revolutionary is that it is absolutely the only combination vertical and horizontal omni-directional antenna. That's right, it needs no rotor! You can pick up mobiles (which are vertical) or horizontal and vertical beams.
The "Saturn", invented after years of research by Avanti engineers, is the latest development using AVANTI's unique COINDUCTIVE principle to give you the performance of two anterinas combined into one.
The "Saturn" not only works on both polarities, but pounds out signals like án air hammer and picks them up like a magnetu Both polarities offer high gain figures.

Helght 22
Radials 9^{\prime}
Weight 25 lbs.
Omni-directional - No rotor AV-501 Switchbox included

PATENT PENDING

Thiose of you who are worried about sun spots and "skip" can relax too. This antenna really helps. When the sun spots cause a signal shift, you can often change polarity (just like our P.D.L. or Moonraker) and still pick up the desired channel with no loss of transmission.
The P.D.L. and Moonraker made dual polarity famous as the only antennas to have during the last sun spot cycle, and this time around any serious C.B.'er will want to have the "Saturn."
In fact, having a "Saturn" and a "P.D.L." or "Moonraker" will put you in the elite group of C.B.'ers who "always seem to get out better.'

Avanti makes a complete line of high performance base and mobile CB antennas from $\$ 11.95$ to $\$ 404.00$. Write for free Avanti catalog.

[^0]: As a service to reeders, Radio-Electronics publishes available plane or information relating to newaworthy products, techniques and scientific and technological developments. Because of possible variancea in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper Because of possible variances in the quality and condition of materials and workmanship used by reader

[^1]: ${ }^{\circ}$ Trademark of CBS, Inc

[^2]: 1977 IC Update Master
 Manual
 Final 1977 closeout $\$ 15.00$ while they last. 1978 Master available late Jan. 1978 $\$ 30.00$. Complete ic data selector. 1234 pg. master ref. guide. 17.000 cross references. Free update for 1977. Domestic postage $\$ 2.00$. Foreign $\$ 6.00$

