SPECIAL FM TUNERS BUYERS GUIDE

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

cover stori
 FUNCTION GENERATOR

Sine, square and triangular waveforms from 2 Hz to over 200 kHz plus external sweep mode makes this a great addition to your workbench. Turn to page 37.

: ACAARAABM

Protect your home and family with this feature-packed perimeter alarm. Construction starts on page 41.

FMO! MOM
Using special construction techniques, a complete frequency counter built into a probe. Story starts on page 67.

CASES AND CABNETS

Save these handy charts and use them to select the best enclosure for your next project. Turn to page 45.

MDEO NECORDEN

Buying, installing and using VTR's.
What you should know starts on page 60.

BLS

\star R-E Tests
Marantz 2265B AM/FM Receiver

* R-E Tests

Shure SME 3009-III Pickup Arm

* Prototype Module System
* CET Test
\star Computer Corner
* Hobby Corner
* Service Clinic
\star State Of Solid State

Yesterdey you could admire Lex digital tuning in short wave: Today you can affiod it

Introducing Panasonic's Command Series top-of-the-line RF-4800. Everything you want in short wave. Except the price. Like a five-digit LED frequency display. It's so accurate (within 1 kHz , to be exact), you can tune in a station, even before it's broadcasting. And with the RF-4800's eight short wave bands, you can choose any broadcast between 1.6 and 31 MHz . That's the full frequency range. That's Panasonic.

And what you see on the outside is just a small part of what Panasonic gives you
circuitry, Parasonic's RF-480C gives you all these sophisticated controls. Like an all-gear-drive tuning control to prevent "backlash." Separate wide/narrcw bandwidth selectors for optimum reception even in inside. There's a double superheterodyne system for enhanced reception stability and selectivity as well as image rejection. An input-tuned RF amplifier with a 3-ganged variable tuning capacitor for exceptional sensitivity and frequency linearity. Ladder-type ceramic filters to reduce frequency interference. And even an antenna trimmer that changes the front-end capacitance for maximum reception from minimal broadcast signals.

To help you control all that sophisticated
 crowded conditions. Adjustable calibration for easy tuning to exact frequencies. A BFO pitch control. RF-gain control for increased selectivity in busy signal areas. An ANL switch. Even separate bass and treble controls. And if all that 'short wave isn't enough. There's more. Like SSB (single sideband) amateur radio. All 40 CB channels. Ship to shore. Even Morse communications. AC /DC operation. And with Panasonic's 4^{N} full-range speaker, the big sound of AM and FM will really sound big.

The RF-4800. If you had a short wave receiver as good. You wouldn't still be reading. You'd be listening. - The abllity to receive short wove broadeasts will vary wite artanna size, time of day. operator's geographic location and other factore, You mey raed an optonal outsude antenna to receve distant chon wave broadcasts.

This new LCD Alarm Chronograph is truly extraordinary. It does more and does it better than any other watch. With a bold, impressive appearance that reflects its uncommon ability.

An Extraordinary Value

The only thing about it that's not extravagant is its price. It's actually $\$ 200.00$ less than the only watch that comes even close to its usefurness and accuracy.
Quartz Crystal Time
The LCD Alarm Chronograph gives you accuracy to $\pm 60 \mathrm{sec}$ onds a year. Quartz crystal accuracy that would have been considered sensational per month in earlier micro-electronic watches. And is still not available in models selling for as much as $\$ 500.00$ and $\$ 1000.00$
Electronic Calendar .. . So, you always have exactly the right time on display. In hours, minutes and running seconds. Without pushing a button. Touch the button and the seconds are replaced with either the day or the date. Of course, the electronic calendar adjusts automatically for the number of days in the month. Then, so you can see when it's dim or you're in the dark, the face lights up.

24 Hour Alarm

Of all the features available in digital watches today, an alarm system like this is the one that's most wanted. And no wonder. It will wake you; remind you of your appointments, phone calls and meetings (or break one up that's been going on too long). It's really important enough all by itself to warrant your getting a new watch.

You can set this alarm for any minute of any hour. Day or night. In all, 1440 positions are available-easily and instantly. Then, unless you change or deactivate it, the alarm will sound for a full minute at the same time every

Set to
ring at
11:45 P.M
day. With an insistent, though pleasant, beep. To check if the alarm is set and for what time, just touch the alarm button.

Most remarkable of all, on this direct-by-mail offer from Douglas Dunhill, it's like getting the alarm free!

Three Different Chronographs

As to the chronograph, or split-second timer, its precision is so fine, it borders on the infinitesimal. Imagine, it enables you to time an event to one-hundredth of a second. Any event. Because unlike most chronographs, which work in either one or at most two ways, this one stops
time - as explained to the far right - in three different ways. This extraordinary versatility makes the LCD Chronograph with its highly sophisticated micro-computer chip the ideal instrument for doctors, pilots, motion picture directors and photographers, sound and efficiency engineers, sportsmen of course, and every executive who wants the ability to command time to stand still.

Only $\$ 100$

Right now, the only other watch with all these features is the Seiko. And it regularly sells for $\$ 299.95$. Over two hundred dollars more even though its chronograph is accurate to only a tenth of a second.
This incomparable value is what convinced us. And we're one of the oldest and largest mail merchandisers in America. (Of course, only after exhaustive quality control tests.) After all, what would you say to a salesman in a store about a price comparison like this? Never mind your reaction when he tried to explain that this was a finer, more accurate fully electronic solid state watch than many that sell for as much as $\$ 1000.00$.

30 Day Trial

With us, buying by mail, you can prove all this to your own satisfaction without risking one cent. You have thirty days to put it to the test:to confirm it won't gain or lose five seconds a month, prove the convenience of the alarm, satisfly yourself that the chronograph is as useful as it is easy to operate. More, to compare it with any watch at any price, and to send it back for a complete refund if the value is not as great as we say, if it doesn't arouse the admiration and fascination of your friends, win your own pleasure and satisfaction.

Chrome or Gold Plated

So, order your LCD Alarm Chronograph today. The price, including shipping, handling, insurance and a handsome gift case is just $\$ 100.00$. In chrome- or gold-plated stainless steel with a matching, extremely comfortable adjustable band, the LCD Alarm Chronograph comes with a full ONE YEAR Limited Warranty. We also promise to service it to your satisfaction at any time. Remember, too, the printed circuitry eliminates all moving parts and normal servicing, and assures you of years of troublefree performance.

800-325-6400 OPERATOR \#07
 (Missouri residents call 800-342-6600)

To order by credit card, call the toll free number above. Send your check to Douglas Dunhill at the address below. (New York and Illinois residents add the appropriate sales tax.)

Three-Way Chronograph System

No other instrument, at any price, glves you greater precision than the $1 / 100$ th oi a second accuracy of the new LCD Alarm Chronograph; or greater versatility and flexibility in timing an event from a fraction of a second to one full hour. Only with the micro-elactronic revolution could you have three separate chronographs in one sleek, superbly styled timeplece.

Timed to
54 minutes
and 14.85 seconds
\#1 Add Time . . . is the stop watch mode. You ll use it to time everything from a phone call to the length of a meeting. How long your car's been at a parking meter, the time you've been jogging or exercising, even the time it takes a quarterback to set $u 5$ and throw. With Add Time, you can stop when necessary, like a time out in basketball, and start again when the action begins. Try it the next time you prepare a speech.
\#2 Split Time . . is the mode you'll use to get the time of each contestant across the finish line, or to get the time for the $1 / 4$ or the $1 / 2$ or any interim. On Split Time the chronograph is aclually stopped and running at the same time, so you can use it to figure the time of a pit stop, for example, and still get the over-all time of the race.
\#3 Lap Time . . . is used in a relay race, for example. It stops to measure an event and simultaneously starts again from zero. So, the instant a runner passes the baton you stop the chronograph; this gives you his time while the Lap Timer automatically starts counting the next runner's time. Any event can be split into its component parts this way, from a rocket launch to a production process. In a football game you can get the produciton process. In a football game you can get the exact time it takes a punter to kick the ball, the time the
ball's in the alr, the time of the runback. With Lap Time, you can separate the time of elements that cannot be separated in any other way.

Within minutes, you'll be able to master each of these 3 modes. In days, find innumerable business and personal uses. Take 30 days to prove it to yourself.

Be sure to specify chrome or gold. You'll have the precise time, absolute control over time, plus ample warning when it's time to dc anything. And the pride that comes with wearing a watch that's second to none.

Dedt. 80-5302
4225 Frontage Road - Oak Forest, IL 60452

Burglar Alarm Breakthrough

> A new computerized burglar alarm requires no installation and protects your home or business like a thousand dollar professional system.

The Midex security computer looks like a handsome stereo system component and measures only $4^{\prime \prime} \times 10^{1 / 2} 2^{\prime \prime} \times 7$."

It s a security system computer. You can now protect everything-windows, doors, walls, ceilings and floors with a near fail-safe system so advanced that it doesn't require installation.

The Midex 55 is a new motion-sensing computer. Switch it on and you place a harmless invisible energy beam through more than 5,000 cubic feet in your home. Whenever this beam detects motion, it sends a signal to the computer which interprets the cause of the motion and triggers an extremely loud alarm.

The system's alarm is so loud that it can cause pain-loud enough to drive an intruder out of your home before anything is stolen or destroyed and loud enough to alert neighbors to call the police.

The powerful optional blast horns can also be placed outside your home or office to warn your neighbors.

Unlike the complex and expensive commercial alarms that require sensors wired into every door or window, the Midex requires no sensors nor any other additional equipment other than your stereo speakers or an optional pair of blast horns. Its beam actually penetrates walls to set up an electronic barrier against intrusion.

NO MORE FALSE ALARMS

The Midex is not triggered by noise, sound, temperature or humidity-just motion-and since a computer interprets the nature of the motion, the chances of a false alarm are very remote.

An experienced burglar can disarm an expensive security system or break into a home or office through a wall. Using a Midex system there is no way a burglar can penetrate the protection beam without triggering the loud alarm. Even if the burglar cuts off your power, the four-hour rechargeable battery pack will keep your unit triggered, ready to sense motion and sound an alarm.

DEFENSE AGAINST PEEPING TOMS

By pointing your unit towards the outdoors from your bedroom and installing an outside speaker, light, or alarm, your unit can sense a peeping Tom and frighten him off. Pets are no problem for the Midex. Simply put them in one section of the house and concentrate the beam in another.

When the Midex senses an intruder, it remains silent for 20 seconds. It then sounds the alarm until the burglar leaves. One minute
after the burglar leaves, the alarm shuts off and resets, once again ready to do its job. This shut-off feature, not found on many expensive systems, means that your alarm won't go wailing all night long while you're away. When your neighbors hear it, they'll know positively that there's trouble.

PROFESSIONAL SYSTEM

Midex is portable so it can be placed any. where in your home. You simply connect it to your stereo speakers or attach the two optional blast horns.

Operating the Midex is as easy as its installation. To arm the unit, you remove a specially coded key. You now have 30 seconds to leave your premises. When you return, you enter and insert your key to disarm the unit. You have 20 seconds to do that. Each key is registered with Midex, and that number is kept in their vault should you ever need a duplicate. Three keys are supplied with each unit.

As an extra security measure, you can leave your unit on at night and place an optional panic button by your bed. But with all its optional features, the Midex system is complete, designed to protect you, your home and property just as it arrives in its wellprotected carton.

The Midex 55 system is the latest electronic breakthrough by Solfan Systems, Inc. - a company that specializes in sophisticated professional security systems for banks and high security areas. JS\&A first became acquainted with Midex after we were burglarized. At the time we owned an excellent security system, but the burglars went through a wall that could not have been protected by sensors. We then installed over $\$ 5,000$ worth of the Midex commercial equipment in our warehouse. When Solfan Systems announced their intentions to market their units to consumers, we immediately offered our services.

COMPARED AGAINST OTHERS

In a recent issue of a leading consumer publication, there was a complete article written on the tests given security devices which were purchased in New York. The Midex 55 is not available in New York stores, but had it been compared, it would have been rated tops in space protection and protection against false alarms-two of the top criteria used to evaluate these systems. Don't be confused. There is no system under $\$ 1,000$ that provides you with the same protection.

YOU JUDGE THE QUALITY

Will the Midex system ever fail? No product is perfect, but judge for yourself. All components used in the Midex system are of aerospace quality and of such high reliability that they pass the military standard 883 for thermal shock and burn-in. In short, they go through the same rugged tests and controls used on components in manned spaceships.

Each component is first tested at extreme
tolerances and then retested after assembly. The entire system is then put under full electrical loads at 150 degrees Fahrenheit for an entire week. If there is a defect, these tests will cause it to surface.

PEOPLE LIKE The System

Wally Schirra, a scientist and former astronaut, says this about the Midex 55. "I know of no system that is as easy to use and provides such solid protection to the homeowner as the Midex. I would strongly recommend it to anyone. I am more than pleased with my unit."

Many more people can attest to the quality of this system, but the true test is how it performs in your home or office. That is why we provide a one month trial period. We give you the opportunity to see how fail-safe and easy to operate the Midex system is and how thoroughly it protects you and your loved ones.

Use the Midex for protection while you sleep and to protect your home while you're away or on vacation. Then after 30 days, if you're not convinced that the Midex is nearly fail-safe, easy to use, and can provide you with a security system that you can trust, return your unit and we'll be happy to send you a prompt and courteous refund. There is absolutely no obligation. JS\&A has been serving the consumer for over a decade-further assurance that your investment is well protected.

To order your system, simply send your check in the amount of $\$ 199.95$ (Illinois residents add 5% sales tax) to the address shown below. Credit card buyers may call our toll-free number below. There are no postage and handling charges. By return mail you will receive your system complete with all connections, easy to understand instructions and a one year limited warranty. If you do not have stereo speakers, you may order the optional blast horns at $\$ 39.95$ each, and we recommend the purchase of two.

With the Midex 55, JS\&A brings you: 1) A system built with such high quality that it complies with the same strict government standards used in the space program, 2) A system so advanced that it uses a computer to determine unauthorized entry, and 3) A way to buy the system, in complete confidence, without even being penalized for postage and handling charges if it's not exactly what you want. We couldn't provide you with a better opportunity to own a security system than right now.

Space-age technology has produced the ultimate personal security computer. Order your Midex 55 at no obligation. today.

Dept. RA One JS\&A Plaza Northbrook, III. 60062 (312) 564-7000
Call TOLL-FREE
800 323-6400
In Illinois Call
(312) 564-7000
© JS\&A Group, Inc., 1978

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

SPECIAL
SECTION
HI-FI STEREO

49 FM Tuners Buying Guide
Everything you ever needed to know before you buy your next FM luner.

56 FM Tuner Directory
Listing of FM tuners and their specifications makes buying a new one an easier choice.

63 R-E Lab Tests SME Pickup Arm
"Supurb" sound qualliy is the rating for this \$294 arm.
64 R-E Lab Tests Marantz 2265日 Receiver
Overall sound quality rates an "Excellent"

BUILD ONE
 OF THESE

37 Function Generator For Your Bench
Sine, square and triangle waves from $210200,000 \mathrm{~Hz}$. A project that's fun to build and easy to complete.

41 Electronic Security Alarm
Easy-to-bulld system features both open- and closed-loop wiring-uses COSMOS IC's.

67 Digital Frequency Probe
It looks like a fat ball point pen, but it's really a self-contained digital frequency meter. You'll want one for your shirt pocket.

74 Modules For Experimenters
Snap-together module system makes it easy to build up experlmental circuits with digital IC's.

GENERAL ELECTRONICS

4 Looking Ahead Tomorrow's news-today

45 Cabinets For Your Projects
A directory of enclosures you can use to house your projects.
60 Videotape Recorders
Typical user questions and expert answers cover all aspects of video recording from antennas to warrantees.

80 Mobby Corner
How to keep IC projects tiny.
82 State-Of-Solid State
A look at IC peak-detectors and how they work.

COMPUTERS

$78 \quad 6800$ Computer Corner
Hardware and software viewpoints.

TELEVISION

Cutoff problems are often overlooked when troubleshooting a chassis.

84 Service Questions
R-E's Service Editor solves reader problems

EICO Model 242 FET-TVOM
McKay Dymek Model DR22 Communications Receiver

DEPARTMENTS

Advertising Index	16	Letters
Advertising Sales Offices	108	Market Center
Computer Products	6	New \& Timely
Hi-Fi Products	99	New Literature
Free Information Card	94	New Products
	102	Next Month

ON THE COVER

Compact function generator has a place on every readers bench. It delivers sine, square and triangle waves with minimal distortion. Build your unit from the details in this issue. The article starts on page 37.

VIDEOCASSETTE RECORDERS ARE IN. This 0 \& A story answers typical user questions about this exciting new consumer electronics product. For all the answers, fast-forward to page 62

KEEP IC PROJECTS SMALL. It's easy to do once you know the basics. This month's Hobby Corner tells all. Turn to page 80 now.

Aadio-Electronics, Published monthly by Gernsback Publications. Inc., 200 Park Avenue South, New York, NY 10003. Phone: $212-777-6400$. Second-class postage paid at New York, NY and additional mailing offices. One-year subscription rate: U.S.A. and U.S. possessions, $\$ 9.98$, Canada, $\$ 12.98$. Other countries, $\$ 14.98$. Single copies $\$ 1.00$. e 1978 by Gernsback Publications. Inc. All rights reserved. Printed in U.S.A
Subscription Service: Mail all subscription orders, changes. correspondence and Postmaster Notices of undelivered coples (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322 .
A stamped sell-addressed envelope must accompany all submilted manuscripts and/or artwork or photographs it their return is desired should they be relected. We disclaim any responsiblifity for the loss or damage of manuscripts and/or artwork or photographs while in our
possession or otherwise.
U.S. VCR plant? Home videocassette recorders are now available in the United States under 15 different brand names, including those of the top American TV set manufacturers. And every blessed one of them is made in Japan. So now, with the American home VCR market on the brink of a major explosion, one company says it's going to start home VCR production in California in 1979 or 1980 for sale in the United States and throughout the world. An American company? No. A Japanese company? No. It's BASF Systems, a subsidiary of the German electronics and chemIcal giant, which plans to produce a lightweight, batteryoperated home VCR which isn't compatible with either current format (Beta or VHS).

The new recorder will be pushed as the " 8 mm video recorder." It's the system which has been known as LVR (longitudinal video recording) and was described in an eyewitness report from Berlin in this column last December. It uses an extremely compact single-reel cassette with only one precision part, containing 8 -mm-wide tape (just under one-third inch) which passes a fixed head at 160 ips. The narrow tape contains 48 longitudinal video tracks and 96 audio tracks, changes direction and switches tracks 47 times for 2 hours of recording time (each pass across the head takes $21 / 2$ minutes). BASF sees its initial VCR weighing about 10 pounds, envisions a future unit built into a CCD color camera.

In addition to portability, BASF sees these advantages for its system: (1) Low cost and simplicity because it uses a single fixed head. (2) Rapid duplication of pre-recorded material, since all tracks may be laid down in one pass, in effect recording at $1 / a 8$ of real time. (3) Easy adaptibility to digital recording. On this latter point, a BASF official indicated a digital version could be the second generation, and therefore the company isn't seriously considering the use of metal tape.

New color TV's: Higher-resolution large-screen picture tubes, increased use of electronic tuning and remote control, more microprocessor circuitry-those are among major trends in the 1979 TV models. Magnavox gets credit for introducing what appears to be the only completely new feature. Included in 19-and 25 -inch sets with the Computer Color 330 chassis is a comb filter system which Magnavox says has never before been used in home color TV receivers. By using this system to prevent interference between chrominance and luminance signals, Magnavox says it has increased resolution by 25%, from 260 to 330 lines horizontally, and also has gotten rid of crawling dots and swirly red patterns in scenes with vertically striped objects. Magnavox's Computer Color 330 sets have filter switches, which make it easy for dealers to demonstrate this feature-and at the demonstration I viewed, at least, it was an impressive feature.

Slot-mask picture tubes with in-line guns, which now have completely taken over the below-19-inch field, have finally come to the large-screen area in the United States. Most of them are 100-degree tubes with tri-potential guns designed to achieve a small spot size, as pioneered by Zenith and later adopted by Sylvania. The new large-screen 100 -degree tubes are featured in sets under the brand
names of Admiral, Magnavox, Montgomery Ward, Quasar, Panasonic and Zenith.

Every TV brand now uses at least two different electronic tuning systems. Almost all employ the single-knob approach in the mid-cost range of thelr products, moving to the random-access calculator-type keyboard or simple updown channel-scan buttons at the higher end. There's some indication that AFT (or AFC, if you prefer) may be on the way out. Several brands use frequency synthesizers, quartz crystal control or microprocessors to eliminate fine tuning altogether. Some microprocessor signal-searching sets automatically tune once to every occupled station in the area, then "remember" the frequency.

Vertical interval reference (VIR) color systems have been adopted by more manufacturers. Originally developed by General Electric, the tuning system-including new versions using chips by Matsushita and Sanyo - can now be found in sets by Panasonic, Quasar, J.C. Penney, Sanyo and Sylvania. Most of them have conventional auto-color tracking circuits designed to take over and assure color consistency in the absence of a VIR signal.

Toshiba has introduced a programmable 21-inch color console, which permits the logging of a day's viewing up to 16 shows in advance. The set switches on, changes channels and switches off automatically. The receiver may also be programmed to repeat eight program selections daily. This isn't quite a first on the American market-Heath has a programmable set.

Electronic photography: The 3,400 -outlet Fotomat chain, whose entire business is based upon the nation's photographic hobby, sees electronics practically wiping out the reason for its existence in the next decade or so. Instead of trying to lick the electronic monster, it's decided to join the revolution. That may be an oversimplification, but Fotomat Chairman Richard Irwin says he expects to see the introduction of a combination color TV camera and video recorder in the next five years, probably killing home film movies and possibly still photography as well. With this frank forecast, Fotomat announced its entry Into the video business-it will sell blank cassettes, prerecorded cassette programming and will transfer home movies and slides to cassette. Fotomat's 8 mm -to-cassette prices are about half those of its competitors - $\$ 8.75$ for eight 50 -foot reels, plus the cost of the cassette, additional 50 -foot reels transferred for 50 cents each. Fotomat has installed automatic equipment, will transfer film to tape on an assembly-line basis, with automatic color correction and compensation for incorrect exposure.

The largest previous entry into the field, S/T Tape Duplication Co., a Sony affiliate, said it welcomed Fotomat into the field. S/T pointed out that all of its transfers were custom jobs, as befits the nature of valuable "family archive" home-movie footage. S/T forecast the field would settle down to two different price and quality levels, "just as Kodak film processing generally costs about twice as much as what you get in the supermarket or by mail-order."

DAVE LACHENBRUCH
CONTRIBUTING EDITOR

Five broadcasters receive Marconi

 Gold Medal awardsThe Veteran Wireless Operators Association (VWOA) recently presented Marconi Memorial Gold Medals to five men in honor of their efforts on behalf of the field of electronic communications.

The five Marconi Medal recipients were: John T. Wilner, M. Harvey Strichartz, George W. Bartlett, Robert J. Doherty and Dr. Joseph V. Charyk. Dr. Charyk was presented with the DeForest Audion Medal for his work in space exploration and international TV communications.

WINNER OF THE MARCONI DEFOREST GOLD MEDAL at Veteran Wireless Operators Association dinner is Dr. Joseph V. Charyk (right). Presenting the award is Jack Poppele (left), Association chairman.

The VWOA membership is drawn mainly from professional radio pioneers, many of whom started their careers in radio as wireless operators during World War I.

FCC investigates solutions to "junk" phone calls

Most of us have at one time or another received "junk" phone calls, unsolicited messages delivered either by automatic dialing equipment or "live," that are similar to the unsolicited mail that appears periodically in our mailboxes. Now, the Federal Communications Commission is pondering ways of solving this problem, and has launched an inquiry to determine what rules, if any, would be necessary to insure protection to consumers who don't wish to receive such calls.

While realizing that there are some who might want to receive information this way on goods and services, and that many charities, political organizations and candidates use either automatic dialing equipment or individuals to advertise their cause and solicit contributions, nonetheless the FCC has proposed some tentative solutions to this thorny problem:

1. Restricting the use of automatic dialing devices to certain designated users;
2. Devising a means whereby a customer can indicate that he/she does not want to receive the calls;
3. Providing penalties for those companies and/or organizations who call those customers that have indicated they don't want to receive the calls;
4. Setting higher phone rates for those using automatic dialing equipment to deliver such messages;
5. Requiring each automatically dialed message to begin with the announcement to the effect that the call is being transmitted automatically; and
6. Insuring that when a customer hangs up on an automatically dialed call, that line is left free for other incoming calls.

CB Radio Industry's 20th anniversary honored at CES Show

The Electronic Industries Association's Consumer Electronics Show (CES) held recently in Chicago was the scene of a gala birthday party honoring the CB radio industry's 20th anniversary. The Citizens Radio Section of EIA were the hosts, and guests received such goodies as champagne; birthday cake; red, white and blue mike holders; and bumper stickers.

The party was actually only one in a series of events scheduled to mark CB's anniversary. Among other special observances planned will be a traveling museum exhibit on the history of CB radio. This exhibit is a joint effort of the University of California's Lawrence Hall of Science, the FCC and the EIA, and will be shown at science and technology museums throughout the country during the next 18 months.

Digital message center provides instant advertising

Although it has been determined that it takes an average of three repetitions for an advertising message to become memorable, the Digi-tiser, a programmable digital advertising aid, provides an instant message. It was created in response to business demand by American Innovative Marketing, 2750 S. Harbor Boulevard, Suite A, Santa Ana, CA 92704.

The computerized message center comes in a $29 \times 8 \times 6$-inch display case, along with a programmer that uses a type-writer-like keyboard. The 2 -inch by $11 / 2-$ inch red LED display can be read up to 150 feet away under most indoor lighting conditions. You can display any message (or series of messages) using up to 1024 letters, numbers and symbols. The unit has full editing capabilities; the memory contains a backup battery supply in case of power failures; and the programs can be changed as often as you wish.

The Digi-tiser is already being used by
businesses, banks, hospitals, offices and other institutions, and has a list price range of $\$ 949-\$ 1995$, with many optional accessories.

Venus spacecraft mission

The NASA-sponsored Pioneer Venus spacecraft missions are expected to provide us with more information about that planet's effects on earth weather patterns. Here, finishing touches are being made on the Orbiter (background) which will take daily radar photographs of Venus' clouds; the Multiprobe (foreground) will return scientific atmospheric data. The Multiprobe contains four cone-shaped probes, each a self-contained spacecraft ejected from a transporter "bus" at predetermined points spread over Venus' upper atmosphere. The probes are not designed to survive impact, but it is hoped they will continue to transmit data after they reach the surface of the planet. The space project is managed by NASA's Ames Research Center in Mountain View, CA.

Radio/TV repair contestants vie in 1978 VICA Skill Olympics

In June, Birmingham, AL, was the host to the 1978 U.S. Skill Olympics, sponsored by the Vocational Industrial Clubs of America (VICA). The competition was designed to test and recognize the achievements of vocational students in trade, industrial, technical and occupatlonal education. The winners have an opportunity to represent the U.S. in international competition; the top three high school and post-high school winners in each of the 28 technical categories win gold, silver and bronze medallions; many others receive such prizes as tools, textbooks and, in some cases, scholarships provided by the sponsoring labor and industrial organizations.

In the radio and TV repair category, students performed tasks and solved prob-

Continued on page 12

Super Case

Vaco means value and variety.
Like our Super Case. A great value with great variety. 48 professional problem-solving tools from screwdrivers and nutdrivers to pliers, wrenches, crimping tocls, and more! All right at hand. And all unconditionally warranted.
You'll find the Super Case and all the other fine Vaco tools in our exciting new 72-page 1978 catalog. FREE for the asking! Just write:

Vaco Products Company, 1510 Skokie Boulevard, Northbrook, Illinois 60062

Microwave...AM \& FM Radio...Radar...TV Broadcasting...Mobile Radio... Marine Communications and Navigation...CB...Aircraft Electronics
 The expanding world of communications means expanding opportunitites for the qualified technician.

NRI Trains You at Home

 in Your Spare Time... Learn Installation, Maintenance, RepairThe communications explosion of the last few years is just the beginning of an incredible expansion as business, government and public services intensify their use of more versatile, cost-efficient systems. With this tremendous growth comes a continuous demand for qualified technicians ...people trained to install, manitain, and repair modern electronic equipment.

You can start an exciting new career with NRI's Complete Communications Electronics Course. You learn at home...no travel or night
school. You learn in your spare time ...no need to quit your present job. And you learn the right way... with NRI "bite-size" lessons and "power-on" training.

You Build Your Own 2-Meter Digitally Synthesized VHF Transceiver

NRI training is "hands-on" training. You get practical bench experience as you build and test this industrial quality two-way radio and power supply. You reinforce theory lessons as you induce and correct faults, study individual circuits and see how they interface with others.

You also build and keep a transistorized volt-ohm meter and digital CMOS frequency counter. NRI even gives you special training to get your Amateur License so you can go on the air with your completed unit.

FCC License or Full Refund

In all, you get 48 lessons, 9 special reference texts, and 10 training kits ...the training you need to start in a rewarding new career. And NRI includes special training for the required FCC radiotelephone license examination. You pass
or your tuition will be refunded in full. This money-back agreement is valid for six months after completion of your course.

Free Catalog... No Salesman Will Call

NRI's free, 100 -page full-color catalog shows all the equipment you get, describes each lesson and kit in detail, tells more about the many specialized fields we train you for...also includes facts on other opportunity areas like TV/Audio servicing and digital computer electronics. Mail the postage-paid card now and grow with the future.

If card has been removed, write to:

NRI Schools
McGraw-Hill Continuing Education Center Education Cente
3939 Wisconsin Ave. Washington, D.C. 20016

newEtimaly

Contimued from page 6
lems they would encounter later on the job. They were judged on safe practices as well as performance. Eight different servicing problems were diagnosed and repaired under a strict time limit. Four of the projects were in the field of color TV.

A VICA technical committee was responsible for choosing both projects and qualified judges.

Fairchild's video game system uses programmable cartridges

Fairchild Camera has developed a video entertainment system called Channel F System II in which Videocart game cartridges are inserted into the Channel F console and can be programmed via an optlonal plug-in 16-pushbutton keyboard. With a programmable Videocart, keyboard numbers are used to preselect game variables such as type of play, players' speed, etc.

The system uses FM sound played through a TV receiver, and games and other formats are displayed in full color on the TV screen. Other features include re-

PROGRAMMABLE VIDEO ENTERTAINMENT SYSTEM from Fairchild Camera uses Videocart cartridges that can be programmed for game variables via an optional 16 -pushbutton keyboard. The system incorporates FM sound that is played through the TV receiver.
mote hand controllers and a switch on the console can be used to halt play indefinitely; to restart, you just press the start pushbutton.

The Channel F System // can be played on any color or black-and-white TV set. Programmable games now available are "Space Odyssey," "Pro-Football" and "Casino Poker"; standard (nonprogrammable) Videocarts are also available. Suggested retail prices for the system components are as follows: the console plus one Videocart, \$149.95; the separate keyboard, \$9.95; the keyboard-programmable Video-
carts, $\$ 24.95$ each; and the standard Videocarts, \$19.95.

Bell Laboratories mobile phone service tested in Chicago

This past summer, Bell Laboratories began a two-phase trial of the FCC-approved Advanced Mobile Phone Service (AMPS) in Chicago. The purpose of the test was to demonstrate and determine whether the cellular system is economically viable when a great many mobile units are involved, and whether it has a market potential. In the second phase, which is due to take place in 1979, AMPS will be marketed as a regular mobile phone service, using however only a randomly selected sample from the business communlty and with a limited number of moblie units instalied in selected vehicles.

The AMPS system divides a particular area into grids or "cells," each cell being served by a low-power transmitter, receiver and control system called a "cell site." The cells are linked to a central computercontrolled switching machine called a Mobile Telecommunications Switching Office. This machine senses when a car moves out of one cell into another and automatically transfers the call to the other cell site or notifies the mobile unit to switch channels.

Each cell is assigned its own frequencies, with adjacent cells having different frequencies to cut down on interference. However, cells that are far enough away from each other can use the same fequencies simultaneously, thus allowing each channel to be used many times within a given area. As the demand for calls increases, the capacity of the AMPS system can also be increased by adding new cells between existing ones.

In the Chicago test, the mobile phones were designed to Bell Labs specifications but manufactured by non-Bell companies. They have a special feature in that the user can dial the "last number called" just by pressing a button. The phones also can store information in memory, so that you can, for instance, start a call at one traffic light and finish it at the next.

If the tests are successful, Bell Labs anticipates that AMPS can have nationwide applicability, providing everyone with an economical mobile extension of regular home and business telephone service.

EIA releases first VCR/VTR sales figure

The Marketing Services Department of the Electronic Industries Association (EIA) has released the first available figures on total U.S. market sales to dealers of home video cassette/tape recorders. Because the compilation of these statistics was
started only in 1978 (on an individual and confidential basis), there are no comparison figures for previous years shown in the table:

1978 SALES OF HOME VIDEO	
TAPE RECORDERS	
Month	No. of Units
January	13,567
February	14,954
March	27,415
April	27,221
May	$\underline{27,994}$
Year to Date	111,151

Last Intelsat IV-A communications satellite launched

The sixth, and final, Intelsat IV-A communications satellite built by Hughes Aircraft joined its sister vehicles in synchronous orbit 22,300 miles above the Equator, some 13 years after the first satellite was launched. This last satellite in the Intelsat IV-A series was placed into orbit over the Indlan Ocean and is expected to provide services to over 40 countries.

INTELSAT IV-A BEING READIED FOR LAUNCH. A Hughes Aircraft engineer is giving the antenna assembly a tinal check. This "last-of-thebreed ${ }^{-\prime}$ satellite's orbit is over the Indian Ocean.

Technological advances over the years have helped reduce the cost of satellite transmission considerably. For example, the cost of TV transmission has fallen from $\$ 22.000$-per-hour to $\$ 5000$-per-hour, and the retail cost-per-channel on, say, the U.S.-London route has diminished to \$6000-per-channel from an initial \$18,000-per-channel. All the Intelsat IV-A vehicles have 20 broadband RF channels and can handle 6000 two-way telephone calls as well as two TV transmissions.

Cominued on page 14

Learn MICROPROCESSOR OPERATION, INTERFACING and PROGRAMMING faster, easier and at less cost with the HEATHKIT MICROPROCESSOR SELF-INSTRUCTION PROGRAM and DIGITAL COMPUTER TRAINER
 ness and industry every day!

Working with the popular 6800 microprocessor, you'll explore this exciting field using proven self-instruction text materials. You'll learn about micro-computer basics, number systems and codes, computer arithmetic, programming, 6800 capabilities and interfacing and more. With the aid of audio visuals included, you'll go deeper into programming, designing with microprocessors and semiconductor memories. And you'll actually perform a whole series of "hands on' experiments with the optional trainer designed to reinforce the theory you've mastered to that point!

The ET-3400 Trainer kit, designed to accompany your course, features the popular 6800 microprocessor. It is actually a miniature digital computer in itself, complete with a: 1 K ROM monitor program; 6 digit LED display for address and data readout; 17-key hexadecimal keyboard for entering programs, data and control; 256 bytes of RAM (expandable to 512 bytes with the chips supplied in the course); breadboarding socket; 8 buffered LED's for display of logic states; 8 SPST switches for binary input plus an on-board power supply with $+5,+12$ and -12 volt outputs.

The Course comes complete with 62 electronic components, including a 6820 PIA, two 2112 RAM's, a 1406 digital-to-analog converter, 741 and 301 op amps and more. Includes audio visual aids such as an audio cassette, colorful flip charts and programmed learning text material in two deluxe permanent binders.

Complete the optional exam and receive a Certificate of Achievement and 8.0 Continuing Education Units (CEU's) - a nationally accepted means of recognizing participation in noncredit adult education. (Note: Microprocessor Course requires completion of Digital Techniques Course or equivalent knowledge.)
ORDER ETS-3400
(Course and Trainer kit)
${ }^{\$ 26995}$

SAVE TIME

(Add $\$ 3.06$ shipping and handling)

ORDER BY PHONE! Call (616)982-3411

MONEY-BACY

"you are oe BACK GUARANTEE!
Course, we will refund the full with your Heathkit the course text material, less trainer.

FOR THOSE WHO NEED

 DIGITALTECHNIQUES TRAINING...Comprehensive Digital Techniques Course - the background you need to understand computer and modern electronics technology! Digital fundamentals, semiconductor devices for digital applications, Boolean algebra, flip-flops and registers, sequential and combinational logic circuits, digital design and an introduction to computers and more! The course includes programmed instruction text, audiovisual aids, parts for experiments and more. Digital Design Experimenter/Trainer lets you perform all the experiments in your course, then develop and test your own projects. Features solderless breadboard sockets, 4 binary data switches, 2 "no bounce" switches to pulse logic circuits, 3 -frequency pulse clock generators, 4 LED's for visual indication of logic states plus 3 regulated power supplies. Upon completion of the optional final exam, you receive a Certificate of Achievement and 4.0 Continuing Education Units.
ORDER EES-3201 (Course and Trainer Kit)
59995
(Add $\$ 3.64$ shipping and handling)

ORDER YOUR PROGRAM WITHIN THE NEXT 30 DAYS AND GET THIS BONUS

A Comparable $\$ 7.95$ Value!

OR, MAIL COUPON TODAY!

Schlumberger

Heath Company, Dept. 020-462
Benton Harbor, Michigan 49022

Gentlemen: Please send me the item(s) checked below and include my FREE Soldering Iron
\square Microprocessor Course and Trainer Kit (ETS-3400) ... \$269.95 (+ \$3.06 shipping \& handling)
\square Microprocessor Course only (EE-3401)
\$89.95 $(+\$ 2.23$ shipping \& handling) \square Digital Techniques Course and Trainer kit (EES-3201) . . \$129.95 ($+\$ 3.64$ shipping \& handling)
Prices and specifications subject to change without notice.
Prices are mall order net F.O.B. Benton Harbor, Michigan.
ED-117

I enclose \square check \square money order for $\$$ \qquad
CHARGE to my \square VISA/BankAmericard \square Master Charge
Account $=$ \qquad Exp. Date
Master Charge Code $=$
Signature
NAME
(Necessary to send merchandise)
ADDRESS
(Please print)

CITY STATE ZIP

Institute of High Fidelity opposes Senate bill on RFI control

Leonard Feldman and Robert Gur-Arie, technical director and executive vice-president, respectively, of the Institute of High Fidelity, recently appeared at hearings conducted by the Senate Committee on Commerce, Science and Transportation on bill S. 864 (sponsored by Senator Barry Goldwater). This bill concerns proposed legislation governing the control of radio frequency interference (RFI).

Mr. Feldman's formal statement before the Committee represented IHF's view that the impact of S. 864 on high-fidelity component manufacturers would be extremely damaging. In his statement he pointed out that the governmental requirement that every purchaser of hi-fl equipment bear the cost of multiple RFI filters and/or shielding would be not only onerous but unnecessary since only a relatively small number of RFI problems can be cured using these methods of protection. The majority of purchasers would not be affected by RFI problems.

Furthermore, Mr. Feldman emphasized that not only would RFI filters and shielding seriously degrade hi-fi performance and increase the cost of components to the consumer, but would also raise manufacturers' costs. He added that the industry has been relatively unaffected thus far by the inflationary spiral, costs having remained reasonably stable over the past 10 years. Mr. Feldman ended his statement by appealing to the Senate Committee to vote against S. 864

Parker Brothers offers computer game library

The latest addition to the proliferating electronic game market is Parker Brothers' Merlin, a computer game with a library of six games of chance, ranging from the very simple ("Tic-Tac-Toe") to the highly challenging ('Mindbender').

SIX COMPUTER GAMES can be played using Parker Brothers' Merlin. Games range from very simple to advanced and can be played by anyone in 7 -to-adult age range.

Designed for players in the 7-to-adult age range, Merlin includes among its bag of tricks the ability to "speak," a feat accomplished by the use of electronically synthesized sounds. It can offer congratulations or a "raspberry" (to the loser!), and it can counter your moves with its own maneuvers.

The Merlin game comprises a Texas Instruments microprocessor with 2048 bytes of ROM and 512 bits of RAM. Power is provided by six 9 -volt batteries, and its operating range is $7.5-10.5$ volts.

Merlin is only one of a series of computer games being readied by Parker this fall with a view toward the holiday trade.

1978 Sarnoff awards go to
 16 scientists and engineers

This past June in New York City, the 1978 David Sarnoff Awards for Outstanding Technical Achievements were awarded to 16 engineers and scientists for their outstanding efforts in their chosen fields. RCA President Edgar H. Griffiths presented the awards to:

Albert Feller, for his work in large-scale integrated circuits; Fernand F. Martin, Samuel Waldstein and Jason H. Woodward, for developing a handheld laser range-finder; David W. Luz, James A. McDonald and John C. Peer for their joint efforts in developing scan and powersupply systems for color TV; and Murray A. Polinsky and Otto H. Scabe, Jr., for their work in developing BiMOS IC's. Engineers Kenneth C. Adam, Ramon H. Aires, Charles A. Clark, Jr., William J. Davis, John G. Gorski, Kazuo Katagi and Akira Sasaki won recognition for their team achievements in airborne color weather-radar indicators.

FCC endorses use of CB radio in government safety program

The Federal Communications Commission has endorsed a program developed by the Department of Transportation that increases citizen involvement in highway safety by the use of $C B$ radio, as long as such use conforms to FCC regulations.

The National Emergency Aid Radio (NEAR) program broadens motorists' responsibilities in identifying and reporting highway incidents; makes available publicsafety devices to those participating in the program; encourages citizen cooperation with professional public-safety agencies; and provides a link between such agencies and private volunteer $C B$ groups.

Furthermore, cooperation between local government, private and voluntary organizations will help develop criteria and performance standards suitable for each state in which the NEAR program is operative, CB emergency Channel 9 could also be effectively monitored by public safety agencies, volunteer groups and individuals.

Radio-Electronics

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher
Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288,
managing editor
Robert F. Scott, CET, W2PWG,
KXK-8533, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Ellen Celnik, production assistant
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Michael Wilson
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer
ADVERTISING SALES
Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York. NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Bivd.,
4th Floor,
Los Angeles, CA 90069
(213) 659-38 10

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST
J.E. Publishers Representative CO.. 214-387-2424

List price $\$ 14.95$. You pay only $\$ 2.29$ when you begin a trial membership in the Electronics Book Service.

SAVE \$12.66 NOW 0N THIS TV SERVICING MANUAL THAT CAN SAVE YOU TIME, WORK AND WORRY IN THE MONTHS TO COME.

For fast, efficient troubleshooting techniques in every area of TV repair, you can't beat Harvey F. Swearer's MODERN MANUAL AND GUIDE FOR TV SERVICING. Even at $\$ 14.95$ it's a bargain!
At \$2.29, it's a book you can't ahtord to be without! And that's all you pay when you begin a trial membership in the Electronics Book Service. Incidentally, no additional purchase is required after you pay for your Manual.
MODERN MANUAL AND GUIDE FOR TV SERVICING is an up-10-the-minute problem-solver. It meets the need of today's electronic technician for fast, ethective troubleshooting techniques. It avoids theory, fundamentals and abstract terminology. But concentrates on expert tips on troubleshooting-presented in a concise, to-the-point manner.
From front cover to back, the Manual stresses timesaving, work-saving, profit-boosting techniques. For example:

- A TV set has no sound or picture, but does have raster. The manufacturer's instructions call for certain checks. After you make them, you may have located the trouble. But by following this Manual and using the same test instrument, you'll locate the trouble in one step, seldom more than two-not in the five or more steps as when using the old method.
- The conventional purity adjustment calls for from 6 to 10 steps, depending on the source of the directions and make of the receiver. But, did you know there's a fast way to do the job-almost automatically-in just one to three steps? You'll find it in MODERN MANUAL AND GUIDE FOR TV SERVICING.

Focuses on important changes

taking place today.

TV servicing is changing more rapidly than we realize. This Manual is an invaluable aid in updating your knowledge of the important advances taking place. And can help strengthen your position for the future. Using this Manual, you quickly become familiar with:

- Easy, time-tested shortcuts for cleaning and adjusting the VHF tuner.
- UHF techniques that you would normally learn only through long, on-the-job experience.
- Sync and AGC problems - which are explained in great detail.
- Sure-fire techniques for quickly relating color delects to appropriate points on the schematic diagram.
What's more, you see how to:
- Use putse-timing networks.
- Use measurement tables when you troubleshoot integrated circuits.
- Solve problems related to automatic gain control.
- Improve both color purity and intensity. MODERN MANUAL AND GUIDE FOR TV SERVICING also brings you in-depth, how-to-do-it information on circuit analysis, alignment procedures, component part measurements and the skillful use of test instruments.

And it shows you the most modern techniques for dealing with transistors, solid-state modules, problems in wlring, soldering and desoldering, printed circuit repairs and much, much more!

Schematic diagrams,

charts and illustrations.
The Manual is reinforced throughout with valuable illustrations. These "maps" take you from problem to solution in easy steps. You find, for example:

- Illustrations of simplifed
tuner repairs.
- Illustrations of pulse-timing networks.
- Illustrations of phase shitters.
- Diagrams of the most up-10-date TV
circuits-with typical
values to help you compare test measurements with the correct values.
- IC measurement tables.
- Flow-chart torms.
- Photographs
- Other valuable illustrative aids to save you time and ethort.
component and voltage
MODERN MANUAL AND GUIDE FOR TV SERVICING brings you up to date on the most recent advances in the TV repair industry-eliminates the usual "pick and pray" troubleshooting methods-and replaces them with workable, direct solutions in each area of modern TV servicing. It enables you to wrap up your troubleshooting assignments in record time!

Typical selection of the

Electronics Book Service.

MODERN MANUAL AND GUIDE FOR TV SERVICING is typical of the practical, time-and-money-saving books regularly offered to members of the Electronics Book Service.
But not at all typical of book clubs is the unique feature of the Electronics Book Service: there are no additional purchase requirements! The $\$ 2.29$ you pay for your copy of the MODERN MANUAL AND GUIDE FOR TV SERVICING is your only purchase obligation of membership.

A professional library

of lasting value.
The Electronics Book Service carefully screens hundreds of books on the subject, selects those which are the most

Here's how the
 ELECTRONICS BOOK SERVICE operates.

I. When you enroll as a member, you will reccive at a token price (plus poscage and handling with tax where applicable) the imtroductory selection described in this advertisement.
2. Every four weeks. we'll send you a free bullecin describing the forthcoming selection. If you want the selection, no further action is required-it will be shipped to you automatically. If you don't want it, just return the card enclosed with the bulletin.
3. You have at least 10 days to decide whether you want the selection or not. Return the card so we receive it no later than the date specified. If you don't have 10 days to answer and receive an unwanted selection, return it at our expense.
4. On selections you do accepp, your membership entitles you to a discount from the publisher's list price. This discount is available 10 members only and provides you with substantial savings. (Your regular bullecin also describes a number of alternate selections. also available to you at the special member's discoun..)
5. There is no obligation to purchase any additional selections. Your only obligation is to pay the token price for your introductory selection. You may purchase as many or as few as you wish. and you will be under no pressure to buy any more. And you may resign at any time without obligation, once you have paid for your introductory selection.
useful or which bring you the newest information on technical innovations and improvements of importance.
Your membership is an ideal way to keep in touch with the onrushing advances in electronlcs and their applica-tions-to keep on top of a rapidly changing technology. As a member, you can build a protessional library of superb quality and permanent value-one which will meet your interests and requirements, always avallable for consultation and expert help. And you can bulld your library as quickly or as slowly as you choose.

Remember, the Electronics Book Service has no additional purchase requirements. Once you've paid $\$ 2.29$ for your MODERN MANUAL AND GUIDE FOR TV SERVICING, you don't need to buy another selection unless you want to!
Why delay? Mail the coupon below to get your copy of this $\$ 14.95$ Manual for only $\$ 2.29$ and to begin your membership in the Electronics Book Service. Fill out and mail your coupon right away. Now.

FILL OUT AND MAIL THIS COUPON RIGHT AWAY.

ELECTRONICS BOOK SERVICE

Membership Enrollment Center

P.O. Box 42

West Nyack, New York 10994

Please enroll me in the Electronics Book Service on a trial membership and send me the MODERN MANUAL. AND GUIDE FOR TV SERVICING for only $\$ 2.29$ (plus postage and handling, with tax where applicable). I undersland I am under no obligation to purchase any additional selections offered to methat I will rective a members-only discount on the list prices of that I will rective a members-only discount on the list prices of
such selections-and that I will receive a free bulletin every 4 weeks announcing selections of particular merit.

IEATEMS

DIGITAL CLOCK

On building the 10-Function Digital Clock (August 1977 issue), I have the following questions:

Instead of using all different sizes of digit display as the author has suggested, can I use DL 750 for all 17 digits? If it is possible, do I have to omit resistors R1 and R7 on the display board? Can I use a larger-size digit to replace DL 750?

Thank you for an interesting article.
PATRICK GONG
Lansing, IL
In regards to your desire to use different readouts for the clock, it should be possible to use any type of display with the proper interfacing.

Specifically, to use all DL 750 readouts, the circuit should work without modification. However, due to the increased display current, dropping resistors R17 to R24 should be changed to $1 / 2$ watt or greater Their value may also have to be increased
o keep the total power dissipation in the driver IC's below their maximum of 600 mW . This is especially important for IC4, which may become quite hot. Of course, R1 to $R 7$ on the display board should then be omitted.

The use of any other common cathode LED is possible provided the above limitation is not exceeded. If necessary, external display-driver transistors could be used to increase the display current.
JEFF MAZUR

SUPERCONDUCTING MAGNET

Can R-E readers imagine the total disappearance of resistance in a superconducting (SC) wire? Many materials at liquid helium temperatures have a resistance of far less than one trillionth that of copper

An NSF study proved the feasibility of storing electricity in an SC magnet over 500 feet in diameter, in a coiled wire more than 50,000 miles long. This magnet would store enough electricity to supply all the
power needs for 100,000 people per day An ordinary ohmmeter could not measure the tiny amount of resistance in this huge SC winding. Could we fully load this huge magnet with no resistance from a lowpower battery-one that has low voltage and high current?

Did you ever see someone hold a coil across battery terminals? Did you ever grab the coil and remove it? That maneuver and an SC coil could solve our energy crisis. We learned (usually the hard way) that what we get out of an electromagnet has little to do with what we put in, and now we have SC wires.
JOHN W. ECKLIN
Alexandria, VA

ELECTRONIC CLOCKS

I read the article by Fred Blechman, "Unusual Wall Clocks" (April, 1978, page 40), with interest since Digiclocks of California is marketing a wall-table clock that is similar

to some of the clocks described
The Digiclocks units have an outer circle of 60 LED's (seconds and minutes) and an inner circle of 12 LED "'lines" (hours), each line containing four LED's. In the outer circle, yellow LED's mark the 5 -minute, 10 minute, 15 -minute, etc., intervals. The hours-line LED's are yellow, except for four red LED's in the $12,3,6$ and $9 o^{\prime}$ clock positions.

Other clock features are: the second circular row including the four red hoursline LED's is always on (useful for night viewing); the seconds LED's leapfrog each other for viewer interest; and each clock has its own unique face. The prototype had a wooden case; later a specially formed plastic case was made. It is planned to add a third, more modern case.
NAIF D. SALMAN
Digiclocks
Orange, CA

ALTERNATE ENERGY SOURCE

After reading R-E's April 1978 editorial, 1 thought that perhaps you would be interested in the automatic self-positioning so-lar-cell array I have just finished constructing. Solar calls are too expensive simply to be mounted on a stationary structure. The sun changes its position during the course of a day, and so should the position of the solar-cell array.

In the array I built, I used 98 silicon solar cells (Radio Shack No. 276-120). (An output of approximately 15 volts $1 / 4 \mathrm{amp}$ is obtained between 9:00 am and 4:00 pm in the Massachusetts spring sun.) The Radio Shack cells cost \$2.99 each, but other mailorder suppliers sell similar cells with equivalent outputs at a fraction of this price.

