SPEEAL 32-PAGE FEAURE-PERSONAL COWPUTING

Redior eciliIIcs

THE MAGAZINE
casy to build
BAR-GRAPH DSHLAT uses discrete LED's
roundtrp for hobbyist; CISES AND CABL ET for your projects
special featul PERS[NF 1 what they how to se your own己 periphera tices and acces

3 programn Annguages and how to them 4 roundup of makes

NOW YOU CAN AFFORD THE WORLD FAMOUS Diablo Printer Terminal

IPSI PROUDLY ANNOUNCES A PRICE breakthrough on daisy wheel PRINTER TERMINALS
The IPSI Model 1622

Featuring: RS 232 compatibility at 110 , 150, 300, and 1200 baud: Print speed of 45 char/sec: Graphics capability: Over 30 print wheels from 10 to 15 char/inch: 5 ribbons in color, cloth, film or two color: Form length adjustable: Spacing adjustable from 120 pitch to .1 pitch: Line spacing adjus. table from 48 lines/in. to .4 line/in.: Identical in every respect to it's high priced sister the Diablo HyTerm II* model 1620.
Price: $\$ 2,595.00$ each in single units, quantity discounts available.
Service: Major cities in the U.S. and Canada.

You have probably waited a long time to purchase your computer printer at a reasonable price. Wait no longer! The Diablo 1620 lists for $\$ 3,240.00$ we sell it for $\$ 2,595.00$; save well over $\$ 600.00$. For immediate action phone in your order collect and we will ship your terminal the same day.

We also stock Diablo 1345A (Hytype II*) mechanisms for immediate shipment at the low price of $\$ 1,150.00$. Order one now and build your own terminal using your own CPU, or do-it-yourself by buying our 1622 kit and assemble your own terminal within 10 hours for $\$ 2,295.00$

If you've always wanted to turn your computer onto word processing, this is the only way to go. Ask for our free word processing software.

[^0]
save time and money by joining the

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB

HTere ts a professional book club designed to meet your on-the-job engineering needs by providing practical books in your field on a regular basis at below publisier prices. If you're missing out on important technical literature-if today's higlr cost of reading curbs the growth of your library-here's the solution to your problem.

The Electronics and Control Engineers' Book Club was organized for you, to provide an economical reading program that cannot fail to be of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editers and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections.
How the club operates: Every month you receive free of charge The Electronics and Control Engineers' Book Club Bulletin. This announces and describes the Club's featured book of the month as well as alternate selections available at special members' prices. If you want to examine the Club's feature of the month, you do nothing. If you prefer one of the alternate selections-or if you want no book at all-you notify the Club by returning the card enclosed with each Bulletin.
As a Club member, you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually, there will surely be at least four you would want to own anyway. By ioining the Club, you save both money and the trouble of searching for the best boaks

MAIL THIS COUPON TODAY

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB
P.0. Box 582, Princeton Road, Hightstown, vew Jersey 08520

Please enroll me as a member and send me the two books indicated. I am to receive the bonus book at the introductory price of 51.89 plus my tirst selec. tion, plus tax postage and handing. If not completely salistied. I may relurn the books within ${ }^{10}$ days and request that my membership be cancelled. If I keep the books, agree to take a minimum or three additional books during
the next two years at special Club rices (gcaranteed 15% discount, often more). I will receive the Club Bulletin 13 times. a rear. If I want to examine the featured selection, I need take na action. It will be shipped automatically. If, however, I want an alternate selection-or no bcok al all-I simply notity
the Ctub by returning the convenient card always enclosed. I will always have a minimum of ten days in which to return the card and you will credit my ac . count fully, including postage, if this is not the case. Membership in the Club is continuous but cancellable by me at any time after the four-book purchase requirement has been filled. This order subiect te acceptance by McGraw. Hill.
Orders from outsida the continental U.S. must be prepaid. Alt prices sublect to change without notice. Offer good tor now menters only.

Write Code \# of $\$ 1.89$ bonus
Write Code \# of
book selection here

NAME
ADDRESS
CITY
STATE \qquad ZIP
EXTRA SAVINGS: Remit in full witt your order, plus any local and state tax, and McGraw-Hill will pay all pestage and handling charges. E33350

Get your fastening act together with Mallory-Richco.

Clamps, clips wire saddles, spacers, cable rangers circuit board supports, guides and dczens of other accessories. Your Mallory distributor r as them. Packaged the way you want them See him soor. Or contact Vallory Distributor Products Company, a divis or of P. R. Mallory \& Co. Inc., Box 1284, Indianapolis, Indianna 46206 i317) 856-:731.

(Parts s own actuel s ze.)

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

PERSONAL COMPUTERS SPECIAL SECTION

Your Own Computer
38 Personal Computers-are they right for you?
43 Peripherals-arms and legs
47 Programing isn't simple
56 Computer Corner
59 Equipment Directory

BUILD ONE OF THESE

69 Digi-Toll Times Your Calls
Know how much your long-distance calls cost. Nifty toll-timer helps you keep track.

78 LED Bar Graph
LEDs all in a row serve as an analog meter in many applications.
82 Graphic Equalizer For Stereo Systems
Part Il: Final construction details and some additional interior photographs.

GENERAL
ELECTRONICS

4 Looking Ahead
Tomorrow's news today.
73 Cabinets For Projects
Directory of cabinets you can use to house your projects.
80 Audio Oscillators
Part Il: More information on this old standby test instrument.
90 Hobby Corner
Keeping records, tool holders, grinding PC boards and reader suggestions.

92 State of Solid State
A single IC adds true RMS voltage measurements to a multimeter.
94 Solar Controller
Microprocessor runs solar heating system.
What is An LCD?
Inside the Liquid-Crystal Display.

TELEVISION

Service Questions
R-E's Service Editor solves reader problems.
New MATV System
It's easier to install and costs less to run. The circuitry is what makes it run.

Service Clinic
Write it down-it's a dollar saver.

EQUIPMENT

EQUIPMENT	24
REPORTS	26
	2

DEPARTMENTS	156	Advertising Index	125	Market Center
	14	Advertising Sales Offices	6	New \& Timely
	117	Books	110	New Products
	14	Editorial	116	Next Month
	16	Letters	157	Reader's Service Card

B \& K 1820 Frequency Counter
Hickok 517 Dual Trace Scope
Heath $\mathbf{5 2 8 0}$ Test Instruments
Spyderco Portable Hand
Radio-Electronics, Published monthly by Gernsback Publications, Inc., 200 Park Avenue South, New York, NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing offices. ne-year subscrip 12 rate. U.S.A. and U.S. possessions, g.98, $\$ 100$ a 1978 by Gernstack Publications. Inc. All opies $\$ 1.00$. 1978 by Gernsback Publications, Inc. All ights reserved. Printed in U.S.A.

Subscription Service: Mail all subscription orders, changes, correspondence and Postmaster Notices of changes, correspondence and Postmaster Notices of Subscription Service, Box 2520, Boulder, CO 80322

A stamped self-addressed envelope must accompany all ubmitted manuscripts and/or artwork or photographs if submitted manuscripts and/or artwork or photographs if disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our manuscripts andor artwork or photographs while in our possession or otherwise.

ON THE COVER

When you want to keep track of long-distance phone charges, the first thing you need is a record of how long you've been talking. Digi-Toll does just that. It also reminds you, with a bright red digital readout right at your phone, of how long you've been talking. See construction details starting on page 69.

LED BAR GRAPH is a nifty substitute for an analog meter . . . and it's easy to read. Turn to page 78

CABINETS FOR PROJECTS helps answer that problem question of "What cabinet should I use?". Five pages of listing start on page 73.

looking ahead

Computers go retail: First mass-market push for the computer as a consumer product is under way, and as of early spring there was heavy activity on several fronts. In some cases, big retailers were testing the waters to see if the buyers and the product were ready for one another. In other cases, the results were already in and dealers were highly pleased with early sales.

Macy's chose the San Francisco area for a market test in 13 of its stores, with a promotion campaign for the $\$ 500$ VideoBrain home computer. A store spokesman said some two dozen computers were sold during the first day of the promotion, about one-third going to consumers who weren't technically oriented and "didn't even know what a home computer was" before Macy's broke its ad campaign. Other department stores understood to be handling VideoBrain include Macy's and Bloomingdale's in New York, Maas Brothers in Florida, Dayton's in Minnesota and May Co., Broadway Stores, Bullock's and Robinson's in Los Angeles.

Radio Shack heid a special heavily advertised computer promotion in its Phoenix stores, offering the TRS-80 for same-day delivery. Its other stores had been taking orders, promising six-to-eight-week delivery. Radio Shack has also established a new retail division called Tandy Computers, which has issued its first mail-order catalog, and opened its first store in Fort Worth. Apple Computers has been successfully marketing at retail through about 50 Team Electronics stores and is adding other outlets, including traditional hi-fi and camera retailers.

Meanwhile, Magnavox is introducing a new product called "Odyssey Mark II Computer Video Game System." It's actually more a game than a computer and will sell for less than $\$ 200$-but it will have both joy-stick controllers and a full alphanumeric keyboard. It uses an Intel microprocessor, and will be programmed by ROM cartridges at about $\$ 20$ each. Retail sales will begin in the fall.

New from Sony: Sony has been making plenty of news with new and revamped products, some for delivery soon, others later. The company demonstrated in Japan a CCD color camera using three MOS chips measuring 9.1×10.3 mm , each with 226 horizontal and 492 vertical elements for a total of 111, 192 picture elements. Sony said the camera uses a proprietary "special offsetting technique" which effectively doubles horizontal resolution, claiming that more than 280 lines of horizontal resolution can be attained. The camera's size and weight are claimed to be about the same as a super- 8 home movie camera. Sony officials said the color camera will sell for $\$ 835$ to $\$ 1,250$ when it's marketed in Japan in fall 1979, but that they ultimately hoped to be able to sell a CCD color home video camera for less than $\$ 500$. RCA recently demonstrated its own CCD color camera and said it would take commercial orders in 1979 (see Radio-Electronics, April, 1978).

Sony also is introducing in the United States for the first time its three-tube projection television system. It uses special 9 -inch monochrome tubes as the picture source, with two lenses and a mirror system to throw a bright picture on a screen mounted atop the one-piece fold-up cabinet. The projector will be available this fall in $50-$ and 72 -inch diagonal screen sizes in the $\$ 3,000$ range. Bright-
ness is claimed to be 60 footlamberts with the smaller screen and 30 with the 72 -inch screen.

At the same time, Sony is updating both its Betamax home videocassette recorder and its color TV line. A newmodel Betamax will have built-in LED electronic clocktimer and remote pause control. Unlike the former model, which could record and play in both fast and slow speeds, it will be a single-speed unit, designed for the L-500 tapes, which have a two-hour recording time, or the new L-750, which step this up to three through the use of thinner tape.

Sony's TV line wil feature new, brighter Trinitron tubes and a new chassis designated ' 12 '" and said to be designed for "ease of accessibility and service." When two screws are removed, the chassis slides out of the set into an accessible service position with the circuits still connected and operable. The chassis may be turned on its side without tilting the set.

Service complaints down: TV servicing complaints received by the National Better Business Bureau declined in 1977 from 1976. Television service companies in 1977 ranked ninth in number of complaints received by local Better Business Bureaus, down from eighth in 1976, complaints dropping from 9,394 to 9,113 . In 1977, some 74.8% of complaints were settled as opposed to 72.4% in 1976. Analyzing 1977 television servicing complaints, the National Better Business Bureau said 61.9% of the complaints involved unsatisfactory repair, 16.9% unsatisfactory service, 5.9% guarantee or warranty, 5.6% credit or billing, 2.8% delayed delivery, 2.7% product quality or performance, 1.3% selling practices, 1.2% advertising practices, 0.9% failure to provide refunds and 0.7% discontinued business.

Varactors \& remotes: Electronic tuning is gradually taking over American television. According to EIA figures, 31.1% of all color sets produced or imported last year contained varactor tuners-including 57.5% of consoles and 20.9% of portables and table models. At the same time, remote control finally became an important TV feature, included in 12.7% of new sets last year, as compared with 10% in 1976.

In black-and-white, the growth trend continued to be toward AC-DC portables, but their share of the market increased only slightly from 1976-to 16.5% of all monochrome sets, up from 15.6%. Incidentally, 11 - and 12 -inch sets accounted for 57.4% of black-and-white production last year. In color, 19 -inch was by far the most popular size, representing 44.2% of production.

Want to know what color sets sell for at the factory? The International Trade Commission makes quarterly studies in connection with the color quota on imports from Japan. Its latest tally represents average factory prices of color sets made in the United States by screen size during the fourth quarter of 1977: A 13-inch averages $\$ 225.56$, the 16 - and 17 -inch bracket $\$ 299.10$, 19 -inch sets $\$ 297.35$, and larger screen (20 inches and up) average $\$ 456.67$. All sizes together average out to $\$ 349.23$.

DAVE LACHENBRUCH
CONTRIBUTING EDITOR

The world's largest catalog of easy-to-build, money-saving electronic kits HEeathliti

- Personal Computer Systems now including Floppy Disk Storage
- Power Supplies - Oscilloscopes - Frequency Counters - VTVM's and VOM's
- Ham Radio Gear - Digital Programmable Color TV - Hi-Fi Components
- Electronic Clocks and Weather Instruments - Learn-at-home Electronics Courses
- Auto, Fishing, Marine and Aircraft Accessories - nearly 400 kits in all!

Every Heathkit product comes with a fully illustrated, step-by-step assembly manual that tells you everything you need to know to make kitbuilding fun and easy. Thousands of people have discovered the satisfaction - and savings - of handcrafting a fine piece of electronic equipment. You can build it better... let us show you how.

Send for your FREE Catalog today!

Heath Company, Dept. 020-420, Benton Harbor, Michigan 49022

new etimely

District of Columbia communications system links city ambulances with hospitals

A major communications network between the District of Columbia ambulances and 15 participating hospitals in the area will soon be complete, according to Albert P. Russo, director of the Department of Human Resources.

This network is a vital element in the D.C Emergency Medical Services System, which will not only provide city ambulances with a direct communication line to the hospitals, but, Mr. Russo adds, also allow for interhospital communication, thus paving the way for future linkage with emergency medical communications systems in other surrounding areas.

The system consists of a transmission console at the District Fire Department Communications Center, in addition to receiving consoles at the hospitals. The signals are transmitted via a 180-foot tower at the center, which handles all voice and telemetry communications between ambulances and hospitals. When the system is complete, all 15 participating hospitals will be able to avail themselves of voice communications, while seven hospitals will be equipped to receive medical data telemetry (i.e., electrocardiogram data)

Fire Department ambulances are equipped with 10 -channel two-way radios, plus patient-side portable radios, so that physicians can relay vital information on patient treatment.

General Motors trip computer system is option in ' 78 models

General Motors has developed a tripcomputer system called the TripMaster that can be had as an option in their 1978 Cadillac Seville models for $\$ 875$.

GENERAL MOTORS TRIP COMPUTER is available in 1978 models. Pushbutton-controlled, dash-mounted system provides 11 pieces of information, from estimated and actual fuel consumption to estimated time of arrival based on remaining fuel and driving range in miles.

The TripMaster (with which the car owner also receives a digital speedometer and digital fuel readout gauge) is pushbuttoncontrolled, providing such information as amount of fuel remaining; average speed; average and actual miles-per-gallon; total
elapsed trip time; miles car can be driven on remaining fuel; miles to destination; estimated arrival time; time of day; the engine RPM; temperature; and system voltage. The heart of the system is a M6800 microcomputer. The digital display is a gasdischarge readout for maximum daytime visibility.
The TripMaster is envisioned as only the first step in what will eventually be a completely computerized automobile. Computers will soon control such operations as the carburetor system, fuel injection, exhaust gas recirculation, air conditioning, cruise control and theft-alarm systems.

24-hour electronic "beeper" protects the elderly or ailing

Heart patients, disabled or elderly persons living in isolated conditions can now avail themselves of a 24-hour electronic "beeper" device that can be worn around the neck or carried in a pocket for help in emergencies. It has an effective range of only 300 feet, because Federal regulations prohibit greater distances.

The device is a battery-powered transmitter and weighs about an ounce. Pressing a button or squeezing the device activates a transistorized unit hooked up to a telephone in the home. This unit then dials a pre-recorded message (giving name, address and type of emergency). This message is sent either to a centralized computer, which translates the coded beep for a private operator who contacts the necessary party, or dials the call directly to a preselected list of numbers-police, fire department, physicians, hospitals, friends and neighbors.

There are several systems on the market. among them the Lifeguard (Life-Guard Systems, Inc. Kenilworth, OH), Safeguard (ADT Security Systems, Inc., of Ohio) and Microlert (Microlert Systems, Toms River. NJ). Their cost is high: The Microlert pocket transmitter costs $\$ 695$, and the pendant transmitter, $\$ 995$; rental costs run from $\$ 30$ to $\$ 50$ a month. (A Life-Guard Systems spokesman says the Lifeguard can be rented for $\$ 20$ a month, less installation costs and telephone line rental.) At present, no Medicaid or Medicare funds are available to help defray these costs, although some people have been able to list the devices as a tax deduction if they are doctor-recommended. Presently, more than 1000 people are using such systems in the United States.

New York organization for the blind tapes best sellers

In New York City, the Jewish Guild for the Blind has gone into the "best seller" business. They have developed a cassette library of current fiction and nonfiction that
is recorded almost as soon as the books themselves hit the market. Bruce Massis, Guild librarian, cites the fact that the classics are already available on records, and adds that the Guild is the only organization that does the best sellers "hot off the press." And about a year and a half ago, different sound effects were added to the recordings, greatly adding to their popularity.

It takes both sides of about 10 cassettes to record a complete book. The cassettes are marked in Braille so that the blind person is able to play them in sequence. The average recording time for a book is approximately a month, depending on how much time the volunteer reader can devote to it. Copies of a given book can be made by machine, producing nine cassettes on both sides in about nine minutes.

The cassettes are mailed free anywhere in the U.S., the cost of mailing being underwritten by the U.S. Library of Congress. To date, the Guild claims 950 steady customers; however, many more are able to hear the recordings via special network programs for the blind. Printed catalogs are available that are updated four times a year with supplementary listings sent out to regular readers. Special Braille catalogs are also available for those who prefer them. For information, contact the Jewish Guild for the Blind, 15 West 65th Street, New York, NY 10023.

Top 1977 vocational students

 compete in '78 vocational OlympicsIn February, 1978, a week-long competition was held in Dayton among last year's top vocational students. The young contestants were vying for selection to the 1978 U.S. International Skill Olympics, to be held in Pusan, Korea, in September.
The 28 contestants were all high scorers in the 1977 U.S. Skill Olympics, sponsored by the Vocational Industrial Clubs of America (VICA), the national organization for students enrolled in trade, industrial, technical and health education studies.

The individual selected to represent the electrical trades in the International Olympics is Mark Agee, Spokane, WA. The field of industrial electronics will be represented by Neal Sedell, Vancouver, WA, and Erik W. Wolfner, Miramar, FL (alternate). For radio and TV repair, the participants will be Richard A. Lomax, Camden, DE, and Terry M. Williams, Wheelersburg, KY (alternate).

Hams invited to participate in Enterprise space launch

The Kennedy Space Center Amateur Radio Society (SCARS) once again will invite amateur radio stations around the world to call the SCARS station to participate in the continued on page 12

Uncompromising performance. Incredible price.
 A professional $\mathbf{3}^{1 ⁄ 2}$ digit DMM Kit for less than $\$ 70$.

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable/bench DMM which offers such uncompromising performance at the astonishingly low price of $\$ 69.95$.
Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing. The low price of $\$ 69.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality, $31 / 2$ digit Sabtronics Model 2000 DMM kit for only $\$ 69.95$. If you don't have one in your lab, use the coupon below to order NOW.

BRIEF SPECIFICATIONS:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV} \cdot \mathrm{AC}$ volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . DC current in 6 ranges: 100 nA to 2 A - AC current in 6 ranges: 100 nA to 2 A - Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges. $A C$ frequency resporse: 40 Hz to $50 \mathrm{kHz} \cdot$ Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega$. Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ $(203 \times 165 \times 76 \mathrm{~mm}) \cdot$ Power requirement: 4 " C " cells (not included).

GUARANTEE:

Examine the 2000 DMM kit for 10 days. If not completely satisfied, return unassembled for full refund of purchase price. (Less shipping and handling)
Use your Master Charge or Visa
To order by phone call: (214) 783-0994

75243

Made in U.S.A.

NRI BRINGS "POWER-ON"
 TRAINING TO YOUR HOME... FOR QUICKER, EASIER
 LEARNING AND
 FASTER EARNING

You get trouble-shooting experience from the chassis up . . . with NRI's unique training equipment.

The "firsts" described here are typical of NRI's over 63 years of leadership in electronics home training. When you enroll as an NRI student, you get the technical knowledge and the priceless confidence of "hands-on" experience sought by employers in communications, TVaudio servicing, computers, and industrial and military electronics. NRI training is designed for your education from the educator-acclaimed Achievement Kit sent the day you enroll, to bite-size, well illustrated, easy-to-read lessons programmed with designed-for-learning training equipment.

NRI Firsts make learning at home fast and fascinating. More than a million have come to NRI for home training. Professional TV/Audio technicians who learned their profession through home training rate NRI as first choice by far, over any other school.
SEND FOR THE FREE FULL-COLOR CATALOG . . . for full details on NRI home training. There is no obligation. no salesman will call.

First and only school with designed-for-learning Quadraphonic Audio Center with four SP14 speaker systems. This solid state SQ* system is designed so that you perform meaningful experiments at every stage of assembiy . . for thorough training in audio technology.

[^1]First with an electronics Discovery Lab ${ }^{\text {r" }}$. This self-contained advanced solid-state lab gives you fast, hands-on access to fullypowered semiconductor circuitry. NRI is the only school with all these modern solid state component experiments in: bipolar and field effect transistors, Zener diodes, light-emitting diodes, SCR's and phototransistors.
"McGraw Hill CEC

First and only school with new Optical Transmission System engineered to allow you to analyze digital and analog signal transmission via light beam. Systems you build use LED and
phototransistor
technology, simulating basic principles of laser communications as used in video disc home entertainment systems.

First and only school with designed-for-learning $25^{\prime \prime}$ diagonal solid state Color TV complete with cabinet. This solid state set was designed by NRI's own engineers from the chassis up so that students can perform over 25 in-set experiments during construction, including valuable "Power-On" trouble-shooting

First and only school with a portable CMOS digital trequency counter engineered by NRI to give you experience in the newest types of digital systems coming into expanded use in consumer electronics.

First and only school with a solid state regulated power supply engineered by NRi to give you experience with modern power supply designs; to give you a premium power supply for your NRI Transceiver, or to use in troubleshooting mobile equipment

First and only training with an actual programmable digital computer to give you the only home training in machinelanguage programming ... essential to trouble shooting digital computers. Extra Memory Expansion Kit doubles memory size for practice in advanced programming techniques.

First and only school with an Antenna Applica- tions Lab engineered to give you a ihorough understanding of practical communications antenna requirements You assembie and test several different types of antennas and matching sections, measuring gain and radiation patterns

First and only school with designed-forlearning, 400-channel, digitallysynthesized VHF Transceiver to give you the only fully-up-to-date 2-meter equipment for complete training in commercial, amateur, and CB communications. The design incorporates circuitry and components representative of the latest state of the art. Circuitry is on five plug-in circuit cards to take full advantage of NRI "Power-On" training

If card is missing, write to:

NRI Schools McGraw Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016

new \& timely

 continued from page 6first launch of U.S. space shuttle Enterprise. Those hams that successfully contact the station will receive a Special Event Commemorative Certificate showing the space shuttle.

For this special event, the station plans to operate on three separate modes: single sideband, radio telegraphic and novice code, all timed to coincide with lift-off operations. Those amateur operators who wish to participate in this event should contact the Space Center Amateur Radio Society, Box 21073, Kennedy Space Center, FL 32815, or call Carl Zelich (305) 867-2 194 or (305) 452-6410.

Vanadium disulfide—adds new life to lithium battery

Bell Laboratories have developed an experimental rechargeable high-energy lithium battery cell that can operate at room temperature without any noticeable physical change or deterioration. What has added new life to the lithium battery is previously undiscovered material, vanadium disulfide, that provides the stability lacking in other battery materials, such as nickel cadmium.

The Bell studies of 'layered compounds' - materials resembling mica and graphite-led to the discovery of vanadium disulfide's special properties. In the Bell battery, vanadium disulfide makes up the basic positive electrode terminal, while lithlum forms the negative electrode. During battery operation, electrons leave the lithium electrode and pass through the layers of vanadium disulfide; simultaneously, lithium ions in the electrolyte flow into the spaces between the layers of vanadium. This results in minimal physical changes; thus, when the battery is recharged the electrons and lithium ions are expelled and the structure returns to its original condition.

The new lithium battery is lightweight and provides 2.5 volts, or almost twice the voltage of NiCad cells, used in most modern electronic devices.

Radio Shack microcomputer system rated leading contender in field

Speaking before a meeting of the Morgan Stanley first annual Personal Computer Conference, Radio Shack president Lewis Kornfeld expressed his confidence that Radio Shack's TRS-80 Microcomputer System will be one of the leading systems in the field. He underscored this by asserting that it was Radio Shack's intention to "explore and enter the market for computers in order to serve small business professionals, students and hobbyists.'

The TRS-80 system was introduced in 1977. It is completely prewired and tested and consists of a 53-key professional keyboard and microcomputer, power supply.
data-cassette recorder, video display monitor, plus a comprehensive owner's manu-al-the whole system selling for $\$ 599$. Prerecorded cassette programs are available for small business payroll and personal finance management and educational courses such as math, algebra and a programming course.

Mr. Kornfeld also announced a new expansion interface and ROM converter, a mini-floppy disc drive, a line printer, new software, as well as complete TRS-80 expanded systems.

Domestic satellites to provide largescale telecommunications services

Satellite Business Systems (comprising Aetna Life \& Casualty, Comsat General and IBM) and Hughes Aircraft have joined forces to build three domestic satellites, the first designed to provide large-scale telecommunications services to both commercial and government users in the U.S.

SATELLITE BUSINESS SYSTEMS spacecraft will transmit high-frequency signals to be received by roof-mounted earth antennas. The solid white beam represents area of U.S. covered by spacecraft's strongest signals.

The SBS satellite system will permit installing unmanned, automatic earth antennas in urban areas without interfering with other terrestrial signal systems or spacecraft. The $12-\mathrm{gHz}$ signal output will be 20 watts, rather than the normal 5 or 6 watts, and the stronger signals will enable roof-mounting the antennas, or installing them in office parking lots. All 48 states will be served by the system, with the strongest signals beamed to 5 -meter dish antennas in densely populated east-central and west
coast areas; the rest of the country will be served by 7-meter parabolic earth antennas.

It is expected that the satellites will be launched via space shuttle to an eventual orbit at an estimated altitude of 36,000 kilometers (22,300 miles). The projected date of launch is 1981.

New executive director for IESA

As of February 1, 1978, Leon F. Howland, CET, will be the new executive director of the Indiana Electronic Service Association (IESA). Mr. Howland will take the place of retiring Tom Bertrand.

Mr. Howland has served as IESA director, as well as a legislative lobbyist whenever the state of Indiana enacts legislation concerning the electronic service business and technicians. He has also served as chairman of the TV-Radio licensing board; as a past president of IESA (twice); and as an officer in NEA. He is presently also director of ITTA, an Indianapolis association of more than 100 trade firms.

Cable TV subscribers to get

 computer-controlled alarm systemsA new computer-controlled alarm system in Dayton, OH, connects the area's cable TV subscribers with a central com-puter-controlled alarm panel that is monitored for 24 hours.

In this system, the fire, smoke or burglar alarm detectors are installed at the subscribers' home entrances, and are connected both to the central alarm panel and to the TV cable. Triggering the detector flashes a set of programmed instructions to the central video screen at the monitoring station. At his end, the subscriber, if he is home, can press a pushbutton to show what specific emergency aid he needsmedical help, an emergency squad, or the assistance of a nearby relative.

Although no rates or installation charges have yet been determined, it is estimated that a complete cable TV alarm system could cost several hundred dollars.

SCTE elects 1978 slate of officers

The Society of Cable Television Engineers (SCTE) recently announced its new officers and board for the 1978-1979 term:

Robert Bilodeau, president for the second term; Harold Hull of Sarasota, FL, Eastern vice president; Gayheart C. Kleycamp, San Angelo, TX, Western vice president; Judith Scharf, Denver, CO, secretary; and Edward Horowitz, NY, treasurer.

The following regional directors were also elected: Frank J. Bias (Region 1); Glenn Chambers (Region 2); Bruce Uerling (Region 3); William Ellis (Region 4); John Weeks (Region 5); James Grabenstein (Region 6); and John Morovich (Region 7).

READY for BuSINESS

We've got it all together-the cost effectiveness and reliability of our 6800 computer system with a high capacity 1.2 megabyte floppy disk system. . . PLUS-an outstanding new DOS and file management system.

1 MEGABYTE DISK SYSTEM

DMAF1 introduces a new level of capability to small computer systems. This disk system features two standard size floppy disk drives using the new double sided disk and two heads per drive. Usable storage space of over 600 kilobytes per drive, giving a total of over 1.0 megabyte of storage on line at all times. Ideal for small business applications, or for personal "super" systems.

DMA CONTROLLER

The controller occupies one main memory slot in an SS-50 bus and uses the Motorola MC-6844 DMA controller. The combination of a DMA
type controller and double sided disks give the system speed of data transfer unobtainable with smaller drives.

OPERATING SYSTEM

To compliment this outstanding hardware we are supplying equally superior software. The disk operating system and file management system is called FLEX. It is one of the most flexible and complete DOS's available for small systems, but just as important; it is easy to use. No one can match the variety of compatible peripherals offered by Southwest Technical Products for the SS-50 bus and the 6800 computer system. Now more than ever there is no reason to settle for less.DMAF1 Disk System (assembled)\$2,095.00
DMAF1 Disk System (kit) \$2,000.00
68/2 Computer with 40K of memory (assembled) \$1,195.00

SOUTHWEST TECHNICAL PRODUCTS CORPORATION 219 W. RHAPSODY

SAN ANTONIO, TEXAS 78216

editorial

Where have all the designers gone?

The integrated circuit has done a lot of good things. Actually, it has caused a lot of good things. Complex electronic devices grow smaller. Prices of electronics devices seem to manage to hold their own in the face of inflation. And electronic equipment steadily grows more reliable.

But what seems to be missing is the designer. Oh sure, there's still an engineer around who takes a bunch of IC's (black boxes) and wires them up to form a "new device". The only trouble with this is that this is not really designing . . . or is it?

We have our ideas on this subject, and would like to compare them with yours. We want to know what you think about the state of electronic design today. What exactly is electronic design? What does an electronic designer do? Is he designing when he takes IC's and connects them together to make a circuit? Is the only designer left, the man who devises those IC's we all use?

Most important of all, do you think that the integrated circuit has slowed down the development of new electronic devices or has the integrated circuit shortened development time? Remember! Making a device smaller or less expensive is not the same as coming up with an entirely new device.

The subject is interesting and important. Let's have your comments.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher

Larry Steckler; KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen Cover photo by Mel Small

Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co
540 Frontage Road-Suite 361-A
Northfield, illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.

8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Publishers Representative Co. 214-387-2424

NTS trains you on tomorrow's equipment.Today.

Microcomputers, digital systems and more... from the first name in home study.

Now NTS training programs include an even wider choice of solid-state digital equipment than ever before offered in any electronic home study course. Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath digital computer, digital test equipment, digital stereo receiver (70 watts per channel) plus much more state-of-the-art equipment to make your training exciting and relevant. Learn servicing and maintenance easily with step-by-step Project Method lessons and kits.
An all-new full color catalog shows you exactly what each of the fourteen courses cover, and every piece of equipment you receive.
Send for it today and see for yourself what's really happening in electronics training technology at NTS. It's free. Just send the coupon.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

IN DEFENSE OF AMERICAN TV'S

I would like to answer some points raised by Mr. Kubilus in the Letters column of the January 1978 issue.

I have been associated with the TV industry for 11 years as an electronics engineer, and for two of those years operated a TV service business. I am also English, and during visits across the Atlantic have taken a natural curiosity in TV sets over there.

Mr. Kubilus questions the large number of screws used to secure the backs of U.S.made TV sets. In this country, manufacturers voluntarily subscribe to Underwriters Laboratories, and meet or exceed all the safety specifications laid down by that independent organization. These specifications apply to the back of the set as well as to the rest of it. For example, the maximum slot size, distance of back material from chassis parts and back security are all specified. After all, removal should not be so simple a child could do it!
U.L. has also determined the type of wall plug to be used: polarized for a "hot" chassis and, if desired, nonpolarized for
sets with an isolation power transformer. I am sure no one would disagree with this elementary safety precaution.

Mr. Kubilus may be a competent "do-ityourself" expert, but many are not. Experience in the TV repair business has amply demonstrated to me that "a little knowledge can be a dangerous thing." A schematic diagram invites the attention of such people into an area that is potentially very dangerous. Special techniques must often be used, particularly with today's solidstate technology.

In many states, the law requires an itemized receipt for repair work be given the customer together with the return of old parts. In Utah, for example, the state requires samples of shop tags, etc., and checks they meet quite extensive legal requirements. So, if a previously repaired set does not have the repair information attached, the customer should have his copy. However, I doubt if such information is of much use to service technicians.

It is my opinion that TV sets produced in the U.S. within the last five years are very serviceable indeed. Plugs and sockets are
widely used, and, in many cases, only two screws have to be removed to take off or slide back the chassis. Plug-in modules have been used extensively by some manufacturers and are easily replaced. Tuners can usually be removed by loosening either two or four screws.

I do not share Mr. Kubilus' concern for parts standardization. Several parts suppliers in this country make it their business to analyze TV sets as they come on the market. They produce extensive crossreference manuals and cover everything from transformers to IC's. Besides, an experienced technician will know what available part he can use with safety when faced with a faulty original.
U.S. consumers are very fortunate. They have a considerable selection of goodquality TV sets available at very reasonable cost. To purchase a medium-priced 25inch color console model represents an investment of about $41 / 2 \%$ of the average wage-earner's yearly salary. In Europe the investment is closer to 12%.
DAVID J. H. APPLEBY
E/ Paso, TX
continued on page 22

Another reason to join RCA's QT Parts Program! You get four free information packages every year.

RCA's QT-150 Parts Program is better than ever!
Registered dealers receive four free information mailings per year through RCA's Direct Information Service program. Quarterly mailings include: - Complete Dealer Price Book - RCA Consumer Parts • Latest Price Supplement • RCA Drawing Number to Stock Number Cross Reference - Color TV Module Cross Reference - B\&W TV Module Cross Reference

- Dealer QT Inventory Control Form; and many other useful publications.
To join, contact your RCA Distributor and register as a QT Dealer. You will receive your package of 150 of the most-needed, fastest-moving parts to repair older TV sets. You will also receive your first quarterly information package. Every information mailing will include the latest price publication, plus additional information about RCA Parts required in your servicing business.
Don't forget, your QT Parts inventory program has automated annual drop-ship updating for your convenience. A special

QT Parts Rack is also available to save time and space.
Call your RCA Distributor or write to RCA Distributor and Special Products Division,

Deptford, N.J. 08096.

TRI-GOLOR

WIRE CUTITING AND STRIPPING DISPENSER

If you're interested in learming how to fix air conditioners, service cars or install heating systems - talk to some other school. But if you're serions about electronics, come to CIE-The Electronies Specialists.

\mathbf{M}y father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, ether. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool-and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas - and builds on them.

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day things like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take. and pass. . . the governmentadministered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take
the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics-and it can be a valuable credential anytime.

Find out more: Mail this card for your FREE CATALAG today:

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists-CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

LETTERS

continued from page 16

TEXAS COMPUTER GROUP

Your readers in the Permian Basin area of Texas might be interested to know about the Permian Basin Computer Group.

Our group has monthly meetings in the cities of Midland and Odessa. (In Midland, the meetings are held on the second Monday of the month, and in Odessa, on the second Saturday of the month.) Everyone is invited to attend the meetings, regardless of educational background, and no dues are collected.

For further information, write Permian Basin Computer Group, John Rabenaldt, Ector County School District, Box 3912,

Odessa, TX 79760, or phone (915) 3329151, Ext. 43.
JOHN RABENALDT
Odessa, TX

CAPACITORS \& BATTERIES

Hurray! I was sure glad to read your February 1978 Service Clinic on the solidstate horizontal-output stage that uses those four-legged capacitors. I have replaced several of these and didn't really know why they opened up. However, you should have told your readers never to bypass the open link between capacitors. It doesn't work! It can blow those output transistors faster than you can think!

Your Hobby Corner advice, also in the February 1978 issue, on avoiding battery troubles was right in line with my thinking. If

NEW FROM LEADER One-Button Range Digital Multimeter.

31/2 Digit LED Readout,
0.5\% Accuracy.

1 mV to 1000 V .

Now, Easy Pushbutton Operation Is Yours... New Reduced Price.

Model LDM-851 ... \$199.05 \$169.95 AC Adapter Included
See your distributor or write direct for details.

When Quality Counts . . .
151 Dupont Street. Plainview, N.Y. 11803
(516) 822-9300
In Canada Omnitronix Ltd., Quebec

one has several pieces of battery-operated equipment, one low-cost AC or DC adapter can be used. I prefer using the 12 -volt AC adapter, and in each piece of equipment install a bridge rectifier and suitable resistor to limit the battery-charging current to the recommended level. All equipment has the same input jack. Now you can use the inexpensive adapter for all your equipment and never worry about polarity. Even if someone plugs a DC adapter in, no harm will be done.
STUART SJALUND
Ontario, Canada

WIRE AND CABLE

Your article on "Coping with Wire and Cable" in the January 1978 issue was disappointing to me. I'm sure the article will be of some information and benefit to those who are uninformed. However, when an article excludes the most prominent people in the wire-stripping industry, as well as their tools, it seems that even the people who are supposed to be informed, are not.
I would like to bring the following to your attention:

1. Ideal Industries manufactures more different types of wire strippers for more different applications than anyone else.
2. On page 36 in Table I, Wire Stripping Tools \& Crimpers, you list the name "Ideal" along with the part numbers, but you show the address as Great Bend, PA. Ideal Industries is located in Sycamore, IL.
3. Under the cut on page 36, the caption indicates: "Wire splices can be made with wire-nuts." I'm sure Ideal Industries appreciates your using its registered trademark of Wire-Nut, however, this should only be used with proper trademark recognition of Ideal Industries.
I'm very happy to see that you are making an effort to be of service to the market and the industry by showing the various tools, what they should be used for and the benefits of using them. I'm sure Ideal Industries would appreciate the opportunity to help you enlighten the professional and the hobbyist.
P.V. MALL

I D I Electric (Canada) Ltd.
Ajax, Ont.

FREE ENERGY

Apparently Mr. Ecklin (Letters, February 1978 issue) believes that the laws of physics were made up by humans and, like speed limits, can be ignored. These laws have always been with us, and we are just beginning to understand them. We can't break the laws, or even bend them by intent or inadvertance.
I want to know where Mr. Ecklin is going to find the lossless spring that generates no heat as it is flexed.
Something he might try that will bring the point home would be to ride a really wellbalanced 10 -speed bike around for a while and then fit it with one of those little generators that light the lights for "free." I think he may go back to buying batteries when he finds out how much work is required to move those coils of wire past a magnet to generate 6 volts at a few hundred milliamps.
W. COCHRAN

Chalfont, PA

DUAL TRACE 15 MEGAHERTZ PORTABLE MINISCOPE

From the origi electronic instrument with a great deal of measuring capability and excellent the latest in low Doweredintegrated many briefcases and tool boxes with room to spare.
Operating characteristics have been chosen so that the MS-215 will make all of the measurements needed in servicing mfost electronic equipment. It is field-portable so its use is not restricted to the bench

SPECIFICATIONS:

Vertical

Mode:
Vorticle inpert.
$\mathrm{CH} 1, \mathrm{CH} 2 . \mathrm{CH} 1$ \& CH 2 (Chopped) \& CH 1 \& CH 2 (Att) The Following Spucifications apply to each channal

Vorticlo inpert
10 mv div to 50 V in 12 Calibrated ranges, as follow $x 1 \cdot 10 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ in four renges, each cont in
$2.20 \mathrm{mV} / \mathrm{dV}$ to $20 \mathrm{mV} / \mathrm{div}$ in four ranges. esch contin wously variabie.
$\mathbf{6}-50 \mathrm{mV} / \mathrm{d}$ to to 50 mV / div in tour renges. each comin uously vairiables
Accuracy is 3\%
Input Impedence: 1 M ohm shunted by 50 pF
Bendwidth: $\quad D C / D C$ to 15 Mhz 26 db (DC to 8 Mirz $\$ 3$ d). $A C$. seme a OC down $3 \mathrm{~Hz}^{2}$
Adproximater 23 nS © 1 drision deflection. 250 maximum ($D C$ and Peak AC).
Rite Tirne:
input Vortege
mode:

Bandwicth:
Coupling:
Input imperdence:
Deflection Fector: 10 mV ohm shunted by 50 pf Deflection Fector: $10 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} /$ div $\operatorname{In} 12$ calibrated ranges.
The ranges can be calibr ated with the CH 2 gaincon
Input Vottege:
Then Baes: selectable. In the XY mode vertice input is through CHI and horizontal input is through CH 2 OC to $200 \mathrm{KHz}(13 \mathrm{ab})$.
$A C$. $D C$ or grouid. with selectatsis. Low frequency 250 V maximum (DC and Peak AC) $0.1 \mathrm{uS} /$ div to $0.6 \mathrm{Sec} / \mathrm{div}$ in 21° calibrated ranges.

Triggering
 Interne:

Automatic:

Line:
External:
8 lope:
Coupting:
Senalivity.
Leval:
Intemal Celibrater
Displey
Greticule:
CRT:
Power
On-board Batterims. Three waned.
Operating Time: Typically 4 hourt.
Charging Time scope Operating: Will run indefinitely but not reach full
Non-opereting Sixter
Non-operating Sixieen hours
Externel Powir: Battory charger 115 vac (220 vac on request). 50
Dimentions:
Woight:

Three pounde.
Environment
Operating Temperature: 0° to $40^{\circ} \mathrm{C}$
Shock and Vibration: Designed to with stand normel ethock and vibr ation encountered in commercial ahipping and handling.
Sweop tiggered from internal tripger source (In the dral trace modes the internal trigger source is CH1). uned if there in no other irigger source aveileble to synchronize the sweep.
Trigger is derived from line frequency when using the battery charger.
Controls function as for internal triggering (1 Megotm input impedenca)
Selects sync to positive or negative-going wavetorm. AC
Leas than 1 div for internal trigoer and leas than 1 volt tor external trigger
Irigger Level control permits continuous adjustment of trigger point in all modes except Auto.
Frequency is approximately 1 KHZ 猃 5 is provided.
4.5 div, eech division is 0.25 inch. Viewing area
$1.1^{\circ} \mathrm{Hx} 1^{35^{\prime} \mathrm{W}}$
Bluieh-white phoupher, medium peristence CRT low power fitament for low battery drein Instant onl

Accpesoriee at followe:
$\times 1$, uS-0.1
$200 \mathrm{uS} /$ dir $/$ div to $100 \mathrm{uS} /$ div. x2. uS-0.2uS/div to
$\times 6$, uS-0.5uS/ohy to $500 \mathrm{uS} / \mathrm{div} . \times 1{ }_{\mathrm{r}} \mathrm{mS}-0.1 \mathrm{mS} /$ /div to $100 \mathrm{~ms} /$ div
$\times 2 . \mathrm{mS}-0.2 \mathrm{mS} / \mathrm{drv}$ to $200 \mathrm{mS} / \mathrm{div} . \mathrm{w}, \mathrm{mS}-0.5 \mathrm{mS} / \mathrm{div}$ to $500 \mathrm{mS} / \mathrm{dim}$
all in four rangea. each continuoustiv variable. (Range increments ar 1,1,10, 100. I With ve rnier in full clack wise position, calibrated time mealurementla are possible. Accurscy is 3\%

$\$ 28900$

rerms VISA MC 8AC check Money Order COD US Funos Onty LA lesidents 2006% Sales id. Min mum order $\$ 1000$ Orders less inan $\$ 7500$ include 10% smoping ano handing eacess retundea Just in case please include your phone no "Sorry, no over the counter sales" Good thru July 15. 1978

Furniathed:
Optiona:
Optionat:

MS-215 with Reshargeable Betteries

and Cherger
$\$ 395.00$

Lesther Carrying Case

The leather casp has 2 seperate comperments One to hoid the scope. the other to hold the charger, probe. shoukler strap. atc. The cese can be worn on the bih. of aver the nacs
The snaps lsed on the case art "one way", thus accidentel striting of the case against en object w.ll not ande the snsps or let it be pulled off your osh.

41-140
$\$ 30.00$

Probes

10 to 1 prove with 10 megahm input.
frobe uses spring hook tip for sur comection Compensefion network is tecated at the connector racher than at the probe. so as to koep size and weight to a minimum.
41-141

Deluxe Combination Probe

Switchable 10to1/1to1 probe with an assortment of probe tios to suit any situation.
41-3495
\$34.95

$\$ 40.00$ OFF

On Any Accescries Purchased with MS-215 MINISCOPE, Just
Send or Mention the COUPON and Radio-Electronics Magazine

equipment report

B\&K-Precision Model 1820
 Universal Frequency Counter

CIRCLE 102 ON FREE INFORMATION CARD
B\&K-PRECISION (6460 W . CORTIAND STRELT Chicago IL 60635) have brought out a new frequency counter, the model 1820 Universal. which sells for $\$ 260$. It counts frequencies from 5 Hz up to 80 MHz . Besides this, it will perform tricks that l'd never thought of, and there are full instructions for doing all of
them.
The 6-digit model 1820 has eight pushbutton controls. It's housed in a plastic cabinet with an adjustable bail that serves as a benchrest (you can set it at any angle needed) or a handle. It's AC-powered, and the total drain of only 15 watts makes it easy to use in the field, with a DC/AC converter.
The gate time is pushbutton-controlled. Set in the auto position, the pushbutton automatically selects the correct range and place the decimal point to display the maximum number of digits without overranging. Indicator LED's tell you the display is reading in kHz or MHz . Set to the 1 -SEC position, the counter reads out the frequency to the nearest Hz . For example, on a CB transmitter, this will push the " 27 " off to the left, and the frequency is read to 6 digits to the right of the decimal point.

An internal $10-\mathrm{MHz}$ clock oscillator is crys-tal-controlled, with a $\pm 0.1-\mathrm{PPM}$ stability. By replacing this oscillator with a TCXO (tem-perature-controlled crystal oscillator) the stability can be raised by a factor of 10 ! The substitution is very simple. Just unsolder the original oscillator and drop the TCXO into the
holes.
Now, for the instrument's handy tricks: pressing the PERIOD pushbution displays the period (the elapsed time for one complete cycle) of the input signal. This is very useful on low frequencies, since it provides much better resolution. To convert the reading to frequency, just take the reciprocal number, using the period vs. frequency tables so thoughtfully included in the Appendix to the instruction manual.

This procedure can be used for telephone touch-tone frequency pairs; modem frequencies; both U.S. and CCITT frequency standards; CTCSS (Continuous Tone-Controlled Squelch System) frequencies used in two-way radio: all the TV sweep frequencies; the multiplex pilot carrier, power-line frequencies; amateur radio RTTY; and slow-scan TV frequencies. There is even a full-page frequency vs. period table for a complete "equally tempered scale" for pianos and organ tuning! For example, the key of low C has a $16.35 \mathrm{I}-\mathrm{Hz}$ frequency, but you can read the period and get one more digit of accuracy-it's 61.1583 ms
continued on page 26

"The Sansui AU-717 is a superb amplifier. We like it with no ifs, ands, or buts." (Julian hirsch) It offers "as much circuitry sophistication and control flexibility as any two-piece amplifying system."

 (Len Feldman)

 (Len Feldman)}

Everyone says great things about the new Sansui AU-717, but the experts say it best.

The Sansui AU-717 DC integrated amplifier is "Sansui's finest ... It incorporates a fully direct-coupled power amplifier section whose frequency response varies less than $+0,-3 \mathrm{~dB}$ from 0 Hz (D.C.) to 200 kHz . The amplifier's power rating is 85 watts per channel (min, RMS) from 20 to $20,000 \mathrm{~Hz}$ into 8 -ohm loads, with less than 0.025 per cent total harmonic distortion If any amplifier is free of Transient Intermodulation Distortion (TIM) or any other slew-rate induced distortion, it is this one The slew rate
was the fastest we have measured on any amplifier, an impressive $60 \mathrm{~V} / \mathrm{usec}$.
"The preamplifier section of the AU-717 has very impressive specifications for frequency response. equalization accuracy, and noise levels... The AU-717 has dual power supplies, including
separate power transformers, for its

Julian D. Hisch, Contributing Editor Stereo Review two channels
[and | exceptionally comprehensive tape-recording and monitoring facilities ... Good human engineering separates this unit from some otherwise fine products
"The Sansui AU-717 is a superb amplifier. We like it with
no ifs, ands, or buts." [Reprinted in part from Julian Hirsch's test report in Stereo Review, February, 1978.]
"One clear advantage of DC design is apparent. Even at the low 20 Hz extreme, the amplifier delivers a full 92 watts - the same value obtained for midfrequency

power compared with its 85 watt rating into 8 ohms...
"The
equalization characteristic of the preamplifier was one of the most precise we have ever measured, with the deviation from the standard RIAA playback curve never exceeding more than 0.1 dB ...
"Sansui claims that this unit has reduced transient intermodulation distortion - a direct result of the DC design, and, indeed, the model AU-717 delivered sound as transparent and clean as any we have heard from an integrated amplifier.
worth serious consideration - even by those who prefer separate amplifiers and preamplifiers." [Reprinted in part from Len Feldman's test report in Radio-Electronics, January, 1978.]

Listen to the superb sound of the Sansui AU-717 at your Sansui dealer today. And be sure to ask him for a demonstration of the matching TU-717 super-funer.

AVANTI ${ }^{\circ}$
 EQUIPMENT REPORT
 continued from page 24

 HICH PERFORMANCE C.B. ANTENNAS
40 CHANNEL ENGINEERED

ASTRO PLANE
 CB Base Antenna

Co-inductive
The omni-directional CB antenna that radiates from the top - for greater range and performance. 4.46 db gain over isotropic stronger signal, clearer reception. No coils to burn or short. Vertical polarity. Patent \#3587109
Model AV-101...price $\$ 39.95$ $2.8 \times$ more power
E.R.P.

Avanti CB base antennas
from $\$ 20.50$ to $\$ 404.00$

RACER 27

CB Mobile Antenna Magnetic mount

Easy to mount on roof or trunk for car, van or truck - no holes to drill - fast removal for hide away or car washing. Strong magnet assures position. Mylar pad guards vehicle finish.
Hermi-coil (Hermetically sealed coil)

- A special molding process provides a weather-proof coil environment. Helps maintain the characteristic antenna impedance, even in damp or salt water atmosphere. Hermi-coil also helps eliminate internal surface leakage. Ribbed base - Provides a long leakage path used in high voltage insulators, spark plugs, etc.
Specifications: Electrical $1 / 4$ wave length
- Unity gain - 27 MHz
- V.S.W.R. - 1.3:1 or better
- Coil - shunt fed hermicoil

MODEL AV-727 Mobile Antenna System with $48^{\prime \prime}$ whip, 17^{\prime} coaxial cable with magnetic mount. 40 channel $\$ 32.95$
Avanti makes a complete line of high performance mobile CB antenna systems from $\$ 11.95$ to $\$ 72.50$

FREE 24 PAGE CATALOG avanti
Avanti Research \& Development, Inc. Established 1964
340 Stewart Ave., Addison, IL 60101 USA
creators of
© Cooprigh inn
© Conprigh 1971
An In Ighs fesenved

CIRCLE 79 ON FREE INFORMATION CARD

Finally, the table contains a listing for the Kansas City Standard Cassette Interface used by computer hobbyists. The frequency counter can also be used to test TV ultrasonic remote control systems. The transmitters can be set right on the button for each function, and the receivers checked with equal ease.

The aCCU pushbutton stands for accumulate and reads the total number of cycles or events (switch opening or closing, etc.) occurring at a given time. This reading is set to zero by pushing the reset button, and stopped by opening the input circuit at the end of the desired time.

When you press the pushbution marked TIME. the display starts counting instantly in hundredths of a second. The reading can be returned to zero by pressing the RESET pushbutton. This function can also be used as a electronic stopwatch. A control cable with a pushbutton switch or electronic actuator on it is plugged into the rear-panel jack. Press the time bution and then the reset button. To start the count, the control switch is opened (or the electronic actuator is driven to a logic-high level, not more than 5 volts). When the switch is closed, the count stops (to a logic-low level), and is retained on the display until the RESET button is pressed.

Next to the reset button is the gate Time pushbutton mentioned before, for higher resolution. Finally, the last pushbution on the far right is a $\times 1-\times 10$ attenuator selector for reading signals at a higher level than the input limit: up to 200 volts (DC $+A C$ peak) to 500 Hz , and 100 volts on higher frequencies. The input is a standard BNC jack and has a 1.0 megohm input impedance. Therefore, standard 10:1 oscilloscope probes can be used where circuit loads must be kept low.
The instruction manual gives complete details of all the tests that can be made by the model 1820. It even includes schematic diagrams of the electronics needed to make this kind of control possible, mostly debouncing circuitry for greater accuracy. Practically any kind of electrical transducer can be used with it to make many measurements.

R-E

Hickok Model 517 DualTrace Oscilloscope

CIRCLE 103 ON FREE INFORMATION CARD

the hickok electrical instrument company, 19514 Dupont Avenue, Cleveland, OH 44108 has just released two triggered-sweep oscilloscopes; the model 515 (a single-trace scope) and the model 517 (a dual-trace version, shown here). The specifications are identical, except for an added channel on the model 517 , which was the one tested.

This scope is an impressive instrument. The cabinet is a "laydown" style with the cathoderay tube (CRT) at the top on the left-hand side, and controls placed below and to the right. The controls for the two input channels are side by side at the bottom, making them easy to get at. All panel controls are grouped into two color-coded areas: Blue for the vertical inputs, for the level control and for all switches used with these. All the triggering controls, the level set, etc., are contained in the green area at the top of the panel on the right. The case has a locking bail-handle that can be used to set it at any desired viewing angle.

Each channel has a calibrated step attenuator with a 12 -step range from 10 mV -percentimeter to 50 volts-per-centimeter. This control serves a dual function. The center knob is a variable attenuator; turning it fully clockwise and clicked puts it in the Calibrate position. A full turn counterclockwise extends the vertical range down to 5 mV -per-centimeter. Channel amplifiers \wedge and B are identical, and can be AC- or DC-coupled; the center position grounds the input for positioning of the trace. The bandwidth is given as up to 15 MHz in either channel. Our tests proved this rating is quite conservative, since we observed signals up to 27 MHz with readable deflection.

The TIME/CM (horizontal sweep speed) switch can be varied from $0.5 \mu \mathrm{~s}$-per-division down to 0.2 seconds-per-centimeter, in 18 calibrated steps. A $\times 5$ sweep-multiplier extends the upper limit to read only 100 ns-per-centimeter. The model 517 can be triggered by internal sync, or by an external trigger pulse. An auto-normal switch triggers the sweep so that you can see the baseline for setup and adjustments. A selector switch marked " $+/$ -" lets you select either positive or negative polarity for triggering. All these controls are widely spaced pushbuttons. A continuously variable trigger level gives positive trigger control. Other pushbuttons display only the Channel A, Channel B or dual (both channels at once) modes; the ADD mode displays the Channel A signal added to Channel B. with the resultant waveforms.

Both model 515 and model 517 are meant to be general-purpose scopes for any industrial/ lab/radio/TV application. For TV work, a special TV-V/H switch selects a sync-separator circuit so that the pattern locks on either horizontal or vertical signals. Whether horizontal or vertical sync is used depends on the position of the TIME/CM switch, which automatically selects the correct sync, depending on the sweep speed. We gave the model 517 our pet "acid test": display a color-bar signal from a generator at horizontal rate. This is a beast to lock onto, since it consists of a whole row of sharp pulses of the same amplitude. The model 517 grabbed it and held it firmly.

The resolution is very good. In this same test (using the sweep expander) we were able to count the number of cycles (10 in all) in one bar of the color-bar pattern! Actually, the expanded sweep wasn't needed; we just used it to verify our count in normal operation. The risetime is very good. We fed it patterns from a digital color-bar generator having an excellent squarewave output, and the risetime was almost unmeasureable. A good squarewave probe-calibration signal (7.5 volts P-P) is provided via a jack on the pancl. This is used for setting frequency-compensating trimmer in the $\times 10$ probes.

The model SP-17 Probe Kit contains two special probes. One probe is the model $S P-7$, a continued on page 28

Super Case

Sendory yourikit

Vaco means velue and variety.
Like our Super Case. A great valu \geqslant with great variety. 48 professional problem-solving tooks from screwcrivers and nutdrivers to pliers, wrenches, crimping tools, and more! All right at hand. And a l uncenditicnally warranted.
You'll find the Super Case and all the other fine Vacc tools in our exciting new 72-page 1978 catalog. FREE for the asking! Just write:

Vaco Products Company, 1510 Skokie Boulevard, Northbrook, Illinois 60062

the interference free frequency counter

 all the way through $30 \mathrm{MHz} \& 600 \mathrm{MHz}$ with Prescaler
A Frequency Counter that you can really count on...

Right at the radio or TV transmitter site, next to a high power tranceiver and even on top of a color TV high voltage cage. Engineers and technicians are amazed as they pick up the only double-shielded frequency counter and use it where their high-priced counter won't stand still. Only the FC45 has a vinyl-clad, steel-covered case, to do that extra shielding, and matched and shielded input leads. Others don't even provide the test leads, let alone match them to your instrument.
When needing super accurate frequency measurements to five times better than FCC specs all the way through 600 MHz UHF. The easy to use, directreading, 8 -digit pushbutton FC 45 has an accuracy of 1 part per million (. 0001 percent). Time base crystal is hand selected, baked in an oven for 30 days, installed into your FC45 and run for 30 days again before redocumenting and shipping. That's how far Sencore goes to protect your FCC license.
When checking in low level circuits all the way down to 25 millivolts and all the way up through 230 megaHertz. Other counters fall off at about 80 MHz on their once Megohm input. Exclusive "Snoop Loop", with this outstanding sensitivity, enables you to "pick up" all the way back to the oscillator without loading the circuit; avoids direct connecion to transmitter output, too. Plus exclusive crystal check for checking crystals out-of-circuit.
And you can extend these FC45 reliable uses even further with...

To Antenna
To 'Snoop Loop'
PR47600 MHz Prescaler: Extends FC45 from 230 MHz to 600 MHz by plugging into special FC45 power jack and inserting into input lead
. $\$ 125$
PR50 Audio Prescaler: Extends use of FC45, or any other frequency counter, to .1 Hz and .01 Hz for audio and subaudible measurements. Same size and use as PR47

PL207 "Snoop Loop": RF pick-up loop with cable to avoid direct circuit connection
$\$ 9.95$

Write for 24-page FC45 Frequency Counter Sencore News or order instrument from: Sencore, Inc., 3200 Sencore Drive, Sioux Falls, South Dakola 57107

EQUIPMENT REPORT

continued from page 26
$\times 10$ low-capacitance probe, and the other is the model $S P-6$, a combination $\times 1 / \times 10$ probe. A slide switch on the probe handle selects either mode; the center switch position grounds the input for setup. The basic probe has a very sharp tip. There are four slip-on adapters: a spring-loaded hook; an insulator cap that covers everything but the sharp probe tip; a special adapter with two small guard insulators that have a sharp tip between them, for checking one pin of an IC without shorting; and a BNC adapter. A tiny insulated screwdriver adjusts the trimmer in the probe. The model SP-17 Probe Kit comes in a sturdy plastic pouch with a zipper, so you can't lose those little adapters in your kit. The cables are 1.5 meters long or about 5.5 feet.

Unlike some early triggered-sweep scopes, the model 517 can perform sweep alignment. The last TIME/CM switch position is labelled EXT HORIZ. The horizontal sweep signal is fed into the external trigger jack; the variable control on the TIME/CM switch then acts as a horizontal-gain control. A vertical input signal is fed into the Channel \mathbf{A} input. The model 517 has one feature I used to like on my old scopes, but haven't seen lately: a trace-invert switch. This switch can "make the curve go the right way," if you're like me, and want the curve to go up. The switch has other uses: In normal operation, in the ADD mode (Channel $A+$ Channel B), flipping the switch to the INVERT position displays the difference signal, or Channel A - Channel B. For best triggering on video signals, this switch should be set so that the sync-tips point down.

The CRT is a rectangular 5DEP31 with a built-in graticule. For vectorscope analysis, you can slip in a vector graticule over this graticule; this, too, comes with the instrument. The INTENSITY, FOCUS and ASTIGMATISM controls are grouped out of the way at the top left-hand corner of the panel.

This is a good, versatile instrument, and it should prove of great value to anyone who needs a reliable and accurate oscilloscope. Its price tag is $\$ 695$.

R-E
Heathkit Series 5280 Test Instruments

CIRCLE 50 ON FREE INFORMATION CARD
THE HEATH COMPANY HAS JUST RELEASED its Series 5280 test instruments. There are five instruments, all in identical plastic cases that can be stacked for a neat test-center layout. The cases are 11 inches wide, $5^{3 / 4}$ inches high continued on page 30

EQUIPMENT REPORT

continued from page 28
and $7 \frac{3}{4}$ inches deep. Typical weight is $31 / 4$ pounds. All solid-state, the instruments can be powered either by two 9 -volt batteries or by an AC power supply having five plugs that fit sockets on the back of each unit.

