Television—how it all began
Improved automotive voltage regulator
How to interface an A/D converter

Satellite-TV reception pitfalls
Build a professional drum synthesizer
Eavesdrop on secret shortwave messages

BUILD THIS
SYNTHESIZED FUNCTION GENERATOR
Take a good look at VACO.

The world famous Super Case. Complete with 48 of the most popular and professional problem-solving tools. From screwdrivers and nutdrivers to pliers, wrenches, crimping tools and more. A super variety and super value. All unconditionally warranted from Vaco, of course. The Super Case and all the other fine Vaco tools can be seen in our new 1979 catalog. It's free, just write. Say you want to take a good look at VACO.

Vaco Products Company, 1510 Skokie Blvd.,
Northbrook, IL 60062 U.S.A.

CIRCLE 21 ON FREE INFORMATION CARD
It’s a major breakthrough. That calculator shown above is the most advanced printing calculator in the world.

SLIP TOP PRINTER
The new Olivetti Logos 9 is only 1" x 2½" x 4½"—smaller than many cigarette packages. It has a full 12-digit liquid crystal display with add mode and full-floating or fixed position decimal.

To turn the unit into a printer, you simply slide up the top of the unit to expose the world’s smallest and one of the most precise printing heads. The printing head prints letters and numbers, identifies each entry and even clearly separates groups of three whole numbers for easy readability.

PLENTY MORE
If its size and printing head are breakthroughs, so is its paper system. The paper is loaded in special cartridges with enough paper per cartridge for 1300 entries. All you do is simply pop a cartridge into the bottom of the unit each time you change rolls. It’s the most convenient way ever designed to change a roll of paper for a printing calculator.

But if you’re like most Americans, you’d be concerned about paper supply. Where do you get those special cartridges, and how do you know if you can get them years from now?

That’s where JS&A comes in. A 32-roll supply— all you’ll ever need for three full years—is only $16. That’s enough paper for 41,000 entries or approximately 52 line entries each working day for three full years.

But even more important, within one year stationery stores will stock the cartridges, and we predict that the Olivetti cartridge will become a standard in the industry.

NO INK CARTRIDGES
The paper is a new type that looks exactly like conventional paper. But the paper, when struck, leaves a clear sharp image without the use of ink. So there’s no messy cartridge required and no space needed to store one. You’ll never need ink again.

The rechargeable batteries last for 8,000 lines and 14 hours using just the liquid crystal display. The batteries can be recharged 500 times, so theoretically the batteries should last for 300 rolls of paper, or more than nine times the life of your paper supply. The batteries can also be easily replaced.

POWERFUL COMPUTER
The features looked great. The world’s smallest size, the paper roll convenience, the no-ink system, the battery life and the large 12-digit liquid crystal display were enough to convince us, but would the new Olivetti be considered a toy? Then we learned about its computational power and features which we feel are better than many of the most professional full-featured printing calculators.

Speed It’s the world’s fastest small printer with a speed of 2.1 lines per second. The unit also has a buffer so if you enter data faster than the unit, it will still print out each entry.

Memories The Logos 9 has two separate memories. One is an accumulating memory, and the other is a fully independent memory. And the display and printer indicate which memory is on the paper tape.

Printing Head The totally new printing head is a semi-alpha numeric system which labels all entries with letters to indicate the entry. For example LP is list price and CNT means item count.

Clock The unit is so complete, Olivetti even threw in a digital clock function. Your unit will display accurate time when the 12-digit display is not in use.

Gross Margin It automatically computes everything from gross margins to discounts and retail pricing. You just enter your percentage mark-ups in its memory, and it will automatically compute the results while retaining the formula and percentage in memory.

Plus More It has automatic round off, letting you select which figure to round off to. You can add a column of figures and then average your calculations automatically. The full-information liquid crystal display will tell you everything from when you’re in the printer mode to whether you have something in memory and in which memory.

The technological breakthroughs in the Logos 9 were possible because Olivetti was able to eliminate many interface components between the integrated circuit and the printing head. This was all made possible because Olivetti designed the entire system, not just a few of the components as is the case with most calculators.

So there it was. Great features, great convenience and great value for only $89.95 complete with batteries, charger and 90-day limited warranty. For $16 more, you can get 32 cartridges—all the paper you’ll ever need for three years or for $10 more you can get 16 cartridges. So impressed are we with the Olivetti Logos 9 that we are making the following offer:

FREE TRIAL OFFER
We urge you to test the Olivetti Logos 9 now. Order one for our 30-day no obligation trial. See the clear and easy-to-read paper tape and display. Use it as a pocket calculator, and carry it in your briefcase wherever you go. Experience the convenience of always having a printing calculator there whenever you need a permanent record of your transactions.

After 30-days of actual use, decide if you want to keep it. If you do you’ll own the smallest, most advanced and convenient pocket printing calculator in the world. If for any reason you’re not completely satisfied, simply return your unit within 30-days for a prompt and courteous refund, including your $2.50 postage and handling. You can’t lose.

Olivetti selected JS&A to exclusively introduce this exciting new product. With its solid-state design and high quality printing mechanism, the Olivetti should not require service. But if service is ever required, Olivetti maintains a convenient service-by-mail center as close as your mailbox.

To order your unit for our trial, simply send your money order or personal check for $89.95 plus $2.50 for postage and handling (personal check orders, allow 20 days to clear our bank) to the address below, or credit card buyers may call our toll-free number below. Add $16 for 32 paper cartridges or $10 for 16 cartridges. (Illinois residents please add 6% sales tax.)

Who would have imagined a printing calculator this small and this convenient with this much computational power just a few months ago? The Olivetti Logos 9 deserves your test. Order one at no obligation, today.
Yamaha's PX-2 linear tracking turntable. A class of one.

Yamaha's new PX-2, the flagship of a remarkable new series of turntables from Yamaha, is destined to become the new standard of the audio industry. It is a masterpiece in the art of music reproduction. Totally in a class by itself.

One of the major performance advancements on the PX-2 is Yamaha's unique optimum mass straight tonearm assembly. This design concept is Yamaha's direct challenge to the industry trend of low-mass tonearms. Among the most significant benefits of optimum mass is that it specifically addresses two of the most critical elements of music signal tonal quality—tonearm resonant frequency characteristics and high trackability with a wide range of cartridges. Tonearm mass is such a critical element in sound reproduction (especially in the low and high frequency ranges) that Yamaha has designed this optimum mass tonearm to insure its resonance frequency is at the "least effect" point. (See graph.) As a further benefit, the vast majority of available cartridges can be effectively matched with the Yamaha tonearm. Even MC types.

But the optimum mass tonearm is only one factor that puts the PX-2 in a class by itself. There's much more. Like an extraordinary 80dB S/N ratio, with incredibly accurate tangential tracking—constantly monitored by an opto-electronic sensor. The PX-2 is also a study in durability with its solid, anti-resonant monolithic diecast aluminum base. And the combined effect of the hefty platter and the heavy-duty DC motor depresses wow and flutter to below 0.01%.

Yet with all this performance, the PX-2 is deceptively easy to operate. All the microprocessor-activated controls are easily accessible—without lifting the dustcover.

The balance of the turntables in our new line (the P-750, P-550, P-450 and P-350) all incorporate this same optimum mass tonearm philosophy. Each will set new standards for performance per dollar invested.

Visit your local Yamaha Audio Specialty Dealer for a personal test of our remarkable PX-2 and the other superb turntables in our new series. You'll hear music that's truly in a class by itself.

For more information write us at Yamaha, Audio Division, P.O. Box 6600, Buena Park, CA 90622.

* Yamaha cartridges shown (MC-IX and MC-7) on both models are optional.
functioning
Because of
Asa
Ladio-
Electronics publishers
SPECIAL FEATURE
service
possible variances
of
COMPUTERS
reader
REPORTS
-built projects
AUDIO
RADIO
BUILD
39
BUILD
47
AUTOMOTIVE VOLTAGE REGULATOR
Improved design overcomes many of the shortcomings of factory-installed units. L. Steven Chears
51
SYNTHESIZED FUNCTION GENERATOR
Phase-locked-loop technology results in improved performance. Gary McClellan
59
PROFESSIONAL DRUM SYNTHESIZER
Part 2—Final construction details. This unique device provides many of the features normally found on synthesizers costing several times more. Steve Wood

TECHNOLOGY
4
LOOKING AHEAD
Tomorrow's news today. David Lachenbruch
26
SATELLITE TV NEWS
The latest happenings in an exciting new industry. Gary H. Arlen
70
NEW IDEAS
A winning circuit application from our readers.
80
HOBBY CORNER
A 555-timer based control circuit that can be used in a wide variety of applications. Earl "Doc" Savage, K4SDS

RADIO
66
INTERNATIONAL NUMBER STATIONS
Secret coded messages are being broadcast internationally. Here's a look at when and where to listen in and what the messages may mean. Robert B. Grove
72
COMMUNICATIONS CORNER
A look at how an audio processor boosts receiver performance. Herb Friedman

AUDIO
63
DIGITAL AUDIO FOR THE 1980's
A look at PCM technology and its outlook for the 1980's. Len Feldman

VIDEO
68
BACKYARD SATELLITE-TV RECEIPTION
A rundown of some of the misconceptions. Fred Hopengarten
78
SERVICE CLINIC
Conventional power-supply circuits that look very odd. Jack Darr
79
SERVICE QUESTIONS
R-E's Service Editor solves technicians' problems.

COMPUTERS
56
HOW TO CONNECT AN A/D CONVERTER
Here's how to interface your microprocessor-based project to analog signals. Joseph J. Carr

EQUIPMENT REPORTS
32
Global Specialties 3001 Capacitance Meter
38
Healthkit/Thomas TO-1860 Electronic Organ Kit
39
Lafayette BCR-101 General Coverage Receiver

DEPARTMENTS
110
Advertising Index
16
Advertising Sales Offices
83
Computer Products
16
Editorial
111
Free Information Card

As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Super-satellites: A new domestic communications satellite with double the capacity of any in existence or planned has been proposed to the FCC by Southern Pacific Communications. SPC has asked for approval to operate three satellites with the equivalent of 48 transponders each and says it could start service by 1982. SPC is basing arguments for its system on more efficient use of available orbiting spots, which now are becoming scarce. Existing domestic satellites are operated by AT&T, Western Union and RCA, with Hughes Communications also seeking to operate a bird. SPC said its system would involve an investment of about $196 million and would operate on both 4-6 and 11-14 GHz bands.

Zenith joins RCA: The grooved-capacitance videodisc system began to look like an American standard when Zenith announced it would adopt the system, developed by RCA. Zenith said its first players would be on the market around mid-1981, and it would be manufacturing its own players in 1982. The initial players for Zenith's market entry will be supplied on a private-label basis by RCA, which earlier had announced it would start marketing its own players early in 1981. Zenith's proposed price for the players—under $500—was the same as RCA's. Zenith said it chose the system because it has mass-market potential at a reasonable price.

Zenith thus becomes the second of RCA's major business rivals to join with it in agreements involving the capacitance videodisc system—the first was CBS, which will press discs for the system. The incompatible Philips/MCA grooveless optical system is already on the U.S. market, the discs being sold by MCA and players by Magnavox (at $775). And this month, Pioneer Electronics will market a player compatible with the Philips/MCA standards. The Matsushita-JVC Video High Density (VHD) grooveless capacitance system so far is still at the starting gate, with no firm adherents.

Phony videotapes: The video boom has spawned a small flood of counterfeit blank cassettes. Most of them from Taiwan, these tapes are packaged in authentic-looking Beta cassettes, but they're loaded with computer tape instead of properly formulated videotape. Some of these have been seized by authorities, but others have found their way into stores. It's very easy to avoid being duped into buying this new 'white-box' rip-off. Just insist on tape with recognizable brand names on the box—either tape or equipment manufacturer names. The phony stuff which has been coming in so far generally carries unheard-of brands.

Stereo sound for TV: Whether television deserves stereophonic sound is still hot subject for debate. Japan already has a multi-channel sound system for television, uses it for both stereo and dual-language audio tracks. Japanese home VCR's now are beginning to appear with dual sound tracks to take advantage of the new sound service. The FCC is currently conducting an inquiry into multi-sound channels on TV and the EIA has a technical committee looking into the matter of future standards. AT&T Long Lines has equipped its intercity network interconnections for a switchover to stereo sound when and if.

Stereo also has become a hot subject in the videodisc field. The MCA/Philips optical disc system now on sale in the U.S. has a provision for stereophonic sound and output jacks for attaching to a home stereo sound system. Other proposed disc systems also feature stereo sound. RCA surprised most observers when it announced that the initial version of its disc system would ignore stereo—both on discs and players—because they would initially be attached to color TV sets capable only of reproducing monophonic sound.

Sound quality of home videocassette recorders is poor, to put it mildly. But now a tape-programming company called Media Home Entertainment proposes to get around all that by releasing videocassettes with stereo sound. How's it done? Simply—musical videocassette releases are accompanied by audio cassettes with a stereo soundtrack. A beep recorded on the videocassette tells the viewer exactly when to push the PLAY button on the cassette deck to synchronize the stereo track with the video performance.

Flat-panel TV: There seem to be renewed efforts in flat-panel TV using conventional picture-tube-like approaches featuring the phenomenon of cathodoluminescence. RCA Laboratories in Princeton, NJ, has been working in this direction since 1973 and says it feels that this area is the most promising it has investigated, and it could result in a commercial product in the "mid-to-late 1980's." RCA is aiming at a panel 4 to 5 inches thick by 50 inches in diagonal measurement, with all television circuits (including sound and loudspeakers) within the picture frame. It calls its approach "modular guided-beam technology," or as its scientists explain it, "collapsing a picture tube into flat geometry." As envisioned, the panel has a relatively conventional phosphor screen and shadow mask. A 40-inch-long cathode runs along the base of the panel. The screen is divided into 40 one-inch vertical modules, each 30 inches high and separated from the adjacent one by a vertical electrode. RCA so far has built a developmental prototype of a 5-by-10-inch segment of the display. Its goal is a manufacturable panel with quality equal to that of a color picture tube at a reasonable cost.

Another television manufacturer—GTE, maker of Sylvania, Philco, and Saba TV sets—is working in a somewhat similar direction. As reported here (Radio-Electronics, November 1978), GTE is working with a team of former Zenith engineers to develop large-screen gas-discharge tubes suitable for color TV displays. Besides the fact that both companies are working in the field of cathodoluminescence, RCA and GTE have something else in common—they're both hoping to start with large displays 35 to 50 inches in diameter, obviously aiming at market segments where they hope to have advantages over Japanese Manufacturers.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR
The more logical way to look inside an IC.

LTC Logical Analysis Test Kits:
everything you need for over 90% of your digital testing.

Everything you need is at your fingertips. Circuit-powered. And easy to use.
Ready to read logic activity at a glance, point-by-point or IC by IC. Or to inject digital signals for testing.

Let the LEDs of our Probes, Pulsers and Logic Monitors light the way to answers for your troubleshooting, design and educational needs.
The Logical Analysis Test Kit comes in two versions: our $250.00* High-Speed Kit, LTC-2, which captures pulses as narrow as 6 nsec, rep rates to 60 MHz; and our $220.00* Standard Kit, LTC-1, which goes to 50 nsec, 10 MHz. Both include complete manuals, accessories and a compact, custom-molded case. Either way, you’ve got a strong case for simplified digital testing.

Smarter tools for testing and design.

GLOBAL SPECIALTIES CORPORATION
70 Fulton Terr., New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227
OTHER OFFICES: San Francisco (415) 421-8872, TWX 910-372-7992
Europe: Phone Salzfron-Walden 0799-21682, TLX 817477
Canada: Len Finkler Ltd., Downsview, Ontario

Call toll-free for details 1-800-243-6077

*Suggested U.S. resale. Available at selected local distributors. Prices, specifications subject to change without notice.
© Copyright 1980 Global Specialties Corporation.
For your convenience the city and phone number of your nearest Fluke Sales Representative and Distributor are listed below:

U.S. & Canada Sales Representatives for all Fluke products

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 277-7117</td>
</tr>
<tr>
<td>CA</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>CA</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Anchorage</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Fairbanks</td>
<td>(907) 452-1011</td>
</tr>
<tr>
<td>AK</td>
<td>Valdez</td>
<td>(907) 452-1011</td>
</tr>
</tbody>
</table>
Facts from Fluke on low-cost DMM’s

Conductance:
What it is, and what it can do for you.

We’ve often referred to conductance as the “missing function” in DMM’s – the capability so many of you have wanted in a DMM but couldn’t find until we introduced the 8020A Analyst.

Since its introduction, the Fluke 8020A has become the world’s best-selling DMM. And four more low-cost models with conductance ranges have been added to our line. But you’ll still find this function only on Fluke DMM’s.

Simply stated, conductance lets you make resistance measurements far beyond the capacity of ordinary multimeters. Until the 8020A, there was no way to make fast, accurate readings from 20 MΩ to 10,000 MΩ – ranges typically plagued by noise pickup. Yet, measurements at these levels are vital in verifying resistance values in high-voltage dividers, cables and insulators.

With conductance, the inverse of ohms, which is expressed in Siemens – Fluke DMM’s can measure extreme resistances. Simple conversion of direct-reading conductance values, then, yields resistance measurements to 10,000 MΩ (and 100,000 MΩ with the 8050A), without special shielding and using standard test leads.

Here the 8020A is being used to check leakage in a teflon pcb. With a basic dc accuracy of 0.1% and an exclusive two-year warranty, this seven-function handheld DMM has made hundreds of new troubleshooting techniques such as this possible, and more are being discovered every day.

For more details, call toll free 800-426-0361; use the coupon below; or contact your Fluke stocking distributor, sales office or representative.

FLUKE

IN THE U.S. AND NON-EUROPEAN COUNTRIES:
John Fluke Mfg. Co., Inc.
P.O. Box 43210 MS #2B
Mountlake Terrace, WA 98043
(206) 774-2481
Telex: 152662

IN EUROPE:
Fluke Holland B.V.
P.O. Box 9033, 9001 E.B.
Tilburg, The Netherlands
(031) 773 973
Telex: 52237

Please send 8020A specifications.
☐ Please send all the facts on Fluke low-cost DMM’s, including the conductance application note.
☐ Please have a salesman call.

Name
Title
Company
Address
City State Zip
Telephone () Ext.

For Literature circle no. 18

RE 6/86
NRI will train you at home to be an electronics professional in the growing world of communications.

Learn to service, repair, and install everything from microwave antennas to two-way radios...from radar sets to TV transmitters.
No other home-study course gives you such complete, professional training in so many fields of communication. No other gives you the actual bench training with kits and demonstration units specially designed for learning. Only NRI gives you the thorough preparation and training you need to achieve professional competence in the wide world of communications.

Learn at Home in Your Spare Time
Learn at your own pace, right in your own home. There's no need to quit your job or tie up your evenings with night classes. No time or gas wasted traveling to school...NRI brings it all to you. You learn with NRI-pioneered “bite-size” lessons and proven, practical “power-on” training.

Build Your Own 2-Meter, Digitally Synthesized VHF Transceiver or 40-Channel CB
NRI training is “hands-on” training. You get honest bench experience as you build and test this industrial-quality two-way radio and power supply. You reinforce theory lessons as you induce and correct faults, study individual circuits and learn how they interface with others. Or, at your option, you can train with a full forty-channel mobile CB and base-station power supply converter.

You also build and keep for use in your work a transistorized volt-ohm meter and digital CMOS frequency counter. NRI even gives you special lessons to get your Amateur License so you can go on the air with your VHF transceiver.

FCC License or Full Refund
In all, you get 48 lessons, 9 special reference texts, and 10 training kits...the training you need to become a professional. And NRI includes training for the required FCC radiotelephone license examination. You pass or your tuition will be refunded in full. This money-back agreement is valid for six months after the completion of your course.

Free Catalog, No Salesman Will Call
NRI’s free, 100-page full-color catalog shows all the equipment you get, describes each lesson and kit in detail, tells more about the many specialized fields we train you for. It includes all facts on other interesting areas like TV and audio servicing or digital computer electronics. Mail the postage-paid card and see how we can make you a pro.

If the card has been removed, write to:

NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016
Electronic painkillers are now implantable

Electronic pain-killing devices are not entirely new. Neural stimulators that are attached to the patient's skin are being sold at the rate of 40,000 per year. Their action is not understood—it is believed they may stimulate the brain into producing anti-pain chemicals, or that the minute currents from the stimulators may serve to block transmission of pain impulses along nerve fibers.

These "transcutaneous" stimulators are inefficient—less than ten percent of the applied energy reaches the affected nerves—and the patient has to be attached to a power supply. One instrument (Meditronic) is implantable, but still requires an external power supply.

Now comes Pacemaker Systems, of California, with an instrument that uses electrodes attached to the nerves affected, connected to a small unit implanted in the abdomen. This contains a rechargeable battery and a radio receiver that rectifies radio waves beamed to it from outside the body to recharge the battery.

The device will be costly, says the manufacturer, about $10,000 as compared to $500 for a transcutaneous stimulator—plus installation costs. The equipment is expected to be on the market within a year.

Sun supplies all power for Ohio broadcast station

Radio station WBNO (1520 kHz, daytime) of Bryan, Ohio, switched to solar power last August, and has been broadcasting on the sun's energy every sunny day since. The local power utility fills in during bad weather. Peak power of 15,000 watts is supplied by a system of 36,000 photovoltaic cells, manufactured by the Solarex Corp of Rockville, MD.

The experimental project is a joint effort of WBNO and the Lincoln Laboratory, Massachusetts Institute of Technology. It is being carried out and funded under a Department of Energy contract.

A daytime radio station is exceptionally well adapted to study of solar-powered systems because of its constant and predictable load, and because its operation is roughly coincident with daylight hours. A station with ground-based guys supporting its antenna towers, like WBNO, also has ample ground space for a solar array.

It is expected that, over a year's time, the photovoltaic system will supply from 70 to 90% of the energy required, the rest being supplied by the local utility.

No pressure on auto dealers buying cars without radios

The Custom Automotive Sound Association (CASA), representing American manufacturers, importers, distributors and installers in the automotive sound industry, after communications with American Honda lawyers, has notified Honda dealers throughout the country that their shipments will not be reduced nor delayed if they order new cars without radios. This was in response to reports that Honda dealers were being told that their deliveries might be affected if they did not purchase optional radios through American Honda.

American Honda stated last June: "Honda automobiles will be shipped to the United States and to Honda dealers without radios. Dealers will be free to install whatever radios, if any, they and their customers decide on." Honda's attorneys state that Honda dealers have not been pressured to purchase Honda radios, and that if statements to that effect were made, they were strictly against company policy.

CASA has been instrumental in negotiating with manufacturers to roll back any policies that include radios as standard equipment in new cars. It sponsored an anti-trust suit against General Motors and settled successfully out of court. Chrysler and Toyota have also amended their radio-standardization policies. Discussions are continuing with Volkswagen, against whom a suit was filed last year.

Sylvania picture tubes now guaranteed for life

Replacement picture tubes may now be purchased with a lifetime warranty that provides for free replacement of any tubes with defects in workmanship, materials, or construction, GTE announces.

All Sylvania Color Bright and All New brand tubes sold after January 1, 1980 are included in the new policy, which warrants the tube for as long as the buyer owns the set in which it is installed. (Labor and other costs associated with tube installation are, of course, not included in the warranty.)

Among the tubes offered with the lifelong warranty are 15 types that can be used to replace more than 440 of the most popular industry types.

World's longest antenna may go into action soon

The long-proposed ELF (Extremely Low Frequency) system for communicating with submarines at considerable depths may be under way again, the New York Times reported in its "Science Times" section last winter.

The system calls for underground antennas in the order of hundreds of miles long, and almost the only areas in the United States where the earth formation is suitable are in Michigan and Wisconsin. A number of citizens' groups and political organizations in those states feared that radiation from such antennas might be hazardous, and protested. President Carter, on his election, deferred ordering the system into operation.

A later study, by the National Research Council, has shown that such fears are unfounded. That, plus the fact that with international tensions, naval commanders see "a growing urgency in the need for a deep-water communications system" leads to the feeling that the project will shortly be funded.

The ELF system operates on a frequency of 73 Hertz. (It is interesting to note that the Michigan-Wisconsin protesters did not propose to ban 60-Hertz power lines, which are right out in the open and produce voltage fields hundreds of times greater than anything the ELF antennas could possibly put out.)

The antenna length is 130 miles (much shorter than originally planned). Signals from the system can be read by submarines while submerged "hundreds of feet," down.

continued on page 14
A new computerized burglar alarm requires no installation and protects your home or business like a thousand dollar professional system.

It's a security system computer. You can now protect everything — windows, doors, walls, ceilings and floors with a near fail-sale system so advanced that it doesn't require installation.

The Midex 55 is a new motion-sensing computer. Switch it on and you place a harmless invisible energy beam through more than 5,000 cubic feet in your home. Whenever this beam detects motion, it sends a signal to the computer which interprets the cause of the motion and triggers an extremely loud alarm.

The new Midex burglar alarm is so loud that it can cause pain — loud enough to drive an intruder out of your home before anything is stolen or destroyed and loud enough to alert neighbors to call the police.

The powerful optional blast horns can also be placed outside your home or office to warn your neighbors.

Unlike the complex and expensive commercial alarms that require sensors wired into every door or window, the Midex requires no sensors nor any other additional equipment other than your stereo speakers or an optional pair of blast horns. Its beam actually penetrates walls to set up an electronic barrier against intrusion.

NO MORE FALSE ALARMS

The Midex is not triggered by noise, sound, temperature or humidity — just motion — and since a computer interprets the nature of it's motion, the chances of a false alarm are very remote.

An experienced burglar can disarm an expensive security system or break into a home or office through a wall. Using a Midex system, there is no way a burglar can penetrate the protection beam without triggering the loud alarm. Even if the burglar cuts off your power, the four-hour rechargeable battery pack will keep your unit triggered, ready to sense motion and sound an alarm.

ARRIVE HOME SAFE

There's personal danger in arriving home and finding a burglary in progress. And, if you surprise the burglar, you risk the chance of serious injury. With the Midex 55 protecting your home, you can open your front door with the confidence of knowing that no burglar lurks inside.

When the Midex senses an intruder, it remains silent for 20 seconds. It then sounds the alarm until the burglar leaves. One minute after the burglar leaves, the alarm shuts off and resets, once again ready to do its job. This shut-off feature, not found on many expensive systems, means that your alarm won't go wailing all night long while you're away. When your neighbors hear it, they'll know positively that there's trouble.