An Imsai 8080 microcomputer controls the position of the solar array. Of course, the power used by the computer greatly exceeds the power generated by the solarcell array. The cost of constructing a lowpower (CMOS logic) controller to automatically position the array to receive the maximum amount of sunlight, plus the necessary mechanical components, would be under $\$ 20$.
HOWARD SCHNEIDER
Boston, MA

SABTRONICS DMM KIT

Radio-Electronics carries an ad for the Sabtronics model 2000 DMM kit. It is an excellent kit; l've had one for months. Perhaps you could pass this informatlon along to those readers who may also own one and have had problems.

The kit manual and circuit diagrams use "house numbers" for the IC's. Sabtronics couldn't help me when I blew out the A/D converter, which is identified only as IC 20786. It is, in fact, the Motorola 14433P A/D converter, and I obtained the replacement from Circuit Specialists Company, P.O. Box 3047, Scottsdale, AZ 85257 (\$14.25).

The op-amp used in the AC converter circuit can be replaced with a simple 741 (marked $\mathrm{Z}-3$ in the manual).

The segment driver $(Z-7)$ is $M C 14511 B$ and the digit driver IC is a 75492 (marked $Z-5$). This information may help some of your readers to get their units working again if they were unlucky enough to zap the unit with an overvoltage as I did. cominued on page 22

The book: ITT Pomona Electronics big 90 -page catalog of electronic test accessories and equipment.

The boxes: Our complete line of shielded "black boxes" built for RF applications.

There are ten different series of models in all, each with a noise rejection greater than 70 db . Sizes range from $1.50^{\prime \prime} \mathrm{x}$ $1.13^{\prime \prime} \times 0.88^{\prime \prime}$ up to $8.0^{\prime \prime} \times 4.0^{\prime \prime} \times 1.50^{\prime \prime}$.

Housings are die cast or extruded aluminum alloy with
choice of blue baked enamel or unpainted finish. Covers are clear anodized aluminum alloy.

They're available blank or with various coaxial connectors, with or without PC card guides, and with choice of mounting flanges or bottom mounting plates. Covers and mounting screws are supplied with all models

Send for free catalog or see your favorite electronic parts distributor. See our pages in EEM.

AVAILABLE THROUGH YOUR FAVORITE ELECTRONIC PARTS DISTRIBUTOR

SEMICONDUCTOR ELECTRONICS
DESIGN. By F. K. Manasse. 562 pp., Illus. Today the microelectronics industry is going places faster than ever before. Are you going with It? To get and keep yourself completely up to date, you will do well to keep this volume nearby Its chapters on design techniques are among the most complete and detailed ever published.
772622 Pub. Pr., $\$ 21.95 \quad$ Club Pr., S 18.25

MICROPROCESSOR APPLICATIONS

MANUAL. By Motorola Semiconductor Products. Inc. 720 pp., illus. Here's every piece of info you need to use MPU's to simplify your board layouts, lower your hardware costs. save precious time, design better and faster. and verify your designs from the start! Overflowing with illustrations
435/278 Pub. Pr., $\$ 32.50 \quad$ Club Pr., $\$ 24.00$

BE SURE TO CONSIDER THESE IMPORTANT TITLES AS WELL:

OIFFERENTIAL EQUATIONS FOR ENGINEERS

By T. M. Creese \& R. M. Haralick 135/10X Pub. Pr., $\$ 17.50 \quad$ Club Pr.. $\$ 13.50$

APPROXIMATION METHOOS FOR ELEC. TRONIC FILTER DESIGN. By R. W. Daniels. 153/086 Pub. Pr.. $\$ 31.50 \quad$ Club Pr., $\$ 19.50$

MANAGEMENT OF ENGINEERING PROJECTS, 2/e. By V. G. Hajek
255/342 Pub. Pr., $\$ 16.95 \quad$ Club Pr., 12.50
HANDBOOK OF COMPONENTS FOR ELECTRONICS. By C. A. Harper. 266/824 Pub. Pr., $\$ 39.50 \quad$ Club Pr., $\$ 28.50$

ENGINEERING CIRCUIT ANALYSIS, 3/o. By W
273/936 Pub. Pr., $\$ 22.00 \quad$ Club Pr., $\$ 16.50$

OPTOELECTRONIC APPLICATIONS MANUAL By Hewlett-Packard. 286/051 Pub. Pr., $\$ 22.50 \quad$ Club Pr., $\$ 16.50$ OIGITAL COMPUTER ELECTRONICS. BY A. P 398/615 Pub. Pr., $\$ 14.95 \quad$ Club Pr., $\$ 10.95$

A USER'S HANDBOOK OF D/A AND A/D CONVERTERS. By E. R. Hnatek. 767/149 Pub. Pr., $\$ 24.95$ Club Pr., $\$ 18.50$

HANDBOOK OF ENGINEERING FUNDAMENTALS, 3/0. By O Eshbach 8 M . Souders 769/842 Pub. Pr.. $\$ 31.50 \quad$ Club Pr., $\$ 24.95$
COMPLETE GUIDE TO DIGITAL TEST EQUIPMENT. By W. Buchsbaum. $772088 \quad$ Pub. Pr., $\$ 14.95 \quad$ Clut Pr., $^{2} \mathbf{\$ 1 0 . 5 0}$

SEN: CIDVCT aicaron DESIEN

DESIGNING WITH TTL INTEGRATED
CIRCUITS. By IC Applications Staff of Texas Instruments, Inc. 322 pp., 399 Illus. For gen eral, technical, and non-englneer managers all the information you need to get the most out of TTL devices-their design, economics, tea fures, performance, applications
637/458 Pub. Pr., $\$ 31.50 \quad$ Club Pr., $\$ 22.50$

HANDBOOK OF OPERATIONAL

AMPLIFIER CIRCUIT DESIGN. By D. F
Stout. Edited by M. Kaufman, 434 pD., 223 illus. Compact, concise, highly concentrated, and contalning a storehouse of information this one-stop volume will help you solve any op amp circuit probiem!
617/97X Pub. Pr., \$29.65 Club Pr., $\$ 17.50$

DESIGNING WITH OPERATIONAL

AMPLIFIERS, Applications

Alternatives. By J.G. Graeme. 269 pp., 203 illus. You can now guarantee that every electronics decision you make will be easier. more productive. freer of error-and more consistently cost-effective! Topics include signal amplifiers. signal conditioners, absolute-value circuits. signal generators, computing circuits. data transmission circuits. and test and measurement circuits.
238/91X Pub. Pr., S21.50 Club Pr., $\$ 15.50$

STANDARD HANDBOOK OF

ENGINEERING CALCULATIONS. By T.G
Hicks. Editor-in Chief. 1,200 pp., 428 illus. Tells you what to do. when to do it. and how to do it-giving step-by-step solutions to the design and application problems that engineers encounter daily. Containing some 1,000 calculation procedures accompanied by worked-out numerical examples, it also features 4.000 retated calculation procedures
287/341 Pub. Pr., \$27.50 Club Pr., \$19.95

ELECTRONICS DESIGNERS' HAND-

BOOK. Edited by L. J. Giacoletto. 2nd Ed. 2,344 pp., 1,686 illus. Now doubled in size and with 90% of its material new, this famous classic (first edition by Landee, Davis, Albrecht) has been thoroughly revised and updated to give you not only the how and the why of all your design work but also the how much of every design step you take!
231/494 Pub. Pr., $\$ 52.50 \quad$ Club Pr., $\$ 39.50$
DIGITAL INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER AND OP TOELECTRONIC CIRCUIT DESIGN
Edited by B. Norris. 206 pp., 400 illus. Having this vast amount of case-tested data, proven shortcuts, worked-out circuit designs, and circuitt diagrams handy saves you valuable time for your other, more vital, areas of creative de-sign-and cuts down costs in all areas!
$637 / 539$ Pub. Pr., $\$ 19.50 \quad$ Club Pr., $\$ 14.50$

CIRCUITS FOR ELECTRONICS

ENGINEERS. Edited by S. Weber. 396 pp., 346 circuits. This book is filled with the circuits you need in 51 areas-from amplifiers to voltage regulators-arranged in alphabetical order and grouped for easy finding. Use them 'as is" or adapt them. Each has been tested and proved in action
191/573 Pub. Pr., $\$ 19.50 \quad$ Club Pr., $\$ 16.00$
MICROCOMPUTER-BASED DESIGN. By J. B. Peatman. 540 pp., over 400 illus. You'li now do both your day-to-day as well as your best, most creative design work around a microcomputer. This 100\% specific how-to book makes it simpler than you've imagined and will open up a whole new world of "smart" instruments design for you!
491/380 Pub. Pr., \$24.50 Club Pr., \$17.50

offer to new members of the and Control Engineers' Book Club

ELECTRONICS ENGINEER'S HAND

BOOK. Editor-in-Chief, D. G. Fink. 2, 104 po. 2,026 illus. Huge in every sense, this instant reference volume gives you every latest essential in the field, 2,100 formulas and equations, a 2,500 -item bibliography, and every illustration you need to clarify all of modern electronics! 209/804 Pub. Pr., $\$ 49.50 \quad$ Club Pr., $\$ 35.00$

GUIDEBOOK OF ELECTRONIC CIR-

CUITS. By J. Markus. $1,018 \mathrm{pp}$, illus. Are you constantly on the lookout for circuits that will meet your needs? Here's a giant collection of them to use "as is" or to adapt to your own ideas Complete with values.
404/453 Pub. Pr. $\$ 33.50 \quad$ Club Pr., $\$ 25.00$

PROFESSIONAL ENGINEERS' EXAM-

 INATION QUESTIONS AND ANSWERS By W. S. LaLonde, Jr., and W. J. Stack-Staikidis. 3rd Ed. 601 pp., 276 illus. Over 500 questions and complete answers-suitable for all states-prepare you for passing your exams for the E.I.T. certificate and your P.E. license.360/936 Pub. Pr., \$19.50 Club Pr., $\$ 14.50$

DESIGN TECHNIQUES FOR

ELECTRONICS ENGINEERS

Electronics Book Series. By ELEC

 TRONICS Magazine. 370 pp., illus. The whole gamut of complex techniques required when you're designing a circuit or system is explained and shown in the superb collection of the "best of the best" from Electronics magazine 191/581 Pub. Pr., \$19.50 Club Pr. $\$ 16.50$
HANDBOOK FOR ELECTRONICS EN-

GINEERING TECHNICIANS. By M. Kaufman and A. H. Seidman. 520 pp., 695 illus Rely on this technician's godsend for all your work with analog and digital integrated and discrete circuits. Here are the stiff brush-up you want and the solutions to every possible prob lem
334/013
Pub. Pr., $\$ 23.50$
Club Pr. , $\$ 16.50$

MICROPROCESSORS \& SMALL

DIGITAL COMPUTER SYSTEMS

FOR ENGINEERS \& SCIENTISTS. By G.A.
Korn 390 pp . This exceptional book is your quick reference for expert advice on product selection, intertacing, and programming. Containing a huge variety of computer possibilities, system features, and costs, it's also a terrific tool for career updating.
353/670 Pub. Pr., \$27.50 Club Pr., \$18.95

ELECTRONICS DICTIONARY. Edited by

 John Markus. 4ith Ed., 768 pp., 1,173 illus. 17,090 terms. With the new edition of this world-renowned dictionary you'll be able to quickly find the meaning and correct usage of any electronics term, no matter how obscure! $404 / 313$ Pub . Pr., $\$ 24.50$ Club Pr., $\$ 19.50$
APPLIED ELECTROMAGNETICS. By

M.A. Plonus. 615 pp.. illus. A fascinating approach to theory through the use of totally up-to-date applications encountered in everyday situations. Covers solid-state electronics. physical electronics, linear and rotating machines. microwaves. and super-conductivity. 503/451 Pub. Pr., \$21.00 Clut Pr., $\$ 16.50$

ELECTRONIC TROUBLESHOOTING,

A Manual for Engineers and Technicians. By C.N. Herrick. 2nd Ed., 348 pp., illus One of the best manuals ever published for engineers and technicians. Ihis new edition moves you right along in practical steps from basics to more and more complex jobs
784/639 Pub. Pr., \$16.95 Club Pr., $\$ 14.25$

MASTER OP-AMP APPLICATIONS

HANDBOOK. By H.W. Fox 467 pp., 320 illus. There's enough practical build-it information in this book to keep you breadboarding and experimenting and creating for years! It shows you how to put op amps to work in literally hundreds of different circuits, in hundreds of hardworking applications
784/477 Pub. Pr, $\mathbf{\$ 1 6 . 9 5 \quad \text { Club Pr., } \$ 1 3 . 5 0}$

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB saves you both time and money!

Here is a professional book club designed to meet your on-the-job engineering needs by providing practical books in your field on a regular basis at below publisher prices. If you're missing out on important technical literature-if today's high cost of reading curbs the growth of your library-here's the solution to your problem.

The Electronics and Control Engineers' Book Club was organized for you, to provide an economical reading program that cannot fail to be of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editors and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections.
How the club operates: Every month you receive free of charge The Electronics and Control Engineers' Book Club Bulletin. This announces and describes the Club's featured book of the month as well as alternate selections available at special members' prices. If you want to examine the Club's feature of the month, you do nothing. If you prefer one of the alternate selections-or if you want no book at all-you notify the Club by returning the card enclosed with each Bulletin
As a Club member, you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually. there will surely be at least four you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

Special $\$ 1.89$ bonus book comes to you with your first club selection

MAIL COUPON TODAY

ELECTRONICS AND CONTROL ENGINEERS' BOOK CLUB P.O. Boy 582. Princeton Road, Hightstown. Hew Jersey 08520

Please enroll me as a member and send me the two books indicated. I am to receive the bonus book at the Introductory price of $\$ 1.89$ plus my first selection, plus tax. postage and handling. If not completely satisfied. I may return the books within 10 days and request that my membership be cancelled. If I keep the books. I agree to take a minimum of three additional books during the next two years at special Club prices (guaranteed 15% dis count, often more), I will receive the Club Bulletin 13 times a year If I want to examine the leatured selection, I need take no action. It will be shipped automatically. It, however. I want an alternate selection-or no book at all-I simply notity the Club by returning the convenient card always enclosed. I will always have a minimum of ten days in which to return the card and you will credit my account fully, including postage, if this is not the case. Membership in the Club is continuous but cancellable by me at any time after the four-book purchase requirement has been filled. This order subiect to acceptance by McGraw-Hill. Orders from oulside the continental U.S. must be prepard. All prices subject to change without notice. Offer good for new members only

WRITE BELOW

Code No. of $\$ 1.89$ book
Code \# of 1st selection

NAME
ADDAESS
CITY
STATE \qquad 2IP
EXTRA SAVINGS: Remit in full witt your order, plus any local and state tax and McGraw-Hill will pay all regular postage and handling charges.

E33363

LETTERS

continued from page 17
If the unit does not autozero in the $A C$ 10 -volt mode, it is due to multiplex deci-mal-point noise from the selector switches. Sabtronics sells an inexpensive ($\$ 3-\$ 4$) add-on kit that removes this problem and really works.
R.B. STILLWATER

Winnipeg, Canada

ENERGY CRISIS

With reference to your recent editorial on "The Real Energy Crisis" (April, 1978, page 14) I am very much in agreement with your analysis of the real crisis. However, I cannot agree with your solution.

As soon as anyone says, "What we need is a ruling requiring the Installation of such a system (solar hot-water heating) in every home," my back bristles. Rulings of this nature foster governmental bureaucracy and take away from free enterprise. When we see deregulation, reduction and elimination of federal, state and local controls on our economics and free-enterprise system, then free enterprise will develop and expand the systems necessary to handle the crisis situation. Obvlously, this can only be done when it is economically feasible.

Just a few years ago, oil was a less expensive fuel than coal. As you can see, this has changed. You can also see many instances on the East Coast where it is now more economical for industry to generate its own electricity rather than buying it from utilities - all of which is part of free enter-
prise and a healthy economic system. When we introduce legislation to force faster development, we are tipping the scales of good economics.
RONALD L. STIER
Belden Corp.
Richmond, IN

FM TUNER SELECTIVITY

To my way of thinking, the present state of tuners with narrow- and wideband selectivity switches have gone off in the wrong direction, except for the McIntosh tuner, which, at $\$ 900$, is just out of my budget.

Other manufacturers are doing nothing to solve the NY Metropolitan area selectivity problem. For example, the classical music listener in mid-New Jersey finds that Philadelphia, Trenton, Boston and all the overmodulating local stations squeeze out WQXR (96.3 on the FM dial) and WNCN (104.3). I've seen some pretty decent tuners flunk out in the Princeton-Hopewell (NJ) area.

I think we need to spell out the acceptable limits of capture ratio, distortion, etc., to put out adjacent channel selectivity of at least 45, but in a tuner costing under $\$ 400$.
E. D. CROSBY Wilton, Ct

POWER TRANSFORMERS

Over the past few years, I have constructed several R-E projects. Noting the international scope of your readers, I have searched for adequate power transformers.

From a line of over 1000 different trans-
formers the Signal Transformer Company (500 Bayview Avenue, Inwood, NY 11696) builds a DPC line of transformers featuring split primaries and secondaries, rated at 115 VAC-230 VAC, $50 \mathrm{~Hz}-400 \mathrm{~Hz}$ in 1 to 24 VA sizes. The prices are competitive with Radio Shack and other hobby outlets, and the delivery time has been outstanding. Additionally, these transformers are rated to $105^{\circ} \mathrm{C}$ and are adaptable to most hobby projects.

In my 35 years as an electronics engineer for the U.S. Navy, I must rate these transformers as truly finest quality products that may help solve some of the international hobby construction problems.
OLIVER D. STEWART
NESEA, Code 024
St. Inigoes, MD

KITS DISCONTINUED

All sales of the model 81 AM/FM Frequency Display and the model 302 Frequency Counter (January, March 1978 issues) have been discontinued because of price rises on parts in both kits and parts shortages (model 81).
Thank you to all the people who built the kits and liked them! Both my staff and I believe we have done the best we can, and will never regret what we have done. And we'll never forget that Radio-Electronics has some mighty fine readers. No matter how black things got there was always at least one person and usually many who took time to write and say, "thanks for the fine personal service."
GARY McCLELLAN
R-E

Only eight TV tubes can make a warehouse out of your backroom.

To offer fast replacement for 385 different TV tubes, you'd have to open a warehouse. Or, you could open eight Sylvania picture tube cartons.

Our eight Universal Color Bright tubes are designed as
direct replacements for 385 bonded safety plate picture tubes. And they're designed so well that they're offered with a five-year limited warranty.*

Call your Sylvania distributor to stock up on Color

Bright tubes. Then, you won't have to wait days for your customer's new tube to be delivered.

You can order a Color Bright for immediate delivery right from your own backroom.

Electronic Components

If this is what you are looking for.

If you demand nothing less than true hi-fi performance, you'll understard the advantages and flexibility that res J -ed when Technics separated the sasic amplifier/control/tuner functions ints the five units we call the Flat Jeries: The automatically switchable dual IF Ea d ST-9030 FM tuner. The SU-9030 Dこ preamplifier. The SH-9010 stereo $\mathrm{Fa}{ }^{-a}$ metric/graphic frequency equalizer. The SH-9020 peak/peakholc /average metering system. And the SE-706C stereo/mono DC power amplifier.

You'll also understand why the Flat Series challenges the periormance of the most expensive professiond equipment in the world. And very cffen surpasses it.

Look at the graphs. The reproduced waveform is virtually true to the original. All types of distortion-some measurable, some not-are regligible. And the linear frequency response is extremely wide.

Were confident that the trule discriminating critic will recognize the magnitude of our achievement. Especially when that achievemen- is ofered at prices that are unprecedented -or equipment of this caliber. And with the flexibility to incorporate one or roce, or all five units into your system. Depending on your needs or budget.

To see how Technics achieved the incredible performance shown in the graphs, you have to see and compare the incredible specifications that are typical of the Technics Flat Series on the facing page.

IECHNICS ST.9030. THD (stereo; Wide-0.08\% (kHz). Narrow-0.3\% (1 kHz). S/N (stereo): 73 dB . FREQ. RESPONSE: $20 \mathrm{~Hz}-13 \mathrm{kHz}+0.1$, -0.5 dB . SELECTIVITr: Wide- 25 dB Narrow- 90 dE. CAFTURE RATIO: W.de -0.8 dB . Narrow-2.0 d3. IMAGE and IF REJECTION, SPURIOUS FESPONSE 198 MHz : 135 dB . AM SUPPRESSION (wide): 58 dB . STEREO SEPAFATION (1 kHz): Wide- 50 dB . Narrew- 40 dB . (10 kHz): Wide-40cB. Narrow -3 CdB . CARRIER LEAK: Variable terminal65 dB (19 kHz). Fixed- 70 dB $(19 \mathrm{kHz}, 38 \mathrm{kHz}$).

TECHNICS SE-9J60. FOWER OUTPUT: 70 watts per channel (stereo), 180 watts (mono) min. RMS into 8 ohms from 20 Hz to 20 kHz with no more than 0.02% THD. INIERMODULATICN DISTORTION (6) Hz: $7 \mathrm{kHz}, 4: 1$): 0.02%. FREQ. RESPONSE: DC $\sim 100 \mathrm{kHz},+$ DdB, -1 dB . POWER BANDWIDTH: 5 Hz $-50 \mathrm{kHz},-3 \mathrm{~dB}$. $\mathrm{S}^{\top} \mathrm{N}: 120 \mathrm{~dB}\left(\mathrm{IH}^{=} \mathrm{A}\right)$. RESIDUAL HUM \& NOISE: $100 \mu \mathrm{~V}$. INPUT SENSITIVITY \& IMPEDANCE: IV/47kS.

All the spacifications of Techn cs Flat Series are ooo numerous and complex to list here. But their performance is too good to miss. So don't. Techrics Flat Series is now available for demonstratior at selected audio dealers. For very selecive ears. And for very selective eyes there's Technics SH-990. A movable 17* custorr rack with rosewóod veneer side panels.

Teshnics Flat Series. A rare cembination of a adio technclogy. A new standard of audio excellenze.

This is what you should listento.

두upmant raparta

EQUIPMENT REPORT: EICO Model 242 FET-TVOM

CIRCLE 106 ON FREE INFORMATION CARD

THE ELECTRONIC INSTRUMENT COMPANY. INC (EICO), 108 New South Road, Hicksville, NY 11801, has developed a bench or portable FET-TVOM, the model 242. This instrument has a large 6 -inch meter that is easy to read and provides long scales. It reads AC or DC voltages from 0.01 up to 1,000 . There are seven ranges in the handy $1-3-10-30$ layout. The lowest voltage range is from 0 to 1 ; since these scales are linear. this provides a center-scale reading of 0.5 volt, or 500 mV . The model 242 provides a total of six scales. the top scales (the longest) are used for reading DCV/MA and ACV. This feature makes it a lot easier to read the very small voltages found in solid-state equipment.

Seven ohmmeter ranges start at $R \times 1$ and go to $\mathrm{R} \times 1.0$ megohm. The center scale on the ohms ranges is 10 ohms on the low range, which is helpful when you must read low-value resistors. Both alternating and direct currents can be read on seven ranges from 0-1 mA up $100-1 \mathrm{amp}$.

The AC voltage ranges for the RMS input
are the same as for DC voltage. Special scales are provided for reading peak-to-peak AC volt-ages-up to 2800 P-P. The AC voltage can be read on the same scales, the RMS up to 1.0 amp and the P-P voltage up to 2.8 amp .

The FET input provides the DC voltage ranges with the typical high input imped-ance- 11 megohms. The AC voltage ranges give a 1.0 -megohm input impedance. The rated specifications for the model 242 are: DC accuracy is $\pm 3 \%$ of full scale; the RMS AC accuracy is $\pm 5 \%$ of full scale; the frequency response of the AC voltage ranges is 25 Hz to 2.0 MHz ; an accessory RF probe, the model $P R F-I I$, can extend this range to 250 MHz . The model HVP- 2 probe extends the DC voltage range to 30 kV . The input is protected by, a semiconductor network to prevent damage to the FET during overload.

The model 242 is AC-powered, with a transformer and a Zener diode regulated output of +6.8 VDC . The Zener diode also regulates the DC voltage supply when used on the contimued on page 32

... and the deck is stacked in your favor. VERO, known throughout the industry for quality, is now offering a wide selection of electronic components for the serious hobbyist or home builder. These fine products have all passed the demanding requirements of one of the most demanding industries in the country - the electronics industry.

From basic breadboards to exciting enclosures, VERO products offer you proven capability and reliability and an affordable price. So, next time you are in the mood to build something

great, insist on the finest component parts - insist on VERO.

If your dealer does not stock VERO, drop us a line and we will send him all the necessary information required to get him started. You'll be doing him a favor if you do!

171 Bridge Road, Hauppauge, N.Y. $11787^{\text { }}$ (516) 234-0400

TWX: 510.227-8890

Uncompromising performance. Incredible price.
 A professional $3 ½$ digit DMM Kit for less than $\$ 70$.

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable / bench DMM which offers such unccmpromising performance at the astonishingly low price of $\$ 69.95$.
Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basıc DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and autoınatic zeroing The low price of $\$ 69.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case Now you too can have it! A professional-quality, $31 / 2$ digit Sabtronics Model 2000 DMM kit for only $\$ 69.95$. If you don't have one in your lab, use the coupon below to order NOW.

BRIEF SPECIFICATIONS:
DC volts in 5 ranges: $100 \mu v$ to 1 kV . AC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . DC current in 6 ranges: 100 nA to 2 A - AC current in 6 ranges: 100 nA to 2 A - Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz • Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega$. Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ ($203 \times 165 \times 76 \mathrm{~mm}$) • Power requirement: 4 " C " cells (not included)

GUARANTEE

Examine the 2000 DMM kit for 10 days. If not completely satisfied, return unassembled for full refund of purchase price. (Less shipping and handling)
Use your Master Charge or Visa.
To order by phone call: (214) 783-0994

Made in U.S A.

"If youre going tolearn electronics, you might as well learn it right!"

You've probably seen advertisements from other eiectronies schoois. Maybe you think they're all the same. They're not:

CIE is the largest independent home study school in the world that specializes exelusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some thme and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one . . . with the specialists. . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We clo promise you a proven way to bulld valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership, to maintain. Here are some of the ways we hang onto it . . .

Our step-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\text {® }}$ Lessons teach you the principles in logical steps.

But professitonals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscllloscope you build yourself-and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even liave a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up. . . no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we recelve your lesson before noon Monday through Saturday, we grade it and mail it back the same day, You find out quickly how well you're doing!

CLE can prepare you for your FCC License.

For some clectronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work ... to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

P'atterns shown on TV and oscilloscope screens are simulated.

You know that's a great price. Especially when you consider the outstanding performance you get with this Gould OS245A oscilloscope.

And you get clear, bright displays. 5 mV /div. sensitivity and exceptionally versatile trigger performance. It's ideal for TV or general electronic service work; perfect for hobbyists and educational institutions. You can rely on Gould to live up to these specs:

- DC to 10 MHz ; dual trace
- Trigger performance in excess of 15 MHz
- TV trigger facilitates solid synchronization with TV signals

- Portable; we s just 11 lbs.
- Carries fui. two year warranty on all parts and labor excluding normal calibration, fuses and minor maintenance. Just one pho call gets you actic
Don't miss e t on this bargain. Pick up the pnone now and call us toll-free at 800-325-6400. (In Missouri call 800-342-6600). We'll rush you free literature and ordering information on the OS245A as well as other Gould oscilloscopes applicable to your needs. Gould Inc., Instrument Systems Division, 3631 Perkins Avenue, Cleveland, Ohio 44114.

CIRCLE 82 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

continued from page 26
internal batteries. Three 9 -volt batteries mounted inside the case make the instrument completely portable, but do not have to be installed if the unit is used on the bench at all times. A battery-AC selector switch on the back panel selects the power supply in use, and the ohmmeter circuit is powered by a single 1.5 -volt D-cell battery.

The model 242 uses only two connectors for test leads. One is a phone jack for the MultiProbe, which can be switched (at the probe) from VDC to $\mathrm{AC} / \mathrm{Ohms} / \mathrm{mA}$. The other connector is a ground lead with a clip. Three clearly marked and well-separated controls are used: the ON-OFF/ AC/-DC/+DC mode switch, the FUNCTION switch and the RANGE switch. The zero-adjust and ohms-adjust controls are both 10 -turn potentiometers. For a zero-center voltage reading, set the needle to the center using the zERO-ADJUST control. Doing this halves the indicated range, i.e., on the $0-1$ volt range you can then read from -0.5 to +0.5 . etc

The three 9 -volt batteries are connected in parallel to lengthen the time between battery replacement. In an emergency, of course, a single battery can be used to power the instrument.

The model 242 can be purchased as a kit or a pretested ready-made unit. It comes in a metal cabinet with a plastic front-panel trim and is large enough for bench use or elsewhere. This handy test instrument cost $\$ 149.95$ assembled and $\$ 119.95$ as a kit and should give long reliable service.

R-E

McKay Dymek Model DR22 Receiver

CIRCLE 107 ON FREE INFORMATION CARD
VERY FEW DOMESTIC GENERAL.COVERAGE communications receivers have appeared on the market over the past several years. Several imported units have been running in the range of $\$ 300$ to $\$ 400$, with high-quality receivers in the $\$ 3000$ category. The introduction of the McKay Dymek model DR22 receiver helps fill the gap. The cost of the instrument is $\$ 995$
The receiver is decorator-styled to complement a stereo system, with brushed-aluminum panel and knobs and a woodgrain cabinet. When the unit is switched on, both a giant LED frequency display and a dual-scale (showing S-units and $d B$) signal-strength meter illuminate the back-lighted panel. The model $D R 22$ is quite lightweight for its size, due largely to its miniature-component circuitry and wood cabinet.
Veteran shortwave buffs will be astounded by the simplicity of operation. Of the eight knobs on the front panel, five are for frequency selection, the others are for the volume, mode and preamplifier. There are no controls for
continued on page 34

325 WAYS 70 INCREASE YOUR ELECTRONICS KNOW-HOW!

SEND ND MONEY! We'Il invoice you on IO-DAY FREE TRIAL
AII BOOKS 100% GUARANTEED. YOU mist be satistied ALL BOOKS 100% GUARANTEED. You mist be satisfied

9
10
10
9
9
8
10
9
9
6
6
6
7
7
7
7
9
5
9
 $\square \square \square$ AUDIO, RECORDING, HI-FI \& STEREO

EQUIPMENT REPORTS
continued from page 32
antenna peaking, preselector adjustment, bandswitching, RF gain. AVC/MVC, BFO pitch, crystal phasing, or other venerable memorabilia of the old Hallicrafters days!

The receiver seems ideal for the demanding international-broadcast listener. The $5-\mathrm{kHz}$ incremental frequency-stepping locks in on allocated channels faithfully; the remaining ± 5 kHz knob is used as a fine-frequency adjustment, thus assuring total-frequency coverage.

The frequency stability is $\pm 40 \mathrm{~Hz}$; such exceptional stability is credited to the phase-locked-loop frequency-synthesis oscillator.

Front-end overload is minimized by the use of a high-level RF amplifier stage, followed by a high-level double-balanced mixer stage. Crystal filtering immediately follows the mixer stage to reduce unwanted-signal passband frequencies.

Lab tests

Admittedly, upon unpacking the model DR22, we had the impression that this unit was intended to be a cosmetic complement for a stereo installation rather than a competitive, professional general-coverage receiver. But with the model DR22 operating, it became immediately apparent that it represents a new receiver-design philosophy-few manual adjustments required, without any compromise in performance.

The quartz-crystal oscillator provides incredible stability without the familiar backlash of tuning dials. The large frequency display
leaves no doubt as to what frequency is selected. A liberal sprinkling of crystal and ceramic filters provides steep-sided selectivity, adjustable as $4-\mathrm{kHz}$ or $8-\mathrm{kHz}$ bandwidths.

Although the unit is normally used with its internal speaker, provisions have been made for an external speaker as well as a high-impedance output to couple into a sound system. The use of high-power front-end transistors results in a wide dynamic range; local broadcasters posed no problem with weak-signal reception Unusual low-frequency coverage (down to 50 kHz) affords quality reception of utilities and broadcasters found in the LF spectrum, although an antenna-matching system should be used at these low frequencies rather than a random wire antenna.

TECHNICAL SPECIFICATIONS
 Frequency range: 50 kHz through 29.7 MHz
 Reception modes: AM, USB, LSB, CW
 Sensitivity: ($10 \mathrm{~dB} \mathbf{S}+\mathrm{N} / \mathrm{N}$; AM mode) $1-2 \mu \mathrm{v} 300 \mathrm{kHz}-29.7 \mathrm{MHz} 30 \mu \mathrm{v}$ at 100 kHz Dial accuracy: $\pm 5 \mathrm{kHz}$
 Image rejection: 70 dB
 Intermodulation and crossmodulation: 65 dB referenced to $1 \mu \mathrm{v}$.
 Audio output: 2 watts
 Audio impedances at rear-apron ports: 4 ohms/5000 ohms

Model DA100 antenna

Offered as an accessory to the model DR22 receiver, the model DAl 00 active-antenna system works with any receiver designed for a
$50-\mathrm{kHz}-30-\mathrm{MHz}$ range. Its performance is claimed to be equal to or better than that of a 100-foot longwire antenna, and our lab tests substantiated that claim.

The antenna system consists of two components; an outside-mounted broadband amplifier with a four-foot whip antenna and an inside control console. Fifty feet of interconnecting coaxial cable are supplied. A DC supply module is fed through the coax cable; the control console has selectable impedance matching and attentuation to prevent receiver overload The cost of the active antenna system is $\$ 135$

For additional information, write McKay Dymek Company, P.O. Box 2100, Pomona, CA 91766.

R-E

All I get is someone called Big Daddy who's got his hammer down

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kleps 10. Boathook clamp yrips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. Kleps 20. Same, but $7^{\prime \prime}$ long. cepts banana plug or bare lead. $6^{\prime \prime}$ long.
$\$ 1.79$
Kleps 40. Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long. $\quad \$.99$ Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
All in red or black-specity. (Add 500 postase and handing). Write for complete catalog of connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
RYEINDUSTRIES INC.
128 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd.

SPECIAL REPORT:

 Jack Darr, Service Editor of Radio-Electronics writes: Oneida's Nu-Color Picfure Tube Restorer 'Lives up to its name'This device is designed to restore color to old picture tubes with one or more weak guns.
I had a trade-in Wards TV. with a picture tube so bad it had to be seen to be believed. The blue gun read almost nor. mal emission; the green gun would come up to the bottom end of the BAD) sector on the meter; and the red gun just barely wiggled the needle.
The Nu -Color model 90A is a plug-in device that is inserted between the picture tube and socket, like a brightener. However, it is not a brightener, at least in the
 usual sense of the word. Between its plug and socket is a little box with three color-coded slide controls, one for each color.

Starting with all controls at the off position, I plugged the Nu Color in and turned the set on. As expected, the raster was a bright blue. I adjusted the controls of the Nu -Color and came up with a good-looking color-bar pattern. Twiddling the grey scale and the NuColor controls gave an excellent color picture. Reds saturated normally, with the color control all the way up and all other things looked very good! This device lives up to its claims and its name; it certainly did "restore the color" to this old dog.

As Oneida is careful to explain, the $\mathbf{N u}$-Color is not intended as a "cure-all" for color troubles, but it will help correct problems due to unbalaneed picturetube emission. The device can be installed and adjusted in the home with very little trouble.
For details write: Dalton Smith, President, Oneida Electronic Mfg. Co., Box 678, Meadville, Pa. 16335

inn-pak

One-Stop Component Center AUTHORIZED DEALERS

ALABAMA
Cropwell Hun rsville Mobile
ALASKA ALASK A
Alagstaff
Fountain Hills
Tempe
Sierre Vist
yuma
CALIFORNIA
Bellhower
Berkele
Brea
Cypress
El Monte
Fontand
Fontand
Glendale
Lancasrer
Mission Viejo
Modes to
Modesto
Monterer
Oceanside
Palmdate
Palo Alro
Pasadena
Rasuerside
Sacramento
Sacramento
San Bernardino
San Carlos
San Carlos
San Diego
San Diego
San Fernando
San Francisco
San Francisco
San Francisco
San Jose
San Luis Obispo
Santa Barbara
San la Cruz
Santa Monica
Sunnv vale
Torrance
Vallejo
Van Nuys
Ventura
Wainut Creek
Westminstes
Whirtier
COLORADO
Aurora
Denver
Steamboat Springs
CONNECTICUT
Brigeport
FLORIDA
Fr. Lauderdale
Ganesville
Gainesville
Orlando
Oriando
Pensacola
Tampa
Tampa
GEORGIA
Atlanta
Hawall
Honolulu
Boise
Caldwell
ldaho Falls
ILLINOIS
Carbondale
Evanston
Evanston Granhite City Groveland
Mount Prosp Mount Prospect Niles Oak Park Rocktord Rockford
Schoumburg INDIANA Eas: Chicago Hammond IOWA Cinton Davenport
Des Moines Des Moines KANSAS Kansas Cit

Tucker Bros.
Industrial Elecrronic Supplv Lafaverte Radio Electronics
Electronics Corp. of Alaska
Jim's Audio \& Stereo Repair
\& C Communication B \& S Electronic Yuma Electronics

Earl's Hobby Shop Al Lasher Elecrronic Century Electronics SCR Electronics Kimball \& Siark
Orvac Electrontrs Inc Eagle Electronics Eagle Electronic Consumer Electronics Scott Radio Supply inc Tower Electronics Corp. Compurer Magic Pacific Radio Electronic Center Radio Shack A.S C. Palmala Dow Radio Inc. Computer Center Heathkit Electronic Center
Inland Computer \& Electronic
J \& H Oullet Stor Radio Shack A.S.C. Mira Mesa Radio Tronics Inc. San Fernando Elecrronics
Zack Electronics Zenith Distributing Corp Mid.State Electronic Suppit Electronics Plus Lombard Elec tronics Caps Elec ironics Mission Contro
Sunnvale Efectronics
SE Electronics Thrifty Electronics Suppil Lombard's Electronics Inc Byte Shoo of Watrut Cree o \& Electronics
Whittier Electronics Co

Com Co Electronics
Mi. Coin Distributing Co

Norm's TV \& Electronics
Bridgeport Computer
Computers for You

KANSAS IContinued)

Manhattan	Communications Specialties Lrd.
Wichita	Amateur Radio Equipment Company
KENTUCKY	
Lexington	Radio.Electronic Equipment Co.
LOUISIANA	
Baton Rouge	Davis Electronics Supply Co.
Baron Rouge	Menard Electronics Inc.
New Orleans	Wm. B. Allen Supplv Co.
MARYLAND	
Baltimore	Computers Unilmited
Balrimore	Computer Workshop of Balrimore
Baltimore	Everything Electronic
La Vale	J \& M Electronics
Rock ville	Computer Workshoo
Silver Spring	Computers Eic.
Towson	Baynesville Electronic Inc.
Towson	Computers Etc.
MASSACHUSE	TTS
Medford	Tufts Electronics
North Adams	Elecrronics Supply Center
Waitham	Computer Mart Inc.
Worcester	RM Electronics Inc.
MICHIGAN	
Ann Arbor	Airway Electronic Communications
Flint	Hobov Electronic Center
Grand Rapids	Micro Compu per world
Lansing	Fulton Radio Supply Co.
Midland	Computronix Corp.
Mr. Clemens	The Computer Store
Muskegon	H. R Electronics

NEW YORK (Continuad)
White Plains
Willamswille

The Comouter Corner
NORTH CAROLINA
Durnam
Greenstoro
NORTH DAKOTA
NORTH
Fargo
OHIO
Bucyrus
Cincinnat?
Columbus
Davion
Revnoldsburg
Revnoldsburg
OKLAMOMA
OKLAHOMA
Guymon
Oklahoma Ciry
Oklahoma Ciry
Albany
Beaverton
Coos Bay
Coos Bay
Ontario
Portland
PENNSYLVANIA

Epre
Hersher
Murrysville
Phoeniville
Warren Radio
Microcomputer Systems Inc
Murryswile \quad Computer Workshop of Pirtsburgh
Shoenixville

Phoenixvilie	Tydings Company
Pitsourgh	Hamline Elsctronics
Wilkesbare	

York
$\begin{array}{ll}\text { Cransron } & \begin{array}{l}\text { Jabbour Electronics Civy } \\ \text { Pawtucket }\end{array} \\ \text { Jabbour Electronics City }\end{array}$
SOUTH CAROLINA Technical Services Inc.
Norsh Charleston
TENNESSEE Willian's Dara Como Division
TENNESSEE Whliam's Data Comp Division
Chatranooga Massronics
Clarksville

Cookeville	Wagnon's Stereo Center
Knoxville	Byte Shop

Memphis	Bluff City Electronics
Memphis	Sere-Rose \& Spencer Electronics

Nashvilte Eddie Warner's Parts Co

Oak Ridge
TEXAS
Amarillo Computer Encounters inc
Dallas
Houston
Houston
San Antonio
Prowo
Sall Lake Clity
virginia
Alexandria
Alexandria
Alexandria
Charlottesville
Hampton
Richmond
Richmond
Roanoke
Roanoke
Springfield The Computer Place
Somputer Workshop of North V7rginta
Virginia Beach WASHINGTON

Kennewick | C \& J Electronics |
| :---: |
| Longview |\quad Progress Electronics

Lanco

Richland
Seattle
Seattle
Seattle
Seattle
Seatte
Spokane
Sookane
WEST VIRGINIA
Morgantown Morgantown Ripley

Weelng

CANADA

SINGAPORE
SINGAPORE
Inter Trade (fTE) Lid.
Systems Technology Lipd.

For about 515 you can buy the only total record care system or something less.

You have a choice. You can buy a fancy handled record cleaner. Or, for about the same money, you can have the only total record care system there is.

That is, our new Sound Guard record cleaner and our famous Sound Guard ${ }^{\text {² }}$ record preservative. Both in one package.

The Sound Guard ${ }^{\text {TN }}$ Total Record Care System.

With it, you do more than clean everything off your favorite records from dust particles to oily fingerprints.

You actually protect your record's life with a microscopically thin, dust-resistant patented lubricant.

If you want the most for your $\$ 15^{*}$ (and
the best for your records), you have to have the only total record care system there is.

Like all Sound Guard products, the Sound Guard Total RecordCare System is
 sold in audio and record outlets. *Suggested retail price.

Sound Guard keeps your good sounds sounding good.
 Sound Guard preservative - Sound Guard cleaner - Sound Guard 'Total Record Care System

Sound Guard is Ball Corporation's registered trademark. Copyright © Ball Corporation, 1978. Muncie, IN 47302

the avallability of low-cost wave. form generator integrated circuits now makes it fairly simple to put together a function generator (see "Build 3-way IC Function Generator," Radio-Electronics, November, 1974). However, these waveform generator IC's suffer from a number of deficiencies that can make the resulting system "not quite good enough" for serious use. Specific complaints are: High-impedance outputs, high distortion and lack of amplitude control.

The function generator described here overcomes these deficiencies and adds features that you won't find on most other commercially available units. Its highlights are:

- Sine, square and triangle wave outputs with a frequency range of 210200 kHz in decade steps.
- Output buffer amplifier puts out a 10 -volt P-P signal into a 600 -ohm load with rise and falltimes of less than 200 nS .
- Three-step qutput attenuator for 10,1 and 0.1 -volt P-P maximum output signal, variable down to zero.
- Front-panel connection for an external timing capacitor, permitting a center-frequency different from that built into the unit. It also allows the generator to measure capacitance.
- DC frequency modulation input for extremely slow frequencysweep capability.
- The unit's $1.5-\mathrm{MHz}$ buffer amplifier is front-panel available for external signal buffering.
- Built-in duty-cycle calibrator elim-
inates the need for an oscilloscope for minimizing waveform distortion.
- Varlable-output baseline means that the function generator can be used as a pulse generator for digital circuits.
An added plus is that all of the IC's used in the generator are available in the back pages of Radio-Electronics as "surplus" items, which keeps the cost low. You'll also find that the mechanics of the unit minimizes the wiring nightmare often associated with a project of this size, because all pots and rotary switches mate directly to the printed-circuit board. Even the power supply is totally contained on a PC board-iransformer and heat sink included!

Circuit operation

The heart of the function generator is
the popular 8038 waveform generator IC. For a detailed explanation of its operation, refer to the description of the 8038 waveform generator contained in the box elsewhere in this article. Tracking current sources are required for the function generator IC (not necessarily equal, but tracking). Op-amp controlled circuitry is used to perform the trick. The additional IC's go beyond the manufacturer's recommendations but contribute to an overall performance improvement.

Referring to the schematic in Fig. 1, pot R 5 taps a voltage between 0.4 and 9.1 volts which is buffered by ICI-b. This output is passed through resistors R7 and R8 to the ICI-c-Q1 level shifter. Thus. the ground-referenced current-source voltage developed by R 5 is now referenced to the artificial supply voltage (V1 on the schematic). Voltage VI, about 3

FUNCTION GENERATOR SPECIFICATIONS

Output Waveforms: Sine, Square, Triangle
Frequency Range: $2-200,000 \mathrm{~Hz}$ in 5 decade ranges
Output Amplitude: Specifled into a 600 -ohm load, 3 variable ranges:
$\left.\begin{array}{l}0 \text { to } 10 \text { volts } \\ 0 \text { to } 1.0 \text { volt } \\ 0 \text { to } 0.1 \text { volt }\end{array}\right\}$ short-circuit protected

Output Offset: ± 6 volts (signal plus offset ≤ 10 volts)
Sine Distortion: $\leq 1 \%$ (typ) to 100 kHz
Squarewave Rise/Falltimes: $<200 \mathrm{~ns}$
Squarewave Symmetry: Within 1% of 50% using built-in calibrator Front-Panel Inputs:

External Timing Capacitor: 200 pF minimum, 16 -volt rating
Frequency Modulate: linear sweep, DC-coupled. 10,000-ohm impedance
External Signal Input: DC to $1.5-\mathrm{MHz}$ amplifier, gain of 2.
100,000-ohm impedance

FIG. 1-COMPLETE SCHEMATIC of the function generator. Don't look for the Iwo LED's on the panel.
They're on the main board and are used only during the calibration process.

PARTS LIST

Resistors $1 / 4$ watt, 5% unless otherwise

 notedR1, R4-3300 ohms
R2, R7, R8, R41, R42, R46-10,000 ohms
R3-220 ohms
R5-10,000 ohms, potentiometer, linear taper (Centralab HMP-10K)
R6-470 ohms
R9, R16, R30, R31, R44, R45-2000 ohms
R10, R15, R22, R24, R29-1000 ohms
R11, R17-2200 ohms
R12, R25-1800 ohms
R13-1000 ohms, printed circuit trimmer
R14, R38-10,000 ohms, printed circuit
trimmer
R18-5600 ohms
R19-1500 ohms
R20, R40, R43-82,000 ohms
R21, R28, R36, R37, R39-100,000 ohms
R23-1000 ohms, potentiometer, linear taper (Centralab HMP-1000)
R26-180 0hms
R27-22 ohms
R32, R34-56,000 ohms
R33-100,000 ohms, potentiometer, linear taper (Centralab HMP-100K)
R35-1 megohm
R47, R48-100,000 ohms, printed circuit trimmer (optional, see text).

Capacitors
C1-C4, C7-C10, C21, C25-0.1 $\mu \mathrm{F}, 50 \mathrm{~V}$, Mylar
C5, C6, C20, C22-47 $\mu \mathrm{F}, 35 \mathrm{~V}$, radial electrolytic
C11-4.7 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$ tantalum
C12-0.47 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$ tantalum
C13-. $047 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$ Mylar
C14-. $0047 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$ Mylar
C15-470 pF, 25V, 10\% ceramic
C16, C26, C28-10 pF, 25V, ceramic
C 17, C23, C24-10 $\mu \mathrm{F}, 25 \mathrm{~V}$, radial electrolytic
C18-220 $\mu \mathrm{F}, 50 \mathrm{~V}$, radial electrolytic
C $19-100 \mu \mathrm{~F}, 50 \mathrm{~V}$, radial electrolytic

D1, D2-1N4004, 100V, 1 A diode
IC 1, IC9-LM324 quad op-amp
IC2, IC6-LM341CN op-amp
IC3-IC5-LM318CN high-speed op-amp
IC7-8038 waveform generator (Intersil, Lithic Systems)
IC8-4001 CMOS quad NOR gate
IC10—LM34OT-24, + 24V regulator
IC11-LM34OT-12, +12 V regulator
IC12-LM32OT-12, - 12 V regulator
LED1, LED2 - XC209 (or equal) LED lamp
Q1-MPSA 13, NPN Darlington

Q2-Q5-MPSA63, PNP Darlington
S1-1-pole 6-position miniature rotary switch (CTS T-206)
S2-1-pole 4-position miniature rotary switch (CTS T-206)
S3-1-pole 3-position miniature rotary switch (CTS T-206)
S4-SPDT miniature toggle switch
S5-SPST miniature toggle switch
T1-power transiormer, 25.2-VAC 300-mA secondary, PC mount (Triad type F-148XP or Radio Shack 273-1386)
Miscellaneous - LMB 007-946 case,
$1 / 2$-inch aluminum angle bar, 6-32 $\times 1 / 2^{\prime \prime}$ bolts with hex nuts' $3 / \mathrm{s}^{\prime \prime} \times 32$ nuts, $3 / \mathrm{s}^{\prime \prime}$ lockwashers. Binding posts (J1-J8), power cord, strain relief, hookup wire.

A complete kit of parts including all components, and undrilled and unlabeled cabinet is available for $\$ 79.95$. Etched, drilled and silk-screened PC boards $\$ 11.00$. Full-size photo-negative of PC pattern $\$ 3.50$. Available posipaid from Noveltronics, PO Box 4044, Mountain View, CA 94040. California residents add state and local taxes as applicable. Foreign readers add 5\% for extra postage and handling.

THE 8038 WAVEFORM GENERATOR

The function generator IC used here is the 8038. A block diagram of the IC is shown. Timing capacitor C_{T} is alternately charged and discharged by a current sink/source network. Assuming $I_{1}=I_{2}=I_{0}$, the resulting voltage across the capacitor is a triangle wave with a 50% duty cycle. The triangle wave is fed to a comparator network that sets and

resets a flip-flop. When the triangle waveform reaches a voltage of $2 /$ $3\left(V_{+}-V_{-}\right)$the upper comparator sets the flip-flop and the $2 \mathrm{I}_{0}$ current source is enabled. The voltage ramps down until it reaches $1 / 3\left(V_{+}-\right.$ V_{-}) when the lower comparator turns the 21_{0} current source off.

The timing capacitor waveform is buffered, brought out as an output, and applied to a triangle-to-sine converter network. The relatively high-impedance sinewave output is another output. The flip-flop is a transistor whose open collector is used as the squarewave output.
volts below the +24 -volt supply line, is generated by ICI-a and is necessary to keep the working voltages within the operating range of ICI-d and IC2. Cur-rent-source voltage V 2 is fed to the current-source networks ICI-d-Q2R11 and IC2-Q3-R12-R13.

Each op-amp-transistor pair forces V2 across its respective resistor. The transistor, a high-current-gain Darlington PNP, passes virtually all of the current from its emitter to its collector, so we now have two near-ideal current sources at the collectors of Q2 and Q3. Trimmer pots R13 and R14 allow the Q3 current source to be adjusted to meet the calibration needs of the waveform generator, IC7.

High-frequency switching transients appear at the current inputs of the 8038 . If these voltage spikes were applied to the collectors of Q2 and Q3, they would couple into the current-regulating network via the collector-base capacitance and create a noisy current-source pair. Series-pass transistors Q4 and Q5 are therefore used to couple most of the transients into the +12 -volt supply.

Switch St, the COARSE FREQUENCY control, selects one of five timing capacitors to be applied to the 8038. A sixth switch position allows an external timing capacitor at the front panel to be used. The current sources are then switched in and out of the selected timing capacitor by the generator IC.

The three waveform outputs of the function generator IC are of different amplitudes, but the triangle and squarewave signals are attenuated to about the same amplitude as the sine output with resistors R15-R16 (triangle) and R17-R18-R19 (square). One of the

R-E TEST REPORT

LEN FELDMAN

THIS COMPACT ($9 \mathrm{~W} \times 41 / 4 \mathrm{H} \times 61 / 4-$ inches D) all-purpose function genrator is extremely well designed, relatively easy to assemble and produces sine, square and triangle waveforms. Although frequency sweep is not included internally, it is possible to sweep frequencies of the three available waveforms over a $10: 1$ range by applying a ramp (or any other varying) voltage at the external modulation terminals. The front-panel controls permit manual frequency adjustment from 2 Hz to 200 kHz in 5 decade ranges.