First, in numerical order, is the model /G5280 RF Oscillator. It has an RI output from 310 kHz to 110 MHz on fundamental frequencies, in five overlapping bands. An extra band is calibrated on the scale. 110 to $220 \mathrm{MH} /$ on harmonics. The AF modulation is 1 kH , and can be used as an audio test signal. Both RF and AF outputs have variable controls; the $\triangle F$ control serves as a modulation-percentage control for RF. Our test sample showed excellent accuracy.

Next, the model IB-528/ Inductance-Resis-tance-Capacitance Bridge. It uses a Wheatstone circuit that is AC-driven so that capacitors and inductors can be checked. The instrument's resistance is from 10 ohms to 10 megohms; inductance is from $10 \mu \mathrm{H}$ to 10 H : and a capacitance from 10 pF to $10 \mu \mathrm{~F}$, all on three ranges. The panel meter shows the null, and parts can be checked against an external standard for matching. A special scale shows matching and the percentage of error. We checked several known components with good results.

The model $/ G-5282$ Audio Oscillator has a range from 10 Hz to 100 kHz , and has separate sinewave and squarewave outputs. For sinewave operation, only the sinewave section need be switched on; for a squarewave, both sections must be on. This confused me at first, but after taking my usual drastic step (reading the manual!) the problem cleared up. Sinewaves
are clean and the squarewave has excellent risetime. Sample waveforms for checking and identifying both sinewave and squarewave distortion are shown in the manual.

The model $/ T-5283$ is an RF/ AF Signal Tracer. This instrument follows RF-IF signals through any radio, as well as ΛF signals from the detector on. Switching is performed in the test-probe tip; a diode symbol shows you the RF reading. A novel feature is used in the third switch position: it becomes an audible voltohmmeter! The input goes to a relaxation oscillator using a unijunction transistor. You can read resistance from 0 up to 5 megohms. You hear an audible tone, and as resistance goes higher, the frequency goes down. The model IT-5283 can also be used as a DC volimeter, from -3 volts to +20 volts: as the voltage goes down. the frequency goes down. This instrument can also be used for checking logic states. You soon learn to identify the tone produced by a logic high (1) and a logic low (0).

Last, but not least, the test instrument you should build first (if you plan to obtain them in kit form) is the model $/ M-5284$ Multimeter. The AC or DC voltage ranges are from 1.0 volt up to 1000 volts. On the DC range, the input impedance is 10.0 megohms; on the AC range, the impedance is 1.0 megohm. The ohmmeter reads from $\mathrm{R} \times 1$ to $\mathrm{R} \times 1.0$ megohm. The analog panel meter is a 4.5 -inch rectangular unit. There are four separate scales and four ranges, $0-1,0-10,0-100$ and $0-1000$, are used. Also provided are an ohms scale and a special scale for the $0-1.2$-volt AC range. The ZERO ADJUST and OHMS ADJUST controls are located on the front panel along with the RANGE and FUNCTION switches and the input jacks.

This instrument was checked on all ranges against a high-accuracy digital meter. All the $A C$ and $D C$ voltage ranges read right on the nose. The AC voltage ranges have a good frequency response, accurate up to 100 kHz . The resistance ranges, which were checked against our lab standards, were also accurate. The drift was almost undetectable over a fair!y long test.

The operating power supply for all five Series 5280 instruments can be provided by the model IP-5280-I AC Power Supply. This has a +9 - and -9 -volt output, each regulated by its own IC regulator: currents up to 100 mA can be drawn. There are five cables, each with plugs, that are long enough to reach all the instruments even if they are stacked one on top of the other. This compact power supply can be tucked away anywhere. It has an isolating fuseprotected power transformer. No special switch is needed; you just use the on-off switches of the individual instrument.

The Series 5280 can provide the beginner or advanced experimenter with low-cost, accurate and versatile test instruments that are available in kit form or fully built and tested. They should be ideal for use in electronics and electrical schools, or for servicing any kind of equipment. And the stacking feature makes it possible to create some neat and useful layouts for any kind of work.

Spyderco Company Portable Hand

LET'S SUPPOSE YOU WANT TO SOLDER TWO resistors together for a test. You hold one resistor in one hand, and the soldering iron in contimued on page 35

LOOK AT ALL YOU GET!

2,505 nuts, bolts, screws, and other fasteners * Heavy-duty, polystyrene cabinet, $12^{" W}$ W. x $51 / 2^{" D}$ D. $\times 9^{\prime \prime} \mathrm{H} . * 25$ preprinted I.D. labels * 75 individuai compartments * 25 high-impact plaatic bins, 2" W. x 51/2" D. x $11 / 2^{\prime \prime}$ H.

Just about every nut, bolt, screw, washer, and cotter pin you'll ever need - over 2,500 pieces all organized \& labeled in a multi-bin cabinet.

* Now ... your own hardware store for home, shop, or office!
* 2,505 fasteners total - all high-quality. zinc-piated (rust
* No more plece-at-a-time trips to the hardware store.
* Heavy-duty, polystyrene cabinet, high-impact plastic bins
and bin dividers, printed I.D. labols.
* Truly a $\$ 50$-plus value.
* Unconditional 30-day, money back guarantee. * The most Important "tool" In your workbhop.
* As featured by the editors of: MECMANIXILLUSTRATED POPULAR SCIENCE, WORKBENCH, FAMILY HANDYMAN HOT ROD, AND OTHERS.
$1712^{\prime \prime} \times 24^{\prime \prime}$ wall-size Specifications Chart - a
$\$ 2.50$ value. Tells you $\$ 2.50$ value. Tells you everyth ng you need to know for a quick professional job every time What thread types. and head styies are available. What size nut and wrench to use. What size "stantimg" and "tapping holes :o drill. When to use what kind of washer Instantly measures sizes. And much. much more. Yours FREE just for trying the Nut \& Bolt Shop.

Now you can have just the right nut, bolt, screw, washer, or cotter pin at your fingertips... whatever the job! And for an almost unbelievable low price!!
With the NUT \& BOLT SHOP - a complete size range of just about every kind of hardware you'll ever need. All organized in one 25 -tray, 75 -bin cabinet. Perfect for auto repair. Home projects and hobbies. Office maintenance. And industrial shop use. Great as a gift, too!

No more time-consuming trips to the hardware store. No more less-than-professional looking repair jobs. No more searching through old coffee cans of odds and ends.

Order today! Send check, money order, or company purchase order for just $\$ 19.95$ (plus $\$ 3.90$ shipping and handling) to D.R.I. Industries, Inc., 6864 Washington Ave. So. Eden Prairie, MN 55344 . It you're not completely satisfied-is you're not truly amazed at all youget - return it within 30 days for a full refund. No questions asked! Anc keep the FREE $\$ 2.50$-value wall chart for your trouble!

- 24-HOUR SERVICE -

CREDIT CARD BUYERS Call our 24 -hour toll-free number to immediate service $800-331 \cdot 1000$ (In Oklahoma, call $918 \cdot 664-8300$ collec

OUR CUSTOMERS ARE AMAZED AT THE VALUE!
"I don't see how you make a profit at such a low cost! I found it much more than I expected!!"
M. D. Dorsette, Rockville, Maryland "An excellent buy. At retail prices, would have cost far more . . . usually a minimum of $3 c$ to $5 c$ a piece $l^{\prime \prime}$
G. L. Steiger, Enfield, Connecticut "Quality is excellent. Great for do-ityourselfers . . . and convenient!'"
G. R. Dalmadge, Sunnyvale, California "I've priced these items separate - it would have cost far more for them lat a hardware store)."
--- 30 -OAY UNCONOITIONAL MONEY BACK GUARANTEE

D.R.I. Industries, Inc. Dept. RE-68

6864 Washington Ave. So., Eden Prairie, MN 55344 I WISH TO ORDER _- (QTY.) NUT \& BOLT SHOP(S)
\square have enclosed my check, money order, or company purchase order for $\$ 19.95$ pius $\$ 3.90$ ea. (MN residents add 4% sales tax). \square (wish to charge it to (check one): \square American Express \square VISA
\square Diness Club \square Master Charge \square Carte Blanche CARD NO \qquad EXP. DATE \qquad SIGNATURE X NAME ADDRESS
CITY

Foggy about computers? Sams new library of computer books provides your clear course

Abstract

You've counted on Sams for years to bring you clear, concise information about many subjects. Now obtain explanations and data you need to work with and enjoy the fascinating computer world written by experts.

The Cheap Video Cookbook

By Don Lancaster
A complete guide to super low cost alphanumeric and graphic microprocessor-based video displays. Contains complete construction details on a seven IC circuit that dramatically slashes the cost of getting words, op-code, and graphics out of a microcomputer and into a television set. Includes thoroughly documented and debugged software. Enables you to produce virtually any alphanumeric format, including scrolling 24 lines by 80 characters, and virtually any graphics format, including high resolution 256×256 mode and four-color graphics. Also contains complete details on transparency techniques that let you compute and display at the same time with high throughput. 288 pages; $51 / 2 \times 81 / 2$; softbound. No. $21524 \$ 8.95$

TTL Cookbook

By Don Lancaster
You'll discover what
Transistor-Transistor Logic is, how it works and how to use it. Discusses practical digital applications. You'll learn to build TL systems that entertain, test and train. 336 pages; $512^{\prime \prime} \times 81 / 2^{\prime \prime}$ softbound. No. $21035 \$ 9.50$

TV Typewriter Cookbook

By Don Lancaster
Your comprehensive guide to low cost television display of alpha-numeric and graphics data for microprocessor systems, word processing, TV titling and video games. Covers configurations, memories, keyboards, techniques and much more 256 pages; $51^{1 / 2^{\prime \prime}} \times 8^{1 / 2^{\prime \prime}}$ softbound No. $21313 \$ 9.95$

CMOS Cookbook

By Don Lancaster
Your complete guide to the understanding and use of Complementary Metal-OxideSilicon integrated circuits. Gives usage rules; power supply design examples; applications; information on breadboards, testing, tools. and interface. Detailed coverage of logic and more. 416 pages: $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ softbound. No. $21398 \$ 10.50$

How To Buy \& Use Minicomputers

\& Micracomputers

By William Barden, Jr.
This manual gives you the basics of minicomputers and microcomputers. Explains their hardware and software, the peripheral devices available and various programming languages and techniques. Allows you to decide which system is best for your needs. 240 pages: 81/2" $\times 11^{\prime \prime}$ softbound. No. $21351 \$ 9.95$

Microcomputer Primer

By Mitchell Waite and Michael Pardee
Written for the beginner in the computer field. All the basic concepts and characteristics of microcomputers are explored. The easy to understand language prepares you for further study. 224 pages; $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ softbound. No. $21404 \$ 7.95$

Practice Problems in

 Number Systems, Logic, and Boolean Algebra (2nd Edition)By Edward Bukstain.
This workbook is a 64 -lesson introduction to digital computer mathematics. Problems designed for classroom or individual use. Pages are removable. Includes answers for all exercises. $144 \mathrm{pp} .81 / 2 \times 11$; softbound. No. 21451. $\$ 6.50$

2-80 Microcomputer

Handbook

By William Barden, Jr. The Zilag Madel Z-80 represents a microprocessor that is extremely sophisticated and attractive to many computer users. Provides essential informtion on Z-80 technology. Organized into three sections: hardware; software;
microcomputers; built around the $2-80.304$ pages; $51 / 2 \times 81 / 2$; softbound. No. $21500 \$ 8.95$

Your Own Computer

By Mitchell Waite, and Michael Pardee
An introduction for the novice to the fascinating world of home computers. Reveals the potential of these technical marvels. Tells how personal computers will soon be used to regulate energy in the home, regulate spending habits and even to provide entertainment for the family. 80 pages; $51 / 2 \times 81 / 2$; softbound

Getting Acquainted With Microcomputers

By Louis E. Frenzel Learn about microcomputers in an effective, lowcost manner. The essential information contained in this book has been compiled especially for engineers, technicians. scientists, but it will also prove invaluable to those who want to learn more about hobby and personal computing. 288 pages; $51 / 2 \times 81 / 2$; softbound.
No. $21486 \$ 8.95$

How To Program Microcompulers
By William Barden, Jr.
Explains assembly-language programming of microcomputers based on the Intel 8080, Motorola MC6800 and MOS Technology MCS6502 microprocessors. Basic concepts, number systems and operations, computer operation and computer codes are examined. Microcomputer architecture and operation are discussed. The author concludes with a number of useful precanned operations. 256 pages; $5^{1 ⁄ 2} \times 81 / 2 ;$ sotbound. No. $21459 \$ 8.95$

Using The 6800 Microprocessor
By Elmer Poe
Acquaints the reader with the hardware and the software of the 6800 "fun" machine. No special background in digital electronics is necessary. Guides the reader through all phases of programs that demonstrate the practical use of a 6800 system. Fifteen information packed chapters. Appendix includes a programmer's card. 176 pages; $5 \frac{1 / 2}{} \times 81 / 2$; softbound. No. $21512 \$ 6.95$

The Blacksburg Continuing Education Series ${ }^{\text {(ix }}$

It has long been the objective of the "Blacksburg Group" to develop timely and effective educational materials and aids that will permit students, engineers, scientists and others to quickly learn how to apply new technologies to their particular needs. The members of this group have long been involved in digital electronics, minicomputers and microcomputers. Since 1974 they have collaborated as a group in the development of textbooks, short courses, magazine columns and hardware. The Blacksburg Continuing Education Series is an easy to read format consisting of 15 titles. Subjects range from basic electronics through microcomputers, operational amplifiers and active filters. Each title in the series includes detailed experiments, "hands-on" learning experiences, and examples to reinforce basic concepts. Book Size $51 / 2^{\prime \prime} \mathrm{X}$ $81 / 2^{\prime \prime}$, softbound.

8080 A Bugbook: Microcomputer Interfacing And Programming

By Peter H. Rony, David G. Larsen, and Jonathan A. Titus
Teaches the skills needed to use an 8080 -based breadboard microcomputer system. Covers the principles, concepts and applications of an 8-bit microcomputer based on the 8080 microprocessor IC chip. Presents the four fundamental tasks of computer interfacing: (1) generation of device select pulses; (2) latching of output data; (3) acquisition of input data; (4) servicing of interrupt signals. 416 pages No. 21447 $\$ 10.50$

NCR Data Communications Concepts

By NCR Corporation
Explores the various concepts, techniques, and limitations of data communications. Written mainly for telephone-based communications, but just as applicable to other forms of data communication. Basic carrier systems, transmission lines, modems, and more. 192 pages No. $21548 \$ 6.95$

Introductory Experiments in Digital Electronics and 8080A Microcomputer Programming and Interfacing

By Peter R. Rony, David G. Larsen, and Jonathan A. Titus
A combined approach to digital electronics and 8080-based microcomputers covering basic gates through microcomputer interrupts, with hardware and software examples. Experiments teach digital logic breadboarding, circuit design and microcomputer interfacing. Two books: 512 pages each;
Book 1 No. $21550 \$ 12.95$
Book 2 No. 21551 \$12.95
Two volumes No. $21552 \$ 23.95$

Microcomputer-Analog Converter Software and Hardware Interfacing

By Jonathan A. Titus, Christopher A. Titus, Peter R. Rony, and David G. Larsen Covers the microcomputer hardware and software necessary to interface A/D and D/A converters to 8080-based microcomputer systems. Also discusses sample-and-hold and multiplexer circuits. With experiments and completely documented computer programs. 320 pages;
No. $21540 \$ 9.50$
| Send books checked below, \$ enclosed (please enclose check of money order).* I understand that, if not completely satisfied, I may return my order within 10 days for a full refund.
-Include sales tax where applicable. Canadian prices slightly higher

$\square 21035$	$\$ 9.50$	$\square 21404$	$\$ 7.95$	$\square 21486$	$\$ 8.95$
$\square 21313$	$\$ 9.95$	$\square 21451$	$\$ 6.50$	$\square 21500$	$\$ 8.95$
$\square 21351$	$\$ 9.95$	$\square 21459$	$\$ 8.95$	$\square 21512$	$\$ 6.95$
$\square 21398$	$\$ 10.50$	$\square 21483$	$\$ 1.95$	$\square 21524$	$\$ 8.95$

4300 West 62 nd Street/Indianapolis, Indiana 46206

DBUG: An 8080 Interpretive Debugger
By Jonanthan A. Titus and Christopher A. Titus
Describes DBUG, a software debugging package for 8080-based microcomputers, and how it can be applied to program development and testing. Complete with hexadecimal and octal listings. 112 pages No. $21536 \$ 4.95$

NCR Data Processing Concepts Course

By NCR Corporation
Here is a general introduction to data processing, computers, and logic for those interested in how a computer works. Inctudes sections on digital logic and mathematical operations. Also covers input/Output devices, memories, and computer control. 320 pages. No. $21547 \$ 9.50$

Microcomputer Sottware

By David G. Larsen, Peter R. Rony, Jonathan A. Titus, and Christopher A. Titus A detailed approach to assembly language programming for 8080 or 8085 -based computers. Covers basic and advanced instructions, mathematical manipulations, number-base conversions, command decoders, arrays and tables, interrupt programming, and more. With complete, tested programs in standard mnemonics. 304 pages No. $21541 \$ 9.50$

Logic and Memory Experiments'Using TTL Integrated Circuits

By David G. Larsen and Peter R. Rony
A "hands on" introduction to the use of 7400 -series devices, mem.ories, display and arithmetic elements. The emphasis is on experiments that are used by the reader to explore and use digital circuits. Two books.
Book 1; 384 pages No. $21542 \$ 10.50$
Book 2; 352 pages No. $21543 \$ 9.95$
Two Volumes No. $21544 \$ 18.95$

Interfacing and Scientific Data Communications Experiments
By David G. Larsen and Peter R. Rony
Describes the use of UAR/T and USAR/T "chips" for serial data communications between instruments and computers. The operation of teletypewriter interfaces and serial transmission circuits are explored. With experiements and circuit details. 160 pages; No. $21546 \$ 5.95$

NAME

> (Please print)

ADDRESS
CITY
STATE
7IP
THE BLACKSBURG CONTINUING EDUCATION SERIES ${ }^{\text {Tw }}$
$\square 21447 \quad \$ 10.50 \quad \square 21536 \quad \$ 4.95 \quad \square 21547 \quad \$ 9.50$
The following books will be available during the month speeified.

$\square 21548$ June 1978	\$ 6.95	$\square 21541$ Sept. 1978	\$ 9.50
$\square 21550$ July 1978	\$12.95	$\square 21542$ Oct. 1978	\$10.50
$\square 21551$ July 1978	\$12.95	$\square 21543$ Cct 1978	\$ 9.95
$\square 21552$ July 1978	\$23.95	$\square 21544$ Oct. 1978	\$18.95
$\square 21540$ August 1978	\$ 9.50	$\square 21546$ Oct 1978	\$ 5.95

Performance and Price... there's no tradeoff in B\&K PRPCISON scopes.

For field or lab work, Dynascan has a quality scope to fit your needs. B\&KPRECISION has taken a no-nonsense, costeffective approach to oscilloscope design. Our scopes are rugged dependable instruments, designed to match the features and performance of far more expensive scopes, without matching their high prices. Typical of this approach is our Model 147430 MHz dualtrace lab scope and our new Model 1432 15 MHz portable dual-trace scope.

The B\&K-PRECISION Model 1474 is the most cost-effective dual-trace scope available. No compromise features include a built-in signal-delay line, $5 \mathrm{mV} / \mathrm{cm}$ sensitivity switchable high- and low-pass triggering filters and a TTL compatible Z-axis input. Vertical response is typically down only -6 dB at 49 MHz . The 1474 is excellent for microprocessor work, as signal delay and the 30 MHz minimum bandwidth allow you to examine short pulse waveforms.

The new Model 1432 portable dual-trace scope is one of our best values. This compact portable offers optional rechargable battery pack and full lab-scope features. An automatic battery charger is built-in as a standard feature. Sensitivity is $2 \mathrm{mV} /$ division over a DC to 15 MHz range. Bandwidth response is typically down only -6 dB at 25 MHz . Special features include algebraic addition and subtraction of two input signels, 19 calibrated sweep ranges and front-panel X-Y operation.

Off-the-shelf delivery is another of our features, and it's the one you can take advantage of first. We're so sure that B\&K-PRECISION scopes will fill your needs, that we can offer a no-obligation, ten-day free trial. Contact your local B\&K-PRECISION distributor for immediate delivery or a demonstration.

BHy PRECISION DYNASCAN

6460 west Cortand Street, Chicago, Illinois $60635 \cdot 312 / 889-9087$
in Canada: Atlas Electronics, Ontario • Intl. Sis: Empire Exporters, Inc... 270 Newtown Road, Plainview, L.I., NY 11803

EQUIPMENT REPORTS

continued from page 30
the other. Then, you chase the loose resistor all over the bench, solder it, and then you move just as the solder sets! What you need at times like this is another hand.

CIRCLE 105 ON FREE INFORMATION CARD
The Spyderco Company, Box 3517, Redding, CA 96001 has one for you called The Portable Hand. It has four arms, each with an adjustable ball-socket joint with a thumbscrew. The arms can be set to any position or angle you wish, and are mounted on a stamped
metal star that can be placed on the bench as a base, or fastened with a screw through the center. Three of the arms end in standard Mueller Series 60 alligator clips. These clips are secured by a brass collar with a set-screw, which makes them easy to replace if damaged. The clips will hold the leads of any small components. If necessary, they can be padded by slipping a piece of spaghetti wire over the jaws.

The fourth arm has a larger Mucller HippoClip with rubber-padded jaws and grips. You can use this clip to fasten The Portable Hand to the bench edge, a shelf, or the top of a TV cabinet, and then just use the other three arms.

This is the kind of handy timesaving device that I love! An illustrated folder comes with it that shows 18 possible things you can do with it. It is definitely not a toy or a chcaply made gadget to play with. It's very well-built, strong and should withstand long and hard use on the bench. The Portable Hand sells for $\$ 9.95$, and it should pay for itself soon.

R-E

"Of course you're welcome to get a second opinion, doctor'' But this first one is still going to cost you \$47.00!'"

As Featured in R-E

You probably first found out about the Central Data 2650 computer board when it was featured in the April-June, 1977 issues of Radio-Electronics. Since then we've designed a 16 K and 24 K RAM board for greater memory capability, an S-100 compatible extender board for easy expansion and two new software packages for program sophistication. We also offer all of the peripherals for a complete computer system. Of course, our board still has all of the same high quality standard features it has always had.

- a 2650 microprocessor
- an 80 character by 16 line display
- a powerful Supervisor Program
- a 300 Baud Cassette Interface
- one parallel input port and one bit settable output port
- 2048 bytes of read-write memory for the video display and your programs

Whether you're an experienced computer user or just a beginner, we can help you build a system suited to your needs. Let us know what you need today.

PO Box 2484, Station A Champaign, IL 61820 217-359-8010

HGOS GS C OL O STATAB

Computers, peripherals and nearly 400 exciting, easy to build electronic kits all in your
MREP Heathkit Catalog

Siseptical? For starters, Jecause oi its uaique design the H8 is the only machine 5. 74L M3 PTI ir its price class Memory Display that offers full system irtegration yet, with just 4I of optional memory and using only its

 "intelligent" iront panel for JO, may be ojerated completely without peripheials! In addition, by using tise fectures of its built-in P.AM-8 RCM perel control prograra, the HE actially allows you to cig in and exarmine machine level zircuitry. Respor.ding tc simple instrustions, :he intelligent" panel displays memory and

CIRCLE 100 ON FREE INFORMATION CAID
register contents and lets rou inspect and alter them ever durirg operation. End for greater unde:stazding, tre front panel permits you to execute procrams a single ins-ruction at a time. The H8's nem ory is fully expandable, its 8080 4 CPI extremely versatile, ard with the adcitior. of high speec sericl and paralle interfacing you gain the added flex bility of I/O operation witt taje, ERT consoles, paper -ape reacier/Junches, and soon floppy diss systens! The H8 offers superior documentction inchuding ccmplete stez-by-step assembly and spesation menua.s, and zomes cemplete with BRSIC assembler, edi-or, and debug softrare thet others zhange over \$3i] fo:. H8, simplicit? for the beginner, sophisticction for the expert and at \$375* just right for ycu.

- Tríes are zall orcer ne FDB. Eenton Kilbor. Mizhigas. lives and spociticctions sulject ib change with. ou notice.

System Engineered for Personal Computing

RADIO-ELECTRONICS SPECIALFEATURE
1 INTRODUCTION TO PERSONAL COMPUTERS - WHAT THEY CAN DO AND HOU TO SELECT YOUR OUN
己 UHAT MAKES A COMPUTER A SYSTEM-PERIPHERAL DEVICES AND ACCESSORIES
3 THE DIFFERENT WAYS YOU CAN TALK TO YOUR COMPUTER - PROGRAMMING LANGUAGES AND HOU TO USE THEM 4 COMPUTER CORNER

5 A ROUNDUP OF THE EQUIPMENT AND UHO MAKES IT

Personal Computers

Abstract

Ever wonder what you would do with a possibilities are limited only by your imagination. plus a look at what a computer system consists of and

WILLIAM BARDEN

Buying a personal computer system today is somewhat similar to choosing a wife. Rather than evaluating the field qualitatively and making the choice based on logic, a lot of emotion is involved. This article decribes currently available microcomputers and attempts to give the reader some selection guidelines.

Why buy a microcomputer?

Personal computers are essentially composed of logic circuitry. Unlike complicated special-purpose circuitry

BYT-8 microcomputer from Byte Incorporated has toggle switches and LED indicators on the front panel.
that performs only one dedicated function, however, the microcomputer can be rapidly and easily changed to perform a variety of functions by reprogramming. The circuitry is "told" how to perform each specific job demanded of it by its owner. Using any of the many microcomputers available today it is possible (at reasonable cost) to:

[^2]- Create and play synthesized musical selections
- Understand human voice commands.
- Speak with a Scots brogue.
- Set up an energy conservation system for your home with the computer controlling the heating and cooling, and possibly even opening and closing windows automatically.
- Prepare your income tax.
- Set up a weight-loss program that is specifically tailored to the amount of weight you want to lose, how fast you want to lose it and how much work you want to put into it.
- Compute your payroll; figuring tax deductions, health insurance, social security, etc.
- Act as a bill collector; automatically preparing collection letters that are individualized for each customer and reporting back to you on the status of each customer and the total of your unpaid accounts.
- Balance your checkbook and estimate your net worth.
- Inventory parts for your small business.
- Decipher and generate Morse code for an amateur radio transceiver.
- Provide a burglar and fire alarm for home or business.
- Provide automatic telephone dialing and decode remote telephone commands.
- Control lights, sprinklers and heating.
- Tutor yourself, spouse and children.
- As more software is developed (more instructions), your computer system can grow to accomplish additional tasks. It is never limited to a specific set of tasks. Whenever you come up with a new job for your machine, a little programming will make it possible for the computer to add still another job.

Now it is possible to design individual, special-purpose circuits so that they can provide most of these functions, but what other design can perform every one of these functions and at such a low cost?

pdp 11/03 MINICOMPUTER from digital shows how information is displayed on a CRT.

Several years ago, a properly equipped minicomputer would have cost about $\$ 40,000$. Now, all the functions described above can easily be implemented on a $\$ 2000$ microcomputer system, and many can be performed on a $\$ 600$ system. If you're ready to spend what you'd pay for a new TV set or stereo system, just take a look at what your money will buy.

Microcomputer components

Figure 1 shows typical microcomputer components. The logic components are grouped into hardware, software and firmware.

Hardware consists of the cabinetry that contains the circuitry, necessary power supplies, a real or imaginary bus representing system logic signals, memory, a central processing unit (CPU) and firmware. The bus is the master wiring system of the computer. It can most conveniently be

Are They Right For You?

computer if you had one in your home? The Here's a look at a few of the many possibilities, what you should look for when selecting your own.

thought of as a wide ribbon cable consisting of as many as 100 separate wires.

In the S-100 bus, for example, there are 100 wires. Each one carries a specific signal. Each circuit board in the computer is set up with a connector that matches the bus. Lead number 1 is always the same in that system, as is lead number 2 , and 3 and so on. All bus systems are not compatible. Each one has its own set of connections. This can be both an advantage and a disadvantage.

The good side is that several companies can make products that fit a particular bus. As the computer owner you can then buy plug-ins from a variety of suppliers. However, in practice, there are multiple suppliers for only a small number of the available bus systems. For the others, the only source of add-ons is the original system manufacturer. Don't forget this point. It could cost you dollars when you want to expand your system.

Software is the instructions that

FIG. 1-A MICROCOMPUTER SYSTEM consists of RAM memory, a central processing unit plus system programs stored in ROM memory. Peripheral devices, such as a CRT terminal, printer, or additional external memory are connected to the system via peripheral device controllers. Signals to the various parts of the system are carried along the system bus.
enable the computer to follow your directions and accomplish its task. Again, there are options, mostly in terms of the "language" you use (For more information on language and programming, see the following article in this special section.) There is also available for almost all personal computers, prepared software on magnetic tape or paper tape that can be used to tell the computer how to do a specific job. Firmware is hardwired software and cannot be easily changed.

The cabinet in many cases is quite unimpressive. The Apple II and Radio Shack TRS-80 systems are of this type; they contain a minimum of controls and switches. Other microcomputers have a cabinet with a control panel, as is the case with the MITS 8800 b and IMSAI 8080 mi crocomputers; however, a control panel's usefulness is debatable.

XITAN MAINFRAME Irom Technical Design Labs has an S 100 bus structure.

Within the cabinet are the power supplies and system bus. If the microcomputer is similar to the Byte Incorporated BYT-8, it contains a

discrete physical bus. You can look into the cabinet and observe a series of 100 -pin connectors mounted on a PC board with 100 etched lines representing the bus. If the microcomputer is a Commodore PET, the bus may be represented only by external connectors and various etched lines on a single large PC board. The bus of a microcomputer is usually similar to the pinout (the diagram that shows where the individual pins on the microprocessor connect and shows their functions) of the microprocessor itself. A microcomputer built around the 8080A microprocessor

MINI-MICRO DESIGNER from E \& L Instruments is a breadboarding system for prototyping computer circuits.
has 8080-type signals, one constructed around the 6800 microprocessor has 6800-type signals, etc.

If the microcomputer has a bus with plug-in connectors (as in the MITS 8800b), the microprocessor and associated circuitry will be on a plug-in board called the CPU board. (The CPU is the central processor unit. It is the brain, the control center, of the computer.) If the mi-
crocomputer is an integrated singleboard type (PET), the CPU forms part of the logic IC's on the board itself.

STATIC RAM MEMORY from Vector Graphic is designed for the S100 bus structure.

The CPU consists of the microprocessor IC and any TTL or MOS IC's required to interface the microprocessor to the rest of the system. Almost all personal computers use either the $8080,6800,6502$, or Z-80 microprocessors as a base around which the microcomputer is built. A comparison of the four types is beyond the scope of this article, but, in general, the current versions of these microprocessors are approximately equal in speed, instruction set and efficiency-much more so than, for instance, the differences between an 8080 microprocessor and its predecessor, the 8008 .
(Time out for some definitions. The instruction set is the set of builtin instructions that the microprocessor can inherently perform. Every microprocessor type has its own specific instruction set. Speed relates 10 how quickly the microprocessor can complete a step in its operation. This time is usually measured in microseconds.)

In many applications, the actual microprocessor IC used will be transparent (transparent means that the user will not be aware of the microprocessor and will not know what type is in the machine unless he checks the manual to find out) to the

H9 CRT TERMINAL from Heathkit has CRT display plus alphanumeric keyboard.
system user. The differences in speeds and efficiency between the

TABLE I-Peripheral Devices For Current Microcomputers

Device	Explanation	Availability On System Type			
		1	11	III	IV
Keyboard	Similar to typewriter keyboard	BC	A	$A B$	A
Video display	Alphanumeric and/or graphic	BD	A	AB	A
Teletype	ASR-33 series	BD	A	$A B$	CD
Audio cassette tape	Secondary storage	BD	A	$A B$	A
Floppy disc	Secondary fast storage	DE	A	$A C$	$A B$
Printer	High-speed hard copy	CE	A	AC	BD
Paper tape equipment	Auxiliary storage	CE	A	BC	CE
A/D, D/A	Analog-to-digital input, D/A output	CE	A	AC	CE
Music synthesizer	Better than a MOOG	CE	A	AC	CE
Speech input/output	Actually sound input/output	CE	A	BC	CE
Relay drivers	For control applications	CE	A	AC	CE

Notes:

I. Microcomputer on a board; II, S-100; III, non-S-100; IV, turnkey system.
A. Readily available.
B. Sometimes available.
C. May be connected with some difficulty or design work.
D. May be connected with more difficulty or design work
E. A major effort.
microprocessors themselves will be secondary to other system attributes such as the efficiency of the software, the design and the bus structure.

Memory will also be contained on separate plug-in modules in a busoriented microcomputer (8800b), or on a portion of the motherboard (PET). All current microcomputers can address up to 65,536 bytes of

RADIO-SHACK'S TRS-80 microcomputer sys. tem has memory and keyboard.
memory directly (sixty-four 1024byte segments, or $64 K$). In practice, this memory range is divided between user-accessible memory and
firmware memory. If 10 K bytes are used for firmware, for example, only 54 K bytes are available to the system user.

COMPUCOLOR offers microcomputer and fullcolor graphics terminal in single enclosure.

The firmware portion of memory consists of read-only memory, physically represented by ROM, PROM, or EPROM (Read-Only Memory, Programmable Read-Only Memory, or Erasable PROM). Generally, the firmware includes the manufacturer's systems software programs to provide

TABLE II-Current Microcomputer Types

Company	Computer	Type	Microprocessor
Apple Computer	Apple II	1	6502
Central Data	2650 Computer	1	2650 (Signetics)
E\&L Instruments	MMD-1	1	8080A
lasis	ia7301	1	8080A
IMSAI	IMSAI 8048	1	8048 (Intel)
MOS Technology	KIM-1	I	6502
Alpha Digital Systems	Alpha Z-80	11	Z-80
Byte Inc.	BYT-8	11	8080A
Cromemco	Various	11	Z-80
Equinox	Equinox System	11	8080A
IMSAI	8080	11	8080A
IMSAI	80/30	4	8080A
MITS	Altair 8800b	11	8080A
North Star	Horizon	11	Z-80A
PolyMorphic Systems	POLY 88	II	8080A
Processor Technology	Various	IIIV	8080A
Vector Graphic	Vector 1	11	8080A
Vector Graphic	Vector $1+$	11	8080A
Digital Group	Various	III	$\begin{aligned} & \mathrm{Z}-80,8080,6800 \\ & 6502 \end{aligned}$
Heathkit	H8	III	8080A
Heathkit	H11	III	LSI-11 (DEC PDP- 11)
Intelligent Systems	Intecolor 8001	III	8080A
Midwest Sci. Instr.	MSI-6800	III	6800
MITS	Altair 680B	III	6800
Ohio Scientific	Challenger II	III	6502A
Southwest Technical	SWTP 6800	III	6800
Apple Computer	Apple II	IV	6502
Commodore	PET 2001	IV	6502
Ohio Scientific	Challenger IIP	IV	6502A
Radio Shack	TRS-80	IV	Z-80

1-Microcomputer on a board.
II-S-100 type.
III-Non-S-100 type.
IV - Turnkey system.
file manage, an operating system and a BASIC interpreter. Firmware is included with such microcomputers as Radio Shack's TRS-80 and Commodore's PET, and can be added to virtually any other microcomputer. Firmware programs are nonvolatile, that is, turning off the computer will not destroy the program burned into the PROM.

Firmware is an easy way to add specific functions to a computer. Unlike entering a program into memory, firmware does not consume any memory space and it cannot be erased (with the exception of EPROM's which can be erased and reprogrammed after being removed from the computer). One way to think of firmware is as a plug-in programthe program is in the form of an integrated circuit.

The remaining portion of memory is RAM (Random A ccess M emory or Read-Write Memory) and is useraccessible for program storage. Naturally, the more memory, the more flexible and powerful the system. A small system can have 4 K of RAM, while a larger configuration might have 32 K or more.

COMPUTER SYSTEM from The Digital Group shows the various peripheral devices.

Peripheral devices and controllers for the devices are connected to the microcomputer either directly through the bus or through input/ output ($1 / \mathrm{O}$) ports and connectors.

The peripheral devices shown in Table I are available for use with current microcomputers. Not every device, however, is available for every microcomputer. Many devices can be connected to virtually any bus by simple interfacing-design work.

A minimum workable system consists of a keyboard (to enter alphanumeric characters), a video display (to display characters or graphic lines), a CPU and memory. Each peripheral device needs a controller, essentially an interface between the bus and device. Since the peripheral devices operate much more slowly than the CPU's hundreds of thousands of instructions per second, the controller buffers the data to match the CPU and device speeds and per-

forms handshaking (a constant back-and-forth verification of the transmission of data) between the CPU and the device. The controller logic again may be contained on a portion of the single-board microcomputer (represented as dashed lines in Fig. 1), or it may be a separate module. Generally, for each new peripheral device that is added to the system, a new controller board must be attached to the bus or to an $1 / O$ port.

ACT-IV CRT TERMINAL from Micro-Term has alphanumeric keyboard.

Two general types of software are available: system (or utility) software and applications sofiware. System software includes programs to help develop other programs, debug or troubleshoot other programs, or manage data in memory or in secondary memory storage, such as a floppy dise or audio cassette tape. System software can be supplied in firmware or on an casily loadable program medium, such as audio cassette tape or paper tape. Applications programs range from game packages 10 ac-counts-receivable programs, in fact, any program for which the microcomputer system will be used.

Although system software may be supplied in firmware as part of the system, application programs generally come separately in the form of audio cassette tapes, listings and documentation. Not all microcomputer manufacturers supply huge quantities of applications programs. For this reason and for the fun involved, you can write your own applications (or systems!) programs. There are three types of programming available to the user-machine language, assembly language and higher-level languages.

ALTAIR 680 FROM MITS has toggle switches and discrete LED indicators on tront panel.

Machine language is the most batsic, tedious and (although some will disagree) least enjoyable of the three methods of programming. Rarely necessary on today's systems, it requires you to enter strings of binary data to program the computer. Assembly language allows you to automatically assemble the instructions for the microprocessor being used in the microcomputer, thus eliminating the manual machine language meth-

MACHINE LANGUAGE

As input on hexadecimal key pad: A8
$0 E$
$0 A$
81
$O D$
$C 2$
00
01
ASSEMBLY LANGUAGE
As input on keyboard:

	XRA A
	LOOP
MVI B. 10	
	ADD B
	DCR B
	JNZ LOOP

HIGHER-LEVEL (BASIC) LANGUAGE
As input on keyboard:

$$
\begin{array}{ll}
350 & \text { LET } S=0 \\
360 & \text { FOR } I=1 \text { to } 10 \\
370 & \text { LET } S=S+1 \\
380 & \text { NEXT } ~
\end{array}
$$

FIG. 2. ADDING $1+2+3 \ldots+10$ in three languages
od. Although machine language and assembly language programs can be executed much faster than other higher-level languages, they are more time-consuming to write. Higher-level languages such as BASIC let you program statements that resemble the English language. BASIC is by far the easiest language to learn and the most readily available for microcomputers. Other languages that are offered are FORTRAN, COBOL or APL. Figure 2 compares the three programming types used for a simple program. For more details on the three major programming methods. see "How To Program A Computer" elsewhere in this special section.

Available microcomputers

Currently, four basic personal microcomputer types are available: The microcomputer on a board, the non-S-l00 modular microcomputer, and the turnkey system. Table II lists the lower-cost systems of the four microcomputer types.
The microcomputer on a board format is exemplified by such systems as MOS Technology's K1M-1. Other microcomputers of this type

SYSTEM 8813 from Polymorphic has three lloppy disk drives.
are offered by microprocessor manufacturers as single-board evaluation modules. These are designed primarily for the engineer who will either evaluate the microprocessor or integrate the module in a production system.

This type of module (available either as a kit or fully assembled) may include an LED display, a small numeric keyboard, a small systems software program in the firmware and a small user-accessible RAM memory. In some cases, additional memory or I/O devices are added to the basic system. Programming is generally possible only by using machine language.

The advantages of this system are its low cost, hardware simplicity. small size and low power drain. Its disadvantages are its lack of expandability (there are few add-ons avail-
able) and its less-sophisticated software. This type of microcomputer is probably ideal for an experimenter who wants to obtain the most basic hardware and software in order to learn and understand how both aspects of a personal computer function.
The S-100 modular microcomputers started with the MITS 8800.

MODEL CT-1 from Computalker Consultants is a speech synthesizer board.
MITS defined the MITS (or S-100) bus, and many other manufacturers copied it in their microcomputer designs. There are literally dozens of memory boards, I / O devices and spe-cial-purpose interfaces that plug directly into the $S-100$ bus. Most are compatible with each other, even if they are produced by different manufacturers. A control panel may or may not be offered. Firmware is not stressed but may be provided. In general, the S-100 microcomputers
cannot simply be plugged in and operated. Kits or fully assembled systems are available.

VECTOR 1 MICROCOMPUTER from Vector Graphic.

This system's advantages are its low cost, a wide range of add-on peripherals and sophisticated hardware and software. The chief disadvantage is the lack of good generalpurpose firmware (preprogrammed plug-in PROM's to take care of things like programming language).

The third group of microcomputers do not use the $S-100$ bus and provide a modular, rather than a turnkey, system. Since the $\mathrm{S}-100$ bus is not used, additional modules or peripheral devices that are compatible with the system are probably provided only by the manufacturer of the system-for example, the Southwest Technical Products SWTP6800. As with S-100-type microcom-
puters, systems in the non-S-100 group are available as kits or fully assembled. The primary advantage of this group is their somewhat lower cost. The greatest disadvantage is their reliance upon the manufacturers' own add-on devices.

The last group of microcomputers are the turnkey (plug it in and turn it on) systems, as for example, the Radio Shack TRS-80. These systems are fully assembled, warrantied and ready to operate. Firmware includes an operating system and a BASIC interpreter; a keyboard, video display and audio cassette interface are usually provided.

The advantages of this group are the low cost, the "plug it in and turn it on" configuration, the integrated systems software, and a wide range of user-developed application programs. The disadvantages are the possible limited expandability and the reliance upon manufacturers' own addon modules and peripheral devices.

This represents a rather brief summary of the current personal computer marketplace. Although there are many factors involved in selecting a microcomputer, unlike choosing a wife, the purchaser won't be rejected if he has the cash!

Peripherals-arms and legs

To perform useful functions, a computer needs peripheral devices. These devices interface between man and machine and greatly expand a computer's capability.

KARL SAVON
SEMICONDUCTOR EDITOR

PERIPHERALS ARE THE ARMS, LEGS. mouth and ears of the microcomputer. Without them, the computer is no more than a theoretical curiosity. Peripherals perform two basic functions: First, they interface between man and machine. They appear in the form of terminals, graphic displays and printers. Second, they expand the computer's capability from theoretical to highly practical applications through the use of such devices as cassette recorders, floppy-disk drives and analog interfaces.

Terminals

The most basic peripheral needed for a microcomputer is a terminal that lets you talk to the machine, program it, enter data into it and receive answers from it. Toggle switches and LED displays are adequate for a learning system, but once past basics it is vital to be able to move information in and out at conversational and at higher rates. Pro-gram-development cycles require an efficient link between you and the assemblers, compilers, interpreters and file management software. Even though there are diverse forms of
data terminals, the most generally used is a keyboard-display combination.

A terminal, unlike a typewriter, consists of two electrically separate parts that are actually physically separated in some systems. The key-board-driven transmitter usually has a standard typewriter key arrangement, plus several control keys. Often, only upper case letters are implemented and separate numeric keypads are built-in for convenience. On the receive end of the terminal, the most common devices are impact ribbon printers and video display.

For the computer and terminal to understand each other, they must speak the same language. Several standard formats have been composed so that system components from different manufacturers can work together:

- The predominant format in use is the American Standard Code for Information Interchange (ASCII). It is a 7 -bit code plus a parity bit with a particular combination of bits corresponding to each character in its vocabulary.
- Some older equipment use a fivelevel Baudot code that was developed for telegraphic purposes. Its basic set of 2^{5} or 32 codes is nearly doubled in keyboard characters, using letter and number keys that precede characters in one of two sets. Although similar in function to a typewriter shift key, these keys are not depressed simultaneously with other keys.
- The EBCDIC code is an eightlevel language used by IBM and others that has twice the characters of ASCII ($2^{8}=256 \mathrm{vs} .2^{7}=$ 128), and is suited for more complex control and graphic applications.

Diode or IC encoders convert key closures into ASCII or other codes.

DAZZLER from Cromemco interfaces between S100 bus and TV set to add graphics.

These relatively slow, operator-limited terminals use serial data flow over one or two wires (plus ground). Parallel-to-serial conversion in the transmitter converts the parallel output of the keyboard-encoder into the serial bit stream, and corresponding serial-to-parallel conversion and decoding are performed in the receiver. UART integrated circuits have been designed that perform the conversion and the related tasks of parity-checking and start-and-stop bit generation.

When the ASCII code is combined with start-and-stop bits, sequences of 10 or 11 bits represent each transmitted or received character. Transmission is asynchronous, which means it does not require a transmitted clock signal.

The ones and zeroes of the data stream on the wires that connect the terminal and computer are distinguished by two DC levels. Several

SKIP \| MICROCOMPUTER by NBL has hexadecimal keyboard and LED indicators.
different voltage or current levels are used for compatibility with TTL, RS232C (bipolar) or 20 - or $60-\mathrm{mA}$ current-loop equipment.

The terminal receive-and-transmit sections are independent of each other. It is only by electrical interfaces in the terminal or through the computer that the printer mechanism or CRT screen displays the keyboard data entries. In a full-duplex system, the computer and terminal communicate in both directions simultaneously. The computer is programmed to echo back what is transmitted to it. Control characters would normally produce nonprinting codes, but the computer can return intelligent responses; for example, "control C" or " $\uparrow C$ " when the control- C combination is typed on the keyboard. In half-duplex systems, communication takes place in one direction at a time. In most cases the terminal is wired so that the printer or display responds directly to the keyboard because the
computer does not have time to echo the response. Otherwise, after you typed a letter you would then have to wait for the computer to return the character before you could type a second letter. Inadvertently hooking a half-duplex terminal to a fullduplex system produces strange re-sults-typically, the double-printing of pressed keys. Many terminals can be switched between half-duplex and full-duplex modes.

IBK-1 MICROCOMPUTER from IMSAI has builtin card cage, CRT terminal and power supply

Terminal data rates are from 10 to 30 characters-per-second for strictly manual keyboard devices. Those keyboards having built-in paper tape or magnetic tape storage have data rates of 30 to 480 characters-per-second and even higher.

Keyboards may have 64 or 128 ASCII characters, and may have such features as numeric pads, tactile feedback and rollover. During an entry sequence, a fast typist, or a slower one with an uneven technique, may depress more than one key at any given instant. N-key rollover (NKRO) recognizes the key closures in the time order in which they are entered, and does not become confused when more than one key remains depressed. Two-key rollover (2 KRO) is a less-sophisticated method that only recognizes two key closures simultaneously. The third and subsequent closures are ignored.

Keyboards are classified as contacting and noncontacting, depending on how the electrical current path is interrupted. Key pressure sensing may be performed mechanically, capacitively, photoelectrically, or by using reed switches, saturating cores, Hall-effect devices or elastomers.

Hard-copy printers are classified as impact and nonimpact, each with its own particular advantages and drawbacks. Impact printers use mechanical hammers, wheels or dotmatrix pins that strike the paper through an inked ribbon, and one
column or one line is printed at a time. Impact printers are low-cost and can make copies, but they are generally noisy, may have poor print quality and are not as reliable as welldesigned nonimpact printers.

Nonimpact printers are fast and quiet. One type uses ink jets that are sprayed onto the paper and controlled electrostatically. Electrolytic printers pass an electric current through chemically treated paper with wires or pins. Electrostatic printers use precharged dielectric-coated paper that is passed through a toner. The toner has ink particles that are oppositely charged to the printed charges on the paper. Thermal printers use transistor dot-matrix printheads that move across temperature-sensitive paper. Character fonts are electrically stored in read-only-memories (ROM's).

ECT MICROCOMPUTER FROM Electric Control Technology has S100 bus structure.

Some stand-alone computer systems have a keyboard and video display or printer built right into the main housing. Sometimes a video or RF output is provided so a video monitor or TV receiver can be used as an economical display.

The video terminal is expected to become the main home-computer peripheral because of its low cost and graphic capability. Video terminals have editing options that allow corrections before the characters are fed to the computer. Other options include page and scrolling formats, character accents, selectable baud rates and cursor controls. Video terminals do not make hard copies. A preferred arrangement is a video terminal backed up by a printer that can generate a permanent record of the data that must be saved.

There is an intermediate class of terminals that use a TV display and a low-cost hex keypad. Primarily used in learning systems, they are adequate and even preferred for special applications where the input is mainly numeric.

The final choice of terminal must be made on the basis of cost, multi-ple-copy capability, speed, interface requirements, printing-vs.-plotting characteristics. font, print quality and color, noise, ease of operation, serviceability, type of paper, and reliability.

Tape cassettes and cartridges

As system and user programs grow in length and number, you must find a sensible way to store them. Virtually all microcomputer manufacturers have recognized the advantages of using standard audio cassette recorders for program storage. In-

RAM MEMORY BOARD from Electronic Control Technology mates with the $\mathbf{S} 100$ bus.
terfacing hardware and software are. important resident or optional parts of their systems. Frequency shift keying (FSK), pulse-width modulation (PWM), phase encoding (PE), nonreturn-to-zero (NRZ), biphase encoding, group-coded recording (GCR), Manchester coding and the Kansas City Standard (KCS) are some methods used to both store data on audio tape and retrieve it. Phase encoding is popular because it is selfclocking, making it tolerant of speed variations and has good noise performance. Manchester coding is a type of phase-transitional encoding in which positive signal transitions represent ones and negative transitions represent zeroes. The KCS method is a variation of Manchester code that represents zeroes as $1200-\mathrm{Hz}$ tone bursts and ones as $2400-\mathrm{Hz}$ bursts.

Although at one time paper tape was very popular, it is being gradually displaced by digital magnetictape cartridges and cassettes that offer much greater reliability than either paper tape or audio cassettes. Lower-performance machines use drives that have evolved from audio recorders. In these systems the tape is caught and held between a capstan drive shaft and a free-wheeling pinch roller. At higher tape speeds and data densities, direct servomotor drives are used. Two motors drive the cassette hubs in a very clean mechanical arrangement.

Digital recorders use phase encoding with typical tape densities of 800 bits-per-inch. They have versatile control functions including write, stop, reverse one block or line, read one block or line, read continuously, erase, rewind for cassette removal and wind past tape leader. Extensive error checking is performed for dropouts, bit timing and character parity. The unformated capacity of a cassette is about 720 kilobits and data transfer rates are 24 kilobits-persecond.

Cartridge drives provide improved performance and are used wherever higher operating speeds (48 kilobit-per-second transfer rate) and greater storage capacity (2.9 kilobits) are needed. Quarter-inch tape is recorded with densities of 1600 bits-per-inch on up to four tracks. Car-tridge-drive manufacturers plan to compete with floppy disks by reducing access times. But for the present the tape heads and system mechanics limit search speeds to about 30 inches-per-second.

Floppy disks

Given enough financial resources. there are very few computer enthusiasts who would not invest in a largecapacity, floating-head, magnetic disk system. Random-access addressing of large amounts of stored data makes such a system look almost like a huge chunk of RAM. Some ad-

RADIO SHACK TRS-80 microcomputer shown with video monitor.
vanced computer systems exchange segments of disk memory with main computer memory to give the computer the virtual appearance of a machine with a very large main memory. Real-life budgets have forced computer manufacturers alike to find an economical compromise. The floppy disk does not have the data capacity of cassettes and cartridges, but is a random-access device with almost 500 times faster access. The Mylar disk is 9 inches in diameter and 0.003 -inch thick, coated with a mag-

netic oxide and protected in an 8 -inch-square jacket. The jacket has holes through which the spindle rotates the disk at 360 RPM, the head contacts the disk, and (on hardsectored disks) the index holes are exposed. Hard-sectored disks use photoelectrically sensed index holes to locate data; soft-sectored disks rely on reading the block headings recorded on the disk.

FI.OPPY DISC DRIVE from Mits adds additional memory to microcomputer system.

On 1BM-compatible disks, data is recorded on 77 concentric tracks that are numbered 00 to 76 from the outside of the disk in. Track 00 holds labels and system and disk information, two tracks are reserved as alternates, leaving 73 tracks for data. Each track has 26 sectors, and each record or sector stores 128 bytes. This calculates to a total of 73×26 $\times 128=242,944$ bytes. There are double-sided, higher-density floppy disks and other non-IBM-compatible disks with greater capacity.

In a step to reduce costs even further, the minifloppy disk was created, packaged in a $51 / 4$-inchsquare jacket. Hard-sectored minifloppy disks have 16 records-per-
track and soft-sectored 18 records-per-track. The record length remains 128 bytes, with either 35 or 40 tracks. Maximum storage capacity is then $18 \times 40 \times 128=92,160$ bytes (one byte $=8$ bits). Data transfer rates are about 125 kilobits-per-second. It is rumored that a $\$ 100$ minifloppy drive will soon appear on the market.

Floppy disks also have their difficulties, the main problem being much higher wear than their floatinghead big brothers. Disk life is typically specified in the millions of passes-per-track.

Other equipment

Having deliberately skipped over terminals different than the key-board-printer, it is time to backtrack a little. A terminal is any device that reads in and writes out information: it can be equipment that handles punched paper tape or cards, magnetic cards and tape, bar codes, and so forth.

Paper tape is useful if you own an ASR Teletype machine with its built-in paper-tape reader and punch. With no additional expense except for the paper tape, you have a readily available storage medium. Unfortunately, this system is also slow and noisy. More sophisticated photoelectric readers and high-speed punches are available but they are fairly expensive. Low-cost optical readers eliminate some of the complexity and expense: The tape is pulled manually through the reader. This type of equipment is attractive if you have quite a lot of paper-tape software available.

Card readers and punches are not very popular. They are most familiar in the 80 -column by 12 -row format. One of their peculiar advantages is the ease with which a single program statement or data line can be modified without upsetting the rest of the program.

The line printer is an extension of the terminal printer or display, except it tends to be a high-speed device (for example, 125 lines-perminute with each line having 132 characters) used when there are many pages of data to be printed.

Plotters use servocontrolled coordinate positioning arms to produce permanent graphic records. They differ from chart recorders in that the stylus can draw complex patterns back and forth over the stationary paper.

If a terminal is situated far away and telephone lines or radio waves are used as the connecting medium, some type of communications interface or modem (modulator-demodulator) is needed. Tone and phase-modulation schemes are used, and error-correcting codes are added to enhance reliability. Acoustic couplers and modems are either built into terminals or are separate entities. The coupler connects to a telephone handset and converts the received telephone tones into an electrical output signal. It also converts an electrical input signal from the modem into sound that drives the phone's transmitter element. A portable terminal can be taken anywhere and the computer called up for field access. The modem performs the phase or frequency encoding to condition the digital bit stream for the communications channel.

Charged-coupled mass memories may become competitive with cassettes, cartridges and disks in the near future. Access is completely electronic and about 50 times faster than a high-specd disk. There are some devices already on the market with capacities of 1 million bytes.

If your application is highly scientific or mathematic and you perform such operations as evaluating matrices, you may find that your BASIC interpreter or other sofiware is much too slow. Peripheral floating-point hardware solves such problems with their high-speed parallel computation methods.

Interfaces

Interfacing between the computer and the peripheral device is an essential consideration. The interface can be as expensive as the peripheral itself. Unless the peripheral is directly compatible with the computer's voltage levels and timing, a controller will be necessary to match up the two. A widely adopted technique minimizes hardware modification by using software drivers stored in ROM or RAM to produce the signals needed by the peripheral. Software or firmware (ROM) approaches may adversely affect the performance of the peripheral or the entire system. Before rushing out to purchase any peripheral device, it is best to know exactly what other hardware and software components are nceded to make it work (and at what performance level) with a particular computer system.

R-E

how to Program A Computer

To get a computer to do what you want it to, you must communicate with it. Here's a look at three different levels of programming and how to use each one.

ART KLEIMAN
MANAGING EDITOR

THERE'S NOTHING DUMBER ON THE face of this earth than a computer. Oh boy, are they ever stupid! Go ahead, make one perfectly human mistake when writing or entering a program, hit "go" and.
nothing! A pathetic 20th-century staring match between man and machine. So, instead of finding out the winner of that match, let's grab the latest computer catalog.

What are we looking for in the catalog? Don't be silly, we're looking for help. Help comes in the form of a higher-level language. So, we scan past the paragraphs describing the CPU boards, memory, I/O. peripherals, etc., and go right to the software section. Here, we're bombarded with terms like machine code, assembly language, interpreter, compiler. BASIC, FORTRAN, API. EMPL.whew! Before you blow a human fuse, let's take a look at what these terms mean, and what they mean to the computer. To get a better understanding, however. let's first get back to basics.

How a computer is programmed

Digital computers are digital because they're built using digital logic IC's. And digital logic IC's eat, chomp and spit out binary numbers (zeroes and ones). That's it! It docsn't matter whether we're discussing the data base at the Pentagon or the most simplistic single-board microcomputer trainer. The only things flowing through those circuits are zeroes and ones.

The heart of the computer is the CPU, or microprocessor. This nifty device performs many functions, such as adding, subtracting. comparing, etc., in response to instructions. In other words, it can do many things, but it must be told what to do by giving it an instruction. Remember, this is a digital device, so when it adds or subtracts, it adds and subtracts binary numbers (zeroes and ones) and the instruction given to it must be in the form of a binary number.

If the microprocessor has one thing going for it, it's speed. It can perform many operations in a very short time. If we wanted to perform just one operation, we wouldn't need a computer. So, to perform many operations (hundreds, thousands, or even hundreds of thousands) very fast, we must feed the instructions to the microprocessor just as fast. To do this, we connect the microprocessor

EQUINOX 100 computer from Parasitic Engineering has an octal keyboard.
to a memory. The instructions and the necessary data are stored in the memory and called a program.

Inside the microprocessor is a register (a device for the temporary storage of a binary number) called a program counter. After storing the program in the memory, the program counter is set to the beginning ad-
dress (location) of the program. Then, you hit GO (instruct the microprocessor to begin exccution). The program counter addresses the first memory location and the memory responds by feeding the first instruction to the microprocessor. After the microprocessor does its thing by executing the instruction, the program counter is incremented (advances) by one and addresses the next memory location. Again, the memory responds by feeding the next instruction to the microprocessor. The microprocessor executes this instruction and again increments the program counter by one. This process continues until the entire program is executed.

So, programming a computer means that you have to store the program in the memory. This is done by writing and then entering the program in the computer's memory. This can be done at three different levels-machine language, assembly language and higher-level language.

Machine-language programming

You could write the program in digital form and then enter the program into the memory one digit at a time. This is machine-language programming. Figure 1 shows a simple program for adding two numbers together. The program is written for the 8080 microprocessor, one of the more popular 8 -bit microprocessors. (A bit is a binary digit and a byte is 8 bits.) The 8080 is an 8 -bit microprocessor because it physically has eight data lines. These data lines are used to input instructions and data and also to output the results. The 8080 also has address lines for addressing memory. However, eight address

lines aren't enough. Eight bits would enable the 8080 to address only 256 memory locations, hardly enough program space to do anything except add two numbers together. So, internally, the 8080 gangs two bytes together and feeds them out on 16 address lines. Sixteen address lines enable the 8080 to address 65,536 memory locations-quite a lot! To feed a memory location to the microprocessor on the eight data lines, however, requires two operations. First, the low-order address byte (the eight least significant bits of the memory address) is input and then the high-order address byte (eight most significant bits of the memory address) are input. This idea is implemented in the simple addition program shown in Fig. 1. Let's take a look at it and see what happens at each step of execution.

The addition program occupies 15 memory locations starting at location 0 (represented by the 16 -bit binary number 0000000000000000). Basically, the program takes the binary number stored in a specific memory location, adds it to the binary number stored in another memory location and stores the result in a third memory location. For discussion purposes, the left-hand column in Fig. 1 numbers each program step the way you're used to seeing numbers-in decimal form. This will make it easier for us to refer to each program step.

The very first memory location (program step 1) contains an instruction that tells the microprocessor to load the HL register pair with the immediately following two data
bytes. Both the H and the L . registers are 8 -bit registers located inside the microprocessor IC. When told to do so by the instruction, the microprocessor gangs these two registers together to form a single 16 -bit register, called the HL register pair. The 16-bit HL register pair is used to specify a 16 -bit memory location. The microprocessor instruction is also called the op-code.

Now, back to the program. The next memory location (program step 2) contains the low-order 8-bits of the memory address, which is to be loaded into Register L of the HL

SOL TERMINAL COMPUTER has computer and alphanumeric keyboard in a single enciosure.
register pair (by program step 1). Program step 3 contains the highorder 8 -bits of the memory address, which is to be loaded into Register H of the HL register pair. After the microprocessor completes program step 3, the HL register pair con-
tains the memory address 0000000000001100 . This memory location, coincidentally, contains the first number of our addition problem. Program steps 4,5 and 6 do the same things that program steps 1,2 and 3 do but with the DE register pair. Here, the DE register pair is loaded with memory address 0000000000001101 . This memory location contains the second number of our addition problem. So far, we've got the HL and DE register pairs loaded with two memory addresses, each one of the memory locations containing one number of our addition problem.
Program step 7 contains an instruction that tells the microprocessor to load the accumulator with the contents of the memory location specified by the DE register pair. The accumulator is another internal register within the microprocessor. This register is the working register. It is used to manipulate data, perform math and logic operations, store results, etc. The accumulator is involved with just about every operation the microprocessor performs. So far, we have the accumulator loaded with the first number of our addition problem.