PROFESSIONAL SYSTEM

Midex is portable so it can be placed anywhere in your home. You simply connect it to your stereo speakers or attach the two optional blast horns.

Operating the Midex is as easy as its installation. To arm the unit, you remove a specially coded key. You now have 30 seconds to leave your premises. When you return, you enter and insert your key to disarm the unit. You have 20 seconds to do that. Each key is registered with Midex, and that number is kept in their vault should you ever need a duplicate. Three keys are supplied with each unit.

As an extra security measure, you can leave your unit on at night and place an optional panic button by your bed. But with all its optional features, the Midex system is complete, designed to protect you, your home and property just as it arrives in its well-protected carton.

The Midex 55 system is the latest electronic breakthrough by Solfan Systems, Inc. — a company that specializes in sophisticated professional security systems for banks and high security areas. JS&A first became acquainted with Midex after we were burglarized. At the time we owned an excellent security system, but the burglars went through a wall that could not have been protected by sensors. We then installed over $20,000 worth of Midex commercial equipment in our warehouse. When Solfan Systems announced their intentions to market their units to consumers, we immediately offered our services.

COMPA Red AGAINST OTHERS

In a recent issue of a leading consumer publication, there was a complete article written on the tests given security devices which were purchased in New York. The Midex 55 is not available in New York stores, but had it been compared, it would have been rated tops in space protection and protect-on against false alarms — two of the top criteria used to evaluate these systems. Don't be confused. There is no system under $1,000 that provides you with the same protection.

YOU JUDGE THE QUALITY

Will the Midex system ever fail? No product is perfect, but judge for yourself. All components used in the Midex system are of aerospace quality and of such high reliability that they pass the military standard 883 for thermal shock and burn-in. In short, they go through the same rugged tests and controls used on components in manned spaceships. Each component is first tested at extreme tolerances and then retested after assembly. The entire system is then put under full electrical loads at 150 degrees Fahrenheit for an entire week. If there is a defect, these tests will cause it to surface.

PEOPLE LIKE THE SYSTEM

Wally Schirra, a scientist and former astronaut, says this about the Midex 55. "I know of no system that is as easy to use and provides such solid protection to the homeowner as the Midex. I would strongly recommend it to anyone. I am more than pleased with my unit."

Many more people can attest to the quality of this system, but the true test is how it performs in your home or office. That is why we provide a one month trial period. We give you the opportunity to see how fail-safe and easy to operate the Midex system is and how thoroughly it protects you and your loved ones.

Use the Midex for protection while you sleep and to protect your home while you're away or on vacation. Then after 30 days, if you're not convinced that the Midex is nearly fail-safe, easy to use, and can provide you with a security system that you can trust, return your unit and we'll be happy to send you a prompt and courteous refund. There is absolutely no obligation. JS&A has been serving the consumer for over a decade — further assurance that your investment is well protected.

To order your system, simply send your check in the amount of $199.95 (Illinois residents add 5% sales tax) to the address shown below. Credit card buyers may call our toll-free number below. There are no postage and handling charges. By return mail you will receive your system complete with all connections, easy to understand instructions and a one year limited warranty. If you do not have stereo speakers, you may order the optional blast horns at $39.95 each, and we recommend the purchase of two.

With the Midex 55, JS&A brings you: 1) A system built with such high quality that it complies with the same strict government standards used in the space program, 2) A system so advanced that it uses a computer to determine an authorized entry, and 3) A way to buy the system, in complete confidence, without even being penalized for postage and handling charges if it's not exactly what you want. We couldn't provide you with a better opportunity to own a security system than right now. Space-age technology has produced the ultimate personal security computer. Order your Midex 55 at no obligation, today.
Practical fusion reactor not before year 2010?

The ultimate in a clean and reliable nuclear fuel—consumed in a fusion reactor—will not be attainable in this century, nuclear engineer Robert Conn of the University of Wisconsin told a recent meeting of the American Association for the Advancement of Science. (Fusion reactors have been sought as an almost-answer to the problems of radiation and pollution associated with fossil fuels.)

Present research on fusion reactors has been directed toward deuterium and tritium (heavy forms of hydrogen) fuels, but the ultimate goal of fusion research is to achieve fusion with ordinary hydrogen. Mr. Conn told his audience.

Temperatures of 100 million degrees or higher are required for fusion. At those high temperatures, fuel atoms separate into a plasma of nuclei and electrons, in which fusion reactions can occur. That plasma must be contained in a magnetic field to keep it from hitting reactor walls, cooling, and stopping the fusion.

Tritium-deuterium requires the lowest temperature of any fuel to start a reaction, and can be contained in the weakest magnetic field. But tritium, in particular, has serious disadvantages: It is hard to produce and is in itself radioactive. Ordinary hydrogen is readily available from water and produces few radioactive neutrons when it fuses. But it needs much higher temperatures and requires stronger magnetic fields.

Conn noted that success in tritium-deuterium research is important in the study of hydrogen fuel. Once a self-sustaining tritium fusion reaction is attained, very high temperatures will be available for studying the properties of plasmas at temperatures approaching those that are needed for hydrogen fusion.

He estimated that a demonstration tritium-deuterium fusion reactor could be in operation by the year 2000. Hydrogen-based fusion reactors will not be built for at least another decade.

ISCET Library opens again—ancient schematics available

The ISCET Technical Library is open for business at a new location. The Library was the dream of Henry Golden, CET, who built the reservoir of out-of-print information. A serious illness in April 1979 left him unable to operate the library. ISCET chairman George Sopocko, CET, packed up the materials and took them to Chicago, where, after months of cataloging, they are again available.

Service technicians needing copies of "unobtainable" technical data may obtain them from the new address. The basic search-and-copy fee is $2 for the first two pages—50 cents for each additional page. Address George Sopocko, 5631 Irving Park Road, Chicago, IL 60634 (phone 312-545-3622).

George says he has a good supply of schematics for older TV and radio sets and "a fairly good selection of diagrams for shortwave and amateur radios and for radio and TV test equipment."

For further information about the International Society of Certified Electronic Technicians, or to contact the CET test administrator in your area, write to ISCET, 2708 West Perry St., Fort Worth, TX 76109, or call 817-921-9101.

Electron microscope inventor elected to Hall of Fame

Dr. James Hillier, former Executive Vice President and Chief Scientist of RCA, has been elected to the National Inventors Hall of Fame, for his development of the electron microscope. The National Inventors Hall of Fame was established in 1973, by the National Council of Patent Law Associations in cooperation with the U.S. Patent Office.

Electron microscope inventor elected to Hall of Fame

Dr. James Hillier, former Executive Vice President and Chief Scientist of RCA, has been elected to the National Inventors Hall of Fame, for his development of the electron microscope. The National Inventors Hall of Fame was established in 1973, by the National Council of Patent Law Associations in cooperation with the U.S. Patent Office.

While a graduate student at the University of Toronto, in the years 1937 to 1940, Hillier and a colleague, Albert Prebus, designed and built the first successful high-resolution electron microscope in the Western Hemisphere. In 1940, he was invited by Vladimir Zworykin (who was elected to the National Inventors Hall of Fame in 1971) to come to the United States and work as a research physicist for RCA. Within a few months he had designed the first commercial electron microscope to be made available in the United States. During the next several years he continued to develop techniques which would extend the capabilities of the instrument and to develop new methods of biological specimen preparation.

Dr. Hillier was named general manager of the RCA Laboratories in 1957, and became successively Vice President, Vice President RCA Research and Engineering, Executive Vice President, RCA R & E, and in 1976, the year before his retirement, Executive Vice President and Senior Scientist.

Dr. Hillier has received 41 U.S. patents and is the author of more than 100 technical papers.

COMSAT, Sears, are planning joint satellite TV service

COMSAT General Corporation and Sears, Roebuck and Co. have engaged in discussions of a possible joint project for providing satellite-to-home subscription television service. The proposed venture plans to offer high-quality programming nationwide for a fee. Subscribers would receive the service by roof-top antennas. The new service would require approval by the Federal Communications Commission.

Superconducting cyclotron for Michigan State University lab

Michigan State University and the United States Department of Energy (DOE) have signed a $25.7 million contract for establishing a National Superconducting Cyclotron Laboratory on the MSU campus. Completion is expected in 1984.

A cyclotron speeds up the nuclei of atoms to velocities of tens of thousands of miles a second. Held in a circular orbit by strong magnetic fields, they whir through the instrument in gradually increasing spirals, then are released like a stone from a sling, to impact other nuclei. The flying wreckage from the resulting collisions gives scientists valuable information about the structure of matter.

The superconducting magnets for the MSU cyclotron are wound with a special alloy of niobium and titanium and are immersed in a bath of liquid helium at a temperature approaching absolute zero (−456°F). That reduces the resistance of the coils practically to zero, allowing fantastic magnetizing currents to flow. One of the magnets to be used is already built and tested. It has a lifting force of 900 tons.

Former cyclotrons could accelerate the nuclei of only the lightest elements. The new superconducting type will be able to hurl the heaviest atomic nuclei in an accurate, concentrated beam at their atomic targets. Scientists expect thus to gain new types of information not obtainable from the older cyclotrons.

The new laboratory will contain two cyclotrons operating in tandem. The first, operating at 500 million electron volts (500 MeV) will feed its accelerated nuclei to the second, rated at 800 MeV, which will propel them to still higher speeds.

The facility will be used by visiting scientists as well as by faculty members of Michigan State University.
Yesterday — Remember the first Heathkit Analog Computer (1957)? Or the Heathkit Single-Sideband Transmitter (1958)? How about the Heathkit Multiplex Adapter for FM stereo reception (1960)? Each was a ground-breaking innovation for its day. Each was a Heathkit brainchild.

Today — Today's brainchildren include the popular Heathkit All-In-One Computer, a complete computer system with disk storage, smart terminal, two Z80 microprocessors — all in one compact unit. Also rising fast, the Heathkit Screen Star, a new projection TV that brings together the best in video technology to create the sharpest color picture ever on a six-foot diagonal screen.

Heath imagination applied to microprocessor electronics created the Heathkit Weather Computer. It monitors current weather, tracks changes, stores data — and puts it all at your fingertips.

Tomorrow — Tomorrow's brainchild, like today's and yesterday's, will combine the newest and the best in electronics to create a new state-of-the-art.

On the drawing boards right now are new designs for amateur radios, audio components, computers, color TVs, test instruments and new educational programs — all in easy-to-build, money-saving kits. They'll be appearing soon in Heathkit Catalogs and at Heathkit Electronic Centers. It's one catalog you don't want to be without.

Heathkit

SEND FOR FREE CATALOG
Write to Heath Co., Dept. 020-664, Benton Harbor, MI 49022.

VISIT YOUR HEATHKIT STORE

In the U.S. and Canada visit your nearby Heathkit Electronic Center where Heathkit products are displayed, sold and serviced. See the white pages of your phone book. In the U.S., Heathkit Electronic Centers are Units of Veritech Electronics Corp.
Toy manufacturers aren't playing games

On the surface, the 1980 Toy Fair in New York was a routine affair. Manufacturers displayed their fall and Christmas product lines to dealers and reps. What wasn’t routine about the event were the toys themselves. By far, there were more “electronic” toys seeing the light of day than ever before. In fact, they stole the show.

The hottest-selling electronic toys are the sports variety. These include Baseball, Basketball and Football. Several manufacturers were showing these toys, which included an LED display, sounds, automatic score keeping, and more. Hand-held versions of the arcade games were also exhibited. Using liquid-crystal displays, these mini-versions mimicked their CRT-based big brothers with such games as Space Invaders and Wipeout. Of course, there were many more toys, including casino games, radio-controlled cars, and even a radio-controlled two-wheel motorcycle.

From my point of view, the real show stoppers were the innovative toys. These included a voice-actuated car that accepted such commands as STOP, GO, LEFT and RIGHT. How about a programmable car? Using an 8-key keyboard, you can, for example, program it to go forward for 3 seconds, turn right for 1 second, left for 2 seconds, reverse for 4 seconds and stop. Then, after placing the car on the floor and pressing the START button, it’s fascinating to watch the car execute the program. Admittedly, it’s not a giant leap forward in terms of technology, but it is certainly a giant step for the toy industry.

At the show, I managed to interview Garth A. Clowes, President of Entex Industries, Inc. (one of the larger manufacturers of electronic toys). He stated that the semiconductor manufacturers have been very cooperative in helping him develop new products and that he was looking towards developing an in-house engineering capability that will include designers, software programmers, and technicians.

As the present trend toward electronic toys continues, it will prove to be a boon to both the toy industry and the electronics industry. It will affect not only the battery manufacturers, but the electronics industry as a whole. It looks as though another perfect match has been born in Silicon Valley.
JULY 1980

- **Build An Environmental Control System**
 Energy-efficient thermostat monitors indoor and outdoor temperatures; then controls your heating, ventilating, and air-conditioning systems.

- **Build a Raceway Video Game**
 You can pretend to be an *Indy 500* race driver without ever leaving the comfort of your armchair after you build this video game.

- **All About Vertical-MOS**
 High-power semiconductor technology produces devices with near-ideal characteristics. Here's a look at how vertical-MOS devices work.

- **Bass Response vs. Enclosure Size**
 Hi-fi speaker systems keep getting smaller. Here's a look at how the size of the enclosure affects bass response and some of the trade-offs that are made when designing speaker systems.

PLUS:
- Build A Synthesized Function Generator-Part 2
- Coax vs. Twinlead For Your TV Antenna
- How To Connect An A/D Converter To A Microprocessor.
- Hobby Corner
- Communications Corner
- Service Clinic

JUST WRAP

WIRE WRAPPING TOOL

- AWG 30 Wire
- .065" Square Posts
- Daisy Chain or Point To Point
- No Stripping Or Slitting Required
- JUST WRAP
- Built In Cut Off
- Easy Loading Of Wire
- Available Wire Colors:
 - Blue, White, Red & Yellow

PATENTED U.S.A.

FOREIGN PATENTS PENDING

JUST WRAP TOOL WITH ONE 50 FT ROLL OF WIRE

<table>
<thead>
<tr>
<th>COLOR</th>
<th>PART NO.</th>
<th>U.S. LAST PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>JW4.B</td>
<td>$14.95</td>
</tr>
<tr>
<td>White</td>
<td>JW4.W</td>
<td>$14.95</td>
</tr>
<tr>
<td>Red</td>
<td>JW4.R</td>
<td>$14.95</td>
</tr>
<tr>
<td>Yellow</td>
<td>JW4.Y</td>
<td>$14.95</td>
</tr>
</tbody>
</table>

REPLACEMENT ROLL OF WIRE SUP

<table>
<thead>
<tr>
<th>COLOR</th>
<th>PART NO.</th>
<th>U.S. LAST PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>JW4.R</td>
<td>$2.98</td>
</tr>
<tr>
<td>White</td>
<td>JW4.R</td>
<td>$2.98</td>
</tr>
<tr>
<td>Yellow</td>
<td>JW4.R</td>
<td>$2.98</td>
</tr>
</tbody>
</table>

JUST WRAP-UNWRAPPING TOOL

<table>
<thead>
<tr>
<th>COLOR</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>JW4.B</td>
</tr>
<tr>
<td>White</td>
<td>JW4.W</td>
</tr>
<tr>
<td>Red</td>
<td>JW4.R</td>
</tr>
<tr>
<td>Yellow</td>
<td>JW4.Y</td>
</tr>
</tbody>
</table>

JUST WRAP

- Built In Cut Off
- Easy Loading Of Wire
- Available Wire Colors:
 - Blue, White, Red & Yellow

PATENTED U.S.A.

NON PATENTED U.S.A.

MACHINE & TOOL CORPORATION

3465 Conner St., Bronx, N.Y. 10475 U.S.A.
Tel. (212) 994-6600 Telex 125091

CIRCLE 29 ON FREE INFORMATION CARD
At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioners, service cars or install heating systems—talk to some other school. But if you're serious about electronics, come to CIE—The Electronics Specialists.

John E. Cunningham
Special Projects Director
Cleveland Institute of Electronics
My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool — and want the training it takes — to make sure that a sound blackout during a prime time TV show will be corrected in seconds — then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas — and builds on them.

That's what happens with CIE's Auto-Programmed® Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day — even use a Digital Learning Laboratory to apply the digital theory essential today to keep pace with electronics in the eighties.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast... in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take... and pass... the government-administered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics — and it can be a valuable credential anytime.

Find out more... Mail this card for your FREE CATALOG today!

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists — CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Pattern shown on oscilloscope screen is simulated.

CIE Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

[Box for YES... John, I want to learn from the specialists in electronics — CIE. Send me my FREE CIE school catalog — including details about troubleshooting courses — plus my FREE package of home study information.]

[Box for Print Name: ____________________________]

[Box for Address: ____________________________ Apt. ____________________________]

[Box for City: ____________________________ State: ____________________________ Zip: ____________________________]

[Box for Age: ____________________________ Phone (area code) ____________________________]

[Box for Check box for G.I. Bill information: □ Veteran □ Active Duty]

Mail today!
ENERGY ALTERNATIVES

Congratulations on your editorial, "Energy Alternatives—Research and Development" (November 1979 issue) in regard to a need for much greater funding commitment toward the development of photovoltaic solar cell technology. Indeed, the good news is that major breakthroughs are being made in solar cell technology. The bad news is that even solar cells may have a waste-disposal problem. According to one D.O.E. (Department Of Energy) official, "the compounds used in 'doping' photovoltaic cells, such as cadmium, arsenic, gallium, and indium may pose health risks if not handled properly."

As a suggestion, we should renew our national commitment to further space exploration, and "space industrialization" in particular, to help solve down-to-earth energy problems. There are several reasons for that:

1. Outer-space offers a large supply of clean energy with the "solar power satellite" alternative.
2. Outer-space offers a low-gravity environment for new and unique industrial processes.
3. Space engineering may continue to pay off high dividends in terms of appropriate "spinoff" products—such as consumer items that help home owners directly reduce their energy bills (as with the NASA "power-chopper" device).
4. The vastness of outer-space would provide a safe place for the disposal of industrial wastes.
5. Most important: Space exploration offers Americans the hope of a new frontier, essential to human growth and economic development.

With a strong commitment toward space industrialization, we may someday see photovoltaic solar cells being produced very inexpensively for use on earth and in outer-space.

PAUL JUSTUS
Mission, KS

OOOOOOOOOOOPS!
The schematic for "Not Just Another Digital Clock", on page 62 of your February issue, has an error in it. The emitter of transistor Q1 should not connect to the emitter of transistor Q8. It should connect to the common connections of all the LED's.

DERALD D. NYE
Longmont, CO

You're absolutely right. What's missing is a jumper on the PC board. The holes are there, but the jumper isn't. Many thanks for calling it to our attention. Editor.

In the February 1980 Radio-Electronics article covering versatile switching regulators, I found an error in determining the maximum duty cycle of the system when using the NE5560. The correct ratio for determining the maximum duty cycle is R2/R1 plus R2, as stated in the Signetics Data Manual.

JEFFREY M. RABOLD
Mansfield, OH
You're so right!—Editor.

MUSIC ON HOLD
I read the article, "Music on Hold," by Jules Gilder, in your November 1979 issue, with much interest and would like to make some constructive suggestions.

First: As it is described, the unit will not work on many phone systems—namely, those that employ switching methods that cause the line voltages described to be reversed in polarity upon connection of the calling number to the called number. Diodes D2 through D5 in Fig. 1 perform the required switching function, to allow the basic circuit to perform properly, regardless of the polarity.

Second: The device resistance is too high for many phone systems. To hold the line properly, the device must have a low enough resistance actually to access the line if the phone were in the hung-up mode. Normally, that would require a value of 1000 ohms or less to be placed across the line—or whatever value of resistance would be required to reduce the 48 volts normally present on the line to approximately half that value.

[Diagram of circuit diagram]

* BREAK HERE TO INSERT TRANSFORMER WINDING, DI-DS SWITCHING DIODES; I AMP, GOO PN, SILICON

With typical 48-volt, 70-mA systems, the resistance would be 800 to 850 ohms. Mr. Gilder's circuit would not be capable of such a low resistance without additional circuitry to prevent damage to the LED. I

Continued on page 24
Don’t get one of our DMMs for the price.

You want a good price when you buy a DMM. But more important than the price is what you get for your money—and that’s where you really win with Keithley. Our Model 169 and Model 130 DMMs were designed inside and out to provide the performance you want at prices that make sense.

The Model 169 is a bench-size portable DMM. It’s a five-function, 26-range instrument that’s built to stand up to years of rugged use. It’s also the only low-priced portable to announce range and function right on the display. Basic accuracy is a respectable 0.25%, and with alkaline batteries you could use it for a full year without changing batteries. (The battery indicator on the display tells you when they’re getting low.)

The Model 130 isn’t just another hand-held DMM. It’s got five functions and 25 ranges to handle virtually all of the field or bench measurements you make. But its designed-in convenience features set it apart. It weighs only 283g (10 oz.). Its two rotary switches (one for range, one for function) are simply easier to use than pushbutton-type hand-holds. Its case is tough, 2.5mm (.100”), impact resistant plastic. Its components are mounted on a single PC board which is cushioned to protect it from sudden jolts. It has a fuse protected 10A current range. And both the battery and the fuse are externally accessible.

Both instruments have big, 15mm (0.6”) LCD displays—up to 60% larger than some competitors’. Both feature auto zero, auto polarity, overrange indication and low battery indicators. Both have a full range of available accessories, including test leads, probes, current shunt and carrying cases. And both have another feature that sets them apart from all the rest. They’re both from Keithley.

Get one for the performance.

Keithley Instruments, Inc./28775 Aurora Road
Cleveland, Ohio 44139/(216) 248-0400 Telex: 98-5469

Call your nearest distributor for more information.

You want a good price when you buy a DMM. But more important than the price is what you get for your money—and that’s where you really win with Keithley. Our Model 169 and Model 130 DMMs were designed inside and out to provide the performance you want at prices that make sense.

The Model 169 is a bench-size portable DMM. It’s a five-function, 26-range instrument that’s built to stand up to years of rugged use. It’s also the only low-priced portable to announce range and function right on the display. Basic accuracy is a respectable 0.25%, and with alkaline batteries you could use it for a full year without changing batteries. (The battery indicator on the display tells you when they’re getting low.)

The Model 130 isn’t just another hand-held DMM. It’s got five functions and 25 ranges to handle virtually all of the field or bench measurements you make. But its designed-in convenience features set it apart. It weighs only 283g (10 oz.). Its two rotary switches (one for range, one for function) are simply easier to use than pushbutton-type hand-holds. Its case is tough, 2.5mm (.100”), impact resistant plastic. Its components are mounted on a single PC board which is cushioned to protect it from sudden jolts. It has a fuse protected 10A current range. And both the battery and the fuse are externally accessible.

Both instruments have big, 15mm (0.6") LCD displays—up to 60% larger than some competitors’. Both feature auto zero, auto polarity, overrange indication and low battery indicators. Both have a full range of available accessories, including test leads, probes, current shunt and carrying cases. And both have another feature that sets them apart from all the rest. They’re both from Keithley.

Get one for the performance.

Keithley Instruments, Inc./28775 Aurora Road
Cleveland, Ohio 44139/(216) 248-0400 Telex: 98-5469

Call your nearest distributor for more information.
LETTERS
Continued from page 22

have accounted for that problem in the enclosed diagram through the use of a LED pilot-lamp assembly shunted by an appropriate Zener diode. The series resistance of 470 ohms produces a total device resistance of 850 ohms. A neon 120-volt pilot-lamp assembly is included to indicate incoming calls, in the event that the phone-ringer is switched off. We have employed the described circuit for some time, with excellent results.

Third: While our circuit does not employ an audio-injection feature, it would be compatible with Mr. Gilder’s idea. Should a transformer be included in the circuit, the DC resistance of its wiring should be measured; and that value should be subtracted from the 470-ohm series resistor.

BRUCE L. MACKEY
Cortland, NY

Mr. Mackey is correct. The music-on-hold circuit will, indeed, fail to operate on any telephone system that employs switching methods which cause the line voltages to be reversed in polarity upon connection of the calling number to the called number.

His second suggestion looks as if it will work well, although I have not experienced any difficulties with the resistance value indicated. His approach, however, will certainly work on systems that I have encountered, and on systems that require lower hold resistances.

JULES H. GILDER

SUPER AMPLIFIER
Here is additional information on two subjects relating to my article “Super Audio Amplifier” in the December 1979 issue: the substitution of an alternate circuit for the D1300A not readily available RCA diodes used in my amplifier; and the availability of a transparency for the printed circuit board. Here goes:

1. Two diodes connected in series may be replaced with a single transistor connected in the “amplified junction” configuration. Or any number of series-connections forward-biased diodes may be replaced in the same fashion. See Fig. 2. Use a power transistor (or medium dissipation) in order to realize the high junction-to-case thermal conductivity needed for temperature-sensing, and in order to have a convenient means for mounting on the same heat sink as the output devices whose temperature is to be sensed.

The equivalent circuit, using a transistor, has an advantage over the series-connected diodes. It can be adjusted to give a crossover bias of a precise value. Resistor R2 is made larger in value to reduce crossover bias current, and vice versa. Select a value that produces exactly 135 milliamps of power-supply current drain from the amplifier at idling (quiescent) conditions. Resistor R2 should never be so low in resistance as to cause thermal runaway (in other words, not less than one-third of the value of R1).

2. The printed circuit board is not available but a duplicate transparency of the printed circuit board, one-to-one scale factor, is available for $5.00, postpaid in the USA from Daniel Talbot, 1 Dean Street, Hudson, MA 01749.

DANIEL B. TALBOT
Hudson, MA

TRS-80 BREADBOARD
I really enjoyed the November, 1979 issue of Radio-Electronics, especially the TRS-80 breadboard article and the Telco article. Keep them coming.

There was one flaw in the TRS-80 breadboard article. It stated that the Level I BASIC cannot access I/O devices. That is not true. Although Level I BASIC cannot access I/O, you can do so by using machine language. By means of either T-BUG or the Editor-Assembler, Level I users can write programs to use with the breadboard project.

It appears that the music-on-hold project can do much more than the music-on-hold feature. You may even be able to connect it to your TRS-80 cassette interface, allowing you to get out of having to buy an expensive modem/aural coupler.

These are just a few ideas your readers can play around with. I hope they interest you.

R-E COLIN PRINGLE
Dallas, TX

<table>
<thead>
<tr>
<th>D1300A</th>
<th>D1300A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2N5191</td>
</tr>
<tr>
<td>R2</td>
<td>470Ω</td>
</tr>
</tbody>
</table>

* BE SURE TO MOUNT USING MICA INSULATING WASHER

2N5191, 2N4918
2N4999, MJE350
MJE370

FIG. 2
Turner outperforms others on the four most important factors: power, performance, quality and engineering. When choosing your next CB antenna - check us out.

