REJUVENATING ANTIQUE RADIOS IS A CINCH Radio-Electionics

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

COVER STORY

CAPACITANCE METER

4-digit display reads out any capacitor value between 1 -pF and $9999-\mu$ F. Measures ceramics, paper, tantalum and electrolytics Story starts on page 37

PINK-NOISE TESTING

Setting up a graphic equalizer is not easy. But when you have a pink-noise source, it can be done quickly and accurately. The how-to procedure starts on page 44

VIDEO MODULATORS

Individual reports on all of the modulators that we could locate. Must reading if you are planning to buy one to use withyour computer or TV game or TV camera. Turn to page 47

BUILD FLUE BUG

Protects against heat loss through an open fireplace flue. This device warns you to close the flue once the fire is out.

PLUS

* Hobby Corner power supplies
* Computer Corner 8253 programmable interface timer
* R-E Tests RG Dynamics Pro 16
* R-E Tests Leader Audio Analyzer
* State-Of-Solid State
* CET Test Review
* Equipment Reports
* And much more

FlukeSponsors New Series: "One Great Family"

Tired of Reruns?

Fluke counters with a new series in the $5 \mathrm{~Hz}-520 \mathrm{MHz} /$ time slot

If you're paying over $\$ 345$ for a counter and getting frequency only, tune in on our new 1900 -series of priced-right multicounters.

Five different models offer both time and frequency, with award-worthy performance and features; the ratings are terrific!

New Time and Frequency.

Last year's hit, the model 1900A, set the stage for this new series of multicounters by offering frequency, period, period average and totalize standard in one great counter.

Now all models in the series offer comparable features and value, with autoranging and autoreset as well.

Most models feature a trigger level control and battery option for reliable field use or line-cord-free bench operation. All typically have a 15 mV sensitivity (guaranteed on most!), plus a $0.5 \mathrm{ppm} / \mathrm{month}$ time base for long-term stability.

The Price is Right.

From this shared base of solid performance features,

1900A
we've built a series of counters with one model just right for your needs.

The new 1912 A , with a 520 MHz range and an extensive package of standard features, offers more capability for $\$ 620^{*}$
 than you're likely to find anywhere. For 250 MHz measurement perfection, the 1911 A multicounter is a best-buy for only $\$ 495$.*
Forlowerfrequency (125 MHz) applications, specify the 1910A for \$395:* The 1900A, years ahead in value, has been reduced to $\$ 345^{*}$ for even more cost-effective 80 MHz measurement.
All models include true ± 1 count for improved resolution, and the 1911A and 1912A have "clean drop-out" implemented on the high frequency inputs. Most models include internal RFI shielding.

Tune In and Count.

Call (800) 426-0361, toll free, for the location of the closest office or for complete technical literature. Then stop in for the great family picture, and review the extensive option list for better TCXOs, data outputs, and more. John Fluke Mfg. Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043.
*U.S. price only.

Now available through your local Fluke distributor:

Unlock the power of today's technology. The Understanding Series. ${ }^{\text {ri }}$ From Texas Instruments.

Self-pac \exists d. Easy-to-understand. Practical Texas Instruments introduces the Understanding Series - a famity of lively, down-to-earth books written for anyone who wants to learn more about today's electronic technology and its impact on our everyday lives. Ideal for individualized learning, this quick and easy approach can put understanding of these latest technological subjects to work for you!

And Texas Instruments makes it even easier with this special offer. Now you can have your choice of any two or more of these books at a reduced price. Buy all four and save $\$ 1.50$. Mail your order form today! (Available for a limited time only.)

Understanding Calculator Math 224 pages, $\$ 3.95$

All the basic information, formulas, facts and mathematical tools you need to unleash the real power of your calculator. At home. On the job. In school or college. It's packed with practical, everyday applications for fast, efficient calculator problem-solving.

Basic Electricity and DC Circuits

 1026 pages, $\$ 19.95$The knowledge you will gain from this book will enable you to predict and control the behavior of the most basic and complex DC circuits. Written in clear precise language, with numerous supportive illustrations and examples. Easy, rewarding and fun.

Understanding Solid-State Electronics

New third edition, 170 pages, $\$ 3.95$ Explains semiconductor behavior and applications, diodes and transistors, uses and trends in integrated circuits. All in a simple, programmed-learning approach that will quickly familiarize you with this broad subject.
Understanding Digital Electronics 265 pages, $\$ 3.95$
An ordinary calculator is the springboard into the fascinating world of today's electronic devices, circuits and systems. Now you can see and easily understand how digital electronics has changed our everyday lives-and how it will affect your future.

We've done the impossible again! A versatile and superior frequency counter kit for only $\mathbf{\$ 8 9 . 9 5}$

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 you get features you once expected to pay several hundreds of dollars for. But you pay only our low, low price of $\$ 89.95$!
Dare to Compare. This frequency counter, using LSI technology, has the performance and input characteristics you demand. Note the specifications: You will see that the frequency range is guaranteed all the way to 100 MHz ; and a high or low input impedance allows you to select for high-frequency operation. And you'll see a sensitivity that holds well over the frequency range; convenient selectable gate-time for best resolution; and selectable attenuation; and even an optional pre-scaler. Note the highly accurate time base, and its excellent ageing and temperature characteristics. And a full 8-digit LED display with floating decimal point, leading zero suppression, and overflow indicator.

You would expect to find all these features together only on a much higher-priced instrument. But Sabtronics' advanced digital technology combines with your own skill - you assemble this kit from our easy-to-follow instructions - to make it possible for you to have this fine frequency counter at a fraction of what you would otherwise expect to pay.

Free 10-day trial
Examine the 8100 Frequency Counter Kit for 10 days. If not completely satisfied, return unassembled for full refund of $\$ 89.95$ purchase price.

13426 Floyd Circle. Dallas. Texas 75243 Telephone 214/783-0994

Brief Specifications

- Frequency Range: 20 Hz to 100 MHz guaranteed (10 Hz to 120 MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to 70 MHz (20 mV typical); 45 mV RMS, 70 MHz to 120 MHz (30 mV typical) - Selectable Impedance: $1 \mathrm{M} \Omega$ at 25 pF , or $50 \Omega \bullet$ Selectable Attenuation: X1, X10, or X100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time-base accuracy - Ageing rate: $\pm 5 \mathrm{ppm} / \mathrm{yr} \bullet$ Temperature stability: $\pm 10 \mathrm{ppm}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$ - Selectable Gate-time: $0.1 \mathrm{sec}, 1 \mathrm{sec}$., or 10 sec. - 8-digit LED display with floating D.P., overflow indication - Input: 9-15 VDC, 350 mA (550 mA with optional prescaler) - Input protection: 150 V RMS, 20 Hz to $10 \mathrm{kHz} ; 30 \mathrm{~V}$ RMS to 2 MHz ; and 3 V RMS to 100 MHz - Optional prescaler extends frequency range to 650 MHz . (Available soon)

13426 Floyd Circle, Dallas, TX 75243
Please send me___Sabtronics Model 8100 Frequency Counter Kit(s) at \$89.95 each \$
Texas Residents add Sales Tax \$
Shipping and handling, $\$ 5.00$ per unit (USA only)*
\$
Payment enclosed \square
Charge my Master Charge \square Visa
Account No. ___E_Exp. Date
Name
Street
City
State \qquad Zip
*Canada $\$ 6.50$. All other countries $\$ 19.00$ Airmail.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

BUILD ONE OF THESE	37	Digital Capacitance Meter 4－digit LED readout gives direct reading of all capacitor values from 1 pF to $9999 \mu \mathrm{~F}$		
	41	Flue Bug Energy saver warns you that the fireplace flue is open after the fire has gone out．		
$\begin{array}{r} \text { GENERAL } \\ \text { ELECTRONICS } \end{array}$	4	Looking Ahead Preview of tomorrow＇s news today．		
	46	Pioneers Of Radio Edison，Hertz and Lodge		
	47	Video Modulators Part II：Capsule reports on every unit that we tested．		
	60	Antique Radios Restore them to＂like－new＇operation－it＇s a cinch．		
	76	Hobby Corner Power supplies and the experimenter．		
COMPUTERS	34	Equipment Report Heath EC－1100 Basic Programming Course		
	74	Computer Corner 8080 －The 8253 programmable interface timer IC．		
	78	State－Of－Solid State TMS 1100 －Microprocessor in a microwave oven．		
$\begin{array}{r} \text { STEREO } \\ \text { HI-FI } \\ \text { PRO SOUND } \end{array}$	44	Pink Noise Testing If you want to set up a graphic equalizer right，this is the technique to use．		
	51	Innovations in Phono Cartridges Design parameters of the Shure V－15 Type IV and how they improve performance．		
	54	R－E Lab Tests RG Dynamics Pro－16 Dynamic Processor		
	55	R－E Lab Tests Leader LAS－5500 Audio Analyzer		
TELEVISION	58	CET Test Practice questions and answers show you what you know．		
	63	Special Report on TV Troubleshooting How to use RF generators to make it a quick \＆easy job． 64 Modern Generators Make It Easy 65 Align \＆Conquer 67 Pattern Diagnosis		
	80	Jack Darr＇s Service Clinic Low－voltage regulators and how to handle them．		
	80	Service Questions R－E＇s Service Editor solves reader problems．		
EQUIPMENT	24	Sencore VA－48 TV－VTR－MATV－VIDEO Analyzer		
REPORTS	26	Chemtronics SD5 Solder／Desolder System		
DEPARTMENTS	128	Advertising Index	101	Market Center
	14	Advertising Sales Offices	12	New \＆Timely
	14	Editorial	86	New Literature
	129	Free Information Card	84	New Products
	16	Letters	83	Next Month
	100	New Books	92	Stereo Products
			98	Computer Products

ON THE COVER

A low－cost build－it－yourself ca－ pacitance meter you＇ll want on your bench．Get all the details． Turn to page 37 now．

Final Assembly of Flue－Bug．Spend a few dol－ lars and save a bundle．Story starts on page 41.

ATV Research Pixe－Plexer．One of many video modulators reviewed in this issue．Turn to page 47.

Radio－Electronics，Published monthly by Gernsback Publications，Inc．， 200 Park Avenue South，New York， NY 10003．Phone：212－777－6400．Second－class postage paid at New York，NY and additional mailing offices． One－year subscription rate：U．S．A．and U．S．possessions， $\$ 9.98$ ，Canada，$\$ 12.98$ ．Other countries，$\$ 14.98$ ．Single copies $\$ 1.00$ ． 1978 by Gernsback Publications，Inc．All rights reserved．Printed in U．S．A．
Subscription Service：Mail all subscription orders， changes，correspondence and Postmaster Notices of undelivered copies（Form 3579）to Radio－Electronics Subscription Service，Box 2520，Boulder，CO 80322.
A stamped self－addressed envelope must accompany all submitted manuscripts and／or artwork or photographs if their return is desired should they be rejected．We disclaim any responsibility for the loss or damage of manuscripts and／or artwork or photographs while in our possession or otherwise．

CB tariff hike: To protect the domestic CB equipment industry from foreign competition, President Carter has ordered import duties increased, following the finding by the U.S. International Trade Commission that American manufacturers were injured, or were likely to be injured, by imports (see Radio-Electronics, May, 1978). Tariffs were increased April 11 from 6% to 21%. After one year, they'll drop to 18%; the next year to 15%, then revert back to 6% after four years.

For ailing American CB manufacturers, the effects should be immediately beneficial. For some of them, actual survival was at stake. (Some, of course, have already gone out of the business; a few have gone into bankruptcy.) For CB buyers, the new duties mean price increases. As soon as the duty-increase order was issued, several manufacturers announced price increases; others are coming, and it's forecast that the general price level will rise 10% to 15%. Since CB prices have been extremely depressed and there is currently an oversupply, many bargains are still available. But the departure of many firms from the field, cutbacks in production hy others-and now the duty increase-should mean that further price increases are in the works. The time to buy seems to be now.
Audio revolution: It's coming one way or another, but not without plenty of dispute and controversy. Trouble is, audio appears to be headed for two completely different revolutions. There's a big dispute as to which one will come first, and whether they're actually complementary or whether one will pre-empt the other. The potential revolutions involve new recording materials and techniques.

For years, the tape and tape equipment industries have been conferring about a potential new type of coating for magnetic tape which uses fine metal alloy particles instead of oxides, with startling improvements. Now 3M has announced it will introduce metal-particle tape cassettes under the name "Metafine" this year. The 3M tape is claimed to deliver maximum output 5 to 10 dB greater than chromium dioxide tapes or double that of standard tapes, with lower distortion and better frequency response. The only trouble is that it will require new equipment for recording, because of differences in bias, erase current and other parameters (it can be played back on standard recorders in the chrome bias position). The 3 M people say the performance is so much better than traditional tapes that tape speed can be reduced by an order of four to achieve about the same performance, or at current speeds open-reel performance can be attained on a cassette recorder.

Tandberg has introduced tape decks which will use Metafine, and 3M says more hardware will be on the market before the year is over and the first Metafine cassettes, in the C90 configuration, will be priced somewhere between high-quality cassettes and open-reel tape, perhaps in the $\$ 10$ range. Following 3M's announcement, Fuji said it would have metal tape as soon as there was equipment on the market which could use it.

Other tape manufacturers, all of which have been developing metal tapes, denounced 3M's move, saying that standards were necessary before such tape could be introduced. BASF, Memorex, Maxell and TDK all indicated that they thought it was unfortunate that 3 M had, in effect,
jumped the gun with its own standard. 3 M , on the other hand, said the exact formulation and characteristics of Metafine had been reached in consultation with recorder manufacturers which will adopt the standard.

The other revolution: Some tape and equipment manufacturers thought that metal tape, revolutionary as it is, would be overtaken by an even more revolutionary devel-opment-digital audio recording. Several manufacturers have shown high-priced pulse code modulation (PCM) digital recorders based on videocassette recorders. Sony, Hitachi, Panasonic, JVC and Mitsubishi all have demonstrated prototype machines, generally quoting potential $\$ 3,000$ to $\$ 4,000$ cost. Some professional studio digital recorders are already on the market. Digital recorder performance is phenomenal-one set of specs quotes 85 dB dynamic range, no wow or flutter and virtually linear frequency response.
Mitsubishi and Philips have already announced development of digital disc recording systems based on optical videodisc techniques. RCA is experimenting with digital audio recordings compatible with its capacitance videodisc system. Matsushita, the Japanese parent of Panasonic and Quasar, has demonstrated a PCM version of its mechanical videodisc which is pressed from standard PVC phonograph record material on standard presses.
Which comes first - metal tape or digital recording-and are they compatible? Nobody will answer the first part of the question, but 3 M and some other tape companies state that metal tape is suited to digital recording. Others insist that conventional oxide is far better for digital recording and they doubt that metal tapes will even work.

CB of the future: A new "deluxe" personal radio service to supplement, and possibly eventually replace, the present CB on 27 MHz , has been proposed in a study by the FCC's Personal Radio Planning Group. The recommendations are advisory only, but give some clue to the FCC's thinking about personal radio. The proposal envisions a new narrowband FM service, in either the 222-224 or $900-\mathrm{MHz}$ areas, designed for microprocessor-equipped transceivers. Among the advanced features seen for equipment operating on the new band are automatic transmitter identification to reduce policing problems, a selective calling system which automatically switches transmitter and receiver to a vacant channel once contact is made on a calling channel, interconnection with telephone service, repeaters to extend calling range.

Although the $900-\mathrm{MHz}$ transceivers probably would cost 20% to 30% more than those in the $222-\mathrm{MHz}$ area, the study said the higher frequency may be more desirable, because in the $222-\mathrm{MHz}$ band amateurs would have to be relocated at a cost to them of perhaps $\$ 24.5$ million in new equipment. The FCC was careful not to be too specific about the future of the $27-\mathrm{MHz}$ band, but it did note that this current band would become less attractive as sunspot activity reaches a peak between 1980 and 1984, and it saw no relief from problems of interference to other services, even if current emission standards are further tightened.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

TUNER SERVICE CORPORATION
ONE YEAR GUARANTEE

FEATURES

- A UHF Tuner with 70 channels which are detented and indicated just like VHF channels.
- A VHF Hi Gain Solid State Tuner.
- AC Powered.
- 90 Day Warranty.

Demonstrate the SUBSTITUNES to your customers and show improved reception with their TV sets.

You may place your order through any of the Centers listed below.
\qquad NOW AVAILABLE-TUNER SERVICE PARTS CATALOG
OF ALL SARKES TARZIAN VHF AND UHF TUNERS, INCLUDING EXPLODED VIEW DRAWINGS. OVER 200 PAGES. ORDER YOUR COPY TODAY. SEND $\$ 2.50$ WITH ORDER TO BLOOMINGTON HEAD OFFICE.

WATCH US GROW

FCC reviews open competition for long-distance phone service

When you make a long-distance phone call today, you are billed for that call along with all local messages and it appears on one bill. And although there are over 1500 phone companies (mainly AT\&T) providing long-distance service all over the U.S., individual communities are served by only one company, this service being called "sole source service."

Now other companies are requesting permission to compete in providing longdistance service. The system would work something like this: You make a call from New York City to Chicago, using a particular long-distance service company at its New York office, which would then relay your call via microwave to its Chicago station. At this point, your call would be hooked into the Chicago phone circuit and become a local call. Your local telephone company then bills you for all local calls, including the one made to the longdistance service company's New York office. You then pay the long-distance service for the Chicago call.

As a result of an earlier U.S. Court of Appeals ruling, the FCC is now enjoined to find whether it is in the public interest to prohibit competition among individual companies in providing long-distance service. Some of the issues that the FCC could address itself to are: will the service result in better service, more innovation and rate reduction? And since the phone company claims that long-distance rates help subsidize local rates in both cities and rural areas, would opening up the field to competition jeopardize such subsidies?

First digital facsimile message service between U.S. and Japan

It is now possible to send an $81 / 2$ - by 11 inch page of copy from the United States to Japan in under 26 seconds, using a digital facsimile service developed by RCA Global Communications, Inc. (RCA Globcom).

The system called Q-Fax was initiated early this year between San Francisco, Washington, DC, New York City and Japan. Using this system, a printed or handwritten message can be sent or received in languages that do not use roman letters (such as Japanese) without translation. First, a facsimile message is written or typed on forms supplied by RCA Globcom or on a regular $81 / 2-$ by 10 -inch sheet of paper, delivered to RCA Globcom's office in San Francisco, using messenger service, a special line leased from the RCA operating center, or by domestic communications carrier working with the Q-Fax service. At the receiving end, in this case Japan, the messages are delivered via messenger or mail service. Copy sent from Japan to the U.S. will be delivered via a domestic net-
work, through the mails, or in San Francisco, Washington and New York, by messenger.

The service operates at 4888 bits-persecond with a 9600 - or 2400 -bit-per-second capability; the charge per page, $\$ 10$.

Speech control unit cuts listening time in half

The first portable speech compressor/ expander, the model A7 Speech Controller, has been developed by the Variable Speech Control Company of San Francisco. The speech controller uses a Variable Speed Control system to record speech up to $2^{1 / 2}$ times faster than normal speech (350 words-per-minute as opposed to an average rate of 100 to 140 words-per-minute). The instrument can also be slowed to 60% of the normal speech rate. There is no accompanying distortion at either high or low levels.

The ultra-high speed helps shorten by half the amount of time needed to tape minutes of meetings, lectures, interviews, etc. Blind or visually handicapped persons can record information as fast as a normal reader. The slow-speed function is helpful in learning a foreign language, in remedial teaching and in absorbing difficult technical data. And, of course, business office dictation and transcription are simplified since the material that is recorded can be speeded up or slowed down to match typing speed.

Standard cassettes are used for both recording and playback modes, and slide controls handle playback speed and volume. Other features include a built-in condenser mike plus a hand-held mike with a remote on-off switch; a three-digit tape counter; a PAUSE switch; cue and review controls; and an earphone jack. The model A7 Speech Controller sells for $\$ 295$.

Children's electronic spelling aid developed by Tl

Spelling B, a handheld electronic learning aid that teaches children from five to 10 how to spell, has been introduced by Texas Instruments. The calculator-based device uses its memory bank of 264 words to teach through word-picture association and games. A colorful picture book accompanies Spelling B.

TEXAS INSTRUMENTS' SPELLING BEE is a calculator-based device that uses games and activities to teach children from six years old up how to spell 264 most-used words. The learning aid comes with illustrated picture book.

Pressing the go pushbutton on the device allows a randomly selected number to be displayed; this number represents one of the 264 words retained in memory. The word describes one of the familiar objects illustrated in the picture book. The child uses the number to discover the matching picture and then presses the Spelling B 's alphabet keys to spell the word. A "Right" or "Wrong" answer is keyed in. The child also has a second chance to spell the word right; if the second try misfires, the correct answer is displayed on the readout. Scores are shown after each set of five games, and the game can be played on three different levels of proficiency.

Spelling B requires one 9 -volt battery, it weighs 14 ounces and measures 6.6×4.6 $\times 1.7$ inches; it sells for a suggested retail price of $\$ 30$.

New expanded VCR line now on market

Jack Sauter, division vice president of marketing for RCA Consumer Electronics, has announced the development of the company's expanded line of SelectaVision video cassette recorders and cameras. The development is attributed to "the market acceptance of 'SelectaVision' and indications that the public is moving towards increasing purchases in this new dimension in television enjoyment."
The new line includes three VCR player/ recorders (one of them in a four-hour programmable format), two black-andwhite cameras and two color cameras. The model VCT400 programmable recorder is designed to allow four recordings at differ-
continued on page 12

The world's biggest parts catalog has the one your customer needs.

The new 1978 Sylvania Master Replacement Guide, complete with supplements, is a gold mine of semiconductors for the entertainment, industrial and commercial markets. No other catalog even comes close to our total of 2,000 devices cross referenced to replace more than 142,000 parts for 139 brand names.

And that's just for openers.
The technical data section has been enlarged and completely updated. You'll find over 500 new devices have been added including

bridge rectifiers, varistors, SCR's and zener diodes.
There's a brand new digital IC section complete with logic diagrams, pinouts, package drawings and descriptions for 340 IC devices.
You can even turn to new sections on linear IC applications and solid state component testing.

Get your copy from your local Sylvania distributor. You may not have to order 142,000 parts. But it's nice to know you could satisfy that many customers.
NRI training inTV and Audio Servicing keeps up with the state of the art. Now you can learn to service video cassette and disc systems.

You build color TV, hi-fi, professional instruments.
Now, in addition to learning color TV and audio systems servicing, you get state-of-the-art lessons in maintaining and repairing video cassette recorders, playbacks and the amazing new video disc players, both mechanical and laser-beam types.

Learn at Home in Your Spare Time

And you learn right at home, at your own convenience, without quitting your job or going to night school. NRI "bite-size" lessons make learning easier...NRI "hands-on" training gives you practical bench experience as you progress. You not only get theory, you actually build and test electronic circuits, a complete audio system, even a color TV.

Build Color TV, 4-Channel Audio

As part of your training in NRI's Master Course in TV and Audio Servicing, you actually assemble and keep NRI's exclusive,
designed-for-learning 25" diagonal color TV. As you build it, you introduce and correct electronic faults, study circuits to gain a better understanding of what they're for and how they interface with others.

Likewise, as part of your audio training, you construct a 4-channel stereo amplifier and tuner, complete with cabinet and speakers. You even assemble professional-grade test instruments, so you know what makes them tick, too. Then you use them in your course, keep them for actual TV and audio servicing work.

NRI Includes the Instruments You Need

You start by building a transistorized volt-ohm meter which you use for basic training in electronic theory. Then you assemble a digital CMOS frequency counter for use with lessons in analog and digital circuitry, FM principles. You also get an integrated circuit TV pattern generator, and an advanced design solid-state 5 " trig-gered-sweep oscilloscope. Use them for learning, then use them for earning.

NRI Training Works... Choice of the Pros

More than 60 years and a million students later, NRI is still first choice in home study schools. A national survey of successful TV repairmen shows that more than half have had home study training, and among

new B Limely

continued from page 6

ent times, channels and even days of the week. It features varactor tuning and electronic program indexing that allows faster access to each program on a two-hour or four-hour cassette and carries an optional retail price of $\$ 1200$. A deluxe recorder, the model VCT201, contains six IC's; it has an electronic timer to preset the time and channel for both beginning and end of unattended recording. It has an optional retail price of $\$ 1075$. The model VCT200 recorder has been redesigned with improved circuitry to provide a sharper picture and carries an optional price tag of $\$ 1000$.

The model BW003 black-and-white camera (\$299.95) has a pop-up viewfinder, 16mm lens, built-in mike, redesigned power supply and a new AC outlet. The model BW004 camera (\$399.95) has a zoom lens for wide-angled shots and closeups with three power magnifications; the built-in viewfinder comes with a tally light and is calibrated for proper picture composition.

The first RCA color cameras for use with the VCR's are the model CC001 and model CC002, the latter camera features a professional grade zoom lens and electronic viewfinder.

Boris, the talking chess computer, teaches and plays the game

While there are already a few chess computers on the market, Chafitz, Inc., of Rockville, MD, has designed the first randomly programmed "talking" computer that can both teach and play a good game. They have named the computer Boris.

In the words of Steve Chafitz, company president, "Boris is the result of major advances in integrated-circuit technology." Until now computer chess games have required large commercial devices for high-level games; now it is possible to perform those games on postage-stampsized microprocessors.

Here are some of Boris' capabilities: It can play against opponents at all skill levels-from the rank amateur to the most advanced chess master. It can teach elements of the game; any player unsure of a move can ask the machine what to do next. You can also change places with the computer in the game and learn how to overcome sticky chess situations. Boris also is programmed to comment on the play, being given to such remarks as "illegal move," "congratulations," "I expected that" and even "good move!"

The position programming allows the human opponent to set up any board position to play specific strategies. Each chess piece rank is displayed electronically so that you can keep track of each piece at all times. Boris will solve all "mate-in-two" problems, and no player has to play the same game twice, due to the computer's
random programming. Priced at $\$ 299.95$, Boris comes in a walnut case complete with chessboard and a set of chess pieces. It is expected to be marketed via department and specialty stores.

Four-hour VCR's marketed in Europe

A four-hour videocassette recorder has been developed by Grundig AG (Germany) for the European market (with a five-hour cassette on the way). The Grundig model SVR4004 VCR will also be sold under license in the United Kingdom:

The Grundig device closely follows the European debut of Philips' three-hour cassettes and Sony's $31 / 3$-hour Betamax recorder. Priced at $\$ 1400$, the Grundig VCR features infrared remote drive control, automatic station search, plus programmable channel selection and timing capability of up to 10 days in advance. The four-hour cassette, using 570-meter-long, $16-\mathrm{mi}-$ crometer thick tape, is expected to retail for about $\$ 33$ in Germany.

Digital voice protection system safeguards public-safety communications channels

Motorola Communications and Electronics, Inc., has developed a system that effectively prevents unauthorized eavesdropping on public safety communications channels such as those used by lawenforcement agencies, fire departments and the like. The system is called the Digital Voice Protection (DVP) System and can be incorporated in portable and mobile units,
base stations, repeaters, control stations, total area coverage (TAC) stations, consoles and microwave systems.

No actual voice components are used; the signals sound like random noise emissions. A dual technique translates these random signals into clearly understood messages: Regular speech is converted to digital speech via continuously-variableslope delta (CVSD) modulation. It is then scrambled using a vast amount of unrelated codes, each of which can be loaded into a DVP radio's memory using a code inserter that cannot be activated for visual recall. This insures that the DVP system is accessible to just a few persons.

The system features a narrow RF channel bandwidth. It operates with $25-\mathrm{kHz}$ channel spacing in the UHF band or a $30-\mathrm{kHz}$ spacing in the VHF band. A code-detect feature squelches the speaker system if an incoming code does not match that stored in the receiver's memory. A dual-code detect option allows you to add a second code for special messages.

The DVP system offers dual-mode operation; that is, messages can be sent "in clear' as well as digitally. This makes the system adaptable to existing communications networks on existing channels. As additional protection is needed, the DVP portion of the system can be expanded.

An FCC license is mandatory before the system can become fully operational. Further information can be obtained from Barbara Bennett, Motorola Communications and Electronics, Inc., 2122 North Palmer Drive, Schaumburg, IL 60195.

R-E

MOTOROLA DVP SYSTEM PROVIDES HIGH-LEVEL VOICE SECURITY FOR public safety communications channels. The system can be integrated into portable, mobile and base-station radios, as well as in total area coverage (TAC) stations and microwave systems.

The function of this function generator is to make your job easier.

B\&K-PRECISION
Model $3010 \$ 175$

If you stop and think about it, the function of any generator should be to make your job easier. When we at Dynascan designed our new Model 3010 function generator, that's exactly what we had in mind.

How did we achieve this? The 3010 was designed inside and out to be convenient and fast to use, and to provide years of trouble-free operation.

The 3010 generates all of the popular waveforms you're most likely to need, at only $\$ 175$. In addition to generating square, sine and triangle wave outputs, the unit offers a fixed TTL square-wave output. Sine-wave distortion is less than 1% and triangle-wave linearity and square-wave symmetry are a near perfect 99%. A convenient row of reliable pushbuttons provides fast, error-free selection of the appropriate range and output waveform.

The stable voltage-controlled oscillator (VCO) of the 3010 is varied on each range by the front-panel frequency control, or the VCO external input. A 0 to 5.5 volt ramp applied to the VCO external input will provide a 100:1 output frequency change. In this way, the 3010 can be used as a sweep generator for response tests. Other features that will help your job run smoothly include: . 05% stability, a variable DC offset control for engineering and quality control applications, a convenient tilt-stand handle, and a detailed 38 -page operations manual.

Because the B\&K-PRECISION Model 3010 covers from 0.1 Hz to 1 MHz in six ranges, you'll probably be able to use it in more applications than you first guessed. These include IF response tests, test-instrument linearity measurements, transducer tests and digital clock-pulse substitution.

For a chance to have your day run a little smoother, contact your local E\&K-PRECISION distributor for immediate delivery or a demonstration.

editarial

The Best Is Yet To Come!

It's a marvelous world of electronics that we live in. We've got TV sets with 7 -foot screens, video tape recorders, CB radios, digital wristwatch-calculators, TV games, computers, light dimmers, smoke alarms, burglar alarms, garage-door openers I guess I could go on for pages. But that's what we have now, today, in our hands. And that's only the beginning.

In 1908 when this company started publishing magazines about electronics-our first publication was called Modern Electrics-the word "electronics" had not yet been coined. And about the most electronic device around was the DeForest audion-a diode with a third element - a control grid. Little did we know where we would be only a few short years later.

Today in 1978 we are surrounded by electronic devices. If you took them away, many of us might consider that we had been pushed back into the dark ages. But what about tomorrow? What will the new electronics devices be? Will they even be electronics?

We recently asked the readers of this magazine on our Free Information card to tell us what they thought the next breakthrough in consumer electronics would be. Out of thousands of responses not one reader mentioned any device not in current use. But here are some that we have come up with. Some of our ideas border on science fiction, yet man on the moon, television, and satellite communication were science fiction only a few short years ago. Here goes . . .

1. Total communications system and computer terminal on your wrist.
2. Direct electronic learning machines. Couple brain to recorder. Play the tape (hologram) and you know the subject.
3. Direct-couple TV camera to brain, restoring vision to the blind.
4. Electronic anti-gravity (I know that gravity is not an electronic field and therefore cannot be countered, directly, by an electronic signal. But maybe there's an electronic field that can shield physical objects from the effects of gravity).

There's four items to consider. Please don't devote any effort toward proving them unworkable; many experts have proven that airplanes won't fly and that the world is flat. Do send me your look at future electronic devices and if you've built something special, tell me about it too. We'll publish the great ideas and your name. Think up the impossible and send it to me. Do it quickly or by the time the post office delivers your idea, it may have already been built.

Radio-Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor

Sonia Greenbaum, copy editor
Jack Darr, CET service editor

Leonard Feldman

contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Mel Small
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing
EAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.

Ralph Bergen
The Raiph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.,

8732 Sunset Blvd.,
4th Floor,
Los Angeles, CA 90069
(2 13) 659-38 10
Sales Mart Bullding
1485 Bayshore Blvd., Box 140
San Francisco. CA 94124
(415) 467-0 125

SOUTHEAST
J.E. Publishers Representative Co., 214-387-2424

Choice of Professionals for Over 40 Years！

－Fast accurate measurements on 27 popular ranges
－Rugged taut－band varistor－protected movement
－Optional 5 KV probe

COMPLETE LINE OF PROBES，LEADS，CARRYING CASES AND OTHER ACCESSORIES AVAILABLE
SEE THEM AT YOUR LOCAL SIMPSON DISTRIBUTOR
－External access battery and fuse compartment
－Multi－purpose color－coded test leads with combination and screw－on alligator clips

260－6 VOM — $\$ 87.50$
260－6M with mirror scale－$\$ 91.00$
260－6P overload protected－$\$ 131.00$
260－6PM overload protected with
mirror scale－$\$ 134.50$
260－6RT in roll top case－$\$ 98.50$
260－6PRT overload protected in
roll top case－$\$ 142.00$
260－6MRT with mirror scale in
roll top case－$\$ 102.00$
260－6XL with extra ranges and features－ $\mathbf{\$ 1 0 2 . 5 0}$
260－6XLM with mirror scale－$\$ 106.00$
260－6XLP overload protected－$\$ 141.00$
260－6XLPM overload protected with
mirror scale－\＄144．50

PINK NOISE/GRAPHIC EQUALIZER
The pink-noise tester described in the January 1978 issue ("Pink Noise Generator Tests Your Hi-Fi," page 43) will not test the equalizer described in my article, "Graphic Equalizer For Your Stereo System,'" in the May 1978 issue, page 37. However, it is an excellent testing tool.
The pink-noise article suggests shorting out the filter section; this produces a phase-shift oscillator.

Furthermore, with the given topology on the equalizer described in the May 1978 issue, turning off the filter (e.g., installing a switch in series with R_{10}) will cause that band to be flat, not attenuated.

Other errors I have observed:

1. Figure $1-\mathrm{c}$-the switch arm is misdrawn.
2. Figure 2 -the values of +12 dB and -12 dB are reversed.
3. The equalizers of Fig. 1 are not true graphic equalizers-they have ripples in their frequency response of typically 3-dB

continued on page 22

Pulse and function generators for today's digital world

Function generator WR-550A $\$ 139.00$

Here are two new digital wave-form generators for today's logic designers and digital troubleshooters.

They're ideal for teaching, experimenting, or servicing digital-address TV tuners, binary digital instruments, digital clocks, small computers, calculators, TV games... practically anything digital.

- Pulse width adjustable from 100 nsec to 0.1 sec within $5 \mathrm{~Hz}-5 \mathrm{MHz}$ range
- Output voltage adjustable from $0-15 \mathrm{~V}$ at $600 \Omega, 0-6 \mathrm{~V}$ at 50Ω
- On and off time independently adjustable
- Sine, sawtooth, and square-wave output 1 Hz to 1 MHz
- 4Vpp fixed-output for TTL and CMOS
- 10-V adjustable dc offset plus sweep
- Peak-to-peak output 0-20V at 600Ω

See them at your VIZ distributor. 6642
 335 E. Price St., Phila., PA 19144

A SS COMPETITIUE SUSTEM

YOU CAN OWN A VERSATILE 6800 COMPUTER SYSTEMFOR AS LITTLE AS \$799.50!
MP-68/ 1 Computer Kit \$395.00
CT-64 Terminal Kit (less monitor) \$325.00
AC-30 Cassette Interface Kit. \$ 79.50

You can add a 40 -column printer and a professional quality data terminal monitor for only $\$ 460.00$
PR-40 Printer Kit
$\$ 250.00$
MP-L Interface Kit . \$ 35.00
CT-VM Data Terminal Monitor \$175.00

You can expand to a full-scale personal computer system with dual disk drives for only $\$ 1,445.00$
MF-68 Dual Disk System Kit. $\$ 995.00$
MP-16 16K Memory (assembled)
$\$ 450.00$
. . . OR buy the complete system at our special low price of $\$ 2,595.00$

YOU GET: * A 20 K byte computer	- A true "stand alone" data terminal
and monitor	

These are the same proven, reliable components used in our industrial and business systems. Why settle for the limitations of a so-called "personal computer" or hobby system?

If you're interested in learning how to fix aire conditioners, service cars or install heating systems-talk to some other school. But if you're serious abont electronics, come to CIE-The Electronies Specialists.

My father always told me that there were certain advan－ tages to putting all your eggs in one basket．＂John，＂he said，＂learn to do one important thing better than anyone else，and you＇ll always be in demand．＂

I believe he was right．Today is the age of specialization．And I think that＇s a very good thing．

Consider doctors．You wouldn＇t expect your family doctor to perform open heart surgery or your dentist to set a broken bone，either．Would you？

For these things，you＇d want a specialist．And you＇d trust him．Be－ cause you＇d know if he weren＇t any good，he＇d be out of business．
Why trust your education and career finture to anything less than a speciallist？

You shouldn＇t．And you certainly don＇t have to．

FACT：CIE is the largest inde－ pendent home study school in the world that specializes exclusively in electronics．

We have to be good at it because we put all our eggs in one basket： electronics．If we hadn＇t done a good job，we＇d have closed our doors long ago．

Specialists aren＇t for everyone．

I＇ll tell it to you straight．If you think electronics would make a nice hobby，check with other schools．

But if you think you have the cool－and want the training it takes －to make sure that a sound blackout during a prime time TV show will be corrected in seconds－then answer this ad．You＇ll probably find CIE has a course that＇s just right for you！

At CIE，we combine theory and practice．You learin the best of both．

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transis－ tors．Electronics is interesting be－ cause it＇s based on some fairly recent scientific discoveries．It＇s built on ideas．So，look for a program that starts with ideas－and builds on them．

That＇s what happens with CIE＇s Auto－Programmed ${ }^{\circledR}$ Lessons．Each lesson uses world－famous ＂programmed learning＂methods to teach you important principles．You explore them，master them com－ pletely ．．before you start to apply them！

But beyond theory，some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking， testing and analyzing projects．

In fact，depending on the course you take，you＇ll do most of the basic things professionals do every day－ things like servicing a beauty of a Zenith color TV set．．．or studying a variety of screen display patterns with the help of a color bar generator．

Plus there＇s a professional quality oscilloscope you build and use to ＂see＂and＂read＂the characteristic waveform patterns of electronic equipment．

You work with experi－ enced specialists．

When you send us a completed lesson，you can be sure it will be reviewed and graded by a trained electronics instructor，backed by a team of technical specialists．If you need specialized help，you get it fast
．in writing from the faculty spe－ cialists best qualified to handle your question．

People who have known us a long time，think of us as the＂FCC License School．＂

We don＇t mind．We have a fine record of preparing people to take．．． and pass．．．the government－ administered FCC License exams． In fact，in continuing surveys nearly 4 out of 5 of our graduates who take
the exams get the ir Licenses．You may already know that an FCC
License is needed for some careers in electronics－and it can be a valuable credential anytime．

Find out more：Mail this card for your FREE CATALDG today：

If the card is gone，cut out and mail the coupon．

I＇ll send you a copy of CIE＇s FREE school catalog，along with a complete package of independent home study information．

For your convenience，I＇ll try to arrange for a CIE representative to contact you to answer any questions you may have．

Remember，if you are serious about learning electronics．．．or building upon your present skills， your best bet is to go with the elec－ tronics specialists－CIE．Mail the card or coupon today or write CIE （and mention the name and date of this magazine）， 1776 East 17th Street，Cleveland，Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated．

LETTERS

continued from page 16

P-P at a flat setting. To my knowledge there are no consumer versions of this type equalizer available. Furthermore, the circuit of Fig. 1-b seems to be copied from the National Audio Handbook and that circuit also oscillates.

The diagram shows a graphic equalizer/ noise tester system. In this diagram, switch S1 can be replaced with a test probe, capacitor C1 only prevents clicks. Resistor R1 and diode D1 can be replaced by a battery, and switch $S 2$ can be replaced by reconnecting patch cords. The pink-noise generator is available from West Side Electronics, Box 636, Chatsworth, CA 91311,
for $\$ 9.95$ postpaid; the graphic equalizer is available from Synergistic Sound Systems, 1608 S. Douglas Avenue, Loveland, CO 80537 , for $\$ 90$ postpaid.

To adjust the equalizer, turn switch S2 to "Test Left." Adjust the right-hand channel controls until the output of your system is independent of the position of S 1 (adjust the bottom right-hand band with S1 connected to the bottom left-hand band, etc.). Adjust the left-hand channel slide potentiometers to be the same as the right-hand channel. Change switch S2 to "Test Right."
Repeat the adjustments to the right-hand channel. Simple! There's plenty of room inside and on the rear panel of the equalizer to mount the pink-noise generator and switches. JOE GORIN

TELEPHONE ACCESSORY

The Autodialer and Cassette Interface featured in the May 1978 issue seems to be designed on the assumption that burglars are polite. But I doubt that the typical burglar is going to stop to close a window or back door after gaining access.
If S1 in Fig. 1 (see May, 1978, page 41) is not reclosed, the SCR will refire itself immediately after every one of the infrequent pulses from the unijunction transistor.

Furthermore, an appreciable "open" period on a phone line is required to disconnect it at the exchange. A mere flick of relay RY1-3, even if attained, will probably not do the trick. So what you have is what the phone company calls a "calling party hold." It will tie up the line indefinitely.
WARNER CLEMENTS
Beverly Hills, CA
Mr. Clements is correct for all but the momentary break switches. My application was on automatically closing doors in which this problem never showed up. On a later use of the circuit, however, this did indeed prove to be a problem, and was

remedied by replacing capacitor C1 with a 100,000-ohm resistor and placing a 1000pF capacitor in series with the gate lead of the SCR between the diode and the 100K resistor as shown above.
JULES GILDER

COSMAC-1802 GROUP

I am sure that many of your readers would be happy to know that we are forming a COSMAC-1802 User's Group, that will include Basic Elf, Elf-2, Super-Elf, VIP, Infinite, etc.

The purpose of the group will be to correspond and exchange software and ideas, plus we will possibly publish a newsletter. Membership is free. Anyone who is interested should write to: Patrick Kelly, P.O Box 7162, Los Angeles, CA 90022.
PATRICK KELLY
Los Angeles, CA

HELP WANTED-TECHNICIANS

We would like to hire THREE top-quality, experienced, licensed (FCC First or Sec-ond-Class) two-way radio, industrial (no CB work), radio-repair service technicians!

We offer a large modern shop, a fleet of completely equipped field service vans, EXCELLENT salary, bonus, medical and dental plans, plus help in relocating to our area. We are a well-established central California firm.

We can't find technicians-and we aren't the only ones in this boat! This is a growing industry and we need some help!
A.A. TAYLOR
P.O. Box 4564

Modesto, CA 95352

THE BST VaLue IN oscliloscopis COMES IN WANT MODELS.

When you choose a Gould oscilloscope - regardless of the model - you get reliability, versatile performance and a modest price tag. All of which adds up to true value. Over the years, Gould has earned a well-deserved

Gould OS 245A

- DC to 10 MHz
- Dual trace
- 4 inch CRT
- $5 \mathrm{mV} / \mathrm{div}$ sensitivity
- Only 11 pounds

Circle No. 76

Gould OS 260

- DC to 15 MHz
- True dual beam
- High brightness CRT
- $2 \mathrm{mV} / \mathrm{div}$ sensitivity
- Single Sweep
- Switched $X-Y Y$

Circle No. 77
reputation for building reliable instruments. Prompt, efficient service is available through a worldwide network of service centers. And all Gould oscilloscopes carry a full two-year warranty covering all parts and labor exclusive of fuses, calibration and minor maintenance. Look to Gould for your best value in oscilloscopes.

For more information contact Gould, Instruments Division, 3631 Perkins Ave.,

Gould OS 1100

- DC to 30 MHz
- Dual trace
- $1 \mathrm{mV} / \mathrm{div}$ sensitivity
- Delayed timebase
- Channel Sum and Difference Circle No. 78

Cleveland, OH 44114. In
Europe contact Gould
Instruments, Roebuck Rd., Hainault, Essex, CBIO IEJ England.

For brochure call toll-free (800) 325-6400, Ext. 77. In Missouri: (800) 342-6600.

* GOULD

Gould OS 3300 B

- DC to 50 MHz
- Dual trace
- Two independent timebases
- Mixed sweep
- $1 \mathrm{mV} / \mathrm{div}$ sensitivity
- Channel Sum and Difference

Circle No. 79

Gould OS 4000

- DC to 10 MHz - dual tracedigital storage (RAM)-no deterioration of stored trace - pre-trigger viewingoutput to analog and digital recorders-simultaneous stored and real time viewing.
Circle No. 80

equipment reparts

Sencore Model VA-48 TV-VTR-MATV-Video Analyzer

CIRCLE IOT ON FREE INFORMATION CARD
SENCORE, INC. (3200 SENCORE DRIVE, SIOUX Falls, SD 57107) has produced a new analyzer, the model V.A-48 TV-MATV-VTR..Video Analyzer. Since lack of space will keep me from discussing all its nany features, I'll just cover the most interesting and important details.

The model V/A-48 generates RF/IF and
video signals. It generates all the standard color-bar, dot, crosshatch, single-dot and sin-gle-cross patterns, plus two other unusual ones that we'll discuss later on. It can develop these signals at RF, on all VHF and on six UHF channels (four channels are fixed, two are tunable). It has an IF output for use as a tuner substitute, and two more outputs for injecting signals at higher levels into the second and third video intermediate frequency stages. A switchable $4.5-\mathrm{MHz}$ crystal can be used for tuning. In the IF signal stage, the three most important trap frequencies and a sound IF are provided.

On the other side of the panel, a DRIVE SIGNAL selector switch can deliver drive signals for vertical and horizontal-output stages, for either tube or transistor stages; horizontal drive pulses for SCR (Silicon-Controlled Rectifier) horizontal-output stages; two vertical and horizontal composite sync signals, one designed for tubes, the other for transistors; a horizontal keying pulse, a $1000-\mathrm{Hz}$ audio signal; and a $3.58-\mathrm{MHz}$ oscillator signal. The last position of the control lets you inject any of the
video patterns as a video signal. The video output is also fed to the VTR standard jack; this is a fixed 1.0 -volt $\mathrm{P}-\mathrm{P}$ signal, with nega-tive-going sync. The DRIVE Level control handles the output level and polarity of all other signals. A P-P voltmeter on the panel reads the amplitude of any drive signal, from 10 volts up to 1000 volts. Two special scales are used for peaking and nulling.

The model VA-48 also has a RINGING TEST circuit that was developed by Sencore for testing flybacks and yokes; the same meter is used as an indicator. The meter can also be used as an external meter for signal tracing; there is an input jack just below it.

On the bottom of the panel to the left are a bIas-b+ sub control plus jacks. This can be used for DC biasing or as a DC power supply for modules and circuits that do not need more than 1.0 amp . The voltage is adjustable from 0 to 35 .

There are only three output cables (one is a common). The RF/IF signals originate from a BNC jack and shielded cable with screw-on continued on page 26

RCA Receiving Tubes Mean Business!

You can get all the receiving tubes you need from your RCA Distributor Miniatures, Nowars, Compactrons, Nuvistors, Glass tubes, Metal tubes Over 1000 types, produced to RCA's exacting standards.
Plus many RCA service aids and business aids to add to your efficiency and promote your business . . . Cad-
dies, service tools, technical literature and a wide assortment of in-store signs and displays
Now you can deal yourself some gifts with RCA's Top Deal. This RCA receiving tube carton top saving awards program runs through November 30 , 1978. It is your reward for buying RCA receiving tubes.

See your RCA Distributor for all your tube needs and ask for an RCA Top Deal Prize Book.
RCA Distributor and Special Products Division, Deptford, N.J. 08096.
An Extraordinary Offer to introduce vou to the benefits of Membership in EEECTRONICS BOOK CLUB take 2 of these 22 unique any electronics books （values to＇ $47{ }^{\text {ses }}$ ，for only 49 with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

CIRCLE 69 ON FREE INFORMATION CARD

EQUIPMENT REPORTS
continued from page 24

baluns and adapters for connection to any RF or IF circuit. The drive signals have a coax cable with clips. Cables are provided for the meter input, and the VTR (Video Tape Recorder) output jack and cable has a phono plug that matches all standard VTR inputs. All these cables fit into a compartment on the back of the case.
The RF/IF signals can be adjusted from 100 $\mu \mathrm{V}$ to $5000 \mu \mathrm{~V}$. The control is marked from 0 to 5 ; the point marked " 1 " means $1000 \mu \mathrm{~V}$, a standard level for CATV/MATV systems. In the tuner sub position of the rf/if signal selector switch, full output is used; there are two more selector settings for checking the second and third IF's for stage-by-stage signal injection. All the output signals of the model VA-48 are phase-locked to the crystal-controlled RF/IF signals; this includes the RF/ $\mathrm{IF} /$ video signals and even the drive signals. No matter what signal is used, it will show a stable pattern.

Now here are the goodies: There is a 3.58 MHz oscillator drive signal on the drive signal control. This signal can substitute for the oscillator in the TV set; its amplitude is adjustable. Reversing the polarity of this produces a 3.58 MHz signal with a 90° phase shift. All video patterns can be used for signal-tracing video stages, even up to the picture-tube input.

The feature that really got me all excited was one providing two sweep patterns; one is called Bar Sweep and the other, Chroma Bar Sweep. These modes are patented by Sencore, and with them, you can actually align the IF stages of a TV set by feeding the RF output into either the tuner test point, antenna or IF input. You can view the output at the video detector using a scope, or just by looking at the TV screen! The bar sweep signal consists of numerous bursts of different frequencies for checking the IF response at these points. This is a practical and usable version of the multiburst signal used in VITS (Vertical Interval Test Signal).
The carrier is modulated with the different frequencies. The first frequency (at the left of the scope or TV screen) is a staircase pattern forming black, grey and white bars, then a white bar (the white flag in VITS) at the right. Between these bars is a set of five video frequencies: $188 \mathrm{kHz}, 755 \mathrm{kHz}, 1.51 \mathrm{MHz}$, 3.02 MHz and 3.56 MHz . By the way, these frequencies are not sinewaves but carefully clipped and regulated squarewaves! If your scope has a very wide bandpass, you can see this squarewave pattern. All these frequencies are plainly marked on the panel, and each one can be switched in or out. The panel also shows the patterns that appear on the TV screen and the scope patterns at the detector output.
To check the IF alignment (one of the most useful tests because it tells you whether it does need alignment or whether the trouble lies somewhere else) you just feed the signal into the RF input and look at the output. No bias boxes, disabling horizontal output, etc., are needed. For example, if the low-frequency bar at the left is sharp, you know that the lowfrequency response is OK. If the $3.56-\mathrm{MHz}$ bar on the right is blurred or even missing, this tells you the high-frequency response of the IF is off; the scope pattern should show all the bars at the same amplitude. The IF touchup control makes them like this if there is no problem in the IF. The 40 -page operator's
manual for the model VA-48 includes some quick tests for determining the amplitude of the bars without using a scope. All you do is adjust the brightness control.

For color-bandpass alignment, a different set of three bars is used- $3.08 \mathrm{MHz}, 3.56$ MHz and 4.08 MHz -whose amplitude is different from that of the others (it must be in order to get the correct output). This signal can be used as RF/IF modulation or as a video signal. The P-P value of the input signals is regulated so that the output shows a pattern similar to the Bar Sweep-three bars of equal amplitude. On the TV screen, the middle bar is blue; the outside bars have no color but will show small stationary rainbows. Again, the frequencies of the bars, the screen pattern and the scope patterns are shown on the model VA-48 panel. These frequencies can also be switched in or out. The same brightnesscontrol test can be used here; just turn the control down and see which bar goes out first.

The usefulness of this instrument is limited only by the ingenuity of the user. By providing the best test for any stage's performance (injecting a known good signal and checking the output) you can pinpoint a great many troubles in a very short time. The instruction manual contains a great many tests with diagrams, control settings and all. All you need for checking any color TV set is the model $V A-48$, a good digital meter and a scope.

You can use the model VA-80 for quicktesting video tape recorders/players. You test tape recorders by feeding in any video signal, (such as the two bar sweeps) record them and then play them back. Players can be tested by injecting the video signals and tracing them through the circuitry. Any kind of problem will show up under these tests.
The model VA-48 is not a low-cost instrument (it costs $\$ 975$), but it can be an inexpensive one if it is used properly, since it should pay for itself in a short time in decreased servicing time.