Program step 8 is where the two numbers are actually added. This instruction tells the microprocessor to add the contents of the accumu-

Program Step	Memory Location		Instruction Data	Comment (Meaning of Instruction)
	High-Order	Low-Order		
1	00000000	00000000	00100001	Load the HL register pair with the two immediately following data bytes
2	00000000	00000001	00001100	Memory address, low-order byte
3	00000000	00000010	00000000	Memory address, high-order byte
4	00000000	00000011	00010001	Load DE register pair with the two immediately following data bytes
5	00000000	00000100	00001101	Memory address, low-order byte
6	00000000	00000101	00000000	Memory address, high-order byte
7	00000000	00000110	00011010	Load accumulator with contents of memory location specified by DE
8	00000000	00000111	10000110	Add accumulator contents of memory location specified by DE. Store results in accumulator.
9	00000000	00001000	00110010	Store accumulator in memory location specified by two following data bytes
10	00000000	00001001	00001110	Memory address, k (ow-order byte
11	00000000	00001010	00000000	Memory address, high-order byte
12	00000000	00001011	01110110	Halt
13	00000000	00001100	XXXXXXXX	First number of addition problem
14	00000000	00001101	XXXXXXXXX	Second number of addition problem
15	00000000	00001110	XXXXXXXX	Result of addition

FIG. 1-MACHINE-LANGUAGE PROGRAM for adding two numbers together. The actual program consists of the instruction/data that is stored in the corresponding memory locations.
lator with the contents of the memory location specified by the HL register pair. The result of the addition operation is stored in the accumulator. We could leave the result of the addition in the accumulator if we wanted to, but in actual practice this is hardly ever done. The result is either fed to an output port that is connected to a CRT terminal, a printer or something similar, or it can be stored in another memory location. Since we don't have any peripheral equipment connected to our computer, we'd simply store the result in another memory location. Program step 9 does just this.

Program step 9 contains an instruction that tells the microprocessor to store the contents of the accumulator in the memory location specified by the immediately following two data bytes. Program step 10 contains the low-order byte of the memory address, and program step 11 contains the high-order data byte of the memory location. Now, we have the result of the addition operation stored in memory location 0000000000001110 .

Program step 12 is a HALT instruction. This tells the microprocessor that the program is finished and to stop execution. Program step 13 is

ACT-I TERMINAL has alphanumeric keyboard. Monitor shows how information is displayed.
the memory location containing the first number of the addition problem, program step 14 is the second number in the addition problem and program step 15 is the result of the addition operation.

To run the program, we would simply load program steps 13 and 14 with the two numbers and set the program counter to 0000000000000000 . Then hit GO. You could examine the contents of memory location 0000000000001110 to obtain the result.

Entering a machine-language program

Now that you know what a ma-chine-language program is and what

FIG. 2-TYPICAL FRONT PANEL of computer showing toggle switches and LED indicators.
it looks like, let's take a look at how we load it into the machine. The program isn't fed to the microprocessor; it's stored in the memory. This means that we would have to address the right memory location and store the data/instruction at that location. We could do this by using toggle switches on the front panel of the computer-16 toggle switches connected to the address lines and eight toggle switches connected to the data lines (see Fig. 2). We would also need another toggle switch to instruct the memory IC's to store the data on the data lines. This switch could be labeled STORE, WRITE, ENTER, or anything appropriate. An example of how one such toggle switch is connected is shown in Fig. 3. One position of the toggle switch would be labeled 0 and would ground the line, the other position would be labeled 1 and connect the line to +5 volts.

FIG. 3-FRONT PANEL TOGGLE SWITCHES apply +5 volts to microprocessor in one position, and ground in the other position.

Now, we're set. Well, almost. The toggle switches permit us to enter the program, but there is no way we can check the data stored in the memory to see if we entered it correctly. So, we connect eight LED's to the data lines and install them on the front panel along with the toggle switches; a lit LED signifies 1. Now we are set.

To load the program into memory, set the address switches to the first memory location, set the data switches to the first instruction and then hit ENTER. Then, set the 16 address switches to the next memory location, set the eight data switches and again hit ENTER. Continue this procedure until the entire program is loaded. Be careful, though, don't make any errors. If you do, the program won't run. Make a mistake entering just one bit, just one, and the program won't run.

As you see, entering a program this way can be quite tedious. Of course, with short programs such as the one shown in Fig. 1, the procedure isn't too bad. But with longer programs that really do something, the situation becomes more complicated. Some programs can run 2000, 5000, 10,000 program steps or longer, and the situation gets a lot worse. With patrence and diligence, however, you can become quite good at entering programs this way. With a lot of practice, you can whiz your fingers across those toggle switches so fast that you will dazzle your family and friends. However, those toggle switches may grow limp with fatigue, not to mention your fingers.

This type of front panel was com mon in the early microcomputers One of the very first hobbyist computers was the Mark 8 and it had a similar front panel. It was a construction project published in the July 1974 issue of Radio-Electronics. The first commercially available microcomputer was the Altair, which also had a similar front panel. Another early microcomputer was the 1 m -
sai, again with the same type of front panel. Both the Altair and the Imsai are popular microcomputers, still going strong in the marketplace. That's because they can be programmed using higher-level languages. You'll discover what these languages are later on in this article, but now let's get back to the front panel.

It's obvious that using toggle switches is no way to enter a ma-chine-language program. There must be a better way, and there is. Let's sit back for a moment and take a look at that 8 -bit data word we are entering. Is there another, shorter way to represent those same 8 bits? If we split these 8 bits up into two groups of 4 bits, we could represent each 4 -bit group by a hexadecimal digit. A group of 4 bits provides 16 possible combinations of zeroes and ones. If

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	B
1100	C
1101	D
1110	E
1111	F

FIG. 4-FOUR-BIT BINARY WORD and corresponding hexadecimal value.

Program Step	Migh Order	Low Order	Instruction Data
	00	00	21
2	00	01	0 C
3	00	02	00
4	00	03	11
5	00	04	0 D
6	00	05	00
7	00	06	1 A
8	00	07	86
9	00	08	32
10	00	09	0 E
11	00	0 A	00
12	00	0 B	76
13	00	0 C	XX
14	00	0 D	XX
15	00	0 E	XX

FIG. 5-HEXADECIMAL MACHINE-LANGUAGE program is identical to the program shown in Fig. 1 , except the binary numbers are represented by their hexadecimal equivalents.
we want to represent each of those 16 combinations with a single digit number, we need a numbering system to the base 16 . Figure 4 shows the 4 -bit group and the corresponding hexadecimal digit. Don't be confusedhere A, B, C, D, E and F represent numbers, not letters. Now, if we recombine those two 4 -bit groups back into a single 8 -bit group, we can represent those 8 bits with 2 hexadecimal digits. For example, 00000000 would be represented as 00 , and 11111111 would be represented as FF.

CONNECT A TV SET to the Apple Il computer and you have a computer and CRT terminal.

Now we can construct a front panel using a hexidecimal keypad rather than toggle switches. Instead of the discrete LED's, we can use a 2-digit LED alphanumeric display for the data. (Remember in hexidecimal we count $0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}$, C, D, E, F, and so on. So we need 2
digits of readout, each one capable of counting from 0 through F.) We'll also have to include some circuitry to decode the hexadecimal digits into the corresponding 8 -bit word. Since the memory address requires 16 bits (2 bytes), we can represent it by using 4 hexadecimal digits.

To use this type of front panel. first switch to the MEMORY mode and enter the starting memory address. Figure 5 shows the simple addition program shown in Fig. I but in hexadecimal format. If you wanted to enter the program shown in Fig. 5, you would select the MEMORY mode and enter 0000 . You would then select the ALTER mode and enter the first instruction, which is 21 . Memory location 0000 would automatically be loaded with 21 , and the memory address would be advanced by 1 . The next data byte would then be entered by simply hitting 0 followed by a C. This process is continued until the entire program is entered. If while you were entering the program, you came across a memory location that you did not want to alter, you would simply hit the MEMORY INCREMENT switch and the contents at the memory location would remain intact. Or you could re-enter the contents at that memory location. In any event, entering machine-language programs in hexadecimal form is easier, both on the eyes and on the fingers, and there is much less of a chance of making a mistake.

Are binary and hexadecimal the only two ways to enter a machinelanguage program? No. There is a third way being used by a few manufacturers. The 8 -bit data word is
again split up but this time into three groups instead of two. The first group contains 2 bits and the last two groups contain 3 bits each. Since the maximum number of bits in any group is 3 , we could use the octal number system to represent the binary number contained in each group. Figure 6 shows the 3 -bit groups and the corresponding octal number. Since the first group contains only 2 bits instead of 3 bits, this group will have a maximum octal number of 3 . Since the other groups contain 3 bits, they will have a maximum possible octal number of 7 . We then recombine the groups to form a single 8 -bit data word, just like we did with the hexadecimal system. The octal numbers will range from 000 , corresponding to the data byte (a binary number) 00000000 , to 377 (equivalent to decimal 255), corresponding to binary 11111111 .

Binary	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

FIG. 6-THREE-BIT BINARY WORD and corresponding octal value.

We can now build a front panel just like we did for the hexadecimal system. But this time instead of using a hexadecimal keypad, we would use an octal keypad. Instead of using a 2 digit LED display for the data, we would use a 3 -digit LED display. The memory address requires a 6 -digit LED display instead of a 4-digit LED display. Otherwise, the front panel remains basically the same. Even the way we enter the programs remains basically the same. To see what an octal-based machine-language program looks like, the simple addition program already discussed is shown in Fig. 7 in octal format.

One final note on front panels: Front panels from different manufacturers differ in their features and therefore in the way programs are entered. Some front panels have automatic incrementing features while others may not. Some front panels are octal while others are hexadecimal. The Heath H8 and the Equinox from Parasitic Engineering are examples of full-featured octal front panels

Program Step	Memory Location		Instruction/ Data
1	Low Order	High Order	041
2	000	000	014
3	000	001	000
4	000	002	021
5	000	003	015
6	000	004	000
7	000	005	032
8	000	006	206
9	000	007	062
10	000	010	016
11	000	011	000
12	000	012	166
13	000	013	XXX
14	000	014	XXX
15	000	015	XXX

FIG. 7-OCTAL MACHINE-LANGUAGE PROGRAM is identical to the program shown in Fig. 1, except the binary numbers are represented by their octal equivalents.
(with display and keyboard). In any event, since the exact sequence of pushing buttons to enter a machinelanguage program does vary from computer to computer, do take a close look at the front panel before you buy your computer. Some computers are completely devoid of front-panel controls. This means that they have no switches or displays on the front panel other than a reset and/or a power ON-OFF switch.

The Alpha computer from TDL and the 6800 from Southwest Technical Products are examples of this type. To program this type of computer in machine language or any other language requires a keyboard connected to the computer's input port. Even though the nitty-gritty may be different, entering a machinelanguage program is basically (and I mean basically) the same no matter which computer you use.

Now you know what a machinelanguage program is and what it looks like. As you probably already guessed, it's no fun programming in machine language. The 8080 microprocessor has no less than 78 instructions, while the Z-80 microprocessor has 158 . This means that if you were to program in machine language, you would need a list of the instructions and the corresponding op-code (the binary form of the instruction). Then, depending on the computer, you might have to convert the opcode into octal or hexadecimal. If you were lucky, you might even find an instruction list with the op-code already in hexadecimal or octal. In any case, having to look up the op-code
for each instruction is slow and tedious. If you were ambitious, you could get around this by memorizing the entire instruction list and corresponding op-code for each instruction. But I, for one, do not relish the prospect of having to commit such a list to memory. There must be a better way, and there is.

Assembly language

Let's suppose that we were able to program the computer using alphanumerics instead of just plain numbers. We could code the instructions

VECTORS VP2 enclosure permits you to design your own microcomputer.
into a 3- or 4-letter group very similar to the original instruction, and the computer would translate this code group into the machine-language instruction. We could use a hexadecimal keyboard to speed the process. Certainly, a group of meaningful characters are much easier to commit to memory than a group of 8 zeroes and ones. Also, if we wrote this "translator" program so that it takes care of all the memory addresses, programming would be much easier.

The translator program is called an assembler program and the 3- or 4letter groups that stand for the instruction are called a mnemonic (nee-monik-an casy-to-remember code word). A mnemonic is an abbreviated word that is intended to remind us of the original word. Let's take a closer look at mnemonics.

Program step 7 in Fig. 1 is an instruction that loads the accumulator with the contents of the memory location specified by the DE register pair. The corresponding mnemonic for this instruction is LDA (Loa D Accumulator). Program step 9 contains a store accumulator instruction. The mnemonic for this is STA (STore Accumulator). Another instruction is the halt instruction, and the corresponding mnemonic is HLT ($\mathrm{Ha} L T$). As you can see, mnemonics are definitely easier to remember than the binary op-code. In fact, we really don't even have to memorize the mnemonics. It's enough just to become familiar with them.

Let's take a look at what an assem-bly-language program is. Programming in assembly language is a little more difficult to grasp at first than machine language, but stick with it. We'll try to walk it through one step at a time. For discussion purposes, let's suppose you were writing the program down on a piece of paper. The assembly-language program is divided into four vertical columns. Each column is referred to as a field. The four fields are, from left to right, the LABEL, OPCODE, OPERAND and COMMENT fields.

So far you have a piece of paper
divided into four columns. The LABEL field is always the first column. A label is a letter, or a group of letters, that reference a memory location. For example, suppose you assigned the first line of your assembly program with the label START. Then, if at any place in the program you had to refer to the starting address of the program, you could simply use the word START. The assembly program would automatically translate the word START into the starting address of the program. Or, suppose you wanted to store the result of a calculation in a memory location. You could assign a label to that memory location. Then, if you wanted to fetch the result from memory, you could simply use that label. You don't have to label every memory location when you write the assembly program if you don't want to. In fact, you don't have to use any labels at all. To avoid labeling, simply leave the first column (label field) blank.

The second column (the OPCODE field) contains the mnemonic abbreviation of the instruction. Some instructions, however, require more information than just the mnemonic. For example, suppose you wanted to store the contents of the accumulator in a memory location. You would use the STA mnemonic in the opcode field, but you would also have to specify the memory location where you want the accumulator stored. This information would go in the OPERAND field. Depending on the particular assembler you were using, you could specify the memory location as a 16 -bit binary number, or an octal number, or hexadecimal, or even good old decimal. If you don't want to, you don't even have to worry about keeping track of memory locations. Remember the label field? If you assigned a label to the memory location, you could specify that memory location by using the label in the
operand field. The operand field contains necessary information other than just memory locations. For example, suppose you used a mnemonic (instruction) that involved a register pair. The operand field would specify which register pair the instruction would operate on. In other words, the operand field contains any additional information that the particular instruction requires.

The last column, the COMMENT field, is not used by the computer at all. It contains documentary information that you, as a programmer, can add to help you understand the program. You can add whatever alphanumeric information you desire in this column.

Now that you have at least a basic understanding at what an assembly language is, let's look at an actual program written in assembly language. The simple addition program that was discussed throughout this article appears in Fig. 8 in assembly language.

The first line of the assemblylanguage program contains the label START. The first line also contains the first instruction of the program in the form of the mnemonic LXI. This LXI mnemonic instructs the microprocessor to load the register pair with the immediately following data bytes (X's in the mnemonic stand for register pairs.) The operand column leads off with an H . This defines the register pair as the HL register pair. Next comes the hexadecimal data that is to be loaded in the HL register pair. A comma separates the two pieces of information in the operand field. The second line of the program contains another LXI instruction, but this time, as you can see from the operand field, it operates on the DE register. The comma again separates the hexadecimal data that is to be stored in the DE register pair.

The third line of the program con-

Label	Opcode	Operand	Comment
START	LXI	H, 000C	Load HL register pair with OOOC
	LXI	D, OOOD	Load DE register pair with OOOD
	LDAX	D	Load accumulator with memory specified by DE
	ADD	M	Add accumulator and contents of memory specified by HL
	STA	OOOE	Store accumulator in OOOE
	HLT	START	Halt Assembler directive, load program counter with starting address

FIG. 8-ASSEMBLY-LANGUAGE PROGRAMMING involves using mnemonics to represent machinelanguage instructions.
tains the mnemonic LDAX, which instructs the microprocessor to load the accumulator with the contents of the memory location specified by a register pair. The operand field specifies the DE register pair. In the next line of the program, the combination of the mnemonic and operand instructs the microprocessor to add the contents of the accumulator and the contents of the memory location specified by the HL register pair. The next line stores the contents of the accumulator in the memory location specified in the operand field. The next-to-last instruction is the HLT mnemonic, which instructs the

SOUTHWEST TECHNICAL'S 6800 system has optional floppy disc, printer and CRT terminal.
microprocessor to stop execution.
So far, as you can see, the assem-bly-language program is exactly the same as the machine-language program, but written differently in a much easier format to look at and understand than just binary numbers. The last line in Fig. 8 contains a mnemonic that is not a microprocessor instruction. The assembler program, in addition to understanding a mnemonic for each microprocessor instruction, understands several additional mnemonics called assembler directives. These are used to direct the assembler itself to do something. The mnemonic END tells the assembler that the program is complete and to stop assembling the program. The operand field contains the label START that loads the program counter with the starting address of the program. This means that after the program is assembled and loaded into the computer in that machine language, the program counter is set to the memory address that contains the first LXI instruction.

That is basically what assembly language looks like. Incidentally, the program shown in Fig. 8 is called a source program. It is in its raw form, it hasn't been translated into machine language. The assembler will translate into machine language, and Fig. 8 is the source for the assembler.

However, thus far you only have the source program written down on a piece of paper. Now, you'll have to put it into a form that the assembler can use. This requires some additional equipment for your computer.

Since assembly language is written in alphanumerics, you'll need an alphanumeric keyboard and an alphanumeric display; both of these are contained in a CRT terminal. To connect the terminal to your computer, you'll need a parallel interface board if your computer doesn't already have one. You'll also need an external device to store your source and assembler programs, and then load them back into the computer when needed at a later time. The most common storage device used in personal computing is the audiocassette tape recorder. This device is inexpensive and surprisingly reliable. To interface the cassette recorder to your computer, you need a cassette interface.

You also need a program to drive the cassette interface. This software is a program that directs the microprocessor to transfer the contents of memory, one location at a time, to the cassette interface when you want to store a program on a cassette tape. It also contains a routine that takes the digital data stored on the cassette tape and transfers it to sequential memory locations. This software is called a bootstrap program. You'll

COMBINATION RAM AND ROM memory board mates directly with the S100 bus.
also need software to drive the CRT terminal. If you're lucky, your computer contains both these programs, as well as several additional systems programs, stored in a permanent memory called a ROM. The system software is called a monitor program. If your computer doesn't contain a monitor ROM, then you'll first have to load the bootstrap program into the computer through the front-panel switches. Once the bootstrap program is loaded, you can then load the rest of the programs using the cassette tape recorder.

Now that you have the necessary equipment, you can write your source program in assembly language.

Assembly-language programming

To write your source program on the CRT terminal requires an additional program called a text editor. The text editor makes it much easier to write text on the terminal. It provides you with various edit functions in case you make a mistake, it has a tab function for setting up columns on the terminal, and it even has a cassette file routine that enables you to transfer several source programs to the same cassette tape.

X-Y PLOTTEA connected to computer permits hard copy drawinge.

The text editor is loaded into the computer via the cassette tape recorder. Once this is loaded, you can write your source program on the terminal. The keyboard on the terminal is very similar to a typewriter keyboard. It has all the letters and numbers, and it even has a shift key, space bar and carriage return. So to enter the source program, you merely type it out as if you were entering it on a typewriter.
The source program is entered by typing it one line at a time. The four fields are separated by spaces. For example, to designate the end of the opcode field and the beginning of the operand field, you enter a space by hitting the space bar on the keyboard. There will be times when you run across a column with nothing in it. To get around this, you again hit the space bar. For example, if the first column, the label field, is to be left blank, simply hit the space bar and you'll automatically start the next field, which is the opcode field.

The technique of using just a single space to separate the various fields results in a CRT display with the four fields appearing slightly shifted on each line. This may be confusing when you want to analyze the source program on the CRT display. I get around this by using the tab function associated with the text editor to automatically insert the correct num-

ber of spaces so that the four fields appear in four vertically aligned columns. Figure 9 shows what the source program in Fig. 8 would look like on the CRT display after you enter it. You'll notice that Fig. 9 looks exactly like Fig. 8 but without the names of the four fields. I also left out the comment field in Fig. 9.

START	LXI	$H, 000 \mathrm{C}$
	LXI	D, 000D
	LDAX	D
	ADD	M
	STA	$000 E$
	HLT	
	END	START

FIG. 9-ASSEMBLY-LANGUAGE source program as it would appear on a CRT terminal.

Once the source program is entered on the terminal, you then transfer the source program to a cassette tape. This is done by using the various commands provided us by the text editor.

You're now ready to use the as-sembly-language program to translate the source program into machine language. For the sake of discussion, let's assume that you're using a twopass assembler. It gets its name because the source program is loaded into the computer twice. The first thing you do is load the assembler program into the computer using the cassette tape recorder. Then, the source program is loaded into the computer, again using the cassette recorder. Next, rewind the cassette tape containing the source program and load it into the computer a second time. The CRT display will then tell you if there are any mistakes
in the source program as the computer compares the two programs. If there are no mistakes, you can then store the machine-language program on another cassette tape.

If there was a mistake, the source program will have to be corrected. To make a correction, first load the text editor back into the computer. Then load the source program. The corrections are easily made using the various edit commands available with the text editor. The corrected source program is then stored on the cassette tape and the whole assembly procedure is repeated.

Assembler programs are different

Not all assembler programs are the same. Before you buy an assembler program, make sure that it is intended to be used with the micro-

UC-2000 from Infinite Systems contains computer, CRT terminal, and floppy disc drives.
processor you have in your computer. Since assembler programs generate machine language, the machine language must be compatible with the particular microprocessor in your computer. For example, if you have an 8080 microprocessor in your computer, you must use an 8080 assembler program.

There are two types of assembler programs available; the most common type used in personal computers is the two-pass assembler. The other type of assembler program is called a one-pass assembler. Without going into the details of how an assembler program works, let's take a look at what the differences between these two types mean to you as a programmer. First, the two-pass assembler requires less memory to assemble the exact same source program than a one-pass assembler requires. So, with the same amount of memory in your computer, you could assemble larger programs using a two-pass assembler than with a one-pass assembler. However, using a two-pass assembler
requires more time since the source program must be loaded into the computer twice. As fast as cassette tape recorders seem for loading programs, they're still relatively slow. So, the trade-offs for the two types of assemblers are speed and memory requirements. Since memory is still quite expensive, the two-pass assembler is most commonly used in personal computers. The total memory requirements for using either type of assembler depends on the length of your source programs.

BK RAM memory board from Thinker Toys mates directly with the $\mathbf{S} 100$ bus.

Higher-level languages

So far, this article has been discussing machine language and assembly language. When you program in machine language, you communicate with the computer on the same level as the microprocessor. When you program in assembly language, you communicate with the computer by using mnemonics, and the assembler program translates the mnemonics into machine language. Is assembly language considered a higher-level language? The answer is no. The mnemonics are just another form of microprocessor instructions. One mnemonic is translated into one microprocessor instruction by the assembler program. A higher-level language translates one instruction into many microprocessor instructions.

The most common higher-level language for personal computers is BASIC. This language uses Englishlike statements and commands. For example, let's look at your addition program again, but this time written in BASIC. The program is written so it will add the numbers 2 and 3 together:

$$
\begin{aligned}
& 10 \mathrm{~A}=2+3 \\
& 20 \text { PRINT A } \\
& 30 \text { END }
\end{aligned}
$$

The numbers preceding the statements are called line numbers. These tell the computer which statements to execute first. The computer merely executes the statements in numerically ascending order. The line num-
bers are also used for reference by a few other commands in the BASIC repertoire. The first statement sets the value of the variable A equal to the sum of 2 and 3. The PRINT A statement outputs the result to either the CRT display or a hard-copy printer if you have one. The last statement tells the computer that the program is finished and to stop exccution. As you can see, writing programs on this level frees you from worrying about such things as memory locations, microprocessor registers, etc. You simply tell the computer what to do and the BASIC takes care of the rest.

MICROCOMPUTER CONTROL of AC appliances is possible with AC controller boards.

To program in BASIC, you again need a CRT terminal and a cassette tape recorder. First, you load the BASIC software into the computer using the cassette tape recorder. Then, you write the BASIC program on the alphanumeric keyboard. The program is written one line at a time. When you're finished, the CRT display will look exactly like the simple addition example. To execute the program, simply type RUN and hit the return key on the keyboard.

There are many, many variations of BASIC available. First, there's BASIC, and then there's EXTENDED BASIC. EXTENDED BASIC adds more features and commands to the BASIC repertoire. Also, there are variations between

WWW ENTERPRISES memory board uses Texas Instruments TMS-4060 memory IC's.

BASIC's written by different software suppliers. A program written using one kind of BASIC may not
run under another BASIC without some minor modifications. The use of semicolons, colons, commas, quotation marks, etc., in the program is called syntax. Some BASIC's are very flexible in the use of syntax while others are quite rigid . . . a point you should investigate before purchasing a BASIC.

Other higher-level languages are also available, including APL, EMPL, FORTRAN and others. However, these languages are not in common use in personal computers for various reasons. For example, APL requires the use of additional symbols not found on a standard alphanumeric keyboard. So, to use APL requires a special APL keyboard.

Higher-level languages are also classified as either compilers or interpreters. A compiler is very similar to an assembler program. That is, a compiler translates a source program into machine language, except that the source program is written using the statements associated with the higher-level language instead of mnemonics. The higher-level compiler resides in a high-speed external memory, such as a floppy disc. The source program is written and the compiler

HEATH H8 computer has an octal display and keyboard on the front panel.
translates it into machine language. Then the machine-language program is loaded into the computer and executed.

An interpreter, on the other hand, resides within the computer's internal memory. The source program is written using the higher-level statements, just as you did with the simple addition program. The interpreter translates the source progam one statement at a time into machine language, the computer executes the machine-language statements and then the interpreter translates the next statement in the source program. This process continues until the entire source program is translated and executed.

The disadvantage of using any higher-level language is the additional memory requirements. For example, even a BASIC interpreter is also classified by the additional internal memory it occupies. There are 4 K , 8 K and 12 K BASIC's available. The

DIABLO PRINTER is offered by International Peripheral Systems for personal computer systems.

4 K and 8 K usually signify a standard BASIC, while 12 K usually signifies an extended BASIC. If you have a computer with 16 K of internal memory and you use a 12 K BASIC, you only have 4 K of memory left to write your programs in.

The disadvantage of using an interpreter is lack of speed, since each

COMPUTER BOARDS from Processor Technology mates with the S 100 bus.
time a source program is executed, it must be translated. A compiler, on the other hand, translates the source program only once. Each time the program is executed, it is the ma-chine-language program that is executed. A compiler, therefore, is much faster than an interpreter.

The disadvantage of using a compiler is the high-speed external memory requirements. This high-speed external memory is expensive. It is for this reason that interpreters are in far more common use than compilers.

computer corner

How to prepare programs for microcomputers. PETER RONY, CHRIS TITUS, DAVID LARSEN AND JONATHAN TITUS*

DEFINITIONS

Editor-Allows edit functions such as addition of a line or character to a program, insertion, deletion, etc. It permits you to alter your program. The input could be anything from programs or reports to raw instrument data.
Assembler-Converts the assembly language code into machine code, accepting mnemonics and symbolic addresses instead of actual binary values for addresses, instructions and data.
Monitor-Controls the operation of the various programs available. The monitor can access the editor, assembler or other programs.
Debugger--Allows a step-by-step observation of the program flow and the results of the program's operation. A debugger can be used to change data or instructions, alter registers, etc.
Breakpoint-A special instruction that can be inserted in a program to break off the normal program control and return control to a debug-type program. When a breakpoint is executed, the debug program indicates what the computer was doing at that point.
Cross Assembler-An assembler program that generates the program binary code for a computer other than the type it is being used with. For example, an 8080 crossassember could operate on a PDP-8 minicomputer.

ONE OF THE PROBLEMS MANY MICROCOMPUTER users face is preparing software for their particular applications. The soft ware examples that we have provided in past columns are short enough to be put together or assembled by hand; that is, we translated each mnemonic into its octal, hexadecimal or binary equivalent. Addresses for jumps, calls and input/ output devices are easily added or changed since the computer programs are short and the addresses are probably listed in sequential order on the rough draft. Unfortunately, not all software preparation is this easy. Many application programs can be many thousands of steps long. This column will discuss the aids that are available for microcomputer program development.

One difficulty in software development is a clear, concise statement of the problem and how it is to be solved. All the desired results, inputs, outputs and the complete program flow, including all decision-making, must be considered before starting to program. An outline or block diagram can be used, but a flow chart is much easier to follow. Figure 1 shows a typical flow chart.

After the problem has been well thought out and a solution put in flow-chart form, a decision must be made. Is the program short enough to be easily translated by hand? In many cases, particularly with simple programs, hand assembly makes sense. In other cases, software development aids called editors and assemblers are faster and more efficient. To understand how editors and assemblers work,

[^3]consider the process we used to put together this column.

We first outline the subject so that it can be covered well in short-column format. A handwritten copy is then typed, corrected, retyped and perhaps corrected and typed a final time. The illustrations and examples are formulated and drawn separately. This is the editing process. When writing a column, avoid references such as, ". . . the example below" or "the table on the following page." When the column is composed or assembled, references to tables, figures, etc., are much easier to follow.

FIG. 1
Computer software is similarly developed. An editor program is used, either on a microcomputer or a timesharing system, to edit the individual program steps. The editor can correct, change, insert and delete steps in the program, just as with a manuscript. The editor program is generally unaware that you are writing a computer program, since you can use most editors to write a letter, prepare mailing lists, etc. When an editor is used to prepare a mnemonic program, symbolic addresses are often assigned to software tasks within the program. In this way, the actual value of the addresses for subprograms or subroutines is not needed. Just as in a column we refer to Fig.

4, the program refers to the letters, LOOP, as the starting address of a time-delay loop. Allowing the use of symbolic addresses for program steps means that the program can be changed without regard to the actual numeric values of addresses.

The assembler program must accept information from the editor and generate an output in a form that is compatible with your computer. Just as you assemble short programs one step at a time, so does the assembler. The assembler contains a table of mnemonics and their equivalent values. For example, an 8080 assembler would translate an MVIA instruction into 076 octal. The assembler also assigns real. 16-bit addresses to your symbolic addresses, such as LOOP. When using symbolic addresses, be sure to have a program step for each symbolic address and assign an address if you use a symbol. You cannot assign the same "name" to more than one address. Most assemblers will recognize a redefined symbol or an undefined symbol, and will produce an error message to let you know what needs to be corrected.

The final assembler output will be in punched paper tape, cassette or disc form ready to run on your system. Most assemblers will also produce a program listing showing the address of each step, the date in each successive location, a symbolic address name and the mnemonic plus any comments.

After a program has been assembled it will probably have to be debugged. The program checkout and debugging can be difficult without additional software "tools." Computer control panels are useful, but reading binary codes can become tedious, and there are many computers without external controls and readouts. There are debugging programs for most microcomputers that allow you to change instructions, list blocks of data or instructions and single-step through a program.

Many debug programs can establish a breakpoint in the software being tested. When the computer reaches a breakpoint, the instruction at that address is executed and an output device, such as a teletypewriter, lists the contents of important internal CPLi registers. Breakpoints indicate not only that the computer reached a certain point in the software, but also what the computer did when it got there. If a breakpoint is set in the normal program flow and it is not reached, there is something wrong with the program. In this case, the breakpoint is moved closer and closer to the start of the program until the error is found. When the error is found, it can be corrected by using the debug program to change an instruction, data, etc.
Once the program operates correctly, the debug program should be able to save it on paper tape, a cassette, or some other medium. It should also be able to read such programs back into memory. In any case, when errors are found you should re-edit and reassemble the software to produce a complete, error-free documented listing.

R-E

Integer multiplication and division routines for the 8080 microprocessor.

SINCE MICROPROCESSORS LIKE THE 8080 and 6800 do not have multiplication and division instructions, subroutines (containing addition and subtraction instructions) must be written to perform these operations. A typical paper-and-pencil decimal and binary multiplication for two different number sets is shown in Fig. 1.

Multiplication

Figure 1 shows that the mechanics of multiplication in the two number sets are

1024	
$\times 596$	
6144	00100110
92160	$\times 00011011$
+512000	00100110
610304	0000000000
	00100110000
	0001001100000
	000000000000
	+000000000000000
000010000000010	

FIG. 1-MULTIPLICATION EXAMPLES shown in decimal and binary.
very similar. As the multiplicand is multiplied by larger and larger powers of 10 or powers of 2 , the result of the multiplication must be shifted to the left by one, to increase the significance of the result. For instance, when 1024 is multiplied by the 9 in 596, the result (9216) is shifted to the left by one place, because the multiplication is really 90×1024 and the result is really 92,160 .

To multiply two binary numbers, the 8080 must examine the multiplier one bit at a time. If the bit is a logic 1 , the multiplicand is added to the partial sum (initially 0). If the bit examined is a logic 0 , then the multiplicand is not added to the partial sum. Regardless of whether or not that addition takes place, the partial sum must be shifted one bit position, after each bit in the multiplier is examined.

To keep the 8080 multiplication software example (see Table 1) as simple as possible, we write a subroutine that multiplies two 8 -bit numbers. These two numbers must be stored in registers D and E of the 8080, and the 16 -bit result is stored in registers B and C (register pair B). When the subroutine is called, register pair B is cleared because it will be

TABLE 1-EIGHT-BIT MULTIPLICATION SUBROUTINE

MP88,	LXIB	/SET THE REGISTER PAIR THAT WILL HOLD THE
	000	/RESULT OF THE MULTIPLICATION, TO
	000	/000 000 (HEXADECIMAL 0000)
	MVIL	/LOAD L WITH 8 (DECIMAL), THE BIT COUNT
	010	/OR THE NUMBER OF SHIFTS TO TAKE PLACE
NXTBIT,	MOVAD	/MOVE THE MULTIPLIER INTO A
	RAR	/SHIFT IT ONE BIT TO THE RIGHT
	MOVDA	ITHE CARRY IS EITHER 1 OR 0, SAVE THE
		MULTIPLIER
	JNC	/IF THE CARRY IS 0, JUST SHIFT THE
	NOADD	/RESULT. IF THE CARRY IS A 1, ADD THE
	0	/MULTIPLICAND TO THE RESULT, THEN SHIFT IT
	MOVAB	/GET THE MSBY OF THE RESULT
	ADDE	/ADD THE MULTIPLICAND
	MOVBA	/AND SAVE THE MSBY OF THE RESULT
NOADD,	MOVAB	/NOW SHIFT THE 16-BIT RESULT ONE
	RAR	/PLACE TO THE RIGHT.
	MOVBA	/SAVE THE NEW MSBY
	MOVAC	/NOW SHIFT THE LSBY TO THE RIGHT.
	RAR	
	MOVCA	
	DCRL	/HAVE ALL 8 BITS OF THE MULTIPLIER
	JNZ	/BEEN TESTED YET? NO, TEST ANOTHER BIT
	NXTBIT	
	0	
	RET	/YES, THE ANSWER IS IN REGISTER PAIR B

used to store the partial sum and finally the 16 -bit result of the multiplication. Register L is loaded with the number of bits in the multiplier, octal 010 , hexadecimal 08 or decimal 8. At nxtbit, the multiplier that is contained in register D is moved to register A , shifted once to the right and saved back in register D. These instructions shift a single bit of the multiplier into the earry so that the state of the bit (logic 1 or logic 0) can be tested with software instructions.
If the state of the carry after the shift is a logic 0 , this means that the multiplicand is not added to the partial sum, so the JMP to NOADD (NO ADDition) is executed. If the carry is a logic 1, the JMP to NOADD is not executed. Instead, the multiplicand, contained in register E , is added to the partial sum, which is contained in register pair B.

At NOADD, the 16 -bit number contained in register pair B is shifted to the right by one bit position. The multiplier's bit count, which is contained in register L , is then decremented by one. When this bit count is decremented to 0 , the 8080 will return from the subroutine, with the 16 -bit result of the multiplication in register pair B. If the bit count is nonzero,
the JMP to NXTBIT is executed, so that another bit in the multiplier can be tested and any additions performed.

Subtraction

The multiplication of the two 8 -bit binary numbers was performed by an add and shift algorithm. Binary division can be performed by a subtract and shift algorithm. An example of binary division is shown in Fig. 2. Binary division is more

$$
1011 \begin{array}{r}
00001110 \\
- \\
-\frac{1011}{10000} \\
\\
- \\
-\frac{1011}{1011} \\
\end{array}
$$

FIG. 2-BINARY DIVISION example.
complex than binary multiplication. To divide two binary numbers, the divisor is subtracted from a larger and larger portion of the dividend that has less and less significance. If the divisor is larger than the part of the dividend from which it is being subtracted, a borrow occurs. In this case, the divisor is added to the result of

DIV88,	LXIH	/LOAD THE L REGISTER WITH 010 (DECIMAL 8)
	010	IOR HEXADECIMAL 08 AND LOAD THE H
	000	/REGISTER WITH 000 (THE RESULT WILL BE IN H)
	MVIC	/LOAD THE C REGISTER WITH 000
	000	/THIS REGISTER WILL BE USED FOR STORAGE
NXTBIT,	movae	/MOVE THE DIVIDEND TO A
	RAL	/SHIFT THE MSB OF A INTO THE CARRY
	movea	/SAVE THE SHIFTED DIVIDEND BACK IN E
	MOVAC	/GET THE PARTIAL DIVIDEND STORED IN C
	RAL	ISHIFT THE CARRY INTO THE LSB OF A.
	SUBD	/SUBTRACT THE DIVISOR FROM THIS NUMBER
	JNC	/IF THE CARRY $=0$, THE SUBTRACTION DID NOT
	NOADD	/PRODUCE A BORROW. THEREFORE, SHIFT THE
		/QUOTIENT. OTHERWISE ADD THE DIVISOR BACK TO A
	ADDD	/ADD THE DIVISOR BACK TO THE CONTENT OF A.
NOADD,	MOVCA	/SAVE THE PARTIAL DIVIDEND BACK IN C.
	CMC	/COMPLEMENT THE CARRY.
	MOVAH	/AND SHIFT THE CARRY INTO THE LSB
	RAL	/OF THE H REGISTER. IF A BORROW, $\mathrm{C}=0$
	MOVHA	/IF NOT, $\mathrm{C}=1$
	DCRL	/HAVE ALL EIGHT BITS BEEN SHIFTED YET?
	JNZ	/NO, SHIFT ANOTHER BIT OF THE
	NXTBIT	/DIVIDEND AND TRY ANOTHER SUBTRACTION
	RET	/THE ANSWER IS IN H WHEN THE 8080 RETURNS

the subtraction to re-generate the original part of the dividend being tested. A 0 is then entered in the quotient for the bit position being tested. If no borrow occurs when the subtraction is performed, the result of the subtraction is used as the new partial dividend, and a 1 is entered into the quotient since the divisor was successfully subtracted from the dividend. The subroutine listed in Table 2 divides the content of register E (the dividend) by the 8 -bit content of the register D (the divisor) and the 8 -bit result (the quotient) is saved in register \mathbf{H}
and the remainder is saved in register C .
The LXIH instruction in the subroutine (Table 2) loads the number of bits in the divisor (octal 010, decimal 8) into register L and register H is loaded with 0 . This is done because register \mathbf{H} will be used to store the quotient. The mvic instruction loads register C with 0 . Register C will be used to store the partial dividend. At nxtbit, the dividend is shifted one bit to the right. The most-significant-bit (MSB) is shifted into the carry, and the remaining bits of the dividend are saved back in register E. The partial dividend in
register \mathbf{C} is then moved to register A , and the bit from the dividend is shifted from the carry into the least-significantbit (LSB) of register A. The subd instruction subtracts the divisor from the partial dividend, which was in register A. If the divisor is subtracted from a larger or equal number, the JMP to NOADD is executed. If the divisor is greater than the partial dividend, a borrow occurs, therefore the divisor is added to the result of the subtraction by the adDB instruction. Register A now contains the original partial dividend.
When the 8080 executes the instructions at noadd, it must enter a logic 0 or logic 1 into the quotient. Therefore, the state of the carry is complemented by the CMC instruction and then saved in register H. If the subtraction did not generate a borrow, then the carry is a logic 0 , but a logic I must be entered in the quotient. If a borrow was generated, the carry is a logic 1 . This means that a logic 0 must be entered into the quotient. The CMC instruction simply complements the state of the carry to the state needed in the program. Finally, the content of register L is decremented by the DCRL instruction. If more bits within the dividend must be tested, the 8080 jumps back to NXTBIT, otherwise it returns from the subroutine with the quotient in register H and the remainder in register C.
There are a number of software tricks that can be used to simplify these two mathematical subroutines. However, unless your microcomputer can execute multiply-and-divide instructions or has special multiply/divide hardware, these operations will have to be performed using these or similar algorithms. R-E

NOT IN THE CHARTS

The following companies provide products of interest to the computer hobbyist, but are not listed in the charts on the following pages.

NAME OF COMPANY

COMPUTER FAIRE COMPUTER PROFESSIONALS
CREATIVE COMPUTING HAYDEN PUBLISHING
HOWARD H. SAMS \& CO., INC. LEXINGTON BOOKS LOGICAL SER VICES INC. MCGRAW-HILL PUBLISHING O A E
OSBORNE \& ASSOC.
PRENTICE-HALL, INC. POWER-ONE, INC.

RONDURE COMPANY SHUGART ASSOC. SYLVANHILLS LAB INC. SYSTEX ENTERPRISES INC. TAB BOOKS IBM Selectric Terminals Floppy \& Minifloppy ${ }^{\text {TM }}$ Disc Drives X-Y Plotter
 Computer Portrait System Books

 single dual \& triple output modelsPRODUCT
Proceedings \& Silicon Gulch GazetteBook Club
Books
Books
Books
Books
Microcomputer Programming Course
Books
PROM Programmer
Books
Books
Open frame DC power supplies

ADDRESS

Box 1579, Palo Alto, CA 94302
P.O.B. 582, Princeton Rd., Hightstown, NJ
P.O. Box 789-M. Morristown, NJ 07960

50 Essex St., Rochelle Park, NJ 07662
4300 W. 62nd St., Indianapolis, IN 46206
125 Spring St., Lexington, MA 02173
1080-H E. Duane Ave., Sunnyvale, CA 1221 Ave. of the Americas, New York, NY 676 W. Wilson Ave., Glendale, CA 91203
P.O. Box 2036, Berkeley, CA 94702

Route 9W, Englewood Cliffs, NJ 07662
Power-One Drive, Amarillo, CA 93010
2522 Butler St., Dallas, TX 75] 35
435 Oakmead Pkwy., Sunnyvale, CA 94086
P.O. Box, Pittsburg, KS 66762
P.O. Box 402, King of Prussia, PA 19406

Monterey \& Pinola Aves., Blue Ridge Summit, PA 17214

Personal Computers DIRECTORY

The following pages contain detailed information on the personal computer products made by a large number of manufacturers. We think you'll find it informative
60 About The Charts
61 Mainframes
62 CPU And Memory Boards
63 Parallel And Serial I/O Boards
64 Cassette And Dise I/O Boards
65 Video Modules
66 Video Terminals
67 Other Boards
68 List of Manufacturers

The letter reproduced at the top of this page was sent as a part of an 8-page questionnaire to all of the personal computer product manufacturers we could locate. We followed up by handing out additional forms at personal computer shows. The resulting tables, on the pages that follow, were compiled from the data we received. For further information on any of the items described, please contact the indivi-
dual manufacturer. You'll find the name, address and phone number of everyone who participated, on the last page of this special section. When you write or phone for more information please inform the company that you read about their products in this special section. By doing so, you'll help us guarantee a more complete response from all personal computer manufacturers the next time we do this kind of report.

MAIN FRAMES							
MANUFACTURER	MODEL	BUS SYSTEM	FRONT PANEL			SLDTS FOR PLUGINS	COMMENTS
			SWITCHES	KEYBOARD	display		
APPLE	A250016X	APPLE 50		TYPEWRITER		8	FAN
COMPAL	80	S-100		ARS-33, 37		5	
COMPUCOLOR	II	40-PIN		ASC11	CRT	0	CONVECTION CODLED
COMPUTER SHOP	CS-100	S-100		ASC11 HEX	HEX		FAN BATTERY BACK UP
E \& L	MMO-1	E \& L		OCTAL HEX	LED		EXPANSION THROUGH SELF-POWERED AOD ONS
ELECTRONIC CONTROL TECHNOLOGY	T-10	S-100	YES			10	WHISPER FAN
HEATH COMPANY	$\begin{aligned} & \mathrm{H}-8 \\ & \mathrm{H}-11 \end{aligned}$	$\begin{aligned} & \text { BH-50 } \\ & 38-\mathrm{PIN} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$	OCTAL		$\begin{gathered} 10^{\circ} \\ 6 \end{gathered}$	CONDUCTION COOLED FAN
INFINITE INC.	UC2000	S-100		ASC11	CRT	8	AXIAL FAN
ITHICA AUDIO		S-100	YES	BINARY			SMART FRONT-PANEL BOARD
JADE COMPUTER PRODUCTS	$\begin{aligned} & \text { S-100, SS-50 } \\ & \text { KIM-1 } \end{aligned}$						
MIDWEST SCIENTIFIC INSTRUMENTS	MSI-6800	SS-50	YES	YES	CRT	16	FAN
NBL		SPECIAL		HEX	BINARY		
NETRONICS R \& 0	ELF II	EEF II	YES	HEX	7-SEG HEX	5	ON BOARD FILTER \& REGULATOR
NORTH STAR	HORIZON	S-100	YES			12	FAN
NOVALINC.	760	44-PIN	YES	ASO11	VIDEO	7	
OHIO SCIENTIFIC	$\begin{aligned} & \text { C2-4P } \\ & \text { C2-S1S } \\ & \text { C3-S1 } \end{aligned}$	48-PIN 48-PIN $48-\mathrm{PIN}$	YES YES YES	ASC11	VIDEO	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	INCLUDES AUDIO CASSETTE INTERFACE, 4K RAM, 8K BASIC IN ROM, FAN
PARASITIC ENGINEERING	EQUINOX-100	S-100	YES	12-KEY OCTAL	OCTAL LED	20	CONSTANT VOLTAGE FERRO-RESONANT TRANSFORMER INTELLIGENT FRDNT PANEL BOX FAN
QUAY	8000	S-100	YES			12	MUFFIN FAN
REALISTIC CONTROLS	21110	S-100		FULL A/N		6	FAN
SEALS ELECTRONICS	PUP-1	S-100	YES		INDICATORS	11	FAN
SOUTHWEST TECHNICAL PRODUCTS	68/2	SS-50	YES			15	7 MAIN PLUG-IN SLOTS 8 I/O PLUG-IN SLOTS
TEI INC.	$\begin{aligned} & \text { MCS-112, 122, } \\ & \text { RM 12, RM22 } \end{aligned}$	S-100	YES			120822	FAN
VECTOR GRAPHIC	$\begin{aligned} & \text { VECTOR } 1 \text {. } \\ & 1+, 1++ \end{aligned}$	S-100	YES			18	FULLY SHIELDEO ANO TERMINATED MOTHERBOARD WHISTLER FAN
WAVE MATE	JUPITER II, III	72-PIN	YES		$\begin{aligned} & 4 \text { DIGIT } \\ & \text { HEX } \\ & \hline \end{aligned}$	11	CONVECTION COOLEO

CPU									MEMORY								
manufacturer	$\begin{aligned} & \text { BUS } \\ & \text { SYSTEM } \end{aligned}$	MICRO－ PROCESSOR	FEATURES				$\frac{\underset{y}{x}}{\sum_{x=1}^{\Sigma}}$	$\begin{aligned} & \underset{\sim}{\Sigma} \\ & \sum_{\sim}^{\Sigma} \end{aligned}$	$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	$\frac{\underset{x}{x}}{\sum_{x}^{2}}$	$\begin{aligned} & \underline{y} \\ & \sum_{c}^{\text {In }} \end{aligned}$		SPEED $\mu \mathrm{s}$			ADDRESS SELECTION	COMMENTS
			S	$\begin{aligned} & \stackrel{9}{3} \\ & \underset{3}{3} \\ & \stackrel{\rightharpoonup}{㐅} \\ & \stackrel{c}{2} \end{aligned}$		OTHER											
APPLE CENTRAL DATA	APPLE 50	6502	－	－	－	2．	48	12 噌	APPLE 50	＊：48	12	12	500	YES ${ }^{\text {no }}$	NO \％ YES	PLUG IN JUMPERS 16K blocks with 2K DG SELECT	－＊${ }_{\text {a }}$
COMPAL	S－100	8080	－		－	vectored interrupt	$\begin{gathered} 512 \\ \text { BYTES } \end{gathered}$		5－100	UPTO 64	$\begin{gathered} \text { UPTO } \\ 3 \end{gathered}$	UPTO 3	$\begin{array}{r} 250 \\ -\quad 400 \end{array}$	Yes ${ }^{+}$	YES		－
COMPUCOLOR	40－PIN	8080	－	－	－	timers	4，32	16， 24	40－PIN	16	16	16	450	N0	YES	NO	MEMORY IS ON CPU CARD
＊COMPUTER SHOP	S－100＊	280 －	－			＊			S－100	16 70 64	4		200	YES	YES	4 K	＊＊＊．＊
the Computerist									KIM－1	8		8	450	YES	YES		INDEPENDENTLY JUMPERABLE AT ANY 2K BOUNDRY
E \＆L instruments－	E \＆L	8080	－	－		－$\varepsilon^{4} \quad \cdots$	$\begin{aligned} & 512 \\ & \text { BYTES } \end{aligned}$	$\underset{\text { BYTES }}{512}$	E\＆L^{-3}	－ 2		1	450	N0	N0	＊．＊	MOUNTS ON CPU POWERED FROM CPU
ELECTRONIC CONTROL technology	S－100	8080，2－80							S－100	2，16	2	2	$\begin{aligned} & 450 \\ & 200 \end{aligned}$	YES	YES	4K BLOCKS	
ELECTRONIC SYSTEMS	－					\cdots			S－100	8		\％	450	YES	YES	，＊．	＊＊
franklin electric									S－100	8			450， 250	YES	YES		
godbout		，＊．．．．		\％					$\begin{array}{c\|} \mathrm{S}-100 \\ \mathrm{BH}-50 \end{array}$	8－16．${ }^{8} 12$		＊	＊＊＊${ }^{\text {\％}}$	$*$		s^{-3}	4K BLOCKS＊
heath company	$\left\lvert\, \begin{aligned} & \text { BH-50 } \\ & \text { LSI-11 } \end{aligned}\right.$	$\begin{aligned} & 8080 \\ & \text { LSI-11 } \end{aligned}$	－				4	1×8	$\begin{aligned} & \begin{array}{l} \text { BH-50 } \\ \text { LSI-11 } \end{array} \end{aligned}$	$\begin{aligned} & 8 \times 8 \\ & 4 \times 16 \end{aligned}$			$\begin{aligned} & 450 \\ & 500 \end{aligned}$	YES	YES		
IMSAI MFG．	S－100	8080， 8085	－	\bullet	－	programmable ram module	1104	， 2	S－100	4， 16, 32,64 32,	$\begin{array}{r} 4 \\ 16 \end{array}$	＊${ }_{4}^{4} \times$	$\%_{0}-475$	＊${ }_{\text {YES }}^{*}$	YES	－：	．${ }^{\text {a }}$
INFINITE INCORP．	$\begin{aligned} & \text { S-100, CS-100 } \\ & \text { INFINITE } 72 \text {, } \end{aligned}$ COSMAC	$\begin{aligned} & 8080,8085, \\ & Z-80,1802 \end{aligned}$	－	－	－		． 5	3								at	＊－－
ithica audio		2－80	－		a	$\because \quad \because$			S－100	8 STATIC 16，32，64 DYNAMIC	16／32	16／32	25008450	YeS	YES	DIP SWITCH EPROM IK INCREMENTS	$x^{*}=x^{\infty} x$
JADE COMPUTER PRODUCTS	$\begin{aligned} & \text { S-100 } \\ & \text { KIM-1 } \end{aligned}$	$\begin{aligned} & 8080,6502, \\ & Z-80 \end{aligned}$							$\left\lvert\, \begin{aligned} & s-10, \text { ss } 50 \\ & \text { SIM-1 } \end{aligned}\right.$								
MARINCHIP SYSTEMS	S－100	9900 ＊				－			\％${ }^{\text {\％}}$	－			"	－	＊		＊＊
mıowest scientific instruments	Ss－50	6800	－				128	4	SS－50	56	56	56	250	YES	YES	SWITCH	
mountain hardware	樓					k		\sim	S－100 ${ }^{\circ}$	－		7.5	500	No	YES	EVERY 8 K	＊ 2^{*}
NBL		SC／MP II		－	－		1			1			500	YES	YES		
NETRONICS	ELF－HI ${ }^{\text {\％}}$	1802 ＂		－		\because	2.56		ELF－II	4^{*}	＊		100	Yes		$\begin{aligned} & \text { 4K BLOCKS } \\ & \text { TO } 64 \mathrm{~K} \end{aligned}$	fully buffered \＆TRISTATE
NORTH Star	S－100	8080，2－80	O						S－100	16			200	YES	YES	28 K REGIONS	
＇NOVALINC	珤										号		\％			EACH 8K ÖF MEMORY	\％${ }^{\text {\％}}$
NOVALINC．	44－PIN ．		－			MEMORY	＊		5－100＊					NO^{*}	YES	CAN BE JUMPERED ON 8K boundries	－，－－
OHIO SCIENTIFIC	48－PIN	$\begin{aligned} & 8080,6502 \\ & Z-80 \end{aligned}$		－	－		$\begin{gathered} 4 \\ 16 \end{gathered}$	8	48－PIN	$\begin{gathered} 4 \\ 16 \end{gathered}$	$\left.\begin{aligned} & 8 \mathrm{ON} \\ & \mathrm{CPU} \end{aligned} \right\rvert\,$		$\begin{aligned} & 350 \\ & 250 \end{aligned}$		N0		PIA based parailled I／O OPTIONAL
PARASITICENGINEERINE	$\mathrm{S}-100 \times$	$8080 A^{5}$	\bullet	－		．	$\begin{gathered} 512 \\ \text { BYTES } \end{gathered}$	$\begin{gathered} 512 \\ \text { BYTES } \end{gathered}$	S－100	$4 \text { STATIC }$		－	－${ }^{450}$		Yes	dip selectable to ANY 4K BLOCK	\％）

CPU									MEMORY								
MANUFACTURER	$\begin{aligned} & \text { BUS } \\ & \text { SYSTEM } \end{aligned}$	MICROPROCESSOR	FEATURES				$\underset{\underset{\alpha}{x}}{\underset{\sim}{x}}$	$\begin{aligned} & \bar{\Sigma} \\ & \sum_{0}^{\Sigma} \\ & \underset{\sim}{n} \end{aligned}$	BuS SVSTEM	$\begin{aligned} & \overline{\underline{I}} \\ & \underset{\alpha}{\mathbb{a}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \underset{o}{\Sigma} \end{aligned}$		SPEED μ s				COMMENTS
						OTHER										ADDRESS SELECTION	
Quay	S-100	Z-80	-	-	-		1		S-100	$\begin{gathered} 8 \text { STAT } \\ \text { IC } \end{gathered}$		ON CPU	450	YES	YES	4K BLOCKS	
REALISTIC CONTROLS	S-100		-		-		64	2	S-100	64	2	2	250	YES	YES	$0^{0000}{ }_{H}-\mathrm{FFFF}_{\mathrm{H}}$	
SO COMPUTER PROD	S-100	Z-80	-	-	-		1	4 8	S-100	$\begin{gathered} 4,8 \\ \text { STATIC } \\ 8 \text { TO } 64 \end{gathered}$		$\begin{aligned} & 16 \\ & \& \\ & 32 \end{aligned}$	250/500 STATICRAM 375 EXPANDORAM 450 EPROM	YES	YES	AT ANY LOCATION	
SEALS									$\begin{aligned} & \text { S-100 } \\ & \text { SS-50 } \end{aligned}$	$\begin{aligned} & 8,16 \\ & 32,8 \end{aligned}$	4		$250 \& 500$				
SMOKE SIGNAL BROADCASTING							\cdot		SS-50	16		8	250 \& 400	YES	YES	SWitch select	
Solid statesales									F8, KIM, 6800	4			450	YES	NO		
SOUTHWEST TECHNICAL PROOUCTS	SS-50	6800	-				$\begin{gathered} 128 \\ \text { BYTES } \end{gathered}$	$\begin{gathered} 8 \\ \text { BYTES } \end{gathered}$	SS-50	$\begin{gathered} 4,8 \\ 16,32 \end{gathered}$		UPTO 8 BYTES		YES	YES	ANY 8K BLOCK	
SZERLIP ENTERPRISES									S-100	1		$\begin{aligned} & \text { UP TO } \\ & 32 \end{aligned}$	450	YES	YES		
TEI INC	S-100	8080, Z-80							S-100	16			250		YES		
THINKER TOYS	S-100	8080	-	-	-		$\begin{gathered} 256 \\ \text { BYTES } \end{gathered}$	$\stackrel{1}{\text { BYTES }}$	S-100	$\begin{gathered} 8 \\ 65 \end{gathered}$			$\begin{aligned} & 250 \\ & 250 \end{aligned}$	NO		4K BLOCKS 8K WINDOWS	
VECTOR GRAPHICS	S-100	8080, z-80							S-100	8, 16		2, 12		YES	YES	SWITCH 8K BLOCKS	
WWW ENTERPRISES									NONE	16			270 DYNAMIC 250 STATIC	YES	N0		
WAVE MATE	72-PIN	Z-80, 6800							72-PIN	UPTO 32		350	350	YES	YES		

1/O BOARDS																				
MANUFACTURER	I/O PARALLEL							1/0 SERIAL								I/O CASSETTE				
	BAUD						COMMENTS	BAUD												
	$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	$\begin{gathered} \text { NO } \\ \text { PORTS } \end{gathered}$		RATE				$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { NO } \\ \text { PORTS } \end{array}$	RATE					COMMENTS	$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	BAUD RATE	RECORDING FORMAT		COMMENTS
APPLE	APPLE 50	1	-					APPLE 50	1	$\begin{gathered} 9600 \\ 110 \end{gathered}$	-		-				1500	APPLE ENCODED		
COMPAL		1							2	$\begin{gathered} 5600 \\ 50 \end{gathered}$	-		-	-			$\begin{array}{r} 2400 \\ 300 \end{array}$	PHASE ENCODED	-	
COMPUCOLOR							ON CPU CARD								ONCPU CARD					4
COMPUTER SHOP	S-100		-			-		S-100	2	$\begin{gathered} 9600 \\ 55 \end{gathered}$		-	-	-						
E \& LINSTRUMENTS	E \& L	3		$\begin{gathered} 1750 \\ 0 \end{gathered}$			PART OF CPU CARD	E \& L	1	$\begin{aligned} & 110 \\ & 110 \end{aligned}$					PART OF CPU CARD	E \& L	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	2-TONE AUDIO VART FORMATTED		

MANUFACTURER	I/OBOARDS																			
	1/0 PARALLEL							I/O SERIAL								I/O CASSETTE				
	$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	$\begin{gathered} \text { NO } \\ \text { PORTT } \end{gathered}$		BAUD			COMMENTS	$\begin{aligned} & \text { BUS } \\ & \text { SYSTEM } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { PORTS } \end{aligned}$	baUd					COMments	$\begin{gathered} \text { BUS } \\ \text { SYSTEM } \end{gathered}$	$\begin{aligned} & \text { BAUD } \\ & \text { RATE } \end{aligned}$	RECORDING FORMAT		COMMENTS
				rate						RATE										
ELECTRONIC CONTROL TECHNOLOGY								S-100	2	$\begin{gathered} 19200 \\ 50 \\ \hline \end{gathered}$		-	-	-						
ELECTRONIC SYSTEMS								APPLE II		$\begin{gathered} 30000 \\ 0 \end{gathered}$						S-100	$\begin{gathered} 1200 \\ 0 \end{gathered}$	VART (FSK)	-	2 DIFFERENT UNITS
FRANKLIN ELECTRONICS	S-100	1				-		S-100	3	9600		-	-	-						
GENERAL MICRO SYSTEMS												-	-			S-100		BIPHASE MANCHESTER	-	1600 BITSIINCH HI-DENSITY DIGITAL 2000 BYTES/SEC
HEATH COMPANY	BH-50 LSI11	3	-					$\begin{aligned} & \text { BH-50 } \\ & \text { LSI- } 11 \end{aligned}$		$\begin{aligned} & 9600 \\ & 110 \\ & 9600 \\ & 50 \end{aligned}$		-								
IMSAI MFG	S-100	${ }_{6}^{20 R}$	\bullet					S-100	2	$\begin{gathered} 56000 \\ 560 \end{gathered}$		-				S-100	$\begin{gathered} 4800 \\ 800 \end{gathered}$	tarbell	-	
IOR		6	-																	
JADE COMPUTER PRODUCTS	S-100							S-100								S-100				
MIDWEST SCIENTIFIC PRODUCTS	SS-50	8	-	$\begin{gathered} 19200 \\ 110 \end{gathered}$		-		SS-50	3	$\begin{array}{\|c} 19200 \\ 110 \\ \hline \end{array}$		\bullet	-	-		SS-50	$\begin{aligned} & 330 \\ & 110 \end{aligned}$	KC	-	
NBL		1			-													KC		
NETRONICS	ELF-II	2	-		-			ELF-II				-	-	-		ELF-II	1000	SIMILĀ TO KC	-	BOAROALSO CONTAINS MONITOR PROM
NORTH StAR		1					$\begin{aligned} & \text { ON MOTHER } \\ & \text { BOARD } \end{aligned}$		1	$\begin{gathered} 9600 \\ 75 \end{gathered}$		-	-	-	ON MOTHER BOARD					
NOVAL	44-PIN						88-BIT PORTS ON CPU CARD	44-PIN	1	$\begin{aligned} & 9600 \\ & 150 \end{aligned}$		-	-	-			2500	DIGITAL PHASE ENCODED	-	
OHIO SCIENTIFIC	48-PIN	2		$\begin{array}{\|l} 1 \mathrm{MHZ} \\ \text { SYSTEM } \end{array}$																
PARASITIC ENGINEERING	S-100	1	-					S-100	1	$\begin{gathered} 4800 \\ 110 \end{gathered}$	-		-	-		S-100	300	KC	-	CONTROLS 3 Recorders
PERCOM								S-100	1	$\begin{aligned} & 9600 \\ & 110 \end{aligned}$		-	-	-		$\begin{aligned} & \text { S-100 } \\ & \text { SS-50 } \end{aligned}$	$\begin{aligned} & 2400 \\ & 300 \\ & 1200 \\ & 300 \end{aligned}$	Extended kc extended kc	-	
PERSONAL COMPUTING																SS-50	$\begin{gathered} 2400 \\ 110 \end{gathered}$	KC @ 300 BAUD MANCHESTER @ 2400 BAUD	-	
QUAY	S-100	8	-																	
REALISTIC CONTROLS	S-100	2	-	200000			BUILT INTO fLOPPY CONTR	S-100		$\begin{gathered} 56000 \\ 110 \end{gathered}$		-	-	-						
RONDURE COMPANY															FDR IBM SELECTRIC					
SOUTHWEST TECHNICAL	SS-50	1	-	$\begin{aligned} & 9600 \\ & 110 \end{aligned}$		-		SS-50	1	$\begin{aligned} & 9600 \\ & 110 \end{aligned}$		-	-	-			300	KC	-	CONTROLS 2 RECORDERS
TEI	S-100	3		19200		-		S-100	3	19200		-	-	-						
Thinker Toys																S-100	300	KC	-	CONTROLS 3 CASSETTES INCLUDES 3 SERIAL \& PARALLEL PORTS
WAVE MATE	72-PIN	${ }_{4}^{20 R}$	-					72-PIN	$\begin{gathered} 10 R \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 19200 \\ 50 \\ \hline \end{gathered}$	-	-	-	\bullet		72-PIN	$\begin{aligned} & 1200 \\ & 300 \\ & \hline \end{aligned}$	KC	-	

	FLOPPY INTERFACE								OTHER BOARDS				
MANUFACTURER	BUS SYSTEM	$\frac{i}{i n}$		-			OPERATING SYSTEM	COMMENTS	BUS SYSTEM	도	$\frac{0}{5}$	足	OTHERS
APPLE		-		2		\bullet	YES			\bullet	-	-	
CALIFORNIA INOUSTRIAL													MOTHER BGARD
CANDA SYSTEMS						-	YES		S-100			-	REAL TIME CLOCK AC POWER SWITCH
COMPAL	S-100	-		4	-		MICROPOLIS						4-SLOT EXPANDER
COMPUTALKER									S-100	-			AUDIO AMPLIFIER AND SPEAKER REOUIRED
COMPUCOLOR		-				-	IN ROM						
COMPUTER SHOP	S-100	-		$\begin{gathered} 1 \text { TO } \\ 3 \end{gathered}$	-		NORTH STAR						
E \& L									E \& L				EPROM \& 8K RAM
ELECTRONIC CONTROL TECHNOLOGY													CARO CAGE, MOTHER BOARD, EXTENDER
ELECTRONIC SYSTEMS													VART \& BAUD-RATE GENERATOR TV TYPERWRITER MODEM
HEATH COMPANY	BH-50	-		2	-								
\|MSAI	S-100	-	-	7		-	ENHANSED CP/M						
infinite	S-100	-		3			NORTH STAR						
ITHICA AUDIO	S-100	-	-	8	-							\bullet	$\begin{aligned} & \text { A/D-D/A-8 BIT } \\ & \text { A/D-D/A-12 BIT } \end{aligned}$
JADE COMPUTER PRODUCTS									S-100	-	-		
MICRONICS									S-100				bug trap
MIDWEST SCIENTIFIC INSTRUMENTS	$\begin{aligned} & \text { S-100 } \\ & \text { SS-50 } \end{aligned}$		-	4	-		YES		SS-50				CALENDAR CLOCK OPTO ISOLATOR
MOUNTAIN HARDWARE									$\begin{gathered} S-100 \\ \text { APPLE-II } \end{gathered}$			\bullet	REMOTE CONTROL CLOCK CALENDAR
NETRONICS									+				PROTOTYPE
NORTH STAR	S-100	-		3			2.5K DOS						HARDWARE, FLOATING POINT
NOVAL	44-PIN	-		2		-	YES		44-PIN				PROM BURNER 2ND DISPLAY DRIVE COLOR SELECTOR
ObJective design									S-100				PROGRAMABLE CHARACTER GEN 512×256
OHIOSCIENTIFIC	48-PIN	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$		-	YES	\%	48-PIN				GRAPHICS 128×128 4 COLOR ALPHABETICS
PAIA											-		
PARASITIC ENGINEERING	S-100	-	-	4		-	CP/M		等		\%		

LIST OF PERSONAL COMPUTER MANUFACTURERS

Here's a list of names addresses and phone numbers for every company that filled out one of our questionnaires. If a name you are looking for is missing, they did not respond to our request for information.

APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, CA 95014
(408) 996-1010

CALIFORNIA INDUSTRIAL
15214 Grevill Ave.
Lawndale, CA 90260
(213) 772-0800
T. RYDER

CANADA SYSTEMS, INC.
1353 Foothill Blvd.
La Cañada, CA 91011
(213) 790-7957

KEN FINSTER
CENTRAL DATA CO.
P.O. Box 2484, Station A

Champaign, IL 61820
(217) 359-8010

JEFF ROLOFF
COMPAL
(Computer Power \& Light)
12321 Ventura Bivd.
Studio City, CA 91604
(213) 760-3345

IVA KALB
COMPUCOLOR CORP 5965 Peachtree Corners East
Norcross, GA 30071
(404) 449-5961

RODNEY HUNT
COMPUTALKER CONSULTANTS
P.O. Box 1951

Santa Monica, CA 90406
(213) 392-5230

THE COMPUTER FAIRE
Box 1579
Palo Alto, CA 94302
(415) 851-7075

JIM WARREN
COMPUTER SHOP
288 Norfolk SI.
Cambridge, MA
(617) 473-2323
R. RIVERA

THE COMPUTERIST
P.O. Box 3
S. Chelmsford, MA 01824
(617) 256-3649

ROBERT M. TRIPP
E \& L INSTRUMENTS
61 First Street
Derby, CT 06418
(203) 735-8774

RICHARD J. VUILLEQUEZ
ELECTRONIC CONTROL
TECHNOLOGY
763 Ramsey Avenue
Hillside, NJ 07205
(P.O.B. 6, Union, NJ 07083)
(201) 686-8080

DENNIS P. DUPRÉ
ELECTRONIC SYSTEMS
P.O. Box 212

Burlingame, CA 94010
(408) 374-5984

FRANKLIN ELECTRIC
733 Lakefield Rd.
Westlake Village, CA 91361
(805) 497-7755

FRANK PETERS

GENERAL MICRO-SYSTEMS
12369 W. Alabama Place
Lakewood, CO 80228
(303) 985-3423

BOB SMITH
BILL GODBOUT ELECTRONICS
Box 2355
Oakland Airport, CA 94614
THE HEATH COMPANY
Benton Harbor, MI 49022
(616) 982-3417
V. VIRGIL BENNETT

IMSAI MFG. CORP.
14860 Wicks Blvd.
San Leandro, CA
(415) 483-2093

INFINITE INC.
1924 Waverly Place
Melbourne, FL 32901
(305) 724-1588

BILL HABERHERN
IOR
P.O. Box 28823

Dallas, TX 75228
(214) 358-2671

ITHACA AUDIO
P.O. Box 91

Ithaca, NY 14850
(607) 273-3271

JADE COMPUTER PRODUCTS
5351 West 144th
Lawndale, CA 90260
(213) 679-3313

LEXINGTON BOOKS
D.C. Heath \& Co.

125 Spring Street
Lexington, MA 02173
(617) 862-6650

LOGICAL SERVICES INC.
1080-H Easi Duane Ave.
Sunnyvale, CA 94086
(408) 245-8855

MARINCHIP SYSTEMS
16 St. Jude Road
Mill Valley, CA 94941
(415) 383-1545

JOHN WALKER
MICRONICS, INC.
P.O. Box 12545

Raleigh, NC 27605
LENNY HEATH
MIDWEST SCIENTIFIC
INSTRUMENTS, INC.
220 W. Cedar St., Olathe, KS 66061
(913) 764-3273

DR. CHILDRESS
MOUNTAIN HARDWARE, INC.
P.O. Box 1133

Ben Lomond, CA 95005
(408) 336-2495
D. PACE

NBL
Box 1564
Richardson, TX 75080
(214) 231-2703
W.A. KLUCK

NETRONICS R\&D LTD.
333 Litchfield Road
New Milford, CT OE776
(203) 354-9375

NORTH STAR COMPUTERS, INC.
2547 Ninth Street
Berkeley, CA 94710
(415) 549-0858

CA GRANT
NOVAL, INC.
8401 Aero Drive
San Diego, CA 92123
(714) 277-8700

AGO KISS
OAE (Oliver Advanced
Engineering)
676 West Wilson Avenue
Glendale, CA 91203
(213) 240-0080
dOUGLAS E. OLIVER
OHIO SCIENTIFIC
Box 36
Hiram, OH 44234
(216) 562-3101

DON MUCHOW
OSBORNE \& ASSOC.
P.O. Box 2036

Berkeley, CA 94702
(415) 548-2805

PARASITIC ENGINEERING
P.O. Box 6314

Albany, CA 94706
(415) 547-6612

PCS (Processor Control Systems)
Box 544
Celoron, NY 14720
(716) 664-2871

WALTER E. PELTON, Gen'l Mgr.
PERCOM DATA CO., INC.
318 Barnes
Garland, TX 75042
(214) 276-1968

LUCY MAUCH
PERSONAL COMPUTING CO.
3321 Towerwood Drive
Dallas, TX 75234
(214) 620-2776

STEVIE GENTRY
POWER-ONE, INC.
Power-One Drive
Amarillo, CA 93010
(805) 484-2806
steve cole
QUAY CORP.
P.O. Box 386

Freehold, NJ 07728
(201) 681-8700

Mr. ROESSLER
REALISTIC CONTROLS CORP.
404 West 35th Street
Davinport, IA 52806
(319) 386-4400

RONDURE COMPANY
2522 Butler Street
Dallas, TX 75235
(214) 630-4621

SD COMPUTER PRODUCTS
Div. SD Sales
P.O. Box 28810

Dallas, TX 75228
(214) 271-4667

800 527-3460

SEALS ELECTRONICS, INC.
10728 Dutchtown Rd.
Concord, TN 37922
(615) 966-8771

ROBIN CONTENT, Mkig. Dir
SHUGART ASSOC.
435 Oakmead Pkwy.
Sunnyvale, CA 94086
(408) 733-0100

GARY YOST
SMOKE SIGNAL BROADCASTING
6304 Yucca
Hollywood, CA 90028
(213) 462-5652

RIC HAMMOND
SOLID STATE SALES
P.O. Box 74

Somerville, MA 02143
(617) 547-4005
J. HEFFRON

SOUTHWEST TECHNICAL
PRODUCTS CORP.
219 W. Rhapsody
San Antonio, TX 78216
(512) 344-9778

DAN MEYER
SYLVANHILLS LAB INC.
P.O. Box 646

Pittsburg, KS 66762
(316) 231-4440

SHARON BELL
SYSTEX ENTERPRISES INC.
P.O. Box 402

King of Prussia, PA 19406
(215) 482-9481
(215) 631-1318

SZERLIP ENTERPRISES
1414 W. 259th Street
Harbor City, CA 90710

TEI inc.
c/o CMC MARKETING CORP.
5601 Bintliff \# 515
Houston, TX 77036
(713) 783-8880

THINKER TOYS
1201 10th Street
Berkeley, CA 94710
(415) 527-7548

JEAN MORROW
VECTOR ELECTRONICS CO., INC.
12460 Gladstone Avenue
SyImar, CA 91342
(213) 365-9661

FLOYD HILL
VECTOR GRAPHIC INC.
790 Hampshire Road A\&B
Westlake Village, CA 91361
(805) 497-6853

WWW ENTERPRISES
P.O. Box 548

Harbor City, CA 90710
(213) 835-9417

WARREN WEIMER
WAVE MATE
1015 W. 190th Street
Gardena, CA 90248
(213) 329-8941

DENNIS BROWN

BUILD DICIITOLL

A digital timekeeping accessory that displays the time of day and elapsed-time data in step with the Telco billing timer. Use it wisely and reduce toll charges 15%.

FRED BLECHMAN, K6UGT
until recently, only the largest corporations could alford the expensive computerized systems required to effectively manage long-distance telephone call expenses. Now, for less than $\$ 50$, the Digi:Toll (Cervco, Inc., 211 Mill Creek Drive, Youngstown, OH 44512) solidstate digital clock/elapsed timer makes it possible to control the cost of longdistance and other toll calls as they are being made.

The Digi:Toll is a digital timekeeping instrument designed specifically for tollcall management applications. Although it is not connected to the telephone line, its special circuits continuously display the same time-of-day and elapsed-time data used by the telephone company to calculate toll charges. With this data and an understanding of phone company timing and discount procedures (covered later on in this article) you can reduce the monthly cost of long-distance and timed local calls by 10% to 20% on each phone equipped with a Digi:Toll. Table I shows the projected savings possible if the Digi:Toll only reduces your toll charges by 15%.

The standard Digi:Toll can be operated from a $117-\mathrm{VAC} 60-\mathrm{Hz}$ sourec and functions as a 12 -hour time-of-day clock and a 24 -minute call timer. Four versions can be built by cutting foil traces and using wire jumpers. The 24 -hour-display "T" version is useful for ham operation or for international calls. The "L" (Legal) version can be used by attorneys, accountants, advertising agencies and oth-
ers who need a long-duration (24-hour) timer for billing, timing conferences, etc. as well as a 24 -minute call timer. The "W" (WATS) version Digi:Toll is a totalizing timer for WATS-line users. This version totals (up to 24 hours) each individual call measured on the 24 -minute timer. Also, for use in foreign countries at 50 Hz , modification " P ," usable with all other versions, can be constructed with only one foil break and one jumper wire.

All Digi:Toll versions are also useful for special applications such as in photo and test labs, where they can even be built into other equipment.

Features of the unit

The use of digital display is a significant improvement over past telephonetiming devices, such as stopwatches and
hourglasses, since it combines continuous data presentation with ease of interpretation. The Digi:Toll's unique physical design (Patent No. 242,847) contributes to its overall effectiveness. The anodized aluminum enclosure fits conveniently in front of all commonly used desk phones and is held firmly in place, ready for instant use, by the weight of the telephone itself, as shown in Fig. 1. This arrangement encourages continued use of the Digi:Toll for cost-reduction purposes. Since no connection to the phone lines is required, no phone company approval or monthly charges are involved.
The extra-bright $1 / 2$-inch-high LED display and special glare-reducing filter make for easy readability under a wide range of viewing angles and ambient light conditions. Important timing and dis-count-data tables are prominently located

TABLE I-TYPICAL SAVINGS USING A DIGI: TOLL

Average Long Distance Cost/Month/Phone (\$)	Savings/Month at 15\% (\$)	1st Year Savings (\$)	5-Year Savings ($\$ \mathbf{)}$
25	3.75	45	225
50	7.50	90	450
75	11.25	135	675
100	15.00	180	900
125	18.75	225	1125
150	22.50	270	1350
175	26.25	315	1575
200	30.00	360	1800

above the LED display for easy reference. The proper use of these tables (described later) is a key to the effective use of the Digi:Toll.

Operating power is furnished through a Class II, wall-plug enclosed transformer that eliminates batteries. The line cord is thin and unobtrusive. If a power failure or brownout occurs, a flashing display warns

FIG. 1-THE DIGI-TOLL mounts in front of desk telephone and is held in position by its weight.
of possible incorrect time information. Construction is simple and uncrowded, and complete parts kits, with step-by-step instructions, are available, as are preassembled units. See parts list for the various options.

Circuit description

The Digi:Toll circuit, shown in Fig. 2, uses only one clock IC to count and display all the time-of-day and elapsedtime functions for all versions. The IC, a Fairchild 3817 (interchangeable A or D type) is the only IC available that can provide all display-sharing functions without having to provide additional external counter or divider circuits. (Although the 3817 appears identical to the National MM5316 pin-for-pin, some internal functions are not the same.) In addition, several special circuits have been incorporated in the clock/timer's overall design to optimize performance.

The AC input from wall-plug transformer Tl is converted to DC voltage by bridge rectifier RECTI and filtered by

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless noted.
R1-R3-100,000 ohms
R4-22 ohms
R5-47 ohms
R6-33 ohms, 2 watts, wire-wound
C1-1000 $\mu \mathrm{F}, 15$ volts, electrolytic
$\mathrm{C} 2-0.1 \mu \mathrm{~F}, 16$ volts, disc
C3-C6-0.01 $\mu \mathrm{F}, 16$ volts, disc
D1, D2, D6-1N914 signal diode
D3, D4-1N949 germanium diode (no substitutes)
D5-1N4733A 5.1-volt, 1-watt Zener
RECT1-VM08 50 PIV 1-amp bridge rectifier (Varo or equiv.)
IC1-Fairchild 3817 (A or D) digital alarm clock (no substitutes)
T1-11.5-volt, 175-mA Class II wall-plug transformer, $117-\mathrm{VAC}, 50-$ to $60-\mathrm{Hz}$ primary (Dormeyer PS-8514-no substitutes)
DIS1-DIS4 - Fairchild FND-500 7segment LED display, brightness code 08 or 09 or FND-560, any brightness code (no substitutes)
S1-4PDT alternate-action switch (IEE/ Schadow F4U-EE)
S2-S4-2PDT momentary-action switch (IEE/Schadow F2U-OA)
Misc.-two 9-pin right-angle header strips (AP Products 929835-01); switch button tops; PC boards; enclosure with end caps and screws; data plate; foam feet; antireflection display filter (Panelgraphic

Chromafilter Type CF-133 Color: Red 63); hookup wire for jumpers.

The following kits are available from Cervco, Inc., 211 Mill Creek Drive, Youngstown, OH 44512:

KIT DT-1K: Complete kit consisting of all components, PC boards, case, header-pin bending tool, and step-bystep assembly and applications manual, \$49.95.

KIT DT-P: Partial kit consisting of all components, including graded displays, switches, transformer and header strips, $\$ 29.95$.

KIT DT-B: Partial kit consisting of both PC boards; precision-milled, drilled, plated-through (PCB-B), solder-plated and reflowed on black substrate, $\$ 14.95$.

KIT DT-C: Partial kit consisting of case with hardware, data plate and Panelgraphic display lens, \$9.95.

The following assembled and tested units are also available from Cervco, Inc.:

DT-1A: Standard Digi-Toll, \$79.95.
DT-1A/T, L, W: Modified Digi-Toll, $\$ 89.95$.

Quantity pricing available on kits and assembled units.
All prices are postpaid in the U.S. Ohio residents add state and local taxes as applicable. For BankAmericard and Master Charge orders, include complete card number and expiration date.
electrolytic capacitor C1. Extra spurious high-frequency filtering is provided by capacitor C2. Resistor R1 and capacitor C3 shape and feed the AC -input frequency to the clock IC counter circuitry. Capacitor C6, which is connected to the metal case by a PC board trace, helps keep external static discharges (such as that built up from walking on a rug) from affecting the clock IC when you touch the case. Zener diode D5 and a 2 -watt resistor. R6, stabilize the variable output from the Class 11 transformer to keep $V_{s s}$

THE PC BOARD SUB-ASSEMBLY slides into specially designed extruded aluminum cabinet with non-reflective front panel and molded end caps. Data plate slides into sloping track.

SCHEMATIC DIAGRAM OF THE DIGI-TOLL. A single clock IC does all the timekeeping and FIG. 2-SCHes the four seven-segment displays. One display is intentionally mounted up-side down. Several versions are made possible by making changes in the circuitry as in the table.
ond. Furthermore, when the last two digits reach " 59 ," the next count advances the preceding digit by one.

Although this display is intended to show the alarm-time hours and minutes in a 24 -hour format, it is being used here
to represent elapsed time in minutes and seconds up to 23 minutes and 59 seconds. On the next count, it goes to 0000 and continues counting. when switch Sl is pressed again and pops up, this elapsed (alarm) time is held in the clock IC's
alarm register. To recall this time, depress $S 1$ to display the last count and the sequence starts advancing again one count-per-second.
To "zero" the elapsed-time display, depress spring-loaded pushbutton RESET
switch S2; this feeds a positive voltage to pin 34 . Since a positive voltage is already being applied to pin 33, the clock IC is commanded by the internal logic to reset the display to 0000 . Table II shows the operating modes for ICl in order to clarify the interaction of mode and set functions.

Switch Sl performs another important function. Display DISI (the tens-ofhours digit) is normally blank during the time-of-day display (except when it shows a "1" from 1000 to 1259) in the 12-hour format. However, for the elapsed-time display, display digit DISI must show a " 0 ," " 1 ," or " 2 " as required. Switch Sl's other terminals program this digit with the IC segment-driver outputs.

TABLE II-DIGI: TOLL OPERATING MODES

Unit Designation	Display Control Pin Connected To $V_{\text {bs }}$		Set Control Pin Connected To $\mathrm{V}_{\mathbf{3 s}}$			
		Display Mode	None	$\begin{gathered} 33 \\ \text { (slow) } \end{gathered}$	$\begin{gathered} 34 \\ \text { (fast) } \end{gathered}$	Both
Standard, T, L, P	None	Time of day	Time of day		Fast time advance	$\begin{gathered} \text { Fast } \\ \text { time } \\ \text { advance } \end{gathered}$
L, W, P	32	24-hour elapsed-time (reset)	N / A^{1}	N / A^{1}	N / A^{1}	24-hour display resets to 0000
All	31	24-minute elapsed time	N / A^{1}	Elapsed time run	N/A ${ }^{1}$	24-minute display resets to 0000

Note:

1. $N / A=$ Not applicable to Digi:Toll.

When Sl is in the up (Time) position, ICI pins 1 and 40 operate the time-of-day/power-failure indicator dot at the upper Ieft-hand corner of DIS 1--a steady "on" display means the clock is showing time in the 12 -hour format, while a flashing dot means a power interruption has occurred and the clock may be incorrect. However, when switch $S 1$ is in the down (ELAPSED TIME) position it applies the output voltages of pins 1, 40 and 39 to various segments of DISl. The 3817 clock IC is designed to display the 24 hour format by wiring these pins to the segments shown in Fig. 2.
Two unusual features are worth noting here. First, the dot referred to is simply the decimal point of DIS1, which is mounted in inverted fashion on the PC board for this reason. Second, you may wonder whether pin 39 (the $1-\mathrm{Hz}$ output used as a 24 -hour segment driver) would make the segment blink continuously. The answer is (although this information would not be found on the data sheets for the 3817 or MM5316) pin 39 is a $1-\mathrm{Hz}$ output only when the clock IC is in the 12 -hour mode; in the 24 -hour mode, it is a segment driver!

If you've followed the explanation thus far, you may be wondering about some of the extra components in the circuitry. For
the positive voltage at the cathode of D2 is delayed at time-advancing command pins 33 and 34 of IC1. Similarly, if S! and S 2 are pressed simultancously, going from the elapsed-time mode to the time-of-day mode, capacitor C5 discharges rapidly through resistors R3 and R2, while C4 (blocked by DI) is forced to discharge more slowly through the high internal pulldown resistance of the clock IC at pin 31. This removes V_{ss} from pins 33 and 34 , (the time-advancing command pins) before the time-of-day is displayed. Diode D2 blocks positive voltage from reaching this whole network when MODE SELECT switch S 1 is up (in the time-ofday mode).
Another circuit trick is accomplished by D3, D4, R4 and R5. Diodes D3 and D4 are special low-forward-voltage-drop germanium diodes that balance with 5% resistors R4 and R5 to provide uniform brightness to DIS1. Since either a " 0 ," "1," or "2" may be displayed (two, five or six segments are on simultaneously) and the IC-driver outputs are limited to 8 mA on most outputs (16 mA on pins 2 and 12 ; 24 mA on pin 39), the resistor value and diodes have been carefully selected to minimize segment brightness differences.

You can make circuit modifications by
creating foil breaks on the PC board and adding jumpers, as shown in the Fig. 2 table. For example, for modification " T ," the 24 -hour version, you make foil breaks A, B and C , and add jumpers $\mathrm{J}, \mathrm{J} 2, \mathrm{~J} 3$ and J4. Foil break A isolates ICI pin 38, the 12 - to 24 -hour select pin, from the switching circuit, and jumper JI permanently connects it to V_{ss}. Similarly, foil breaks B and C disconnect the decimalpoint indicator, and jumpers J2, J3 and J4 permanently wire switch S1 for a 24 hour display. No other functions are affected. This "T" modification is also required as part of the "L" (legal) or "W" (WATS) modifications of the clock/timer.

The " L " version requires one more foil break and two more jumpers, plus adding another diode, D6. Foil break D disconnects pin 32 (the seconds display) from V_{dd} (ground). Jumpers J 5 and J 6 allow $\mathrm{V}_{\text {ss }}$ to be applied to pins 32,33 and 34 simultancously by pressing switch S2, with switch S i in the up (time-of-day) mode. Table II shows this resets the time display to 0000 , allowing the unit to be used as a 24 -hour elapsed timer. Diode D6 prevents unwanted hold mode when push-button switch S 3 is used to slow-set the time.

The "W" version can be chosen instead of the "L" version, but you cannot have both together. The " W " version allows you to totalize or accumulate separate time periods up to 24 hours. The counting is inhibited while Sl is in the time mode (up position) by adding jumper J7, which connects pin 35 , the $50-1060-\mathrm{Hz}$ counting input of ICl , to V_{ss} through terminal 10 of S 1 . When S 1 is in the 24 -minute elapsed-time mode (down position), V_{ss} is removed from pin 35 , and counting resumes from where it had been stopped. To insure that resetting the 24 -hour accumulators to 0000 is done intentionally and not accidentally, both SLOW SET and FAST SET switches S3 and S4 must be pressed. This is done by foil breaks D and E, and by jumpers J8, J9 and J10. When S3 and S4 are both pushed, pins 32, 33 and 34 are all connected to V_{ss} and resetting to 0000 occurs (see Table 1I).

The power modification to $50 \mathrm{~Hz}(\mathrm{P})$ can be done independently of the other options by foil break F and jumper J11. This disconnects ICl pin 36 from voltage V_{dd} and connects it to voltage V_{ss}. The specified transformer operates at an input of 117 volts, 50 Hz , although it runs warmer than at a $60-\mathrm{Hz}$ input. If your power input is 220 volts, you will need a converter or a different transformer.

In the next article, we'll show the PC boards and discuss construction, testing and Digi:Toll applications.

R-E

ROUNDUP

Cases And Cabinets For Your Projects

ONE OF THE MAJOR CONSIDERATIONS FACING THE amateur electronic experimenter and constructor is the physical layout and appearance of the finished project. In the days of vacuum tube and 12 by 16 in.chassis, most projects could be finished off nicely by adding a front panel and slipping the whole thing into a cabinet that could be handcrafted from wood or readily available sheet metals. Today, most electronic projects are assembled on printed-circuit boards or similar materials and are sometimes only onetenth the size of its old vacuum-tube equivalent.

To select a case or enclosure that is most suitable for your project, you must have a pretty good idea as to what is available. Too, if your make and model specified in a magazine article is not available through your usual supplier, you should be aware of equivalents and possible substitutes. These charts list off-the-shelf enclosures, cases and chassis boxes in various material combinations, colors and sizes.

To find out more about the products or distributors, a list of addresses of each manufacturer follows.
Apollo - Industrial Park, Hauppauge, NY
Buckeye - 555G Marion Road, Columbus, OH 43207
(614) 445-8433.

Bud Electronics - Dept. G., 4605 East 355 Street, Willoughby, OH 44094. (216) 946-3200.
GC Electronics - Division of Hydrometals, Inc., Rockford, IL 61101.

Lafayette Electronics - 111 Jericho Turnpike, Syosset, NY 11791. (516) 921-7700.

LMB Products - 725 Ceres Avenue, Los Angeles, CA 90021. (213) 627-9310.

Premier Metals - C/O Sunshine Mining Co., 337 Manida St., Bronx, NY 10474. (212) 993-9200.

Radio Shack - 2617 West 7th Street, Ft. Worth, TX 76107. (817) 390-3272.

Rose/Stahlin - 500 Maple Street, Belding, MI 48809. (616) 794-0700.
Scientific-Atlanta - Optima Enclosures-2166 Mountain Industrial Road, Tucker, GA 30084. (404) 939-6340.
TenTec, Inc. - Dept. G., Industrial Park, Sevierville, TN 37862. (615) 453-7172.

Vector Electronics Co., - 12460 Gladstone Ave., Sylmar, CA 91342. (213) 365-9661

Zero Mfg. - 777 Front Street, Burbank, CA 91503. (213) 846-4191.

INTERLOCKING "'U" STYLE

Simple aluminum case available in a wide variety of sizes. Screws that hold the case together are located along the lower edge.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
2-1/4	1-3/8	1-1/2	LMB	C-R-211	Al	-	-	blue
2-1/4	1-3/4	2-1/8	LMB	C-R-221	Al	-	-	blue
2.3/4	2-1/8	2-1/8	LMB	C-R-234	Al	-	-	blue
2-3/4	25/8	2-1/8	LMB	C-R-275	Al	-	-	blue
3	5	4	LMB	C-R-345	Al	-	-	blue
3-1/4	15/8	2-1/8	LMB	C-R-321	Al	-	-	blue
3-3/4	2-1/8	3	LMB	C-R-332	Al	-	-	blue
4	1.5/8	2-1/8	LMB	C.R-421	Al	-	-	blue
4	2-1/4	2-1/4	LMB	C.R-422	Al	-	-	blue
4	2-3/4	2	LMB	C-R-400	AI	-	-	blue
4	2	4	LMB	C-R-442	Al	-	-	blue
4-1/4	1-1/4	2-1/4	LMB	C-R-425	Al	-	-	blue
5	2-1/4	2-1/4	LMB	C-R-522	Al	-	-	blue
5-1/4	2.1/8	3	LMB	C-R-531	Al	-	-	blue
5-1/2	15/8	3	LMB	C-R-532	Al	-	-	blue
6	3	4	LMB	C-R-643	Al	-	-	blue
6	5	4	LMB	C.R. 645	Al	-	-	blue
6-1/4	2-1/8	3-1/2	LMB	C-R.632	Al	-	-	blue
7	3	5	LMB	C-R-753	Al	-	-	blue
8	2.3/4	3	LMB	C-R 800	Al	-	-	blue
8	4-1/2	6	LMB	C-R 864	Al	-	-	blue
10	2-1/2	4	LMB	C-R-1042	Al	-	-	blue
12	1-3/4	2	LMB	C-R-1247	Al	-	-	blue

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
5-1/8	2-1/8	1-5/8	Lafayette	99-8-80758	Bakelite \& Al	recessed Inserts	-	black/grey
6	6	6	Bud	CU-1098	Steel	removable front \& back panels	black	grey
6	6	6	Bud	AU-1039	Al alloy	removable front $\&$ back panels	AU 1039-HG for grey	natural
6	-	5	Bud	CU-1099	Steel	removable front \& back panels	black	grey
6	9	5	Bud	AU-1040	Al alloy	removable front \& back panels	AU-1040-HG for grey	natural
6-1/4	3-3/4	2	Lafayette	19-P-20016	Bakelite	panel sold separately	-	black
6-1/4	3-3/4	4-1/4	Bud	CU-463	Steel	contoured, louvered rear panel		grey
6-1/4	5-3/4	4-1/4	Bud	CU-465	Steel	contoured, louvered rear panel	-	grey
6-3/8	3-3/4	1-7/8	Lafayette	99P-62721	Bakelite/Al	recessed end panel inserts	-	black/grey
6-19/64	6-19/64	3-35/64	Rose	46	Polvester	flame \& impact resistant	-	gray
6-19/64	6-19/64	3-35/64	Rose	56	Al	die cast body	-	
6-19/64	9-29/64	3-35/64	Rose	87	Lexan		87K for clear cover	grey
6-19/64	10-1/32	$3-35 / 64$	Rose	47	Polvester	flame \& impact resistant	-	grey
6-19/64	10-15/64	3-35/64	Rose	57	AI	die cast body	-	grey
6-19/64	14-11/64	3-35/64	Rose	58	Al	die cast body	-	grey
6-3/4	5-1/4	2-1/4	Lafavette	19P-20024	Bakelite	panel sold separately	-	black
7-3/4	4-7/16	2-3/8	Lafayette	99-P-80764	Bakelite/Al	recessed inserts	-	black/grev
8-1/4	5-3/4	5-1/4	Bud	CU-585	Steel	louvered rear panel, contoured	black	grey
8-1/4	7-3/4	5-1/4	Bud	CU-587	Steel	louvered rear panel, contoured		grey
8-3/8	7-3/8	3	Lafayette	19-20032	Bakelite	panel sold separately	-	black
9-1/16	7-7/8	4-11/32	Rose	60	Al	die cast body	-	grey
9-1/16	13	4-11/32	Rose	62	AI	die cast body	-	grey
9-1/16	13-1/16	7-1/8	Rose	621	Al	die cast body	-	grey
9-27/32	10-1/32	4-23/32	Rose	141	Polvester	impact \& flame resistant	-	grey
9-27/32	15-3/4	4-23/32	Rose	143	Polyester	impact \& flame resistant	-	grey
10	10	8	Bud	CU 880	Steel	removable front \& rear panels	black	grey
11	12	8	Bud	CU 881	Steel	removable front \& rear panels	-	grey
12-1/4	5-3/4	7-1/4	Bud	CU-7125	Steel	louvered rear panel, contoured	black	grey
12-1/4	7-3/4	7-1/4	Bud	CU-7127	Steel	louvered rear panel, contoured	-	grey
15	9	7	Bud	CU-882	Steel	removable front \& rear panels	-	grey

INTERLOCKING "U" WITH SLOPING FRONT

An interesting case where a sloping panel is desired. Aluminum is the material.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
5	$4-1 / 4$	5	Bud	SC-12100	Al	single knock-out, 20 slope; 1 piece cover, feet	-	black/white
12	$3-1 / 4$	10	Bud	SC-12101	Al	1 piece cover, 20 slope, footed	black/white	

BOX WITH COVER
These cases are all cast aluminum for applications where durability is important.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
$3-5 / 8$	$1-1 / 16$	$1-1 / 2$	Bud	CU-123	Cast al alloy	$1 / 2 \mathrm{lb}$.		grey
$4-3 / 8$	$1-1 / 16$	$2-3 / 8$	Bud	CU-124	Cast al alloy	$1 / 2 \mathrm{lb}$.		grey
$4-11 / 16$	$2-1 / 16$	$3-11 / 16$	Bud	CU-234	Cast al alloy	$3 / 4 \mathrm{lb}$.		grey
$7-3 / 8$	$2-1 / 16$	$4-11 / 16$	Bud	CU.247	Cast al alloy	$1-1 / 4 \mathrm{~b}$.	grey	
$7-3 / 8$	$3-1 / 16$	$4-11 / 16$	Bud	CU-347	Cast of alloy	$1-1 / 2 \mathrm{lb}$.		grey

TRIANGULAR SHAPE
An unusual shape for a case but ideal when an unusual appearance for a project is desired. Very pretty when multiple digit readouts are used.

Length	Panel or rear door area		Mfr.	Model ${ }^{\text {No. }}$	Case Material	Comments	Options	Color
16	5-3/4	13-15/16	Bud	MT-214	Steel	9-3/4 lbs; spring latch: handles	Extra door or panel	1-grey
21	5-3/4	18-15/16	Bud	MT-219	Steel	12-1/4 lbs; spring latch; handles	Extra door or panel	1-grey
26	5-3/4	23-15/16	Bud	MT-224	Steel	14-1/4 lbs; spring latch; handles	Extra door or panal	1-grey

ANOTHER INTERLOCKING "U"

One of the most popular types of experimentor cases, overlapping lips on the ends secure the lid.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
4-1/4	1-7/8	4-1/8	Ten-Tec	TG-24	AI	-	-	grey/black
4-1/4	1-7/8	4-1/8	Ten-Tec	TW-24	AI	-	-	walnut/white
4-1/4	3	4-1/8	Ten-Tec	TG-34	AI	-	-	grey/black
4-1/4	3	4-1/8	Ten-Tec	TW-34	AI	-	-	walnut/white
6	2-3/4	4	Radio Shack	270-260	Al	Rubber feet	-	walnut grain
6-1/4	1-7/8	4-1/8	Ten-Tec	TG-26	Al	-	-	grev/black
6-1/4	1-7/8	4-1/8	Ten-Tec	TW-26	AI	-	-	walnut/white
6-1/4	3	4-1/8	Ten-Tec	TG-36	AI	-	-	grey/black
6-1/4	3	4-1/8	Ten-Tec	TW-36	AI	-	-	walnut/white
9	3-1/2	6	Radio Shack	270-261	Al	Rubber feet	-	walnut grain
11	4	8	Vector	WA1-4V	Al body/plastic	10° slope panel	-	dk. blue/grey
11	4	8	Vector	WA1-12V	Al body/plastic	10° slope panel	-	white/walnut
11	4	8	Vector	WA1-1A	Al body/plastic	10° slope panel	-	clear anodized color
14	4	11	Vector	WA2-4V	Al body/plastic	10° slope panel	$\stackrel{-}{\square}$	white/dk blue
14	4	11	Vector	WA2-12V	Al body/plastic	10° slope panel	-	walnut/white
14	4	11	Vector	WA2-1A	Al body/plastic	10° slope panel	-	clear/anodize

INTERLOCKING '‘U"
Another variation, but one that produces a good looking smooth-seamed case, no case parts overlap.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
1-31/32	3-15/16	63/64	Rose	410	polystyol	impact resistant dust proof	410-K for clear cover	grey
1-31/32	3-15/16	1-37/64	Rose	420	polystyol	impact resistant dust proof	420-K for clear cover	grey
2-9/16	4-23/32	1-37/64	Rose	430	polystyol	impact resistant dust proof	430.K for clear cover	grey
3-5/32	4-23/32	2-23/64	Rose	512	Al	insensitive to heat \& cold	512-D0 for front screw mounting	grev \& blue
3-5/32	5-29/32	2-11/64	Rose	440	polystyrol	impact resistant dust proof	440-K for clear cover; 440-H for handle	grey
35/32	5-29/32	3-5/32	Rose	445	polystyrol	impact resistant dust proof	445-H for handle	grey
4-23/32	7-7/8	2-61/64	Rose	520	Al	insensitive to heat \& cold	520-D0 for front screw mount	grev \& blue
4-21/64	7-13/32	2-3/4	Rose	450	polystyrol	impact resistant dust proof	450-K for clear cover; $450-\mathrm{H}$ handle	grey
4-21/64	7-13/32	3-15/16	Rose	460	polystyrol	impact resistant dust proof	460-H-handie	grey
6-19/64	9-29/64	3-35/64	Rose	524	Al	dust proof	524-D0 for tront screw mount	grey \& blue

INSTRUMENT CASE WITH REMOVABLE FRONT PANEL
The kind of case that has been commonly used for all kinds of test instruments. Available in aluminum with louvers.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
6-1/8	8	8	Bud	WA-1540	Al	$1 / 2^{\prime \prime}$ recessed ft. panel rubber feet, louvered	-	grey
7	4	5	Zero	Z IC-407	Al	rubber feet	unfinished \& unassembled	blue
7-3/4	4-1/2	7	Zero	ZTC-408	Al	rubber feet	unfinished \& unassembled	blue
8-1/8	9	12	Bud	WA-1541	Al	1/2" recessed ft. panel rubber feet, louvered	-	grey
9	6	5	Zero	ZIC-409	Al	rubber feet	unfinished \& unassembled	bue
11	7	7	Zero	ZIC-411	A)	rubber feet	unfinished \& unassembled	blue
11-1/8	11	18	Bud	WA-1543	Al	1/2" recessed ft. panel rubber feet, louvered	-	grey
14-1/8	12	18	Bud	WA-1544	Al	1/2" recessed ft. panel rubber feet, louvered	-	grey

LEDBar Graph Universal Indicator

Bar graphs are replacing analog meters as voltage-level indicators in many instances. Here's how the basic LED bar graph works.

MARTIN BRADLEY WEINSTEIN WB8LBV, KDT5787*

THE FIRST APPLICATION YOU MIGHT THINK of for the new SN75489 IC (renamed TL489) from Texas Instruments would be as a $0-1$-volt LED bar graph. This is because when the IC's five internally biased comparators are fed a 0 -l-volt input signal, they will turn on a string of 5 LED's at $200-\mathrm{mV}$ intervals.

Figure I shows what's inside of the SN75489. A series of five voltage comparators compare the analog input signal (the input of pin 8 , buffered by an

FIG. 1-INSIDE THE SN75489-just renamed the TL489 by the manufacturer.
internal amplifier with a typical 100 K input impedance) with a string of resistors between $V_{c c}$ (pin 7) and ground (pin 1). The resistive ladder turns on comparators $01-05$ at $200 \mathrm{mV}, 400 \mathrm{mV}, 600 \mathrm{mV}$, 800 mV and 1000 mV , respectively. The comparators turn on open collector transistors at each output (pins 2-6), each capable of sinking up to 80 mA and of handling up 1018 volts. The circuit is intended for use on $10-18$-volt supplies, although 9 -volt batteries work well.

[^4]The comparators feature a built-in hysteresis of about 10 mV to prevent oscillations at the outputs, even with slowly varying inputs. When the input is driven from a high-impedance source, a capacitor should be connected between the high-impedance analog input (pin 8) and ground to prevent undue noise interference.

Figure 2 is the schematic of the simple demonstrator shown in the photo. Resistor RI varies the voltage at pin 8 and causes the string of LED's, which are arranged as a bar graph, to light up in lines that are successively longer and shorter.

CLOSEUP shows board construction and how IC's, LED's and other parts plug right in.

The demonstrator is built on a solderless breadboard (the model EXP350)

FIG. 2-SCHEMATIC OF DEMONSTRATOR in photo. Number of lit LED's depends on R1.

FIG. 3-THE LED ADDED ON LEFT acts as pilot light and lengthens light bar.

Experimentor Socket. Continental Specialties Corp., 44 Kendall St., New Haven, CT 06509; the breadboard is available for about $\$ 5.50$). It took about the same amount of time to build the demonstrator as to draw the schematic, about a month later.

Figure 3 shows a circuit modification: The first LED in the string of six LED's

TABLE 1. SPECIFICATIONS FOR TEXAS INSTRUMENTS TL489-CP Five-Step Analog Level Detector/Indicator

TL489-CP ABSOLUTE MAXIMUM RATINGS				
Supply voltage	18 volts (max)			
Positive voltage at analog input Negative current at analog input	$\begin{aligned} & 8 \text { volts (max) } \\ & 10 \mathrm{~mA} \text { (max) } \end{aligned}$			
Current into each output, high level Current into each output, low level	$\begin{array}{r} 1 \mathrm{~mA}(\max) \\ 80 \mathrm{~mA}(\max) \end{array}$			
RECOMMENDED OPERATING CONDITIONS	MIN			MAX
Supply voltage V_{cc} Voltage on any output, O_{1-5}	10			$\begin{aligned} & 16.5 \mathrm{~V} \\ & 18 \mathrm{~V} \end{aligned}$
ELECTRICAL CHARACTERISTICS TA $=25^{\circ} \mathrm{C}, \mathrm{V}_{c c}=12 \mathrm{~V}$				
PARAMETER (positive-going threshold voltage at input for switching outputs:)	MIN	TYP	MAX	UNIT
O_{1}	160	200	240	mV
$\mathrm{O}_{1}, \mathrm{O}_{2}$	350	400	450	mv
$\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$	540	600	660	mV
$\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}$	730	800	870	mv
$\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{4}, \mathrm{O}_{5}$	920	1000	1080	mV
Hysteresis for switching any output		10		$m v$
Low-level output voltage: $\begin{aligned} I_{\text {sink }} & =16 \mathrm{~mA} \\ & =40 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	V
High-level output current, $\mathrm{V}_{\mathrm{OH}}=18 \mathrm{~V}$		5	20	$\mu \mathrm{A}$
Supply current: all outputs high all outputs low		8 15	$\begin{aligned} & 12 \\ & 25 \end{aligned}$	mA $m A$
Positive input current ($\mathrm{V}_{\text {in }}=1 \mathrm{~V}$)		0.5		$\mu \mathrm{A}$

FIG. 4-THE TIME CONSTANT of R3 and C1 cause LED1 to flash with inputs below 200 mV .
can double as a bar-graph-lengthener and a pilot light. This scheme is similar to that seen in the solid-state S -meters on some newer CB transceivers. Resistors RI and R2 scale the input signal to the SN75489's 0-1-volt input range while maintaining high impedance, and capacitor Cl acts as a noise-preventing bypass.

Figure 4 shows the $\mathrm{R}-\mathrm{C}$ timing action of R3 and C1. With an input signal at pin 8 of less than $200 \mathrm{mV}, \mathrm{R} 3$ and Cl cause LED 1 to flash.

In Fig. 5 only three outputs are used. but this scheme is very useful for many

FIG. 5-A THREE-STAGE LEVEL INDICATOR useful in alarm and monitoring systems.
monitoring and alarm applications. Input voltages greater than 200 mV (representing a low alarm state or alarm release) cause LEDI to turn on: LED2 turns on at input voltages greater than 600 mV (representing correct operation): and LED3 turns on at I volt or more (representing a high alarm state or alarm release).

The circuit shown in Fig. 6 can change a sinewave input signal to a stepped triangular output signal through using appropriate values in the pulse-shape resistor network. R2-R6.

Figure 7 shows how the risetime and fallime of an input signal can be used to determine sequential delays at the outputs. This also helps explain the operation of the circuit in Fig. 6.

FIG. 6-A STEPPED OUTPUT waveform is developed from a sinewave inpul signal.

FIG. 7-THE DELAYS between the five outputs depends on the rise and fall times of input

FIG. 8-AUTOMOBILE BATTERY MONITOR. DIode and R1 match voltage to IC's input level.

Some suggested SN75489P applications might include low-resolution metering (in a car, for example, with red. amber and green LED's indicating low. normal and high pressure or temperature): or expanded monitoring a car's battery voltage. as shown in Fig. 8. Instead of LED readouts. LED's contained in opto-isolators could be used to switch on various loads to respond to temperature changes.

Although the SN 75489 P is relatively new, many TI semiconductor distributors and dealers should have it in stock soon. You should expect the price to be between 60 c and $\$ 1.00$ per unit. R-E

All About Audio Oscillators

Abstract

Part 2-The audio oscillator most-often-used today is a sophisticated instrument that is a far cry from the simple AF signal source. This is a continuation of the story on the latest types.

THIS STORY OPENED IN THE APRIL ISSUE. We began with a diseussion of the basic oscillator and basic circuits and followed through into accessories, such as attenuators, into this continuing discussion of pertinent specifications and features.

Frequency stability

The frequency stability specification indicates the ability to maintain an original frequency under various electrical and environmental conditions. Frequency stability and frequency accuracy should not be confused. To measure frequency stability, setting accuracy is ignored, and the actual operating frequency is measured directly with an external frequency meter. Variations from this measured frequency caused by environmental or electrical variations are measurements of the frequency stability

On extremely low-cost units. frequency stability may not be specified. On the more expensive audio oscillators, this specification is divided among a number of environmental and electrical variations.

The most common variation is that of time, and two time intervals are used: The first is short-term stability, which is the drift expected (after warmup) over a tenminute period or other short lime span. The second is long-term stability, which is the stability expected over a 12- to 24hour period. An alternate method is for an intermediate period, such as an hour.

In addition to time. the expected variations for line-voltage changes, variations at the oscillator output (usually no load to full load) and temperature can be given. All specifications are given as a percent change for the indicated environmental or electrical variation, nominally a few tenths of a percent or less for any variation. Frequency stability. like frequency

[^5]
CHARLES M. GILMORE*

accuracy, is a major consideration only when the measurement depends upon the generated frequency remaining a constant. All stability specifications are usually given after a warmup period of an least one hour.

Output voltage

The output voltage specification indicates the maximum voltage available from the audio oscillator. This voltage is generally indicated for two situations: One indicates the oscillator output voltage with no load (open circuit). The other indicates maximum output voltage when the output load is equal to the source impedance of the generator. This voltage is one-half the open circuit voltage. Maximum outputs of 5 to 10 volts RMS are usual.

Amplitude flatness

The consistency of the audio oscillator output amplitude with frequency changes is called amplitude flatness. This specification may be given either as a percentage or as a variation in decibels. There may be a division in amplitude flatness specifications with frequency, with the better flatness specification confined to the center frequencies. Considerable degeneration of the specification can be expected at the frequency extremes. Amplitude flatness is also termed the frequency response, and can be given graphically. Low-cost audio oscillators typically specify $\pm 1-\mathrm{dB}$ flatness, which is equivalent to a $\pm 10 \%$ variation. The better audio oscillators specify $\pm 0.05 \mathrm{~dB}$ or $\pm 0.5 \%$. Audio oscillators with metered outputs sometimes delete this specification because it is assumed the user can readjust the output level for any frequency change.

Amplitude stability

Amplitude stability is much like frequency stability. It indicates the oscillator's ability to maintain a constant output amplitude under varying environmental and electrical conditions. Amplitude stability specifications, like those for frequency stability, are frequently given for variations in time, line voltage and temperature. Changes of a few tenths of a percent or less can be expected for any particular effect.

Output impedance

Output impedance indicates the value of resistance that appears to be in series with the audio oscillator if the oscillator is presumed to be of zero impedance. The most common output impedance specification is 600 ohms ; however, 50 ohms is used on some oscillators.

Output balance

Output balance is the impedance ratio to earth ground between the output terminals. There are three variations available with audio oscillators. The first is the full-floating or ungrounded oscillator. The impedance from either output terminal to earth ground is high and relatively equal. On these oscillators there is a specification indicating the maximum DC potential that can be applied between either terminal and earth ground. Common ranges for this voltage are ± 300 to ± 500. Note that impedance balance between output terminals may degenerate for higher oscillator frequencies as the capacitive effect of wiring within the oscillator becomes appreciable.

A second variation on output balance also yields a floating output that can be raised to a high DC voltage level with respect to earth. This indicates a high and equal value of resistance from either terminal to earth ground. However, one of the terminals, normally called the low
or common side, has a large capacitor (between 0.04 and $0.1 \mu \mathrm{~F}$) connected to earth ground. For all but the lowest of audio frequencies and direct current, this terminal is effectively connected to earth ground. It cannot be connected into a circuit where the floating voltage has an AC component.

The third variation connects one side of the output directly to earth ground at all times. No floating is possible. In either of the first two configurations, a strap or a switch can be provided to connect the common terminal to earth ground, if desired.

Distortion

One of the more important and expensive specifications on the high-quality audio oscillator is the percentage of THD in the sinewave output. The theoretical definition of THD is the ratio-expressed as a percentage - of the square root of the square of the amplitudes of all harmonics to the amplitude of the fundamental signal. It is not practical to measure this, and usually is measured with an instrument that determines the ratio of the harmonics to the sum of the harmonics plus the fundamental. The error between this measurement and the theoretical THD specification is less than one-half of one percent. Total harmonic distortion values in the area of 0.2% to 0.1% are common for low- and medium-cost generators. On the extremely good generators, THD specifications can be in the area of 0.05% to 0.005%

Usually, the THD specification is supplied with frequency-limiting data, often in the form of a graph. The curve of Fig. 9 is typical. Some oscillators offer a special low-distortion mode. In such cases, the graphs of THD-versus-frequency may have two response curves, according to the mode of use.

Depending on the measurement meth-

PERCENT DISTORTION TYPICAL
FIG. 9-HARMONIC DISTORTION CURVE for Heathkit IG-18 indicates little distortion in the audible range, with sharp upcurves at the highand low-frequency extremes.
od used when the manufacturer defines the audio oscillator THD, other signals can be included within that specification. Hum and noise both can contribute to the amplitude of all signals not at the fundamental frequency. Hum and noise can also be specified separately, and are indicated as a percentage of the maximum output, most typically in the area of 0.01%. No attempt is made to separate line-frequency hum from broadband noise.

Output attenuator

An output attenuator can come in three forms: a snall variable control, a
stepped attenuator, or a combination of the two. Specifications include the step amplitude, expressed as a ratio or a change in decibels, as well as the accuracy of each step. In a similar form, range is given for the variable control. The most common attenuator has $10-\mathrm{dB}$ steps, which give a $1-3-10$ voltage sequence. The associated variable control commonly has a $10-\mathrm{dB}$ range to provide continuous settings. Simple vernier controls have $20-\mathrm{dB}$ to $40-\mathrm{dB}$ ($10: 1$ to $100: 1$ voltage) ranges.

Squarewave output

Many audio oscillators include-in addition to the sinewave output - a squarewave output. This output usually is somewhat less unusual in attenuation and impedance.

Squarewave-output specifications are very similar to those of the sinewave output. The output voltage indicates the maximum voltage obtainable; the output impedance indicates the source resistance in series with the generator; and the output balance indicates the type of output connection.

Attenuator specifications are the same as those for the sinewave output; however, with a more limited range and accuracy. The output amplitude symmetry specification indicates the relationship between the positive and negative portions of the squarewave. Symmetry is usually within a few millivolts. An output time-symmetry specification indicates the relative widths of the positive and negative squarewave pulses. Theoretically, these widths should be equal but shaping circuits often limit the time symmetry to the $\pm 5 \%$ area. Risetime indicates the time required for the output squarewave to rise from 10% to 90% of the desired amplitude. The risetime on squarewaves supplied by audio oscillators is generally in the range of 50 to 100 nanoseconds.

Output connectors

The generally accepted output connector is a pair of $3 / 4$-inch 5 -way binding posts. An alternate to the dual 5 -way binding post is a triple 5 -way binding post configuration to permit strapping either of the two binding posts to the third one (connected to earth). Binding posts are usually confined to 600 -ohm generators.

Fifty-ohm generators tend to use the BNC connector because it offers certain advantages. First, it is fully shielded and, when ultra-low-distortion sinewaves are desired, it is mandatory to have shielded connections between the audio oscillator and the input to the equipment under test to avoid an increase in the hum and noise level. Second, when a generator is used in the squarewave mode, the 50 -ohm BNC connector limits the number of reflections on the transmission line caused by impedance mismatches.

Frequency adjustment

The method of frequency adjustment varies considerably from generator to generator. As noted, there are two major types: First, switch-selected decades that are continuously tunable throughout the decade; second, switched incremental tuning that may or may not have a variable control to permit frequency selections between the incremental frequency positions. Each system, of course, has its advantages.
The continuously variable control within one decade is probably used most to manually sweep through the decade to observe the response of a particular device under test. It is the oldest and most common frequency control method. To some extent, the need for the continuously tuned dial is now rendered unnecessary by sweep generators, such as the swept-function variety, which are designed to perform this service.
Switched-frequency selection permits rapid changes and climinates any required dial interpolation. Such a system is excellent for production-line or service situations in which the only requirement is to test at specific frequencies as rapidly as possible. As it is occasionally necessary to set an audio oscillator to an exact frequency, instruments with incremental frequency selection often have a continuously adjustable vernier control. This method permits the frequency to be set between any two switchselected steps. Exact frequency calibration is given with this control in a calibrated position.
The other frequency control feature that should be analyzed is that of extended frequency range. Although the human ear ceases to perform in the 20 kHz area, virtually all audio oscillators extend at least to 100 kHz . With today's solid-state technology, many audio amplifiers have some response to nearly 1 MHz . If design work on audio amplifiers is contemplated, it is often necessary to observe the frequency response characteristics of the amplifier to $: \mathrm{MHz}$. In such a case, a generator with extended frequency response is desirable.

Most audio amplifiers today are specified with a low-frequency cutoff in the 5 Hz to $10-\mathrm{Hz}$ range. But if design work is contemplated, the audio oscillator should probably extend to at least 1 Hz and lower. Other applications, such as general laboratory work, usually dictate the widest frequency range possible, since other instruments and electronic systems may not have the limited frequency response of audio components.
In a future continuation of this serics, we will go immediately into frequency synchronization and what is required when the audio oscillator is to be locked to an external frequency source. We think that you'll find it interesting. Watch for it.

R-E

BUILD

Graphic

Equalizer For Your Stereo System

> Part 2-A versatile and useful addition to your hi-fi system. This concludes theoretical and construction details begun last month.

JOE GORIN

LAST MONTH WE INTRODUCED THE GRAPHic equalizer, both as a handy tool for the audio expert and discriminating highfidelity buff. Now we are going to complete the technical discussion and get into construction and installation.

The strength of this design lies in the fact that the components that determine the filter response are independent of the control potentiometers. Thus, the twelve bandpass filters can all be built with only three different capacitor values and eight different resistor values, while using only one potentiometer value. Other designs use from twelve to twenty-four different capacitor values, making parts hard to find.

The signal fed into the equalizer is attenuated by voltage divider R 1 and R 2 (Fig. I) and then AC-coupled into IC1-c. The attenuation keeps the unit's dynamic range very large so that it can be used in a tape-monitor circuit. Amplifiers $1 \mathrm{Cl}-\mathrm{a}$ and $\mathrm{ICl}-\mathrm{b}$ bring the average gain up to 0 dB . The output of ICl-b is AC-coupled; R33 keeps the op-amp from having to drive a capacitive cable and provides the 600-ohm output impedance. Resistor R34 absorbs any leakage through C 27 so that the DC output is zero and switching the unit in and out for comparison will not cause any clicks.

Resistors R71, R72 and R73 and capacitors C28 and C29 filter the bias voltage, V_{B}, for the op-amps. (In a normal dual supply circuit, V_{B} would be called
ground.) The two-section filter removes almost all the noise on the bias. Op-amp IC2-c reduces the ripple in positive supply to IC 1 . Since ICl is a low-noise amplifier with low-noise power and bias supplies, the unit has an excellent S / N ratio despite the attenuation of the signal at the front end.

Rectifier diodes D201-D204 and capacitor C 201 are a standard fullwave bridge circuit. The transformer is a wallplug type. Since the unit draws less than 2 watts, it can be left on all the time or plugged into the switched outlet of a receiver or preamp.

Switch S I can be wired as shown in the schematic or as shown in the inset in Fig. 1. In the tape-monitor application, the switch replaces the TAPE-MONITOR switch on the amplifier, which can be used to switch the equalizer in and out. In the inset drawing where the equalizer is connected between a preamp and power amplifier, Sl is wired to switch the unit in and out for comparison purposes-a tapemonitor function is unnecessary. In this application, RI can be shorted, R? can be removed, and $R 32$ can be changed to 16 K . This reduces the maximum input signal but increases the S / N ratio to 100 dB below 2 V , so that it will be inaudible with even high-gain amplifiers and very efficient speakers.

The equalizer can also be used as the tone controls in a high-quality preamp. In this case, leave R 32 at 39 K , and eliminate

R1 and R2. Wire the output of the volume control directly to Cl , add a phono preamp (the supply voltage is perfeet for this application), a selector switch and anything else you want, and you have the equivalent of a very expensive preamp. To provide an equalizer in/out switch for this application, wire a 4PST switch in series with the leads connecting pins 13 and 14 on the two boards.

Construction

The compactness of the unit is partially due to the use of two PC boards: the amplifier board and the control board that contains the slide potentiometers and associated resistors. Figures 5 and 6 are the foil patterns of the amplifier and control boards, respectively. Figure 7 shows placement of parts on the amplifier board. The twenty-four slide pots and forty-cight resistors positioned on the control board as shown in Fig. 8.

Install the resistors first, then the capacitors. Be sure to observe the polarity of the electrolytic devices.

Lay the two boards llat 1 inch from each other with their bottom edges facing. Connect the points numbered 1 to 14 from each channel to corresponding points on the other board. Flat ribbon cable will nake for neater wiring, or just color-coding the wires will reduce the probability of errors.

Estimate the required wire lengths for the input, output, ground, and power

INTERIOR VIEW OF THE EQUALIZER showing the positioning of the two printed-circuit boards. The right and left halves of the two boards are practically mirror-images of each other.
supply wires, and solder one end of each to the amplifier board. Bolt the boards together back-to-back with $1 / 2$-inch spacers and install them in a suitable chassis. In the prototype shown, the mounting holes in the bottom of the chassis are slightly oversized to help line up the slide pots with the slots in the front panel. and the tops of the boards are supported from the rear panel with long screws that allow adjustment of the depth behind the front panel. Construction details can be seen in the interior photograph shown in Fig. 9.

Install the switch and phono sockets in the chassis. Assemble the power supply on a terminal strip and solder connections C and D from the amplifier board and the wires from the power transformer: then install the strip in the chassis.

Wire the switch and phono sockets according to the mode of operation you plan to use (see Fig. I and the inset drawing) and wire the ground lead (E) to the chassis lug on one of the phono sockets.

Check your work: be particularly careful about the diode, capacitor and wiring to the amplifier board of the power supply. A mistake here could wipe out all of the IC's. Check that the inputs and outputs are wired to the correct sockets. switch terminals and channels. Recheck the IC and electrolytic polarities.

LOOKING DOWN ON THE EQUALIZER from overhead.