✓ 500 watt power capacity
✓ 1.1:1 SWR
✓ Built to last
✓ Easy to install

Turner Base Loaded Antennas are available in five different models including swivel ball models for slant backs. Convenient combination mount models include mounting brackets for both trunk lip and roof mount in one antenna.

Spring-loaded, pure brass coil contact pin assures solid, corrosion-free cable connection.

Exclusive screw-in antenna cable connector (patent no. 4,090,030) provides simple, low loss solderless connection.

Weather resistant Noryl coil cover is impervious to the elements. Outlasts others, even in salt spray areas. Holds like-new appearance longer.

Base plate triple chrome plated for corrosion-free, attractive appearance.

Double thick trunk lip bracket will not break.

Entire antenna is at d.c. ground for super, low noise reception.

Look at these extras not found in other antennas!
Saga of Son-of-Satcom III

Ever since RCA Americom's Satcom III disappeared from sight last December, each week has brought new ramifications to the problem of what the cable TV industry will do about the loss. The 24-transponder satellite was supposed to become the primary bird for cable TV programming, with all of its transponders allocated for such services; Satcom I would have become the Second Cable Network, with about a dozen additional services. Now amidst promises, threatened lawsuits, make-goods, and a number of other activities, the situation has temporarily been sorted out.

Satcom I will remain the main cable bird until a replacement for Satcom III is launched next year. RCA has also made arrangement with AT&T for use of Comstar D2 as an "emergency replacement" with 11 transponders to be used for cable programs. Then the colorful Ted Turner, who is supposed to begin his Cable News Network in June, threatened to sue RCA for $34 million in order to make sure the all-news channel was aboard Satcom I. RCA capitulated and bumped one of its communications customers off Satcom I to make room for Turner, with the possibility that the only other full-functional transponder on that bird may also be shifted to cable TV programming. (Originally it was believed that RCA would move all its customers to the AT&T satellite and keep the cable TV programming on Satcom I and II. But since the AT&T transponders are "pre-emptible"—that is, AT&T can quickly bump off customers if it needs the circuits—the data customers balked at the arrangement.) What all that means is that if you're tuned to a cable programming being sent via the Comstar D2 satellite, it's possible that the show could be interrupted suddenly.

Meanwhile, RCA is completing its plans for what to do about its future facilities. As it stands now, the original launch date for Satcom IV in June 1981 now becomes the target for what is being called Satcom III-Replacement. That bird will become operational in October 1981. The new Satcom IV is slated to go up that same month, and then become operational in February 1982. Both launches will be aboard Delta rockets (rather than the Space Shuttle as had once been hoped). RCA says that the Son-of-Satcom III and Satcom IV will have technical improvements over the current models, including spare on-board amplifiers and higher-power amplifiers. RCA also says it wants to improve the in-orbit restoration facilities for failed transponders, and in addition plans to upgrade 18 of the 24 transponders on Satcom IV to 5.5 watts and the other 6 transponders to 8.5 watts instead of the traditional 5 watts of power.

Complete earth station deregulation

The FCC has removed all regulations from receive-only satellite earth terminals—an action that clears the way for smaller dishes and for considerable cost savings on the construction of TV receivers and earth stations and other downlinks. The FCC move means that the price of earth stations would drop by about 50% within a year. Among other things, the ruling permits use of dishes smaller than 10-foot diameter and allows anyone to put up a TVRO dish without obtaining legal and technical approval from the FCC (although, presumably, zoning and other local building ordinances must continue to be satisfied). In its ruling, the FCC warned that it is not giving the green light to satellite-signal pirates—and underscored its continuing efforts to enforce all the rules dealing with theft of service (Section 605 of the FCC regulations).

Among the people most pleased by the earth-station deregulation were executives of Mutual Broadcasting, which planned to move ahead immediately with its radio/satellite network, and cable-TV industry leaders who foresee even greater use—and less expense—of widespread satellite/cable networks. In its decision, the FCC left the door open for earth-station owners who want to be licensed. Such individuals and companies may seek FCC clearance to assure that they are avoiding any radio-frequency interference from terrestrial facilities. If you want an FCC license for your TVRO, the licensing period has been extended to five years (from the previous three years). Earth stations currently under FCC licensing policies (mostly cable-TV system's dishes) will continue to operate—but when the current permits expire, there will be no FCC requirement that they be renewed.

The prices keep coming down

Complete turn-key earth terminal facilities are now hovering in the range of about $3,500—down from about $4,000 last summer. According to experts in the world of private earth terminals, further price drops are likely—probably shaving another $700 per package by this summer. Antenna prices seem to have bottomed out at $750 for a 10-foot dish. The next item to drop in price will be low-noise amplifiers, with a 50% price reduction—into the $500 to $600 range. Tunable 24-channel receivers are also likely to fall in price from the $1,800 level; experts believe that prices this summer may be as low as $1,300 to $1,500—based on prototypes shown at last February's Satellite Private Terminal Seminar.

Sounds from the skies

While most of the attention about satellite broadcasting has been focused on television, radio is coming on strong, and promises to grow even bigger as more audio signals take to the skies. National Public Radio is due to put its nationwide network into service this spring; significantly on the fall day last year when the first handful of NPR stations started picking up satellite feeds, another new network was also starting up: RKO General, which operates radio stations in several major markets (including New York, Boston, and Washington), began its first feeds on that date (all land-linked for now). RKO's plans call for a network of affiliates nationwide—and eventually most of them will be linked by satellites. The RKO web features youth-oriented programming, in addition to news and lifestyle features, and company engineers are actively exploring small-dish satellite equipment for use at each affiliate.

Of course, Mutual radio network—the nation's largest, with well over 800 affiliates—is actively building its satellite network. The major wire services, Associated Press and United Press International, plan to send their radio newscasts directly to some local radio stations via satellite (as well as the signals that transmit the ticker-tape news reports). Meanwhile, ABC radio is advancing its plans to send newscasts and other features to affiliates of its four networks via digital signal transmitted from satellites. And even the cable-TV/satellite networks are dripping with audio services: At least four high-fidelity music services are transmitted on sidebands aboard the RCA satellite carrying cable shows, including a disco-music channel, and classical-music feeds. (One of the four is Chicago's WFMT, the nation's first radio superstation.)

GARY H. ARLEN
CMOS SAFE IC INSERTION/EXTRACTION KIT

KIT INCLUDES
- MOS-1416 14-16 CMOS SAFE INSERTER
- MOS-2428 24-28 CMOS SAFE INSERTER
- MOS-40 36-40 CMOS SAFE INSERTER
- EX-1 14-16 EXTRACTOR
- EX-2 24-40 CMOS SAFE EXTRACTOR

OK MACHINE & TOOL CORPORATION
3455 CONNER ST., BRONX, N.Y. 10475 U.S.A.
PHONE (212) 994-6600/TELEX NO. 125091

INDIVIDUAL COMPONENTS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS-1416</td>
<td>14-16 PIN MOS CMOS SAFE INSERTER</td>
<td>$7.95</td>
</tr>
<tr>
<td>MOS-2428</td>
<td>24-28 PIN MOS CMOS SAFE INSERTER</td>
<td>$7.95</td>
</tr>
<tr>
<td>MOS-40</td>
<td>36-40 PIN MOS CMOS SAFE INSERTER</td>
<td>$7.95</td>
</tr>
<tr>
<td>EX-1</td>
<td>14-16 PIN EXTRACTOR TOOL</td>
<td>$1.49</td>
</tr>
<tr>
<td>EX-2</td>
<td>24-40 PIN CMOS SAFE EXTRACTOR TOOL</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

Minimum Billing $25.00. Add Shipping Charge $2.00. New York Residents Add Applicable Tax.

OK MACHINE & TOOL CORPORATION 3455 CONNER ST., BRONX, N.Y. 10475 (212) 994-6600/TELEX 125091

CIRCLE 27 ON FREE INFORMATION CARD
EQUIPMENT AND TRAINING
NO OTHER SCHOOL CAN MATCH.

NTS HOME TRAINING INVITES YOU TO EXPLORE MICROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EQUIPMENT YOU ASSEMBLE AND KEEP.

Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that enables you to train for this booming field by working with your own production-model microcomputer.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We believe that training on production-model equipment, rather than home-made learning devices, makes home study more exciting and relevant. That's why you'll find such gear in all 14 of NTS's electronics programs.

For instance, to learn Color TV Servicing, you'll build and keep the 25-inch (diagonal) NTS/HEATH digital color TV.

In Audio Electronics, you'll be able to assemble your own NTS/HEATH digital stereo receiver with 70 watts per channel.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly acquire practical know-how.

Send for the full color catalog in the electronics area of your choice—discover all the advantages of home study with NTS!

NTS also offers courses in Auto Mechanics, Air Conditioning and Home Appliances. Check card for more information.
1. The NTS/Rockwell AIM 65
Microcomputer A single board unit with on-board 20 column alphanumeric printer and 20 character display. A 6502-based unit 4K RAM, expandable. 2. The NTS/KIM-1 Microcomputer A single board unit with 6 digit LED display and on-board 24 key hexadecimal calculator-type keyboard. A 6502 based microcomputer with 1K RAM, expandable. 3. The NTS/HEATH H-89 Microcomputer features floppy disk storage, "smart" video terminal, two Z80 microprocessors, 16K RAM memory, expandable to 48K. 4. The NTS/HEATH GR-2001 Digital Color TV (25" diagonal) features specialized AGC-SYNC muting, filtered color and new solid-state high voltage tripler rectifier.
Global Specialties Corp.
Model 3001 Digital Capacitance Meter

BACK IN THE HEYDAY OF RADIO SERVICING (in the '30's), no respectable service bench would have been complete without some form of a capacitor tester. However, over the next 30 years or so the popularity of such devices seemed to drop off until they were seldom considered when purchasing test equipment for most shops. For whatever reason, the popularity of capacitance-measuring equipment has recently taken a huge leap in the plus direction and now, it would seem, no electronic service bench would be considered "up-to-date" unless it contained a capacitance-measuring instrument.

Most test-equipment manufacturers have introduced their own versions of capacitance meters and few of them operate on the principles used in the testers of the '30's. Global Specialties Corporation, 70 Fulton Terrace, New Haven, CT 06509, is no exception to the rule as they, too, have introduced what they consider the best tester available for the price. Designed the model 3001 Digital Capacitance Meter, it is designed specifically for professional use in all phases of electronics whether that use is in servicing, production, or in the laboratory.

Ease of operation is one of the first advantages to be noticed when using the 3001. Measuring capacitance is simply a matter of connecting the capacitor, turning the 3001 on, setting the switch to the range required and reading the capacitance. The actual value is displayed on a large 31/2-digit LED display. The accuracy is 0.1% of the reading and readings can be obtained over the range of a few picofarads to 0.1999 Farad! The front panel of the unit includes an on/off toggle switch that is much easier to operate than the usual slide switches that have been finding their way into more and more test equipment. To the right of that switch is the LED display. Near the center of the panel, there is a ZERO CAL control that is used to balance out the capacitance of connecting leads, test stands, or fixtures. Farther to the right is the 9-position range switch and finally the two banana jacks that are used to connect the test leads.

Before attempting to operate the model 3001, it is recommended that the operator take a few moments to read over the instructions provided in the instruction manual. As with all other good test equipment, there is a wealth of continued on page 34.

MRO solid state problems?

1,100 RCA SK Series
+3,000 JEDEC* Devices
4,100 MRO Solutions

For full details, see your local RCA SK Distributor, or send for free copy of RCA MRO/Industrial Replacement Guide (1K6386). Write to: Sales Promotion Services, RCA Distributor and Special Products Division, P.O. Box 100, Deptford, N.J. 08096.

*RJecion Device Engineering Council
The only thing that beats their performance is their price.

Accurate performance you can rely on, time after time. That's what you expect from a quality DMM. But don't expect to pay as much for it any more. Because now Sabtronics brings you top quality DMMs with more features and better accuracy than other comparable units on the market today. And they cost surprisingly less!

We cut the price. Not the quality.

What you get is a precision crafted unit that features single-chip LSI logic, laser trimmed resistor network and a stable band-gap reference element for better long term accuracy. Basic DCV accuracy is 0.1%. The Model 2035A gives you 32 measurement ranges over 6 functions and the Model 2037A an additional two temperature ranges.

First in features. First in price.

Both models feature a "touch-and-hold" capability with the optional probe - a reading is retained for as long as you wish. Now you can make measurements in hard-to-reach places without taking your eyes off the probe tip or stopping to record data.

The two-terminal input for all measurement functions eliminates switching test leads when measuring voltage, resistance or current. The Model 2037A even has a built-in temperature measuring circuit with a -50°C to +150°C range and is supplied complete with the sensor probe. It is ideal for checking IC, resistor, transistor, heat sink and enclosure temperatures or for monitoring environmental test temperatures.

Plus more features.

The Hi-and-Low power ohms capability allows you to make in-circuit resistance measurements and to check semiconductor PN junctions. In addition automatic polarity, automatic zero, automatic decimal point and overload protection are standard features. And you get up to 200 hours operation from a single 9V transistor battery. The automatic "LO BAT" indicator warns you of the last 20% of battery life. The large, crisp LCD readouts allow easy viewing indoors or outdoors in bright sunlight.

One-evening kit assembly.

Assembling either kit is simple with our easy-to-follow, step-by-step instructions. The built-in calibration references allow you to calibrate the unit any time, any place. We've even eliminated difficult point-to-point interconnect wiring. All parts mount on the PC board. The only wires you solder are the two battery clip leads.

Order yours now.

With all of these features and performance characteristics no other handheld DMM comes even close to matching the price/performance ratios of the Models 2035A and 2037A. Providing the best value for money in test equipment, Sabtronics has become one of the world's largest producers of DMMs. You can order with confidence. Use the convenient order form or call us with your Master Charge or Visa number for prompt delivery.

To: Sabtronics International, Inc., 5709 North 50th Street, Tampa, FL 33610

Please send me ______ Model 2035A Handheld Multimeter kits @ $74.95 ea ______ Model 2037A Handheld Multimeter kits @ $99.95 ea ______ Shipping and handling @ $5.00 per kit (see below) ______ THP-20 Touch-and-Hold Probes @ $19.95 ea ______ Model AC-110 Battery Eliminator(s) @ $7.95 ea ______ Model HV-30 30KV DC High-voltage Probes @ $29.95 ea ______ Florida residents add 4% State Sales Tax

Enclose check or money order. Bill my ______ Master Charge ______ Visa Card Account ______ Expiry date, ______ Allow 2-3 weeks clearance time for personal checks. No COD

Name

Street

City State Zip

(Avl. in Canada)

Canada.

International)

Bill to: Sabtronics International, Inc., 5709 North 50th Street, Tampa, FL 33610

TOTAL $ ______

Enclose check or money order. Bill to: Sabtronics International, Inc., 5709 North 50th Street, Tampa, FL 33610

Allow 2-3 weeks clearance time for personal checks. No COD

Name

Street

City State Zip

(Avl. in Canada)

Canada.

International)
EQUIPMENT REPORTS
continued from page 32

information supplied to assist you in the operation of the new test gear. In addition to explaining the use of the equipment, the manual also provides a recommended initial inspection to ascertain if it is operating properly when received. For those who wish to know more about the operation of the unit, a schematic diagram—as well as a functional block diagram and description—is provided. Applications, calibration, and maintenance as well as a discussion of the various capacitance-measuring techniques that have been used through the ages combine to provide the owner with a most complete manual.

The range switch is labeled with values that are representative of the center of the range chosen. For instance, in the 1 μF range, the scale will actually read out to 1.999 μF. All ranges are arranged to be in multiples of ten. They are: 1000 pF, 10 nF, 100 nF, 1 μF, 100 μF, 1000 μF, 10 mF, and 100 mF. The latter represents 0.1 Farad (100,000 μF). In the lowest ranges where lead capacitance is an important factor, the ZERO-CAL control will null out the capacitance of the leads in use. According to the book supplied, it is possible to null out as much as 100 pF using this feature. Again, simplicity is the rule with the model 3001. Connect the test leads to the input jacks and leave the ends free of any capacitor. A reading of a few picoFarads should be noticed on the readout. By rotating the ZERO-CAL control from end to end it will be found that at some point the display will read zero. Connecting a capacitor to the test leads at this time should provide an accurate reading. In the ranges over 1 μF, the ZERO-CAL control is disconnected and need not be adjusted since the small amount of capacitance of the leads would have a negligible effect upon the actual measurement.

The input circuitry is quite sensitive and in extreme cases, when measuring small values, it may be advisable to place the test capacitor in a metal shield enclosure that is bonded to the grounded lead of the test jacks. That will minimize the effects of surrounding interference. In the testing of this unit, we found that it made some difference in the stability of the readings obtained when the unit was moved to various portions of the test bench. That was noticeable only on the 100 pF range when measuring capacitors of less than 100 pF.

There is no reason to expect damage to any capacitor when using the 3001 to test it as the maximum voltage used during the testing operation is about 3.5 volts (according to the manual); however, we were never able to detect that much voltage at the test terminals. While on the subject of voltages, it may be a good time to mention that Global Surveyors recommend that the capacitor to be tested be thoroughly discharged before connecting it to the test leads. The unit does have overvoltage protection built into the circuitry in the form of a 1/3-amp fuse.

In every test, the model 3001 came up with flying colors. It performed exactly as the manufacturer claimed it would and we were unable to discover one negative aspect to talk about. The size and shape were found to be very convenient for bench use as well as portable operation. The sample supplied came with a model 334 Production Test Fixture that simply amounts to an aluminum baseplate containing two spring-loaded clips. The clips are connect-
ed to an 18-inch length of RG-58/U cable that connects to the model 3001. There are also four (4) rubber feet on the bottom to protect surfaces. In use, for such operations as sorting large numbers of capacitors, all that need be done is to insert the leads into the test fixture and read the value on the model 3001. In addition, the model 335 Test Cable was supplied with the sample unit. That is also a piece of lead with two (2) alligator clips mounted at the ends to clip onto the capacitor to be tested (or the circuit to be checked). The company also makes a set of alligator clips with a banana plug attached for direct connection to the front panel jacks.

Another optional accessory available is the model 333 Tri-Mode Comparator. This unit allows the selection of capacitors that fall within preset ranges. Those thresholds are adjustable by front-panel thumbwheel switches and three outputs are available that will correspond to Low, Good, and High. Few those who like to read specifications, here are a few as published in the operational manual. Nine ranges from 1999 pF to 199,999 μF full scale. Accuracy: ±0.1% of reading ± 1 pF on 0 lower ranges; ±0.5% of reading ± 1 digit on 2 upper ranges. Temperature coefficients: ±0.01%/degree C applies to all ranges. Technique: dual threshold slope integration. Excitation voltage: 3.5 volts max. Display: 3½-digit high-brightness 0.5" character-height LED. Overrange indication and underrange indication. Input protection: 1/3-amp 250-volt fuse. Power requirements: 105-125 VAC, 50/60 Hz; 6 Watts. Size: (WXHXD): 10"X 3"X7" (254X76X178 mm). Weight: 3 lbs (1.4 kg).

Universal breadboarding elements with 840 solderless plug-in tie points.
- Combines distribution system with .1"x.1" matrix.
- Compatible with all DIPs and discretes with lead diameters up to .032". Needs no special patch cords.

With alloy 770 terminals, $17.00.

Your breadboarding is a super-snap with a solderless A P Super-Strip.

Build a circuit almost as fast as you dream it up. Pull it apart and do another—everything's as good as new.

Our versatile Super-Strips mini-breadboards give you the same top-quality contacts you get in our full-scale ACE All-Circuit Evaluators. Not so "mini," either. You can build circuits with as many as nine 14-pin DIPs.

Instant-mount backing and quick-removal screws make stacking and racking a snap, too.

Where to buy? Phone (toll-free) 800-321-9668 for the name of your local A P distributor. And ask for our complete A P catalog, The Faster and Easier Book.

"Faster and Easier is what we're all about."

AP PRODUCTS INCORPORATED
1359 W. Jackson St.
Painesville, Ohio 44077
Tel: 216-354-2101
TWX: 810-426-2250

RADIO-ELECTRONICS

CIRCLE 41 ON FREE INFORMATION CARD

continued on page 38
When quality counts

Do not be fooled by the low prices, these brand new lab quality frequency counters have important advantages over instruments costing much more. The models 7010 and 8010 are not old counters repackaged but 100% new designs using the latest LSI state-of-the-art circuitry. With only 4 IC's, our new 7010 offers a host of features including 10 Hz to 600 MHz operation, 9 digit display, 3 gate times and more. This outperforms units using 10-15 IC's at several times the size and power consumption. The older designs using many more parts increase the possibility of failure and complexity of troubleshooting. Look closely at our impressive specifications and note you can buy these lab quality counters for similar or less money than hobby quality units with TV xtal time bases and plastic cases!

Both the new 7010 and 8010 have new amplifier circuits with amazingly flat frequency response and improved dynamic range. Sensitivity is excellent and charted below for all frequencies covered by the instruments.

Both counters use a modern, no warm-up, 10 MHz TCXO [temperature compensated xtal oscillator] time base with external clock capability - no economical 3.579545 MHz TV xtal.

Quality metal cases with machine screws and heavy gauge black anodized aluminum provide RF shielding, light weight and are rugged and attractive - not economical plastic.

For improved resolution there are 3 gate times on the 7010 and 8 gate times on the 8010 with rapid display update. For example, the 10 second gate time on either model will update the continuous display every 10.2 seconds. Some competitive counters offering a 10 second gate time may require 20 seconds between display updates.

The 7010 and 8010 carry a 100% parts and labor guarantee for a full year. No "limited" guarantee here! Fast service when you need it too, 90% of all serviced instruments are on the way back to the user within two business days.

We have earned a reputation for state-of-the-art designs, quality products, fast service and honest advertising. All of our products are manufactured and shipped from our modern 13,000 square foot facility in Ft. Lauderdale, Florida.

When quality counts...count on Optoelectronics.

MODEL 7010

600 MHz

- **100% U.S.A. FACTORY ASSEMBLED**
- **100% PARTS & LABOR YEAR GUARANTEE**
- **CERTIFIED NBS TRACEABLE CALIBRATION**
- **EXTERNAL CLOCK INPUT**

DISPLAY HOLD FUNCTION
- **9 RED LED DIGITS & HIGI-H**
- **1 Hz RESOLUTION**
- **1 PPM 10 MHz TCXO TIME BASE**

COMPACT SIZES—7010-1 1/4" Hz 1/4" W 1 5/8" D 8010-3 3/4" Hz 1/4" W 1 1/8" D

MODEL 8010

1 GHz

DISPLAY HOLD FUNCTION
- **9 RED LED DIGITS & HIGH**
- **1 Hz RESOLUTION**
- **0.1 PPM 10 MHz TCXO TIME BASE**

MODEL 8010

1 GHz

DISPLAY HOLD FUNCTION
- **9 RED LED DIGITS & HIGH**
- **1 Hz RESOLUTION**
- **0.1 PPM 10 MHz TCXO TIME BASE**

ACCESSORIES
- **6 TA-106 Telescope Anti with Right Angle SNC**
- **$9.95**
- **PF-100 Probe, 50 ohm, TX**
- **$13.95**
- **PF-101 Probe, LeCroy**
- **$16.95**
- **PF-102 Probe, Hi-Z**
- **$16.95**

CIRCLE 15 ON FREE INFORMATION CARD

ORDER FACTORY DIRECT • CALL TOLL FREE

Optoelectronics inc

5821 N.E. 14th Avenue, Fort Lauderdale, Florida 33334

1-800-327-5912

FROM FLORIDA (305) 771-2051/2

TERMS: Orders to U.S. and Canada, add 5% for shipping, handling and insurance to a maximum of $10.00. All other orders add 10%. C.O.D. collection fee $1.00. Orders under $15.00 add $1.00 handling. Regular checks must clear before order is shipped. Florida residents add 4% sales tax.
New Portable Digital Capacitance Meter

MODEL 820

- Measures capacitance from 0.1 pF to 1 Fard
- Resolves to 0.1 pF
- 10 ranges for accuracy and resolution
- Digital easy-to-read LED display
- 0.5% accuracy
- Special lead insertion jacks or banana jacks
- Fuse protected
- Uses either rechargeable or disposable batteries
- Overrange indication

Call For Our Price

DATA PRECISION

Model 938

0.1%, 3½-Digit, LCD DIGITAL CAPACITANCE METER

- Wide ranging — from 199.9 pF full scale (0.1 pF resolution) up to 1999 pF full scale, in eight ranges, virtually every capacitance you'll ever need to measure.
- Fast and easy to use — Direct reading push button ranges, just plug in and read.
- Exceptionally accurate — Provides ±0.1% basic accuracy.
- Tough and compact — Built to take rough usage without loss of satisfactory accuracy. Fits and goes anywhere; takes very little bench space; always handy for quick capacitance checkout, matching, calibration and tuning.
- Portable — Palm-sized, lightweight, operates up to approximately 200 hours on a single 9V alkaline battery.
- Easy reading — Big, clear high contrast 3½-digit LCD display, full 0.5" high readable anywhere.
- Value packed — Outstanding measurement capability and dependability. Outperforms DC time constant meters, and even bridges costing 2 to 5 times as much.
- Reliable — Warranty for 2 full years.

$169

HICKOK

LX304 DIGITAL MULTIMETER

FAST, EASY, ONE HAND OPERATION

AVAILABLE NOW $89.95

New Low Distortion Function Generator

MODEL 3010

- Generates sine, square and triangle waveforms
- Variable amplitude and fixed TTL square-wave outputs
- 0.1 Hz to 1 MHz in six ranges
- Push button range and function selection
- Typical sine wave distortion under 0.5% from 0.1 Hz to 100 kHz
- Variable DC offset for engineering applications
- VCO external input for sweep-frequency tests

Call For Our Price

New Sweep/Function Generator

MODEL 3020

- Four instruments in one package — sweep generator, function generator, pulse generator, tone/burst generator.
- Covers 0.02 Hz to 2 MHz.
- 1000:1 tuning range.
- Low-distortion, high-accuracy outputs.
- Three-step attenuator plus variable control.
- Internal linear and log sweeps.
- Tone/burst output is front panel or externally programmable.