We measured the frequency ranges available and found that any frequency between 3 Hz and $264,600 \mathrm{~Hz}$ was obtainable over the five ranges, with a good deal of overlap, as follows:

$$
\begin{aligned}
& \text { "2" range: } 3 \mathrm{~Hz} \text { to } 28 \mathrm{~Hz} \\
& \text { " } 20^{\prime \prime} \text { range: } 13 \mathrm{~Hz} \text { to } 292 \mathrm{~Hz} \\
& \text { " } 200 \text { " range: } 113 \mathrm{~Hz} \text { to } 2.660 \\
& \mathrm{kHz} \\
& \text { " } 2 \mathrm{~K} \text { " range: } 1.073 \mathrm{kHz} \text { to } 27 \mathrm{kHz} \\
& \text { " } 20 \mathrm{~K} \text { " range: } 11.9 \mathrm{kHz} \text { to } 264.6 \\
& \mathrm{kHz}
\end{aligned}
$$

Maximum amplitude of the sinewave output measured 3.45 volts RMS, which corresponds to a peak-to-peak value of just under 10 volts, the same value obtained for the triangular and square waveforms. The output amplitude is virtually constant from under 10 Hz to the frequency limit of the generator. As is typical of this type of generator (in which the sinewave output is derived or shaped from the basic flip-flop circuit squarewave, harmonic distortion was fairly high, measuring 2.5\% at $20 \mathrm{~Hz}, 2.0 \%$ at 1 kHz and 1.5% at 20 kHz . (The author has subsequently modified the prototype to improve the performance on the 0.1 -volt output range. These changes reduce the noise and, therefore, the distortion on this range. Also, squarewave overshoot is reduced. However, we have not had time to test the modified circuit-Editon

Rise and fallime (for 90% of full amplitude) of the squarewave measured 175 ns , well within the 200-ns claimed specification. Figure 1 shows the full amplitude squarewave outputs from the function generator at frequencies of 10 Hz (Fig. 1-a), 1 kHz (Fig. 1-b) and 20 kHz (Fig. 1-c). Figure 2 shows the triangular waveform obtained from the generator, while Fig. 3 is a scope photo of a $1-\mathrm{kHz}$ sinusoidal output obtained
from the generator.
Considering the price of most

FIG. 1

FIG. 2

FIG. 3
commercially available function generators having similar capabilities, this unit represents extremely good value. Our estimate of construction time, working with the supplied complete kit including etched and drilled PC board, would be one evening or even less.
three (now-equal amplitude) waveforms or the external input waveform is switched by FUNCTION switch S 2 into the buffer amplifier network consisting of op-amps IC3, IC4 and IC5. These amplifiers feature extremely high slew rates ($50 \mathrm{~V} / \mu \mathrm{s}$), necessary for minimum signal distortion.

The first op-amp, IC3, provides highimpedance buffering between the generator outputs and AMPLITUDE pot R23. The pot output is buflered by IC4, whose output feeds resistor attenuator network R25-R26-R27. The ATTENUATE switch, S3, selects the attenuated signal
and routes it to IC 5 , a noninverting butfer with a gain of 2. If point "GG" on the PC board (and schematic) is switched to ground by BASELINE switch $S 4$, then the waveform output of 1 C 5 will be symmetrical about ground. However, by applying a DC voltage at this point, the output waveform will be offset by an amount equal to the opposite of the voltage. That is, by applying -5 volts to "GG" the output will swing around a DC voltage of +5 volts. This variable ollset voltage is generated by IC6, adjusted by R33 and selected by switch S 4 .

The waveform IC's output amplitude is approximately 5 volts P-P. With switch S3 in the 10 -volt position the output of 1 C 5 will be about 10 volts P-P. The oflset feature allows this signal to be DCshifted ± 6 volts. but signal plus oflset cannot exceed ± 10 volts wit hout clipping.

To calibrate the function generator for a 50% waveform duty cycle would normally require an oscilloscope. For those without one, this design includes a builtin duty-cycle calibrator; calibration requires nothing more than a voltmeter.

The calibrator consists of squaring circuit IC8 and integrator/comparator network IC9. The waveform IC's squarewave is capacitively applied to IC8-a, which converts the ground-symmetrical voltage to a swing between +12 volts and ground. The rest of IC8 squares the waveform. The output of the shaping circuit is applied to integrator IC9-a. In theory, if the applied squarewave had a duty cycle of exactly 50%, the integrator output would be a triangle waveform centered around the +I2-volt supply divided by 2. The triangle amplitude is a function of the input frequency and the integrator values. This design develops a 1.5 -volt P-P signal for a $200-\mathrm{Hz}$ input.

However, a duty cycle greater than 50% causes the integrator output to drift up to its positive supply value; less than 50% forces it down to its negative-voltage level. So by comparing the integrator's output to see if its voltage swing stays in the middle of its active range, we can tell when we have a 50% duty cycle. Comparators IC9-c and IC9-d do this. When they detect a voltage above 6.7 volts or below 5.3 volts, they turn on their respective light-emitting diodes, LEDI and LED2. Thus, calibration requires adjusting the current-source trimmer pots until both LED's are olf. Voltage-follower [C9-b applies the reference voltage to the comparators and the integrator.

The power supply consisis of three monolithic voltage regulators, $I \mathrm{C} \mid 0$, 1 Cl 1 and ICl 2 , that deliver $+24,+12$, and -12 volts, respectively. The 24 -volt supply is necessary for the current-source network, while the ± 12-volt supplies handle everything else. Inclusion of bypass capacitor C20 is absolutely essential to prevent IC12 from oscillating. Use only the value shown.
comimued next month

> Protect your property against intruders with this reliable easy-to-build security system that features both open- and closed-loop detector wiring, convenient operation and CMOS IC's for long battery life.

MICHAEL S. ROBBINS

AN IDEAL BURGLAR ALARM SHOULD BE reliable, effective and inexpensive. The Electronic Security Alarm meets these requirements and more. It features low power consumption, two sensing loops and a distinctive electronic siren. Best of all, the circuit is easy to build from readily available components or from a kit.

For maximum reliability and powerfailure protection, the alarm is powered by a 12 -volt lantern battery. CMOS integrated circuits insure a battery life that is equal to its shelf life. A unique turn-off circuit also helps to prolong the battery's life by turning off the alarm after a predetermined period of from 1 to 15 minutes.

The two-loop circuit of the alarm allows it to be used with normally closed sensors, such as conductive tape, fine wire grids, and window and door switches, in the closed loop. The open-loop circuit is designed for use with panic buttons, fire, smoke and water-level sensors and other normally open switches.

The closed-loop circuit incorporates several features rarely found in low-cost alarm systems. This circuit includes a latch that insures that the alarm cannot be defeated once an intrusion is detected unless the alarm itself is shut off. Closing the window or door that initially triggered the alarm will not do the job. Since
the alarm is usually hidden, the latch provides a high degree of security.

Two 15-second delay generators form part of the closed loop. One delay mechanism allows you to shut off the alarm before the siren is triggered. Since this means you won't be crying "Woll" each time you enter your house at 2 AM , your neighbors will (1) talk to you the next morning, and (2) be alert and cooperative if the alarm does go off. This triggerdelay feature simply delays the triggering of the siren, it does not allow an intruder to stop a series of events that have already been initiated.

The other 15 -second delay feature, the glitch delay, helps to eliminate problems caused by noisy sensor switches. It allows you about 15 seconds to reopen the door and turn off the lights (in case you've forgotten) without resetting the alarm.

The alarm contains a built-in siren circuit that drives an external 8 -ohm paging horn that has an equivalent of 101015 watts of squarewave audio. The output consists of a frequency-modulated tone from about 1300 Hz to 700 Hz at a $2-\mathrm{Hz}$ rate; a tone that is difficult to ignore. As an option, the tone generator can be disabled, and the output circuit can be used to drive a relay to operate a telephone dialer, signal light or any combination of bells and whistles.

The alarm is usually installed in a coat closet or other location near the front door or other entranceway. The sensor wires and the leads from the outdoor speaker are run to the alarm. The battery should be located within a few feet of the alarm.

Typical operation of the alarm is as follows:

- Close all the windows and doors.
- Press the test button on the alarm. If the closed-loop circuit is actually closed (that is, the doors, windows, etc., are shut properly) the LED indicator on the alarm will glow.
- Turn the alarm on.
- Open the door (any door in the loop will do) and leave the house.
- Shut the door.

Fifteen seconds after the the door is shut, the alarm will be ready for action. This 15 -second glitch delay insures that switch bounce or dirty switch contacts will not erroneously trigger the alarm. Any subsequent opening of any door or window in the loop will start another 15 -second delay generator. If the loop is broken by an intruder, in 15 seconds the siren will sound and the whole neighborhood will be alerted. The siren will continue to sound for from 1 to 15 minutes (predetermined) or until the alarm is shut off.

The sensors in the open loop are inde-

FIG. 1 -ELECTRONIC SECURITY ALARM.
pendent of the arming and delay circuits. If the alarm on-off switch is on, any openloop sensor immediately starts the siren This feature is useful for personal protection when you are in the house or shop. while the closed-loop sensors are most valuable for property protection when you are not on the premises.

How it works

Figure 1 shows the block diagram of the alarm. The signal path flows from left to right and from top to bottom. Any activity in the closed loop is cleaned up and squared in the input conditioner and sent on to the 15 -second gliteh delay and the armed gate of the device. When the door is first opened and then shut upon leaving the premises, the input to the armed gate from the armed latch holds a
signal and does not allow the input signal to trigger the 15 -second trigger delay. After the glitch delay times-out. the armed latch is set and the armed gate passes any subsequent pulse that is generated by opening the closed loop.

When that signal is generated, it activates trigger delay. When it times-out, the SCR driver turns on the alarm-on switch in the ground leg of the tonegenerator power supply. The siren starts to wail, and simultancously the 1- to 15 minute turn-off timer is activated. After a preset period, it shuts off the timer and turns on the test light to indicate that the alarm is off. The test light will stay on until the on-off switch is turned off.

The diagram of Fig. I shows how the open-loop sensors bypass the delays and the armed gate. The power-up reset cir-
cuit insures that both of the delays and the latch will be reset to the off position whenever the alarm is turned on.

The alarm circuit

The complete alarm circuit is shown in Fig. 2. All the logic blocks are built of CMOS NAND gates. The input conditioner is composed of $\mathrm{ICl}-\mathrm{a}$ and $\mathrm{ICI-c}$, and the integrator is formed by R3 and C1.
Since the closed-loop input terminal, Z, is normally grounded through the closed-loop sensors, the logic level at the input to ICI-a is normally 0 . (logic level 0 is ground. logic level 1 is a positive voltage level of about 12 volts.) If the loop is opened, the logic level at the input is pulled to I by RI and D4. The output of ICI-a goes to logic 0 and begins to discharge Cl . Capacitor Cl is discharged in about 1 ms . The input to $\mathrm{ICl}-\mathrm{c}$ is now logic 0 and its output is logic 1 .

The glitch delay is a monostable multivibrator comprised of IC2-b and IC1-d. It does not respond to an input logic-level change from logic 0 to logic 1 but does respond to a logic-level change from 1 to 0 . In operation, the tirst closing of the door causes the logic-level change from 1 to 0 that the gliteh delay responds to. The output of the glitch delay (IC2-b pin 4) goes from logic 0 to logic 1 as soon as its input goes from logic 1 to logic 0 . This change is coupled to pin 9 of $\mathrm{ICl}-\mathrm{d}$ by

[^0] *SEE TEXT

FIG. 2-ALARM FEATURES glitch prevention and automatic alarm shutoff. Note that IC 1-B is a nand gate instead of and gate as shown.
capacitor C 4 causing $\mathrm{IC} 1-\mathrm{d}$ pin 10 to go from logic 1 to logic 0 . This pulls the glitch delay input to logic 0 through D5 and R6, and causes everything to remain in this state until C4 charges through R5. The charging time of approximately 15 seconds is the delay time. During this interval, the input to the glitch delay is insensitive to any change.

Once C4 charges, ICI-d pin 9 goes to logic 0, pin 10 goes to logic I, pins 5 and 6 of IC2-b also go to logic l, and the glitchdelay output (IC2-b pin 4) goes to logic 0 . This change at the output causes the armed latch (IC2-a and IC2-c) to be set.

The armed latch is an R-S flip-flop (bistable miltivibrator) with two stable states. It is reset each time the power is applied to the alarm (as are the two delay circuits) by C9, R8 and D2. When the armed latch is set by the 1 to 0 logic-level change at the output of the glitch delay (it remains set until the alarm is shut off). it enables the armed gate (IC2-d and DI).

The armed gate has three inputs: Onc from the input conditioner through DI, one from the trigger delay through R4 and one from the armed latch. When the armed latch is set, an input signal from the input conditioner caused by an break in the closed loop will cause IC2-d pin 10 to go from logic 1 to logic 0 . Until the armed latch is set, this cannot happen.

The output of the armed gate is trans-
mitted through C3 to the trigger delay (IC3-a and IC3-b). The trigger delay is a monostable multivibrator that operates similar to the glitch delay, and has two outputs; the IC3-b pin 4 output is fed through R4 to the armed gate. Once the trigger delay begins, no signal llows through the armed gate. The other trig-ger-delay output (IC3-a pin 3) is inverted by IC3-d and fed to IC3-c. This nand) gate drives Q3 (the SCR). Either an output from inverter IC3-d or an input (ground) on open-loop input terminal Y causes IC3-c to trigger Q3.

Figure 3 shows the circuits of the alarm-on switch and the turn-off switch. The SCR, Q3, and the SCR section of IC5 form an anode-commutated latch. When DC power is applied (the alarm is turned on) both SCR's are in the off state. After the trigger delay times-out or after the open loop is activated, a pulse is applied to the gate of Q3, turning it on. With Q3 on, the voltage at the junction of R19 and R2I drops from 12 volts to almost 0 volts, turning on the tone generator. Two additional events occur: The nonpolar capacitor formed by the series combination of C15 and C16 charges to 12 volts with the end connected to IC5 positive and the end connected to IC3 negative. The output of inverter $\mathrm{ICl}-\mathrm{b}$ goes positive and supplies the $B+$ supply to the Programmable Unijunction Transistor (PUT) timer (part of IC5).

FIG.3-ALARM-ON SWITCH and turn-oH circuit diagram.

The PUT timer fires after C17 has charged to a voltage determined by R26 and R27 (hence the term "programmable"). The time it takes C 17 to charge to this voltage can be controlled by varying $R 25$. The PUT section of the CA 3097E used for IC5 has characteristics that make it possible to build a 15 -minute timer using inexpensive components.

When the PUT fires, the pulse generated across R28 turns on the SCR in IC5. The voltage at the anode of this SCR goes to 0 , pulling the positive side of the capacitor combination Cl5-C16 with it. This causes a 12 -volt negative pulse to be applied to the anode of SCR Q3, shutting it ofT. The ICI-b output again goes to ground, and the only part that is still on is the SCR section of IC5. Since it draws its current through R29, LEDI remains on.

Construction

Figure 4 is the photograph of the assembled circuit board. Perforated board with solder-type or wire-wrap hardware can be used, but using the curcuit board makes it easier to duplicate the prototype. The foil pattern for the circuit board is shown in Fig. 5 and the foil pattern of Fig. 6 shows the components placement.

None of the parts values are critical.

FIG. 4-PRINTED-CIRCUIT BOARD COMPONENTS and connections.

PARTS LIST		
All resistors $1 / 2$ watt, 10% unless noted.	$\mathrm{C} 1-0.01-\mu \mathrm{F}$, ceramic disc	IC5-CA3097E, thyristor/transistor array
Capacitors as indicated, at least	C2, C3-0.001- F , ceramic disc	S1-normally open pushbutton switch
16 -volt rating.	C4, C6, C9, C12, C $15, \mathrm{C} 16-10-\mu \mathrm{F}$,	S2-DPDT slide switch
R1, R16-10,000 ohms	16 -volt electrolytic	Misc.-hardware, PC board, cabinet, wire,
R2, R24, R29-470 ohms	C5, C7, C8, C11-0.1- μ F, ceramic disc	solder, 12 -volt lantern battery, speaker,
R3, R4, R8, R12, R30-100,000 ohms	C 10, C $13, \mathrm{C} 14-100-\mu \mathrm{F}$, 16-volt	and required door and window
R5, R7, R10-1 megohm	electrolytic	switches.
R6, R9-10 megohms	C $17-33-\mu \mathrm{F}, 16$-volt tantalum electrolytic	
R11, R13, R17-1000 ohms	D1, D2, D4, D5-1N914 diode	The following are available from Carin-
R14, R15, - 4700 ohms	D3-1N4001 diode	gella Electronics, Inc., Box 727, Upland,
R18, R20-47 ohms	LED 1-light-emitting diode (HP	CA 91786:
R19-120 ohms, 1 watt	5082-4850, or equiv.)	Order No. ESA-2PC-PC board, drilled
R21-10 ohms	Q1-2N4870 unijunction transistor	and etched, $\$ 6.95$ postpaid in U.S.
R22, R28-27 ohms	Q2-MJE7 10 PNP power transistor	Order No. ESA-2K-complete kit, includ-
R23-100 ohms	Q3-2N5060 silicon-controlled rectifier	ing cabinet, wire, etc., \$29.95, plus \$2
R25-10 megohms (See text.)	IC1-IC3-CD4011, quad 2-input nano	shipping and handling.
R26-680,000 ohms	gate	Calitornia residents add state and local
R27-3 megohms	IC4-NE555V timer, or equiv.	taxes as applicable.

FIG. 5 (top left) -FULL-SIZE foil pattern for PC board.

FIG. 6 (center left)-HOW COMPONENTS ARE PLACED ON circuit board.

FIG. 7 (bottom left)-INSTALLATION WIRING diagram.

FIG. 8-MULTIPLE SPEAKER CONNECTIONS.

Five \% or 10% resistors and 20% capacitors are satisfactory. Values are standard and readily available.

The three CMOS IC's (CD401IAE or the equivalent) can be damaged by static electricity. Therefore, they should be stored in carriers or conductive-plastic foam, or wrapped in aluminum foil. The IC's should be plugged into their sockets on the circuit board only after all the other components have been soldered and the board is mounted in the cabinet. The power switch should be off.

Set the turn-off time by adjusting the value of R 25 . Any value from 1 megohm to 22 megohms will work. A 10 -megohm resistor gives a turn-off time of about 10 minutes, and longer times require higher values. Check your city ordinances. Some cities limit the time that an alarm may sound to 3-5 minutes.

Installation

The complexity of the installation depends upon the size of the area to be protected, the number of doors and windows and the number of special sensors. Figure 7 shows a typical system layout. Any number of switches can be added to either loop.

Wire for the two loops can be of any convenient size or type since only very low currents are involved. Bell wire, No. 18 zip cord or the minizip cord sometimes used for speakers are all suitable. Wire that will go to the speaker and the battery should be No. 18 or larger. All wires should be inside the protected area so that the alarm cannot be defeated. The alarm itself, the battery and the speaker should not be visible or casily damaged from the outside. The speaker impedance should be no less than 8 ohms. If more than one speaker is required, the series or series-parallel arrangements shown in Fig. 8 should be used. One final suggestion. Install the alarm before you are burglarized!

R-E

ROUNDUP

Cases And Cabinets For Your Projects

ONE OF THE MAJOR CONSIDERATIONS FACING THE amateur electronic experimenter and constructor is the physical layout and appearance of the finished project. In the days of vacuum tube and 12 by 16 in . chassis, most projects could be finished off nicely by adding a front panel and slipping the whole thing into a cabinet that could be handcrafted from wood or readily available sheet metals. Today, most electronic projects are assembled on printed-circuit boards or similar materials and are sometimes only one-tenth the size of its old vacuum-tube equivalent.
To select a case or enclosure that is most suitable for your project, you must have a pretty good idea as to what is available. Too, if your make and model specified in a magazine article is not available through your usual supplier, you should be aware of equivalents and possible substitutes. These charts list off-the-shelf enclosures, cases and chassis boxes in various material combinations, colors and sizes.

These charts list cases and cabinets not covered in the June 1978 issue of Radio-Electronics. While every effort has been made to ensure that these charts are as complete as possible, it is not always possible to include all the options and ordering information. It is, therefore, a good idea to obtain catalogs from the manufacturers.

EQUIPMENT ENCLOSURES

Provides accessibility through top and front. Most have molded Cycolac plastic end-pieces for a professional look.

To find out more about the products or distributors, a list of addresses of each manufacturer follows. To obtain a catalog, simply circle the corresponding No. on the Free Information card.

Apollo - Industrial Park, Hauppauge, NY Circle No. 136
Buckeye-555G Marion Road, Columbus, OH 43207. (614)
445-8433. Circle No. 137
Bud Electronics - Dept G, 4605 East 355 Street, Willoughby, OH 44094. (216) 946-3200. Circle No. 138

GC Electronics - Division of Hydrometals, Inc., Rockford, IL
61 101. Circle No. 139
Intra Fab, Inc., - 660 Lenfest Rd. San Jose, CA 95133. (408)
251-1600. Circle No. 140
Lafayette Electronics-111 Jericho Turnpike, Syosset, NY 11791.
(516) 921-7700. Circle No. 141

La France, - Enterprise and Executive Avenues, Philadelphia PA
19153. (215) 365-8000. Circle No. 142

LMB Products - 725 Ceres Avenue, Los Angeles, CA 90021.
(213) 627-9310. Circle No. 143

Premier Metals - C/O Sunshine Mining Co., 337 Manida St.,
Bronx, NY 10474. (212) 993-9200. Circle No. 144
Radio Shack - 2617 West 7th Street, Ft. Worth, TX 76107.
(817) 390-3272. Circle No. 145

Rose/Stahlin - 500 Maple Street, Belding, MI 48809. (616)
794-0700. Circle No. 146
Scientific-Atlanta - Optima Enclosures-2166 Mountain Industrial
Road, Tucker, GA 30084. (404) 939-6340. Circle No. 147
TenTec, Inc. - Dept G., Industrial Park, Sevierville, TN 37862.
(615) 453-7172. Circle No. 148

Vector Electronics Co., - 12460 Gladstone Ave., Sylmar, CA
91342. (213) 365-9661. Circle No. 149

Zero Mfg. - 777 Front Street, Burbank, CA 91503. (213)
846-4191. Circle No. 150

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
3-5/8	2-1/8	59/16	Ten-Tec	JW-4	Cycolac panels Al case	-	-	wainut/white
3-5/8	2.1/8	5.9/16	Ten-Ter	JG4	Cycolac panels Al case	-	-	grey/black
3-5/8	$2.15 / 16$	$6-11 / 16$	Tan-Tac	LW-4	Cycolac panels Al case	-	-	wainut/white
35/8	2-15/16	$6-11 / 16$	Ten-Tec	LG-4	Cycolac panels Al case	-	-	grey/black
4-11/16	2-1/8	5.9/16	Ten-Tec	JW-5	Cycolac panels Al case	-	-	walnut/white

EQUIPMENT ENCLOSURES

EQUIPMENT ENCLOSURES

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
7-13/16	4-3/16	5-5/16	Lafayette	12-P-03082V	Al	-	-	walnut/white
9-3/4	4-3/16	10-7/32	Bud	DB-1681	Cycolac panels Al case	tie bar support	-	black/grey
9-3/4	4-3/16	10-7/32	Bud	DW-3231	Cycolac panels Al case	tie bar support	-	walnut/white
9-3/4	4-3/16	10-7/32	Ten-Tec	DG-10	Cycolac panèls Al case	-	-	black/grey
9-3/4	4-3/16	10-7/32	Ten-Tec	DW-10	Cycolac panels Al case	-	-	walnut/white
9-7/8	2-1/8	5-9/16	Ten-Tec	JG-8	Cycolac panels Al case	-	-	grey/black
9.7/8	2-1/8	5-9/16	Ten-Tec	JW-8	Cycolac panels Al case	-	-	walnut/white
9-7/8	2-1/8	5-9/16	Lafayette	12-P-03058V	Al	tie bar	-	walnut/white
9-7/8	2-15/16	6-11/16	Ten-Tec	LG-10	Cycolac panels Al case	-	-	grey/black
9-7/8	2-15/16	$6 \cdot 11 / 16$	Ten-Tec	LW-10	Cycolac panels Al case	-	-	walnut/white
9-15/16	4-3/16	6-5/16	Ten-Tec	MG-10	Cycolac panels Al case	-	-	grey/black
9-15/16	4-3/16	6-5/16	Ten-Tec	MW-10	Cycolac panels Al case	-	-	walnut/white
9-15/16	4-3/16	6-5/16	Bud	MB-1675	Cycolac panels Al case	tie bar support	-	black/grey
9-15/16	4-3/16	6-5/16	Bud	MW-3225	Cycolac panels Al case	tie bar support	-	walnut/white
11-3/4	4-3/16	10-7/32	Bud	DB-1682	Cycolac panels Al case	tie bar support	-	black/grey
$11-3 / 4$	4-3/16	$10-7 / 32$	Bud	DW-3232	Cycolac panels Al case	tie bar support	-	walnut/white
$11-3 / 4$	$4-3 / 16$	10-7/32	Ten-Tec	DG-12	Cycolac panels Al case	-	-	grey/black
11-3/4	4.3/16	10-7/32	Ten-Tec	DW-12	Cycolac panels Al case	-	-	walnut/white
11-15/16	4-3/16	6-5/16	Ten-Tec	MG-12	Cycolac panels Al case	-	-	grey/black
11-15/16	4-3/16	6-5/16	Ten-Tec	MW-12	Cycolac panels Al case	-	-	walnut/white
11-15/16	4-3/16	6-5/6	Lafayette	12-P-03082V	Al	tie bar	-	walnut/white
11-15/16	4-3/16	6.5/16	Bud	DB-1682	Cycolac panels Al case	tie bar support	-	black/grey
11-15/16	4-3/16	6-5/16	Bud	DW-3232	Cycolac panels Al case	tie bar support	-	walnut/white
13-3/4	4-3/16	10.7/32	Bud	D8-1683	Cycolac panels Al case	tie bar support	-	black/grey
13-3/4	4-3/16	10-7/32	Bud	DW. 3233	Cycolac panels Al case	tie bar support	-	walnut/white
$13 \cdot 3 / 4$	4.3/16	10.7/32	Ten-Tec	DW-14	Cycolac panels Al case	tie bar support	-	walnut/white
13-3/4	4-3/16	10-7/32	Ten-Tec	DG-14	Cycolac panels Al case	tie bar support	-	black/grey

INTERLOCKING TOP AND BOTTTOM

Rugged, sturdy and simple to assemble and take apart-only two set'screws hold it together.

SNAP LATCHHERE ON
APPROPRIATE MOOELS

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
$2-1 / 4$	$1-3 / 8$	$1-1 / 2$	LMB	M00	Al	-	Order SL-M00 for snap lateh	N, blk, gry, brwn

INTERLOCKING TOP AND BOTTOM

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
2-1/4	1-3/8	2-1/4	LMB	SL-002	Al	snap latch		N, blk, gry, brwn
2-3/4	2-1/8	2-1/8	LMB	103	Al	-	Order SL for snap latch	N, blk, gry, brwn
2-3/4	2.5/8	2-1/8	LMB	100	Al	-	Order SL for snap latch	N, blk, gry, brwn
2-15/16	1-3/4	2-1/8	LMB	002	Al	-	Order SL for snap latch	N, blk, gry. brwn
3	5	4	LMB	140	Al	-	Order SL for snap latch	N, blk, gry, brwn
3-1/4	1-5/8	2-1/8	LMB	000	Al	-	Order SL for snap latch	N, blk, gry, brwn
3-3/4	2-1/8	3	LMB	135	AI	-	Order SL for snap latch	N, blk, gry. brwn
4	1-5/8	2-1/8	LMB	00	Al	-	Order SL for snap latch	$N, \text { blk, gry }$ brwn
4	2-3/4	2	LMB	102	Al	-	Order SL for snap latch	N, blk, gry, brwn
4	4	2	LMB	143	Al	-	Order SL for snap latch	N, blk, gry. brwn
4	2-1/4	2-1/4	LMB	107	AI	-	Order SL for snap latch	N, blk, gry. brwn
4-1/4	1-1/4	2-1/4	L.MB	101	Al	-	Order SL for snap latch	N, blk, gry, brwn
5	$2 \cdot 1 / 4$	2-1/4	LMB	108	Al	-	Order SL for snap latch	N, blk, gryl brwn
5-1/4	- $2.1 / 8$	3	LMB	136	Al	-	Order SL for snap latch	N, blk, gry, brwn
6	3	5	LMB	141	Al	-	-	N, blk, gry, brwn
6	5	4	LMB	142	AI	-	Order SL for snap latch	N, blk, gry. brwn
6.1/4	3-1/2	2.1/8	LMB	138	AI	-	Order SL for snap latch	N, blk, gry, brwn
6-1/2	1-5/8	2-1/8	LMB	650	Al	-	-	N, blk, gry. brwn
7	3	5	LMB	145	Al	-	Order SL for snap latch	N, blk, gry. brwn
8	2-3/4	3	LMB	137	Al	-	Order SL for snap latch	N. blk, gry, brwn
8-1/2	1-5/8	2.1/8	LMB	850	AI	-	Order SL for snap latch	N, blk, gry, brwn
10	2-1/2	4	LMB	144	Al	-	Order SL for snap latch	N, blk, gry, brwn
12	1-3/4	2	LMB	15	Al	-	Order SL for snap latch	N, blk, gry, brwn

UTILITY BOX

Both top and bottom panels are removable, providing easy accesibility.

Length	Height	Depth	Mfr.	Model No.	Case Material	Comments	Options	Color
4	2	4	LMB	U.C. 970	Al	. 040 gauge	-	grey
4	3	5	LMB	U-C-971	Al	. 040 gauge	-	grey
5	3	7	LMB	U-C-974	AI	. 040 gauge	-	grey
5	4	6	LMB	U-C-972	AI	. 040 gauge	-	grey
6	5	9	LMB	U.C-975	Al	. 051 gauge	-	grey
6	6	6	LMB	U-C-973	Al	. 040 gauge	-	grev
7	6	12	LMB	U.C-977	AI	. 051 gauge	-	grey
8	7	10	LMB	U-C-976	Al	. 051 gauge	-	grey
9	7	15	LMB	U-C.980	AI	. 051 gauge	-	grey
10	8	10	LMB	U.C-978	Al	. 051 gauge	-	grey
11	12	8	LMB	U.C. 979	Al	. 051 gauge	-	grey

Buyers cuide
 To F阶 Tuners

How To Choose The Righir FM Tumer

The performance of an FM tuner or receiver can be predicted from a study of technical specifications in the manufacturers' literature. Understand the specifications and ycu can select the tuner that's best for you.

LEN FELDMAN

CONTRIBUTING HI-FI EDITOR
fm radio, once the orphan of the broadcasting world, now rivals AM radio in listener acceptance and commercial success. To the high-fidelity enthusiast, FM and stereo FM prograns are a free, always available program source that provides endless hours of listening pleasure. To record companies, FM offers the best means to demonstrate their new products to the listening public for possible addition to permanent collections. In a component hi-fi system, FM and stereo FM programming can form part of an integrated, one-piece stereo receiver, or can be a separate tuner that can be plugged into the appropriate terminals on either a separate preamplifier or an integrated preamplifier/power amplifier. Regardless of which approach is selected, it is necessary to understand the basic operation of FM and how a good FM tuner (or tuner section) can be expected to perform. This will also help you understand the technical specifications describing this important component and thus select the right system for your own listening requirements.

How FM radio differs

FM radio has been described as staticfree (when compared with AM broadcasting). Another attribute is its ability to convey "higher fidelity," or better audio frequency response than AM radio. Oddly enough, neither of these qualities is inherent in FM transmission (nor is it specifically limited in AM radio). As anyone who has tried to listen to very distant FM stations on a less-than-high quality FM tuner or radio with a poorly designed antenna knows, FM reception can be as (or more) noisy than AM. Furthermore, a few AM stations in the United States broadcast as much "fidelity" (or wide frequency response) as their FM counterparts (although most AM tuners or receivers cannot reproduce all those frequencies for reasons of economy). What, then, makes FM a noise-free, high-fidelity program source?

The main difference between FM and AM is the way in which audio information is applied to the radio waves. In AM transmission, the intensity or amplitude of the station's radiated waves (within the AM frequency band from 535 kHz to 1605 kHz) is varied in accordance with the audio information to be broadcast, as shown in Fig. 1. In the case of FM transmission, the frequency of the station actually varies in response to the audio waveforms being conveyed or broadcast (see Fig. 2).
When AM received signals are amplified by an AM tuner, differences in amplitude of the incoming waves must be

b
FIG. 1-AMPLITUDE MODULATION. The audio signal shown in a modulates the amplitude of the carrier wave as shown in b.

FIG. 2-FREQUENCY MODULATION. The frequency of the carrier wave is modulated by the audio signal shown in a. The resultant waveform shown in b is transmitted.
maintained throughout the amplification process, since these differences convey the audio information to be recovered by the AM set's detector circuits. Since what we call "noise" or "static" is also amplitude-varying, atmospheric storms, nearby electrical appliances (such as fluorescent lights, shaving motors, etc.) also add noise to the total incoming AM signal amplitude and interfere with AM reception (sce Fig. 3).

FIG. 3-NOISE SIGNALS are added to the amplifude of the AM wave and interfere with reception.

In the case of FM reception, since the audio information is conveyed in the form of changing frequency, it is possible to strip away the AM-type noise (as shown in Fig. 4), using a circuit known as a limiter without altering the recoverable audio content of the composite received radio signals. However, if the signal is too weak, the noise riding on top of it may not be stripped away, which is why listeners in weak-signal areas hear background noise, hiss and static even on FM sets.

The higher frequency-response capability of FM, was brought about in the carly days of the two broadcast systems. When AM radio first appeared, audio equipment was hardly capable of hi-fi performance, and it was general practice to limit AM fidelity to around 5000 Hz (both at the broadcast studio and in home receivers). Greater frequency response would require greater spacing on the AM dial between stations to avoid spillover from one station to another.

In the case of FM , when broadcast

FIG. 4-NOISE SIGNALS are added to the amplitude of the FM wave, but since the wave is frequency modulated, the noise can be eliminated by a simple amplitude limiter circuit.
rules for this service were first established, response out to $15,000 \mathrm{~Hz}$ was authorized (and in fact required) by the FCC. The FM broadcast band is much higher in frequency than the AM band (in the U.S., from 88 MHz to 108 MHz), and the spacing between adjacent channels is a comfortable 200 kHz (0.2 MHz). Audio enthusiasts who think that hi-fi has a frequency response from 20 Hz to $20,000 \mathrm{~Hz}$ may, in fact, be surprised and somewhat disappointed to learn that the highest audio frequency that can be transmitted by an FM station is only 15 kHz ; however, such response still represents excellent fidelity. Few program sources such as discs or tapes contain any program information that exceeds that high frequency.

FM tuner elements

Figure 5 is a block diagram of the various circuits that constitute a sterco FM tuner. The so-called front end of the tuner receives the minute electrical signals reaching the FM antenna, selects the
$10.7-\mathrm{MHz}$ frequencies and does not therefore have to be tuned individually.

From the IF section, the greatly amplified signals are transmitted to the limiter stages (those circuits that strip away unwanted noise and static), and then are applied to the FM detector stage, which converts the varying $10.7-\mathrm{MHz}$ frequencies back into the audio information originally broadcast. If we were just concerned with monophonic or single-channel FM broadcasting (and, of course, many FM radios still provide just that), our circuit description could end right here, and the recovered audio would only have to be connected to your audio amplifier for further amplification and application to the system's loudspeakers to complete the receiver.

Stereo FM broadcasting

In 1961, the FCC approved a new form of FM broadcasting in which the two halves or channels of a stereo program could be broadcast compatibly over a single FM station transmitter. Prior to

FIG. 5-FM STEREO TUNER. An FM monophonic tuner is identical but without the stereo decoder circuit.
frequency of the desired station (by using several resonant circuits that amplify only those frequencies and exclude others), amplifies them, and combines them with signals generated by a self-contained oscillator permanently tuned to a frequency that is just 10.7 MHz higher than the incoming signal. The difference signal is extracted from a circuit known as a mixer stage, and is always at a frequency of 10.7 MHz , known as the IF frequency. This technique is called superheterodyning. It simplifies the succeeding IF amplifying section, which must be sensitive only to
that time, stereo broadcasts involved the use of an AM station for one of the channels and an FM station for the other. Listeners desiring to hear programs in stereo had to set up two different radios, and, even more unfortunately, listeners who had only one radio were treated to "half a program"-hearing only the left channel or right channel transmission.

The stereo broadcast system authorized by the FCC is a compatible one; that is, a mono FM set owner hears the combined "left-plus-right" mono equivalent of the stereo performance, while the
owner of a stereo FM set recovers separate left and right programs over the appropriate left and right speakers in the normal stereo setup. Let's take a look at how this is accomplished.

Figure 6 shows how the available 75 . kHz channel bandwidth (actually, the bandwidth is $\pm 75 \mathrm{kHz}$, on either side of carrier's center frequency, but only onehalf of the symmetrical signal is shown) is used to broadcast a stereo composite signal. First, the sum of the left (L) and right (R) program signals is combined (L $+R$) and used to modulate the main carrier in much the same way that a monophonic signal would be used, over an audio frequency range from 30 Hz to 15 kHz . In addition, the difference signal

FIG. 6-FREQUENCY SPECTRUM of transmitted FM stereo signal.
derived by subtracting R program signals from L program signals $(L-R)$ is used to modulate a $38-\mathrm{kHz}$ subcarrier. This subcarrier is amplitude-modulated, and the subcarrier itself is suppressed, so that only its upper and lower sidebands are, in turn, used to frequency-modulate the main carrier frequency. Since $L-R$ audio signals may contain frequencies from 30 Hz to 15 kHz (similar to $\mathrm{L}+\mathrm{R}$ audio information), the resulting sideband signals may extend from 23 kHz (38 $\mathrm{kHz}-15 \mathrm{kHz}$) all the way up to 53 kHz $(38 \mathrm{kHz}+15 \mathrm{kHz})$. As with any sideband transmission system, a synchronizing signal must be transmitted along with the sidebands so that the missing or suppressed carrier can be reconstituted at the receiving end. In the case of stereo FM signals, a $19-\mathrm{kHz}$ constant pilot carrier is transmitted for this purpose.

Mono/stereo compatibility

At the receiving end, the entire composite signal ($L+R$ audio signal, plus the super-audible sidebands and $19-\mathrm{kHz}$ pilot signal) is recovered by a conventional FM detector. If this signal is applied to an audio amplifier, only the equivalent monophonic program $(L+R)$ is heard. since $L-R$ is still in the form of superaudible sideband modulation. The FM decoder or multiplex section of the tuner or receiver then recovers the $L-R$ audio signals just as an AM double-sideband receiver would.

Once both $L+R$ and $L-R$ signals
are available as audio signals, a couple of algebraic manipulations called matrixing take place. Specifically, the $L+R$ signal is simply added to the $\mathrm{L}-\mathrm{R}$ signal, to yield

$$
(L+R)+(L-R)=2 L
$$

and, in another circuit, the $L-R$ signal is subtracted from the $\mathrm{L}+\mathrm{R}$ signal to yield

$$
(L+R)-(L-R)=2 R
$$

This simple sum-and-difference tech-
nique results in recovering separate L and R signals. (The factor of " 2 " represents amplitude and can be disregarded.) If the circuits are all adjusted perfectly, the L output will contain no R -signal content and the \mathbf{R} output will be free of any L signal content. In actual practice, separation figures in excess of 40 dB are attainable at mid-audio frequencies, and better multiplex decoder circuits can maintain values greater than $30-\mathrm{dB}$ even at the
more critical high and low frequencies.
The wider bandwidth required for transmitting and receiving stereo FM signals, plus the fact that the $\mathrm{L}-\mathrm{R}$ information is transmitted as amplitude-modulated sideband signals of a $38-\mathrm{kHz}$ subcarrier, results in poorer S / N ratios for stereo FM transmission than for monophonic FM transmission. However, as signal strength increases, the difference in S / N ratios becomes less.

Speefificafifions

The many FM tuner specifications describing its performance can tell you much about that tuner's quality and indicate whether or not it will fit your needs. While many people have little difficulty understanding amplifier specifications, they seem intimidated by the technicalsounding terms associated with FM tuner performance. The following summary of important tuner specs will not only define each specification but give you some idea of what "good" and "not so good" numbers you can expect and how important (or unimportant) each specification may be in terms of your own location (relative to the stations you hope to receive) and listening habits.

Sensitivity

Usually, the first specification listed for any tuner is sensitivity. This spec is sometimes called usable sensitivity, or IHF sensitivity (IHF stands for the Institute of High Fidelity, which has established measurement standards for FM tuners and other audio components). Sensitivity describes the ability of a tuner to receive very weak signals and turn them into listenable audio programs. This specification may be stated in microvolts (millionths of a volt, usually written as $\mu \mathrm{V}$) or, in a more recently approved term known as dBf . (The dBf figure is referenced to power rather than a voltage. Thus, the dBf figure automatically takes into account the input impedance at the tuner's antenna terminals and eliminates confusion when comparing the sensitivity of different tuners. For example, a tuner with a 75 -ohm input impedance and a 1 $\mu \mathrm{V}$ sensitivity spec would have the same sensitivity as a tuner with a 300 -ohm input impedance and a $2-\mu \mathrm{V}$ sensitivity spec. Both these tuners have the same IHF sensitivity rating of 11.2 dBf .) The lower the microvolt or dBf number, the more sensitive the tuner.

Since, as we said, stereo signals are noisier than mono signals, a complete sensitivity specification will list numbers for both mono and stereo reception, which may differ widely. A tuner that has a " $2.0-\mu \mathrm{V}$ (or $11.2-\mathrm{dBf}$) sensitivity" will, when it is fed an incoming signal of that strength, produce a recovered audio sig.
nal that is exactly 30 times louder than the combined residual background noise and distortion. Noise and distortion that is 30 dB lower than the desired program level means that 3% of what is heard is noise and distortion. Admittedly, that's not a very good listening situation, but sensitivity is really designed to tell you how much signal is needed for barely acceptable listening. Differences between a set that has a $2.0-\mu \mathrm{V}$ sensitivity and one with a $1.8-$ or $1.7-\mu \mathrm{V}$ sensitivity are really not important unless other specifications are also considered.

50-dB quieting

For a received signal to be acceptably noise-free (in the hi-fi sense of the word), it should be strong enough to suppress noise by at least 50 dB (noise would then constitute only 0.3% of the total sound heard). Newly approved standards require that manufacturers list the signal strength, in microvolts ($\mu \mathrm{V}$) or dBf , required to produce such background noise quieting, both in mono and stereo. The lower the $50-\mathrm{dB}$ quieting signal strength, the better the product.

S/N ratio

Figure 7 shows what happens to the desired signal and the residual noise (in mono and stereo) as signal strength is increased at the antenna terminals of a receiver or tuner. After just a few microvolts of input signal, the audio level reaches a constant amplitude and does not become louder for any further increase in signal strength. However, noise level becomes lower and lower as signal strength increases, until it attains its lowest possi-

FIG. 7-S/N RATIO for a given tuner varies with signal strength.
ble value-usually well before signal strength has reached $1000 \mu \mathrm{~V}$ (or 65 dBI). The specification known as wltimate signal-to-noise ratio or just S / N ratio (now given for both mono and stereo modes) tells just how low that noise level is, and is quoted in dB , with higher values being better. In Fig. 7, the ultimate S / N ratio for mono turns out to be 70 dB ; while in stereo, the best S / N ratio obtained is 65 dB .

Harmonic distortion

As in the case of audio amplifiers, tuners can and do produce harmonic distortion that was not present in the original audio program and is therefore undesirable. Note from Fig. 8 that the total harmonic distortion (THD) tends to decrease as signal strength is increased until it reaches its lowest (or best) levels. Again, the THD should be specified for both mono and stereo modes, and, for full compliance with the new standards, it must be quoted for three different audio frequencies in each operating mode: 100 $\mathrm{Hz}, 1 \mathrm{kHz}$ and 6 kHz . (As in most audio devices, distortion tends to be lower at mid-frequencies, around 1 kHz , but it may be significantly greater at the audio frequency extremes; hence the added information is useful in comparing products.) As indicated in Fig. 7 (plotted only for the $1-\mathrm{kHz}$ distortion test), mono THD is usually a bit lower than stereo

FIG. 8-DISTORTION for a given luner varies with signal strength.
THD. In our example, mono THD decreased to 0.2% for strong mono signals, while it measured 0.4% for strong stereo signals; these are both rather good values, by the way.

Selectivity

Another important FM tuner specifi-

FM PRE-EMPHASIS AND DE-EMPHASIS

The frequency response of audio signals broadcast over an FM radio station is anything but flat. In the United States, the response of audio signals is altered in accordance with the curve shown in Fig. 1. Treble or

FIG. 1
high audio frequencies above 1 kHz are deliberately boosted before they are allowed to frequency-modulate the station's main carrier frequency. This process is known as pre-emphasis and, in most cases, the preemphasis is defined as having a value of $75 \mu \mathrm{~s}$ (the time constant of a simple R-C or L-C network in which the product of "R" and "C," or "R" and "L" equals 75×10^{-6}). A simple pre-emphasis network that produces this amount of treble boost is shown in Flg. 2.

FIG. 2

The reason for pre-emphasis (and corresponding de-emphasis, or treble attenuation as incorporated in all FM tuners or receivers) becomes apparent when we consider the nature of noise in FM reception. in an FM funer or receiver, noise generated by transmission and reception increases with frequency between the carrier and interfering signals, so that high-frequency hlss is louder than low-frequency noise (see Fig. 3). By deliberately pre-emphasizing the treble content of a given program during transmission, the broadcaster pushes the audio signal farther above the noise threshold. However, in order to reproduce the program with all tones at their correct relative amplitudes, it is neces-

FIG. 3
sary to de-emphaslze the highs in the tuner or receiver, in accordance with the reciprocal de-emphasis curve shown in Fig. 4. In this way, all tones are restored to their correct relative intensities, while the background nolse is reduced in much the same way as it would be if you

FIG. 4
turned down the treble control on your amplifier, but without any loss in fidelity.

European emphasis standard

In most European countries, the amount of pre-emphasis and deemphasis is somewhat lower than that used in the United States. The pre-emphasis and de-emphasis value used is defined by a time constant of $50 \mu \mathrm{~s}$ instead of $75 \mu \mathrm{~s}$.

The benefits of pre-emphasis and de-emphasis are in part negated by the fact that extreme values of treble boost applied to signals before main-carrier modulation tend to limit the maximum modulation level that can be applied to a given program. When the $75-\mu$ s pre-emphasis value was selected many years ago, most program sources lacked much highfrequency content, so boosting the highs by such a large degree did not normally result in overmodulation at high frequencies. By the time Euro-
pean countries adopted their own FM broadcast standards, program quality had improved somewhat, and the Europeans decided upon a more moderate pre-emphasis (and de-emphasis) value in setting their standards. In the U.S., improved high-frequency program material has forced many statlons to install compressors and peak limiters in the audio chain. These devices limit the maximum modulation levels and thereby permit higher cverall average modulation levels. Unfortunately, such limiting or compression also detracts from the fidelity of the reproduced music signals.
Those who are familiar with the popular Dolby noise-reduction system commonly found in most home stereo cassette tape decks will recognize that the Dolby scheme lends Itself to FM broadcasting as well. Today, many stations around the U.S. do, in fact, use Dolby noise reduction for improved S/N performance in stereo and regular FM reception.
in order to take full advantage of the Dolby noise-reduction system in FM broadcasting, Dr. Ray Dolby (who developed the system) proposed that whenever Dolby noise reduction was used, the pre-emphasis and de-emphasis values should be changed to a low $25-\mu$ s value (resulting in less treble boost during transmission and correspondingly less treble cut at the receiving end). This modification permits higher modulation levels at the broadcast end and reduces the need for compression or limiting. The end result is greater dynamic range.

For proper Dolby reception, two things are required. First, of course, you must have a Dolby decoder (either built into your system, or connected externally). But, in addition, the de-emphasis network in the tuner or receiver must be modified to the correct $25-\mu \mathrm{s}$ value. Many new luners and receivers now come with a de-emphasis selector switch to alter the de-emphasis value from 75 $\mu \mathrm{s}$ to $25 \mu \mathrm{~s}$, as required by the Dolby FM broadcast system. Alternatively, small adaptors are now available that can be connected externally (in addition to the required Dolby decoder) to accomplish the same change in de-emphasis.
cation is selectivity, or the tuncr's ability to receive a desired station signal while simultaneously rejecting signals that are close in frequency to the desired station. Ordinarily, the FCC assigns frequencies to stations in the same geographical area so that they are not too crowded on the dial. Ironically, though, the increased sensitivity of modern tuners makes this careful spacing somewhat academic, and, on a good receiver, it is sometimes possible to receive signals that are only one or
two channel widths apart (a channel width is 200 kHz on the FM dial). A tuner with good selectivity (measured in dB, with higher values preferred) can latch on to a desired signal without encountering interference from any neighboring station. Moderately good selectivity these days would be around 50 to 55 dB , while some tuners actually boast selectivity figures of 100 dB ! (The selectivity specification refers to the attenuation of an undesired station located 400 -
kHz away from the desired station. For example, if a tuner has a $50-\mathrm{dB}$ selectivity specification, the tuner will attenuate an undesired station located $400-\mathrm{kHz}$ away by 50 dB .)

Selectivity is not equally important to all listeners. In remote rural areas where you can only receive a few widely spaced FM signals, a high selectivity figure is less important than in a crowded metropolitan area where stations are closely spaced on the dial. It should also be point-

Advanced Electronic Career

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

 this revolutionary electronics development. CRFI's new program in Minicomment. CRET's new program in Minicom-puter and Microprocessor Technology is designed to prepare you for this fied by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition. it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is atl extremely importiont element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design. service or troubleshoot microprocessor electronic systems. microprocessor electronic systems.
There is only one effective way tolearn this all-important skill of programming.
and that is by actually doing it. C'REI's this all-important skill of programming.
and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor latoratory.

Programming Is Easy

With CREI's new program. learning the skill of programming is simple. Within a fen hours youll be progamming the microprocessor and in a short time you'll learn hou to program it in three languages: BASIC assembly and machine languages. In addition. you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Now you can learn at home the new technology that is revolutionizing electronics essor. It is invading virtuatly every area of electronics. And it is profoundly affecting your electronics career.

Brand New
 Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics developThe yrim.

The microprocessor has ushered in the age of microtechnology and electronics will never ugain be the same. The microprocessor has made possible the placing of atn entire computer on a silicon chip one quarter inch square. The microprocessor "miratele chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microproc-

Preparation at Home

Wide Choice of Programs

Please note. however. that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in mieroprocessor technology. CREI has an advanced electronics program to meet your needs.
With CREI. you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's umique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements. breadboarding. prototype construction. circuit operation and behavior. characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical
 Engineering

CREI programs give you a practical engineering knowledge of electronics. That is. each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased hnowledge to your employer. you may quadify for faster carcer advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. 56 page book describes in delail the programs. equipment and servces of CREI.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

> Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

ER GRI Imtroduces
 TECHMOLOEY mCLUDING MCROPROCESSOR
LABOAMOMY PROGAA

Mail card or write describing qualifications to

CAPITOL RADIO ENGINEERING INSTITUTE

GI Bill

CREI programs are approned for training of vetorans and servicemen under the G.I. Bill.

[^1]ed out that very high selectivity may, at times, be bought at the expense of poorer distortion figures, since narrowing a tuner's bandwidth tends to increase audio distortion (especially in stereo reception). The mark of a truly superior tuner is one that has both very low distortion levels in mono and stereo and high selectivity values.