Installation

For a tape-monitor installation, connect the TAPE RECORD terminals of your receiver/amp to the EQUALIZER IN Ierminals and the equalizer out to the tape MONITOR inputs. Wire the tape recorder to the equalizer as though it were the receiver. The TAPE MONITOR switch on the amplifier will then switch the equalizer in and out of circuit: the switch on the equalizer will control the tape monitoring. The tape recorder cannot be used without the equalizer in this setup. but the only reason to switch it out is for comparison when first setting it up.

In a preamp/power amplifier connection (which is superior if possible), wire the preamp output to the EQUALIzER in and equalizer out to the power ampli-
fier inputs.
The equalizer power transformer can be plugged into the switched sockets on the receiver if it is mechanically compatible. If not, the transformer can be plugged in through an extension cord or plugged directly into the wall.

Operation

To use the equalizer as a super tone control. adjust the bands and trust your ears! You may want to experiment to see what all sorts of strange response curves can sound like. To equalize your system. purchase a stereo test record and adjust your system for a flat response. The Altec Acousta-Voicette test record is particularly good for this purpose Your local audio shop may own a sound-level meter you can rent or borrow to equalize perfectly. After you have equalized for a flat response, reduce the gain slowly above 2 khz to compensate for boosts.

ERRATA

In the parts list under resistors, change tolerance from 10% to 5% and change R135 to R136. Under miscellaneous, following JI-J4, change phone to phono and delete the reference to knobs. Delete the $3 / 32$-inch reference to board thickness.

ANNOUNCING A New

 CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor LaboratoryThe microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every ared of electronics. And it is profoundly affecting your electronics career.

Brand New
 Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical. experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well hnow, you must learn how to program the microprocessor in order to design, service or troubiesinoot microprocessor electronic systems. There is only one effective way to learn this all-important shill of programming. and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming
 Is Easy

With CREI's new program, learning the shill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time youll learn how to program it in three languages: BASIC. assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to lest and debug specialized programs.

Preparation at Home

Wide Choice
 of Programs

Please note however, that CREI's new program is only one of 16 state-of-theant programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. (REI has atl advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of spectalization in advanced electronies:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing patactical electronic circuits. It also helps you to understand the theories of atvanced electronics and gives you extensive experience in such areas as lests and measurements. breadboarding, prototype construction. circuit operation and behavior, chatacteristics of electronics components and how to apply integrated circuits. Only (REI offers this unique Lab Program.

Practical

Engineering

CREI programs give you a practical engineering hnowledge of electronics. That is. each patt of your training is planned for your "use on the job." By using your raining, you reinforce the learning process. And by demonstrating your increased hnowledge to your emplover. you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts ahout career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. 56 page book describes in detail the programs. equipment and services of CREI.

Qualifications

You may be eligible to tahe a CREI college-level progatum in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

GI Bill
CREI prosucams are upproted for tramings of weterans and servicement under the G.I. Bill.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest
 Washington, D.C. 20016

Accredited Member National Home Study Council

New Directions In MATV Switching Systems

Installing, connecting and disconnecting individual subscribers to TV signal distribution systems is revolutionized by new switching matrix.

RAYMOND ST. LOUIS*

SYSTEM WIRING FOR CENTAP CONTROLLED TAP-OFFS, with an internal view of the tapoff itself

A NEW CENTRALIZED SWITCHING SYSTEM to interconnect MATV, CCTV and CATV subscribers has been especially designed for use in high-rise apartment houses, hotels, condominiums, hospitals, schools and office buildings. This switching system is called Centap. It is manufactured by Blonder-Tongue Laboratories, Inc., 1 Jake Brown Road, Old
*Product Manager, Blonder-Tongue Laboratories, Inc.

Bridge, NJ 08857.

What the system does

This MATV subscriber tap-off system can turn individual TV outlets on or off from a central location and can handle blocks of up to 100 TV system tap-offs. For example, when individual subscribers in a multiple dwelling have paid for TV service, their particular antenna outlets can be activated. On the other hand, TV
service to individual antenna outlets can be turned off when desired from one central location without having to enter the apartment, hotel room, condominium unit, etc. The central-control unit is the model 8201 Centrol, while the individual subscriber tap-offs are called the model 8200 Centaps.

The system is compatible with all MATV and CATV installations. It can be added to existing systems that have been installed using conduit. The Centap system is wired similar to a conventional MATV tap-off scheme except that one additional 24 -gauge prewire conductor is connected to each tap-off.

Special features

Some of the special features of the Centap system are

- Simple wiring.
- Much lower labor costs (as little as one-seventh that of home-run systems).
- All connections are made at a single location.
- The system is permanently wired and there is no need to make individual hookups or disconnection.
- It lends itself to high-rise buildings that use vertical risers.
- The central-control unit can be situated anywhere.
- The system offers complete supervisory control over individual tap-offs.
- Self-testing of the system is provided.
- There is instant accountability of which tap-offs are in use, and tapoff condition lists are provided.
- Extensive technical knowledge is not required to connect or disconnect subscribers.
- The system is tamper-proof.

How it works

The new system operates as follows: The individual subscriber taps are biased electrically in the off condition by a negative DC voltage (-18.5) that is impressed on the coaxial cable along with the RF signals (see diagram). The prewire control cable carries the -26 -volt DC turn-on potential when a connection pin is inserted in the appropriate hole on the central-control unit's front panel.

The tap-offs use three special PIN diodes to handle the actual switching. The circuitry provides over 60 dB of isolation in the turn-off mode and three fixed amounts of attenuation ($15 \mathrm{~dB}, 20$ dB , or 25 dB) in the turn-on mode. The $60-\mathrm{dB}$ isolation is more than adequate to insure that no visible TV picture occurs at turn-off, even in a system that delivers a strong local TV signal.

Built-in facilities in the central-control unit panel allows a service technician to monitor the condition of each subscriber's tap-off. In this way it is possible to detect opens, shorts, or other unauthorized misuse of the outlet. No switehes or electrical connections are required to turn
the TV service on or off. All that is necessary to instantly determine the status of any tap-off is to insert or remove a pin in the appropriate hole on the front-panel matrix board of the central-control unit.

INTERIOR OF BLONDER-TONGUE CENTAP BOX.

Cost comparison

Assume you wish to install a CATV or MATV system in a 12 -floor apartment house with eight apartments per floor. Let's compare the cost of material and labor for a home-run system and for the Centap system.

Comparing material and labor costs for the two systems using $1 / 2$-in. conduit shows that the materials cost about $\$ 50$ more with the Centap system. If $3 / 4$-inch conduit is used, then the materials for the home-run system cost about $\$ 425$ more than for the Centap system. However, the Centap system uses one-seventh as much coaxial cable and one-seventh the amount of conduit. When you add the cost of labor for installing seven times as much cable and conduit required for the homerun system, the home-run system is far more costly than the Centap system in either case.

Another advantage of the Centap system is that tap-offs can be wired in the normal vertical-riser fashion used in highrise buildings. Although the home-run method is cconomical for low-density (4to 24 -outlet) systems, it is not compatible with construction methods used for telephone and electrical wiring and plumbing, heating and ventilating services used in high-rise construction.

Installation

The RF portion of the Cemap system is wired in the normal tap-off riser fashion. A maximum of 12 tap-offs per riser is recommended. Each distribution riser requires one RF coaxial cable (Nos. RG59 or RG-6) and one telephone prewiring cable obtainable from the manufacturer. Each tap-off on a riser requires one conductor of the prewire cable.

To install the system, pull the prewiring cable through the TV system conduit along with the coaxial cable. At each tapoff conduit box leave a loop of coaxial cable, but allow the prewire cable to pass straight through the box. (The prewire cable need not be cut to connect it.)

After the cables have been pulled. install the Centap. The control wire of the Centap must be connected to one wire of the prewiring cable. Connect the control wire of the first tap-off on the riser to wire No. 1 of the prewire cable.

Next, prepare the coaxial cables and attach the standard F-connectors. Connect the cable to the tap-off and secure the cover plate, using the F-connector nut. Next, fasten the Centap tap-off to the conduit box with the tamper-proof screws supplied. The last tap-off on the riser should be terminated with a resistor.

A terminal block and RF splitters are then mounted in an electrical box measuring at least $12 \times 12 \times 6$ inches. The quick-connect clips of the terminal block eliminate the necessity to strip the conductor insulation when making terminations. A special tool is available that simultaneously cuts away the wire insulation and makes a good electrical connection with the conductor. The tool also simultaneously seats the conductor and trims off the excess wire.

Now connect wire No. I of the first tap-off riser to the upper-left terminal of the terminal block. Wire No. I will connect later to the proper terminal on the central-control unit. Connect all wires in order, starting at the top left and working down to the bottom left, and then to the top of the next column of terminals. After connecting one complete riser, write down the wire destinations on a chart affixed to the terminal-block cover. This step is most important since it will save much time in later identifying the proper subscriber-wire locations.

Next, connect the terminal block to the central-control unit. For this connection. a special running cable is used that contains 50 wires with prewired plugs attached and is available in $5-\mathrm{ft} ., 25-\mathrm{ft}$., $50-$ ft ., $100-\mathrm{ft}$., and $200-\mathrm{ft}$. lengths. The running cable has a plug on one end and a connector on the other end so that different cable lengths can be connected together for longer distances. The end of the running cable that must be connected to the terminal block is identified by a

BLONDER-TONGUE CENTRAL-CONTROL UNIT with front panel opened.
small " 2 D " in the lower portion of the plug's plastic housing. The cable end that connects to the central-programming station carries a " 1 D " identification in the matching location.
Running cables can be pulled through conduits measuring $1 \frac{1 / 2}{}$ inches and more. If a conduit measuring at least $1 / 2$ inches has not been provided, running cables can be pulled through conduits as small at $1 / 4$ inches by removing the plug cover and carefully wrapping the wiring in several layers of electrical tape. Installing a running cable in a smaller conduit, say, one that measures $3 / 4$ inch, requires removing and reinstalling one plug.

Finally, connect the running cable to the proper central-control terminal to conform with the "2D" designation at the terminal block. Then, connect the coaxial cables, which feed the splitter at the terminal block, to the power-adding splitter in the control unit. Connect the output of the system distribution amplifier to the input of this splitter.

Testing the system

Insert the central-control-unit test cord in a matrix hole position that is connected

FRONT AND REAR VIEWS OF A CENTAP BOX.
to a Centap tap-off. As the plug is inserted, the red LED glows brightly. This indicates that the station's power supply is delivering voltage to the matrix. When the plug is fully inserted, the red LED grows dimmer. This indicates that a tap-off is properly connected to that matrix position, and that the DC power supply added at the central-control unit's RF splitter/DC adder is passing through the coaxial cable and splitter, through the system.

After installing the system, record the subscriber location on the large adhesivebacked label supplied with the Centap equipment. Affix this label permanently to the door of the central unit's highsecurity housing. Write down the apartment numbers (in numerical order) to correspond to the station's terminal positions on the bottom half of the label. Just make a copy of the completed first half of the label and cut it up so that each location can be sorted by apartment number. Then, record this information on the bottom half of the label. This will save time on service calls.

hobby corner

Most active experimenters and constructors develop a cache of useful short-cuts. Here are some you can use.

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

EVERY FEW MONTHS IT SEEMS NECESSARY to stop and gather up a bunch of short but useful tips and ideas. So, here is another collection of ideas for your workbench.

Keeping records

Do you make a record of the circuits you design? And how about drawing schematics for the equipment you build? Even when you construct something from a circuit, do you file away a copy of the schematic? Do you note on the schematic any and all changes made both in the original construction and in later modifications?

If you do not do any or all of these things, you are asking for trouble. My file system leaves a lot to be desired but somewhere in there I keep all schematics and pertinent notes on every piece of equipment I own, every past item constructed, and every circuit ever designed (I hope!). A lot of time and work was involved in assembling those files, but in the long run it has been worth it.

At first, my file system was a hit-andmiss affair. I only became serious when problems began to arise. The straw that broke the camel's back was a homebrew ham transmitter that started acting up. Lengthy searches produced no notes on the many modifications I had made or even the original schematic of the unit. Before repairs could be made, I had to trace out and draw the entire circuit-a tremendous waste of time. I swore, never again!

It is very difficult to trace out and draw the circuit of a piece of complex equipment. I have done it since then but not on my own equipment. Students and friends who have asked for help occasionally have received along with it a strong lecture on properly documenting their work.

Documentation is even more important with modern breadboarding systems. It is especially easy to become curious about a circuit, put it on a breadboard, modify it in a dozen ways, and then throw the parts back in the cabinct. If you do it that way and omit the record-making step, you can be sure that somewhere, sometime you're going to need that circuit again. So, you have to start all over from the beginning.

If you don't keep records, start now. Your documentation doesn't have to be
complete in every detail, but just enough so you won't have to repeat your work later. Rough sketches and abbreviated notes are sufficient. Keep a road map of where you have been just in case you have to go back.

Tool holders

I have never known a hobbyist who had not accumulated a sock full of tools. And l've never known one who wasn't continually adding new tools as they struck his fancy, or as he found one to perform a new task or an old task better. Also hobbyists store their tools in a variety of ways.

Some store tools in a jumbled mess on the workbench. Some use a tool box and have to search for everything. Others apparently do use socks! And still others have their tools arrayed on a wall board with nails for holders or on a pegboard.

I prefer a pegboard because it has movable holders. The tools are easier to find, remove and replace, and they can be rearranged readily whenever a new tool must be inserted among its fellows.

If you use a pegboard for tools (or other items), you can make your own holders, and thereby also save a lot of money! The number of holder shapes that can be bought is limited. The number of shapes you can create is limited only by your imagination. The tools and materials needed are quite clementary.

I make my holders and brackets of aluminum clothesline wire (about 10 gauge). Other types of wire can be used, of course, but the aluminum wire is casily obtained, inexpensive, easily bent and very satisfactory. If you can locate some lighter-gauge aluminum, you can use it for hanging miniature tools.

The only essential tool for making the holders is a pair of sturdy yet narrow pliers. Long-nose pliers will not do the job as they are not strong enough to repeatedly bend the heavy wire. I have found the best pliers for the job to be small (about 5 inches) battery pliersthey are also called utility and pump pliers.

The two most critical bends in any holder are at the top where the wire must be inserted and attached to the peg-board-you must use the narrow pliers
here. These bends are close together and each one is angled at 90 degrees. They must be made as perfect as pussible so that the holder will hang from the board properly. Other larger pliers can be used for the other holder bends.

By the way, you can use these same holders on plain boards instead of pegboards. Just omit making the "pegboard bends" at the end and create a small loop to accommodate a screw or nail.

While you can do the entire job with pliers, I would not recommend it; especially if you plan to make more than a half-dozen holders. I use a smalland inexpensive wire-bending jig (Radio Shack No. 64-1960). Using this tool, I can make a simple hook in a few seconds and a pliers holder in a minute or less. A bonus is that the aluminum wire is not gouged and rough when the jig is used.
The jig consists of a metal base (about 1 inch by 5 inches) and four short metal rods. The base has slots of several sizes for holding the wire being bent and five holes for the rods. Two (or more) rods are placed in the holes to hold the wire when you make unusual bends -circles, spirals. zig-zags, ares and the like. The jig can be clamped in a vise, or screwed or bolted to the top of your workbench through the holes provided

By planning your wire bending carefully, you can make hooks, holders and brackets similar to the commereial ypes. Without weiding you can even duplicate the welded types by judicious wire routing. You can make custom hooks, holders, etc., to fit an infinite number of different size tools, for example, serewdrivers from jewcler's size to 15 -inch monsters, or pliers measuring from $31 / 2$ inches to 12 inches. You can design and make holders for needle oilers, epoxy tubes, rolls of hook-up wire, spray cans. wiring pencils. etc.

The first step in the procedure is to make the pegboard hanger end using pliers. Then, form the business end on the bending jig. If the holder is a dual-hanger type, the second hanger is fashioned last.
When the holder is complete and you are ready to cut the aluminum wiredon't. Most wire cutters leave a sharp edge on the wire. You will find it more satisfactory to notch the wire two or three times with the wire cutters. The wire will then break easily and be less sharp.

Thread files

What do you do when you damage the
threads on a potentiometer'? ''ve found dozens of ways to mess up the threads on bolts, shafts, pots, switches, lamp housings and all kinds of devices. Crossthreading, sawing off excess lengths, slipping pliers, using a wrong-size nut. etc., can really cause problems, especially when working with something that cannot be replaced easily.

You, too, have probably tried using a triangular file but the angle was wrong and it wouldn't reach down into the thread. Usually you can make a repair with a die of the proper size and thread. However, I have never been fortunate enough to have complete sets of all the English and metric, coarse, fine, extra fine, etc., threads that one runs into. And now I don't need them!

The Fitz-All screw thread files (M\& B Special Purpose Hand Files, Box 306, Oak Ridge, NJ 07438) are available in two sizes. Each one can be used with any V-thread screw. The difference is in the maximum size (diameter) they fit. Since the V. P. Mini File $(\$ 2.50)$ can be used with threads that are over $/ / 6$-inch in diameter, it will probably meet your needs. Just run the file along the mangled thread and it will clean it up nicely

Grinding PC boards

Now and then we all would like to be able to turn out a simple "quick and continued on page 119

8700 Processor: 6503 MPU . Wear free "Active Keyboard", Micro-Diagnostic.' Extensive documentation. FullySocketed
Piebug Monitor: User Subroutines,
Relative address calculator. Pointer High-low. Back-step key.
Cassette Interface: Load \mathcal{E} Dump by file *. Positive indication of operation. Tape motion control
Applications systems from $\$ 90$ (10unit quantity) Development systems from $\$ 149$ (single unit)
TELL ME MORE I want to see for : myself that the 8700 is The inswer.
: () Please send documentation $\$ 10$ enelosed.
() send price lists \& FREE Catalog of other: PAIA kits.
name:
Address:
City: \qquad State \qquad zip \qquad

DEPT. 6R - 1020 W. Wilshire Blvd. - Oklahoma City. OK 73116•

CIRCLE 21 ON FREE INFORMATION CARD

You can be sure

more times in more circuits in more places than with any other multimeters on the market today

Each Sencore DVM is backed with 15 Megohm input impedance for one third less cir-

DVM38

\$395
3½ DIGIT .1\% DCV ACCURACY AUTO-RANGING DVM
A "prime" standard at your fingertips for measurements you can trust. Auto ranging for extended low-level range and ease of operation. 15 Megohm input impedance assures $.1 \%$ reading accuracy is maintained in solid state circuits. Highly sensitive, yet fully protected to 2000 VDC overloads. Hi Lo Power Ohms circuit simplifies in-circuit resistance measurements

DVM37 New
\$268
3½ DIGIT .1\% DCV ACCURACY PORTABLE DVM
Prime standard . 1% accuracy on the bench or in the field for less than $\$ 250$. The DVM37 is the most accurate portable DVM you can buy, with 15 Megohm input impedance for 50% more accuracy. Includes automatic features-Auto Zero, Polarity, Decimal, Overrange. Fully protected inside to over 2000 V on all functions, including Ohms, and protected outside with superrugged case. Full ranges for every test. Fingertip "Push-On" switch in probe saves batteries as power is applied only when needed.

In stock at your favorite local Sencore Full Line Distributor.
cuit loading on every measurement. That means 50% higher accuracy than other DVMs.

DVM32

\$225

3 $1 / 2$ DIGIT . 5% DCV ACCURACY

 PORTABLE DIGITAL MULTIMETERBench and field master for digital accuracy measurements anywhere. 0.5% DCV accur acy, backed with 15 Megohm input imped ance. Exclusive battery-saving Auto-Display turns the display on automatically when you make a measurement. 2000 V input protection on all functions and ranges-including Ohms.

DVM36

\$158
$31 / 2$ DIGIT . 5% DCV ACCURACY POCKET PORTABLE DVM
Pocket portable lab accurate performance that fits every budget with highest perform ance-to-price benefits of any meter. $5 \% \mathrm{DCV}$ accuracy, backed with 15 Megohm input im pedance for lowest circuit loading. Full pro tection to 1000 V on all functions and ranges-including ohms. Drop-proof case Battery-saving "Push On" button in probe.

DVM35

\$134
3 DIGIT 1\% DCV ACCURACY POCKET PORTABLE DVM
Fast, direct reading digital accuracy for the man on the go. Same features as DVM36 except 3-digit, 1\% DCV accuracy, backed by 15 Megohm input impedance that is ten times more accurate than analog meters.

S ENS
digital Multimeter specialists

state of solid state

A single IC from National Semiconductor adds true RMS measurements of voltage to a multimeter. KARL SAVON, SEMICONDUCTOR EDITOR

the measurement of true rms voltage and current, the technique against which other AC methods are weighed, has only recently been used in compact, low-cost instruments.

The importance of an RMS measurement is that it stems from the fundamental concepts of energy and power. The root-mean-square voltage, when squared and divided by the value of the resistance across which it is impressed, results in the power being dissipated in the resistor. This happens whether the waveforms are pure sinewaves, squarewaves or any other form.

RMS measurements are fundamental to measuring noise, harmonic analysis, intermodulation distortion, SCR waveform and mechanical vibration.
The final step to a numerical readout of the measured value is invariably an ana\log or digital DC meter. Therefore, the key component of an RMS measurement system is an RMS-to-DC converter.

Most conventional multimeters respond to the average value of the rectified AC input known as the mean absolute value. These instruments usually have an RMS scale, calibrated with a scale factor that is 1.11 times the DC scale. The average value of a fullwave rectified sinewave is $2 / \pi$ times its peak value, and the RMS value is $\sqrt{2} / 2$ of the peak. The scale factor is the ratio of these two constants, or

$$
\frac{\sqrt{2 / 2}}{2 / \pi}=1.11072
$$

For many common measurements with known waveforms, such simple corrections are adequate. However, when a waveform becomes complicated or unpredictable, better methods must be used. The RMS value of a DC voltage is equal to its DC value; so, in this case, multiplying by 1.11 for RMS causes a reading that is 11% high. The RMS value of a squarewave is equal to its peak voltage; therefore, the same error applies. Noise measurement errors, on the other hand, tend to be negative.

For RMS reading meters, the ratio of the peak to the RMS value of the input waveform is important. It is quite possible for signal peaks to overload the input
circuitry even though the reading may be less than full scale. The term given to this ratio is crest factor.

Bandwidth is another important parameter, since pulsed waveforms can be decomposed into a Fourier series of dis-crete-frequency sinewaves that are harmonics of the basic signal repetition rate. If the harmonic spectrum is wider than the instrument bandwidth, part of the input energy is lost and the meter reads low.

For many years, RMS-to-DC conversion was performed thermally; the thermal methods are still used in modernized form.

Figure 1 shows a type of dual-thermocouple system. In the simplified diagram,
to each other and solving for E_{0} gives

$$
\mathrm{E}_{\mathrm{o}}=\frac{\sqrt{\mathrm{V}_{\mathrm{rms}}^{2} \mathrm{R}^{2}}}{\mathrm{RI}}
$$

If R1 is equal to $R 2$, this reduces to simply $\mathrm{E}_{\mathrm{o}}=\mathrm{V}_{\mathrm{rms}}$.

Matching errors between two thermocouples is a problem because of their natural sensitivity to temperature. Figure 2 shows an example of a single thermocouple design; it demonstrates that a thermocouple is an expensive complicated method that has led to its luxury classification.

Other techniques calculate the RMS value by performing the actual computation dictated by the mathematical expression for RMS $\sqrt{\overline{\mathrm{V}}^{2}}$, where the bar stands for mean or average. Perform the computation as follows: Square the voltage instant by instant; take the mean by integrating the squared voltage over a period of time T and dividing by T ; then,

FIG. 1-DUAL THERMOCOUPLE RMS-TO-DC converter.

FIG. 2-SINGLE THERMOCOUPLE RMS-TO-DC converter.
the input signal is buffered by active follower A1, and the voltage is transferred across the resistive element of thermocouple T1. Amplifier A2 has a second thermocouple in its feedback loop that balances its inverting and noninverting inputs until they are equal. This condition is reached when the outputs of both thermocouples are identical, so that their resistive elements dissipate the same power. The power in R 1 is $\mathrm{V}_{\mathrm{rms}}^{2} / \mathrm{R} 1$ and in $R 2$, it is $E_{o}^{2} / R 2$. Setting the two equal
take the square root.
The RMS value is constant, which is convenient for repetitive (stationary) waveforms. Step 2 can be replaced with a simpler DC-averaging process-an R-C low-pass filter.

Figure 3 shows the circuit used in explicit or direct computation methods. The problem with this type of circuit is that the squarer circuit takes an input signal with a dynamic range of, say, 100 to 1 at the input, and ends up with a

10,000-to-1 dynamic range at its output. Multiplier errors can reduce the useful

FIG. 3-EXPLICIT METHOD of RMS-to-DC conversion.
dynamic range to 10 to I .
Implicit methods use feedback to solve problems of cost, resolution and dynamic range. The implicit method is used by National Semiconductor in their singleIC LH009I True RMS-to-DC Converter and is shown in Fig. 4 on page 106.

In calculating the square of a waveform, it is immaterial whether the signal is positive or negative. The square of a negative number is still positive. It is easier and more accurate to work with voltages and currents that vary in only one direction. The input circuit of the LM0091 is an absolute-value circuit. or an active fullwave rectifier. The job can't be done with just a couple of diodes since it is important to be as precise as possible. The two vertical lines enclosing $V_{\text {in }}$ in the first block is the mathematical way of indicating absolute value.
cominued on page 106

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.

ASlip on new Audio-Technica Stereophones and hear for yourself. If you want to find out how good the new Audio-Technica Stereophones realy are, don't just compare them w.th other headphones. Put them up against the very finest speaker systems. But don't just listen to the equipment. Listen to the music. And be ready for a surprise!

Judged on the basis of flatness of response, freedom from distortion, transient response, sensitivity, and independence from room acoustics, these new dynamic and electret condenser models are perceptibly better sounding than speaker systems costing hundreds of dollars more.

And if you think that great performance can only come from heavy, bulky stereophones, get ready for another surfrise. Our heaviest model is less than $71 / 2$ ozs. and our lightest is an incredible $43 / 4$ ounces light. Comfort that lasts an entire opera if you wish.

For all the facts, send for our catalog. But for the revealing truth about stereophone performance, listen and compare at your nearby Audio-Technica showroom. It will be a great musical experience.

AUDIO-TECHNICA U.S., INC., Dept. 68E, 33 Shiawassee Avenue, Fairlainn, Ohio 44313 Avallable in Canada from Superior Electronics, Inc.

Energy is being consumed today in greater quantities than ever; at the same time, yesterday's seemingly unlimited resources are now seen to be quite finite. As a result, energy conservation has assumed a new importance, and the search for alternative energy sources has begun in earnest. One of the more promising possibilities is harnessing the sun as a direct source of heat.

The solar heating systems now being installed in homes, apartment complexes, and businesses contain heat collecting and storing devices from which resources are drawn during non- and low-sunlight periods. Although there are many types of such systems, the most common circulate water or some other liquid through solar heating panels, or collectors, during the day and store the heated fluid in tanks. When required, this fluid is pumped through radiators or
radiant coils to provide area heating. To maintain comfort and make the best use of the available energy, the user must continuously monitor the temperature of every area to be heated, as well as the temperatures of the collectors and the storage tanks. Valves must then be opened or closed and pumps turned on or off to maintain the desired relationship among the system components. A computerized energy mangement system, or solar controller, can perform all of the monitor and control functions with optimum efficiency.

A microprocessor-based solar controller designed by Fairchild for Rho Sigma, Inc., a major manufacturer of solar controls, is specifically intended to accept the low voltages produced by thermistor temperature sensors, process and display the data, and provide outputs for relay and switch opening and closing. The solar controller contains a single-

PRocessor.unsed

board $\mathrm{F}^{\text {TW }}$ microprocessor, two input and two output cards, an A/D converter control card, a display control card, two 4K EPROM program storage cards, and a 1 KRAM and memory address card (Figure 1).

Also included in the unit are an A/D converter, a 5-digit LED display, and a 16-key keyboard. The display automatically sequences through all input channels, displaying the number and temperature of each channel for one second before cycling to the next. The keyboard can be used to halt this sequencing and either make the display continuously moni-

Fig. 1 Solar Controller Functional Block Diagram
tor only one channel or convert it to a clock-only display that shows time of day.

CONTROLLER OPERATION

The microprocessor is programmed to solve a set of logic/arithmetic equations. These equations are contained in the EPROM program storage, with the associated constants being held in the 1K RAM. The keyboard can be used to change a number of the equation constants, permitting system changes to be made without hardware modification.

In normal operation, the A/D converter receives analog temperature information from as many as 16 thermistors and presents the converted data to the microprocessor. Digital data, such as that produced by switch closures and teletype signals, can be presented directly to the microprocessor through the 16 digital inputs of the input cards. These data are used to solve the system functional equations and produce two types of microprocessor outputs.

In the channel-monitor modes, temperature information is output to the display in degrees Fahrenheit or Celsius, depending upon resident program. In the time-display mode, a timekeeping routine program assumes control of the display circuitry and the temperature information is not provided.

The other microprocessor output consists of control signals that are suitable for opening and closing relays and activating solid state switches. These signals perform such functions as turning on pumps and opening valves to let water run into the storage tank or circulate through radiators.

Since program storage is in ROM, power failure does not cause catastrophic loss of memory. When power is restored, a resetting sequence begins, with the controller ensuring that all valves and controls are turned off so that stored energy is not lost. The controller then cycles through all of the inputs, decides what the system operating conditions should be, and generates the necessary output signals. This analysis takes approximately five seconds. To indicate to the user that power has been off, the display flashes until manually reset.

Originally designed for use in solar heating applications, the intelligent microprocessor-based controller is applicable to any system in which the ability to deal with multiple sensor inputs and generate control outputs is required. R-E R-E

Attacking the fault with a systematic troubleshooting approach.
 JACK DARR, SERVICE EDITOR

I'M NOW GOING TO GIVE AWAY ONE OF MY professional secrets! Actually, it's not all that secret. It requires only one piece of non-bench equipment that'll help you make diagnoses of tough dogs in the least possible time. Next time you think you're stuck, "try it-you'll like it!"

The equipment: one clip-board with paper; one pencil or pen; and last of all, one head (yours) that knows how electronic circuits work.
Now, the method: Sit down and look at the subject. What symptoms do you see? Write them down at the top of the page, and be sure to get them all down. Next, what do you think is the cause? Write this down. This is your first assumption. ("Assumption"-a guess based on observed reactions.) Now, prove it. Take test readings, voltages, signals, etc., and write down each test and its result.
Read your results and see what you have. In other words, you've assumed that a certain part or parts in a particular circuit is the cause of a problem. You'll know if you've been thorough in making the tests. Is resistor Rx in tolerance, open or what? Are all DC voltages in the ballpark? Are signals getting through the circuit? These tests will indicate whether the cause is in this circuit or not. If it is not, don't consider this is "wrong." On the contrary, you've just eliminated one possible cause. Find another cause and check that out too. By writing down the reasons and the results of each test, you can always tell where you are and where you should proceed. You just eliminate one possibility after another until you find the one causing the problem.
There's only one limitation-never make a test without a valid reason. This just wastes time and confuses you. By logging the reason for each test and its results, you'll see the whole problem much more clearly.

For example, if you suspect AGC (Automatic Gain Control) trouble in a tube set, check each DC voltage on the tube and \log them. Now, if one DC voltage is off, it'll stick out like a sore thumb. Compare the voltage values you obtain with those shown on the schematic. With transistors, you do the same thing.

The first thing is to eliminate as many possible causes in the least time. You can therefore eliminate stages that are working and pin the problem down to only one
or two stages. For instance, you have a set with no picture, and the set has eight stages. Feed a test signal into the input and follow it with your scope to see where it stops. Let's say you read a signal at the output of the second IF transistor, but not at the output of the third IF transistor. Check all DC voltages on the transistor. If you get collector voltage and the emitter voltage is zero but should read +2.65 , there you are.

There are now three possible causes. First, an open transistor, which can be checked with an ohmmeter. Second, a transistor could be cut off by too much reverse bias on the base. Use a DC voltmeter for this check. Third, you could have an open emitter resistor or a bad solder joint; use your ohmmeter again. Writing all this down as you perform the tests makes it a lot easier to keep track of everything and to arrive at the final conclusion. ("Conclusion"-the end of a process.)

Look for shortcuts. The eight-stage set can be divided into sections very quickly. Read the video signal at the output of the video detector. If the reading is normal, the trouble is not in the tuner, the IF, the AGC , the video detector, or the DC power supply. The trouble lies in the circuits after this point. Of course, if you do not see the normal signal at the videodetector output, you can eliminate the circuits after this stage, because you know that the problem lies in the IF, the tuner, the AGC, etc. A tuner-subber can quickly check the IF and confirm or eliminate that as a source of the problem.

Multiple symptoms

Let's suppose that you see multiple symptoms: loss of both syncs, pale video, hum-bars in the picture, and so forth. It is very likely that these symptoms have a common cause. You might find, say, two different problems, but it's rare to find more at the same time. The best place to look for the cause is in the DC power supply. A defective filter capacitor can allow multiple feedback loops and all kinds of trouble to develop at once. The quickest check is to scope the DC power lines for any kind of signals. In many solid-state sets, the DC power supplies are tightly regulated. These supplies are critical and should be checked first thing. Most of the DC power lines have at least
one shutdown circuit and some of these circuits can overreact! I know of one set with a +118 -volt DC line that shuts down instantly when the DC voltage reaches +125 volts!

At this point, someone usually asks: "Yes, but what if it's an intermittent?" The answer is do not just sit there and wait for it to quit. The typical intermittent may play for a couple of weeks. In the September 1977 Service Clinic called "Attacking The Intermittent" | wrote that intermittents can be classified very quickly. There are two major causes: heat, which causes a shift in part value, or physical, meaning bad solder joints, hairline cracks in PC board conductors, intermittent plug-socket contacts, etc. There are also so-called "combinations": for example, a hairline crack in a PC board may not open until the chassis warms up and expands. Some physicals can be found by bending or tapping the board, parts, or wiring. To attack a "thermal," apply heat from a heat-gun, or cold from a spray can. Move the wiring, tap the board, as you apply heat or spray.

There is one final cause for an intermittent: voltage. In certain sets if the line voltage goes high or low, it will cut out. (Don't forget the shutdown circuits.) The answer: vary the line voltage with a vari-able-voltage transformer. (Note-in sets with voltage-regulating power transformers having saturated cores, this technique cannot be used; these transformers hold the DC voltages too tightly.) Sets that cut out on high line voltage are often really thermals; some stage is taking too much current and overheating some component. By taking detailed notes on each test and its results you can get a better idea of what's happening.

IC troubleshooting

This definitely also applies to IC's. Here's an illustration: A stereo taperecorder went dead at irregular intervals on both channels. After writing out the list of reactions, we monitored the signals out of the heads and the output signal. When the line voltage did cut out, it could be brought back by cooling the boards. So, we monitored the signal out of the preamplifier, which was a dual IC op-amp with separate outputs. We warmed up the IC, monitoring one output on the scope and the other with a digital DC voltmeter. Sure enough, when the IC became warm, the DC voltage on the output terminal began to drop. (The cominued on page 98

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each 11-1/2" x 8 -1/4" are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming. assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each $11-1 / 2^{\prime \prime} \times 8-1 / 4^{\prime \prime}$ - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your automobile speed and gas consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

$\$ 19^{88}$

 $\$ 1488$But if you buy both courses, the total cost is only:

$\$ 29^{90}$

$$
\text { a saving of over: } \$ 500
$$

SEVEN-DAY MONEY-BACK GUARANTEE: If you are not satisfied with your Cambridge course, return it with in 7 days for a full refund.

To order your books, complete the order form below and send it together with your check or money order to GFN industries, Inc., 6 Commercial Street, Hicksville, N.Y. 11801.

To: GFN INDUSTRIES, INC.

6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Please send me:

__ Sets of Design of Digital Systems $\$ 19.88$
__ Sets of Digital Computer Logic \& Electronics $\$ 14.88$
_ Sets of both courses $\$ 29.90$

Sales tax (N.Y. residents)
Shipping and handling $\$ 2.50$ per set
Enclosed is check/mo (payable to GFN Industries, Inc.) 1

\qquad

CB/RF GENERATOR.

- Keyboard entry for instant fingertip selection of all 40 channels.
- Phase-locked-loop frequency control for crystal stability $\pm 5 \mathrm{ppm}(\pm .0005 \%$).
- LED channel display.
- 455 Hz IF output - with front panel socket for extra IF crystals.
- Double shielded for ultra low RF leakage.
- Metered precision attenuator for signals down to $0.3 \mu \mathrm{~V}$.
- Metered modulation for precise output adjustment
- SSB test function pushbutton operated.
- Noise generator for ANL and noise blanker tests built-in.
- RF protected up to 5 watts for 1 minute
- 2 year warranty.
- Modern compact size ($81 / 4$ " $w \times 7$ "h $\times 91 / 2 \mathrm{c}$ "d). In stock at your Hickok distributor.
MODEL 266

For location of your nearest Hickok distributor, call us, toll free, at 800-321-4664 if you're outside of Ohio.

HICKOK

the value innovator

INSTRUMENTATION \& CONTROLS DIVISION

 THE HICKOK ELECTRICAL INSTRUMENT CO 10514 Dupont Avenue • Cleveland, Ohio 44108 (216) 541-8060 • TWX 810-421-8286 CIRCLE 6 ON FREE INFORMATION CARD
SERVICE CLINIC

continued from page 80
log showed this drop was normal at first, at -6.4 volts.) When it went down to about -0.4 volts, the signal disappeared. When the IC was cooled, the signal suddenly popped in again. The DC supply voltage to the $I C$ was also being monitored, as was the input signal. There was no change in either voltage supply. So it was possible to isolate the problem between these two points: the IC. When any of the $D C$ voltages that come from inside the 1 C change, this is an almost sure sign that the IC is defective. You should cheek all external parts, of course.

The important thing to remember in this method is your attitude toward the equipment you are checking. You should not view it as a mysterious box full of things. It is only a piece of electronic apparatus that has a bad part somewhere inside that you can find! Be completely impartial as to what you hope to find. A completely open mind is the most valuable asset you can have. Write everything down; it'll help keep track of what you're doing and it'll also give you a few good laughs when you get through!

R-E

service questions

CHASSIS ALWAYS HOT

While working on a Magnavox T982, I found that the chassis was hot to ground. I reversed the AC line plug but it was still hot. Something in there is shorted, but I can't find it.-G.O., Wickes, AR

This is normal in this model and in the T981! Both types use a full-wave bridge rectifier tied directly to the line. No matter which way the plug is inserted, you'll read about 70 -volt AC to an earth ground. Magnavox explains it in their Service News, January, 1974 (see circuit diagram). An isolation transformer should always be used when servicing; it's safe if all insulators are in place.

ROLLING ON CHANNEL 7 ONLY

We get Channel 13, locally, and Channels 7,10 and 15 from about 60 miles away. All the channels are good, but Channel 7 rolls. I can't figure it out.H.W., Lynchburg, VA

We once had a similar case on our CATV. One channel rolled on all sets. We finally checked sync amplitude on all stations and found that the bad one showed something like a 10% sync level, 90% video! The normal levels are 75% video, 25% sync. Calls to the station produced no instant response, but we finally learned that their console monitor was badly out of calibration! If this is fixed there should be no more trouble. You might try calling or writing the station.
(Feedback: "Thank you for the letter. It was very effective. Channel 7 stopped rolling the day the letter arrived and hasn't rolled since. If it starts again, 1 will wave your letter in front of the screen and stop it!")

DIMMER PROBLEMS

Lamp dimmers make two kinds of noise-RF1 and a "singing," which can be heard if the lamp is near enough. I've found the best cure for the singing effect is to change the bulb. Try screwing it in tighter or loosening it.

Some commercial dimmers apparently do not contain RFI filters. l've found that a 0.05 of $0.1-\mu \mathrm{f}$ capacitor, 600 volts across the line cord, will take the hash out of these. Oddly enough, this capacitor must be connected across the line at a point about 18 inches from the dimmer. I have no idea why this happens, but it does. Do you?
(No, frankly 1 don't. Possibly this acts as a resonant circuit. Thanks to Carl F. Hartman, Newport Beach, CA, for the hints and experiments.)
continued on page 100

AUTOCOMP

 The MICROPROCESSORAN IMPORTANT AUTOMOTIVE BREAKTHROUGH!
Microprocessors, the electronic de vices of the future, assist our daily living in a multitude of ways. This ad vanced technology has now been combined with SpaceKom-AUTOCOMP's exclusive fuet and flow sensors. to provide an important automotive breakthrough. The AUTOCOMP mounts in or on your dash. and by pushbution control provides LED readouts of the following driving functions: Instantaneous MPG. Average MPG, Fuel Used. Distance Traveled, and Correct Time with this valuable data at your fingertips, you can drive your vehicle more efficiently and derive the following important benefits

REDUCE YOUR FUEL COSTS

By monitoring fuel consumption you can improve your driving habits and significantly cut fuel bills. You will know precisely how changes in acceleration, speed, wir.d, weight, hills, etc., are affecting fuel economy. AUTOCOMP gives you a true and continuously updating readout of Instantaneous MPG as you drive, allowing you to adjust your driving for sater and more economical conditions on a minute by minute basis By alerting you when fuel consumption increases. AUTOCOMP can easily save enough money 10 pay for itself in the first year it is installed!

MONITOR YOUR ENGINE'S PERFORMANCE

AUTOCOMP's Average MPG feature iets you monitor fuel consumption on a day by day or week by week basis. You can tell when your engine is causing you to burn extra gas by not running at peak performance. This information cues you when it's time tor a tuneup. and helps you avoid the costly repairs of a major breakdown

ENHANCE THE VALUE OF YOUR VEHICLE

AUTOCOMP is a modern electronic instrument which will give your dash the look and functionality of a true instrument panel. Its microcircuit electronic design will provide trouble-free operation to enhance the beauty and value of your vehicle for as long as you drive it

ADD EXCITEMENT TO YOUR DRIVING

AUTOCOMP is today's most exciting automotlve accessory. In addıtion to saving you money and giving you greater command of your driving. AUTOCOMP will enhance your driving fun and pleasure. Checking the readout of its various functions as you drive is a sure-fire method of breaking up the monotony of long trips.

INSTALL AUTOCOMP YOURSELF!

- autocomp can de installed on most American ano Japa nese make autos and vans excepr those with fuel injection Because of their non-standara speedometer gears. AUTO COMP is not recommended for European impors. Complete step-by-step illusirated instructions make AUTOCOMP a most rewarding fun experience for the do it-yourseller Equipment supplied include the Speedsensor which simply screws onto the speedometer cable and digital Flowsensor which easily installs onto the fuel line Free consultation is oftered by mall or telephone it any probiems are encoun. tered Installation by an independent mechanic will of course add to the cost No responsibilify for any additional costs can De accepted by SpaceKom. AU FOCOMP

SPECIFICATIONS:

FUITICDMP

price at usts $\mathbf{\$ 1 2 9 5 0}$
FOR ORDERS ONLY

CALL TOLL FREE ANYTIME!

1-800-423-2355 Ext. 601
In California 1-800-232-2175 Ext. 601 For more information call 805-965-1015 20000000000000000000000000003 GUARANTEE

COMPUTES TRUE MPG AS YOU DRIVE.
ELECTRONIC

When the FUEL button is depressed, the display indicates the amount of tuel the venicle has used since tast fill-up. beginning of trip, or last reset (up to 1000 gallons)

distance traveled $\mathcal{O K}: 2$

When the DIST button is depressed, the display Indicates the distance the vehicle has traveled since the last reset (up 101000 miles)
instantaneous miles/Gallon

When the INST MPG button is depressed. the display indicates how many miles per gallon the vehicle is attaining at eact moment (up 10200 mpg).

average miles/gallon

20.8

When the AVE MPG bution is decressed. the display in dicates the average miles per gallon the vehicie has at tained since the last reset (up 10200 mpg).
time \qquad
When the TIME bution is depressed the display indicates the correct lime (in hours and minutes) The clock may instead be used to display ELAPSEO TIME

MATHEWATICS

ELECTRONIGS

ENGINEERING MATHEMATICS

 ADVANGED MATHEWATIGSThese unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.
You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA

 HOME STUDY INSTITUTE P.O. BOX 1189PANAMA CITY, FLA 32401

SERVICE QUESTIONS
contimued from page 98

FUSE BLOWS FAST

I've checked almost everything, but I can't find out why the fuse blows in this Magnavox T982-12. It pops inside of 3C seconds.-B.H., Decatur, GA
As a last resort, try replacing the "four-legged capacitor" in the collector circuit of the horizontal output transistor
(Feedback: "Got it! Thanks.")

CONSTANT FUSE BLOWOUTS

I've just repaired a Magnavox T940. It quit, and the owner replaced a 20-amp fuse with a bigger one! Blew all the rectifier diodes and burned up the PC board. I fixed this; now it plays OK for 5-10 minutes, and then the $20-\mathrm{amp}$ fuse goes out again. Any suggestions?-W.I., Salt Lake City, UT

Well, it took me quite a time to find that 20 -amp fuse and then to lind out where it went. It kept getting lost. This fuse is in the heater circuit for all tubes except the picture tube and 6BK4 highvoltage regulator.

You have one of two problems: An intermittent wiring short, where a lead goes around a sharp corner of a metal continted on page 102

Enterprise Development Corp.
 5127 E. 65th St. • Indianapolis IN 46220 PHONE (317) 251-1231
 CIRCLE 1 ON FREE INFORMATION CARD

The Best of Everything Has Its Price

Even tuner service. From the beginning our goal has been to provide the best tuner service, not the cheapest. The extra dollar you might pay at PTS is peanuts when you consider the reliability and standards of excellence we apply to every job. Thousands of PTS customers must agree or we wouldn't be the world's largest tuner service company.

One-Stop

 Component Center electronic components NEW!! EXPANDED PRODUCT LINE ...

A new component product line of over 260 items developed for the independent dealer. Guaranteed nationally advertised products. Complete JIM-PAK program includes national advertising, direct mail programs, store display racks, stock 94070 (415) 592-8097

SEE YOUR LOCAL J $\begin{aligned} & \text { mpak } \\ & \text { DEALER TODAY... }\end{aligned}$

JUNE

SERVICE QUESTIONS
 continued from page 100

object，or a possible heater－to－cathode short in a tube that does not have a cathode resistor．（If it does，the resistor burns up and tells us where the problem is．）Even snrall tubes can do this；it would be a＂hot short．＂The tube has to get pretty hot to expand enough to make it happen．Since this apparently blew up the rectifiers，check the damper or horizontal output

HALF VERTICAL SCAN

If you see about half the normal verti－ cal scan，with heavy retrace lines at the top of the screen，in the Magnavox T995 chassis，check the vertical output choke． It may be shorted．The normal resistance is $9-10$ ohms；some have been found with only about 3 ohms．
（Magnavox Service News Letter．）

TWO CORRECTION NOTICES

In the March issue of Radio－Electron－ ics（page 82），I said（referring to an Aims amplifier）that＂ 6550 tubes are rated at 20 watts，etc．，etc．＂

John Dalnes，service manager of Ace Music，North Miami，FL，wrote me that in his RCA tube manual No．RC－30 these tubes are rated at 100 watts each．He＇s
right！I found them in my own copy of $R C-29$ ，too ．．．I just didn＇t look far enough down the page．I＇m glad you told me，John．Thanks

The second mistake is one that is not due to stupidity，but to just plain igno－ rance．In the same issue on page 81 ，I told the technician complaining of a speed loss at high volume levels in a Panasonic SG－ 635 to check the DC power supply．

George Weiss（Patis－Bell TV，Chicago， IL）informs me that this is a common problem in this unit．It is due to high－ resistance contacts in the on－off switch in series with the motor．This information should be helpful，and I thank George for letting me in on it．It＇s now duly filed for future reference．

HIGH DC VOLTAGES

I can＇t get a handle on this one－a Sylvania model EO－8 that has no sound or raster；and the breaker trips．The $B+$ voltages are all too high．Take a look in the crystal ball and tell me a good way to get hold of this．－F．L．，San Diego，CA．

You＇ve got a dandy＂typical symptom＂ that appears in almost all solid－state TV sets．If your DC voltages are too high，the chances are there＇s a problem in the voltage regulator．In most you＇ll find one or more shutdown circuits that trip in－ stantly if the high voltage or the $B+$ volt－
continued on page 104

AN INTRODUCTION MICROPROCESSOR

 TO PERSONAL LEXICONThis introductory text is aimed at answering the basic question：＂What do I need in order to．．．？＂ It covers applications，peripherals，existing systems， how to assemble them．How to choose．The real cost of a system．The software．Is a floppy sufficient for a mailing list？ Build or buy？
AN INTRODUCTION AN INTRODUCTIO
TO PEASONAL
AND BUSINESS AND BUSINESS
COMPUTING

MICROPROCESSORS
Rodnay Zaks 416 pp．，ref C201 $\$ 9.95$
MICROPROCESSOR INTERFACING TECHNIQUES
Austin Lesea－Rodnay Zaks 416 pp．，ref C207 $\$ 9.95$ TO ORDER
－BY PHONE ：call（415）848－8233
BankAmericard／Mastercharge accepted －SHIPPING：no charge when payment included．
ADD：$\$ 1.00 /$ book for fast shipping －TAX：in California，add sales tax． －OVERSEAS
SYBEX－EUROPE， 313 rue Lecourbe， 75015 －PARIS，France Tel：（1）8282502

> SYBEX Berkeley， Calif 94704

110 pp．，pocket－size，ref $\times 1$
ALL．THE DEFINITIONS AND ACRONYMS A complete dictionary，PLUS：part numbers， signals，for S100．RS232，IEEE 488，addresses．

SELF．STUDY COURSES

Each course includes a book plus 2 cassettes （can be played on any cassette recorder at home，in the car，at the office．）

S1－INTRODUCTION TO MICROPROCESSORS

 $21 / 2$ hours．Basic introductory course． S2－PROGRAMMING MICROPROCESSORS
$21 / 2$ hours．Basic introduction to programming．

A MICROPROGRAMMED

APL IMPLEMENTATION
Rodnay Zaks 320 pp．，ref Z－10
The complete design of a real APL interpreter，including theory，
 ADD $\$ 1.00$／BOOK FOR FAST SHIPPING
\square charge my \square Visa \square Master charge
Number
Exp date
Signature
Send catalog
\square FREE CATALOG／ORDER FORM

NEN for
 Professional Technicians

TBAINING works hops 1978

－THREE－DAY
－INTENSIVE
－UP－TO－DATE
－PERSONAL
－UNIQUE
－Includes lodging
－Breakfasts，lunches，and colfee breaks during WORKSHOPS
－Grand AWARDS BANQUET
－FREE Extra SEMINAR

ADVANCED
 VIDEO SERVICING

Featuring VCRs，Digital Controls，VIR ．．．
and much more
Intensive Forest Belt teaching techniques and exclusive，proven training aids bring you right up－to－date in the troubleshooting and repair of today＇s video equipment for home or industry．
Special emphasis on solid－state and integrated circuits．See new IF and color alignment methods you probably never thought of．Learn about Vertical Interval Reference（VIR）auto－ matic color control in newly introduced TV receivers．Under－ stand digital and solid－state tuning systems．Participate in live equipment demonstrations．Sit in on the industry＇s first look at practical，Easi－WayTM repair of video cassette recorders．
DON＇T BE LEFT BEHIND in your own industry！Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods．ENROLL NOW to be sure you do not miss this vital and unique Ad－ vanced Video Servicing WORKSHOP．

FREE Price and Profit SEMINAR Tuesday evening．

September
 11－13（Communications） or 18－20（Video）

Hospitality Inn East Interstate 70 at Post Road Indianapolis，INDIANA

Centrally placed for convenient travel from anywhere in the mainland U．S．Also timed earlier in the year，in case you should not be away from your shop during the pre－Christmas season． You can attend in time to prepare you for the year－end serv－ ice rush and the new sets being sold．
Comfortable，pleasant accommodations：two people to a room （two beds）．Indoor pool．Shopping downtown by freeway．Bring your spouse if you wish，at the nominal No－WORKSHOP fee （she joins the WORKSHOP group for breakfasts and lunches）． If you prefer to room with a specific other WORKSHOP attendee，tell us．

Enrollments close August 4，1978，or when capacity is reached． Per Workshop \＄495

ADVANCED

COMMUNICATIONS SERVICING

Featuring FM Two－Way，PLL，Single Sideband ．．． and much more

Here，too，intensive Forest Belt teaching methods and ex－ clusive，tested learning aids assure you up－to－the－minute train－ ing troubleshooting and maintaining communications systems．
Special emphasis on solid－state and integrated circuits．Ob－ serve professional alignment and tuneup methods．Deal profit－ ably with Business and Land Mobile Radio－and the growing General Mobile Radio on UHF wavelengths．Learn of new de－ velopments in Marine and Aircraft Radio．Study the latest phase－locked loops，including their digital programming．Take part in live equipment demonstrations．See Easi－Way™ tech－ niques applied to communications．
GROW AS A REAL EXPERT in your specialty．Grab this ex－ ceptional opportunity to polish up your diagnosis and repair skills．Become familiar with new technology and money－saving instruments．ENROLL NOW in Advanced Communications a giant step beyond our popular CB Servicing WORKSHOPS．
FREE Math and Formulas SEMINAR Tuesday evening．

November 6．10（Communications） or 13－17（Video）

South Seas Plantation Captiva Island，FLORIDA （near Sanibel and Ft．Myers）

For technicians who could use a bit of get－away time as part of this unique training package．Two days of consulting or on－ your－own follow each WORKSHOP．Make your own airline res－ ervations，well in advance；but we take care of placing you in our luxury cottage lodging．
Exceptional resort accommodations：four people（two bed－ rooms，four beds，two baths）or six people（three bedrooms，six beds，three baths）in fancy beach cottages．Bring your spouse， if you wish，at the nominal No－WORKSHOP fee（she joins the WORKSHOP group for breakfasts and lunches）．If you prefer to share a room with a specific other WORKSHOP attendee， tell us．Cottages have kitchen facilities．An unusual winter－ season bargain．
Enrollments close Sept．15，1978，or when capacity is reached． Per Workshop \＄595

ーー一ーーー

Yes，enroll me promptly for TRAINING WORKSHOP at right．
I enclose check or money order for $\$$
Advanced Communications Servicing
\qquad
$\$ 495$ per WORKSHOP in Indianapolis
$\$ 595$ per WORKSHOP in Florida$\$ 175$$\$ 250$
 （includes lodging． same meals as for WORKSHOP enrollee）
$\square \$ 475$ for CB Service WORKSHOP（same as 1977，and includes lodg－ ing）at Indianapolis August 21－23， 1978.
\qquad
Company
Address＿＿＿Phone
City \qquad State \qquad Zip

NOTE：You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING WORKSHOPS．NOT FOR BEGINNERS．
Mail to：Forest Belt＇s TRAINING WORKSHOPS， Box 68120，Indianapolis IN 46268

SERVICE QUESTIONS

continued from page 102
ages exceed certain limits.
Plug the set into a variable-voltage line transformer. Now, monitor the B+ source, and bring the line voltage slowly up to the point where $B+$ is correct. If the set now starts to work normally, then this is where your problem lies. Check out that entire voltage-regulator circuit, including all Zeners, transistors, diodes, etc. Something is not doing its job.

NEW TUBES, SAME SYMPTOM!
Here's a zinger for you. Zenith model
$12 A 12 C 52$ had a dark, about $1 \frac{1}{2}$-inchwide vertical band on the left-hand side of the screen. Said to myself, this is a problem in the damper stage, and put in a new normally reliable 6CJ3 tube. It went away for five minutes, then came back! I tried another new tube of the same brand. Same thing happened. I tried a third time-no changel Then I found an old but good 6CJ3 tube of a different make on my bench. I put this new tube in and the set has operated properly ever sincel Can you think of an obscure reason why this happened?-S. M., Bloomfield, CT.

Nope. The same thing happened to me. Apparently you managed to get hold of three new tubes of a reliable brand that

DUAL TRACE 30MHz OSCILLOSCOPE WITH DELAY

woos 1474

NOW IN STOCK - IMMEDIATE DELIVERY

- Rise time 11.7 nS or less
- Built-in signal delay line permits view of leading edge of high frequency pulse rise time
- Triggers on signals up to 50 MHz
- $5 \mathrm{mV} / \mathrm{cm}$ vertical sensitivity
- Mode automatically shifts between CHOP and ALTERNATE as you change sweep time
- Checks most digital logic circuitry, including ECL
- High accuracy ten position vertical input attenuator
- Fiat response with smooth rolloff past 30 MHz
- PDA CRT with P31 phosphor
- Built-in high- and low-pass filters
- Maintains calibration accuracy over 105-130 VAC and $\mathbf{2 0 5 - 2 6 0 V A C}$ range
- 20 calibrated sweeps- $0.2 \mu \mathrm{~S} / \mathrm{cm}$ -0.5 S/cm
- Differential input capability - Algebraic addition and subtraction

${ }^{212-687 \cdot 2224}$ THE TEST EQUIPMENT SPECIALISTS
Mastercharge. BankAmericard TOLL FREE HOT LINE Check our ad on page 106 for our special. 800-223-0474 ADVANCE ELECTRONICS
had some kind of screwball fault! We have run across similar problems in several different tube types, from horizontal outputs to triode-pentodes. This is the first time I've ever heard of this problem in the 6CJ3's, but I'll remember it! Thanks.

COLOR, PICTURE VERY DIM

I asked about a Zenith model 14A 10C 19 with dim color and picture. You steered me right: The plate voltage on the video output was fluctuating and dropping to 50 to 60 volts instead of maintaining the normal +308 volts. The answer turned out to be an intermittently open resistor, R208 (R77, Sams 1108-3) The original resistor was 7 watts; I replaced it with a 10 -watt resistor and a new tube. The set has been working perfectly for quite a while! Thanks.-J. K., Pine Bush, NY.

Don't mention it. Even a blind pig gets an acorn now and then. Here's a coincidence: I ran into the same problem in another make of set about three weeks ago! I used the same cure; one of the two feed paths to the video-output plate was opening.

CONTROL AND BOOST-DIODE BURNING UP

This Magnavox model U920 chassis was burning up vertical-linearity controls

> PROFESSIONAL DISCOUNTS

Texos instruments electronic colculator

I1. 1750 LCO	\$19.35	SR-40	$\mathbf{5 2 3 . 2 5}$
T1.2550 Ili	23.25	T155 HEW	49.95
Litte Prot	12.55	TI-57 NEW	63.00
Dataman MEW	19.95	T1.58 MEW	95.79
TI. 5100	38.75	T-59 WEW	219.95
T1.5015 MEW	63.00	PC. 100 A	147.00
\$1.5050 M	77.55	MBA	63.00
T1. 5040 PO	95.00	Bus Anylst	26.95
T1.30 SP	16.98	Tl-Programmer MEW	49.95
Datacho	28.09	T1-1790 MEW	39.95

 Ask for II Digital Watches 11.190 MEw
\qquad PACKARD

HP. 10 NEW	\$139.00	HP.80.	23500
HP.19C NEW	. 275.00	HP 67.	360.00
HP. 21.	59.95	HP-31E NEW	55.00
HP. 22	89.95	HP.32E NEW.	75.00
HP. 25	89.95	HP.33E NEW.	92.00
HP-25C.	128.00	HP-37E NEW.	15.00
HP-27.	. 119.95	HP.38E NEW	. 110.00
HP-29C NEW	. 156.00	HP92 NEW	. 500.00
		HP97.	599.00

We're HP's authorized franchise dealer - all accessories are professionally discounted.
Also SCM, Olivetti. Casio. Canon. APF, Sharp. Craig. Sanyo. Record-A-Call, Morelco-Phillips and more. All at great prices!

Noreico NT-1 \quad. $\mathbf{\$ 1 6 4 . 0 0 ~ S a n y o ~ 9 9 0 8 ~ . ~} \mathbf{\$ 2 4 9 . 9 5}$ Norelco 186... 245.00 Sanyo 8000A ... I99.95 WE WILL BEAT OR MEET ANY COMPETITORS' PRICE IF HE HAS MERCH ANDISE OW HAND. All unts shipped in original tactory cartcns with accessories according to manufacturers' specifications. In Calit call (213) 370 5795 or CALL (800) 421-0367 (other than CA) Above Charge prices ditter Send Bankamericard. Pers ck (2 wks to cleat) In CA add 6\% sales tax Add 5350 min. shipping charges. WE SHIP AIR on request Subject to availability Send mail orders to DEPT EM
WRITE OR CALI FOR FREE CATALOG

16611 HAWTHORNE BLVD'. LAWNDALE CA 90260 (213) 370-5795 \bullet (800) 421-0367
and boost-rectifier diodes as fast as I could put them in! Following your suggestions, I rechecked the wiring. I discovered that there should be a B+ supply

400 -volt connection to the end of the vertical-linearity control. The boost goes to the other end, the +1200 volt $\mathrm{B}++$. The cause of this problem was a shorted $0.1-\mu \mathrm{F}$ capacitor, Sams C89 (C160 in Magnavox 7288) that goes from here to the vertical centering control. Thanks again!-Rex Gray, Garland, TX.

REPLACEMENT POWER TRANSFORMER

I need a replacement power transformer for an old Emerson TV, Sams 858-1. I tried to get one from the company, but they don't have them any more. Nobody lists a replacement. Otherwise, the set worked fine before the transformer went out.-A. W., Parkersburg, WV.

I did a doubletake when I looked at the schematic! Actually, this isn't much of a "power transformer" at all. It does noth-

ing but light the pilot light! The primary is tapped; the tap is marked "tapped at 117 volts" (see diagram). However, there doesn't seem to be any useful step-up; the DC output is about normal at +140 volts.

I'd replace it with a stock 6.3-volt filament transformer and connect the AC input to the DC power supply right to the line. This should work. Apparently they're doing this to keep the escutcheon from shock hazard, since this is a hotchassis set.

SWEEP GENERATOR TIP

Here's a helpful hint I discovered when I was working on my Eico model 369 Sweep Generator. I couldn't get a marker response at 45 or 50 MHz ; the harmonics were too low. I couldn't find any actual circuit faults. Finally, I tacked a small 3-to 5-pF capacitor across capacitor C18, and if works finel-S. G., Hayward, CA.