Call For Our Price
Portable Oscilloscopes

MS-15
- Single Trace 15MHz
- Regular price $399
- **$299.95**

MS-215
- Dual Trace 15 MHz
- Regular price $465
- **$399.95**

MS-230
- Dual Trace 30MHz
- Regular price $598
- **$499.95**

MS-235
- Dual Trace 30MHz Portable

MS-238
- Dual Trace 30MHz

MS-239
- Dual Trace 30MHz

MS-240
- Dual Trace 30MHz

Super Special

Hickok 385X 500MHz Counter
- Regular price $499
- **Now $229.95**

Model LBO-100
- 30 MHz Dual Trace Scope with Delay Line
 - List Price $1100
 - **$879.95**

New and Limited Quantities

Keithley Model 130 Digital Multimeter

<table>
<thead>
<tr>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage 200mV, 2V, 20V, 200V, 1000V</td>
<td>0.5%</td>
</tr>
<tr>
<td>AC Voltage 200mV, 2V, 20V, 200V, 750V</td>
<td>1%</td>
</tr>
<tr>
<td>DC Current 2mA, 20mA, 200mA, 2000mA, 10A</td>
<td>2%</td>
</tr>
<tr>
<td>AC Current 2mA, 20mA, 200mA, 2000mA, 10A</td>
<td>3%</td>
</tr>
<tr>
<td>Resistance 200Ω, 2kΩ, 20kΩ, 200kΩ, 20MΩ</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

NEW
- $99

The Test Equipment Specialists

Toll Free Hot Line
800-223-0474

54 West 45th Street, New York, N.Y. 10036 212-687-2224
If you're in the market for a new state-of-the-art digital capacitor meter then you should take a serious look at the Global Specialties Corporation's model 3001 Capacitance Meter. It may be just the item you have been looking for. The model 3001, including the model 335 test cable, retails for $275. The model 334 production test fixture retails for $21.90. The model 333 tri-mode comparator retails for $295.

Heathkit/Thomas
Model TO-1860
Electronic Organ Kit

SOME COMPUTERNIKS LIKE TO MAKE ELECTRONIC music the hard way, by programming the pitch, duration, and timbre (and maybe more) for each note, which can take a lot of time, even for a little 16-bar tune.

If you're more interested in making music than in programming it, there's an easier way. You can build the Heathkit/Thomas TO-1860 electronic organ. Before you say an organ is too hard to play, what with two keyboards, pedals, and all those controls, consider this: the TO-1860 uses a microprocessor to automate just about all the tricky stuff, so that you can concentrate on just making music.

Microprocessor controlled

In this kit version of the Thomas Organ Company's Troubadour model, a microprocessor controls the inputs from the keyboards, pedals, and pushbutton switches. Two ROM IC's store the percussion rhythms and some fancy accompaniment patterns. The microprocessor performs quite a variety of jobs, including sounding only one pedal note at a time by programming for low-note preference, generating the lower octaves from the 12 top-octave frequencies, and controlling the rhythm ROM's. It also controls the accompaniment features by putting them on multiplexed lines, and then using a 1-MHz clock to help pick out the right signals at the right time, so that the keyboard notes, pedal notes, and the special features all sound only when they're supposed to.

Even if you can't read music

For people who can't read music, the organ provides a combination of color-coded keys and lettered keys, that are illuminated from underneath by fluorescent lamps when you push the Color-Glo switch.

Several books of music are provided, in which the color-coded music is written so that if you can already read notes, you play it that way, and if you can't, then you look at the letter printed inside each note in the melody, and play it on the matching key of the top keyboard.

The music staff behind the notes is colored to show which of three chords you should play on the lower keyboard. Colored plastic chips underneath the keys are lit up, showing which keys make up which chords.

Once you learn how to play the keys according to letters and colors, you can try the pedals. You need only three to start with, and they're also color-coded.

Microprocessor Does The Work

To do anything fancier than described so far would be difficult for a beginner. But the TO-1860 contains a microprocessor that automates most of the difficult keyboard fingerings and pedal-playing, such as walking bass, strum, arpeggios, etc.

By depressing one of the FEATURES buttons above the keyboard, the microprocessor does the hard work letting you play some very fancy music with only two fingers and a toe. Some of the features even play the pedal note for you.

The CHORD MEMORY feature will play, for instance, a C-chord when you press the C key in the special octave on the lower keyboard. At the same time, the corresponding pedal note for that chord is played, without your toe touching a pedal.
Rhythm features

Nine pre-programmed drum-rhythm patterns, ranging from waltz to rock, are controlled by switches. The FANCY FINGERS switch adds a pre-programmed accompaniment that’s different for each of the nine rhythms. You can use that as an accompaniment to your one-finger melody, instead of the chord memory.

Four ACCOMPANIMENT PRESET switches provide unique voices (piano, guitar, banjo, harp) that play in rhythm along with whatever drum rhythm has been switched on.

The automatic STRUM feature will strum whatever particular notes you hold down with your left hand, within that special lower-manual octave.

A switch on the volume-control pedal permits playing arpeggios, which will sound harp-like.

Inside the organ

A master oscillator drives an IC called the top-octave synthesizer that divides the top frequency in order to generate the twelve notes of the top octave.

The two LSI rhythm IC’s are ROM’s that contain bit patterns for the nine rhythms, walking bass and fancy-fingers coding.

The microprocessor turns the manual and pedal notes, and the various features, on and off at the right times.

The microprocessor IC, designed by Thomas Organ Co. and custom-made by AMI, is proprietary.

Building the organ

Construction of the Heathkit/Thomas organ is greatly simplified by virtue of the fact that the nine major circuit boards have already been prewired and tested for you. The organ cabinet is fully assembled, the wiring harnesses are precut and color-coded, and several switch units are preassembled.

So what do you build? You assemble the pedals and the switches they activate, the fluorescent-light circuits, the stereo amplifier, and the two keyboards. You install all of them in the cabinet, along with the nine preassembled boards and switch units, the two speakers, and the reverb unit.

Once you get the organ working, you can switch off the loudspeakers and use headphones, if you’re a beginner, or are bashful, or play late at night.

Stereo input/output jacks are provided for recording your music, or for playing a duet with previously-recorded tapes.

The three music books that come with the organ show you 36 combinations of the ten solo and five accompaniment voices. Many are quite striking, such as Huge Theater Organ, Hollow Liquid Tibia, Calliope, and Honky Tonk Piano.

You can play the Heathkit/Thomas organ with just the two keyboards, the pedals, and the 15 voice stops. But the fun really begins when you let the microprocessor and the ROM circuits help with making fancier music, by adding a rhythm accompaniment and a walking bass, or playing single-finger chords, or the strum, or the arpeggio.

You’ll need months to discover all the combinations of voices and features that are possible with this organ, which is even more of a bargain now at the new price: $1495; originally it was $1750. Write to: Heath Company, Benton Harbor, MI 49022.

RCA remanufactured modules are as good as new, or even better.

You can be sure you’re using a product of the highest quality when you install RCA remanufactured modules.

Each dud module returned to RCA is critically inspected. Those that don’t meet factory standards for remanufacturing are scrapped. Accepted units are then cleaned and repaired. If any engineering improvements have been made in the module design, they are incorporated, where feasible, to make sure the module meets or exceeds original specifications for performance and reliability.

Included in RCA’s rigid remanufacturing process are all IF and chroma sweep alignment adjustments, and setting of all circuitboard pots. Other tests include extreme temperature cycling of all modules, and vibration testing of selected types to disclose intermittent problems.

Finally, the modules are sample-tested by RCA Quality Control Engineering. If only a single module fails to meet the original manufacturing specifications for performance, the entire lot is rejected.

In many cases, an RCA module can replace one or more earlier versions because it is designed to be compatible in older applications. This RCA design-improvement policy minimizes the number of types you need for servicing, reduces the amount of your investment, and improves instrument performance. The remanufactured module shown here, for example, can be used in place of five different modules.

RCA’s remanufacturing process assures you of the most dependable replacement modules you can buy. You can be sure they are as good as new — or even better.

Lafayette BCR-101 General Coverage Receiver

RECENTLY, A LARGE SAMPLING OF MODESTLY priced general-coverage communications receivers has been marketed. Most of those receivers have been in the $300-$700 range. Now, Lafayette (111 Jericho Turnpike, Syosset, NY 11791) offers a general-coverage receiver for only $249.99. Can it compete? Let’s take a look.

The model BCR-101 tunes from 170-400 kHz, and 0.53-30 MHz (with some extension to about 31 MHz). It does not feature a digital-frequency readout as do the more expensive units, but it does have an accurately calibrated bandspread dial.

The main frequency display is on a printed drum. Calibration points are marked every 500 kHz, with the bandspread dial filling in every 5 kHz.

The receiver may be powered directly from 120 VAC, or by an external 12-volt battery supply (specified as 13.8 volts for mobile

JUNE 1960
EQUIPMENT REPORTS
continued from page 39

installations). Current drain is less than 500 milliamps on DC.

The superheterodyne circuitry is double conversion above 3.5 MHz (with IF's of 2.15 MHz and 455 kHz), and shortwave sensitivity is better than 1 microvolt.

Switchable selectivity may be adjusted for 6-dB down at either 8 kHz or 3 kHz. The audio output is 2 watts into 8 ohms, rated at 10% harmonic distortion at full output.

Image-rejection specifications look unusually good for a low-cost radio: 50-70 dB down on all ranges. Our on-the-air tests confirmed the low image response.

The BCR-101 is unusually compact. Measuring 12 X 7 X 9½-inches, the receiver weighs 13 pounds.

A dual-50/500 kHz crystal calibrator is a welcome feature. It permits accurate tuning on all ranges, with its harmonics detectable well through the highest tuning range of the receiver. We found the absolute calibrator frequencies to be slightly off, but an internal alignment of the calibrator could easily correct that problem.

The beat-frequency oscillator is continuously adjustable between upper and lower sidebands to help optimize signal reception. A noise-blanker circuit is provided for electrically-noisy environments.

A separate RF GAIN control permits the user to reduce gain for reception of signals that might cause overloading. A tracking control is used to peak the RF sensitivity of the receiver on each range.

Front-panel jacks are provided for tape recording and playback, and headphones or external speaker. The BCR-101 contains a husky 5 X 2-inch oval speaker.

Rear-connection are provided for external battery power, external antenna, oscillator output for direct frequency-counter measurement, and tape input for playback.

Our tests

Although there is a strong tendency for manufacturers to label low-cost receivers "communications" receivers, they are not; they are strictly for non-demanding hobby listening. If I were in a remote outpost somewhere, and my survival depended upon communications, I would not want to depend on a low-cost general-coverage receiver. That is not to say that the BCR-101 is incapable of reasonably good performance. It gives an excellent accounting of itself—when it's viewed in proper perspective.

The IF selectivity skirts are quite wide. There is hardly any rejection in adjacent frequency interference when switching to the Narrow mode. The noise blanker should work better. When adjusted as critically as possible, the reduction in electrical pulse noise is barely perceptible. True noise blankers are exceptionally effective against sharp-risetime pulse noise.

The calibrated bandspread dial is remarkably accurate. Although calibration points are provided every 5 kHz, it is possible to interpolate frequencies to within 2 kHz or better when the main tuning dial is accurately set. Unfortunately, the main tuning-drive mechanism is quite sloppy, with severe slippage and backlash. Critical adjustment is quite a chore.

The bandspread dial is much better, but is functional only above 3.5 MHz.

The BCR-101 has excellent sensitivity, certainly as good as anything else we have heard in the low-price range. Large-signal handling characteristics leave something to be desired, however. The receiver becomes completely unglued in the evening listening hours when the bands are really open. Sharper IF filters would certainly have helped here. Reducing the RF gain control is of some assistance.

Short-term frequency stability of the BCR-101 is quite good. After a short warmup period, CW and SSB signals are easily adjusted and very readable. Mechanical stability is excellent. It takes a substantial rap on the cabinet to wobble the dial setting.

The tracking control is essentially a trimmer for peaking the RF and mixer stages. Unlike a preselector, there is no possibility of peaking the control on an image frequency by mistake. When the control is peaked, it is on the proper range. We liked that feature.

The AGC is quite fast, resulting in severe pumping when the RF gain control is reduced during strong CW or SSB signal reception. Audio quality is excellent—voice tapered for communications reception.

A special comment on the low-frequency range. Even with a short antenna connected, we were able to receive an unusually large number of low-frequency stations. That certainly will be appreciated by the low-frequency DX'ers.

The operating manual is very comprehensive. It includes detailed circuit diagrams, PC layouts, parts locations, alignment and calibration steps, and user hints. It is an outstanding manual to accompany such a modestly-priced radio.
An Extraordinary Offer to introduce you to the benefits of Membership in ELECTRONICS BOOK CLUB

take 6 of these 24 unique electronics books (values to $103.70) for only $1.99 for ALL SIX

with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

May we send you your choice of 6 of these practical time-and-money-saving books as part of an unusual offer of a Trial Membership in Electronics Book Club?

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you through your own experience, that these very real advantages can be yours ... that it is possible to keep up with the literature published in your areas of interest, and to save substantially while doing so. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 6 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you are not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

CIRCLE 24 ON FREE INFORMATION CARD

Facts About Club Membership

- The introductory books of your choice carry publisher's retail prices of up to $103.70. They are yours for only $1.99 for all 6 (plus postage/handling) with your Trial Membership.
- You will receive the Club News, describing the current Selections, Alternates, and other books, every 4 weeks (12 a year).
- If you are on the Selection, do nothing; it will be sent to you automatically. If you do not wish to receive the Selection, or if you want to order one of the many Alternates offered, you simply give instructions on the reply card and return it to us by the date specified. This date allows you at least 10 days in which to return the book. If, because of late mail delivery, you do not have 10 days to do a decision and return the book, you may receive an unwanted Selection, you may return it at Club expense.
- To complete your Trial Membership, you need buy only four additional monthly Selections or Alternates during the next 12 months. You may cancel your Membership any time after you purchase these four books.
- All books--including the Introductory Offer--are fully returnable within 10 days if you're not completely satisfied.
- All books are offered at low Member prices; plus a small postage and handling charge.
- Continuing Members. If you continue after this Trial Membership, you will earn a Diamond Certificate for every book you purchase. These Certificates plus payment of the nominal sum of $1.99 will entitle you to a valuable Book Discount of your choice which you may choose from a list provided. Members.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 6 books circled below. I understand the cost of the books I have selected is only $1.99 for all 6, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months after which I may cancel my membership at any time.

800 1006 1050 1064 1066 1070 1077 1108 1111 1113 1136 1148 1160 1163 1167 1169 1178 1163 1164 1194 1199 1205 1212 1234

Name ___________________________ Phone ___________________________
Address __
City ________________ State _______ Zip ____________

(Valid for new members only. Foreign and Canada add 15%)

JUNE 1980
Catch the fastest C-meter under $200
...the autoranging 830

It's happened again. B&K-PRECISION was the first company to offer a lab-quality C-meter for under $150, now we're first with autoranging for under $200. The new Model 830 autoranging capacitance meter is fast, accurate and built with famous B&K-PRECISION dependability.

The 830 offers features that are tough to match at any price, such as 0.1 pF resolution, large 3½ digit LCD display and fuse protection against charged capacitors. Basic accuracy is 0.2%, much greater than the tolerance of most capacitors.

Ease of operation is another strong suit for the 830. On the production line, even untrained workers can be quickly instructed on proper operation, making the 830 ideal for component sorting and selection. If capacitors to be measured are limited to a narrow value range, the "range hold" capability of the 830 can freeze it onto one range—an added time saver. This feature, along with the fast reading time of the instrument, makes the 830 especially valuable for incoming inspection applications.

On the engineering bench, the 830 is an excellent means of pre-testing critical capacitors.

For applications suited to manual ranging, B&K-PRECISION offers the 820 at an even lower cost. In fact, for the cost of some autoranging units, you could almost purchase both the 820 and 830! The 820 also provides 0.1 pF resolution. With full 4-digit LED display, readings extend to 1 Farad.

With either B&K-PRECISION C-meter, you can measure unmarked capacitors... verify capacitor tolerance... measure cable capacitance... select and match capacitors for critical circuit applications... sample components for quality assurance... measure complex series-parallel capacitor networks... accurately set trimmer capacitors... check capacitance in switches and other components. Both instruments have front-panel lead insertion jacks for fast in-out testing.

Optional accessories for the 830 and 820 include a rechargeable battery pack, AC charger and carrying case. For more information, see your local distributor and see why B&K-PRECISION is now the leading supplier of digital capacitance meters.

CIRCLE 54 ON FREE INFORMATION CARD
A HISTORICAL LOOK AT TELEVISION

Television technology is progressing at a rapid rate—but the major advances were really made years ago.

KATHY GOFORTH

IN 1929, WHEN THE FIRST ISSUE OF Radio-Electronics—then Radio-Craft—took up the discussion of an infant technology called television, the consensus at the neighborhood tavern (where television would eventually find its first mass audience) was that communication had reached its zenith with radio. To the general public of 50 years ago, the idea of sending moving images through space seemed the impossible dream of over-optimistic engineers. Today Americans alone own as estimated 146 million television sets—more than the number of telephones, refrigerators, automobiles, or bath tubs. TV has moved from the impossible to the indispensable. A viewing audience, including some who once considered video communications as remote a notion as a spaceship to the moon, already looks back a full decade to the time when it watched, from the comfort of the living room sofa, that first human step on the moon.

But astonishing as television’s future is certain to be, its phenomenal success story already lies in the past—in the drama of its early development, the quantum leap from mechanical to electronic, and the metamorphosis from black-and-white to color. The subplots to the tale include global neglect through two world wars, a perpetual and frustrating lag between theory and workable hardware—a series of lively disputes over uniform standards, and an out-and-out battle between two early color systems.

The beginning

The story begins at that unidentified moment in the distant past when man first hatched the dream of extending human vision beyond the limitations of location. But television’s practical history begins only about 100 years ago, with the discovery of the early principles needed to make it possible. By 1929, milestones already included the 1873 discovery of the photoconductivity of selenium and the idea of scanning a Nipkow disc as it came to be called, would be used in one form or another in all workable television systems until the advent of electronic scanning.

As early as 1897 German inventor Karl Braun had devised the cathode-ray tube, and in 1907 Russian scientist Boris Rosing reproduced crude geometrical patterns using a cathode-ray television system with a form of mirror-drum scanning at the camera end. A year later, Scottish electrical engineer A.A. Campbell-Swinton outlined a method for television using a cathode-ray tube at both receiver and camera ends—in all essentials the basis for modern TV, but an idea too advanced to be put into practice in 1908. (In 1904 English physicist J.A. Fleming had contributed the two-electrode valve; in 1906 American inventor Lee deForest had provided the grid for amplification.)

Early television research came to an abrupt halt with the outbreak of World War I, and although full-time experimentation wasn’t resumed until the return of peacetime, by 1923 scientists in both the U.S. and England were at work on television systems using the Nipkow principle and the neon gas-discharge lamp, invented by D.M. Moore in the U.S. in 1917. In 1925 Charles F. Jenkins used such a system to broadcast silhouettes from his Washington, D.C. workshop, and in 1926 John Logie Baird in England transmitted moving pictures in halftones—scanned in only 30 lines, repeated about 10 times a second—to...
give what might be called the first demonstration of "true" television. Baird's system formed the basis of the experimental broadcasting that began in England in 1929. The post-war years also brought the landmark invention of the iconoscope by Vladimir K. Zworykin, a Russian scientist and recent immigrant to the U.S. The 1923 breakthrough put Campbell-Swinton's advanced theory into practice, giving the camera its "eye" and providing the final missing element needed for modern television. The crude but workable, partly-electronic TV system Zworykin developed that same year became the basis for the system used in 1939 for the first public demonstration of television, by RCA, at the New York World's Fair.

The '20s continued as a decade of enthusiastic research, and a variety of experimental television systems were demonstrated. The new technology left much to be desired, however, and even when experimental broadcasting began television made little headway toward public acceptance. Its audience remained limited to small numbers of engineers and a slowly expanding coterie of home kit-builders. The latter had a chance to become acquainted with terms such as "automatic synchronization" and "interlaced scanning" before the electron beam swept the whirligig disc into discard, bringing the early period of television's development to a close. By the early '30s' scientists had come to pin their hopes for improved pictures on the all-electronic systems and had turned their attention in that direction. TV's future mass audience still clustered contentedly about its radios, unimpressed by fuzzy pictures on tiny, inordinately expensive screens. And the more resolute of the home experimenters withdrew to their basements and garages to experiment with the new tubes.

Standards

It has also become apparent by this time that if television were to grow, broadcasters and set manufacturers would have to accept uniform standards. Engineers argued heatedly over what those standards should be, and just what form a national television system should take, and in 1933 hearings by the FCC began in the U.S. in an effort to establish the necessary guidelines. Meanwhile, scientists and engineers continued to chalk up contributions to the growing science: Philo T. Farnsworth's electronic scanning system improved pictures; electrical engineer Allen B. DuMont streamlined the workings of the cathode-ray tube; continuing research on the electronic systems, carried out in the U.S. mainly in RCA labs, soon increased the number of scanning lines to 343. German scientists, too, were active, especially in the development of high-vacuum cathode-ray tubes, and by 1935 a regular broadcasting service had begun in Germany. A team of researchers under Isaac Shoenberg at Electric Musical Industries (EMI) in Great Britain also produced a complete and practical system based on the Emitron camera tube, and the world's first public high-definition service was launched in London in 1936—in time to broadcast the coronation of George VI over a broad area. Its 405-line standard remained the basis of the British system for nearly three decades—until 1964, when it was superseded by the 625-line standard.

French engineers had begun work on a 1,000-line system, which eventually resulted in France's 819-line standard. Japan pressed TV research in hopes of telecasting the Olympic games from Tokyo in 1940, and in April, 1939, regular television service began in the U.S. with NBC's broadcast, emanating from a transmitter atop the Empire State Building, of the opening ceremonies of the World's Fair. President Franklin Roosevelt, on hand for the occasion, became the first President to be televised. Technological capability had narrowed the gap between theory and practice, enthusiasm was fired, and the rapid development of commercial television seemed assured. Four months later, Hitler's troops assaulted Poland, and declarations of war by England and France marked the beginning of World War II and the second hiatus for television research.

In the U.S., as in other countries, the need for military preparedness led to increasingly heavy demands on industrial research, engineering, and production facilities. By the time the Japanese attacked Pearl Harbor (December 1941) virtually all U.S. electronics facilities were devoted to military projects—radar, radio, special tubes, acoustical devices, and navigational systems. What television broadcasting remained began to serve the needs of civil defense, air-raid warden training, Red Cross instructions, and war bond sales.

Network television

But television's crucial momentum had been gained before the war, and peacetime returned the medium was poised for unprecedented expansion. Both NBC and CBS had developed surprisingly extensive schedules of programs for the several thousand sets in use before the U.S. joined the fighting in 1941. The first official network broadcast in the U.S. had come in February 1940, when a program from NBC in New York City was picked up and re-broadcast by General Electric's station in Schenectady, N.Y. At about the same time. Zenith Corp. had begun regular program service in Chicago. Parts of the 1940 Republican National Convention in Philadelphia had been televised after transmission to New York via coaxial cable, and films of the Democratic Convention in Chicago had been broadcast in New York.

Commercial television had begun officially in 1941, when both NBC and CBS were granted licenses on July 1. Standards for a commercial system had been worked out before the war by the National Television System Committee, and wartime engineering paid off in a harvest of technological advances: the image orthicon; more powerful transmitting equipment; improved picture-display techniques based on radar developments; more effective network relay techniques, and major advances in high-frequency techniques. Television celebrated the war's end and its own...
return to the commercial arena by broadcasting coverage of V-E Day and the Japanese surrender. An American public weary of wartime austerity, and a business world thrilled by a potential new advertising tool, both looked forward to television’s widespread use.

In 1946 NBC in New York linked up with Washington, D.C. by coaxial cable, creating the first real network, and RCA placed the first post-war TV sets on the market—the famed 630TS, television’s equivalent to the Model T Ford, and the nation’s first quantity-produced and marketed receiver, selling for $375. By midsummer, 1947, 12 broadcasting stations were in operation and a larger number under construction. The same year brought the premier of Kraft Television Theater—the first regularly scheduled network drama series and the first show blessed with sufficient financial backing to ensure consistently high quality productions. The big show of 1947, however, was the first televised World Series, viewed by an estimated 3.9 million people, the majority of them in local bars, where commercial television got its test run by many consumers.

By the following year, the vote was in. Americans had taken to the idea of going to the theater and the ball park via the easy chair, and television antennas sprang up like mushrooms on the roofs of homes across the nation. The number of receivers snapped up by an eager public jumped from 136,000 in 1947 to 800,000 in 1948. Television was accepted by the service technician, and test equipment appeared. The number of stations tossing images from batwing to dipole grew with an expanding web of networks: East Coast television cities were linked to Chicago, St. Louis, Pittsburgh, Buffalo, Cleveland, and Toledo, with microwave relays adding Detroit and Milwaukee to the circuit.

Innovations tumbled out of the labs and into the stores: “convenience” accessories such as the viewer-controlled zoom lens and the one-way mirror that made a turned-off television a decorator piece; the first portables—37 pounds light; more rugged antennas, designed to better withstand the rigors of rain, snow, and wind; directors and reflectors for more selective reception and to battle the increasing problem of interference from different stations.

Television’s expansion had surpassed even the most optimistic forecasts, outstripping even the phenomenal growth of the auto, moving picture, and radio industries.

Color television

As a result, the problem of one station’s signal interfering with another’s soon grew to such proportions that, in September of 1948, the FCC declared a freeze on the licensing of any new TV stations. There had to be time to study frequency allocations and to consider the problems posed by another major innovation that sat perched on the horizon: color. Like monochrome TV, color television has its roots in a number of early experiments and in the Nipkow disc—used in threes, in this case, one disc for each of the primary colors.

The first practical demonstrations of color came in 1928 when Baird used a system of two gas-discharge tubes as light source at the receiver, one of mercury vapor and helium for the green and blue colors and a neon tube for red, along with a set of discs, an early variety of the “color wheel.” In 1930, Ray D. Kell of General Electric patented a color-television system employing a double, spiral scanning disc and only two colors; and in 1931 German engineer Anrennon devised a color system using a 12-color filter disc in conjunction with a scanning disc. Experimental work on color continued in both Great Britain and the U.S. in the late 30’s, and similar sequential systems using rotating color filters in the cameras and receivers were demonstrated in both countries.