Capture ratio

The capture ratio specification is somewhat related to selectivity. It indicates an FM tuner's capability of zeroing in on the stronger of two stations that might be operating at the identical frequency. Such a situation might seem rare, but it could occur if you live mid-way between two remote metropolitan areas, each having stations assigned to the same frequency. More important, good capture ratio (quoted in dB , but this time lower values are better) can help to alleviate a problem known as "multipath distortion."
Figure 9 shows a direct signal arriving
some degree to amplitude (AM) variations in signal reception. Interference caused by electrical noise and signal reflections can be reduced by good $A M$ suppression, a specification quoted in dB, with higher values being better. Typically, an AM suppression figure of 50 dB or greater should be expected from a quality high-fidelity FM tuner.

Frequency response

As with all other hi-fi equipment specifications, frequency response should be considered when selecting a good FM tuner. Frequency-modulated response should be as uniform as possible-from 30 Hz (the lowest frequency broadcast) to 15 kHz . A properly listed frequencyresponse specification states the frequency limits as well as the maximum deviation, in dB, within those limits. For example, a specification that states, "Frequency Response: 30 Hz to $15 \mathrm{kHz}, \pm 1.0 \mathrm{~dB}$ " is a better specification than one reading "Frequency Response: 30 Hz to 15 kHz , $\pm 2.0 \mathrm{~dB}$."

FIG. 9-MULTIPATH DISTORTION results from reflected, and thus delayed, signals being received and decoded by the tuners.
from a station transmitter to the home FM antenna plus a delayed signal transmitted via a reflected path from a nearby water tower (or other signal-reflecting surface). The two signals can be considered as two different "stations" operating at the same frequency and tend to cancel each other out or cause audible distortion, particularly during stereo transmission. We are all familiar with this problem in TV reception, in which the condition is called "ghosts." A good capture ratio helps to reduce the problem, although a properly oriented directional outdoor FM antenna connected to your tuner's AM antenna terminals can help even more.

AM suppression

Even the best FM tuners respond to

Stereo separation

The stereo separation value tells you how well the tuner's stereo decoder (and other portions of the circuit) are able to keep the left-channel and right-channel segments of the program isolated from each other. The FCC requires that broadcasters maintain at least $30-\mathrm{dB}$ of separation between stereo channels at every broadcast frequency. Most good-quality tuners are able to maintain at least that degree of channel separation at midfrequencies, and some perform as well at the audio-frequency extremes. According to the latest measurement standards, stereo separation should be given (in dB , with higher values being better) at three frequencies. These are $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz .

Subcarrier rejection or suppression

It was mentioned earlier that in the course of broadcasting stereo signals, many high-frequency signals are also generated. If these super-audible tones are allowed to appear at the tuner's output, they could have an adverse effect on recording FM programs on a home tape recorder (the high tape bias frequency of the tape recorder might beat with the equally high subcarrier tuner outputs to create audible beat tones in the recording). Accordingly, manufacturers must inform you how successfully high-frequency signal components have been prevented from reaching the tuner's output. Quoted in dB, the higher the subcarrier suppression the less problem you will have recording directly from FM broadcast programs onto tape.

Muting threshold

One of the convenient features many FM tuners offer is interstation mutinga circuit that permits you to tune across the FM dial without encountering that jarring noise between stations. If the muting circuitry is set at too high a threshold, however, it also blocks very weak signals, since they will be interpreted as noise rather than receivable signals. Muting threshold (given in microvolts or dBf), specifies how much signal strength is required to overcome the muting feature. Although in most tuners muting is defeatable by a front-panel switch, it is helpful if the manufacturer carefully sets the muting threshold so that signals that would otherwise be perfectly listenable in terms of quieting and distortion are not blocked by the muting circuitry.

Additional specifications

Other specifications include image rejection. IF rejection and spurious-response rejection. All three specifications indicate the tuner's ability to reject the variety of unwanted signals that sometimes pop up on the dial. Acceptable values for all these specifications are values over 60 or 70 dB , and some modern tuners claim values of 80,90 , or even 100 dB and more.

A word about Dolby FM

If you own a cassette deck you are probably already familiar with the Dolby noise-reduction system. As in the case of tape recording, Dolby can improve signal-to-noise ratios in FM broadcasting, effectively increasing the useful reception range of a station that uses the system. It cannot, however, decrease existing noise in the program material being broadcast by the station (i.e., noisy discs, hissing tapes, etc.).
Many stations around the U.S. use the Dolby system during part or all of their broadcast schedules. To take advantage of this technique, your tuner or receiver must be equipped with a suitable Dolby decoder circuit and a front-panel switch

TABLE I-Major FM Tuner Specifications and their ranges in low, medium and high priced equipment

Specification	Low-Cost Range	Mid-Cost Range	High-Priced Range
Usable sensitivity, mono, $\mu \mathrm{V}$ (dBf)	$\begin{gathered} 3.0-5.0 \\ (15.0-20.0) \end{gathered}$	$\begin{gathered} 2.0-3.0 \\ (11.0-15.0) \end{gathered}$	$\begin{gathered} 1.6-2.0 \\ (9.3-11) \end{gathered}$
Usable sensitivity, stereo, $\mu \mathrm{V}$ (dBf)	$\begin{gathered} 20.0-40.0 \\ (31-37) \end{gathered}$	$\begin{aligned} & 5.0-20 \\ & (20-31) \end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & (13-20) \end{aligned}$
50-dB quieting, mono, $\mu \mathrm{V}$ (dBf)	$\begin{gathered} 10-20 \\ (25-31) \end{gathered}$	$\begin{gathered} 5-10 \\ (20-25) \end{gathered}$	$\begin{gathered} 2.3-5 \\ (12.4-20) \end{gathered}$
50-dB quieting, stereo, $\mu \mathrm{V}$ (dBf)	$\begin{aligned} & 45-100 \\ & (38-45) \end{aligned}$	$\begin{array}{r} 35-45 \\ (36-38) \end{array}$	$\begin{gathered} 30-35 \\ (34.7-36) \end{gathered}$
Signal-to-noise, mono, $\mu \mathrm{F}$	55-65	65-70	Over 70
Signal-to-noise, stereo, $\mu \mathrm{V}$	50-60	60-67	Over 67
$\begin{array}{rl} \text { Distortion, mono } \% & 100 \mathrm{~Hz} . \\ 1 \mathrm{kHz} \\ 6 \mathrm{kHz} \end{array}$	$\begin{aligned} & 0.5-1.0 \\ & 0.5-0.8 \\ & 0.5-1.0 \end{aligned}$	$\begin{aligned} & 0.2-0.5 \\ & 0.2-0.5 \\ & 0.2-0.5 \end{aligned}$	Under 0.2 Under 0.2 Under 0.2
$\begin{array}{rl} \text { Distortion, stereo, } \% & 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 6 \mathrm{kHz} \end{array}$	0.8-1.6 0.6-1.3 0.8-2.0	$\begin{aligned} & 0.4-0.8 \\ & 0.3-0.6 \\ & 0.5-0.8 \end{aligned}$	Under 0.4 Under 0.3 Under 0.5
Alternate channel selectivity, dB	50-60	60-75	Over 75
Capture ratio, dB	5.0-3.0	3.0-1.5	Under 1.5
Image rejection, dB	40-60	60-80	Over 80
IF rejection, dB	50-70	70-85	Over 85
Spurious response rejection, dB	60-80	80-95	Over 95
AM suppression, dB	45-50	50-60	60 or Over
$\begin{array}{rl} \text { Stereo separation, } d B & 100 \mathrm{~Hz} \\ 1 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{array}$	$\begin{aligned} & 20-30 \\ & 25-30 \\ & 15-20 \end{aligned}$	$\begin{aligned} & 30-35 \\ & 30-40 \\ & 20-30 \end{aligned}$	Over 35 Over 40 Over 30
Frequency response, 30 Hz to $15 \mathrm{kHz}, \pm \mathrm{dB}$	2.0-3.0	1.0-2.0	Less than 1.0

to activate it. A separate Dolby decoder can also be added to your system, in case your tuner does not already have one. However, if such a decoder is added separately, the tuner's frequency response must be altered, either internally or by a small accessory that must be inserted at the tuner's output (before the signal is fed to the separate Dolby decoder) to take care of the somewhat different frequency response characteristics used during Dolby program broadcasts. The response characteristic (known as pre-emphasis at the broadcast station, and de-emphasis in a tuner) is standardized in the U.S. as " 75 microsecond pre-emphasis and de-emphasis" in non-Dolby broadcasting, but is changed to " 25 microsecond de-emphasis and pre-emphasis" during Dolby broadcasts. A tuner equipped with a built-in Dolby decoder automatically switches the de-emphasis value to the correct one when Dolby is selected.

Convenience features

In choosing a hi-fi component tuner,
you may want to investigate those convenience features which, while they do not directly contribute to signal quality, make the tuner easy 10 operate and enable you to use it optimally.

Tuners are often equipped with one, two or even three meters. Center-ofchannel tuning meters help you tune to the precise center of the received signal frequencies (only then are distortion fig. ures as low as manufacturers claim), while signal-strength and multipath-indicator meters help you orient your FM antenna for best possible reception. Some tuners have blinking lights to indicate when you are properly tuned in. A few new and expensive tuners use a station tuning system known as frequency synthesizing, in which tuning accuracy is determined by a self-contained highly accurate crystal oscillator circuit. Such tuners may also come with digital-frequency readout tubes that display the frequency in illuminated numbers rather than by a conventional tuning-dial pointer and printed scales.

Some tuners even make provision for programming-in your favorite stations in special computer-like memory circuits that can then be called upon to tunc to your favorite station at the touch of a button. Some tuners permit you to tune to only stereo stations if you desire, while the most expensive units actually use a built-in oscilloscope to provide a visual display of tuning accuracy, signal strength and audio levels.

With all these convenience features, you should remember that the kind of high fidelity you can expect from even the most expensive and sophisticated FM tuner will depend upon the quality of the

THE MODEL T75, SERIES 2 TUNER by Rogers High Fidelity is a British product.
programs and signals broadcast by your local FM stations. It is fair to say that high-fidelity tuners and receivers are often capable of better sound reproduction than is being transmitted by less-thanconscientious stations. Happily, most areas have at least a few stations delivering signals that are consistent with the high-fidelity potential of FM radio.

Summary

Before using Table 1, which itemizes major tuner specifications and guides you as to what constitute average, good and superior values for each published tuner specification, it is important to discuss an element of good FM reception that is all-too-often ignored-a proper FM antenna, preferably mounted outdoors and as high up as possible.

Like TV, FM is a line-of-sight form of transmission, so the higher up your antenna is, the greater the distance to the horizon and the stronger the signal received from distant stations. As you know, FM reception really improves when signal strengths increase. Also a directional antenna (one that favors signals coming from the direction into which it is pointed while rejecting signals from other directions) can alleviate multipath problems. Antennas specifically designed for FM use are readily available and quite inexpensive. Alternatively, you can hook into your outdoor TV antenna by using an inexpensive two-set coupler. Finally, if you simply cannot install an outdoor FM antenna, you should consider one of those simple, adjustable rabbit ear indoor antennas. These antennas can be carefully positioned for best reception and will be an improvement over the "drooping wire" so many use people in lieu of a proper FM antenna.

manufacturer	MODEL	price			STEREO SPECIFICATIONS										MOND SPECIFICATIONS													
							1										10		$\begin{aligned} & \text { HARMD } \\ & \text { OISTOR } \\ & \text { (\%) } \end{aligned}$			\$						
ARMSt Rong	624		3	4.5	35	65	2	. 2	2	2	40	40	28	1.5	2.5	65	. 2	. 2	. 2	. 2	1.75	50						
Craig	\$685	\$279.95	4	$\begin{array}{\|c\|} \hline 11.0 \\ (26.0) \end{array}$	16.0(29.3)	50	1.5	1.5	1.5	2	30	35	20	5.3(19.7)	$5.6(20.1)$	58	1	1	1	1.5	2.0	43	59	110	89	> 71	0-35	800
denon	TU501		. 5	1.8	50	75	. 38	. 15	. 36	35	45	54	45	1.8	3.8	75	. 13	1	. 23	. 9	1.2	60	90	90	90	78	2.8	30
	TU85		${ }_{-1}^{+.}$	1.7	40	84	. 15	. 08	. 18	. 33	47	54	48	1.7	3.5	84	. 08	. 05	. 09	. 5	. 8	65	120	110	110	65	9.5	30
OYNACO	2501	\$799.00	1	$7(22)$	$35(36)$	65	. 4	25	. 4		45	45	30	1.79.8)	$3.516)$	70	. 19	. 19	. 19		1.75	50	100	100		80		
FISHER	FM2110	\$160.00	1	$\begin{gathered} 4.6 \\ (18.5) \end{gathered}$	38(36.8)	66	. 1	. 2	. 4	. 5	35	40	30	1.8(10.3)	2.8(14.2)	72	. 15	. 15	. 2	. 4	1.0	60	60	75	85	70	2(11.21)	
	FM2310	\$250.00	1	$\begin{array}{r} 4.3 \\ (17.9) \\ \hline \end{array}$	34(35.9)	70	. 15	15	. 25	. 4	40	46	36	1.719.8)	2.5(13.2)	75	. 1	. 1	. 15	. 3	. 8	65	80	100	100	75	2(11.21)	
H. . SCOTT	570 T					70								1.8(10.3)	3.5(16.1)	75		50			1.0		60	90	90	70		
	530T	\$199.95	2		. 35 (36)	67								1.9(10.8)	3.8(16.8)	72		45			1.5		40	85	80	60		
	590 T	\$299.95	2		32(35)	75								1.6(9.3)	3.0(14.8)	80		50			1.0		65	100	100	80		
HITACHI	FT-440B	\$279.95	1	19.2	37	68	. 3	25	. 35	37		50		9.8	16.1	75	. 2	1	. 25	16.1	1.0	55	75	100	100	80	19.2	
JVC	JT-V11G	\$149.95			(38.3)	65	45	. 45	. 45		30	35	30	$2.1(11.6)$	(17.2)	70	. 25	25	. 25		1.5	45	55	90	75	55		
	JT-V22	\$169.95			(38.3)	65	. 45	. 35	.55		30	40	30	$2.0(11.2)$	(17.2)	73	2	. 2	. 2		1.5	45	58	90	75	70		
	JT-v77	\$289.95	$\begin{aligned} & +0.5 \\ & { }_{-0.8}^{0.8} \end{aligned}$		(36.8)	72	. 15	. 1	. 15		45	50	40	1.8(10.3)	(16.8)	78	1	. 08	. 15		1.0	60	90	95	95	75		
	T-3030	\$599.95			19(36.8)	72	. 1	. 1	. 1		45	50	45	1.0(11.2)	1.9(16.8)	75	. 1	. 08	. 1		1.0	65				80		
KENWOOD	KT-5500	\$155.00	$\begin{aligned} & +2 \\ & { }_{-2} \end{aligned}$		45(38.3)	68		. 2				45		1.9(10.8)	4.0(17.2)	72		. 15			1.0	65	50	90	80	60		
	KT-6500	\$200.00	$\begin{gathered} +.2 \\ -1.5 \end{gathered}$		43(37.9)	70	. 2	. 15				50		1.8(10.3)	3.6(16.3)	75		1	. 15		1.0	65	50	95	89	75		
	KT-7500	\$310.00	$\begin{gathered} +2 \\ -1.5 \end{gathered}$		35(36.1)	70	$.13$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$			$\begin{aligned} & 50 \\ & 45 \end{aligned}$		1.79.8)	2.8(14.1)	75	$\begin{aligned} & .08 \\ & 1 \end{aligned}$	$.08$	$.08$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	60	105	110	110	$\begin{array}{r} 30 \\ 100 \end{array}$		
	KT-8300	\$450.00	${ }_{-1.5}^{+.2}$		30(34.8)	75		$\begin{aligned} & 1 \\ & 4 \end{aligned}$				$\begin{aligned} & 50 \\ & 45 \end{aligned}$		1.6(9.3)	$2.8(14.2)$	78		$\begin{aligned} & .08 \\ & .15 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	60	110	110	110	$\begin{aligned} & 40 \\ & 110 \end{aligned}$		

					Stereo Specifications										MONO SPECIFICATIONS													
manufacturer	model																											
PIoNEER	TX-550011	\$150.00	$\begin{aligned} & +.2 \\ & -1.0 \end{aligned}$		$44(38.0)$	68	. 3	. 3	. 6		30	35	30	1.9(10.7)	2.8(14.0)	72	. 15	. 15	. 2		1.0	50	60	90	75	60	$\begin{array}{\|l\|} \hline 1.7 \\ \hline(10.0) \\ \hline \end{array}$	
	TX-6500\|1	\$200.00	${ }_{-1.0}^{+1.0}$		44(38.0)	68		. 3	. 6		30	40	30	1.9(10.7)	2.8(14.0)	75	15		. 2		1.0	50	60	90	75	60	${ }_{(10.0)}^{1.7}$	
	TX-850011	\$300.00	$\begin{aligned} & +.2 \\ & -.5 \end{aligned}$		40(37.2)	75	4_{4}^{15}	$\begin{aligned} & 1 \\ & 4 \end{aligned}$. 9		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	1.8(10.3)	3.5(16.1)	79	15	$\left\lvert\, \begin{aligned} & .08 \\ & 15 \end{aligned}\right.$	$\begin{aligned} & 1 \\ & 15 \end{aligned}$		$\stackrel{8}{2.0}$	55	85	100	90	$\begin{aligned} & 35 \\ & 80 \end{aligned}$	$\stackrel{5}{(19.2)}$	
	TX-950011	\$400.00	$\begin{aligned} & +. . \\ & -5 \end{aligned}$		35(36.1)	77	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & .07 \\ & .25 \\ & \hline \end{aligned}$	$\begin{array}{r} .2 \\ .5 \\ \hline \end{array}$		$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	1.5(8.8)	$2.5113 .2)$	82	$\begin{aligned} & .05 \\ & .07 \end{aligned}$	$\begin{aligned} & .05 \\ & .07 \end{aligned}$	$\begin{aligned} & .07 \\ & . \end{aligned}$		$\begin{gathered} 8 \\ 2.0 \\ \hline \end{gathered}$	65	120	105	110	$\begin{aligned} & 35 \\ & 85 \end{aligned}$	$\begin{aligned} & 5(19.2) \\ & 28(34.1) \end{aligned}$	
RADIO SHACK	TM-100	\$179.95						$\stackrel{.}{4}$			$\begin{aligned} & \hline 38 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 28 \\ & \hline \end{aligned}$	1.7(8.8)	3.0	70		2			1.0		70	90			(1)	
ROGE RS	T. 75		1	1.8	35	65	. 9	. 7	. 8		30	40	30	1.0	3	70	. 5	. 3	. 4		1.5	50	60	80	60	60	1	
ROTEL	RT-2100											50		1.5(8.8)		80					. 8	55	110	110	110	80	(13)	
	RT-2000		${ }_{-1.0}^{+.5}$		(30)							45		1.6(9.3)		80					1.0	55	110	110	110	75	(13)	
	RT-725		$\begin{gathered} +5.5 \\ { }_{1}^{2} \end{gathered}$		(50)							40		(10.3)		70					1.5	55	65	75	80		(14)	
	RT-425		${ }_{-1.0}^{+5}$		(50)							40		(10.7)		70					1.5	50	60	75	75		(14)	
S.A.E.	8000	\$700.00	. 5	15128.8)	30(34.8)	68	. 2	. 15	. 2		42	45	35	1.6(9.3)	5(19.9)	70	. 2	. 5	. 2		1.5	100	100	100	120	$\begin{gathered} 10 \\ \text { (25) } \end{gathered}$. 0025	
	3200	\$400.00	. 5	$6.5121 .5)$	40(37)	68	. 2	. 15	. 3		38	40	35	1.8(10.3)	3.8 (16.8)	70	2	. 5	. 3		1.5	100	100	100	100	$\begin{array}{r} 10 \\ (25) \end{array}$. 0025	
SANSUI	TU-9900	\$570.00	+.5	3.9(17)	34.7(36)	76	$.08$	$\begin{array}{\|l} \hline .08 \\ \hline .8 \\ \hline \end{array}$	$\begin{array}{r} .15 \\ 1.2 \end{array}$. 4	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	1.5(8.8)	2.9(14.5)	\% 80	$.06$	$.06$	$.08$. 4	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	58	100	110	110	$\begin{aligned} & 90 \\ & 55 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \text { (i8) } \end{aligned}$	150
	TU-717	\$370.00	$\begin{aligned} & +.2 \\ & -1.0 \end{aligned}$	4.9(19)	27.5(34)	78	$\begin{aligned} & 1 \\ & 22 \end{aligned}$	$.07$	$. \frac{1}{25}$. 6	45	48	38	1.719.8)	2.24(12.5)	81	$\begin{aligned} & .06 \\ & .18 \end{aligned}$	$\begin{aligned} & .06 \\ & .15 \end{aligned}$	$.08$. 6	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	60	90	95	95	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & 5.5 \\ & (20) \end{aligned}$	200
	TU-517	\$300.00	$\begin{gathered} +.2 \\ -1.0 \end{gathered}$	4.9(19)	27.5(34)	78	$\begin{aligned} & 1 \\ & 21 \end{aligned}$	$\begin{aligned} & .07 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & . \end{aligned}$. 6	45	48	38	1.7(9.8)	2.24(12.5)	82	$\begin{aligned} & .06 \\ & .15 \end{aligned}$	$\begin{aligned} & .06 \\ & 12 \end{aligned}$	$\begin{aligned} & .08 \\ & .18 \end{aligned}$. 6	1.0	60	90	105	95	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & 5.5 \\ & (20) \end{aligned}$	200
	TU-317	\$240.00	$+5$	4.9(19)	36.5(36.5)	73	22	09	. 29	. 9	35	40	30	1.8(10.3)	2.6(13.5)	79	12	. 07	. 27	. 7	1.0	50	60	100	88	50	$\begin{aligned} & 3.1 \\ & (15.0) \end{aligned}$	200
	TU-217	\$190.00	± 1	5.5(20)	39.2(37)	70	. 23	. 13	25	. 85	35	40	30	1.85(10.6)	$2.7(13.8)$	71	13	12	. 23	. 8	1.0	55	60	100	85	50	$\begin{gathered} 2.8 \\ (14) \\ \hline \end{gathered}$	200
SANYO	FMT611K	\$159.95		1.9 (10.8)		65		. 2				45				75		. 08			1.0	50	55	55	80	70		
SEQuerra	1	$\begin{gathered} \$ 3040- \\ 3190 \\ \hline \end{gathered}$. 2	(15.5)	(29)	72	. 4	. 4	. 4	. 07	51	52	38	(8.75)	(10)	75	. 3	. 3	. 3	. 07	. 75	>70	>100	95	>100	(12.2)		
SERIES 20	F-26	\$1000	$\begin{array}{r} +1 \\ +3 \end{array}$		33.5(35.7)	84	. 05	. 05	. 07		40	55	40	1.9(10.8)	2.5(13.2)	87	. 03	. 03	. 05		2	65	120	120	120	$\begin{aligned} & 65 \\ & >80 \end{aligned}$	$\begin{gathered} 5.5(20) \\ 55(40) \end{gathered}$	
	F-28	\$690	$\begin{array}{r} +.1 \\ -. . \\ \hline \end{array}$		35(36)	81	. 06	. 05	. 05		50	55	50	1.8(10.3)	2.8(14.1)	84	. 05	. 04	. 06		$\begin{array}{r} .08 \\ \hline \end{array}$	65	120	120	120	$\begin{aligned} & 35 \\ & 70 \end{aligned}$	5(19.2) Absolute	
SETTON INTL	TUS-600	\$439.95	. 5	(18)	(38)	67	. 3	15	. 15	. 35	40	50	40	(10.3)	(17)	72	. 1	. 1	15	35	1	60	85	95	100	80	(14)	+25/98
SHE	3200	\$400.00			40(37.2)			2			35	35	35	1.8(10.3)				. 15										
	5000	\$700.00	+. 5					. 2				45	35	1.6(8.5)		70		. 15			1.5	100	100		100	120		

If you are a newcomer to the world of home video tape recorders, you probably have many questions that need answering before you purchase your machine and can feel at home with it. Here are answers to typical user questions.

FRED BLECHMAN, KGUGT

1 have been watching the progress of videotape recorders (VTR's) for the last few years, and from all indications the big breakthrough into mass consumer marketing has finally happened. Newspaper, magazine and TV ads are increasing at an alarming rate, and VTR's are appearing in some better audio equipment stores. Also, video stores devoted exclusively 10 video products are appearing.
There have been a number of newspaper and magazine articles comparing the features of different VTR's and discussing the batte in the marketplace between the Sony Betamax format and the noncompatible Video Home System (VHS) format developed by Matsushita. However, I wanted to know whether there were any pitfalls in buying and installing VTR's, and what were some unusual ways they were being used?
So, I visited the home office of the L.A. Video Center (8624 Wilshire Boulevard, in Beverly Hills, CA) to ask some questions. I spoke with Ron Domont, the store president, and the following are some of the more important questions and Ron's answers to them.

Q. What are the typical warranties on VTR's?

A. Ninety days' labor and a year on parts. Basically, we've found that if anything goes wrong, it goes wrong in the first 90 days. The manufacturers do not want to hurt the customer, they just want the machine to be used in the first 90 days, so that you can see what it's like and tell everybody else how great it is!
Q. How important is the installation of a VTR? Can the purchaser do it himself?
A. Generally, the booklet that comes with the machine provides enough information for the purchaser to install a VTR himself, if it's a straightforward setup. However, some customers purchase a Sony Betamax and two $3 / 4$-inch commercial video recorders. When they want to play these machines through any of their TV sets, they will run into different impedances, various types of cables and connectors and line losses. So. if you really don't know what you're doing, it's better to have an expert install the system.
Q. How can a buyer judge a dealer? What should he look for?
A. He should feel comfortable with the store. He should pay attention to the store's layout. Does it carry all the VTR accessories? Do the people in the store have the knowledge to answer his questions? And is there a service department? I really think that's a key feature to look for.
Q. How about buying by mail order or from discount houses?
A. First, a prospective customer should decide if he needs help or if he knows exactly what he wants and is just shopping for a better price. It is possible to buy a VTR from a discount house and save in terms of price. Buf you don't get any information on how to hook it up, except for the booklet. Most of the

FIG. 1-TYPICAL VTR CONNECTIONS with separate VHF and UHF antennas.

FIG. 2-TYPICAL CONNECTIONS with combination VHF/UHF antenna.

FIG. 3-VTR CONNECTIONS in a cable-TV system with a program decoder/tuner.
discount house salespeople don't know how to hook the VTR's up themselves. And you don't receive servicing from these stores. VTR dealers like us not only sell video products but also sell video service to the customers-information, installation and repair when needed-not just a recorder in a box! If a customer is looking for information, service, the ability 10 trade at a later date, and wants to know about new and future products, he should to go a dealer he's comfortable with.
Q. How do you feel about the market for VTR's?
A. I see a phenomenal increase in all types of video equipment. In less than five years, Sears, J.C. Penney's and K-Marts, for example, will carry VTR's with their own names on them, for under $\$ 500$.

Q. Have you any additional comments?

A. Yes. One thing I really want to impress upon everyone is that a VTR is basically an entertainment item. Ninety percent of VTR customers use them to record what they want to, and play them back when they want to. That's the major use.

VTR uses

We then discussed some common, as well as unusual, uses for a VTR:

1. Recording one program while watching another-for later viewing.
2. Recording while away, or asleep, using a bullt-in or
auxiliary timer
3. Watching prerecorded tapes of speeches, lectures, sports, plays, movies, etc., strictly for entertainment.
4. Watching prerecorded educational tapes for instructional use.
5. Watching a recording of an orchestra or band and playing or singing along for practice. Ron told me of a symphony violinist who does this and claims it's far more effective to see and hear the music being played.
6. Dubbing in your own sound; most VTR's have a microphone input for this. A foreign language can be dubbed in for commentary or narration, or you can use your own script.
If you add a video camera to your VTR, you can
7. Correspond by video tape; this requires a tape-format and speed compatibility at both sender and receiver ends.
8. Create home "movies." You can then either keep the movies or use the tape over, something you can't do with film!
9. Make an auditlon tape to send to talent agencies, many of which have VTR's.
10. Keep a surveillance record using time-lapse controls that record at short intervals, so that a 24 -hour period can be compressed and played back in an hour or so.
11. Record sales trainees giving their "pitch" so they can see and hear themselves in action and receive appropriate correction.

Installation

Next, for information about potential installation difficulties in less-than-ideal circumstances, I asked Theodore Charles, video installation engineer for L.A. Video Center, the following:
Q. Are there any special antenna requirements when using a VTR?
A. A VTR tuner is better than many TV tuners, and more sensitive than many older TV's, so a VTR will sometimes provide a better picture from your antenna than when the TV program is received directly from the antenna! For the best picture, of course, the antenna should provide signals free of snow, noise and ghosts. And remember, the TV set used for playback should operate properly; the VTR could be providing a better picture than the TV set is capable of displaying.
Q. Can impedance mismatch cause a poor picture?
A. Yes, especially with 300 -ohm antenna cable. If we install an antenna, we use 75 -ohm coaxial cable.
Q. Do you use any special cable type?
A. We use Belden 8241 RG-59/U coaxial cable for the quality of its braid and its flexibility; it is also easy to strip, feed through and generally work with.
Q. How critical is the cable length? Is there any maximum length?
A. Anything over 75 feet might produce RF losses that could cause a significant signal-strength drop.
Q. Are standing waves a problem?
A. No.
Q. Is it OK to use line splitters, band separators and matching transformers in the regular fashion?
A. Yes.
Q. Are there any special considerations when several TV's are hooked up to one antenna?
A. Under these circumstances, a signal-level meter is really needed. After making the initial connections, readings are taken to find dB losses from set to set. Losses through cable lengths and connectors might require using an RF amplifier at the antenna.
Q. Are there any special considerations when using cameras to record?
A. Proper lighting plays a very important part. Use the video output rather than the RF output of the camera.

Q. Is the quality of the video signal better?

A. Yes! This is especially critical when transferring from one machine to another-dubbing or making a copy. Go from the video output of one VTR to the camera (video) input of the other. For normal use, RF signals are satisfactory but video signals are better.

GE'S NEW VHS video cassette recorder features two speeds.
Figures 1 and 2 show two typical installations with standard antenna configurations and cable impedances. Most VTR's have 75 -ohm VHF inputs, 300 -ohm UHF inputs and 75 -ohın RF outputs, so matching transformers are usually needed at least between the VTR RF output and the TV VHF input.

In Figures I and 2, the VHF signal goes into one VTR input,
while the UHF signal goes into another input. From these inputs, the signals go to separate VHF and UHF tuners in the VTR, where you then select the channel to be recorded, just as on a TV set. The VTR has a monitor switch that allows you to see the selected channel (without recording) on your TV set though the VTR output. This output is a RF signal on Channel 3 or 4 , whichever channel is not active in your locality. (This feature is switch-selectable on most VTR's but some units use separate plug-in converters.) Once you've tuned in the picture (on Channel 3 or 4), you can record a program on the VTR as you watch it on the TV set. However, you can also flick a VTR switch that directs the antenna signals to the VTR output, unconverted. Thus you can watch your TV set in the regular

FIG. 4-WINEGARD (3000 Kirkwood, Burlington, IA 52601) model CTS-1 Cablemate TV signal selector.
fashion, using the TV tuners to select the channel, while the VTR records on the channel its tuner is set to.
Incidentally, an interesting side-benefit of having two sets of tuners-is that you can use the VTR as a remote tuner. By having the VTR near you and in the monitor mode, you select the channel at the VTR, while the TV set stays tuned to Channel 3 or 4!

In many parts of the country, cable TV is becoming quite popular. For details on what would be involved in VTR installations where there was cable television, I visited The Video Center in Woodland Hills, CA. Here I met Paul Perez and Kim Knudson (store manager), who provided me with some hardware details.

There are various types of cable TV systems. Figure 3 shows a connection to a cable that provides VHF channels, UHF channels (converted to locally unused VHF channels) and a scrambled special "Channel S." In order to receive Channel S you need a decoder/tuner whose output is on, say, Channel 3. By setting your VTR tuner to Channel 3, the VTR receives whatever channel (including Channel S) the cable decoder/tuner selects. Simultaneously, if you set the Cablemate selector switch (Fig. 4) to position 1, you can watch any other channel (except Channel S) on your TV set. For playback from the VTR, the selector switch is moved to position 2. This allows you to record Channel S through its special decoder circuitry as you watch another channel. If you want to watch Channel S and record another channel, interchange the cables at points A and B. Although the Cablemate selector switch was not designed for this use, Fig. 3 shows how it can be used in this, or similar, installations, with $58-\mathrm{db}$ isolation between inputs.

R-E

Radio-Electronics

Tests Shure

SME 3009-III Pickup Arm

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

those of you who are familiar with earlier versions of the SME pickup arm distributed in the U.S. by Shure Brothers, Inc. (222 Hartrey Avenue. Evanston, II. 60204) will be pleased to learn that the newest version of the arm, the model SME 3009-III (Fig. I) has incorporated many new features that improve performance and add versatility

Perhaps the most significant difference between the model SME 3009-III and carlier versions is the S-slaped tubular carrying arm itself. which contains a fixed headshell but can be completely renoved from the rest of the structure. Thus. it is possible to purchase several of these carrier arms for permanent mounting of your favorite cartridges. Changing cartridges then simply involves unplugging one carrier arm and plugging in an alternate arm. In this way, the cartridge overhang is permanently established for each pickup, as are those delicate terminal connections. A small quantity of cartridge-bonding compound is supplied with the arm, so that cartridges remain perfectly aligned relative to each carrier shell once they are installed.

The main balancing system of the model SME 3009-III has also been redesigned. It consists of lead and plastic laminations contained in a separate weight housing. As supplied by the factory, the combination of weights and spacers can handle cartridges weighing from 6 grams to 10.5 grams, but it is relatively easy to remove the entire weight housing and to arrange a different combination to suit other cartridge weights. Once the arm is
statically balanced by moving this angled weight-housing lengthwise. the required tracking force is set by a calibrated fine adjustment at any desired tracking force up to 1.5 grams. If forces greater than this value are required, a coarse weight on the opposite side of the main pillar and pivot structure is pushed forward, adding one gram (exactly) to the readings obtained on the fine adjustment.

The antiskate adjustment is similar to that of earlier SME models. Figure 2 shows the system. consisting of a tiny weight, nylon

thread and pulley arrangement. A nylon thread loop is attached to a calibrated adjustment, providing the necessary antiskating force in increments of one-tenth of a gram, shown on the scale in Fig. 3. In addition, the antiskating system actually compensates for the minute variation in antiskating force at different radial distances from the center of the disc.

Perhaps the most important dillerence between this version of the SME arm and its

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Dimensional Characteristics:

Nominal pivot-to-stylus length: 9 inches. Distance from bedplate center to turntable center: 8.48 inches. Tracking adjustment range: ± 0.5 inch. Height above mounting surface: $2^{3} / \mathrm{m}$ inches to $31 / 4$ inches maximum. Height of turntable surface above mounting surface: 1 inch to $1 / 8$ inches. Depth below mounting surface: $1 / 8$ inches. Clearance required for balance weights: $21 / 2$ inches. Clearance required between turntable surface and cabinet lid: $13 / 4$ inches.
Performance Characteristics:
Cartridge weight accommodated: 0 gram to 12 grams. Pivotal friction: Less than 0.02 grams applied at stylus deflects arm either horizontally or laterally. Tracking force range: 0 gram to 2.5 grams. Bias adjust (antiskate) range: 0 gram to 2.5 grams. Cable supplied: 4 -foot dual audio cable. Total cable capacitance plus wiring capacitance (including discrete $200-\mathrm{pF}$ padding capacitor, supplied): 293 pF .

Suggested Price: \$294
predecessors is the incorporation of a viscous fluid-damping system for the entire pickup arm. A curved tank, just under the junction of the carricr arm and the point to which it is affixed (see Fig. 2) is filled with a silicone fluid (the filling process takes several hours because of the high viscosity of the fluid). A tiny paddle is suspended from the rear section of the pickup arm and rides in the tank of damping fluid as a recording is played. Three different paddles are actually provided to insure the correct degree of damping for phono cartridges having different compliance ranges. This unique system provides vertical as well as lateral damping of the pickup arm. The damping rate assumes that records are in fairly good condition and that realistic tracking forces at I gram or so are used. The operator's manual states that a certain amount of tuning (best accomplished by removing some of the damping fluid) may be necessary if a badly warped record is to be played using this system.

Laboratory measurements and tests

We tested the model SME 3009 III pickup arm in conjunction with the new Shure model V-IS Type IV cartridge (see the Sept. 1978 issue of Radio-Electronics). Using Shure's new model TTR-115 Era IV test record, we attempted to evaluate the ellects of both the cartridge damping system and the pickup arm damping system. This test record permitted us to measure system resonance with various combinations of arm and cartridge damping. Without the pickup arm's fluid-damping system and with the cartridge damper brush disengaged, there was a pronounced $12-\mathrm{Hz}$ resonance. Engaging the destaticizer/damperbrush arrangement of the model V-15 Type IV cartridge reduced the resonant effect (which remained at a $12-\mathrm{Hz}$ frequency) to a much lower value. Under these test conditions, the arm's damping system was still not used. Final-
ly, after we filled the damper tank with the silicone fluid, we repeated the tests and this time the $12-\mathrm{Hz}$ resonance was barely noticeable whether the cartridge damper system was used or not.

With both damping systems in use, we measured the trackability of the system using the Shure model TTR-103 test record. At high frequencies, trackability was maintained up to velocities of 30 cm -per-sccond. At the mid-frequencies, trackability was even higher, with readings of 40 cm -per-second and at low frequencies, the trackability was maintained to at least 30 cm -per-second groove velocities.
Once the arm was properly balanced, we checked the accuracy of the calibrated track-ing-force scale on the arm. Using a separate tracking-force gauge, the Shure model SFG-2, which is accurate to better than 0.1 gram, we found that calibration was absolutely accurate. The same held true for the antiskating-force scale of model SME 3009 III pickup arm.

Summary

Our overall product analysis together with summary comments will be found in Table 1. The serious audiophile who prefers a turntable without an integral pickup arm will find that this SME unit is capable in every way of delivering its best performance when used with a high-quality cartridge rated to track at low

TABLE 1

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Shure Bros.
Model: SME 3009 III Pickup Arm
OVERALL PRODUCT ANALYSIS

Retail price	$\$ 294$
Price category	High
Price/performance ratio	Very good
Styling and appearance	Excellent
Sound quality	Superb
Mechanical periormance	Superb

Comments: In addition to the tests and measurements discussed in this report, such design features as ease of setup and adjustment were also judged. Ease of setup was rated "fair": and the manual must be read carefully for the correct assembly and installation of both cartridge and arm. Ease of adjustment was rated "good"; this unit is the most accurate and well-calibrated pickup arm we have tested. The interchangeable carrier arms are superior to interchangeable headshells if you wish to stock (and use) more than one phono cartridge. Needless to say, sound quality is largely determined by the cartridge with which this arm will be used, but in our tests the combinatlon of the Shure model V-15 Type IV and the model SME-3009 III offered about as fine a sound from records as we have ever heard. Additionally, we imagine that other high-quality pickups would work well when mounted In this pickup arm.
downward forces of 1 gram or so. While certainly not inexpensive (fairly good complete turntable systems including pickup arm, base and dust cover cost less than this pickup arm alone), the model SME 3009 III offers a performance level that is as close to perfection
as any we have ever tested or used, and it should find its way into some of the more sophisticated high-fidelity systems in the U.S. as it has in Great Britain (where it is manufactured) and in other countries.

R-E

Marantz 2265B AM/FM Receiver

ally rich layout are all very much in the Marantz tradition.

Figure I shows the front panel of the model 2265B. The old blackout dial has been replaced by a highly visible background color behind the AM and FM frequency notations in the large dial area opening. Above the frequency calibrations (which are linear for the FM scale) small lights indicate the selected program source and stereo FM reception. Signal-

MANUFACTURER'S PUBLISHED SPECIFICATIONS:

FM Tuner Section:

IHF Usable Sensitivity: mono, $1.8 \mu \mathrm{~V}$ (10.3 dBf). 50-dB Quieting: mono, $3.0 \mu \mathrm{~V}$ (14.8 dBf); stereo, $35 \mu \mathrm{~V}$ (36 dBf). S/N Ratio: mono, 76 dB ; stereo, 70 dB . Distortion: mono, 0.15% at $1 \mathrm{kHz} ; 0.25 \%$ at $100 \mathrm{~Hz} ; 0.3 \%$ at 6 kHz ; stereo, 0.3% at $1 \mathrm{kHz} ; 0.35 \%$ at 100 Hz ; 0.5% at 6 kHz . THD at $50-\mathrm{dB}$ Quieting: 0.6%, mono and stereo. Frequency Response: stereo, 30 Hz to $15 \mathrm{kHz}, \pm 1.5 \mathrm{~dB}$. Capture Ratio: 1.0 dB . Selectivity: 80 dB . Image Rejection: 90 dB . IF and Spurious Rejection: 100 dB . AM Suppression: 55 dB . Stereo Separation: 50 dB at $1 \mathrm{kHz} ; 42 \mathrm{~dB}$ at 100 ; and $10,000 \mathrm{~Hz}$.

AM TUNER SECTION:

IHF Usable Sensitivity: $12 \mu \mathrm{~V}$. THD: 0.4%. S/N Ratio: 54 dB . Selectivity: 46 dB . Image and IF Rejection: 75 dB . Spurious Rejection: 75 dB .

AMPLIFIER/PREAMP SECTION:

Power Output: 85 watts-per-channel into 8 ohms, 20 Hz to 20 kHz (83 walts at 4 ohms). Rated THD: 0.05% at 8 ohms; 0.1% into 4 ohms. IM Distortion: 0.05% at $8 \mathrm{ohms} ; 0.1 \%$ at 4 ohms. Damping Factor: 55. Input Sensitivity: phono, 1.8 mV ; high level, 180 mV . Phono Overload: 200 mV at 1 kHz . Frequency Response: phono, RIAA $\pm 0.5 \mathrm{~dB}$; high level, 10 Hz to $60 \mathrm{kHz}, \pm 1.25 \mathrm{~dB}$. S / N Ratio: phono, $78-\mathrm{dB}$ referenced 107.75 mV : high-level: $90-\mathrm{dB}$ referenced to $775-\mathrm{mV}$ input.
GENERAL SPECIFICATIONS:
Power Requirements: 120 VAC $60 \mathrm{~Hz}, 50$ watts (idling), 280 watts (maximum). Dimensions: $175 / 16 \mathrm{~W} \times 5 \frac{3}{6} \mathrm{H} \times 14^{1 / 2}$ inches D. Net Weight: 32 lb . Suggested Retail Price: $\$ 550$.

strength and tuning meters are located to the left of the frequency scales.

Just below the dial area, on the same level as the edge-mounted thumbwheel flywheel tuning arrangement, are II pushbuttons. These controls handle two tape monitor circuits. tape-to-tape dubbing, mono/stereo selection, FM muting, high-cut and low-cut audio filtering, loudness-compensation circuitry and selection of one or both pairs of connected loudspeakers

Along the lower section of the panel are seven rotary knobs, plus a pair of tape-in and tape-out jacks, a stereo phone jack and a power on/off pushbutton switch. The three centermost knobs are actually dual-concentric types that permit individual bass, treble and midrange tone control of each channel. Balance and volume control knobs are to the right of the three tone controls, while at the left are the main program selector switch and a switch identified as TONE MODE. This switch can defeat tone-control circuitry, introduce conventional bass and treble action (with hinge points at or near the mid-frequency range) or provide alternate crossover points at around 100 Hz and 10 kHz . Most other manufacturers providing such tone-control versatility in a receiver usually add iwo extra controls or more for this purpose.

The rear panel is equipped with two sets of color-coded spring-loaded speaker terminals, switched and unswitched AC convenience receptacles, 75 -ohm and 300 -ohm antennas, AM and ground terminals and a built-in, pivotable ferrite-bar AM antenna. In addition to the required tape-input and tape-output terminals, there are a muting level control that varies the signal strength required to overcome the muting feature, plus two pairs of preamplifieroutput, main amplifier-input jacks. These jacks require neither wire jumpers nor a switch for circuit completion when an accessory is not used. Circuit interruption occurs when accessory devices such as an equalizer or a noisereduction unit are plugged in.

An FM detector jack is also located on the rear panel (Marantz calls this a QUadradial jack, since sometime in the future it could be used for connecting a four-channel FM adapter.) The upper right of the rear panel contains a plastic cover plate, which, when removed, provides access to a large opening into which an optional Dolby decoder board can be inserted. This optional approach makes sense since only a very few broadcasting stations are presently using the Dolby system.

FM measurements

Our FM tuner measurements are summarized in Table 1. The results can be compared with the manufacturer's claimed specifications listed elsewhere in this report. Most FM performance specifications were met or c>. ceeded, except for the distortion measurements, which generally turned out to be poorer than claimed. It is possible that our particular unit may have been slightly misaligned. Sig-nal-to-noise ratios and $50-\mathrm{dB}$ quieting in mono and stereo were, nevertheless, quite good, and the various signal-rejection capabilities were all as good or better than claimed.

Figure 2 is a scope photo of FM frequency response (upper trace), including the required $75-\mu \mathrm{s}$ de-emphasis, and the excellent separation characteristic is shown in the lower trace At mid-frequencies, separation measured an extremely high 58 dB , remaining well above 40 $d B$ even at the frequency extremes of 100 Hz and 10 kHz . Note that the vertical divisions shown in Fig. 2 are equal to 10 dB , as is true of all the other scope photos in this report.

Readers have requested that we at least measure the frequency response of the AM sections of tuners and receivers tested for these reports. Therefore, beginning with this report. we will display the AM response, as shown by a spectrum analysis. Results for the model $2265 B$ are shown in Fig. 3, and the -6 dB rolloff occurred at approximately 20 Hz and 3 kHz .

Amplifier measurements

The power amplifier section of the model $2265 B$ is conservatively rated as shown in

Table 2. Note also that Marantz (unlike many other manufacturers) provided an FTC power rating for 4 -ohm operation as well as for 8 -ohm loads. In both cases, the ratings were exceeded substantially before attaining the already lowrated harmonic distortion level (specified as 0.05 for 8 -ohm operation and 0.1 for 4 -ohm loads).

The $66-\mathrm{dB}$ signal-to-noise ratio obtained in phono does not indicate an inferior result to the one specified by Marantz. Again, this is a case of differences in reference input levels. Marantz, for some reason, references phono S / N to a $7.75-\mathrm{mV}$ input (rather higher than most cartridges typically produce when track-

ing nominally recorded groove velocities). At least up until now, we have been using actua! input sensitivity (in this case, 2.2 mV) against which to measure S / N in phono and high-level inputs. Translated to their frame of reference, the S / N actually would be 78.0 dB , or equal to the published specification.

In the case of the high-level inputs, the excellent lab figure of 94 dB (referenced to an actual input sensitivity of 180 mV) translates to 105 dB if referenced to Marantz' arbitrary $775-\mathrm{mV}$ input figure. Once the new 1 HF standards are approved, it is hoped such specification ambiguities will be eliminated.
Figures 4 and 5 depict the control range

TABLE 1
 RADIO-ELECTRONICS PRODUCT TEST REPORT

Manufacturer: Marantz
Model: 2265B
FM PERFORMANCE MEASUREMENTS

SENSITIVITY, NOISE AND	R-E	R-E
FREEDOM FROM INTERFERENCE	Measurement	Evaluation
IHF sensitivily, mono ($\mu \mathrm{V}$) (dBf)	1.8 (10.3)	Very good
Sensitivity, stereo ($\mu \mathrm{V}$) (dBf)	10.0 (25.2)	Fair
$50-\mathrm{dB}$ quieting signal, mono ($\mu \mathrm{V}$) (dBf)	2.6(13.5)	Excellent
$50-\mathrm{dB}$ quieting signal, stereo ($\mu \mathrm{V}$) (dBf)	35 (36.0)	Good
Maximum S/N ratio, mono (dB)	78	Excellent
Maximum S/N ratio, stereo (dB)	71	Excellent
Capture ratio (dB)	1.0	Excellent
AM suppression (dB)	57	Fair
Image rejection (dB)	90	Very good
IF rejection (dB)	$100+$	Excellent
Spurious rejection (dB)	100+	Excellent
Alternate channel selectivity (dB)	82	Excellent
FIDELITY AND DISTORTION MEASUREMENT		
Frequency response, 50 Hz to $15 \mathrm{kHz}(\pm \mathrm{dB})$	1.0	Very good
Harmonic distortion, 1 kHz , mono (\%)	0.21	Good
Harmonic distortion 1 kHz , stereo (\%)	0.40	Fair
Harmonic distortion, 100 Hz , mono (\%)	0.26	Good
Harmonic distortion, 100 Hz , stereo (\%)	0.45	Fair
Harmonic distortion, 6 kHz , mono (\%)	0.22	Good
Harmonic dlstortion, 6 kHz , stereo (\%)	0.42	Good
Distortion at 50-dB quieting, mono (\%)	0.50	Very good
Distortion at $50-\mathrm{dB}$ quleting, stereo (\%)	0.35	Excellent
STEREO PERFORMANCE MEASUREMENTS		
Stereo threshold ($\mu \mathrm{V}$) (dBf)	10 (25.2)	Fair
Separation, $1 \mathrm{kHz}(\mathrm{dB}$)	58	Superb
Separation, $100 \mathrm{~Hz}(\mathrm{~dB})$	45	Excellent
Separation, 10 kHz (dB)	43	Superb
MISCELLANEOUS MEASUREMENTS		
Muting threshold ($\mu \mathrm{V}$) (dBf)	10 (25.2)	Fair
Dial calibration accuracy ($\pm \mathrm{kHz}$ at MHz)	100 at 108	Excellent
EVALUATION OF CONTROLS, DESIGN, CONSTRUCTION		
Control layout		Excellent
Ease of tuning		Excellent
Accuracy of meters or other tuning aids		Good
Usefulness of other controls		Very good
Construction and internal layout		Excellent
Ease of servicing		Very good
Evaluation of extra features, if any		Very good
OVERALL FM PERFORMANCE RATING		Good to very good

provided by the flexible tone-control system of the model 2265B. Figure 4 shows the available

range when turnovers are set for the $100-\mathrm{Hz}$ and $10-\mathrm{kHz}$ points (the extra midrange tonecontrol action is not included). In Fig. S, the alternative turnovers were selected to which was added a sweep showing the range provided by the midrange or presence control. Proper use of these three controls and the related tone-mode switch affords nearly as much tonecontrol flexibility as is available with separate, five-band graphic equalizers

Figure 6 is a scope photo of the steep, highcut filter action. Actually, the subsonic filter switch was also turned on for this measurement, but since the filter begins to cut at below 20 Hz (the lower limit of our sweep genera-

tor), its action cannot be seen in Fig. 6. In actual listening tests, the low-cut filter was quite effective in reducing subsonic turntable rumble.

Figure 7 shows the response of the receiver at listening levels (approximately $10-\mathrm{dB}$ apart) when the loudness-control circuitry is activated. Marantz provides a small amount of treble compensation as well as the usual, more heavily emphasized bass boost.