Thank you. This hint might come in handy for others.

R-E

*THERM I: 3 digit .3" LED display; 4AA alkaline batteries; 25-30 hour continuous operation; battery recharger and NiCads optional.
*THERM II: 3 digit .5" LCD display 9 v alkaline battery; 300 hour continuous operation.
*MINI-THERM: plugs directly into DVM for reading on DVM display; 9v alkaline battery; 500 hour continuous operation.

- luaked. handheld aluminum calse - Acruracy . 2% + 1 (xil)
- Resolution: 1° F.K. or (
- Probe: Comes wits $\bar{\prime}$ teflon cable (repalaceatel
- Range: -50 $0^{\circ}\left(-5 X^{\circ} F\right)(0)+150^{\circ}($ (30) ${ }^{\circ} \mathrm{F}$
- liattery-operiter!
(415) 941-2764
P.O.Box 4477 Mtn. View CA 94040

CIRCLE 63 ON FREE INFORMATION CARD

5 GREAT New Books on Microprocessors! BEGIMMER'S GUIDE TO MICROPROCESSORS

Everything you need to know to get started with micro processors and personal computers. from the very basics to therr internal architecture from program ming to interfacing with the outside wortd including how to select your awn computer system. Assumes absolutely no prior knowledge of the subject. Includes a point-by-point comparison of the Motorola 6800 and the Intel 8080 chips. 182 p. 106 ill
Paper \$5.95; Hardbound $\$ 8.95$
Order Mo. 995
57 PRACTICAL PRDGRAMS ANO GAMES IN BASIC
mivithathen 57 of the hardest working. most enjoyable BASIC progmunt rams you've ever seen everyhing from space war games to blackjach, from craps to 1 Cning. from antharm bandits! It's an easy-to-use manual that gives you 57 different Simplified BASIC programs. You can pro gram your minibrain for all kinds of fun and games. or or figuring compound interest. calculating depreciation. etc. 210 p . 64 ill Paper \$7.95; Haralbound \$10.95 Order Mo. 1000 MICROPROGRAMMING FOR COMPUTER HOBBYISTS provernin a unique programming manual that takes you righ from the very basics up to state-of-the-ant capabilities with enough detail on intermediate and advanced rechniques of programming and data structuring to salisty a worming protessional programmer. Anyone. no matter how inexperienced. can easily follow it. Covers stacks queues deques strings. trees. graphs...right up thrcugh the most supercomplex miltiple-linked chains. 378 p.. 219 ill. Paper \$8.95; Hardbound $\$ 12.95 \quad$ Order Mo. 952 MINIPROCESSORS: FROM CALCULATORS TO COMPUTERS eranere The computer hobbyist's machine-language hybrid calculator/computer book shows you how to use. build design, repali troubleshoot. program. and customize your own calculators! Bridges the gap between calculator and computer technology: shows you how to start with a few easy-10-obtain calculator chips and gradually construct any kind of superbrained sectalized calculator you want. 192 D. 67 ill
Paper $\$ 5.95$; Hardbound $\$ 9.95$ THE "COMPULATOR" BOOK
Fernt An imaginative new project book that shows you how to - mate the COMPuter wilh the calcULATOR to buite design, and customize calculators for all kinds of brainwork -counting, sloring data, measurin times, dialing phores. generating random numbers. even lying one into a Tetelype for a tape-controled calculator with virtually an infinite memory plus how to build displays several feet high Includes full-size printed-circuil layouts to make yous own PC boards! 322 D. 224 ill
Paper \$7.95; Hardiound $\$ 10.95$
Order No. 975
SEND MO MOMEYI We'll invoice you on 10-DAY FREE TRIAL. Clip entire ad to order. 100% guaranteed or your money refunged.
TAB BOOKS
BLUE RIDGE SUMMAT, PA, 17214
CIRCLE 33 ON FREE INFORMATION CARD

Fascinated By Home Computers And Video Games?

Creative Computing is the Number 1 applications and software magazine because we offer you ways to get the most out of your computer

We bring you things like data base and file systems. text editing. graphics and animation, artificial intelligence communications and networks, small business functions, investment analysis, building control and music synthesis. Complete programs. too. with thorough documentations listings and sample runs.

Just getting started? Then turn to our technology tutorials. learning activities, short programs and problem-
solving pages. No-nonsense book reviews, too
Buying a system or adding on to one? Then you need Creative Computing's in-depth equipment and software evaluations

We cover the whole gamut from smart electronic and video games to mini and micro computers. Terminals, floppy disks. displays. softwarethere's something for everyone in each issue of Creative Computing.

Cant wait? Use your bankcard and call our toll-free number

800-631-8112
(In NJ call 201-540-0445)

I want to get the most out of my computer. Please enter my subscription to
 creative cortputirg

	1-year	2-year	3-year	Lifetime	Vol. 1 Bound	Vol 2 Bou
USA	- \$8	- \$15	- \$21	- \$300	- $\$ 10$	- \$10
Foreign Surface	- 12	- 23	- 33	- 400	- 12	- 12
Foreign Air	- 20	- 39	- 57	- 600	- 15	- 15

- Payment Enclosed - Bill me ($\$ 1$ billing fee will be added: foreign and book
orders must be prepaid)
- Visa/BankAmerica Master Charge no

STATE OF SOLID STATE
cominued from page 93

Next, to square the waveform you caln use either the straightforward multiplier technique or the explicit method. However, there are distinct advantages to using a logarithmic method for squaring because of its ability to handle wide dynamic range inputs
As you remember from high-school math, if you take the logarithm of two numbers, add them together and take the antilog, you end up with the product of the original numbers. The block in Fig. 4

FIG. 4—NATIONAL LH0091 single IC RMS-to- TOP VIEW DC converter.
marked " 2 ln" represents the adding of the two logarithms; in stands for natural

We give you immediate off the shelf delivery oh Oscilloscopes, Power Supplies, Audio \& R.F. Generators, Digital Multimeters, Frequency Counters, Logic Probes, Tube \& Transistor Testers, Wow \& Flutter Meters, Distortion Analyzers, Bridges, and Accessories. For more information call us Toll Free: 800-223-0474.
212.687-2224 THE TEST EQUIPMENT SPECIALISTS TOLL FREE HOT LINE 800-223-0474 ADVANCE ELECTRONICS
logarithm, which uses base epsilon or 2.718, compared with \log, which uses base 10 . Semiconductor junctions by natural law follow a \ln-relationship. Squaring the input means multiplying the same number by itself, so that the \log of the input is added to itself, which accounts for the 2 in front of the In function.

The signal then proceeds through the summation block to the antilog circuit where the square is extracted. Antilogs are calculated by raising the number base to a power equal to the signal.

The next block with the integral sign is the averaging circuit that takes the mean of the squared signal.

The feedback block marked "In" is the implicit method used to perform the final square-root function. Just as adding logarithms is equivalent to multiplication,

I Our new Bearcat ${ }^{\circledR} 2501$
I has oll the fantastic space age features of our super
popular Bearcat ${ }^{\text {s }} 210$, but now we've added:

- 50 synthesized crystalless channels
- User selectable scanning speeds

1 - Priority channel

- Digital time clock-accurate to seconds
- Automatic or user controlled squelch
- Search Direction-Search "up" or "down"
for quicker return to desired frequencies
- Transmission activity counter-tells you

1 how busy each frequency has been

- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a channel without stepping through interim channels - Non volatile memory-No batteries required to 1 retain memory. even when scanner is unplugged - Auxiliary-On/Off control of equipment (tape - occur on programmed channels

To reserve your space-age Bearcat ${ }^{\star} 250$ and receive your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S 4 U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside the U.S and Michigan dial 313-994-4441. To order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{*} 250$ write: COMMUNICATIONS ELECTRONICS, Box 1002-Dept.6, Ann Arbor, Michigan 48106 U.S.A.
$L-{ }^{c} 1978$ Communications Electronics CIRCLE 89 ON FREE INFORMATION CARD

NOTE: DOTTED LINES DENOTE EXTERNAL CONNECTIONS.
FIG. 5-SIMPLIFIED SCHEMATIC of National's LH0091.

FIG. 6-ABSOLUTE VALUE input circuit of LH0091. Equivalent circuit for positive inputs is shown in a and equivalent circuit for negative inputs is shown in h.
subtracting them is the same as division. By producing an output that is propor-

b
tional to the average of $V^{2} / E_{0}, E_{0}$ will be the square root of the average value of $V^{2}{ }_{\text {in }}$.

In Fig. 5, Al with its associated diodes and resistors is the absolute value circuit. The noninverting input of Al is tied to
ground, and, because of the negative feedback around the amplifier, the inverting input is also negative. Any voltage on the input terminal is then impressed across R1 so that the input current through pin 16 is $V_{\text {in }} / R$. When the input terminal goes above ground, current flows into pin 16 to turn on D1. The voltage drop across the forward-biased junction of D1 subtracts from the ground potential on the noninverting input of Al , biasing the output of the amplifier at about 0.7 volt below ground. This negative potential reverse-biases D2, keeping it off.

Figure 6-a shows the equivalent circuit for positive inputs. The input of A2 is also a virtual ground, so there is no voltage across R3 and R4 and no current through them. Input current arrives at the noninverting input of A2 only through R2, and the current is $V_{\text {in }} / R$. Amplifier $A l$ has acted as a sensitive detector of where the input signal goes positive, and then it acts as a switch to reduce the circuit to one resistor!

Negative-input swings cause the current in R1 to flow from right to left; D1 is biased off and D2 turns on. Because R1 is equal to R3 and their junction is at zero volts, the cathode D2 voltage is positive and has the same magnitude as the input voltage. Figure 6-b shows the two current paths-the first is identical to that for

Unmatched filtering, reliability, low price. Continuous voltage adjustment.

Compare with others for reliable, hum-free auto and portable radio DC servicing. Extra features, including overload capacity, enable the EC-2 to handle varied R/D and test jobs in industry, laboratories and schools. Only 0.5% ripple at 5 amps continuous DC output. Patented cooling. One year warranty. See Gold Book \& EEM for data on full line. FREE BULLETIN EC-2

EPSCO, Inc. 920-R Westwood, Addison, IL 60101

Performance-Proven DC Power Supplies Since 1936

WHAT WOULD YOUR PERSONAL COMPUTER SAY IF IT COULD TALK?

GET SPEECH POWER WITH THE COMPUTALKER SPEECH SYNTHESIZER

S-100 BUS
ASSEMBLED CIRCUIT BOARD COMPLETE WITH SOFTWARE FOR PHONETIC INPUT

CALIF RESIDENTS ADD 6% SALES TAX

COMPUTALKER CONSULTANTS

You Can Count On DAVIS!

NEW CTR-2A

500 MHz \& 1 GHz COUNTERS NOW WITH
PERIOD MEASUREMENT (Optional) AND BUILT-IN PREAMP

- 8 Digit .3"LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period lus to 1 sec . (optional)
- TCXO Std. ± 2 ppm
- Input Diode Protected
- 12V-DC Operation (optional)
- Oven Crystal $\pm .5$ ppm (optional)
- Selectible Gate Times $.1 \mathrm{sec} . \& 1 \mathrm{sec}$.

500 MHz kit CTR-2A-500K $\$ 249.95$
500 MHz assembled CTR-2A-500A 349.95
1 GHz kit CTR-2A-1000K 399.95
1 GHz assembled CTR-2A-1000A $\quad 549.95$
OPTIONS:
(02) Oven Crystal $\$ 49.95$
(03) $43^{\prime \prime}$ LED
(04) 12 V -DC
10.00
(05) 10 sec . Time Base $\quad 10.00$
(06) Period Option 15.00

DRD15

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda, NY 14150
716/874-5848

CIRCLE 87 ON FREE INFORMATION CARD
positive inputs through $R 2$; the second is through R4. Summing the currents in the two resistors yields $i_{2}=V_{\text {in }} / R-V_{\text {in }} /$ $(R / 2)=-V_{i n} / R$. Taking the negative of the negative input makes this current positive. This is exactly the same as the positive input, so the sign of the input is ignored by the circuit!

Next (see Fig. 5), A2 with Q1 and Q2 is the $2 \ln$-circuit that does the first part of the squaring function. Again, the amplifier has the noninverting input connected to ground. The output voltage is equal to the voltage on the base of Q1, which is zero, plus the negative drops across the base-to-emitter junctions of the two transistors. The logarithmic characteristic of the transistor junctions are used to perform the very useful logarithmic operation on the absolute input current, which is proportional to the absolute value of the input voltage.

The next operation is a summation or, more precisely, a subtraction to take care of the $1 n$-feedback, and then an exponential or inverse logarithm function. Both functions are done in a single process by Q3. Back in A2, an input current was fed into the collector circuit of a transistor, and its junction voltage was used as the output. The opposite is done to take the inverse \log by applying the input voltage across a transistor junction and using the collector current as the output. By put-
ting the feedback voltage on the transistor base and the output of the 2 ln circuit on the emitter, the base-to-emitter voltage on Q3 becomes the difference, e_{3} $-\mathbf{e}_{2}$. Solving the equations yields:

$$
\mathrm{E}_{\mathrm{o}}=\sqrt{\overline{\mathrm{V}}_{\mathrm{in}}^{2}} .
$$

Amplifier A5 remains unused in the IC and can be used to allow the system to

FIG. 7-HIGH CREST-FACTOR CIRCUIT is used with crest factors greater than 2.
work with high crest factors. Figure 7 shows the recommended circuit for crest factors greater than 2 . An external resis-

RCA pays youto win! Enter our fabulous RCA SK Rebate/Contest that pays you cash for every time you enter.

tor drops the input current by a factor of 5 in order that input peaks do not overload the circuit. Amplifier A5 is set up with 40 K and 10 K resistors to get back the gain.

Matched transistors

Some precision DC amplifier applications are adversely affected by the input offsets of conventional operational amplifiers. Balance potentiometers null out the initial offset but temperature and aging drifts must be considered. In powersupply and thermometer circuits, these errors may be significant.

Precision Monolithics Inc.'s MAT-0I Ulira Matched Monolithic Dual Transistor series has outstanding specifications for offset voltage, offset, current and offset temperature coefficients. Improvements compared to other monolithic devices is on the order of 10 times. Both devices must be placed on the same monolithic IC, geometrically interwoven so that they share virtually identical thermal environments.
The V_{be} match for the MAT-01 is $40-$ $\mu \mathrm{V}$ typical, $110-\mu \mathrm{V}$ maximum, which compares favorably with numbers that would normally be on the order of 5 mV . The temperature coefficients of this offset are $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum.

Two fully packed pages of specilications make it fairly obvious that PMI is
proud of these circuits. Included are not only the usual offset voltage-versus-temperature plots, but also offset drift-versus-time. These curves remain essentially flat out to the 13 -month limit of the abscissa.

The PMI data sheet points out that during circuit turn-on, reverse-bias voltages can be applied to the transistor base-to-emitter junctions. If these voltages exceed 5, degradation in h_{fe} (current gain) and h_{fe} matching may occur. Although essential when using devices such as the MAT-01 series where matching is what it's all about, it's important to remember that all circuits should be checked for excessive reverse bias during turn-on and modified if necessary. Protection may take the form of the diodes that are used across transistor junctions and are poled opposite to the junction.

Prices for the commercial versions of the MAT-01 range from $\$ 2.75$ to $\$ 3.50$ each in 100 quantities. Precision Monolithics Incorporated, 1500 Space Park Drive, Santa Clara, CA 95050.

Signetics-Motorola agreement

As the result of an agreement between the two companies, Signetics will manufacture Motorola's MC1399 color-processing IC and Motorola will make Signetics' TCA440 five-stage AM radio IC.

The MCI399 IC has unmatched lin-
earity for DC chromatic control and uses a phase-locked-loop subcarrier regenerator that is more accurate than injection lock systems.

The TCA440 IC has a $100-\mathrm{dB}$ dynamic range and can be used in both AM and CB applications.

8080 assembler

RO-CHE System's Assem 1.08080 assembler works with their multi-cassette controller. It can assemble source-code programs that are larger than the computer memory.

The first of two passes reads the source code from the tape and builds a symbol table. The tape is read again in the second pass, and the object program (machine language) is created and stored in memory. The assembled program can then either be run or stored on cassette tape.

The Assem 1.0 can be purchased from RO-CHE Systems, 7101 Mammoth Avenue, Van Nuys, CA 91405, for $\$ 10$. Also provided are a line editor, the assembler on cassette tape and instructions. R-E

Here's a contest

 where you can't lose!Because you earn generous cash rebates for RCA SK bags, and you can enter every time you send in at least 20 RCA SK bags. Your entry can win one of ten RCA SelectaVisions we are awarding. All you have to do is complete this statement, in 25 words or less: "I prefer RCA SK's because . . "It's that easy!

You can win an unsurpassed home video recording system.
RCA SelectaVision gives you 4 full hours of record/playback in a
single cassette. A built-in digital timer. A remote pause for chairside editing. Record one channel while you watch another, or record while you're asleep or away. You and your family will love it.

You get

generous cash rebates.
Save your RCA SK plastic bags for cash rebates, as follows:

- $\$ 2$ rebate for 20 bags
- $\$ 5$ rebate for 45 bags
- $\$ 10$ rebate for 80 bags
- $\$ 15$ rebate for 115 bags
- 13Φ rebate for each bag over 115
With each purchase of RCA SKs from your RCA Distributor you get an official entry blank. All entries will be judged by a panel of independent judges. Prizes will be awarded on the basis of dealer's expression of demonstrated and proven usefulness of RCA SKs.

See your RCA Distributor for full information.

He will have all the details on RCA's complete line of replacement semiconductors and RCA SK Rebate/Contest rules. Or write to: RCA Distributor and Special Products Division, PO Box 250, Deptford, NJ 08096.

[^6]SK Replacement Solid State

NEW VERSATILITY ADDED
Xcelite service master kils
 service tools you need 99% of the time
Model 99SMW adds new dinlensions to the serviceability of Xcelite's famous and still available 24 -piece 995 M Service Master Set

Housed handily in the same type of roll-up, plastic-coated, canvas case, the 27-piece 99 SMW adds a Weller WP25 protessional, pencil-style soldeng iron with an extra, wider tip, and a No. 100 wire stripper/cutter. These plus the traditional 99SM tools that thousands of servicemen and technicians have liked so much so long 20 Xcelite Series 99 quick-change, interchangeable blade tools-popular size nutdrivers, slotted and Phillips rype screwdivers, extension, reamer, regular and stubby handies; diagonal and long nose pliers, thinpattern, adjustable wrench. The handiest handful of service tools you've ever laid your hands on!
in stock at leading electronic
distributors . . . nationwide
TheCooperGroup
Electronics Division

PO BOX 728. APEX. NORTH CAROLINA 27502.9191362-7511

new products

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

COMPUTER LEARNING SYSTEM, Cardiac, is a simple manually operated computer training device plus 53 -page manual for a complete "handson' teaching aid. Cardiac operates by manipu-

lating cardboard slides to display register contents through windows. A series of 10 different programs range from the simple to more complex formats. Loops, indexing, bootstrapping, doubleprecision techniques and subroutines are all demonstrated. Price: $\$ 4.95$, plus $\$ 1.50$ shipping and handling.-Comspace Corp., 350 Great Neck Rd., Farmingdale, NY 11735
CIRCLE 106 ON FREE INFORMATION CARD

SOLDER/SOLDERING ACCESSORIES, a complete line of products designed for many professional and home uses. Included are Multicore

solders in a variety of alloys and/or fluxes; solidwire solders; creams, pastes and wicks; an emergency solder; and special formulation for soldering stainless steel and silver jewelry.-Multicore Solders, Westbury, NY 11590.
CIRCLE 107 ON FREE INFORMATION CARD

INTERFACE/MOTHERBOARD, Kimsi, comes in kit form or assembled. Attaches to any KIM-1 computer to provide, on a single board, both interface and motherboard with eight 100-pin slots. Kimsi allows S-100 compatible boards to be plug-compatible with KIM. Instructions are executed at top speed, with no extra instructions or software needed. The board includes complete
address decoding and power regulation for KIM, as well as facilities tor DMA and multiprocessing on the $\mathrm{S}-100$ bus.

Kit comes with double-sided circuit board with soldermask and owner's manual; all parts, IC sockets and 100 -pin connector are included. Prices: kit, \$125; assembled, \$165.-Forethought Products, Box 386, Coburg, OR 97401. CIRCLE 108 ON FREE INFORMATION CARD

CABLE TIES AND CLAMPS, EZ Fasteners, come in reusable display package ($R e-U s e-A-P a c$). Removable card enables refilling heavy-gauge plas-

bubble when necessary. Point-of-purchase rack available. Clamps and ties are also available in bulk.-South Shore Trading Corp., 422 S . Franklin St., Hempstead, NY 11550.
CIRCLE 109 ON FREE INFORMATION CARD

PROJECTION TV SYSTEM, Projectapix $\|$, uses superfast $\mathfrak{f / 1 . 8 5}$ optic lens for sharper image and brilliant color. Featuring solid-state electronics, system contains a video tape recorder and a built-in digital clock/timer with LED readout that can be used to control and record one program as you watch another; unit can also record radio music or perform as a tape recorder; even home movies can be created (with the use of a video
camera). A stop-action pushbutton is provided for either instant replay or erase. A four-foot screen is also available. Optional accessories

include remote controls; video games; mikes and mike mixers; cameras; a special control accessory that projects smaller image in corner of the screen, for dual-program monitoring; plus a video disc. The Projectapix II sells for $\$ 2790$; the fourfoot screen, \$1495.-Projectapix, Ltd., Suite 1L, 300 West 53rd St., New York, NY 10019.
CIRCLE 110 ON FREE INFORMATION CARD

40-CHANNEL CB TRANSCEIVER, Sidebander $I V$, is an SSB/AM unit that uses digitally synthesized circuitry, with an RF output of 4 watts and 12 watts SSB PEP. Controls inciude squeich,

volume, clarifier, RF gain, and switchable noise blanker and limiter. Also included are PA provision and mike. Suggested list price: \$379.95.SBE, Inc., Dept. P, 220 Airport Blvd., Watsonville. CA 95076.
CIRCLE 111 ON FREE INFORMATION CARD
PHONO CARTRIDGE, model 2000T, is designed for stereo and matrix 4-channel (SQ, QS, RM) playback. Specifications include: frequency re-

sponse of $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 11 / 2 \mathrm{~dB}$; tracking force range of $3 / 4-11 / 4$ grams; lateral and vertical compliance of $30 \times 10^{-6} \mathrm{~cm} /$ dyne; tracking ability of 38 $\mathrm{cm} / \mathrm{sec}$ at 1 kHz at 1 gram; channel balance within 1 dB at 1 kHz ; a rated input load of 47,000
ohms/channel; an output of $3 \mathrm{mV} /$ channel at 3.54 $\mathrm{cm} / \mathrm{sec}$. Price: $\$ 90$-Empire Scientific Corp., 1055 Stewart Ave, Garden City, NY 11530.
CIRCLE 112 ON FREE INFORMATION CARD

CB BASE STATION, Golden Eagle Mark IV SSB/ AM, uses Transcan system to sweep all transmit frequencies. Circuitry is phase-locked loop with

full 4-watt power and 100% modulation. Transmitter RF output, up to 12 watts PEP (SSB): carrier suppression is better than -70 dB . Re-
ceiver sensitivity is $0.32 \mu \mathrm{~V}$ for a 10 dB signal-tonoise ratio.
Transmitter features include LED readout, RF amplifier for AM operation, automatic level control for SSB, channel reset and lock detector. Receiver has fine tune control, AGC on-off switch, beat-frequency oscillator, noise blanker. Model 776 high-impedance mike is included with unit; the Astatic model GD-104 mike is available as an option. Unit measures $63 / 4 \times 151 / 2 \times 10$ inches. Two-year warranty. Price: $\$ 950$ - Browning Laboratories, Inc., O'Shea Industrial Park, Laconia, NH 03246.
CIRCLE 113 ON FREE INFORMATION CARD

CB HEADSET MIKE, SpeakEasy, is voice-activated via miniaturized preamp for hands-free operation. Features separate amplifier with red/ green LED readout for transmit/receive modes and built-in mini-microphones. Made of light-

I5MHz PORTABLE OSCILLOSCOPE

- 15 megahertz bandwidth.
- External and Internal trigger.
- Time Base- 0.1 microseconds to $0.5 \mathrm{Sec} /$ div-21 settings.
- Battery or line operation.
- Automatic and line sync modes
- Power consumption less than 15 W.
- Vertical Gain-0.01 to $\mathbf{5 0}$ volts/div -12 settings.
- Weight is only 3 pounds.

RECHARGEABLE
DUAL TRACE

PORTABLE
2.7"H $\times 6.4$ "W $\times 7.5$ "D

available NOW \$395

With Rechargeab Batteries \& Charger Unit

FREE
PROBE
BUY ONE GET ONE FREE:
With the purchase of the MS-215 you get two deluxe 10:1 and direct switchable probes. Price 2 for $\$ 30$.

BankAmericar
\square OFFER EXPIRES AUG. 31,1978
212.687-2224 THE TEST EQUIPMENT SPECIALISTS

TOLL FREE HOT LINE 800-223-0474 ELECTRONICS

INTERNATIONAL FM-2400CH

- Portable - Solid State - Rechargeable Batteries

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies

The FM-2400CH with its extended range covers 25 to 1000 MHz
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz

Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. 000125% special 450 MHz crystals available)

- Tests Predetermined Frequencies $\mathbf{2 5}$ to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320
$\$ 595.00$ RF crystals (with temperature correction) 24.90 ea. RF crystals (less temperature correction) 18.90 ea IF crystals
catalog price

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 North Lee / Oklahoma City. Okla. 73102 CIRCLE 91 ON FREE INFORMATION CARD
weight aluminum, SpeakEasy can be powered from any 12 -volt supply. Suggested retail price,

\$79.95.-Chase Western Product Sales Division, 11526 Burbank Blvd., North Hollywood, CA 91601.

CIRCLE 114 ON FREE INFORMATION CARD

MICROCOMPUTER CARD CASES, Vector-Pak models VP 1, VP2, accommodate IMSAI, ALTAIR and other $5.31-$ by $10-\mathrm{in}$. cards. Fully assembled cases are compatible with IMSAI and ALTAIR systems, model VP1 having front-to-back orientation, model VP2, with side-to-side orientation. Cases have space for 21 cards, and adjustable slots that permit receptacle or motherboard mounting. Plastic card guides are supplied sepa-

FCC LICENSE STUDY GUIDE

If you have experience or training in electronics, but need help in preparing for FCC license exams, get Grantham's FCC License Study Guide - not a Q \& A book, not a correspondence course, but simply an authoritative, down-to-earth presentation of what you should know to pass FCC exams for 3rd, 2nd, and Ist class radiotelephone licenses. Included are four information sections, 1465 FCC-type multiple-choice questions, with more than 65,000 words "explaining" the correct answers. Self-study presentation. Order by letter, or check box below.

Grantham’s FCC License Study Guide.
Size, $7 \times 101 / 2,377$ pages
$\$ 12.75$

OTHER BOOKS written in home-study style by Donald J. Grantham:

\square Fundamental Properties of AC Circuits
Size, $7 \times 101 / 2,267$ pages $\$ 12.75$Mathematics for Basic Circuit Analysis.
Size, $7 \times 101 / 2,352$ pages
. $\$ 12.75$
\square Basic Electronic Devices and Circuits.
Size, $7 \times 10 \frac{1}{2}, 378$ pages.
TO ORDER any of the books listed above, check off the ones you want, compute the total price, add only 758 (regardless of the number of books ordered) for postage and handling, and mail this ad (or order by letter). Be sure to include your name and and address and payment. Mail your order to:

GSE Publishing Company

(2000 Stoner Avenue)
P. O. Box 25992, Los Angeles, CA 90025

CIRCLE 4 ON FREE INFORMATION CARD
rately. Both cases have sturdy aluminum chassis and measure $17.85 \times 9.01 \times 17.1 \mathrm{in}$. and weigh 5 lbs. Optional accessories include prepunched 10hole rear panel for 25-pin D-type connectors,

A

HMCH BLOOD PRESSURE. Treat it....and live.
The Natienal High Blood Pressure Education Program, U.S. Deparment oi Healin, Education, and Weilare.

BETTER THAN A THIRD HAND!

PANAVISE TILTS, TURNS, AND

 ROTATES TO ANY POSITION. IT HOLDS YOUR WORK
EXACTLY WHERE YOU WANT IT.

PanaVise has great strength yet is gentle enough to firmiy hold delicate objects.

Quite possibly the finest new tool you will buy this year, PanaVise is built to exacting protessional standards. We guarantee it!
Illustrated is the Electronics Vise Model 396. Three other bases and a wide variety of heads are available. All interchange! Buy a basic unit, then add on to create your system.

Available through your dealer.
Write for a free catalog.

PaN/a/SE*

 Dept. 5E10107 Adella Ave., South Gate, CA 90280 In Canada: 25 Toro Rd., Downsview, Ont. M3J 2A6

A Division of Colbert Industries CIRCLE 78 ON FREE INFORMATION CARD

Vector Series 8800 prototyping cards, and sockets, connectors, pins and tools. Prices: model VP1, \$128.30; model VP2, \$134.30-Vector Electronic Co., Inc., 12460 Gladstone Ave., Sylmar, CA 91342.
CIRCLE 115 ON FREE INFORMATION CARD

EXTENDER BOARD, model VTE-100. The Exter-

minator, is an S-100 bus compatible card that occupies one slot on the motherboard. It serves as a terminator for the entire bus, using bridge terminating networks that do away with crosstalk and extraneous noises. The model VTE- 100 can be used with any memory or $1 / 0$ card without interference from adjacent boards. Fused power buses protect against accidental damage and provide easy access for current monitoring. Unit comes assembled and tested and costs \$49.95, plus $\$ 2$ shipping and handling ($\$ 4$ for foreign orders).-VAMP Inc., Box 29315, Los Angeies, CA 90029.
CIRCLE 116 ON FREE INFORMATION CARD
EARLY WARNING SMOKE DETECTOR, modef S29, is a self-contained ionization home unit designed to detect early stages of a fire, thus making it ideal for home, mobile homes, apartments, vacation houses, etc. No wires are

A 20MHz OSCILLOSCOPE UNDER \$500?

YES !!

LBO-507 by

FEATURES:

- 20 MHz bandwidth
- Unique trigger circuit for maximum display stability
- 10 MV sensitivity
- Bright display
- TV trigger
- Built-in calibration signal
- Triggered and automatic sweep
- Built-in TV vertical and horizontal sync separation circuits
- Check most digital logic circuitry, including CMOS
- 18 sweep range selections
- Sweep to $.1_{\mu}$ SEC/cm

These new LEADER OSCILLOSCOPES are available for IMMEDIATE DELIVERY.
To order or for more information call 800-223-0474 for our
SUPER SPECIALS

LB0-508
DUAL TRACE 20 MHz .

LB0-520
DUAL TRACE 30 MHz . with Delay

LBO-515
dUAL TRACE 25 MHz . with Dual Time Base

Our big 90 -page cataleg of electronic test accessories is up for grabs.

In it, you'll find a complete line of Grabber ${ }^{T M}$ test clips, designed to simplify testing of everything from conventional components to maximum density DIP's.

Unlike some test clips, Grabbers provide a positive connection that won't pop off. And its gold plated hook has no sharp teeth to damage wires.

Plunger type action makes the Grabber easy to operate. And
the spring is stainless steel for extra long life.

Grabbers are available in a wide range of sizes. You can choose between various other-end connectors, such as banana and pin plugs, or you can wire your own test leads using our simplified assembly procedure. Models accepting 6-32 threaded leads are also offered.

Send for free catalog or see your favorite electronic parts distributor. See our pages in EEM.

AVAILABLE THROUGH YOUR FAVORITE ELECTRONIC PARTS DISTRIBUTOR

III POMONA ELECTRONICS

needed; simply screw the detector into the ceiling. AA batteries are included. Can operate remote equipment such as a bell, siren, light, monitor panel or telephone dialer by using builtin relay with $0.125-\mathrm{amp}, 115$-volt rated contacts The model $S 29$ measures $51 / 2 \mathrm{in}$. square and is 3 in. high. Price: \$79.-Mountain West Alarm Supply Co., Box 10780, Phoenix, AZ 85064
CIRCLE 117 ON FREE INFORMATION CARD

MICROWAVE LEAKAGE DETECTOR, model $245 M$, is a self-powered, hand-held instrument that needs no batteries or outside power source.
burglar-fire alarm catalog FREE!

MORE THAN 900 PRODUCTS
detectors, controls, sounders, locks, tools

EVERYTHING NEEDED TO PROTECT HOME, BUSINESS, INSTITUTION

Huge selection of high quality professional alarm products. 64 fact-filled pages with detailed specs, diagrams, technical notes. Products range from basic switches, controls, bells, sirens to most sophisticated detectors \div radar, modulated or passive infrared, microwave, ultrasonics, ion, data links using pulse code multiplex, FSK radio, automatic phone dialers, leased line connections and display panels. Full selection of tools, relays, wire, foil, terminals, books.
WRITE FOR FREE CATALOG TODAY!
(Outside U.S., send $\$ 1.00$.)
mountain west alarm
box 10780 •phoenix, az 85064
(602) 263-8831

CIRCLE 14 ON FREE INFORMATION CARD

Designed for home, industry and commercial applications, instrument checks for $2450-\mathrm{MHz}$ microwave leakage. The meter is calibrated to

$0-5 \mathrm{~mW} / \mathrm{cm}^{2}$, with a maximum of $5 \mathrm{~mW} / \mathrm{cm}^{2}$ from oven as a safe limit. Mounted in a high-impact case, the model 245 M measures $2 \times 4 \times 0.5-\mathrm{in}$. and sells for \$49.95.-UCE, Inc., 20 N . Main St. Norwalk, CT 06854.
CIRCLE 118 ON FREE INFORMATION CARD

DIGITAL PANEL METER, Series B500. succeeds manufacturer's earlier Series 500 unit. The DPM consists of a single IC, 7 passive components and a 0.5 -inch red $31 / 2$-digit LED readout. Features auto-zeroing, with a 200 mV -1000-volt input range, and operates from either 5 volts DC or

$115-230$ volts $\mathrm{AC} .47-400 \mathrm{~Hz}$. Single unit price. $\$ 59$; 100 quantity, $\$ 39$.-International Microtronics Corp., 4016 E. Tennessee St.. Tucson, AZ 85714.

CIRCLE 119 ON FREE INFORMATION CARD
SAMPLE SOLDER KIT, dispenser-packed kit includes five different solders for the following uses: stainless-steel and jewelry; plumbing, sheet

metal and general metal joining; electrical wiring; electronic assemblies and PC boards; and alumi-
num soldering. Multiple cores provide proper flux to metal ratio, let you work faster and use less solder. Kit comes with Solder User's Guide, and costs $\$ 8.95$ (introductory price, incluces shipping/handling). For detailed information on solders in sampler kit and how to order. write the manufacturer.-Multicore Solders, Westbury NY 11590.

STATIC ELIMINATOR GUN is the first in a line of Audio Groome products designed to improve stereo record performance. Double-barrel gun

releases a flow of negative and positive ions to remove static from records. No batteries or outside power source are needed.-Empire Scientific Corp., 1055 Stewart Ave.. Garden City, NY 11530.

R-E
CIRCLE 120 ON FREE INFORMATION CARD

Bugworks'E Breadboards.

E\&L's Complete
Bugworks Catalog Products, instruments and educational materials (like our famous Bugbook volumes) that teach you circuit design and
microcomputer operation. Save time designing your own circuits with E\&L's SK series breadboarding sockets and the Breadbox IV. For both digital and analog designs, Breadbox IV, like all our solderless breadboards, enables instant circuit construction. It's the best priced instrument in the field.

From simple solderless breadboards to complete design systems, master the great new world of electronics.
Send for your Com plete Bugworks
It's free.

[^7]

get into
 cameras

Improve your income by acquiring additional skills as a camera repair technician Increasing use of electronics in cameras is creating still more opportunities for camera repair specialists. Take advantage
Performance Training
National Camera developed the first comprehensive technical training for camera repair technicians in the '50's. More practicing technicians have received training from us than from any other single source. Now this better-than-ever professional program is as close to you as your mailbox. Learn at home!
Complete Package
You get texts, tools, practice equipment - a complete program including the latest additions in photographic electronics - not available anywhere else
Free catalog
Find out about great training programs in camera repair technology. you can learn at home, keeping your present job, or at our one-year resident school in Colorful Colorado. For free information, use the card in this publication or write us today

V National Camera

Technical Training Division, Dept. GBD 2000 West Union Ave
Englewood, Colorado 80110

Accredited member NHSC, NATIS

next month

\author{

- Build A Darkroom Timer
}

Great addition to your darkroom. Has an LED readout and keyboard entry of exposure time. Automatically turns off your safelight when exposing a print.

- All About Disposable Batteries

Ever wonder what the differences between akaline, carbon zinc and mercury batteries are. Here's an in-depth explanation plus what you should expect in terms of performance from each type.

Digital Hi-Fi Recording

Your hi-fi tape recorder will never be the same. Here's a look at where the industry is going and what may happen to your tape recorder in the near future.

Plus:

Hi-Fi Lab Test Reports

Computer Corner

Jack Darr's Service Clinic

Hobby Corner

State-Of-Solid-State

and more

UNDERSTANDING

AND SMALL COMPUTER SYSTEMS
Here, at last, is a profusely illustrated, easy-reading, "must" book explaining fundamental concepts behind operation of almost all microcomputers ... in simple English... giving you that extra knowledge
to read and understand computer magazines and manufacturer's literature ... and feel "at home" around computers. Things like
How a CPU is organized; how it follows sequences of orders to solve problems

Illustrates basic instructions from almost every microcomputer Discusses common memory addressing modes illustrates typical uses What to know to tell a computer what to do when using machine language programming Use of flow charts; program worksheets; hand assembly of source codes into object codes memory maps; purpose of Editor, Assembler, Monitor.

Hardcover \$14.95. Paperback $\$ 9.95$

How a computer communicates
Commonly used I/O devices and operational concepts Practical aspects of selecting a small computer system Plus,
hundreds of other practical facts and information! If you're curious about small computers, you must own this 300 page no-nonsense easy-reading text. Includes easy-to-use glossary of key microcomputeroriented words.
UNDERSTANDING MICROCOMPUTERS. The name says it all! Only $\$ 9.95$ ppd Order your copy today!

SCERBI COMPDIEER CONSELTING INC. P.O. Box 133 - PP STN, Dept. RE-6

 Milford. CT 06460Prices shown for North American customers Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks. Pricing, specifications, avail up to 4 weeks. Pricing, specifications, a IMPORTANT! Include 75 C postage/handling fo importani! nclude 75 , postage/handing each book delivered by U.S.
CIRCLE 23 ON FREE INFORMATION CARD

books

SERVICING SONY COLOR TV FOR 1969-1972, by Stan Prentiss. Theodore Audel \& Co., Div. of Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN $46268.304 \mathrm{pp} .81 / 2 \times 11 \mathrm{in}$. Softcover $\$ 49.95$.

This service guide contains adjustment and alignment specifications, troubleshooting information, schematics, parts lists, disassembly instructions and operational theory. Chapter 1 gives the reader a basic understanding of the barrier AGC system used in today's TV receivers. Other chapters deal with specific troubleshooting methods for the models covered in this book. Foldout schematics are included in the back of the book

RADIOMAN'S GUIDE, Fourth Edition, by Robert G. Middleton. Theodore Audel \& Co., Div. of Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN 46268. 470 pp. $51 / 2 \times 81 / 4 \mathrm{in}$. Hardcover $\$ 7.50$
When radio was first developed, it was greeted as the miracle of the age, but no one could have predicted its many present-day uses in such diverse fields as industry, navigation, space exploration, surveillance - the list is endless. This book provides the layman with a sound understanding of the basic principles of radio. It presents its material clearly and simply. Some of the chapter titles are: "Elements of Radio," "Magnetism," 'Inductors," "Capacitors," "Basic Electronic Circuits,' Radio Transmitters," and "Radio Testing.'

THE 8080A BUGBOOK, MICROCOMPUTER INTERFACING AND PROGRAMMING, by Peter R. Rony, David G. Larsen and Jonathan Titus Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, IN $46268.416 \mathrm{pp} .51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 9.95$.

This latest in the Bugbook series contains the basic interfacing concepts of the Intel 8080 IC along with a discussion of I/O programming so that you can then develop your own interfaces to other devices such as teletypes, panel meters, A/D and D/A converters, etc.

The first three chapters introduce you to the microcomputer, describe a small 8080 device and how to program it. Later chapters deal with device select-pulse generation, clock cycles, the international operation of 8080 IC; subroutines, interrupts, external flags and stacks are discussed in Chapter 7. The appendixes contain references, and instruction set summaries for both the 8080 and 8080 A microcomputers.

ELECTRONIC COMMUNICATIONS SYSTEMS, Second Edition, by George Kennedy. Gregg/ McGraw-Hill Book Co., 1221 Ave. of the Americas, New York, NY 10020. 774 pp. $6^{1 / 2} \times 91 / 4 \mathrm{in}$. Hardcover \$16.95.

This book is written for postsecondary-level engineering students having a basic familiarity with electronics communications and who have completed algebra, trigonometry and binary arithmetic. This volume includes all the latest developments in the field, and chapter sequence has been reorganized. Two new chapters have been added: Broadband Communications Systems and Television Fundamentals. Each communications system is described in logical pro-gression-what it does and how. where it is applicable and what its future applications could be. An instructor's manual with exercises and solutions is contained in the back

R-E

Why buy a multi-capability counter for frequency- only measurements?

The 1911A multicounter makes accurate field transmitter frequency checks easy with the optional battery-pack and whip antenna.

For accurate readings in the presence of noise. Our new $1911 / 12 \mathrm{~A}$ multi-counters have both trigger-level and attenuator controls.

For high resolution measurement of low frequency control tones in the period or period-average mode.

For economy. They're priced about the same as many frequency-only models, with totalize, autozero, autoranging, manual and automatic range selection, and more. Standard.

- 1911 A for 250 MHz applications: $\$ 495$. - 1912A for measurements to 520 MHz : \$620*
Call (800)426-0361, toll free, or write John Fluke Mfg. Co., P.O. Box 43210 , Mountlake Terrace, WA 98043.

1912A 520 MHz mode।

Fluke Multicounters for Communications Service

2110-8001

 FLUKE

CIRCLE 76 ON FREE INFORMATION CARD

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

SPECIFICATIONS

ELF 11 features an RCA COSMAC COS/MOS 8-bit microprocessor adterrupt, 16 registers. ALU, 256 byte RAM, full hex keyboard, two digit hex output display, 5 slot plug-in expansion bus, stable crystal clock for timing purbus, stable crystal clock for timing purPC board plus RCA 1861 video IC 10 display any segment of memory on a video monitor or TV screen.

Use ELF II to ... PLAY GAMES using your TV for a videodisplay CREAT GRAPHICS pictures, alphanumerics, animated effects, . learn how to
DESIGN CIRCUITS DESIGN CIRCUITS using a microprocessor ... the possibilities

ELF 11 explodes into a giant when you plug the GIANT BOARD' into ELF's expansion bus. This powerful board includes cassette I/O, RS 232-C/TTY, 8editor meaning your ELF II is now the editor...meaning your ELF II is now the hear of a fuli-size system with unimited computing power! $\$ 39.95$ kit. $\$ 2$ psh. page to $64 \mathrm{k} . \$ 89.95 \mathrm{kit} . \$ 3 \mathrm{p} 8 \mathrm{~h}$. - Prototype (Kluge) Board accepts up to 32 I.C.s of various sizes. $\$ 17.00 \mathrm{kit}$. $\$ 1$ p\& ${ }^{8}$. Expansion Power Supply. $\$ 34.95 \mathrm{kit}$. \$2 p\&h. -Gold plated 86-pin connector. $\$ 5.70$ postpaid.
Coming Soon!
Tiny Basic
ASCII KEYBOARD* CONTROLLER BOARD D D-A, A-D CONVERTER CABINET

RCA COSMAC microprocessor/mini-
 computer

NETRONICS R\&D LTD., Dept. RE-6
333 Litchfield Road, New Milford, CT 06776 Phone (203) 354-9375 Yes: I want to rum programs at controllers, etc. (soon to be home and have enclosed: available is kits). Manual in-
口 $\$ 99.95$ plus $\$ 3$ p\& for RCA cludes instructions for assembly COSMAC ELE II kit. Featured cludes instructions for assembly. COSMAC ELF II kit. Featured testing, programming, video in POPULAR ELECTRONICS. praphics and games plas how Includes all components plus you can get El.F II User's Club everything you need to write bulletins. Kit can be assembied and run machine language pro- in a single evening and you'll
grams plus the new Pixie chip still have time to run programs that lets you display video including games, video graphics graphics on your TV screen. De- controllers, etc. . before going to signed to give engineers practice bed! $\square \$ 4.95$ for 1.5 amp 6.3 in computer programming and VAC power supply, required for microprocessor circuit design. ELF il kil. $\$ 5.00$ for RCA ELF II is also perfect for college 1802 User's Manual. and college-bound students (who must understand computers for any engineering, scientific or business career). Easy instructions get you started right away. even if you've never used a computer before!
As your need for computing power grows, five card expan sion bus (less connectors) allows memory expansion, program de. bugger/monitor, cassette $1 / O, A$ to D and D to A converters PROM. ASCII keyboard inputs

For just $\$ 895$ your DISCUS $\mathrm{r}^{7 "}$ system is complete. Complete with software. Completely assembled.
It's full-size floppy format gives you a quarter of a million bytes per diskette. And twice the speed of mini-floppies. Plus, DISCUS $\mathrm{T}^{\text {m }}$ is both $\mathrm{S}-100$ and IBM compatible.

And unlike other disk systems, DISCUS $\mathrm{J}^{\prime \prime}$ comes assembled and tested -a Disk Jockey $\mathrm{I}^{\text {™ }}$ controller, cables, and a free-standing Shugart disk drive in a handsome cabinet complete with power supply.

And you get the software you need, ready to self-load and run: DOS, ATE'" assembler/editor, patches for CPM, and Advanced BASIC (delivered mid-1978). CPM (\$70) and Micro-soft Extended Disk BASIC (\$199) are options.

Ask your local computer store to order DISCUS $\mathrm{l}^{\text {" }}$ today at our special $\$ 100$-off introductory price: $\$ 895$ only until June 30, 1978. Or send your check or money order to THINKER TOYS' 1201 10th Street, Berkeley, CA 94710 . Or call (415) 527-7548, 10-4 pm PST. Add $\$ 3.00$ handling; California residents add tax.

A PRODUCT OF

MORROW'S MICRO-STUFF FOR

Organize Your Junkbox

FRED BLECHMAN

A SIMPLE INEXPENSIVE WAY TO FIND small parts easily and quickly is to use match boxes. Parts cabinets can be made from pocket-size match boxes available in supermarkets, the brand used here is Ohio Blue Tip Matches (Ohio Match Company, Wadsworth, OH 44281). Each box is approximately 2 -long, $1^{1 / 2}$-wide and $1 / 2$-inches high. A 10 -box package only costs around $20 ¢$!

To make small-parts storage cabinets, glue, self-adhesive plastic and labels are needed. Rubber cement is ideal since it doesn't "set" immediately. The self-adhesive plastic comes in various designs and colors, and is available in most five-and-ten-cent and variety stores for about $70 ¢$ a yard in the 18 -inch width. The Avery Label Company (Azusa, CA 91702) makes No. S-620, $3 / 8 \times 11 / 4$-inch selfadhesive labels sold in stationery stores in boxes of 1,000 labels for around $\$ 2$.

To make a parts cabinet, empty the

matches out of the individual boxes and glue them together in a convenient arrangement. Four-boxes-wide by five-box-es-high makes a cabinet about $6 \times 3 \times$ 2 -inches, with 20 drawers. Before the cement has dried thoroughly, cut a $2^{1 / 2}$ -inch-wide strip of self-adhesive plastic long enough to band the tops and sides of the assembled boxes. (A walnut-grain design makes the finished cabinet look like wood.) Peel off the paper backing and carefully apply the plastic around the boxes so that it holds them together securely. Trim with scissors or a razor blade and the cabinet is finished.

R-E
 on all mail

HOBBY CORNER

continued from page 91
dirty" PC board, perhaps for a circuit that uses only a couple of transistors and a few other parts. It hardly seems worthwhile to draw with resist and then etch such a small board. You don't have to if you have a hand-held grinder or a flexible shaft tool.

If the pattern is not too small and/or complex, you can grind away the copper that you would have etched away. You can isolate pads of copper to receive two, three or more leads. Transistor sockets are not difficult to make, except for DIP sockets for IC's which are very difficult to construct. It can be done but it requires patience and a very steady hand.

The unwanted copper can be ground away with any of the small steel cutters that are normally used with a flexible shaft or hand-held tool. I have discovered that the round end cutters are less satisfactory than those with square and pointed ends. Some of the grinding bits used by dentists are excellent for PC board use. Ask your dentist to save his dull ones for you-they have a lot of coppergrinding life left in them.

When cutting away copper, try not to dig too deep into the board. Cutting away too much of the base material will weaken the board mechanically. If the tool slips and you cut across a copper run (and you will do this at first), don't discard the board because you can always jump the cut with wire. Finally, always wear safety goggles to protect your eyes-ihose lastspinning cutters really throw out very fine slivers of material.

You now have a quick and easy way to construct PC boards that should speed up your prototype and one-of-a-kind construction.

Reader suggestions

From time to time we have invited readers to send in ideas and suggestions for this column. We have cspecially welcomed circuits that you would like to share with other readers. Numerous ideas and suggestions have been received, and we appreciate every one of them.

We've also received letters about circuits, but most of the letters begin, "I need a circuit that will . . ." Well, sometimes I have such a circuit, but most often I can only suggest how it can be developed.

However, some of you must be building circuits, too. Just what kinds of things are you constructing? How about sharing your projects and ideas with others?

All you have to do is sketch a schematic diagram, attach a parts list and a short description of the project, and mail it to Radio-Electronics. We will examine each entry carefully and publish the best in future "Hobby Corner" articles. Of
course, your name will be listed as the contributor.
Here are a few items that others have asked for:

- A reader in New York wants an add-on for his model rocket launcher that would provide a digital readout, automatic countdown and close the launch circuit at time zero.
- Someone in Ohio wants to discourage burglars. He needs a timer that will turn lights on and off in different parts of the house at different times.
- A Florida reader needs a simple circuit to put numbers on a digital readout from a keyboard the way
it is done in calculators.
- A model railroad club in New York would like to have a layout run-ning-time counter that would be cumulative from one session to another yet continue to operate under derail conditions.
- A reader in Connecticut wants a rate counter for motor RPM, a wind-speed indicator and similar devices.
Those are only a few ideas. Electronics is present in every field of human endeavor. If you've developed a circuit to perform a task, why not consider sharing it? Send it along to Hobby Corner, RadioElectronics. 200 Park Arenuc South, New York, NY 10003.

R-E

Are You still using an Audio Generator that has a Crank?

$\underset{\substack{\text { if SO,tHEN } \\ \text { LOK At THE }}}{ } \mathbf{2 7 0}$ FUNCTION GENERATOR
by HICKOK

Sines, Squares, Triangles to 500 kHz - and much, much more

A new, versatile service and lab instrument - the feature packed Model 270 Funcloon Generator- gives you much more waveform generating capability than
you'd expect for its low price. This compact, precision unit puts stable, catibrated, youd expect for its low price. This compact, precision unit puts stable, calibrated, fingertips. But that's not all. With external connections you can produce logic pulses, sweeps and ramps, amplitude and frequency modulated outputs, phase and frequency shift keying signals, tone bursts, and a host of mixed signal out puts. It's even a stand-alone wideband inverting amplifier!

Complete with Deluxe
Carrying Case
Offer expires
Aug. 31, 1978

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE 800-223-0474 ELECTRONICS

More Professional scope performance for your money! DC to 10 MHz bandwidth, AC and DC coupling, 11 position calibrated attenuator, $10 \mathrm{mV} / \mathrm{cm}$ sensitivity, pushbutton operation. Outstanding features: Built-in TV Sync Separator; Digitally controlled trigger circuits; reference baseline display; calibrated 21 step sweep speed; Fully regulated power supply; Custom Bezel for standard camera mounting. Assembled $\$ 425.00$

FREE '78 EICO CATALOG
Check reader service card or send 50 c for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m. - 5:00 p.m. EST. Major credit cards accepted.
EICO-108 New South Rd. F/CD
Hicksville, N.Y. 11801
CIRCLE 70 ON FREE INFORMATION CARD

Solid-State Update

Schottky rectifiers

Schottky rectifiers are ideal for power rectification because of their lower forward voltage and the resulting lower power dissipation. The 17-device MBR7520 family from Motorola has a greater transient capacity than other rectifiers on the market. The diodes have a forwardcurrent rating from 25 to 75 amp and

SCHOTTKY RECTIFIERS FROM MOTOROLA
have reverse voltage ratings up to 45 volts. Most devices in the series have $\mathrm{dV} /$ dt ratings of 100 volts-per- $\mu \mathrm{s}$.

At a $100^{\circ} \mathrm{C}$ case temperature, 70 -amp
forward current and 45 volts, test units have been subjected to $8.3-\mathrm{ms}, 1300-\mathrm{amp}$ pulses once-per-minute, with no failures. The diodes recover from transients above the operating voltage specifications that drive them into temporary avalanche breakdown.

The rectifiers are mounted in DO-4 and DO-5 stud packages. Additional data is available from Motorola Semiconductor Products, Inc., Box 20912, Phoenix, AZ 85036.

Operational amplifiers

Signetics' SE/NE5534 operational amplifier has a $10-\mathrm{MHz}$ small-signal bandwidth and a $200-\mathrm{kHz}$ power bandwidth. It can drive 600 ohms to 10 volts RMS. The operational amplifier is internally compensated for gains equal to or higher than 3 , and can be used in highquality audio equipment. instrumentation and control circuits and telephone channel amplifiers.

The DC gain is 100,000 volts, the AC gain is 6000 volts at 10 kHz and the supply range is ± 3 to ± 20 volts. The amplifiers are available in 8 -pin mini-DIP and TO-5 packages, cost between $\$ 1.50$

GET ALL THE FACTS ON THE NEW GTS-10 GENERAL TELEVISION SERVICER - the concept that is changing the course of TV servicing!
 SEND FOR A FREE GTS-10 TWO-VOLUME OWNER'S MANUAL!

In addition to a free two-volume set of the GTS-10 owner's manuals you will receive a comprehensive 6-page full color brochure - describing its profit making potential and its many unique patterns as well as information on our 30-day Shop Trial offer of the GTS-10 General Television Servicer.

MODEL GTS-10
OWNER'STS-10
VOLUME 2 MANUAL

A Platt tool case won't fall apart at the seams because there are no seams.

Unlike other tool cases, the pockets on a Platt Pallet are molded without any seams, stitches or rivets to form a onepiece unit. It's practically indestructible.

The case itself has that same rugged construction. It comes in either tough, lightweight ABS Thermoplastic, rich looking expanded vinyl or a combination of both.

Platt also has rugged hardware. Like an aluminum rim for extra strength. Steel core handles. And tough brass locks.
Inside there are compartments for larger tools, parts boxes and testing equipment. And multiple lid pockets for paper and order books.
Besides having a tough case Platt
has a tough 5-year guarantee on both
the case and pallet.
Cases for business and industry.
Chicago, Ill. 60616 (312) 225-6670

* Pat No 3.x*0.2ns

2301 S. Prairie Ave.. Chicago, Ill. 60616 (312) 225-6670
and $\$ 2.00$ in quantities of 100 . Details are available from Signetics, 811 East Avenue, Box 9052, Sunnyvale, CA 94086.

Texas Instruments has expanded their BIFET (Bipolar Field-Effect Transistor) operational-amplifier line to 12 circuits. The TL061 and TL071 series combine JFET's (Junction Field-Effect Transistor) and bipolar transistors, which results in low input-bias current requirements with higher internal current levels for higher performance levels.

The TL061 has a 3.5 -volt-per- μ s slew rate and a $0.2-\mathrm{mA}$ current drain that makes it suitable for battery operation. Specifications for the TL071 are a 13 -volt-per- $\mu \mathrm{s}$ slew rate and a $2.5-\mathrm{mA}$ maximum current drain. The low noise and distortion levels for the TL071 makes it suitable for use in preamplifiers. Inquiries should be sent to Texas Instruments Incorporated, Inquiry Answering Service, Box 5012, M/S 308 (Attn: TL06] and TL071), Dallas, TX 75222.

Voltage regulator

Silicon General's SG1532, SG2532 and SG3532 precision general-purpose regulators are substantially improved versions of the industry standard SG723. The SG1532 has a minimum required

SILICON GENERAL'S SG 1532 VOLTAGE REGULATOR
input voltage of 4.5 compared with the SG723's 9-volt specification. Lower voltages can be sustained across common 5volt regulators, reducing the dissipation.

The SG1532 has thermal shutdown and current-limit protection. The IC is protected even if an external pass transistor fails. A sense voltage of only 89 mV is needed to current-limit the SG1532 compared with 650 mV for the SG723. A series-current sense resistor is inserted in the output current path to trigger the current-limit protection circuit. At 650 mV and, for example, 10 amps , the sense resistor dissipates 0.65×10 or 6.5 watts-a lot of wasted energy.
turn page

TechniciansRCA Flameproof Film Resistors simplify your replacement problems.

More and more technicians are switching to RCA Flameproof Film Resistors. Here are 5 important reasons why:

- Many of today's circuits require flameproof resistors.
- Simplified inventory: RCA's 2% tolerance flameproof resistors replace many conventional types having 5% and 10% ratings.
- High quality service demands high quality replacement parts.
- They're available in the popular wattage ratings $-1 / 4,1 / 2,1$ and 2 watts.
- Values run from 1.0 Ohm to 1.5 Megohms. Altogether there are 523 film resistors to choose from.
And, RCA's convenient, preloaded and prelabeled Flameproof Resistor Kit makes it easy to store and locate your resistors. See your RCA Distributor for details or write to RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, NJ 08096.

- \quad Flameproof Film Resistors

"My father built this Schober Organ for me!"

You'd be proud to buy her an organ this good...but how would you feel if you'd also built it? It's a special kind of satisfaction. The gift of a lifetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied. You'll find the assembly process as enjoyable as the music which follows!

And what music! For this is a truly fine

"ready-made" organs...easily comparable to others at twice the price. Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out... or have two-year time payments. When you've completed the basic organ, Schober offers a full complement of accessories... plus complete organ playing courses! People have been building Schober Electronic Organs for their daughters, sons, wives, husbands ... for themselves... for 20 years now. Join the thousands of delighted Schober people.

You can have all the details, without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober). Why not clip it right now, before you forget?

You know that's a great price. Especially when you consider the outstanding performance you get with this Gould OS245A oscilloscope.

And you get clear, bright displays. 5 mV /div. sensitivity and exceptionally versatile trigger performance. It's ideal for TV or general electronic service work; perfect for hobbyists and educational institutions. You can rely on Gould to live up to these specs:

- DC to 10 MHz ; dual trace
- Trigger performance in excess of 15 MHz
- TV trigger facilitates solid synchronization with TV signals

- Portable; weighs just 11 lbs.
- Carries full two year warranty on all parts and labor exclucting normal calibration, fuses and minor maintenance. Just one phone call gets you action.
Don't miss out on this bargain. Pick up the phone now and call us toll-free at 800-325-6400. (In Missouri call 800-342-6600). We'll rush you free literature and ordering information on the OS245A as well as other Gould oscilloscopes applicable to your needs. Gould Inc., Instrument Systems Division, 3631 Perkins Avenue, Cleveland, Ohio 44114.

The older SG723 design uses a Zener diode reference, while the SG 1532 has a lower noise band-gap reference.

Line regulation is 0.01%-per-volt maximum, and the output current capacity is a minimum of 100 mA . The price is $\$ 1.10$ per unit in quantities of 100 . Silicon General, Inc., 7382 Bolsa Avenue, Westminster, CA 92683.

Another radio circuit

SGS-ATES Semiconductor Corp. also has AM/FM integrated circuits the TDA1220 and TDA1230. The TDA1220 has an FM IF amplifier-limiter, an FM detector, and an AM RF amplifier, mixer, oscillator, IF amplifier and detector. The FM limiting sensitivity is $30 \mu \mathrm{~V}$, the amplitude modulation rejection (AMR) is 50 dB and the S / N ratio is better than 60 dB .

The TDA 1230 goes further with an AF power amplifier that is driven from the on-chip FM detector or from an external audio source.

R-E

CROSSTALK IN ORGAN

I wrote about a crosstalk problem in a home-made electronic organ 1 am building. You said it was out of your line but made some helpful suggestions! One suggestion was to reduce the signal level at the point where the problem started.

1 also found a lot of good data in some articles written by John S. Simonton, especially the article in which he wrote that, in some cases, too many grounding points would actually be a drawback. Thanks to you both.-H. B., Lancaster, PA.

You're welcome!

LONG-TERM INTERMITTENT

I wonder if you can give me some clue on this RCA model CTC-16X. It works for quite a while, then goes out of focus. The picture turns red, then it blacks out. The worst part is it's MY set!- L. S., Oak Park, IL.

Oh, you've got one of the later models; mine's a model CTC-15! Anyway, I remember a model CTC-10 that showed exactly these symptoms. After watching
it in vain for some time, I finally caught the symptom. A quick check in the back of the set showed that the damper tube heater was slowly going out! In this case, it was not the damper tube, but a bad contact on one of the heater pins in the socket. You already changed the damper tube, but you should clean up the contacts on that socket. (I still haven't figured out why the picture turned red as it went out, but I saw it.)