The drawbacks of the mechanical approach to color TV were that it required an increased rate of scanning to avoid color flicker and it was incompatible with existing black-and-white television. An all-electronic method proposed by others was compatible with black and white, but it was a much more difficult system than the mechanical one. In 1938, Georg Valensi of France pioneered the path to compatible color television when he patented a method enabling output from a single transmitter to be received by television sets with equipment for color and by ordinary black-and-white sets as well. His proposals were never precisely adopted in practice.

In the U.S. battle lines were drawn between variations of the two systems: CBS developed a mechanical system of whirling color wheels, synchronized at the receiver and camera ends. A transparent disc divided into three segments for the primary colors revolved before the camera, scanning the color elements of a picture and sending them to the receiver disc. The successive primaries flashed to the eye at the rate of 144 per second, and persistence of vision blended them into one. With the system’s excellent picture came a counterbalance of problems, including interlacing, flicker, and fringing. Even so, and even though it was incompatible with black-and-white sets, the mechanical system offered the most promise in terms of early commercial advantage. The alternate, all-electronic system developed by
RCA used three lenses and three electronic systems—in effect three cameras in one—to pick up the primary colors. A sampler in the receiver, synchronized with one in the transmitter, took short samples of the composite signal at the instants of red, green, and blue peaks, using three kinescopes whose phosphors glowed in the three primary colors.

But existing projection-tube displays, and a very complex direct-view display using three orthogonal picture tubes whose pictures were combined by dichroic mirrors, lacked the convincing evidence of practicality. In 1949, the FCC gave its approval to the mechanical color system, and RCA moved with full speed to develop the final basic element in the compatible system—a single tube capable of producing full color.

In 1950, the company startled the industry with a demonstration of the shadow-mask tricolor kinescope—the reward of the most intensive single research effort in electronic to that time. The color tube was essentially the same as the one now used throughout the world. After winning FCC approval, CBS had begun limited color broadcasting, but the mechanical color system was to be short-lived. Hit by a serious shortage of parts during the Korean conflict, the color wheel quietly whirled its way out of existence, to the relief of manufacturers and engineers alike (though a variety of the system was later used by Apollo astronauts to transmit their remarkable pictures of the moon and earth). In 1953 came the FCC approval of the refined RCA compatible color system; and the industry sat back to let RCA and its subsidiary NBC develop and promote color TV. [Ironically, CBS held the patent on the shadow mask and RCA had to pay royalties for 17 years.—Editor]. RCA produced the first compatible sets in March 1954, and NBC began to try out its major programs in color.

TV growth

Television had continued to weave its way inextricably into the fabric of American society. Audiences were electrified in 1951 by the televised Senate committee hearings on organized crime. In 1953 they watched TV’s first opera broadcast, the televised explosion of the first atomic bomb, and coverage of the presidential election campaign. September 1951 had brought completion of the link to the West Coast—a 3,000-mile network of 107 relay towers—and transcontinental television was now a fact. NBC’s coverage of the 1952 conventions in Chicago introduced the portable RF-connected camera and the first “crash truck,” a TV newsroom on wheels equipped with self-powered electronic and film cameras and its own darkroom. Cable television got its start in 1950 with the erecting of the first community antenna, in Lansford, PA.

With the imminent lifting of the FCC freeze on TV station construction, a handful of UHF stations demonstrated the technical possibilities—and limitations—of the UHF spectrum and the newly designed equipment to work in it. When the freeze ended in April 1952, with a document that supplemented the existing channels in the VHF band with 70 new channels in the UHF band, it began processing a backlog of 700 applica-

cations for new stations, granting 175 new licenses that year. Soon 377 stations were on the air, and by the middle of 1954 almost 90 percent of the country had television coverage.

The 50’s also brought continued improvements: the Vidicon camera; in 1953, development of a curved shadow-mask with phosphors deposited directly inside the face of the tube; in 1954 incorporation of internal pole pieces in the three electron guns of the color tube to permit each beam’s independent adjustment and an increase in deflection angle; also in 1954 the development of photographic deposition of the three color phosphors. In 1958, we had the replacing of the metal envelope of the color tube by a glass one, made possible by the advent of a new frit-glass seal by Corning Glass; and in 1956 the use of videotape and the first quadruplex (4-head) video-tape recorder. The 1960’s brought the incorporation of solid-state components in color TV, new phosphors to provide brighter colors, more color programming, and an increase in popularity for color TV. NBC was broadcasting 10 hours a week of color programs in 1963 (though CBS had still done little color programming and ABC virtually none), and color was becoming an important element in program costs and set sales. Experimental pay TV began on a UHF channel in Hartford, CT. At the 1964 political conventions in Atlantic City and San Francisco, new RF-connected portable cameras and control units used were much lighter than previous systems—the complete package weighing less than 50 pounds—and for the first time the camera’s microwave equipment operated in the 13-GHz band, eliminating most of the noise and interference that had plagued previous microwave-link cameras.

In 1965 color television reached the elite billion-dollar category as an industry. Hand-held minicams appear at the 1969 political conventions; and the Trinitron gun was developed, reducing aberrations with its three in-line electron beams from once source and single large-diameter lens. In 1969 came the shadow-mask tube with a black-matrix faceplate, reducing back-scattered light by 50 percent.

Today countries in every corner of the globe have established privately, publicly, or government-owned television service, and acceptance of the TV screen as man’s eye on the world around him is complete; the medium is destined to grow in countless and unexpected ways to accommodate the needs and satisfy the voracious curiosity of its inventors and viewers. Television has come of age, and as a maturing technology it will no doubt continue to astound and delight us.
A FEW YEARS AGO DURING A PERIOD OF excessive automobile charging-system breakdowns, I was forced to design a voltage regulator as a solution to the problem of too-frequent failures of the factory-supplied unit. My car, as are many of yours, was equipped with a solid-state module. The unit failed right after the car's warranty period expired. A replacement was purchased, for about $40.00, and installed. After a few months it also failed; again it was replaced. Again it failed after a relatively short time period.

Now, to even a thickhead like myself, it became obvious that a new approach to this problem was in order. I planned to keep the car for several years so I designed a voltage regulator that I felt would eliminate the problem in the car's electrical system. The system I designed and built is still operating without any problems. Questar later offered the unit as a kit, over one thousand units were sold, and only an occasional installation problem occurred.

Let me elaborate for a second. When the manufacturer is building an alternator and comes to the point of terminating the alternator leads for the field (rotor) and armature (stator), he is faced with three alternatives. First, ground one lead to the case and connect the other

FIG. 1—THE ALTERNATOR IN AUTOMOTIVE ELECTRICAL SYSTEMS may be one of three types. The grounded-field system (a) is the most common and is the type this electronic voltage regulator is designed for. However, the regulator circuit and PC board wiring can be modified to work with the the pulled-up field (b) or the floating-field alternator at c. The floating-field alternator is wired as a grounded-field type at c. It may also be wired as a pulled-up field type.
to a terminal block, thus a grounded field system (Fig. 1-a). Second (Fig. 1-b) connect one lead to the positive alternator output terminal and the other to a terminal block, a pulled-up field system. Third, he may simply bring both leads out (Fig. 1-c), hence floating field.

The floating-field configuration adds one terminal and for a manufacturer that could mean significant cost. The pulled-up field requires the routing of one wire to the alternator output terminal; a minor amount of extra wire is needed. The grounded-field unit is the easiest since the lead is simply attached to the case at any appropriate nearby point. Most charging systems use the grounded-field system.

I also chose a temperature coefficient that was optimized for my system, not necessarily the average. As the temperature varies in the engine compartment the temperature of the regulator will change. Thus, the bias levels shift. For this design, a current flow of 0.5 mA to 1.0 mA is required on the battery-sense input leg. The input resistors set a voltage level and the current level. The integrated circuit I used has three battery-sense inputs: the choice of the proper input along with two external resistors set the temperature coefficient. All inputs are provided on this new design.

My auto is driven in a desert climate and I chose a battery-voltage level best suited to this environment. Now for the fellow who lives in a cold area, a high-voltage would help his starting. Also, for the person who lives in an area that sees a fairly large-temperature fluctuation, the ability to change the battery voltage easily could be desirable.

This project is not just a modification of a three-year-old design: it is a new design which is superior to its predecessor. The new features are as described as above: 1) grounded-field operation, 2) selectable-temperature coefficient, and 3) adjustable voltage-regulation level. The previous features are also retained: 1) high reliability from a compact solid-state design, 2) over-voltage protection, 3) automatic shut-down if the battery-sense line should be broken, and 4) a superior replacement for electromechanical and modular voltage regulators.

About the Circuit

This circuit is actually quite simple and is a good one for beginners or those who do not wish to spend the time on more complex projects. It is designed around Motorola's MC3325 voltage regulator, IC shown in Fig. 2. However, the more advanced hobbyist will also find the completed circuit very useful. I also use the unit in a home emergency-lighting system and as a battery back-up for my home computer.

The main application is still your automobile's charging system. The circuit as shown in Fig. 3 contains one IC, three transistors, two capacitors, a trimmer resistor, and a handful of resistors.

The IC, a Motorola MC3325 automotive voltage regulator (Fig. 2), has three battery-sense inputs (pins 5, 6, and 7) that select a tap in the diode/Zener string. The temperature-coefficient of the battery-voltage sense terminal is determined by the number of diodes used in the diode string. An approximate temperature coefficient for a diode at 1.0 mA is -2.0 mV/°C. The temperature coefficient of Zener diode Z1 is about +3.0 mV/°C. If you count from ground and sum these values a total temperature coefficient can be obtained; we have -2.0 mV for Q4 and Q5, +3.0 mV for Z1, -8.0 mV for D5 through D8, and an additional -2.0 mV each for diodes D9 and D10 when used. Thus the temperature coefficient will be between -9.0 mV/°C and -13 mV/°C.
FIG. 4—FOIL PATTERN for the regulator printed circuit. The finished board measures 3-1/8 by 2-1/16 inches.

FIG. 5—PARTS PLACEMENT GUIDE for the voltage regulator. Note that the jumper between R7 and R9 is used only when the circuit is used with a grounded-field alternator. A jumper must be installed between point “A” and point “B”, “C”, or “D”, depending on the desired temperature coefficient.

FIG. 6—THE CASE AND HEATSINK can be fabricated from easily worked tinplate or other sheetmetal. The heatsink transfers the heat generated by the power transistor to the surface of the metal case.

The complete schematic of the voltage regulator is shown in Fig. 3. Resistor R1, connected between pin 8 and ground, sets the current through the diode string between 0.5 mA and 1.0 mA. The value of R1 is directly proportional to the temperature coefficient. As the value of R1 decreases the effective temperature coefficient will decrease. The total value of the trimmer R8 and resistor R5 will determine the regulation level. Resistor R5 establishes the minimum voltage, while the maximum value of trimmer R8 plus the value of resistor R5 determines the maximum regulation voltage. The regulation voltage can be calculated from the following equation:

\[V_{\text{reg}} = \left(\frac{1}{R_1} \right) \left(\frac{R_5 + R_8}{R_1} \right) \left(\frac{R_5 + R_8}{5000} \right) \]

where \(n \) is the number of diodes in the string, is between 4 and 6 (4 ≤ n ≤ 6). Resistor R4 limits the current in case of an open battery-sense input lead. Resistor R3 is a current-limiting resistor connected between the alternator output and pin 3 of the IC. It is used along with resistor R6 to set the maximum overvoltage. The voltage at pin 3 will be about 7.5 volts, as set by an internal Zener diode. During maximum overvoltage, the current supplied to pin 3 must be between 2.0 mA and 6.0 mA; the value of R3 was chosen to insure the required current level.

Resistor R6, in conjunction with R3, sets the maximum overvoltage level. Not only does R3 set the current level for pin 3 but resistors R3 and R6 form a voltage divider used to detect an overvoltage condition. Resistor R2 determines the output-drive current of the output stage of the IC. The value chosen must provide enough current to drive the Darlington-pair (Q1—Q2) when the alternator output is at its maximum level. The Darlington-pair is formed from two NPN transistors; its function is twofold. First, it provides the required drive current to the final Darlington-type switch (Q3) and second it acts as a phase inverter. Feedback compensation is introduced via resistor R7 and
capacitor C2. Capacitor C1 provides feedback from the output stage pin 2 back to the input pin 9; the total feedback is the difference of the two feedbacks' voltages. Notice that the two feedbacks are out of phase—that is, one has been inverted—thus one subtracts from the other.

The difference is applied to the base of the diode string (pin 9) and to the input of the final amplifier. This corrects for any difference between the two signals. Resistor R9 is the load for the phase inverter. The saturation current of Q1 and Q2 is 6.3 ma; 3.3 ma flows through R9. Thus 3 ma must flow from the base of the switch Q3 through R10 and into the collectors of Q1 and Q2. Of course R10 is used to set this current level. The final Darlington-configured transistor switch, Q3, is used to supply current to the alternator's field. Diode D1 is a flyback diode used as an energy return in order to prevent damage to Q3 when the inductive field load is switched on and off. In case you have not guessed, this is a switching regulator. (For more information on this type of circuit see my article "All About Switching Power Supplies" in the June and July 1979 issues of Radio-Electronics.)

Construction

Since the automotive environment is quite harsh—high temperature differentials, high mechanical vibrations, and corrosive chemicals—the packaging and construction are less flexible than with most other projects. It is recommended that a printed-circuit board be used. Figure 4 provides the foil pattern for a typical PC-board layout. You may use the pattern or lay out your own board. If you wish to obtain a pre-etched and drilled PC board, Questar Engineering Company is selling it. They will also supply individual major components, or a complete kit.

As to the components required: The IC and PNP transistor, to my knowledge, may be obtained by the hobbyist only from Questar; all other components are quite common. Lay all components out on your work surface and compare them, item by item, to the parts list. If any component is missing or of a radically different value than specified, do not proceed until that situation has been corrected.

Using the parts-placement guide in Fig. 5, install the resistors, capacitors, and the trimmer. Inspect those components for proper location and solder them into place using a 40-watt iron with rosin-core solder only.

Now install a jumper for the temperature coefficient you have chosen. The choice is based on your auto environment at the point where you install the regulator. In most cases, that will be determined by trial and error—my auto installation worked best with the midpoint jumper (between R5 and pin 6).

Next install the diode, transistors, and the IC. Orientation is important for those components! Because of the environment an integrated circuit socket is not recommended. Set the pot to midposition—about 14 volts. Temporarily wire the circuit to your car. First, verify it is operating normally: second, convince yourself that you have chosen the correct temperature coefficient. If you haven't, you can change the jumper position appropriately. Vary the pot setting and observe that the regulation level will change. Remember, if you decrease the voltage setting it will take awhile for your battery to discharge to the new level. After you have completed that step remove the circuit and install a set of permanent wires about six or eight inches long.

continued on page 85
Synthesized Function Generator

A function generator is one of the most useful pieces of equipment you can own. This synthesized unit offers professional performance at a reasonable price.

THE FUNCTION GENERATOR IS A RELATIVELY RECENT PIECE OF EQUIPMENT (SINCE THE EARLY 1960'S) AND HAS FOUND ITS WAY TO THE AVERAGE HOBBYIST'S WORKBENCH. THESE DEVICES ARE REALLY HANDY FOR CHECKING OUT AUDIO GEAR, SERVICING OTHER EQUIPMENT, AND JUST PLAIN EXPERIMENTING. BUT UNFORTUNATELY, PROGRESS SEEMS TO HAVE IGNORED THE FUNCTION GENERATOR. THE GENERATORS YOU SEE TODAY ARE GREAT, BUT ALL STILL HAVE CRUDELY CALIBRATED TUNING DIALS THAT ARE HARD TO READ, AND MOST GENERATORS HAVE SOME FREQUENCY DRIFT. THAT MAY BE ACCEPTABLE FOR MOST PURPOSES, BUT TRY TO WORK WITH THE NEW ACTIVE FILTERS, TONE DECODERS, AND PHASE-LOCKED LOOPS. IT'S TOUGH TO DO IF YOU DON'T HAVE GOOD CONTROL OVER THE FUNCTION GENERATOR'S FREQUENCY, WHICH CAN DRIFT OUT OF THE PASSBAND OF THESE DEVICES.

ENTER OUR SFG-OR SYNTHESIZED FUNCTION GENERATOR PROJECT. THIS DEVICE IS A RADICAL DEPARTURE FROM CONVENTIONAL FUNCTION GENERATORS IN MANY IMPORTANT WAYS. AS YOU CAN SEE FROM THE PHOTOS, GONE IS THE SQUINTY ANALOG TUNING DIAL THAT YOU ALWAYS HAD TO SELECT WITH. AND GONE, TOO, IS THE DRIFT OF CONVENTIONAL FUNCTION GENERATORS THAT CAN CAUSE SO MUCH AGGRAVATION WHEN WORKING WITH SHARP FILTERS. AND THERE ARE OTHER INNOVATIONS, TOO, LIKE THE ABSENCE OF A RANGE SWITCH—THAT FEATURE IS DONE AUTOMATICALLY BY THE PANEL SWITCHES. AND THERE IS ALSO A SWITCHABLE DIGITAL OUTPUT OF DIFFERENT FREQUENCIES ON THE REAR PANEL.

R-E TESTS IT

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

THE SYNTHESIZED FUNCTION GENERATOR WAS TESTED IN OUR LABORATORY. AS EXPECTED, SIGNAL FREQUENCIES WERE TOTALLY ACCURATE, THANKS TO THE QUARTZ CRYSTAL FREQUENCY SYNTHESIS METHOD USED IN THE CIRCUITRY OF THE DEVICE. MAXIMUM PEAK-TO-PEAK SIGNAL AMPLITUDE OBSERVED WAS 15 VOLTS FOR THE SINEWAVE OUTPUT—SOMewhat LOWER FOR THE TRIANGULAR AND SQUAREWAVE OUTPUTS.

AS IS TRUE OF MOST OTHER FUNCTION GENERATORS, DISTORTION OF THE SINEWAVE OUTPUT WAS QUITE HIGH. OUR MEASURED RESULTS ARE AS FOLLOWS:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Harmonic Distortion</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>2.5%</td>
<td>1.3%</td>
</tr>
<tr>
<td>2 kHz</td>
<td>2.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>10 kHz</td>
<td>3.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>100 kHz</td>
<td>(Bandwidth limit of analyzer)</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Accordingly, we would not recommend the use of the sinewave output for distortion evaluations of audio equipment, but rather as a highly accurate source of desired audio (and super-audible) frequencies. The sinewave source may be used for measuring frequency response of audio equipment, however, since levels remain constant over the entire bandwidth of the instrument. The TTL compatible signal outputs on the rear of the unit were also checked and were found to be in accordance with the author's claims and suitable for driving external logic circuitry.

Waveform outputs from the SFG were photographed in a composite photo, as shown in Fig. 1. The frequency selected for this scope photo was approximately 2 kHz.
panel for use in running digital circuitry independent of the frequency the unit is set to. And that if it isn’t enough, this generator is crystal controlled.

You’ll like the performance features of the SFG, too. All you have to do is set the desired frequency with the front-panel thumbwheel switches, select the type of waveform, and adjust the output level. There’s a frequency vernier control that allows you to “fine tune” your frequency with minimal (if any) drift, too. (The photos show four thumbwheel switches. Only three are used in the SFG because output waveforms suffer when programmable output is pushed to 1 MHz.) The maximum output frequency is 100 kHz. There’s an error indicator that alerts you if for some reason your frequency is off.

Not to be forgotten are two other important requirements of a function generator—namely the output waveforms and output impedance. This project offers high-quality sine, square, and triangular waveforms, plus TTL level signals from 1 kHz to 1 MHz in decade steps. The output is 50 ohms as found in the highest quality function generators. It can swing up to a 10-volt peak-to-peak signal into a 50-ohm load. If you are looking for an advanced, high-quality function generator, you are bound to like this project!

The performance of the SFG rates well with other function generators. In addition to its superior frequency stability, it produces a low distortion (adjustable to 0.5% THD) sinewave. It also generates triangular and squarewave signals on a par with the better generators. As mentioned earlier, this project features a low-impedance output (50 ohms) that is ideal for driving low-impedance loads. In fact, you can drive a speaker if desired! And with a maximum output of 10 volts peak-to-peak into 50 ohms, there should still be plenty of signal delivered to that 4-ohm speaker.

Although this is an advanced project, the cost and construction features have been optimized to make it as easy as possible to own this instrument. The cost is lower than most less-sophisticated function generators, and far lower than the least expensive commercial equivalent. In fact, the nearest commercial unit costs about $800, and this project was built for 15% of that. Wouldn’t you like to have the SFG for about $60?

Inside the SFG
This project is built on two PC boards to make assembly and testing easier. Let’s begin with the digital board, whose schematic is shown in Fig. 1. The signal starts with crystal XTAL1, which generates a 1-MHz reference with the aid of inverter IC9-a and IC9-b. Since the frequency of this signal is too high for the rest of the SFG, it is divided down to 100 Hz by IC10 and IC11. Each of those IC’s contain a dual CMOS decade counter. In addition, the outputs of each decade are tapped off, buffered by IC9-c and IC9-d, and appear on a rear-panel switch and TTL OUTPUT jack J2. Those signals are handy for other digital testing. Meanwhile, the 100-Hz output of IC11 drives the reference input of IC12, a CMOS phase detector. That device compares the phase of two signals and gives an output if they are different. In this case, the original signal is the 100-Hz reference from IC11, and the unknown signal derives from IC15.

When the SFG has reached the frequency it is set to, the synthesizer is said to be in “lock”, and both input frequencies will be 100 Hz. Let’s look closer at IC13 to IC15. Those devices are the programmable dividers that accept inputs from the front panel switches (S1–S3) and divide the signal from the VCO by the same number. Thus, if the switches are set for 100, and the VCO generates a
FIG. 2 — THE ANALOG CIRCUITS are designed around IC3, the heart of the function generator. Output frequency is determined by a DC voltage from the digital section. Range switching is automatic.

PARTS LIST

Resistors ¼ watt, 5% unless otherwise noted
R1—R3—10,000 ohms
R4, R5, R12, R34, R36, R38—R48, R50—
100,000 ohms
R6, R8, R10, R29, R58—1000 ohms
R7, R9, R11—15,000 ohms
R13—2700 ohms
R14, R15, R20—2200 ohms
R16—500 ohm trimpot
R17—50,000 ohms, trimmer (Jlim-pak 840-
50K or equal)
R18—180 ohms
R19, R21—4700 ohms
R22—R24—10 ohms, ¼ watt
R25, R33—100 ohms
R26, R49, R51—15,000 ohms
R27—270 ohms
R28—22 megohms
R30—47 ohms
R31, R37—10,000 ohms
R32—500 ohm trimpot
R35, R35—47,000 ohms
R52—10,000 ohms, linear-taper pot with
SPST switch
R54—22,000 ohms
R55, R57—1800 ohms
R56—1000 ohms, linear-taper pot with
SPST switch

Capacitors
C1, C5, C17—47 µF, 6 volts, electrolytic,
PC mount
C2—0.001 µF, 100 volts, Mylar
C3, C6, C7—0.01 µF, 100 volts, Mylar
C4—0.1 µF, 50 volts, Mylar
C8, C9—1000 µF, 25 volts, electrolytic, PC mount
C10, C11—100 µF, 16 volts, electrolytic,
PC mount
C12—1 µF, 16 volts, tantalum
C13, C16—0.1 µF, 25 volts, ceramic disc
C14—10 pF mica
C15—39 pF mica
C18—0.047 µF, 100 volts, Mylar*
C19—47 µF, 6 volts, tantalum*
C20—4.7 µF, 6 volts, tantalum*
C21—0.068 µF, 100 volts, Mylar*
C22—47 pF ceramic disc
*Do not substitute.

Semiconductors
D1—D4—1N4004
D5—D10—1N4148
IC1—CA3240AE dual BIMOS op-amp
IC2—CD4066 quad analog switch
IC3—XR 2208 function generator (EXAR)
IC4—7805 or LM330T-5 +5-volt regulator
IC5—7905 or LM320T-5 +5-volt regulator
IC6—CA3100EM wideband op-amp
IC7—7812 or LM340T-12 +12-volt regulator
IC8—7912 or LM320-12 +12-volt regulator
IC9—CD4049 CMOS hex inverter
IC10, IC11—CD4518 CMOS dual BCD up-
counter
IC12—CD4046 CMOS Micropower phase-
locked loop
IC13—IC19—MM74C192 CMOS BCD up/
down counter
IC16, IC17—CD4002 dual 4-input NOR
IC18—CD4023 CMOS triple 3-input NAND
IC19—CD4011 CMOS quad 2-input NAND

Miscellaneous
XTAL1—crystal, 1 MHz, 32 pF parallel
mode, HC-6/U case
S1—S3—BCD thumbwheel switch (C&K
Type 332110000, Cherry Switch Type
T35-02A3 (Herbach & Rademan) or Un-
limax Type SF-21X3 or equal approxi-
mately $10.00 completely assembled.
S4, S5—SPST, on R52 and R56
S6—rotary switch, 1 pole, 5 positions
S7—rotary switch, 2 poles, 3 positions
I1—power transformer, 32 volts, CT, 1
amp
J1, J2—BNC connectors
F1—fuse, 0.5A with holder
IC sockets: two 8-pin, eight 16-pin, five 14-
pin
Heatsinks: two TO-220, two TO-5
PC boards and plans are available. If
desired, the plans can be ordered sepa-
ately or combined with a set of boards.
Here’s how to order: SFG-1 complete set,
$12.00 postpaid in U.S.A.
SFG-2 plans only, $5.00 postpaid in
U.S.A.
California residents add sales tax. For-
eign residents add $3.00 for shipping and
handling. No COD's or foreign currency
please. Order from Technico Services,
PO Box 20HC, Orangehurst, Fullerton, CA
92633

JUNE 1980

53
10-kHz signal, the output will, of course, be 100 Hz.

The output of IC15 drives the phase detector input, completing the programmable divider chain. Notice the 4-input NOR gates tied to IC13 to IC15? They serve as a priority decoder, and act as an automatic range switch, controlling the output frequency of the instrument. The outputs of NOR gates, IC16-a, IC16-b and IC17-a go low any time a non-zero number is selected by its corresponding switch. These signals then drive inverter IC17-b and gates IC18 and IC19, generating a logic output at terminals L, K and O, corresponding to the most significant digit selected. These outputs are used to select a range capacity on the analog board, which will be described shortly. Finally, back to IC12. The output of the phase detector drives a rather extensive R-C network. That network is a "loop filter" that smooths the pulses coming out of IC12 to a DC voltage in order to drive the VCO.