Summary

Table 3 contains our overall product analysis. Not surprisingly, this mid-powered receiver is as well engineered and as versatile as Marantz's more powerful. At its nominal 65 watt-per-channel power rating, it would be an excellent choice for use with many speakers that work ideally with that power level. R-E

TABLE 2
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Marantz
Model: 2265日
AMPLIFIER PERFORMANCE MEASUREMENTS

POWER OUTPUT CAPABILITY	R-E Measurement	R-E Evaluation
RMS power/channel, 8 -ohms, 1 kHz (watts)	75	Very good
RMS power/channel, 8 -ohms, 20 Hz (watts)	67.3	Excellent
RMS power/channel, 8 -ohms, 20 kHz (watts)	70.2	Excellent
RMS power/channel, 4 -ohms, 1 kHz (watts)	90	Excellent
RMS power/channel, 4-ohms, 20 Hz (watts)	87	Excellent
RMS power/channel, 4 -ohms, 20 kHz (watts)	88	Superb
Frequency limits for rated output ($\mathrm{Hz} \mathbf{- k H z}$)	16-35	Excellent
DISTORTION MEASUREMENTS		
Harmonic distortion at rated output, 1 kHz (\%)	0.013	Superb
Intermodulation distortion, rated output (\%)	0.03	Very good
Harmonic distortion at 1-watt output, $1 \mathrm{kHz}(\%)$	0.017	Excellent
Intermodulation distortion at 1-watt output (\%)	0.015	Excellent
DAMPING FACTOR, AT 8 OHMS	58.3	Very good
PHONO PREAMPLIFIER MEASUREMENTS		
Frequency response ($\mathrm{RIAA} \pm \mathrm{dB}$)	0.3	Excellent
Maximum input before overload (mV)	220	Excellent
Hum/noise referred to full output (dB) (at rated input sensitivity)	66	Very good
HIGH-LEVEL INPUT MEASUREMENTS		
Frequency response ($\mathrm{Hz}-\mathrm{kHz}, \pm \mathrm{dB}$)	10-65, 1.0	Excellent
Hum/noise referred to full output (dB)	94	Excellent
Residual hum/noise (minimum volume) (dB)	97	Very good
TONAL COMPENSATION MEASUREMENTS		
Action of bass and treble controls	See Figs. 4 \& 5	Superb
Action of secondary tone controls	See Fig. 5	Excellent
Action of low-frequency filter(s)	See text	Excellent
Action of high-frequency filter(s)	See Fig. 6	Very good
COMPONENT MATCHING MEASUREMENTS		
input sensitivity, phono 1/phono 2 (mV)	2.2/2.2	
Input sensitivity, auxiliary input(s) (mV)	180	
Input sensitivity, tape input(s) (mV)	180	
Output level, tape output(s) (mV)	180	
Output level, headphone jack(s) (V or mW)	N/A	
EVALUATION OF CONTROLS, CONSTRUCTION AND DESIGN		
Adequacy of program source and monitor switching		Excellent
Adequacy of input facilities		Excellent
Arrangement of controls (panel layout)		Excellent
Action of controls and switches		Very good
Design and construction		Very good
Ease of servicing		Very good
OVERALL AMPLIFIER PERFORMANCE RATING		Excellent

TABLE 3

OVERALL PRODUCT ANALYSIS

Retail price

Price category
Price/performance ratio
Styling and appearance
Sound quality
Mechanical performance
$\$ 550$
Medium/high
Good
Excellent
Excellent
Very good
Comments: Over the years, Marantz has managed to establlsh a product image that immediately identifies their audio components. The model $2265 B$ actually offers more control flexibility than at first meets the eye. Its designers have provided every concelvable control and switching function without making the unit look like a computer. While in the past we have often felt that Marantz unlts were a bit high-priced for the sound they delivered, recent increases in the cost of competitive units place the model 22658 price just about where it belongs. As for its sound-reproduction capability, it is as good as any we have heard from other recelvers in the same price and power category.
Phono reproduction was especially clean and tight, and, despite the relatively high bench-measured distortion figures in the FM tuner section, in actual listening tests, FM sensltivity was excellent as was the stereo-separation capability of the tuner. We believe that our sample unit must have been slightly misaligned and that given a properly aligned set, published distortion figures would have been met or exceeded. The tone-control mode switch takes a bit of getting used to, but it does eliminate the need for extra knobs on the front panel.
It is unfortunate that this is the first receiver test report in which AM frequencyresponse measurements are included (after many reader requests), since response is quite poor. But it is no poorer than that generally found on most hi-fi recelvers.

In average-sized listening rooms, the model 22658 provides ample power for use with even relatively low-efficiency speakers. When deliberately driven to clipping, the amplifier recovers quickly and handles transients well.

Frequency $\frac{\text { Counter }}{\text { In A Probe }}$

> Completely self-contained in a handy probe, this frequency counter was constructed using a unique assembly method that makes possible an instrument that is rugged, compact and convenient to use.
many construction articles deal with digital frequency meters, and some of these meters are quite small and portable. A few offer prescalers to increase the range of operation, but the increase in performance means one more box and more cables to clutter your work area.

The frequency meter described in this article is constructed using a new method (see "IC Bricklaying" in the December 1977 issue) that results in a complete crystal-controlled, dual-range, six-digit frequency meter not much larger than a pen. The meter operates from 0 to 750 kHz with $1-\mathrm{Hz}$ resolution, or to 2.5 MHz with $10-\mathrm{Hz}$ resolution. You can build prescalers that plug into the tip of the meter, and that can extend the range to I GHz . Additional circuits, combined with plug-in probe tips, greatly increase the device's capabilities and functions.

How it works

The meter is constructed by using what can best be described as a bricklaying technique. (See "IC Bricklaying", Ra-dio-Electronics, December 1977.) The

WALTER T. CARDWELL, JR.

IC leads are cut flush with the bottom of the package. The wide section of the IC leads that remain on the side of the package is used as a bonding pad for making connections. Normal AWG No. 30 solid wire-wrap wire is used to connect the IC's, using point-to-point wiring. This quick-and-easy method allows you to change the circuit more easily than when PC boards are used. In addition, no chassis or other structural support is required. The IC's themselves are the supporting structure.

Circuit description

The meter is built around two MC14553B three-digit CMOS (Complementary Metal Oxide Semiconductor) counters. Figure 1 shows the block diagram of the IC, which incorporate three decade counters, three 4 -bit (quad) latches and an output multiplexer, with multiplexer oscillator. The master reset signal not only clears the counters but also sets the multiplexer to the first digit.

One MC14553B counter is used as a master whose multiplexer oscillator drives the slave multiplexer.

Figure 2 shows the schematic of the probe's main body. Two MC14553B's, IC10 and IC13, are cascaded to form a six-decade counter, and only one scan clock is used. Capacitor C2 sets the scanoscillator frequency of IC13, which acts as the master and drives the slave IC10. Both master resets are connected to synchronize the multiplexers. By using a master/slave scheme, only one clock capacitor and one set of digit drivers are required.
The latch output is applied to the Qoutputs, and the appropriate digit select line, DS, goes low. The Q-outputs connect directly to two seven-segment, de-coder-latch drivers, IC9 and IC12; the latch section is not used. Drivers IC9 and IC12 incorporate NPN pull-up transistors on the output lines so that no external segment drivers are required.

The DS-outputs of IC13 connect to PNP transistor bases Q2-Q4, which are used as emitter-follower digit drivers.

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

You can use any $100-\mathrm{mA}$ PNP transistor, but it should be housed in a small TO92 -style plastic case. When transistors are used, the wire-wrap wire is wound around the transistor lead and soldered. The transistor lead is then clipped as close to the case as possible.
There is a design compromise in the display driver circuit. As shown in Fig. 2, there are no segment current-limiting resistors because fifteen $1 / 4$-watt resistors would be required, which would take up too much room. Instead, transistor Q5 sets the current level by setting the voltage on the driver-transistor collector. Transistor Q5 should handle about 300 mA of current. The three-digit displays are fairly well matched and the digits all have equal brightness. If both three-digit readouts are not matched to each other, use two sets of drivers to set the levels independently. So far, this modification

SMALL SIZE of probe-type frequency counter is due to IC "bricklaying" construction technique. IC's are glued together for maximum use of alloted space.

POINT-TO-POINT wiring is used exclusively in construction. Wires are soldered directly to the IC pins. Discrete components are attached wherever room permits.

All resistors $1 /$-watt, 10%
Probe body:
R1,R5-100,000 ohms
R2-R4,R6,R12,R16-10 megohms
R8-R11-1 megohm
R13,R15-10,000 ohms
C1-25 pF, 10 -volt disc
C2-. $001 \mu \mathrm{~F}, 10$-volt disc
D1-D6-1N914 diode
Q1-2N5220 (Motorola), any 100-mA NPN No. TO-92 transistor
Q2-Q5-2N5221 (Motorola), any 300-mA PNP No. T0-92 transistor
IC1,IC2-CD4013 (RCA), MC 14013 (Motorola), dual type-D flip-flop
IC3-74C04 (National), hex inverter
IC4-CD4001 (RCA). MC 14001
(Motorola), quad 2 -input nor gate
IC5-CD45 18 (RCA), MC14518
(Motorola), dual BCD up counter
IC6-CD4017 (RCA), MC14017
(Motorola), decade counter/divider

PARTS LIST

1C7-CD4023 (RCA), MC14023 (Motorola), triple 3-input NAND gate
IC8-MM5369 (National), programmable oscillator divider
IC9, IC12-CD4511 (RCA), MC 14511 (Motorola), BCD-to-seven segment latch/decoder/driver
IC 10, IC 13-MC14553B (Motorola), 3-digit BCD counter
IC11-74C08 (National), quad 2-input and gate
XTAL1 $-3.57-\mathrm{MHz}$ crystal
DSP1, DSP2-3-diglt, common-cathode, 7-segment LED display (HP 5082-7433 or equal. Three 2-digit displays may be substituted.)
S1,S2-cut from $80-$ pin, . 125-in. edge connector
Misc. $-1 / 8$-in. and $1 / 16$-in. black opaque acrylic plastic, $1 / 16$-in. transparent amber acrylic plastic, ABS plastic sheet (Plastruct) and I-section, AWG No. 30
wire-wrap wire, cyanoacrylate glue.

Battery pack:

BATT 1-(4) 20-mAH NiCad cells
R1- 1000-ohm, 10 -turn trimmer
IC2-MC 1403 (Motorola), precision
low-voltage reference $(2.5 \mathrm{~V} \pm 25 \mathrm{mV})$
One miniature mike connector
Misc.-Double-clad, $1 / 1$-inch No. G- 10 PC
board. $1 / 6$-in. black acrylic plastic.

Probe tip:

R1,R3-100,000 ohms
R2- 10 megohms
C1,C2-0.01 $\mu \mathrm{F}, 50$-volt disc
D1-1N914 diode
IC1-CD4013 (RCA), MC 14013
(Motorola), dual type-D flip-flop
S1-SPST normally open miniature pushbutton switch
S2-2 copper nails
Misc. $-1 / 6-$ In. black acrylic plastic, double-clad $1 / 16$-in. No. G-10 PC board. $1 / 2-\mathrm{in}$. clear plastic, $1 / 6-\mathrm{in}$. piano wire.

FIG. 1-BLOCK DIAGRAM of the MC14553 CMOS 3-digit BCD counter used as the heart of the frequency-counter-in-a-probe. Two are required for the 6-digit LED readout.
has not been necessary. The brightness of the digits varies slightly, depending on which number is displayed. However, this variation is not objectionable.

You can use any three-digit commoncathode seven-segment readout. With these readouts, the total current drawn by the entire meter is 35 mA , with a 10 K resistor from the base of Q5 to ground. A 4.7 K resistor increases the display brightness, but it also increases the current drain to 50 mA . The base lead is brought to the power-supply socket to increase the intensity when the meter is not being battery-operated.

The MCI4553B IC's 10 and 13 count when the DIS signal is low. An IC13 overflow clocks ICIO. The counter data is transferred to the latches when the latch signal is low. Master reset MR resets both counters and multiplexers.

The input amplifier consists of a 74CO4 hex inverter used as a linear amplifier. Each inverter has a gain of about 10 dB at 2 MHz and 5 volts. The first inverter is biased in the linear region

FIG. 2-FREQUENCY-COUNTER schematic shows the simplicity of this novel instrument. CMOS-
type IC's and the transistors are used to reduce power consumption.
by R2. Resistor R1 limits the input current on high-level signals. The maximum input current to any CMOS input pin is 10 mA and is set by the IC's internal metallization. Higher currents can cause the device to fail, either because the metal migrates or the aluminum melts. While the CMOS input impedance is usually
high, it falls to a low value when the input protection diodes conduct. This occurs when the input exceeds the supply voltages. The 100 K input resistor insures that the input-current limit of 10 mA is not exceeded until the input is greater than 1000 volts. When the diodes conduct, the input impedance is 100 K ; when they are
not conducting, the input impedance is 10 megohms.
The remaining five inverters are bruteforced for maximum gain and are biased by resistor R6 to operate in the linear region. The input sensitivity depends on the IC; sensitivities can sometimes be as continued on page 100

Modular System for quick PROTOTYPING

Abstract

Breadboarding an electronic device that uses digital or logic circuitry can be boring and time-consuming because the circuits are often repitious. Use this system of pre-wired circuit modules to speed your next prototype.

JAMES E. TEMPLE

BOTH DESIGN AND CONSTRUCTION OF working electronic circuits have come a long way in the past few years. In the past, constructing circuits for a working model was accomplished by a rats-nesttype setup. It meant soldering-in expensive components to an electrical point, plus numerous wires to jump to other areas of the circuit. Once a circuit was wired and proven, reclaiming the parts for use in the final printed circuit was a maybe situation. Most often, new components had to be used in the final circuit and the rats-nest was left as is. This method not only had its drawbacks, it was also an expensive way to experiment with a pet project.

A direct design using a PC board was time consuming, and the possibility that the layout would work correctly was chancy. One serious error in the design
 and 16-pin IC's. Module uses single-pin male and female bus connectors. Foil pattern is for component side (top) of single-sided board and is shown full-size.
meant probably redesigning a new PC board. The chances of fixing up a bad board were fifty-fifty; major changes could be a disaster and the time lost to make a new board was costly.

In answer to this problem, wire-wrap sockets, wire-wrap tools and solderless sockets were introduced. But using the wire-wrap or solderless type of circuit presents an initial outlay of quite a few dollars, and for the hobbyist, that money is sometimes hard to come by. A large or complex circuit means you have to have enough sockets to go around for the components. This also means the size of the project is limited with this method of prototype construction. Additionally, once a circuit is torn apart from the socket, there is no way to trace the interconnecting wire jumpers without rebuilding the circuit. A mistake can cost you time. A true schematic must be drawn up, corrections made from the working circuit and the final circuit must still be built.

The modular system

Modular construction techniques are being used in commercial electronic gear-TV sets, computers, test equipment, etc. Modular construction consists

FIG. 2-WIRING DIAGRAM for module shown in Fig. 1 for use with 7448 BCD to 7 -segment decoder/driver. View is from boltom (non-foil) side of board.
of a bus system and modular circuits that plug into the bus system to form the total working device. Replacing or adding to the device is simply a matter of plugging in a new module.

This same principle-the use of mod-ules-can also be applied to prototype circuit construction. This method is highly workable these days because IC'sTTL, CMOS and other logic familiesare relatively inexpensive. Today, the cost of two IC's equals what one used to cost. Why not then buy two IC's and use one in a permanent modular circuit that is easily stored, easily made and fairly inexpensive to construct? This article describes a modular breadboard system that can be used as a learning tool, built in your spare time and is just plain fun to make.

To build a modular system, some form of bus structure is necessary. For IC's, the bus structure comprises the powersupply input connections, plus any internal or cross-wiring of the IC pinouts that allows them to function. Some method of interconnecting the input and output to other modules must also exist and must be of a solderless nature. The modular system described in this article meets all these specifications.
Each module consists of an IC with its

NOTE: "IC" IS OUTLINED - WATCH PIN NO. ONE (1)
FIG. 3-7400 QUAD 2-INPUT NAND GATE IC is wired on small module as shown. View is from bottom (non-foil) side of board.

bus power system and internal wiring. Various types of IC's, each having a particular function and each existing as an individual module, can be combined with other modules to form working prototype circuits. The bus system automatically makes the proper power connections, and individual solderless pinouts are provided for the cross-wiring of the modules to the other circuit components. The system requires building the individual modules themselves, plus storage or inventory of a number of completed units.
The modular system presents no visible drawbacks since the cost of just a single module is low. The actual building and testing of each module allows you to learn digital logic circuits by using manufacturers' design manuals or the popular IC Cookbooks. As the system is constructed, you learn by testing your designs for each IC that you will use in your inventory of modules.

An easy way to start building up your modular system is to build an IC project. Design the individual modules, build them and use them in the prototype circuit. From this built-up prototype circuit, you will test out the total project. And you may even spot a bug or design a better way to construct the project.

The modular system can also be built one section at a time. You can design a series of modules, purchase the components and then build the units. They are reusable in future circuits, and you can store them in a case or box. If this is the method you choose to build your system, then do it logically. Keep an inventory of the modules you have, what you would like to have in your system and what you plan to add to it from your pet projects.

What about the giant IC or LSI units? These can be costly. The answer is to use solderless sockets within the modular system. Build a module to contain the solderless socket; and when you have an

COMPONENTS AND WHERE TO OBTAIN THEM

PC board stock and etching materials are available both as Individual elements and as kits from electronics parts dealers and stores and mail-order houses catering to electronics hobbyists. For the alternatestyle modules shown in Fig. 5 and the photo above, you will need 2-pin male and female bus connectors which can be obtained from an electronics parts distributor or from Robinson Nugent, 800 E. 8th Street, New Albany, IN 47150. These are:

Part No. WTS-36R-4-T, tin-plated, sin-gle-row, right-angle male header.
Part No. WB-25-PR, single-row, rightangle female header.
Acceptable substitutes are manufacfured by AP Products, 77 Corwin Drive, Box 110, Painesville, OH 44077: Singlestrip right-angle male connectors and sin-gle-strip female connectors. (Note: you must use a wire to attach this female connector to the board, it is not available in right-angle format.)
expensive IC, use this module to wire up the IC. This then is a universal module. Several of these modules allow interconnections for discrete components.

Once a proper system is assembledthat is, various modules are built and proven-construction of prototype circuits is accomplished quickly. Incidentally, there are no limitations on how large the circuit can be to exist within the modular system; it can be as large as you need. The only real limitation is the size of your work area. Large circuits, once assembled, can easily be broken down into convenient final designs for several PC boards. If any particular IC would be better placed in another area of the circuit, it can easily be moved.

Constructing the modules

Here's how to get started on constructing your modular system. Each 14 -pin or 16 -pin IC will be made into a small

HOW SOME PC BOARDS INTERCONNECT. Boards are etched from foil patterns in Figs. 1 and 4. Single-pin male and female connectors are from Keystone.

FIG. 4-LARGE MODULE accommodates up to 32-pin IC's as well as discrete components. Module uses single-pin male and female bus connectors. Foil patterns are for component and bottom side of two-sided boards and are shown full-size.

FIG. 5-ALTERNATE-STYLE MODULES require 2-pin male and female bus connectors. Foil pattern is for component side of single-sided board and is shown full-size. Pattern delivers two modules which should be separated.
module on a single-sided PC board. The IC is soldered directly to the board. A larger module will accept IC's with up to 32 pins (memories, CPU, etc.) and is double-sided. Power supply connections from module to module are made by plug-in connectors. Connections to the bus lines within each module are made by using jumper pins. Miniature tubular pins allow solderless wire connections between modules. Twenty-four-gauge wire, cut to size, stripped at the ends and pushed into the pin tubes, makes these input and output connections. Each module rests on a $1 / 4$-inch-thick piece of foam material glued to the bottom of the module. The following is a list of components that you will need to make several modules:

1. Connectors: These are single-pin male and female bus connectors. You can probably adapt any connector that you prefer.
continued on page 104

fact: you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects.
Take, for example, the Shure SM58 and SM59 microphones:

6800 An overall look at the hardware and software aspects of the 6800 microprocessor.

WILLIAM BARDEN, Jr.

THE MOTOROLA MC6800 IS ONE OF THE "big four" microprocessors that are used in hobbyist computers. For example, it is used in the Southwest Technical Products SWTP 6800, as well as in several others. The 6800 is part of a large Motorola microcomputer family that can be used to construct a versatile microcomputer system for business, experimentation, or real-time control. Let's take a look at the hardware and software aspects of the 6800 .

Hardware

The 6800 requires only an external +5 -volt power supply and an external clock to implement the complete CPU function. The clock input requires a twophase nonoverlapping type that is somewhat difficult to generate compared with the single-phase clock required by other microprocessors.

Figure 1 shows the pinout of the 6800 . It contains the usual 16 -line address bus Al5 through A0 and an 8-line bidirectional data bus, D7 through D0. External memory and I/O (Input/Output) devices are addressed by the address bus, and all data is transferred between internal CPU registers, external memory and I/O devices along the data bus. As usual in this generation of microprocessors, the $16 \mathrm{ad}-$ dress lines can address up to 64 K $(65,536)$ bytes of external memory and I/O devices. No differentiation is made between memory addresses and I/O device addresses in a memory-mapped $1 / O$ addressing scheme.

The two-phase clock inputs are at $\phi 1$ and $\phi 2$. The chief control signals for reading and writing to external memory and I/O are the VMA and R/W signals. Signal VMA is issued when a valid memory (or I/O) address is present on the address bus. Signal R/W, of course, specifies the direction of the transfer. These two signals and clock input $\phi 2$ are decoded by external logic to perform transfers between external devices and the CPU.
Bus control signals TSC (Three-State Control), DBE (Data Bus Enable) and BA (Bus Available) all control the CPU bus lines for direct-memory-access
(DMA) applications that transfer data between external devices and external memory, thus avoiding the CPU.

There are three interrupt inputs available with the 6800: $\overline{\text { RESET }}, \overline{\mathrm{IRQ}}$, and $\overline{\text { NMI }}$. The $\overline{\text { RESET input starts the CPU }}$ from a power-down condition, or resets the CPU from a locked condition. The $\overline{\text { IRQ }}$ input is the actual external interrupt request that indicates an external device is interrupting and requires service. The $\overline{I R Q}$ input will be ignored if an interruptenable flip-flop in the CPU has been reset. The third interrupt, $\overline{\text { NMI, can }}$ never be disabled and is used to signal catastrophic system conditions such as an imminent power loss. All three interrupts cause a interrupt vector address to be loaded into the program counter, effectively transferring control to one of three interrupt routines.
high-impedance state when disabled and allowing multiple connections to be made to the same bus or control line.

6800 architecture

Figure 2 shows the internal CPU registers of the 6800. Not shown are the nonaccessible CPU registers used in instruction fetch and execution. The program counter is a typical 16 -bit register that holds the address of the instruction being executed. Addressing is performed in byte fashion, so that the program counter always holds the current externalmemory address of the one- to three-byte instruction.
The stack pointer is a 16 -bit register that holds the current stack address. The external memory stack is used for temporary storage of program variables and for automatic storage of CPU registers during the interrupt process. The stack can be located anywhere in external memory by properly initializing the stack pointer with the top of stack address.

Eight-bit accumulators A and B are

The remaining input signal, $\overline{\text { HALT, }}$, is used to stop CPU activity for single-stepping and similar operations. Most of the CPU lines are three-state, reverting to a
used to hold one of the operands for arithmetic and logical operations in the CPU. They also serve as the registers from which data is transferred between exter-
nal memory and $1 / O$ devices and the CPU. When instructions are executed in the CPU, another set of flip-flops, the condition codes, are set according to the results. Collectively, the condition codes constitute a condition-codes register that specifies carry, overflow, arithmetic sense of the last operation and interrupt-enable. As in other microprocessors, conditional branches in program execution can be performed by testing the states of the condition codes using proper instructions.

Index register IX is a 16 -bit register that permits an indexed addressing mode in instruction execution in the 6800. In this mode, the effective address of the instruction is formed by adding a displacement in the instruction to the contents of the index register. As instructions are available to step the index register forward or backward, the indexed addressing mode can be used to sequence through tables of data or for other processing functions.

Instruction set

The 6800 has 72 instructions. Since many of these instructions permit several addressing modes, however, the actual number of instructions is a few hundred.

The 6800 instructions are straightforward processing types: add, subtract, OR, AND, exclusive $O R$, shift, plus instructions to transfer data and conditionally and

FIG. 2-INTERNAL REGISTERS of the MC6800 microprocessor.
unconditionally branch to subroutines and other locations. (BCD arithmetic operations can also be performed.)

The instruction set's effectiveness is greally increased by a wide range of addressing types:

1. In immediate addressing, an immediate 8 -bit or 16 -bit operand can be loaded into a CPU register from the instruction.
2. The first 256 locations in memory can be addressed by a direct instruction type that is only two bytes long.
3. Any location in memory can be addressed by extended addressing instructions that are three bytes long.
4. Relative addressing instruction modes address data within a range of -125 to +129 bytes of the current instruction in a compact two-byte instruction.
5. Indexed addressing instructions are also two bytes long.
The available addressing modes permit shorter instructions, which reduces memory and speed requirements in the system. Instruction speeds with a $1-\mathrm{MHz}$ system clock range from $2 \mu \mathrm{~s}$ to $12 \mu \mathrm{~s}$.

Other system components

The 6800 microprocessor interfaces to other IC's in the 6800 family. These include a general-purpose interface (MC6820), asynchronous communications interface (MC6850), modem (MC686OL), RAM's, and ROM's. Both the Motorola and second-source data and support are excellent, and devices are continually being developed in this family. R-E

Double your capability. The VIZ Supplysts ${ }^{\text {"w }}$ Power supplies with built-in circuit testing capability.

 Only the VIZ Supplysts let you power equipment and circuits and test dc voltage points, all with the same instrument.The Supplysts speed your work, help cut down bench clutter, and free VOMs for other jobs. And even with their extra testing capability, they cost less than most quality fully-regulated power supplies.

Single 0-50Vdc. 0-2A supply with two 0-99.9V DC voltmeters WP-705 $\$ 240.00$

Single 0-25Vdc. 0-4A supply with two 0-99.9V DC voltmeters WP-706 \$240.00

Dual Supplyst
Two 0-25Vdc. 0-2 A supplies with two 0-99.9V DC volt meters WP-707 \$299.00
 The Circuit Tester line VIZ Test Instruments Group 335 E. Price St. Philadelphia, PA 19144

Triple Supplyst
Two 0-20Vac. 0-2A supplies One $5 \mathrm{Vdc}($ to 4 A) fixed-output supply with two 0-99.9V DC voltmeters WP-708 $\$ 333.00$

HOBBY CORNER

If you want to make it small, this approach to preassembled IC modules might just do the trick.
 EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

If you use a solderless breadboard as much as I do to "run up" circuits for testing, then you, too, must be tired. How many times have you wired this sequence: 7490 decade counter, 74175 latch, 7448 decoder/driver, and a 7 -segment digit? And then one or two more identical sequences right beside the first one? I simply got tired of doing it, especially when I counted 50 connections in each sequence!

Being quite lazy, I devised a way to cut this wiring down to 7 connections for each digit. Now I can put a 3 - or 4 -digit readout on my board in almost no time and I save a lot of board space, too. You can enjoy these same advantages by building your own "digital modules."

The digital module or block method explained below has other applications as well. You can use it with other combinations of IC's that you breadboard frequently. In addition, you can use it in construction to save space if not time. Here is how it works on two different kinds of blocks.

Readout module

The first example is a readout module of the "piggy-back" type consisting of 7490, 74175,7448 and digit. As you can see in Fig. 1, when these parts are wired there are only 7 connections to their outside world. All the others are within the block. Thus, all you have to do is wire the inside once and make provisions for
the 7 outside connections.
A note of caution: be sure that the IC's are good before you begin. It is a shame to do this work only to discover a bad IC in the middle!

The module is made by cementing (with epoxy or whatever) the IC's and digit together in piggy-back fashion as shown in Fig. 2. Be sure the 7490 is on the bottom and the digit on top. If you put them in the order shown, the wiring will be easier. Note that all of the pins of the digit, 7448 and 74175 and some of those on the 7490 have been bent out to the side to facilitate wiring and prevent shorting.

FIG. 2-END VIEW of the cemented block.
The 7448 IC and a common cathode digit are used so that it will not be necessary to include current limiting resistors for each segment. You can, of course, use a 7447, a common-anode digit and 7 (or

FIG. 1-THE READOUT MODULE circuit used in this Hobby Corner.
8) resistors but that is more difficult to wire and ends up more bulky.

The digits on my breadboarding modules are type FND-10. I use these because, being small, they could be placed sideways on top of the block. Then, when plugged into the breadboard, they read right-side up rather than sideways. You can use any common-cathode digit provided it does not require more than the listed $6.4-\mathrm{mA}$ current capability of the 7448. (Actually, somewhat more demanding digits will function in this circuit. In fact, the FND-10 is listed as requiring 10 mA -per-segment, so it is just a little less bright.)
It is easier to bend the IC pins out before the block is cemented. Use small long-nose pliers or medium-duty forceps. You are less likely to break a pin if you bend just the narrower part to about 45° (though I have not broken off a pin yet). This is far enough to prevent shorting, allow wiring space and cause no trouble when you later bend them back down.

Wiring the "modules"

You may use any comfortable method of wiring pin-to-pin once the cement is dry. The wire should be fine gauge to prevent accidental shorts. You must use very small wire on the bottom IC pins that are used for external connections or they will not seat properly when plugged into the breadboard. Space for wiring is tight and the job can get tedious. I have found that the best method is to do all wiring with No. 30 wire in a wiring pen or pencil. They work very well in close quarters and the insulation does not have to be scraped from the wire.

For most connections you can use the entire pin in making the joint. In the case of the four "external connection" pins of the 7490 which are also wired, you must be extra careful. To leave free as much as possible of those pins ($4,5,10,13$), make the joints close to the body of the IC.

Soldering must also be done careful-ly-neatly, quickly and without excessive heat. If you are sloppy, there will be shorts. If you use too much heat, you can damage the IC internally. You would do well to practice on a scrap IC with a small, hot iron to get the heating time down to a minimum.

The module described above is wired according to the chart in Fig. 3. You can check the pinout of each IC to determine
just what is being connected to what. The resulting pinout for the bottom IC is given in Fig. 4. Note that the two pins which were originally "no connection" pins (pins 4 and 13) are now used.

$\frac{7490}{5^{*}}$	$\frac{74175}{16-1}$	$\frac{7448}{3-4-5}$	DIGIT
10^{*}	8	8	COM CATH
13^{*}	9		
4^{*}			DEC. PT.
$1-12$	4		
	2	7	
9	5		
8	7	1	
	12		
11	13	2	
	15	6	
		9 thru $15-$ SEGMENTS	

*these pins are not bent
FIG. 3-INTERNAL CONNECTIONS for the readout module.

1 - NC	14 - Signal Input
$2-\quad 0$ set	13 - Latch signal
$3-\quad$ (NEW)	
4 - Decimal Point	$12-$ NC
(NEW)	$11-$ NC
$5-+5 v$	$10-G N D$
$6-9$ set	$9-N C$
$7-9-N C$	

FIG. 4-PINOUT FOR THE module base (7490).
After wiring is completed, check the operation of your block to be sure that there are no errors. Then, for ease of handling and better appearance, cut a small strip of PCV insulating tape and put it on top of each row of bent pins. Except for the bottom row on each side (7490), gently push the pins down against the tape below. You can leave it as is or wrap a continuous length of tape around all sides of the block or "package" it to suit your taste.

Now you have a complete readout circuit in the form of one thick IC block. Of course, you can buy a one-block device to do this particular job, but look at the price. Your homebrew module is just as casy to use.
This same piggy-back technique can be used to make other modules. For example, if you always use a "continuous count" type of readout, you can leave out the 74175 latch. Of course, the module with the 74175 is convertible; that is, it can be made to read continuously by connecting the "latch signal" pin to the 7490 input (pin 14).

There is no limit to the types of IC's you may wish to put into a block for onetime use in a construction project.

When there are just two IC's in a module, they can be cemented back-toback. This method requires no pin bending, but it is more difficult to package neatly.

If your block circuit includes several
resistors, capacitors and/or other small components, you can put them in one or two layers within the module.

Depending upon its contents, your block may require more external pins than are available on the bottom IC. Without decreasing the contents of the module you can cement a header "caboose" to the end of the bottom IC to provide more pins. Be sure you maintain the proper pin spacing between the bottom units. Of course, some of the IC's may be placed on top of the header also.

Sometimes another IC configuration is necessary. I have breadboarded a 555 astable and a 7490 counter innumerable times. Even those few connections have
become tiresome. Of course, a digital block was the answer.

This time, however, neither IC would serve as the bottom connector. Though both could be mounted on a header, I prefer a smaller block using the "onedge" technique. In this configuration, one-half of the pins of two IC's are used for the external connections.

Wrap-up

Using these instructions you can construct digital modules to serve almost any purpose. They will save time and space repeatedly on your breadboard. In projects you can get some real miniaturization when using this technique. R-E

15MHz PORTABLE OSCILLOSCOPE

- 15 megahertz bandwidth.

- External and Internal trigger.
- Time Base-0.1 microseconds to $0.5 \mathrm{Sec} /$ div-21 settings.
- Battery or line operation.
- Automatic and line sync modes
- Power consumption less than 15 W.
- Vertical Gain-0.01 to 50 volts/div -12 settings.
- Weight is only 3 pounds.

RECHARGEABLE DUAL TRACE

PORTABLE
$2.7^{\prime \prime} H \times 6.4^{\prime \prime} W \times 7.5^{\prime \prime} D$
AVAILABLE NOW \$ 435

With Rechargeable
Batteries a Charier
Batteries \& Charger Unit

stafie of solitistatic

A look at integrated circuit peak-detectors and how they work, plus several new releases that are making solid-state news.
 KARL SAVON, SEMICONDUCTOR EDITOR

DIODE DETECTORS IN LINEAR IC'S USUALLY do not resemble their discrete counterparts. Transistors, with various combinations of shorted or open elements, or connected as emitter followers or amplifiers, are common in IC designs. Seemingly odd schematics are the result of design experience and invention that has produced practical, area-efficient, high-performance circuits. In conventional diode detectors, the turn-on offset level is associated with the barrier potential voltage of the diode junction. Quite often this potential (0.6 volt for silicon) is larger than the signal; therefore, rectifying a signal in hundreds of millivolts or less is not possible. The answer to this problem is a DC-biasing scheme that keeps the diode slightly conductive or on the verge of conduction; another answer lies in a differential-type configuration where the characteristic of a reference device balances out the offset of the detecting device.

Interdesign's Application Note on IC rectifier circuits shows several approaches to this fundamental circuit function. Figure 1 shows the circuit dia-

FIG. 1
gram of a peak detector built from two emitter-follower transistors. The advantage to having followers in an IC is that they do not require individual collector isolations. Followers use very little chip area. The base-to-emitter junction of the input follower is analogous to the normal detector diode.

The secret of the circuit is the inconspicuous input coupling capacitor, C 1 . Because the signal to be detected is not directly coupled to the input transistor, the transistor can be biased into its active
region so it conducts and does not depend on a portion of the input swing to turn the transistor on. Equal-resistance divider R1-R2 drops the supply voltage down to one-half. The Q1 emitter is connected to detector capacitor C2. Positive inputsignal swings force the capacitor above its no-signal bias point of $1 \mathrm{~V}_{\mathrm{be}}$ below onehalf the supply voltage. When the base of Q1 goes positive, C2 charges quickly because of the relatively low output impedance of the emitter follower. When the input signal swings negative, C 2 tends to maintain the voltage on the transistor's emitter, so that the base becomes biased below the emitter, thus cutting off the transistor. There is no capacitor discharge path through Q1, and the voltage charge is lost only through the base current of output follower Q2. Output follower Q2 isolates capacitor $\mathbf{C} 2$ from the load so that the output current does not appreciably load the capacitor. Transistor Q2 is also biased-on by the DC bias level of $2 \mathrm{~V}_{\mathrm{be}}$'s below one-half the supply on its emitter, and the 3.6 K emitter resistor.

The quick charge and slow discharge rate of capacitor C2 account for the peak detection ability of the circuit. For the values given in Fig. 1, the circuit response is flat from 10 kHz to 100 MHz . Although this particular circuit is biasedon to take care of the junction offsets, it has not been temperature-compensated. Note that the output voltage is two base-to-emitter junctions lower in voltage than the fixed DC bias on the base of Q1. Since silicon diodes have a temperature coefficient of -2 mV per ${ }^{\circ} \mathrm{C}$, the output

FIG. 3
temperature coefficient for this circuit is t wice that value, or -4 mV per ${ }^{\circ} \mathrm{C}$.
Figure 2 shows one type of tempera-ture-compensated detector dircuit, in which the input stage is a differential amplifier. The peak-detection capacitor is connected to the base of Q2, the transistor opposite the input terminal. Transistors Q4 and Q5 in the collector circuits of the input pair are a current "mirror." Transistor Q4 is diode-connected, with its

FIG. 2
base and collector tied together (one of the most well-behaved integrated diode schemes). The common-base and emitter connections with Q5 mirror the current in Q4 to Q5. When the input signal swings positive, the current in Q1 increases, increasing the current in Q4 and Q5. Simultaneously, the current in Q2 drops by the same amount relative to the increased current in Q1.

The sum of the currents in differential transistors Q1 and Q2 must be equal to constant-current sink Q3. Therefore, the current output at the junction of the Q2 and Q5 collectors acts as a bidirectional collector that can either supply or source current as conditions demand. Feedback from the Q6 emitter to the base of Q2

dictates that the base of Q2 follow the signal on the base of Q1 within the circuit's slew-rate limitations. Current sink Q3 limits the peak current that is available at the base of Q6 and the charging rate of Cl .

Emitter follower Q6 has the same desirable characteristic as the detector follower in the previous circuit: It only supplies current and does not sink it, which again helps the circuit perform as a peak detector. When the input terminal swings negative, the feedback tries to make the output follow this swing by turning Q2 on and Q5 off, causing a voltage drop on the Q6 base. However, all this does is turn off Q6, and Cl maintains the voltage just before the negative transition, within the time-constant developed by Cl and the load resistance.

This detector circuit's frequency limitations are due to the response peculiarities of integrated PNP transistors in a technology that favors NPN's. The NPN transistors are vertically layered, but PNP's are constructed horizontally or laterally, which is nonideal. The circuit is good to about 400 kHz .

A way to compensate for the frequen-cy-response limitation is to first directly (without feedback) rectify the signal as shown in Fig. 1; then compensate for the $2 \mathrm{~V}_{\mathrm{bc}}$ offset. After detection, the frequen-cy-bandwidth requirement is the narrower frequency range of the detected modulation, which is within the capability of integrated PNP transistors. Another alternative is to build a circuit using only NPN transistors. Usually, this produces a more complex circuit because the functions that are natural for PNP's must be replaced with NPN equivalents.

Figure 3 uses the direct approach. The beginning of the circuit is similar to the circuit shown in Fig. 1, except that Q101 samples the detected output current in Q2, rather than responding to the emitter voltage. This current is mirrored in Q102 and is split between Q4 and Q103. Equal voltages appear on the bases of Q1 and Q3, and this voltage (reduced by a $2 \mathrm{~V}_{\mathrm{be}}$ voltage drop) is on the emitters of Q2 and Q4. The emitter resistors of Q2 and Q4 are identical. Thus for a zero input level, the current in Q4 and Q102 is the same and no current is left for Q103. Commonbase output-stage Q103 feeds the 7.2 K output resistor.

Positive input swings with respect to the initial bias point increase the current in Q1, Q2, and, in turn, Q101 and Q102. Any increase in Q102's current exceeds the constant-current bias in Q 4 , so that the excess current must flow through Q103 into the output. In perspective, Q3 and Q4 offset the voltage across the base-to-emitter junctions of Q1 and Q2. As Q1 and Q2's junction voltages change with temperature, so do the Q3 and Q4 junction voltages, thus cancelling the inputdevice variations within their matching tolerances.

For more details on these and other IC rectifier circuits, write for Monochip Application Note APN-6 to Interdesign, Box 7065, 1255 Reamwood Avenue, Sunnyvale, CA 94086.

MOS 1024×4 static RAM

Motorola's MCM2114 is a completely static 1024 by 4 -bit memory that does not need timing strobes, clocks or refreshing. The part is available in four speed ranges: $200 \mathrm{~ns}, 250 \mathrm{~ns}, 300 \mathrm{~ns}$ and 430 ns . Operated from a 5 -volt $\pm 10 \%$ supply, the N channel, silicon-gate device is designed to work in systems where simple interfacing is important. The 18 -pin plastic MCM2114 is priced at $\$ 12.25$ each in

100 quantities. For information, write Motorola Inc., Integrated Circuit Division, 3501 Ed Bluestone Boulevard, Austin, TX 78721.

PWM voltage regulator

Texas Instruments' TL494 is a power supply control circuit containing a 5 -volt regulator, error amplifier, current-limit amplifier, oscillator, dead time control comparator, pulse-steering tlip-flop and output control circuitry. The circuit design prevents double-pulsing of either of its two outputs. The common-mode in-put-voltage range is -0.2 to $V_{c c}-1.5$. The device is suitable for switching regulators and DC-to-AC converters. R-E

NEW FROM LEADER The 20MHz Dual Trace Scope.

Faster. Brighter. More Versatile. Economical.

Model LBO-508. . . \$769.95 with accessories
See your distributor or write direct for details.
When Quality Counts...
151 Dupont Street, Plainview, N.Y. 11803
(516) 822.9300
Regional offices: Chicago and Los Angeles

Cuttoff problems are often overlooked when troubleshooting a chassis.
 JACK DARR, SERVICE EDITOR

"CUTOFFS" ARE VERY IMPORTANT IN ELECtronics, particularly in color TV. A cutoff problem is when an active device in a circuit is biased so far in the wrong direction that it doesn't do anything at all, it just sits there. If you overlook this, things can become very complicated. Unfortunately, this happens all too often.

Fortunately, there are easy tests you can make. Two instruments are needed: A scope to tell you that there is a signal on the input of the stage but none on the output; and a DC voltmeter to measure the voltages of the stage. You can then compare the readings against the ones shown on the schematic. The basic characteristics of a cutoff stage are always the same: the collector voltage is very high and the polarity of the base voltage is in the direction of cutoff (reverse bias for transistors.)

Now, here's the key test. One voltage reading can give you all the above information, the emitter voltage. (The majority of amplifier stages are common-emitter stages, and the return to ground will be through a small emitter resistor.) Since the emitter voltage is developed across this resistor by the collector current, the voltage can tell a lot. If the voltage is zero, the transistor isn't conducting at all. This may be because the transistor is open. It's easy to check the transistor with an ohmmeter. Check the resistor also; if it is open, the transistor will not conduct.
If the transistor or resistor don't show any problems, start checking the bias. Trace the circuit back and find out where the bias comes from. There are several ways of obtaining bias, most of them use the voltage drop across resistor networks. Quite a few voltage dividers are used. The resistors must be very close to the rated value. You should also check for shunt paths. The best way is to lift one end of each divider and check it separately.

This troubleshooting approach leads to simple tests for certain stages that have shown difficulties; for instance, TV IF's. Most transistor IF's use three amplifier stages; all are common emitters and most
are NPN's. You can locate a dead IF stage with only three DC voltage readings: Just read the emilter voltage on each one. The normal reading will be only 3 to 4 volts; if you find one with zero voltage, there's your answer. If this is one of the first two stages, the malfunction could be due to AGC cutoff. An easy test for this is to override the AGC and observe if a signal comes through. If so, check the AGC.

This technique is used for stages that are not normally cut off. There are other cases where the stage is cut off under certain conditions-color-bandpass amplifiers and squelched audio stages in radios, for example. With no signal input, or a black-and-white signal, the bandpassamplifier stage has a high cutoff bias on its grid. When a color signal is received. this bias is overridden and it drops to a level that permits amplification. This causes a lot of no-color problems. The bias here comes from the color killer; check it. A bad diode in the killer detector can mess things up very nicely.

Controlled cutoff stages

Now, let's discuss those stages that run at a precisely controlled amount of biassync separators, AGC, burst gates, etc. In sync separators, the device must be biased to the exact point at which only the upper 10% to 15% of the video signal causes the device to conduct. The video signal has a normal sync/video ratio of 75% video and 25% sync. Only the extreme tips of the horizontal sync pulses pass through. A properly working sync separator chops off the lower parts of the sync pulse, including the color burst! These stages use high-gain amplifier circuits so that the small sync signal is amplified to a level of about 50 volts P-P in tube circuits, and about 25 to 30 volts P-P in solid-state circuits. No video signal can be allowed through. If a video signal does come through, it causes sync problems such as jitter, etc.

Here again, the test for normal operation is easy. Use your scope to check the composite sync output for correct P-P
amplitude. Checking the horizontal sync will show up any trace of video in the sync; look for "wiggling" on the downsloping parts of the normal sawtooth signal around the AFC circuits. The normal cause of a problem like this is incorrect bias voltages on the sync separator; this is due in most cases to drifting resistors. Leaking capacitors can also cause trouble, of course.
The noise-canceller circuit is a fruitful source of problems, once again due to faulty bias. In normal operations, these circuits are biased so that they are almost cut off. A normal-amplitude video signal sails on through. If a noise pulse appears, this biases the noise canceller to cutoff. Needless to say, if the bias on this stage deviates, it can cause problems. If it drifts in the wrong direction, it can cutoff the sync-separator completely.

These circuits clip off the sync as well as the noise. One popular chassis used a VDR (Voltage Dependent Resistor) from a low $B+$ voltage to set the bias on the No. 1 grid of a multigrid AGC/sync tube. If the VDR went bad, the bias went way off and so did the sync!

Here again, DC voltage readings are the confirming test for such problems. I receive quite a few letters from readers that include complete lists of $D C$ voltage readings around a given stage. Quite often, one voltage sticks out like a sore thumb because the reading is way off normal. If you make up your own lists, it very often helps you visualize the problem.

Cutoff is a simple problem, but one that is of ten overlooked when making a diagnosis. If you make it a habit to look for it, it just might make troubleshooting that much quicker. Happy hunting! R-E

service questions

MANY PROBLEMS

l've got lots of problems with a Motorola model TS908. There's no sync, the color sync is bad, the hue control doesn't work right, and the automatic-gain control is not good. Ifound that I could shunt continued on page 90

> Dexion of
> Disital Sytems
> Book 3

Book 2

Design of
Digital Syte

Design of
Digital Sytems

Personal Computers \& Microprocessing

> Here are two inexpensive programmed learning courses designed to keep you up-to-date in digital electronics.

Design of Digital Systems - six volumes

The products of digital electronics technology will play an important role in your future. Calculators, digital watches and TV games are already commonplace. Now, microprocessors are generating a whole new range of products. Personal computers will be in widespread use very soon. Your TV. telephone and computer will combine to change your children's education, your jobyour entire way of tife.

WRITTEN BY EXPERTS

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and appli. cation of digital logic. Learning by selfinstruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects as well as your understanding of the rapidly changing technotogical world around you

The courses are designed as much for the professional engineer as for the amateur enthusiast. You'll learn about microprocessing as well as personal computing - not to mention atl the other aspects of digital electronics design.

ADVANCED COURSE

DESIGN DF DIGITAL SYSTEMS

Design of Digital Systems is written for the engineer and serious hobby ist who wants to learn more about digital electronics. Its six large-format volumes-each $111 / 4^{\prime \prime} \times 81 / /^{\prime \prime}$ are packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of microprocessors and computers.

CONTENTS

The contents of Design of Digital Systems include:
Book 1: Octal, hexadecimal and binary number systems; representation of negative numbers; complementary systems; binary mulitplication and division.
Book 2: OR and AND functions; logic gates; NOT, exclusive-OR, NAND,NOR and exclusive - NOR functions; multiple input gates; truth tables; DeMorgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.

[^2]Book 3: Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.

Book 4: Flip-flops; shift registers; asynchronous counters; ring, Johnson and exclusive -OR feedback counter; random access memories (RAMs); read-only memories (ROMs).

Book 5: Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; insiruction decoding; control program structure.

Book 6: Central processing unit (CPU): memory organization; character representation; program storage; address modes, input/output systems; program interrupts; interrupt priorities; programming; assembters; executive programs, operating systems, and time-sharing.

BASIC COURSE

Digital Computer Logic \& Electronics

CONTENTS

Digital Computer Logic and Electronics is designed for the beginner. No mathmetical knowledge other than simple arithmetic is assumed, though you should have an aptitude for logical thought. It consists of 4 volumeseach $11 \frac{1}{2^{\prime \prime}} \times 814^{\prime \prime}$-and serves as an introduction to the subject of digital electronics.
Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; DeMorgan's Laws; design of logical circuits using NOR gates; R-S and J-K flipflops; binary counters, shift registers and half-adders.

NO RISK GUARANTEE

There's absolutely no risk to you. If you're not completely satisfied with your courses, simply return them to GFN with in 30 days. We'll send you a prompt, full refund. Plus return postage.

TAX DEDUCTIBLE

In most cases, the full cost of GFN's courses can be a tax deductible expense.

HOW TO ORDER

To order by credit card, call GFN's tollfree number $-(800) 331-1000$; or send your check or money order (payable to GFN Industries, Inc.) to the address below.
Prices include overseas surface mail postage. Air Mail: additional costs (10 volumes); Caribbean \$10; Europe \$15; Africa, South America $\$ 20$; Australia, Asia $\$ 25$; or write for exact quote
Write for educational discounts, quantity discounts and dealer costs.

LOW PRICES - SAVE $\$ 5$

We ship promptly from stock. There are no extras-we pay all shipping costs; we even pay your sales tax where required. And if you order both courses, you save $\$ 5$. Order at no obilgation today.

Design of Digital Systems
$\$ 19.95$

- 6 volumes

Digital Computer Logic \$14.95
\& Electronics - 4 volumes
Both courses - 10 volumes $\$ 29.90$

GFN Industries, Inc.
Suite 400-R
888 Seventh Ave.
New York
N.Y. 10019

Call TOLL-FREE (800) 331-1000 (orders only)

World's biggest and best source of top-quality electronic kits! Look at what's new in our new just-off-the-press catalog!

NEW
ASX-1383 High-Fidelity Speaker System

Easily one of the finest speaker systems in its price range! Linear Phase design uses stepped speaker components and a 1st order crossover so all frequencies reach your ears at the same time; for a hi-fi improvement you can really HEAR. A special edge-free cabinet and acoustically "invisible" grill cloth provide outstanding dispersion and accurate stereo imaging. Great looks too. Brazilian Rosewood cabinetry adds a look of elegance to any decor.

CS-2048 Automatic Cruise Control

NEW
GD-1114 FM Wireless Intercom NEW IT. 7410 Logic Probe

Aircraft Navigation Computer

Set your desired cruise speed, press the button and that's it the CS-2048 maintains your car's speed on level roads, up and down hills, around curves, anywhere, automatically. Perfect for long-distance driving. A touch of the brake pedal returns the car to pedal control instantly - an important safety feature. Fits most domestic cars, vans and trucks with open driveshafts.

NO PREVIOUS
 EXPERIENCE NECESSARY

Thousands of people with no electronics experience whatsoever - people who have never handled a soldering iron before - have proved that you can build any Heathkit product you want to - and enjoy every moment of it! Simple step. by-step manuals make it easy as 1-2-3, and every Heathkit product you build will be a source of pride and satisfaction for years to come as you say "I built it myself'!

HEATHKIT ELECTRONIC CENTERS* PROVIDE SALES AND SERVICE

ARIZONA - Phoenix, 2727 W. Indian School Rd. (602) 279-6247.

CALIFORNIA - Anaheim, 330 E. Ball Rd. (714) 776-9420. El Cerrito, 6000 Porrero Ave. (415) 236-8870; Los Angelet 2309 S. Fiower St. (213) 749-0261; Pomona, 1555 Orange Grove Ave. N. (714) 623-3543; Redwood Cily, 2001 Middiefield Rd. (415) 365-8155; Sacramenlo, 1860 Fulton Dr. (714) 461-0110; San Jose (Campbell), 2350 S . Basco Ave. (408) 377-8920; Woodland Hille, 22504 Ventura Bivd. (213) 882-0531.

COLORADO - Denver, 5940 W. 38th Ave. (303) 422-3408 CONMECTICUT - Harttord (Avon), 395 W. Main St. (Rte. 44) (203) 678-0323.
FLORIDA - Miami (Hialeah), 4705 W. 16th Ave (305) 823-2280; Tampa, 4019 West Hillsborough Ave. (813) 886-2541

GEORGIA - Atianta, 5285 Roswell Rd. (404) 252-4341. ILLINOIS - Chicago, 3462-66 W. Devon Ave. (312) 583-3920; Chicago (Downers Grove), 224 Ogden Ave. (312) 852-1304 INDIANA - Indianapotls, 2112 E. 62nd St. (317) 257-4321. KANSAS - Kansas City (Mitetion), 5960 Lamar Ave. (913) 362-4486.

KENTUCKY - Loulswilie, 12401 Shelbyville Rd. (502) 245-7811.