R-E

Chemtronics Model SD5 Solder/Desolder System

UNSOLDERING COMPONENTS ON PC BOARDS has been a source of conversation and argument for some time. It is as important as soldering and difficult to do correctly. It's hard to get a multilegged component out with the old "melt and jerk" system! The solder-wick technique, in which a woven copper braid absorbs the molten solder, has always been popular. However, there are minor drawbacks. (I always manage to burn my finger by holding it too close to the end!) And if you hold the wick too far back, it could be a bit too limp.
Now, Chemtronics has developed a new alternative-the model SD5 Solder/Desolder System. This system solves one of the main problems-trying to use the wick in a small coil. (I always kept mine on the floor under the bench along with the solder, also coiled.) The model SD5 System has a tiny reel with a $2.5-$ inch Teflon probe in the end. You pull the wick up through this probe and out as far as you want. You can hold the reel in the palm of your hand and apply the wick right to the desired place. (Hint: Don't pull out more than about one-half inch of the wick; this gives you better control over it.) This unit is called the model D5 Desoldering Tool. Despite the small size of the reel, it holds 5 feet of wick that
continued on page 32

NEBS SERVICE ORDER FORMS

＂carbonless＂

SALES SLIP

and Portable Register

Speeds sales handling－provides clean，clear copies without carbons to insert，position or throw away．
Simplifies your paperwork－this one form serves as：Sales Slip，Charge Slip，Cash Receipt，Invoice，Service Order，etc．
Saves steps－have Portable Registers in several locations，on counter，by phone，in truck，etc．Cuts down customer waiting time．
Helps you collect your money－Promissory Note printed on back of all copies．Have doubtful accounts sign．

PORTABLE REGISTER

Compact，lightweight，easy－to－operate．Holds up to 75 ＂carbonless＂Register Forms in duplicate or trip－ licate．Durable，virtually unbreakable ．．．made of silver－gray，high－impact Cycolac ${ }^{*}$ plastic．Used copies can be stored in back of register．
\＃925－For $51 / 2 " \times 81 / 2$＂＂carbonless＂Register Forms Each．

SERIES 610 SALES SLIP REGISTER FORM－Size $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ ．Designed for use in NEBS Registers \＃ 925 and \＃927 or other Portable Registers for $51 / 2^{\prime \prime} \times 81 / 2^{\prime \prime}$ forms with two． $3 / 32^{\prime \prime}$ dia．round holes， $23 / 4^{\prime \prime}$ center－to－ center．Duplicate sets have white original，canary center．Duplicate sets have white original，canary
copy．Triplicate sets are white，canary and pink． Prices include your heading printed in blue ink and consecutive numbering（please specify）

DUPLICATE 610－2	TRIPLICATE 610－3		
20.000	$\$ 230.00$	20.000	$\$ 365.00$
10.000	139.00	10,000	225.00
6.000	98.00	6.000	149.00
4.000	77.50	4.000	108.00
2.000	42.50	2.000	59.50
1.000	24.95	1,000	34.95
500	15.95	500	21.50
250	10.95	250	14.50

Prices for forms do not include Portable Register．

Save time and money with this 4 in 1 INVOICE－REPAIR TAG

PERMANENT OFFICE

RECORD－A carbon copy of all entries on customer invoice．．．saves recopying．

CLAIM CHECK－Printed with your heading and numbered consecutively．

COMPLETE JOB

RECORD－Tag remains tied to article－space to list parts and labor．

CUSTOMER INVOICE－

Printed with your heading and numbered consecutively．

Provides quick，easy identification of work left for service－all parts consecutively numbered
Tags are pre－strung with extra long looped string－permits fast，secure attachment to merchandise
Saves money－this one form serves as：Service Order，Claim serves as：Service Order，Claim Job Record，Office Record

MONEY－BACK GUARANTEE
If for any reason you are not satis fied，your money will be promptly refunded

SINGLE TAG（\＃301－1）Heavy manila tag（no copies）．DUPLICATE TAG（\＃300－2） White bond，heavy yellow tag．Carbons pasted in．TRIPLICATE TAG（\＃303－3） White \＆canary bond，heavy salmon tag．Carbons pasted in．All sizes $31 / 9^{\prime \prime} \times 9$ overall．Prices include：Firm name and address printed in red ink in two locations consecutive numbering on all parts．（Note：Tags are pre－numbered，no specific consecutive numbering on
starting numbers possible．）

NAME AND ADDRESS TO BE PRINTED ON ITEMS（Please print or type）

STREET

PHONE

BILL AND SHIP TO（If different from above）

| AUTHORIZED SIGNATURE | PHONE NUMBER |
| :--- | :--- | :--- |

New England Business Service，Inc Townsend．Massachusetts 01470

Advanced Electronic Career

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

> Now you can learn at home the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New
 Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming. and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming
 Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction. circuit operation and behavior. characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical
 Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate for the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

> Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

CREI Introduces Program 680: MUNICONPUTER $\&$ MICROPROCESSOR TECHMOLOEY

Mail card or write describing qualifications to

Gl Bill
CREI programs are approved for training of veterans and servicemen thater the (s.l. Bill.

- Where should you start in your search for better sound?

A At the beginning. With a new Audio-Technica Dual Magnet"' stereo phono cartridge.

Our AT12XE, for instance. Tracking smoothly at 1 to 1-3/4 grams, depending on your record player. Delivers smooth, peak-free response from 15 Hz to $28,000 \mathrm{~Hz}$ (better than most speakers available). With a minimum 24 dB of honest stereo separation at important mid frequencies, and 18 dB minimum separation even at the standard high-frequency 10 kHz test point. At just $\$ 65$ suggested list price, it's an outstanding value in these days of inflated prices.

Audio-Technica cartridges have been widely-acclaimed for their great sound, and
 for good reason. Our unique, patented* Dual Magnet construction provides a separate magnetic system for each stereo channel. A concept that insures excellent stereo separation, while lowering magnet mass. And the AT12XE features a tiny 0.3×0.7-mil nude-mounted elliptical diamond stylus on a thin-wall cantilever to further reduce moving mass where it counts. Each cartridge is individually assembled and tested to meet or exceed our rigid performance standards. As a result, the AT12XE is one of the great bargains of modern technology ... and a significant head start toward more beautiful sound. Listen carefully at your
Audio-Technica
CANTINALELER
*U.S. Pat. Nos. 3,720,796 and 3,761,647

NUDE-MOUNTED $0.3 \times 0.7-\mathrm{MiL}$ ELLIPTICAL STYLUS - ${ }^{0}$ dealer's today.
comes in 0.1 -inch and 0.06 -inch sizes for very fine work. There are refills available; you just pull out the Teflon probe and insert it in the refill.

The model D5 Desoldering Tool plugs right into the end of a spool of Chemıronics solder! The Teffon probe can be pushed back down inside the spool for convenience, for use in tool kits, etc. The SD5 Solder/Desolder System lets you keep the solder and wick right under your hand for instant use. The $60 / 40$ solder (with a pure water-white rosin flux core) is

CIRCLE 102 ON FREE INFORMATION CARD

available in 1 -pound and $1 / 2$-pound spools
The wick is not tinned; this allows much faster solder absorption. The 0.1 -inch size is just right for most work. If you run into a very tight place, you can trim the end of the wick at an angle to get right at it. For larger joints, place the wick on the joint and push down on the Teflon probe; this spreads the braid out to cover the joint.
This is one of those handy little items that doesn't look very impressive at first glance, but in use proves to be a real timesaver. (Just the elimination of scorched fingertips is a big plus!) Here's another suggestion. After the reel is empty, why not roll up some of the solder and thread it up through the probe? This would give you a useful item for either your work bench or tool kit. I haven't tried it yet but it ought to work. You'd have to buy another model D5 Desoldering Tool to obtain the extra probe, but this won't be expensive. The wick refills come without the probe, which you can just pull out of the original reel.
One last benefit of the wick system that I almost overlooked. The wick also acts as a heat sink to help prevent picking-up of PCboard conductors, heat damage to delicate components, and so on. I used it on the base of a transistor; just three passes of the desoldering

The Sinclair PDM35. A personal digital multimeter for only $\$ \mathbf{4 9 . 9 5}$

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedance. Yet at $\$ 49.95$ it costs less than you'd expect to pay for an analog meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicans, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read LED display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA $(0.0001 \mu \mathrm{~A})$.
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to $20 \mathrm{M} \Omega$. 1% of reading accuracy.

Technical specifications

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count. Note: $10 \mathrm{M} \Omega$ input impedance. AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: 1Ω to $20 \mathrm{M} \Omega$.
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in. $x 3$ in. $\times 1 / 1 / 2 \mathrm{in}$.
Weight: $61 / 2 \mathrm{oz}$.
Power supply: 9 V battery or Sinclair AC adapter.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adapter for 117 V 60 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested ready to go!

The Sinclair PDM35 comes to you fully built, tested calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/MO for the correct amount (usual 10 -day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return!
For Instant Service, CALL TOLL
FREE: 1-800-528-6050, EXT. 1052.
Ariz. Res. Call Collect 602-955-9710 or send coupon:

EQUIPMENT REPORTS
continued from page 32
tool and the transistor dropped out of the underside, with the holes left looking neat and clean.

The model SD5 Solder/Desolder System comes in different sizes: with 16-gauge solder, \$12.66; with 18 -gauge solder, \$12.86; and with 21-gauge solder, $\$ 13.74$. You can get the model D5 Desoldering Tool with a .06-inch wick, $\$ 2.29$; with a 10 -inch wick, $\$ 2.45$. Wick refills are obtainable: .06 -inch size, $\$ 1.49$; .10inch size, $\$ 1.65$. Prices are suggested retail prices. All are available from Chemtronics, Inc., 45 Hoffman Avenue, Hauppauge, NY 11787.

Heathkit's Model EC-1100 BASIC Programming Course

THE HEATHKIT BASIC (BEGINNER'S ALL-PURpose Symbolic Instruction (Code) course consists of a packed, 14 -section manual plus appendixes in loose-leaf form, a programming workbook and a final examination in a sealed envelope. (The course was developed by Heath Company, Benton Harbor, MI 49022.)

The manual is different from most other BASIC manuals in that it doesn't try to impress you with introductory concepts that discourage you from going any farther. The text is written in an uncomplicated, bright manner, making learning fun rather than a chore. A semiprogrammed approach presents
information that is closely followed by related questions. The correct answers are camouflaged in dark red boxes, and if you have no willpower, the answers can be totally covered with a card. However, like all self-study courses, you are on your honor and you will only get out of the course what you are willing to put in. Certain places in the text direct you to the workbook in which you answer additional questions and write program segments based on your accumulated knowledge at that point. Those who already have Heathkit or other computers with a BASIC interpreter perform the experiments detailed in the workbook. Hands-on experience gained by actually running programs is an extremely powerful supplement to the written material.

The workbook includes some simple but interesting programs, such as "Name the State Capital," how to calculate parallel resistances and how to plot random number distributions. The appendixes include background information on converting from one number system to another, plus the details of Benton Harbor BASIC and extended Benton Harbor BASIC.

CIRCLE 50 ON FREE INFORMATION CARD

As soon as you have enough fundamentals under your belt, you are introduced to flow charts and you learn how to break down programs into smaller, more easily handled segments or subprograms. The emphasis is on planning your work by carefully defining the problem before actually writing a program.

The overall philosophy of this course concerns building-starting with a "one-room doghouse," proceeding through a "kennel" and up to a "monument." After working through statements, lists, arrays and strings, you arrive at the "monument"-building section, where a problem of moderate complexity is traced from its initial concept all the way through the bells and whistles.

The program developed in this section is Blackjack. In discussing card arrangement, modulus arithmetic is explained and used to represent the 52 cards of the deck. The cards are assigned numbers that can be converted into their individual values and suits. The BASIC random function RND is used to "shuffle" the deck. When you are finished, you have a BASIC listing for a deluxe version of Blackjack. To run the program on any particular computer some minor changes may have to be made. By that point you should be competent enough to implement these changes easily. In addition to knowing BASIC, you must be familiar with the way the operating system of your computer is initialized, how the BASIC interpreter is called up and the way BASIC language programs can be stored and recalled in memory or on tape or disc.

The model EC-1100 course (which sellis for $\$ 29.95$) is particularly useful in view of the nearly universal acceptance of BASIC by microcomputer buffs.

"INDUSTRIAL" WIRE-WRAPPING
 MODEL BW928 TOOL $\$ 49^{95}$
 BATTERIES NOT INCLUDED BIT \& SLEEVENOT INCLUDED

BATTERY OPERATED
(2) Standard "C" Ni Cad Batteries (not included)INTERCHANGEABLE BITS \& SLEEVES (not included)REVERSIBLE ROTATION For unwrapping, reverse batteries

BACKFORCE OPTIONAL Model BW928-BF $\$ 52.95$
POSITIVEINDEXING
LEICHT WEICHT
*LEXAN ${ }^{\text {TM }}$ Housing
-LEXAN ${ }^{\text {™ }}$ GENERAL ELECTRIC

Exille $\mathrm{DF} \rightarrow .01 \mathrm{~F}$

 Digital

 Digital capacilance Meter

A valuable addition to the experimenter＇s workbench or technician＇s tool kit this meter verifies the value of suspected

 capacitors and performs quality－control checks on project components．

BILL WILSON AND BILL OWEN＊

CAPACITOR VALUES FROM 1 PF TO $9,999 \mu \mathrm{~F}$ are easily measured using the model CM－ 1000 Digital Capacitance Meter．This wide measurement range is achieved us－ ing a carefully designed capacitance mea－ suring circuit．A quartz－crystal timebase， 1% film resistors，and a precision SE555 integrated circuit timer（SE instead of NE prefix indicates premium part）yield $1 \%, \pm 1$ count accuracy．Four jumbo LED digits and four pushbutton ranges with automatic decimal point placement make capacitance measurement conve－ nient，reliable，and accurate．

To measure a capacitor simply connect its leads across the counter＇s input termi－ nals on the front panel．Polarized capaci－ tors such as electrolytics and tantalums must be connected with positive lead to the＂＋＂terminal and negative lead to the ＂－＂terminal．Simply depress the appro－ priate range switch and the counter comes alive displaying the capacitance count with up to four digits of resolution． Open capacitors cause the counter to read zeros while a shorted device causes a very large reading that may not stabilize． Leaky capacitors tend to read much high－ er than their labeled value and will indi－ cate different values from range to range．

Of course it＇s no trick to sort through

[^0]
SPECIFICATIONS

Capacitance Ranges

$\mathrm{R} 1 / \mathrm{pF}$	$0000-9999 \mathrm{pF}$
$\mathrm{R} 2 / \mu \mathrm{F}$	$.0000-.9999 \mu \mathrm{~F}$
$\mathrm{R} 3 / \mu \mathrm{F}$	$00.00-99.99 \mu \mathrm{~F}$
$\mathrm{R} 4 / \mu \mathrm{F}$	$0000 .-9999 . \mu \mathrm{F}$

Accuracy（Typical factory calibration at $\mathrm{T}_{\mathrm{a}}+70^{\circ}-79^{\circ} \mathrm{F}$ ）

R1／pF，R2／$\mu \mathrm{F}$
$\mathrm{R} 3 / \mu \mathrm{F}$
$\mathrm{R} 4 / \mu \mathrm{F}$

Timebase

Ref．oscillator frequency
Ref．oscillator accuracy
Power Requirements
Input voltage
Input power
Environmental
Operating temperature range Storage temperature

Physical Dimensions
Overall dimensions
Approx．weight
$\pm 1 \%$ of reading，± 1 count
$\pm 1.5 \%$ of reading ± 1 count
$\pm 2 \%$ of reading ± 1 count

> 3.579 MHz
> $\pm 0.05 \%$
$105-125 \mathrm{VAC} 60 \mathrm{~Hz}$
3.5 watts

$$
\begin{aligned}
& +5^{\circ} \text { to }+45^{\circ} \text { Celsius } \\
& -10^{\circ} \text { to }+65^{\circ} \text { Celsius }
\end{aligned}
$$

```
3"'H\times71/\mp@subsup{2}{}{\prime\prime}W\times61/\mp@subsup{2}{}{\prime\prime}D
\(21 / 2 \mathrm{lb}\)
```


your junk box capacitors using the capacitance meter just as you would use an ohmmeter to check resistors. Bargain capacitor assortments can be checked for a real savings because hard to decipher military codes, color bands, or no markings at all present no problem with this meter. You can perform quality-control checks on the capacitors you are using in your construction projects. Air variables and ceramic trimmers are frequently unmarked and can be checked for minimum and maximum values or even calibrated in terms of angle of rotation.

Almost all components have a certain amount of capacitance that can affect circuit performance. Wire bundles, coax cable, and twisted pairs all can be easily checked if suspected of causing problems.

Two different samples of coax can be compared for minimum capacitance per foot. Other components that can be checked for capacitance include rectifiers, transistors, LED`s and other devices.
The capacitance meter's accuracy and resolution are important factors when selecting critical capacitor values. Precision RC networks and oscillators are easily constructed with precisely known capacitor values. A capacitor's temperature stability is of critical importance in many circuits and can be checked by heating or cooling the component and measuring its change in capacitance.
In some instances it is not convenient to measure capacitance at the meter's front panel terminals. A probe can be used for remote capacitance measure-
ments. It will of course add its own capacitance to the measurement. The probe's capacitance can be subtracted from readings or the front panel zero adjustment can be reset. By using the capacitance meter probe, the distributed capacitance

The following parts are available from Optoelectronics, Inc., 5821 N.E. 14 Avenue, Fort Lauderdale, FL 33334.
CM-1000K Complete Kit . \qquad $\$ 129.95$
CM-1000WT Factory Wired \& Tested 179.95

CM-1000 PC Boards Only 24.95
P-1000K Cap. Counter Probe Kit 3.95
P-1000 Assembled Probe 6.95
Add 5\% shipping, handling and insurance, for foreign orders add 10%. Florida residents add 4\% State Sales Tax.

PARTS LIST

Resistors are 10\%, $1 / 4$ watt unless

 otherwise notedR1-243,000 ohms, metal film, 0.25\%, 1/8 watt
R2-11,300 ohms, metal film, $0.25 \%, 1 / 8$ watt
R3-2430 ohms, metal film, $1 \%, 1 / 8$ watt
R4-220 ohms, 5\%
R5, R8, R21- 100 ohms, carbon
potentiometer, 1 watt
R6-243 ohms, metal film, $1 \%, 1 / 8$ watt
R7-33 ohms, 5\%
R9, R11-10,000 ohms
R10-3300 ohms
R12, R14-330 ohms
R13- 6.8 megohms
R15-8.2 megohms
R16- 180 ohms
R17-R19-2200 ohms
R20-1000 ohms

```
R22-11 megohms
R23-R26-100 ohms
R27, R28-4700 ohms
C1-47 pF NPO disc
C2-15-60 pF, ceramic trimmer
C3, C13, C19, C23-0.47 \muF,50 volts
C4, C5-3.3 \mu\textrm{F}}\mathrm{ tantalum
C6-.001 \mu F
C7, C8, C9, C11, C12, C14, C17, C20,
    C27, C28-0.1 \muF
C10-.01 \muF
C18-. .02 \muF
C21-3300 \muF,16 volts, electrolytic
C22-220 \muF,25 volts, electrolytic
C24-33 pF NPO disc
C25-8.2 pF NPO disc
C26-470 pF disc
D1-D4-1N4002 silicon rectifier diode
IC1-556 dual timer
IC2-IC4, IC 12, IC 14, IC 16, IC18-74LS90
    decade counter/divider
```

IC5-74LS73 flip-flop
IC6-4001 quad NOR gate
1C7-74LS04 hex inverter
IC8, IC9-74LS00 quad 2-input NAND gate
IC 10-SE555 precision timer
IC11-voltage regulator, 7805
IC13, IC15, IC 17, IC19-4511 BCD to 7-segment decoder/driver
DIS1-DIS4-MAN-6680 7-segment LED display
XTAL1-quartz crystal, 3.579 MHz
S1-S5-5-gang SPST pushbutton switch
T1-power transformer, 117 VAC primary, 10 VAC secondary
J1, J2-insulated banana jack
F1-120-volt, 125-mA fuse
Miscellaneous: PC boards, 18 -pin IC socket,
4 16-pin IC sockets, 14 14-pin IC sockets, line cord, hardware

associated with materials, components, and assemblies (PC board runs, switches, terminals, etc.) can be measured.

Circuit description

The capacitance measuring circuit is shown in simplified block form in Fig. 1. The capacitor to be measured, C_{x}, is connected across the input terminals and appears in series with resistor R_{1} and voltage V_{s}. (Disregard capacitor C_{c} for the moment.) Upon application of a trigger pulse to input "d" of timer QT1, input "b" of QT1, which was previously held internally at ground potential, is set to its high state allowing voltage V_{s} to charge the capacitor C_{t} through resistor R_{t}. The charge voltage, V_{h}, appearing at input "a" of QT1 reaches a level-after a period of time-that follows the relationship, $V_{h}=V_{s}\left(1-e^{-1 / R C}\right)$ where V_{s} equals the supply voltage and $e^{-1 / R C}$ is an exponential function with R and C expressed in megohms and microfarads and " t " in seconds. If R is 1 megohm and C is $1 \mu \mathrm{~F}$ the V_{h} after 1 second, " t " becomes: $\mathrm{V}_{\mathrm{h}}=\mathrm{V}_{\mathrm{s}}(1-0.368)=0.632 \mathrm{~V}_{\mathrm{s}}$. If the monostable circuit QT1 has an input threshold level V_{r} at "a" that will activate a reset condition at exactly $0.632 \mathrm{~V}_{\mathrm{s}}$, then the output will be a pulse whose duration is equal to $T=R C$.

The pulse output of timer QT1 enables gate QG2 and allows clock pulses from frequency divider QR 1 to flow through to the counter stages QC1 and QC2. The BCD input to display drivers QD1 and QD2 from the counter stages is decoded to provide segment data to the display when enabled by a pulse from QM1, a one-shot multivibrator that is triggered when the pulse output of QT1 goes low at the end of the timing period, t_{n}. Multivibrator QM1 also serves to trigger multivibrator QM2, the display time monostable which resets the counter stages and the reference pulse flip-flop QF1, which in turn triggers timer QT1 and begins another measurement cycle. Astable multivibrator QM3 insures the logic is reset if for any reason a normal reset pulse does not occur, as when power is first applied.

On the diagram you see an additional capacitor, C_{c}, across the input terminals in parallel with capacitor C_{x}. Because shunt capacitance exist across the input measuring terminals, lead wires and semiconductor junctions, the combined distributed values appear in parallel with the capacitor to be measured and when attempting to measure low values of capacitors, significant errors occur in the readout as $T=R\left(C_{x}+C_{L}\right)$ where C_{L} is the combined distributed capacitance. Capacitor C_{x} is adjusted to produce a pulse width output from timer QT1 that is equal in duration to a reference pulse from flip-flop QF1 ($\mathrm{T}_{\mathrm{o}}-\mathrm{T}_{1}$). When both pulses are compared at the inputs of QGI, the output of QG1 will remain low and gate QG2 will not be enabled. But when the pulse from timer QT1 is longer

TIMING CHART for the model CM- 1000 digital capacitance meter. Helpfut in troubleshooting and in understanding circuit operation.
in duration, the output of gate QGI goes high and enables gate QG2. Consequently, clock pulses are fed into the counter stages. The period $T_{0}-T_{1}$ represents the "zero" compensation adjust interval with the time $T_{1}-T_{n}$ representing the time period due to the capacitance under measurement. The total period is approximately equal to $R\left(C_{x}+C_{c}+C_{L}\right)$.

Practical circuit

The actual digital capacitance meter circuit as shown in Fig. 2 operates in the manner previously described. A 555 timer (premium version) is used as the pulse-width generator. The timing chart helps understand circuit operation. The internal threshold level of the 555 is given as $2 / 3 \mathrm{~V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{s}}\right.$ in the example). This ratio is established by internal resistors within the 555 timer and if these resistors are held accurate then $t_{h}=1.098 \mathrm{RC}$. As the current through R, (R6, R7 and R8 in Fig. 2) increases, the saturation voltage across the internal discharge transistor within the device increases and can exceed 100 mV at 10 mA . Consequently the capacitor under measurement will not be fully discharged prior to the reset trigger pulse; thus, $\mathrm{t}_{\mathrm{h}}=\mathrm{RCln} \mathrm{V}_{\mathrm{s}} / 1-\mathrm{V}_{\wedge}-\mathrm{V}_{\text {sat }}$ where $\mathrm{V}_{\text {sat }}$ equals the saturation voltage across the discharge transistor at the measured current. An external means of setting the 555 threshold level is afforded through the control voltage input (pin 5), trimmer. Compensation resistor $\mathrm{R}_{\mathrm{c}} 1$ (or $R_{c} 2-a$ and $R_{c} 2-b$) sets the value to exactly $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ (3.334 volts for the V_{cc} voltage shown). (The digital capacitance meter kit comes with a precision 555 timer and a compensating resistor to be installed at $\mathrm{R}_{\mathrm{c}} 1$ or $\mathrm{R}_{\mathrm{c}} 2$-a so the device delivers precisely 3.334 volts DC at test point TP2 to insure the specified 0.1% accuracy. If you
obtain your own 555 timer, you'll have to experiment with resistive compensating networks to get the desired voltage at TP2.) Capacitor C_{3} at pin 5 must have low leakage as it also shunts the internal resistor network. A leakage current up to 100 nA can exist at pin 7 during the output high state but with the R_{1} values shown this does not contribute to significant errors. Finally, there exists a propagation delay between the trigger pulse and output risetime of the 555 which must be considered on the low ranges. It should also be mentioned that noise and AC line components appearing at the input terminals can introduce serious errors; good grounding and shielding practices should be used throughout. The clock pulses are obtained from a timebase oscillator using a readily available $3.579-\mathrm{MHz}$ crystal. The divider chain IC6, IC2, IC3 and IC4 provide four ranges, $1-9999 \mathrm{pF}, .0001$ - to $.9999 \mu \mathrm{~F}$, $.01-99.99 \mu \mathrm{~F}$ and 1 - $9999 \mu \mathrm{~F}$. Capacitors with high leakage and/or series resistance will produce errors in readout. Capacitors with high leakage should be read on the highest range possible (low R_{t}) and capacitors with high series resistance read on the lowest range possible. If a capacitor reads differently on two or more ranges, this generally indicates a high leakage factor (assuming proper calibration of R_{1} on each range). The range resistors $\left(R_{1}\right)$ should be accurate to within $.25 \%$ and temperature stable. The counting and display circuits shown are conventional, with utilization of low-power (74LS) TTL devices and some CMOS decoders to minimize current consumption (about 250 mA for the unit shown). The display provides four decades of readout giving good measurement resolution on all ranges.

FRED BLECHMAN，K6UGT

IF YOU OWN A FIREPLACE，THERE CERTAIN－ ly have been times when you＇ve forgotten to close the damper after the fire went out．Prior to the energy crisis this was not a terribly serious omission．Now，howev－ er，with energy conservation and the esca－ lating cost of utilities，it has become much more important to close the damp－ er to reduce the cost of heating or cooling your home．A 48 －inch－perimeter open fireplace flue can allow 8% of air－condi－ tioned or furnace－warmed air to escape your house！So，to save money and help conserve energy，you can build the Flue－ Bug，available in kit form for under $\$ 10$ ．

You may wonder，why such a strange name？Well，this gadget simply＂bugs＂ you until you close the fireplace－flue damper．The unit winks and blinks after the fire has gone out－and it keeps blink－ ing for days until you notice it and shut it off．It does not itself close the damper，it simply reminds you to close it．

How it works

The circuit，shown in Fig．1，uses two standard CMOS（Complementary－Sym－ metry M etal－O xide Semiconductor）inte－ grated circuits：IC1 is a quad 2 －input NAND gate，and IC2 is a hex inverter．In other words， ICl has four separate NAND gates，each with two inputs，and IC2 contains six separate inverters．Figure 2 shows the logic symbols of the two types
of IC＇s used in this design．Figure 2－a shows a 2 －input NAND gate，in which output pin 3 is Lo（near ground）only when both inputs are HI．All other inputs result in a HI output．Figure 2 －b shows an inverter that simply changes a Hi to a Lo， or a lo to a HI．With these facts firmly in mind you＇ll be able to follow the circuit explanation．For such a seemingly simple task，the circuit is quite complex．

A photo－Darlington transistor is used to sense light and radiated energy from the fireplace．Small holes in the heat shield，case and PC board allow light and heat，from the desired direction only，to impinge on the phototransistor．This bi－ ases the junctions and allows the current to flow from collector to emitter．There－ fore，when you aim the Flue－Bug at the fireplace from about 5 feet away，the phototransistor senses when a fire has been lighted and when it has gone out． When the fire is out，then the Flue－Bug will start blinking．

The circuit explanation that follows is almost a minicourse in digital logic．You don＇t have to understand it to use the Flue－Bug，but it does illustrate some basic digital design，and by following this detailed description you can analyze many other circuits．Figure 3 shows how to follow the changes in logic states during reset，standby，fire on and fire out．

Assume that the phototransistor does not sense a fire．Pressing the reset push－ button pulls pin 1 of ICI LO，thus making pin 3 HI ，regardless of the state of pin 2. Pin 4 is therefore HI．Since the phototran－ sistor does not sense a fire and its dark－ resistance is therefore quite high，input pin 5 of inverter IC2－c is LO，making output pin 6 HI ．Since both inputs to NAND gate $\mathrm{ICl}-\mathrm{b}$（pins 4 and 5）are HI ， output pin 6 goes LO，bringing pins 2 and 13 Lo．This keeps pin 3 HI ，and the circuit is stable．Since output pin 11 of NaND gate 1 Cl 1 －d is HI （because pin 13 is LO）， output pin 2 of inverter IC2－a is LO，keep－ ing NAND gate ICI－c output pin 8 HI ． This keeps output pins 4,8 and 10 of inverters IC2－b，IC2－d and IC2－e LO． Transistor Q 2 does not conduct in this state，so the light－emitting diode（LEDI） does not light up．

When the RESET button is released， ICl－a pin 1 is pulled HI by the positive voltage through resistor R 2 ，but nothing else in the circuit changes．

Now，light the fireplace and the photo－ transistor＂sees＂the fire．This drastically lowers its collector－emitter resistance， and the input of inverter IC2－c goes HI，so its output goes LO．This pulls ICl pins 5 and 12 LO．Output pin 6 of NAND gate ICl－b goes HI，making pins 2 and 13 HI ． Since pins 1 and 2 are now both HI ，the output of NAND gate ICI－a goes LO，

PARTS LIST

All resistors $1 / 4$ watt, 5\% carbon.
R1-R3-100,000 ohms
R4-16 megohms
R5-22,000 ohms
R6-5100 ohms
C1-. $047 \mu \mathrm{~F}$, mica
$\mathrm{C} 2-22 \mu \mathrm{~F}, 10$ volt, electrolytic LED1-red, jumbo light-emitting diode
Q1-photo-Darlington transistor
(Motorola MRD-14B or GE L14H)
Q2-2N2222, 2N3904 (or equiv.) NPN switching transistor
IC1-74C00 CMOS quad 2-input NAND gate
IC2-74C04 CMOS hex inverter
S1-normally open pushbutton switch, miniature
Misc.-Battery snaps; plastic case
($2^{1 / 8}$-in.-square $\times 3^{1 / 8-i n}$. long, sprayed with silver paint); heat shield ($31 / 2 \times 41 / 4$ \times.03-inch-thick aluminum); two No. 4-40 $\times 3 / 4$-inch screws; $2^{11 / 2}$-inch-long spacers; solder (2U6 or equiv.); 9 -volt battery.
The following items are available from Interfab Corp., 27963 Cabot Rd., Laguna Niguel, CA 92677:

Kit FB-2: Complete parts kit, including PC board, all holes predrilled, battery not included; instructions, $\$ 9.50$
postpaid. Assembled and tested, \$12 postpaid.

California residents add state and local taxes as applicable.
pulling pin 4 Lo, making the output of NAND gate ICl-b HI, thus latching this part of the circuit. (NAND gates ICl-a and IC1-b are wired as a flip-flop.)

Note that output pin 8 of NAND gate IC1-c is still HI (pin 13 went HI , but pin 12 went LO), therefore, the LED is still not on. However, when the fire goes out, the phototransistor resistance increases and, at some point, forces pin 5 of inverter IC2-c Lo. This makes the output of this inverter HI, pulling ICl pin 12 HI . Since pin 13 is already hi, NAND gate IC1-d changes state, and its output (pin 11) goes Lo. This is inverted by IC2-a, whose output goes HI, thus making pin 10 of Nand gate ICl-c hi. Pin 9, the other input to NAND gate IC1-c, is already HI , through resistors R3 and R4 from pin 8. Since both inputs of IC1-c are now HI, pin 8 goes Lo, causing several things to happen. Inverters IC2-b, -d and -e (operating in parallel for greater current capability) change state to a HI output and forward-bias transistor Q2. This allows LED1 to flash on, powered by the charge from capacitor C 2.

Meanwhile, note what happens back at nand gate IC1-c. (See Fig. 4.) When pin 8 went Lo, inverter IC2-f changed state to a HI output, releasing a charge into capacitor Cl , which then discharged through R 4 to the lo at pin 8. The voltage at point A drops until pin 9 (through resistor R 3) is brought below the threshold voltage, and NAND gate IC1-c changes to a HI output. This cuts off the LED, and causes

FIG. 1-FLUE-BUG is built using 2 CMOS IC's. Light-sensitive photo-Darlington transistor is used as sensor.
inverter IC2-f to change to a co output state. Now capacitor Cl charges through R4 until point A rises to the transfer voltage. Fed through resistor R3, this transfer voltage is seen by pin 9 of NAND gate IC1-c as a HI, therefore, its output goes Lo and the LED starts blinking. This circuit is a gated astable oscillator, and as long as pin 10 is held HI , the LED will flash at a slow rate (determined by Cl and R4). When the RESET button is pressed, or the phototransistor again senses light, gate ICI-c pin 10 is pulled lo and the oscillator stops in the LED-off condition.
Note that during the time that inverters IC2-b, -d and -e have a Lo output and the LED is off, capacitor C2 is being charged through resistor R5. When Q2 is biased-on (inverters IC2-b, -d and -e HI output), the capacitor $C 2$ charge flows

FIG. 2-POSITIVE INPUT LOGIC. NAND gate is shown in a and inverter is shown in b.

$\begin{gathered} \text { PIN } \\ \# \end{gathered}$	74C00 (IC1)				74C04 (IC2)			
	RESET	STANDBY	FIRE ON	FIRE OUT	RESET	STANDBY	FIRE ON	FIRE OUT
1	L	H	H	H	H	H	H	L
2	L	L	H	H	L	L	L	H
3	H	H	L	L	H	H	H	$\square \square$
4	H	H	L	L	L	L	L	$\square \square$
5	H	H	L	H	L	L.	H	L
6	L	L	H	H	H	H	L	H
7	L	L	L	L	L	L	L	L
8	H	H	H	$\square \square$	L	L	L	■■
9	H^{*}	H^{*}	H^{*}		H	H	H	$\square \square$
10	L	L	L	H	L	L	L	ワصL
11	H	H	H	L	H	H	H	$\sqrt{\square}$
12	H	H	L	H	L	L	L	\square
13	L	. L	H	H	H	H	H	$5 \square$
14	H	H	H	H	H	H	H	H

NOTE:
*MEASUREMENT REQUIRES VERY HIGH IMPEDANCE INSTRUMENT (ABDVE 50 MEGOHMS) OR CIRCUIT ACTION IS AFFECTED.
FIG. 3-TRUTH TABLE shows logic state of IC pins during normal operation.

FIG．4－GATED ASTABLE OSCILLATOR as used in the circuit shown in Fig． 1.
through the LED to provide a bright ＂blink＂of short duration．Thus，battery power is conserved，yet the flashing LED is visible in brightly lighted surroundings． The battery drain is only $5 \mu \mathrm{~A}$ during reset or standby， $80 \mu \mathrm{~A}$ when the fire is lighted and an average of approximately 2 $\mu \mathrm{A}$ when the LED is blinking．This means that a standard zinc－carbon bat－ tery will last about a year in normal use， or about 10 days＇blinking．

Construction

Constructing the Flue－Bug is much easier than understanding the circuit op－ cration．Be sure to use small－diameter rosin－core solder，a low－wattage soldering iron and a magnifying glass to check your soldering．（The kit contains detailed step－ by－step instructions that should be fol－ lowed closely．）

The PC board pattern is in Fig．5；and the parts layout is shown in Fig．6．Be sure to properly orient the IC＇s，electro－ lytic capacitor C2，LED1 and transistors Q1 and Q2．The red－lead female battery snap goes to the PC board positive trace， and the black－lead male snap goes to

＊BEND C1 PARALLEL TO THE BOARD
FIG．6－COMPONENT PLACEMENT diagram．
ton，it should now stop．Next，expose the phototransistor to the light－nothing should happen．Cover phototransistor Q1 again，and the LED should start blinking immediately，thus demonstrating the sur－ prising light sensitivity of the Flue－Bug．

If the device doesn＇t work properly，the most likely causes are wrong parts place－ ment or orientation，or poor solder joints or solder bridges．Figure 3 shows the states of all pins on both IC＇s under all conditions．You can check these states with a multimeter having a sensitivity of 20,000 ohms－per－volt or better．

Before assembling the PC board and battery into the case，pretap the holes at each end of the PC board by twisting a mounting screw into each hole to form threads．Figure 7 shows the complete assembly．Carefully slide the battery－PC

FIG．7－FINAL ASSEMBLY of Flue－Bug．

FIG．5－PRINTED－CIRCUIT BOARD shown full size．
ground．Position the phototransistor over the small hole in the PC board，with the curved face toward the hole．Bend capaci－ tor Cl down，after soldering it to the PC board to allow room for the battery inside the case．Mount the LED，as shown in Fig．6，with the lead that is closest to the ＂flat＂on the base of the LED going to the connection near phototransistor Q1． Mount pushbutton switch S1 in the cover corner hole，with two wires going to the PC board．

Connect a standard 9 －volt transistor radio battery to the snaps and test the unit before the case and heat shield are installed．With the battery connected， shield phototransistor Q1 from the light and press the reset button．If the LED was blinking before you pressed the but－

FLUE BUG with hous－ ing cover removed． Reset button is in top． Heat shield is on far side of case and can＇t be seen．

PENCIL POINTS TO WINDOW．Similar aligned windows are in heat shield and circuit board．
board assembly into the case，making sure the phototransistor is opposite the case hole．Place the cap on the case so that the LED projects through the upper hole． Using screws and spacers，attach the heat shield so that the unit stands upright． Make sure that the bare metal side of the heat shield faces outward（to reflect heat from the plastic case）and that the black－ painted side faces the unit（to prevent reflected ambient room light from falsely triggering the phototransistor）．R－E

Mudio Testing With Pimb Moise

One of the most common uses of the graphic equalizer today is in tailoring the response of an audio system to fit a particular need. The use of a pink-noise generator simplifies making the equalizer adjustments.

JEFFREY G. MAZUR
my article "pink noise generator Tests Your Hi-Fi" (January 1978 RadioElectronics) described a simple and inexpensive device that could be used to properly set up a graphic equalizer. Since the use of pink noise has generally been restricted to sophisticated audio engineering labs, many readers were unfamiliar with the techniques involved. This article will therefore attempt to explain in greater detail how a Pink Noise Generator works and how best to use it.

Once again let's recall what pink noise and white noise are. These signals are a mixture of all frequencies (in this case all audio frequencies) with precise amplitudes. White noise contains all frequencies at the same amplitude while pink noise has a 3 dB -per-octave rolloff associated with it (see Fig. 1). Incidentally, the color pink was chosen as an analogy to the frequencies of the light spectrum. Red light corresponds to the lower-frequency portion of the visible spectrum and a mixture of all frequencies produces white light. Thus, a mixture of light with a heavier emphasis on the lower frequencies (equivalent to a high-frequency rolloff) results in the color pink.

To generate pink noise you begin with a source of white noise such as the MM5837 IC, as described in my earlier article. This device contains a 17 -bit shift register and an oscillator that generates a pseudorandom digital sequence. Unlike traditional semiconductor junction noise sources, the MM5837 provides a signal of uniform noise and output amplitude. This signal is then fed through a -3 dB -peroctave filter to give pink noise. Since the minimum rolloff with a single-stage filter is 6 dB -per-octave (due to the reactance of a capacitor), a special design is needed to achieve the required $3-\mathrm{dB}$ rolloff. This technique involves cascading several stages of lag compensation. The result is
shown in Fig. 2. Figure 3 plots the response of this circuit, in which the "ripple," or deviation from a linear slope, is found to be $\pm 1 / 2 \mathrm{~dB}$.

The filter, together with the MM5837, yields a pink noise output, as shown by the curve in Fig. 4. Note that this curve is not an ordinary frequency-response plot; it represents the energy spectrum of the noise in $1 / 3$-octave segments. This is achieved by passing the signal through successive bandpass filters corresponding to the frequencies along the horizontal axis. Thus, the curve represents the type of response you should expect when using the individual filters in a graphic equalizer. Figure 4 shows the output is quite flat. The large deviations at the low end are the result of the extreme low frequencies ($0 \mathrm{~Hz}-15 \mathrm{~Hz}$) generated by the pink noise generator. (Although the noise generator frequency output extends from essentially zero, it is not shown in Fig. 4 because the curveplotter used begins at 30 Hz .) The true

FIG. 1-SPECTRUMS of white noise and pink noise.

FIG. 2-PASSIVE FILTER with a -3 dB-peroctave rolloff.
reading is taken as the average value of the waveform.

Graphic equalizers

Now that you have a good source of pink noise, how can you use it? For a high-quality audio system, one of the goals is to achieve a flat frequency response. This means that the music you hear from the speakers will most closely resemble the sound heard by the recording engineers. Most electronic equipment contained in a stereo system can reproduce these frequencies quite accurately. For example, amplifiers commonly have frequency-response specifications of ± 1 dB over the entire audio spectrum (20 $\mathrm{Hz}-20 \mathrm{kHz}$). However, in speakers, such flatness is rarely achieved. To make matters worse, speaker response depends largely upon its location in the room with respect to walls, furniture, etc. In fact, the room itself can account for frequen-cy-response fluctuations of $\pm 10 \mathrm{~dB}$ or more. This is due to resonances within the room, absorption of sound by curtains and carpeting, as well as reflections from the walls, etc.
A graphic equalizer allows you to electronically alter the system's frequency response to compensate for any mechanical and accoustical problems encountered in the speaker and room. With ten or more tone controls the graphic equalizer lets you adjust system response octave by octave to flatten out the overall frequency response. The problem of setting each control accurately is solved by using the pink noise generator.

Determining equalizer settings

When testing with pink noise you must be careful not to misinterpret the results. A strict procedure should be followed to eliminate any problems before they affect the final equalizer settings. Start with all

FIG. 3-FREQUENCY RESPONSE when using -3 dB -per-octave filter. Note deviation from ideal response of approximately $\pm 1 / 2 \mathrm{~dB}$.

FIG. 4-PINK NOISE GENERATOR OUTPUT. Curve does not represent frequency response; it shows the energy distribution of the output signal.
the equalizer controls in their mid-position. Then, connect the pink noise generator to a suitable input of the system. Since most low-level electronics are reasonably flat, any place before the power amplifier will usually be adequate. Any auxiliary, tuner, or tape input is fine. A microphone is set up, placed in a normal listening position and connected to some sort of level-indicating device, e.g. the mike input of a tape recorder with a VU meter. If you use a tape recorder, make sure that there are no automatic-level (ALC) or frequency-dependent circuits that affect the meter reading.

With the pink noise generator on, you should hear a static-like sound from the speaker. Set the volume control so that a VU reading of 0 is obtained with the meter input level (MIC or RECORD level control on a tape recorder) about threefourths of the way up. Next, check for background noise. Turn the pink noise generator off. The level meter should drop almost all the way down. Any residual reading is either due to electrical noise (i.e., hum) or background noise such as a TV set or nearby conversation. If the meter does not drop by at least three-fourths (-10 dB) do not proceed until the background noise is reduced. Next, turn the generator back on (the VU meter should read 0) and place all the equalizer controls to their minimum positions. As each control is turned down, the meter reading should drop and, finally, with all the controls down it should read less than two-thirds scale (-8 dB). If this does not happen, then there is too much leakage through the equalizer. Try turning on a high-cut (hiss) or low-cut (rumble) filter, or both. Remember that for these filters to have any effect, the pink noise must be applied before the equalizer circuits, as is usually the case with auxiliary or tuner inputs. If a filter is

FIG. 5-TYPICAL FREQUENCY RESPONSE for the Superscope model EC-1 microphone. Curve was obtained in an anechoic chamber with a controlled (constant) sound field.

FIG. 6-MICROPHONE RESPONSE for Superscope model EC-5. Curve was obtained in an anechoic chamber with a controlled (constant) sound field.
necessary to reduce the leakage noise, then leave it on when setting all controls except for the extreme control it affects. That is, if the low-cut filter is needed, leave it on when setting all but the lowest frequency control on the equalizer.

Then, set one control (usually the one affecting a frequency of 1 kHz) to its middle or 0 position and readjust the volume control for a VU reading of 0 . Then, turn this control back down and raise each of the other controls one at a time until the 0 VU level is reached. Mark this position of each control in pencil on the equalizer (or take note of its position on a scale alongside the control), after which return the control to its minimum position. When all the controls have been marked, place them at their recorded positions; this setting represents the flattest response for the system. Note that when you set the lower-frequency controls, the level meter may oscillate back and forth with the low-frequency "beat" produced by the pink noise generator. By watching the needle carefully, however, you should be able to set it to bounce equally on either side of the $0-\mathrm{VU}$ level.

Microphone frequency response

A vital part of pink noise testing relies on the frequency response of the microphone used. It is important to have some idea of its true frequency response. Many manufacturers supply some information, sometimes in the form of a graph; but unless the graph specifically refers to the unit you own, there may be some question as to its accuracy.

Electret condenser microphones offer the best frequency response for a reasonable price. Superscope, for example, manufactures a model EC-1 microphone that sells for about $\$ 10$ and gives a fair response (see Fig. 5). The model EC-5 mike (about $\$ 30$) is an excellent mike and
has a very flat frequency curve (see Fig. 6) that makes it quite suitable for pink noise testing. The odd response between 10 kHz and 20 kHz should not concern you. Since one control usually covers this entire octave, you can use the average value over this range. In this case, let's estimate the overall response of the mike in this octave as -2.5 dB . By setting this control for a reading of -2.5 dB during setup, you can effectively cancel out the nonflatness of the microphone. Set the equalizer controls for the same reading that would correspond to the frequency response of the microphone for that octave. This can be applied to any mike whose frequency response is known no matter what the actual response looks like. If your meter is not calibrated in decibels, this can be approximated by setting the control for the 0 level and then altering it the required amount by reading the dB scale usually supplied for the equalizer controls.

Finally, once the equalizer has been set for a flat frequency response, minor alterations can be made to suit your individual taste or to correct for other equipment deficiencies. Several settings may be required to account for varying room accoustics. For example, if there are curtains in the room that are sometimes open or closed, make a response test each way. Any control settings that differ for each situation should be clearly identified so that the proper setting can be made.

A few words of caution

The above procedure will work only with equalizers whose controls follow some regular pattern; that is, each control must cover some multiple or submultiple of an octave. For this reason, parametric equalizers, which are extremely useful and whose popularity is growing, cannot be set up this way; they require a realtime or spectrum analyzer for proper setup.

A final note

Since the MM5837 is a digital 17-stage device, it cycles through its entire sequence in about $1 \frac{1}{2}$ seconds. Thus, the noise exhibits a noticeable repeating pattern that may make the pink noise generator unsuitable for use in psychological testing or wind and rain sound effects. These uses may require a more conventional white-noise source such as that obtainable from a reversed biased transistor. R-E

REFERENCES:

1. BOHN, DENNIS, Audio Handbook, National Semiconductor, 1977, pp. 2-56-2-59.
2. SHANEFIELD, DANIEL, "Audio Equalizers," Stereo Review, May, 1976, pp. 64-67.

Pioneers Of Radio

Abstract

The worlds of electric and electronic communications owe much to pioneering researchers and inventors. Among them are Thomas A. Edison, Heinrich Hertz and Sir Oliver Lodge.

FRED SHUNAMAN
THOMAS ALVA EDISON

ONE EVENING IN NOVEMBER, 1875, THOMAS Edison, working alone in his laboratory, discovered what he believed to be "an entirely new force." Working with a magnetic vibrator, which included an ironcore coil and an interrupter similar to an old-fashioned doorbell, he noted that sparks jumped from the iron core to any metal body brought close to it. A wire connected to any metal part of the vibrator carried this new force and sparks appeared if the wire was touched to any large metal object. Even if the wire was turned back on itself and formed into a ring, and the end of the wire touched any part of the ring, a spark occurred, which was contrary to any of the then-known laws of electricity. "This," said Edison, "is simply wonderful and a good proof that we are dealing with a not-now-known force."

Further tests confirmed his opinionthe new force did not affect an electroscope or galvanometer, and would not attract small bits of dry cotton wool.

However, Professor Edwin Houston of Philadelphia, who had conducted somewhat similar experiments in 1871, disagreed. He and his colleague, Elihu Thomson, repeated the earlier experiments (see Radio-Electronics, December 1975, page 26), and showed that the effects were due to "induced currents" and that the reason Edison could not detect them with (di-rect-current) instruments was that each current was immediately followed by an "inverse current" that neutralized it.

Edison must have been convinced, for in 1885 he applied for a patent on a "Means of Transmitting Signals Electrically." The patent drawings showed a coil with a low-voltage primary and a rotary circuit breaker to interrupt the primary current. One end of the high-voltage secondary was grounded, the other was attached to a condensing surface suspended as high as possible. One patent drawing depicts this condensing as a wide metal-foil ribbon between the two masts of a ship.

Edison put this invention into use with a "grasshopper telegraph" for communication from a moving train. A foilcovered board on a car roof was the mobile antenna-the telegraph wires served as the trackside antenna. (The system was a success but abandoned after a few weeks because of lack of business.)

The short distance covered by this only practical application of his invention may be one of the reasons Edison's radio was brushed off as an "induction device." The other-and more important-reason is a matter of language. In 1885 (the year after the transformer was invented) induction meant electrostatic induction unless otherwise specified. Today it means magnetic induction, and modern electronics historians read it as such in the old accounts. Yet before electric waves were known, any electric action at a distance was attributed to electrostatic induction.

Both in the language Edison used and in the distances he expected to cover, it was quite clear that he was not speaking of magnetic induction. He said:
"If sufficient elevation can be obtained to overcome the curvature of the Earth
signalling may be carried on by static induction without wires . . "" (obviously beyond the visual horizon). And in explaining his grasshopper telegraph, he told a reporter: "This invention uses what is called static electricity."

Heinrich Hertz

there are many answers to the question, "who invented radio?" But the only answer to "who discovered radio?" is Heinrich Hertz!

However, not even this great discovery was entirely new. The Irish physicist Fitzgerald had predicted radio waves and, together with Oliver Lodge, had attempted to reproduce them on wires. Von Bezold of Germany had conducted experiments somewhat similar to those Hertz would perform. "Unfortunately," said Hertz, "their researches did not help me-I learned of them subsequently."

Hertz had noted-like others-that electric discharges produced effects on metal objects separated in space from the discharge. He also noted that these cases were always accompanied by a spark. The effects, he said, depended not only on their theoretical possibility, but also on a "special and surprising property of the electrical spark that could not have been foreseen by any theory."

Therefore, in 1887 Hertz began to work with spark discharges, developing what became the familiar spark-coil transmitter. To detect any waves that might be produced, he used what was called a Reis spark micrometer. This device was an incompletely closed wire loop or rectangle, leaving a small opening at the wire ends. The purpose was not simply to try detecting a spark-discharge effect. He had done that before with a Leyden jar. He wanted to discover if the effects repeated consistently-were in fact waves following each other at a regular rate.
Any waves, Hertz reasoned, must act with a much stronger effect on a circuit having the same period of oscillation than upon one with only a slightly different period." Varying the size of his detector loop, he found that indeed the spark was strong at a certain size, and diminished as the loop was made bigger or smaller than the ideal size. Making a graph of this effect, Hertz produced the first "tuning curve."