The reason for the complexity of the loop filter is that it not only filters, but controls the performance of the SFG. It determines how long it takes to lock on a new signal, and how stable the output signal will be. In short, it's important. A pot adjustment is provided for "damping" or for minimizing the jitter in the output as the loop tries to lock. If you are concerned about the difficulty of making this adjustment, don't worry—it takes only a moment to make with a triggered-sweep oscilloscope. That takes care of the SFG digital board.

The second half of the SFG is the analog board. Refer to the schematic in Fig. 2. Although there are fewer IC's on this board, the larger number of discrete components make it seem "busier" than the digital board. Actually, the circuitry is easy and straightforward enough to understand quickly. The DC control signal from the loop filter goes to the input (pin 3) of IC1-a, a CMOS op-amp. That device provides the high-input impedance required to minimize loading on the loop filter. You should know that any loading on the loop filter causes damping problems—jitter—making a CMOS device ideal for this application.

The second half of IC1 serves as an inverter with a gain of one. That converts the +1.5-3-volt input from the loop filter to a minus value of the same magnitude. This is necessary to operate the function generator IC3 properly. Also, another input is provided on pin 3 of IC1-a. It is used for a frequency vernier control, or for an external FM input.

Now on to IC3. This device is a standard function generator. It generates an especially high quality sine-square-triangle wave output. The sine and triangle outputs appear on pin 2, with the type of waveform selected by closing the switch between pot R16 and pin 13. This switch is part of S7, the SINETRIANGLE SQUARE SELECTOR. In the sine mode (switch closed), trimmer pot R16 adjusts the shape of the waveform for minimum distortion, while trimmer R17 sets the maximum output level. Both adjustments are easy to make with an oscilloscope.

Moving on, the squarewave output appears on pin 11. Note the pull-up resistors, R14 and R15. The voltage tapped off these resistors drives IC12 on the digital board. In order to set the output frequency, three different timing capacitors (C2, C3, C4) are used, allowing IC3 to cover 10 kHz to 100 kHz, 1 kHz to 10 kHz, and 100 Hz to 1 kHz, respectively. An analog switch (IC2) selects the appropriate capacitor. Since the switch is powered by ±5-volt supplies, some logic conversion is necessary. Transistors Q1 through Q3 provide that function, and interface the outputs from the priority decoder gates to the analog switch. Next, there's a power-amplifier circuit on board to boost the signal of the function generator IC to useful levels. That's the job of IC6, a 15-MHz op-amp, and transistors Q4 and Q5. Finally, the balance of the board consists of the power supply. Standard three-terminal regulators provide a stable source of ±12 volts and ±5 volts for the circuitry. That takes care of the analog board.

SUGGESTED PARTS SUPPLIERS
IC's:
Tri-Tek, Inc.
7808 N. 27th Ave.
Phoenix, AZ 85021
(602) 995-9352
Jameco Electronics
1021 Howard Ave.
San Carlos, CA 94070
(415) 592-8097
Misc. Parts:
Digi-Key Corp.
PO Box 677
Hiway 32 South
Thief River Falls, MN 56701
1-800-346-5144
T1:
B&F Enterprises
119 Foster St.
Peabody, MA 01911
Signal Transformer
500 Bayview Ave.
Inwood, NY 11686
(516) 239-7200
Thumbwheel switches:
C & K
15 Riverdale Ave.
Newton, MA 02158
(617) 964-6400
Jameco Electronics
1021 Howard Ave.
San Carlos, CA 94070
(415) 592-8097
Herbach & Rademan
401 E. Erie Ave.
Philadelphia, PA 19134

The cabinet houses a few minor bits of circuitry besides the power transformer, controls, and connectors. You'll be able to see those next month when you wire up the two boards. All that the circuitry consists of is a vernier pot and switch which supply a bias voltage to the op-amp on the analog board. The pot allows adjustment of the SFG to frequencies not selectable by the switches—a handy feature. Also, there are several resistors on the SINE-TRIANGLE SQUARE switch. Their purpose is to make the output levels of the different waveforms equal in peak-to-peak values, reducing the need to adjust the level control.

Construction
As you should know, this project consists of two PC boards and the case. So building the SFG will consist of stuffing each of the boards first, then connecting them together in the case. The work is easy if you know what you are doing and take your time to do the job.

This month we'll present the necessary information to get you started on the SFG, by assisting in the ordering of the parts and preparation of the circuit boards. Then next month we'll describe the actual construction. The first thing you can do on this project is to make or buy the PC boards. For your convenience, foil patterns have been provided in Figs. 3 and 4 so you can duplicate the boards. Or if desired, you can order the board set that is being made available to Radio-Electronics readers. Simply refer to the parts list for the name and address of the supplier. As a bonus,
SFG ANALOG

FIG. 3—FOIL PATTERN for the analog circuit board.

you’ll receive a copy of instruction plans, plus operating and troubleshooting information. At any rate, the choice is yours!

The next step is to obtain the parts. That should be a fairly easy job in that no special "synthesizer products" were used in the design. All IC’s are standard CMOS, with the exception of the bipolar function-generator IC. Some good parts sources are listed at the end of this article. Or, if you prefer, choose other suppliers from the classified section of this magazine, or raid your junkbox.

Now let’s look at some of the parts themselves, as a few might be confusing at the store. The function generator, IC3, is from EXAR and is often seen blister-packed in stores carrying the Jim-pak or CALECTRO product lines. So you might try your local dealer for it. Power transformer, T1, may throw you at first, but it is actually one of those units used in “drugstore” stereo receivers, so you may be able to scrounge one at home. If not, try Signal Transformer, 500 Bayview Ave., Inwood, NY 11696, for a usable unit. The secondary voltage should run from 30 to 36 volts center-tapped with no load, and be capable of at least a half amp.

The frequency-setting switches, SI–S3, are readily available in surplus; try a computer store. Be sure that you get one with BCD coded (e.g., C, 1, 2, 4 and 8 connections) outputs. There are plenty of those switches available from many sources if you just take time to look. As far as the rest of the parts are concerned, there should be no problems obtaining them. Just be sure to get quality devices and you’ll be all set.

Next month the construction of the SFG continues with the board stuffing and installation data. The project will be rounded out with the adjustment procedure, and a “how to use it” guide.
Connect An A/D

It's not enough simply to digitize analog information—it still has to be presented to the microprocessor to be useful. Here's how to interface the A/D converter and the CPU.

Analogue-to-digital (A/D) converters are used to convert analog electrical currents or voltage levels to representative digital words for use in a computer, digital instrument, or circuit containing a microprocessor. In certain control systems, for example, we might want to measure some physical parameter such as pressure, temperature, position, etc., using a transducer that produces an analog output. But the electronic instrument that processes the data produced by the transducer might be digital. The A/D converter fills the gap between the two systems.

Now that microprocessor IC's and microcomputer subassemblies are often used in control systems and other related applications, the use of A/D converters has become even more popular. Whether we are using a microprocessor as merely a small part of a larger instrument, or as a stand-alone computer that processes the data, an A/D converter is needed to supply the binary representations of the analog levels.

But no A/D converter is useful until it is interfaced to the microprocessor. That job may be as simple as plugging in an I/O (Input/Output) cable to a pre-existing input port or the back panel of a microcomputer. In other cases, such as when we design our own microprocessor-based projects, we will have to interface directly with the microprocessor IC and that requires a knowledge of the bus structure and microprocessor control signals.

How they work

Figure 1 shows the general block diagram for any A/D converter. There will be an input terminal for the analog signal, and a set of digital (binary) outputs. Many low-cost A/D's today are 8-bit devices and, therefore, have eight output lines, so are directly compatible with most of the common microprocessor IC's and ready-built microcomputers.

Other A/D converters, however, will have 10-, 12- or even 16-bit word lengths. Even those A/D's can be accommodated by the 8-bit machine, if the proper techniques are used.

Almost all A/D converters have two control lines, and those are used by the external circuitry or the computer. The control lines are called the start input and the end-of-conversion output, although they are sometimes given other designations. The A/D converter will remain dormant, doing nothing, until a pulse is applied to the start line. That pulse, which may sometimes be negative-going, initiates the conversion sequence. The end-of-conversion output produces a pulse that tells the external circuitry that the conversion process is finished, and that the data on the output lines is valid. In many A/D designs, the data on the output lines keeps changing and should be ignored until the EOC pulse is issued.

For synchronous operation, the start and EOC lines are separated. The external circuit will issue a start pulse and will then wait for an EOC pulse. That is the mode you would use when making only an occasional conversion. The idea is to have the microprocessor loop, or do something else, while the conversion process is taking place and then input the data when the EOC pulse is issued.

Asynchronous operation provides a continuous conversion by tying the EOC and start lines together. The EOC pulse from the last conversion cycle automatically becomes the start pulse of the present cycle. In most cases, when asynchronous operation is used, an external data latch is used to hold the last valid data between EOC pulses.

Also found on continuous-conversion asynchronous, A/D's is a status line. That line will tell the microprocessor that the data is valid, so that input operations only occur on valid data. In a typical case, the status line will go low for valid data, but snaps high (indicating invalid data) during the EOC pulse.

Interfacing to a microprocessor

As in many microprocessor-interfacing jobs, there are two approaches that we can take: I/O-based and memory-mapped. In the I/O-based systems we use the input and output instructions of the microprocessor, and that requires some form of I/O port. If we are using a ready-built microcomputer that has an unused I/O port, then the job may be as simple as connecting a cable to the port.

We may also have to interface with the bus lines inside of the computer, or directly to the microprocessor IC. In any event, we will have to provide some means to recognize the

Figure 1—Typical A/D converter provides 8-bit digital representation of analog input signal. Start and EOC lines control the converter's operation.

Figure 2—I/O based interface requires three I/O ports. One port handles the data while the other two control the A/D converter.
Converter

JOSEPH J. CARR

microprocessor control signals, and decode the port address.

In memory-mapped systems, on the other hand, we will

treat the output of the A/D converter as another location

in memory. It is the usual practice to assign the A/D to a loca-
tion in the upper 32K of the 64K memory range. That con-

vention is probably the result of few microcomputers having

a full 64K of memory. Some people feel that memory-mapped
design is superior to I/O-based schemes.

In Fig. 2 we see a I/O-based scheme that works, even

though it is costly in I/O ports. We require one entire eight-

bit port for the A/D output data, and one bit each of the input

and output sides of another port. In the example shown, we

have assigned bit-7 (MSB) of port 175_{10} (AF_{16}) as the control

signal. If bit-7 of the output side goes high, then the A/D

converter sees a start command and the conversion cycle is

initiated.

The EOC signal is applied to bit-7 of the input side of

the same port, 175_{10}. We have designated port 176_{10} (B0_{16}) as

the data-input port. The eight output lines from the A/D con-

verter are connected to this port.

The operation will go something like this: we output a high

on bit-7 of port 175. That begins the conversion sequence.

We will then begin to look at bit-7 of input port 175_{10} to see if

it goes high. The program will continue looping until bit-7

goes high. At that time, the program will input data from port

176_{10}.

A sample program is listed in Table 1. The program is

written in Z-80 code, but is easily adapted for 8080, 6502, and

6800 microprocessors.

In locations 0601 and 0602 we are loading the accumulator

with a value (in this case 80) that will force bit-7 high. This

value is output (locations 0603 and 0604 of the program) to

port 175 to become the start pulse required to initiate a con-

version sequence in the A/D. But we cannot immediately ex-

pect the input data to be valid; it takes from microseconds to

milliseconds for the A/D to make the conversion. Because of

that, we must next loop for awhile, testing for the EOC pulse

(locations 0605 to 0611). When the EOC pulse is received,

then we may input data from port 176_{10}. In some cases, a

RET statement will also be used at the end of this program,

allowing the program to be used as a subroutine in a larger

program.

A program that is slightly less wasteful of I/O ports would

use the same I/O port for all functions. An example of the

connection scheme needed for that is shown in Fig. 3. In this

case, we are *multiplexing* the port.

We could use this scheme when the A/D is a continuous

conversion type, and allow bit-7 to look for the status-line

condition. The program could loop, as in the previous case,

until it sees the status line go high. The data from the A/D

converter would be applied to a latch circuit that has tri-state

outputs, so as to not load the input port when two lines are

connected to it. Following the EOC pulse, the data would be

applied to the port, and the program should be in a condition

to accept it.

If you are building from "scratch" using a microprocessor

IC, or are willing to interface directly to the bus of a hobby

computer, then it is necessary to build your own input ports.

That would require an address-decoder circuit, so that the

circuit would know when the program called for the A/D

converter.

Address decoding

Two examples of I/O port address decoders are shown in

Figs. 4 and 5. Both of those circuits may be used for either

I/O or memory-address decoding.

The simplest circuit, shown in Fig. 4, uses a 7430 8-input

TTL NAND gate and an inverter. The 7430 output will re-

main high unless all eight input lines are high. Any one line

being low will keep the 7430 output high. We must, then,

conspire to make those inputs high only when the appropriate

address is present. Since the only address in which this con-

dition is true is FF_{16} (11111111 in binary), we will require one

or more inverters on the input lines. In the example given in

Fig. 2, we wanted the data on input port 175_{10}, which is AF

in hexadecimal and 10101111 in binary. Note that, in the binary

representation, two bits (B4 and B6) will be low when the

correct address is applied, and all others will be high. Those

bits are applied to the 7430 inputs through inverters, while

TABLE 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Comments</th>
<th>Contents</th>
<th>More Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 01</td>
<td>LD Add</td>
<td>SE</td>
<td>Load accumulator with 10000000</td>
</tr>
<tr>
<td>06 02</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>06 03</td>
<td>OUT</td>
<td>D3</td>
<td></td>
</tr>
<tr>
<td>06 04</td>
<td>IN</td>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>06 05</td>
<td>IN</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>06 06</td>
<td>AND</td>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>06 07</td>
<td>AND</td>
<td>E6</td>
<td>Test to find EOC pulse</td>
</tr>
<tr>
<td>06 08</td>
<td>JP Z</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>06 09</td>
<td></td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>06 10</td>
<td></td>
<td>06</td>
<td>Input A/D data from port 176</td>
</tr>
<tr>
<td>06 12</td>
<td>IN</td>
<td>DB</td>
<td>BO</td>
</tr>
</tbody>
</table>
The alternate approach is to use a pair of 7485 TTL four-bit magnitude comparator IC's (Fig. 5). Those TTL IC's will compare two four-bit words, and issue output signals that indicate whether they are equal, or whether one is greater than the other. They also have inputs so that two may be cascaded for eight (or higher) bit operation.

The address of the A/D is determined by eight selector switches, which in actual practice may be a DIP switch on the PC board. This address is compared with the word present on the lower byte of the 16-bit address bus (B0 - B7), reflecting my use of the Z-80 microprocessor. When the lower eight bits of the address bus contains the address of the selected port, then the output (pin 6 of IC2) goes high to form the select signal.

A sample circuit for connecting the A/D is shown in Fig. 6. The A/D selected will have latched outputs, and a status line that remains high as long as the data on the output latch of the A/D is valid. During the brief period when it is updating, the status line will drop low, prohibiting transfer of the latch contents onto the data bus via the buffer.

But before the transfer to the data bus can take place, three conditions must be satisfied: the IORQ must be low, the RD line must be low (both of those lines on the Z-80 are used to indicate an I/O Request (IORQ) and a Read (RD) operation), and the address select line must be high, indicating that the input operation called for by the IORQ and RD signals will take place on the A/D converter. When those criteria are met, then the data is transferred through the buffer onto the data bus.

What we have done above is to create a microprocessor input port that is local to the A/D converter, and indeed may be on the same printed circuit board as the A/D.

In some microcomputers, the I/O cards have data to and data from CPU lines, and both input and output strobe lines. In that case, less decoding is needed. All that we need is the address decoder and the proper strobe pulse.

Memory-mapping means that the A/D converter is seen by the CPU as a memory location. Since most microcomputers do not actually have any more than 32K-40K of the allowed 64K of RAM-ROM, we generally see the A/D converter assigned an address in the upper 32K region.

An address decoder is needed to determine when the CPU is calling for a memory-read operation. We must also use the memory-request (MREQ) line on the Z-80 and RD signals from the CPU to let the A/D know that a memory-request read has been selected.

Many microcomputers have a serial-input port (and S-100 owners can buy any of several serial I/O boards), but most A/D converters have parallel output-data lines. Unless you happen to use one of the successive approximation A/D converters, which provide a serial-data output line, then you must build a serial port for the A/D converter. The easiest way to do that job is to use one of the UART chips on the market. The transmitter side of the UART receives parallel 8-bit data from the A/D, formats it according to programmed commands, and then sends it out in serial form.

The receiver side of the UART does exactly the opposite! It will receive serial data sent by the transmitter, or sent over a serial-data communications line, and reassemble it in parallel form. We can use the transmitter section of the UART to convert the A/D parallel output to a serial output (see Digital Interfacing with an Analog World, by Joseph J. Carr, TAB Books, Blue Ridge Summit, PA 17214). We can also mount the UART IC on the same board with the A/D converter.

We may also lump the topic "interfacing digital panel meters" (DPM) under the heading of A/D interfacing. The DPM is, after all, a special form of A/D converter.

Before ordering a DPM for this type of application, be sure to inquire of the manufacturer just what output coding and format are used. Some serial outputs are not sequential, and that can foul up your decoding scheme. Also find out what control signals are available. You need at least an EOC terminal, and a start and/or latch output data terminals would be handy.
Part 2—Full construction details as well as a detailed description of the operating controls are given in the conclusion of this project.

LAST MONTH WE DISCUSSED THE DRUM and its theory of operation. Now, we'll go into construction. Remember that the four-channel instrument described and shown in the photos is composed of four identical drum-synthesizer modules. Although the four modules are basically identical, the summing circuit and summing amplifier are installed only on the board for channel four. The power-supply foil pattern and parts-placement diagram are in Figs. 3 and 4, respectively.

The PC board for the synthesizer modules is laid out with ease of assembly in mind. Its foil pattern is shown in Fig. 5 and parts-placement details are shown in Fig. 6 and the photo in Fig. 7. Note that everything except the six input and output jacks is mounted on the circuit board. Be sure to give the foil side of the board a cleaning before starting assembly.

Install all the passive components first, starting with the resistors, then capacitors and jumpers. Next, mount the control pots, slide switch, and the two LED's—installing them on the foil side of the board. Figure 8-a shows details of the mounting of those parts on the foil side of the board. The control pots are mounted by soldering their lugs to the pads on the PC board. The body of the pot goes into a hole that is an exact fit. The bottom of the pot is flush with the component side of the board. Pots R32 and R45 are exceptions since they have switches on them.

See Fig. 8-b. Fig. 9 shows the front panel of one of the modules.

When installing slide switch S3 (Fig. 8-c), you must insulate its case from the copper foil on the PC board. Thin foam tape is ideal for the job but ordinary black electrician's tape will do. It should be placed just under the switch case, along the sides of the holes that the switch lugs will pass through.

CAUTION! 110 VAC -VR GND +VR +18

Fig. 3—FOIL PATTERN for the power supply. The power transformer is mounted on the bottom of the case, in the left-rear corner next to the supply circuit board.
The LED's are inserted in holes in the front panel. The panel is 1/4-inch aluminum, so alignment can get a bit tricky. It helps to crimp the leads on each LED so that when you install the panel you can work the LED's up through the holes as the panel is being set down over the bushings of the pots.

Number 22 hookup wire and some good small-diameter coaxial cable is used in making the connections between the PC board and the jacks. Figure 10-a shows how the jacks are wired. Use bare wire to connect the ground lugs (lug 2) on each jack. Start with J1, forming a small hook and anchoring the wire in lug 2. Roughly measure the distance to lug 2 on J3 and cut a piece of plastic insulated sleeving (spaghetti) to that length. Slip the tubing over the wire and pass it through lug 2 on J3. Continue around through J6, J4, J2, and J5, insulating the common ground lead between all ground lugs. Solder the connections at J5 and J6 only.

Run single-conductor wires from indicated pads on the circuit board to the proper lugs on the jacks. You will have leads from points C, E, E', G, and U. Now, following Fig. 10-a, run lengths of coax cable from the circuit board to the jacks. Note that the shield braid always connects to a ground lug (lug 2). Wire S1, J7 and R62 as in Fig. 10-b.

When you get the four modules wired and installed in the cabinet, and wired up, turn on the power and carefully check the voltages. You'll have +9 volts at 20 mA, −9 volts at 20 mA and the POWER indicator LED should light. The TRIGGER indicator LED should flash when you strike the transducer.

Calibration
This step is a snap! Just set the controls up like this:

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR GAIN</td>
<td>approx. 3 or 4</td>
</tr>
<tr>
<td>DECAY TIME</td>
<td>approx. 3 or 4</td>
</tr>
<tr>
<td>PITCH MOD.</td>
<td>fully CCW (down)</td>
</tr>
<tr>
<td>INITIAL PITCH</td>
<td>approx. 3 or 4</td>
</tr>
<tr>
<td>WAVEFORM</td>
<td>sine (fully CCW past detent)</td>
</tr>
<tr>
<td>MIX</td>
<td>osc. (fully clockwise)</td>
</tr>
<tr>
<td>NOISE FILTER</td>
<td>fully CCW</td>
</tr>
<tr>
<td>SWEEP/MAN</td>
<td>manual</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Midway (adjust as required)</td>
</tr>
</tbody>
</table>

FIG. 5—PATTERN for one drum-synthesizer module. You need four modules to duplicate The Drum.

Now, strike The Drum transducer with a pencil or your finger. You should hear the pitch go down in frequency and die out in a short time.

Trigger The Drum several more times and play with the DECAY TIME control. Note that as the control is rotated farther clockwise, the downward sweep in pitch becomes slower and it takes longer for the tone to become inaudible. Leave the DECAY TIME control set at some intermediate value.

Rotate the MODULATION control from DOWN to UP. Notice that as the control is
rotated, the amount of downward pitch shift as The Drum sounds decays decreases until at some position of the control there is no pitch shift at all. Further clockwise rotation beyond this point should cause the pitch to shift up.

Set the internal trimmer R21 as follows: Rotate the MODULATION control fully CCW (DOWN), trigger the Drum and make a mental note of the pitch produced at the beginning of the downward sweep. Next turn the MODULATION control to fully CW (UP), and once again trigger The Drum. Adjust R21 so that the pitch produced at the end of the upper sweep closely matches the pitch at the beginning of the previous downward sweep. This is not a critical adjustment and may be set to taste.

Turn the INITIAL PITCH control in the clockwise direction and observe that the output pitch increases as the control is rotated. Return the control to a setting of 3 or 4.

Switch the WAVEFORM MIX control to the triangle position, just clockwise from the detent. When The Drum is triggered now, you should be able to hear a slight but noticeable difference in the timbre, as the output changes from a sinewave to the selected triangle. If you can't tell any difference, try turning the OUTPUT level control down some and turn your amplifier volume up to compensate. As the WAVEFORM MIX control is rotated in a clockwise direction from triangle to square wave, the timbre should become progressively less "mellow." Return the WAVEFORM MIX control to the sine position.

While triggering The Drum, begin rotating the NOISE/OSC MIX control in a counterclockwise direction toward the NOISE position and observe that progressively more noise is mixed into the output. Rotate the control fully CCW past the detent and note that there is only noise in the output and no oscillator signal is present at all.

With the NOISE/OSC MIX control set fully CCW, continue triggering The Drum and observe that rotating the NOISE FILTER control clockwise causes apparent pitch of the noise to increase.

With the NOISE/FILTER control set to its mid-range position, change the SWEEP/MAN switch to its SWEEP position and note that the apparent pitch of the noise now follows the drum envelope. Also observe that with the filter in the sweep mode, the FILTER control is acting as an initial frequency control which increases the "range" of the filter sweep as the control is rotated CW.

Using the drum

The DRUM has a number of front-panel controls (Fig. 9) and jacks (Fig. 10) on the back panel. While some of them follow conventional designs, others offer control features or interface capability not found on many other percussion synthesizers. The following is a list of those controls and connectors, and a brief description of their function:

SENSOR GAIN—This control sets the sensitivity of the 5700 to the triggering signal from the sensor. If it is set too high The Drum will trigger too easily, resulting in false triggering and loss of dynamic range. Too low a setting will make The Drum hard to trigger.

ENVELOPE DECAY TIME—This control sets the decay time. The decay time becomes longer as the control is rotated clockwise.

INITIAL PITCH—This control sets the initial pitch of the VCO, which constitutes The Drum pitch source. Clockwise rotation of the control increases the initial pitch.

MODULATION UP/DOWN—This control, when set fully counterclockwise (to DOWN) causes a downward sweep of the pitch source. Full clockwise rotation (to UP) makes the pitch sweep up after-triggering. Settings between those two extremes produce progressively less pitch modulation, and when the control is centered there should be no pitch modulation at all when The Drum is triggered.

WAVEFORM SELECT/MIX—This control

FIG. 8—HOW PARTS ARE POSITIONED on the synthesizer modules. The four RF resistors are installed only on the module for the fourth channel. The diagram also shows jumpers and connections to off-board components.
allows mixing of waveforms from the VCO. Turned fully counterclockwise, past the detent, the output signal will be a sinewave. Turning the knob in a clockwise direction just past the detent produces a triangle waveform. Continued clockwise rotation of the control begins to mix a squarewave into the output until at the extreme end of the rotation the signal is completely squarewave.

NOISE/OSCILLATOR MIX—This control provides mixing between the VCO signals and filtered white noise. Full clockwise rotation will produce VCO signal only. Full counterclockwise rotation past the detent will produce an output signal of noise only. Positions between these extremes will cause the output to be a mix of both pitched signal and noise.

Sweep/MAN—This switch allows the corner frequency of the filter associated with the noise source to either track the drum envelope (in the SWEEP position) or to be set to a fixed value (MAN position).

Noise Filter—This control sets the corner frequency of the filter when the SWEEP/MAN switch is in the MAN position and sets the sweep range of the filter when the switch is in the SWEEP position.

Status—There are two LED's on the Drum front panel. The LED labeled power should continuously light any time power is applied to the PC board. The trigger-indicating LED will wink briefly at each triggering of the synthesizer circuitry.

Output Level—Clockwise rotation increases, output signal level.

Back Panel Jacks

J1 (Input)—This jack is the input from which the Drum synthesizer derives dynamics information (when and how hard the drum was struck). The input can come from the drum transducer or from a microphone or other audio transducer. For computer interface, this input can come from a digital-to-analog converter.

J2 (EXT CV IN)—This jack is an external control voltage input. When a control voltage source is plugged into this jack the envelope-follower output will be disconnected from the VCO frequency controlling circuitry and the external source will take its place. Both UP/DOWN MOD. and initial PITCH controls will still be functional.