LOUISIANA - New Orfeans (Kenner), 1900 Veterans Memorial Hwy. (504) 722-6321.
MARYLAND - Ballimore, 1713 E. Joppa Rd. (301) 661-4446; Rockville, 5542 Nicholson Lane (301) $881-5420$. MASSACHUSETTS - Bowton (Peabody). 242 Andover St (617) 531-9330; Boston (Wellesiey), 165 Worcester Ave. (Rte. 9 just west of Rt. 128) (617) 237-1510.
MICHIGAN - Detroit, 18645 W. Elght Mile Rd (313) 535-6480; E. Delroit, 18149 E. Eight Mile Rd. (3 13) 772-0. 16. MINNESOTA - Minneapolis (HopkIns), 101 Shady Oak Rd (612) 938-6371.

MISSOURI-St. Louis (Brideeton), 3794 McKelvey Rd (314) 291-1850.

NEBRASKA - Omaha, 9207 Maple St. (402) 391-2071. NEW JERSEY - Fair Lawn, 35-07 Broadway (Rte. 4) (201) 791-6935; Ocean, 1013 State Hwy. 35 (201) 775-1231. NEW YORK - Butfato (Amheral), 3476 Sheridan Dr. (716) 835-3090; Jericho, Long Istand, 15 Jericho Turnpike (516) 334-8181: Rochester, 937 Jelferson Fd. (716) 244-5470; White Piains (North White Plains), 7 Reservoir Rd.
(914) $761-7690$.

If quality...value....and the pride of craftsmanship turn you on, get your NEW HEATHKIT CATALOG!

OHIO - Cincinnati (Woodlawn), 10133 Springfield Fike 513) 771-8850. Cleveland 5444 Pearl Rd. (216) 886.2590 Columbus, 2500 Morse Rd. (614) 475-7200; Toledo 48 S. Byrne Rd. (419) 537-1887.

the horizontal hold coil with a 10 K resistor, and it tried to lock in. But the vertical sync is still bad. I hope you can help.A.C., Howard Beach, NY.

I hope I can! When there are so many problems all at once, it's a good idea to look for a common cause. The crystal ball says that with this set this could be a problem in the horizontal oscillator. If this is off that badly, all the keying pulses will be olf, which can cause all the other symptoms, AGC, color sync, picture sync, etc.

Try replacing C508, . $0039 \mu \mathrm{~F}$, and C509, $.0068 \mu \mathrm{~F}$, the tuning capacitors of the Colpitts circuit in the horizontal oscillator. Be sure to use the best capacitors you can find (and for goodness sake don't get 'em in upside down! I can assure you that this doesn't work at all well.)

FLYBACK WANTED

I need a new Ilyback for a Bradford model WTG-95885. But no one around here seems to know anything about these. The part number is 79D146-3C. Do you know a source?-G. Q., N. Charleston, SC.
Bradford is a name that can be of any make; there are 16 different manufacturers who have built this set! However, the
part number looks familiar. After crosschecking, I found the identical part number under Admiral in my Thordarson Guide; they recommend a Thordarson No. FLY-444.

Some time ago, I heard from a company having Bradford parts-The Marcel Companies, 57 Enficld Street, Enficld, СТ 06082.

LOSS OF CONTRAST

l've got the same problem in an RCA model CTC-24 and a Zenith model 25NC38, The problem is an intermiftent loss of contrast. Contrast control has no effect when it happens.-S. E., Campbell, OH .

In the RCA model CTC-24 check for a possible intermittently open $100-\mu \mathrm{F}$ electrolytic capacitor. This capacitor is connected to the slider of the contrast control in the cathode of the video output stage. The original component is a part of a multiple capacitor. When it opens up, we cut it loose and replace it with a $100-\mu \mathrm{F}$, 50-volt tubular-type component connected right to the contrast control. This may be causing the same problem in the Zenith set. It could also be an automaticgain control problem; clamp the AGC to see if this helps.

PICTURE "SPARKLES"

After replacing the power transformer in this Quasar set with an exact duplicate,
the picture came back. But now the picture has small spots and sparkles all over it! I've checked just about everything except replacing the transformer again! The voltage readings are all within 10% of normal. What is this?-K. M., West Branch, MI.

I asked a friend who works on Quasar sets and he came up with an answer that I should have thought of! Since the chassis was taken out and put back, the chances are that the sparkles on the screen are because one or more of the ground contacts 10 the dag coating of the picture tube are not making proper contact.

SERVICE HINTS

Here are a couple of service hints. In a Panasonic model CT601/602. if the picture looks very sick, there's AGC overload, horizontal tearing, etc., and all of these problems are intermittent, you might think it was a noise-inverter problem. No, it's not. Just replace C403, the AGC filter capacitor

A Sony model TV920U has vertical sweep. This was due 10 a break in the ground path at the heat sink for the 2SD29 vertical output. Repairing the break brings the picture back, but now there are white lines extending from top of the screen down. It turned out there was a foldover at the top. Replacing the vertical-output transistor cleared this problem up.

Unique time saving bus patterns
 Press-fit wrap-posts \& solder terminals Many board and contact sizes
 P.C. plug or flexcable connections
 4493-1 ANY DIP, $\$ 16.95$ Accepts

 all DIPs. Offset power and ground planes. $36 / 72$ contacts. $4.5^{\prime \prime} \times 9.6^{\prime \prime}$ ($6.5^{\prime \prime}$ also available). $22 / 44$ contacts also offered in both sizes.8804 ANY DIP, $\$ 21.95$. Accepts all DIPs. Offset power and ground planes, 50/100 contacts spaced . 125 . S-100 size.
4112.5 PAD BOARD, \$12.23. Pad per 3 holes. Ground plane on backside, $4.5^{\prime \prime} \times 4.5^{\prime \prime}$ or $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ or $4.5^{\prime \prime} \times 9.6^{\prime \prime}$. $22 / 44$ contacts spaced $0.156^{\prime \prime}$
8802.1 PAD BOARD, \$21.95. Pad per 2 holes, each side, peripheral buses. 50/100 contacts spaced at .125", S-100 size.
8801 PAD BOARD, \$19.95. Pad per each hole, each side, peripheral buses. $50 / 100$ contacts at $.125^{\prime \prime}$. S -100 size. 8801-1, \$14.95. No pads - just holes. $50 / 100$ contacts at $.125^{\prime \prime}$. S-100 size. "S-100 size is $5.3^{\prime \prime}$ high by $10^{\prime \prime}$ wide.
VECTOR ELECTRONIC COMPANY 12460 Gladstone A venue Sylmar. California 91342 Phone (213) 365-9661 TWX (910) 496-1539 Send for new data.

FULL LINE OF SUPPORTING PRODUCTS: , Card cages and enclosures for all Plugbords, mating receptacles, interconnect products.

Patented Vector P184 Tool is three times faster for interconnecting wrap-post designs. \$29.95.

The new B\&K-PRECISION Model 2810 may well be the highest resolution $31 / 2$-digit DMM availble. It is certainly the lowest cost DMM to provide $.01 \Omega$ resolution. With ohms resolution ten times greater than most DMM's, the 2810 allows you to detect shorted windings in coils, transformers or motors.
You'll also be able to accurately check the low contact resistance of switches, relays, breaker points or connectors. Many poor solder connections or PC board imperfections can also be located.

The 2810 is a full-feature DMM providing selectable high-/ low-power ohms, auto-zeroing and 100% overrange reading. Twenty-nine ranges provide maximum readings to 1500 volts DC. 2
amps, and 20 megohms. All ranges are fully overload protected. Typical DC accuracy is 0.5% with resolution to $100 \mu \mathrm{~V}$. And unlike many electronic voltmeters, the 2810 is RFI shielded and can be accurately used in high R-F energy fields.
B\&K-PRECISION also has a full complement of optional accessories for the 2810. Accessories include a carrying case, wire tilt stand. AC adapter/charger, high-voltage probe, direct/ isolation probe, NiCad batteries and 10 amp current shunt.
At S130.00, the 2810 is a standout value in today's DMM jungle. Don't resist the temptation...contact your local distributor for immediate delivery.

C－Meter：modit 130 A precision，autoranging， Capacitance meter
Autoraneins
10 ronkes ar

matumum sesoiution of ol protards．
Accurare
Arcurie C－merer shieves ar：ans couni）up to 200 mis

 \square Donic \＄325．

New Low Distortion Function Generator
EXPRELISIOv

F—いK日

MULTIFUNCTION COUNTERS

DISTINCTIVE PERFORMANCE FEATURES YOU CAN USE

The 1910A．I911A And l912A Fimitr

LCR－740
Transistorized LCR Bridge
－Highly accurate 3 digir readous
－Measures Induclance（L）．Capactiance（C）and Resistance（N），winin ± 0.5 ：－accuracy
－Range expandable－buill－in 10% over range
－Loss facior scale（0）

Regular price 8319

Simpion
 BHK PRECISION
 VIZ

LBO-520
30MHz, Fixed Delay

LEADER

- Dual uace 30 MHz bandwidih
- $5 \mathrm{mv} / \mathrm{cm}$ vertical Sens livity
- Fised delay fac litates it- speed readings o the eading
edge of a pulse or pulse lrain
- Add, subtract. ather rate selection, chooped, ana fron
- TV-V and TV-H sync. ix boln CH-1a 2 .

Regular price $\$ 999$.

LBO-508
20MHz, Dual Trace

LEEADER

Add. sublraci modes on $\mathrm{CM}-1$ \& $\mathrm{CH}-2$ faclilite easy checkoul for simultaneous pu
disiortion of noise cancelling

- Front panel X.Y ozeration uselul for phase stift
measuring sweed alignmenl vector scope service
- $17 \mathbf{5 n S e c}$ rise time
- Aulomalic choo and alfernate selection for Icw any
high freguency checks
- Aulomalic trigger "or $\mathrm{CH}-1$ or 2 includes TV sync
- 10 mV . $1020 \mathrm{~V} / \mathrm{cm}$ verica Sensitivily. 18 stecs
- $0.5 \mu \mathrm{~S} / \mathrm{cm}$ to $200 \mathrm{mS} / \mathrm{cm}$ jweep speed; 18 steps
$0.5 \mu \mathrm{~S} / \mathrm{Cm}$ to 200 r
$\times 5$ magnilication.
$\$ 614 .{ }^{95}$

Regular price $\$ 7 \boldsymbol{*}$.

SUPER

SPECIALS
Shipping not included in pricers Salu ands Dec, 31, 1978
New 15 MHz portable $3^{\prime \prime}$ dual-trace scope

B※ prectison

5MHz Solid State $3^{\prime \prime}$ Oscilloscope

BKPRECISIOA
\$209.9
Regular price $\$ 2 \mathbf{j 0}$.

3-1/2 Digit DMM with . 5% Accuracy

THE TEST EQUIPMENT SPECIALISTS

Try AUTOCOMP for quick relief from high fuel costs.

AUTOCOMP is a continuously updating microcomputer which reads TRUE MPG while you drive Additional pushbutton controls also give automatic readouts of Time Distance. and Fuel Consumption. You can monitor your engine 's performance and your vehicle's efficiency AUTOCOMP will help you save fuel improve your driving habits, and provide you with valuable time and trip data. Install AUTOCOMP before your next trip and beat high fuel costs!

AUTOMATICALLY OISPLAYS:
EXAMPLE

- FUEL USED - When the FUEI Duron is depressed the display inolicates the amount of fuel the venicle has used last reset (up to 1000 gallons)
- distance tanveled - When the DIST button is deoressed the display indicates the distance the vehicie has traveled since the last reset (up to 1000 miles)
- INSTANT MILES/GALLON - When the

INST MPG button is depressed. the ois play indicates how many miles per galon the vehicle is atraining at each moment (up 10200 mpg)

- average miles/GAllon - When the AVE MPG button is depressed the display indicates the average miles per gallon the venicle has attannea since the last reset (up to 200 mpg)
- CORAECT TIME [clock] - When the TIME button is depressed. the display indicales the correct tume (in nours and munutes) The clock may also be used to display ELAPSEO TIME

AUTOCOMP comes with clear illusiratec insifuctions that make it easy lor a do.it yourselter 10 install Equibment supplied includes the Speedsensor which simply screws onio the soeedometer cable and the digital Flowsensor which easily installs onto the fuel line

SAVE $\$ 10$ OFF REGULAR PRICE

Order now using the coupon below and save \$10 ott the regular list price of \$12995 A one year limited warpanty is provided

FITITEGMP

SpaceKom, Inc
212 E. Gutierrez St
Santa Barbara
CA 93101
$-$

CIRCLE 68 ON FREE INFORMATION CARD

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

FREQUENCY COUNTER designed for communications applications glves readings of 50 to 500 MHz . Features 6 -digit LED display with $1-\mathrm{kHz}$ resolution, 50 -ohm BNC input, coaxlal connector for any 7 to 12 VDC supplies, plus optional acces-

sories. Suggested resale price, $\$ 149.95$. Continental Specialties Corp., 70 Fulton Terrace, New Haven, CT 06509

CIRCLE 110 ON FREE INFORMATION CARD

PC BOARD EDGE CONNECTORS, Series 1000 come in 10-, 15-, 18- and 22-pin contacts in single-readout format; in 30-, 36- and 44-pin contacts in dual-readouts formats. All connectors have their contacts on . 156-inch centers and

accept . 062 PC boards. Contacts are made of phosphor bronze with gold finish over nickel: solder eyelet or wire-wrap terminations are offered. Available are $.031 \times 0.62$-inch long $.025-$ inch-square, or $.6-\mathrm{mm}$-square wire-wrap posts. Specifications: Current rating, $3 \mathrm{amp} ; 330$ vDC operating voltage; 5000 -megohm resistance; operate to temperature of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Prices: from $\$ 3$ to $\$ 5.60$-Injectorall Electronics Corp., 98-100 Glen St., Glen Cove, NY 11542.
CIRCLE 111 ON FREE INFORMATION CARD

AUDIO TEST INSTRUMENT, Sinadder 3, combines several related functions in one unit, making it suitable for both bench and field measurements. Pressing sinad pushbutton activates automatic distortion meter to measure sensitivity and make rapid alignment; no frequency, null or level adjustments are necessary. An internal $1-\mathrm{kHz}$ tone modulates signal generator or monitors Sinad measurement and alignment. A built-in

loudspeaker is provided for monitoring audlo output. The AC voltmeter function provides 9 ranges from 10 mV to 100 volts full-scale. The Sinadder 3 can also be used as an audio signal tracer to monitor phone lines and audio amplifiers, and to troubleshoot audio distortion and defective audio stages. Power requirements: $115-230$-volt transformer plus 12 -volt plug. Price: \$249.-Helper Instruments Co., Box 3628, Indialantic, FL 32903.
CIRCLE 112 ON FREE INFORMATION CARD

TWO-WAY CABLE SPLITTER, model MPI1003, for indoor/outdoor applications is rated at a 3.5dB insertion loss over a $5-300-\mathrm{MHz}$ frequency range, with minimum $30-\mathrm{dB}$ isolation and a $20-\mathrm{dB}$ return loss. The model MPI 1003 has a zinc die-

cast body with nickel-over-copper plating and fully machined connectors. In quantities of 1 to 99, the cost is $\$ 1.75$ each; in quantities of 500 , $\$ 1.45$ each. - Multi Products International, Box 684. Clifton. NJ 07012.

CIRCLE 113 ON FREE INFORMATION CARD

NEW for
 Professional Technicians

Forest Belt's TBAINING WORKSHOps 1978

\author{

- THREE-DAY
 - Includes lodging
 - INTENSIVE
 - UP-TO-DATE
 - Breakfasts, lunches, and coffee breaks during WORKSHOPS
 - PERSONAL
 - Grand AWARDS BANQUET
 - UNIQUE
 - FREE Exira SEMINAR
}

ADVANCED

VIDEO SERVICING
Featuring VCRs, Digital Controls, VIR . . .
and much more
Intensive Forest Belt teaching techniques and exclusive, proven training aids bring you right up-to-date in the troubleshooting and repair of today's video equipment for home or industry.
Special emphasis on solid-state and integrated circuits. See new IF and color alignment methods you probably never thought of. Learn about Vertical Interval Reference (VIR) automatic color control in newly introduced TV receivers. Understand digital and solid-state tuning systems. Participate in live equipment demonstrations. Sit in on the industry's first look at practical, Easi-Way ${ }^{\text {TM }}$ repair of video cassette recorders.
DUN'T BE LEFT BEHIND in your own industry! Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods. ENROLL NOW to be sure you do not miss this vital and unique Advanced Video Servicing WORKSHOP.

FREE Price and Profit SEMINAR Tuesday evening.

September
 11-13 (Communications) or $\mathbf{1 8 - 2 0}$ (Video)

Hospitality Inn East

Interstate 70 at Post Road Indianapolis, INDIANA
Centrally placed for convenient travel from anywhere in the mainland U.S. Also timed earlier in the year, in case you should not be away from your shop during the pre-Christmas season. You can attend in time to prepare you for the year-end service rush and the new sets being sold.
Comfortable, pleasant accommodations: two people to a room (two beds). Indoor pool. Shopping downtown by freeway. Bring your spouse if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to room with a specific other WORKSHOP attendee, tell us.

Enroliments close August 4, 1978, or when capacity is reached. Per Workshop \$495

ADVANCED
COMMUNICATIONS SERVICING
Featuring FM Two-Way, PLL, Single Sideband ... and much more
Here, too, intensive Forest Belt teaching methods and exclusive, tested learning aids assure you up-to-the-minute training troubleshooting and maintaining communications systems. Special emphasis on solid-state and integrated circuits. Observe professional alignment and tuneup methods. Deal profitably with Business and Land Mobile Radio-and the growing General Mobile Radio on UHF wavelengths. Learn of new developments in Marine and Aircraft Radio. Study the latest phase-locked loops, including their digital programming. Take part in live equipment demonstrations. See Easi-Way ${ }^{\text {TM }}$ techniques applied to communications.
GROW AS A REAL EXPERT in your specialty. Grab this exceptional opportunity to polish up your diagnosis and repair skills. Become familiar with new technology and money-saving instruments. ENROLL NOW in Advanced Communications. a giant step beyond our popular CB Servicing WORKSHOPS.
FREE Math and Formulas SEMINAR Tuesday evening.

November

6-10 (Communications)
or $13-17$ (Video)

South Seas Plantation

Captiva Island, FLORIDA
(near Sanibel and Ft. Myers)

For technicians who could use a bit of get-away time as part of this unique training package. Two days of consulting or on-your-own follow each WORKSHOP. Make your own airline reservations, well in advance; but we take care of placing you in our luxury cottage lodging.
Exceptional resort accommodations: four people (two bedrooms, four beds, two baths) or six people (three bedrooms, six beds, three baths) in fancy beach cottages. Bring your spouse, if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakiasts and lunches). If you prefer to share a room with a specific other WORKSHOP attendee, tell us. Cottages have kitchen facilities. An Unusual winterseason bargain.
Enrollments close Sept. 15, 1978, or when capacity Is reached. Per Workshop \$595

- - - - FIRST COME, FIRST SERVED - - - - - - - - - ENROLLMENT DEADLINES ABOVE - - - -

Yes, enroll me promptly for TRAINING WORKSHOP at right.
I enclose check or money order for \$
Advanced Communications Servicing
Advanced Video Servicing
\$495 per WORKSHOP in Indianapolis
$\square \$ 595$ per WORKSHOP in Florida\$175 for spouse$\$ 250$ for spouse (includes lodging, same meals as for WORKSHOP Enrollee)

Name
Age
Company
Address Phone

City \qquad State \qquad Zip
NOTE: You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING wORKSHOPS. NOT FOR BEGINNERS.
Mail to: Forest Belt's TRAINING WORKSHOPS, Box 68120, Indianapolis IN 46268

software is required-DIP switch makes it compatible to existing systems. Optional cable kit is available. Suggested retail prices: Naked Terminal, \$350; cable kit, \$15.-Dynabyte, Inc., 4020 Fabian, Palo Alto, CA 94303.
CIRCLE 114 ON FREE INFORMA TION CARD
RAM-N-ROM BOARD, model RNR-100, comes fully assembled or as a kit. The board is designed fo use with the Prom Setter PROM programmer, is $\mathrm{S}-100$ bus compatible and accepts the 1702A, 2704, 2708, 2716 (Intel), 2716 (TI), 5204, and 6834 EPROMS's. Sockets for 16 ROM's and 1 K of RAM are provided; both ROM and RAM have

separate address-select switches. The ROM is also provided with selection of up to 4 wait states. The board has 7 voltage regulators, 3 dedicated to each group of 8 ROM's and a separate 5 -volt regulator is used for all logic states. Provision is made for power on Jump and run operations if desired. The kit includes IC sockets only (no EPROM's), components and manual. Prices: kit, \$117; assembled, \$168.-Szerlip Enterprises, 1414 W. 259 St., Harbor City, CA 90710.
CIRCLE 115 ON FREE INFORMATION CARD
CHALLENGER III COMPUTER contains a threemicroprocessor CPU board to run 6800, 6502, 8080 and 2-80 software. It comes standard with $O S-65 D$ disc operating system, and can be used in classrooms, businesses, homes and industries. A 74-megabyte disc option, the C-D74, has a 35ms average access time making it ideal for industrial and business applications. The C-D74 drive's $10-\mathrm{ms}$ single-track seek achieves a 7.3 -megabit-

per-second data transfer rate. Available for advanced users who wish to write multiple programs is a software processor status switch, with a 1-megabyte pager and user-programmable vectors for the 6502 and 6800. A catalog is avallable for \$1.-Ohio Scientific, 11681 Hayden, Hiram, OH 44234.

FLOPPY DISC SYSTEM, EXP- 1 and EXP-2, is either a single-drive or dual-drive package containing drives, S-100 controller and power supply. The system uses standard 8 -inch diskettes and provides write-protect and indicator light. Double-headed drives to record on both sides of diskettes and optional double-density controller are also available. Drives offer full 265 K byte storage in IBM 3740 soft-sectored format. Software options include CP/M, as well as either BASIC, FORTRAN or business and work-processing

packages. Optional 1/O drivers make the system SOL-compatible. The EXP-1 system sells for \$1195; EXP-2, \$1895.-Micromation, Inc., 524 Unlon St., San Francisco, CA 94133.
CIRCLE 116 ON FREE INFORMATION CARD

BASIC INTERPRETER, 4K BASIC with its interrupt control, direct memory read/write, assembly language subroutine and I/O oriented for industrial process-control and monltoring applications, Advanced control structures include for...NEXT; IF...THEN...ELSE: and ON...NOW...GOTO/ON...GOSUB. Interpreter resides in RAM or PROM. If program is also stored in PROM, RUN mode is activated, allowing unattended operation in dedicated ap-

plications. 4 K BASIC is available on cassette or on a ROM module. The source listing and OEM license are also available. Prices: cassette, $\$ 95$; module, \$299; source listing, \$95; OEM license, \$2000.-Wintek Corp., 902 N. 9th St., Lafayette, IN 47904.
CIRCLE 117 ON FREE INFORMATION CARD
COMPUTER, Challenger IIP, designed for beginming hobbyists and businessmen, is self-contained with a full-sized keyboard, 32×64-charaster video display interface and audio cas-

sett interface. Comes with BASIC in ROM and 4 K RAM. The unit can be connected to a video monitor or home TV set via an RF modulator (not supplied). The Challenger $/ /$ comes with a case and a 4-slot back plane, and sells for $\$ 598$. - Ohio Scientific, 11681 Hayden, Hiram, OH 44234.
CIRCLE 118 ON FREE INFORMATION CARD
I/O WRITER INTERFACE, Typeaway, comes assembled or as a kit, and contains S-100-compatible PC board with solenoid drivers, I/O ports and complete PROM software; cables and connectors to interface a Selectric to an S-100 computer. Typeaway can be used with any factory Selectric I/O writer, and control function and code conver-

sions are preprogrammed in firmware. Tested and assembled, Typeaway sells for $\$ 350$; the kit is $\$ 275$.-Micromation, Inc., 524 Union St., San Francisco, CA 94133.
CIRCLE 119 ON FREE INFORMATION CARD
DUAL-DRIVE FLOPPY DISC SYSTEM, model DMAF1, comes assembled or as a kit. Singledensity double-sided system uses 8 -inch diskettes. Hardware consists of an SS-50 bus (6800); compatible DMA controller with up to 4 -drive capability; double-density disc drives; and power supply, control board, fan and cables. Each diskette holds approximately 600 K bytes of data. Software is included along with 8K BASIC inter-

preter with disc-file capability and string functons. Unit comes in aluminum chassis, measures $5 \frac{1}{6} \times 17 \frac{1}{6} \times 201 / 2$ inches and weighs 45 lb . Prices: assembled, $\$ 2095$; kit, $\$ 2000$.-Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216.
CIRCLE 120 ON FREE INFORMATION CARD

Now you can safely plug away without the problems of overload or coming up short.

SqL HABER ${ }^{\circ}$ MULTIPLE OUTLET STRIPS

You can do it thanks to SGL WABER the finest quality multiple outlet strip available! There are 240 versatile models-each unit exceeds National Electrical Code standards and is safety tested. Ideal for organizing your work area and having extra outlets when and where you need them. Over 2000 electronic distributors carry the SCL WABER line Send for your free 24 page catalog today!

SGL WABER Electric

A division of SCL INDUSTRIES, INC.
Dept. H-300 Harvard Avenue
Westville, New Jersey 08093
(609) 456.5400

SGL Waber...THE POWER SOURCE IN ELECTRICAL OUTLET STRIPS

CIRCLE 37 ON FREE INFORMATION CARD

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.

National Camera, Inc. 2000 west Union Ave., Dept. GBF Inglewood co soto uSA

() Ir convinced - Send Organtua Kit (\$279.95 enclosed)
() Send Organtua Instruction Manual (\$5 refundable with kit purchase)
() Send FREE Catalog
name: \qquad
Address:
City: \qquad State: \qquad Zip: \qquad ; DEPT. 10 R, 1020 W. WILSHIRE

THECONTIERS VOUREIITWATIT

MODEL 380

MODEL 385

ATAFFORDABLE PRICES.

A Model for every need.

MODEL 380.
1 Hz to $80 \mathrm{MHz}, 10 \mathrm{ppm}$ \$209
MODEL 380X.
1 Hz to 80 MHz , 1ppm $\$ 269$
MODEL 385.
1 Hz to $512 \mathrm{MHz}, 10 \mathrm{ppm} \$ 419$
MODEL 385X.
1 Hz to 512 MHz . 1ppm $\$ 499$
Perfect for communications, CB audio, TV and digital work. serv icing and laboratory applications.

All 4 field-proven models feature full 7 -digit display with automatic decimal and full autoranging. Our exclusive SPEED READ mode provides fast update ($5 / \mathrm{sec}$) time for easy tuning and adjusting

Handsome, rugged metal case with brushed aluminum panel including all-angle tilt stand. (Low cost rack mounting kits for standard 19" rack also available.) All models come packaged in a plastic carrying case that protects the unit in shipment and in use

Why settle for less than the best See these hard-working counters at your distributor now

If you're outside of Ohio, call us toll free al 800-321-4664 for the name of your nearest Hickok distributor.
the value innovator
INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue • Cleveland, Ohio 44108 (216) 541-8060 - TWX: 810-421-8286 CIRCLE 83 ON FREE INFORMATION CARD

More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

AUTOMOTIVE POWER AMPLIFIERS, models V501, V502, V503, V504 and V505. The model V501 has automatic switching and a 24 -watt power output. The model V502 is compatible with 4-speaker matrix systems and has a 48 -watt power output. The model V503 features a 4-band graphic equalizer with bracket, time delay, tone defeat and power pushbuttons; it provides less than $1 / 2 \%$ THD and a 72 -watt power output. The

model V504 is an amplifier/equalizer combination with power switch, boost/cut bass and treble controls and a 24 -watt output. The model V505 (shown) is coupled with a 4-band graphic equalizer; features less than 1% THD, power range pushbutton and OCL/CTL circuitry. Suggested retail prices: model V501, \$49.95; model V502, \$69.95; model V503, \$179.95; model V504, \$99.95; and model V505, $\$ 139.95 .-C r a i g ~ C o r p ., ~ 921 ~ W e s t ~$ Artesia Blvd., Compton, CA 90220.

CIRCLE 121 ON FREE INFORMATION CARD

AUDIO SUBSONIC FILTER, model 4000, comes as a kit or assembled. It is designed to remove the effects of record warp, tonearm/cartridge resonance, subsonic rumble, etc., that cause high-level distortion in direct-coupled amplifiers. Two filters are housed in a single enclosure for insertion Into a stereo system. The filters provide an 18 -dB-per-octave rolloff below 20 Hz ,

$.005 \%$ distortion at 1 -volt output, and a hum and noise level of -86 dB . The circuitry features a discrete amplifier with full feedback, Class-A operation and self-contained power supply, with an output voltage of 8 volts maximum. Powered from a 117 -volt AC line, 240 -volt models are also available. The model 4000 measures $6 \times 43 / 4$ $21 / 4$ inches and weighs $11 / 2 \mathrm{lb}$. Prices: kit, $\$ 59.95$; assembled, $\$ 89.50$-ACE Audio Co., 532 5th St., East Northport, NY 11731.
CIRCLE 122 ON FREE INFORMATION CARD

SOUND-LEVEL METER, Realistic, measures sound and acoustic levels in homes, schools, offices, sound studios and hi-fi installations. Features include a weighting selector for C- or Awelghting; a $60-\mathrm{dB}-126-\mathrm{dB}$ range switch; a fast/ slow response switch; tripod adapter; and pho-

no-type output jack. The meter provides an accuracy of $\pm 2 \mathrm{~dB}$ at 114 dB , referenced to 0.0002 $\mu \mathrm{bar}$, and less than 2% distortion at $1 \mathrm{kHz}, 0.5$ volt. The meter measures $61 / 4 \times 2 \frac{1}{1} \times 13 \times 1 / 4$ inches, weighs $73 / 602$ and operates on a 9 -volt battery. Price: $\$ 39.95$.-Radio Shack, 1400 One Tandy Center, Fort Worth, TX 76102.
CIRCLE 123 ON FREE INFORMATION CARD
HI-FI SPEAKER SYSTEM, model S-196, is a three-way bookshelf system featuring a 12 -inchhigh wooter, a $41 / 2$-inch mid-range cone, and a 1 -inch dome tweeter. The unit provides a frequency response from 40 Hz to $20 \mathrm{kHz} \pm 4 \mathrm{~dB}$

and a power-handling capability of 75 watts (can be used safely with amplifier rated at 100 watts-per-channel). The model S-196 measures $241 / 2 \times$ $13 \% \times 11$ inches and welghs 40 lb . Suggested retail price: $\$ 199.95$. H. H. Scott, Inc., 20 Commerce Way, Woburn, MA 01801.

R-E

new lite

More information on new lit is available from the manufacturers of items identified by a Free Information number. Use the Free Information Card inside the back cover of this issue.

AMATEUR RADIO/SHORTWAVE CATALOG, Tufts Radlo Electronics Catalog for 1978-1979. 24-page catalog for radio enthusiasts contains up-to-date information on practically every major brand of amateur radio and shortwave equipment. Includes receivers, transmitters, transcelvers, antennas and related items along with prices and specifications.-Tufts Radio Electronics, 209 Mystic Ave., Medford, MA 02155.
CIRCLE 130 ON FREE INFORMATION CARD
BREADBOARDING \& TEST EQUIPMENT CATALOG, 12 full-color pages covering a full line of digital design products and test equipment, including breadboards, sockets, logic monitors, frequency counters and logic probes and accessories. Complete technical speclfications are given for each product. Handy order form avall-able.-Continental Specialties Corp., 44 Kendall Si., New Haven, CT 06509.
CIRCLE 125 ON FREE INFORMATION CARD
TELEVISION TESTER, 6-page, full-color brochure describes the model GTS-10 color-pattern generator that helps you perform routine checks quickly and efficiently. The unit contains a monitor, vector, crystal-controlled RF, $4.5-\mathrm{MHz}$ sound carrier, primary color rasters, 6 th bar marker and hatch dot functions. Complete unit specifications included.-American Technology Corp., 225 Main St., Canon City, CO 81212.
CIRCLE 126 ON FREE INFORMATION CARD
CERAMIC FILTER CATALOG, No. 52-07, contains 8 pages of filter specifications for AM, FMstereo, TV, CB and communications receivers; filters covered are for $455 \mathrm{MHz}, 4.5 \mathrm{MHz}$ and 10.7 MHz applications. Brochure contains section on the theoretical analysis of filters, as well as response-curve parameters and a page devoted to test circuits. -Murata Corp. of America, 1148 Franklin Rd., Marietta, GA 30067.
CIRCLE 127 ON FREE INFORMATION CARD
ELECTRONICS CATALOG, 48 pages of litems of special interest to hobbyists, schools and buslness groups. Includes IC's, keyboards, capacitors, hardware, manuals, potentiometers, sockets, toots and many more. Some items available in wholesale lots. Separate price schedule in-cluded.-Tri-Tek, Inc., 7808 N. 27th Ave., Phoenix, AZ 85021.
CIRCLE 128 ON FREE INFORMATION CARD
ELECTRONIC COMPONENTS CATALOG cONtains 144 pages listing and describing hundreds of over-the-counter thems (plus prices) such as transistors, diodes, capacitors, TTL IC's, power supplies, data books, computer system supplies (includes the Zilog Z-80 microcomputer board series), and many, many more. An order form is included in the back of the book, which costs \$2.50.-Active Electronic Sales Corp., Box 1035, Framingham, MA 01701.

R-E

If you think that being in business makes you INDEPENDENT, think again! Consumerists and government agencies are your silent - but greedy : partners AND THEIR SHARE COMES FIRST: even if you don't make a profit.
WELL, YOU DON'T HAVE TO
FACE THEM BY YOURSELF
JOIN NESDA
AND YOUR LOCAL \& STATE ASSOCIATIONS Send for more information to:

NESDA, 1715 Expo Lane

 Indianapolis, IN 46224CIRCLE 54 ON FREE INFORMATION CARD

MATHEMATICS
EEECTRONICS
ENENEERING MATHEMATICS adVanced mathematics DICITAL TECHNOLOAY

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and clectrical and electronic engineering.

You will have to see the lessons to appreciate them!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.

Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA
 HOME STUDY INSTITUTE
 EASTERN DIVISION

P.O. BOX 1189

PANAMA CITY, FLA 32401
CIRCLE 15 ON FREE INFORMATION CARD

FREQUENCY COUNTER
continued from page 73
low as 50 mV and as high as 1 mV . The input is not filtered for noise since the 74C04 gain decreases rapidly above about 2 MHz . You can add a noise filter, if necessary, to the input probe section. All IC stages are direct-coupled, so that the input blocking capacitor in the probe tip determines the low-frequency response. The capacitor is located in the tip so that add-on devices can be direct-coupled to the counters.

When the meter is used as a frequency counter, the input pulses are counted for I second in the normal mode or for 0.25 second in the $\times 10$ mode. Because the MC14553B IC only counts to 750 kHz at 5 volts, dual-D flip-flop ICl is used as a divide-by- 4 prescaler in the $\times 10$ range. The input-amplifier output is fed to the prescaler and to AND gate ICI-d. In the normal mode, the gate is on and the input is applied directly to the counter through D5. The divide-by-4 prescaler is disabled by a reset signal that overrides the clock. In the $\times 10$ mode, AND gate IC11-d is off, and the input is divided by ICl and applied to the counters through D6. Diodes D5 and D6 and resistor R13 form a simple OR gate since there was no room for another IC.

The time interval is generated by a crystal-controlled reference oscillator, in which XTALI is a $3.5795-\mathrm{MHz}$ colorTV color-oscillator crystal. The 3.57 MHz frequency is divided by IC8 to produce a $60-\mathrm{Hz}$ output. A trimmer can
can by the two leads that pass through the bottom, as shown in Fig. 3-a. Once the crystal is removed from the case, glue two short plastic "I" sections to the phenolic base with the support wires sandwiched inside the channel (see Fig. 3-b). Glue a

FIG. 3-HOW CRYSTAL CASE IS MODIFIED so the crystal can be fitted inside the probe case. The crystal is fragile. Be careful so you won't damage it.
be added to the oscillator from pin 6 to +5 volts.
(A color-TV crystal usually comes in a large metal crystal can that cannot fit into the meter; therefore, the crystal case must be altered. The crystal should have a phenolic base, not a metal base. Remove the metal case carefully by cutting and peeling it with diagonal cutters. The crystal itself is supported in the center of the
short piece of plastic to the top and then glue two flat covers to the "I" beams and the phenolic base. When the crystal is completely enclosed and protected, file the case so that it is flat and square on all sides, as shown in Fig. 3-c. You can use the ABS plastic known as PlasTruct available at most hobby shops in both flat sheets and structural shapes. This plastic material is easy to work with since you

THEEND OF THETOOLBOX.

The tool box is obsolete. It's being replaced by Platt's tool case. Here's why. In a tool box, tools and parts are hard to find. They get lost. Dirty.

With a Platt tool case, that doesn't happen. There's a patented one-piece pallet with pockets for each tool. Tools can be picked out and replaced without searching. Work can be done quickly and efficiently.

Platt's tool case also helps you look more professional. It comes in handsome, light weight ABS Thermoplastic. Or rich looking vinyl reinforced by ABS Thermoplastic.

What's more, it has a 5 year guarantee.
Contact us for complete information on Platt's full line of tool cases and your nearest distributor.
l'at. No. 3.880.285
Cases for business and industry. 2301 S. Praine Ave., Chicago. III. 60616 (312) 225 - 6670

Can cut it either with a razor blade or with scissors. Cutting down the crystal case allows room for two extra IC's on the top of the case- ICl and IC 2 . Caution: Even in its usual case the crystal is isolated from shocks only by the wire leads. The crystal is very delicate and can crack if it is dropped. For this reason, handle the meter carefully when it is finished.)

The $60-\mathrm{Hz}$ output of IC8 goes to BCD up-counter IC5. One section is used to divide the $60-\mathrm{Hz}$ output by 6 . When 6 is reached, ICII-a resets the counter. The output of the divide-by- 6 counter then feeds the next BCD counter to produce a I -second clock period. It is also divided by dual-D flip-flop IC2, to produce a 0.25 -second period used by the $\times 10$ mode.

The control signals for the counters are generated by IC6, a 10 -output decade counter. Each output used performs one function. Output 0 is the start of an operation. When the hold input is high, IC7-b stops the divide-by-6 clock when in the $\times 10$ mode and when the 0 state is reached. and IC7-c stops the divide-by-10 clock when in the normal mode and the 0 state. When the hold line is low, a conversion begins on the next clock. Output I of IC6 is the count state and lasts for 1 second in the normal mode, or for 0.25 second in the $\times 10$ mode. During this continued on page 103

Don't risk a ${ }^{\text {s2OIC chip }}$

 .be sate with π DIP SOCKETS costing pennies!

Don't damage an expensive IC chip with soldering iron heat! Simply solder an R-N DIP socket to your PC board, then insert IC chip into the socket. Changes in your microprocessor system are easy. Just remove the IC chip - and then take the low cost socket off of the board without harming the chip.
ORDER ROBINSON-NUGENT DIP SOCKETS FROM: DIGI-KEY Corp.
Carries a full line of R-N IC Sockets
TOLL FREE-1-800-346-5144 In Minnesota-1-218-681-6674

ALLIED Electronics

Specify 906 Series IC Sockets
TOLL FREE-1-800-433-1570 In Texas-1-800-792-8760

INTERNATIONAL FM-2400CH

FREQUENCY METER FOR TESTING MOBILE TRANSMITTERS AND RECEIVERS

- Portable - Solid State - Rechargeable Batteries

The $\mathbf{F M} \mathbf{- 2 4 0 0} \mathbf{C H}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined f́requencies.

The FM-2400CH with its extended range covers 25 to 1000 MHz
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .

Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).

- Tests Predetermined Frequencies $\mathbf{2 5}$ to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320
$\$ 595.00$
RF crystals (with temperature correction)
24.90 ea

RF crystals (less temperature correction) 18.90 ea.

IF crystals catalog price
Write for catalog

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 North Lee / Oklahoma City. Okla. 73102

Put Professional Knowledge and a

COLLEGE DEGREE

in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics. leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin R-78.
Grantham College of Engineering 2000 Stoner Avenue
P. O. Box 25992 Los Angeles, CA 90025
Worldwide Career Training thru Home Study CIRCLE 12 ON FREE INFORMATION CARD

Try this exciting new hobbyd Build your own electronic concert organ. It's easy. No technical knowledge required. Just follow the clearly pictured instructions of the famous Wersi do-it-yourself system. Choose from seven different models. Send $\$ 2.00$ (refundable) with coupon for colorful 104 page catalog.


```
Wersi Electronics, Inc
```

Dept 42
1720 Hempstead Road
Lancaster. PA 17601
Enclosed is $\$ 2.00$ for my copy of your 104 page catalog.
Name
Address
City

State

next manth

NOVEMBER 1978

- Build A Digital Windshield Wiper Delay

Digital circuit provides intermittent windshield wiper operation and is programmed automatically.

E Build a Video Tank Game

Use your cannon to destroy your opponent first. Complete with cannons, barriers and sound effects.

Tape Recording Breakthrough

Complete details on a new metal-particle tape that promises ultra-performance in the near future.

Digital Troubleshooting Techniques

How to isolate faults in complex digital circuits and the test equipment needed to make it easier.

PLUS:

* Build A Function Generator, Part 2

* Build A Frequency
Counter In A Probe,
Part 2
* Digital Circuit Crib Sheets

\author{

* Hi-Fi Test Reports
}
* Hobby Corner HEAT SENSORS

* THERM I: 3 digit $3^{\prime \prime}$ LED display; 5AA alkaline batteries; 10-12 hour continuous operation; battery eliminator optional.
* THERM II: 3 digit $.5^{\prime \prime}$ LCD display, 9 v alkaline battery; 200 hour continuous operation.
* MINI-THERM: plugs directly into DVM for reading on DVM display; 9 v alkaline battery; 500 hour continuous operation.
- Rugged, handheld aluminum case - Accuracy $.2 \% \pm 1$ Lail
- Hecolution: 1° F.K.or (
- Probe: Comes with is teflon cable (replaceanle)
- lange: $50^{\circ}\left(\%^{\circ}-58^{\circ}\right) 10+150^{\circ} \mathrm{C}$ (302ํ)
- Hallery-operated
(415) 941-2764
P.O.Box 4477 Mtn. View CA 94040

CIRCLE 52 ON FREE INFORMATION CARD

FREQUENCY COUNTER

contimued from page 101

time, the DIS signal of 1 C 13 is low, which enables counters IC10 and IC13. Output 2 of IC6 is the latch state; it lasts for 0.25 second, in any mode. Output 3 is the reset state, and resistor R8 stretches the reset pulse so that the main counters will clear. If the hold line is held low, the conversions will be continuous.

To save on the number of gates used, IC6 is clocked by the 1 -second clock at the clock input and is clocked by the 0.25 -second clock at the enable input. For the clock input to be active the enable input must be low; for the enable input to be active the clock input must be high. Diode DI holds the clock input high in the $\times 10$ mode, and IC4-c and IC4-d activate the enable input for use as a clock during the $\times 10$ mode and during the latch state of the normal mode. Both the $\times 10$ input and hold input are buffered to allow touch control operation from the probe section.

You can use IC4-a and IC4-b to disable the control circuitry. A count line and a transfer line are carried to the front socket. A high signal on both lines, with the hold line low, causes the display to act as a counter. The meter can then be used as an event counter.

Integrated circuit IC7, along with diodes D2-D4 and resistors R9-R11 are used to control the decimal point of the display. Only the first three decimal points are used. If no decimal point is lit, the frequency is in Hz . If any decimal point is lit. the frequency is in MHz ; thus the first three decimal points allow a $999.999-\mathrm{MHz}$ range. Transistor Q1 is an NPN emitter-follower to match the emit-ter-followers of IC9 and IC12. It is not critical. Any NPN transistor should work. If any resistor ($\mathrm{R} 9-\mathrm{R} 11$) is grounded, that decimal point will light. The diodes charge the input capacitance when the DS-outputs of 1 C 10 are high This charge will remain due to the CMOS high-input impedance unless the resistors are grounded. All decimal-point resistors are left floating in the main body of the meter
continued next month

"Maybe it will goaway."

\$UBSCRIBE AND SAVE!

Get every excitement-packed issue of Radio-Electronics delivered to your door. And save money, tooup to $\$ 9$ off newsstand prices! Use the handy coupon and subscribe today!
Mail to: Radio-Electronics
Mail to: Radio-Electronics
SUBSCRIPTION DEPT., P.O.
BOULDER COLO 80323 . BOX 2520.
Address
City State Zip Code
Indicate the offer you prefer:
$\$ 12 \square 1$ Year- 12 issues ONLY $\$ 9.98$ (You save $\$ 2.02$ off newsstand price.)

```
\(\square{ }^{2}\) Years-24 issues ONL
```

3 Years-36 Issues ONLY \$27.00 (Save Even
3 Years-36 Issues ONLY \$27.00 (Save Even
Morel Save $\$ 9.00$ ofl newsstand price.)
Payment enclosed \square Bill me
Check here if this is a new subscription.
Check here it you are extending or renewing your subscription.
Extra Shipping: Canada $\$ 3.00$ per year, all other countrles $\$ 5.00$ per year

The New Programmable Clock Kit from Digital Concepts. \$34.95

Accuracy like a VTVM... Gonvenience like a VOM...

NEW BATTERY-OPERATED FET
 SOLID-STATE VOLT-OHMMETER*116

Easy-to-build KIT

Factory-Wired \& Tested
${ }^{\$ 60 .}{ }^{05}$
$=116 \mathrm{~W}$
Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an $A C$ outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FET) design makes possible low loading, instant-on baftery operation and small size. Excellent for both bench and field work.
Compare these valuable features:

- High impedance low loading: 11 meg ohms input on DC 1 megohm on $A C$. 500 -times more sensitive than a standard 20,000 ohms-per-volt vom e Wide-range versatility: 4 P.P AC voltage ranges: 0.3 .3 . versatility: 4 P.P AC voltage ranges: 0.3 .3 ,
$33,330,1200 \mathrm{~V} ; 4$ RMS AC voltage ranges: 33, 330, 1200 V : 4 RMS AC voltage ranges: J. $1.2,12,120,1200 \mathrm{~V}: 4 \mathrm{DC}$ voltage ranges: J.1.2, 12, $120,1200 \mathrm{~V}$; 4 Resistance ranges 4 DB ranges. -24 to +56 DB . DB ranges. -24 to +560 D . Sensitive easy.to-read $41 / 2^{\prime \prime} 200$ micro. amp meter. Zero center position available. Comprises FET transistor, 4 sillcon ransistors, 2 diodes. Meter and tran sistors protected against burnout. Etched panel for durability. High-impact bake lite case with handle useable as instrument stand. Kit has slmplified step-by step assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. $51 / 4^{\prime \prime} \mathrm{H}$ $63 / 4^{\prime \prime} \mathrm{W} \times, 2^{7 / 8^{\prime}} \mathrm{D} .3 \mathrm{lbs}$.

You Can Count On DAVIS!

Jensen offers a line of more than 50 standard tool kits and tool coses for field engineers, service technicians, precision mechanics and locksmiths. Or we can cus-tom-design a kit to motch your specific needs. Write or call for more information or free catalog.

JENSEN TOOLS \& ALLOYS
1230 sOUTh priest drive TEMPE. ARIZONA 85281 (602) 968-6241

NEW CTR-2A

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERS

NOW WITH
PERIOD MEASUREMENT (Optional) AND BUILT-IN PREAMP

- 8 Digit .3"LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period lus to 1 sec. (optional)
- TCXO Std. ± 2 ppm
- Input Diode Protected
- 12V-DC Operation (optional)
- Oven Crystal $\pm .5$ ppm (optional)
- Selectible Gate Times . $1 \mathrm{sec} . \& 1 \mathrm{sec}$

500 MHz kit CTR-2A-500K $\$ 249.95$
500 MHz assembled CTR-2A.500A 349.95
1 GHz kit CTR-2A-1000K 399.95
1 GHz assembled CTR-2A-1000A 549.95
OPTIONS.
(02) Oven Crystal
$\$ 49.95$
(03) .43" LED
10.00
(04) 12 V-DC
10.00
(05) 10 sec . Time Base
10.00
(06) Period Option
15.00

0.10] 6

davis electronics

636 Sheridan Drive
Tonawanda, NY 14150 716/874-5848

CIRCLE 46 ON FREE INFORMATION CARD

CIRCLE 17 ON FREE INFORMATION CARD

Original Japanese parts

and other service aids

			NEW ITEMS:			
SPECIAL			2SC1975	2.50	AN7150	3.25
2SC1306	\$1.90 ea.	BUY 12, GET 1 FREE	$2 \mathrm{SC2029}$	2.50	M53273	2.00
2SC1307	\$2.90 ea.	BUY 12, GET 1 FREE	2SC2091	1.70	M53274	2.00
2SC1239	\$3.00 ea.	BUY 12, GET 1 FREE	$2 \mathrm{SC2092}$	3.00	M53393	5.00
(LIM	ITED TO	NTITY ON HAND)	2SC2 166	2.50	M51513L	4.00
plus many more at Similar savings						

ELCAPACK'
FIND IT FAST'*
JAPANESE HAROWARE PACK Srop Looking For Those Hard To Find Screws

```
I.S.O E. RingS
- Washers
- Neatly Packed
```

MANY MORE ITEMS AVAILABLE

2. Tubular solderless pins for wire jumpers. Keystone Electronics Corp., NY, makes these miniature push-in terminals. Each module requires one push terminal for each input or output connection of the particular IC. They require a $1 / 16$-inch hole and a hand insertion tool to seat the terminal into the circuit board.
The terminals are sold by various suppliers in lots of a hundred or by the thousand. They are more expensive if bought by the hundred. If a large system is contemplated, buy them by the thousand since they cost about $\$ 13$ to \$15 per thousand.
3. The printed circuit boardetched and ready for mounting components.
4. Some foam material, and a good glue. You can use any type of foam that can be cut to size and glued to the finished module. Check with your electronic supplier; he may provide you with some at a minimum cost. Even a small block of wood could be used, but be sure to provide clearance for the side bus connectors.

Design and construction

It might make sense to purchase one or two IC books presently on the market. These books can help in the individual module designs, and can guide you in testing the completed modules. They also come in handy for checking out special IC's, and give IC pinouts. These books are also the best source for checking out published diagrams before you plan to build.

You will have to decide on the logic family for your system; it could be TTL, CMOS, or even a combination of several logic systems. Incidentally, TTL is the least expensive of the logic families; and don't hesitate to build specialized modules from 7400 nand gate IC's. You can use the IC Cookbooks for these designs. The 7400 NanD gates cost about 15 cents; so special modules using several packages could save you money over a special IC that would cost more. You can learn a lot by using only gates in creating the required logic-function modules for your system.

Figure 1 is the foil pattern of the module. Figures 2 and 3 show two examples of how you can wire a module for a specific IC. Follow the same procedure to make custom modules for any logic IC's. Figure 4 shows the pattern for the larger power module.

A variation of the modules uses RN bus connectors and a somewhat different foil structure. Some readers will prefer one arrangement over another. Both work well-the choice is one that the experi-

KITS

The following are available from Techniques, Inc., 235 Jackson St., Englewood, NJ 07631.

Order No. T100- $\$ 10.00$ postage paid; includes four module boards (shown in Fig. 5), 100 Keystone terminal pins plus foam strip. However, the male and female Robinson/Nugent bus connectors are not included in this kit and are not available from this source.

Order No. T125-\$12.50 postage paid; includes four T-108 module boards (shown in Fig. 1), one T-316 large modute board (shown in Fig. 4), 100 Keystone terminal pins, single-pin male and female bus connectors and foam strip. The T-108 modules are completely drilled, while the T-316 module is drilled only for the connector hardware and terminal pins.

Also available is a 50 -page manual in a loose-leaf binder, providing hook-up instructions for more than 30 digital 7400 TTL IC's. This manual is to be used in conjunction with the T-108 and T-316 modules.

Prices are for US sales only. Foreign orders are additional. New Jersey residents include state and local taxes as applicable.
menter must make. See Fig. 5 for the foil pattern.

Once a module is tested to your specs and proves workable, finish the project by gluing the spacers to the bottom of the board. You can also dress up the module with a little hobby paint, add additional marking, or even use transfer lettering if desired. Just as in an Erector set, you can build up the system in no time. Keep in mind that if you design only one module a week, build only one module a week, in a year's time you will have 52 modules. This is quite a working breadboard system and almost painless in cost.