Next, Hertz attempted to reflect the waves, using a sheet of zinc, 4 meters long and 2 meters wide, fastened to the end wall of his laboratory. The detector showed points between the transmitter and the end of the room where the sparks were bright, others where they were small or invisible. Thus, he was positive he had produced standing waves in space and was able to measure the transmission wavelength. By calculating the frequency, he was able to estimate the velocity of the waves, and discovered they traveled at or continued on page 57

VIDEO MODULATORS

turn your TV into a video monitor

Abstract

If you are into VTR＇s，TV games or TV cameras for security and surveillance applications；a video modulator may be needed to feed the signal into an ordinary TV set used as a monitor．This concluding story looks at modulators now available

FRED BLECHMAN K6UGT

in the last two years vtr＇s，tv games，video cameras and home computers have been brought into many homes．Many of these devices have their own CRT monitors．To use an ordi－ nary TV set as a monitor，you＇ll need a video modulator to develop the video－modulated RF carrier．This month we contin－ ue a discussion of available modulators begun last month．

Since the video signal from the computer consists of pulses with sharp rise－and falltimes，the edges of the pulses become rounded in the process of going from video to modulated VHF， then through the TV video bandpass amplifiers to demodulated video．Although the modulators could only be rated＂good＂（not ＂excellent＂）for this use，the resulting TV display was certainly usable．Letters and numbers on the TV screen were relatively sharp．The punctuation marks，extremely important in some programming，however，were not clear．In other words，for reading data on the TV screen，a video modulator would be adequate，especially if the characters are large．However，for small characters or for programming，you should consider using a video monitor or modifying your TV to provide a video input jack．

The documentation provided with the modulators tested varied from excellent to nonexistent．Some manufacturers were very careful to point out the FCC restrictions on their use and potential for interference with your neighbors＇TV reception． Others totally ignored the subject！ATV Research，on the other hand，is aware of FCC regulations regarding devices that connect to TV antenna terminals（the FCC designates these devices as Class 1 TV devices）．Therefore，ATV Research includes several suggestions with their video modulator kits：

1．If the unit is not being built within existing shielded equip－ ment，enclose it in a metal box．
2．Use only coaxial－type input and output connectors，such as BNC or SO－239．
3．Do not use a higher operating voltage than is specified for the unit．
4．Never connect the unit to the TV antenna terminals with－ out disconnecting the TV antenna or using an antenna changeover switch with at least a $60-\mathrm{dB}$ attenuation．
5．Stop operating the unit immediately if you are causing interference with your neighbors＇sets．
6．Do not sell or lease these units in assembled form．
Now let＇s take a detailed look at the products each manufac－ turer is offering in alphabetical order．

Advanced Computer Products

P．O．Box 17329，Irvine，CA 92713
The model U1001 RF Modulator is the lowest－priced assem－ bled unit that can be used with a standard NTSC video signal， and it will also handle audio．Four mounting tabs and smooth top and bottom surfaces make this unit east to mount．The RF output is pretuned to TV Channel 3，but can be changed to Channel 4 by grounding the switch terminal．The input voltage is not critical，since this modulator circuitry appears to be regu－ lated internally．The power drawn is 18 mA at the recom－ mended 9 volts DC．

This modulator has double shielding and gives the appearance of a high－quality unit．However，the performance of the unit tested was disappointing in a computer environment．The inter－ ference rejection was poor，apparently due to low RF output． Although there were no external adjustments，popping off the flanged covers revealed several screws that could be adjusted to increase the output．We did not attempt to do this，since the documentation provided with the unit was only a simple connec－ tion diagram．

If you are inclined to experiment，this looks like it has the makings of a great unit．Considering that it is completely assem－ bled and includes audio（all for $\$ 7.95$ ），it might well be worth the effort of adjusting some tuning screws．And，used outside of the computer environment，it worked fine．

Advanced Video Products

5835 Herma Street，San Jose，CA 95123
The model RF－1 comes in kit form and can be easily assem－ bled in 30 minutes，using the step－by－step instructions；a large， clear schematic；a components layout；and a photograph of the finished unit．There is no component crowding，and slug－tuning the VHF output frequency from Channels 2 to 6 is easily and precisely performed with the tuning wand provided．The video input potentiometer can be set with your fingers or a small screwdriver．The overall performance of this unit was among the best tested．A Zener－regulated power－input circuit allows the modulator to be used over a broad range of input voltages（9 volts to 20 volts）without affecting the output．Two large mounting holes are provided on the PC board．No connectors or cabinet are provided，and no precautions against interference are mentioned in the documentation．

MODEL RF-1 ri modulator from Advanced Video

ATV Research

13th and Broadway, Dakota City, NE 68731
Both ATV Research units have excellent, clearly printed detailed instructions, including schematics and precautions regarding interference and FCC restrictions. Both units use a printed-circuit inductor (with spiral rectangular turns) for the VHF tank circuit, and output channel tuning is performed by adjusting a small trimmer capacitor with an insulated tool (not provided).

ATV RESEARCH PXP-4500 Pixe-Plexer

PXV-2A PIXE-VERTER made by ATV Research

The model PXV-2A Pixe-Verter is the only video modulator tested that requires a negative power-supply voltage. This is no problem if the ground connection between it and its associated inputs and outputs is properly polarized or isolated.
It takes only about 30 minutes to assemble the Pixe-Verter, but you must work carefully because the components are somewhat crowded together, and several PC board holes must be
enlarged for the parts to fit on the board. Also, you will have to decide which TV channel you want to use, since a jumper to one of the turns of the printed-circuit inductor determines the output-frequency range. Two mounting holes are provided, and, because both the input video level and output frequency control are adjustable, it is easy to interface with the video source and TV set, using your own connectors. However, be careful of the supply-voltage polarity! No case is included.

The model PXP-4500 Pixe-Plexer is designed for the advanced experimenter and hobbyist who wants exceptional versatility. However, along with such versatility come complexity and many options.
The Pixe-Plexer is built around a National Semiconductor LM1889 TV video modulator 18 -pin IC. This IC is designed to interface audio, color difference and luminance signals to the TV receiver's antenna terminals. The LM 1889 consists of a sound subcarrier oscillator, quadrature chroma modulators, and RF oscillators and modulators for two low-VHF channels. The Pixe-Plexer's external components, including a $3.58-\mathrm{MHz}$ TV color crystal, are on a PC board with a 24 -hole breadboarding section. This design allows you to use the LM1889 with various experimental input and output circuits, as a sort of breadboard. And for even more flexibility, a 10-page reprint of the LM1889 data sheet is included that contains various circuits. The ATV Research PC board was designed for a multipurpose circuit; you determine what options you want.

This unit is not for beginners. It takes about $11 / 2$ hours to assemble, and interfacing requires that you provide a relatively high current demand (from 40 mA to 50 mA at 15 volts) and biasing voltages. You may need an external power supply if your video source cannot supply 50 mA at 15 volts. Also, because the Pixe-Plexer handles audio as well as video, this unit may be more complex than is needed for simple applications. Tuning requires adjusting three trimmer capacitors and a small potentiometer, plus varying bias voltages for some applications; no tuning tool is included. Two large mounting holes are provided, but no case or connectors.

California Industrial

P.O. Box 3097 K , Torrance, CA 90503

The model CA-010410 comes already assembled, complete with metal case, an RCA phono-jack RF output connector, and four mounting tabs protruding from the side of the case. (Dou-ble-sided tape could also be used for mounting.) Access holes allow precise tuning to Channels 3 or 4 , but a miniature hex tuning wand is needed to turn the slug. The unit has no adjustment for video input level or supply voltage. It works very well at a 1.5 -volt input, with only $0.5-\mathrm{mA}$ drain, so a AA-size battery cell can operate it for several hundred hours. However, the video input signal must be limited or VHF output overmodulation results. You can install a small 1 K potentiometer to accomplish this easily. A mating RF connector and 15 feet of coax cable are included.

The RF output jack, an RCA phono-type, is mounted directly onto a PC board, with no center-hole clearance. Therefore, the RCA plug you use to mate with it may need to have the male center terminal shortened, or it will be stopped by the PC board before the outer shell makes contact. The input connections are three wires to which a small transistor socket mates nicely. The shielded container is easily opened, and the unit can be removed in one piece with desoldering, since the entire circuit is built on a single PC board. The unit's construction is of very high quality, and built around a $\mu \mathrm{A} 3086$ IC. Although the brief instructions include a schematic and connection information, they do not contain a circuit explanation or any precautions. In the comparison tests, this unit's performance was among the better of those surveyed. This was the smallest and least expensive preassembled unit designed to work with a standard NTSC negative-sync video signal. It also uses far less power than any other unit tested, therefore, battery operation is practical.

Delta Electronics

7 Oakland St．，Amesbury，MA 01913
The model 5500 R Videocube（described in Radio－Electron－ ics，August，1977）is one of the most sophisticated kits we surveyed．The two－sided PC board can be assembled easily in 45 minutes，and the top shield included with the kit provides the necessary RF radiation protection．The kit also contains an antenna switch，and the unit＇s output is designed to feed directly into 300 －ohm TV antenna terminals．（It has an on－board balun coil to convert the 75 －ohm unbalanced circuit output to a $300-$ ohm balanced line that connects to the antenna switch．）There are no mounting holes，but double－sided tape could be used on the shield for mounting the unit．

vIDEO CUBE 5500－R from Delta Electronics
The modulation technique involves adding a resistor to ground at the video input，with the value based upon the video－ signal amplitude．This resistor sets the forward bias on a signal diode that controls the amount of RF signal fed from the oscil－ lator section to the output．Positive video signals tend to cut off the diode，while negative video signals（such as the sync pulses） increase diode conduction，thus providing the RF negative modulation needed at the TV terminals．This technique seems best suited to interfacing with game circuitry，rather than with a standard 75 －ohm camera or computer video．In any case，extra components and some tinkering are required for best results． For example，to connect the Videocube to a computer，the instructions recommend using a circuit containing three resis－ tors and a tantalum capacitor．A footnote adds that the two resistor values must be＂adjusted for optimal display．＂In testing this modulator，we used some typical values for this network， and the operational results were still the poorest of all the units tested！Furthermore，adjusting the slug－tuned coil to the proper output frequency is difficult without a special tool，which is not supplied in the Videocube kit．No doubt additional experimen－ tation will improve the results．

The kit＇s documentation provides a great deal of information， most of which was included in the August 1977 Radio－Electron－ ics article，plus FCC interference test requirements．

Electronic Systems

P．O．Box 212，Burlingame，CA 94010
You can assemble this unit（model 107）easily in 30 minutes， and four corner mounting holes are provided．No shield or cabi－ net is supplied，and no interference precautions are mentioned in the brief，but adequate，assembly instructions．Half of the board is taken up with a rectifier／filter／regulator circuit that allows you to use a 12 －VAC center－tapped transformer for the power source．If you use a 5 －volt DC source（about 10 mA ）these components are not needed．The modulator circuitry is simple， uncrowded and performs well．However，there is no input video－level control potentiometer，and you must set the output frequency by squeezing or opening the $3^{3 / 4}$－turn hand－wound open tank coil！You can buy the PC board alone for $\$ 7.50$ and use your own components（standard resistors，capacitors and a standard 2 N 2222 transistor）to save money if you plan to run this device on 5 volts DC．No connectors are supplied．

Formula International，Inc．

12603 Crenshaw Blvd．，Hawthorne，CA 90250
This unit is small，inexpensive，comes already assembled and

E \＆P MODULATOR from Formula Int＇l and Godbout．
is completely shielded，but it cannot be used with a standard negative－sync video input signal．If your video source has posi－ tive sync，or can be inverted to positive sync by taking it from a different point in the output circuit，this unit is the only video modulator tested that can operate with a standard U．S．－manu－ factured TV set．（You might also be able to invert the input signal with a simple transistor circuit．）No video input control is provided either．This same unit（marked E \＆P on the case）is also sold by Godbout Electronics and both are pretuned to TV Channel 3.

There was no schematic included and no precautions concern－ ing RF interference．Two mounting tabs or double－sided tape can be used to secure the unit on a flat surface．An RCA phono－ type jack is used for the VHF output connection．

Godbout Electronics

Oakland Airport，CA 94614
This unit is identical to the Formula International unit，there－ fore，the same comments apply，except that no documentation at all was received with this unit．Since Godbout is normally very good about documentation，this omission was probably uninten－ tional．

Jade Computer Products

5351 West 144th St．，Lawndale，CA 90260
The model TV－1 is an excellent unit in every respect．It is small，takes about 20 minutes to assemble，has the best sensitiv－

VIDEO－to－TV INTERFACE，model TV－1 by Jade and Quest．
ity of any unit tested and performs as well or better than units costing almost three times as much．It is the smallest unit tested in cubic volume－small enough to fit within the video source enclosure－so no case is supplied．It operates from 5 volts to 12 volts（only 1.5 mA at 5 volts），has an on－board video input－level potentiometer，and is capable of tuning from Channels 2 to 6 with a simple trimmer－capacitor slotted－screw adjustment， using an insulated small－tip tool（not included）．A single corner
mounting hole is provided.
The documentation is complete, clearly printed and includes a clear photograph of the finished unit. The kit also contains over three feet of miniature RG-174 A/U 0.1-inch-diameter, $50-$ ohm coaxial cable to aid in interfacing the finished unit. All you need to add are input and output connectors, plus power. The high-quality glass-epoxy PC board is clearly silk-screened to show component and input-output locations, and is soldermasked on the back to prevent solder bridges. The resistors are mounted vertically to save space and, although this gives a crowded appearance, presents no problem in assembly. Most of the board space is occupied by a $41 / 2$-turn printed-circuit spiral inductor that is etched on the foil side of the board. Detailed interference precautions are included.

Although 1 might appear to be biased, since UHF Associates supplied the units and much data for this story, I must report in all honesty that this unit, manufactured by UHF Associates and distributed by Jade Computer Products is-in my opinion-the best buy of any of the units tested. It is also available from Quest Electronics, Byte Computer Shops and Olson Radio (Olson Part No. MP-112).

M \& R Enterprises

P.O. Box 61011, Sunnyvale, CA 94088

Available at many local computer shops, or by mail from M \& R , the SUP " R " Mod II is simple to install and use. It is completely assembled and shielded and comes with detailed illustrated documentation. It is pretuned to Channel 3 and includes a video level control. Included are a 10 -foot length of coaxial cable, with connectors at each end, and an antenna changeover switch, plus double-sided tape for mounting the modulator and switch on any smooth, flat surfaces such as a wall or the back panel of the TV set.

M \& R ENTERPRISES Sup "R" Mod II. Cabie and switch not shown.

SUP "R" MOD II, cables and switch included

This unit is designed for the nonelectronic microcomputer user who is not familiar with a soldering iron and does not wish to learn how to use it. All you need to add is a DC source between +5 and +12 V at about 7 mA . Installation is simple, and two ferrite cores are used on the cables to help prevent RF interference with neighboring TV sets.

Quest Electronics

P.O. Box 4430 E, Santa Clara, CA 95054

This company offers the model TV-I or the model RVFN-I at the same price. For details, read the sections on the Jade and Vamp units in this article.

Ramsey Electronics

Box 4072, Rochester, NY 14610
The model VD-I kit is the second smallest unit we tested, and construction was easy and fast-about 20 minutes. Unfortunately, the two mounting holes are extremely small, and there is no video input-level control. Therefore, mounting and interfacing this unit takes a little extra effort. The current required at 5 -volts input is only 4.5 mA , which probably can be drawn from the video source power supply. All components are mounted vertically on a small but uncrowded PC board, and input and output designations are clearly labeled. The kit comes complete with components layout, schematic and parts list, but without interference precautions. No case, connectors or cable are included.
The output channel frequency is slug-adjustable from Channels 4 to 6 , but you need a small hex tuning wand (not supplied). Game, camera or video cassette recorder performance was good, but with a computer, a display with small characters (64-perline, 16 lines) was only fair. This is the least expensive kit and certainly adequate for noncritical applications.

UHF Associates

Box 24, Jenner, CA 95450
The model TVS-100 is unusual because it provides both video and audio modulation of a carrier frequency, allowing the TV receiver's sound system to complement the picture information. Designed to plug directly into a S-100 computer bus, the model TVS-100's power requirements are 15 volts at 40 mA . The tuning is more complex than for most other units. A switch selects the Channel 3 or Channel 4 outputs and RCA jacks are used for all input and output connections. On-board level controls are included for both audio and video inputs.

The assembly time for this unit should run from 1 hour to $11 / 2$ hours. The unit tested was a preproduction model that performed among the best in all test categories. Price, availability and documentation were not available at the time this survey was made. The model TVS-100 will probably be available only in kit form because of FCC restrictions on the sale of assembled units without the video source attached.

Vamp, Inc.

Box 29315, Los Angeles, Ca 90029
This small, well-designed kit (model RFVM-I) assembles easily in 20 minutes. The excellent documentation includes a schematic and a components lists and layout, and it devotes considerable space to RF interference considerations. Vamp also includes coax cable and an F-59 connector for the output, as well as two extra resistors for creating an RF attenuation network if

RFVM-1 sold by Vamp and Quest Electronics
your unit causes interference. Two mounting holes are provided, as well as two mounting screws, nuts and even two spacers! The on-board video input control is easily set with your fingers (the control has a knurled outer knob), and a small insulated screwdriver (not supplied) can be used to set the RF oscillator trimmer capacitor. The tank coil is ctched on the PC board- $2^{1 / 2}$ turns of a rectangular spiral. All it takes to power this simple unit is 5 VDC at 1.5 mA . No case is provided because this small unit could be mounted in the existing case of the video source. Performance was among the best, except when used with a computer terminal.

R-E

Innovations In Phono Cartridges

The overall performance of a phonograph record playback system depends largely on the characteristics of the cartridge. This is the story of the Shure V15, type IV that advances the science of record playing.

LEN FELDMEN
CONTRIBUTING HI-FI EDITOR

A while back, i, along with several audio journalists, attended the 1978 Technical Seminar held by Shure Brothers, Inc., of Evanston, IL. At the seminar, we were introduced to Shure's newly designed model V15 Type IV phono cartridge, the latest (and most expensive) in a series that began more than a decade ago with the development of the original model V15 cartridge. This article will present some of the less well-known design considerations and innovations that went into the creation of this new phono cartridge.

Real-versus-theoretical requirements

The requirements of a top-grade phono cartridge (at least on paper) are relatively few. The pickup should, of course, have an extremely uniform amplitude response with respect to frequency (generally, if erroneously, called frequency response). It should be able to follow the undulations in the most heavily recorded record grooves even when low downward tracking forces are applied. Shure calls this quality "trackability," and, in many ways, this term indicates more about a cartridge's tracking ability than does the older compliance specification.

In a moving-magnet phono cartridge, the shank and magnet assembly form the heart of the transducer. The assembly's performance criteria include low equivalent mass; high-resonance frequency (preferably beyond the audio range) and low-resonance Q ; high resistance to bending and fracture; and the proper geometrical considerations.

Figure 1 shows the final shank design used in the new model VI5 Type IV styl-
us compared with the shank used in the older model V15 Type III stylus. This design is called a telescopic shank and uses a precision outer reinforcing tube that is in close contact with the shank. The net effect of the changes made in the stylus was to reduce the overall mass plus the mass of the stylus assembly, while maintaining the same overall geometry and bending strength. In terms of performance, the new shank improves the highfrequency trackability of the cartridge,

FIG. 1-STYLUS ASSEMBLY of the V15 Type IV is shown in a. For comparison purposes, the stylus assembly of the V15 Type III is shown in b.

FIG. 2-SHANK STRUCTURE of the V15 Type IV stylus shown as a cross-sectional view.
maintains shank resonance beyond the audio range and improves resonance control by reducing the mass that the bearing must control.

Figure 2 shows a cross section of the model V15 Type IV stylus assembly. In addition to the telescoped shank structure it features a new, lightweight high-energy magnet, a newly designed two-function bearing system, and what Shure terms a hyperelliptical nude diamond tip. All these new features are designed to increase or improve trackability.

How much trackability is enough?

Figure 3 shows the trackability-versusfrequency curve of the model V15 Type III and the model V15 Type IV, each measured at a 1 -gram tracking force. The theoretical maximum recorded velocities that are likely to occur at various frequencies in a modern recording are shown. The small circles show that actual velocities often exceed these theoretical limits. Note that some of these measured velocities actually exceed the trackability of the older model V15 Type III and model V15 Type IV cartridges, but model V15 Type IV shows a significant improvement in trackability over the earlier model. To track the few remaining peak velocities that still fall outside the newer trackability curve, it would be necessary to increase the downward tracking force of the new cartridge to its maximum of 1.25 grams.

Stylus-tip shape

Figure 4 compares the older, elliptical stylus used in the model V15 Type III (and many other cartridges) and the newly designed hyperelliptical tip of the model V15 Type IV. The model V15 Type IV

FREQUENCY IN HERTZ

- ACTUAL MEASURED RECORDED VELOCITIES

FIG. 3-TRACKABILITY-VS.-FREQUENCY of the V15 Type III and V15 Type IV cartridges as mounted in an SME 3009 pickup arm.
"footprint" (shown in Fig. 4 as a black oval) is longer and narrower than the traditional elliptical tip-groove contact area. The new tip is said to provide as much as a 25% reduction in distortion over the conventional elliptical stylus. Figure 5 is a bar graph showing typical second harmonic and IM distortion levels for various stylus-tip shapes. The optimized contact area of the hyperelliptical tip significantly reduces both harmonic distortion (shown by the white bars) and IM distortion.

FIG. 4-NEW HYPERELLIPTICAL TIP of the V15 Type IV provides better contact with the record grooves than the conventional elliptical tip of the V15 Type III.

Pickup/arm resonance

It has long been recognized that the conventional phono cartridge arrangement at the end of a pivoted arm has a built-in problem of low-frequency stability. This problem is a result of the resonance that is inherent in the conventional cartridge/arm arrangement.

Figures 6 and 7 show the most serious effects caused by this resonance. The

2ND HARMONIC DISTORTION
AVERAGE BOTH CHANNELS, $8 \mathrm{kHz}, 5 \mathrm{~cm} / \mathrm{sec}$ PEAK RECDRDED VELOCITY

INTERMODULATIÓN DISTORTION AVERAGE BOTH CHANNELS, $1 \mathrm{kHz} / 1.5 \mathrm{kHz}$
FIG. 5-HARMONIC AND INTERMODULATION distortion for various tip shapes.
scrubbing motion of the stylus in the groove can actually cause program material to warble in pitch as if the turntable itself were fluctuating in speed. In fact, the groove speed relative to the tip does change because a fraction of the velocity of the arm vibration is added to the groove velocity.

For example, at arm resonance, total amplitudes of $1 / 32$ inch are easily observed. If the system resonance is at 8 Hz (typical) the resonance velocity will be about 2 cm -per-second. This velocity will produce a scrubbing velocity of 0.6 cm -per-second along the groove axis. The groove speed at a 4.5 -inch radius is about 40 cm -persecond, so the frequency modulation will be about $0.6 \mathrm{~cm} /$ to 40 cm -per-second, or 1.5%-producing a quite audible warbling effect.

Another less obvious result of arm resonance is that the stylus force is "used up" when the arm vibrates. In the previous example, if the pickup compliance is assumed to be $20 \times 10^{-6} \mathrm{~cm}$-per-dyne, 2.0 grams of stylus force will be required to offset the arm vibration alone. Since this is greater than most total stylus-force requirements, mistracking occurs.

The most common excitation force likely to cause such arm vibrations at or near their resonant frequency is record warp. Warps generally occur in a broad low-frequency spectrum extending from about 0.5 Hz to 10 Hz , with maximum occurrences at around 3 Hz or 4 Hz . This form of excitation operates principally in a vertical direction. A minor source of arm vibration is the change in stylus drag force with modulation. Signals having a substantial recorded velocity will increase drag force considerably, and the arm offset angle or the vertical tracking angle geometry will cause a drag-force component to move the pickup. Figures 6 and 7 also show this effect.

FIG. 6-VERTICAL VIBRATION of pickup arm changes the vertical angle of the stylus and causes a scrubbing motion. This can create a warble in the pitch of the program material.

FIG. 7-LATERAL VIBRATION of pickup arm also causes a warble effect in the pitch of the program material.

FIG．8－VISCOUS DAMPING is commonly used to reduce pickup arm resonances．However，this approach also inhibits the pickup arm from tracking severe record warps．

FIG．9－DYNAMIC STABILIZER of the V15 Type IV has three positions．
controlled by the pad instead of the styl－ us．In the past，viscous damping applied to arm pivots was also used；however， with high－compliance pickups when the damping is sufficient to control reso－ nance，the arm cannot move fast enough to track severe warps，and the stylus assembly must compensate by changing its protrusion（see Fig．8）．
The model V15 Type IV cartridge provides an interesting and practical solu－

FIG．10－SEVERE WARPS change the distance between the record surface and a conventional cartridge，as shown in a ．The dynamic stabilizer maintains a constant distance，as shown in b ．

FIG．11－FREQUENCY RESPONSE showing ef－ fect of dynamic stabilizer on the resonance of the pickarm and cartridge combination．

Previous solutions to the resonance problem can be divided into active and passive categories．A passive solution would be the use of a dynamic vibration absorber．An example of this approach is the damped pickup－arm counterweight． Another approach is to attach a pad or brush to the end of the arm，so that it contacts the record surface．Most of the total arm force is applied to the pad， which then overpowers the dynamics of the arm and maintains a constant spacing for the pickup．The problem with using this method is that the pickup arm＇s progress across the record tends to be
tion to this problem：The system uses a structure called a dynamic stabilizer，sim－ ilar in appearance（and partly in function） to the flip－down stylus guard found on many other cartridges．The stabilizer， shown in Fig．9，has two unique features． The first is a graphite－filament，brush－ like structure located on the bottom front edge of the stabilizer．The second is the viscous damped trunnion bearings that replace the standard stylus－guard pivots．
Position 3 （＂Guard＂）in Fig． 9 shows the stabilizer detented downward and functioning as a stylus guard；position 2 is the normal playing（＂Operating＂）posi－ tion．The graphite filaments contact and ride the record surface，while the viscous damping provided by the bearings of the assembly controls the vertical resonance． The stabilizer filaments are placed as close to the stylus tip as possible，to insure that any motion caused by record warps is applied to both the stylus and the stabiliz－ er simultaneously．The result is that the tone arm closely follows the record irreg－ ularities，thereby minimizing warp ef－ fects on the stylus．

If you compare the two illustrations of Fig．10，you will note that in the upper drawing，a conventional cartridge tip
fluctuates because of severe record warp， with changes in the distance between the stylus tip and the record surface．The lower half of Fig． 10 demonstrates that when the Shure dynamic stabilizer is used，constant distance is maintained be－ tween the stylus tip and the record surface even during severe warps．The dynamic stabilizer reduces the overall resonant Q of the system and raises the resonant frequency，as shown by the frequency－response curves of Fig． 11 （plotted for frequencies below 100 Hz and down to the subaudible range）．With the dynamic stabilizer operating the im－ provement is dramatic．

The model Vl5 Type IV cartridge has a stylus－force tracking range from 0.75 gram to 1.25 grams，and the dynamic stabilizer exerts a 0.5 －gram force on the record surface．Thus，the total arm force must be set between 1.25 grams and 1.75 grams．Since the major part of this total force is actually exerted by the stylus，the pickup，rather than the graphite fibers， controls the arm movement across the record，as it should．In position 1 （refer to Fig．9）the stabilizer is retracted and the fibers do not touch the record surface． The tracking force for this mode must therefore be set for the stylus－force range of between 0.75 gram and 1.25 grams．

According to Shure，small－diameter graphite fibers were chosen for several reasons．Because static electricity can attract the arm and pickup，the fibers help stabilize the tracking force．

The graphite fibers also serve as a record－cleaning brush．Each strand is only 7.6 microns in diameter，enabling it to sweep loose dust from the record grooves and prevent dirt and dust from being ground into the groove walls．An－ other function of the stabilizer is as a shock absorber．When a pickup arm is accidentally dropped，a conventional styl－ us assembly receives the full shock upon impact．In addition，the springiness of the stylus assembly can cause it to bounce across the record，thus creating several groove－damage points．In normal opera－ tion the viscous damped stabilizer cush－ ions the impact of the dropping arm and prevents such bouncing．

This cartridge is a top－grade performer when measured objectively using careful－ ly controlled and maintained test records． In this design，however，Shure seems to have gone a step farther by taking into account the many nonideal conditions that exist when you play records in the real world of high fidelity at home．These secondary problems，such as static elec－ tricity，record－surface dust and impact damage，as well as low－frequency insta－ bility caused by arm resonance combined with record warp and the like，are effec－ tively handled by Shure＇s unusual and innovative dynamic stabilizer．Thus the model V15 Type IV，cartridge design truly advances the science of record play－ ing．

Radio-Electronics Tests RG Dynamics Pro-16 Dynamic Processor

LEN FELDMAN CONTRIBUTING HI-FI EDITOR

OUR FIRST ENCOUNTER WITH A SIGNAL PROCES. sor was with a unit produced by U.S. Pioneer Electronics Corp., the model $R G-1$. Even in this early unit, some innovative concepts had been applied to dynamic expansion, and fewer of the "pumping and breathing" effects commonly associated with expanders up to that time were noticeable.

RG Dynamics, Inc. (4448 W. Howard, Skokie, IL 60076) has further perfected those earlier circuit ideas relating to dynamic signal expansion and noise reduction. The present unit is more sophisticated and, more important, it runs rings around the earlier effort in actual performance.

Figure 1 shows a front-panel view of the processor. A brief description of its controls will give you an idea of its enormous control flexibility and variations in expansion that are possible. A dual-channel LED display panel; containing 5 LED's per side, provides a constant visual indication of what sort of signal processing is occurring. The lower pair of LED's light up red and serve as power-on indicators when signal processing is not turned on. They also indicate when the transition occurs between downward expansion and upward expansion. The upper four pairs of LED's are calibrated in $4-\mathrm{dB}$ increments from 4 dB to 16 dB , and indicate the total amount of expansion taking place at each instant. The display greatly simplifies input-level adjustment, and once levels are set correctly for a given program, it can be turned off by a toggle switch or left on, as desired.

A dynamic expansion-control knob is continuously variable and selects the degree of expansion from 4 dB to 16 dB . A second toggle switch selects one of two expansion rates or slopes. Slope number 1 is recommended for FM broadcasts and most popular records (these have usually been highly compressed at their source); while slope number 2 is recommended for use with less heavily compressed program sources. A third switch provides tape monitoring facilities (replacing those on your
amplifier or receiver that you could use to connect the model Pro 16); this switch also permits processing of signals connected to your system's tape inputs. The remaining switch introduces or defeats processing. At the right of the panel, an input-level control sets the correct level for proper processor operation, as indicated by the LED display

Technical description

The model Pro 16 uses several standard IC's and an intelligent circuit board layout; the entire circuitry is contained on a single circuit board that occupies only about one-half the chassis width of the unit (see Fig. 2).

This unit is a peak-expansion/noise-reduction instrument that works on playback-only, unlike some compander systems that require prior program material encoding. Its expansion is determined by the signal itself, using two basic circuit elements. The first is a sensor circuit that samples both program level and frequency content and creates a control signal. The second is a gain-control amplifier that is operated by the control signal. The unit uses a patented peak detector whose outputs are free of ripple and require little filtering. Time
constants have been set with an attack time of $600 \mu \mathrm{~s}$ and a decay time of 80 ms . More conventional designs often provide much longer time constants and are therefore not capable of tracking program material accurately. Although there are separate control and amplifier sections for each channel, the inputs of the sensor circuit are partially blended so that a signal appearing in only one channel controls (to a lesser degree) the gain of the other

While the amplifiers have essentially flat frequency response, the sensor circuit has a shaped frequency response with a broad peak at 2500 Hz , sloping off above and below that frequency. The sensing circuit is therefore most responsive to the frequency range containing the strongest musical signal harmonics. Being frequency-sensitive in this way, the model Pro 16 is less susceptible to pumping effects.
The output of this section of the sensor circuit is applied to the peak detector, which then produces a DC output that is proportional to the peak values of the applied musical signal. This DC signal is fed to the gain-control amplifier where it controls or varies the system's open-loop gain. A fixed gain of between -4 and -7 dB is applied to all signals below 5 mV (noise-reduction mode) while expansion begins at or above 10 mV (upward-expansion mode). A block diagram is shown in Fig. 3.

Lab measurements

The measurements summarized in Table 1 indicate the signal-handling and distortion characteristics of the model Pro 16, but they really do not depict how it operates as an expander. We therefore plotted two sets of curves showing processor gain as a function of mid-frequency input signals. In Fig. 4, maximum and minimum expansion settings were used together with the slope 1 setting, while in

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Total Expansion: 4 dB to 16 dB , continuously yariable. Downward Expansion: -4 dB to -7 dB . Upward Expansion: 0 dB to 9 dB . Aftack Rate: $600 \mu \mathrm{~s}$. Decay Rate: 80 ms . Maximum Output Voltage: at maximum expansion, 6.5 volts. Rated Output Voltage: 1.0 volt. Minimum Input Required: level control at maximum, 50 mV . Harmonic Distortion: at rated output, maximum expansion, 0.08%. IM Distortion: $0.1 \%(60 \mathrm{~Hz}$ and 2 kHz , mixed $1: 1,1$ volt out). Hum and Noise: 80 dB below rated output, at maximum expansion. Input Impedance: 80,000 ohms, Output Impedance: 300 ohms. Power Consumption: 3 watts, Dimensions: $19 \mathrm{~W} \times 3 y / \mathrm{H} \times 12$ inches D . Weight: $6^{3 / 4}$ Ib. Suggested Relail Price: $\$ 299$.

Fig. 5, the same input-versus-output relationships were plotted using the slope 2 setting. Note that at lower expansion settings (8 dB) there is virtually no difference between the slope I and slope 2 modes. For maximumexpansion settings, the slope 1 mode provides steeper expansion. Note, too, that below around 10 mV to 20 mV (depending upon what slope mode and expansion degree are selected) output levels are actually lower than input levels (negative dB readings) indicating
downward expansion and attendant noise re－ duction．

4

5
The more conventional measurements shown in Table 1 clearly indicate that intro－ ducing the model Pro i6 in any high－fidelity signal path in no way degrades the musical signals either in signal－to－noise performance or in any increased overall audible harmonic or IM distortion．

Summary

The real usefulness of a dynamic signal processor such as the model Pro 16 can be appreciated only by actually hearing the unit perform under a variety of program－source conditions（as mentioned in Table 2，along with our overall product evaluation）．If you are looking for exaggerated and unnatural dynam－ ic expansion，this is not the unit for your system．If，however，you want to restore some of the lifelike qualities to compressed material and you can appreciate the resulting improve－ ment．then the model Pro 16 signal processor offers reproduction improvements with none of the audible drawbacks previously associated with such signal－processing devices．R－E

TABLE 1
RADIO－ELECTRONICS PRODUCT TEST REPORT
Manufacturer：RG Dynamics，Inc．
Model：Pro 16
DYNAMIC SIGNAL PROCESSOR MEASUREMENTS

RATED OUTPUT（V）： 1.0
Maxtmum output（V）
THD at 1 －volt output（\％）
IM at rated output（\％）
Hum and noise，referenced to 1 volt（dB）
EVALUATIONS OF CONTROLS，
CONSTRUCTION AND DESIGN
Ease of installation
Excellent
Superb
Effectiveness of indicators
Arrangement of controls
Design and construction
Very good
Ease of servicing
Good

TABLE 2

RADIO－ELECTRONICS PRODUCT TEST REPORT

Manufacturer：RG Dynamics，Inc．
Model：Pro 16

OVERALL PRODUCT ANALYSIS

Retail price
Price category
Price／performance ratio
Styling and appearance
Sound quality
Mechanical performance
$\$ 299$
Medium
Superb
Very good
Excellent
Very good

Comments：In the last analysis，a signal－processing device such as an expander，a noise－reduction unit or a peak unlimiter must be judged more by listening than by bench measurement． There is no easy way to measure whether such devices will impose their own peculiar sonic aberrations upon the total musical reproduction being heard．Terms such as ＂breathing＂or＂pumping＂have been applied to these devices．In the case of the model Pro 16，these undesirable effects have been reduced to an almost impercepti－ ble minimum and the controls are sufficiently flexible and variable so that proper trade－offs can be made，depending upon the nature of the muslcal programming beling augmented．

Like any device of this kind，it can be overused．Some of our better（and less－ compressed）musical test records required a very moderate degree of expansion （around 4 dB to 6 dB total），while much of the FM programming required almost the full available expansion range provided by this unit．By making available two types of expansion slopes as well as variable expansion，RG Dynamics has given you enough control options to properly and effectively handle any expansion requirements of almost any kind of compressed program material．Using the model Pro 16 for even a short while tends to spoil you．Removing it from the signal path makes just about every program sound squashed and flat，with much of the excitement of live music gone．Yet， that is what we listen to most of the time．Until the predicted transition to digital recording takes place（with all its dynamic range benefits），the serious listener who craves restored dynamic range from his or her program sources may want to install an expander．Given the choices，the model Pro 16 offers extremely effective expansion capability without any audible disadvantages．

Leader Model LAS－5500 Audio Analyzer

LEN FELDMAN

CONTRIBUTING HI－FI EDITOR
if you plan to evaluate or troubleshoot high－quality audio equipment，you will discov－ er that you need at least a dozen separate test instruments to perform the job correctly． Leader Corporation（ 151 Dupont Street， Plainview，NY 11803）offers an ingeniously designed instrument，the model LAS－5500 Audio System Analyzer，which combines at least seven instruments into a single compact package．The Audio System Analyzer（see Fig．1）contains an audio oscillator a precision

CIRCLE 121 ON FREE INFORMATION CARD attenuator，a highly sensitive wow－and－flutter meter that can also measure tape－speed drift in percent，an AC voltmeter，a $5-\mathrm{MHz}$ bandwidth oscilloscope and a separate twin－8－ohm dum－ my－load box（see Fig．2）．The dummy load
neatly is packed into the lid of the unit along with the necessary interconnecting cables and connectors．

The front panel of the model LAS－5500 is divided into sections for ease of operation，and switching functions are arranged so that cach section can be used independently or internally interfaced with other related sections．The left－ hand side ol the front panel（see Fig．3）shous the audio oscillator，with a continuously vari able decade irequency knob and five associated multiplier switches．Output level is continu． ously adjustable by an output－level control．or． the oscillator output can be connected internal．

ly to the precision attenuator whose three knobs in the lower part of the front panel provide fixed signal attenuation from 0 dB to -101 dB in $0.1-\mathrm{dB}$ increments.

Figure 3 also shows the wow-and-flutter measuring section with its calibration and drift meter (calibrated to 5% deviation in tape speeds). The AC voltmeter section (see Fig. 4) reads wow-and-flutter in percent, as well as AC volts, $\mathrm{dbV}(0 \mathrm{~dB}$ equals 1 volt $)$ or $\mathrm{dBm}(0$ dB equals 0.775 volt across 600 ohms. or 1 mW). The most sensitive range of this meter is 0.3 mV full-scale; this range permits hum-andnoise readings down to -90 dB below a 1 -volt reference. A standard " A "-weighting filter can be introduced into the meter circuit for any S / N measurements that require its use.

The oscilloscope section is shown in Fig. 5 and Fig. 6. In Fig. 5 , a $10-\mathrm{Hz}$ squarewave is displayed that confirms the scope's response down to DC. In Fig. 6, a $20-\mathrm{kH} 7$ squarewave was applied to the vertical input and a higher sweep rate was used, thus demonstrating the ease and accuracy with which high-frequency signals can be displayed. The display area is calibrated with an 8×10-division nonilluminated graticule, each division measuring 6 mm (approximately, 0.25 inch). Although sweep rate and vertical sensitivity are continuously variable by concentrically mounted potentiometers associated with the sweep-frequency and vertical-input switches, there is no calibration setting. For this reason, if the scope is used as a precise voltmeter, it is necessary to use external calibration voltages or known frequencies. A switch located in the scope section permits you to parallel its vertical input directly across whatever the voltmeter is reading. A switch on

MANUFACTURER'S PUBLISHED SPECIFICATIONS (PARTIAL):

AUDIO OSCILLATOR:
Frequency Range: 10 Hz to $1 \mathrm{MHz}(\pm 3 \%$ above 100 Hz). Output Voltage: variable to more than 3.0 volts RMS into 600 -ohm load. Response: $\pm 0.3 \mathrm{~dB}$. Distortion: 0.05% 500 Hz to $20 \mathrm{kHz} ; 0.1 \% 100 \mathrm{~Hz}$ to 100 kHz , less than $1.0 \% 10 \mathrm{~Hz}$ to 1 MHz . Output Impedance: 600 ohms.

ATTENUATOR:

Input/Output Impedance: 600 ohms, unbalanced. Range: 0 to 101 dB in $0.1-\mathrm{dB}$ steps. Accuracy: $\pm 2 \%$ Frequency Response: $\pm 2 \%$ to -70 dB , DC to 200 kHz . Maximum Input: 0.5 watt (17 volts RMS or +27 dBm).

VOLTMETER:

Range: $30 \mu \mathrm{~V}$ to 100 volts in 12 ranges; -90 dB to +40 dB , referenced to 1.0 volt. Accuracy: $\pm 3 \%$ of full scale, referenced to 1 kHz . Frequency Response: $\pm 3 \%, 20 \mathrm{~Hz}$ to 100 kHz . Input Impedance: 10 megohms/65 pF. Weighted Filter: JIS "A" curve.

OSCILLOSCOPE:

Vertical Sensitivity: from 10 mV -per-division to 100 volts-per-division. Vertical Bandwidth: DC to $5 \mathrm{MHz},-3 \mathrm{~dB}$. Risetime: 70 nS . Input Impedance: 1 megohm-per- 40 pF . Maximum Input Voltage: 600 volt (DC + AC peak). Horizontal Sensitivity: 200 mV -per-division. Bandwidth (horizontal): DC to $250 \mathrm{kHz},-3 \mathrm{~dB}$. Maximum Input: 100 volt (DC + AC peak). Input Impedance: 100,000 ohms. Sweep Frequency Range: 10 Hz to 100 kHz. Synchronization: Internal (+polarity).

WOW AND FLUTTER METER:

Measuring Modes and Frequencies: JIS, CCIR at 3 kHz ; DIN at 3.15 kHz . Input Voltage Range: 15 mV to 10 volts RMS. Test Ranges (5): 0.03% to 3% full-scale. Response: 0.5 Hz to $200 \mathrm{~Hz}(\mathrm{JIS}) ; 0.3 \mathrm{~Hz}$ to 200 Hz (CCIR): 0.3 Hz to 300 Hz (DIN).
GENERAL SPECIFICATIONS:
Power Supply: 100, 115, 200 or 230 volts, as specified, 50 Hz to $60 \mathrm{~Hz}, 36 \mathrm{VA}$. Dimensions: $17.7 \mathrm{~W} \times 5.9 \mathrm{H} \times 16.9$ inches D. Weight: 25 lb . Supplied Accessories: dummy load (two 50-watt, 8-ohm resistors); low-capacitance probe; assorted plugs and cables; and binding post adapters.
the voltmeter selects either of two inputs, labelled LEFT and Right, so that you do not have to constantly change connections back and forth when testing stereo audio equipment. Also provided are an external horizontal input and a switch to select AC, DC or the voltmeter input to the vertical amplifier of the scope section.

Audio oscillator performance

The audio oscillator has a frequency range that extends from 10 Hz to 1.182 MHz . In our tests, the frequency dial was set by eye to the $1-\mathrm{kHz}$ mark and the actual frequency output was 993 Hz , an error of less than 0.7%. At a $20-\mathrm{Hz}$ setting, the output was exactly 20 Hz while at 20 kHz , our frequency counter read a $20,055-\mathrm{Hz}$ output, an error of less than 0.3%. Maximum output voltage was 6.3 volts unterminated and 3.15 volts when terminated in a 600-ohm load.

This signal source is adequately low in distortion for making measurements on tape equipment and on all but the current superspecification audio amplifiers. At 20 Hz , harmonic distortion of the audio oscillator's output signal measured 0.18%. decreasing to 0.02% at $100 \mathrm{~Hz}, 0.01 \%$ at $200 \mathrm{~Hz}, 1 \mathrm{kHz}$ and other mid-frequencies and increasing to a max-
imum of 0.05% at 20 kHz . Amplitude was uniform over the entire audio range, and the $3-\mathrm{dB}$ rolloff point occurred at 220 kHz .

Voltmeter accuracy

We checked the AC voltmeter accuracy of the model LAS-5500 against our digital AC voltmeter, which has an accuracy of better than 0.5% and we discovered that the model $L A S-5500$'s meter accuracy is almost as good at mid-scale, with errors increasing to approximately 1.0% at full-scale. The frequency response of the meter extended to well beyond 200 kHz , as claimed.

Wow-and-flutter measurements

The wow-and-flutter measuring system was easy to use and, with a $3-\mathrm{kHz}$ tone recorded on a standard test record played on a pitchadjusted turntable, we were able to confirm the accuracy of the drift readings on the calibration meter by using a calibrated strobe disc to set precise 3% deviations from true speed. Sure enough, the drift meter read exactly $+3 \%$ or -3%. For some reason, the DIN $3.15-\mathrm{kHz}$ signal did not appear at the wow-and-flutter signal-output terminal when that switch position was selected. Instead, the output remained
at exactly 3.0 kHz ．Perhaps a miswiring of thez slide switch in the particular unit tested accounts for this．The various weighting fac－ tors incorporated into the wow－and－flutter measuring section permit an easy interpreta－ tion of percentages and eliminate having to ＂estimate＂this parameter for tape decks and turntables，which is usually required when using unweighted wow－and－flutter measuring equipment．

Summary

Our overall product evaluation of the model $L A S-5500$ is summarized in Table 1．This instrument is a space and time saver for the audio bench．It also greatly reduces the com－ plexity of tests and measurements made on audio equipment．While its price may seem prohibitive at first，if you total the cost of a wide－range accurate AC VTVM，a good audio generator，an accurate wow－and－flutter meter and a wideband oscilloscope，it will become clear that the model LAS－5500 represents something of a bargain．

R－E

TABLE 1
RADIO－ELECTRONICS PRODUCT TEST REPORT
Manufacturer：Leader Instruments Corp．
Model：LAS－5500
OVERALL PRODUCT ANALYSIS

Retail price
Price category
Price／performance ratio
Styling and appearance
Sound quality
Mechanical performance
\＄1995
Medium－high
Good
Very good
N／A
Excellent

Comments：We feel that this multifunction test instrument is most suited to service－bench use and， in the laboratory，for measuring tape－recorder equipment performance．Its sinewave signal source，although accurately calibrated and extremely flat in response，is a bit too high in its harmonic distortion content to be used to measure today＇s super－hi－fi audio amplifiers，preamplifiers and receivers．Since tape recorder distortions are generally of a higher magnitude，the audio oscillator contained in the model LAS－5500 will not contribute to the overall distortion readings made of tape equipment under test or alignment．
Of course，it would have been nice if the instrument had some form of distortion－ measuring device．Used by itself，the model LAS－5500 can determine amplifier over－ load or clipping levels only by observing output waveforms on the screen of the wideband oscilloscope provided．The wow－and－flutter meter section cannot be faulted in any way；it offers an easy way to measure this important tape recorder and turntable parameter．The high－quality precision attenuator is handy to have in any lab or shop and is accurately calibrated．The 8 －ohm loads，supplied separately，have only a 50－ watt rating，although we found this rating can be exceeded for short periods of time without degrading the accuracy of the load resistors．Here again，if you regularly test high－powered audio equipment，you will need higher－power－rated loads．Perhaps the best feature of the model LAS－5500 is its compact size and arrangement．These days， with all the sophisticated equipment necessary to properly test audio equipment，it＇s a pleasure to find a multipurpose instrument that not only replaces several separate test equipment items but occupies less than 18 inches of valuable bench space．

PIONEERS OF RADIO

continued from page 46
near the speed of light．With a large prism of asphalt（measuring $5 \times 2 \times 1.5$ feet）he showed also that the electric waves could be refracted like light waves．

With these proofs，the scientific world accepted the idea of electric waves in space．

Hertz＇s discovery began not only the scientific study of radio，but also attempts to use it to communicate．In India，the physicist Bose read of Hertz＇s experi－ ments，duplicated them and devised im－ proved apparatus with which he toured Europe and convinced many scientists of the existence of electric waves．And in Italy，just a few－years later，the young Guglielmo Marconi read Hertz＇s obitu－ ary and decided to try to use these waves as a means of communication．

Sir Oliver Lodge

although sir oliver lodge is not too well known today，he was considered a leader－if not the leader－in the wireless field during the 1890 ＇s and the early 1900＇s．The eminent electrical engineer and author，Sylvanus Thompson，for ex－ ample，attacked Marconi in a letter（Sat－ urday Review，London，April 5，1902） for posing as the inventor of something new．He（Marconi）was，claimed Thomp－ son，merely using＂the apparatus of Lodge ．．．the original inventor of wire－ less telegraphy，＂with a few modifica－ tions．
In 1883，the Irish physicist George

Fitzgerald surmised at a meeting of the British Association that＂Maxwellian＂ waves might be produced by the oscillato－ ry dischargè of a Leyden jar，＂if only we had the means of detecting such waves．＂ In 1888，Lodge and two associates set out to produce and detect such electromag－ netic waves，using what were later called Lecher wires to detect them．In Lodge＇s words：
＂I found that the waves could not only be produced but also detected，and the wavelength measured，by getting them to go along guiding wires adjusted to the right length for sympathetic resonance． Thus I obtained the phenomenon of nodes and loops，due to the production of stationary waves by reflection at the dis－ tant end．＂In the same year，Lodge learned of Hertz＇s work in the field，and immediately attempted to transmit waves through free space．

In 1899，he lectured to the Royal Insti－ tution on＂The Oscillatory Discharge of a Leyden Jar，＂demonstrating＂many of the effects of these waves，both on wires and in free space．＂He called his detector （a needle point touching an aluminum plate，in circuit with a battery and tele－ phone receiver）a＂coherer＂because an electric wave caused both the point and plate to cohere，or stick together，thus lowering the resistance and producing a signal in the phones．Shortly thereafter， when Branley announced his metal－fil－ ings coherer，Lodge adopted it，believing it more reliable and easy to adjust than his single－point detector．

In 1894，during a lecture in honor of Hertz（who had just died）Lodge demon－
strated the detector．He used a mechani－ cal tapper or vibrator to shake the detec－ tor filings apart after a signal passed through them．The coherer was thus con－ stantly ready for action．Holding the transmitter key down for a longer or shorter time produced a long or a short signal in the receiver．Using this tapper， Lodge showed how the dots and dashes of the Morse code could be produced with radio equipment．

Lodge felt that Popov，Righi and oth－ ers may have been influenced by his 1894 lecture．Professor Alexander Muirhead， who was present at the time，certainly was，and Lodge says he＂conceived the desire to apply it to practical telegraphy．＂ The result was a successful Lodge－Muir－ head venture into commercial wireless．
Sir Oliver was an early proponent of tuning，which he called＂syntony，＂to reduce interference and increase the range of communications．Although both Hertz and Tesla had mentioned the effect of resonance，in 1897 Lodge was able to obtain a patent（British patent 11,875 ）on syntony．Marconi later bought the patent from the Lodge－Muirhead syndicate， enormously strengthening his competi－ tive position．

Lodge was interested in a wide variety of other subjects，especially psychic phe－ nomena，and spent much of his time in later years pursuing them．He continued to write on radio topics，however，until well into the 1920＇s．Sir Oliver Lodge died in 1940.

R－E

TAKE THE CET TEST AS PRESENTED IN Radio-Electronics each month, one chapter at a time. This month's test questions are on AC circuits. See if you can get 75% or more correct. Also, review your answers as well as the discussion of each question on DC circuits that appeared in the July 1978 issue of Radio-Electronics. Join the thousands of electronics technicians who proudly display their CET certificate, and who are helping raise the public recognition of electronics technicians to the highest level. To receive free information regarding where you can take the CET test, write to ISCET: $310 \frac{1}{2}$ Main St., Ames, IA 50010.

Chapter 3 questions, AC circuits

1. The test leads of an oscilloscope connected across an ordinary 117 -volt $60-\mathrm{Hz}$ power source would show what peak-to-peak deviation if the scope is calibrated for 100 volts-perinch?
() a. 1.17 inches
() b. 1.65 inches
() c. 2.35 inches
() d. 3.3 inches
2. The circuit in Fig. 1:

() a. passes low frequencies to ground

An installment of a continuing series readiness to qualify as a

Before you try this month's questions, let's take a look at the answers to the questions that appeared in the July 1978 issue of Radio-Electronics.

Correct answers to DC circuit questions

1. Correct answer is "b." Maximum power from a battery to the load will occur when the load is equal to the

internal resistance of the battery-in this case: 10 ohms (see Fig. 8).
2. Correct answer is "b." The base voltage of the circuit in Fig. 9 is determined primarily by the size of R1 and the small amount of emitter-base current.
3. Correct answer is "d." In Fig. 9 a current through R3 (and therefore R2) of 2 mA would give a voltage drop across R2 of only 1 volt under normal operating conditions. Therefore, the circuit has a problem which

FIG. 9
causes an extremely large R 2 drop (4 volts). Of the four choices, " d " is the best: "C2 may be shorted."
4. Correct answer is "b." No voltage doubling action can take place if rectifier DI is open. Therefore, the circuit (see Fig. 10) will act as a halfwave 150 -volt power supply.