J3 (EXT SIG IN)—This jack is used to apply an external audio source directly to the Drum's VCA for percussive voicing. When used, this jack will disconnect the internal signals from the VCA, and only the external signal will be passed. Unless working with extraordinarily high external signal levels, the Waveform SELECT/MIX control should be kept in the sine position.

J4 (E.F./Trigger out)—This is a stereo jack that carries two output signals. On the ring or collar connector (lug 3) is the trigger output which goes high briefly each time the Drum is triggered and on the tip connector (lug 1) is a time-varying DC voltage which is the output of the A/R generator. There are numerous possible uses for those signals; for example, the envelope of one 5700 card can be routed to the EXT CV IN of a second card and the two outputs mixed to produce a dual-oscillator drum voice. To operate two drums from one sensor, take EF.OUT signal from point "X" and feed it to J1 of the second drum module.

In computer applications, the trigger out can be used to signal the processor that the drum has been struck while the e.f.out is connected to an analog-to-digital converter (such as the PAIA EK-7 Dual Digitizer) to provide dynamics information in a digital form.

J5 (Output)—This is the audio output jack. It is a closed-circuit jack that will pass the output signal to a summed output in a multi-channel system when no plug is inserted.

J6 (Cancel)—A switch plugged into this jack will allow for disabling the Drum when not required. This is particularly useful when using the synthesizer with an existing drum set. Connect the four cancel jacks in parallel and then you can control the four channels with one footswitch.

Some good friends played around with a rough four-channel prototype while the Drum was under development. A surprising number of options were discovered in relation to the mounting of the transducer ranging from gluing it to an externally-mounded muffler to the obvious (taping it to the bottom of the drum head). Actually, you can put the transducer anywhere you want to: on the inside of the drum shell or on the outside for that matter, or on a bottom head—if you have them. It doesn’t care! A convenient means of temporarily mounting the sensor while searching for just the right place is to use a foam tape with adhesive on both sides. The actual mounting details will depend on your personal preference. Before you decide on a particular location, move the sensor around a bit. The results may surprise you. When the best sensor location is found, the transducer can be permanently mounted there with Instant-Weld or a similar adhesive. It also works out quite nicely to mount it in a practice pad (also available from PAIA).

If you don’t have the transducer that’s available from PAIA, you can get by with a high-impedance microphone (though the Drum’s dynamic response may suffer).
Digital Audio
For The 1980’s

The introduction of Pulse Code Modulation (PCM) recording technology will soon give you truly “live” audio quality in your home. The equipment’s available now.

LEN FELDMAN
CONTRIBUTING HI-FI EDITOR

IT HAS BEEN OVER 100 YEARS SINCE THE phonograph record, as we know it, was first introduced by Edison in the form of a cylinder with tinfoil wrapped around it. Crude as that record was, its fundamental mode of operation was no different from that of the highest-fidelity disc recordings we listen to today. The 19th century cylinders and the high-quality vinyl long-playing records of 1980 all operate on analog principles.

The process begins with sounds reaching a microphone (or several microphones) that translates the sounds into minute, constantly varying voltages or currents. Those varying voltages or currents are then stored as program material in a variety of ways. The varying electrical signals might be applied to a magnetic-tape head that is then used to apply varying degrees of magnetization to magnetic particles imbedded or coated on a strip of tape. Alternatively, the electrical signal might be used to move a cutting stylus that creates grooves in a master recording. These grooves would have side-to-side or up-and-down wiggles in them that are a replica or analog of the original sound waves picked up by the microphone or microphones.

Both of those purely analog systems of sound storage have serious limitations. Even in their most advanced forms, tape and discs have limited dynamic range. Measured in dB of sound-pressure level, modern or classical orchestral music has a dynamic range of from 85 to 95 dB. Neither present-day discs nor tapes can store that wide dynamic range. Figure 1 illustrates the point. In the case of magnetic tape, if you try to record the loudest sounds of music at their correct relative amplitudes, you will exceed the magnetization capacity of the tape. Beyond a certain level the tape becomes saturated and louder signals will not cause linearly greater magnetization levels of the tape. The situation is similar to that of an amplifier that is driven into overload; the result is clipping and severe distortion.

Conversely, if you try to record the very softest musical passages they would be so low in amplitude that the magnetic pattern would be well below the residual tape hiss that is present on even the very finest tape. The same limitations apply to disc recordings. Loudest passages, if recorded as-is, would make the wiggles in the groove so great that one groove might cut through to the next. Soft musical passages would once more be buried—this time beneath the level of surface noise that is always present on a vinyl disc.

There are other problems peculiar to analog-recording methods. Wavering speed of tape or of a revolving disc leads to audible wow-and-flutter. Various kinds of distortion (particularly intermodulation and harmonic) are present during playback of either tapes or discs, often at levels that no high-fidelity enthusiast would ever tolerate in an amplifier, tuner, or receiver. When you think about it, it is quite remarkable that we have been able to store and reproduce music using analog techniques as well as we have. Still, for all of the advances made in the science of sound recording over the past century, analog recording leaves much to be desired.

Digital recording

Much has been written in the general press, as well as in technical journals, concerning PCM (Pulse Code Modulation) or digital recording. Often, journalists writing for the general press, in their excitement over the new digital-recording technique, have jumped to erroneous conclusions. There has been much talk, for example, about digital disc recordings. In fact, there is not a single digital disc recording that you could buy as of this writing. That’s not to imply that there never will be. Several systems are available for creating such all-digital disc recordings. But today, when someone speaks of a “digital” disc recording what they really mean is an analog disc recording that has been made from a master tape recording that was digitally recorded. In other words, digital recording, or PCM recording as it is often called, is a reality in the world of tape recording but is not yet a marketable commodity insofar as disc recordings are concerned.
How PCM recording works

Though many people consider it to be complicated, PCM is a relatively simple technology. Consider the audio waveform shown in Fig. 2. As is true of any other continuous waveform, this one can be broken up into instantaneous levels at specific moments in time. Five milliseconds after the start of this waveform, for example, its amplitude is approximately 9 on a vertical scale calibrated from 0 to 10. The table at the right of Fig. 2 shows how we might characterize the signal at every millisecond of time, using only numbers from 1 to 10 (no fractions allowed). With such time and amplitude constraints, we won’t get a very accurate representation of our original waveform expressed in numerical or digital form—only a rough approximation of it, as shown in Fig. 3. To get a more accurate waveform, we would have to change our approach in two ways. We would sample the original waveform much more often than every millisecond and we would break up the amplitude levels into far more than just ten increments.

For the moment, however, let’s presume that the accuracy obtained in Fig. 3 is good enough for our intended purpose. The next step would be to record the numbers that we have tabulated in some convenient way onto tape. The simplest way to do that is to convert those decimal-type numbers into binary numbers, which are made up of only 0’s and 1’s. The binary system lends itself very well to electronic use because a “0” can be represented by an “off” or no-voltage condition in a circuit while a “1” may be represented by an “on” or positive voltage condition. Similarly, in the case of a tape recording, “0’s” can be represented by no magnetization of the tape while “1’s” can be recorded as a fixed-amplitude pulse. If, during playback, the tape-head reads the presence of a pulse, that’s interpreted as the binary number “1”, while if a stretch of tape has no signal, that condition is interpreted as a binary “0”.

In the example cited, however, we only provided for ten distinct levels of amplitude and the distortion during playback would therefore be extremely high. Furthermore, it can be shown mathematically that with only a 4-bit system of encoding, maximum available dynamic range would be no greater than 24 dB—from loudest to softest reconstructed sound levels. For every increase of “1 bit” we can pick up another 6 dB of dynamic range, however, so that a 5-bit system would yield 30 dB, a 10-bit system would give up 60 dB (which is, incidentally, about the best we can do with conventional analog discs or tapes) while a 14-bit system would yield a dynamic range of 84 dB!

A 14-bit system will also provide up to 16,384 possible amplitude levels (2^14); all the way from 0000000000000000 to 1111111111111111. It is easy to understand how precise or refined we might be able to represent the waveform of Fig. 2, given that many amplitude levels in a 14-bit binary system. However, unless we sampled far more frequently than in the earlier example, our representation of the desired waveform would still be highly inaccurate. In any PCM or digital system, it is necessary to sample at least for the more familiar decimal numbers ranging from decimal 0 to decimal 10.

To express the numbers that correspond to our sampled amplitudes of Fig. 3 (1, 6, 7, 8, 9, 7 ...) we would select the equivalent binary notations: 0001, 0110, 0111, 1000, 1001 and 0111. To record that number-code series on tape, we would apply a series of pulse and no-pulse conditions as shown in Fig. 4. So long as the positive pulse is easily distinguished (during playback) from a no-pulse condition, we have a means of recovering the coded numbers. And, if we can recover the coded numbers we can also convert them back to the approximate waveform of Fig. 3 which is, in turn, an inaccurate replica of the musical waveform of Fig. 2 with which we started.

Several clear advantages result from such an approach to signal storage. Since the tape playback head now simply has to read pulse or no-pulse conditions, tape saturation or over-recording is no longer a factor. Residual tape hiss or noise is also excluded from the recording. That’s because the level of such noise is so low that it could not possibly be misinterpreted as a “pulse on” condition.

In the example cited, however, we only provided for ten distinct levels of amplitude and the distortion during playback would therefore be extremely high. Furthermore, it can be shown mathematically that with only a 4-bit system of encoding, maximum available dynamic range would be no greater than 24 dB—from loudest to softest reconstructed sound levels. For every increase of “1 bit” we can pick up another 6 dB of dynamic range, however, so that a 5-bit system would yield 30 dB, a 10-bit system would give up 60 dB (which is, incidentally, about the best we can do with conventional analog discs or tapes) while a 14-bit system would yield a dynamic range of 84 dB!

A 14-bit system will also provide up to 16,384 possible amplitude levels (2^14); all the way from 0000000000000000 to 1111111111111111. It is easy to understand how precise or refined we might be able to represent the waveform of Fig. 2, given that many amplitude levels in a 14-bit binary system. However, unless we sampled far more frequently than in the earlier example, our representation of the desired waveform would still be highly inaccurate. In any PCM or digital system, it is necessary to sample at least

![Graph](image)
FIG. 5—TOSHIBA MODEL PCM-MARK II is a signal processor that interfaces with a video cassette recorder to provide PCM recording.

FIG. 6—TYPICAL FREQUENCY RESPONSE of analog cassette deck shows increasing non-linear response at higher recording levels.

FIG. 7—FREQUENCY RESPONSE of Toshiba PCM recorder shows "ruler" flat response at all recording levels.

FIG. 8—PLAYBACK of low-frequency squarewave recorded on a high-quality open-reel tape deck.

FIG. 9—SQUAREWAVE RESPONSE of Toshiba's PCM recorder shows vastly improved playback of low-frequency squarewaves as compared to Fig. 8.

FIG. 10—EIAJ STANDARD places 168 bits on each horizontal line of the TV "picture" for recording on a video cassette recorder. The data block consists of 128 bits while the remaining 40 bits are used for the horizontal-sync pulse and the white-reference pulse.

Storing the digital information

Let's see what sort of storage capacity our tape recorder would have to have to handle this new type of PCM data. As we said, we must sample the signal being digitized 44,056 times per second. Each sample will contain 14 bits. That comes to 616,784 bits per second. But we are talking about a stereo system and, in a digital system such as this, rather than divide the tape into two tracks it is just as easy (and in fact more desirable) to interleave the digital information in a single continuous tape track—sampling first the left channel, then the right, etc. etc. That brings us up to 1,233,568 bits per second. And, as we shall see, that makes no allowance for any redundancy or error-correction code words that are found to be necessary in a PCM system.

Obviously, no present-day analog audio tape deck now used by audio enthusiasts could handle that kind of information density. Such recorders lack the bandwidth or frequency response that would be required. But there is one type of tape deck that can handle such bandwidths and it is one that is already found in more than one million homes in this country. You guessed it! It's the video cassette recorder, or VCR. Since these recorders must be able to record frequencies well up into the megahertz region, they constitute a natural and logical storage medium for PCM or digital audio. As the VCR market grows in this country and elsewhere, there will be more and more consumers who will own a tape transport system that is also capable of storing audio information in digital or PCM form. What those consumers would need, then, is not a complete PCM tape recorder, but rather a "black box" type of audio processor that, in the record mode, converts audio information to a standardized PCM format for application to a VCR's tape cassette and that, during playback, converts the millions upon millions of bits or pulse/no-pulse conditions read from the tape back into an analog signal. (Pioneer's recently-announced VP 1000 laser-optical videodisc player can presently handle, in addition to the video, two channels of analog audio information. The player has been designed, however, to accept a Pulse Code Modulation adaptor which will be offered as an option at some time in the future—Editor).

Many manufacturers have demonstrated prototypes of such PCM audio processors at various technical and consumer electronics conventions. Among them have been Sony, Mitsubishi, Toshiba, Technics by Panasonic, JVC, and Sanyo. I have personally had an opportunity to experiment in my lab with the prototype unit from Toshiba, shown in Fig. 5. Typically, the dynamic range of this, and most other standardized PCM units, is 85 dB. Frequency response for the entire record/playback cycle is ruler-flat, from DC to 20,000 Hz, ±1 dB. Harmonic distortion is less than 0.03% referred to maximum record level and wow-and-flutter is simply not measurable.

The statement concerning frequency response really fails to tell the complete story. In the case of ordinary analog cassette decks, for example, frequency response is normally quoted for a record level of −20 dB. That is done to avoid the high-frequency saturation problems inherent in tape recording at slow speeds. Figure 6 illustrates this point. Even with a high-quality analog tape deck, response at high levels of recording is increasingly non-linear at high frequencies.

Compare these results with those obtained and shown in Fig. 7, for which the prototype Toshiba PCM Mark II prototype was used. Results remain flat all the way up to 20,000 Hz, regardless of format. Continued on page 87

JUNE 1980 65
Numbers, numbers everywhere—and nobody seems to have any idea what they’re all about. After reading this, tune in and maybe you’ll come up with the answer.

TABLE 1—A BRIEF SAMPLING of the numbers stations.

<table>
<thead>
<tr>
<th>FREQUENCY (kHz)</th>
<th>TIME (UCT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3060</td>
<td>On the hour</td>
</tr>
<tr>
<td>3090</td>
<td>Quarter past the hour</td>
</tr>
<tr>
<td>6772</td>
<td>0615, 0700</td>
</tr>
<tr>
<td>6840</td>
<td>1025</td>
</tr>
<tr>
<td>10570, 14968</td>
<td>2225</td>
</tr>
</tbody>
</table>

TABLE 2—Some additional frequencies (kHz) recently reported by various listeners.

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Listener</th>
</tr>
</thead>
<tbody>
<tr>
<td>3178</td>
<td>7322</td>
</tr>
<tr>
<td>3435</td>
<td>7445</td>
</tr>
<tr>
<td>4670</td>
<td>5727</td>
</tr>
<tr>
<td>5775</td>
<td>7887</td>
</tr>
<tr>
<td>5812</td>
<td>9418</td>
</tr>
</tbody>
</table>

letter groups. Some listeners have even gone to the trouble to show a relationship between the number groups and the letter groups.

A former intelligence officer states that the Russian KGB—the secret police (formerly NKVD)—used CW five-letter Russian Cyrillic to broadcast to their posts in the USSR and elsewhere. The transmissions were in the 8-MHz region, but they identified themselves with legitimate call signs which were registered with the ITU (International Telecommunications Union). It is very unlikely that those are the stations that are being reported.

Let’s examine some of the hypothetical suggestions which have been offered.

World-bank transactions: Although visitors to Latin American countries have noticed large antennas on the tops of some of the banks, it would seem unlikely that international banking would operate via a clandestine network.

Such activities have never been reported among the myriad member countries, and the frequencies chosen for numbers transmissions would not support such a large geographical network. Keyboard teletype would be far more practical for such monetary transactions.

Coffee plantation price quotes: Although a rather far-out suggestion, it shouldn’t be dismissed without some consideration. Frequencies chosen for the broadcasts are usually in the lower part of the shortwave spectrum, and would favor propagation throughout Central and South America. About the only reaction that can be applied here is intuitive: It doesn’t seem likely.

Bolita scores: The Cuban lottery and Bolita are popular sports among Latins. Could this be an informational system providing such traffic to lottery bookmakers? Again, the answer must remain “Unlikely.” It is a little too obvious.

...Or, nothing at all? While that is a distinct possibility in a world in which some things don’t make any sense at all, there is considerable evidence that...
To Listen In

To effected.

alternate frequency apparently technical ported

admitted bungling.

a at finding mind to more easily prominent

Hurricane Frederick, First

HEATH MODEL SW-717 4-band receiver covers 550 kHz to 30 MHz.

would weigh against the hypothesis. First of all, such tactics would be aimed at our intelligence organizations. Over a period of some 20 years, even with admitted bungling, U.S. Intelligence would have been able to see through such a transparent diversionary tactic.

In fact, there have been several reported cases in which the message had technical difficulties, and frantic live broadcasts were made to ensure the success of the transmission. During Hurricane Frederick, one station was apparently knocked off the air, and an alternate frequency became active for a week, apparently until repairs could be effected.

How about spies?

Yes, how about that? Although the transmission could be cryptographic training sessions (as suggested by one prominent listener with a military background) such training could be provided more easily with cassette tapes. Of course, nothing beats practical, on-the-air experience!

It would seem that after 20 years, someone would have the presence of mind to suggest using radio-direction-finding techniques to home in on those "bogies." Their repeated schedules and long transmission times would make them ideal targets.

As a matter of fact, that has been done, and by an agency no less than our own Federal Communications Commission! One of the more classical broadcasters is the one heard on 3060 kHz at 15 minutes after the hour. Several RDF attempts have failed that one down as being in Havana, Cuba. That has been corroborated by another intelligence agency, and also by several private hobbyists.

But other listeners, all with excellent equipment and unquestionable qualifications, have found additional "fixes" for similar stations: San Juan, Puerto Rico; Portland, Oregon; Northern Virginia; the West Coast of Florida; even London, England!

To confuse things further, many languages are reported besides English and Spanish; they include Czechoslovakian, German, and English being read by someone with a heavy European accent.

Clearly, the operation is extensive—multinational. Are they all tied together? If they are, what would be a common interest between Havana and Northern Virginia? Could those be clandestine intelligence broadcasts to foreign agents? If so, who is foreign and in which country? The more we investigate those strange broadcasts, the more paranoid we are likely to become.

Taking the content of the transmissions at face value, we would probably conclude that they are using some sort of cryptographic means of encoding. What type of code is likely? Among the easiest to use is the "one time pad." In that system, a list of letters or numbers is chosen at random to replace actual characters in the text. The pad is used only once and discarded. A new pad is used for the next message.

Listeners who have been close to intelligence work say that the one-time pad is highly unlikely: There are too many similarities among the different messages that have been copied. Not only that, but when a suspected agent is caught with a one-time pad in his possession, that is prima facie evidence of his subversive activity!

More likely, the numbers messages constitute a checkboard grid or Polybius square (see Fig. 1). In that arrangement, a checkboard pattern of boxes is laid out, and all the necessary letters and numbers from the original text of the message are sprinkled through the grid. Each row is given a letter (or number) and so is each column. By calling out a pair of letters or numbers (called digraphs) we key out each of the hidden characters in the grid.

As to the real nature of the broadcasts and what the texts actually hold, we have no information. And if we had, we would not be allowed to reveal it. But we would enjoy hearing from anyone out there who thinks he may hold the key to those fascinating numbers stations!
Backyard Satellite—TV Reception

FACT OR FANTASY

Here are several important points to consider before you set up your own satellite-TV receiving station.

Despite the "FM Advantage," (capture effect) of satellite TV signals, a smaller than necessary antenna will only give you shadows. Just because you own a three-foot dish, that doesn't mean that a three-foot dish will work. Those neat Japanese systems you have heard about, selling for $500-1000, are for an experimental 12-GHz satellite. Don't look for that here before 1984, the proposed start date for COMSAT service.

Perhaps you've been thinking that one of these big dishes can be moved from one satellite to another, like rotating a fifteen-meter beam. Wrong again. Unless you buy a motorized version, very expensive, you'll have to go out in the backyard each time you want to change satellites. Count on using two people and taking at least 15-20 minutes each time. As winter rolls around here in New England, the thought loses appeal.

Don't forget something else about big parabolic reflectors: They act like big sails in a wind. For that reason you can't raise one very far off the ground without a substantial support system (concrete and cross-ties, or I-beam construction). This can even cause problems mounted on top of your apartment building, unless properly shielded from the wind.

Sharing with neighbors

I am frequently asked: "Can a bunch of us get together and buy a system?" The answer is yes, but . . . Of course you can receive satellite signals and pass them along, but then you are a cable-TV system in the eyes of the law, albeit a small one. You will need full-frequency coordination (to insure that a nearby terrestrial microwave link is not looking down your boresight), a license, and agreements with the program suppliers to pay subscription fees. Having done that, you will still only receive one channel at a time. This means that the person who has the receiver, controls what everyone else will watch. Just wait for the first 1 AM phone call asking you to switch transponders—but not offering to help.

To add more receivers, you must add a second Low Noise Amplifier, another feedline, power dividers, and another receiver for each additional transponder you wish to watch simultaneously.

How far away are your neighbors? If they are more than 200 feet away, then it is impractical—due to line losses—to send 4-GHz signals such a distance.

Bars and public rooms

Many of the entrepreneurs of this country have figured out that a satellite TV system is the perfect complement to projection television (wide-screen). Unfortunately, the movie channels won't let you buy the rights to show their stuff in public rooms. No Showtime, Star Channel, Galavision, Home Box Office, Home Theatre Network, or Take 2. But not all is lost. Obtaining a license is something that dealers and manufacturers do for their customers all the time. With FCC license in hand, there is still some wonderful programming to watch.

Here's what can be shown in a lounge: ESPN (24-hour sports), C-SPAN (the U.S. Congress), the three Christian Networks, Satellite Program Network, Modern Cable Programs, WOR (New York), WGN (Chicago), WTBS (Atlanta), and KTVU (San Francisco). That's a tremendous amount of sports . . . perfect for enjoying more beer. And you would be surprised at how interesting some of the other programming can be.

Out-of-this-world entertainment

There is no need to be scared away from satellite TV. But it is a mistake to overlook the factors which could cause you to stand by while thousands of dollars in electronics sits idle.

Satellite TV is great for country homes and places where there is no cable. The quantity of entertainment cannot presently be matched, anywhere, on any existing cable system.

I just hope that I've added a touch of realism to your consideration of this wonderful new world of viewing.
NEW 1980 DIGITAL MULTIMETERS FROM

8010A
$249
$289 rechargeable batteries
(OPTION - 01)

8010A and 8012A
- Large 3½-Digit LCD's - view in any light
- Conductance function - resistance to 10,000 MO
- AC measurements to 50 kHz and higher
- True RMS for ac accuracy
- Touch-Hold probe for tricky places (Y8008)
- Diode test and low power ohms
- AC or dc current to 10 amps with 8010A
- Resistance resolution to 0.0010 with 8012A
- Built-in batteries and charger (OPTION - 01)

8012A
$299
$339 rechargeable batteries
(OPTION - 01)

8050A
$349
$399 rechargeable batteries
(OPTION - 01)

8050A
4½-digit multimeter microprocessor technology
- dB: That's right, direct readings in dBm, referenced to any of 16 impedances that you select from the 8050A's scrolling reference memory.
- REL: This stands for relative reference in the dB mode or offset measurements in other functions.

Model 8024A:
The Investigator
- Nine functions: dc voltage, ac voltage, dc current, ac current, resistance, diode test, conductivity (1/R), logic level and continually detect temperature (K-type thermocouple)
- Peak hold on voltage and current functions
- Selectable audible indicator for continuity or level detection
- 3½-digit resolution
- 0.1% basic dc accuracy
- LCD display
- Overload protection

Model 8022A:
The Troubleshooter
- Six functions: dc voltage, ac voltage, dc current, ac current, resistance, diode test
- 3½-digit resolution
- 0.25% basic dc accuracy
- LCD display
- Overload protection

Model 8020A:
The Analyst
- Seven functions: dc voltage, ac voltage, dc current, ac current, resistance, diode test, conductivity (1/R)
- 3½-digit resolution
- 0.1% basic dc accuracy
- LCD display
- Overload protection

TOLL FREE HOTLINE 800-223-0474
54 WEST 45TH STREET, NEW YORK, N.Y. 10036 212-687-2224

Plug in the capacitor, push the appropriate range button, and read the value to 0.1% accuracy. With the Data Precision Model 938 digital capacitance meter it's that easy. The 8 easy pushbutton ranges cover 0.1 picofarads to 1999 microfarads, and the exclusive "chargevolt" measurement circuit (patent pending) holds its ±0.1% basic accuracy for a full year. A 0.5" high liquid crystal display is easy on the eyes and easy on the battery - up to 200 hours operation on a standard 9V battery. The Model 938's small size and light weight make it easy to carry where you need it.

But best of all, it's easy on the budget - only $169.00 (USA) - complete with a 2-year warranty. Just what you expect from Data Precision.

Capacitance Made Easy - $169.

Order by phone-toll free (800) 223-0474

54 West 45 Street, New York, N.Y. 10036 (212)687-2224

ADVANCE ELECTRONICS
BATTERY SUBSTITUTER HAS MUSCLE

IT WOULD SEEM THAT BUILDING A LITTLE power supply to substitute for four flashlight (D-cell) batteries would be a simple "handbook" job. Not so! The application in question is powering a widely-sold toy pinball machine.

The problem is that the bright bulb and electromagnetic counter draw an initial surge of about 4 amperes when the steel ball activates a scoring bumper. There are, no doubt, other toys that suffer from the same problem. The pinball machine used up alkaline batteries at a rate that began to cost a significant part of the entire house electrical bill.

1. Only moderate filtering on the regulator input (see the schematic) is needed, and fast recovery results.
2. Massive filtering on the output of the regulator is used (not the usual technique) to supply the surges. The three-terminal IC regulators are stable under these conditions.
3. A LED is inserted in the ground lead of the 5-volt IC regulator. This boosts its output voltage by about 1.5 volts, and provides a nice pilot-light as well.

Parts are not critical. The line-plug supply (transformer is part of plug) that I used had an open-circuit voltage of about 10 volts and could supply a little over 100 mA at 8 volts. [A power converter designed to supply 9 volts to small radios and calculators will do nicely.—Editor]

The capacitors are also uncritical since none of the ripple currents are very high. I happened to use two 100,000-microfarad computer-type capacitors on the output because I could get them inexpensive. A number of smaller paralleled capacitors rated at 8 volts or more would certainly work well also. Surplus or junk-box devices would be quite suitable. The IC regulators must have current-limiting to avoid damaging the line-plug type supply with surges.