You should not rush into a complete modular system. Take time to think out what you want in your system. Build the modules, test them, learn from them, and finally you will be constructing complex circuits for many pet projects. It is a spare-time project if done like this, and one you will be proud to have. The building adds to your logic and circuit experience, and in no time you will be constructing modules at your own pace. The PC board construction experience is also a good learning device. You learn from your mistakes.

Types of modules

Here's a list of modules you might want to build. The TTL units are listed first, but if you want to build CMOS units you can find the equivalent IC in your specification data.

1. TTL modules-All the NAND, AND, or and NOR gates; two-input, four-input IC modules and some 8 -input nand's come in handy. Use the 7400 two-input IC packages to make special modules. continued on page 106
 CIRCLE 84 ON FREE INFORMATION CARD

If you've dreamed of a SCHOBER ORGAN NOW'S THE TIME TO ACT PRICES GO UP IN NOVEMBER!

For almost two years we have held the price line on Schober Organ Kits, despite rampant inflation and almost daily cost increases.

Now we must give in and-like everyone else-raise our prices. The increase will be about 15% on everything we offer. Prices will go up on Thursday, November 16th, 1978.

BUT YOU DON'T HAVE TO PAY THOSE INCREASED PRICES-IF YOU ORDER BY NOVEMBER 15TH!

We are placing this special ad to tell you about the price increase in ad-vance-far enough in advance to let you order before the prices go up.

Announcing a price rise before it happens is highly unconventional-but we think it's only fair. Basic Schober Organ Kits cost $\$ 650$ to $\$ 2950$, depending on model. Fifteen percent of that is important money. We think you should have the chance to save it.

If you don't have the Schober Lit-
erature Package, or if your price list predates February 1, 1977, write or call us for the latest data. (The Reader Service card may take too long to reach us.) Send $\$ 1$ if you'd like our 12" demo record. Read the information carefully. Decide which of the five Schober Organ models you prefer.

Then, as long as your order is postmarked before midnight, Wednesday, November 15th, you need pay only the prices which have been in effect since February 1, 1977.

Schober musical and technical quality is an industry byword. Schober's tradition of support and assistance to customers sets a standard that has never been surpassed. If ever the Schober Organ Kit idea has intrigued you, now, before November 15th, is the time to order your kits and begin your own Schober Organ-one of the world's fine musical instruments, the ultimate musical fun machine!

Schober Organ Corp., Dept. RE-179. 43 W. 61st St., New York 10023 • (212) 586-7552

Enterprise Development Corp.
5127 E. 65th St • Indianapolis IN 46220 PHONE (317) 251-1231.
CIRCLE 8 ON FREE INFORMATION CARD

MAWECO 272 POLIABEDMM OHIT $\$ 69^{95}$

Digital accuracy at low cost
No need to guess at readings or use scale multipliers. All readings indicated directly on large, bright, easy-to-read digits at high accuracy of 0.5% on dc volts. Measures dc/ ac volts and milliamps as well as kilohms. Has 20 ranges. Polarity indicator, automatic zero, automatic overload indication, fully overloadprotected. Readings up to 999 on three 0.3-inch LEDs that can be easily seen even under low-light conditions. Price includes test leads, batteries, and spare fuse.

FREE '78 EICO CATALOG

Check reader service card or send $50 \propto$ for first-class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted.
GIGD 108 New South Rd.
Hicksville, N.Y. 11801
CIRCLE 39 ON FREE INFORMATION CARD

OUICK CHARGE IRONQUICK CHANGE TIPS

 ISOTTIPQuick Charge Cordless Soldering Iron recharges in $3-41 / 2$ hours. Uses any of Wahl's 16 snap-in tips.Low voltage, battery powered, ground tree isolated tip design.

WAHL CLIPPER CORPORATION ORIGINATORS OF PRACTICAL CORDLESS SOLDERING

 Sterling, Illinois 61081 (815) 625-6525 "Manufacturing Excellence Since 1919"You can use the Cookbooks as a guide. Build the Exclusive- OR circuits; exclu-sive-NOR circuits; or the adder circuits. Why not try some of the control circuits described in the Cookbook? Or the one and only one input; or edge-trigger circuits, one module for each type.
2. Try flip-flops; use 7400's to make set and reset units. These can be used with switches to provide bounceless switch circuits for your projects. Build some JKtype flip-flop modules. And how about some D-type clocked flip-flops, 7474 's, or even 74175 or 74174 type of IC packages? Cascade the flip-flops to form registers.
3. The counters--decade, divide-byfive, hexadecimal and divide-by-eight. What about divide-by-twelve counters? Build them in pairs and place them onto the larger-size modules, or cascade them.

If you build counters, you might want to build the decoder modules to complement them; also some 7 -segment displays to form a three-pair unit. How about a hexadecimal display? Use the HP 9368 IC's for the hexadecimal display using a 7 -segment LED to show the numerals 0 to 9 plus ABCDEF letters. This IC is both a latch circuit and an LED decoder circuit.
4. What about timers? Use the 555 or the dual 556 .
5. How about one-shots-a 74121 astable or the dual 74123 IC's. Find out about the trigger levels and time sequence of one-shots. This is an area that is required in complex circuits and using the modular system is a painless way to learn how to work with them. Try varying the capacitor and resistor values.
6. What about a series of discrete LED's to indicate signal levels? Try both forms: The LED is on with a positive pulse, the LED is on with negative pulses. Eight LED's make an excellent type of module.
7. Try some shift registers-how they are loaded, why they do what they do What about walking ring circuits using a shift register? What about the giant 24pin IC's? You can also try multiplexing and demultiplexing circuits. How can they be controlled? Try data selectors from the Cookbook.
8. Why not try building your own ROM with diodes and the 74154 1-of-16 data selector? There are ways to combine these ROM's for complex logic circuits. Built them on a module; you can combine several ROM's for fantastic circuits.
9. Build some modules with discrete components on them, all ready for useswitches, potentiometers, vaiable capacitors, etc. Try some modules with miniature switches. What about the 74157 type of selector IC? Select one circuit input or another electronically. Build some modules with relays in the 5 -volt range. Can you build your own memory type of module? How about some that hold
smaller discrete components, such as transistor circuits, amplifiers, inverters, etc.? Other suggestions: op-amp modules, a D/A module and an A/D module.
If you feel you have a full setup of modules, why not duplicate them in another logic family? For instance, do CMOS IC's work the same as TTL IC's, and why not? Can TTL and CMOS logic be compatible? The answer is yes, but you will have to find out the ways to make them compatible

Can you design your own microprocessor using these modular-system circuits? Yes, why not? Choose a microprocessor and connect up the modules. Who knows
you may find a simpler method of doing things. The objective of building this system is not to build the modules just for themselves, but to use them in working circuits. Try some games or think up a new logic game, write up the story and submit it for publication.

Some suggestions

First, obtain some logic books and read up on several Radio-Electronics projects. Design the project into the various working modules. Build the modules and combine them into the total working prototype. Now draw up the schematic from the prototype. Can you redesign the prototype to fit better onto a finished PC board or a wire-wrap board. Does building the prototype lead to an idea for a different setup or circuit? Why not build the additional modules you need for your idea and rebuild the new prototype circuit?

Try some of your pet ideas in this modular form. It will prove whether the circuit is workable or not. When you have a good collection of modules, try putting them together into a circuit, using a block diagram to set up the circuit. Then set down the schematic, This gives you experience not only in tracing the wires, but in how to read schematics. Use the modules to learn logic circuits and share some of your experiences gained from their use. Have fun.

"Yesterday I was told you had finally fixed our set beyond repair and today another service technician confirmed it!"
 FREE STHRE CATALOG

Audio-Computers

Instruments Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY
SAN ANTONIO. TEXAS 78216
CIRCLE 28 ON FREE INFORMATION CARD

This is easyanyone con solderWITH KESTER SOLDER

SPIDER

Handymen! Hobbyists! DO-IT-YOURSELFERS!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing - a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. - Save money - repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals. When you Solder go "First Class" - use Kester Solder.
For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

KESTER SOLDER
Litton 4201 WRIGHTWOOD AVENUE/CHICAGO, ILLINOIS 60639

merktir Hentier

Abstract

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.50$ per word (no charge for zip code) . . . minimum 15 words NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85e per word . . . no minimum ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at $10 \$$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 5% discount for 6 issues, 10% for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted untll advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26 th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

PLANS \& KITS

LINEAR AMPLIFIER: Ham only $2-30 \mathrm{MHz}, 100$ watt, solid-state. FREQUENCY COUNTER: 300 MHz , miniportable/mobile, memoryl voxCOMPRESSOR: Splatter-free modulation booster. Construction plans $\$ 3.00$ each. All $\$ 7.50$! Many others, catalog with order. PANAXIS PRODUCTIONS, Box 130-F10, Walnut Creek. CA 94596

SCANNER users-build many useful accessories. Free kit catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520 TAPE RECORDER! 5 TRACK, 4 CASSETTE, EASILY MODIFIED TO PLAY ONE RECORD ANOTHER, ALL CONTTOL SIGNALS ON EDDGE CONNECTORSI 2000FT I/4"TAPE /CASSETTE, PRINTED CIRCUIT MOTORS a TACH GEN; BALL BEARINGS, TOP QUALITY MFG! REQUIRES I2 VOLT 5 AMP DC; DATA BOOK Q I CASSETTE FURNISHED WT85,
LBS SHIPD COD. BOOK $\$ 25$, CASSETTE $\$ 25$.

STEPPING MOTOR
 15% TEP, 28 VOLT, LEAD

SCREW SHAFT PRECISION BALL
BEARING, 5 LEAD WINDING $\$ 4.95$ WITH FOLLOWER B GUIDE $\$ 9.50$ SHAFT. 3 IODIA 5 I/IGLG 4"WORKING, MOTORI7/16"DIA 2 15/16"LONG NEW CATALOG! PLEASE SEND SELF ADDRESSED STAMPED
ENVELOP FOR FREE COPY NOW!

DC MOTORS

SMALL SIZE 15/8"DIA
27/16"LG, SHAFT I/8"
DIA $/ / 2^{\prime \prime} \mathrm{LG}$, PM FIELD, BALL BEARING, 28 VOL REMOVED FROM EQU'IP. $\$ 6.00$ EACH HITORQUE 3/I6"DIA 3 3/4"LG SHAFT, PM FIELD W/MU-METAL SHIELD, B.B., 28 VOLT, ÉA. $\$ 7.50$ MOTOR \& TACH GENERATOR SET \$IIOO TACH GENERATOR I"DIA I $3 / 4^{\prime \prime} L G$, SHAFT I/8" DIA 3/8"LONG, PM FIELD, WIRE LEADS, $\$ 5.00$
ADD $\$ 3.00$ POSTAGE -BALANCE REFUNDED
CIRCUUITBOARD
WIRE WRAP, GOLD, 8-I6PIN 32-14PIN, 8-26 PIN. 025 SQ. MALE RIBBON CONNECTORS, YOU STRIP EACH \$10.00 NEW KLUGE BOARDS! EPOXY-GLASS, 2 SIDE COPPER, I/16" $\times 71 / 2^{\prime \prime} \times 101 / 2^{\prime \prime}$ DRILLED FOR 7-I6PIN, $28-14$ PIN, $1-24$ PIN, 8 4-28PIN SOCKETS, MANY THRU HOLES, EACH $\$ 500$ NO. 2 SAME EXCEPT HAS $13-16$ PIN, 8 36-14PIN PATTERNS, YOU ETCH. $\$ 7.50 \mathrm{MIN}$ ORDER $\$ 10.00$

J\&E ELECTRONICS SALES PO BOX 4504, FT.WORTH,TX. 76106

PROJECTION TV . . . Convert your TV to project 7 -foot picture. Results equal to $\$ 2,500$ projector. Total cost less than $\$ 20.00$. Plans $\&$ lens $\$ 16.00$. lllustrated information free. MACROCOMG Washington Crossing, PA 18977

CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed $\$ 1.00$; includes year's subscription to Electronic Newsletter, DON BRITTON ENTERPRISES, PO Box G, Waikiki, HI 96815

AMPLIFIER kits: Low TIM, Class A, BI-FET circuitry. Free 60 -page manual. MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco, CA 94132

HOBBYIST glve your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Rush free details. DANOCINTHS, Box 261, Westland, MI 48185

EDUCATION \& INSTRUCTION

GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radlotelephone examinations. \$13.45 posipaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025

TELEPMONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LABORATORIES, BoX 547-RE, Pennsboro, WV 26415

UNLOCK your future. Become professional locksmith by spare time homestudy. $\$ 13$ in an hour possible. All tools, equipment included. Facts FREE. Send name. LOCKSMITHING INSTITUTE (homestudy). Dept. 1339-108, Little Falls, NJ 07424

To run your own classified ad, put one word on each of the lines below and send this form along with your check tor $\$ 1.50$ per word (minimum 15 words) 10 :
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003

ORDER FORM

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 10$.
() Plans/Kits () Business Opportunities () () For Sale
Special Category: \$10
(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quallty devices, fully functional, carefully inspected. Guaranteed to meet all speclfications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

PARTS PROCUREMENT PROBLEMS?

SOURCE OUR COMPLETE JAPANESE INVENTORY

Do People Buy From Fuji-Svea

Just a note to thank you for the prompt delivery of the parts 1 ordered. Confederate Elect. Findlay, OH

It is with great pleasure that I have the opportunity to express our appreciation for the prompt and courteous service your company always gives us. Our orders are always filled promptly, correctly, and arrive in perfect condition. Thanks again.

Soundmaster Electronics
Bethany, OK

It was real nice meeting you people in Las Vegas. We are happy your company is doing so well.

> Channel Cat
> Midland, TX

I would like to take the time to congratulate you on a job very well done. You not only stock most every transistor \& IC, but you give me faster \& more courteous service than anyone else. You will enjoy a unique spot in my business by enjoying all my transistor \& IC orders. You also show your appreciation for our business by giving us discounts and progratis parts. So in closing I wish to thank you again and look forward to a long and rewarding relationship.

Beitz Electronics
 Attica, NY

Thank you for your letter explaining the reason for the delay in filling our order. I would like to express my thanks for your generosity for the extra parts to compensate for the delay. May I also say that I am well satisfied with the way you have taken care of our orders.

Thanks for the fine service and I'm looking forward to doing much business with you in the future. Because I ship prepaid, your company saves me money because of the high cost of shipping. Put us on your permanent mailling list.

Reese Communications Marshall, Minnesota

Thanks for your service--it's what keeps us coming back.

Shakespearin's

Sound Service
Holly Hill, FL

Your note on the bottom of your last invoice was the high point of all my business communications. I am writing this to let you know that the personal, human touch really is appreciated and makes a very good impression on your customers. Please don't let any computer take over the job in the future, it sure isn't really a suit. able substitute.

Al's TV Service Portsmouth, NH

We have been very impressed with the professional manner in which your company does business. Please keep up the very efficient reputation you have earned.

Thanks
GTS Electronics
Nashville, TN

2SA 49 2SA 49 2SA 52

 2SA 532SA 70 2SA 70
2SA 101 2SA 102 2SA 234
2SA 235 SA 235 2SA 329 A 353 2SA 377
2SA 436 2SA 436
2SA 440 2SA 473 2SA $4 B 3$
2SA $4 B 4$ 2SA 484
2SA 485 2SA 485
2SA 489 2SA 490
2SA 493 2SA 495 2SA 497 2SA 505 2SA 509
2SA 525 2SA 530 2SA 537A 2SA 539
2SA 545 2SA 561 2SA 562 2SA 564 A
2SA 565
2SA 566
2SA 566
2SA 606
2SA 606
2SA 607
2SA 624
2SA 627
2SA 628
2SA 640
2SA 642
2SA 653
2SA 659
2SA 663
2SA 666
2SA 672
2SA 678
2SA 680
2SA 682
2SA 683
2SA 684
2SA 697
2SA 699A
2SA 705
2SA 715
2SA 719
2SA 720
2SA 721
2SA 725
2SA 726
2SA 733

	.70	2SB 529
2SA 740	2.65	$2 S B 53$

	2.65	2SB 531
	1.60	$2 S B$

4.90258

UNIVERSITY degrees by maill Bachelors, Masters, Ph'D's . . Free revealing details. COUNSELING, Box 317-RE10, Tustin, CA 92680

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, 92-R, Brighton 11th. Brooklyn. NY 11235

WANTED: Horizontal output transformer Emerson number 738 133. H. L. MOORE, 3010 Hampton Avenue, Brunswick, GA 31520

CABLE FM station. No experience required, excellent spare-time income, others operate for you. Details free. BROADCASTING, Box 130F10, Walnut Creek, CA 94596

HIGHLY
 ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not rehome business. Write today for facts! Postcard will do. Barta-RE-J, Box 248, Walnut Creek, CA 94597.

GOVERNMENT SURPLUS

JEEPS - $\$ 59.301$ - Cars - $\$ 33.50$! $-200,000$ items" Government surplus-most comprehensive directory available tells how, where to buyyour area-\$2.00-moneyback guaranteeGOVERNMENT INFORMATION SERVICES, Department VA - 10, Box 99249, San Francisco, CA 94109
P.O. Box 4430 E Santa Clara, CA 95054 for will call only: (408) 988-1640
Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices. INTEGRATED CIRCUITS

Sinclair 31/2 Digit Multimeter Batt. $/ A C$ oper. 1 mV and . tNA resolution Resistance to 20 meg. 1% accuracy. Small portable, completely assem. in case. 1 yr.
guarantee. Best value ever!
$\$ 59.95$

Not a Cheap Clock Kit $\$ 14.95$ Includes everything except case. 2PC boards. 6.50 LED Displays. 5314 clock chip, transtormer, all components and full chip, transtormer, ali componenis and iun
instrucs. Green and orange displays aiso instrucs. Green and orange displays also
avail. Same kit $w / .80^{\circ}$ displays. $\$ 21.95$

Digital Temperature Meter Kit

 Indoor and outdoor. Swithes back and torth. Beautifut. 50 LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure $-100^{\circ} 10+200^{\circ}$, tenths of a degree, air or liquid. Very accurate. $\$ 39.95$ Beautitul hardwood case w/bezel $\$ 11.75$NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in

RCA Cosmac VIP Kit 275.00
Video computer with pames and praphics.
'78 IC Update Master Manual 1978 IC Update Master Manual $\mathbf{5 3 0 . 0 0}$ Complete IC data selector 2175 pg . Master reference guide. Over 42.000 cross reterences. Free update service through 1978. Domestic postage $\$ 3.50$. Forelgn $\$ 6.00$. Final 1977 Master closeour $\$ 15.00$

New Cosmac Super "ELF'

 RCA CMOS expandable to 64 k micro computer w/HEX keypad input and video computer w/HEX keypad input and videooutput for graphlcs. Just turn on and output or graphics. Just turn on and
start loading your program using the resident monitor on ROM. Pushbuttion selec tion of all four CPU modes. LED indicators of current CPU mode and four CPU states. Single step op. for program debug. Built in pwr. supply, 256 Bytes of RAM, audio amp. 8 spkr. 100 pg . detailed assy. man. incl. new exten. software section. PC board solder masked \& all parts fully socketed. Comp. Kin \$106.95. High address display option 8.95; Low address display option 9.95; Custom hardwood cab. drilled front panel 19.75. Nicad Battery Backuo Kin wiall parts 4.95. Fully cired \& ested in cabinet 151.70-0 wired \& rested in cabinel 151.70. Quest data 8002 sofware club. 10-12 pg
4K Ell Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Available on Doard options: 1 K super ROM monitor $\$ 19.95$ Parallel 10 por $\$ 7.95$ monitor $\$ 19.95$ Parallel $1 / 0$ Dort $\$ 7.95$ S-100 Memory UF st 20
Tiny Basic for ANY 1802 System Cassette 510.00 On ROM Montor 538.00 . Super Elf owners, 30\% off. Object code listing or paper tape with manual $\$ 5.50$. Original ELF Kit Board \$14.95

Video Modulator Kit $\$ 8.95$ Convert your TV set into a high quality monitor without attecting normal usage. Complete kit with tull Instructions.

60 Hz Crystal Time Base
Kit $\$ 4.40$ Converts digital clocks from $A C$ line trequency to crystal time base. Oulstanding accuracy. Kit includes: PC board, MM5369, crystal, resistors, capacitors and trimmer

Clock Calendar Kit $\$ 23.95$ CT7015 direct drive chlp displays date and time on . $6^{\text {" }}$ LEDS with AM-PM Indicator. Alarm/doze feature includes buzzer. Complete with all parts, power Supply and instructions, less case
2.5 MHz Frequency Counter

Kit Complete kit less case $\mathbf{\$ 3 7 . 5 0}$
30 MHz Frequency Counter
Kit Complete kit lass case
Prescaler Kit to 350 MHz
$\$ 47.75$

PROM Eraser
Ultraviolet, assembled $\$ 49.95$
SLOpWatch

Slopwatch Kit
$\$ 26.95$
Full stx digit battery operated. $2-5$ volis. 3.2768 MHz crystal accuracy. Times to $59 \mathrm{mln} ., 59 \mathrm{sec} ., 991 / 100 \mathrm{sec}$. Times std., spilt and Taylor. 7205 chip, all components minus case. Full instruc

Auto Clock Kit

$\$ 15.95$ DC clock with 4 - 50° displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated, comp. instructs. Add $\$ 3.95$ for Deautiful dark gray case. Best value anywhere.

TERMS: $\$ 5.00$ min. order U.S. Funds. Callf residents add 6\% tax. FREE: Send for your copy of our NEW 1978 Bankimerieard and Master Charge accepted. Shipping charies will be added on charie cards.

OUEST CATALOG. Include 28° stamp.

FOR SALE

FREE catalog (anglais). IC's, semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada, H3C-1H8. US inquiries

RADIO \& TV tubes 364 each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Callf. 92105

RECORDS-TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100\% guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St. Dept. 3-01078, New Rochelle, NY 10801

AMAZING ELECTRONIC PROJECTS and PRODUCTS: Lasers Super Powered, Burning, Cutting, Rifle, Pis tol. Pocket. See in Dark-Shotgun Directional
Mike-Unscramblers-Glant Tesla - Stunwand-Mike-Unscramblers-Glant Tesla - Stunwand-
TV Disrupter-Energy Producing, Surveillance, De. tection, Electrifying, Ultrasonic, CB, Auto and Mech. Devices, Hundreds More-All New Plus INFO UNLTO PARTS SERVICE. Catalog \$1. Information Unlimited, Box 626, Lord Jeffery Court, Amherst, N.H. 03031.

TUBES, receiving and Industrial, semiconductors, faclory boxed, low prices, free price Ilst. tors, faclory boxed, low prices, free price list.
TRANSLETERONIC INC.. $1365-39$ th Sireet, Brooklyn, NY 11218 212-633-2800.

PRINTED CIBCUTT
 Positive Acting Photo Resist; Carbide
 bits; Bubble etchers; Artwork; Epoxy Glass Boards.
 Send stamp $\&$ address tabel for flyer TRUMBULL
 B33 Balra Dr., El Cerrito, CA 94530

ELECTRONIC Equipment Hotline is a new classified advertising newsletter for buying and selling professional, industrial, and surplus electronic equipment. Subscriptions $\$ 6 /$ year, ads $50 \$ /$ word. Prepublication offer: $\$ 1$ off subscriptions and 20% off all ads postmarked before October 1. 1978. ELECTRONIC EQUIPMENT HOTLINE, PO Box 4768, Panorama Clity, CA 91402

BLITZ ZOINK ZATT: UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and keep informed. Tunes all scramble frequencies. works with all scanners, and is factory buillt and suarantced. S34.95PP. UNSCRAMBLER KIT: La
 plete insiructions, only S19.95PP. Thousands of satisfiod customers. Catalog S0e. Order from KRYSTAL KITS, BOX 445 , BENTONVILLE, ARK.

FREE catalog of new electronic parts. KEY ELECTRONICS, Box $3506-\mathrm{RE}$, Schenectady, NY 12303

Burglar - Fire. Smoke Alarm cetclog

- Billions of dollars lost annually due to lack of protective warning alarms.
FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

PP-AMPS AT "CENT-CIBLE" PRICES	

ALDELCO ELECTRONICS COMPANY			
NEW IMPROVED DIGITAL ALAAM CLOCK KIT 0.5 LED Display 12 hour lormal Snooze Feature			
Elapsed Ther			
Simulated Wood Grain or Black Leather Cabinet \$24.95 12 or 24 Hour Clock Kht Similar to above but without Alarm or Timer features Only $\$ 23.95$			
Crystal Time Base Kil tor 12 Volt DC use 4.95			
DIGITAL MULTHETER-THEAMOMETEA KIT 3% OHIT-5 ranges on each. Functions AC-DC. . 2 to 2.000 Volts. 2 Micro Amps to 2 Amps. 2,000 Onms to 2 Meg Onms Price $\$ 49.95$			
VOLTAGE REOULATORS		CAPaCtTOR SPEC.	
kage		$\begin{array}{r} 25 \text { for } 81.00 \\ 1.03300 F \end{array}$	
Posifive			
		$\begin{array}{cc}.01 & 20 \mathrm{pF} \\ .001 & 510 \mathrm{pF} \\ 000 \mathrm{pF} & \\ 000 \mathrm{pF}\end{array}$	
781.00			
		${ }_{0} .001$ Disc 30 volt 100 for $\$ 3.50$	
7806		, 500 tor $\$ 15.50$	
7808			
7812			
$\begin{array}{lr}7815 & 7918 \\ \text { LM } 309 \mathrm{H} & \$ 1.10\end{array}$		TUANEA PTT Hand Mike	
		OIN. GOOD for Ham CB ma-	
FETS ${ }_{\text {MPF102 }} 006731.55$		We have transistors Send slamp for catalog	
		MC issep spec.	
Monsanto mV5053 Jumbo Red LED and LED Holder 25 aach		Bhidge rectifiers	
		2 Amp 200 Voll $\$ 50$	
LED and LED Holder 25 amchGreen Yellow or Orange LEDS		2 Amp 400 Voll	
FND 70 CC 0.3 Display LiED $\$ 1.00$		3 Amp 200 Volt 85	
		25 Amp 200 Voh 2.50	
FND 500 CC 0.5 Display LED .89		25 Amp 400 Volt 4.00	
CLOCK FLLERS $21 \% \times 5 \%$ \% Red.		8LINIEY FLASMER. TMER KIT includes 555. PC Board Parts	
Amber 60 er	. 60 өa	\$ instructions $\quad \$ 2.50$	
ACCUKEYER KIT. Uses TTL, inclucies IC"s, sockets. Speaker, PC Board. instructions and all parts ONLY $\$ 19.95$ MEMORY KIT. Matches above of other accukeyer kits ONLY $\$ 19.95$			
VARIABLE POWER SUPPLYKITS . 5 Amps 5 - 15 VOII OC $\$ 6.95$ add $\$ 1.00$ perkil shippling $\quad 5 \mathrm{Amps} 12-28$ volt DC 6.95			
Visit Our Store. Hours 9.00 AM to $6: 00 \mathrm{PM}$ Mon. 10 Fri. Sat. 9.00 AM to 2:00 P.M. Phone Orders accepted. Visa \& Master Charge. ADD 5\% FOR SHIPPING ORDERS UNOER $\$ 10.00$ a 00 \$ $\$ 1.00$. FOreign Orders add 15% shipping (Excepl Canada \& Mexico) send Certisea Check of Money Order in USA funds			

ALIDIELCO

2281R BABYLON TURNPIKE, MERRICK, N.Y. 11566 (516) 3784555

CIRCLE 2 ON FREE INFORMATION CARD

FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and re liability - the TIGER SST capacitive dis charge ignition (CD)
The TIGER delivers everything other CO's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced epairs and pollution
The TIGER can be bulit and installed in your car in 80 minutes. The TIGER is uniquel
The TIGER comes with a switch for THGER or standard ignition for 12 V negative ground only.

Simpli-Kit \$21.95
POST PAIO U.S.A.
WE ACCEPT
Mastercharge or BankAmericard Send check or money order with order to

Tri-Star Corporation

DEPT. FF. P.O. Box 1727 Grand Junction, Colorado 81501

SALE S. 100 BUS EDGE CONNECTORS SALE

 M3.5A $31 / 2$ dig $.5 \%$ DC LM40A 4 dig $.1 \%$ DC HA4A 4 dig .03\% DC
Rechargeable batteries and ch $\$ 250.00$
cluded
Measures DC volts, AC volts, Onms and Current
Automatic polarity, decimal and overload indication
Rechargeable batteries and charger Measures DC Volts, AC Volts, Ohms and
Current Automatic polarity, decimal and overload Andication
Indication
adjust
Battery-operated - NiCad batteries; also AC line operation

- Large LED display for sasy reading withou
slam $19{ }^{9} \mathrm{H}$ स 2
Porrie 8 labor puerantice 1 yoa
Th slenco opito
Purchase any of the LM series
Meters and buy the LEATHER CASE

SALE $\$ 134.0$ $\$ 158.50$ $\$ 209.00$
Patim MS

 - Ams
$\begin{array}{cccccc}1-24 & 25-49 & 50.99 & 100-249 & 250-999 & 1 K .5 K\end{array}$ $\begin{array}{rrrrrrr}8 \text { pin } & .41 & .38 & .35 & .31 & .27 & .23 \\ 14 \text { pin }^{\circ} & .39 & .38 & .36 & 32 & 29 & 27\end{array}$ $\begin{array}{lllllll}16 \text { pin* } & .43 & .42 & .39 & .35 & .32 & .30\end{array}$

18 pin	.63	.58	.54	.47	42	.36
20 pin	.80	.75	.70	63	.58	.53
22 pin $^{\circ}$.90	.85	.80	.70	.61	.57
$24 \operatorname{pin}$.90	.84	.78	.68	.63	.58
28 pin	1.10	1.00	.90	.84	76	.71
40 pin	1.50	1.40	1.30	1.20	1.04	.89

Sockets purchased in multiples of 50 per type may be combined for best price
All sockets are GOLD 3 level closed entry *End and side stacable. 2 level, Solder Tail, Low Profile, Tin Sockets and Dip Plugs available. CALL FOR QUOTATION

W

 .042 dia holes on 0.1 spacing for $1 C^{\prime}$'s | PAR | | PRICE | |
| :---: | :---: | :---: | :---: |
| PART NO | SIZE | 1.9 | 10.19 |
| 64P44XXXP | $4.5 \times 6.5 \%$ | $\$ 1.49$ | 1.34 | 169P44XXXP 4.5×17

Epoxy Glass $\begin{array}{llll}64 \text { P44 } & & & \\ 8.5 \times 6.5 & \$ 1.70 & 1.53 \\ 84 P 44 & 4.5 \times 8.5 & \$ 2.10 & 1.89 \\ 169 P 44 & 4.5 \times 17^{\prime \prime} & \$ 4.30 & 3.87 \\ 169 P 84 & 8.5 \times 17^{\prime} & \$ 7.65 & 6.89\end{array}$

Hi-Density Dual-In-Line
Plugboard for Wire Wrap Plugboard for Wire Wrap
with Power $\&$ Gid. Bus Epoxy Glass $1 / 16^{\circ} 44$ pin con. spaced 156

sic. 90
$\underset{\substack{367-26.5 .74 \\ 59.74}}{\substack{51 \\ \hline}}$
$\$ 7.65$ Boards with Bus Pamern Boards with Bus Pattern or Solder or Wire Wrap.
$3662-2 \quad 9.6^{\prime \prime} \quad 14$
$\$ 11.45$ pattern plugboard

$3682 \quad 9.6^{\prime \prime} \times 4.5$

CLOCK-CALENDAR

For Auto. Home, Office Smaill in size (2z2 hx h

- Push button tor seconds relaese for dole.

Clom

CARD EXTENDER Card Ex contacts-5 compatible Syslems.

RD EXT
\square SPECIAL Gannanci 14CS2 100 for ${ }^{\circ} 14^{\circ \circ}$ 16CS2 100 for ' 16° 14 pln CS2 10 for ${ }^{\prime 2} 2^{\prime \prime}$
10 ptn CS2 $10{ }^{\circ} \mathbf{2 0}^{\prime \prime}$ These low cost blp sockets will acce both standard widih plugs and chips.
 protile hoighl of only. 125 "above the board
Thase wockets ate end stecheble
$\sqrt{2}$ exar
WRAP POST tor. 042 dia, holes
(all Doards on this page) (lall Doards on this page)
$\mathbf{T} .44$ phg. $100 \quad$ \& 8.28 1-44 噺.

2708
EK 450 ns
EPROM
FACTORY PRIME
$\$$ 9.00 EA.
25 Call For
Price

Other Popular Edge Connectors

Same as 8800 V ex
\qquad
$14 \& 16$ PIN
WOGOLD 3 LEVEL
WHWIRE WRAP
SOCKETS
$14-$ G3 100 for
$\$ 30.00$
$16-G 3100$ for
$\$ 30.00$
 \$215

$\square_{O N E}$Price Breakthrough! s17so 12:48 MA MA car clock
Bright Green Fluorescent Display Crystal Time Base Assembled, just add
PRIORITY ONE ELECTRONICS.

491 1R West Rosecrans, Hawthorne,
Terms: VISA, MC. BAC, check. Money Order, C.O.D., U.S. Funds Only. CA residents ado 6% sales tax. Minimum order $\$ 10.00$. Orders less than $\$ 75.00$ include 10% shipping and handling: excess retunded. Just in case
 please include your phone no. "Sorry, no over the counter sales" Good thru October, 19\%"

NAME brand test equipment. Up to 50% discount. Free catalog and price list. SALEN ELECTRONICS, P.O. Box 82, Skokie, IL 60076

SANKEN 50-watt power AMP 22.50 postpaid, 50 -volt transformer for above 8.00 postpaid PRARIE SOUNDS, P.O. Box 982, Champaign, IL 61820

NOTICE: RECORD RATERS WANTED

 (No experience required) Each month you will IS NO EXTRA CHARGE for the LP's you receive. rou pay a small membership lee which covers all costs of the LP's. We pay postage. In return for you pinion. For application write: EARS. DEPT. RX Box 102455521 Center St.. Milwaukee. WI 53210

NEW, adjustable three-output, regulated power supply, plus 900 parts worth over $\$ 400.00$ in complete cartrivision television electronics assembly. Documentation included. Perfect for microprocessor and all electronic applications $\$ 16.95$ plus $\$ 4.50 \mathrm{~S} \& \mathrm{H}$. Master Charge, VISA Free brochure. MADISON ELECTRONICS, 369 Madison, AL 35758. Satisfaction guaranteed.

Why is this the
 LARGEST SELLING low cost COUNTER KIT?

This counter is such a great selter because people tike you have found that, feature for feature, the CT. 50 gives you more for your money. Advanced LSi and CMOS circuitry has; lowered power consumption, increased performance. and reduced cost. Complete push button operation makes using the CT-50 a snap. and automatic decimal point positioning gives you quick, reliable readings. Battery opera tion is also possible becuase the CT 50 runs equally as well on 12VOC as it does on 110 VAC . For ultra-accuracy we offer the CB- 1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for .001 ppm accuracy! Why sacrifice performance by
using another counter when you can get professional qual. using another counter when you can get professional qual
ity at the unheard of price of $\$ 89.95$? Order yours today!

SPECIFICATIONS
Sensitivity less than 10 mv
Gatetime i seconct 5 Hz to 60 MHz , ty pically 65 MHz decimal point positioning on both direct and

Ascuracy 2 pom, invernal TCXO standard
inpur BNC. : megonm direct. 50 Onm wit
Power. 110 Vac 5 Watts or 12 Vdc @ $300-400 \mathrm{ma}$
CT $50,60 \mathrm{MHz}$ Counter Kit
$\$ 89.95$
CT-50 wt 60 MHz Counter Wired \& Testec $\$ 159.95$

MINI-KITS

FM WIRE LESS MIKE KIT
Transmit up to 300^{\prime} to
FM broadcast redio,
any tyoe of onike. Runs
sensitive mike preamp.
FM. $1-\$ 2.95$ FM-2 $-\$ 4.9$ SUPER-SLEUTH AMPLIFIER pick up a pin drop at 15 foell G for montoring bubv's room or ag
eral purpose test amplifier. Full
weits of output, runs on 6 to 2 uses any trpe of mike. Requires $8-45$ Complete Kit. B COLOR ORGAN/MUSIC LIGMTS See music come slive! 3 differen
loghts flicker with music or waice On light for lows, one for the mid-range
and one for the and one for the highs. Each chenne
individuelly adjustable, and difves up to 300 watts. Great tor parties, band Complete KIt, ML.1. TONE DECODER KIT
 able frequency range, volt-
age regulation, 567 ic . Useful for touch-tone dec
burst detection, FSK 12 button touchtone decoding on 5 to 12 voliss.
Complete Kit. TO.

LED BLINKY KIT

A great attention
nately llashes?

name badges.

tyo
volis.

POWEA SUPPLY KIT

COWER SUPPLY KIT
Diy provides varimble +15 volts at 200 mA and $i 5$ volts it 1 Amp. 50 mV lomd regulation good filtering
small u ize. Kit loss trensforment small rize. Kit less trensformeri. Re-
ouirem 68 V at 1 Amo and 18 to 30 quires.
Complete Kin
SIAENKIT
Characteristic of police siren. 5 mells audio output, runs on 39 volts. uses $8-5$ ohm speaket
Complete Kit. SM.

VIDEO MODULA TOR KIT

 Converts any TV to video Monitor.Super stebte tunable ovar Ch. 46 Runs on 5-15V. accepts sid. vided
Complete Kit, vo-1.

SIX DIGIT
 12/24 HOUR CLOCK KIT

Here's a clock you can be proud of. The

 best looking, most complete kit on the market! Features include: lime set pushbuttons, jumbo.$^{\prime \prime}$ readouts, and extruded aluminum case available in 5 colors.All parts included. Colors: gold, silver. All parts included. Colors; gold, silver.

Clock Kit, DC.5 \$22.95 Alarm Clock, 12 Mr., DC-8 24.95 Mobile Clock, DC-7 25.95 Clock with HAM ID timer DC. $10 \quad 25.95$ Assembled and tested clocks available, add $\$ 10.00$ to Kit price.

600 MHz

 PRESCALERExtend the range counter to 600 MHz your 150 mv sensitivity Less than PS 1 or -100 . Wired, tested. Kit, PS.l

TV TYPEWRITER KIT

TV TYPEWRITER KIT			$\begin{aligned} & \text { CAR } \\ & \text { CLOCK } \end{aligned}$KIT		
			12/4 Hour 12 Volit AC or DC - Easy, no-polarity hookup - Case mounting Dracket included Complete Kit, DC-1 Auto dimmer for DC-11 $\$ 2.50$		
TH3216 kit TH3216, Assembled end Tested VO 1 Vioto 10 RF Modulator Kit			741 OP AMP SPECIAL Prime, Mini-dip 10/\$2.00		
		6.95			
cs lineat		regulator		transistors	
5314 Crack 32.95	555 \$. 50	78 mG	31.49	Maf 233300 VYHF	
	¢56\%			NPN 2 N3904 140\%	
7447 7073 7075				NRN Power Toio son	
74998 7143					

TV TYPEWRITER KIT			$\begin{aligned} & \text { CAR } \\ & \text { CLOCK } \end{aligned}$KIT		
			12/4 Hour 12 Volit AC or DC - Easy, no-polarity hookup - Case mounting Dracket included Complete Kit, DC-1 Auto dimmer for DC-11 $\$ 2.50$		
TH3216 kis TH3216, Assembled end Tested VO 1 Vioto 10 RF Modulator Kit			741 OP AMP SPECIAL Prime, Mini-dip 10/\$2.00		
		6.95			
cs lineat		regulator		transistors	
5314 Crack 32.95	555 \$. 50	78 mG	31.49	maf 233300 VYHF	
	¢56\%			NPN 2 N3904 140\%	
7447 7073 7075				NRN Power Toio son	
74998 7143					

CALENDAR ALARM CLOCK

FEATURES:

Complete Kit, less case DC-9
$\$ 34.95$

tentisely alahironins

AUDIO \& ANALOG EXPERIMENTERS

TAPE head cleaner, 8 oz. $-\$ 2.30$. Includes postage and handling. Write: "CLEANER," Box 176, Whitewater, WI 53190, 800-558-9572 except WI

SOLID-state brownout protector for central airconditioning systems. Simple 3 -wire connection to existing 24 V control transformer. $\$ 14.95$ ppus. S 8 Electronics, Box 430260, Miami, FL 33143

ELECTRONIC hardware, nuts ' n screws, terminals, switches, PCB stock, more. Clean and top quality. Catalog, 45 c stamps. WESTERN, Box 716. Ontario, OR 97914

SELLING Rider manuals, single volumes, sets, older Sams' Photofacts, Supreme. Beitman, Box 46. Highland Park, IL 60035

AUDIO modules $15 W$ - $60 W \times 2$ under $\$ 85.00$. Free catalog: AUDIOVISION, Box 955, STN.B, Willowdale, Ont., Canada M2K 2 T6

NO-ETCH

Duplicate or make additions to, modifications of Any Etched Board. Ideal for point-to-point or wire wrap breadboards. Complete set of (3) breadiboards. Complete set of (3)
tools IP6003 $\$ 25.00$ ppd. Write for tree brochure, as covered In the July free brochure, as covered In the July
Radio-Electronics. A. F. Stahler Co. R.O. Box 354R, Cupertino, CA P.O. Box 354R, Cupertino,
95014 -(408) 252-4219.

This new instrument has taken a giant step in front of the multitude of counters now available. The Opto- 8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of ± 0.1 PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (.090" thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO ± 0.1 PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display- 8 digit LED
Gate Times-1 second and $1 / 10$ second
Selectable Input Attenuation-X1, X10, X100
Input Connectors Type -BNC
Approximate Size- $3^{\prime} \mathrm{h} \times 71 / 2^{\prime \prime} \mathrm{w} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $21 / 2$ pounds
Cabinet-black anodized aluminum ($.090^{\prime \prime}$ thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired
$\$ 299.95$
OPTO-8000.1K Kit

ACCESSORIES:

Battery-Pack Option-Internal Ni-Cad Batteries and charging unit $\$ 19.95$
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P-101-LO-Pass Probe, very useful at audio frequencies $\$ 16.95$
P-102—High Impedence Probe, ideal general purpose usage
$\$ 16.95$
VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H \$12.50
Right Angle BNC adapter \#RA-BNC \$ 2.95
FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

$$
\begin{aligned}
& \text { FC-50 - Opto-8000 Kit } \$ 59.95 \\
& \text { "FC-50 - Opto-8000 F Factory Update } \$ 99.95 \\
& \text { FC-50 - Opto-8000.1 (w/TCXO) Kit } \$ 109.95 \\
& \text { "FC-50 O Opto-8000.1F Factory Update } \$ 149.95 \\
& \text { "Units returned for factory update must be completely as- } \\
& \text { sembled and operational }
\end{aligned}
$$

OPTOELECTRONICS, INC.

5821 NE 14 Avenue
Ft. Lauderdale, FL 33334
Phones: (305) 771-2050 771-2051
Phone orders accepted 6 days, until 7 p.m.
TERMS: Orders to U.S. and Canada, add 5% to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add 10% of total order. Florida residents add 4% state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear before merchandise is shipped.

WIRE WRAP

- PRECUT WIRE Why buy wire on rolls? PRECUT \& STRIPPED WIRE IS - Fast - No more curting \& stripping by ${ }^{2}$ Economical - Cneaper than using bulk wif PRECUT WIRE BULK WIR

- 30 kynas strippea

Colori Red Bliped 1 . on each end bengins ate overall plastic oags Add $2 s$ shangengith lor tubes5
6
6
in
7
7
7
WIRE KITSPAGE DIGITALELECTRONICS

For faster service USE ZIP CODE

CIRCUIT boards from your camera-ready artwork. Quantity discounts. Free details. CM CIRCUITS, 22 Maple Avenue, Lackawanna, NY 14218

SPEAKER INFORMATION KIT.

 Get 70 pages of speaker facts, specs, construction tips plus info on our raw speakers, crossovers and a line of nine quality hiffi speaker system kits. Well send you our hull-color catalog; plus How To Hook Up Your System, an exhaus tive step-by-step treatise on hifi system in stallation, and our Speaker Owner's Manual,chock-full of facts on how to get the most stallation, and our Speaker Owner s Manual,
chock-full of facts on how to get the most from any speaker system, for only $\$ 1.00$ Send to: Speakeriab. Dept. RE-C 735 N. Northlake Way, Seattle, WA 98103

New ITEMS ... New BARGAINS! FПEE UPON REQUEST! Send today for FREE copy of NEW CATALOG WS-78. Address: Dept. RE

FAAR RABAG GAMES
1016 E. EUREKA - Box $1105 \cdot$ LIMA, OHIO - 45802

JUMBO LED READOUT ARRAY
 $\$ 1.95$
$\$ 1.95$ LIMITED STOCK
By Bowmar. . 5 in character common cathode. Designed for use with multiplexed clock chips

MICRO-MINI TOGGLE SWITCH
SPDT. By RAYTHEON.
994 MADEINUSA! WITHHDWR.
EACH 6 FOR \$5

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

ASSEMBLEDI NOT A KITI
We have a limiled version
We hive al limuled רumber of the 24 HA Real \#MA 1008D - $\mathbf{\$ 9 . 9 5}$

- FOUA JUMBo y incm led displars
- 12 HA REAL TIME FORMAT
- 24 HA ALARM SIGNAL DUTP
- 50 OR 60 ha OPERATION
- POWEA FAILURE INDICATOR
- SLEEE \& SNOOZE TIMEAS
- DIRECT LEO OAIVE ILOW RFI)
- COMES WITH FULL DATA

COMPARE AT UP TO TWICE OUR PRICEI
MANUFACTURER'S CLOSEOUT!

16K DYNAMIC RAM CHIP

16K X 1 Bits. 16 Pin Package. Same as Mostek 4116-4. 250 NS access. 410 NS cycle time. Our best price yet for this state of the art AAM. 32K and 64K RAM boards using this chip are readily available. These are new, fully guaranteed devices by a major mig. VERY LIMITED STOCK!

${ }^{\$ 17}{ }^{95} \mathrm{EACH}$
 8 FOR \$129

FAIRCHILD
JUMBO READOUTS

- 5 Inct Char. High Efficiency

FNO-503-Common Cathode
FND-510-Common Anode
YOUR CHOICE 694 10 FOR $\$ 5.75$
FET SALE!
2N4304. Brand New N Channel, Junction Fet. BVGDO-30VIDSS-15 MA Typ 1500 UMHOS. TO- 18 Plastic

Case. Mig. by Teledyne.
6 FOR $\$ 1$

DISC CAPACITORS 1 MFD 16 V . P.C.
leads. Most popular leads. Most popular
value! By Sprague. 20 for \$1.00
Motorola PNP Power! 2N4905 TO-3 case. 90W. VCEO-60. HFE-100 max. at 2.5A. Good mate for the 2N3055. PRIME! 75 ea. $4 / \$ 2.50$

Full Wave Bridge 4 Amp 200 PIV 69сеа. 10/5.75 COMPUTER CAPACITOR
By GE. 36,000 MFD 15W VDC Small Size: $4 \% \times 1 \%$ Inches. Small Size: $4 \% / 1 \times 1 \%$ Inches.
SUPER DEAL! $\$ 2.95$ Each 3 FOR $\$ 8$

RIMENTER'S CRYSTAL
262 144KHZ This frequency is 2 to the 18 tit power Es asily ditloed down to any power ot 2 2. and even 10 1 HZ . New by CTS-Knight. Ass value!
$\$ 1.25$ each

MALLORY POWER SUPpLY CAPACItor

 1500 MFD 16 WVDC3/\$1.00 $\quad 10 / \$ 2.95$
FACTORY FRESHI SMALL SIZE

RCA MICRO-POWER OP AMP.

 aboull 32 each $\quad 75 ¢$ EACH 3 FOR \$2

Digital Research Corporation

P. O. BOX 401247B GARLAND, TEXAS $75040 \bullet(214) 271.2461$

KITS•KITS•KITS

Pertorated Boards NOT INCL UDED w/100 Series

103 MINI-WINK NEON FLASHER. Random lash pattern. Interesting displays. 6 neon lamps. AC operated.
103
$\$ 3.00$
103A (103 w/PCB)
4.65

1038 (103 w/PCB,CASE)

110 ELECTRONIC WHOOPER SIREN. Powerful wailing sound. Dual oscillator circuit. Use with any alarm circuit. Battery not included. 110
110A (110 w/PCB)
$\$ 4.95$
6.50

1108 (110 w/PCB,CASE)
9.60

117 TUNABLE ELECTRONIC ORGAN. Tunable 7-note scale. Play sing-a-long favorites. Battery not included.
117.
$\$ 7.55$
117A (117 w/PCB)
9.50

117B(117 w/PCB,CASE)
12.60

120 SIREN/COOE OSCILLATOR. Loud, piercing alarm. Practice Morse code. Battery not included

120

$\$ 4.20$
120A (120 w/PCB)
5.55

120B (120 w/PCB,CASE)
8.65

104 VARIABLE STROBE LIGHT. Great for parties and photography. Variable flash rate. AC operated.
104
$\$ 10.60$
104A (104 w/PCB)
104B (104 w/PCB,CASE)
14.85

126 PROGRAMMABLE DOORBELL. Adjustable rate and pitch for 15 musical notes. Play favorite tunes. 6 IC's. Uses existing transformer and switch.
126
126A (126 w/PCB)
126B (126 w/PCB,CASE)

502 POWER SUPPLY. Swith from 6 to $9 V$ DC. 100 mA output. Fillered. Manual. Stepdown transformer. Insulated test clips.

S6.95 Complete

540 BINARY CLOCK. Handcraft tomorrow's timepiece today. Watch constantly changing patterns of LED's as they display Binary Time. This unique clock project enhances the learning of Digital Logic and the Binary Coding System, as well as offering a beautifully styled conversation piece.
10 TTL INTEGRATED CIRCUITS • VOLTAGE REGULATOR - MANUAL TEACHES BINARY SYSTEM - FAST. SLOW AND HOLD CONTROLS • 115VAC 50 or 60 Hz

$\$ 39.95$ Complete

523 STROBE LITE. Create flashing light effects. Ideal for creating kaleidoscope effects for photography. Long life flash tube. PCB. Manual. Variable flash control. On-off switch. Silicon diodes. 117VAC $50-60 \mathrm{~Hz}$

\$22.95 Complete

536 8-TRANSISTOR AM RAOIO. Experience jewel-like clarity in sound. The best superheterodyne kit circuit available. SEPARATE LOCAL OSCILLATOR for high sensitivity and excellent selectivity. Unique IF Transformer mounting system. Manual. 9V battery required (not included).

\$16.45 Complete

504 TRANSISTOR AMPLIFIER. 4 Transistors. Push-Pull output. Variable volume control. Requires one 9V battery (not included). PCB. Manual. 3 transformer stages for maximum gain. Power output 360 mW . Can be operated with any 3.2-8 ohm speaker

\$6.95 Complete

510 FIVE TUBE RAOIO. Rediscover TUBES. This fun antique circuit offers high selectivity and sensitlvity. 2 IF Transformers. Hi-0 Ferrite antenna. Manual. Superheterodyne circuit. Large PM speaker. For 110-120 VAC or DC.

$\$ 34.95$ Complete

401 TACHOMETER. Know exactly when to shift. This tabulous Tach, with a range from $0-8$ grand, will mount any where - dash, steering column, boat, motorcycle frame, etc. 250° wide sweep scale. Reading accuracy within 2% of full scale. PCB. Manual. Illuminated dial. For all cylinder engines

\$27.95 Complete

DO NOT SEND CASH • NO COD • ORDER BY PHONE OR MAIL

4-for-1 SALE!
Top Quality J.I.L. 4-in-1 IN-DASH AM-FM CAR STEREO with CASSETTE or 8-TRACK PLUS 40-CHANNELCB!