ANSWERS TO

5. Correct answer is "d." D3 through D6 act as a voltage regulator, conducting once the V_{0} voltage exceeds

FIG. 11
their combined characteristic "turnon" point. This maintains a constant voltage at point V_{O}. (see Fig. 11)
6. Correct answer is "b."

of questions aimed at checking your

 Certified Electronic Technician
DICK GLASS

() a. a trap to eliminate all but a band of wanted frequencies
() b. an oscillator

() c. a filter to eliminate low frequencies
() d. a filter to eliminate high frequencies
7. What is the time constant for the cathode circuit in Fig. 5?
() a. 4700 seconds
() b. 470 microseconds
() c. 4.7 microseconds
() d. 4.7 milliseconds

FIG. 5
8. Increasing the size of R in Fig. 6 will have what effect?

FIG. 6
() a. None.
() b. It will not change the resonant frequency but will broaden the response curve.
() c. It will change the resonant frequency.
() d. It will reduce high frequency reactance.
9. What is the reactance of a 5 -henry choke coil at $15,750 \mathrm{~Hz}$?
() a. 222,700 ohms
() b. 494,550 ohms
() c. 78,750 ohms
() d. 494.5 ohms
10. To reduce 27 mHz Citizens band interference in a TV set, which of the networks in Fig. 7 would you place in series with the TV antenna?

() a. Network A
() b. Network B

Be sure to keep this month's issue of Radio-Electronics so you can check your answers in the next CET test. The new questions appearing in the next CET test will be on transistors and semiconductors.

PRIOR QUIZ

7. Correct answer is "c." Removing the input signal will cause grid leak bias to be lost, therefore excessive plate current will develop.
8. Correct answer is "a." Current flow is 'against the arrow' in a diode, or in this case: from A to C . When A is

FIG. 12
more positive than C (and B), D1 cannot conduct. (See Fig. 12)
9. Correct answer is "b." Without C1, R1 would produce degeneration, i.e.: the cathode voltage would directly 'follow' the signal seen on the grid in

FIG. 13

FIG. 14

Fig. 13, reducing the amplification in proportion to the signal strength.
10. Correct answer is "a." Reverse AGC would reduce the emitter current by lowering the base control voltage. Forward AGC would reduce the amplifier current by increasing the control voltage past the linear portion of the curve to a point where gain is reduced as collector current is increased. See Fig. 14.

Antique Radios Bringing them back to life

There is a tremendous amount of interest and a reasonable profit in restoring old radios. This article tells you what radio restoration is all about and how you can become actively involved.

THERE HAS BEEN A TREMENDOUS RISE IN INTEREST IN ANTIQUE radios lately. (The price of the old sets has gone up, too!) Most of these radios are not very hard 10 fix; in fact, they provide a good place to use logical troubleshooting methods.

The only difficulty you will have will be in a few circuits that were common in the early days but haven't been used for a long time. They are not too hard to handle; you just probably haven't run across them. If you know about them ahead of time, it'll make repairing them a lot easier. (l can speak with authority, because l've worked on 'em when they weren't antiques but the current models!)

Tubes and circuits

The early battery-type vacuum tubes were triodes-'01A, ${ }^{\prime} 12,{ }^{\prime} 10,71 \mathrm{~A}$, etc., and the filaments were 5 volts DC. The original filament power source was a 6 -volt automobile battery with a small dropping resistor in series. It was a variable resistor (called a rheostat) so you could turn the voltage up as the battery went down. In some very old sets, it was also the volume control! I use the term filament instead of heater because these devices were of the "red-hot hairpin in a bottle" type, and the filament was the source of the electrons

This setup led to an unusual circuit. When these tubes were used with an AC power supply, they developed hum problems. So, the filaments were fed from a center-tapped winding on the power transformer. This equalized the AC voltage from either side of the filament to ground. Since the cathode must have a ground-return to complete both plate and grid circuits, the center tap of the filament winding was grounded. If a high bias voltage was needed, which was usual in older power tubes (the 71 A tube needed -40 volts on the grid), a resistor could be connected from the center tap of the winding to ground. Or a positive voltage could be applied to this point. The grid circuits returned directly to ground; therefore, making the filament positive made the grid that much more negative with respect to

FIG. 1-F FAMENT CENTER TAP is the ground relurn for the "cathode" circuit. Bias may be applied at this point.
it. Figure 1 shows these two circuits.
If manufacturers didn't want to use a center-tap filament winding, they connected a small variable resistor across the winding with its slider grounded. In stages like audio drivers that were more sensitive to AC hum, this eould be varied for the

FIG. 2-LOW-OHM FIXED RESISTOR was often used instead of center tap. If adjustable, it could reduce hum. (Later ones on AC tubes were commonly called "humdingers.")

ATWATER KENT model 36, 1927

FRESHMAN MATERPIECE, 1925

FRESHMAN MASTERPIECE, 1925

RADIOLA 60 by RCA

PHILCO CORP. model 90B, 1931

ZENITH model 75 Radio Phonograph, 1900
least hum; therefore, you'll find this marked hUM CONTROL in some of the sets. (See Fig. 2.)
Around 1926, the first tube with a separate cathode sleeve was developed; and, as far as I know, it was the type ' 27 triode. (Now, we have to use the term heater again!) A year or so later, the first tetrode tube was developed. That was the type ' 24 , the famous "screen-grid" tube with higher gain. (This tube and I went into the radio business in the same year. It's done better than I have!) These tubes got rid of a problem that had bugged designers since the beginning-neutralization!
Other tubes soon followed: the $35 / 51$ and the first 6 -volt 0.33 -amp tubes, the 36 -to- 39 group. (The ' 38 was the first ACoperated pentode with a suppressor grid.) Then along came the '40 tubes, including the famous ' 47 power-output pentode, that could be found in about half the sets sold in the middle 1930's. We also had the $56 / 57 / 58$ series, with 2.5 -volt heaters. However, all this comes from my fallible memory, so, don't pin me down on it.)

Power supplies

The first radios used batteries. The filament battery was called the " A " battery, and the plate battery was called the " B " battery. If separate batteries were used for grid bias, they were called "C" batteries. These terms hung on when the first ACpower radios were built. (To this day, most of us old-timers use "B + " when we refer to the high voltage DC supply of a radio--even in TV applications, where the proper term is "low voltage DC supply.")

There were some odd components in these circuits that were eliminated in later radios. The stock circuit always had a power transformer. The $B+$ voltage was fed from the secondary winding, which was always center-tapped, and was the negative return. A full-wave rectifier tube was used, generally a type ' 80.

FIG. 3-THE SPEAKER FIELD COIL could be in the positive or negative leg of the power supply. Note that filter capacitors may go to negative terminal.

This negative return was a " B - " supply

Figure 3 shows one of the old power-supply circuits. Many sets isolated the negative return of the B+ supply at the center tap and ran it through the field coil of an electrodynamic speaker to ground. (An electrodynamic speaker resembles modern dynamic speakers but it had a good-sized field coil to develop the magnetic field and needed a fairly heavy current.) All current drawn by the circuits in the set passed through the field coil, which also acted as the filter choke. In quite a few sets, the field coil was in the positive leg of the B+ supply. It works

RCA model 95T5, 1938

SIL VERTONE model 8005, $194 \dagger$

MODEL 6050 Sears Silvertone
exactly the same since the same current flows on both sides of the power supply circuit.

With the field in the negative leg of the $B+$ supply, the current developed a negative voltage drop. This drop was taken off and used as bias on stages that needed it. In many radios, some small resistors were used between the field coil and ground to develop lower bias voltages. The unusual feature in this circuit lies in the connection of the input filter capacitor. Note that the negative connection does not go to ground but to the B -line. Connecting this capacitor to ground when you replace it results in a terrific hum. In quite a few of these old radios, another capacitor (CI) was added, as shown in Fig. 3. This capacitor was connected with its negative lead to the center tap, and positive lead to ground.

Bleeders

Voltage regulation wasn't so great in most antique sets. To improve this situation somewhat; many sets used a long string of resistors connected from the $\mathbf{B}+$ voltage to ground. This type of resistor was called a bleeder resistor. Its function was to draw a certain constant "bleeder" current, placing a partial load on the power supply. As a result, variations in the load currents of the various stages did not cause so much change in the voltage. Atwater-Kent was one manufacturer who used this circuit extensively.
Figure 4-a shows a typical bleeder circuit. This bleeder was connected directly to ground. Figure 4-b shows another type

FIG. 4-BLEEDER DROPS THE B + voltage for different stages of the receiver, while stabilizing the power-supply output(a); and (b) bleeder with negative end for bias.
that had a tap connected to ground and more resistors going to B - at the transformer center tap, so that they could tap off negative voltages for biasing.

Signal circuits

The oldest radios are all TRF (Tuned Radio Frequency) types. This means there was a string of RF amplifier stages, one after the other (cascaded) with a detector and audio amplifiers.

There were two reasons why: First, this was the first radio receiver circuit, and second, RCA held a patent on the superheterodyne circuit! That circuit was invented during World War I by Major Edwin Armstrong. (Yes, "FM Armstrong" himself.) So, for quite a while, if you owned a superhet radio, it was an RCA model. Eventually all radios became superhets.

The TRF's comprise a string of up to three amplifier stages. More than three stages resulted in stability problems, to say nothing of tuning problems. The first sets had three separate tuning capacitors. Dials were calibrated from 0 to 100 . (This resulted in your having to \log the settings, with entries like "KDKA: 47-51-42"!)

Then a three-gang capacitor was developed that would track, and then the ad men had a field day selling "one-dial tuning"! Before then, however, some wild and wonderful schemes were used. The Atwater-Kent units drove all three tuning capacitors from the middle shaft, with the outboard capacitors driven by small belts made of thin brass on metal drums. (If you need a replacement for these, cut some thin strips of brass shim stock, and solder the ends together.) To prevent slippage, a tiny hole in the belt slipped over a pin on the drum.

The superheterodyne radios generally used separate triode oscillators with a tetrode mixer. The most popular (but not universal) intermediate frequency was 175 kHz . The IF transformers were generally tuned by a pair of mica compression trimmers, accessible through holes in the top of the shield cans. Some later transformers used powdered-iron cores, with a long, thin brass screw coming out the top and bottom. Since the ends of these screws were split (they broke off very easily, which caused problems) we soldered a nut on the end of the screw and used a Bakelite hex-tool to tune them). Some manufacturers used fixed-tuned IF transformers (the early Majestics, for instance) tuned them up at the factory and then ran the shield can full of hot tar. This is what I call an early example of encapsulation!

Several manufacturers followed the same procedure with the DC power supplies. The filter capacitors and chokes were mounted in a big square tin can and filled with tar. This is where the term filter block came from! You replaced the whole thing if any single part blew.

Servicing-parts substitution

Servicing the old sets can be fairly easy, especially if you have a schematic. Even though it was common practice then to omit DC voltage readings from the diagram, it's not difficult to check them. In early TRF sets with triodes, the $B+$ voltage is about +180 - the voltage of four 45 -volt B-batteries in series. This voltage will be used as plate voltage on the RF amplifiers and audio output stage, with about +90 volts on the first audio stage and still less on the detector stage-from +22.5 volts to +45 volts. These voltages are tapped-off the bleeder resistor, and negative bias is picked up as discussed earlier.

In the superheterodyne sets and in later sets using tetrodes, the $B+$ voltage is about +250 for plates, with about +100 to +150 on the screen grids.

Many sets used grid-leak detectors (see Fig. 5). The grid-leak resistor and grid capacitor were often unmarked. The resistor

GANGED TO TUNING CAPACITOR
IN OTHER STAGES (LATER MODELS)
FIG. 5-GRID-LEAK DETECTOR USED in most old TRF radios. In many cases the "leak" resistor went direct from grid to ground.

EARLY SUPERHETERODYNE，the Atwater－Kent models 84 and 84－F．
was a glass-body type with metal end caps and was clip-mounted on the mica capacitor. The resistor value was usually 1.0 megohm, and the capacitor was 250 mmf -now called pF (or $0.00025 \mu \mathrm{~F}$).

Servicing the B+ line

The first step in servicing the $\mathrm{B}+$ line is to take all the tubes out. Now turn the set on and check the B+ voltages. (To know what reading to expect, check the AC voltage from either plate of the rectifier tube to ground. If it reads about 160 volts RMS, the $B+$ voltage will be +180 . If it reads 220 volts RMS, then the $\mathrm{B}+$ voltage will be about +250 .)

The ' 80 rectifier tube will have to be left in, of course, to read the $\mathrm{B}+$ voltage. If its plate becomes red-hot, turn it off quickly, you've got a short. If you check from the $B+$ voltage to ground, the cause of the short should be easy to find. For an easier test, lift up one end of the bleeder-resistor network. For a ballpark figure, these bleeders averaged about 25,000 to 50,000 ohms total in most sets.

Many older sets used paper filter capacitors with a range from $2 \mu \mathrm{~F}$ to $4 \mu \mathrm{~F}$. This range was as much as these capacitors could have and still be small enough to fit into the cabinet. They can be replaced by $4 \mu \mathrm{~F}-8 \mu \mathrm{~F}, 450$-working-volt, electrolytic tubular capacitors (noncritical). If the filter is encapsulated, find the shorted capacitor and clip off the lead. Fit the replacement capacitor under the chassis, if any. Make sure to connect the negative terminal to the right place.

The next step was the use of wet electrolytic filter capacitors. The first such type was a huge 3 -inch brass or copper can with an insulating disc on top. This type was succeeded by the more familiar-looking aluminum can, which was about 1 inch in diameter. The advantage of the wet electrolytic capacitor was that it was truly self-healing. The can was one electrode, and an aluminum corkscrew was the other electrode; the electrolyte was really a liquid. If the capacitor arced over, it would heal up instantly and be as good as new! The disadvantage was that if you turned the chassis upside down to service it and forgot to tape over the vents on top of the filters, all the liquid leaked out and you had to replace all the filter capacitors! These electrolytic types ran about $8 \mu \mathrm{~F}$ at 450 working volts. They can also be replaced by tubular capacitors with the same capacitance or greater and the same working voltage.

Checking bleeders

If you discover that several B+ voltages are off-value, one of the bleeder resistors is probably open, and you'll need the schematic to find the value. If a diagram isn't available, you can determine the approximate resistance by connecting a $25 \mathrm{~K}-50 \mathrm{~K}$ potentiometer in the place of the open. Turn on the set and adjust the potentiometer until the B+ voltage at that point returns to normal. Use the ballpark voltages previously given as a guide. Then take the potentiometer out and read its value; replace it with a 5 -watt wirewound resistor.

The early bleeders varied in type. Atwater-Kent used an odd variety-a large strand of asbestos that had resistance wire wound around it and then was insulated. The wire ends were made of blobs of molded solder, some up to 12 inches long, and they might use eight or ten taps. The underside of the chassis looked like a nest of snakes.

A nother common and unpopular type of bleeder was called a Candohm (canned ohms). These resistors were flat and wirewound with taps connected to metal tabs. The entire resistor was insulated with empire cloth, a fabric soaked in fish oil, then covered with a tin shield that served as the mounting; hence the name, Candohm. This type of bleeder would break down to the grounded tin case, and was prone to developing intermittents. (One stock cure was to run a sharp-pointed knife down the wirewound resistor to make sure it stayed open, and then tack a 5 -watt wirewound resistor to the terminals.)

Replacing IF transformers

If one of the IF transformers in an old set is open (a common
occurrence) you can often substitute a modern-type IF transformer. Take the old transformer out of the shield can. Now select a replacement transformer and mount it on the chassis in the original hole. For the sake of appearance, you can put the original shield can back, and the set will look just like it did. I used this trick on a beautiful old Scott All-Wave radio that I was overhauling, and the set worked just as well as ever. You can obtain $175-\mathrm{kHz}$ IF transformers in small cans from the J. W. Miller Company, as well as $262-\mathrm{kHz}, 455-\mathrm{kHz}$ and even $132-$ kHz types. Many sets then were supposed to be tuned to 450 kHz or 460 kHz , but any $455-\mathrm{kHz}$ transformer will cover that range.

You may also find open RF coils. In many very old sets, these coils are often single-layer solenoids, wound on forms that are up to 2 to 3 inches in diameter. If those are bad, they can be completely rewound without too much trouble. (Most of the open circuits are at the coil ends and can be repaired by unwinding one turn and resoldering.) If the whole RF coil must be rewound, count the turns as you unwind the original and use the same size wire and the same winding direction. Even oscillator coils can be rewound if they're single-layer coils. If they are multiple-layer or honeycomb coils, a replacement can probably be found in an RF coil catalogue.

Checking tubes

If your tube tester won't check the old tubes, just plug the tubes into the set; if they light up, they may be good. The best tube test is signal-tracing. Feed a signal to the grid and read the signal on the plate. In the RF or IF stages, read the signal voltage at the detector output as you move the signal generator through the IF stages toward the antenna.

Many older tubes had such heavy filaments (to avoid hum; the heavy filaments had a much longer thermal lag between AC cycles) that they can be rejuvenated in the same way as picture tubes. Just raise the filament voltage about 10%, let it heat for a while, then try it.

You may have noticed that I've referred to tubes as " '01A," "'71A," etc. The apostrophe indicates that the last two numbers are the only ones that are really significant. At first, the tubes were designated "201A," "301A," etc. The first digit indicated the brand name-RCA tubes were all marked "2," Cunningham tubes were all marked " 3 ," and so forth. (This description may not be precisely correct, but it gives you the general idea.)

Speakers

The oldest radios used horn speakers. They were driven by what amounted to a big earphone. Next came electromagnetic speakers, or just "magnetic" for short. These speakers had a pair of coils, driven by the output stage, which moved an iron vane or armature connected to a paper cone with an iron rod. Next came electrodynamic or moving-coil speakers, which were similar to those used today.

The big difference is that these old speakers had a "field coil," as I mentioned earlier. Current had to flow through it to provide the magnetic field. Some of the first speakers had their own separate field supply-a transformer, rectifier and filter that energized the field directly from the AC line. The next versions were used in series with the $B+$ line of the $D C$ power supply. The field coil served as the filter choke.

Any of these dynamic speakers can be replaced by a modern PM dynamic speaker of the same size. Just connect the voice coil directly to the original output transformer, matching impedances, of course. Most speakers were 8 -ohm voice-coil types. If the field was used as the filter choke, replace it with a suitable iron-core choke with an inductance around 8-10 henries at 250 mA .

If the output transformer is open, you can find replacements for them. The ' 12 A tube has a load impedance of 10,000 ohms; the '71A's load is 5000 ohms, and so on. You can find the right load impedance for any transformer in supplements at the back continued on page 97

What You Need To Know About

SPECIAL SIGNAL GENERATORS

SIGNAL GENERATORS FOR TV. Last month, we covered signal generators used in troubleshooting and evaluating stereo systems. This month, we continue the coverage with TV signal generators.

Two procedures have long served troubleshooters in finding out what's wrong with a TV: signal tracing and signal injection. Both are intensely practical; both are fast; both are dependable-when you're sure of the signal being fed into the set.

That's where today's special signal generators come in handy. They produce specific, definite input signals, sometimes for the front end of a receiver, sometimes for a particular section. In either case, you can be sure of what you're dealing with as you diagnose troubles, and this confidence speeds repairs. You cannot always be that certain when you depend on station signals for testing.

A few generators today have evolved into multipurpose instruments that justify the term "analyzer" (which indeed several are called). This Special Section introduces you to some of these unique instruments, and tries to guide you in taking advantage of the new efficient troubleshooting they can provide.

Television Servicing: Modern Generators Make It Easier

Abstract

The television sweep generator is a very specialized instrument that, in the hands of an expert, can be used to troubleshoot and service modern color television circuits with speed and accuracy.

TELEVISION TEST EQUIPMENT IS WORTH more today than ever before. First, signal generators, particularly the newer colorbar units, are more compact and yet far more stable than they have been up till now. Tight, dependable oscillators and frequency counters, brought about through IC technology, virtually eliminate guesswork-and end your worries about whether the instrument has the jitters or the set has.

Second, video generators have become increasingly versatile as TV sets have become more complex. As you will see, some more recent equipment has even developed some entirely new approaches to video analysis and trouble diagnosis Such usefulness can save you time and even earn you money, not to mention making servicing easier.

Moreover, the advent of consumerpriced home video recorders promises new things to work on, even though they are a bit more complicated. New challenges are opening up with unlimited potential. Of course, like any other opportunity, it's valuable only if you're ready for it. Preparedness requires that you keep up with the new technology and equip yourself for dealing with it.

For IC's: Old habits into new

Integrated circuits comprise the major change in TV receivers. In certain ways, placing many stages on a single IC eliminates several service and adjustment worries. Today's TV sets have fewer coils to align in the RF, IF and color stages. Integrated circuits turn formerly critical stages into more elaborate designs that are less touchy, yet, because of IC technology, are no more costly.

Unless you have discovered how easy IC's are to troubleshoot, they may leave you in some awe. No doubt about it, they are exotic inside. You may not understand all their architecture, design, composition, manufacture and inner workings. However, you need not worry about servicing them. You probably already have whatever knowledge you need, maybe without even realizing it. All you have to do now is to ease yourself away from
certain old troubleshooting habits and acquire some updated thinking. I warn you fairly, however, you do need test instruments. Let's take an example:

A good color generator performs several basic tests. It can prove especially valuable when the color section of a TV receiver you're servicing is peppered with IC's. Trouble-tracing with a station signal may be manageable, but it cannot compare with using a fixed, dependable signal of steady, known characteristics. This is true of the keyed-rainbow pattern (the most commonly used), and of so-called NTSC patterns-which have started reappearing in service-type generators

Let's take a hypothetical case: One very new-model Zenith color chassis exhibits no picture at all. The sound is OK. At examination, the screen is black. But this often is part of the missing video symptom in recent sets. As it happens, there's a photocell-operated brightness limiter in this set that accommodates room lighting. Flipping a flashlight beam across the photocell causes enough "speckle" to appear on the screen to show that the high voltage and the CRT are working.
Your first thought is-the luminance is blocked. You feed in a steady signal, in this instance a keyed rainbow. Your oscilloscope shows the signal is OK at the video-detector output, and at the input lug of the module that handles chroma and luminance. More tracing proves that the signal is OK at the input to the luminance IC. However, in checking waveforms around the luminance IC, you discover that the signal from the chroma IC is missing. This leads you to make tests at the chroma IC.

Your scope shows that the input to the chroma IC is OK, but there's no output signal at any terminal. One thought of course is that the IC may be defective. But all the outputs are missing. A faulty IC could cause that symptom, but the situation should prompt at least some second thoughts. With everything shut down in this IC, perhaps the trouble lies outside it-for example, the DC supply voltage could be missing.

Sure enough, it is. Someone else replaced this IC once before; its predecessor was bad. However, one pin wasn't soldered properly during replacement. There's no voltage on the DC input pin, and therefore no operation. No video reaches the $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{G}-\mathrm{Y}$ outputs, nor the luminance IC.

However, one main point you should recognize is the advantage of using a generator signal instead of a station signal. Figure 1 shows the waveforms found at the luminance IC input when you use a station signal, a keyed-rainbow signal, a standard EIA color bar (in what's known

FIG. 1-STATION SIGNAL (top) contains constantly changing video. Fixed patterns from generators make tracing and analysis much easier.
as the NTSC format）and a color－bar pattern developed by Sencore for the new model VA48 video analyzer．Note that here you deal mainly with video signal levels．

Figure 2 shows the same four signals as they appear on your oscilloscope at the input to the chroma amplifier IC．Any of the latter three signals is easier to recog－ nize for tracing purposes than the station signal．

The other major point is that tracing stage operation is the best method of finding IC trouble．No matter how you have approached troubleshooting in the past，today you need a step－by－step，logi－ cal way to diagnose faulty sections，local－ ize defective stages and isolate troubled circuits．（For more details，note the box about Easi－Way Servicing in last month＇s Special Section．）

Then，when you have found an IC that doesn＇t do its job，take the following steps：

1．Check that all signals－such as video，keying，blanking，etc．－are reaching the IC．Often the IC operates incorrectly or not at all when even one signal is missing．
2．Verify that all DC voltages are reaching the pins of the IC．In the previous example，voltage was available at the foil，but could not be measured at the pin on the opposite side of the PC board．

FIG．2－CHROMA CONTENT of test signals provided by（a）station signal，（b）keyed－rainbow gener－ ator，（c）NTSC－type color－bar generator and（d）Sencore model VA48 video analyzer．

3．Verify that all DC voltages from the IC are present．If they＇re not， do not automatically assume the IC is defective．A loaded circuit may be dragging the voltage down．You know how to isolate that kind of circuit problem－by cutting circuits loose，one at a time．
4．If you do have to replace the IC， do a clean job．Desolder thor－ oughly，with some form of vac－

Abstract

uum device or desoldering braid． Clean out the holes and clean the foil．Insert the new IC solidly against the board，and make sure no pins get bent in the process． Finally，carefully solder each pin with a hot iron．A fast－on／fast－off operation with the iron does the best job；but be sure you apply heat long enough for the solder to flow，or it won＇t bond the pins solidly to the foil．

Align And Conquer

OK，that takes care of some of the basic troubleshooting procedures around IC＇s．Now，let＇s dig a little deeper into the methods of reaching down into the IC．

Many of us still shy away from aligning TV receivers．We often assume（or pre－ tend we believe）that sets don＇t need alignment．It＇s true that receivers come from the factory almost perfectly aligned， and often＂cooked＂in．But that does not prevent aging from affecting color perfor－ mance．Too often，we just ignore align－ ment and tell ourselves that it＇s OK to watch a less－than－perfect picture．

If you＇re guilty of that attitude，you＇re losing out on two counts．First，you＇re missing a chance to show how really top－ grade color TV looks．Second（and more important）you＇re overlooking an excep－ tionally effective troubleshooting tech－ nique that we can call＂align and con－ quer．＂Many of us have used a version of this technique since the early days of color TV．It works just as well today．

Moreover，with today＇s alignment gen－ erators，there＇s really no excuse for being afraid to align a set．It is not a haphazard process，no matter what oldtimers tell you．Anyone who thinks aligning a TV set is a big job just hasn＇t discovered how to do it with modern instruments．Only
when you try it will you see how easy it is； just a smidgeon of experience makes the whole process fairly quick．

Let＇s briefly revisit IF alignment be－ cause it＇s the easiest type to understand and to perform．The alignment principles are simple．You adjust a group of coils to certain frequencies，and their response ＂curves＂overlap to render the wideband response that passes video and chroma information in the right proportions．
A few alignment gadgets，some of them designed specifically for certain TV sets，save time．Collect them，keep them all together and use them when the align－ ment guidelines for a set suggest their application．Likewise keeping a complete set of alignment tools（stored in a drawer or in their roll pack）should avoid wasted time and the damaged coils that come from using a wrong tool．Half of all the time that is spent unnecessarily during alignment is a result of being poorly prepared．

It takes only a few minutes to make all the preliminary connections，especially once you are familiar with them．A multi－ voltage bias box is necessary．You apply recommended DC voltages to the tuner and IF automatic gain control（AGC） lines，and sometimes to the AFT terminal
on the tuner．Some TV alignment genera－ tors include these well－filtered DC sources；use your DC voltmeter to make sure that they apply the proper voltage when connected．These bias connections are vital because they prevent the stages from being overloaded by the input sig－ nal．Signal overload can distort response．

The $60-\mathrm{Hz}$ sinewave used to drive the sweep oscillator in the generator must also be fed over to the scope＇s horizontal amplifier．With a triggered scope，this means setting the sweep for external input（not external trigger）．If the instru－ ment is a dual－trace scope，you must set the timebase switch at its $\mathrm{X}-\mathrm{Y}$ position； one of the two input channels is thus converted to a horizontal input channel， and accepts the $60-\mathrm{Hz}$ sinewave from the sweep generator．You adjust the input－ voltage switch of that channel for a com－ fortable trace width，without overscan．

For IF alignment，a mixer injection point has been provided on virtually every TV tuner．Injecting a sweep signal at the mixer isolates any input－cable effects from the tuned circuits you must align． On a few sets，the alignment instructions recommend using an isolation network． Some generators have cables with proper 75 －ohm terminations and do not need this
isolation pad. (A 300 -ohm termination matches the antenna terminals for tuner alignment, but not this mixer input which is for IF applications.)

One new modular TV set, which at present lacks service instructions, incorporates varactor tuners with the mixer injection point down inside. During the warranty period, you are supposed to send the entire module to your nearest distributor, who sends it to the factory for any repairs or alignment. But you know how that story generally ends up. Sooner or later, you will have to work on sets like this. Eventually, the company will produce a suitable plug. Meanwhile, wrap a lead around the post and dress the pigtail through the access hole in the cover plate. The cover must remain back in place while you test or align.

Any handy point following the video detector can serve to connect the scope vertical input. You can avoid having to use an isolating pad if you make the connection just after the first video amplifier. You do not need a demodulator probe.

A lot of time can be saved if you keep a sweep generator and scope set up ready for a quick alignment check. You can use an old scope; its response is unimportant. If your instruments are already set up, you just make three or four connections and you have (1) an assessment of the IF response (and color alignment too, as you will see) and (2) an immediate means of diagnosing and correcting discrepancies in the IF or color-bandpass sections.

Figure 3-a indicates somewhat the type of curve you're likely to see from the IF strip of a three- to four-year-old set.

DC VOLTAGES from B\&K model 1077 video generator can clamp AGC and AFT lines for troubleshooting or alignment.

MIXER INJECTION POINT in varactor tuner is post on printed board, accessible only with shield cover of tuner lifted.

Normal aging has changed the gain in some stages, and you will note a bit of overpeaking just down-frequency from the picture IF marker (45.75 MHz). The sound trap at 41.25 MHz is fairly close to the value for proper adjustment, and the skirts at both ends are correctly steep for the adjacent-channel sound and picture traps. In other words, only minor touchup

FIG. 3-SWEEP RESPONSE CURVES of video IF, with markers (left to right) at 39.75 MHz , 41.25 MHz, 45.75 MHz and 47.25 MHz . Bottom curve indicates serious alignment flaw.
is necessary. Actually, this set operates well without any control adjustment, and you would be justified in proceeding no further with alignment. This particular set has passed your alignment test.
However, suppose the curve looked like the one in Fig. 3-b. Something in the IF has to be fixed. But what? One quick check involves a slight adjustment of each coil slug. Note its position, then turn each IF adjustment a tiny amount, all the while watching the curve on the oscilloscope. Each time, return the slug to its starting position; this is not yet a touchup. A slug that has little or no effect on the curve is faulty, or its decoupling capacitor is defective. If the tuning peak (or dip) is very slight or broad, you can suspect a faulty amplifier adjacent to that coil or transformer.
This little procedure takes only a few moments. You don't even have to look up which coil is which, until you find the faulty one. This trick may sound oversimple, but it identifies a defective IF coil or trap almost every time. In Fig. 3-b, the $47.25-\mathrm{MHz}$ adjacent-channel sound trap has a faulty capacitor across it.
In another set, two of the three traps seemed to have little effect on the curve, which was severely distorted. It turned out they had a common ground foil, which was cracked and open.
In still another receiver, the sweep curve failed to appear at the video amplifier. Using a probe at the video-detector
output revealed no curve there either. Yet, with a demodulator probe and some extra push from the generator, the technician found that RF signal was reaching the IF integrated circuit. (Don't expect to see a conventional sweep curve here, just an RF curve. You can verify that it is generator RF signal by raising and lowering the output level.) Moving to the output pin of the IC, we found a curve. This curve was distorted because some of the coils are after this point, between the IF-amplifier IC and the video-detector IC. The IF-amplifier IC was obviously working.

Probing around the video-detector IC showed that signal was going in, but there was no signal going out to the AFT, to the sound IF section, nor of course to the video amplifier. The conclusion was that this detector IC wasn't functioning. Direct current tests were confusing, but the input voltage was there. Conclusion: the IC must be bad and it was.

Yes, you could have traced this problem with ordinary video signals. But you would not have proved that the IF's were OK as you proceeded. Nor, when the faulty IC was replaced, would you be already hooked up to run through a quick video IF alignment-which proved advisable because someone else had fooled around with the alignment before giving up on this tough dog.

Conquering color by alignment

While you're hooked up for sweep tests and adjustments, it's important to inspect the chroma-bandpass response. Fig. 4-a shows the first curve taken without touchup; one of the bandpass coupling transformers is misaligned. A demodulator probe connected to the bandpassamplifier input, and with the sweep fed in at a video amplifier, both reveal the actual shape and relative amplitude of the color sidebands as fed through these coupling transformers.

You can set the bandpass-amplitude control here to insure that no marked part of the curve drops below about 70% of the peaks. Figure 4 -b shows the curve when all are properly aligned and adjusted. Naturally, any defects in this system prevent a proper curve from appearing, and alignment attempts often indicate where the trouble is.
Afterward, it's advisable to view the overall curve for color bandpass, including the IF section. Actually, both the IF video and bandpass must dovetail to produce the correct overall response.

So you drop the sweep feed point back to the tuner mixer point. Reset the sweep generator to produce an IF sweep curve of about 45 MHz , as for IF alignment. Be sure the DC biases on the AGC lines are according to the manufacturer's recommendation. Markers at $3.08 \mathrm{MHz}, 3.58$ MHz and 4.08 MHz indicate the curve points.

As Fig. 4-c shows, properly aligned IF

FIG．4－SWEEP CURVE for bandpass amps， with markers（left to right）at $3.08 \mathrm{MHz}, 3.58$ MHz and 4.08 MHz ．Faulty response from defect in bandpass section is shown at a，correct shape for curve，with signal injected at video amp is shown at b ，and a bandpass curve when video IF stages are included appears at c ．
and bandpass－coupling stages place a peak between the $3.58-\mathrm{MHz}$ and 4.08 － MHz markers，with the $3.08-\mathrm{MHz}$ mark－ er about one－third down the lower－ frequency skirt．The $4.08-\mathrm{MHz}$ portion of the curve must not be higher than the $3.58-\mathrm{MHz}$ portion．A slight touchup of the first bandpass stage and then，if necessary，the IF coils（those that affect the down－frequency IF skirt）will shape the curve and place the markers as they should be．If in doubt，consult the manu－ facturer＇s recommendations for the right shape．
Finally，you must set the color－sync or burst－processing system．Now，you can turn off the sweep setup and revert to a keyed－rainbow pattern generator（or an NTSC－type display，if you prefer） Again，however，your diagnostic and checking technique consists of trying to align the tuned circuits，and of tracing the signal with an oscilloscope if it is missing，
inadequate or distorted．
The first adjustment in the color－sync section，for example，involves using a voltmeter．If adjusting the burst input or ringing coils does not show the proper DC peaking at the voltmeter test point， you know approximately where to look for trouble．Then，you should probably use the scope probe to do some tracing and inspecting of waveforms and ampli－ tudes．Verify that the signal reaches the input（see Fig．5－a）．Then you＇ll ordinari－ ly find test points for tracking it through the burst section．

In most designs，the DC test point for adjusting the burst transformers is at the ACC／（Automatic Contrast Control） stage．So any defect that prevents coil adjustment from affecting that DC volt－ age must exist between the input and the ACC detector．Your scope can verify the continuous waveform produced by the $3.58-\mathrm{MHz}$ oscillator．Figure $5-\mathrm{b}$ shows how this signal looks at the output of the burst gating stages．

Your own IC data

Eventually，if all checks OK during the adjustments，you come to the IC itself． The receiver＇s service information should tell you all you need to know about signal inputs and outputs around an IC，plus all the DC voltages．However，this often is not the case．You can obtain this informa－

FIG．5－COLOR－SYNC ALIGNMENT requires burst source and voltmeter（at ACC）．Patterns can be traced to burst－processing IC（a），and at the output of continuous－wave oscillator（b）．

TV TEST SETUP of Hickok instruments con－ sists of model 517 double－trace s：cope，model 246 color－bar generator and 334 DMM．

U2351
CHROMA DEMODULATOR

FIG．6－HOW TO ADD PERTINENT DATA to a base diagram of an IC used in a TV set or simi－ lar equipment．
tion for yourself．All you need is a work－ ing TV set，whatever pattern generator you use for color servicing，your oscillo－ scope，and a digital or analog voltmeter．

Figure 6 shows a way to record the information that works for any IC；it shows an IC－data diagram for the new U2351 chroma demodulator IC．

A digital voltmeter reads the DC val－ ues quickly and accurately．Your scope tells you the peak－to－peak signal values． One key，as you can see，is the use of a steady signal from a color－pattern genera－ tor，a keyed rainbow in this case．Use any generator you＇re accustomed to．What you develop with a diagram like this is a standard against which to compare and evaluate later performance whenever a color section using this IC malfunctions．

Using your regular generator，make diagrams for every IC in all chassis you service often．Keep this IC data with the chassis service information．

Pattern Diagnosis

As any bona－fide technician knows，tele－ vision diagnosis presents a considerable challenge．Any help in pinpointing trou－ ble a faster，surer way is certainly worth pursuing．
A TV signal is itself extremely com－ plex．To further complicate matters，an awesome array of different signals of
many sizes，waveshapes，frequencies， time durations，etc．，are developed and manipulated within the receiver．As sets have become easier and steadier to oper－ ate，the multiplicity and complexity of signals in the chassis have also grown． However，test instrument designers have kept pace，and as technology advances，so
do the generators built to cope with servicing．

Radio technicians got by with simple modulated RF generators．But there was no comprehensive（and affordable）signal generator for TV until B \＆K Manufac－ turing Company（Now the B\＆K／Preci－ sion Division of Dynascan）produced the

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included
Send for it today, and see for yourself what's really happening in electronics treining technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037

NATIONAL TECHNICAL SCHOOLS Dept. 206-098 4000 South Figueroa Street, Los Angeles, California 90037
Please send FREE Color Catalog and Sampue Lesson.
\square Color TV Servicing
\square B \& W TV and Radio Servicing - FCC License Course

Electronic Communications
\square Electronics Technology
\square Audio Electronics Servicing
\square Digital Electronics
\square MicroComputers/MicroProcessors

Name

Address
Apartment Number \qquad Age

City
State
\square Check if interested in G.I. Bill information.
\square Check if interested ONLY in classroom training in Los Angeles.

FIG. 7-VIDEO PATTERN generated by B\&K/ Precision model 1077 resembles indian-head test pattern used in early TV days. Video in waveform stays constant, thereby making tracing easier.
model 1076 Television Analyst more than a decade ago. This was a miniature TV transmitter-a flying-spot scanner that produced a standard circular test pattern (see Fig. 7), sync pulses and drive pulses to feed almost any portion of a TV receiver. Today, its modern descendant. the B\&K/Precision model 1077 Television Analyst, does these things and more. It's a test-pattern and pulse-waveform generator for servicing virtually any video equipment.

Very recently, Sencore Inc. introduced the first new all-around TV signal source in years. The model VA48 Video Analyzer simulates just about every signal a TV set needs. In addition, the model VA48 brings some new techniques to video diagnosis and troubleshooting.
This unit has no circular test pattern, but it does generate two unique video patterns. One appears on the television screen as a series of vertical lines with different spacings. The top part of Fig. 8 shows the screen pattern. If you're familiar with video testing signals, you may recognize this as a multiburst pattern. Its video waveform appears in the lower part of Fig. 8. The test signal comprises short bursts of various frequencies, one after the other.

You may ask, why this particular pattern? It contains several elements. First, on the left is a gray-scale staircase pattern: black, gray and white. It works for any R-G-B gray-scale adjustments, and for checking video-amplification linearity.

Next comes the multiburst pattern, which tests video frequency response all the way to the CRT. This pattern produces one cycle at 188 kHz ; then four at

755 kHz ; cight cycles at 1.51 MHz ; a 16 -cycle burst at 3.02 MHz ; another at 3.56 MHz ; and one final cycle at 188 kHz again. In terms of TV screen resolution, these bursts represent, respectively, 16 lines, 65 lines, 125 lines, 250 lines and 295 lines. A similar frequency-response-vs.-resolution chart on the circular test pattern produced by the model 1077 is shown in Fig. 7. Both patterns indicate the ultimate response of the TV receiver to details in the video stage.

Sencore calls this video pattern a "Bar Sweep." Once you know how to interpret these bars, it will eliminate the need for conventional sweep alignment. You can even learn to align the TV receiver according to these patterns. The concept is unique, and Sencore has patented the pattern.

The model VA48 produces another patented color-servicing pattern called the "Chroma Bar Sweep." It is shown in Fig. 9, along with its oscilloscope waveform. A solid center bar is generated at 3.56 MHz , in proper phase to produce a blue output from the chroma demodulator. On each side are modulated signal

FIG. 8-VIDEO "BAR SWEEP" created by Sencore model VA48 TV analyzer contains several frequency samples, and reveals IF and video response on screen of TV set.

SENCORE model VA48 video analyzer.

FIG. g-"CHROMA BAR SWEEP" places blue center bar on screen, with displayed bars of $3.08-\mathrm{MHz}$ and $4.08-\mathrm{MHz}$ signal verifying proper bandpass response. Signal can be injected at tuner or after video detector.
bursts of 3.08 MHz and 4.08 MHz . Just as the other multibursts enable IF alignment without using sweep gear, these bursts are for chroma alignment.

Scoping the patterns

Some of us prefer signal tracing to injecting when working in the IF and video sections of a TV receiver. You usually feed the pattern signal into the antenna terminals because it's the handiest way. Or the model 1077 and the model VA48 (and most color-pattern generators) can also be used to supply their signal directly without RF-a volt or two that you can inject right after the video detector. Either way, you use your scope to follow the patterns through successive stages.
You're probably familiar by now with the waveforms produced by a TV test pattern such as that generated by the model 1077. They resemble station signal waveforms. On the other hand, because the model VA48 instrument is so recent, some characteristics of its pattern may be new to you.
Study the waveform in Fig. 10-a. Signal from the model VA48 has been fed into the tuner front end, and the oscilloscope probe has been connected at the video-detector output.

Note the amplitudes of the four high-er-frequency multiburst signals. Each of the signals has made the trip through the tuner and IF sections without any significant attenuation. A slight reduction in the $3.56-\mathrm{M} \mathrm{Hz}$ bar is allowable.

Misaligned IF transformers, or even a defective $I C$, can severely reduce video response. Figure $10-\mathrm{b}$ shows the result of some fault in a detector IC. Both the $3.02 \cdot \mathrm{MHz}$ and $3.56 \cdot \mathrm{MHz}$ signals are no-

FIG．10－WAVEFORMS RESULTING from use of test signals generated by Sencore model VA48．See text for significance of what these waveforms reveal．
ticeably reduced in amplitude at the vid－ eo－detector output．Scoped with a de－ modulator probe，the waveform at the input to this IC was very similar to the original input signal（see Fig．10－a）．

If you modulate the RF input signal with the chroma－bar－sweep pattern，you can evaluate the entire tuner／IF／chroma chain．Just scope the output of the chro－ ma amplifier system．Normal bandpass． for the entire chroma sideband signal from 3.08 MHz to 4.08 MHz ，delivers a waveform to the chroma demodulator similar to that shown in Fig．10－c．Levels of the three bar signals fed from the model VA48 video analyzer are factory－ adjusted to allow for the difference in actual response in the receiver amplifiers． If all is correct，the chroma output point shows all three bursts of signal at the same level．But misalignment in the bandpass amplifiers can alter the re－ sponse．

The result，shown in Fig．10－d，could also come from video IF misalignment． Suppose the $41.67-\mathrm{MHz}, \quad 42.17-\mathrm{MHz}$ and $42.67-\mathrm{MHz}$ markers are not properly placed on the IF response skirt（at about $40 \%, 60 \%$ and 80% levels，respectively）． This curve discrepancy would，since sig－ nal is coming through the IF strip，also distort the curve at the bandpass test point．In this instance，however，the trou－ ble is in bandpass alignment－because the IF waveform，when you use the multi－ burst bar sweep，already proved OK．

You can also inject the chroma－bar－ sweep signal at the chroma feed point that follows the video detector；this by－ passes the video IF strip．However，a bit of＂tilt＂will occur in the model VA48 pattern－the first bar is the highest，the second less high，and the third the least high－because of the built－in tilt that accommodates proper video IF align－ ment．A small amount of practice with a
working set will quickly familiarize you with this phenomenon．
Incidentally，if you＇re in a hurry to fix a set and haven＇t yet become accustomed to the patented Sencore patterns，the model VA48 generates a tightly locked keyed－ rainbow pattern．You can use it as you would the keyed－rainbow pattern from any color－pattern generator．

Other injection hints

Both generators produce sweep substi－ tution signals for driving the sweep sec－ tions of TV receivers．In most TV sets， you merely select the correct pulse signal， set the proper amplitude and connect it． If sweep starts again，you are injecting beyond the defective stage or circuit．

Some precautions are worth mention－ ing．First of all，if you＇re not already coing so，you should use an isolation transformer to power the TV set．If you don＇t，you can damage test instruments and sets，and you can give yourself some nasty shocks．Plus，you may damage some IC＇s and transistors if you＇re not careful． Always isolate the set you＇re testing．

Here＇s another precaution to take when working with any chassis using transistors and IC＇s：Keep the generator－drive con－ trols turned to zero until after you make the connections and turn the set on．（Nat－ urally，you turn the set off while you make test connections and insure that they do not accidentally bridge together any terminals．Jumper leads with tiny insulated alligator clips make connections safer on many modular boards．）After the set is operating again，bring up the signal drive slowly and carefully．Transistor and IC stages take less drive than tube stages． Too much signal can be damaging．

DC diagnosis

Remember，you can inject DC voltage， too；it＇s called clamping．This is a valu－
able technique to use when you＇re dealing with DC－controlled stages．For example， DC determines the frequency of the volt－ age－controlled oscillator（VCO）that is part of new $503-\mathrm{kHz}$ sync systems．Vari－ ous AGC arrangements involve DC volt－ ages－most sets now have three controls for the IF，VHF tuner and UHF tuner．A low－impedance DC voltage that you can vary lets you check DC effects on these controlled stages or circuits．

Here＇s an example．With a B\＆K／ Precision model 1077，the complaint was overload，diagnosed on sight as probable AGC trouble．A DC voltmeter check at the various AGC output terminals of the sync－AGC integrated circuit proved nothing conclusive．A Channel 3 input signal，raised and lowered in level at the input antenna terminals，caused two of the three AGC voltages to vary；however， in an unfamiliar chassis，it＇s hard to know whether the variations are correct or not． The third voltage，for the VHF varactor tuner，remained steady－with no change at all．Weak input RF appeared OK，but as soon as enough signal was fed in to overcome snow，overload ruined the pic－ ture，sync，color and sound．

Two possibilities seemed apparent：Ei－ ther the IC was not developing proper AGC for the tuner，or the DC voltage was being loaded down along the line or in the tuner．

A clamp voltage from the bias section of the model 1077 was connected to the tuner AGC line．Altering the＂injected＂ DC voltage did change the gain in the tuner．Overloading could be eliminated by setting this clamp voltage properly． The conclusion was that the sync－AGC integrated circuit was not producing that particular DC voltage properly，even though every other IC function appeared normal．Replacing the IC cured the prob－ lem．

＂Ben＇s Hardware didn＇t have a 20－foot ladder． You want me to try Teely＇s Hardware？＂

computar coriner

8080

The 8253 programmable interface timer IC.

M. DEJONG, C. TITUS, J. TITUS, D. LARSEN and P. RONY*

THIS MONTH'S COLUMN INTRODUCES THE characteristics of the Intel 8253 programmable interval timer. This versatile I/O chip can be used in a wide variety of applications (such as a real-time clock, event counting and period counting) in addition to replacing software-implemented timing loops. For example, interval timers have been used in a number of diverse applications, including a digital cardio-tachometer, a data-logging timer that uses several phototransistors to measure velocities and accelerations, and a program to sample nonperiodic waveforms for subsequent display on an oscilloscope.

The 8253 is a 24 -pin IC that requires a single 5 -volt supply and contains three independent 16 -bit interval timers, each of which can be operated in six different modes. An interval timer has been defined' as a device that measures the time interval between two actions, or a timer that switches electrical circuits on or off for the duration of a preset time interval. Figure 1 shows both the pinout of the 8253 IC and how it can be interfaced with an $8080 \mathrm{~A} / 8085$-based microcomputer

TABLE 1-ADDRESSING THE 8253 programmable interval timer.

Control Inputs						Memory address
$\overline{\mathrm{CS}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	A 1	AO	COMMAND	200000
0	1	0	0	0	Load counter \#0	200001
0	1	0	0	1	Load counter \#	200002
0	1	0	1	0	Load counter \#2	200003
0	1	0	1	1	Load control register	200000
0	0	1	0	0	Read counter \#0	200001
0	0	1	0	1	Read counter \#1	200002
0	0	1	1	0	Read counter \#2	-
0	0	1	1	1	No operation (three-state)	-
1	X	\times	X	X	Disable chip (three-state)	-
0	1	1	X	X	No operation (three-state)	-

Note: $\mathrm{X}=$ don't care (logic 0 or logic 1)
003_{8} with the aid of address-bus signals $\mathrm{A} 0, \mathrm{~A} 1$ and A 15 (see Fig. 1 and Table 1). Note in Table 1 that the $\overline{R D}$ and $\overline{W R}$ control inputs determine whether you are loading or reading a specific register. It is

FIG. 1
system using memory-mapped I/O. ${ }^{2}$
The 8253 IC contains four internal registers-three interval timers and a control register-that are decoded as memory locations 200000_{8} through 200

Dr. DeJong is head of the Department of Mathematics/Physics at The School of the Ozarks. Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University. Both Mr. J. Titus and Dr. C. Titus are with Tychon, Inc.
not possible to read the contents of the control register.

Table 2 summarizes the coding for the 8 -bit control register within the 8253 IC. Bits D7 and D6 determine the selection of the interval timer; bits D5 and D4 determine the nature of the read/write operation of the chosen timer; bits D3, D2 and D1 select the mode of operation of the chosen timer; and bit D0 determines whether the timer counts down in binary or binary coded decimal (BCD).

Figure 2 is the block diagram for a typical 8253 counter. The microcomputer loads the 16 -bit down-counter as two successive bytes (a HI byte and a lo byte) via the bidirectional data bus, D0 through D7. If the gate line, GATE, is active, nega-tive-edge transitions at input Cl.K decrement the counter. When the counter reaches zero, output pin out becomes active, its actual behavior depending upon the mode programmed into the control

TABLE 2 （right）－CODING FOR THE 8－BIT con－ trol register in the 8253 IC．
register for the counter（see Table 2）． The 8253 IC contains three 16 －bit coun－ ters，each of which can be programmed independently in any one of the six opera－ tion modes．Counter inputs and outputs， CLK，GATE and OUT，for the chosen coun－ ter are independent of the CLK，GATE and out of the remaining two counters on the IC．

In addition to the address bus，data bus and control－bus connections shown in Fig．1，inputs clko and gateo to counter 0 are connected respectively to the $\phi 2$ （TTL）microcomputer clock output（typ－ ically 2 MHz ）and to bit 0 of accumulator output port 000_{8} ．Any TTL－level clock with a frequency of less than 2 MHz can be used as input to CLK0，and any suitably debounced switch or source of strobe pulses can be used to control the timer at gateo．Counter output，outo，can be connected to an oscilloscope to observe each of the six timer operation modes．
In a future column，we will discuss a demonstration program for the 8253 in － terval timer that shows the loading，latch－ ing and reading of counter 0 as well as the various output modes．Other reference material ${ }^{3,4}$ contains additional descrip－ tions of the 8253 IC．

REFERENCES

1．Graf，R．F．，Modern Dictionary of Electronics， Howard W．Sams \＆Co．，Indianapolis，IN （1972）．
2．Larsen，D．G．，Rony，P．R．，and Titus，J．A．，The Bugbook ${ }^{R}$ VI．8080A Microcomputer Pro－ gramming and interfacing，E\＆L Instruments， Inc．，Derby，CT 06418 （1977）．
3．Intel Data Catalog，1977，Intel Corp．， 3065 Bowers Ave．，Santa Clara，CA 95051 （1977）． Available for $\$ 2.50$ ．
4．Osborne，A．，An introduction to Microcomput－ ers．Volume II．Some Real Products，Osborne and Associates，Box 2036，Berkeley，CA 94702 （1976）．

No matter what the project he＇s working on is supposed to be－it ends up being a light dimmer．

Bits			Control Function
	D7	D6	
	0	0	Control word is for counter \＃0
	0	1	Control word is for counter \＃1
	1	0	Control word is for counter \＃2
	1	1	－
	D5	D4	
	0	0	Latch both bytes of chosen counter for read operation
	0	1	Load or read only most significant byte of chosen counter
	1	0	Load or read only least significant byte of chosen counter
	1	1	Load or read LS byte first，then MS byte of chosen counter
D3	D2	D1	
0	0	0	Mode 0：Output $=1$ on zero counter
0	0	1	Mode 1：Retriggerable variable－width one－shot
X	1	0	Mode 2：Programmable rate generator
X	1	1	Mode 3：Programmable squarewave generator
1	0	0	Mode 4：Delayed strobe（software triggered strobe）
1	0	1	Mode 5：Triggered strobe（hardware triggered strobe）
		DO	
		0	Count down in binary
		1	Count down in binary coded decimal（BCD）

Note：$X=$ don＇t care（logic 0 orlogic 1）

Abstract

When you want to use a different power supply voltage there are some points you must consider. Take a look at them and some typical hobby supplies this month.