NO VERTICAL HOLD

This Philco model 21 KT40 has a unique problem: The height and linearity are good, the vertical sync is very critical, and, the unique part, the vertical hold control has no effect whatsoever! / replaced the plate-load resistor, the multiplier grid resistor, etc., nothing. I changed capacitor C62, nothing. Everything else seems to check OK. I'm just scratching my head!-K. S., Seymour, IN.

What can mess up this circuit is a leakage in the capacitors in the feedback loop, especially capacitor C59. Somehow, the time constant in the input-grid circuit is way off. As a last resort, get out your shotgun and change them all at once.
(Feedback: "You're right. I loaded up the shotgun and the third capacitor was the one-C59, the coupling capacitor from the end of the feedback loop to the input grid. Thanks a million.") R-E

Pruf 10

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all kleps spring loaded).
Kleps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\$ 1.39$ Kleps 20. Same, but $7^{\prime \prime}$ long.
Kieps 20. Same, but 7 " long.
Kleps 30 . Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
$\$ 1.79$
Kleps 40 . Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\quad \$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long.
$\$.99$ Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long. $\$.89$ All in red or black-specify. (Add 50 c postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.

Accuracy like a VTVM... Gonvenience like a VOM...
 NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHMMETER *116

Easy-to-build KIT
$\$ 41 .{ }^{85}$
Factory-Wired \& Tested
$\$ 56 .{ }^{12}$ $=116 \mathrm{~W}$
Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an $A C$ outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on batteryoperation and small' size. Excellent for both bench and field work.
Compare these valuable features:

- High impedance low loading: 11 meg-
ohms input on $D C, 1$ megohm on $A C$. ohms input on $D C, 1$ megohm on $A C$ 20,000 ohms-per-volt VOM - Wide-range ersatility: 4 P-P AC voltage ranges: 0.3 .3 , $33,330,1200 \mathrm{~V} ; 4$ RMS AC voltage ranges: j-1.2, 12, 120, 1200V; 4 DC voltage ranges: 3-1 2, 12, 120, 1200V; 4 Resistance ranges: $0-1 \mathrm{~K}, 0.100 \mathrm{~K}, 0.10$ meg., 0.1000 meg .; 40 B ranges. -24 to +56 DB .
Sensitive easy-to-read $41 / 2^{\prime \prime} 200 \mathrm{micro}$. amp meter. Zero center position availtransistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High-impact bake. lite case with handle useable as instru. ment stand. Kit has simplified step-bystep assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. $51 / 4^{\prime \prime} H \times$ $63 / 4^{\prime \prime} \mathrm{W} \times 27 /$ " $^{\prime \prime} \mathrm{D} .3 \mathrm{lbs}$.

What is an LCD?

BY KEITH RIORDAN

LIQUID CRYSTAL DISPLAYS (LCD'S) DIFFER FROM OTHER types of displays in that they scatter, rather than generate, light. Two basic types are available: reflective, which require front illumination, and transmissive, which require rear illumination. Both types use a field-effect cell that is filled with liquid crystal material.

A liquid crystal material is an organic compound - that is, a compound containing carbon, hydrogen, oxygen, and nitrogen - that has the optical properties of solids and the fluidity of liquids. In the liquid crystal state, which is exhibited over a specific temperature range, the compound has a milky, yellow appearance. At the high end of the temperature range, the milky appearance gives way to a clear liquid. At the low end of the range, the compound turns to a crystalline solid.

The molecules of a liquid crystal compound are in the form of long, cigar-shaped rods. Because of the special grouping of the atoms that form these molecules, the rods act as dipoles in the presence of an electrical field. This characteristic enables the molecules to be aligned in the direction of the electrical field and provides the basis for operation of a liquid crystal display.

FIG. 1 - FIELD-EFFECT CELL STRUCTURE

FIELD-EFFECT CELL STRUCTURE

A field-effect liquid crystal cell consists of two glass plates, each with a transparent conductive coating, between which the liquid crystal material is sandwiched (Figure I). A thin film of indium oxide - a transparent electrical conductor - is deposited on the top, or front, glass plate. This oxide is patterned to produce a series of 7 -segment characters. Each segment has a lead that extends to the long edge of the glass. The bottom, or back, glass plate also has an indium oxide coating, but the pattern is designed as a common electrode that, when the plates are fused, registers to the top glass pattern. The oxide-coated side of both the top and bottom glass plates is entirely covered by an evaporated layer of silicon monoxide dielectric, which produces the desired alignment of the liquid crystal molecules.

After the conductive and dielectric coatings have been applied, the top and bottom plates are fused to within 0.0005 inch by a glass ring that has a 0.05 -inch opening on
one side. Both plates have a strip of solderable metal - gold over copper over chrome - on the side with the opening. This opening is used to introduce the liquid crystal material into the display envelope, after which the metal strips are soldered to seal the opening.

REFLECTIVE LCD OPERATION

A reflective LCD consists of a vertical polarizer, liquid crystal field-effect cell, horizontal polarizer, and reflector (Figure 2). With no voltage applied, the treatment of the

FIG. 2 - UNENERGIZED REFLECTIVE LCD
liquid crystal cell plates produces a uniform alignment of the crystal molecules. If the front and back plates are mounted at right angles to one another - according to the way in which the crystal molecules line up - a 90-degree rotation, or twist, of the alignment occurs. Vertically polarized light entering the front of the cell (A) follows the rotation of the crystal alignment as it passes through the cell (B, C, D). Having been rotated 90 degrees, the polarized light passes through the horizontal polarizer to the reflector (E). The light is then returned through the cell, again rotating 90 degrees, and passes out of the LCD through the vertical polarizer.

When voltage is applied across one or more of the character segments (Figure 3), the crystal molecules in the area

FIG. 3 - ENERGIZED REFLECTIVE LCD
of the segments align themselves with the electrical field. Rotation therefore does not occur in the region of the energized pattern elements. The vertically polarized light conforming to the image produced by these elements cannot pass through the horizontal polarizer but is, rather, absorbed by it. The energized display elements therefore appear as black images against a light background.

TRANSMISSIVE LCD OPERATION

A transmissive LCD consists of a vertical polarizer, fieldeffect cell, horizontal polarizer, and light source. The light source, which may be of any suitable type, is in the same position as the reflector in a reflective display.

With no voltage applied to the cell, light from the source passes through the horizontal polarizer, is twisted by the cell, and passes out of the LCD through the vertical polarizer at the front of the display. When voltage is applied to the cell, the twist is destroyed in the region of the energized pattern segments. The horizontally polarized light emitted by the source is absorbed by the vertical polarizer, forming the black-on-white image of the energized pattern segments.

A white-on-black effect can be achieved by using two horizontal (or two vertical) polarizers. In this case, light in the area of the energized pattern elements passes through both polarizers while light in the surrounding area is absorbed. R-E

[^8]
Radio-Electronics
 Tests Lux
 R-1120 Stereo AM/FMRecelver

LEN FELDMAN

CONTRIBUTING HI-FI EDITOR

LUX AUDIO OF AMERICA. LTD., THE AMERICAN subsidiary of Lux Corporation of Japan, has labeled their three receivers as tuner-amplifiers in the advertising campaigns introducing the products to the U.S. market. After three years establishing its reputation as a maker of top-quality separate components, the firm now seeks to capture some of the high-volume sales potential of the all-in-one receiver market.

The Luxman model R-I/20 stereophonic AM/FM receiver is shown in Fig. I. It is clear from this photo that Luxman receivers (all of which bear a family resemblance) are not merely carbon copies of other better-known integrated units. The front panel contains a large bronze-colored dial area opening camouflaging less-used controls and switches while the most-used controls are neatly positioned below them, creating a distinctly uncluttered rich look.

Major controls are arranged along the bottom of the panel. They include an input program selector switch (with two phono settings, AM, FM and AUX); Bass and Treble controls, which, when gently pulled forward, offer alternate crossover or turnover frequencies; a large central tuning knob; dual-concentric volume/balance controls; and a SPEAKER selector switch. The headphone jack is located to the right of this last switch.

Secondary controls and switches blend neatly into the dark-colored area above the dial
scales. These controls include a Dolby FM switch (active only if you purchase an optional extra Dolby decoder board that plugs into the chassis via an otherwise empty multiple-pin connector), a tape-monitor switch, a tapeselector switch (up to two tape decks can be handled by the model $R-1120$), a tape dubbing switch (one-to-two or two-to-one), a mono/ stereo mode switch, a LOUDNESS switch, a SUBSONIC switch, low- and high-cut filter switches, a selector switch that governs the sensitivity of two series of peak indicator power switches and a main POWER on-off switch.

Linear FM and AM dial scales positioned just below these controls illuminate softly when power is applied. Below the dial scales, at the left, are indicator lights for the Dolby switch and for stereo FM reception, plus illuminated signal-strength and center-of-channel tuning meters. The lower right-hand side of the dial area includes two symmetrically placed groups of LED indicators, calibrated at $-18,-15,-12,-9,-6$ and 0 dB . The $0-\mathrm{dB}$ calibration corresponds either to the rated power output of 120 watts (into 8 -ohm loads) or, when the sensitivity button is depressed, to an output of 7.5 watts. This arrangement extends the usefulness of the LED indicators so that power output can be read instantaneously even when you listen at low levels (down to 120 milliwatts-per-channel). An additional LED serves as a power-on indicator and, when power is first applied, flashes intermittently for a few seconds as voltage in

MANUFACTURER'S PUBLISHED SPECIFICATIONS

FM TUNER:

IHF Sensitivity: mono, $1.8 \mu \mathrm{~V}$ (10.3 dBf); stereo, $4.0 \mu \mathrm{~V}$ (17.2 dBf). 50-dB Quieting: mono, $2.8 \mu \mathrm{~V}$ (14.1 dBf); stereo, $38 \mu \mathrm{~V}$ (36.8 dBf). S/N Ratio: mono, 74 dB ; stereo, 70 dB. Selectivity: 80 dB . Frequency Response: 20 Hz to $15 \mathrm{kHz},+0.2,-1.5 \mathrm{~dB}$. Distortion: mono, 0.1% at $1 \mathrm{kHz}, 0.3 \%$ at 6 kHz ; stereo, 0.2% at 100 and $1000 \mathrm{~Hz}, 0.4 \%$ at 6 kHz . Capture Ratio: 1.3 dB . Image Rejection: 80 dB . IF Rejection: 85 dB . AM Suppression: 55 dB . Stereo Separation: 48 dB at $1 \mathrm{kHz}, 45 \mathrm{~dB}$ at $100 \mathrm{~Hz}, 42 \mathrm{~dB}$ at 10 kHz . Subcarrier Rejection: 60 dB . SCA Rejection: 60 dB .

AM TUNER:

Sensitivity: $200 \mu \mathrm{~V}$-per-meter (internal antenna). Image Rejection: 75 dB . IF Rejection: 80 dB . S/N Ratio: 52 dB . THD: 0.5% (30% modulation). Selectivity: 32 dB .

AMPLIFIER \& PREAMPLIFIER:

Power Output: 120 watts-continuous-per-channel into 8 -ohm loads, 20 Hz to 20 kHz Rated THD: 0.03%. Rated IM: 0.03%. Frequency Response: 15 Hz to $60 \mathrm{kHz}, \pm 1.0 \mathrm{~dB}$. Residual Noise: 1.3 mV . Input Sensitivity: phono, 2.6 mV ; high level, 160 mV . Phono Overload: $160 \mathrm{mV} . \mathrm{S} / \mathrm{N}$ Ratio: phono, 72 dB (94 dB referenced to 10 mV , A-weighted); high level, 88 dB (95 dB referenced to full output, A-weighted). Bass Control Range: $\pm 6 \mathrm{~dB}$ or $\pm 11 \mathrm{~dB}$ at 100 Hz . Treble Control Range: $\pm 8 \mathrm{~dB}$ or $\pm 13 \mathrm{~dB}$ at 10 kHz . High- and Low-Filter Cutoff Frequencies: subsonic, 15 Hz ; low, 70 Hz ; high, 7 kHz (al| at -12 dB per octave).

GENERAL:

Power Consumption: 500 watts maximum, 120 volts, 60 Hz . Dimensions: $19^{5 / 16} \mathrm{~W} \times$ $7^{3 / 32} \mathrm{H} \times 16^{7 / 32}$ D. Weight: 37.4 lbs . net. Suggested Retail Price: $\$ 895$.
the receiver become stabilized. The light remains continuously lit when this process is completed, and only then is sound fed to the speaker systems.

The rear panel of the model $R-1 / 20$ is shown in Fig. 2. Three sets of spring-loaded speaker terminals are located to the left,

together with switched and unswitched convenience AC receptacles. Two sets of speaker terminals are used for connecting two pairs of conventional dynamic speaker systems, while the third set of terminals is specifically for connecting electrostatic wide-range speakers that often require (or present) different amplifier impedances. Speaker-line fuses for each channel are located below the three sets of speaker terminals.

A metal grill in the center of the rear panel covers and protects the four output transistors that are mounted directly to projecting heat sinks. In the right-hand section of the panel are four antenna input terminals (for connection to external AM, 75 -ohm and 300 -ohm FM antennas), a chassis ground terminal, two sets of phono input terminals, auxiliary input terminals, two sets of tape input and output terminals and a DIN connector that parallels the pin-jack tape-I terminals. An antenna attenuator switch is located in this area for use during reception of overly strong incoming FM signals. A large AM ferrite-bar antenna can be rotated away from the metal chassis surface and oriented for best reception.

A wide variety of equipment can be connected to and used with the model $R-1120$ receiver (see Fig. 3). Rather surprisingly, there are no jacks for separate operation of the two sections of the receiver (preamplifier-out/main ampli-fier-in jacks), despite the emphasis Lux places on the tuner/amplifier characteristics of this receiver. There is no FM detector output jack (for possible future use with four-channel FM adapters) nor any jacks for connection to an oscilloscope to observe multipath interference and antenna orientation.

Circuit highlights

The preamplifier section of the model K $1 / 20$ uses a three-stage, direct-coupled circuit using PNP transistors, followed by a two-stage direct-coupled voltage amplifier, a buffer stage using NPN transistors and a two-stage directcoupled control amplifier section using PNP devices. In the power amplifier section, a difference amplifier using low-noise transistors

TABLE I

RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Lux Audio of America, Ltd.
Model: R-1120

FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND	R-E	R-E
FREEDOM FROM INTERFERENCE	Measurement	Evaluation
IHF sensitivity, mono: ($\mu \mathrm{V}$) (dBf)	1.7 (9.8)	Excellent
Sensitivity, stereo ($\mu \mathrm{V}$) (dBf)	3.7 (16.6)	Excellent
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)	2.7 (13.8)	Very good
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$) (dBf)	30 (34.8)	Very good
Maximum S/N ratio, mono (dB)	76	Excellent
Maximum S/N ratio, stereo (dB)	71	Excellent
Capture ratio (dB)	1.2	Very good
AM suppression (dB)	57	Good
Image rejection (dB)	80	Very good
IF rejection (dB)	88	Very good
Spurious rejection (dB)	90	Very good
Alternate channel selectivity (dB)	82	Excellent
FIDELITY AND DISTORTION MEASUREMEN		
Frequency response, 50 Hz to 15 kHz ($\pm \mathrm{dB}$)	0.5	Excellent
Harmonic distortion, 1 kHz , mono (\%)	0.07	Superb
Harmonic distortion, 1 kHz , stereo (\%)	0.08	Superb
Harmonic distortion, 100 Hz , mono (\%)	0.085	Superb
Harmonic distortion, 100 Hz , stereo (\%)	0.10	Excellent
Harmonic distortion, 6 kHz , mono (\%)	0.09	Excellent
Harmonic distortion, 6 kHz , stereo (\%)	0.12	Superb
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)	0.7	Very good
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)	0.5	Good
STEREO PERFORMANCE MEASUREMENTS		
Stereo threshold ($\mu \mathrm{V}$) (dBf)	3.3 (15.6)	Excellent
Separation, $1 \mathrm{kHz}(\mathrm{dB})$	54	Superb
Separation, 100 Hz (dB)	60	Superb
Separation, 10 kHz (dB)	33	Good
MISCELLANEOUS MEASUREMENTS		
Muting threshold ($\mu \mathrm{V}$) (dBf)	3.3 (15.6)	Excellent
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)	40 at 98	Excellent
EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION		
Control layout		Superb
Ease of tuning		Very good
Accuracy of meters or other tuning aids		Excellent
Usefulness of other controls		Excellent
Construction and internal layout		Very good
Ease of servicing		Good
Evaluation of extra features, if any		Very good
OVERALL FM PERFORMANCE RATING		Excellent

suppresses any possible DC drift. A constant current-drive system loads the predriver stages. A power limiter circuit protects the output transistors from excessive current, and a time-delay muting circuit safeguards the speakers.

The FM section uses a four-gang tuning capacitor and a dual-gate MOSFET RF stage in its front end. The IF section uses linear phase ceramic filters to achieve sharp skirt selectivity while maintaining adequate bandwidth for low distortion mono and stereo reception. A quadrature detector/limiter circuit in the form of an IC is used to recover the composite signal that is fed to a phase-lockedloop multiplex decoder IC stage, followed by an IC low-pass filter that suppresses subcarrier products. A modified form of AFC circuitry that Lux terms its closed-lock-loop tuning system locks received signals but, unlike conventional AFC circuits, is limited to a locking range of only $\pm 100 \mathrm{kHz}$ to prevent pulling in adjacent strong-signal channels.

The AM tuner uses a three-gang tuning capacitor and amplified AGC circuitry as well as a ceramic filter in its IF section. The frontpanel signal-strength meter can be used both in the AM and FM modes.

FM measurements

Table I summarizes FM tuner lab measurements made on the model $R-1120$. While the receiver either equared or exceeded most of the published specifications, particularly noteworthy were the incredibly low harmonic distortion figures that were obtained in both mono and stereo modes and the unusually high stereo FM separation figures obtained at 100 Hz and 10 kHz .

Figure 4 is a sweep-frequency analysis of FM audio response (including $75-\mu \mathrm{s}$ deemphasis) of a desired output signal (shown in

the upper trace) and an undesired oppositechannel output signal, which confirms higher separation at low audio frequencies. Note, too, the steep filtering action at 19 kHz that virtually eliminates any high-frequency subcarrier output signals at the output of the tuner or of the complete receiver. The AM suppression ratio was less impressive. Although this figure was better than specified, it seemed rather low for a set of this quality and price. Stereo threshold, sensitivity and overall muting threshold were ideally set by the factory to provide the best possible results in mono and stereo.

Table II summarizes amplifier and preamplifier performance, and a comparison with the manufacturer's published specifications shown elsewhere in this report shows that the amplifier is very conservatively rated.

Both the available phono inputs have identical input sensitivities (2.8 mV) and identically high overload capabilities (200 mV as
compared with the 160 mV claimed). While we prefer to measure signal-to-noise ratios based upon rated input sensitivities, it should be noted that if the reported $75-\mathrm{dB}$ tigure were referred to a $10-\mathrm{mV}$ input, it would be equivalent to 87 dB -still without the benefit of any weighting curve. RIAA equalization was found to be accurate to within 0.2 dB from 30 Hz to 15 kHz .

Figure 5 is a scope photo showing the range of control of the bass and treble controls. With the control knobs in their depressed or normal positions, turnover frequencies are 200 Hz and 10 kHz ; with the control knobs pulled out, the turnover frequencies shilt to 400 Hz (for the bass control) and 2 kHz (for the treble control) for additional tonc-control flexibility. In Fig. 6, it is not possible to observe the action of the steep subsonic filter since it begins to roll off well below the $20-\mathrm{Hz}$

lower limit of the spectrum analyzer's \log sweep range. The 12 dB -per-octave roll-off of the low-cut and high-cut filters is shown clearly in Fig. 6, however, and the $-3-\mathrm{dB}$ cutoff points correspond closely to the $70-\mathrm{Hz}$ and $7-$ kHz frequencies specified by I ux.

Summary

In order to arrive at the summary conclusions in Table III (along with our overall

product evaluations), we listened to a great deal of recorded and broadcast material using the model R-/120. More than one pair of speakers was used so that we could characterize the sound produced by the receiver itself rather than judge the sound reproduction solely on the basis of the speakers used. Our experience with conventional dynamic speakers (both low- and high-efliciency types) leads us to believe that serious audiophiles will be willing to pay just a bit more for lux equipment. As far as power output is concerned. there are only a few-a very few-loudspeakers that would ever demand more power than that provided by the model $R-1 / 20$ in any home listening situation. If, as I ux's brochures maintain, their engineers spend as much time listening as they do designing circuits, then the extra effort has paid off in the model $R-1 / 20$.

TABLE II RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Lux Audio of America, Ltd.
Model: R-1120

AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY

RMS power/channel, 8 -ohms, 1 kHz (watts)
RMS power/channel, 8 -ohms, 20 Hz (watts)
RMS power/channel, 8 -ohms, 20 kHz (watts)
RMS power/channel, 4 -ohms, 1 kHz (watts)
RMS power/channel, 4 -ohms, 20 Hz (watts)
RMS power/channel, 4 -ohms, 20 kHz (watts)
Frequency limits for rated output ($\mathrm{Hz}-\mathrm{kHz}$)

DISTORTION MEASUREMENTS

Harmonic distortion at rated output, $1 \mathrm{kHz}(\%)$
Intermodulation distortion, rated output (\%)
Harmonic distortion at 1 -watt output, $1 \mathrm{kHz}(\%)$
Intermodulation distortion at 1-watt output (\%)
DAMPING FACTOR, AT 8 OHMS
PHONO PREAMPLIFIER MEASUREMENTS
Frequency response (RIAA $\pm d B$)

R-E	R-E Measurement Evaluation Excellent
137	Superb
130	Excellent
130	
$\mathrm{~N} / \mathrm{A}$	
N / A	
N / A	
$13-23$	very good

Maximum input before overload (mV)
Hum/noise referred to full output (dB) (at rated input sensitivity)
HIGH LEVEL INPUT MEASUREMENTS
Frequency response ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)
Hum/noise referred to full output (dB)
Residual hum/noise (minimum volume) (dB)
TONAL COMPENSATION MEASUREMENTS
Action of bass and treble controls
Action of secondary tone controls
Action of low frequency filter(s)
Action of high frequency filter(s)
COMPONENT MATCHING MEASUREMENTS
Input sensitivity, phono 1/phono 2 (mV)
Input sensitivity, auxiliary input(s) (mV)
Input sensitivity, tape input(s) (mV)
Output level, tape output(s) (mV)
Output level, headphone jack(s) (V or mW)

EVALUATION OF CONTROLS,

CONSTRUCTION AND DESIGN
Adequacy of program source and monitor switching
Excellent
Adequacy of input facilities
Arrangement of controls (panel layout)
Action of controls and switches
Design and construction
Ease of servicing
OVERALL AMPLIFIER PERFORMANCE RATING
Very good Superb
Very good
Very good Good
Excellent

TABLE III

 OVERALL PRODUCT ANALYSIS| Retail price | \$895 |
| :--- | :--- |
| Price category | High |
| Price/performance ratio | Good |
| Styling and appearance | Excetlent |
| Sound quality | Superb |
| Mechanical performance | Very good |

Comments: The Lux Corporation's emphasis on listening quality (as opposed to just power output and measurable specifications) is as evident in this, their most powerful receiver, as it is in their separate components. The model R-1120 sounds good-and its audible superiority is evident even if you connect relatively inexpensive loudspeakers (although its true potential is best realized when accurate-sounding, more costly speakers are used with it). A good deal of human engineering has obviously gone into the layout, and all controis have been positioned for the easiest, most logical operation. The idea of a separately available Dolby decoder board makes good sense, since many areas do not as yet have Dolby FM broadcasts and to have penalized all purchasers of the receiver with the added built-in cost of a Dolby decoder would have been unfair. Lux's description of this receiver (as well as of their lower-powered, lowerpriced models R-1050 and R-1040) as a tuner/amplifier is justified in some ways and not in others. The implication is, of course, that the unit offers the same sort of reproduction provided by a separate tuner and amplifier. The model R-1120 does just that. However, the absence of separate access to its preamplifier output and its main amplifier inputs (a feature found on many less-costly receivers) limits its flexibility to that of an all-in-one integrated receiver. Like other Lux products we have seen, the receiver cannot be judged on power output alone, for if so its price would be on the high side. This component must be seen and heard at a properly equipped audio shop. with a bit of hands-on operation. There is a sense of handcrafted detail about this receiver that offers positive aesthetic advantages but also makes for a slightly crowded internal layout that is not the easiest to service. Still, it superb sound in an all-in-one receiver is what you crave and 120 -watts-per-channel plus are what you need to drive your speakers, the model R-1120 may well be for you.

AU. 580 Au-580 Mounts in Or Under Dash

AC Adapt. 117 V to 6, $7.5 \& 9 \mathrm{VDC}$. BA-159
CB Gutter Mount Antenna. AA-929
CB Trunk Mount Antenna. AA-999
"Message Minder" Tape Recorder. As-Is RA. 73
"Bib" Groove Klean Record Cleaner. HF-604
500^{\prime} Hook-Up Wire Kit. WW-579
Cassette Tape. Pkg of 3.30 Minute TA- 879
B-Track Tape. 40 Mnnute TA-907
Earphones. 80 hm . Less Cord Phg of 4 PH- 405
Singer 12 Drgit MOS Calculator Chid With Data Xm-635
Ceramic Capactors. Pug of 100 CC. 211
RED LED. 2 Volt 10 mA . Pkg of 5 PL 233
709 Hgh Gain OP AMP RE 131
Cassette Lapled Mike. 35 mm Plug MM- 174
Slidemount For Auto Stereo or CB. AU- 149
6 to 12 Volt DC Converter. 6V. Acc On 12V Batt AU-297 499
OFFER GOOD ONLY IN THE CONTINENTAL U.S.

PLANS \& KITS

CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed $\$ 1.00$; includes year's subscription to Electronic Newsletter. DON BRITTON ENTERPRISES, PO Box G, waikiki, HI 96815
MINI-laser plans $\$ 1.00$. Science project catalog 254. MOTEN, 323 S. Franklin, \#804, Chicago, II 60606
HOBBYIST give your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fur kit projects. Rush free details. DANOCINTHS, Box 261 , Westland, MI 48185

MANUALS for Govt. surplus radios, test sets, scopes. List $50 ¢$ (coin). BOOKS, 7218 Roanne Drive, Washington, D.C. 20021

LINEAR Amplifier: Ham only $2-30 \mathrm{MHz}, 100$ watt, solid-state. Frequency Counter: 300 MHz , miniportable/mobile, memory! VOX-Compressor: Splatter-free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Kits, others, catalog available. PANAXIS PRODUCTIONS, catalog available. PANAXIS PRODU
Box 5516 -F6, Walnut Creek, CA 94596

EDUCATION \& INSTRUCTION

GRANTHAM's FCC License Study Guide- 377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025

UNIVERSITY degrees by mail! Bachelors, Masters, Ph.D's ...Free revealing details. COUNSELING, Box 317-RE6 Tustin, CA 92680

600 MHZ. FREQUENCY COUNTER ± 0.1 PPM TCXO

 OPTO-8000.1

 OPTO-8000.1}

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto-8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (.090" thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display-8 digit LED
Gate Times-1 second and $1 / 10$ second
Selectable input Attenuation-X1, X10, X100
Input Connectors Type -BNC
Approximate Size- $3^{\prime \prime} \mathrm{h} \times 71 / 2^{\prime \prime} \mathrm{W} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $2^{1 / 2}$ pounds
Cabinet-black anodized aluminum ($.090^{\prime \prime}$ thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired \$299.95
OPTO-8000.1K Kit
$\$ 249.95$
ACCESSORIES:
Battery-Pack Option-Internal Ni-Cad Batteries and charging unit
\$19.95
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P -101-LO-Pass Probe, very useful at audio frequencies \$16.95
P-102-High Impedence Probe, ideal general purpose usage $\$ 16.95$

VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H \$12.50
Right Angle BNC adapter \#RA-BNC \$ 2.95
FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000 Kit \$59.95
*FC-50 - Opto-8000F Factory Update $\$ 99.95$
FC-50 - Opto-8000.1 (w/TCXO) Kit \$109.95
*FC-50 - Opto-8000.1F Factory Update $\$ 149.95$
*Units returned for factory update must be completely assembled and operational

OPTOELECTRONICS, INC.

OUR BEST SELLER:

ECONORAM II

S. 100 compatible $8 K \times 8$ in a cost-effective package. All lines buffered. fast. Low pover, unique configuration as two $4 K$ blocks, handles DMA. and board and using high quality ports (all sockets in cluded). Totally static design.
See the $1 / 78$ issue of Kilobaud for an in-depth evaluation, or send SASE to "KB Reprin:" and we'l
send you a copy... or better yet, talk ic somebody send you a copy ... Or better yet.
Assembled: 155.00

H8 COMPATIBLE

 ECONORAM VI ${ }^{\text {m }}$ KIT$12 \mathrm{~K} \times 8$ for the H 8 , with the same features that have made Econoram the name in ≈-100 buss memory. Static design, buffering, plus all sockets and bypass caps are already soldered in place
get right into the best part of kit building, Kit form: $\mathbf{\$ 2 3 5 . 0 0}$

NEW!
16K ECONORAM IV ${ }^{\text {TM }}$ KIT
S. 100 compatible $16 \mathrm{~K} \times 8$ memory. Static design chen under 2000 mA , manual write protect swit tom line. . . and it actually costs less than dynamic

COMING SOON: 24K ECONORAM VII ${ }^{\text {M }}$ KIT
Just around the corner for the S-100 buss think you'll like it. All the regular features of our static
Econorams. plus some extras. It's static. it's 24 K . an Econoram.... watch for it! PLUG FROM BILL
 our friends at PAIA Electranics 1020 W . Wilshire. Okiahoma City. OK
73116.56 .45 pid) (TERMS. Please allow to to 5% tor shipping excess refunded Califor TERMS: Please allow up to 5% for shipping excess refunded Califor
nians add iax. COD orders accepted with) street address for UPS, For
YISA' VISA'/Masterchoge orders call our 24 hour order desk
(415) 562.0636 . Pilces good though cover month of magazine. FREE FLYER: These are just a few of the thems we carry for the con GODOOOS

TELEPHONE bugged? Don't be Watergated Countermeasures brochure $\$ 1.00$. NEGEYE LA bORATORIES, Box 547-RE, Pennsboro, WV 26415

WIN an electronics workshop! Plus instant prizes! R.T.T.'s new accelerated radio \& TV course RADIO TELEVISION TRAINING, P.O. Box 279 R68, Syracuse, NY 13206

BUSINESS OPPORTUNITIES

CABLE FM STATION. No experience required excellent spare-time income, others operate for you. Details free. BROADCASTING, Box 5516F6, Walnut Creek, CA 94596

HIGHLY
 PROFITABLE
 ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal
Postcard will do. Barta-RE-F, Box 248 Walnut Creek, CA 94597.

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, $92-\mathrm{R}$, Brighton 11th, Brooklyn, NY 11235

CIRCLE 47 ON FREE INFORMATION CARD

WAMECO
S-100 P.C. Boards 8 8K RAM 12-Slot Mother Board ITHACA AUDIO S-100 P.C. Board 8K RAM
Z-80 CPU
SOLID STATE MUSIC S-100 Kits \& Bare Boards
K EPROM
Uses 1702A EPROMS
Kit w/o EPROMS 59.95
MB-4 4K STATIC RAM Kit 95.00 Bare Board $\quad 25.95$ $\begin{array}{ll}\text { NB6A } 8 K & \text { Kit } \\ \text { STATIC RAM Bare Board }\end{array}$ $\begin{array}{lr}N \text { B7 16K STATIC RAM } \\ \text { Kit } \\ \text { Bare Board } & 375.00 \\ & 25.95\end{array}$ ^ B8 8K/16K EPROM Uses 2708's
Kit Less EPROMs 75.95

BOOKS

The BASIC Warkbook
Programmink Proverbs
Discovering BaSIC
COBOL with Style COBOL with Style Basic BASIC Basic BASIC
Standard Dictionary of Computers \& In or mation Processing

Game Playing with Computers Game Playing witr BASIC Introduction =o BASIC Home Compliters: 210Questions and Answers Volume 2: Software | Minicompute-j | 6.95 |
| :--- | ---: |
| | | Picrocomputer Distionary and Guide

Microprocessc.r P/icroprocessc.rs
Picroprocesscr Basics $\begin{array}{ll}\text { Microprocessc.r Basics } & 10.95 \\ & 10.95\end{array}$ Modern Data Communications $\quad 8.95$ Home Complters: 21C Questions and Answers Volume 1: Hardware 7.95 Understanding Integrated Circuit: 4.95

74L\$00 TTL

+

\qquad
5716 W. Nanc ester Ave. Suite \#5
Los Ange es. CA 90045
TELEPHCINE ORDERS:
Call (213; 541-4200

KITS
SOLID STATE MU5
MB9 STATIC PROMY/RAN
Kit Less Memory
VBIB VIDEO INTERFACE
Bare Board
72.00

Bare Board
IO2 PARRELL I,O
And Kludge
Kit
129.95
25.95

Bare Board
49.95
$\begin{array}{lr}1042+21 / O \text { Ki } & 25.95 \\ & 139.95\end{array}$
SYNTHESIZER SE-1 ML SIC
Kit with
Software
145.00

MT-1

FOR SALE

FREE catalog. IC's, Semi's. CORONET ELEC TRONICS, 649A Notre Dame W., Montreal, Que. Canada, H3C-1H8. US Inquiries.
RECONDITIONED test equipment. $\$ 0.50$ for catalog. WALTER'S TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806

COMPUTER, peripheral, technical reports; project supplies; kits. Send $\$ 1$ for THE CPU HOBBYIST, Box 738-RE, College Park, MD 20740

RECORDS-TAPESI Discounts to 73\%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100\% guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St Dept. 3-0678, New Rochelle, NY 10801

NAME brand test equipment. Up to 50% dis count. Free catalog and price list. SALEN ELEC TRONICS, P.O. Box 82, Skokie, IL 60076

ELECTRONIC parts! Refundable $\$ 1$ gets you 1978 catalog. Send to: B.C. ELECTRONICS, P O. Box 226, West Lynn, MA 01905

Why is this the
 LARGEST SELLING low cost COUNTER KIT?

This counter is such a great seller because people like you have found that, feature for feature, the CT-50 gives you more for your money. Advanced LSi and CMOS circuitry has; lowered power consumption, increased performance and reduced cost. Complete push button operation makes using the CT-50 a snap, and automatic decimal point posi tioning gives you quick, reliable readings. Battery operation is also possible becuase the CT-50 runs equally as well on 12 VOC as it does on 110 VAC . For ultra-accuracy we offer the CB-1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for . 001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional qual ity at the unheard of price of $\$ 89.95$? Order yours today!

MINI-KITS

FM WIRELESS MIKE KIT

Transmit up to 300 to any
FM broadcast radio, use
any type of nike Runs
3 to $9 v$. Type FM- 2 has
sensitive mike preamp.
FM-1 $\$ 2.95 \quad$ FM-2 - $\$ 4.95$
SUPER-SLEUTH AMPLIFIER
A super-sensitive amplifier which will
pick up a pin drop at 15 feet! Great
for monitoring baby's room or a gen eral purpose test amplifier. Fuli 2
watts of output, runs on 6 to 12 volts, uses any type of mike. Requires $8-45$
Complete Kit. BN-9.
COLOR ORGANMUSI $\$ 4.95$
COLOR ORGAN/MUSIC LIGHTS
See music come alive! 3 different
See music come alive! 3 differen
lights flicker with music or voice. One
light for lows, one for the mid-range individualty adjustable, and drives up to 300 watts. Great for parties, band music, nite clubs and more.
Complete Kit, ML 1 .
TONE DECODER KIT
A complete tone decoder
on a single PC Board, Fea on a single PC Board. Fea tures: $400-5000 \mathrm{~Hz}$ adjust
able frequency range, volt able frequency range, volt
age regulation, 567 IC . Use

burst detection, FSK demod, signal

12 button touchtone decoding. Runs on 5 to 12 volts.
Complete KtI . TO- 1. LED BLINKY KIT
A great attention getter which alter. nately flashes 2 Jumbo LEDs. Use for
name badges, buttons, or warning name badges, buttons, or warning
type panel lights. Runs on 3 to 9 type
volts.
Comple

POWER SUPPL Y KIT

Complete triple regulated power supply provides variable +15 volts et 200
mA and ± 5 volts at 1 Amp. 50 mV loed regulation anod 1 Amp. 50 mV small size. Kit less transformers, Re quires 68 V at I Amp and 18 to 30 Completa Kit. PS-3LT $\$ 6.95$ SIREN KIT
roduces upward and downward wail 5 watts $8-45$ ohm speaker.

VIDEO MODULATOR KIT Converts any TV to video Monitor, Super stable tunable over Ch. 46 . Runs on 5-15V, accepts std video signal. Best unit on the market.

SIX DIGIT

 CLOCK KIT bronze, black, blue (specify)Clock Kit, DC-5

600 MHz PRESCALER

Extend the range counter to 600 MHz . Works with all counters. Less than
150 mv sensitivity Specify 150 mv sensitivity, Specify
-10 or -100 . Wired, tested,

PS-1 B
Kit, PS-1 B

59.95

12/24 HOUR

Here's a clock vou can be proud of The

 best looking, most complete kit on the market! Features include. time set pushbuttons, jumbo $4^{\prime \prime}$ readouts, and extrud ed aluminum case available in 5 colors All parts included. Colors: gold, sitver,$\$ 22.95$ Alarm Clock, $12 \mathrm{Hr} ., \mathrm{DC}-8$ Assembled and tested clocks available, add $\$ 10.00$ to Kit price.

SPECIFICATIONS

Frequency range: 5 Hz to 60 MHz , typicaliy 65 MHz Gatetime: 1 second, $1 / 10$ second, with automatic decimal point positioning on both direci and

presacle

Display. 8 digit red LED. 4' height
Accuracy 2 ppm , internal TC $\times \mathrm{O}$ standard
Input: BNC, 1 megohm direct, 50 Ohm with
prescale, option

CT $50,60 \mathrm{MHz}$ Counter Kit
$\$ 89.95$
-50 wt 60 MHz Counter Wired \& Tested
159.95

CT-600, 600 MHz prescaler option for CT-50, add .. $\$ 29.95$

CALENDAR ALARM CLOCK Has every feature one could ever ask for.
Kit includes everything except case.
build it into wall. station or even car! FEATURES

Complete Kit, less case DC-9 \$34.95

TV TYPEWRITER KIT

YES, YOU CAN HUILD

ELECTRONIC ORGAN

That has a PIPE ORGAN SOUNI) With DEVTRONIX easy to build assemblies. Own the ultimate in organ design \& sound at $1 /$ the cost of commercial organ Several models to choose from. BROCHURE AND DEMO RECORD $\$ 1.00$ Dept. 8 5872 Amapola Dr San Jose, CA 95129

INTO TV ANTENNA SYSTEMS? YOU'LL BE INTO TASCO!

Below wholesale prices on a full line of antenna installation surplus shipped from stock. Unbelievable prices on connectors, wall plates, splitters, transformers, amplifiers, etc. Write for free catalogue. Order now \& compare. TASCO. PO Box 30143 Houston Tex 77009

RADIO \& TV tubes 364 each. One year guaran teed. Plus many unusual electronic bargains Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

SERVICEMEN-Cleaners, lubricants, adhesives for all electronic repairs. Write for free catalog. PROJECTOR-RECORDER BELT CORP., Box 176, Whitewater, WI 53190 800-558-9572 ex. WI

Govt. SURPLUS GLIGTRONIC EQUPPMENT
 carALOC
 New ITEMS
 New BARGAINS! FREE
 UPON REQUEST!
 If you haven't received our new Cata-
 log, write for free copy today. Address: Dept. RE
 FALR RADIO EAREES

CARBON film resistors- $1 / 4 \mathrm{~W}, 5 \%$ (1-4M7 ohms) $3.5 \$$ each. $50 / v a l u e-\$ 0.85$. Postage, handling $\$ 1.00$. Other components. Free catalog, resistor sample. COMPONENTS CENTER, Box 295R, West Islip, NY 11795

TUBES, receiving and industrial, semiconductors, factory boxed, low prices, free price list. TRANSLETERONIC INC., 1365 - 39th Street. Brooklyn, NY 11218 212-633-2800
NO-ETCH
Duplicate or make additions to,
modifications of Any Etched
Board. Ideal for point-to-point
or wire wrap breadboards.
Complete set of (3) tools IP6003
S25.00 ppd. A.F. Stahler Co.,
P.O.Box 354R, Cupertino, CA
95014 (408) $252-4219$.

B\&K test equipment. Free catalog. Free shipping. Dinosaur discounts. SPACETRON-DF, 948 Pros pect, Elmhurst, IL 60126

TOLL FREE TELEPHONE

Nationwide 800/543. 1607
Ohio 800/582. 1630
LOCAL 513/874-0220
874-0223

FUJI-SVEA ENTERPRISE

rporated
Dept. Radio Electronics
P.O. Box 40325 Cincinnati, Ohio 45240

Telex - 21-4732

BULLET ELEGTRONIES

quyg

 When blood pressure goes highe than it should, and stays high it sets
the slage for heart altack or stroke Mos! cases of high blood pressure other advances in 1reatment. That's why you should see your docior reg
ularly Only he can tell if you need A public cativice

TELEPHONE recording equipment and other "unusual" electronic devices. Free info: GARRISON, Box 128-B, Kew Gardens, NY 11415

BLITZ ZOINK ZATT UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and keep informed. Tunes all scramble frequencies, works with all scanners, and is factory built and guaranteed. \$34.95PP. UNSCRAMBLER KIT: Laest Technology, $2 \% \times 21 / 4 \times 1 / 2$-inch, complete instructions, only $\$ 19.95 \mathrm{PP}$. Thousands of satisfied customers. Catalog 50c. Order from KRYSTAL KITS, BOX 445 , BENTONVILLE, ARK. 72712. COD orders. 501-273-5340.

PRINTED CIRCUIT
 Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp \& address label for flyer TRUMBULL
 833 Balra Dr., El Cerrito, CA 94530

TAPE head cleaner. $8{ }^{\circ} \mathrm{oz}$ - $\$ 2.30$. Includes postage and handling. Write: "CLEANER," Box 176, Whitewater, WI 53190

OPTO-ISOLATORS GE H11A2, 25/\$10, 100/\$35. RCA zero voltage switch CA 3079 25/\$12.50, $100 / \$ 45$. All prime \& 100\% guarantee. AMAN KHAN, 2355 Burch Cir., Atlanta, GA 30319

Special Functions 3050 VALMONT ROAD BOULDER.COLORADO BOBOI

Terins - Prices, specifications and avaliability sulbIs. \& Canaliae wriders minimem 510.00 . Allosere foregin orders s20.00 minmumn Foreign orders (exc. Canada) add handling 15% for postage Colorado residents add $31 / \%$ saies tax. No C.O.D.'s please.
Foreign orders send U.S. funds ONL

FOR CATALOG INCLUDING PARTS LISTS AND SCHEMATICS, SEND A SELF ADDRESSED ENVELOPE WITH 24c POSTAGE.

RS: 232 / TTL INTERFACE *

- Converts serial to parallel and parallel to serial
- Low cost on board baid rate generator
- Baud rates: 110, 150, $300,600,1200$, and 2400
- Low power drain +5 volts and
- 12 volts required
- TTL compatible
- All characters contain a start
bit, 5 to 8 data bits, 1 or 2 stop
bits, and either odd or even
parity.
- All connections go to a 44 pin gold plated edge connector
- Board only $\$ 12.00$; with parts $\$ 35.00$

8K STATIC RAM
 Part no. 300

- 8K Altair bus memory
- Uses 2102 Static memory chips
- Memory protect
- Gold contacts
- Wait states
- On board regulator
- S. 100 bus compatible
- Vector input option
- TRI state buffered
- Board only $\$ 22.50$; with parts $\$ 160.00$

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector \bullet Board only $\$ 4.50$; with parts $\$ 7.00$

Part no. 111

TAPE INTERFACE *

- Play and record Kansas City Standard tapes
- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital in and out are TTL-serial
- Output of board connects to mic. in of recorder
- Earphone of recorder connects to input on board
- Requires +5 volts, low power drain
- Board \$7.60; with parts $\$ 27.50$
- No coils

POWER SUPPLY

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12 .-12$, and -5 volts at I amp.
- Power required is 8 volts. AC at 3 amps., and 2.4 volts $A C$ C.T. at 1.5 mmps .
- Board only 812.50; with parts 842.50 excluding transformer:

- Tape Interface Direct Memory Acces8
- Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputsand outputs to a digital recorder at any baud rate.
- S-100 bus compatible
- Board only $\$ 35.00$;
with parts $\$ 110.00$

Apple II

 Serial I/O
Interface *

Part No. 2

- Baud rates up to 30,000
- Plugs into Apple Peripheral connector
- Low-current drain
- RS-232 Input and Output SOFTWARE
- Input and Output routine from monitor or BASIC to teletype or other serial printer.
- Program for using an Apple II for a video or an intelligent ter minal. Board only - $\$ 15.00$; with parts - $\$ 42.00$; assembled and tested - $\$ 62.00$.

RS-232/TTY* INTERFACE

Part no. 600

- Convertars-232 to 20 ml
current loop, and 20 mA current loop to RS-232
- Two separate circuits
- Requires +12 and -12 volts
- Board only 84.50, with parts $\$ 7.00$

TELEVISION TYPEWRITER

Part no. 106

- Stand alone TVT
- 32 char/line, 16 lines, modifications for 64 char/line included
- Parallel ASCII (TTL) input
- Video output
- IK on board memory
- Oatput for computer controlled curser
- Auto scroll
- Non-destructive curser
- Curser inputs: up, down, left. right, home. EOL. EOS
- Scroll up, down
- Requires +5 volts at 1.5 amps and - 12 volts at 30 mA
- All $\mathbf{7 1 0 0}$, TTL chips
- Char. gen. 25L3
- Lepper case only
- Board only $\$ 39.00$; with parts \$14.5.00

MODJM *

Mention part number and description. For parts kits add "A" to part number. Shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with all products. Dealer inquiries invited. 24 Hour Order Line: (408) 374-5984.* Designed by John Bell.

NEW periodic table of chemical elements. Striking wall chart $\$ 3.00$. CIRCLON, Greenriver George, Enumclaw, WA 98022

SUMMER speciall New, adjustable, three output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television electronics assembly. Documentation included. Perfect for microprocessor and all electronic applications. $\$ 11.50$ plus $\$ 3.50$ S\&H. Master Charge, BankAmericard. MADISON ELECTRONICS, 369, Madison, AL 35758. Money back guaranteed.

BEARCAT 210, $\$ 239.00$. Regency Touch, $\$ 234.00$. CB-40, $\$ 54.95$. Free freight on orders over $\$ 200.00$. Quotes: tell us what's wanted JOHNNY'S, Box 584, Sturtevant, WI 53177

amazing electronic projects and products: Lasers Super Powered, Burning. Cutting, Riffe Pistol. Pocket. See in Dark-Shotsun Directional Mike -Unscramblers - Giant Tesla-StunwandTV Disrupter-Energy Producing, Surveillance, De tection. Electrifying, Ultrasonic, CB. Auto and Mech Devices. Hundreds More-All New Plus INFO UNLTD PARTS SERVICE. Catalog $\$ 1$. Informa tion Unlimited, Box 626, Lord leffery Court, Am herst, N.H. 03031

FREE bargain catalog. IC's, LED's, semiconduc tors, crystals, electron tubes. Send stamp. AS TRAL, P.O.B. 707 RE, Linden, NJ 07036

A Fabulous First: Motion Detector ICs. converts motion to a voltage which triggers internal a larm circuitry May be programmed for certain ical sequence generator MDIC $\$ 6.95$ Premium OP AMP! BB-3500 trom BURR.BROWN features: LOW NOISE DRIFT. LOW INPUT BIAS 15 kHz .20 V P.P output (Iv/uS slew rate), and more Regularly selis for up $10 \$ 36,00$ each' Exclusive.
Audio Synthesis Literature: "Tech Notes" tea luring circuits. ideas. new products, parts sour. ces, construchion aids. calibration methods \& Hybrid Active Filter: identical to the AF-100.ICJ DIP Package. D.C 10 kHz 4 on board op amps state variable filter Simult HP. BP. LP \& notch

System Power Supplies

PSI: $\pm 15 @ .5 \mathrm{~A}$, $5 \mathrm{~V} @ 2.5 \mathrm{~A}$, and $0-35 \mathrm{~V}$ with $24 \mathrm{~V} @ .5 \mathrm{~A}$, PS2: $\pm 15 \mathrm{~V} @ 3 \mathrm{~A}, 5 \mathrm{~V} @ 3 \mathrm{3A}$, and $0-16 \mathrm{~V}$ with 12V@1A Both have four excellently regulated voltages (resister programmable). From three winding; compare. Great for home computer, bench or hotby work. Just add AC cord and plug 'em in. Assembled; PS1 or PS2 $\$ 27.95$ Kit (less transformer); PSK1 or PSK2 $\$ 19.95$.
$\$ 2.00$ postage \& handling: in Calif. add 6\% sales tax. PLUS ${ }^{+}$Electronics, 1260° El Camino No. 306 Millbrae Ca. 94030

LEARN MICROCOMPUTER PROGRAMMING

 At home. At your own pace. Complete course consisting of 10 lessons, probiems, solutions, practical examples in 8080, 8085 assembly language. $\$ 49.95$. Write or call for FREE BROCHURE.LOGICAL SERVICES, INC., 1080 H East Duane Ave., Sunnyvale, CA 94026 (415) 245-8855

MAKE PC boards. Step-by step "how-to" manual with build-it-yourself equipment plans, charts and illustrations. For polyez and film-chemical processes. $\$ 4.98$ plus $50 \$$ p\&h. CENTURY AMERICAN INSTRUMENTS, Dept. 616, Box 1014, Placentia, CA 92670

We're Fighting for Your Life

Please give generously American Heart Association t.

Radio Shack: No. 1 Parts Place Buy Off-the-Sheff! Low Prices! Huge Selection!

Top-quality devices, fully functional, carefully inspected. Guaranteed to turer's quality control procedures. These are not rejects, not fallouts, not meet all specifications, both electrically and mechanically. All are made seconds. In fact, there are none better on the market! Always count on by well-known American manufacturers, and all have to pass manufac- Radio Shack for the finest quality electronic parts.

Linear ICs

By National Semiconductor and Motorola - first quallty

Type	Cat. No	ONLY
301 CN	276-017	49 f
324 N 339 N	$276-1711$ 276-1712	1.49 1.49
${ }_{386 \mathrm{CN}}$	276.1731	${ }_{994}^{1.49}$
${ }_{555 C N}$	276-1723	796
556 CN	276-1728	1.39
566 CN	276-1724	1.69
567 CN	276-1721	1.99
723 CN	276-1740	696
741 CN	276-007	$49 ¢$
${ }^{74900 \mathrm{~N}}$	${ }^{276-010}$	${ }_{996}^{496}$
3909 N	276-1705	996
3911 N	276-1706	1.99
${ }^{4558 C N}$	276-038	79 c
75491	276-1709	996
75492	276-1702	99\%
7805	276-1770	1.29
7812	276.1771	1.29
7815	276-1772	1.29

Computer Chips

Prime Devices
8080A Micraprocessor. 8-bit. NMOS. 276-2510 Reg. 17.95

Sale 12.95
21021 K Static RAM
2.49 Ea or $8 / 14.95$

REGULARLY \$1.95. Archer ${ }^{\text {® }}$ Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor-display devices, too! 46,000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations. 276-4002 . . With Any $\$ 5$ Parts Purchase, Only 99 c Offer good at participating Radio Shack stores and dealers

Trim Multi-Purpose Cabinets

A Compact. Makes even your small projects took protessional ${ }_{3}$. 10.95
$57 / 6 \times 9 \times 4^{7 / m^{\prime \prime}} 270-281$
(四 Low-Profile. Slim-design - only $5 \% / 6 \times 13 / 8 \times 31 / 2^{\prime \prime}$ "
270-282. Reg. 14.95..................................... 12.95

LED Digital Displays
CMOS Logic ICs

Direct from
Motorola and
National Semiconductor

Type	Cat No	ONLY
7400	${ }^{276}$-1801	35 c
7402	276-1811	$39 ¢$
7404 7406	- 276 27-1821	356 $49 ¢$
7410	276-1807	396
7413	276-1815	79 t
7420	276-1809	39 c
7427	${ }^{276-1823}$	49 c
7432	276.1824	49 C
7441	276-1804	99¢
7447	${ }^{276.1805}$	994
7448	276-1816	994
${ }_{7}^{7451}$	¢ 276.1825	396 496
7474	276-1818	496
$\begin{array}{r}7475 \\ \hline 745 \\ \hline\end{array}$	276-1806	79\%
7476	276-1813	+19\%
7485 7486	-	1.19 490
7490	276-1808	796
7492	276-1819	694
74123	276-1817	99 t
74145	276-1828	1.19
74150	276-1829	1.39
74154 74.92	- $\begin{aligned} & \text { 276-1834 } \\ & 276.181\end{aligned}$	1.19
${ }_{74193}$	276-1820	1.19
74194	${ }^{276-1832}$	1.19 1.29
74196	276-1833	Sate $\begin{array}{r}1.29 \\ \hline 29\end{array}$
74 COO	${ }^{276}$-2301	SALE 294
$74 \mathrm{CO2}$ $74 \mathrm{C04}$	- 276 276-2302	SALE 29%
$74 \mathrm{CO8}$	276-2305	SALE 29C
74 C 74	276-2310	SALE 49\%
$74 \mathrm{C76}$	276-2312	SALE 49e
${ }_{74} \mathrm{C9O}$	276-2315	SALE 899
${ }_{7}^{74 C 192}$	${ }_{\text {2 }}^{276-2321}$	SALE 1.00
4001	276-2401	- ${ }_{49 \mathrm{c}}$
4011	276-2411	49 c
${ }_{4017}^{4013}$	276-2413 276.2417	896 1.49
4020	276-2420	1.49
4027	2762427	${ }^{89 ¢}$
4049	276-2449	$69 ¢$ 696
4050 4511	276-2450 $276-2447$	696 1.69
4518	276-2490	1.49

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

All these tapes made in U.S.A Never Recorded-Reg. $\$ 6.80$ each OUR PRICE 3 for $\$ 5.00$

MICROPROCESSOR CRYSTALS

MICROPROCESSOR

 OR CLOCK IC| frequency | MICROPROCESSOR OR CLOCKIC | Price |
| :---: | :---: | :---: |
| 1.0 MHz | 6800/56860 | \$5.95 |
| 1.8432 MHz | MC14411 Baud Rate Generator | \$9.80 |
| 2.0 MHz | F-8/CPU 3850 | \$5.95 |
| 2.097152 MHz | MM5378 | \$8.50 |
| | MM5379 | |
| | Auto Clock | |
| 2.4576 MHz | 34702 Bit Rate Generator | \$8.50 |
| 2.667 MHz | Pace | \$8.50 |
| 3.00 MHz | MCS 48 | \$8.50 |
| 3.20 MHz | RCA 1803 | \$8.50 |
| 3.2768 MHz | Intersil ICM 7205 | \$8.50 |
| 3.579545 MHz | NSC MM5369 (TV Color Burst) | \$1.25 |
| 4.0 MHz | Intel 4040/4004/4201 | \$4.95 |
| 4.0 MHz | Face | \$4.95 |
| 4.194304 MHz | Intersil ICM 7038A | \$4.95 |
| 4.91520 MHz | Standard Clock Frequency | \$4.95 |
| 5.0 MHz | Non-standard MPU Frequency | \$4.95 |
| 5.0688 MHz | COM 5016 Dual Baud Rate Generator COM 5016T Dual Baud Rate Generator | \$4.95 |
| 5.185 MHz | Intel 4040/4004/4201 | \$4.95 |
| $5.7143 \mathrm{MH}_{2}$ | National Semiconductor | \$4.95 |
| 6.00 MHz | MCS 48 | \$4.95 |
| 6.144 MHz | Intel 8085 | \$4.95 |
| 6.40 MHz | RCA 1803 | \$4.95 |
| 6.5536 | Intersil Precision Timer Crystal ICM 7045 | \$4.95 |
| 8.0 MHz | Signetics | \$4.95 |
| 10.0 MHz | Non-standard MPU Frequency | \$4.95 |
| 14.318 MHz | Processor Tech | \$4.95 |
| 18.00 MHz | Intel 8080/8008/8224 | \$4.95 |
| 18.432 MHz | Intel 8080/8008/8224 | \$4.95 |
| 20.0 MHz | Non-standard MPU Frequency | \$4.95 |
| 22.1184 MHz | Intel 8080A | \$4.95 |
| 27.0 MHz | Intel 8080A Series | \$4.95 |
| 36.0 MHz | Intel 8080A Series | \$4.95 |
| 48.0 MHz | T.I. Mod. TIM9904 P.N. SNLS362 | \$4.95 |

 U.S
FD
FD . made in standard size

This unit converts the video signal to RF signal. Ideal for computer terminal or TV games.

Video input: IV DC RF output: 1.5 MV
Preset at 61.25 MHz (channel 3)
Frq. adjustable $\pm 3 \mathrm{MHz}$ Power Supply 5~8V DC 10 MA $\$ 4.50 \mathrm{EACH}$

> DIP SWITCHES

(On-Off Contacts)
4 positions $\$ 1.50$
5 positions $\quad \$ 1.60$
6 positions $\quad \$ 1.70$
7 positions $\quad \$ 1.70$
8 positions $\quad \$ 1.80$
10 positions

8K STATIC RAM MEMORY BOARD (BARE) \$24.50 PER BOARD
Memory Chips: 21 L02 $\times 64 \mathrm{pcs}$.
Fully buffered; all support chips are LS type; total of 26 bypass capacitors on the board; four 340T-S voltage regulators give more than enough power to the board.
16K STATIC RAM MEMORY BOARO (BARE) \$24.50 PER BOARD
MEM-2 uses 2114 any speed any power
Start address and stop address selected on board so board can be used portionally populated; capable of block address, can be used in $\mathrm{SOL}_{\mathrm{TM}}$ and systems without front panel.
The MO-1 QUIET MOTHER BOARD 13 SLOT
\$29.50 BARE
This Quiet Mother is standard 2-100 BUS with 13 slots; Kluge area; extensive ground plane; passive terminal for all lines; double solder mask; silk screen parts layout.

8080A CPU BOARD

\$29.50 BARE
With 8 level vector interrupt. CPU chip 8080A; clock chip: 8224 ; X'tal freq.: 18 MHz ; vector interrupt chip: 8214 .

RTC-1 REAL TIME CLOCK BOARO for $\mathrm{s}-100 \mathrm{bus}$

\$24.50 BARE
On Board Oscillator: 1 MHz Crystal Number of Interrupt: 2 , one is decade; it steps from $100 \mu \mathrm{Sec}$ to 100 Sec . Second is 16 bit counter, it is selectable from $10 \mu \mathrm{Sec}$ to $655,360 \mu \mathrm{Sec}$ in $10 \mu \mathrm{Sec}$ step

All above boards include all documents
and detailed parts list and instructions.

MINIMUM ORDER $\$ 10.00$. Californi* residents add 6% sales tax and 10% shipping.
Out of state add 15% of total purchase for shipping charges, out of USA and Overseas add 25% of
FORMULA INTERNATIONAL INC.
12603 CRENSHAW BOULEVARO - HAWTHORNE CALIFORNIA 90250
For more information please call (213) 973.1921. (213) 6795162
STORE HOURS 10.7 Monday Saturday

DON'T MISS ANY

Get every single issue of Radio-Electronics delivered right to your door, and before it appears on the newsstand. Use this coupon and subscribe now.

DIGITAL AUTO INSTRUMENTS *1 tachometer SEVEN MODELS! -2 WATEH TEMP - 4 SPEEOOMETER - CASESALI HARDUARE - 5 OIL PRESETER PAESSURE J IEMP SENDERS - OIL TEMPSUG Eatuaes *) BATTERYMONITOR DATHERY MONITOA 4.OAAMGELEDS KIT: S49.95........ASSEMBLED: \$59.95

CIRCLE 29 ON FREE INFORMATION CARD

TRANSFORMER HINT

Steve P. Dow, Gibsons, BC, Canada, writes:
"Low-end stereos which need unavailable OEM transformers can be replaced with standard brands, as you said in the Service Clinic, January 1978 issue. Many of the originals fail because a thermal fuse was used in the primary circuit. The UL and CSA safety tests on these receivers are based upon this intrinsic energy-limiting device. However, many of the standard low-voltage transformers in replacement lines do not have this protective device. So, when these are used, a fuse should be added, if the original part isn't used.
"This thermal fusing seems to be the result of tightened transformer standards since 1973. Manufacturers had to guarantee that when a transformer burned out it could not short any primary terminal to the core. Since this burnout test was made with the primary energized and the secondary shorted, the simple solution was to use thermal links. Burnout then terminated with the open primary circuit, and the insulation did not overheat."
(Thank you very much, Steve. To be honest, I didn't know that! However, I had wondered about the rash of cases with open primary winding. You may remember that the older power transformers rarely, if ever, opened the prima-

Sinclair $31 / 2$ Digit Multimeter Batt oper. 1 mV and 1 NA resolution. Resistance to 20 meg. 1% accuracy. Small, portable, completely assem, in case. 1 yr,
guarantee. Best value ever!
$\$ 59.95$

Not a Cheap Clock Kit $\$ 14.95$ Includes everything except case. 2.PC boards. 6-.50"LED Displays. 5314 clock boards. 6-50"LED Displays. 5314 clock
chip. ranstormer, all components and full chip. transtormer. all components and full
instrucs. Green and orange displays also instrucs. Green and Same kit $\mathbf{w / . 8 0}$ " displays. $\$ 21.95$
aval

Digital Temperature Meter Kit Indoor and outdoor Automatically
swith Switches back and forth. Beautiful 50
LED readouts. Nothing like it avalable. Needs no additional parts for compiete. fult operation Will measure - 100 to $+200^{\circ} \mathrm{F}$, air or liquid. Very accurate, NiCad Batt Fixer/Charger Kit opens shorted celis that won't hold a charge and then charges them up. all in

RCA Cosmac VIP Kit 249.00 Video computer with games and graphics.
'78 IC Update Master Manual 1978 iC Update Master Manual $\$ 30.00$ Complete IC data selector 2175 pg . Master reference guide Over 42,000 cross reterences. Free update service through 1978. Domestic postage $\$ 3.50$. Foreign \$6.00. Final 1977 Master closeout $\$ 15.00$

New Cosmac Super "ELF"

 RCA CMOS expandable microcomputer w/HEX keypad input and video output tor w/HEX keypad input and video output forgraphics. Just turn on and start loading graphics. Just turn on and start loading your program using the resident monitor
on ROM Pushbutton sefection of all four On ROM Pushbutton setection of all four CPU modes. LED indicators of current
CPU mode and four CPU states Single CPU mode and four CPU states Single
step oo for program debug. Built in pwr. step op for program debug. Built in pwr. supply. 256 Bytes of RAM, audio amp \& spkr. Detailed assy man w/PC board \& all parts fully socketed. Comp. Kit $\$ 106.95$ High address display option 8.95. Low address display option 9.95 : Custom hardwood cab: drilled tront panel 19.75 Nicad Battery Backup Kit wall parts 4.95 Fully wired and tested in cabinet 151.701802 sottware xchng club: write for info
4K Elf Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Available on board options: 1 K super R0M monitor $\$ 19.95$ Parallel $/ 0$ port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY 20 ma I/F $\$ 1.95$ S- 100 Memory IVF $\$ 5.30$
Tiny Basic for ANY 1802 System Kansas City Standard Cassette $\$ 10.00$ On ROM Monitor $\$ 38.00$ Super Eif owners take 30% off Original Cosmac "ELF" kit All parts and instructs. $\$ 89.50$ All parts and
Board only

Video Modulator Kit $\$ 9.95$ Convert your TV set into a nigh quality monitor without affecting normal usage. Complete kit with full instructions.