ПA1ASMAN

From J.I.L., a leader in car entertainment centers ... a modular, compact, first quality 4 -in- 1 unit ata price you might pay for a radio onlyl Get stereo high-fidelity FM Radio, AM Radio, Casserte or 8 -track, and C8 all for on low price. Tens of thousands sold nationally. Order while supplies last.
\square \#853/102 in-Dash Combination 8 Track Stereo, AM/FM/Stereo Radio and 40-Channel Digital Touch-Tuning AM-CB. Features LO/DX switch. Stereo light. 8 track program lights. CB standby switch. LED channel readout. Plus many other reatures
while supply lasts only... \$149.00 \square \#610/102 in Dash Combination Stereo Cassette Player. AM/FM/Stereo Radio and 40.Channel Digital TouchTuning AM-CB. Features cassette eject/ FF button, CB selector. CB standby switch Plus many other features
-while supply lasts only \$159.00 \square \#202-5SB Single Sideband 40 . Channel CB featuring Digital Touch-Tuning AM-SSB CB for $\mathbf{1 2 0}$ effective Channels with greater clarity and reach. All functions right on the mike. A top-notch unit. Choose SSB instead of standard 40 channel CB with 4853 or $\# 610$ above. Please add\$50.00

ACCESSORIES
\square AM/FM/CB Retractable Antenna
(mounts like reg. car antenna) List $\$ 39.95 \ldots$. NOW 20, or magneta.
List 39.95 pr. NOW 19.95
$\square 6^{\circ " \times} 9^{\prime \prime}$ Full-tone Coaxial Speakers 10 oz. magnets each
List $\$ 69.95 \mathrm{pr}$. . NOW 29.95 pr
\square Field Strength/SWR Moter to test Ant List $\$ 29.95$ CLIP AD AND ATTACH TO LETTER Pa. Res. Add 6\% Sales Tax. Pa. मos. Add 6\% Salos Tax
James Way. Southampton. Pe. 18966
Phone Ordera Call (215) 322-8599
NAME
ADDRESS

CITY \qquad
\qquad ZIP BankAmericard/Visa. Master ChargeExp.
Date

AAMAAAAANAAMAAAAAAAAMAAAAAAAAAAMAMAAM

SPECIFICATIONS

```
OCV \(0.0 .10 .525 .10 .50-2501000\)
``` CA O 50 34, 254 lW/WV probel


 dB - \(1010 \cdot 62\) ICEO O. 150UA O 15150 mA is 5 hre
150.100 .57 4200

\section*{MULTI-TESTER}

YX-360TR
thansistortestea
20K OHMSNOLT

IT TESTS
TRANSISTORS AND LED's
AS WELL!!

\section*{\(\$ 28.50\)}

Surprisingversatility at bargain prices! May be used as a transistor circuit analy zer measuring HFE with the optional connector. A 3 volt battery source gives ex. tended capability in checking semiconductors and LEDs. Range placement on the selector dial gives fast operation and maximum safety from accidents misselections. Meter movement is protected with a dlode and a varistor. Ohms scale has a 20 ohm center for accurately reading low ohm values. Popular school hem.
- Measures nFE \& ICEO (options)
- High versatillty at low cost

SAN.HV 14 Hi-Volt Probe, \(25 \mathrm{KV}, 480 \mathrm{M} \mathrm{OHM} \$ 7.50\) SAN-FE2, hFE Semiconductor Connector \(\$ 3.50\)

\section*{THE MOST POPULAR} MM5314 CLOCK KIT
Features:
* 12/24 Hours Display
- 50/60 Hz Input
- 6 Digits Bright Orange

Readouts
Kit includes plastic case, MM
5314 I.C. One set transistor
drivers, P.C. Board, gas discharge displays, all other elec tronic parts and transformer. Catalog no. DC-8SP SPECIAL PRICE \(\$ 16.95\) PER KIT

9 STEPS LED LEVEL INDICATOR KIT

for most stereo amplifiers
This new project works as a pair of \(V U\) meter to indicate the output level of your amplifier from -20 dB to +3 dB . KIt includes all LED, transistors, electronic components, P.C. Board and instructions.

Easy to bulld and fun to see.
ONLY \(\$ 9.90\) EA

OCL pre amp. \& power stereo amp. with bass, mldale, treble 3 -way tone control. Fully assembled and tested, ready to work. Total harmonic distortion less than \(0.5 \%\) at full power. Output maximum is 60 watts per channel at \(8 \Omega\). Power supply is 24 36 V AC or DC. Complete unit
only \(\$ 37.50\) ea.
Power transformer
RCA 2N3055

NPN power transistor. 100V 115 watt 15 amp 2 for \(\$ 1.80\)

\section*{MERCURY SWITCH}

The switen is a llght bulb type SPST with a drop of mercury Inside. Ideal for alarm control, or a motion device switch. Small size like a 6 V light bulb.

\section*{SUPER 15 WATT AUDIO AMP KIT}

ONLY \(\mathbf{\$ 2 3 . 5 0}\) each

Uses STK-015 Hybrld Power Amp
Kit Includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control, all electronic parts as well as PC Board. Less than \(0.5 \%\) harmonic distortlon at full power \(1 / 2 \mathrm{~dB}\) response from \(20-100,000 \mathrm{~Hz}\). This amplifier has QUASI-Compll: mentary class \(B\) output. Output max is watt (10 watt RMS) at 4 ?
 NNOWN TO MADE BY WELL KNOWN TOP KINE MFR, FOR ORIGINAL COST IN HUGE UANTITIES WAS TWICE OUR plus si shippling LOW PRICE

\section*{FEATURES} Low Price.
feat ures: -hichest quality; desicned for use FIBREGLASS HELICALLY WOUND WHIP (FLDURESCENT orance), heavily plated parts, sealed matchin TRANSFÓRMER.
-SINGLE HOLE MOUNT (\(1 / 2\) " DIA) WITH ALL MOUNTING ALSO WORKS - TUNLS FROM \(140-176\) MHz -- WHIP CUTTING CHART GAND, FIRE \& POTH VS FREQUCNCY. CUT FOR ZM HAM EVEN USE IN THE MARINE BAND!
-COMPLETE WIJH ALL PARTS - WHJP, LOADING COIL (TRANSFORMLR), HARDWARE, COAX (RG58A/U), PL259 CONNECTOR, ANO COMPLETE INSTALLATION ANO inc instructions.
DOES IT GET OUT ? you bet II 5/8 wave VERTICALS ARE MOST WIDCLY USED IN COMCRCIA IAT ION ANCIE AND CONSIDERGELE TAN DOW RAD SHORTER VERTICAL WHIPS. BANOWIDTH IS COOO, RESULTING IN LOWER SWR OVER A WIOER FREQUENCY RANGE. A LESSER DEPENDENCE ON A GROUND PLANE MEANS EASIER MOUNIING IN MANY CASES. (THESE ANTENNAS WERE USED ON POLICE MOTORCYCLES GIVE JHEM A COOD CROUND PLANE (LIKE A CA ROOF) AND THEY•RE NEARLY UNBEATABLE !

\section*{(Marcm-}

\section*{L_ASER}

POWER SUPPLIES Copatifcial qual ITY SUPPLIES INPUT, RECTIFIED AND FILIERED DC OUTPUII THESE NEW COST THE MFR ABOU \(\$ 30\) CACH IN 日IG QUANTITIES. USE FOR LASERS, BUG ZAPPERS, HICH VOLTACE EXPERIMENTS OF ALL SORT SUPPLIES ARE POTS The rectifiers ACCESSABLE THROUCH

CRYSTALS HC- case
tune w/18pt fune
FRESH
SRE fresh
StOCK 3.579 MHz \$125 \(4.000 \mathrm{MHz} \$ 150\) \(4.194 \mathrm{mHz}^{\mathrm{S}} 150\)

\section*{\$}

IAMONDBACK
ELECTRONICE COMPANY SPRING VALEY, IL 61362

12.500 Vdc 25 Watts \$7 \({ }^{95}\)
7.500 Vdc 15 Watts \$6 695 Plues \(\begin{gathered}s_{1}, \\ \text { inipoing }\end{gathered}\)

Easy
mount
limited
QUANTITIES

SEE IN THE DARK
IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness. No shipments to Calif. Comes complete with built in IR source and adjustable focus lens.

SPL-21 \$199.00
CHARACTER GENERATOR CHIP
Memory is \(512 \times 5\) producee 84 five by seven
ABCH onaractere. Now by National, w/epera 8.00
TOUCHTONE ENOODER CH
Compatible w/Bell system. Ideal for repeater work Wrepea 6.00

HAWKEYE RADAR SPEED TRAP alarm Plugs into cigar lighter outlet
12 VOLT DC POWER SUPPLY \(21 / 2\) amps Retal \(B\) s, tape decks in house. New metal cabinet.
untomer peys all poptage
NESHNA, PO BOX 62, E. Lynn Ma 01904
CIRCLE 65 ON FREE INFORMATION CARD
CLE 48 ON FREE INFORMATION CARD

Terns: FOB Cambricer. Moss. Include postry, Minimum
Order 85 on Co. 145 Transthtors and Rectifer 145 Mampshire S : Coctier 145 Mampshire St., Cambridge, Mas

\section*{At Your Service}

IF YOU＇RE INTO COMPUTERS， THIS IS THE BEST PART

Econoram \({ }^{\text {mo }}\) memories are known throughout the industry for reliability and the ability to mate with all S－100 buss mainframes．．．．and they＇re the boards to use in your computer．We offer fully static intelligent mechanical design and an enviablar inteligent mechanical
reputation for quality．
These boards are available in \(\mathbf{3}\) forms：unkit（with sockets and bypass caps pre－soldered in place）． assembled and tested，and qualified under the Cer tified Systems Components program．CSC boards burned in for 200 hours and serial numbered We burned in for 200 hours，and serial numbered．W exchange（not repair）the board

16K ECONORAM IV \(\$ 279\) unkit

Current under \(2000 \mathrm{~mA}_{\text {；}}\) manual write protect for 4 K blocks；use with or without phantom line．Excellent where you need a big chunk of cost－effective memory

OUR TOP OF THE LINE

\section*{24K ECONORAM VII \＄445 unkit}

A full feature dense memory with current under 2000 mA ．Configuration as two 4 K and two 8 K blocks，with independent write protect for each block；use with or without phantom lines；and provision for two unused qualifiers．

TRS－80 CONVERSION KIT \(\$ 190(3 / \$ 540)\)

\section*{Upgrade your 4K TRS 80 mainframe with our Con} version Kit；chips are also compatible with Memory Expansion Module．Includes eight uPD16 16K RAMs． DIP shunts，and instructions for mainframe conver sion．（Many dealers additionally report using these chips to expand memory in APPLEs）．We back up these parts with 1

\section*{MA1003 CLOCK MODULE \(\$ 16.50\) ！}
－Needs only 12V DC and 3 time－setting switches diglt，0．3＂green flourescent display with blinkin colon．When wired in car，display furns off when ignition is off．Accurate to \(\pm 1 / 2\) second a day thanks to built－in crystal timebase．
Finally．．．here is a clock that is simple 10
RF TRANSISTORS
－2NRF1 2 GHz power transistor．Pd max 3.5 W Pout minimum 1．OW，Pin 310 mW ，efficiency \(30 \%\) Similar to RCA 2N5470．\(\$ 4.95\)
（WNRF2 2 GHz power transistor，Pd max 8.7 W Pout min 2.5 W ，Pln 300 mW ，efficiency \(33 \%\) Similar to RCA TA8407．\(\$ 5.95\)

2NRF3 2 GHz power transistor．Pd max 21 W pout min 5.5 W ，Pin 1.25 W ，efficiency \(33 \%\) ．Similar to RCA 2N6269．\(\$ 6.95\)
\＃2NRF4 2 GHz power transistor．Pd max 29 W pout 7.5 W ．pin 1.5 W ，efficiency \(33 \%\) ．Factory selected prime 2N6269．\(\$ 7.95\)
GODOBOP
TEAMS：Add \(\$ 1\) to orders under \(\$ 15\) ．COO orders OK wlth
street address for UPS．Cal res add sales tax street address for UPS．Cal res add sales tax
VISA Masterchargo orders call our 24 nour answering ser

CIRCLE 74 ON FREE INFORMATION CARD

YOU＇RE UNDER SURVEILLANCE！！
A HOST OF PEOPLE，AGENCIES，AND COMPUTERS ARE BUSY SPYING ON YOU AND YOUR BUSINESS EVERY DAY，OFTEN ILLEGALLY．

A Large Format \(\left(811^{\prime \prime} \times 11^{\prime \prime}\right)\) Quality Paperback， 240 Pages

\section*{BUGGING WIRETAPPING TAILING}

\section*{OPTICAL AND}

ELECTRONIC SURVEILLANCE SURREPTITIOUS ENTRY DETECTIVE TECHNIQUES
WEAPONS
COUNTERMEASURES
A VIRTUAL ENCYCLOPEDIA ON SURVEILLANCE
EVERYTHING YOU＇VE ALWAYS WANTED TO KNOW ABOUT SPYING．＂
playboy magazine
With Each Order You Receive Free Other Material And LIterature For Investigative Procedure
Anarchist Cookbook
CIA Improved Munitions Black Book

\section*{QUIMTRONIX}

Postpaid－P．O．Box 548－RE
Seattle，Washington 98111
CIRCLE 53 ON FREE INFORMATION CARD

\section*{NEW－TONE ELECTRONICS}

Specializing in Japanese Semiconductors，with THE LARGEST INVENTORY AND LOWEST PRICES ANYWHERE AND YOU CAN ORDER TOLL FREE 800－631．1250 Check the prices in this parial list．
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{antegrated circuits} & \multicolumn{2}{|l|}{integrated ciacuits} \\
\hline ANIIS & 235 & M51202 & 1.55 \\
\hline AN228 & 465 & M53216 & 1.80 \\
\hline AN272 & 390 & M53273P & 160 \\
\hline AN313 & 485 & M58473P & 790 \\
\hline AN321 & 225 & M83710 & 2.95 \\
\hline AN326 & 330 & M88719 & 770 \\
\hline AN362 & 270 & MN3006 & 590 \\
\hline AN366 & 249 & Wn300\％ & 1995 \\
\hline AN606 & 450 & NPCS10？ & 1495 \\
\hline AN6t？ & 270 & Plloja & 1495 \\
\hline BA401 & 150 & SG26sA & 780 \\
\hline 8A 402 & 150 & SG609 & 450 \\
\hline 8 8505 & 630 & SG629－3 & 3.40 \\
\hline Ba6t？ & 240 & S66523 & 1750 \\
\hline BA1310． & 234 & SI10 10 & 690 \\
\hline HAl12S & 210 & Sil020 & 13.95 \\
\hline HA1329 & 245 & Sı1030 & 1900 \\
\hline Hal366w & 330 & Sı1050 & 2780 \\
\hline HA1366WF & 330 & SM5104 & 8.90 \\
\hline HA1388 & 335 & SN5107C & 1195 \\
\hline HA1406 & 120 & STK013 & 11.25 \\
\hline （A1222 & 159 & STKO14 & 11.85 \\
\hline （A） 365 & 220 & STK041 & 17.40 \\
\hline LA1368 & 342 & STk075 & 8.22 \\
\hline LA3101 & 375 & STK413 & 675 \\
\hline La4220 & 255 & TA7092P & 6.50 \\
\hline Las430 & 270 & TA7117P & 3.60 \\
\hline LD3000 & 225 & TA7206P & 3.06 \\
\hline LD3080 & 270 & TA7214P & 5.15 \\
\hline LD3110A & 375 & TA7217ap & 3.30 \\
\hline LD3150 & 195 & TA7222P & 3.50 \\
\hline M5109P & 330 & TA7521M & 3.55 \\
\hline MSy 12Y & 670 & TA7607p & 9.90 \\
\hline M51181 & 250 & TA7609P & 4.80 \\
\hline MS130P & 312 & tBabioas & 3.30 \\
\hline N5135P & 340 & P6A8100S & 3.30 \\
\hline MS142P & 570 & tbabios & 330 \\
\hline M5340P & 155 & tbabiosh & 3.30 \\
\hline M5930 & 85 & твa820 & 210 \\
\hline M5935P & 120 & TDA11902 & 6.50 \\
\hline M5946P & 85 & TDA2002 & 4.60 \\
\hline M5953P & 255 & UPC141C & 2.50 \\
\hline M5962P & 85 & UPCS72C & 4.10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{imiegrateo chacuits} & \multicolumn{2}{|l|}{thansistors} \\
\hline UPC574 & 120 & \(2 \mathrm{SC1429}\) & 149 \\
\hline UPC583C & 330 & \(2 \mathrm{SC1452}\) & 140 \\
\hline UPC． 1028 & 180 & \(2 \mathrm{SC1474}\) & 96 \\
\hline UPC 10314 & 298 & 25C1548 & 79 \\
\hline \multirow[t]{8}{*}{UPC1032 H} & 135 & 25 C 1583 & 68 \\
\hline & & 25 Cl 1622 & 49 \\
\hline & & \(25 C 1630\) & 360 \\
\hline & & 2SC1681 & 39 \\
\hline & & 2SC 1682 & 39 \\
\hline & & \(2 \mathrm{SC1761}\) & 158 \\
\hline & & \(2 \mathrm{SC1762}\) & 4.85 \\
\hline & & \(22^{\text {S }} 17775\) & 54 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{transistoas}} & \({ }^{25 \mathrm{SC1}} 1778\) & 45 \\
\hline & & \(2 \mathrm{2SC1787}^{2}\) & 62 \\
\hline 254772 & ． 89 & \(22^{\text {S }} 1811\) & 129 \\
\hline 2SA786 & 39 & \(25 C 1844\) & 54 \\
\hline 254811 & 54 & \(2 \mathrm{SC1885}\) & 79 \\
\hline 254818 & 1.05 & 2SC1906 & 48 \\
\hline 254835 & 1.35 & \(2 \mathrm{SC1923}\) & 39 \\
\hline 254840 & 1.68 & 2SC1940 & 64 \\
\hline 2SA849 & 39 & 2 SC 1945 & 675 \\
\hline \(2 \mathrm{SA842}\) & 43 & \(2 \mathrm{SC1951}\) & 159 \\
\hline 2S4861 & 129 & 2SC1959 & 39 \\
\hline 254879 & 93 & 23 C 1963 & 330 \\
\hline 254880 & 75 & 2SC1981 & 260 \\
\hline 254911 & 6.33 & 2SC1982 & 330 \\
\hline 254915 & 77 & 2SC2009 & 85 \\
\hline 254922 & 3.98 & 2SC2021 & 65 \\
\hline \(2 \mathrm{Sa923}\) & 4.50 & \(2 \mathrm{SC2072}\) & 3.95 \\
\hline 254940 & 96 & 2SC2120 & 45 \\
\hline 254991 & 58 & 2SC2212 & 1.65 \\
\hline 258509 & 2.79 & 2SC2213 & 1.45 \\
\hline 258528 & 99 & 2 SC 2214 & 2.95 \\
\hline 258549 & 79 & 250388 & 3.65 \\
\hline 258567 & 2.30 & \(2 \mathrm{SD4} 77\) & 165 \\
\hline 258618 & 265 & \(2 \mathrm{SO528}\) & 3.30 \\
\hline \(25 \mathrm{C352A}\) & 2.55 & 2 Sk 38 & 4.45 \\
\hline \({ }_{2}^{25 C 356}\) & 95 & \(25 \times 97\) & 4.85 \\
\hline \(2 \mathrm{SC583C}\) & 81 & 2SK107 & 115 \\
\hline \(2 \mathrm{SC895}\) & e． 90 & 2Sk 120 & 1.20 \\
\hline \({ }_{2} \mathrm{SC} 983\) & ． 89 & 2SK＇21 & 120 \\
\hline \(225 C 1056\) & 5.50 & 2Sk125 & 1.75 \\
\hline 2SC1424 & 298 & 2SK133A & 390 \\
\hline
\end{tabular}

COD＇s WELCOME

\begin{tabular}{|c|c|}
\hline imtegateo & ciacuits \\
\hline AN214 & 275 \\
\hline AN217 & 170 \\
\hline AN239 & 650 \\
\hline AN241 & 210 \\
\hline AN247 & 410 \\
\hline AN315 & 280 \\
\hline Basita & 265 \\
\hline BA521 & 275 \\
\hline CX101G & 620 \\
\hline HA1306W & 350 \\
\hline mat339a & 375 \\
\hline ［A1366 & 360 \\
\hline Las051p & 270 \\
\hline Lass00 & 310 \\
\hline L03141 & 180 \\
\hline M5115P & 490 \\
\hline M 515131 & 390 \\
\hline Mn3001 & 1950 \\
\hline M 13002 & 1170 \\
\hline MN3003 & 1170 \\
\hline PLLOTA & 860 \\
\hline PLL02A & 840 \\
\hline PLL02A．G & 840 \\
\hline STk011 & 380 \\
\hline Stik015 & 615 \\
\hline STk03？ & 1380 \\
\hline 51 k 050 & 2375 \\
\hline \＄7k056 & 10.90 \\
\hline STK415 & 8.10 \\
\hline STK439 & 1010 \\
\hline TA 7045N & 280 \\
\hline 1a 7060p & 105 \\
\hline TA 7063P & 110 \\
\hline 1A7074P & 2.90 \\
\hline 147089P & 275 \\
\hline 147092p & 545 \\
\hline 147120P & 1.05 \\
\hline TA7153P & 675 \\
\hline TA1201P & 3.15 \\
\hline TA7203P & 3.60 \\
\hline TA7204P & 320 \\
\hline 147205P & 260 \\
\hline TA7310P & 2.95 \\
\hline
\end{tabular}

 New Jersey Phone：201／748．6171

\section*{}

WE HAVE ONE THOUSAND OF THESE HIGH QUALITY ROCKER TYPE
AMP TEN PDLE SHITCHES. SEND AN ORDER FOR SIS OR MORE-
MENTION THIS AD ARD YOU GET FREE SHIPPING AND ONE MMP

2504 T 1024 bit dyn SR CD4025 CMOS gate MC4015 TTL quad latch ABM-1 (MFC6070) 1w audio LN386 10 V audio pwr amp 1N3810 15A 200 stud rect. 1N5235 6.4V . \(005 \%\) ref. 16 V Motorola 16 V IW Zener N4728 3,5V IW \(5 \%\) zener Signal diodes Si or lie 40/2.00 40327 T0- 39 NPN 300 N 1A 5 NW .35 TIP3IA (IN) NPN 60V 3A 40N f706BPC fairchild 51 N audio amplifier w/heat sink
14 pin DIP w/staggered leads
uA776 programnable op/amp 1.00 75451 dual peripheral driver. 30 S270 functional sub for 7400
\[
\text { quad } 2 \text { in NaND gate }
\] 747 dual 741 op amp. Carbon film R \(1 / 4 W_{5} 5 \%\) 100/1.4 (specify single value only) 2N4304 N channel FET HEP 802 Complementary 10A TO-220 pwr. transistors 2 N6101 \& G.E.D45H8 (75-50W) pair 1.25
Complementary Darlington TO-220 60V 5A 70W ME 1100

\section*{MJE1091}

\begin{tabular}{|c|c|c|}
\hline TRANSISTOR BONANZA \(\$ 6\) per 100 - \(\$ 50\) per 1000 & & \\
\hline & DIP TRIMMER & 1/WWAT \\
\hline & & \\
\hline
\end{tabular}

\section*{TOLL-FREE TELEPHONE SERVICE}

\section*{PO BOX 41778} ORDERS SHIPPED SAME DAY - \(\$ 5\) MINIMMM - WE PAY POST OR UPS ON ORDERS OVER \(\$ 10\), SMALLER ORDERS ADD SI SHIPPING, HANDLING FEE.. FOREIGN ORDERS
 POST. SIO MINIMM ON BAC \& MC ORDERS, SHIPPI WILL BE ADOED. OPEN ACCOUNTS ACCEPTED FROM
GOVERNENT AGENCIES, SEMOOLS, AND N.Y.S.E.

\section*{\(9163342161 \quad 95841\)}

\section*{BABYLOT} ELECTROMICS
F. Reichert Sales

1110 E. GARVEY AVE W. COVINA, CA 91790
- \(\$ 20\) minimum order - FREE UPS DELIVERY ON US ORDERS ONLY OR BY - mONEY BACK GUARANTEE (MOS \& LED DEVICES EXCLUDED) MODER 8 HOUR PROCESSING O MONEY ORDERS \& CASHIERS

\section*{CIRCLE 70 ON FREE INFORMATION CARD}

\section*{믄 InTEGRATED ELECTROMILS}

\author{
540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470
}

SPECIAL OISCOUNT
OEM EDUCATORS AND SCHOOLS
For a low quote, send a list of your needs and, if possible, desired prices No quantity is too small.
Munimum onder \(\$ 5.00\) US currency. Check or money order oniv. Add 5\% to cover whipping and

\section*{MOTION DETECTOR}

When there is a new development in the field of electronics, it takes some time before that development is available to hobbyists and experimenters, especially at surplus prices. We have reversed the process, and announce a DELTA EXCLUSIVE, the DELTA MOTION DETECTOR. This device detects motion or movement at a minimun distance of eight feet, in a cone with a two foot diameter. The secret is in the custom, ultra complex LSI chip. The device is completely self contained in a case \(6^{\prime \prime} \times 31 / 8^{\prime \prime} \times 21_{4}{ }^{\prime \prime}\) and operates from 4 " Ni -Cad" batteries. Nothing else is needed for the device to perform its basic function, motion detection.
 When motion is detected, a "whoop" alarm is sounded. The kit is designed so that either an audible or silent remote alarm is available at the turn of a switch. The silent alarm activates a relay, whose contacts are brought out thru a plug, and will activate ANY device, such as a siren, horn, bell,telephone dialer, tape recorder etc. The silent alarm is adjustable timer controlled, and witholds the alarm for a programmed number of seconds, so that you may deactivate the alarm when you trigger it yourself.
The motion detector works on a change of light. A change of \(\pm 5 \%\) in light level triggers the detector. Works within a range of 0.1 candlepower (almost dark) to \(10 \overline{\text { candlepower (quite bright), a ratio of }}\)

1000 to 1 . NO external light source is needed.
There will be several articles describing the DELTA MOTION DETECTOR.Look for one either in the Nov. 1978 or Jan. 1979 issue of POPULAR MECHANICS.

Stk.No.5611R Complete Motion Detector Kit \(\$ 24.50\)
Stk.No.1072R Motion Detector Chip Only \(\$ 8.95\)
Stk.No.5611RB set of 2 PC boards
Stk.No.5288R Set of 4 Ni -Cad Batteries
(When available)

\section*{DELTA ELECTRONICS}

7 Oakland St. Amesbury, Mass. 01913 617-388-4705 HEADQUARTERS IN ATLANTA DELTA ELECTRONIC HOBBIES 5151 Buford Hwy.
Doraville, (Atlanta) Ga.

Include sufficient postage. Excess will be refunded. Send for new Catalog 19. 120 pages of electronic bargains.

\section*{Dual In-line Sockets}
\begin{tabular}{cll|rll}
9500 & 7480 & .19 & 48000 & 74174 & .39 \\
24000 & 7482 & .15 & 16000 & 74175 & .39 \\
51000 & 7491 & .19 & 9000 & 74180 & .34 \\
16000 & 74150 & .39 & 8000 & 74181 & .79 \\
42000 & 74151 & .29 & 26000 & 74182 & .29 \\
11000 & 74152 & .89 & 24080 & 74190 & .34 \\
56000 & 74153 & .29 & 36000 & 74191 & .34 \\
17000 & 74154 & .49 & 9000 & 74192 & .34 \\
1800 & 74155 & .29 & 11000 & 74194 & .34 \\
22000 & 74156 & .19 & 47000 & 74195 & .29 \\
34000 & 74157 & .29 & 6000 & 74199 & .69 \\
36000 & 74162 & .34 & 28000 & 74283 & .49
\end{tabular}

GENERALINSTRUMENT 1 AMP Rectifiers (Epory)
\begin{tabular}{|c|c|c|c|}
\hline Stock level & \multicolumn{2}{|l|}{Pan No.} & Price \\
\hline 2,3 Million & 1 N 4001 & 50 V & .029 \\
\hline 12 Million & 1 N 4002 & 100 V & . 039 \\
\hline 7 Million & 1 N4003 & 200 V & . 045 \\
\hline 38 million & 1 N 4004 & 400 V & 049 \\
\hline 2.1 Million & 1 NaOOS & 600 V & 055 \\
\hline 4 Million & 1N4006 & 800 V & . 065 \\
\hline 37 Million & 1 N 4007 & 1000 V & . 07 \\
\hline
\end{tabular}
1.5 AMP Single Phase Silicon Bridge Rectifiers
\begin{tabular}{|c|c|c|c|}
\hline Stock level & Parna. & & Price \\
\hline \({ }_{8000}\) & wozm & 200 V & 2 \\
\hline & wasm & Sv & \({ }^{32}\) \\
\hline 120000 & wogm & \({ }_{8000 \mathrm{~V}}^{600}\) & 39 \\
\hline 11000 & Wiom & 1000 V & \\
\hline
\end{tabular}

\section*{SWITCHING DIODES}

Part No.
1N914 100V 4NS . 027
1N4148 100V 4NS . 027

Stock level EPROM
\(18800 \quad 2708 \quad \mathbf{8} \mathbf{2} 7.99\) MOS Static RAM's
\begin{tabular}{cc}
Stock level & Stock level \\
57600 & 26200 \\
Part No. & Parn No. \\
2114 & 2102 LFPC \\
4 K (14. A A) & 1 K 350 NS \\
450 NS & ILow Power \\
Price \(7 \times 957.50\) & Price 1.19
\end{tabular}

MOS Dymamic RAM's Stock level Stock level \(\begin{array}{rr}17700 & 11200 \\ \text { Part No } & \text { Part No }\end{array}\) \(4060 \quad 416\) 300 NS 16K 250 NS UART's
\begin{tabular}{cc}
Stock level & Slock level \\
38000 & 11000 \\
Par No. & Pan NO \\
AY5-1013A & AY3.1015 \\
Price 4.95 & Price 5.95
\end{tabular}

\section*{1K CMOS RAM}
\(13800 \quad 5101 \quad 450 \mathrm{NS} 4.95\)

MICROPROCESSOR CHIPS
CPU'S
Stacklevel Part No. Pr Price
3500 8080A 680055.95
Interface

\section*{Support Circuits}
\begin{tabular}{ccc}
Slock level & Part No & Price \\
16400 & 8212 & 1.9
\end{tabular}
\(1100 \quad 8214\)
\(36800 \quad 8216 \quad 1.98\)
\(\begin{array}{lll}2800 & 8226 & 1.98 \\ 4700 & 8226 & 1.75\end{array}\)
\(\begin{array}{lll}2800 & 8228 & 4.75 \\ 1200 & 8238 & 4.75\end{array}\)
\(8800 \quad 8251 \quad 5954.95\)
\(\begin{array}{lrr}780 & 8253 & 14.95 \\ 5800 & 8255 & 5.95\end{array}\)
\(\begin{array}{rrr}1600 & 8257 & 9.95 \\ 500 & 8259 & 14.95\end{array}\)
\begin{tabular}{lll}
2300 & 6810 & 3353.50 \\
2800 & 6820 & 453 \\
\hline
\end{tabular}
\(5500-6850 \quad 5.984 .95\)
\(1000 \quad 6852 \quad 5.964 .95\)

\section*{1978 IC MASTER}

Complete integrated circuil data selector Naw 1978 edition (2230 paģes) is twice as big as last year. Master guide to the latest I.C.'s including microcrocessors and

Free quarterly updares.
\$24.95
Lowest price available
P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701
Over the counter sales.
2 Mercer Rd. Natick. Mass 01760
Telophone Orders \& Enquires (617) 879 . 0077

MININUM ORDER \(\$ 10.00\) - A DD \(\$ 2.00\) TO COVEA POSTAGE \& HANDLINS - Canadian customers add \(30 \%\) for exchange and handing. A cdera and provincial taxes exira.
Foreign customers olease rerr th payment on an international bank draft of intemational postal money order in American dollars
X \& S - Audible and Visual Indicators
- Easy Mount/Dismount - Selector Switch
51/4"
FLUSH MOUNT
SPEAKERS
- Ceramic Magnets SS-272
- Ohms
- Complete with
Grilles
ST4P4

\section*{2 OR 4 CHANNEL} STEREOPHONES

\section*{LOCKMOUNT}

- For Under-Dash Mounting of CB's, Radios and Players - Deluxe Type With Keys - Offers Anti-Theft Protection Universal AC Adapter
 electronics 260 S. Forge St. Dept. LG Akron, Ohio 44327

NAME
ADDRESS
CITY
STATE

\section*{Price}

Oty. Stk. \# Description Ea. Total
 CIRCLE 79 ON FREE INFORMATION CARD

\section*{सTITGHRONTC \\ Phone Orders: G17) 532.2323 STITHMEABETH}
P.O. Box 619 DEPT. R-10 Lynnfield, Massachusetts 01940

\section*{REMOTE CONTROL SYSTEM}

This handy control was part of an Admiral remote control package for color TV. The original functions were: On-OH, Volume, VHF UHF, and channel select. Receiver contains 3 relays and onefour position stepping relay. Also complete 4 page date pkg. Use it to make
all kinds of remote operating toys, alarms
detectors, appliances, etc. Transmiter requires
AA cell (not included). Oiy Lid.
Sh.Wt. 1 lb...... 8C30372 \$25.00 includes transmitter 3 for \(\$ 69.88 \ldots 8 \mathrm{C} 30372 \ldots \$ 9.88 / 3\) (shown) and receiver.

\section*{AM/FM STEREO}

RECEIVER/AMP CHASSIS
2 CEIVER/AMP CHASSIS
"REPAIRMAN SPECIAL" Surplus Brand-name recelver/amplifie chassis, including bulls-eye stereo ligh on tuning needle. stide controls, amp \& tuner (no case). Mir.'s "questionables" may need repair. You fix \& savel Oty is limited. AS IS (no returns). W/data 5 Lbs 8K 30357 . . \(\$ 1988\) ea

TINY TRANSMITTER \& SEISMIC SENSOR Unique military surplus troop movernent detector. Compact 2 long unit con tsins tiny xmitter, a motion sensor and battery pack... bur looks like a rock or a glob of mud! (We guess that batt's may be dead). New surplus, w/data. 8 oz. \#8M10356

\section*{MICROPROCESSOR}

The Viation Data Management Station:
The Viatron Data Management Station, Used, complete system. Running Con-
dition. Sold "AS IS'. Send for mare information Oiy Lid. \$495.00 Each SEND FOR FREE CATALOG Circle FREE Information Card Terms: Add postage. No C.D.D:s. Phone Drders BA-MC-AE: (617) 532-2323.

CIRCLE 59 ON FREE INFORMATION CARD

\section*{ATTENTION}

SERVICE DEALERS
Buy directly-
Top Line
Solid State Replacements

\section*{40\% Off Dealer Cost}

2 Year Warranty Devices
These are professional devices which replace over 130,000 industry types, and you buy them at substantial savings.

To Order: Send us the ECG, SK, or GE numbers and we will promptly ship you the premium PR direct Replace-ments-plus a free PR Replacement Guide. Remember, these are top quality, no culls, no seconds. Orders over \(\$ 25.00\) shipped free. Orders up to \(\$ 25.00\) add \(\$ 1\) UPS. All orders over \(\$ 100.00\) receive \(5 \%\) discount. C.O.D. orders welcome. To approximate amount of your order, deduct \(40 \%\) from dealers cost of ECG, SK or GE types. All orders shipped within 24 hours. Also, send or call for our free cafalog of original Japanese transistors at substantial savings.

DEVCO
P.O. Box 270, Garwood, NJ 07027 (201) 688-0300

\section*{COMPUTER INTERFACES \& PERIPHERALS}

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

\section*{APPLE II SERIAL I/O INTERFACE *}

Baud rate is continuously adjustable from 0 to 30,000 - Plugs into any periph eral connector - Low current drain. RS 232 input and output © On board switch selectable 5 to 8 data bits. 1 or 2 stop bits. and parity or no parity either odd or even - Jumper selectable address -
 SOFTWARE - Input and Outpul rouline
from monitor or BASIC to teletype or other serial printer. - Program for using an Apple il for a video or an intelligent terminal. Also can output in correspondence code to intertace with some selectrics. Board only - \(\$ 15.00\) with parts - \(\$ 42.00\) : assembled and tested \(-\$ 62.00\)

\section*{MODEM *}

Part no. 109
- Type 103 - Full or hall duplex - Works up to 300 baud - Originate or Answer - No coils, only low cost comporents - TTL input and output-serial Connect 8 ohm speaker
 and crystal mic. directly to board - Uses XR FSK demodulator \(\bullet\) Requires +5 volts \(\bullet\) Board \(\$ 7.60\); with parts \(\$ 27.50\)

\section*{DC POWER SUPPLY*}

Pant no. 6085
- Board supplies a regulated +5 volts at 3 amps., \(+12,-12\) and -5 volts at 1 amp . Power required is 8 volls AC at 3 amps ., and 24 volts ACC. T. at 1.5 amps. - Board only \(\$ 12.50\); with parts excluding transformers \(\$ 42.50\)

\section*{TAPE INTERFACE *}

Part no. 111
- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder • Works up to 1200 baud - Digital in and out are TTL-serial • Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board \(\bullet\) No coils • Requires +5 volls. low power drain \(\bullet\) Board \(\$ 7.60\) with parts \(\$ 27.50\)

\section*{T.V. TYPEWRITER}

Part no. 106
- Stand alone TVT - 32 char/line. 16 lines. modifications for 64 char/line included - Paraliel ASCII (TTL) input Video oulput - 1 K on board memory Output for computer controlled cur-
 ser - Auto scroll -Non-destructive, curser - Curser inputs: up. down, left, right. home, EOL, EOS - Scroll up. down • Requires 45 volls at 1.5 amps . and 12 volts at 30 mA - All 7400 . TTL chips - Char gen. 2513 - Upper case only - Board only \(\$ 39.00\) with parts \(\$ 145.00\)

\section*{TIDMA*}

Part no. 112
- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cosi recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. \(-\mathrm{S}-100\) bus com patible - Board only \(\$ 35.00\), with parts \(\$ 110.00\)

\section*{UART \& BAUD RATE GENERATOR*}

Part no. 101
- Converts serial to parallel and parallel to serlal Low cost on board baud rate generator - Baud rates: 110, 150, 300, 600, 1200, and 2400 - Low power drain +5 volts and -12 volts required
 - TTL compatibie - All characters contain a start bit. 5 10 8 data bits, 1 or 2 stop blts, and either odd or even parity - All connections go to a 44 pin gold plated edge connec tor - Board only \(\$ 12.00\); with pars \(\$ 35.00\) with connector add \(\$ 3.00\)

\section*{8K STATIC} RAM

Part no. 300
- 8K Allair bus memory Uses 2102 Static memory chips • Memory protect - Gold contacts - Wait states • On board regulator - S-100 bus compatible - Vector input option - TRI state buttered - Board only \(\$ 22.50\); with parts \(\$ 160.00\)

\section*{RF MODULATOR *}

Part no. 107
- Converts video to AM modulated RF. Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very
 highly in Doctor Dobbs' Journal. Recommended by Apple. - Power required is 12 volts AC C.T., or +5 volis DC \(\bullet\) Board \(\$ 7.60\); with parts \(\$ 13.50\)

\title{
RS 232/TTY* INTERFACE
}

Part no. 600
- Converts RS-232 to 20 mA current loop, and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only \(\$ 4.50\), with parts \(\$ 7.00\)

\section*{RS 232/TTL* INTERFACE}

Part no. 232
- Converts TTL 10 RS-232, and converts RS-232 to TTL • Two separate circuits

- Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only \(\$ 4.50\); with parts \(\$ 7.00\) with connector add \(\$ 2.00\)

\section*{INTERNATIONAL ELECTRONICS UNLIMITED}

LOW POWER SCHOTTKY - 74LS series
Prime Motorola IC's Factory warranted Buy \(\$ 10.00\)-any mix- deduct \(10 \%\) Buy \(\$ 15.00\)-any mix-deduct \(10 \%\)

 CAPACITOR KIT, Ceramic disc
50V. 24 values, 10 capacitors each
10f

Can you put the power of the microcomputer to work in your home, school, or business?

\section*{PERSONAL COMPUTING}

\section*{FUTURE DATES AND LOCATIONS:}
\begin{tabular}{ll}
Oct. 7 & Toronto \\
Oct. 14 & Wash., D. C. \\
Oct. 21 & Montreal \\
Oct. 28 & Denver \\
Nov. 4 & Los Angeles \\
Nov. 11 & New York \\
Nov. 18 & Atlanta \\
Dec. 2 & Chicago \\
Dec. 9 & Houston
\end{tabular}

COURSE OBJECTIVE: to provide a systematic and comprehensive tutorial on hardware and software features of personal computers and microprocessors, to compare the technical features and characteristics of various commercially available computers and to present a technological forecast and assessment of future trends in the personal and small business computer industry.
WHO SHOULD ATTEND: potential users and purchasers of personal computing or small business computing equipment; the tutorial nature of the program is designed to solidify and broaden the knowledge of "old hands" and newcomers alike.
COURSE OUTLINE: Personal Somputers comparison and evaluation criteria for turnkey systems (Apple II, PET, Radio Shack TRS-80); S-100 bus systems (Sol, Poly 88, Imsai, etc.J; Digital Group; Heath: etc. Small Business Systems: software packages; system modification; programming economics; the IBM 5110 and Series/1. Interfacing and Applications: interface components and boards; and educational standards (IEEE-488; RS232C: etc.): educational and small business applications.
REGISTRATION: to register, fill out and return the coupon below with a stamped, self-addressed envelope at least two weeks before the meeting.
TUITION: \$50., which includes hardbound course text and handout materials.
LOCATIONS: the programs are held in meeting rooms of conveniently located hotels; the exact location will be sent to you one week before the scheduled meeting.
FOR FURTHER INFORMATION call (914) 666-4665

CERTIFICATES: a certificate of participa tion will be issued to all attendees
REGISTRATION COUPON: return to Personal Computer Workshop. 71 N . Moger Ave., Mt. Kisco, New York 10549 Name
Address
City/State/Zip
Telephone
My payment for is enclosed. I am registering for the workshop in
on
CIRCLE 56 ON FREE INFORMATION CARD

\section*{ADVERTISING INDEX}

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

\section*{Free Information Number Page}
\begin{tabular}{|c|c|}
\hline 42 & Active Electronics \\
\hline & Advance Electronics 81,92,93 \\
\hline 1 & Advanced Computer Products 123 \\
\hline 2 & Aldelco \\
\hline & AMC Sales \\
\hline 3 & American AntennaCo \\
\hline - & ATV Resemrch \\
\hline 77 & Babylon Electronics \\
\hline - & Karl Barta \\
\hline 91 & Forest Belt's Training Workshop \\
\hline 86 & B\& K Precision Dynascan Co. \\
\hline & Bullett Electronics \\
\hline & Burdex Security Co. \\
\hline & CFR Associates \\
\hline 76 & Chaney Electronics \\
\hline & CIE-Cleveland Institute of Electronics. 28 \\
\hline & Command Productions \\
\hline & Contemporary Marketing \\
\hline
\end{tabular}

CREI-Div. of McGraw Hill Continuing
Education. 53a-53d
- Dage Scientific Instruments 116

46 Dage Scientific Instrament 104
47 Delta Electronics .. 130
7 Devco .. 132
65 Diamondback Electronics............................. 122
80 Digi-Key .. 134
- Digital Concepts ... 103

81 Digital Research Corporation 118
89 Dougdas Dunhill .. 1
- E.A.R.S., Inc.. 116

39 EICO... 106
52 E\&L Instruments ... 102
59 Electronic Supermarket..................................... 132
- Electronic Systems .. 133

9 Electronic \& Control Engineer's Book \(\quad\) Club-McGraw Hill Book Div. 18-21
- EMC-Electronics Measurements 103
- Energy Control Systems................................ 102

8 Enterprise Development 106
43 Eico Electronics ... 127
- Fair Radio... 118

85 Fordham Radio Supply..................................... 130
10 Formula International 120,121
- Fuji-Svea..110,111
- GFN ... 85

74 Godbout Electronics .. 126
- Golden Enterprises.. 116

82 Gould... 32
12 Grantham College of Engineering 102
61 Graymark... 119
13 GTE Sylvania-Consumer Renewal …............ 23
100 Heath ... 13,86-89
83 Hickok Electrical Instruments 98
15 Indiana Home Study..................................... 99
- Information Unlimited................................ 112

73 Integrated Electronics 128
40 International Crystal Mfg., Co. 101
16 International Electronics 135
72,71 James Electronics 35,124,125
18 J\&E Electronics 108
17 Jenson Tools \& Alloys............................... 104
\(\mathbf{5 7} \quad \begin{aligned} & \text { JS\& A .. } \\ & \mathbf{K y}\end{aligned}\)
— Krystal Kits ... 112
- L.ab Science .. 112

\section*{Lakeside Industries...................................... 116}

90 Leader ... 83
20 McKay Dymek .. 16
48 Meshna ... 122
21 National Camera Supply 97
- National Radio Institute (NRI)8-11
- National Technical Schools.....................68-71

54 Nesd . 99
84 Netronics
O.K. Machine \& Tool 26
Olson. 132
Oneida Electronics 34
Optoelectronics 117
ORA Electronics 104
Page Digital 118
PAIA. 97
36 Panasonic. Cov. 2,24,25
Panavise. 99
Leslie Paul 120
Personal Computing Workshop 136
Platt Luggage 100
Poly Paks 113
Pomena 17
Prentice-Hall, Inc 15
Priority 1 Electronics 115
PTS Electronics 100
Quest. 112
Quimtronix 126
Radio Shack 109
Ramsey Electronics 116
Robinson Nugent 101
Rye Industries 34
Sabtronics. 27
Schober Organ. 105
SGL Waber. 97
Shure Brothers. 77
Solid State Sales. 122
Soundguard 36
Southwest Technical Products 107
Spacekom. 94
Speakerlab, Inc. 118
Spyderco 107
A.F. Stahler Co 116
Tab Books 33
Tri-Star... 114
Trinico International 129
Trumbull 112
Vaco... 7
Vero Electronics. 26
VIZ Mfg. 79
41 Wahl Clipper 106
6 Weller-Xcelite Div, of Cooper Industries.... 96
34 Wersi 102
0. Wizard of Parts 128
\begin{tabular}{l:l}
MOVING? & \\
Don't miss a \\
single copy of \\
Radio-Elec- \\
tronlcs. Give & \\
us: \\
Six weeks no- & HERE \\
tice & \\
Your old ad- \\
dress and zip \\
code \\
Your new ad- \\
dress and zip \\
code
\end{tabular}

name

(please print)

\section*{address}
city state zip code

\title{
IF YOU'RE WAITING FOR SOLDERLESS BREADBOARDS TO BE FASTER, EASIIR, MORE VERSATILE AND LOWER-PRICED...
}

Incredibly inexpensive. EXPERIMENTOR solderless sockets begin at \(\$ 5.50^{\circ}\) (\(\$ 4.00\). for the 40 tie-point quad bus strop) A spool of solder costs more.

Mix and match. Use large and small chips in the same circuit without problems. There are two sizes of EXPERIMENTOR sockets with \(0.3^{\prime \prime}\) and \(06^{\prime \prime}\) centers

Full fan-out. A CSC exclusive. The only solderless breadboard sockets with full fan-out capabılitues for microprocessors and otherlarger (0.6") DIP's.

\section*{Microprocessors and other complex} circuits are easy to develop. Each EXPERIMENTOR quad bus gives you four bus lines. By combining quads. 8-, 12 - and 16 -line address and data buses can be created. simplifying complex data/address circuits

Infinitely flexible. Circuits can go in anydirection, up to any size. All EXPERI MENTOR sockets feature positive interlocking connectors that snap together. Horizontally and/or vertically And unsnap to change a circuil whenever you wish.

Easy Mounting. Use 4-40 screws from the front or 6-32 self-tapping screws from the rear. Insulated backing lets you mount on any surface.

EXPERIMENTOR 350. \(\mathbf{\$ 5 . 5 0 *} 46\) five point terminals plus two 20-point bus strmps. \(0.3^{\prime \prime}\) centers: \(3 / 8 \times 3^{1 / 2} \times 2^{\prime \prime}\)

EXPERIMENTOR 650. \(\$ 6.25^{\circ} 46\) five point terminals plus two 20-point bus strips \(0.6^{\prime \prime}\) centers: \(3 / 6 \times 31 / 2 \times 21 / 4^{\prime \prime}\)

EXPERIMENTOR QUAD BUS STRIP \$4.00* Four 40-point bus strips. \(3 / 8 \times 6 \times 3 / 4\) ".

Designated tie-points. Simplifytranslation from bread board to PC-boards or wiring tables

\section*{EXPERIMENTOR 600.}
\$10.95*94 five-point terminals plus two 40-point bus strips. \(0.6^{\prime \prime}\) centers; \(3 / 8 \times 6 \times\) \(21 /{ }^{\prime}\)

\section*{Accepts all standard components.}

EXPERIMENTOR sockets conform to an 0.1" grid and are DIP compatible. Also accept IC's. transistors, diodes.LED's, resistors, capacitors, transformers, pots, etc.

Easy hookup. Components push in and pull out instantly. Use \(\# 22-30\) solid AWG wire for jumpers.

Rugged, dependable construction. Sockets are constructed from abrasion resistant materıals and withstand \(100^{\circ} \mathrm{C}\) Each one features non-corrosive nickel-silver contacts.

EXPERIMENTOR 300. \$9.95*94 five-
point terminals plus two 40-point bus strips. \(0.3^{\prime \prime}\) centers; \(3 / 8 \times 6 \times 2^{\prime \prime}\)

\section*{WHAT ARE YOU WAITING FOR?}

Discover today how solderless breadboarding can save time and money on every circuit you build Get acquainted with EXPERIMENTOR \({ }^{\top M}\) sockets \({ }^{\dagger}\) and how they simplify circuit design, assembly and testing

Eliminate the hassles and component damage of soldering. No special hardware or jumper cables required, either. And the price is so low, it's hard to believe "Order today. Call 203-624-3103 (East Coast) or 415-421-8872 (West Coast): 9 a.m.-5 p.m. local time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside USA."

CONTINENTAL SPECIALTIES CORPORAIION

\section*{Exclusive Octopole Construction.}

That's eight magnets set in eight different directions to give you a magnetic seal so complete and powerful, your antenna would stay up there if you could squeeze between two semis passing each other at 180 miles an hour. That's magnetic octopower.

\section*{* GUARANTEE I}

Placed on the roof of a vehicle; properly tuned, the K40 Magnamount is guaranteed to transmit a further distance than a standard K40 without the Magnamount or you will receive a prompt and full refund from your K40 dealer who installed and tuned the Magnamount K40 for you.
* GUARANTEE II

Materials and workmanship are guaranteed for a full 12 months. Any part that fails to perform satisfactorily will be replaced absolutely free.

\section*{Exclusive K40 Flux Harmonics for Greater Transmission.}

The magnetic radiation pattern was designed to match the K40 antenna radiation for greater distance than the standard K40. See our guarantee.

\section*{The facts: Physics and Physical.}
1. Magnamount is a bigger, stronger magnet - in fact it's 8 bigger, stronger, magnets.
2. It doesn't just hold the K40 antenna, it helps it transmit further.
3. Remember the law of reciprocity. The antenna that transmits better, receives better.
4. It provides a flatter, lower SWR because the Magnamount is capacitance grounded.
5. It puts your \(5 / 8\) wave K 40 antenna securely in place in the most advantageous place to work against a ground plane-high and free from obstruction. That's square in the middle, right up on top.```

[^0]: IC1, 2, 3 - CO4011 QUAO 2-INPUT NANO GATES

[^1]: McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016

[^2]: Also available at teading computer storer:
 Computer Mart of New York. 118 Madison Ave, New Youk NY Eve Computer Ca. 1253 West 8 th St. Eru.PA
 Evie Camputer Ca.. 1253 West 8 th St . Evi. PA
 Interactive Computers. 7646% Dastiwnod. Houston. IX Interac live Computers.
 Interactive Computers. 16440 EI C amino. Heal. Houstion, ix
 I Interactive Combuters. 217 W . Sunn Francusto. Sanit FPe. N Headout Computer Siores. 6 Winspear Ave., Bultalo. NY Imperial Computer Systerns, Inc.. 210023 S d Ave., Ruckiond. IL and many others, Ask your dealer