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

FROM TIME TO TIME WE RECEIVE INQUIRies about the power supply voltage for a particular Hobby Corner project. The usual question is whether or not another voltage can be used. Since this problem seems to trouble some of you, let's take a look at the main points of power supplies.

The first question is how much voltage? This, of course, varies. A good general rule is to apply the voltage that is specified by the author of the article. In Hobby Corner, I try to show a range of voltages whenever suitable. For example, the designation " $5-15$ VDC" on a schematic means that any voltage from 5 to 15 will operate the circuit properly. Many other writers do the same thing.
There are times, however, when only one specific voltage is given. In these circuits, applying a different voltage will almost always cause the circuit to function improperly or not at all. Often using another voltage can even destroy components in the project, so you had best play it safe.
Transistor circuits are not usually critical in this respect. In addition to studying the schematic, read the text carefully (this applies to all projects). Quite often, the power supplies for transistors can be varied a few volts with no harm done, but keep in mind that this is not always true.
Many digital circuits using IC's are designed around TTL IC's because they are less expensive and are available in a great many types. These TTL's are also quite voltage-conscious. If you get more than $1 / 4(0.25)$ of a volt from the 5 volts they require, you are asking for trouble.

CMOS IC's, on the other hand, are growing in popularity and variety. Although they cost more than TTL's, these IC's have certain advantages. One advantage is that they function with a relatively wide range of applied voltages-normally from 3 volts to 15 volts. (Remember, however, that other components in a CMOS circuit can put more stringent limits on the applied voltage.)

While the information given above will
provide you with some general guidelines, it is always advisable to use the voltage specified. That way, you can avoid potential problems that are not always apparent.

How can you provide the required voltage? And what about the usual additional requirement that the voltage be regulated? There are many more ways to do this than space permits in this column. You should study power supplies and power supply theory-transformers, diode rectifiers, filter capacitors, discrete and IC regulators, and how they all work together. Then, you can design whatever supply you need.

Some power supplies

In the meantime, here are some power supplies that should keep you going. The first is not actually a complete power supply, but a method of obtaining a lower-regulated voltage from an existing higher voltage supply.

Often an experimenter can obtain a source of DC voltage from an AC supply, or from a battery. If the source is 12 VDC, for example, and he needs 8 VDC, he can obtain it by using a three-terminal regulator, as shown in Fig. 1.

FIG. 1-CIRCUIT USED TO TRANSFORM a DC voltage.

These three-terminal regulators are great little devices. They have built-in protection against overcurrent and overheating. If you accidentally short the output, they simply shut down until the short is removed. Such regulators are available for both positive and negative voltages from 5 volts to 24 volts with a current capacity of up to 1 ampere (and there are ways of increasing that). There are several series including the 78 xx , $79 \mathrm{xx}, 320 \mathrm{Kxx}, 320 \mathrm{Txx}, 340 \mathrm{Kxx}$ and

340 Txx-in which the designation " $x x$ " stands for the voltage output of each regulator-i.e., the 7808 has an 8 -volt output.
The three-terminal regulator does use up some voltage so you will have to supply more input than output. Normally, a minimum of 2.5 volts more should be applied; e.g., at least 7.5 volts into a 5 -volt regulator. The difference in input voltage can be greater but you have to be careful of power dissipation. For example, if your regulator won't operate or it shuts down now and then for no apparent reason, the input voltage may be too great. In many uses, 100% or even 200% over the recommended voltage won't cause trouble.

Building a supply

Now, let's build a power supply from scratch similar to the one shown in Fig. 2. (Of course, this is just one of a number of possible designs.)
In tailoring this circuit for your particular needs, you must work backwards, so to speak, starting with the output. When you decide what output voltage (and current) you need, select the type of regulator that will provide it. In this case, let's use 5 volts and select a 7805 regulator, which has a 5 -volt output at a current of up to 1 amp , with a good heat sink.
Since you must apply 7.5 volts or more to the regulator, this, in turn, determines the output of the transformer. The voltage drop in the diode rectifiers is negligible, but you must consider the design of the rectifier.

This is a bridge rectifier, which means that the entire secondary voltage is used-whether or not there is an unused center-tap connection. Therefore, you need a transformer that will provide 7.5 volts across the entire secondary.
You could use a 6.3-volt transformer to provide a peak voltage of $8.8(1.4 \times 6.3$ volts RMS). This will work just as long as not too much current is drawn out of the supply because filter capacitor Cl charges to the peak voltage. The more current you use (that is, the heavier the load) the less Cl maintains the peak voltage charge and the lower the effective voltage to the regulator becomes. In fact, a point is reached where the regulator won't regulate.
For a light load such as a couple of transistors or IC's, use a 6.3 -volt trans-
former．Otherwise，use an 8 －volt， 10 －volt， or 12 －volt transformer．I would choose a 12 －volt transformer since it is easier to find and usually does not cost much more than a 6 －volt unit．So，referring to Fig．2， let＇s put in a 12.6 －volt transformer with a 1 －amp current rating．

With respect to choosing the diode
imum reverse voltage that should be applied to the diode．

In our circuit the PIV is equal to 1.4 times the RMS voltage，or about 18 volts $(1.4 \times 12.6=17.64)$ ．Because of its ready availability，we＇ll use a 1 N4001 rectifier，which is rated at 50 PIV at 1 amp．Larger rectifiers could be used just

FIG．2－A TYPICAL POWER SUPPLY．

FIG．3－VOLTAGE ADAPT－ ER for use in automobile．
rectifiers，there are two important consid－ erations：the PIV（Peak Inverse Voltage） and the load－current ratings．Since our supply has a 1 －amp rating，we＇ll use that value even though in the bridge circuit each diode conducts only one－half the load current．The PIV（also called PRV for Peak Reverse Voltage）is the max－
as well．You could also use a ready－made bridge rectifier that contains the four diodes in one block，just as long as it meets the rating requirements．

The final components in the power supply are the capacitors．Capacitor Cl is the filter capacitor，whose function is to
continued on page 96

MATHEMATICS
 Electronics
 ENGINERRING MATHEMATICS advaneed mathenailcs

These unusual courses are the result of maṇy years of study and thought by the President of Indiana Home Study，who has personally lectured in the classroom to thousands of men，from all walks of life，on mathematics，and electrical and electronic engineering．
You will have to see the lessons to appreciate them！
NOW you can master mathematics and electronics and actually enjoy doing it！

WE ARE THIS SURE：－you order your lessons on a money－back guarantee．
In plain language，if you aren＇t satis－ fied you don＇t pay，and there are no strings attached．

Write today for more information and your outline of courses．

You have nothing to lose，and every－ thing to gain！

The INDIANA HOME STUDY INSTITUTE

 P．O．BOX 1189PANAMA CITY，FLA 32401
CIRCLE 14 ON FREE INFORMATION CARD

and the deck is stacked in your favor．VERO，known throughout the industry for quality，is now offering a wide selection of electronic compo－ nents for the serious hobbyist or home builder．These fine products have all passed the demanding requirements of one of the most demanding industries in the country－the electronics in－ dustry．
From basic breadboards to exciting en－ closures，VERO products offer you proven capability and reliability and an affordable price．So，next time you are in the mood to build something

great，insist on the finest component parts－insist on VERO．

If your dealer does not stock VERO， drop us a line and we will send him all the necessary information required to get him started．You＇ll be doing him a favor if you do！

171 Bridge Road，Hauppauge，N．Y． 11787 （516）234．0400

TWX：510－227－8890

Microprocessors are inching their way into home appliance applications. Here's a look at how the TMS1100 is teamed up with triacs to control a microwave oven.

KARL SAVON, SEMICONDUCTOR EDITOR

THYRISTORS ARE TOUGH COMPONENTS. Silicon-controlled rectifiers and triacs are more damage-resistant than other semiconductors because their regenerative latching mechanism switches them rapidly through the dangerous half-on, highdissipation region. Thyristors (especially
the versatile triac) are unbeatable in AC power switching applications. Their use in industrial control systems is not new, but their recent availability in low-cost plastic packages is responsible for their growing application to home appliances. Thyristors are present in the horizontal-
deflection systems and remote power onoff controls of TV receivers. They are also found in microwave ovens, where moderate amounts of power are switched and modulated. They have proved to be more dependable than relay contacts and conventional transistors
Microcomputers, too, have moved from their industrial beginnings into the appliance market. The control microcomputer is an inexpensive IC, the result of thousands of hours of human endeavor and accomplishment. Single-IC microcomputers such as the Texas Instruments

FIG. 1-MICROWAVE OVEN CONTROL system based on Texas Instruments TMS1100 8-bit microprocessor.

TMS 1000 contain the central processing unit（CPU），a small amount of RAM （Random－A ccess M emory）and a sub－ stantial block of ROM（Read－Only Mem－ ory）．

Microwave cooking is generally a time－ sequential procedure．Each time interval has a different heat setting．Combining a microcomputer with triacs in an oven－ controller system eliminates many objec－ tions to such an ecologically attractive appliance．The factory presetting of pop－ ular cooking procedures and easy user programming of special sequential opera－ tions are just two possibilities of such a combination．
Figure 1 shows the partial schematic of a microwave oven－control system built around the TMS 1100 ，a single－IC micro－ computer with 2048 eight－bit words of ROM．The ROM is factory－programmed to carry out the control－function algo－ rithms designated by the oven manufac－ turer．The design approach is competitive with discrete control－logic circuitry，and is more reliable because of the product＇s reduced component count．

The control system＇s primary function is to properly activate the oven＇s power－ consuming heat and air－circulation por－ tions：The magnetron，the broiler heating coil and the lamp and fan，shown on the left－hand side of Fig．1．Each element is connected in series with the AC power line and a controlling thyristor．The triacs are chosen to handle the individual cir－ cuits＇current requirements：the TIC263 controlling the magnetron is rated at 25 amp，the TIC246 is rated at 16 amp and supplies from 5 to 10 amp to the heater element，and the TIC206，rated at 3 amp ， supplies about 1 amp to the lamp and the fan．

A triac is the equivalent of two SCR＇s connected back to back．It can be trig－ gered by either positive or negative gate voltage with respect to main terminal No． 1 （the axial lead merging with the gate lead），although the sensitivity is different depending on the power source and trig－ ger polarities．The triac triggering pulse must only be long enough to insure regenerative latching．This minimum pulse－width requirement varies from about 2 to 20μ s depending on the level of gate overdrive for those triacs shown in Fig．1．If the gate drive is discontinued by the time the AC signal waveform reverses its polarity，so that the triac current is reduced below its holding current，the triac turns off．Radio frequency interfer－ ence is minimized if turn－on is restricted to zero crossings of the power－line cycle． In Fig．1，the three TIS92 emitter－follow－ er transistors supply the turn－on gate current．The series resistors between the emitter of the transistors and the triac gates determine the gate current．These resistors generally supply twice the nomi－ nal current to take care of tolerance and temperature variations．

The signals on the triac gate and the
driver－follower transistors are referenced to one side of the AC power line．For safety and to prevent power－line or SCR－ induced transients from damaging or causing incorrect computer operation，it is necessary to isolate the power circuitry from the processor circuitry and operator controls．Optical couplers are a natural choice for this isolation because only light and high－resistance leakage paths exist between the input and output sides of the circuit．An internal LED provides photon coupling to a phototransistor；a higher LED current provides more light and more current drive to the phototransistor base．Standard couplers provide a voltage isolation of 2.5 kV ．Note that the three TIL111 optical coupler inputs are driven by microcomputer outputs R7，R8 and R9．These outputs are controlled by the ROM program permanently stored in the TMS1100 to trigger the triacs in re－ sponse to predetermined sequences or by direct front－panel control．The SETR and RSTR instruction mnemonics correspond to the machine language codes control－ ling the status of these outputs．

The controls and displays are directly interfaced to the microcomputer through outputs $\mathrm{R}_{0}-\mathrm{R}_{6}$ ，outputs $\mathrm{O}_{1}-\mathrm{O}_{3}$ and in－ puts $K_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{4}$ and K_{8} ．The TMS 1976 capacitive touch－control IC converts touch into logic levels．

The column being scanned is selected by outputs $\mathrm{R}_{2}, \mathrm{R}_{4}$ and R_{6} under program control，and the six parallel panel outputs feed the TMSI 100 through inputs K_{1} ， $\mathrm{K}_{2}, \mathrm{~K}_{4}$ and K_{8} ．Since these inputs are the only microcomputer inputs，they must be shared by other oven functions，including the safety features and temperature－sens－ ing input．These other inputs are strobed by the R outputs not used to scan the touch panel．The LED oven display is multiplexed by driving the segments from microcomputer outputs $\mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}$ ， O_{3} and O_{4} ．In this case，the binary computer outputs are decoded by the SN7447 BCD－to－7－segment decoder／ driver．The TMS 1100 includes a PLA （ Programmable Logic Array），which in some applications is programmed for 7 － segment display decoding．

The other LED oven－function indica－ tors are scanned by outputs， $\mathrm{R}_{4}, \mathrm{R}_{\text {s }}$ and R_{6} and driven by outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ ．Key－ board scanning is done with the same R outputs used by the display．The input sense instruction（mnemonic KNEZ）can be used to detect an input switch condi－ tion，then jump to a routine that deter－ mines which input（or inputs）has been activated and respond to it．Then，a few milliseconds or so after the interruption， the program can continue with the dis－ play－scan routine．

For additional information on thyristor gating for microprocessor applications， write for Bulletin CA－191 from Texas Instruments Incorporated，Inquiry An－ swering Service，Box 5012，M／S 308 （Attn：CA－191），Dallas，TX 75222．R－E

NEMY

 PRECISION COAX CABLE STRIPPER

Won＇t nick conductor or your pocketbook！

This little tool can make the big differ－ ence in CB reception！Prepares cable for connector perfectly without nicks or scratches and in seconds！
Models available for virtually every communication coaxial cable：

MODEL	CABLE	CONNECTOR
UT－5800	trims RG－58／U	for PL－259
UT－5900	trims RG－59／U	for＂F＂
UT－5901	trims RG－59／U	for PL－259 or
TV wall plate		
UT－6000	trims RG－6／U	for＂F＂
UT－8000	trims RG－8／U	for PL－259

Extra precision blades available，\＃CB－60． Packaged 2 blades per pack．
Available from your local authorized Cablematic distributor．
 CIRCLE 44 ON FREE INFORMATION CARD

The low-voltage regulators in solid-state TV sets can cause a myriad of problems.
 Jack darr, SERVICE EDITOR

whenever the service clinic mailbag becomes very heavy on a particular subject, it's time for a discussion. In this case, the topic is the DC voltage regulators that are used so much in solid-state TV sets. You'll find lots of them, from the very simplest to very complex units.
When something goes wrong in a TV set, the first thing you should do is check the $B+$ voltage. The logic of this test is easy: Since the $B+$ voltage supply is common to every stage in a TV set, it must function properly or nothing works. In the older tube-type sets, this voltage supply normally could not go $u p$. So, we checked to determine if it was high enough.
The situation is different in solid-state power supplies. The standard circuit feeds rectified and filtered DC (in most cases) to a voltage regulator that drops the voltage by about 25\% (a ball-park figure), and then holds it very tightly at that value. You will often find up to six or seven separate DC voltage regulators in these solid-state sets. And, of course, if a circuit has been installed in a set to handle over-voltage problems, it can also cause problems! In solid-state TV, the high voltage is directly proportional to the DC supply voltage. With the DC supply voltages often as low as 25-30, even a very small increase in voltage could cause a considerable effect. For example, 25 volts is fed to a voltage multiplier to produce 25,000 volts. If the supply voltage rises by only one volt, the high voltage goes up 1000 volts! So, this voltage must be regulated very tightly. Solid-state circuits hold the supply voltage within very tight limits.
Therefore, when you discover problems in a set that could have been caused by too much output voltage from the horizontal-output stage, you must first check the DC voltage regulators for blown horizontal-output transistors, shorted dampers, etc. Lately, quite a number of assorted problems have been showing up in my mailbag. Practically all of which could have been solved (and eventually were) by checking the DC voltage regulators. The simplest problem was a complaint about a CB radio that "this resistor is burning up." It was in a low-voltage DC supply with a regulated
input, and a Zener diode clamp on the output. The Zener was suspected, checked and found to be open. Even after the Zener was replaced, the resistor still burned up! When the input voltage was checked, it read +28 volts instead of the +15 volts it should have. The pass transistor in the primary voltage regulator was shorted.

In another mysterious case involving a batch of symptoms in a color TV set, I checked the DC supply voltages in all the affected stages (but not as soon as I should have!) and they were all high. A factory field engineer then suggested plugging the set into a variable-voltage line transformer, and bringing the line up until the DC voltages read the correct value. I did this and all the symptoms disappeared, the set worked beautifully! It didn't take long to pin down a bad regulator circuit and a couple of shorted Zener diodes that were causing all the problems.

It's a good idea to remember variablevoltage line transformers because they are a quick and easy way to get a handle on any case where the problem is DC voltage regulation: Just use the variablevoltage transformer as a substitute voltage regulator. It may help when you run into similar cases.

The simplest and most common circuit is the series regulator (see diagram). In this circuit, a power transistor that can carry the full load current of the circuits is controlled by an error-amplifier stage.

This, in turn, is controlled by the DC output voltage through a voltage divider network across the output line. In some
cases, the regulator transistor (pass transistor) is controlled by a regulator-driver that is itself controlled by the erroramplifier transistor.

Series regulators are subject to the same problems found in all circuits. If the pass transistor opens, there will be no DC output voltage. If it shorts, the full DC voltage will be applied to the load circuits. Faults in the error-amplifier or driver transistors can also cause difficulties. If any one of these transistors fails, be sure to check all the others because they may also have blown along with the first one. You will often find Zener diodes used as bias clamps in the erroramplifier stage; be sure to check the diodes for shorts and opens.

Some voltage regulators use quite elaborate circuitry-pulse-width-modulated (PWM) types, triggered SCR's controlled by PUT's, etc. In the future, we'll discuss these various types of regulators and how to test them. Meanwhile, here's a good hint, especially for PWM's-be sure to check waveforms; these are critical! In addition, you should also literally go back to the "oldest test in the book" and make sure that you check the $\mathrm{B}+$ voltage supply first!

R-E

service questions

SYNC-SOUND PROBLEM
 I have a GE model H-3 chassis in which the problem seems to be mostly bad sync and bad sound. There could also be some AGC problems, but overriding it doesn't seem to help. I have an idea that the problem may lie in the input to the sound-sync amplifier V6c. I checked the diode, but I can't get a reasonable reading.D. M., Longmont, CO.

If the diode is either open or shorted, or if any of the components are bad (the open peaking coil, etc.) this would upset not only the sync but the AGC as well. The AGC input signal comes from the plate of V6c, as well as the signal input to the sync-separator. If the video signals to these points are not correct, then you're in the right place!
(Feedback: "We're both right. The problem was in the input circuit. I made more resistance checks and found a high resistance from point 12 to ground, which
meant that L157 would be open．After a half hour of work，I removed it．It was open．I replaced it with a $68 \mu \mathrm{H}$ and no more problems！＂）

LOW BOOST VOLTAGE

I had a problem with this RCA CTC－ 19D．The boost was quite low－+850 volts．You wrote that it should be higher than that，which was right！I found that the pincushion transformer had shorted turns in it，which was loading the boost down．The normal boost furned out to be +1080 volts，as you said！Now it works．
Incidentally，how do you check a VDR？－H．B．，Brooksville，FL．
With great difficulty！Seriously，the best way to check VDR＇s is still replacing them with exact duplicates．In a few cases，where they are used as shunts in the feedback loop of the vertical stages， etc．，you can tell by disconnecting them． Defective VDR in these cases reduces height．

INTERFERENCE IN ANSWERING DEVICE

Our business uses a telephone an－ swering machine．Right across the street is a shop specializing in CB．They work late hours and the CB transmitters trip the device！It gets annoying when you have 50 or 100 extra calls to monitor every morning！How can we get rid of this？－H． l．，Lockport，NY．

The McKAY DYMEK DA 100.
The DA 100 is a compact，wide dynamic range，broadband，untuned，omni－direc－ tional receiving antenna covering the frequency range of 50 kHz to 30 MHz ．
The exterior module，a small weather－proof box with a 56 inch（ 142 cm ）whip delivers the signal to the power supply unit through a supplied 50^{\prime} coaxial cable．
The power supply locates near your general coverage receiver and attaches with a supplied patch cord．
The DA 100 antenna is small，but will equal or outperform a 100^{\prime} long wire antenna， and is priced within reach of everyone！
Output Impedance－Attenuator Switch provided to match receiver input requirements and prevent overload．
Order factory Direct．Call toll free today！ Money Back guarantee．Rent／Own Plan available．Specs and details on request．
Nationwide 800／854－7769
California 800／472－1783
McKay Dymek Co．
111 S．College Ave．，PO Box 5000 Claremont CA 91711

This problem is apt to be due to the RF signals from the CB getting into the audio input of the answering unit．Try looking up a $250-\mathrm{pF}$ capacitor to ground right at the input jack．If this helps but doesn＇t cure the problem，open the lead from the input jack to the first preamplif－ ier stage and add a small RF choke in series with $250-\mathrm{pF}$ capacitors to ground on both ends．

This will have no effect on the audio signals since these components are so small．It might be a good idea to add $0.05-\mu \mathrm{F}, 600$－volt capacitors to bypass both sides of the AC line to the answering machine；some RF signals may be coming in through the AC line．

ONE CHANNEL，NO COLOR

I have a couple of problems with a Panasonic model CT－62P．The color＇s gone on Channel 2 plus there＇s no fine tuning．The color and fine tuning are OK on all other channels．Channel 2 shows only squiggles for color．Any ideas？－R． E．，Menasha，WI．

This is a fairly common problem with this type of tuner．It＇s basically a turret tuner，and each channel strip has its own fine tuning．A tiny gear on the front is engaged by the drive gear and moves the oscillator core．If this little gear has been screwed in too far，the drive gear won＇t be able to engage it．You can take the cover off and turn till you can remove the

Everything you ever want to know about Personal Computers ．．．

Here it is－everything you need to know about the state of the art，just as it appeared in the big，colorful special section of the June， 1978 RADIO－ELECTRONICS－＂Your Own Computer．＂

This complete，colorful， 32 －page reprint of that first－in－the－field special feature tells you everything you want to know，including：An Introduction to Personal Computers－what they can do and how to select your own；What Makes a Computer System－peripheral de－ vices and accessories；The Different Ways You Can Talk To Your Computer＿program－ ming languages and how to use them；a special edition of Computer Corner；and，A Roundup of the Equipment，the most com－ plete Who－Makes－It Computer Manufacturer Listing you can find！

We＇ve reprinted this giant special section of RADIO－ELECTRONICS for your convenience． Every serious experimenter and technician will want this vital information at home and in the office，lab or workshop，where you can refer to it when you need it．At this very special low，low price of just $\$ 1.00$ ，you can afford to have your own copy of＂Your Own Computer＂everywhere you go－and give some to friends，too．
Don＇t delay．We＇re ordering a big reprint of this very popular feature section，but we＇re expecting a big demand，too．For your conve－ nience，use the coupon below to order your own reprints of the single most authoritative， most colorful，most comprehensive report on today＇s Personal Computers，the 32－page reprint of RADIO－ELECTRONICS＇＂＇Your Own Computer，＇for just \＄1．00．Do it today．

Use Quick Wedge to repair a control panel, hook up a power monitor, connect a power supply, install a motor starter

They do all that ordinary screwdrivers do, PLUS they hold and start the screw

QUICFHEDCE
17 sizes
Screw-holding screwdrivers
Unconditionally guaranteed. BUY A SET TODAY
See your dealer or write to:
Kedman Company, P.O. Box 25667.
Salt Lake City, Utah 84125
CIRCLE 90 ON FREE INFORMATION CARD

Original Japanese parts

and other service aids

		NEW ITEMS:			
SPECIAL:	2SC1975	2.50	AN7150	3.25	
2SC1306	S1.90 ea.	BUY 12. GET 1 FREE	2SC2029	2.50	M53273

FINO IT FAST''․ JAPANESE HARDWARE PACK
Siop Looking For Those Hard To Find Screws

- IS 0 cavmese Stantrar.

Screws ${ }^{\text {-abntese Stantar : "E Rings }}$

- Wasners
- Neatly Packed

ELCAPACK**
ELECTROLYTIC CAPACITOR PACK
many more items available. ... Tape head. l.e.o.'s. f.E.T.'S. insulators ano lamps
SAME OAY SHIPMENT ON IN STOCK ITEMS

ORA ELECTRONICS
7235 CANBY AVENUE, DEPT. PC
CALL TOLL FREE: RESEDA, CA 91335
$\begin{array}{ll}\text { - Radial Lead } & \text { Average cost less } \\ \text { - Neatly Pack } & \text { then 156 per capacitor }\end{array}$

- Hi Usage Assortment - "Fill Up" of used Caps at 20° off
(800) 423-5336

In Calif. (213) 881-0338

Channel 2 strip without having to pull the tuner. Just turn the gear back out a turn or two by hand, then put it back.

ODDBALL REACTIONS

This Admiral model 19TS341C came in with no picture or sound and the thermistor burned up. After I replaced this, no brightnessl If I lift one end of R105 (470 ohms in a +295 -volt source, power supply), the brightness comes back. l've checked everything else hooked to this line and I can't find anything wrong. Every time I hook R105 back up, out it goes. Do you have another approach?-H. T., Elizaville, NY.

Well, yes. Try this: Check the high voltage while the raster is on, then hook up R105 and see if you lose the high voltage or if it stays up. If it stays up, some-

thing is causing the picture tube to be cut off. The video output plate-supply circuit actually has three "legs," two to +295 volts, and one through L311 and resistor R324 back to +128 volts. This arrangement seems to be used as some sort of clamp to keep the picture tube cathode voltages in line. If this voltage line is off, or open, it could cause the cathodes to become too far positive.
(Feedback: "Bingo! Your crystal ball is excellent. Resistor R324 had gone way up in resistance. That did it.")

VOLTAGE MISMATCH

This Audiovox model ID-400 stereo came in with no output at all on the right channel. Changing the output IC brought it back, but there's now a bad distortion in the left channel. When I checked the DC voltages on the two output IC's, I found they don't match exactly, and pin 9 of the left IC reads +7.0 volts. The same pin on the right $1 C$ reads 0 volt. There's nothing connected to this pin on either IC. Where do you think the trouble lies?M. R., Auburn, MA.

There are two fairly good ways of checking IC's: One, if the signal "goes in but won't come out"; two, if the DC voltages "developed inside the IC" are off. Both tests should be used, and if they both give the same result, it should be pretty conclusive. The left IC does seem to be bad. Since nothing external is connected to this pin, this voltage indicates there's something bad inside. Change this IC too.

R-E
next month

OCTOBER 1978

\square Build A Function Generator

Extremely low-distortion unit delivers sine, square and triangle waves from below 2 Hz to above 200 KHz.

- Build An Alarm System

Keep unwanted intruders out with this system. Perimeter defence stops them at all entry points.

- How To Buy FM Tuners

Len Feldman tells what to look for as well as what to look out for.

FM Tuner Roundup

Directory of FM Tuners available today. Complete with all of their important specifications.

PLUS

* Modules For Experimenters

* Using A Video Tape

 Recorder* Hi-Fi Test Reports
* Build A Frequency Probe
* Computer Corner
*Jack Darr's Service Clinic

[^1]
We're Fighting for Your Life

Please give generously American Heart Association $\hat{\dagger}$.

NEW FROM LEADER

The 30MHz Dual Trace Scope with Delay Line.

High Sensitivity. P-D-A CRT. Single Shot Trigger.

Model LBO-520 . . . \$999.95 with accessories
See your distributor or write direct for details

Gof Gas Guzzler Gloom?

Try AUTOCOMP for quick relief from high fuel costs.

AUTOCOMP is a continuously updating microcomputer which reads TRUE MPG while you drive Additional pushbutton controis also give automatic readouts of Time, Distance. and Fuel Consumption. You can monitor your engine's performance and your vehicle's efficiency AUTOCOMP will help you save fuel, improve your driving habits. and provide you with valuable time and trip data Install AUTOCOMP before your next trip and beat high fuel costs!

AUTOMATICALLY DISPLAYS:

EXAMPLE

- FUEL USED - when the FUEL button is depressed the display indicates the amount of tuel the venicie has usec Since last fill-up beginning of trip or (up 101000 gallons)
- distance traveled - when the DIST button is depressed, the display indicates the distance the vethicle has
traveled since the last reset (up to 1000 miles)
- instant miles/gallon - when the INST MPG button is depiessed the display indicates how many miles per gal lon the vehicle es attarning
moment (uo to 200 mpg)
- average miles/gallon - When the AVE MPG button is depressed the oispiay indicates the average miles per galion the
- CORAECT TIME [clock] - When th TIME buttion is depressed. The display indicates the correct time (in hours and minutes) The clock may also be used 10 display ELAPSED TIME.

AUTOCOMP comes with clear illustrated instructions that make it easy for a do. 1 t yourselté to install Equipment supplied includes the Speedsensor which simply screws onto the speedometer cable and the digital Flowsensor which eastly installs onto the fuel line

SAVE S10 OFF RECULAR PRICE

Order now using the coupon below and save $\$ 10$ off the regular list price of $\$ 129.95$ A one year limited warranty is provided

PITICGMF

SpaceKom, Inc 212 E. Gutiarrez St Santa Barbara CA 93101

$-\mathrm{B}$

CIRCLE 64 ON FREE INFORMATION CARD

new praducts

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

ELECTRIC DRILL, model 6275 Iso-Tip and model 6280 Iso-Tip, are small-shank tools that accomodate drills and burrs up to $1 / 8$-inch diameter. Drill's small size makes it ideal for prototype work. PC board applications, solder removal. Included are

a collet chuck, 3 collets, 2 drill bits and 10-foot cord. Power requirements: model 6275, 110-volt source; model 6280, 12 -volt supply. Units are housed in sturdy lightweight plastic. Prices: model 6275, \$27.50; model 6280, \$23.95.-Wahl Clipper Corp., 2902 Locust St., Sterling. IL 61081
CIRCLE 106 ON FREE INFORMATION CARD

PORTABLE VOM MULTITESTERS, models NH$55, \mathrm{NH}-67,80-\mathrm{M}, 90-\mathrm{M}$. The model $\mathrm{NH}-55$ measures 0-1 megohm in two ranges, 60 ohms centerscale, and provides a $2000-0 \mathrm{hm} /$ volt sensitivity on AC/DC 0-102, 50-, 250- and 1000-volt ranges. Includes two resistance ranges, a dB range and DC range. Comes with test leads, battery and instructions. Optional pouch, model NH-5P. Measures $35 / 4 \times 23 / 8 \times 1 / 8$ inches; weighs 4 oz, including battery.
The model NH-67 features 20,000 ohms-pervolt DC and 10,000 ohms-per-volt $A C$ on all ranges. Can measure DC on any of 8 ranges; $A C$ voltage, on 5 ranges. Includes one dB range, 5 DC ranges and 4 resistance ranges. Test leads, battery, instructions; optional carrying case. Measures $51 / 2 \times 31 / 2 \times 11 / 2$ inches; weighs 1 lb , including battery.
The model $80-M$ measures DC voltage on 7 ranges, dB and AC on 6 ranges. Included are 4 DC ranges and 4 resistance ranges. Used with a

power supply, can also measure capacitance and inductance. An optional pouch, model $\mathrm{H}-8 \mathrm{P}$, is available. Unit measures $7 \times 53 / 4 \times 31 / 8$ inches; weighs 2 lb , including battery
The model $90-M$ (shown) features 50,000 ohms-per-volt DC and 12,500 ohms-per-volt AC on all ranges. DC voltage can be measured on 7 ranges; $d B$ and $A C$ voltage on 6 ranges. Included are 5 DC ranges and 4 resistance ranges. Leads, battery and instructions; optional carrying case, model H-9C. Measures $61 / 2 \times 41 / 2 \times 13 / 4$ inches; weighs 1 lb , including battery.
On all models (except model NH-55), handle doubles as stand. Suggested retail prices: model NH-55, \$12.50; model NH-5P, \$1.50; model NH67. $\$ 25.50$; model $N H-6 C, \$ 2.65$; model $80-\mathrm{M}$, \$56.50; model H-8P, \$8.95; model 90-M, \$41.00; and model H-9C, \$3.25. -Mura Corp., 177 Cantiague Rock Rd., Westbury, NY 11590
CIRCLE 107 ON FREE INFORMATION CARD

CB BASE STATION MICROPHONE, Astatic model 1104 C , is preamplified and adjustable for

correct modulation level via master－gain control． Amplifier has external slide controls for volume and tone adjustment．Mike is housed in high－ impact plastic and comes in eight decorator colors．Power is supplied by a 9 －volt battery；also included is a 6 －wire coil cord that allows for relay， electronic or virtually any type hookup．Price： \＄83．－Astatic Corp．，Harbor St．，Conneaut，OH 44030.

CIRCLE 108 ON FREE INFORMATION CARD

FOUR－OUTPUT SWITCHING POWER SUPPLY， model $M G Q-300$ ，features isolated outputs of +5 volts $30 \mathrm{amp},-5$ volts 5 amp ，and ± 15 volts 2 amp ，all overvoltage－and current－pro－ tected．Unit＇s temperature range is $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，with a 2.5%－per－${ }^{\circ} \mathrm{C}$ derating from $50^{\circ} \mathrm{C}$ at full output．The model MGQ－300 measures

$12.25 \times 3.9 \times 7.5$ inches，weighs 13 Ibs ，and operates at either 110 VAC or 220 VAC．Unit price is $\$ 695$ ，with quantity discounts avail－ able．－Gould，Inc．，Electronic Components Div．， 4601 North Arden Dr．，El Monte，CA 91731.
CIRCLE 109 ON FREE INFORMATION CARD

DOUBLE－SIDED PC BOARD KIT，model 750 ， uses photographic methods to produce boards （darkroom not required）．Kit includes sensitized

copper－clad boards，ultra－violet light source，ex－ posure glass，clamps，photoresist developer， etchant，trays，resist remover and a .040 drill bit for making IC pin holes．Kit weighs 3 lb ，and sells for \＄25．—Injectorall Electronics Corp．，98－100 Glen Street，Gien Cove，NY 11542.
CIRCLE 110 ON FREE INFORMATION CARD
DUAL－TRACE OSCILLOSCOPE，model $\angle B O$－ 508，is designed for many industrial，lab and service applications．Specifications include 10 mV －per－centimeter sensitivity， $17.5-\mathrm{ns}$ risetime， sweep speed range from $0.5 \mu \mathrm{~s}$－per－centimeter to

200 ms －per－centimeter．Other features include add／subtract modes for Channels 1 and 2，auto－ matic chop，automatic triggering，front－panel $X-Y$ operation．Oscilloscope comes complete with probes，measures $61 / 4 \times 101 / 4 \times 14^{3 / 4}$ inches and weighs under 14 lb ．Price：\＄689．95．－Leader Instruments Corp．， 151 Dupont St．，Plainview， NY 11803.
CIRCLE 111 ON FREE INFORMATION CARD
SIX－PIECE TOOL SET，model 30705，Tork－lt， contains handle（model 30710），three Phillips blades and two slotted blades．The Tork－It tool is designed specifically to loosen hard－to－remove screws，and can also be used to tighten or drive

super－hard self－tapping metal or case－hardened screws．Shock－resistant alloy－steel blades are $1 / 4-$ inch hex drive．Unit comes in plastic kit，conve－ nient for wall hanging or tool kit．Suggested list price，\＄13．96．－Hunter Tools， 9674 Telstar Ave．， El Monte，CA 91731.
CIRCLE 112 ON FREE INFORMATION CARD

IC TEST CLIP，model 4236，14－to 16 －pin DIP test clip with reduced thickness for testing ultra－ dense packages．Has nontarnishable nickel－silver

contacts；the lower contacts measure 1.02 mm and provide a positive electrical connection．The upper－end test points are square，serrated，mea－ sure 0.63 mm ，and are designed to handle wrapped wire，mini－test clips，or model 4185 IC jumper cable．A molded barrier between each contact allows live－board connections without shorting adjacent contacts．Glass－filled nylon casing can withstand temperatures to $240^{\circ} \mathrm{C}$ ． Price：$\$ 5.75$ each．－ITT Pomona Electronics， 1500 E．Ninth St．，Pomona，CA 91766 ．R－E CIRCLE 113 ON FREE INFORMATION CARD

World's biggest and best source of top-quality electronic kits!
Look at what's new in our new just-off-the-press catalog!

NEW
ASX-1383 High-Fidelity Speaker System

Easily one of the finest speaker systems in its price range! Linear Phase design uses stepped speaker components and a 1st order crossover so all frequencies reach your ears at the same time; for a hi-fi improvement you can really HEAR. A special edge-free cabinet and acoustically "invisible" grill cloth provide outstanding dispersion and accurate stereo imaging. Great looks too. Brazilian Rosewood cabinetry adds a look of elegance to any decor.

CS-2048
Automatic Cruise Control

NEW
GD. 1114
FM Wireless Intercom NEW
IT-7410
Logic Probe

OC-1401
Aircraft Navigation Computer

Set your desired cruise speed, press the button and that's it the CS-2048 maintains your car's speed on level roads, up and down hills, around curves, anywhere, automatically. Perfect for long-distance driving. A touch of the brake pedal returns the car to pedal control instantly - an important safety feature Fits most domestic cars, vans and trucks with open driveshafts.

Simply plug into AC outlets and use for reliable two-way communications between units on the same AC power line. Has phase-locked loop solid-state circuitry for clean, clear transmission and reception; automatic squelch for quiet operation.

Provides performance levels equal to units costing much more. Shows TRUE logic levels at high frequencies, has TWO indicator lights for unambiguous readings. Ideal for quick testing of any TTL or CMOS digital circuits.

The world's FIRST hand-held navigation computer with true, on-board computer power - provides complete air-port-to-airport flight management for up to 9 flight legs. Computes magnetic heading, true air speed, ground speed, true course, ETA to checkpoint, ETA to destination, clock time to check point and destination. A built-in clock/timer and three on-board microprocessors allow

NO PREVIOUS

EXPERIENCE NECESSARY
Thousands of people with no electronics experience whatsoever-people who have never handled a soldering iron before - have proved that you can build any Heathkit product you want to - and enjoy every moment of it! Simple step-by-step manuals make i easy as 1-2-3, and every Heathkit product you build will be a source of pride and satisfaction for years to come as you say "l built it myself"! real time display which counts down to check point or destination. There's even a fuel warning indicator. It's the only navigation computer with complete pre-flight, in-flight and navigation functions. Another Heath EXCLUSIVE!

HEATHKIT ELECTRONIC CENTERS* PROVIDE SALES AND SERVICE

ARIZONA - Phoenix, 2727 W. Indian School Rd

(602) 279-6247

CALIFORNIA - Anaheim, 330 E. Ball Rd. (714) 776-9420; El Cerrito, 6000 Potrero Ave. (415) 236-8870; Los Angeles, 2309 S . Flower St. (213) 749-0261; Pomona, 1555 Orange Middlefield Rd. (415) 365-8155; Sacramento, 1860 Fulton Ave. (916) 486-1575; San Diego (La Mesa), 8363 Center Dr. (714) 461-0110; San Jose (Campbell), 2350 S . Bascom Ave. (408) 377-8920; Woodland Hills, 22504 Ventura Blvd. (213) 882-0531

COLORADO - Denver, 5940 W. 38th Ave. (303) 422-3408 CONNECTICUT - Hartford (Avon), 395 W. Main St (Rte. 44) (203) 678-0323.
FLORIDA - Miami (Hialeah), 4705 W. 16th Ave. (305) 823-2280; Tampa, 4019 West Hillsborough Ave.
(813) 886-254 .

GEORGIA - Allanta, 5285 Roswell Rd. (404) 252-4341. ILLINOIS - Chicago, 3462-66 W. Devon Ave. (312) 583-3920; Chicago (Downers Grove), 224 Ogden Ave. (312) 852-1304. INDIANA - Indianapolis, 2112 E .62 nd St. (317) 257-4321. KANSAS - Kansas City (Mission), 5960 Lamar Ave. (913) 362-4486.

KENTUCKY - Loulaylle, 12401 Shelbyville Rd

502) 245-7811

LOUISIANA - New Orleans (Kenner), 1900 Velerans Memorial Hwy. (504) 722-6321.
MARYLAND - Baltimore, 1713 E. Joppa Rd (301) 661-4446; Rockville, 5542 Nicholson Lane (301) 881-5420 MASSACHUSETTS - Bosion (Peabody), 242 Andover St. (617) 531-9330; Boston (Wellesley), 165 Worcester Ave. (Rie. 9) ust west of Rt. 128) (617) 237-1510
MICHIGAN - Detroit, 18645 W. Eight Mile Rd. (313) 535-6480; E. Detroft, 18149 E . Eight Mile Rd. (313) 772-0416 MINNESOTA - Minnempolls (Hopkins), 101 Shady Oak Rd (612) 938-6371

MISSOURI-St, Loul (Brldgeton), 3794 McKelvey Rd (314) 291-1850.

NEBRASKA - Omaha, 9207 Maple St. (402) 391-207, NEW JERSEY - Fair 207 35 07 Bronay (Rie NEW JERSEY - Fair Lawn, 35-07 Broadway (Rte 4)
(201) 791-6935; Ocean, 1013 State Hwy. 35 (201) 775-1231. NEW YORK - Buffalo (Amherst), 3476 Sheridan Dr. NEW YORK - Buffalo (Amhersi), 3476 Sheridan Dr.
(716) $835-3090 ;$ Jericho, Long Island, 15 Jericho Turnpike (516) 334-8181; Rochester, 937 Jefferson Rd. (716) 244-5470; White Plains (North White Plains), 7 Reservoir Rd (914) 761-7690.

If quality...value....and the pride of craftsmanship turn you on, get your NEW HEATHKIT CATALOG!

OHIO - Cincinna oodlawn), 10133 £p ingfield pikz (513) 771 -8850; C ind 5444 Pearl Pic. ≈ 168886 - 2590 Columbus, 2500 R Rd. (614) 475-R2a roledo, 48 S . Byrne Rd. pennsylvani - 537-188
215) hiladelphia, 6318 Fossevelt BLd
 412) 824-3564 RHODE ISLA Providence (Warwizt), 258 Greenwich
TEXAS - Da: 2715 Ross Ave. (214) 226-4053;

SIRGINIA. andria, 6201 Richmosd Hwy. (703) V65-5515; i k (Virginia Beach), 105:s Independence BIVd. (804) 0997
WASHING - Seattle, 505 Bth Ave. North
(206)682
(414) 87 ?

HEATH

Schiurn parger

Heath Company, Dept. 020-450
Benton Harbor, Michigan 49022
Please send an= my FREE Heatr kit Catalog. I am not on your mailing list.

Name
Address

City
State
zip
NOTE: This FAEE Catalog Coupon can also be redeemed at any of the Heathkit Electronic Centers* nationwiofe. (See list at left)

CIRCLE 100 ON FREE INFORMATION CARD

"My father built this Schober Organ for me!"

You'd be proud to buy her an organ this good ...but how would you feel if you'd also built it? It's a special kind of satisfaction. The gift of a lifetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied You'll find the assembly process as enjoyable as the music which follows!

And what music! For this is a truly fine instrument you will build. Far superior to most
"ready-made" organs...easily comparable to others at twice the price. Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out... or have two-year time payments.

When you've completed the basic organ, Schober offers a full complement of accessories... plus complete organ playing courses! People have been building Schober Electronic Organs for their daughters, sons, wives, nusbands...for themselves...for 20 years now. Join the thousands of delighted Schober people.

You can have all the details, without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober). Why not clip it right now, before you forget?

43 West 61st Street, New York, N.Y. 10023

\square Please send me Schober Organ Catalog

- Enclosed please find $\$ 1.00$ for 12 -inch L.P. record of Schober Organ music

NAME

ADDRESS
C
?
-5
-5

CIRCLE 43 ON FREE INFORMATION CARD

You Can Count On DAVIS!

NEW CTR-2A

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERS
NOW WITH
PERIOD MEASUREMENT (Optional) AND BUILT-IN PREAMP

- 8 Digit .3"LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period lus to 1 sec . (optional)
- TCXO Std. ± 2 ppm
- Input Diode Protected
- $12 \mathrm{~V}-\mathrm{DC}$ Operation (optional)
- Oven Crystal $\pm .5 \mathrm{ppm}$ (optional)
- Selectible Gate Times . 1 sec . \& 1 sec .

500 MHz kit CTR-2A-500K $\$ 249.95$
500 MHz assembled CTR.2A-500A 349.95
1 GHz kit CTR-2A-1000K 399.95

1 GHz assembled CTR-2A-1000A 549.95

OPTIONS

(02) Oven Crystal
$\$ 49.95$
(03) $43^{\prime \prime}$ LED
10.00
(04) 12 V -DC
10.00
(05) 10 sec . Time Base
10.00
(06) Period Option
15.00

10 10]

DAVIS ELECTRORICS
636 Sheridan Drive
Tonawanda, NY 14150
716/874-5848

Regency Scanner

10 channels coverin all 5 bands. AC/DC operation.
SAVE ${ }_{\text {LLTT-129.95 }} \mathbf{\$ 8 9} 95$
1,000's OF CRYSTALS

- H25C Case Scanner Monitor
-10.7 Amateur Ham - 2 Meter CB Standard
$\begin{array}{ccc}1 \text { to } 9 & 10 \text { to } 49 & 50 \text { and UP } \\ \$ 3.70 & \$ 3.00 & \$ 250\end{array}$
\$3.70 $\$ 3.00 \quad \$ 2.50$

CRYSTAL BANKING SERVICE这
 LYNNFIELD, MASS. 0194O

CIRCLE 85 ON FREE INFORMATION CARD
CIRCLE 47 ON FREE INFORMATION CARD
new lit

LOGIC TESTERS, The Logical Force Sourcebook, 15 pages, describes three different types of troubleshooting tools-logic probes, a digital pulser (accessories available) and standard and advanced logic monitors. Complete specs are given for each unit.-Continental Specialties Corp., 44 Kendall St., Box 1942, New Haven, CT 06509.

CIRCLE 114 ON FREE INFORMATION CARD
TOOL KITS AND TEST INSTRUMENTS CATALOG, 27 pages describing tool kits with a broad range of applications, including electronic repairs, instrument repairs, field repairs, medical electronics, jewelry making, and many more. Test instruments come assembled and include testers, VOM's, DMM's and oscilloscopes.-ETCO Electronic Tool Corp., Claremont Ave., Thornwood, NY 10594
CIRCLE 115 ON FREE INFORMATION CARD
MUSIC SYNTHESIZER CATALOG, Aries Music 77, 12 pages, describes manufacturer's system, which is not just a keyboard but uses a wide variety of modules to create your own patchcord electronic music synthesizer. These modules include signal sources, controllers and modifiers, and among the units described are an ADSR envelope generator, a voltage-controlled amplifier, a dual mixer, a stereo reverb and output, plus a keyboard group. The catalog also includes two pages of sample systems. Most units are available as kits or prewired. The catalog contains a glossary of terms, a price list and an order form.-Aries Music Incorporated, Box 3069, Salem, MA 01970
CIRCLE 116 ON FREE INFORMATION CARD
PICTURE TUBE SETUP CHART, 78115 , is a 28 page, 5 - by 8 -inch, spiral-bound, hardcover book that details almost 2000 TV picture tube types, showing the heater and $\mathrm{G}-1$ voltages and socket for each unit number. This list was developed for use with manufacturer's model LCT-910 Tester/ Rejuvenater. Setup chart is available for $\$ 6.95$, plus postage; or with picture tube adaptors for $\$ 17.90$, plus postage.-Leader Instruments Corp., 151 Dupont St., Plainview, NY 11803
CIRCLE 117 ON FREE INFORMATION CARD
SEMICONDUCTOR CATALOG, 1978-1979, 238 pages, lists complete line of Zeners, temperaturecontrolled diodes, NPN switching transistors, sili-con-transient voltage suppressors and highspeed, high-voltage switching transistors. Many of the units are described in detail along with their applications. Devices are listed numerically by category, and both JEDEC and company's type numbers are shown.-Semiconductor Indus tries, Inc., 2001 W. 10th St., Tempe, AZ 85281
CIRCLE 118 ON FREE INFORMATION CARD
ANTENNA CATALOG, expanded listing of TV and FM antennas and accessories, MATV equipment, replacement antennas, CB and two-way radio accessories, etc. Among the new products listed are a 75- to 300 -ohm indoor/outdoor balun antenna; repłacement dipoles; MATV cables and adapters. Also included is a replacement guide for SRA-series and RA-series antenna dipoles and back-of-set antennas.-RMS Electronics, Inc., 50 Antin PI., Bronx, NY 10462

R-E
CIRCLE 119 ON FREE INFORMATION CARD

NE for Professional Technicians

rest Belt's BAINING WOBKSHOps 1978

THREE-DAY
- INTENSIVE
- UP-TO-DATE
- PERSONAL
- UNIQUE

- Includes lodging
- Breakfasts, lunches, and coffee breaks during WORKSHOPS
- Grand AWARDS bANQUET
- FREE Extra SEMINAR

ADVANCED

VIDEO SERVICING

Featuring VCRs, Digital Controls, VIR . . . and much more

Intensive Forest Belt teaching techniques and exclusive, proven training aids bring you right up-to-date in the troubleshooting and repair of today's video equipment for home or industry.
Special emphasis on solid-state and integrated circuits. See new IF and color alignment methods you probably never thought of. Learn about Vertical Interval Reference (VIR) automatic color control in newly introduced TV receivers. Understand digital and solid-state tuning systems. Participate in live equipment demonstrations. Sit in on the industry's first look at practical, Easi-WayTM repair of video cassette recorders.
DON'T BE LEFT BEHIND in your own industry! Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods. ENROLL NOW to be sure you do not miss this vital and unique Advanced Video Servicing WORKSHOP.

FREE Price and Profit SEMINAR Tuesday evening.

September
 11-13 (Communications) or 18-20 (Video)
 Hospitality Inn East
 Interstate 70 at Post Road
 Indianapolis, INDIANA

Centrally placed for convenient travel from anywhere in the mainland U.S. Also timed earlier in the year, in case you should not be away from your shop during the pre-Christmas season. You can attend in time to prepare you for the year-end service rush and the new sets being sold.
Comfortable, pleasant accommodations: two people to a room (two beds). Indoor pool. Shopping downtown by freeway. Bring your spouse if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to room with a specific other WORKSHOP attendee, tell us.

Enrollments close August 4, 1978, or when capacity is reached. Per Workshop \$495

ADVANCED

COMMUNICATIONS SERVICING

Featuring FM Two-Way, PLL, Single Sideband . . . and much more

Here, too, intensive Forest Belt teaching methods and exclusive, tested learning aids assure you up-to-the-minute training troubleshooting and maintaining communications systems. Special emphasis on solid-state and integrated circuits. Observe professional alignment and tuneup methods. Deal profitably with Business and Land Mobile Radio-and the growing General Mobile Radio on UHF wavelengths. Learn of new developments in Marine and Aircraft Radio. Study the latest phase-locked loops, including their digital programming. Take part in live equipment demonstrations. See Easi-WayTM techniques applied to communications.
GROW AS A REAL EXPERT in your specialty. Grab this exceptional opportunity to polish up your diagnosis and repair skills. Become familiar with new technology and money-saving instruments. ENROLL NOW in Advanced Communications. a giant step beyond our popular CB Servicing WORKSHOPS.
FREE Math and Formulas SEMINAR Tuesday evening.