60 Hz Crysial Time Base Kit \$4.75 Converts digital clocks from AC line frequency to crystal time base Outstanding accuracy. Kit includes:
PC board. MMS36,
capacitors and trimmer
Clock Calendar Kit \$23.95 CT7015 direct drive chip displays date and time on 6 LEDS with AM-PM indicator. Alarm/doze feature includes buzzer. Complete with all parts, power supply and instructions. less case.
2.5 MHz Frequency Counter Kit Complete kit less case $\quad \$ 37.50$ 30 MHz Frequency Counter $\begin{array}{ll}\text { Kit Complete kit less case } & \$ 47.75 \\ \text { Prescaler Kit to } & 350 \mathrm{MHz} \\ \$ 19.95\end{array}$
Stopwatch Kit $\$ 26.95$ Full slx digit battery operated $2-5$ volts. 3.2768 MHz crystal accuracy. Times to $59 \mathrm{~min} ., 59 \mathrm{sec} ., 991,100 \mathrm{sec}$. Times std split and Taylor 7205 chip, all components minus case. Full instruc. Molded plastic case with bezel. $\quad \$ 5.00$

Auto Clock Kit

$\$ 15.95$
DC clock with $4-50^{\prime \prime}$ displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal imebase PC boards. Fully regulated comp. instructs. Add $\$ 3.95$ for beautitul dark gray case Best value anywhere.
ry; they just overheated and burnt up.
Thermal fusing is a very good idea, and I should have added that. Also, if the replacement transformer is well derated, as suggested, there won't be as much risk of overloading it, as the original obviously was.)

THIN BLUE LINE

I'm having a time with this J.C. Penney model 2874. All I get is a thin blue horizontal line on the screen! l've checked several things and come up dry.-M. B., Pearl, MS.

There are several possible causes for this. One, make sure that the service switch is good. The ohmmeter must show zero resistance between the vertical-output base and the bottom end of the $39-$ ohm resistor to the vertical driver's collector circuit. Also, read the emitter voltage of the vertical-output transistor. If this reads normal (+5.21 volts), then the output stage is working, and there should be an open circuit in the secondary of the vertical-output transformer or verticaldeflection yoke. Check all yoke plug contacts

If all these seem to be OK, check the $220-\mu \mathrm{F}$ electrolytic capacitor in the yoke circuit. This is the yoke-return capacitor, and if it's open there will be no sweep.

For the blue line, check the red and green screen-control settings.

CIRCLE 10 ON FREE INFORMATION CARD

 OSCILLOSCOPES

20 MHz, TRIGGERED

- Single trace: automatic trigger for highly stable, bright display
- 17.5 nSec rise time. $=10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ Vertical Sensitivity: 1 steps. Displays signals to 27 MHz with ease.

20 MHz, DUAL TRACE

25 MHz,

30 MHz ,
FIXED DELAY, DUAL TRACE

- Dual trace. 30 MHz bandwidth - $5 \mathrm{mV} / \mathrm{cm}$ Vertical Sensitivity. Fixed delay facilitates hi-speed readings of the leading edge of a pulse or pulse train. - Add, subtract alternate selection, chopped, and front panei $X-Y$ modes

YOUR ONE STOP DISCOUNT CENTER ADD \$3 00 TO COVER SHIPPING, HANDLING \&
Send for new 1978 catalog of over 3,000 items $\ldots 164$ pages of test equipment. INSURANCE. N.Y. Res. ad
CB, tools, tubes, components and electronic supplies.

more than 20,000 different components

VOLT. REG

JAPANESE TRANSISTORS

Before you buy, check our prices...

FREE

 20 K Ω / V VOM Multimeter \$29.95 VALUE With any order from this ad. Ad mustaccompany order

- Add, subtract modes on CH-1 \& $\mathrm{CH}-2$ facilitate easy checkout for simultaneous puises, signal levels. distortion \& noise cancelling. Front panel X-Y operation for phase shift measuring, sweep alignment. vector scope service. - $17.5 n \mathrm{Sec}$ rise time
 DELAYED SWEEP, DUAL TRACE
 - Built in variable delay circuitry -
 $1 \mu \mathrm{Sec}$ to $5 \mathrm{Sec}-5 \mathrm{mV}$ Div. Vertical Sensitivity. - Rectangular, $8 \times 10 \mathrm{Div}$ CRT with internai graticuie.
 - Selectable synchronization
 automatic. normal single trace and
 CIRCLE 64 ON FREE INFORMATION CARD
 -

Send for Free Hobbi House Catalog 969 BALL AVE., UNION, N.J. 07083
Retail Store Open Mon.-Sat., 9 to 6
TERMS AND CONDITIONS
Add $\$ 1.50$ postage and handling for all grders within U.S.. COD orders -- add $\$ 2.00$ for postage and handling.
\$7. Min. order. Phone orders accepted. \$15 Min B.A./Visa, Master Charge orders. N.J. Residents add 5\% Sales Tax

Outside Continental U.S. send U.S.funds only, and include sufficient postage for first class mail.

Cat. \#
OPTO SPECIALS
Order by Cat. \#\& Type \#
017 seg. Display
$33^{*} 707$ MAN 1 C.A or C.C. . 59 ea. or $\mathbf{1 0 / \$ 5 . 0 0}$ 03 Diffused Jumbo Red Leds 0.2 . $7 / \$ 1.00,100 / \$ 11.00$ 04 DL741 Jumbo Displays C. A.
05 25PK LEDS ASSTD Sizes \& Colors
06 Jumbo Red Leds10/\$1.00, 100/\$9.00
079 digit display by National

is manman MA1003
 $8: 36$
 MOBILE CLOCK MODULE (National) ${ }^{5} 18^{95}$ complete
 Attaches directly to 9-12V Battery. Automatic Nighttime Dimming. Fluorescent Display gives Color Choice (Red, Blue, Green or Yellow) when used w/corresponding Color Filter. Includes - Module, Switches, \& Filter
 ALUMINUM CASE WITH FILTER. $\$ 5.75$ (switches included with clock kit). In Silver Black and Gold. Filter colors - red, blue. green, or yellow

LM555 TIMERS

SWITCHES

Cat. \# Order by Cat. \# \& Type \#
M9 Sound Actuated Switch
85
M10 Dry Reed Switch, 5 AMP. 115 VAC25/\$1.98 M13 250 K Slide Volume Control By Mallory $4 / \$ 1.00$ M51 DPDT Momentary Slide Switch10/\$1.00 M52 DPDT Slide Switch Low Profile10/\$1.00 M53 DPDT Slide Switch Long Button 10/\$1.00 M56 DP4T Slide Switch 10/\$1.00

ADAPTORS

Cat. \# Order by Cat. \# \& Type \#
M16 AC DC 120 V input 6 UDC 130 MA output . $\$ 1.00$ M65 AC Input 120 VAC
3.7 w/output 9 UDC, 100 MA
$\$ 1.50$

SPECIALS

Cat. \#	Order by Cat. \# \& Type \#	
	6" Pioneer Pincusion speakers, 3.2 OHMS. $7^{1 / 2}$ watts	\$3.95 a pair
M17	8 FT . Stereo Extension Co	
	RCA plugs at both ends	2/\$1.99
33	16 Pin Strip sockets, By AMP	10/\$1.00
11	6 FT. Line Cords	6/\$1.00
M49	6 DC Battery Holder	3/\$1.00
M29	SPDT 12 Volt Relay	
	5 AMP contact, Plug in style	\$1.00
35	Variable Trimmer Cap 3-18 PF, 50 volt	It .5/\$1.00
48	2.5 MEG Trimmer Pot	5/\$1.00
	50K Trim Pot,	$10 /$

$\$ 1.35$
$\$ 2.50$
$\$ 1.00$
.3/. 99
Your Store for Prime Components - Money Back Guarantee on all Orders! Toll-Free Wats Line - 800-631-7485 • Open Saturdays In New Jersey Call (201) 964-5206

lowest prices

Zener Diodes		
Cat. \#	Order by Cat. \# \& Ty	
D1	5.1 V 1 watt	10/\$1.00
D4	22 V 1 watt	10/\$1.00
D5	3.9 V 400 MW	10/\$1.00
D7	6.8 V 400 MW	10/\$1.00
D8	8.2 V 400 MW	10/\$1.00
D10	30 V 400 MW	10/\$1.00
D11	10V 1 Watt	10/\$1.00
Rectifiers Order by Cat. \# \& Type \#		
D2	\|N1084	4/\$1.00
D3	IN4384	10/\$1.00
D6	IN645	10/\$1.00
D13	35AMP 50V DO-5 Case	2/\$1.00
D14	25AMP 200V Bridge Rect	\$1.75
D23	IN4148 Switching Diode	50/\$1.00
D16	IN4001	10/. 55
D17	IN4002	10/.65
D18	IN4003	10/.75
D19	IN4004	10/.85
D20	IN4005	10/.95
D21	IN4006	10/\$1.00
D22	IN4007	10/\$1.00

CAT \# Order by Catalog \# \& Type \# T2 2N918ITT5/\$1.00 T3 2N2919ITT5/\$1.00 4 2N4949 House \#2/\$1.00 5 MPS5172 MOTO ...10/\$1.00 6 2N3638 S.S. 10/\$1.00 T7 2N2102 House \# $\quad 5 / \$ 1.00$ T8 3N140 Fet N C 7 annel. $2 / \$ 1.00$

T9	$2 N 2907$ ITT	$.5 / 51.00$
T10	2N914 ITT	$5 / \$ 1.00$

T11 2N2369A ITT10/\$1.00
T12 2N2368ITT........10/\$1.00
T13 2N706 MOTO10/\$1.00
T15 D41E1 GePC.... 10/\$1.00
T16 2N3416Sprague5/\$1.00
T17 MPS2369ITT $10 / \$ 1.00$
T18 MPS3704ITT $0 / \$ 1.00$
T19 2N708 MOTO5/\$1.00

Electrolytics - all Axial Leads

DISC Caps

Cat. \# Order by Cat. \# \& Type \#
C1 680 MMF $500 \mathrm{~V}=10 \% \quad 20 / \$ 1.00$
C2 200 MMF $500 \mathrm{~V}+10 \%$ PC. $\quad 20 / \$ 1.00$
C3 390 MMF $400 \mathrm{~V} \pm 10 \%$ 20/\$1.00
C4 $220 \mu \mu \mathrm{~F} 500 \mathrm{~V}=10 \% \mathrm{PC}$ 20/\$1.00

C5 $820 \mathrm{PF} 1000 \mathrm{~V}=10 \% \mathrm{PC}$

C6 27 PF $500 \mathrm{~V}=10 \%$ 20/\$1.00 20/\$1.00
C7 $470 \mu \mathrm{~F} 2 \mathrm{kV} \cdot 20 \% \quad 20 / \$ 1.00$
C8 470 PF $2 \mathrm{kV}-20 \% \ldots . \quad 20 / \$ 1.00$ $\begin{array}{lll}\text { C34 } & 03 \mu \mathrm{~F} 100 \mathrm{~V}+20 \% \text { PC } & 20 / \mathbf{2 0} 1.00 \\ \text { C41 } & 16 \mu \mu \mathrm{~F} 500 \mathrm{~V}+5 \% \text { PC } & 20 / \$ 1.00\end{array}$ $\begin{array}{lll}\text { C41 } & 16 \mu \mu F 500 V+5 \% P C & 20 / \$ 1.00 \\ \text { C42 } & .001 P F 100 V \pm 10 \% P C & 20 / \$ 1.00\end{array}$ C45 1 MF 50V-10\% $20 / \$ 1.00$
$20 / \$ 1.00$ 20/\$1.00
C47 15 PF $100 \mathrm{~V}=10 \%$ P.C
C49 22μ F $750 \mathrm{~V}+10 \%$ P.C 20/\$1.00
C52 22 PF $500 \mathrm{~V} \pm 10 \%$ 20/\$1.00
C54 100 PF 100V $+10 \%$.
C57 $16 \mathrm{PF} 500 \mathrm{~V}+5 \%$ P.C.
C59 $22 \mathrm{PF} 150 \mathrm{~V}+10 \%$ P.C. 20/\$1.00 20/\$1.00 $20 / \$ 1.00$
$20 / \$ 1.00$ 20/\$1.00 20/\$1.00
C62 33 PF 100V $+5 \%$
CAT. \# Order by Cat. \# \& Type \#

C15	$15 \mu \mathrm{~F} 400 \mathrm{~V}$	$\mathbf{5 / \$ 1 . 0 0}$
C16	$1 \mu \mathrm{~F} 50 \mathrm{~V}$...
$\mathrm{C} / \mathbf{\$ 1 . 0 0}$		

$\begin{array}{lll}\mathrm{C} 16 & 1 \mu \mathrm{~F} 50 \mathrm{~V} & 5 / \$ 1.00 \\ \mathrm{C} 17 & 10 \mu \mathrm{~F} 50 \mathrm{~V} & 5 / \$ 1.00\end{array}$
C18 $1.0 \mu \mathrm{~F} 200 \mathrm{~V} \quad . \quad 5 / \mathrm{S} 1.00$
C19 $25 \mu \mathrm{~F} 25 \mathrm{~V} \quad 5 / \$ 1.00$
C20 5/F 25 V5/\$1.00
C21 $500 \mu \mathrm{~F} 15 \mathrm{~V}$......5/\$1.00
C22 $1500 \mu \mathrm{~F} 3 \mathrm{~V} \quad 5 / \$ 1.00$
C24 $1000 \mu \mathrm{~F} 6 \mathrm{~V} \quad 5 / \$ 1.00$
C25 $2000 \mu \mathrm{~F} 25 \mathrm{~V} \quad 5 / \$ 1.00$
C40 $500 \mu \mathrm{~F} 50 \mathrm{~V} \quad . \quad 4 / \$ 1.00$
C46 $47 \mu \mathrm{~F} 50 \mathrm{~V} \quad 4 / \$ 1.00$
C53 $\quad 4.7 \mu \mathrm{~F} 35 \mathrm{~V} \ldots . . .4 / \$ 1.00$
C63 1000MFD $35 \mathrm{~V} \quad 4 / \$ 1.00$
Tantalum, Axial Leads
Order by Cat. \#\& Type\#
C13 $047 \mu \mathrm{~F} 200 \mathrm{~V} \ldots 10 / \$ 1.00$
C44 1MF 35V10/\$1.00
C48 $15 \mu \mathrm{~F} 35 \mathrm{~V} \ldots . . .1^{10 / \$ 1.00}$
Voltage Regulators
Cat. \# Order by Cat. \# \& Type \#
Cat. \#
M1 Grain of Wheat Display Lamps $10 / \$ 1.00$ M2 \& PIN . $5 / \$ 1.00$ M5 18PIN . $5 / \$ 1.00$ M3 14 PIN $.5 / \$ 1.00 \quad$ M6 24 PIN $2 / \$ 1.00$ $\begin{array}{lllll}\text { M4 } 16 \text { PIN } & 5 / \$ 1.00 & \text { M7 } 28 \text { PIN } & 2 / \$ 1.00 \\ & & \text { M8 } 40 \text { PIN } & 2 / \$ 1.00\end{array}$

Transformers

Cat. \#	Order by Cat. \# \& Type \#	
M22	Mini Audio 1 " square	10/\$1.99
M32	70 Volt Line Transtormer, 10 watts	\$2.90
M40	6.3 Volts 1.2 amp	\$1.49

SPECIAL
WESTINGHOUSE TUBES - BOXED AND BRANDED

1 V 2	1.50	6CG3/W3/Q3	2.50	6H87	240	6LQE/6JE6C	4.85
2AV2	2.00	$6 \mathrm{CJ} 3 / 6 \mathrm{CH} 3$	250	6HM5/6HA5	2.30	62106510	4.30
3A3C	3.10	6DW4B	2.50	6H26	200	8FQ7/8C67	2.00
3AT2B	3.00	6EA8	2.50	6JC6A	2.65	12AT/ECC81	2.00
3CU3A	3.75	6EJ7/EF 184	220	6 J 56 C	4.50	12A - 7/ECC82	2.00
$3 \mathrm{DB3} / 3 \mathrm{CY} 3$	3.30	6EW6	2.20	6IL8A	2.60	12A×7/ECC83	2.00
3HM $5 / 3$ HA5	2.50	6FQ7/6CG7	1.85	6KD6	4.90	12BY7A/V/O	220
5GH8A	2.75	6GF7A	3.20	6KE8	3.60	12H37/6N7A	3.30
6AQ5A	2.00	6GH8A	2.00	6KT8	3.25	17J28	2.50
6AU6A	2.00	6GJ7/ECF801	225	6KZ8	2.40	2329	3.00
6BK4C/EL4A	450	6GM6	2.50	6L6GC	3.60	33Gr7A	3.75
8BL8/ECF80	1.75	6GU7	2.50	6LE. 6	4.75	36MC6	5.00
						38HE7	3.85

ADVANCED COMPUTER PRODUCTS

S100 PRODUCTS

MICROBYTE 32K STATIC RAM

 ASSEMBLED \& TESTED ONLY
$\begin{array}{ll}450 \mathrm{~ns} . & \$ 775.00 \\ 250 \mathrm{~ns} . \\ \$ 87500\end{array}$
(Special offer 16 K
$450 \mathrm{~ns} . \$ 435.00$)
450ns. $\$ 435.00$)

DC HAYES DATA COMMUNICATIONS ADAPTER

* Teiephone $T W X ~ \$ ~ S-100 ~ c o m p a t i b l e ~$ \star bell $\begin{gathered}\text { Assembled } \& \text { Tested } \\ \text { Bare PC Board w/data }\end{gathered} \cdots \cdots \cdots{ }_{\$}^{\$ 279.95}$
z-80/Z-80A CPU BOARD
\star On board 2708
\star Power on iump
$\star 2708$ included (450ns.)
\pm completely sockeled
\star completely sockeled
Assembled and tested \ldots.
Kit
Kit
$\$ 129.00$
$\$ 129.95$
Bare PC Board
\star For 4 MHz Speed Add $\$ 1500$
TDL COMPATIBLE Z-80 CPU

BYTE USER BK EPROM BOARD * Power on Jump

Assembled \& Teste

- Resel Jump

Special Offer: Buy 4 kits only $\$ 59.95$ each

8080A CPU BOARD
S100 compatible with 8 level Vector interrupt fulty socketed.

Assembled \& Tested	\ldots.	$\$ 149.95$
Kit	$\$ 9.95$	
Bare PC Board w/data		

TARBELL FLOPPY INTERFACE * S100 Compatible * Uses CPM

* Jumper Selectable Assembled and tested …...... $\$ 269.95$
Bare PC Board \$ 39.95
NOTE: For CPM Add $\$ 70.00$
Documentation Add $\$ 20.00$

WMC REAL TIME CLOCK

* Swo Compatiblerrupts

MICRODESIGN MR-16 2716 EPROM BOARD

- Individual Prom Address
* Uses Low cost 16K TI EPROMS
- Optional IKRAM \quad Phantom control $\begin{array}{ll}\text { Assembled and tested } & 174.95 \\ \text { Kit } & 99.50\end{array}$

DATABOOKS A MANUALS

NSC TLL Dato	3.95	AMI MOS/LSI Data	335	Mor Volis meei Dara'	
NSC Limear	9.95	GIMOS/LSI Deta	4.95	Mot, Yoi 5 CMOS Data	2.85
NSCCLtear APP/noiol	3.85	Ostorne inio to Micro Vas 0	7.50	Mot vol 6 Linear Dala	395
NSC CMOS Data	2.95	Ossoone lirio 10 Mcrior val	7.50	Mol Vol Schestiky MTL	2595
NSC Audoo Dita	3.95	Osborne 8080 Progaramming	750	Mol MPU Pros nel Manuar	3.85
NSC Vort Food oata	2.95 3.95	Osborne 68800 Progiamming	7.50	Mot Fower Data	2.95
NSC Memory Dala	3.95 3.95	Ostornit 280 Preg amming	750 7.50	Moll Peectiter Data	(2.95
NSC Power Transistors	295	T1 712	6.95	Moi zeners ${ }^{\text {a }}$	2.95
Iniel Damabook	$\begin{array}{r}395 \\ 350 \\ \hline\end{array}$	TT Tiansisiors 8 Diodes	850	Basic Sotrware Spivar for 11	24.95
Intel MCSS5 Ma tual	750 795	Til Mamory Data	3.95 3.95 .		39.85
intel MCS4O Manual	4.95	TIL inear Data	3	Pasic Soliware SPR Vof IV orv	${ }_{49.95}^{9.95}$
amO 8080 manctrook	5.95	T1 Brocher memory	3.95	Basic Sotware SAl Va vil	3995
AMB Linert Sthat	4.95 4.95		$\begin{array}{r}4.95 \\ \hline 98\end{array}$	19781 C Maste!	4750

 MODULES PROTO BOARDS

* Moturola Compatible Modules*		AMI EVK 200 Kit	449.95
MEK 6800 D2 Kit	\$235.00	AMI EVK 300 Assembled	649.00
96006800 MPU Module	495.00	EVK Kluge Board	95.00
960116 slot Mother Bd.	175.00	EVK 16 K Byte Ram Board	75.00
960216 slot Card Cage	75.00	EVK 6 Slot Motherboard	35.00
96038 slot Mother Bd	99.00	EVK Extender Board	45.00
9604 System Power Supply	250.00	EVK Solid Frame Chassis	129.00
9610 Protolype Board	36.00	EVK Connectors	6.50
9615 4KEprom Module	250.00	AMI 6800 Proto Rom	30.00
962016 port parallel I/O	375.00	AMI 6800 Micro Assembler Rom	30.00
9626 8K Static RAM	295.00	6800 Tiny Basic Paper Tape	20.00
9626 K 8 K Static RAM Kit	225.00	6800 Tiny Basic Eprom	125.00
9630 Extender Card.	60.00	ZILOG COMPATIBLE BOARDS	
9640 Multiple Tuner Prog.	395.00		
96508 port Duplex Asyn. I/O Mot $43 / 86$ Connectorsw/wors/1	395.00 5.95	Z. 80 CPU ZDC Disc Controter	395.00 395.00
AMI EVK 99* 6800 sub Kit	14500	MEM 16/65K Memory	595.00
AMI EVK 100 Kit	269.9		

THE FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST
AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!

1. Proven Quality factory tested products only, no re etests or fallouts. Guaranteed money back. We stand behind our products. 2. Same Day Shipment All preaid orders with castiers

FLOPPY DISK I/O

PD372 Ner Flopy
CHAD
CHARACTER
CHARACTER
GENERATORS

KEYBOARD
ENCODERS
AYS. 2375
AYS-3600
UARTS/USRTS

1671 BAstros
BAUD RAT

TV CHIPS

A/D CONVERTERS

MPU a COMPUTER
KITS

WAVEFORM GENERATORS

 MICROPROCESSORS STATIC RAM HEADOUARTERS

CRYSTALS
 pricing.

DISPLAYS/OPTO

\qquad
\qquad We are looking for software support packages to offer in our new catalogue. Please write or call if you want to participate.

P. O. BOX 17329

Irvine, California 92713

Retail Store Open Mon. - Sat. Santa Ana, CA 92705

AllTTL Circuitry-No tears in the ayes when repiacing ICs - FET input Stage-Offers high input impedance High Sensitivity- 15 mV tyolcal
Xvial Timb Baso-0.001\% 10MHz for better accuracy On Board Regulator-No external power supply neaded Allics Socketed-Easy to sorvice

- Tin Plated \& Screened Board-For ensy assembly

Now Low Cost I
Instrument Case for Kit
H. 2 7/16"' W. 81/2" D. $914^{\prime \prime}$ and in 6 varving heights also compatible as other instrument housing

Mod. \# CH2OO
PRICE: \$17.50

WOW: LOOK AT THIS!
5V 104 Power Supply Kit for your

TTL Circuits!

Kit Includes: Entre Large Heat Sink, Pow.
or Tr., IC Regulator, P.C. Board, with OVP Circuitry. Nir T- $\$ 11.95$ With Optronal Rectifiers and
Fithering Casacitor
$\$ 14.95$

HERE'S A MUST FOR THE EXPERIMENTER!

2.20V 1.3A Continuously Variable Pow-
er Supply Kit, KIt Includes: P.C. Board. Transformor, Power Transistor, He.C. Board Sink ic Regulator $\&$ all the Darts with detaited instruction kir rest $\$ \mathbf{1 2 . 9 5}$
0.8" 4 Digit Jumbo Display Alarm Clock Kit

Features:
A. Fairchild 0.8" FSC8000 Display Array
B. Fairchild Super-Chip - F-3817PC A BIG ONE!
C. P.C. Board, Transformer, Speaker and all
parts included (less case
$\$ 19.50$
D. Detailed Instructions

6-DIGIT AUTO CLOCK KIT WITH ALARM

A. Fsirchild 0.5" FND 500 C K'ral time bane

Z80 кіт

On board 2708 EPROM addressable to any 4 K boundary above 32 K . Power-on. Jump to any 4 K boundary above 32 K or the on-board 2708. A wait state may be added to any

1) M1 cycle 2) Memory request cycle 3) On-board ROM cycle (for use at 4 MHz) 4) Input cycle 5) Out-put cycle

On-board run-stod flip-flop and optional generation of MEMORY WRITE allow front panel-less operation. Selectable 10 addressing mode: 118080 Mode where peripheral address byre is duplicated on high and low order address bytes. 2) 2-80 mode where the peripheral byte appears on the low order address, and the contents of the accumulator appears on the high order byte, allowing simultaneous 1/O. DMA Grant tri-states all signais from the processor board. 8224 clock generator provides 8080 look-atike $\phi 1$ and $\phi 2$ for the S-100 bus. Status signals SINP, SOUT. SMEMR. \& SWO are latched Der $\mathrm{S}-100$ bus specs.
\$135.00 EA. ${ }^{\text {(2x+2 }}$
\$149.95 EA. ${ }^{\text {anhz }}$ bare board \$35.00 ASSEmbled \& TESTED: ADD $\$ 50$ to each Kit price kits include all parts and 2708 unprogrammed

KIT INCLUDES: Detailed Instructions (22 pages). All parts including transformer
 кı

PUT YOUR HAM GEAR OR CB IN YOUR HOUSE WITH THIS SPECIALLY DESIGNED POWER SUPPLY KIT!
KIT INCLUDES: Transformer, PC Board, Large heat sink. Large filtering capacitor and all parts with detailed instruction

Features: Output Voltage $=13.5 \mathrm{~V}$. ONLY : Output Current $=3.5 \mathrm{~A}$ Min. ONLY

- Load Regulation $=0.01 \%$. $\$ 16.95$
- Internal Current Limiting
- Over-voltage Protectad

T-8K/ Static Ram Memory Kits

Memory Chips
2102 low power chips. Boards operate with the fastest 2102 on the market (250ns). Buffering Support Chips
Input and output data lines fuliy buffered. All possible support chips are low power schottky. Support chips at bottom of board for strong drive signals to bus.

Bypass

26 bypass capacitors on the board.
Voltage Regulation
Four 340T-5 five volt regulators give power even if all chips on board are regular power devices.
Protect
Protect/Unprotect is selected on board so board can be used in systems without a front panel.
Address Select Delay
Can be set in 8 K increments. Delays can be selected on board that any speed 2102 memory chip can be used.

T-8K Kit $\begin{gathered}\text { 450ns } \\ \$ 129.95 \\ \$ 139.95 \\ \$ 169.95\end{gathered}$ Assembled \& Tested $\$ 150.00 \quad \$ 159.95 \quad \$ 189.95$ Bareboard (without parts): $\$ 25.00$

CRYSTALS ± 0.002 \%
LOWEST PRICE EVER / HIGHEST ACCURACY!

Tarbell

 Floppy Disc Interface Designed for Hobbyists and Systems Developers

- Plugs directly into your IMSAI or ALTAIR• and handles up to 4 standard single drives in daisy-chain
- Operates at standard 250 K bits per second on normal disc format capacity of 243 K bytes.
- Works with modified CP/M Operating System and BASIC-E Compiler.
- Hardware includes 4 extra IC slots, built-in phantom bootstrap and on-board crystal clock. Uses WD 1771 LSI Chip.
- 6 -month warranty and extensive documentation.
- PRICE: Kit $\$ 190$

Assembled \$265 ALTAIR is a trademark/radename of MITS, INC

SOCKET SALE

WIRE WRAP SOCKETS

14 Pin Wire Wrap
.30
27/400
16 Pin Wire Wrap
32
29/350

EDGE CARD CONNECTORS

44 Pin ST Edge CardConnector $1.75 \quad 1.50 / 10$ 100 Pin ST Edge Card Connector 3.50 $3.00 / 10$ 100 Pin WW Edge Card Connector $3.50 \quad 3.00 / 10$ All Sockets \& Connectors Include Gold

SOLDERLESS BREADBOARDS SK 10 \$16.50

 INCLUDING: Over 100 pieces of precut wire in assorted lengths - free! Choose 1 color: Red, Black, Blue, Yellow, Green, White, Orange Or Assortment.
PAGE DIGITAL ELECTRONICS

135 E Chestnut Street 4A Monrovia, California 91016 Phone (213) 357-5005

ORDERING INFORMATION

- Orders under $\$ 25$ and COD's. add $\$ 2$ - All others, shipped Ppd in U.S. via UPS - For Blue Label (Air) or 1st Class, add \$1 - We accept Visa \& Master Charge Most orders shipped same day

Dealer Inquiries Invited

CIRCLE 34 ON FREE INFORMATION CARD

JUMBO LED READOUT ARRAY

$\$ 1.95$ LIMITED STOCK

By Bowmar. . 5 in. character common cathode. Designed for use with multiplexed clock chips

3W. AUDIO AMP

Assembled \& tested. Not a kit. Has tapped output for either 4,8 or 16 OHMS. With schematic.

NATIONAL SEMICONDUCTOR
six digit alarm clock chip

Nationals second generation clock chip 24 Pin Oip Super easy to use

SPECIAL OFFER!

With purchase of Clock Chip at left. ANODE LED READOUTS
\#TIL 312
 HIGH EFFICIENCY
\qquad a PERFECT MATE build your own clock:
\square WE SUPPLY DATA!
MOTOROLA 7805R Voltage Regulator
Same as standard 7805 except 750 MA output. TO-220. 5VDC output. 44 c each $\quad 10 / \$ 3.95$

MOTOROLA 4K RAM's - 99¢ EACH (WITH DATA)
A major U.S computer migg removed these parts from PC boards, then retested them to full specs. Best Memory Buy in the U.S.A.! 4096×1 Bits. One of the easiest Dynamic RAM's to use. A complete memory board design using these chips is detailed in the MOTOROLA M6800 APPLICATIONS MANUAL starting on page 4 70. The 6605 is the popular 22 Pin Dip. 8 FOR $\$ 6^{93}$

 LED IC Counter Kit You Get: 1-7490; 17475; 1-7447; 1—Led Readout. All this for $\$ 1.99$ (Led Readout is famous SLA-1. . 33 in . By Opcoa.)

mallory POWER SUPPLY CAPACITOR 1500 MFD 16 WVDC 3/\$1.10 $\quad 10 / \$ 2.95$ FACTORY FRESH! SMALL SIZE	2N3904-House No. TO-92. NPN. VCEO-45. HFE 100 to 300 10 for $\$ 1.00$
IES TTL	Motorola Quad Op-
500-33c 74LS	Amp MC3401. Pin for
74LS02-35c $744 \mathrm{LS90}$	Pin Sub for popular
74LSO8-35c 74 LSS154-1.49	LM3900.
	3/\$1.00

TERMS: Orders under \$15. add 75c. No COD's. We accept VISA, MasterCharge and American Express Cards. Money Back Guarantee on all items! Texas Residents add 5\% Sales Tax. WE PAY POSTAGE!

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MAIN BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

165.95 199.95

SIZE:
3" High
6" Wide
51⁄2" Deep
FEATURES AND SPECIFICATIONS: DISPLAY: 8 RED LED DIGITS . 4 CHARACTER HEIGHT GATE TIMES: I SECOND AND $1 / 10$ SECOND PRESCALER WILL FIT INSIDE COUNTER CABINET RESOLUTION: 1 HZ AT 1 SECOND, 10 HZ AT $1 / 10$ SECOND FREOUENCY RANGE: 10 HZ TO 60 MHZ . 65 MHZ TYPICAL]. SENSITIVITY: 10 MV RMS TO $50 \mathrm{MHZ}, 20 \mathrm{MV}$ RMS TO 60 MHZ TYP INPUTIMPEDANCE: 1 MEGOHM AND 20 PF
[DIODE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION.] ACCURACY: ± 1 PPM [$\pm .0001 \%]$, AFTER CALIBRATION TYPICAL STABILITY: WITHIN 1 PPM PER HOUR AFTER WARM UP $\mid .00 \%$ XTAL C PACKAGE COUNT : 8 [ALL SOCKETED]
NTERNAL POWER SUPPLY: 5 V DC REGULATED
NPUT POWER REQUIRED: 8.12 VDC OR 115 VAC AT $50 / 60 \mathrm{HZ}$ POWER CONSUMPTION: 4 WATTS

PLEXIGLAS CABINETS

CABINET I
Great for Clocks or any LED Digital project Clear-Red Chassis serves as Bezelto ncrease contrast of digital
displays

3"H,6\%"W,5\%"D Black, White or CABINET II Clear Cover 2% "H,5"W,4"D $\$ 6.50$ ea.
RED OR GREY PLEXIGLAS FOR DIGITAL BEZELS
95° еа $4 / 43$

SEE THE WORKS Clock KIt Cloar Plexiglas Stand
-6Big 4 "digits - 12 or 24 hr time - 3 set switches

- Plug transformer -all parts included Plexiglas is Pre-cut \& drilled Kil $\% 850-4 \mathrm{CP}$

60 HZ .

 XTAL TIME BASE: Will enable Digilal Clock Kits or Clock-Calendar Kits to operate from 12VDC. 1 " $\times 2$ "PC Board Power Rea 5-15V (2.5MA TYP) Easy 3 wire hookup Accuracy $\pm 2 \mathrm{PPM}$ \#TB-1 (Adiustable) HTB-1Complete Kit 485 Complete Kit $\$ 495$
Wir \& Cal $\$ 9.95$

SPECIAL PRICING!

 PRIME - HIGH SPEED RAM 21LO2-3 mons LOW POWER - FACTORY FRESH 1-24 \$1.75 ea. 100-199 \$1.45 ea 25-99 1.60 ea. 200-999 1.39 ea.1000 AND OVER
\$1.29

E-DIFIT LED CLILK LFIETMPR KIT

FOR THE BUILDER THAT WANTS THE BEST. FEATURING 12 OR 24 HOUR TIME -
29-30-31 DAY CALENDAR. ALARM. SNOOZE AND AUX. TIMER CIRCUITS
Will alternate time (8 seconds) and date (2 seconds) or may be wired for time or date display only, with other functions on demand. Has built-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute snooze alarm, alarm set \& timer set indicators. Includes 110 $\mathrm{VAC} / 60 \mathrm{~Hz}$ power pack with cord and top quality components through-out.

KIT - 7001 B WITH 6-5"DIGITS
KIT - 7001C WITH 4-6" DIGITS E 2-.3* DIGITS FOR SECONDS KIT - $7001 \times$ WITH 6 - 6° DIGITS

KITS ARE COMPLETE (LESS CABINET)
ALL $7001 \mathrm{KITS} F I T$ CABINET I AND ACCEPT QU
PRINTED CIRCUIT BOAROS for CT. 7001 Kits

PRINTED CIRCUIT BOAROS for CT 7001 Kits
sold secarately with assembly info. PC Boards are
sold separately with assemblyinfo PC Boards are
drilled Fiberglass. solder plated and screened
drilled Fiberglass solder
with component tayout

AUTO BURGLAR

 ALARM KIT SWIICHES OR SENSORS WILL GULSE HORN
RELAY AT IHZ RATE OA DRIVE SIREN KIS
 MOUNS UNJRY DASMARM PERIOD UNOTE SWICM
CAN BE MOUNTED WNEAE OESIRED CMO

 INCCUON
STRUCI
TESTED

OPTOELECTRONICS, INC.
5821 N.E. 14th AVENUE,
FORT LAUDERDALE, FLA. 33334
PHONE (305) 77 1-2050 / 771-2051

VARIABLE REGULATED 1 AMP
POWER SUPPLY KIT VARIARLE FROM 4 to 14V - 723 IC REGULATOR - 2N3055 PASS tRANSISTOA - Current limiting at I amp KIT IS COMPLETE INCLUDING DRILLED \& SOLDER PLATED FIBERGLASS PC BOARD AND ALLPARTS (LESS TRANS.
FORMEA) KIT FORMER) KIT:PS-01 \$8.95 TRANSFORMER 24VCT will provide 300 MA at 12 V and

MDRLLE LED CLDLK

MODEL 12 VOLT AC or

* 2001
 DC POWERED

JUMBO DIGIT CLOCK
A complete Kit (less Cabinet) featuring six $.5^{\prime \prime}$ digits, MM5314 IC $12 / 24 \mathrm{Hr}$. time, PC Boards, Transformer, Line Cord, Switches and all Parts. Ideal Fit in Cabinet II

$$
\text { Kit\#5314-5 } \quad \mathbf{1 9}^{95} \quad 2 /{ }^{8} 38
$$

JUMBO DIGIT $\mathbf{\$ 9 5}$ ea

Convert small digit LED clock to large displays. Kit includes 6 - LED's, Multiplex PC Board \& Hook up info. Kit \#JD-1CC For Common Cathode Kit \#JD-1CA For Common Anode

略 Rado Hut

TELEPHONE RELAY

Assembled \& Tested $\$ 29.95$

Automatically Starts \& Stops Tape Recorders

 Surreptitious interception of telephone conversation is a violation of Federal Law and this device is not intended for such use.6 DIGIT ALARM CLOCK KIT
Features: Litronix dual $1 / 2^{\prime *}$ displays. Mostek 50250 super clock chip, single IC segment driver. SCR digit drivers. KIt includes all necessary parts (except case) Ximr optional. Eliminate the hassle.
AC XFMR - \$1.50 Case $\mathbf{5 3 . 5 0 \quad \$ 1 2 . 9 5}$

NEW IMPROVED
UNSCRAMBLER! $\$ 25.00$ Punched and Printed Case

- Fult instiuclion inciuded
- Orilled tribergiasi $P C$ doerd
- Ona Hour Alsembly

12V 1 AMP POWER SUPPLY
INPUT VOLTAGE $25 V$ MAX. OUTPUT CURRENT 1 AMP. MAX. LOAD REGULATION 50 mV . OUTPUT VOLTAGE 12 V . LINE REGULA. TION 0.01% KIT CONTAINS ALL PARTS EXCEPT FOR LINE CORD AND TRANS. FORMER.

ONLY \$4.50

Money back guarantee NO COD'S Texas residents add 5\% sales tax Add 5\% of order for postage and handing Orders under $\$ 1500$ add 75 cents. Foreign orders add 20% tor postage For your convenience, call your Bank Americard or Master Charge orders in on our Toll Free Watts Line 1-800-527-2304 Texas residents call collect 1-214-271-8423

INTRODUCTORY PACKAGE With any order valued at $\$ 30.00$ or more
Post marked prior to July 31, 1978

You receive

AT NO EXTRA CHARGE

- A 1978 ACTIVE ELECTRONICS Catalogue
- Your choice of any of the following packages .

PACKAGE NO. 1

UNB0400 Unitrode Semiconductor Data Book. 500 pages on rectifiers, fullwave bridges, transient voltage suppressors, zeners, programmable unijunction trans istors, etc.
LCC4162 TTL Supplement. The most recent TTL functions are included in this supple ment to the 2nd edition of the TTL Data Book

RAB0606 Raytheon Selection Guide. A fuil line condensed quick reference source on all Raytheon Componerits
LCC4151 T.I. Linear and Interface Circuits Data Book. 688 pages. Complete specifications on the 75 series of MOS interface peripheral driver, memory sense amplifiers, display interface circuits etc

Value $\$ 16.90$

PACKAGE NO. 2

FSB0104 Fairchild Blpolar Memory Data Book. Bipolar memories, ECL static memories, TTL static memories, TTL dynamic memories and macrologic.
FSB0105 Macrologic Bipolar Microprocessor Data Book. Microprogramming for implementing as many system functions as possible in one centralized logic block
FSB0112 Fairchild Hybrid. Custom and standard product as well as reliability and design considerations.

GSB0100 Zener, Transistor and Transzorb Catalogue. Discrete devices and pertinent data and complete device characterization. FSB0103 Fairchild Power Data Book. Basic parameter and data information as well as information on technology, sate operating area, reliability etc.

Value $\mathbf{\$ 1 4 . 3 5}$

PACKAGE NO. 3

ADVANCED MICRO DEVICES
AMB0203 8080A/9080A MOS Microprocessor Hand Book. Detailed descriptions of the 8080A and associated CPU components.
AMB0205 MOS/LSI Data Book. Static RAM's dynamic 4K RAM's, 2K EROM, shift registers FIFO memories and complete microprocessor and support circuits.
AMB0206 Linear and Interface Data Book. Comparators, data conversion products. Line drivers/receivers, MOS memory and microprocessor interface, Op Amps, Voltage Regulators etc.

Value $\$ 17.85$

PACKAGE NO. 4

LCC4041 T.I. Power Semiconductor Data Book. 816 pages germanium and silicon power transistors. SCR's, Triacs. darlingtons. silicon power high voltage and low voltage types etc.
SIB0303 Siliconix High Speed Analog Switches. Complete specitications, charac teristics and applications of the DG300 series.
SIB0304 Siliconix FET Data Book. Complete data on selecting the right FET for your application, characteristics and PC board layout
SIB0305 VMOS Power FET's. Technical information, application and design aids. characteristics and device / application selection for this latest in technology.

PACKAGENO 5

SIB0300 Analog Switches and their Applications. Introduction to FET Analog Switches and the way the switch control or driver circuit affect pe tormance.
LCC4280 T.I. Peripheral Driver Data Book Total information and typ cal application of complete peripheral drivers and interface LCC4290 T.I. Line Driver and Line Receiver Data Book. Complete da:a on line circuits and application information.
GIM0100 General Instrument Micro electronics. Complete soecifications and data on calculator, clock and T.V. game chips, microprocessors, industrial devices, static RAM's, EAROM's and ROM's.

Value $\$ 19.30$

We reserve the right to ship a package of our choice. if one or more iterns of a requested package is
out of stock. This offer available in the United States only.
Active
Electronic
SalesCorp.
Over the counter sales.
12 Mercer Rd.. Natick, Mass. 01760
Behind Zayres on Rle. 9
Behind Zayres on Rle. 9
Telephone Orders \& Enquires (617) $879 \cdot 0077$
IN CANADA 2 LOCATIONS
QUEBEC \& ONTARIO

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

IV HOCKEY SOCCER gaMe plus VIDEOCUBE-TV INTERFACE

The game we have been selling for $\$ 27.50$ in kit form. NOW complete, ready to go including VIDEOCUBE, the TV interface, used for iterfacing minicomputers and cameras, as described in August RADIO-ELECTRONICS. Games have 2 levels of skill, LED readouts for scoring, 2 joysticks which move players in all planes, not just vertical \& horizontal. Game sold for $\$ 79.50$ in Boston stores. STOCK NO.5495R Complete TV game \& VIDEOCUBE \$18.95

NEW TRANSFORMERS

 STOCK NO.6772R $\$ 2.95$ ea. $2 / 5.00$

Two 115 volt primaries,(can be used on 230 V). 4 secondaries. 11.5 V @ 4.8 A, 23V@9.0 A., 14 V . @ 20 A. and 125 V 1.5 A .

STOCK NO.6554R $\$ 16.95$ ea. $2 / 30.00$
TRIAD -N67A 1SOLATION transformer. 115 or 230 VAC to 115 AC. 150 VA. Limited quantity. 7 lbs. $4^{\prime \prime} \times 4^{\prime \prime} \times 3^{1 / 2} \mathbf{2}^{\prime \prime}$
STOCK NO. 6788
$\$ 7.95$ ea. $\quad 2 / 15.00$

DELTA ELECTRONICS

P.O. Box 2, 7 Oakland St. Amesbury, Mass. 01913
 RETAIL OUTLET
ATLANTA, GA. DELTA ELECTRONIC HOBBIES 5151 Buford Hwy. Doaraville, (Atlanta) Ga. 30340

CIRCLE 44 ON FREE INFORMATION CARD

5100 El Camino Real, Los Altos, CA 94022. (415) 969-7827

74LS00	. 25	TTL 74LSXX				74LS253	70
$74 \mathrm{LSO1}$. 25	JUNE SPECI	-	nteed	e parts	74 LS257	1.70
j4LSO2	. 25	74 LS 74	. 45	74LS158	1.35	74 LS 258	1.75
74LSO3	25	74LS75	63	74 LS 160	1.85	74 LS 259	2.00
74 LSO 4	32	74 LS76	47	74LS161	1.85	74 LS 261	3.25
74 LSOS	32	74 LS78	40	74LS162	1.85	74 LS266	. 75
74LS08	30	74 LS83	1.65	74LS163	1.85	74LS273	2.75
$74 \mathrm{LSO9}$	36	74LS85	1.90	74LS 164	185	74LS279	75
$74 \mathrm{LS10}$. 30	74LS86	. 47	74 LS 165	1.85	74LS283	1.60
74 LS11	33	74LS90	86	74 LSI68	1.95	74LS290	1.60
74 LS 12	. 35	74LS91	1.30	74LS169	1.95	74 LS293	1.60
74 LS 13	65	74LS92	1.10	74LSi70	2.60	74LS295	2.00
74 LS14	1.50	74 LS95	1.45	74LS173	1.80	74LS298	2.00
74 LS 15	. 33	74 LS96	1.85	74 LS 174	1.80	74LS299	7.00
74LS20	. 27	74 LS 107	. 56	74LSi75	9.80	74 LS324	2.25
74 LS 21	33	74LS109	. 56	74 LSI81	3.55	74LS352	1.85
74LS22	. 33	74LS 112	. 56	74 LSI90	2.40	74LS365	. 95
74 LS26	. 37	74 LS 113	. 54	74LS191	2.40	74LS366	95
74 LS27	. 35	74 LS1 14	. 54	74 LS 192	2.40	74LS367	. 95
74LS28	. 38	74LS 122	. 90	74LS193	2.40	74LS368	. 95
74LS30	. 30	74LS123	1.20	74LS194	1.80	74LS374	2.25
74LS32	. 35	74 LS 124	2.00	74LS195	1.80	74LS375	1.25
74LS33	. 39	74LS 125	1.00	74LS196	1.80	74 LS377	3.25
74 LS37	. 39	74LS126	1.00	74LS197	1.80	74L5378	2.35
74LS38	. 39	74LS132	1.20	74 LS221	1.85	74LS379	2.25
74LS40	. 37	74LS136	. 56	74 LS 240	2.80	74LS386	. 95
74LS42	1.20	74LS138	1.20	74 LS 241	2.80	74LS390	3.75
74L547	1.25	74LS139	1.20	74 LS 242	2.70	74LS393	2.75
74 LS48	1.45	74LS148	1.60	74 LS 243	2.70	74LS395	2.85
74L549	1.45	74LS151	1.20	74LS244	2.80	74LS399	2.60
74LS51	28	74LS153	1.20	74 LS247	1.75	74 LS490	3.75
741554	. 33	74 LS155	1.25	74LS248	1.75	$74 \mathrm{LS668}$	2.25
74LS55	28	74LS156	1.60	74LS249	1.75	$74 \mathrm{LS669}$	1.85
74LS73	. 47	74LS157	1.40	74LS251	1.75	$74 \mathrm{LS670}$	3.95

$\begin{array}{ll}21 \mathrm{L0} 2-\mathrm{Guaranteed} \text { prime } & \$ 1.50,10 \text { up } \\ \pm 3 \text { digit A/D LD } 130\end{array}$
Minimum order \$5.00 US currency. Check or money order only. Add 5\% to cover shipping and handling charges. Calif. residents add 6% sales tax. Santa Clara Co. residents add 6.5% sales tax.

SURPLUS WANTED

TELEPHONE YOUR ORDERS - Phone in Your chargeCALL: $1-518 \quad 561-8700$.

SURPLUS WANTED - COItaC1 Our DuYing Diffice burgh address below

ELECTRONICS

CANADIANS - Ordering trom this ad is simple. Flease remit in U.S. funds lor add
10% to overall total and emit in Canadian funds). 【Chaigex and Mastercharge wet comel. We do the paperwork and shis to you ditect trom the U.S.A. at low American prices. You pay duty and tax to Canarlian Customs (Canadian schools are exempt) We have stores in Canada, too! Write for Canadian calalogs. We invite you to visit
 Matsburgh store fust 50 minutes fom Montal

Rush Your Order Today
Shippd to you diract trom our now
milorder hesdquarters and
ETCO ELECTRONICS CORP. U.S.A. North Country Shopping Center,
Route No. 9, Plattsburgh, N.Y. 12901. MERhCHANDISI fied check, BANKAMERICARD, VISA, MASTERCHARGE or CHARGEX. Add 20\% for UPS (or postage) and handling (we refund excess). Please try to bring your order total to $\$ 10$ or more. Worldwide export orders solicited. Open account to Government agencies, schools, institutions and triple "A" rated industrial $\&$ commercial aceounts. Spacial quates for quantities. N.Y. atate residents: add 7\% sales tax

DISCOUNTS WHEN COMPARING PRICES INTEGRATIDCIRCUITS

The "NIBBLER"
A MICROCOMPUTER AT A MICROPRICE!

FEATURES: - Assembled and Tested, yet only $\$ 149.95$ - Standard $4.5^{\prime \prime}$ by $6.5^{\prime \prime}$ card with 72 pin edge connector pattern - Allic's are socketed for easy maintenance - Memory expandable to 28K - 110 Baud Serial $1 / 0$ - It Speaks Basic Beautifully - 4K NIBL Basic in ROM and 2K of RAM - Easily Interfaced with CRT or Teletype
CATALOG NUMBER NIBI-ND 149.95
SOFTW ARE /HARDWARE MANUAL MAN I-ND $\underset{\text { tnot discountable) }}{ }$

Dual 8 Watt Amplifier Set

MESHNA SPECIALS

PHOTO FLASH complete on PC board w/flash tube in reflector, $\mathbf{2}$ ni-cads \& camera connecting cable. Cycles $\ln 3$ seconds
$\$ 6.00$
8 SWITCHES in MINI DIP 1.80
10 SWITCHES in MINI DIP 2.00
AA NI-CADS fast charge
1.25

5 WAY BINDING POST US made
. 35
U-FIX-EM TV games, w/power pack \& video Cube in original boxes (sold for $\$ 50$) 11.00
JUMBO LED . 187 diam. long leads 6/1.00 TV CHEATER CORDS 6 ft
.75
LIQUID CRYSTAL thermometer, reads 86 to 108 degrees F

4/1.00
MULTI USE xfmr puts out 140 volts, $12.6,6$, 33.5 volts Many home projects
1.50

SEISMIC DETECTOR radio transmitter, used in Viet Nam for troop detection. 4.00
COPY LENS FROM ZEROX in mount. $81 / 4$ focal length irls $\mathbf{8 4 . 5}$ to $\mathbf{f 8}$
10.50

U-FIX-EM hand calculator 4 function $\quad 3.00$
LAMBDA solld state regulated slim line power supply 12 voits DC 8 amps
50.00

ULTRA SONIC transducer $\mathbf{3 7}$ or $\mathbf{4 0} \mathbf{K h z} \quad \$ 2.00$
The above includes data on alarm system PL 259 coax connector
.75
SO-239 coax socket
.60
TOUCH TONE ENCODER KIT, pad, chip \& Instructions
12.95

IR NIGHT VIEWER, new ready to use, see in the dark
199.00

All above FOB LYNN MASS (you pay shipping) Amazing 64 page catalog free
JOHN MESHNA JR, INC. PO Box 62, E. Lynn Mass. 91904

CIRCLE 49 ON FREE INFORMATION CARD

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
POST PAID U.S.A.
WE ACCEPT
Mastercharge or BankAmericard
Send check or money order with order to

Tritistar Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501
CIRCLE 41 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number
$66 \quad$ Ace Electronics
Page

Active Electronics...................................... 151
Advance
Electronics 104,106,111,113,115,119
9 Advanced Computer Products 146
10 Aldelco ... 142
75 A M C Sales .. 136
75 American Technology.............................. 120
A T V Research 134
Audio-Technica... 93
Avanti Research \& Development 26
79 Avanti Research \& Development 26
61 Babylon Electronics................................ 152
Karel Barta.
130
Forest Belt's Training Workshop............ 103
80 B \& K Precision Dynascan Co................. 34
Bullett Electronics 134
67 Central Data ... 35
C FR Associates................................... 136
Chaney Electronics 128
C I E-Cleveland Institute of Electronics................................... 18-21
Command Productions 130
Communications Electronics 106
Computalker Consultants 107
11 Continental SpecialtiesCov. 3
36 Creative Computing 105
C R E I-Div. of McGraw Hill
Continuing Education $84-87$
Dage Scientific Instruments 136
87 Davis Electronics 108
44 Delta Electronics 152
Devtronix Organ Products 132
Digi-Key ... 156
Digital Research Corporation 148
D R I Industries.. 31
Edsyn .. 123
I C O ... 120
55 E\& L Instruments 115
120
69 Electronic Control Technology 118
Electronics \& Control Engineer's Book
Club-McGraw Hill Book Division 1
E M C-Electronics Measurements 123
63 Energy Control Systems.......................... 105
1 Enterprise Development.......................... 100
56 Epsco .. 107
46 Etco Electronics 154
76 Fluke ... 117
64 Fordham Radio Supply........................... 144
60,3 Formula International 138.139
2 Fuji-Svea ... 133
G F N... 97
47 Godbout Electronics 130
Golden Enterprises 132
81 Gould... 122
4 Grantham College of Engineering 112
100 G.T.E. Sylvania-Consumer Renewal....... 29
100 Heath .. 5,36
19 Hobbi House ... 145
96 Hobby World .. 131
77 IMSAI Manufacturing Corp............... Cov. 4
40 Indiana Home Study............................... 100
33 Information Unlimited............................. 136
83 Integrated Electronics 152
91 International Crystal Mfg. Co................ 112
7 International Electronics 143
8,57,58 James Enal Peripheral......... $101,140,14$
J\& E Electronics 136
Krystal Kits .. 134
Lab Science .. 132
Lakeside Industries................................. 132

Logical Services...................................... 136
24 Mallory.. 2
49 Meshna ... 158
85
14

15,16 National Camera Supply93,116
National Radio Institute (NRI)-Div. of McGraw Hill Continuing Education Center

88 Netronics ... 11751 New-Tone Electronics 144
42
ne 100 17
8,17 Optoelectronics. 129,149
20 Page Digital.. 148
21 PA IA ... 91
Panavise..91
Platt Luggage 113
120
Plus Electronics 136
Poly Paks 157
Pomona. 114
Priority 1 Electronics 23,153
Professional Aids 98
P T S Electronics. 100
Quest. 142
Radio Hut. 150
Radio Shack 137
Ramsey Electronics. 132
RCA.. ,121
43 Rye Industries 123
H.W. Sams 32-33
73 Sansui 25
Scelbi Computer 116
Schober Organ. 121
28,37 Sencore 28.91
Solid State Sales. 130
Solid State Time. 138
27 Southwest Technical Products. 13
Spacekom 9
Special Functions 134
A.F. Stahler Co. 132
Sybex 102
33 Tab Books. 105
Tarbell Electronics 148
Tasco 132
TK Enterprises 104
Triaico International 147
Tri-Star.. 158
Trumbull 134
Vaco. 27
24
Weller-Xcelite Div. of Cooper Industries 110
MOVING?
Don't miss a
single copy of
Radio-Elec-
tronics. Give:
us:
Six weeks no-
tice
Your old ad-
dress and zip
code
Your new ad-
dress and zip
code
name (please print)
address
$\overline{\text { city state zip code }}$

Mall to: Radlo-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520 , BOULDER, COLO. 80322

FREQ OUT. FOR LESS.

Introducing CSC's new
Mini-Max. It brings down the cost of counting up the frequency for CB-ers, hams, computer enthu siasts, audiophiles . just about any engineer. technician or hobbyist will find it indispensable It s "mini"-sized, too-a pocketable $3 \times 6 \times 1 / 2$ inches But when it comes to performance. Mini-Max means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz . with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 ppm $/{ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$. Completely automatically. Advanced LSI circuitry with a crystal controlled timebase provides precise frequency readings on a bright, six-digit LED display. with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Max is versatile too. You can connect it directly to the circuit under

100 Hz to 50 MHz . \$89.95*

test, or use its matching mini antenna for easy RF checking. Either way, the input is protected against overload to 50 V (100 V below 1 KHz)

Mini-Max is as inexpensive to use as it is to own. An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation, and you have the flexibility of a battery elim. nator for AC operation. For increased versatility, there s a complete line of accessories including standard clip-lead cable and mini antenna - eliminator and carrying case are optional.

CSC's new, all-American made Mini-Max is everythirig you need for highly-accurate checking of frequencies up to 50 MHz . At a price that will Freq you out. Order today Call 203-624-3103. 9 a m 5 p.m. Eastern Standard Time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside US A

CONTINENIAL SPECIALIIES CORPORATION

Price/Performance no one else has put together.

IMSAI Introduces the PCS-80/30 Integrated Video Computer

3 mHz microcomputer3K ROM monitor2K RAM8 expansion slots14 mHz integrated intelligent CRT (24 x 80)Intelligent KeyboardParallel interface2 serial interfacesGraphic and edit CRT functions28 amp power supplyAll for \$1499* assembled and tested.

Software:

ASSEMBLER, DOS, TTY and ACR BASIC, Commercial/Scientific BASIC. FORTRAN IV and more.

Men ry Options:

64K RAM memors baards.

Peripherals:

Printers, floppies-mix and match; standard, mini and high performance double density floppy disks on the same system (an industry first, $1 / 2$ " magnetic tape drive, CRT and TV monitors.

Send today tor your copy of the 250-page IMSAI PCS $80 / 30$ User Manual. Price 55.00 . The cost of the manual may be applied towards your purchase of a PCS$30 / 30$ Integrated Video Computer. Use the coupon provided.

Gentiemen:

Send me the IMSAI PCS-80/30 User Manual, price $\$ 5.00$. I understand that the $\$ 5.00$ may be applied cowards the purchase of a PCS $-80 / 30$ Video computer System.

Check/Money Order enclosed. Amt. $\$$
Charge my \square BAC \square M/C
\#

> Exp. Date:

Sig.
Name
Address
City
State/Zip
IMSAI 14860 Wicks Blvd. San Leandro. CA 94577

The Standard of Excellence in Microcomputer Systems
IMSAI Manufacturing Corporation
14860 Wicks Blvd. San Leandro, CA 94577 (415) 483-2093 TWX 910-366 7287

[^0]: *Hyterm and HyType are registered trademarks of Xerox Corp.

[^1]: "Trademark of CBS. Inc

[^2]: - Play a variety of games from Star Trek to involved combat games.

[^3]: * This article is reprinted courtesy of American Laboratories. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic instifute \& State University. Mr. Jon Titus is president of Tychon, Inc., a microcomputer consulting firm in Blacksburg, VA.

[^4]: * Public Relations Supervisor, Continental Specialties Corp.

[^5]: - Manager, Design Engineering, Heath Co., Benton Harbor, MI.

[^6]: This contest is open to all electronic service technicians except RCA employees or members of their immediate families, RCA's affiliates or subsidiaries, its advertising agencies, and the judging organization. Void where prohibited or restricted by law. This contest subject to all federal, state and local laws. All prizes will be awarded.

[^7]: E\&L INSTRUMENTS, INC.
 61 First Street. Derby. Conn. 06418
 (203) $735-8774$ Telex No 963536

[^8]: Reprinted from "Progress", copyright 1978
 Fairchild Camera \& Instrument Corp.