November
 6-10 (Communications) or $\mathbf{1 3 - 1 7}$ (Video)

South Seas Plantation Captiva Island, FLORIDA
(near Sanibel and Ft. Myers)

For technicians who could use a bit of get-away time as part of this unique training package. Two days of consulting or on-your-own follow each WORKSHOP. Make your own airline reservations, well in advance; but we take care of placing you in our luxury cottage lodging.
Exceptional resort accommodations: four people (two bedrooms, four beds, two baths) or six people (three bedrooms, six beds, three baths) in fancy beach cottages. Bring your spouse, if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to share a room with a specific other WORKSHOP attendee, tell us. Cottages have kitchen facilities. An unusual winterseason bargain.
Enroliments close Sept. 15, 1978, or when capacity is reached. Per Workshop $\$ 595$

Yes, enroll me promptly \square Advanced Communications for TRAINING WORKSHOP Servicing at right. \square Advanced Video Servicing	Name ___ Age Company ___
I enclose check or money order for \$___ U.S. dollars.	Address __ Phone
$\square \$ 495$ per WORKSHOP in Indianapolis \square \$ $\square 175$ for spouse	City ___ State ___ Zip
$\square \$ 595$ per WORKSHOP in Florida $\$ 250$ for spouse (includes lodging. same mieals as for WORKSHOP enrollee)	NOTE: You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING WORKSHOPS. NOT FOR BEGINNERS.
$\$ 475$ for CB Service WORKSHOP (same as 1977, and includes lodging) at Indianapolis August 21-23, 1978.	Mail to: Forest Belt's TRAINING WORKSHOPS, Box 68120, Indianapolis IN 46268

MORE F FUCTION GENERATOR FORYOUR MONEY.

270 Function Generator gives you a lot more waveform generating capability than you'd expect for its price.

- Puts stable, calibrated, high quality sine, square and triangle waveforms from 1 Hz to 500 kHz at your fingertips.
- With external connections you can produce logic pulses, sweeps and ramps, AM and FM outputs, phase and frequency shift keying signals, tone bursts and more.
- Its an audio generator and much more.
Before you buy another function generator, check out the Hickok Model 270. Ask your Hickok distributor for full details or write us for our 4-page technical brochure.

$\$ 199^{00}$

If you're outside of Ohio, call us toll free at 800-321-4664 for the name of your nearest Hickok distributor.

HICKOK

the value innovator INSTRUMENTATION \& CONTROLS OIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Oupont Avenue - Cleveland, Ohio 44108 (216) 541-8060 - TWX: 810-421-8286 CIRCLE 12 ON FREE INFORMATION CARD

CAR STEREO BOOSTER AMPLIFIER, model GE500 AcoustaTrac, is designed for use with tape decks, radios and speakers having 15 -watt (or more) power-handling capacity. A visual display of the amplifier response is shown on an illuminated screen. The all-integrated circuit delivers

over 40 watts of undistorted RMS stereo power; and other features include five frequency slide controls, front-to-rear fader, power indicator light and audio bypass switch. Suggested retail price: \$79.95.-Sparkomatic Corp., Milford, PA 18337.

CIRCLE 122 ON FREE INFORMATION CARD
TAPE RECORDER MIXER, model $2 A$, is specially designed for multi-channel recording. The mixer

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.
can be used with the model MB-20 meter bridge, and features four VU meters, independent bus/ tape switches for each channel and built-in 1-watt headphone amplifier. Channel pushbuttons are color-coded to correspond to output buses. Controls include a straight-line fader (level control for the input channel) and master fader, which serves as the output-level control. The mike-input jack

accepts a $1 / 4$-inch phone plug, the line-in jack accepts a standard phono plug. The line output doubles as the bus output, and the auxiliary output line can be used in parallel with the main line. The model $2 A$ accepts several selectable inputs. It can be used either ahead of the tape recorder or it can fit into the output of the multichannel recorder. Prices: model 2A, \$400; model MB-20 meter bridge, $\$ 200$.-TEAC Corp. of America, 7733 Telegraph Rd., Montebello, CA 90640.

CIRCLE 123 ON FREE INFORMATION CARD
POWER AMPLIFIER, Grandson, is third in manufacturer's Ampzilla line, and comes in two models, one with 2 power meters calibrated in watts and dB , the other with no meters (utility model). Both are rated at 80 watts-per-channel into 4 ohms from 20 Hz through 20 kHz at less than 3% (typically 0.15%) total harmonic distortion. Transient modulation distortion is reduced to below $.01 \%$, and fully DC-coupled circuitry includes servo-control loop to maintain DC offet to less than $\pm 25 \mathrm{mV}$. The Grandson also features an IC-controlled, bias-current regulator, and thermal breakers are provided to protect against output transistor overheating.

Specifications for both models: Power output (20 Hz to 20 kHz , with both channels driven) is 120 watts-per-channel minimum into 2 ohms, 80 watts-per-channe! minimum into 4 ohms, and 40 watts-per-channel minimum into 8 ohms; THD and IM distortion less than $.08 \%$ (typically $.05 \%$) from 15 Hz to 40 kHz into 8 ohms, less than 0.3% (typically 0.15%) from 15 Hz to 25 kHz into 4 ohms, less than 1.0% (typically 0.6%) from 20 Hz
to 25 kHz into 2 ohms .
Units measure $19 \mathrm{~W} \times 41 / 4 \mathrm{H} \times 11$ inches D, and weigh 20 lb. Prices: utility model (without meters) \$309; metered unit, \$349.-Great American Sound Co., Inc., 20940 Lassen St., Chatsworth, CA 91311.
CIRCLE 124 ON FREE INFORMATION CARD

WIRELESS SOUND SYSTEM is a line of highfrequency, high-fidelity wireless microphones and receivers operating in the range from 150 MHz to 210 MHz . The transmitter can be used with either

a regular or a rechargeable battery and a choice of mike heads is available. Further information is available from the manufacturer.-Edcor, 3030 Red Hill Ave., Costa Mesa, CA 92626.
CIRCLE 125 ON FREE INFORMATION CARD

DEMONSTRATION STEREO MUSIC RECORD, on Realistic label, contains popular, classical and semiclassical selections designed to demonstrate the full capability of high-quality audio systems.

Record is available exclusively from Radio Shack stores and dealers, and is priced at $\$ 3.39$ for the disc; cassette tape also available for \$3.69.Radio Shack, 1400 One Tandy Center, Fort Worth, TX 76102 R-E CIRCLE 126 ON FREE INFORMATION CARD

You mean it takes all this equipment just to play Rock and Roll?

fact: a stylus tip does not a cartridge make. so why all the fuss?

The stylus tip is only part of the complex stylus and cartridge structure, and performs a single function - it positions the entire stylus assembly so that all groove undulations are traced without damaging the record. The production of a top-quality tip calls for exquisite micro-craftsmanship, precision polishing, unwavering uniformity, and exact orientation. (However, important as it is, an exotic diamond stylus tip configuration simply isn't a cure-all for what might ail an otherwise deficient cartridge, regardless of high-flying claims you may have heard or read.)
Here are the basic criteria a top-quality stylus tip must meet:

If the tip is shaped so it's oversized at its contact points, it can rise out of the modulated groove (the arrows indicate modulation of one groove wall) and "crest" at the record surface, causing extreme distortion and noise.

A slightly-undersized or too-pointed stylus tip may ride the groove bottom, lose contact with the groove walls, mistrack, and generate high noise levels.

IT MUST BE CORRECTLY ORIENTED
Skewed or rotated orientation introduces distortion.

IT MUST BE A GENUINE SHURE STYLUS
For unwavering uniformity, look for the name "Şhure" on the grip.
Please send for our "Scientific Study of Competitive Styli" booklet (AL548) explaining the important specifications all Shure styli are required to meet.

High Fidelity Cartridges \& Replacement Styli
Shure Brothers Inc., 222 Hartrey Avenue, Evanston, IL 60204, In Canada: A. C. Simmonds \& Sons Limited Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

Our new test equipment catalog. Free!

With this catalog you can browse through one of the nation's largest electronics warehouses, packed floor to ceiling with the finest test instruments. Everything from probes to dual trace scopes; and everything at sensational savings made possible only by mail order selling. Volume pricing on orders over $\$ 500$ gives you even greater
 savings. Every item is backed by a big brand name. Shipment is prompt from stock, always freight prepaid and there never is a handling charge on orders over $\$ 200$. Write today for the big free catalog of the big brands that offers you the big savings.

Solid State News

Here are just a few of the ideas presented in National Semiconductor's Pressure Transducer Handbook. The book presents electrical and mechanical possibilities and such applications as flowmeters, pressurized-cable fault location and accelerometers. The handbook is available for $\$ 4$ from National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, CA 95051.

The pressure transducer makes a good microphone and spans a wide frequency range all the way down to DC . The pressure sensor element goes out to 50 kHz , and the internal amplifier limits this range to 30 kHz . If the pressure port is inserted into a wind instrument, it must be protected from breath moisture by an acoustically transparent material. Electronic attack (the rising portion of the envelope waveshape) processing can add new flexibility to many otherwise physically restricted musical instruments.

Transducers are selected that have bipolar pressure ranges to sense acoustic compression and expansion phases. Gauge types automatically reference the pressure against the natural room pressure. Absolute pressure devices centered around 15 psia can also be used. Parabolic and hyperboloid microphones are constructed by mounting the transducer at the focal points of the reflective structures.

Thermometers

How about constructing a thermometer from a pressure transducer? This is not such an unusual idea because many standard thermometers are pressure oriented. A fluid contained in a closed bulb changes its level as the temperature modulates the pressure inside the bulb. Absolute pressure transducers provide the convenience of an electrical output by connecting a sealed bulb to the pressure port on the transducer. The inner and outer surfaces of the bulb are made absorptive or reflective to suit applications where, for example, it is important to simulate the performance of a cooking implement.

Automotive applications

The automotive electronic possibilities for pressure transducers are attractive. These transducers are already in limited use for measuring oil pressure, manifold pressure, etc. And current interest in emission control and computer-controlled performance optimization opens up a whole spectrum of potential applications. For instance, differential pressure transducers that sense the pressure gradient across a venturi tube in the fuel system

Our new Bearcat ${ }^{\circledR} 250 \mid$
has all the fantastic space age features of our super
popular Bearcat ${ }^{\oplus} 210$, but now we've added: popular Bearcat ${ }^{\text {® }} 210$, but now we ve

- User selectable scanning speeds
- Priority channel
- Digital time clock-accurate to seconds - Automatic or user controlled squelch - Search Direction-Search "up" or "down" - for quicker return to desired frequencies - Transmission activity counter-tells you how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a channel without stepping through interim channels
- Non volatile memory-No batteries required to retain memory, even when scanner is unplugged
- Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
To reserve your space-age Bearcat 250 and receive your order priority number for springsummer delivery, send $\$ 319.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside the U.S. and Michigan dial 313-994-4441. To order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{\text { }} 250$ write: COMMUNICATIONS ELECTRONICS, Box 1002-Dept. 12,AnnArbor, Michigan 48106U.S.A. ${ }^{\circ} 1978$ Communications Electronics CIRCLE 73 ON FREE INFORMATION CARD

PROFESSIONAL AIDS $-\square=\square \square=\square$ KEEP MAGAZINES, CATALOGS, MANUALS, JOURNALS, AND REPORTS NEAT, OREANIZED

Eliminate the clutter of loose magazines, catalogs, etc. Find what you want, when you want it by utilizing these handy shelf or desk top files. Available in 6 sizes from Reader's Digest to newspaper size
Constructed of heavy duty Constructed of heavy du
fibreboard Attractive fibreboard. Attractive front panel.
Adhesive identification labels included Popular letter size: $111 / 2 \times 9 \times 33 / 4$

ORDER DIRECT

10 for $\$ 15.89$ - 25 for $\$ 28.97$ Other sizes available - Request Catalog Shipped pre-paid, Canada, add $\$ 1.00$
visa \& master charge accepted
dovise capd no and expigation date
PROFESSIONAL AIDS CO.
1 S. WACKER DR., SUITE RE 10
CHICAGO, ILL. 60606
CIRCLE 34 ON FREE INFORMATION CARD
can measure fuel flow，which a central automotive microcomputer could convert into miles per gallon．

FM IF subsystem

The Motorola MC3357 is a narrow－ band $F M$ receiver circuit that includes almost all components between the sec－ ond mixer and the audio and squelch output．Narrowband FM systems are used in commercial，public safety and ham transceivers，as well as in scanning and paging receivers．

The MC 3357 operates as low as 4 volts with a typical current drain of only 3 mA ． In a battery－operated，hand－held radio it replaces 20 to over 100 discrete compo－ nents．The circuit has an internal doubly balanced mixer and a Colpitts local oscil－ lator to convert the $10.7-\mathrm{MHz}$ input to the $455-\mathrm{kHz}$ second IF frequency．The signal is amplified by a five－stage emitter－ coupled IF amplifier－limiter and is demo－ dulated by a quadrature detector．An external bandpass filter inserted between the converter and the second IF amplifier defines the selectivity．The audio is pro－ cessed by an active filter amplifier．Typi－ cal sensitivity is $5 \mu \mathrm{~V}$ with a $3-\mathrm{kHz}$ signal deviation and 350 mV of recovered au－ dio．

Second－generation MC6800 MPU

Previously，improvements that were made to the MC6800 increased its fre－ quency limits and extended its tempera－ ture range．Now，a sufficiently major architectural change has been made that warrants providing the device with a new number．

The MC6802 is completely software－ and hardware－compatible with all other members of the M6800 microprocessor family．The MC6802 is an MC6800 with an internal clock oscillator and driver， plus 128 bytes of RAM occupying the first 80 （ 0000 to 007 F ）memory ad－ dresses．It has a low－power standby mode for memory retention．

The MC6802 is available in a plastic package in quantities of 25 for $\$ 22$ each． For information，write Motorola Semi－ conductor Products，Inc．，Box 20912， Phoenix，AZ 85036.

Doppler detector diodes

Parametric Industries has announced the PD422 Doppler detector diodes for use in police radar systems and such motion－detection devices as braking sys－ tems and intrusion alarms．The diodes are glass encapsulated，hermetically sealed and encased in ceramic for high burnout resistance and high sensitivity．The oper－ ating frequency of the PD422 is 10.525 $\mathrm{GHz} \pm 250 \mathrm{MHz}$ ，and the sensitivity is -60 dBm ．The PD0919，which operates at $24.150 \mathrm{GHz} \pm 250 \mathrm{MHz}$ ，is also avail－ able．

For more information，write Paramet－ ric Industries，Inc．， 742 Main Street， Winchester，MA 01890.

R－E

CIRCLE 63 ON FREE INFORMATION CARD

IFERM DIGIIAL HEAT SENSORS

*THERM I: 3 digit . 3" LED display; 5AA alkaline batteries; 15-20 hour continuous operation; battery recharger and NiCads optional.
*THERM II: 3 digit . $5^{\prime \prime}$ LCD display, 9 v alkaline battery; 125 hour continuous operation.
*MINI-THERM: plugs directly into DVM for reading on DVM display; 9 v alkaline battery; 125 hour continuous operation.

- Rugsed, handheld aluminum case - Accuracy $2 \% \pm 1$ L. S^{2} :
- Resolution: $1^{\circ} \mathrm{F}, \mathrm{K}$, or
- Probar: Comes with ítellon cable (replaceatble) - Range": - $0^{\circ}\left({ }^{\circ}\left(-5 x^{\circ} F\right) 10+150^{\circ}(\right.$ $\left(30^{\circ} \mathbf{F}^{\prime}\right)$ - Batlers-operated
(415) 941-2764
P.O.Box 4477 Min. View CA 94040 Cagek kizi

PTS 8001 Component Analyzer

Solid state component tester works in or out of circuit. Simple hook-up to any standard oscilliscope. High, medium and low range switch for matching the impedance to the component being tested.

Dealer Net \$54.95

HOBBY CORNER

continued from page 77
smooth out the ripple in the pulsating DC voltage from the rectifier. The value of this electrolytic capacitor is not critical, but I recommend a minimum capacitance of $1000 \mu \mathrm{~F}$. Anything larger than 2500 $\mu \mathrm{F}$ is probably a waste of money.

As you know, electrolytic capacitors are available in a variety of working-voltage (WV) ratings. The practical rule for specifying this rating is $1 / 2$ times the maximum peak voltage applied. In the case of C 1 , the supply would require a minimum WV rating of $27(1.5 \times 18=$ 27). A commonly available rating is 35 WV, which is probably what you will use. You can use a higher WV rating, but it is a good idea not to use more than two or three times the needed value.

The function of C 2 is to assist in voltage regulation. It is a high-quality $1-\mu \mathrm{F}$ electrolytic-usually a tantalum capacitor is recommended-mounted close to the regulator with short leads. You would then select the WV rating. In a 5 -volt supply, that would be a minimum WV of $8(1.5 \times 5=7.5)$, although you can cut this figure a little closer on a regulated power line.

This is your basic power supply for solid-state circuits. Using these principles, you can easily design your supply to meet output requirements of 5 volts to 24 volts. Observing current ratings especially, one transformer can even provide more than one regulated output.

The supply should contain a switch and a fuse in the transformer primary and probably a power-on indicator light. In addition, a current meter and perhaps a voltmeter can be advantageous in the output circuit.

As previously stated, because this only scratches the surface of power supply design, don't forget to study other supplies and principles.

A reader circuit

John Holland of Hopkinsville, KY, sent in the handy circuit shown in Fig. 3. This is an adapter that provides regulated voltages of 6 or 9 at the flick of a switch using a 12 -volt automobile cigarettelighter socket. Thus, you can operate your transistor radio without running down its battery.

John cautions about getting the Zener diodes' polarity correct. His adapter is constructed in a small box, and the output current is limited to a maximum of 12 mA .

Note that this circuit is more versatile than the one shown in Fig. 1, since it will yield two voltages. On the other hand, it lacks the built-in protection provided by the three-terminal regulator, so be careful about loading it too heavily.

Thanks, John, for sharing your circuit with us. Perhaps other readers will do the same.

ANTIQUE RADIOS

continued from page 62－C
of some receiving tube manuals．For example，GE＇s Essential Characteristics manual lists a great many older tubes．

Interstage audio transformers

The old sets all shared a common problem even when they were new－open interstage audio transformers．Winding im－ pregnation hadn＇t reached its peak at that time．For some reason，the primary windings，with a fairly high positive voltage on them，would corrode at any pinhole in the insulation and then open．You can detect this by the presence of a bright green spot． （This also happened to IF and RF coils with positive voltages．）

If the primary of an interstage transformer is open，you can shunt it with a resistor of about the same value（from $25 \mathrm{~K}-50 \mathrm{~K}$ ） and then connect a coupling capacitor from the plate to the grid of the next stage（see Fig．6）．You may even be able to find

FIG．6－＂QUICK－AND－DIRTY＂fix for an open AF transformer．
suitable replacement interstage audio transformers．They are not too critical－a ratio of about 10,000 －ohm plate to a $30-50,000$－ohm secondary，or a step－up of $3: 1$ or so．

Many old sets had these transformers potted；Atwater－Kent， for example．You might be able to melt the tar，get the old transformer out，then slip a new transformer inside and put the can back！The work－and dirt－is worthwhile only if you wish to maintain the antique appearance of the old set．

Service data

Service data is very helpful on all sets．For reliable data on very old radios，Gernsback＇s Official Radio Service Manuals and John F．Rider＇s Perpetual Radio Troubleshooter＇s Manu－ als are invaluable．Volume I of either manual contains most of the real oldies and quite a few more are in Volumes II through V．Another and readily available source of data on antique radios is Volume I of Most－Often－Wanted 1926－1938 Radio Diagrams．Mr．M．N．Beitman，at Supreme Publications，Box 46，Highland Park，IL 60035，is the publisher of the Most－ Often－Needed series of service manuals．He also collects individ－ ual volumes and complete sets of Gernsback and Rider service manuals for resale．

One of the annoying things about service data in the early days was the manufacturers＇reluctance to give anything but the bare schematic！（Does this sound familiar？There＇s nothing really new under the sun！）In fact，the Atwater－Kent Company forbade their distributors to inform service technicians about parts values！You asked for a black－and－white resistor and that＇s what you got．
（We found a way around this situation．Whenever any of us got his hands on a new model Atwater－Kent，he fixed it，then used his ohmmeter to measure all the resistance values！He kept a log of these values and，at the next Radio Trades Association mecting，made copies of everyone else＇s list．Finally，Atwater－ Kent wrote down these values on the schematics，which you can find on many of the early models．

R－E

－Portable：Solid State－Rechargeable Batteries
The FM－2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predeter－ mined frequencies．

The FM－2400CH with its extended range covers 25 to 1000 MHz ．
The frequencies can be those of the radio frequency channels of operation and／or the intermediate frequencies of the receiver be－ tween 5 MHz and 40 MHz ．

Frequency stability：$\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$ ．
Frequency stability with built－in thermometer and temperature cor－ rected charts：$\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}(.000125 \%$ special 450 MHz crystals available）．
－Tests Predetermined Frequencies 25 to 1000 MHz
－Extended Range Covers 950 MHz Band
－Pin Diode Attenuator for Full Range Coverage as Signal Generator
－Measures FM Deviation
FM－2400CH（meter only）Cat．No． 035320 ．．．．．．．．．．．$\$ 595.00$
RF crystals（with temperature correction） 24.90 ea．

RF crystals（less temperature correction） 18.90 ea．

IF crystals catalog price

INTERNATIONAL CRYSTAL MFG．CO．，INC． 10 Noth Lee／Oklahoma City，Okla． 73102

Put Professional Knowledge and a
COLLEGE DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin $R-78$,
Grantham College of Engineering 2000 Stoner Avenue

$$
\text { P. O. Box } 25992
$$

Los Angeles, CA 90025
Worldwide Career Training thru Home Study CIRCLE 11 ON FREE INFORMATION CARD

() I'm convinced - Send Organtua Kit (\$279.95 enclosed)
() Send Organtua Instruction Manual (\$5 refundable with kit purchase) () Send FREE Catalog
name:
Address:
City: \qquad State:__Zip: \qquad
; 19 / DEPT. 9 R , 1020W. WILSHIRE: . OKLAHOMA CITY, OK 73116 CIRCLE 22 ON FREE INFORMATION CARD

computer products

DISPLAY TERMINAL AND COMPUTERS, SOROC model IQ 120 terminal and models HORIZON1 and HORIZON-2 computers, are used in tandem to provide a complete system. The SOROC model IQ 120 offers a 24 -line by 80 -character display and connects to the HORIZON computer with an I/O port at baud rates up to 9600 . This terminal has an addressable cursor, upper and lower case ASCII characters and numeric keypad. Comes with limited 90-day warranty.

The HORIZON computer offers either single or dual minifloppy disc drive, a $4-\mathrm{MHz}$ 280A, S- 100 motherboard, 16 K bytes of RAM, and standard serial I/O interface. Optional expansion to three drives and more than 64K RAM is possible. Extended disc BASIC software included with both HORIZON models.

Prices: SOROC model IQ 120 terminal, $\$ 995$ (assembled only); model HORIZON-1 (single-disc)-kit, \$1599; assembled, \$1995; and model HORIZON-2 (dual-disc)-kit, \$1999; assembled, \$2349.-North Star Computers, Inc., 2547 Ninth St., Berkeley, CA 94710.
CIRCLE 127 ON FREE INFORMATION CARD

INTEGRATED COMPUTER SYSTEM, Bytemasfer, provides either 18 K or 32 K memory, but can support up to 64 K of memory. Expandable system is fully wired to support external peripheral

devices, such as a printer, a monitor, and additional disc drives just by plugging into four available I/O ports. Dressed in heavy metal cabinet mounted on metal yoke, top-of-line model Master 4 comes assembled, with mini-disc drive and 32 K of memory; it sells for $\$ 3245$.-The Digital Group, Inc., Box 6528, Denver, CO 80206.
CIRCLE 128 ON FREE INFORMATION CARD

COMPUTER SYSTEM, model MICRO-68, comes completely assembled and is built around the 6800 microprocessor. The unit features 6 -digit LED display, 16 -pushbutton keyboard, built-in power supply, 128 words of RAM, and 510 MON1 Bug PROM. Edge connectors are provided for expansion to 64 K of memory and 16 -bit I/O. All

memory lines can be buffered on-board. The model MICRO-68 is housed in a hardwood cabinet with acrylic plastic lid and measures 9×16 $\times 2$ inches. Price: \$495.-Electronic Product Associates, Inc., 1157 Vega St., San Diego, CA 92110.

CIRCLE 129 ON FREE INFORMATION CARD

COMPUTER PERIPHERALS, external cassette drive and printer, for PET computer. Cassette drive (with a read/write capability of up to 170 kilobytes) is designed for expanded file keeping; it connects to designated I/O port and can be accessed directly from the PET via the basic command. The printer (shown) features up to 80

characters-per-line on $81 / 2$-inch roll or fan-folded paper; prints at 120 characters-per-second; and can reproduce all Commodore upper- and lowercase and graphic characters. Prices: cassette drive, $\$ 99.95$; printer, $\$ 595$.--Commodore Business Machines, Inc., 901 California Ave., Palo Alto, CA 94304.

CIRCLE 130 ON FREE INFORMATION CARD
ORIGINATE/AUTO ANSWER MODEM, model USR-330, is a hardwire, asynchronous, half/full

duplex modem operating in both originate and auto answer modes at a $0-300$ baud data rate. The unit uses MOS/LSI circuitry, a crystalcontrolled digital receiver and transmitter and active filters. Once interfaced with phone lines and computer, the model USR-330 answers calls automatically and connects them immediately with the computer. The modem is available with an RS232C interface, a $20-\mathrm{mA}$ current loop, or both interfaces. Comes with its own 115 VAC 60Hz power supply. Prices: with RS232C interface, $\$ 185$; with $20-\mathrm{mA}$ current loop interface, $\$ 185$; and with both interfaces, \$195.-U.S. Robotics, Inc., Box 5502, Chicago, IL 60680.
CIRCLE 131 ON FREE INFORMATION CARD
WIRE-WRAPPING KIT, model WK-5B, includes battery-operated wire-wrapping tool (model BW630); wrapping/unwrapping/stripping tool (model WSU-30); PC board plus card guides and brackets; edge connector; mini-shear; 14-, 16-, 24- and

40-pin DIP sockets; wire-wrapping terminals; and DIP inserter and DIP extractor. A wire dispenser comes with 50 -foot lengths of red, white and blue insulated, silver-plated AWG 30 copper wire. Price: $\$ 74.95$ - OK Machine and Tool Corp., 3455 Conner St., Bronx, NY 10475.
CIRCLE 132 ON FREE INFORMATION CARD

SOLDERING WICKS, available in $1 / 16$-inch, $3 / 32-$ inch and $1 / 8$-inch widths, are 66 inches long and wound on plastic spools. A special devacuumizing process deoxidizes copper braid while flux is applied. Can be used to desolder PC board

components and solder from joints.-Multicore Solders, Westbury, NY 11590 . R-E CIRCLE 133 ON FREE INFORMATION CARD

A HCH BLOOD PRESSURE Treat it....and live.
 The National High Blood Pressure Edutation Program,

 U.S. Department ol Health, Education, and Wefiare.
\star FRIEE x

NEW CATALOG OF HARD-TO-FIND PRECISION TOOLS

Jensen's new 152-page catalog is jampacked with more than 3000 quality items. Your single source for hard-tofind precision tools used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. This popular catalog also contains Jensen's world-famous line of more than 40 tool kits. Plus 10 pages of useful "Tool Tips" to aid in tool selection. Send for your free copy today!

JENSEN TOOLS \& ALLOYS
1230 south priest drive. tempe, Az. 85281

CIRCLE 15 ON FREE INFORMATION CARD

NEW! VERSAT ILE! CB ANTENNA ASTRO-FANTOM

Mounts on glass! Transmits and receives thru glass!

- Easy Installation

Takes only 5 min

- Mounts Anywhere there's a metal frame window including fiberglass bodies.
- Clearer Communications Rejects static
- 360° Signal Full $1 / 2$ wave design
avanti antennas
340 Stewart Ave. Addison, IL 60101

Transistor Analyzer moset 212
Factory Wired \& Tested- $\$ 30.57$
Easy-to-Assemble Kit- $\mathbf{\$ 2 0 . 3 6}$
YOU DON'T NEED A BENCH FULL OF EQUIPMENT TO TEST TRANSISTOR RADIOS! All the facillties you need to check the transistors themselves - and the radios or other circuits in which they are used - have been ingeniously engineered into the compact, 6-inch high case of the Model 212. It's the transistor radio troubleshooter with all the features found only in more expensive units. Find defective transistors and circuit troubles speedily with a single, streamlined instrument instead of an elaborate hook-up.

Features:
Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Universal test socket accepts different base configurations. Identifies unknown tran. sistors as NPN or PNP.
Dynamic test for all transistors as signal amplifiers (oscillatnr check), in or out of circuit. Develops test signal for AF, $1 F_{\text {, }}$ or RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit power. supply voltages on 12 -volt scale. No external power source needed. Measures circuit drain or other DC currents to 80 milliamperes. Supplied with three exter. nal leads for in-circuit testing and a pair of test leads for measuring voltage and current. comes complete with instruction manual and transistor listing.
Send me FREE catalog of the complete value-packed EMC IIne, and name of rocal distributor.
NAME \qquad RE-9
ADDRESS
EITY
20N
STATE

Iniroductory Offer-FREE AC ADAPTOR
The first and only lab accuracy portable DMM Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/ AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5\% DC accuracy, 10 Meg ohm input impedance, low voltage drop in all current ranges and auto-matically-flashing overrange indicator. Assembled \$109.95

FREE '78 EICO CATALOG

Check reader service card or send 50 c for first class mail See your local EICO Dealer or call (516).681-9300, 9.00 a.m. -500 p.m. EST. Major credit cards accepted
EICO-108 New South Rd. सानण Hicksville, N.Y. 11801

CIRCLE 8 ON FREE INFORMATION CARD

new hooks

EASI-GUIDE TO ACCESSORIES FOR CB
TWO-WAY . . . HAM RADIO, by Forest Belt and Marti McPherson. Howard W. Sams \& Co., Inc., 4300 W. 62 nd St., Indianapolis, IN 46268.144 pp. $51 / 2 \times 81 / 2 \mathrm{in}$. Softcover $\$ 3.50$.

Every ham operator, CB or two-way radio owner sooner or later wants to upgrade his system with the proper accessories. This handy illustrated guide describes such basic equipment, how to use it and, most important, how to choose what's best for your needs.

Chapters include information on mikes and their accessories, auxiliary speakers, cables and connectors (includes instructions on how to install a base-station antenna), rotators, towers and many more. Chapter 6 and Chapter 7 describe base-station and mobile accessories
ANALOG AND DIGITAL COMMUNICATION, by W. David Gregg. John Wiley \& Sons, Inc., 605 Third Ave., New York, NY 10016. 603 pp. $61 / 2 \times 9$ in. Hardcover \$21.95.

This book prepares the user for participation in the various engineering, scientific and technical aspects of the communications industry. Concepts and systems pertaining to both analog and digital communications are examined and related to practical applications and services. A step-by-
step approach explains the similarities and differences of each system. Worked-out examples are provided, with a set of problems given at the end of each chapter.
BASIC SOFTWARE LIBRARY, VOLUME I, Business and Recreational, by R. W. Brown. Scientific Research Institute, 1712 Farmington Court, Crofton, MD $21114.300 \mathrm{pp} .81 / 2 \times 11 \mathrm{in}$. Softcover $\$ 24.95$.

The average reader with little or no background in computers can use this book to execute many individualized business and recreational programs with relative ease. All the programs use the BASIC computer language, and have been tested on several computer systems. Each program is introduced by a brief description, a list of possible users, instructions and program limitations (if any) that could arise if run on different systems.

The book is divided into two sections: Business and Personal Bookkeeping Programs tells you how to compute the price and interest on bond purchases; how to do monthly installment accounting; how to compare mortgage terms, etc Some of the programs in the Games and Pictures section teach you how to program a biorhythm cycle, play various war games, simulate a craps game or a parachute jump.

R-E

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp vgips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long.
Kleps 20. Same, but $7^{\prime \prime}$ long.
Kleps 30. Completely flexible. Forked-tongue grip $\$ 1.49$ cepts banana plug or bare lead. $6^{\prime \prime}$ long.
-tongu per. Ac $\$ 1.79$ Keps 40. Completely fexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\quad \$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. 41/2" long. Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long. All in red or black-specify (Add 50c postage and had 89 Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components. A vailable through your local distributor, or write to:

Kieps 40,

Kleps 1

Don't risk a ${ }^{\text {s2O IC chip }}$...be safe with 20V DIPSOCKETS costing pennies!

Don't damage an expensive IC chip with soldering iron heat! Simply solder an R-N DIP socket to your PC board, then insert IC chip into the socket. Changes in your microprocessor system are easy. Just remove the IC chip - and then take the low cost socket off of the board without harming the chip.
ORDER ROBINSON-NUGENT DIP SOCKETS FROM:

DIGI-KEY Corp.

Carries a full line of R-N IC Sockets TOLL FREE-1-800-346-5144 In Minnesota-1-218-681-6674

ALLIED Electronics

Specify 906 Series IC Sockets
TOLL FREE-1-800-433-1570 In Texas-1-800-792-8760

market eenter

CLASSIFIED COMMERCIAL RATE（for firms or individuals offering commercial products or services）．$\$ 1.50$ per word（no charge for zip code）．．．minimum 15 words．
NONCOMMERCIAL RATE（for individuals who want to buy or sell personal items） $85 \mathbb{c}$ per word ．．． no minimum．
ONLY FIRST WORD AND NAME set in bold caps．Additional bold face（not available as all caps）at $10 屯$ per word．Payment must accompany all ads except those placed by accredited advertising agencies． 5% discount for 6 issues， 10% for 12 issues within one year，if paid in advance．All copy subject to publisher＇s approval．Advertisements using P．O．Box address will not be accepted until advertiser supplies publisher with permanent address and phone number．Copy to be in our hands on the 26 th of the third month preceding the date of the issue（i．e．，August issue closes May 26）． When normal closing date falls on Saturday，Sunday or a holiday，issue closes on preceding working day．

BUSINESS OPPORTUNITIES

CABLE FM station．No experience required， excellent spare－time income，others operate for you．Details free．BROADCASTING，Box 5516－ F9，Walnut Creek，CA 94596

HIGHLY
PROFITABLE

ELECTRONIC

ONE－MAN FACTORY

Investment unnecessary，knowledge not re－ quired，sales handled by professionals．Ideal home business．Write today for facts！ Postcard will do．Barta－RE－I，Box 248， Walnut Creek，CA 94597.

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business－without investment．Write：BUSI－ NESSES， $92-\mathrm{R}$ ，Brighton 11th，Brooklyn，NY 11235

DISTRIBUTORSAND WHOLESALERS OF COMPUTERSUPPLIES：

Major supplier of computer－digital cassettes is now offering low price high quality computer－digital cas－ settes specifically designed for use in hobby comput－ ers and small business computers，presently looking for distributors and wholesale outfits for this product line．Contact：

Magnetic Information Systems，Inc． 415 Howe Ave．，Shelton，Conn． 06484 Tel：（203）735－6477

PLANS \＆KITS

HOBBYIST give your project the professional look．Printed circuit boards from your sketch or artwork．Affordable prices．Also fun kit projects． Rush free details．DANOCINTHS，Box 261 ，West－ land，M1 48185

CONSTRUCTION plans；over 100．From TV to telephone，from broadcasting to computers．Cat－ alog air mailed $\$ 1.00$ ；includes year＇s subscrip－ tion to Electronic Newsletter．DON BRITTON ENTERPRISES，PO Box G，Waikiki，HI 96815

To run your own classified ad，put one word on each of the lines below and send this form along with your check for $\$ 1.50$ per word（minimum 15 words）to：
Radio－Electronics， 200 Park Avenue South，N．Y．，N．Y． 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of $\$ 10$ ．
（ ）Plans／Kits（ ）Business Opportunities
）
）For Sale
（ ）Education／Instruction（）Wanted
Special Category：$\$ 10$
（PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．）

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

ELECTRONICS books，models，projects，experi－ ments，network theorems，calculations．Invalu－ able for students，engineers．SERCOLAB，Box 78 G，Arlington，MA 02174
AMPLIFIER kits：Low TIM，Class A，BI－FET cir－ cuitry．Free 60－page manual．MOONLIGHTER ELECTRONICS， 117 Inverness，San Francisco， CA 94132

LINEAR AMPLIFIER：Ham only $2-30 \mathrm{MHz}, 100$ watt，solid－state．FREQUENCY COUNTER： 300 MHz ，miniportable／mobile，memory！VOX－ COMPRESSOR：Splatter－free modulation boost－ er．Construction plans $\$ 3.00$ each．All $\$ 7.50$ ！ Many others，catalog with order．PANAXIS PRO－ DUCTIONS，Box 5516－F9，Walnut Creek，CA 94596

EDUCATION \＆INSTRUCTION

GRANTHAM＇s FCC License Study Guide－377 pages， 1465 questions with answers／discus－ sions－covering third，second，first radiotele－ phone examinations．$\$ 13.45$ postpaid．GSE PUB－ LICATIONS， 2000 Stoner，Los Angeles，CA 90025

UNIVERSITY degrees by mail！Bachelors，Mas－ ters，Ph＇D＇s ．．．Free revealing details．COUN－ SELING，Box 317－RE9，Tustin，CA 92680

UNLOCK your future．Become professional lock－ smith by spare time homestudy．$\$ 13$ in an hour possible．All tools，equipment included．Facts FREE．Send name．LOCKSMITHING INSTITUTE （homestudy），Dept．1339－098，Little Falls，NJ 07424

TELEPHONE bugged? Don't be Watergated! Countermeasures brochure \$1.00. NEGEYE LABORATORIES, Box 547-RE, Pennsboro, WV 26415

FOR SALE

RECORDS-TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100\% guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St. Dept 3-0978. New Rochelle. NY 10801

FREE catalog. IC's, Semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que. Canada, $\mathrm{H} 3 \mathrm{C}-1 \mathrm{H} 8$. US Inquiries.

PRINTED circuit boards from camera-ready artwork. Free details. Quantity discounts CM Circuits, 22 Maple Avenue, Lackawanna, NY 14218

TS-510A signal generator, $10-420 \mathrm{MHz}, \$ 250.00$ Send stamp for test equipment catalog. E FRENCH, Box 249, Aurora, IL 60507

BLITZ ZOINK ZATT: UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and keep informed. Tunes all scramble frequencies, works with all scan-
ners, and is factory builk and guaranteed. ners, and is factory built and guaranteed.
S34.9SPP UNSCRAMBLER KIT: 1 .
test Tcchnology
 sands of satisfied customers. Catalog $50 \&$.
Order from KRYSTAL KITS, BOX 445. Order from KRYSTAL KiTS, BOX BENTONVILLE, ARK.
ders. $501-273-5340$.

\cdots SDMPD PDOLO

CALL TOLL FREE: 800-223-7633

Kodalk ${ }^{\text {rim secans }}$

Factory packed processing by Kodak Minimum order 10 rolls (COul Aq12 $100 / 36$.
KR or KM M $135 / 2$
Eay R $100 / 36$

Kodachrome Super 8
Ekiachreme Super 8 160
Kodachrome Sound
Eikrachrome Souna. eps 10.

The New Minolta 110 Zoom SLP zl price $\$ 260.00 \ldots \ldots . . . \quad \$ 157.00$ minolia rokkor-x lenses

KODAK
SLIDE PROJECTORS

Vivitaract

Please send money order or certified check for same day shipment. 10% deposil on C.O.D. Add approximate shipping costs. Prices subject to chanige will notify hafore shipping. We will advise of exact price changes. if necessary.

 WRITE OR CALL FOR ROCK BOTTOM PAICES ON ALL PHOTO EOUIPMENT. MASTER CHARGE/YISA ACCEPTED.> ADOPD PDOP A.Y.C. 10091 (5th Floor) Hours: Mon--Thurs. 9-6. Fri. 9-2. Sun. 10-4. Closed Sal.

PHOTE RECOIBDNG CALL ADAPTER

Record incoming and outgoing calls artomatically with his all solid state unit conaected to your telephone record. Don't depend on your memory to recail im. portant details of business and personal calls. Easily. iastalled. No extra monthly phome cigs. FCC Approve

AHAZING ELECTRONIC
MICRO MIN MIKE
World's smallest, solid state, self contained with 1.3 y Merc. Bat. furn. Pieks up most sounds and transmits withont wires up to 300 ft . thre FM Radia. Taneable.
Use as mike, ampf., alanm a alert system, baby siter, Sse as mike, amp.., alamm \& alert system, baby sitter,
hot line, etc. Mike \$18.95*, Phone Call Adapter $\$ 24.50^{*}$ (${ }^{*}$ plus $\$ 1.00$ ea. for pstg. \& malg.) Cal. res: add tax. Free data. Mail Order, B/A, M/C, cod's e.k. Qty. dise. ayail. AMC SALES, Dept. 19. 9335 Lubec
St ., Bor 928 , Downey, CA 90241 .

RADIO \& TV tubes $36 \mathbb{4}$ each. One year guaranteed. Plus many unusual electronic bargains Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

AUDIO modules $15 \mathrm{~W}-60 \mathrm{~W} \times 2$ under $\$ 85.00$ Free catalog: AUDIOVISION, Box 995, STN.B Willowdale. Ont., Canada M2K 2T6

ELECTRONIC Equipment Hotline is a new classi-

 fied advertising newsletter for buying and selling professional, industrial, and surplus electronic equipment. Subscriptions $\$ 6 /$ year, ads 50% word. Prepublication offer: $\$ 1$ off subscriptions and 20% off all ads postmarked before Octobe 1. 1978. ELECTRONIC EQUIPMENT HOTLINE PO Box 4768, Panorama City, CA 91402

TOP-quality import kits, IC's, foreign transistors, free catalog. INTERNATIONAL ELECTRONICS Box 289, Getzville, NY 14068

PRINTED CIACUTT
 Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp \& address label for flyer TRUMBULL 833 Balra Dr., El Cerrito, CA 94530

SANKEN 50-watt power AMP 22.50 postpaid 50 -volt transformer for above 8.00 postpaid PRARIE SOUNDS, P.O. Box 982 , Champaign, IL 61820

AUDIO \& ANALOG EXPERIMEITERS

- quality parts
- ansic synthesk kits \bullet planit
- electronic equipment FREE FLYER

CFR
write today
ASSOCIATES.INC. חEWTON,OH O3858

The PRO-2001 makes possible continuous. automatic reception of six UHF and VHF bands for all kinds of action - police, fire, Ham, weather, mobile telephone, railroad communications and more. And with its microprocessor you can program it for any 16 of 16,650 frequencies, without buying crystals!
Enter familiar area frequencies. Use the digital keyboard to punch-in actual frequencies for monitoring, storing or exploring - no codes or switches to slow you down. A special enter button reduces accidental entries. Digital readout shows which frequencies are being scanned, monitored or programmed into the memory. And you can monitor any frequency without entering it into the
scanner - it's like having a seventeenth channel for even greater versatility!

Search for "unknown" frequencies. The 2001's powerful search capability lets you find new, often unpublicized channels. Just enter lower and upper limits (they can even be in different bands) and select the search speed. The rest is automatic!
"Traditional" deluxe scanner features. LED channel indicators and individual lockout buttons. Automatic or manual scan. Switchable scan delay. High-speed skipper circuit. Built-in speaker, jacks for recorder, headphone, external speaker. With power cables for home or mobile use. The Realistic ${ }^{8} 2001$ - a revolution in action radio. About $\$ 400$.*

Mobile use in some states and localities may be unlawful or require a permit - check with local authorities.
FREE! New '79 Catalog
Come in for your copy and see what's really new in electronics Bigger than ever! 176 pages, over 100 in full color. 2000 exclusive items.

* Price may vary at individual stores and dealers.

Burejer - Fire-Smeke Alerm Cafelag

- Billions of dollars lost annually due to lack of protective warning alarms.
FREE CATALOG Shows you how to

Box 82802 protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.
Burdez Seourity Co.
RE-098 Lincoln, Ne. 68501

FREE catalog of new electronic parts. KEY ELECTRONICS, Box 3506-RE, Schenectady, NY 12303

LIFESAVER || ${ }^{T M}$ smoke alarm, transmitter, re ceiver $\$ 68.95$ set. Free catalog. M.W. KESSLER 4191 South Graham R.D., Saginaw, MI 48603

NO-ETCH

Duplicate or make additions to, modifications of Any Etched Board Ideal for point-to-point or wire wrap breadboards. Complete set of (3) tools IP6003 $\$ 25.00 \mathrm{ppd}$. Write for free brochure, as covered in the July
Radio-Electronics. A.F. Stahler Co., P.O. Box 354R, Cupertino, CA 95014-(408) 252-4219

MAKE professional quality PC boards with photo process kit. Makes 5 ($3^{\prime \prime} \times 6^{\prime \prime}$) single-sided boards. Complete instructions and materials provided. All you provide is light bulb and wash trays $\$ 24.50$ plus $\$ 1.00$ shipping and handling. B \& C DEVELOPMENT, Box 901, Enid, OK 73701

WIRE-PVC insulated, buss and wire-wrap. Free list. RAM ELECTRONICS, Box 336, Brookhaven NY 11719

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices INTEGRATED CIRCUITS					

Sinclair $31 / 2$ Digit Multimeter
Batt/AC oper 1 mV and .NA resolution.
Resistance to 20 meg. 1% accuracy Smail.
portable. completely as sem in case. . yr.
guarantee. Best value ever! $\$ 59.95$

Not a Cheap Clock Kit \$14.95 includes everything except case. 2-PC boards 6.50"LED Displays 5314 clock chip, transformer, ali components and full instrucs Green and orange displays also

Digital Temperature Meter Kit Indoor and outdoor Switches back and forth Beautiful. 50" LED readouts. NothIng like it avaiiable. Needs no additional parts for complete, full operation. Wi measure -100 to $-200 \cdot \mathrm{~F}$, tenths of a de-
gree air or liquid very accurate. $\$ 39.95$ gree air or liquid Very accurate, $\$ 39.95$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hoid a charge and then charges them up. all in

RCA Cosmac VIP Kit 275.00
Video computer with games and graphics
'78 IC Update Master Manual
1978 IC Update Master Manual \$30.00 Complete IC data setector 2175 po Mas ter reference guide. Over 42.000 cross references. Free update service through references Free update service through
1978. Domestic postage $\$ 3.50$ Foreign 1978. Domestic postage $\$ 3.50$ Foreign
$\$ 6.00$. Final 1977 Master closeout $\$ 15.00$

New Cosmac Super "ELF"

RCA CMOS expandable to 64 K micro computer w/HEX keypad input and video output ior graphics. Just turn on and
start loading your program using Start loading your program using the resi dent monitor on ROM. Pushbutton selec of current CPU mode dnd four CPU states Single step op for program debu Buill Single step op for program debug Buil in pwr supply, 256 Bytes of RAM, audi amp. \& spkr. Detailed assy. man. w/PC board \& all parts fully socketed. Comp Kit \$106.95. High address display option 8.95, Low address display option 9.95 Custom hardwood cab.: drilled front panel 19.75; Nicad Battery Backup Kit w/all parts 4.95 ; Fully wired \& tested in cabinet 151.70; 1802 sotware club. 12 pg . monthly publication 12.00 per 4K Elf Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Avaliable on board options. 1 K super RON monitor $\$ 19.95$ Paratlel $1 / 0$ port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY 20 mal IF $\$ 1.95$ S. 100 Memory IVF $\$ 4.50$ Tiny Basic for ANY 1802 System Cassette $\$ 10.00$. On ROM Monitor $\$ 38.00$. Super Elf owners 30\% oft Obiect code listing or paper tape with manual $\$ 5.50$ Original ELF Kit Board $\$ 14.95$

60 Hz Crystal Time Base Kit $\$ 4.40$ from AC line tocks base. Outstanding accuracy. Kit includes PC board, MM5369, crystal, resistors,
capactors and trimmer
Clock Calendar Kit \$23.95 CT7015 direct drive chip displays date and time on $6^{\prime \prime}$ LEDS with AM-PM indicator. Alarm/doze feature includes buz zer. Complete with all parts, power supply and instructions, less case
2.5 MHz Frequency Counter Kit Complete kit less case $\$ 37.50$ 30 MHz Frequency Counter $\begin{array}{ll}\text { Kit Complete kit less case } & \$ 47.75 \\ \text { Prescaler Kit to } 350 \mathrm{MHz} & \$ 19.95\end{array}$

Stopwatch Kit

$\$ 26.95$
Full six digit battery operated 3.2768 MHz crystat accuracy Times to 59 min. $59 \mathrm{sec} ., 991 / 100 \mathrm{sec}$. Times std. split and Taylor 7205 chip. all compo nents minus case. Full instruc

Uitraviolet, assembled
$\$ 49.95$

Video Modulator Kit $\$ 8.95$
Convert your TV set into a high quality
monitor without affecting normal usage
Complete kit with full instructions

Auto Clock Kit
$\$ 15.95$ C clock with 4-.50" displays. Uses Nationar MA- ion module win alarm option. Includes light dimmer, crystal
timebase PC boards Fully regulated comp. instructs. Add $\$ 3.95$ for beautiful comp. instructs. Add $\$ 3.95$ for beautiful
dark gray case. Best value anywhere. Shipping charinas will be added on charob cards. QUEST CATALOG. Inclyde $28 \times$ stamp.

JEEPS - \$59.30! - Cars - \$33.50! - 200,000 items! Government surplus-most comprehensive directory available tells how, where to buy your area-\$2.00-moneyback guaranteeGOVERNMENT INFORMATION SERVICES, Department VA-9, Box 99249, San Francisco, CA 94109

AMAZING ELECTRONIC PROJECTS and PRODUCTS

 -asers Super Powered, Burning, Cutting, Rifle, Pis tol. Pocket. See in Dark-Shotgun Directiona Mike-Unscramblers-Giant Tesla-StunwandTV Disrupter-Energy Producing. Surveillance, De tection, Electrifying, Ultrasonic, CB, Auto and Mech Devices, Hundreds More-Al New PlusINFO UNLTD PARTS SERVICE. Catalog $\$ 1$. Informa. INFO UNLTD PARTS SERVICE. Catalog $\$ 1$. Informa. tion Unlimited, Box
herst. N.H. 03031.

NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

FREF KIT Catalog
 DAGE SCIENTIFTC TSTRUMENIS

QUARTZ crystal-controlled clock movements $\$ 15.95$ transistorized movements $\$ 8.50$ use C battery.. hands included. $60 \$$ shipping PEKO, Box 5476, Sherman Oak, CA 91413

FREE PROBES FREE PROBES FREE PROBES

8 8 3 0 4 0 0 0

| 2 |
| :--- | :--- | :--- |

EXOTIC PARTS BOARD ASSEMBLY

Good boards (for parts) lately have been rare, but we have come up with an assembly loaded with state of the art parts. This assembly consists of a heat sink, $81 / 2^{\prime \prime} \times 9^{\prime \prime \prime}$, with 12 cooling fins, $3 / 4^{\prime \prime}$ high, and a solid aluminum casting $81 / 2^{\prime \prime} \times 11^{\prime \prime}$. Heat sink weighs 2 lbs , casting weighs 1 lb . Between them is an exotic board. There are 2 different types, the difference being in the board. Board 1 contains 16 LEDs, 162 N 4923 s , (power transistors), 18 2N4401s, 3 2N4403s, $331 \mathrm{~N} 4007 \mathrm{~s}, 16$ GE H11A1 Optcal couplers, 16 series SN $74 \times \times$ ICs, plus resistors, diodes and caps. Board 2 contains 20 miniature neon bulbs, 10 Fairchild optical couplers, 4 SN74xx ICs, 3 SN75XXX linears, 11 pulse transformers.
5 power transistors, plus diodes, resistors \& capacitors. These boards were returned to factory for repairs, and most have a burnt component or two.
STOCK NO.6812A, board 1, heat sink \& housing, 8.95 2/16.00 STOCK NO.6B12B, Board 2, heat sink \& housing, 7.95 2/14.00 STOCK NO.6812C, board 1, 5.95 2/10.00 STOCK NO.6812D, Board 2, $4.95 \quad 2 / 8.00$
STOCK NO.6812E, Heat Sink 4.95 2/8.00

STOCK NO.6812F; Aluminum housing 2.95 2/5.00

Please include sufficient postage. Excess will be refunded Send for catalog 19, 120 pages of electronic bargains.

DELTA ELECTRONICS

P.O. Box 2, 7 Oakland St. Amesbury, Mass. 01913 617-388-4705

ATLANTA, GA. DELTA ELECTRONIC HOBBIES
5151 Buford Highway, Doraville, (Atlanta) Ga.

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups elim inated, lifetime plugs and points, reduced epairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is unique!
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95

POST PAID U.S.A

WE ACCEPT
Mastercharge or Bank Americard
Send check or money order with order to

Tristar Corporation

DEPT. FF, P.O. Box 1727 Grand Junction, Colorado 81501

CIRCLE 28 ON FREE INFORMATION CARD

CIRCLE 45 ON FREE INFORMATION CARD

JUMBO LED READOUT ARRAY

$\$ 1.95$
Limited stock
MICRO-MINI TOGGLE SWITCH
SPDT, BY RAYTHEON 994 MADEINUSA! WITHHDWR.

EACH
By Bowmar. 5 in. character common cathode. Designed for use with multiplexed clock chips 4 digits in 1 pack!

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE
MA1008A
BRAND NEW!

FEATURES:

* FOUR JU
* FOUR JUMBO 1/2 INCH LED DISPLAYS - 24 HR ALARM SIGNAL OUTPUT - 50 OR GO Hz OPERATION * LED BRIGHTNESS CONTROL - SLEEP \& SNOOZE TIMERS - DIRECT LED DRIVE (LOW RFi)
COMES WITH FUHL DATA

ASSEMBLEDI HOT A KITI ZULU VERSION!
We have a limiled number of the 24 HR Rea \#MA1008D - $\mathbf{\$ 9 . 9 5}$

COMPARE AT UP TO TWICE OUR PRICE
MANUFACTURERS CLOSEOUT!

INTEL 2102 RAM SPECIAL

Brand New 2102A-4. "A" version for use in battery back-up Factory Prime. These parts have been screened to meet LOW POWER specs. (40 MA. Max, 28 MA. Typical) FAST: 450 NS 8 FOR $\$ 7.95$

32 FOR \$28

262. 144 KHZ . This trequency is 2
to the 18 H . to he 18th power. Easily divided down to any power of 2 , and even to 1 HZ . New by CTS-Knight. A $\$ 5$ value!
$\$ 1.25$ each

SALE!

1N4148 DIODES
High speed switching diodes Silicion. Same as 1N914 Brand New. Full Leads. Prime! 100 FOR \$2 1000 FOR \$17.50

FAIRCHILD JUMBO READOUTS - 5 Inch Char High Eticiency! FND-503-Common Cathode FND-510-Common Anode YOUR CHOICE 694 10 FOR $\$ 5.75$	DISC CAPACITORS . 1 MFD 16V. P.C. leads. Most popular value! By Sprague. 20 for $\$ 1.00$	Full Wave Bridge 4 Amp 200 PIV 69¢еа. 10/5.75
FET SALE! 2N4304. Brand New N Channel, Junction Fet BVGDO-30VIDSS-15 MA Typ 1500 uMHOS. TO-18 Plastic Case. Mfg. by Teledyne. 6 FOR \$1	Motorola PNP Power! 2N4905 TO-3 case. 90W VCEO-60. HFE-100 max at 2.5A. Good mate for the 2N3055 PRIME! 754 ea. 4/\$2.50	COMPUTER CAPACITOR By GE. 36,000 MFD 15W VDC Small Size: $43 / 4 \times 13 / 4$ Inches. SUPER DEAL! $\$ 2.95$ Each 3 FOR \$8

An invaluable Japanese to Japanese
substitution guide for appromixately
3000 transistors.

- Covers the 2SA, 2SB, 2SC, and 2SD series.
Introduction includes a guide to understanding Japanese

2 SA		2SA 744	4.90	2SB 537	1.60	2SC 696	1.95	2SC 1115	4.40	2SC 1675	. 59	2SD 313	1.10	HA 1156	3.00	TA 78012M	6.60
		2SA 745R	4.90	2SB 539	4.90	2SC 708	1.90	2SC 1116	4.90	2SC 1678	2.25	2SD 314	1.20	HA 1158	5.30	TA 78012P	5.80
		2SA 747	5.80	2SB 541	4.40	2SC 710	. 45	2SC 1116A	6.60	2SC 1679	4.25	2SD 315	1.20	HA 1159	5.80	TA 78015M	6.50
2SA 49	59	2SA 748	1.00	2SB 554	10.00	2SC 711	45	2SC 1124	1.30	2SC 1681	. 70	2SD 325	1.10	HA 1196	4.90	TA 78015P	5.80
2SA 52	59	2SA 750	. 59	2SB 556	4.90	2SC 712	59	2SC 1127	1.40	2SC 1682	45	2SD 330	1.00	HA 1197	3.90	TBA 810 SH	3.70
2SA 53	59	2SA 755	1.60	2SB 557	3.40	2SC 717	59	2SC 1161	1.90	2SC 1684	. 59	2SD 341	5.60	HA 1201	1.50	TC 5080P	5.80
2SA 70	1.10	2SA 756	3.70	2SB 5618	. 70	2SC 727	1.90	2SC 1162	1.00	2SC 1687	70	2SD 350	5.90.	HA 1202	2.25	TC 5081P	3.40
2SA 101	. 45	2SA 758	5.80	2SB 564	70	2SC 730	4.40	2SC 1166	. 59	2SC 1688	70	2SD 352	90	HA 1211	1.50	TC 5082	3.90
2SA 102	. 59	2SA 764	4.40	2SB 595	1.90	2SC 731	5.80	2SC 1167	6.60	2SC 1708	. 59	2SD 356D	1.10	HA 1306W	3.70	TD 3505AP	8.50
2SA 234	59	2SA 765	4.90	2SB 596	1.60	2SC 732	59	2SC 11708	6.60	2SC 1728	1.90	2SD 3570	1.00	HA 1322	4.40	UHIC 002	5.80
2SA 235	1.00	2SA 774	59	2SB 600	7.00	2SC 733	59	2SC 1172B	8.50	2SC 1730	. 59	2SD 358	1.30	HA 1339	4.40		
2SA 240	. 90	2SA 717	1.00	2 SC		2SC 734	59	2SC 1173	. 90	2SC 1756	1.40	2SD 359	1.00	HA 1339A	4.40	UHIC 004	5.80
2SA 329	. 70	2SA 794A	1.00			2SC 735	59	2SC 1175	. 90	2SC 1760	1.90	2SD 360	1.20	HA 1342A	4.40	UHIC 005	5.80
2SA 342	90	2SA 798	70			2SC 738	. 59	2SC 1177	14.00	2SC 1765	8.80	2SD 361	1.00	LA 1111P	2.50	UPC 20C	4.40
2SA 353	70	2SA 814	1.90	2SC 183	. 59	2SC 756	2.80	2SC 1189	1.20	2SC 1775	. 45	2SD 370	3.00	LA 1201	2.50	UPC 41C	3.70
2SA 377	2.00	2SA 815	1.00	2SC 184	. 59	2SC 756A	3.00	2SC 1209	. 70	2SC 1816	3.90	2SD 371 S	2.80	LA 1364	4.40	UPC 554C	2.80
2SA 436	2.50	2SA 816	. 70	2SC 281	. 59	2SC 763	. 59	2SC 1211D	. 59	2SC 1846	. 70	2SD 380	7.60	LA 3300	3.00	UPC 555H	2.25
2SA 440	. 90	2SA 818	1.30	2SC 283	. 59	2SC 772	. 45	2SC 1212A	1.40	2SC 1885	70	2SD 381	1.46	LA 3301	3.00	UPC 563	3.70
2SA 473	70	2SA 837	2.80	2SC 284	1.20	2SC 773	70	2SC 1213	. 70	2SC 1908	. 59	2SD 382	1.40	LA 4030P	3.40	UPC 566H	1.60
2SA 483	3.00	2SA 839	2.15	2SC 317	1.20	2SC 774	2.00	2SC 1215	. 70	2SC 1909	3.90	2SD 388	3.40	LA 4031P	3.00	UPC 576	3.70
2SA 484	2.50	2SA 841	. 59	2SC 352A	2.50	2SC 775	1.95	2SC 1222	45	2SC 1913	1.20	2SD 388A	4.40	LA 4032P	3.40	UPC 577H	2.25
2SA 485	2.00	2SA 847	59	2SC 353A	2.50	2SC 776	2.65	2SC 1226A	. 90	2SC 1945	5.60	2SD 389	90	LA 4051P	3.70	UPC 592Hz	1.60
2SA 489	1.60	2SA 850	59	2SC 367	. 90	2SC 777	3.50	2SC 1237	2.25	2SC 1951	1.10	2SD 390	1.00	LA 4400	3.70	UPC 1001H	4.90
2SA 490	. 90	2SA 872A	59	2SC 369	59	2SC 778	3.60	2SC 1239	3.90	2SC 1957	1.20	2SD 421	8.50	LD 3120	2.50	UPC 1008C	7.00
2SA 493	. 59	2SA 885	70	2SC 371	59	2SC 781	2.65	2SC 1279	. 70	2SC 1969	4.90	2SD 424	8.50	M51513L	4.90	UPC 1016C	3.00
2SA 495	45	2SA 908	11.00	2SC 372	45	2SC 783R	3.60	2SC 1306	2.90	2SC 1973	1.10	2SD 425	6.50	M5152L	2.50	UPC 1020H	3.70
2SA 496	1.10	2SA 913	1.20	2SC 373	.45	2SC 784	. 59	2SC 1307	3.90	2SC 1974	1.90	2SD 426	4.60	M51841P	2.80	UPC 1025	3.40
2SA 497	1.60	$2 S 8$		2SC 374	. 59	2SC 785	. 59	2SC 1310	. 59	2SC 1975	4.40	2SD 427	3.00	M5320P	2.25	UPC 1026C	3.70
2SA 505	1.20			2SC 377	70	2SC 789	1.00	2SC 1312	59	2SC 2028	. 90	2SD 525	1.60	M53273P	2.80	UPC 1032	2.25
2SA 509	. 70			2SC 380	59	2SC 790	1.40	2SC 1313G	. 59	2SC 2029	3.90	2SD 526	1.10	M53274P	2.50	UPC 1152 H	3.40
2SA 525	. 70	2SB 22	59	2SC 381	59	2SC 793	2.80	2SC 1316	8.50	2SC 2074	1.90	2SD 555A	6.60	M53393	7.60	UPC 1156	3.00
2SA 530	1.30	2SB 54	59	2SC 382	59	2SC 799	3.60	2SC 1317	. 45	2SC 2076	. 59	2SD 610	1.90	M54730 P	8.80	UPC 1156	
2SA 537A	2.25	2SB 55	59	2SC 383	90	2SC 802	3.60	2SC 1318	. 45	2SC 2091	2.80			MPS U31	1.90		
2SA 539	59	2SE 75	45	2SC 387A	59	2SC 815	. 59	2SC 1325A	7.60	2SC 2092	3.90	SG 613(tv)	5.95	STK 011	7.60	UPD 858C	9.50
2SA 545	. 59	2SB 77	. 45	2SC 388A	1.00	2SC 828	.45	2SC 1327	. 59	2SC 2098	4.90			STK 014	9.50	PLL U1A	8.80
2SA 561	59	2SB 173	.45	2SC 394	. 59	2SC 829	. 45	2SC 1330	70			T		STK 015	6.60	PLL 02A	8.80
2SA 562	. 59	2SB 175	45	2SC 403	. 59	$2 \mathrm{SC} \mathrm{830H}$	5.90	2SC 1335	70					STK 016	8.50	SN 7400	.19'
$2 S A 564 A$. 59	2SB 176	.45	2SC 430	. 90	2SC 838	. 59	2SC 1342	. 59			2SK 19B	90	STK 022	11.00	SN 7490	. 60
2SA 565	1.10	2SB 178	. 70	2SC 454	59	2SC 839	59	2SC 1344	. 59	2SD 16	5.90	2SK 23	1.10	STK 032	14.00		
2SA 566	3.40	2SB 186	.45	2SC 458	. 59	2SC 853	. 90	2SC 1345D	. 59	2SD 28	2.50	2SK 30	. 70	STK 435	8.50	D100	
2SA 606	1.60	2SB 187	45	2SC 460	. 59	2SC 867	4.25	2SC 1346	70	2S0 72	1.10	2SK 33	1.10	STK 439	11.00	-10	
2SA 607	1.60	2SB 202	1.60	2SC 461	. 59	2SC 870	. 59	2SC 1347	70	2SD 75	. 90	2SK 34	1.10	STK 502	8.80	78105	1.10
2SA 624	1.10	2SB 220	. 70	2SC 478	1.10	2SC 871	. 59	2SC 1358	5.90	2S0 77	. 59	2SK 40	. 70	STK 503	9.60	IS 84	. 60
2SA 627	3.60	2SB 303	. 59	2SC 481	1.60	2SC 895	4.90	2SC 1359	. 59	2SD 81	3.00	2SK 41	1.10	TA 7027M	3.70	IS 188	. 25
2SA 628	. 59	2SB 324	. 70	2SC 482	1.50	2SC 897	3.40	2SC 1360	1.00	2SD 90	1.60	2SK 49	1.30	TA 7045M	3.00	IS 332	. 45
2SA 634	70	2SB 337	1.60	2SC 484	1.60	2SC 898	4.40	2SC 1362	. 59	2S0 91	1.60	2SK 55	1.30	TA 7054P	2.50	IS 953	. 25
2SA 640	59	2SB 346	. 70	2SC 485	1.60	2SC 900	. 45	2SC 1364	. 70	2S0 92	1.90	2SK 61	1.40	TA 7055P	3.00	IS 1007	. 45
2SA 642	70	2SB 367	1.50	2SC 486	1.60	2SC 923	. 45	2SC 1377	4.90	2S0 93	2.80	2SK 68	1.30	TA 7060P	1.60	IS 1209	. 45
2SA 643	. 70	2SB 368B	2.15	2 SC 493	3.90	2SC 929	.45	2SC 1383	. 59	2SO 118	4.40	3SK 22Y	2.55	TA 7061 AP	1.90	IS 1211	. 45
2SA 653	2.80	2SB 379	1.10	2SC 495	. 90	2SC 930	. 45	2SC 1384	59	2SD 130	1.20	3SK 35	2.25	TA 7062P	1.90	IS 1555	. 25
2SA 659	59	2SB 381	. 59	2SC 496	90	2SC 941	. 59	2SC 1396	70	2SO 141	1.40	3SK 37	3.00	TA 7063P	1.60	IS 1588	25
2SA 661	. 70	2SB 400	. 59	2SC 497	1.60	2SC 943	. 70	2SC 1398	1.10	2SD 142	2.00	3SK 39	2.25	TA 7064P	1.90	IS 1885	25
2SA 663	4.90	2SB 405	. 59	2SC 509	. 70	2SC 945	. 45	2SC 1400	. 59	2SD 143	2.80	3SK 40	2.25	TA 7066P	2.00	IS 2076	25
2SA 666	. 70	2SB 407	1.40	2SC 515A	1.40	2SC 959	1.50	2SC 1402	4.90	2SD 178	1.10	3SK 41	2.50	TA 7074P	4.90	IS 2093	. 45
2SA 671	1.40	2SB 415	. 59	2SC 517	3.95	2SC 971	1.00	2SC 1403	4.90	2SD 180	2.50	3SK 45	2.50	TA 7075P	4.90	IS 2473	. 25
2SA 672	. 70	2SB 434	1.20	2SC 535	. 59	2SC 982	.90	2SC 1407	. 90	2SD 187	. 59	3SK 48	5.90	TA 7076P	4.90	IN 34	. 25
2SA 673	. 70	2SB 435	1.40	2SC 536	. 59	2SC 983	1.00	2SC 1419	1.10	2SD 188	3.00	3SK 49	2.50	TA 7089P	3.00	IN 60	. 25
2SA 678	.70	2SB 440	. 59	2SC 537	. 59	2SC 984	. 90	2SC 1444	2.80	2SD 201	3.40			TA 7102	5.80	1001	. 40
2SA 679	4.90	2SB 449	1.60	2SC 538A	70	2SC 994	3.90	2SC 1445	3.00	2SD 202	3.90	MK 10	2.00	TA 7106 P	4.90	10010	. 60
2SA 680	4.90	2SB 461	1.20	2SC 562	70	2SC 996	3.40	2SC 1447	1.60	2SO 204	1.40			TA 7108 P	1.90	VD 6B	. 40
2SA 682	1.50	2SB 463	1.20	2SC 563	1.10	2SC 1000BL	L. 59	2SC 1448	1.60	2SD 205	1.40	IC		TA 7109P	3.40	V06C	. 40
2SA 683	. 70	2SB 471	1.60	2SC 605	. 70	2SC 1012	1.50	2SC 1449	1.00	2SD 213	5.90			TA 7120P	1.90		
2SA 684	. 70	2SB 473	1.20	2SC 619	. 59	2SC 1013	1.10	2SC 1451	2.25	2SD 217	4.40	AN 203	2.50	TA 7122AP	1.90	ZENER	DES
2SA 695	. 70	2SB 474	1.00	2SC 620	. 59	2SC 1014	1.10	2SC 1454	5.60	2SD 218	4.40	AN 2140	3.00	TA 7124P	1.60		
2SA 697	. 70	2SB 481	1.20	2SC 627	2.25	2SC 1017	1.40	2SC 1475	1.40	2SD 220	2.50	AN 217	1.90	TA 7129P	1.90	WZ 050	. 45
2SA 699A	90	2SB 492	1.00	2SC 631	. 90	2SC 1018	1.20	2SC 1478S	. 70	2S0 223	1.90	AN 239	7.00	TA 7130P	2.80	WZ 052	. 45
2SA 705	. 70	2SB 507	1.60	2SC 632A	45	2SC 1030C	2.80	2SC 1509	1.10	2SD 224	1.90	AN 247	4.40	TA 7136P	1.30	WZ 061	. 45
2SA 706	1.60	2SB 509	1.60	2SC 634A	. 59	2SC 1047	. 70	2SC 1567	1.10	2SD 226A	1.60	AN 274	3.40	TA 7146P	4.20	WZ 071	. 45
2SA 715	1.40	2SB 511	1.10	2SC 642A	5.90	2SC 1051	4.40	2SC 1567A	1.10	2S0 227	. 45	AN 277B	2.40	TA 7150P	4.40	WZ 075	. 45
2SA 719	59	2SB 514	1.90	2SC 644	45	2SC 1060	1.40	2SC 1584	8.50	2SD 234	1.00	AN 315	3.00	TA 7159P	2.50	WZ 081	. 45
2SA 720	59	2SB 523	1.00	2SC 645	. 70	2SC 1061	1.40	2SC 1586	7.60	2SD 235	1.00	AN 328	3.90	TA 7200P	4.60	WZ 192	. 45
2SA 721	59 59	2SB 526C	1.30	2SC 650	1.30	2SC 1076	39.00	2SC 1624	1.30	2SD 236	1.60	AN 362	3.00	TA 7201P	4.60	WZ 260	. 45
2SA 725 2SA 726	.59 .59	2SB 527 2SB 5280	1.60 1.60	2SC 665 H 2SC 668	8.50	2SC 1079	5.90 4.40	2SC 1626	1.10	2SD 255	1.60	BA 511	2.90 290	TA 7203P TA 7204 P	3.70 3.40	WZ 280	. 45
2SA 726	. 59	2SB 5280	1.60	2SC 668	45	2SC 1080	4.40	2SC 1628	1.30	2SD 261	. 60	BA 521	2.90	TA 7204P	3.40		
2SA 733	. 59	2SB 529	. 90	2SC 680	2.80	2SC 1096	1.00	2SC 1647	1.00	2SD 287	3.70	HA 1137	4.90	TA 7205P	2.90		
2SA 738	. 70	2SB 530	4.40	2SC 681A	5.80	2SC 1098	1.10	2SC 1667	3.40	2SD 288	1.40	HA 1138	4.40	TA 7310P	3.95		
2SA 740	2.65	2SB 531	3.40	2SC 684	1.10	2SC 1111	3.40	2SC 1669	1.60	2SD 291	2.80	HA 1149	5.60	TA 78005M	5.80		
2SA 743A	1.60	2SB 536	1.60	2SC 693B	. 59	2SC 1114	3.70	2SC 1674	. 59	2SO 300	5.60	HA 1151	4.40	TA 78005P	5.80		

PRICES MAY CHANGE WITHOUT NOTICE COD ORDERS WELCOMED
Minımum order $\$ 5.00$ Ohio residents add 4% sales tax. Add $\$ 1.00$ postage and handing
Quantity discount prices. Ask For Our Complete Price List. Mfg. inquiries Welcamer

SPEAKER INFORMATION KIT.
Get 70 pages of speaker facts, specs, construction tips plus info on our raw speakers, crossovers and a line of nine quality hi-fi speaker system kits. We'll send you our fuil-color catalog; plus How To Hook Up Your System, an exhaustive step-by-step treatise on hi-fi system in-
stallation; and our Speaker Owner's Manual, stallation; and our Speaker Owner's Manual,
chock-full of facts on how to get the most chock-full of facts on how to get the most
from any speaker system, for only $\$ 1.00$. from any
Speakerlab, Dept. RE-B 735 N. Morthlake Way, Seattle, WA 98103

TAPE head cleaner. 8 oz. - $\$ 2.30$. Includes postage and handling. Write: "CLEANER," Box 176, Whitewater, WI 53 190. 800-558-9572 except WI

SEEKING Japanese transistors for CB, TV, stereo repair? Request complete list. Compare 1 to 9 prices: 2SC7 10.45 , 2SC5 173.95 , 2SC799 3.60, 2SC1306 2.90, 2SC1678 2.25, TA7205P 2.90, BA521 2.90, SG613 5.95. See our full page ad in the Market Center of this issue. FUJI-SVEA ENTERPRISE, Dept. RE, PO Box 40325, Cincinnati, OH 45240

> NOTICE: RECORD RATERS WANTED (No experience required) Each month you will IS NO EXTRA CHARGE tor the LP's you receive You pay a small membership fee which covers all costs of the LP's. We pay postage. In return for your opinion. build your LP collection. "First come basis. For application write: EARS, DEPT. RX Box 10245.
> 5521 Center St.. Milwaukee. WI 53210 .
> (c) 1975

SUMMER special! Complete cartrivision television recorder electronic assembly. (See previous issues.) $\$ 11.50$ plus $\$ 3.50 \mathrm{~S}$ \& H . Master ous issues.) $\$ 11.50$ plus $\$ 3.50$ S \& H . Master AL 35758

Why is this the

LARGEST SELLING low cost COUNTER KIT?

This counter is such a great seller because people like you have found that, feature for feature, the CT-50 gives you more for your money. Advanced LSI and CMOS circuitry has; lowered power consumption, increased performance, and reduced cost. Complete push button operation makes using the CT-50 a snap, and automatic decimal point positioning gives you quick, reliable readings. Battery operation is also possible becuase the CT-50 runs equally as well on 12VOC as it does on 110VAC. For ultra-accuracy we offer the CB- 1 color burst adapter, it locks the CT. 50 's internal crystal to the television networks color standard for .001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional qual. ity at the unheard of price of 589.95 ? Order yours today!

MINI-KITS

FM WIRELESS MIKE KIT Transmit up to 300 to any Transmit up to 300 to any FM broadcast radio, usses any troe of mike. Runs on 3 . any type or mike. Runs on 3 yogV. Tpe FM 2 has adced super sensitive mike preamp FM-1 - $\mathbf{\$ 2 . 9 5}$ FM-2 - $\mathbf{\$ 4 . 9 5}$ SUPER-SLEUTH AMPLIFIER pick up a pin droo at 15 feetl Gre for monitoring baby's room or are eral purpose test amplifier. Full eral purpose test amplifier. Futl 2 watts of output.runs on 61012 voits, uses any tyo of mike. Requires 8.45 uses any type of mike. Requires 845 | Complete Kit, BN-9. 54.95 |
| :--- | COLOR ORGAN/MUSIC LIGHTS See music come alive! 3 different

age regulation, 567 ic . Use. ful for touch-tone decoding,
burst detection. FSK demod, si

SIX DIGIT 12/24 HOUR CLOCK KIT

Heres a clock you can be proud of. The best looking, most complete kit on the buttons, jumbo .4'' readouts, and extrud. ed aluminum case available in 5 colors All parts included. Colors: gold silver bronze, black, blue (specify)
Clock Kit DC. 5 Clock Kit, DC-5 $\$ 22.95$ Alarm Clock, 12 Hr , DC-8.... 24.95 Mobile Clock, DC-7 25.95 Clock with HAM ID timer DC-10 25.95 Assembled and tested clocks available, add \$10.00 to Kit price.

600 MHz PRESCALER
 Extend the range of your with all counters less than 150 mv sensitivity. Specify -10 or 100 . Wired, tested,

CALENDAR ALARM CLOCK has every feature one could ever ask for,
kit includes everything except case, FEATURES

Complete Kit, less case
$\$ 34.95$

\section*{TV TYPEWRITER KIT
 | A combact 5×10 Inch PC card that requites onty olete interactive terminal for connection to your microorocessor asynchronous interface. Ms many taztures dre single 5 -volt supply, crystal controlled syncand baud fates (up to 9600 baud), 2 pages of 32 charateers by 16 lines, read 10 and riom memory. computer and keyboard operated cursor and page control power-on intialization full 64 , characierASClialsplay, block type, see-thri cursor Kayboaral computer control backspaces, forward spaces, hne teeds. rav. IIne feeds. home, returns cutsor. Also clearspage, clears to ens of line, selects page!' or 2 , reads page, clears to end the rara, requires 5 vorts at aporox. 900 ma and outputs standarals ohm composite video. | |
| :---: | :---: |
| TH3216 Kit | \$149.55 |
| TH3216. Assembled and Tested | 9.95 |
| VD 1 Video to RF Modutator Kit | 6.95 |

CAR CLOCK

 KITSensitivity: less than 10 mv . Frequency range: 5 Hz to 60 MHz . Tvpically 65 MHz
Gatetime: 1 second, $1 / 10$ second, with automatic Gatetime. 1 second, $1 / 10$ second, with automa presacle
Display 8 digit red LED A" heigh
Accuracy. 2 ppm, internal TCXO standard.
prescale, option 5 watts or $12 \mathrm{~V} \mathrm{dc@} @ 300-400 \mathrm{ma}$ Size: Approx $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$. high quality aluminum

CT-50 wt 60 MHz Counter Wired \& Tested $\$ 159.95$ T-600, 600 MHz prescaler option for CT-50, add $\$ 29.95$

600 MHZ. FREQUENCY COUNTER
 ± 0.1 PPM TCXO

OPTO-8000.1

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto-8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (.090" thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:

Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display-8 digit LED
Gate Times- 1 second and $1 / 10$ second
Selectable Input Attenuation-X1, X10, X100
Input Connectors Type - BNC
Approximate Size- $3^{\prime \prime} \mathrm{h} \times 71 / 2^{\prime \prime} \mathrm{W} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $21 / 2$ pounds
Cabinet-black anodized aluminum (.090" thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired $\$ 299.95$
OPTO-8000.1K Kit $\$ 249.95$

ACCESSORIES:

Battery-Pack Option-Internal Ni-Cad Batteries and charging unit $\$ 19.95$
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P-101-LO-Pass Probe, very useful at audio frequencies $\$ 16.95$
P-102-High Impedence Probe, ideal general purpose usage $\$ 16.95$

VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H \$12.50 Right Angle BNC adapter \#RA-BNC \$ 2.95

FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000
Kit $\$ 59.95$
*FC-50 - Opto-8000F Factory Update $\$ 99.95$
FC-50 - Opto-8000.1 (w/TCXO) Kit \$109.95
*FC-50 - Opto-8000.1F Factory Update $\$ 149.95$

* Units returned for factory update must be completely assembled and operational

TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear before merchandise is shipped.

旡維

WE HAVE ONE THOUSAND OF THESE HIGH QUALITY ROCKER TYPE
AMP TEN POLE SHITCHES.. SEND AN ORDER FOR \$IS OR MORE-
MENTION THIS AO ANO YOU GET FREE SHIPPING AND ONE AMP SWITCH.. (prepaid and U.S. orders only)

GUPEA VARO SEMICONDUCTOR
SNyEA \quad EPOXY BRIDGE RECTIFIERS
10 AMP 50 V VIO48
.90 ea. 10 for $\$ 7.50100-\$ 65$

SPECIALS

2504 T 1024 bit dyn SR. CD4025 OMOS gate D4011 CMOS gate MC4015 TTL quad latch ABM-1 (MFC6070) in audio LM386 lo V audio pwr amp 1N3810 15A 200 stud rect IN5235 6.4V . 005% ref. 16 VZ Motorola 16 V IW Zener 1N4728 3,3V lW 5\% zener Signal diodes Si or (je 40/2.00 40327 T0- 39 NPN 300 V LA 5W . 35 T1P3LA (HN) NPN 60 V 3A 40 W f706BPC fairchild 5 N audio antplifier $w /$ heat sink 14 pin DIP w/staggered leads uA776 programnable op/amp 1.00 75451 dual neripheral driver. 30 S270 functional sub for 7400 quad 2 in NAND gate 747 dual 741 op amp. Carbon film R 1/4W 5\% 100/1.49 (specify single value only) 2N4304 N channel FET HEP 802 . 25 Complementary 10A TO-220 pwr. transistors 2N6101 \& G.E.D45H8 (75-50W) pair 1.25 Complementary Darlington TO-220 60V 5A 70W ME1100 ME1091

LAMBDA +12V, 3 amp тo- 3

TRANSISTOR BONANZA

$\$ 6$ per 100 - $\$ 50$ per 1000

 DEVICES WITH CUT AND FORMED LEADS AND DEVICES WITH CUT AND FORMED LEADS AND
MARKED WITH A HOUSE NUMBER. THESE ARE

TOLL-FREE TELEPHONE SERVICE

24 hours a dar $\$ 15$ minimum order

PO 3O) 41778 Orders shipped same day - $\$ 5 \mathrm{minimum}$ - we pay post or UPS on orders more than $\$ 15$, smaller orders $\$ 1.50$ shipping fee. Foreign orders must Socinomento, Ca. be paid in U.S. funds including sufficient post. $\$ 10$ minimum on BAC \& MC orders, shipping will be added. Open accounts accepted from government agencies, schools, and stock exchange listed firms
($\$ 25$ minimum-FOB Sacramento).......

SPEAKER KITS
EAKERSYSTEMS KIT! Fantastic enclosures and matching com ponents to build your own pair of superb ull-range 3-way speaker systems. Kit includes enclosures, $10^{\prime \prime}$ foam edge woofers, $5^{\prime \prime}$ middelers, $4^{\prime \prime}$ super dome tweeters crossovers, damping, hagdware and ill ructions, PLUS: sculptured foam grils aty. Ltd., so order NOW! Cabinet size \%8230338
ULTRASONIC
MOTION DETECTOR

TV-Tennis Game Board PC board from a TV.Tennis game, in circuit, a dozen or so 74LS-series IC's and more. Use this to build a COMP TER-to-TV INTERFACE; with a 5 Voli REGULATED SUPPLY liess x former\} or build a TV TENNIS GAME ladd pot's transformer, speaker, and switchesl. Oty Ltd. These always go fast! With data Sh. Wr. 1 Lb . \#8T30322 . . \$6.88

$$
25^{4} 10 \text { for } \$ 2 \begin{gathered}
\text { specify } \\
\text { oxe to shich }
\end{gathered}
$$

VIDEO GAME PARTS
A gomplete video game except the TV interface. Inchudes: 2 joystick controls 12 V @ 200 ma xformer; two 7 -segment chips; 555 timers; $2^{\prime \prime} 8$ ohm speaker: 3 -lead 12 V regulator; large contro panel $\&$ case, 8 more! \quad Wr. 5 Lbs. \#8GV80028 $\$ 7.88$

| \#8GV80028 $\$ 7.88$ | $.865 \times 1.90 \ldots 1.20 .4 . .7 v 70470$ |
| :--- | :--- | :--- | :--- | :--- |
| SEND FOR FREE CATALOG! | 10% OFF ON ALL ORDERS | Circle FREE Information Card!,

This alarm sensor fills the protected area with an energy screen that cannot be seen, felt or heard. Triggers your alarm or field. Mounts on ceiling wall deck shelf etc Optionai delay, wall, dask, reser. Operates on 125 VDC A cr a that originally sold for $\$ 179,0013 \mathrm{Lbs}$ Qty. Ltd. H8D30336. . . . $\$ 49.88$
NI-CAD's - NI-CAD's! "AA" 8-PACK! 10 V @ 500 mA , 8 V 20305. \$8.00/pack MORE NI-CAD'S: Sub-C and AA over size. Sizes in inches. Only 88 each! 635 $\quad 1.91$ AH Wilozl Order Na of over $\$ 10.00$ from this ad!

Terms: Add postage. No C.O.D.'s. Phone Orders BA-MC.AE : (617) 532-2323.

CIRCLE 48 ON FREE INFORMATION CARD

WINDSOR DIST. CO. SELLING ONLY TO DIST, MAILORDER CO'S, WHOLESALERS
 CAPACITORS
 COMPUTER GRADE
 600 MFD-360V. (Photo Flash)
 590 MFD-200V.
 20,000 MFD-20V
 $3,600 \mathrm{MFD}-40 \mathrm{~V}$.
 63,000 MFD-6V.
 ELECTROLYTICS
 1900 MFD 4OV. (Ax)
 1000 MFD 150V. (Ax) 1000 MFD 10V. (Ax) 250 MFD 15 V . (Ax)
 4 MFD 35V. (Ax)
 1 MFD 100V. RAD

TANTALUMS DIPPED TANT. MONOLYTHIC
180 MFD-6V.
$1.5-35 \mathrm{~V}$ (N.M.)
150D 2.2 MFD-35V (N.M.) .1-100V.
22 MFD-35V
$4.7 \mathrm{MFD}-50 \mathrm{~V}(\mathrm{M})$
. 47 MFD-50V (N.M.)

MISC.

6 VAC Horns-4" Square-Grill Front-110 Decibels-10' 9 Digit "Sperry" H.V. Displays
1 Deck-6 Pos. Rotary Switch W/Shaft
Hurst-Model EA- 60 RPM Motors
Sound Act. Switch-5-9V D.C.
Calculator Key Pads-20 Button $3 \times 3^{\prime \prime}$
17 Button W/Switch
IC'S—\#'s—MC-660P
672P 1024 Shift Registers equiv. to 679P Intel 1404
DDA—Proj. Lamps-24V. 5-142 (GE) Term Blocks
V3-Switches-SPDT 9-540 (Cinch) Term Blocks
15-1000V. Mylar (Axial) 8-141 (Cinch) Term Blocks 6 V. SPDT High Speed Latching Relays

CALL-516-694-4100
QUANTITY WRITE-300 ADAMS BLVD. PRICES FARMINGDALE, L.I. 11735

Jumbo LED Car Clock Kit FEATURES A Bowmar Jumbo 5 inch LED array B．MOSTEK－ 50250 －SUDer clock chip D． 12 or 24 nour Real Time format E．Perifect for cars，boats．vans，etc F．PC board and all parts（less case）inc． Alarm option－$\$ 1.50$ AC XFMR－$\$ 1.50$ $\$ 16.95$	MUSICAL HORN One lune supplied with each kit．Additional tunes－$\$ 6.95$ each．Special tunes available．Slandard unes now availabie－ Dandy－Notre Dame－Pink Panther－－Aggie War Song－ Anchors Away－Never on Sunday－Yellow Rose ol Texas－ Deep in the Heart of Texas－Boomer Sooner－Bridge over Deep in the heart of Texas－Special Design Assembled $\begin{array}{cccc}\text { CAR \＆BOAT KIT } \\ \mathbf{3 4 . 9 5} & \begin{array}{c}\text { HOME KIT } \\ 29.95\end{array} & \text { Case } \$ 3.50 & \begin{array}{c}\text { \＆Tested } \\ \text { Add } \$ 10.00\end{array}\end{array}$

TELEPHONE RELAY

Assembled \＆Tested \＄29．95

Automatically Starts \＆Stops Tape Recorders

 Surreptitious interception of telephone conversation is a violation of Federal Law and this device is not intended for violation ofsuch use．

6 DIGIT ALARM CLOCK KIT

Features：Litronix dual $1 / 2^{\prime \prime}$ displays．Mostek 50250 super clock chip，single I．C．segment driver，SCR digit drivers．Kit includes all ne－ cessary parts（except case）Xfrr optional Eliminate the hassle．
AC XFMR－\＄1．50 Case $\$ 3.50 \quad \$ 12.95$
NEW IMPROVED
UNSCRAMBLER！
S25．00
Punched and Printed Case

12V 1 AMP POWER SUPPLY
INPUT VOLTAGE $25 V$ MAX．OUTPUT CUR－ RENT 1 AMP．MAX．LOAD REGULATION 50 mV ．OUTPUT VOLTAGE 12 V ．LINE REGULA． TION 0.01% KIT CONTAINS ALL PARTS
EXCEPT FOR LINE CORD AND TRANS． FORMER．ONLY $\$ 4.50$

THE NO－ HASSLE CLOCK

The MA1003 is a com－ plete clock module，re－ quiring only time－setting switches，case，and 12 V DC．With built－in crystal controlled timebase （ideal for car or van clock）and low power， highly visible flourescent blue readouts．If you can find a simpler or better way to build a clock．．． tell us about it！
$\$ 16.50$ each or $3 / \$ 46$.

TRS－80 16K CONVERSION KIT

Why settle for the limitations of a TRS 804 K system？Expand it to 16 K with our conversion kit．In cludes eight uPD416 $1 \times 16 \mathrm{~K}$ dynamic memories and instruc tions for converting your machine to 16 K ．You could pay up to $\$ 290$ elsewhere ．．．but our kit is only $\$ 190$ ．

REGULATORS SOLD HERE

Last two digits indicate voltage； 78 series regulators are positive and cost $\$ 1.255^{\text {each }} 79$ series regulators are negative and cost S4．55 each．Voltages available： 7805，7806，7808，7812，7815， 7824；7905，7906，7908，7912， 7915，7918， 7924

TERMS：Please allow up to 5% for ship． Ping；excess refunded．Add $\$ 1$ handing for orders under $\$ 10$ ．Cal res add tax．COD OK with street address for UPS For VISA $/$ Mastercharge ${ }^{\text {e }}$ orders $(\$ 15$ min）call our 24 hr order desk at（415）562－0636． Prices good through cover month of magazine．

Bロロロ

YOU＇RE UNDER SURVEILLANCE！！
A HOST OF PEOPLE，AGENCIES，AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY，OFTEN ILLEGALLY．
HOW TO STOP IT OR DO IT BACK！

A Large Format $\left(81 / 2^{\prime \prime} \times 11^{\prime \prime}\right)$ Quality Paperback， 240 Pages

BUGGING
 WIRETAPPING
 TAILING

ELECTRONIC SURVEILLANCE
SURREPTITIOUS ENTRY
SURREPTITIOUS ENTRY
DETECTIVE TECHNIQUES
DETECTIVE
COUNTERMEASURES
＇A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE
EVERYTHING YOU＇VE ALWAYS WANTED TO
KNOW ABOUT SPYING．＂－
PLAYBOY MAGAZINE
With Each Order You Receive Free Other Material And Literature for Investigative Procedure．
Anarchist Cookbook
CIA Improved Munitlons Black Book
QUIMTRONIX
Postpaid－P．O．Box 548－RE
Seattle，Washington 98111
CIRCLE 33 ON FREE INFORMATION CARD

SPECIAL OF THE MONTH

30 MHZ LOW COST FREQUENCY COUNTER KIT

	Lo－pro			3－Level Wire Wrap		
	5 pcs 1	pes	100 pcs	5 pcs		100 pcs
8 －pin	0.80	1.50	12.00	1.90	3.50	
14－pin	0.95	1.75	15.00	2.10	3.90	36.00
16－pin	1.05	2.00	17.00	2.50	4.20	39.00
18－pin	1.40	2.50	23.00	3.20	6.00	55.00
20－pin	1.60	3.10	28.00	3.50	6.50	60.00
22－pin	1.80	3.40	32.00	3.75	7.00	65.00
24－pin	1.85	3.50	33.00	4.25	8.00	75.00
28－pin	2.20	4.20	39.00	4.75	9.00	85.00
40－pin	3.50	6.20	59.00	6.50	12.00	100.00

Conduclo

BIMBOARD I $\$ 9.95$ ea．

Accepts DIP paciages with damaging component leads．

 Contacts are double sided，nickel silver， than 10 milliorms contact resistance．that Total of 550 sockets identified by a letter and number matrix tor recording experiments Buass．
Component bracket（included with each board）will fit on any of the four adges or dow the center．

BIMBOARD 2

1 Aluminas and 2 component brackets

BIMBOARD 3

3 Bimboards and 3 component brackets

BIMBOARD $4 \quad \$ 43$.

and LAMINATED
COLOR CODED

5V 10A Power Supply Kit for your TTL Circuits！Kit includes．Extre Large Hea Sink，Pow，er Tr．，ic Regulator，P．C．8oard．with	
ovpcircuin．aite r－sem	
With Optional Ractifiers Filtering Capacitor	
V ADJ．POW	PIY

Car Battery Eliminator
KIT INCLUDES：Transformer KIT INCLUDES：Transformer， PC Board，Large heat sink，$\underset{\text { KITH700 }}{\text { Large }}$ filtering capacitor

KIT INCLUDES：Transformer．PC Board
Large heat sinkk，Large ititering capac－
itor and all the part with detaied itor and all the parts with det 4／6 Digit Alarm Clock Ki

PRECUT WIRE WRAP WIRE
\＃ 30 Kynar in red，orange， blue，yellow，green，black，white．
Pre-stripped both end.

oping panels						CASES（bottoms）				PANELS（tops）			
4.0	5.5	2.0	1.1	3.3	2.2	1－8	－	1－L	5.50	W	s	1－K	5.50
6.5	5.5	2.0	1.1	3．3	2.2	2－8	2－G	2－L	6.10	2－w	2－s		
6.5	8.5	2.0	1.1	3.3	5.2	3－8	3－a	3.	6.70	3.			
6.5	8.3	3.0	1.3	$6: 3$	2.2	－	4－G	4－L	7.30	4－w	4－s		
10.0	8.3	3.0	1.3	6.3	2.2	B	－ 6	5－L	7.80	5－w	5－s	5－K	
10.0	11.3	3.0	1.3	6.3	5.2	6－8	－G	6－L	8.40	6.	6 －s		
14.0	8.3	3.0	1.3	6.3	2.2	－	． 6	7－L	8.80	7－W	7－S	P－	
14.0	1.3	3.0	1.3	6.3	5.2	8－8	8－G	B－L	9.70	8． w	8 －s	8－K	
30 ${ }^{\circ}$ SLOPING PANELS						$B=B l u e, \quad G=G$ reen，$t=G$ old，$W=$ White，$S=S$ and，$K=B$ lack							
4.0	5.5	3.0	1.1	3.7	2.2	B	9－G	9－L	5.50	9－w	9－s	9－K	
6.5	5.5	3.0	1.1	3.7	2.2	10－8	$10-\mathrm{C}$	10－L	6.10	10．W	$10-\mathrm{s}$	10－K	6.10
	7.2	4.0	1.1	5.7	2.2	11 －	11.0		6．70	11－W	11 －s	11 －	6.70
10.0	5.5	3.0	1.1	3.7	2.2	12－8	12－G	12 －	7.30	12.	12.	$12-K$	7.30
10.0	7.2	4.0	1.1	5.7	2.2	13－8	13－G	13－L	7.80	13 －w	13 －S	13 －K	7.80
10.0	10.2	4.0	1.1	5.7	5.2	14－8	14－G	14 －L	8.40	14－w	14 －S	14 －	\％
14.0	7.2	4.0	1.1	5.7	2.2	15－8	15－a	$15 . \mathrm{L}$	8.80	15 －w	15 －s		8.80
14.0	10.2	4.0	1.1	5.7	5.2	16－B	16－6	16－L	9.70	16－w	16 －S	16－K	9.7

KEPCO Ferroresonant Power Supply Plesse add 53.00 extra postage to these items．LAMBDA $\left\{\begin{array}{c}\text { Precision Power Supply } \\ \text { Model LXS－EE－5－OV }\end{array}\right.$

Modet EXS－EE－5－0V		
5V 45A \＄800．\＄100 ea		
Wire Wrap Wire Speclal Purchase		
500 ft ．roll＠ 5.00 ea．White only		
KIM SUPPORT	stail rams	
		drammic rams
		${ }^{4120] 9}$
		（103
		280 SUPPORT OEvICES
5－deCADE 3815 COUNTER		
The 3815 is a 5 －Decade		
Counter which includes a	（er	usarts
each counter digit and an out－ put multholexer．The 3815 is		${ }^{\text {NTS }}$
designed to drive a multipiexed display which has a Binary	charcitirr gemerato	
Coded Oecimal output and five decodled outputs to strobe the		yboard chis
With Soecification 35.00 ea ．		

 interval timer．
－The KIM．I monitor and operating programs are stored permanently in the 1048 ROM bytes provided．
－Comes with keytloard and alpha－numeric display．
Tr and cassente interiace．
－Completely assembled and tested and documented．
－Including Klm－1 user manuel． 6500 programming manual，and 6500 hardware manual．

2795－L West Lincoln Ave．， Anaheim，CA 92801.
Please add $\$ 1.00$ postage inside Calif．， $\$ 2.00$ for out of State，Overseas orders， please add 10% ．
Min．Order $\$ 5.00$ C．O．D．Orders $\$ 20.00$ Store Hours：Mon－Sat．10－7

8L6レ 女ヨgWヨdヨS

ATTENTION SERVICE DEALERS

Buy directlyTop Line Solid State Replacements

40% Off Dealer Cost 2 Year Warranty Devices

These are professional devices which replace over 130,000 industry types, and you buy them at substantial savings.

To Order: Send us the ECG, SK, or GE numbers and we will promptly ship you the premium PR direct Replace-ments-plus a free PR Replacement Guide. Remember, these are top quality, no culls, no seconds. Orders over $\$ 25.00$ shipped free. Orders up to $\$ 25.00$ add $\$ 1$ UPS. All orders over $\$ 100.00$ receive 5% discount. C.O.D. orders welcome. To approximate amount of your order, deduct 40% from dealers cost of ECG, SK or GE types. All orders shipped within 24 hours. Also; send or call for our free catalog of original Japanese transistors at substantial savings.
DEVCO
P.O. Box 270, Garwood, NJ 07027 (201) 688-0300

F. Reichert Sales

1110 E. GARVEY AVE. W. COVINA, CA 91790

- SORRY! NO COD'S - FREE UPS DELIVERY ON - PD'S OR CREDIT CARD U. S ORDERS ONLY OR BY - SURFACE MAIL IF SPECIFIED - MONEY BACK GURRANTEE
(MOS \& LED DEVICES EXCLUDED - UNDER \& HOUR PROCESSING ON MONEY ORDERS \& CASHIERS - CALIF RES ADD 6% sales tax
CANADA. PUERTO RICO \& U.S POSSESSIDNS ADD U.S $\$ 3.50$. ALL OTHERS U.S FUNDS DNLY:

CHOICE CHIPS

ADD 25c FOR SPEC SHEETS
lmion 2.37 F adustable voliage regulatdr
LM317 1.1/2 AMP 1.2-37V THREE TERMINAL adjustable voltage regulator LM358 LOW POWER DUAL OPERATIDNAL AMP
LM384 5 WATT AUDIO AMPLIFIER
LM387 LOW NOISE DUAL PREAMPLIFIER
LM390 LOW VOLTAGE IW AUDIO AMPLIFIER
LM703 LOW POWER ORAIN RF/IF AMPLIFIER LM733 Differential video amplifier

LM1414 DUAL DIFFERENTIAL VOLtage COmparator
LM1496 BALANCED MODULATOR/DEMODULATOR
LM1830 FLUIO DETECTOR (PRESENCE. ABSENCE, LEVEL
LM2907 frequency to voliage converter
LM2917 frequency io volfage converter with HI-GAIN DP AMP COMPARATOR
MM5330 $4 \quad 1 / 2$ DIGIT DVM LOGIC BLOCK
MM53104 TV GAME CLOCk GENERATOR
MM57100 COLOR TV 3 GAME CHIP
LM1889 TV VIDEO MODULATOR
TBA $820 \quad 2 \mathrm{~W}$ MONOLITHIC RUDIO AMPLIFIER
ULN 2277P STERED AMPLIFIER 2 W PER Channel
$\$ 1.95$
$\$ 1.95$
PRICES \& availability subiect to change without notice

FOR A MUCH WIDER SELECTION YDU MAY ALSO ORDER FROM OUR JUNE AND IULY ADS IN radio electronics and byte magazine

CIRCLE 60 ON FREE INFORMATION CARD
CIRCLE 7 ON FREE INFORMATION CARD
 KABLET ELEGTROMICS P.O. BOX 19442R DALLAS, TEX. 75219 (214)823-3240

MC1351P FM-IF AMP AND DISCRIMINATOR USED IN FM \& TV SOUND CIRCUITS. REQUIRES MINIMUM EXTERNAL COMPONENTS. 14 PIN DIP. DIRECT REPLACEMENT FOR HEPC 6060, ECG 748 and MANY OTHERS. HOUSE \# WITH SPECS
LM3900 OUAD NORTON AMP WE BOUGHT A LARGE QUANTITY OF THESE HOUSE NUMBERED PARTS AT A BARGAIN PRICE THAT ALLOWS US TO SELL THEM ATLA LOW. LOW
ald

MJ900-MJ1000
COMPLIMENTARY PNP. NPN DARLING TON POWER TRANSISTORS, 8 AMPS WE SUPPLY A SCHEMATIC TO BUILDA AUDIO AMP WITH ONLY ONE AODITIONAL TAANSISTOA AND A DOZEN TNEXPENSIVE COMPONENTSI TO-3 CaSE STYLE BUY A PAR FOn$\$ 3.00 \text { ! }$

MK-05 MINI MOBILE CLOCK ket. Designed to be a mahile clock fram this growith isf FEATURES Quaf 12 crystal limabase Magnifted 15", 6 digit LED readoul. Readou ts can be suppressed ll components requi \qquad you sunply the Top quality drilled and plated MC boards Clock board: Readout board $23 / \mathrm{B}^{\prime \prime} \times$ \square	FND510 694 COMmON ANODE READOUT ' $\%$ Chatacter LIMIT 24 PER CUSTOMERI
	CAPACITORS SmALL SIZEI $2200 \mathrm{MFD} @ 16 \mathrm{VDC}$ AADIAL 3/1.00

POWER SUPPLY METERS

$$
\begin{aligned}
& \text { POWER SUPPLY KIT } \\
& \text { PS-14 }
\end{aligned}
$$

 Less than 1% ripple. 15 amps 1.1 .5 to 14.5 V
All parts supplied inctuding heavy duty trans
former

- luaity plated nberglass pC board

REVIEWED IN $7 / 7873$ MAG. I5A CONT. 20 A INT. 42.95

$$
\begin{gathered}
\text { OVERVOLTAGE PROTECTION KIT } \\
6.95
\end{gathered}
$$

 Features 24 hour Zulu time and up to 24 hours of elapsed
time on the same set of six digit LED readouts Totally
independent
setidet
 hold, and count functions Full noise and overvoltage
protection. 24 hour anly. Aeadouts has dimmer feature
or they can be turned ofl without disturbing the clock or timer. Timebase included 1.01 a accuracy). Because of the
meny options and mounting considerations the case and switches are not included. Switchess are standard
will fit inside standard aircratt instument

Nu!! HAVE YOU EVER WTSSED SOUND EFFECTS BOARD TRAIN OR A PHASOR GUN? HOW ABOUT GUNSHOTS, WHISTIES, SIRENS, BARKING DOGS AND OTHER SOUND EFFECTS? NOW YOU CAN WITH OUR PROGRAMABLE SOUND EFFECTS KIT. IT USES THE NEW 28 PIN T. I. SOUND
SINTHESYZER CHIP, SNT64TT AND SUPPORT CIRCUITRY. 5 TO IVVDC IS fequired To give apphox. $1 / 4$ watt dF audio output. we provide the p.c. board, parts and instructions alohg with a chait to program some common sounds. use your imagination to create original. SONND EFFECTS. ORDER: SE-01 14.95 (Less Spir.) 3/39.95

- OK: FANTASTIC SOUND EFFECTS

CAPACITORS

HOUSE \# PNP POWER TO-3
150 WATT
80 VCEO
10 AMPS

OENTICAL TO 2 N3790 1.00

COMPUTER INTERFACES \＆PERIPHERALS

For free catalog including parts lists and schematics，send a self－addressed stamped envelope．

APPLE II SERIAL I／O INTERFACE＊

Part no． 2
Baud rate is continuously adjustable from 0 to 30,000 • Plugs into any periph－ eral connector－Low current drain．RS－ 232 input and output \bullet On board switch selectable 5 to 8 data bits， 1 or 2 stop bits，and parity or no parity either odd or even－Jumper selectable address－ SOFTWARE－Input and Output routine
from monitor or BASIC to teletype or other serial printer －Program for using an Apple ll for a video or an intelli－ gent terminal．Also can output in correspondence code to interface with some selectrics．Board only－$\$ 15.00$ ； with parts－$\$ 42.00$ ；assembled and tested $-\$ 62.00$

MODEM＊

Part no． 109
－Type 103 －Full or half duplex－Works up to 300 baud • Originate or Ans－ wer－No coils，only low cost components－TTL input and output－serial Connect 8 ohm speaker
 and crystal mic．directly to board－Uses XR FSK demodulator－Requires +5 volts－Board $\$ 7.60$ ； with parts $\$ 2750$

DC POWER SUPPLY＊

Part no． 6085
－Board supplies a regulated +5 volts at 3 amps．．$+12,-12$ ，and -5 volts at 1 amp ．Power required is 8 volts $A C$ at 3 amps ．，and 24 volts AC C．T．at 1.5 amps．Board only $\$ 12.50$ ；with parts excluding transtormers $\$ 42.50$

TAPE INTERFACE＊

Part no． 111
－Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital re－ corder＊Works up to 1200 baud－Digital in and out are TTL－serial © Output of board connects to mic．in of recorder－Earphone of

recorder connects to input on board－No coils－ Requires +5 volts，low power drain \bullet Board $\$ 7.60$ with parts $\$ 27.50$

T．V．TYPEWRITER

Part no 106
－Stand alone TVT － 32 char／line， 16 lines，modifications for $64 \mathrm{char} /$ line in－ cluded－Parallel ASCl｜（TTL）input－ Video output－ 1 K on board memory－ Output for compu－ ter controlled cur－
 ser Auro scrol促 right，home，EOL，EOS • Scroll up，down－Requires +5 volts at 1.5 amps and -12 volts at 30 mA －All 7400 ．TTL chips • Char gen． 2513 －Upper case only－Board only $\$ 39.00$ ；with parts $\$ 145.00$

TIDMA＊

Part no． 112
－Tape Interface Direct Memory Access－Record and play programs without bootstrap loader（no prom）has FSK encoder／decoder for direct con－ nections to low cost recorder at 1200 baud rate， and direct connections for inputs and outputs to a digital recorder at any baud rate．© S－100 bus com－ patible－Board only $\$ 35.00$ ；with parts $\$ 110.00$

UART \＆BAUD RATE GENERATOR＊

Part no． 101
－Converts serial to parallel and parallel to serial Low cost on board baud rate generator \bullet Baud rates： 110 ， $150,300,600,1200$ ，and 2400 －Low power drain +5
 volts and -12 volis required －TTL compatible－All characters contain a start bit， 5 to 8 data bits， 1 or 2 stop bits，and either odd or even parity． －All connections go to a 44 pin gold plated edge connec－ tor－Board only $\$ 1200$ ；with parts $\$ 35.00$ with connector add $\$ 3.00$

8K STATIC RAM

Part no． 300
－8K Altair bus memory－ Uses 2102 Static memory chips－Mem－ ory protect＊Gold contacts－Wait states－On board regulator－S－100 bus compatible－Vector input option－TRI state buffered－Board only $\$ 22.50$ ；with parts $\$ 160.00$

RF MODULATOR＊

Part no． 107
 －Converts video to AM modu－ lated RF，Channels 2 or 3 ．So powerful almost no tuning is re－ quired．On board regulated power supply makes this ex－ tremely stable．Rated very highly in Doctor Dobbs＇Journal．Recommended by Apple．－Power required is 12 volts AC C．T．，or +5 volts DC \bullet Board $\$ 7.60$ ；with parts $\$ 13.50$
 RS 232／TTY＊ INTERFACE

Part no． 600
－Converts RS－232 1020 mA current loop，and 20 mA current loop to RS－232－Two separate circuits－Requires +12 and -12 volts－Board only $\$ 4.50$ ，with parts $\$ 7.00$

RS 232／TTL＊ INTERFACE

Part no． 232
－Converts TTL 10 RS－232， and converts RS－232 to TTL • Two separate circuits
 －Requires -12 and +12 volts －All connections go to a 10 pin gold plated edge connector－Board only $\$ 4.50$ ；with parts $\$ 7.00$ with connector add $\$ 2.00$
POLY
 BUY 1 AT SALE PRICE, GET 2ND FOR IC MORE!!!

WATCH GUTS $\begin{array}{ll}\$ 15 & 2 \mathrm{for} \\ \$ 1.96\end{array}$
 (102)

 PARTS \& SEMI"ONE CENTERS
1.40 CHANMEL CE EELECYOR, w/h not, lor PLL circuito (49nsoas

 1.LED WATCH GUTS, mon's, how sood 7 We don't know (ronszei) 10.SLIDE SWITCHES. asset pop styles (is ok 1495).

4- TANTALUM CAPACITORS, 6.8 WF 35V, diaged (a OA529

1. 100才HZ MARKER CNYSTALS, approx for marker zen. (HPR3日96)
1- WOTHE

 1. KOYsTICK, tour 100k pots, with knob (f0n 3808A).
1.PLESEEYTY BIDEBAND FILTER, for chan, 3 or 4 (" 9 in 397S

 100 -TTLE

 -IC SOCKETS. 14. 18 pin, solder tail. ($\because 5 \mathrm{sm} 3821$).
 15-SLIDE VOLUME CONTROLS, sent'd valuen, duals, singlee ((0 in 3057). .

 40.H. SMIELDED CABLE, 12 cend, mikes, phonos, (\#F| 3577) $10-\mathrm{CB}$ ChYSTAL5, for phaee lock loog, HAM, HC/10 (iso 5050

 30-PANEL SWITCHES, Alldes, rotaries. mod, atc (μ Sh3285). 200 .HALF WATIERS, rasilators, carbern, , metal (μ sin 3048).
 100-POLYSTYAEME CAPS, esertd values, voltage, hl-Q (as 2723)

 30-voLume CONTHOLS, eudlo, IInear, aset'd valuee (" 812421)

 7-SEGMENT READOUTS
SPEMAY FLAT MIXIES, or anse, 3" dual dizh (Hgis

S.DGGIT READOUT, Ied, com enthode, red (asp S1eO).

FWO-500, $5^{\prime \prime}$ red, com anode, iscer. (igR 2950].

RELAYS! AMPLIFIERS!

 IC SOCKETS:

Fhone: Wakefield, Mass. (617) 245.3828 POLY PAK S
Send for FREE
catalog
catalog

IMAGINE GETTING A CALCULATOR REJECT FOR ONLY A PENAYM! $\$ 5.95{ }^{2} \mathbf{5 5 . 9 6} \mid$ LED OR FLUORESCENT CALCULATOR GAMBLE!
 WORTH Cutcomer rewus whatect and

 THAN

50832

POP-AMPS AT "CENT-CIBLE" PRICES

TL

HIGH SPEED PLASTIC DUAL-IN-LINE I.C.'s

Stock level	Part No	Price
46000	74 H 00	16
1300	74 HO	16
1600	74 H 02	16
8900	74 H 03	16
5100	74 H 04	17
9000	74 H 05	.17
1500	74 H 08	22
17000	74 H 10	.16
4400	74 H 11	.22
1000	74 H 12	.16

| | | |
| ---: | :--- | :--- | :--- |
| Stock level | Part No | Price |
| 4000 | 74 H 15 | .17 |
| 12000 | 74 H 20 | 16 |
| 6000 | 74 H 22 | 16 |
| 2000 | 74 H 30 | .18 |
| 24000 | 74 H 40 | 16 |
| 3000 | 74 H 50 | 16 |
| 2000 | 74 H 51 | .17 |
| 1000 | 74 H 52 | 17 |
| 6000 | 74 H 53 | 17 |
| 1000 | 74 H 54 | .18 |

Stock level	Part No	Price
2000	74 H 55	.18
3000	74 H 60	.18
2000	74 H 61	.18
2000	74 H 62	.18
2000	74 H 64	.16
6000	74 H 65	.16
1000	74 H 71	.35
2000	74 H 72	.31
2000	74 H 73	.49
24000	74 H 74	.24

Stock level Part No. Price 120074 H 76.55 100074 H 78.55 $150074 \mathrm{H} 87 \quad 2.75$ $100074 \mathrm{H} 101 \quad .35$ 100074 H 102.35 100074 H 103.50 $\begin{array}{ll}200074 \mathrm{H} 106 & .45 \\ 100074 \mathrm{H} 108 & .49\end{array}$ 100074 H 108 $\begin{array}{ll}300074 \mathrm{H} 113 & .24 \\ 2000 & 74 \mathrm{H} 114\end{array}$ 120074 H 1832.25

TTL
PLASTIC DUAL-IN-LINE I.C.'s Lowest Prices Ever Offered Anywhere

Stock level	Par! No. Price	
36000	7400	.09
22000	7404	.09
6800	7423	.07
13000	7425	12
43000	7437	09
57000	7438	09
22000	7443	15
38000	7445	19
23000	7454	.07
32000	7460	.07
41000	7472	12

| | | |
| :---: | :--- | :--- | :--- |
| Stock level | Part No. | Price |
| 15000 | 7480 | .19 |
| 26000 | 7482 | 15 |
| 56000 | 7491 | 19 |
| 45000 | 74150 | .39 |
| 69000 | 74151 | .29 |
| 12000 | 74152 | 89 |
| 90000 | 74153 | 29 |
| 33000 | 74154 | 49 |
| 2900 | 74155 | .29 |
| 23000 | 7456 | .19 |
| 42000 | 74157 | 29 | $4200074157 \quad .29$

NEW 1978 CATALOGUE

Our new and expanded comprehensive 1978 catalogue (144 pages), listing complete descriptions, illustrations and monolithic pricing on over 10,000 items is available on request.

- Subject to prior sale
- Prices valid only till October 15th. 1978
- Standard 1978 catalogue prices on the above devices will once again
take effect October 15th. 1978

UV EPROM

Stocklevel Part No. Price $119002708 \quad 8998.45$

MOS Static RAM's

Stock level Stock level
Part No PartNa 2102 LFPC

Part No	
2114	Part Na. 2102 LFF

K450NS 1K350NS
Price 9.8. 7.95 Price 1.19

MOS

Dynamic RAM's
Stock level Stock level $\begin{array}{rr}7200 & 2800 \\ \text { Part No } & \text { Part No }\end{array}$ $4060 \quad 416$ $4 \mathrm{~K} 300 \mathrm{NS} \quad 16 \mathrm{~K} 250 \mathrm{NS}$ Price 3.95 Price $1 \$ 0.514 .95$

UART's

Stock level	Stock level
16500	12300
Part No.	Pan No.
AY5-1013A	AY3-1015
Price 4.95	Price 5.95

MICROPROCESSOR

 CMIPSCPU's Stock level Parino Price $\begin{array}{llll}7100 & 8080 A & 755 & 6.95\end{array}$ $5500 \quad 6800 \quad 9958.95$

Interface Support Cincuits

Stock level	Parl No	Price
8300	8212	1.98
3500	8214	4.95
25200	8216	1.98
3300	8224	2.75
2400	8226	1.98
3100	8228	4.75
1400	8238	4.75
5700	8251	5.95
1100	8253	14.95
2700	8255	5.95
1000	8257	9.95
840	8259	14.95
4500	6810	3.95
8000	6820	4.95
9600	6850	5.95
1500	6852	5.95

Dual In-line
 Sockets

Finest Quality Sockets Available Anywhere

- pluggable socket foric packages WITH LEADS
HIGH RELIABILITY GAS.TIGHT JOINT FOR GOOD AS GOLD" PERFORMANCE COMPACT. LOW PROFILE DESIGN
NO WICKING WHEN SOLDERED TO
-
- FLammability rating - Ul 94V.0

Stock level	Contacts	Price
185,000	8 PIN	.11
245,000	14 PIN	13
190,000	16 PIN	.15
29,000	18 PIN	.19
80,500	22 PIN	.27
60,000	24 PIN	.28
30,000	28 PIN	.36
65,000	40 PIN	.48

BRAND NEW
1978 IC MASTER
Complete integrated circuit data selector New s iwice as big as last year. Master guide to the latest I.C.'s including microprocessors and consumer circuits
Free quarterly updates
$\$ 24.95$
Lowest price available

For just $\$ 995$, your DISCUS $1^{\text {tm }}$ system is complete. Complete with software. Completely assembled.
Its' full-size floppy disk formai gives you a quarter-million bytes per diskette. And 5 times the speed of mini-floppies. Plus, DISCUS 1 is both S-100 and IBM compatible.
Unlike other disk systems, DISCUS $1^{\text {m }}$ comes assembled and tested - the Disk Jockey $I^{\text {tm }}$ controller, cables, and a freestanding Shugart disk drive in a handsome cabinet with power supply.
And you get the software you need, ready to self-load and run: DOS, ATE ${ }^{\text {dm }}$ assembler/editor, patches for $\mathrm{CP} / \mathrm{M}^{*}$, and Advanced BASIC. CP/M* (\$70), Micro-Soft Extended Disk BASIC (\$199) and Micro-Soft FORTRAN (\$349) are options.

Ask for a demonstration of DISCUS $1^{\text {tm }}$ at your local computer store. Or, if unavailable locally, send your check or money order to Thinker Toys, 1201 10th St., Berkeley, CA 94710. Or call (415) 524-5317 10-4 Pacific Time. Add $\$ 7$ handling; Cal. res. add tax.

RADIO-ELECTRONICS

* CP/M is a trademark of Digital Research.

CIRCLE 61 ON FREE INFORMATION CARD

SUPER 15 WATT AUDIO AMP KIT

ONLY $\$ 23.50$ each

Uses STK－015 Hybrid Power Amp
Kit includes：STK－015 Hybrid IC，power supply with power transformer，front Amp with tone control，all electronic parts as well as PC Board．Less than 0.5% harmonic distortion at full power $1 / 2 \mathrm{~dB}$ response from $20-100,000 \mathrm{~Hz}$ ．This amplifier has QUASI－Compll mentary class B output．Output max is watt（10 watt RMS）at 4 （2

FM WIRELESS MIC KIT

4n，$\frac{1}{2}$ Tess MIC kit uses 3 high $\$ 6.95$ the $^{\text {th }}$（range（ $88-108$ EACH KIT MHz）．It transmits the y over long distances fup to 250 m .1 ．Kit comes with all electronic parts，P．C．Boa：d and mini microphone！

Take advantage of this new state－of－the－art counier teaturing the many benefits of custom LSI circuitry．This new technology approach o instrumentation yields enhanced perfor－ operation is now practicall，dependability，easy assembly and revolutionary lower pricing！ $0.5^{\prime \prime}$ red LED 6 digits display
－Resolution： 1 Hz at 11 sec .10 Hz at $1 / 10 \mathrm{sec}$ ．
Only \＄5050
$\$ 53.50$
 －Input connector：BNC type Input power required： 117 V AC $50 / 60 \mathrm{H}$ Includes all parts，
PC Board and Transformer

MANY SOUND DECISIONS I

Solid state sound indicato

$\$ 3.60 \mathrm{EACH}$
operating voltage 6 V
$30 \mu \mathrm{~A}$
A
m
mately $3 / 4^{" 1} \times 1^{1 / /^{\prime \prime}}$
Model EB2116（ContInuous） Model EB2126（Slow Pulse）
Model EB2136（Fast Pulse） （Fast Pulse）

POWER SUPPLY KIT

 0.30 V D．C．REGULATED Usas UA723 and 2N3055 Power TR ourput can be adjusted from$0.30 \mathrm{~V}, 2 \mathrm{AMP}$ ．Complote with PC board and ail slectronic parts． $\$ 10.50$ each

30 MH2 FREQUENCY COUNTER KIT

$M L M L M$
 All parts are preassembled on a mini PC Board Supply Voltage 6－9V D．C． SPECIAL PRICE $\$ 1.95$ ea．

30 WATT STEREO
 Heb Boara
DC DC（not．Powert ic parts with
 Super Buy Only $\$ 22.50$ each kit

5 W AUDIO AMP KIT cmo 380 wth Volume cont
power supply $6,18 V D C$ only 85.00 ea．

TIMER KIT

ontrolled from 1.100 sec ． tdeal to be used as timer delay unit for burglar alarm，photo service，and other purposes．
Max．loading $110 \mathrm{~V}, 2$ AMP． Supply voltage $12.18 \vee D C$ ． \＄11．50 each

ELECTRONIC ALARM SIREN

COMPLETE UNIT
Idor use as an Alarm Unit or nookup to your car back up
to make a reverse indicator． to make a reverse indlcator． Voltage supply $6-12 \mathrm{~V} \quad \$ 7.50$
19 KEY HEXADECIMAL KEY PAD

DIGITAL ELECTRONIC LOCK KIT

BATTERY POWERED

FEATURES
＊Circuitry：designed for operation by $n \neq g n$ efficent，hable lliumination maintain In a standard level even the battery supply drops to a certain low voltage．
＂9＂ 6 W cool／daylight miniature fioures
cent tube．
$6 \times 1.5 V$ UM－1（size D）ary cell battery ＊Easy sliding door for changing batterles $\$ 9.60 \mathrm{EACH}$＊Stainless reflector with wide angle increas．
MODEL 898 ．
$\boldsymbol{\prime} \nabla V \nabla$
RADIO-ELECTRONICS

The Incredible	
"Pennywhistle 103")	
139.95	
The Pennywhistie 103 is capable critical speed requirements for tion with another modem and termin for the ceat in atalition, it is free of reagily avaliable patts	a 01 recording data to and from audio tape wrhout the recorder and it is able to communicate directly al for teiephone "hamming" and communications of critical adusiments and is built with non-preciswon.
Oata Transmisizion Mathod Maximum Oala Rato	Frequency-Shith Keying, Pull-dupiex (hall duplex selectable) 300 Baud.
Oata Format	Asynchronous Serial (return so mark ievel requifed telween each character).
Recaive Cmannel fraquencias Transmit Channel Fraquancies	2025 Hz for 503 ce : 2225 Hz for mank. Swtch selectable Low (normal) = 1070 space 1270 mark. High $=025$ space. 2225 mark
Recelive Senslifivity	-46 dim accousticaly coupled.
Transmia Level	-15 dbm nomunal. Adjustabie from -6 dbm to -20 dbm
fective Frequency Yoierance	Frequency reference automatically adiusis to allow for operation between 1800 Hz and 2400 Hz
Diglal Dala Interface	ELA RS-232C or 20 mA current foop (recenver is optoispatated and nor-polar)
Pawer Requitramens	. 120 VaC, singe prase. 10 watts.
Phrsica! Requires a VOM. Audio OScillato	All components mount on a single 5° by 9^{-} ontiled arcult boart All comoonen's influded Frequency Counter andior Ostilloscope to align.

LOW POWER SCHOTTKY - 74LS series
Motorola IC's Factory warranted
Buy $\$ 10.00$-any mixBuy $\$ 10.00$-any mix-deduct 10% Buy $\$ 15.00$-any mix-deduct 10%

Some
Buy
items overmarked house numbers Buy $\$ 10.00$-any mix-deduct 10\% Buy $\$ 15.00$-any mix-deduct 15%

TTL - 7400 - Full Spec | .10 | 7441 |
| :--- | :--- |
| .15 | |
| 7442 | |
| 12 | | $\begin{array}{llll}75 & 7491 & .64 & 74163 \\ 35 & 7492 & .39 & 74164 \\ 45 & 7493 & .39 & 74165 \\ 60 & 7494 & .59 & 74166 \\ 50 & 7495 & .59 & 74170 \\ 55 & 7496 & .49 & 74173 \\ 55 & 74100 & .89 & 74174 \\ 60 & 74105 & .38 & 74175 \\ 15 & 74107 & .25 & 74176 \\ 15 & 74121 & .29 & 74177 \\ 13 & 74123 & .32 & 74180 \\ 10 & 74125 & .45 & 74181 \\ 10 & 74126 & .40 & 74182 \\ 20 & 74132 & .60 & 74185 \\ 20 & 7441 & .70 & 74190 \\ 27 & 74145 & .70 & 74191 \\ 30 & 74150 & .89 & 74192 \\ 29 & 7151 & 50 & 74193 \\ 18 & 74153 & .50 & 74194 \\ 42 & 74154 & .95 & 74195 \\ 29 & 74455 & .55 & 74196 \\ 17 & 74156 & .40 & 74997 \\ 58 & 74157 & .45 & 74198 \\ 75 & 74158 & .55 & 74199 \\ 27 & 74160 & .65 & 749200 \\ 25 & 74161 & .60 & 74279\end{array}$

LM300H .75 | LM302 |
| :---: |
| LM304 |
| LM 305 |

TTL - 7400

> tested and passed logic test- not full parametric specs
minimum 10 pcs or $\$ 1$ per item

PLastic cases

Bu
INEAR CIRCUITS
All guaranteed functional Buy tems overmarked house numbers Buy $\$ 15.00$-any mix-dedict 15%

LM340T (78XX) LM566CN 1.19 ULN2208
$5,6,8,12$
$15,18,24$

19 ULN2209

19 ULN2209 | .89 |
| ---: |
| .89 |
| 1.19 |
| 1.49 |
| 1.97 |
| 1.45 |
| .35 |
| .79 |
| .79 |
| .45 |
| 4.59 |
| .35 |
| .25 |
| .25 |
| 351.25 |
| .35 |
| .65 |
| .75 |
| 1.19 |
| 1.49 |
| 1.49 |
| 1.49 |
| .69 |
| .69 |
| .69 |

der Tail
Low Profile Solder
$\begin{array}{lrrrl}8 & \text { pin } & \$.16 & 24 & \text { pin } \\ 14 & \$.36 & 8 & \text { Wine Wrap } \\ 16 & .19 & 28 \text { pin } & .21 & 40 \text { pin } \\ 18 & .44 & 14 \text { pin } \\ 18 & .28 & 40 & & \end{array}$皆

| 1.75 |
| :--- | :--- | :--- |
| 1.25 |
| 1.25 |
| 3.25 |
| .65 |

.75
.95
.50
1.25
1.05
.65
.70
.70
.40
1.95
.70
.85
.95
.85
.50
.85
.50
.80
.75
.40
1.25
3.25
.65

SUMMER CIRCU ELEKTOR 78 DOuble is

 \begin{tabular}{l}15,

LM37

\hline
\end{tabular}

Double issue containing more than100 circuits100 circuits - such as high-perf.
disc pre-amp, Audio control ampl.
LED level indicator

VERO - dark and light

Eat Lei	$2525 \mathrm{~F} 2.81 \times 5.4^{\prime \prime} \times 2.4$ hammono. blue $1591 \mathrm{C} 2.6^{\prime \prime} \times 4.8^{\prime \prime} \times 1.6$	
${ }^{\text {OL }} 702$	${ }^{30} \mathrm{BO}^{\text {Red CC L LHO }}$. 79
0. 707	.$^{30} 0^{\text {Red CA }}$ CAMO	. 79
at 338	${ }^{3} \mathrm{Dig} \cdot 17{ }^{\text {Pr Red CC }}$	29
-	$2 \mathrm{Di9}$. $17{ }^{\prime \prime}$ Red CC	49
5082		39 39
HP 5082	5 Dig. 11" Mag. RHO	49
${ }_{\text {cte }}^{\text {SP425-09 }}$	9 Dig Gas Dis sharge	69
	${ }_{9}^{9} \mathrm{mank}$ (ig ded on board	79

Bibe speedometer.Bibe speedometer. A/D converter
and many more.nom and lig
nom
0.$\begin{array}{ll}16 \mathrm{~F} & 2^{\prime \prime} \times 4 \\ 16 \mathrm{G} & 2^{\prime \prime} \times 4 \\ 8 \mathrm{H} & 2.6^{\prime \prime}\end{array}$
OARD KIT

with order $\$ 3.00$
mag only

 and many more.
$\begin{array}{lll}\text { TANTALUM CAPACITORS - } 501 \mathrm{id} \text { dipped } \\ 14 / 35 \mathrm{~V} & \$.20 & 6.8 / 6\end{array}$
TRIMPOT
 $\frac{+}{5}$
Carbon $\mathrm{Fi}_{\mathrm{i}} 1 \mathrm{~m} \pm 5 \% 1 / 4 \mathrm{w}$ or $1 / 2 \mathrm{w}$
15 ea. of 12 values:
$100,220,470,1 \mathrm{~K}, 1.5 \mathrm{~K}, 3.3 \mathrm{~K}$

$4.7 \mathrm{~K} .8 \mathrm{~K}, 10 \mathrm{~K}, 33 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{~m}$.| Carbon Film $+5 \% 1 / 4 \mathrm{w}$ or $1 / 2 \mathrm{w}$ |
| :--- |
| Usage Evaluated Assortment |
| 5 to 20 ea of 44 values $\$ 12.95$ |
| Suplied in 15 Orawer 60 Comp. |
| Cabinet. $\$ 22.95+\$ 2.00 \mathrm{sh}$. |ReGulated power supply

Plus 8 minus $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V
Uses 3 LM340T and 3 LM320T regulators, $115 \mathrm{~V} / 29 \mathrm{~V}$ CT transformer Plus PC board capacitors \& diodes. All parts, schematic, instructions
Silver plated copper circuits
holds $5-16$ pin DIP IC's

TWMM

UNIVERSAL BREAOBOARDSiver placed copper cir
fits any IC and related
169p44-062 (.1"spacing, 42" dia.)

4-1/4-062 (.1 spacing 42

Metal Film $\pm 1 \% 1 / 4$ watt Starter Kit - 2ea. 60 values

 120 Resistors 10.5 ohm- 464 KSupplied in 15 Drawer $\$ 14.95$ Cabinet $-\$ 26.50+\$ 2.00 \mathrm{Sh}$.
. 0625°.
components.

27 holes for DIP. $3-3 / 16^{\prime \prime} \times 5-1 / 16^{\prime \prime}$

COMPLETE SATISFACTION GUARANTEED. SHIPMENT TO US AND CANADA PREPAID UNLESS INDICATED OTHERWISE. OTHER COUNTRIES ADD 10% - EXCESS REFUNDED CALIFORNIA RESIDENTS ADD SALES TAX. MINIMUM COD OR CHARGE ORDER \$I5.DO

INTERNATIONAL ELECTRONICS UNLIMITED
VILLAGE SQUARE, PIO. BOX 44, CARMEL VALLEY, CA 93924 USA TELEPHONE ATHS-3171

DADE HILS	
＂BOXES \＆BAGS＂OF THE FINESTPARTS AT WONDERFUL SAVINGS！	
022PT339	1 lb ．of single sided CU clad epoxy PC board（ 1 lb ．）
022PT338	1 lb ．of double sided CU clad epoxy PC board（ 1 lb ．）
0220P263	5 asst．optical lenses（2 oz．）．．．．．．．．\＄1．98
022MS391	10 ＂fly spec＂micro thermistors（1 oz． $1 \$ 3.99$
022PT003	50 asst．disc capacitors（3 oz．）．．．．．．\＄1．99
022PT097	5 lb ．electronic surprise box（5 lb．）．．\＄2．95
022PT043	200 asst．terminal lugs（5 oz．）．．．．．\＄2．49
022PT048	275 seiected sheet metal screws $11 \mathrm{lb} . / \mathbf{\$ 2 . 9 5}$
022PT056	$503 / 8-32$ volume control nuts（1 lb．）\＄1．99
022PT110	2 lb ．of self tap screws（2 lb．）．．．．．．\＄2 89
022PT100	2 lb ．of mixed hardware $22 \mathrm{lb} .1 \ldots \ldots . .$.
022PT109	2 lb ．of asst．steel washers 12 lb.$) \ldots .$.
022PT101	2 lb ．of asst．machine nuts \＆screws $(2 \mathrm{lb})$ ．．．．．．．．．．．．．．． $\mathbf{\$ 2 . 8 9}$
022MS390	10 mini bead thermistors（3 oz．）．．．\＄2．99
022PT166	10 asst．thermistors（2 oz．）．．．．．．．．．\＄1．99

DEALER INQUIRIES invited

24 HOUR－ 7 DAY－A．WEEK TELEPHONE ORDER SERVICE！ Call in your chargecard orders at low weekend and evening rates：DIAL：1－518－561－8700．

SEPTEMBER SPECIALI Beau－ SEPTEMBER SPECIALI Beau－
tiful quality EPOXY，neatly cut
iust right for etching those pro． just right for etching those pro．
ject boards．Single side．（2 oz．） 022PC034． SEPTEMBER SPECIAL！
O22MS337 3P male（A
$6^{\prime \prime} \times 4^{\prime \prime}$ COPPER CLAD
EPOXY BOARDS！

No．52，53 FACTORY RECONDI． TIONED－LIKE NEW！ 100 ohm cabon mike－ 200 ohm headset．Use to suild＂hands free＂intercoms for
industrial applications．（1 lb．）
022 PH 017 ．

$\frac{\text { Sold Out to }}{\text { EnLCO }}$

 Semiconductor

MIKE CONNECTORS！ $\begin{array}{ll}\text { 022MS337 } & \text { 3P male（A3M）（ } 3 \text { oz．）．} \\ \text { 022MS251 } & \text { 3P female（A3F）（3 oz．）}\end{array}$

49$)^{4}$

 PPECIAL PURCHASE OF＂EXCESS INVENTORY＂ MATERIAL！
022 DR 156 RCA CD4013 CMOS（ $10 z$. ）．．39c，10／\＄3．59 022 DS 169 RCA $40374 \mathrm{c} / \mathrm{w}$ heat sink（3 oz．） $10 / \$ 10.88$ 220R155 …．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.29,10 / \$ 9.95$ $\begin{aligned} & \text { 022DR } 155 \text { DIALIGHT 521－9186 micro LED }(102 .) \\ & \text { O．．．．．．．．．．．．．．．．．．．．．．19e，} 10 / \$ 1.79,100 / \$ 15.95\end{aligned}$ 022DR061 $48 \mathrm{~S} \times 106$ switching transistor（ 1 oz. ）
$\$ 1.89,10 / \$ 15.88$ 022 DS173 T．I．GA1742 transistor（1 oz．）

69c， $10 / \$ 5.95,100 / \$ 49.95$ O22DS 172 T．I． 29694 （CA 1344 ）transistor（1 oz．） ．69c， $10 / \$ 5.95,100 / \$ 49.95$ 022DS171 2SA673B power transistor（1 oz 69c，10／\＄5．95 022DS170 2CS 1213C power transistor（1 oz．） 022DS090 2N169 Germanium PNP（1 oz．） 022 DR934 2N241A transistor（1 oz．）
．69c，10／\＄5．95

Rusi Your Order Taday
RerChandise subaect to prior sale．Full remirtance with each ．Y． 12901.
MERCHANDISE SUBNECT TO PRIOR SALE．Full remittance with each order，please．Money Order，Cert－ and handling（we refund excess）．Please try to bring your order total to $\$ 10$ or more．Wor UPS（or postage） ders solicited．Open account to Government agencies，schools，institutions and triple＂A＂rated industrial 8 commercial accounts，Special＇quotes for quantities．N．Y．state residents，and triple＂A＂rated industrial \＆

SOCKET SALE

WIRE WRAP SOCKETS

14 Pin Wire Wrap
30
27/400
16 Pin Wire Wrap
.32
29/350

EDGE CARD CONNECTORS

44 Pin ST Edge Card Connecto

1.75
1.50/10

100 Pin ST Edge Card Connector $3.50 \quad 3.00 / 10$
100 Pin WW Edge Card Connector $3.50 \quad 3.00 / 10$ All Sockets \& Connectors Include Gold

SOLDERLESS BREADBOARDS SK 10 $\$ 16.50$

INCLUDING:

Over 100 pieces of precut wire in assorted lengths - free! Choose 1 color: Red, Black, Blue Yellow, Green, White, Orange Or Assortment

PAGE DIGITAL ELECTRONICS

135 E. Chestnut Street 4A Monrovia California 91016 Phone (213) 357-5005

ORDERING INFORMATION
Orders under $\$ 25$ and COD's. add $\$ 2$ - All others. shipped Ppd in US. via UPS

For Blue Label (Air) or 1st Class add \$
We accept Visa \& Master Charge Most orders shipped same day Dealer Inquiries Invited

New-Tone Electronics Quality components at fair prices

HIGH FIDELITY SPEAKERS

8.INCH COAXIAL

Combines a high quality $8^{\prime \prime}$ woofer and a tweeter into a pre-phased sound reproducer Built in cfoss-over network. Excellent choice for a low cost Hi Fi system for autos, vans, or in your home Frequency response is a smooth $80-15000 \mathrm{~Hz} .8$-ohm VC, 10 or. ceramic ring magnet. 25 W rating NT577 $\$ 13.99$ plus 40 cents postage
10.INCH WOOFER

The speaker for your "big sound" system. Frequency response is $20-4000 \mathrm{~Hz}$; 8 -ohm aluminum VC; powerful 20 ot. ceramic ring magnet and a rubberized accordion-edge suspension for excellent compliance. Handles 50W max. Use with the NT576 for super system.

NT578 $\$ 17.99$ plus 40 cents postage
5OW DOME TWEETER
Here is the super iweeter. A rugged $10 \mathrm{~cm}\left|4^{\prime \prime}\right|$ dome iweeter which handies 50 W max Frequency response is 4000.20000 Hz . 8.othm VC, 8-0z. ceramic magnet. Your system can have a brilliance you never imagined.

NT576 $\$ 6.99$

Resistors Standard values, $\pm 5 \%$, firsi quality. Packed 5 of one value.

$1 / 4 W-5$ for $\$.251 / 2 W-5$ for $\$.30$
Capacitor Special $3600 \mathrm{mF}, 40 \mathrm{Vdc}$ Sprague "Powerlytic" $\$ 1.89$
Relay SPDT. 12Vdc-5A contacts NT565 \$1.79
Sound Activated Switch Complete, ready to use Built-in microphone's output triggers a Triac which acts as a switch. Measures only 1" x 3". Requires 3.6Vdc.

NT527 \$1.29

And, the largest inventory of domestic and Jepenese transistors and ICs in the United States. ALL PARTS GUARANTEED WRITE FOR FREE GATALOG Minimum Order \$5. Add \$1.50 Postage and Handling. Canada add \$2.00. N.J. Residents add 5\% Sales Tax.

New-Tone Electronics
PO BOX 1738
Bloomfield, N.J. 07003

믄 UTTEGRRTED ELELTRDTILS

540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470

CMOS		74008	65	7427	35	74161	1.00	8973	2.95	8334	4.00
		74 Cl 10	25	7430	15	74163	1.30	8974	2.95	8553	6.50
4000	. 15	$74 \mathrm{Cl}^{4}$	1.75	7432	30	74164	1.45	8976	2.95	8556	3.25
4001	20	74620	. 26	7437	44	74165	1.35	75107	3.25	8599	3.25
4002	20	74.30	26	7440	. 18	74166	1.20	75450	1.00	LINEAR	
4007	20	74.32	30	7442	1.00	74.73	1.70	75451	80		
4010	36	74.42	9.40	7445	70	74175	1.05	75452	80		
4011	20	74.48	2.75	7446	. 70	74177	90	75453	80	307 N	35
4012	20	74.73	1.25	7448	70	74182	95	75491	1.25	308 N	35
4013	35	$74 \mathrm{C74}$	75	7450	25	74191	1.20	75492	1.40	309 K	1.05
4044	80	74.86	1.00	7451	. 25	74192	1.45	75494	1.50	309 H	1.00
4015	80	$74 \mathrm{C90}$	1.10	7453	. 25	74193	1.35	Peripheral			
4016	35	$74 \mathrm{C93}$	1.25	7454	35	74195	1.00			$\begin{aligned} & 318 \mathrm{H} \\ & 320 \mathrm{H} \cdot 5 \end{aligned}$	1.50 .88
4017	92	74 C 451	2.75	7460	22	74196	1.10		3.50 8.50	$320 \mathrm{~T} \cdot 5$	1.85
4018	92	74 Cl 54	3.00	7472	. 40	74197	1.10	8214	8	$320 \mathrm{~T}-12$	1.25
4019	20	$74 C 157$	2.10	7473	40	74199	2.25	8216 8224	3.75 4.75	324 N	1.75
4020	1.00	74 Cl 160	1.40	7474	. 40	74367	90	8224 8228	4.75 9.90	$340 \mathrm{~T}-5$	1.25
4022	83	74 Cl 62	70	7475	55	Interface		8228	11.50	$340 \mathrm{~T}-12$	1.25
4023	21	74 Cl 164	1.75	7476	45			8251	11.50	$340 \mathrm{~T} \cdot 15$	1.25
4024	. 75	$74 C 165$	1.75	7483	105	0025	3.50	8255	10.50 9.50	$340 \mathrm{~T}-24$	1.25
4025	. 20	74 Cl 74	1.50	7485	1.90	0026	1.75	2513	9.50	387 N	1.25
4027	.34	$74 \mathrm{C902}$	85	7486	. 43	8640	1.25	2516	9.50	388 N	1.25
4028	79	74C904	85	7489	2.00	8641	2.75	1013	6.50	585 N	.15 .
4029	1.00	$74 \mathrm{C905}$	3.00 1.95	7492	. 75	8806 8819	+ 3.00	8000	TTL	556 N	. 35
4030	. 20	$74 \mathrm{C914}$	1.95	7493	65	8819	1.25 500	8 8T20		558 N	2.80
4035 4040	.95 1.00			7495 7496	. 78	8820 8830	4.90	8997	1.75	561 N	5.00
4040	1.00 1.00	7400	. 16	7496 74121	. 85	8833	2.45	8092	. 95	566 N	1.70
4042	. 70	7401	. 17	74122	. 49	8835	2.45	8094	. 60	567 N	1.65
4044	. 60	7403	. 17	74123	65	8836	1.25	8095	. 80	709 N	35
4049	. 35	7404	. 19	74126	. 65	8837	2.45	8096	. 90	3035	. 2.46
4051	9.10	7406	. 40	74132	1.25	8838	2.45	8898	. 90	3401	1.25
4066	. 70	7407	-40	74141	1.15	8859	1.50	8121	2.25 3.25		
4068	. 40	7409	. 25	74145	1.10	8865	1.50	8136	3.25	4LS	* *
4069	. 40	7410	. 18	741481	1.20	8866	1.50	8220	3.25	74.	
4075	. 20	7413	. 78	74150	. 90	8867	1.85	8231	2.25 1.75	74LSOO	. 25
4082	23	7414	. 68	74153	1.10	8869	1.75	88250	1.75 1.75	,	. 25
74 COO	25	7417	. 38	74154	1.25	8879 8880	2.25 2.75	8250 8260	1.75 2.25	throw	
$74 C 02$ $74 C 04$. 35	7420	.18 .35	74155	.75 1.00	88884	2.45	8281	1.00	$74 \mathrm{LS670}$	3.95

* For more 74 LSxx , refer to our ad In the June issue of this magazine.

If what you need is nor listed, ask for if. Send selfaddressed sramped envelope.
$\begin{aligned} \text { SPECIAL . . } & \text { 21L02/450ns (1.50/10up; } \\ & \pm 3 \text { Digit A/D LD } 130 \text { /50up; } 1.2\end{aligned}$
$\begin{array}{ll} \pm 3 \text { Digit A/D LD130 } & \$ 5.50 \\ \text { MM5865 Universal Timer } & \$ 7.50\end{array}$
Minimum order $\$ 5.00$ US currency. Check or money order only. Add 5% to cover shipoing and handing charges. Calif, residents add 6% sales tax. Santa Clara County residents add 6.5% sales tax.

CIRCLE 59 ON FREE INFORMATION CARD

CB, HAM MICROPHONE

- Noise Cancelling Characteristics - Dynamic Microphone Element A terrific push-to-talk dynamic microphone with a tailored 100 5000 Hz frequency range for high intelligibility. The "close talk' requirement is effective in eliminating off-axis noise. Originally made by Astatic for Pace. Complete with 4 -wire coiled conductor. Can be used with hundreds of CB and Ham rigs. Output impedance is 400 ohms. Black plastic case with molded hanger. NT566 $\$ 6.89$

ALARM HORN . . . Use anywhere a loud audio signal or buzzer is needed - as an alarm, to signal a "high" in your IC projects, as a timer signal, or as a low cost code practice tone generator. Requires only $3-6$ volts $d c .1 / 1 / 2^{\prime \prime}$ diam. NT553 $\$.89$

SPDT Miniature Microswitch . . . The real thing! Rated 10 A at $125 \mathrm{Vac}, 5 \mathrm{~A}$ at 250 Vac . Body measures $3 / 4^{\prime \prime} \mathrm{A}^{\prime 1 / 4} 4^{\prime \prime} \times{ }^{1 / 2} \mathbf{2}^{\prime \prime}$. Roller leaf actuated

Three for \$2.29 NT584 \$.89
DPDT-Toggle Switch . . . Rated 6 Amps at 125Vac $3 /{ }^{\prime \prime}$ bat handle, $5 / 1{ }^{\prime \prime}$ " stem. Gold plated wire terminals. Switch body measures $1 / 2^{\prime \prime} x^{\prime 1} / 2^{\prime \prime} x^{3} / 8^{\prime \prime}$. Made by Cutler Hammer. NT562 $\$ 1.49$

4PDT-Toggle Switch . . . Three position toggle switch with center position "OFF". Rated 6 Amps at $125 \mathrm{Vac} .3 / 8$ " bat handle, $5 / 16^{\prime \prime}$ " stem. Gold plated wire terminals. Switch body measures $7 / /^{\prime \prime} \times$ $1 / 2^{\prime \prime} \times x^{1 / 2^{\prime \prime}}$. Made by Cutler Hammer.

NT563 \$1.99

NYLON HARDWARE . . . Hard-to-tind Nylon screws, nuts and rivets. NT514-50 piece assortment only $\$ 1.99$

Socket Extender 14.Pin DIL . . . Raises sockets $2^{1 / 2}$ above the chassis. Solder to pc board or plug into an existing socket. Ideal for digital readout devices, IC testing and simplifying layout.

Three for \$2.39 NT568 $\$.89$

general
CRT: 4 -inch flat faced round with viewing area of 6×10 divisions. P31 phosphor with 3.8 kV acceler ating voltage
Power Requiraments: $105.125 \mathrm{~V}, 50.400 \mathrm{~Hz}$,
35 wat
IMENSIONS AND WEIGHT
6-7/8 h $\times 11-1 / 4^{\prime \prime} \mathrm{w} \times 17.3 / 4^{\prime \prime} \mathrm{d} .27$ pounds
Rack mounting kit RM-4 (P/N $100-138$) also available.

SPECIFICATIONS

RTICAL
Ranges: $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps Variable control from $5 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
Arcuracy: $\pm 3 \%$
Frequency Resp
Risetime: 24 ns
TIME BASE
Sweep Rates: $0.2 \mathrm{SEC} / \mathrm{cm}$ to $0.5 \mu \mathrm{SEC} / \mathrm{cm}(0.1$ $\mu \mathrm{SEC} / \mathrm{cm}$ with X 5 expander) in 18 calibrated steps Variable control from $0.1 \mu \mathrm{SEC} / \mathrm{cm}$ to $1 \mathrm{SEC} / \mathrm{cm}$. Accuracy: $\pm 5 \%$
RGGERING
Slope: +8
Sensitivity .Variable level control.
quaranteed.
TV Sync: Separator circuitry permits lock ing to TV video waveform. TV.H (Line) and TV.V (frame) sync automatically selected by TIME/CM switch. EXTERNAL HORIZONTAL (X-AXIS):

Variable from $0.5 \mathrm{~V} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ with $\times 5$

Frequenc
GENERAL
CRT: 5.
CRT: 5 -inch flat faced round with viewing area of $8 \mathrm{~cm} \times 10 \mathrm{~cm}$.
2.Axis: (Intensity Moduiation) Rear panel connector for dis play blanking by 5 V signal (TTL compatible) Power. $105-125 \mathrm{~V}$, 400 Hz 35 walt
IMENSIONS
ACCESSORIES $7^{\prime \prime} h \times 17-1 / 2^{\prime \prime} d$
Rack mounting kit RM-3 (P/N 100-205) also
available.
Reg. $\$ 495.00$

- Model 515

V $=$

15 MHz , Triggered Sweep

- Same specs and performance as Model 517 except single trace $\bullet 15 \mathrm{MHz}$ trequency response $\bullet 5 \mathrm{mV}$
sensitivity - TV Sync separators buittin \bullet Bright 8 cm $\times 10 \mathrm{~cm}$ displav - Front Panel vectorscope operation - Lightweight portable • Designed for ind dustrial and consumer service applic
laboratory pupposes

CIRCLE 32 ON FREE INFORMATION CARD

$2281 R$ BABYLON TURNPIKE, MERRICK, N.Y. 11566 (516) 3784555

CIRCLE 2 ON FREE INFORMATION CARD

CIRCLE 46 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page

37 Active Electronics 117

- Advance Electronics...................................... 35

3 Advanced Computer Products.................... 127
2 Aldelco.. 128
A M C Sales.. 102
4 American Antenna..................................Cov. 4
70 A P Products Inc. .. 34
36 Audio-Technica ... 32
67 Avanti Research \& Development 99
74 A V R Electronics 104
56 Babylon Electronics 110
Karel Barta ... 101
91 Forest Belt's Training Workshop 91
18 B \& K Precision Dynascan......................... 13
Bullett Electronics..................................... 114

- Burdex Security Co................................... 104

C F R Associates...................................... 102
54 Chaney Electronics 101
5 Channellock.. 22
C I E-Cleveland Inst. of Electronics.
18-21

- Command Productions................................. 102

73 Communications Electronics........................ 94
6 Continental Specialties..........................Cov. 3

- Cornell Electronics.................................... 104

CREI—Div, of McGraw-Hill
47 Crystal Banking Service............................... 90

- Dage Scientific Instruments 104

85 Davis Electronics 90
45 Delta Electronics.. 106
7 Devco... 114
72 Digi-Key .. 125
82 Digital Research Corporation 106
E. A. R. S., Inc.. 108

- Edmund Scientific .. 85

8 EICO.. 100
69 Electro-Voice, Inc. 26
26 Electronics Book Club (Tab)........................ 25
48 Electronic Supermarket 110

- Electronic Systems.................................... 115
- E M C—Electronics $\begin{gathered}\text { Measurements .. } 99\end{gathered}$

Energy Control Systems 96
38 Etco Electronics.. 123
65,88 Fluke...Cov. 2
52 Fordham Radio Supply 126
55,9 Formula International 118,119
10 Fuji-Svea ... 107

1
76-80 Goul 112

College of Engineering............... 98
53 G. T. E. Sylvania-Consumer Renewal 7
100 Heath. 6-89
12 Hickok Electrical Instruments 92
14 Indiana Home Study 77
Information Unlimited 104
59 Integrated Electronics. 124
35 International Crystal Mfg. Co.75
13 International Electronics 122
ectronicslloys121
.99
90 Kedman. 82
Krystal Kits 102

- Lab Science 102
- Lakeside Industries 102
42 Leader 83

$-$

103
17 Ramsey Electronics. 108
24
Ripley Co., Inc. 100Robinson Nugent
51 Rye Industries 100Schober Organ90
10268 Shure Brothers
93Simpson.
15Solid State Sales
24 Southwest Technical Products. 17112
64 Spacekom.
84- Speakerlab, Inc.

- A. F. Stahler Co.108
Starshine. 33
Texas Instruments 1
28 Tri-Star 106
27 Trinico International 113
Trumbull. 10277

Vero Electronics
40 VIZMig. 16
29 Wersi Electronics. 82

- Windsor Distributors. 110

Independent News Company, Inc. is pleased to announce a Retail Display Plan available to all retailers interested in earning a display allowance on Radio-Electronics magazine and who purchase the magazines from suppliers other than Independent News Co., Inc., or the publisher.

To obtain details and a copy of the formal contract please write to Director, Retail Sales Division, Independent News Co., Inc., 75 Rockefeller Plaza, Now York, N.Y. 10018. Under the display plan in consideration of your acceptance and fulfillment of the terms of formal contract to be sent to you upon your request you will receive a display allowance of 10% of the cover price per copy sold by you. This plan will become effective with all issues of Radio Electronics delivered to you subsequent to the date your written acceptance of the formal Independent News Co., Inc. Retail Agreement is received and accepted by our Company.

IF YOU'RENOT DESIGNING WITH A CSC PROTO-BOARD,LOOK AT ALLYOU'RE MISSING.

Utility-Models are a vailable with or without built-in regulated power supplies (fixed or adjustable.

Economy-Eliminate heat and mechanical damage to expensive parts. Save money by re-using components

Versatility - Use with virtually all types of parts, including resistors. capacitors transistors. DIP's TO-5 s. LED's, transformers relays, pots, etc. Most plug in directly, in seconds

Durability - All Proto-Board models are carefully constructed of premium materials, designed and tested for long, trouble-free service.

Expandability-Proto-Board
units can be instantly inter-
connected for greater capacity.

Visibility - All parts
are instantly and easily visibie, for quick circuit analysis and diagramming

Speed-Assemble. test and modify circuits as fast as you can push in or pull out a lead in or pull out a lead.
Save hours on every project.

Accessibility - All parts are
inslantly and easily accessible, for
cuick signal tracing. circuit
modifications etc
modifications, etc.
Variety-A wide variety of
models are available with
capacities ranging from 630 to
3060 solderless tie-points (6 to 32
14-pin DIP's), to fit every technical
and budget requirement

Adanstability-Use in design packaging, inspection, QC, etc. Works with most types of circuits in many, many applications.

Flexibility-Use independently or in conjunction with other accessories, such as scopes
counters, CSC Proto-Clipim connectors. Design Materm connectors. Design Mate ${ }^{\text {TM }}$ test equipment, etc. One Proto-Board applications

Ordertoday. Call 203-624-3103 (East Coast) or 415-421-8872 (West Coast): 9 a.m. -5 p.m. local time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside USA.

CONTINENTAL SPECIALIIES CORPORATION

70 Fulton Terrace, Box 1942, New Haven. CT 06509 203-624-3103 TWX 710-465-1227
WEST COAST: 351 California St., San Francisco, CA 94104, 415-421-8872 TWX 910-372-7992
GREAT BRITAIN: CSC UK LTO., Spur Road, North Feltham Trading Estate, Feltham, Middesex. England, 01-890-0782 Int'l Telex: 851-881-3669

CSC PROTO-BOARD SOLDERLESS BREADBOARDS

MODEL NUMBER	NO. OF SOLDERLESS TIE-POINTS	IC CAPACITY (14-PIN DIP'S)	MANUFAC SUGG. LIST	OTHER FEATURES
PB-6	630	6	\$15.95	Kit-10-minute assembly
PB-100	760	10	19.95	Kit-with larger capacity
PB-101	940	10	22.95	8 distribution buses, higher capacity
PB-102	1240	12	26.95	Large capaçity, moderate price
PB-103	2250	24	44.95	Even larger capacity; only 2.7 р рег tie-point
PB-104	3060	32	54.95	Largest capacity; lowest price per tie-point
PQ-203	2250	24	75.00	Built-in 1%-regulated 5V, 1A low-ripple power supply
PB-203A	2250	24	124.95	As above plus separate $1 / 2$-amp +15 V and -15 V internally adjustable regulated power supplies

WE'LL SELLYOU ONE FOR ${ }^{\text {s38.50TO PROVE IT! }}$

The K40 is more than just a premium antenna.
It's specifically guaranteed, in writing, to outperform any antenna it replaces.

1

 TRANSMITS FURTHER. RECEIVES CLEARER.We mean just that! We'll back you 100\% if the K40 doesn't transmit further or receive clearer than the antenna it replaces. We know it will. We've tested it with 771 CBer's just like you for one year.

2

WHEN YOU PAY MORE, YOU EXPECT MORE.
For a full year we'll let your dealer replace any part you're not happy with. You make the decision, not us. Our guarantee includes rust. It includes broken whips. It includes everything.

IT'S AMERICAN MADE.
No need to be concerned about replacement parts. There is not one component that is made anywhere else but in America.

MOUNTS ANYWHERE, EVERYWHERE.
With the spectacular Unimount, you can fit your K40 to any mounting surface-anywhere. And that's guaranteed too. 100\%. That means this single K40 antenna can easily fit any vehicle you own-or you'll ever own. That includes choppers, dune buggies, gutters, mirror mounts, luggage racks, trunks, hatch-backs, through roofs, semi's, pick-up's \& RV's.

SOLD BY PROFESSIONAL DEALERS THAT TAKE PRIDE IN SERVICING CBER'S.

Like pro-golf clubs, the K40 antenna is sold through pro-CB/Electronic stores only. It's not being sold to mass merchandisers. It's not being sold to Sears or Penney's or any retail outlets that cannot offer full-time professional support to the service you need. We control that because we personally qualify each and every retailer before we sign him on.

HERE'S OUR DEAL.

Make a check for $\$ 38.50$. Rip out this page and run over to your local CB shop for your very own K40. If the is out of K40's, have him call us immediately. We'll get it out to him in 24 hours. Here's how:

REACH!

for your dealer's phone and dial,

AMERICAN ANTENNA, Elgin, Illinois.
An All-American Product by an All-American Company.

[^0]: ＊Product Engineers，Optoelectronics，Inc

[^1]: * Hobby Corner