The battery-eliminator components can be placed wherever you can find the space. The location for the charger is obvious—in the wall receptacle. I distributed the other parts around the pinball machine. The small capacitor and regulator are on a bracket on the back of the machine. The LED is glued into the front panel and the two 100,000 µF capacitors are carefully insulated and then taped to the machine's back legs.—Peter Lefferts

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc. All published entries, upon publication, will earn $25 plus a Circuit Board Holder, Standard Base and Tray Base Mount from Panavise Products, Inc. (See photo below.) Selections will be made at the sole discretion of the editorial staff of Radio-Electronics.

I agree to the above terms and grant Radio-Electronics Magazine the right to publish my idea. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material had not been previously published.

Title of Idea

Signature

Print Name Date

Street

City State ZIP

Mail your idea along with this coupon to:

New Ideas
Radio-Electronics
200 Park Ave. South
New York, NY 10003
Explorer/85

100% compatible with all 8080A and 8085 software & development tools!

No matter what your future computing plans may be, work toward your starting goal: expanding!

Starting at just $129.95 for a Level "A": operating system, you can now build the exact computer system you want to use! Expandable options let you expand to a Powerhouse CPU or an IBM-compatible; add output to your design, or simply upgrade your own computer system. Your design can now be expanded to include the latest generation of all 8085 chips.

Levels of Expansion

- **Level A** includes an $85.00 BASIC ROM & a D-41 6502 processor.
- **Level B** includes all of Level A plus an 8085 expansion, plus INSTANT EXPANSION! Level B provides the S-100 signals plus buffers/drivers to support add-on boards and includes address decoding for on-board 4K RAM expansion-select in 4K blocks... address decoding for onboard 8K EPROM expansion... wait state generator (jumper selectable), to allow the use of slower memories... separate 5Volt regulators.
- **Level C** includes all of Level B plus expansion options-
 - **Level D** includes all of Level C and the benefits of a full-scale operating system.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "D" Card Cage

Explorer/85 with Level "C" Card Cage

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.

Explorer/85 with Level "B" Card Cage

Explorer/85 with Level "C" Card Cage.

Level "C" Specifications

Level "C" expands Explorer's motherboard with a card cage, allowing you to plug in up to 64K S-100 cards directly into the S-100 bus. Both S-100 cards and DIP(2k) cards are steadily inside the Explorer's deluxe steel cabinet. Level "C" includes a sheet metal superstructure, a 5-card gold-plated S-100 extension PC board which plugs into the motherboard. Just add your own S-100 connectors to your favorite card cage.

Level "D" Specifications

Level "D" provides 4K or RAM, power supply regulation, and filtering decoupling components. Additional parts may be used to assemble your own complete operating system. In addition to 128K RAM, you may also use a computer with 8085, a total of 256 bytes of memory, and a complete computer design. The Explorer/85 is designed for use with either an IBM or compatible computer system or with an independent design and your own software system. The Explorer/85 is designed for the hobbyist, the computer user, or the professional, with a variety of levels of expansion to meet individual needs.
Boost communication receiver performance with an audio processor.

HERB FRIEDMAN, COMMUNICATIONS EDITOR

IN A WAY I WAS VERY FORTUNATE TO start out in electronic back in the golden age of vacuum tubes (the late 40's and early 50's) for it was also the golden age of the communications receiver. A young hobbyist of that day got a chance to handle receiver circuits that few outside of the military will ever get to use.

It took two hands to count the number of amateur and SWL receiver manufacturers, each turning out several models that seemed—at the time—to be upgraded every month or two. The local "radio parts store" and Ham equipment distributor often gave a full wall of shelving to their receiver display; there were that many different models.

Using tubes and circuits developed for the military during WWII, it was not unusual to find a modestly priced receiver that featured—at the very least—a crystal filter that could slice off an interfering CW signal as easily as a chef slices through roast beef. For a few dollars more we could get a receiver with selectable crystal filters. Then came the tuneable IF, where the user could position the IF bandpass to drop interference of any kind "off the cliff" (out of the passband). Another went a step farther and moved into the audio circuits with a processor that enhanced or rejected a user-tuned audio frequency.

With its cascode RF amplifier, triple-conversion, tuneable IF, audio processor, crystal filters, and heaven only remembers what else, the last of the tube RF and IF receivers took two men to lift and generated enough heat to whip up a cup of hot chocolate on a nippy night. Fact is, all those tubes glowering away in a tabletop cabinet created a major stability problem in some "high performance" receivers. Virtually everything up to the IF had to be temperature-compensated, and as a receiver aged it often took upwards of an hour for the tuning drift to settle down. (Many hams never turned their receivers off—just left 'em on stand-by.)

We had finally reached a point of no return in consumer receivers; the heat was cancelling out the benefits of new circuit ideas.

It's debatable whether the gold-plated communications receiver was simply a dinosaur whose end was due, or whether the introduction of the Collins S-line—with its relatively simplified trouble-free circuits—spelled the end for the gold-plated specials, but in a few years most receiver brands were simply a memory.

The S-line, the forerunner of the modern solid-state single-sideband receiver and transceiver, set the standards for features we expect in today's receivers: A crystal-controlled high-frequency conversion oscillator to remove many of the temperature-compensation problems. Those included a low-frequency tuneable (local) oscillator whose low frequency, by itself, makes the circuit insensitive to temperature-caused frequency drift; and the mechanical filter that can be tailored to any desired bandwidth for optimum reception of CW, AM, or SSB. The mechanical filter replaced both the difficult-to-tune crystal filter and the tuneable IF, though many who used the tuneable IF still think it was the most effective receiving aid.

As for audio processors, they have long been a memory as original equipment, though they are still available as low-cost add-ons that (generally) plug into a receiver's headphone or speaker output.

The audio processor is basically the poor man's Q-multiplier in the sense that it can function either as a notch filter (to eliminate beats and whistles), or as a 'peaker' (variable-Q bandpass amplifier). If you remember the Q-multiplier, it was a regenerative device connected into a receiver's IF. As the gain or feedback was adjusted towards self-oscillation, the effective Q rose sharply creating a sharp peak, or notch if desired, in the IF response.

The problem with the Q-multiplier is that it used vacuum tubes and was usually designed to connect into a 455-kHz or 1600-kHz vacuum-tube IF. With the advent of solid-state receivers, several attempts were made at solid-state Q-multipliers, but designing a "universal" model that could be installed without fear of catastrophic failure was almost impossible because no two solid-state receivers have circuits similar enough for modification by the average hobbyist.

Enter, now, the audio processor. Using the same solid-state technology that made the universal Q-multiplier difficult, it was possible to design an inexpensive audio processor that performed essentially the same as an IF Q-multiplier. And the one big advantage of the audio processor over the Q-multiplier is that it is, in fact, universal: The user simply plugs it into the receiver's speaker output.

The Mizuho AP-M1 Audio Processor shown in Fig. 1 is typical of what can be done at moderate cost. Priced at $51 from Giffar Associates, Box 239, Park Ridge, N.J. 07656, the model AP-M1 uses almost pure textbook design to synthe-

continued on page 74
You'll receive a rebate up to $20 if you give dad a Bearcat® No-Crystal Scanner for Father's Day.

Get Dad into all the real excitement of scanning. Or get him a more sophisticated scanner. Either way, you'll get yourself a nifty rebate. Up to $20.

Get a $10 Rebate on the Bearcat 210. America's best selling Scanner Radio. The amazing 10 channel, 5 band crystalless Scanner that tunes in over 6000 frequencies with pushbutton ease. Features automatic search, selective scan delay, and more.

Get a $20 Rebate on the Bearcat 220. The Scanner radio that tunes in FM public service frequencies—plus AM aircraft communications with pushbutton ease. Features automatic search.

See your Bearcat Scanner dealer now, for the greatest gift you can give Dad. And get a rebate for remembering him so well this Father's Day.*

*Rebate offer good on consumer purchases made between May 1, 1980 and June 30, 1980. Offer good only in U.S.A. Void where taxed or prohibited by law. Restricted to one rebate per customer regardless of the number of scanners purchased.

Electra Company
Division of Masco Corp. of Indiana
300 East County Line Road
Cumberland, Indiana 46229.
BUILD A
MASTERPIECE OF SOUND

Wersi has combined select features of the electronic music field, added its own creations and years of research by top engineers and musicians, to produce an incomparable line of organs. Space-age technology. True-to-life voicing with full drawbar system. Polyphonic percussion and sustain. Wersi's famous string orchestra and bass guitar. Exclusively Sound Computer for 32-128 "One Stop Sounds" (total organ presets). Transposer. And lots more.

Build your own masterpiece of sound. No technical knowledge required. Just follow the clearly illustrated, easy to understand instructions. Step by step. Choose from at least 10 models. (Also factory assembled.)

Send $6.00 with coupon for your Wersi Demo-Package (LP with 104-page color catalog).

WERSI

CIRCLE 10 ON FREE INFORMATION CARD

KESTER SOLDER

This is easy—anyone can solder—
WITH KESTER SOLDER

Handymen! Hobbyists! DO-IT-YOURSELFERS!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing — a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. — save money by repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.

When you Solder go "First Class" — use Kester Solder.

For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

KESTER SOLDER

Litton
4201 WRIGHTWOOD AVENUE/CHICAGO, ILLINOIS 60639

CIRCLE 7 ON FREE INFORMATION CARD

COMMUNICATIONS CORNER
continued from page 72

size a Q-multiplier for shortwave receivers. The filter is four series-connected 741 operational amplifiers in the standard notch-bandpass configuration—almost part-for-part out of a "circuit cookbook." The filter's output feeds an LM386 power-amplifier IC that drives a 2-inch speaker mounted in the top of a 5.5 x 1.5 x 4-inch plastic cabinet. The filter and power-amplifier IC are powered by a standard 9-volt battery, or by a 12-VDC external power source. A voltage regulator built into the device regulates the 12V to the required 9 VDC.

A three-way switch determines the operating mode. One position is notch, another is bandpass, and the third position is off, whereby power is turned off and the signal from the receiver is fed directly to the processor's speaker. The input to the processor is through a panel-mounted mini-jack. A second mini-jack is for an external speaker, which disables the processor's speaker when the connecting plug is inserted. Two LED's, which indicate the notch and bandpass mode, also serve as the power-on indicators.

Two front-panel controls labeled FREQUENCY and BANDWIDTH determine the center frequency and the width of the notch or "peak." The FREQUENCY control can be tuned within the range of 400-4000 Hz.

As a general rule, the greatest effect is in the bandpass mode, where the processor is used to peak a desired signal, whether CW or voice. The notch filter is not as effective because it takes considerable fiddling with the controls to tune out an interference signal, beat, or whistle. That contracts with the bandpass mode that lifts the desired signal out of the general interference.

Of course, there are times when a notch filter is the only thing that will work, as when an interfering CW signal is many times stronger than the desired signal. Unlike the IF Q-multiplier that produces a very deep notch that can strip out almost all traces of a beat or whistle, the simplified audio processor has a moderately deep notch that passes a considerable amount of the interference. The notch contributes towards reception by eliminating some beat interference; the bandpass actually lifts the desired signal out of the interference.

While nothing is going to convert a budget- or moderate-cost shortwave receiver into a gold-plated special reminiscent of the tubed boat anchors of the 1950's, an audio processor is a relatively inexpensive way to add "selectivity" to lower cost receivers. Best of all it's truly universal; you just plug it in to any speaker or headphone output jack. R-E
ADVANCE IS PROUD TO INTRODUCE
The HITACHI Line of High Quality Oscilloscopes
All Hitachi Instruments Are Backed by A Two-Year Warranty

Hitachi Oscilloscope V-302
DC-30MHz dual-trace

- TV sync-separator circuit facilitates rapid video signal measurement.
- Extra-high sensitivity; vertical sensitivity of 1mV/div. now available.
- Built-in signal delay line for leading edge observation of quick-rising waveforms (V-301 and V-302).
- X-Y operation very convenient for measuring phase difference of two waveforms.
- Sweep-time magnifier effective for precise measurement; sweep time magnifying 10 times with one-touch operation.
- Trace rotation system for easily adjusting bright-line inclination caused by terrestrial magnetism.
- Z-axis input provided—possible to use as CRT display.
- 0.2μs~0.2s-wide sweep range setting.
- One-touch shifting waveform slopes.
- Five modes of vertical deflection operation (Type V-152 and V-302).
- Panel layout with color-coding of respective functions.

(Also available in single-trace)

Hitachi...The measure of quality.

Hitachi Oscilloscope V-302
DC-30MHz dual-trace

1. TV sync-separator circuit
2. High-sensitivity 1mV/div (5MHz)
3. Signal delay line
4. X-Y operation
5. Sweep-time magnifier (10 times)
6. Z-axis input (intensity modulation)

(Also available in single-trace)

Hitachi...The measure of quality.

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE
800-223-0474
54 WEST 45th STREET, NEW YORK, N.Y. 10036 212-687-2224
Don't cut yourself out of a career as a two-way radio technician...

MTI offers the only training for professional FM two-way radio available. Qualified technicians are employed in government, industry, and public service. But training is your key.

You could cut out a career as a two-way radio technician by cutting out this coupon. We'll send you information on how you can learn more about this specialized field, at home.

Name __________________________
Address _________________________
City ____________________________
State/Zip _________________________

MTI
Mobile Training Institute
Box 735, Camp Hill, PA 17011-U.S.A.

CIRCLE 42 ON FREE INFORMATION CARD

More information on radio products is available. Use the Free Information Card inside the back cover.

BASE STATION ANTENNA, model Comet, is a 6-element antenna. Specifications include X21 power multiplication; 12.5-dB gain (34-dB front-to-back); 10-ft. 6-in. turn radius; 11-ft. X 6-in.

CIRCLE 109 ON FREE INFORMATION CARD

boom length; 4-square-foot windload area; and adjustable VSWR to 1.1:1. List price: $119.95.—Wilson Electronics Corp., P.O. Box 19000, Las Vegas, NV 89119.

WWVB RECEIVER, model LXX, is fixed tuned to receive WWVB, the frequency standard broadcast station. Three BNC output connectors provide the user with a 60 kHz carrier signal, a 108 kHz signal phase-locked to the carrier, and a sistorized preamp that runs for hundreds of hours on a 9 volt battery, a volume control, and a transmit/receive switch. Suggested retail price

CIRCLE 111 ON FREE INFORMATION CARD

$19.95 ea.

Simply expose board to film master image, etch and drill holes. Film may be photographically prepared or homemade using clear mylar supplied. Make circuit art work with Vector R407 rub transfer art work set ($2.65) or use alternate stick on tape, if not available locally factory order—include $3.00 shipping, U.S. only.

CIRCLE 112 ON FREE INFORMATION CARD

demodulated time code. All outputs are 9 volt peak-to-peak squarewaves. Features include an LED power indicator, an LED phase-lock indicator, a 1 microvolt signal sensitivity, 100 dB signal gain, a 90 dB AGC range, and a 230 Hz bandwidth. Instruction booklet comes with the unit. Price is $99.95.—Elekstk, Inc., 6500 Joy Rd., East Syracuse, NY 13057.

CIRCLE 113 ON FREE INFORMATION CARD

CB MICROPHONE, model 526T Series II Super Punch, is designed for compatibility with almost all CB transceivers. The unit can be connected to transceivers with impedances of over 500 ohms and is equipped with a six-wire coiled cord and 3PDT switch arranged for universal compatibility. Features include a dynamic element and tran

CIRCLE 114 ON FREE INFORMATION CARD

sidered. The Bearcat 5 features LED channel indicators, built-in speaker and telescoping antenna. Provision is made for an external speaker and antenna. The units operates on 117 volts AC and is UL-listed and FCC certified. Price, less crystals, is $129.95.—Electra Company, P.O. Box 25243, Cumberland, MD 21502.

R-E
COMPUTER BOOKS THAT TALK YOUR LANGUAGE... FROM BEGINNER TO EXPERT.

Howard W. Sams is the source for the best and latest in computer technology. The world's leading authors. Clear, concise, easy-to-understand text. Fully illustrated for better comprehension. Actual programs for today's personal computers. Informative and entertaining. Titles for everyone... from the novice to the hobbyist to the expert.

THE STARTERS
Entry-level books for the beginner can bring the newcomer to a high level of knowledge quickly.

- THE HOWARD W. SAMS CRASH COURSE IN MICROCOMPUTERS
The short-cut to understanding microcomputers. Spend a few hours with this self-instructional course and gain a working knowledge of all aspects of microcomputers from fundamentals to operating systems, programming, peripheral equipment and much, much more. 264 pages. No. 21634. By Schenkel. $9.95.

- MICROCOMPUTERS FOR BUSINESS APPLICATIONS
A microcomputer expert discusses the benefits of microcomputer systems for small business owners. Explains types of microcomputers available, points out pitfalls and provides guidelines for selecting computer-related terms in easy-to-understand language. 256 pages. By Barden. No. 21583. $9.95.

- A GUIDEBOOK TO SMALL COMPUTERS
If you are contemplating buying a small computer for your home or business, this book can save you time and trouble. Covers fundamentals of small computers including hardware and software. Includes information on manufacturers' warranties, service and a handy directory of small computer manufacturers. By Barden. No. 21698. $5.95.

- GETTING ACQUAINTED WITH MICROCOMPUTERS
Provides a practical working knowledge of microcomputer organization, operation, and programming. 288 pages. By Freyman. No. 21634. $9.95.

- FUNDAMENTALS OF DIGITAL COMPUTERS (2nd ED.)
Unravels the mysteries of computers and programming. 350 pages. By Spencer. No. 21534. $9.95.

- INTRODUCTION TO MICROCOMPUTERS FOR THE HAM SHACK
Gives the radio amateur an opportunity to be in the forefront of utilizing and developing techniques in "computering." 96 pages. By Helm. No. 21681. $4.95.

LEARN ABOUT MICROCOMPUTERS, SAVE 10%, AND GET A FREE GIFT!

- THE COMPUTER PRIMER LIBRARY
This 3-volume "starter" library was selected for the novice who wants to learn about microcomputers. Concepts, Programming, Computer Graphics Languages, Games. By Mitchell 4ate and Michael F. A. Printz—two of the leading authors in the field of computers.

- MICROCOMPUTER PRIMER—368 pages of up-to-date facts on microcomputers and computer concepts.

- COMPUTER GRAPHICS PRIMER—Over 20 programs for creating your own video graphics (complex drawings, plans, maps, and schematics) on the new 6502-based microcomputers.

- BASIC PROGRAMMING PRIMER—Provides a working knowledge of BASIC, the most popular computer language today. Explains fundamentals of BASIC program control, organization, additional functions, variations, and includes a game program.

3-VOLUME LIBRARY PACKAGE ONLY $30.47—Includes a FREE COPY OF YOUR OWN COMPUTER—an introduction to home computers. No. 21706.

THE PROGRAMMERS
A computer is only as good as the software that runs on it. Sams offers several books that explain programming and tell you how to develop, debug and test programs for your equipment.

- PROGRAMMING & INTERFACE THE 6502 WITH EXPERIMENTS
Dr. De Jong has compiled 14 chapters of information and programs for 6502-based microcomputer systems. Experiments and examples are written so that a KIM, AIM or SYM system may be used to reinforce the material in each chapter. 448 pages. By De Jong. No. 21534. $13.95.

- HOW TO PROGRAM AND INTERFACE THE 6800
Discusses the internal structure, instruction set, and operating techniques for the 6800. Experiments demonstrate "real world" applications. 432 pages. No. 21583. $13.95.

- DEBUG: AN 8080 INTERPRETIVE DEBUGGER
Covers program operation and how it's applied to program development and testing. 112 pages. By Titus and Titus No. 21534. $4.95.

- 6502 SOFTWARE DESIGN
 Tells how to program for the 6502 assembly language. 288 pages. By Scallon. No. 21656. $10.95.

- 8080/8085 SOFTWARE DESIGN—2 VOLUMES

- VOLUME 2 is a unique, one-of-a-kind computer science book for the design engineer. Written in a machine code. 352 pages. By Titus, Larson, Rony, & Lansen. No. 21656. $7.95.

- TWO-VOLUME SET. No. 21659 ONLY $17.95.

- TEA: AN 8080/8085 CO-RESIDENT EDITOR-ASSEMBLER
256 pages. By Titus. $9.95.

THE COMPUTER TECHNOLOGY LEADERS
Even if you're an avid computer buff, rapidly changing technology makes it difficult to stay current. Sams has a complete line of books and reference publications to help you keep abreast of the current state-of-the-art.

- TRS-80 INTERFACING
192 pages. By Titus. $8.95.

- INTERFACING & SCIENTIFIC DATA COMMUNICATIONS EXPERIMENTS
160 pages. By Larson, Titus, & Titus. No. 21543. $6.95.

- MICROCOMPUTER INTERFACING WITH THE 80255 CAM CHIPS
224 pages. By Goldshoffer. No. 21614. $6.95.

Howard W. Sams & Co., Inc.

JUNE 1980

ORDER FORM
HOWARD W. SAMS & CO., INC.
4300 West 62nd Street, P.O. Box 7092
Indianapolis, Indiana 46266
(317) 298-5400

Indicate quantity in boxes above and complete ordering information below.

Sub Total:

Add local sales tax where applicable.

GRAND TOTAL:

PREFERENCE:

PAYMENT ENCLOSED

CHECK

MONEY ORDER

MASTER CHARGE

AMERICAN EXPRESS

DINERS CLUB

CASH

VISA

EXP. DATE:

Signature:

Address:

City/State:

Prices subject to change without notice. All books available from Sams Distributors, Bookstores, and Computer Stores. Offer good in the U.S. only. In Canada contact Listbook Industries Ltd., Scarborough, M1P 4P9.

77
A 555-timer-based signaling and control circuit that can be used in a variety of applications.

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

This month's main project is a very flexible signaling and/or control device that can be used in a variety of ways. We'll look at several applications. The basic circuit is shown in Fig. 1.

Once again the old faithful 555 timer functions as a variable-frequency square-wave oscillator. On each half-cycle, one of the LED's lights—which one of them depends, of course, on whether output pin 3 is positive or negative at that particular moment.

If you make one LED red and one green, you have a model traffic light when the 555 is set for a very low frequency. (Remember that changing the value of capacitor C1 will move the frequency range up or down.) If you like, a capacitor of about 2000 µF or so connected from ground to point A or B will remove the "snap-action" on and off either of both LED's.

Other devices can be controlled in phase with the lights by adding the circuit shown in Fig. 2. This 555 is a monostable oscillator that switches when the triggering line is connected to point A or B in Fig. 1. In turn, the relay pulls in and releases as the "traffic light" sequences.

Now the relay can be used to do such things as stop a model car or train when it approaches a red light. One method of accomplishing that is shown in Fig. 3. A section of rail is insulated and fed through the relay contacts. When the relay pulls in, power is removed from the isolated track and the car or train stops when it gets there. On the next half-cycle (green), power is restored and the model moves on.

Returning to Fig. 1 and the basic circuit, you know that the LED's are on alternately. If the frequency is made higher, persistence of vision makes it appear that both LED's are on continuously. You may notice that they are a bit dim but not enough to matter.

If switches and diodes are added as shown in Fig. 4, you have quite a signaling device. Close one switch and the green LED is on; close another and the red is on; close the third and both are on. If you place the LED's at a remote location, you can send at least three distinct pieces of information on the one wire.

There you have a few ideas for using the gadget. Let your imagination be your guide and see what you come up with. One more example: How about substituting relays for the LED's and using them to control stronger lights, motors, or whatever. I would be interested in hearing about applications you devise.

Desoldering

You may recall that there was an article on desoldering techniques, several months back. After its appearance, I received a letter from a manufacturer of desoldering equipment.

The company official, whom I'll call Mr. X, wrote that all the methods discussed in the article were abandoned long ago. No one—but no one—uses such archaic desoldering methods. He then went on to inform me of the up-to-date equipment they manufacture.

Well, let me see if I can correct my error with a couple of "notices."

Notice to commercial desolderers: In the event that you are using outdated methods, stop wasting your time. Read the various equipment catalogs. Invest $300 or more with Mr. X or one of his competitors.

Notice to Mr. X: There are thousands upon thousands of electronic hobbyists out in the boondocks who build and occasionally "unbuild" (desolder) circuits. While your equipment is undoubtedly effective and efficient, we're in this thing for fun. For that purpose, we do not have available the kind of money your methods require. We'll stick with the cheaper, archaic methods that still work.

Desoldering hint

Arthur Coombs of Clinton, Ontario, Canada wrote to suggest another method of cleaning solder-filled PC-board holes. A large darning needle from the local variety store will do the trick. Simply heat the solder and stick the needle through. Only rarely will the solder stick to the needle, and even then a little heat will dislodge it.

Thanks, Arthur; I have used that method myself. It is easy if you push the eye end of the needle into a wooden dowel to

continued on page 86
Conventional power-supply circuits that look very odd.

JACK DARR, SERVICE EDITOR

In past columns, we have discussed some of the newer DC power supplies. They work, but some of them seem to be a little too complex. The more parts used in a given circuit, the greater the chance of failure. (One of the designs uses 14 or 15 transistors.) Personally, the simpler the circuit, the better I like it.

Now, for a change, let's look at a couple of the more conventional DC power supplies. One is fairly new, the other pretty old. Both look just a bit unusual, but when you check them out you find they use familiar circuitry.

One is used in the Admiral K19-series of chassis. Figure 1 shows the circuit. At first glance, it looks pretty complicated—but let's follow the circuitry.

The +145-volt supply comes straight off the AC line, through diode D103. Stock filtering is used to smooth out the supply. From that the +135-volt and +20-volt lines are taken, reduced by resistors.

The AC line also goes to C105, then to diodes D101 and D102. The two diodes and capacitor are connected as a stock half-wave voltage doubler. That produces the +290-volt line.

Now, we come to a circuit that is not often found in a TV receiver, but which was quite common some years ago in many two-way radios, especially Motorola. The filtered output of the +290-volt DC line, also goes to the bottom end of the 110 VAC winding on the power transformer. Top end of the winding connects to diode D100 (another half-wave rectifier). The output of D100 is +400 volts. That is because the bottom end of this supply is "stacked" on top of the +290-volt line. The DC voltages add to provide the +400 volt output. The +400 volt line is dropped by a resistor to provide +340 volts. Note that the filter capacitors for the +400 volt line and the +340 volt line return to the +290 volt line, not to ground. That is where the "stacking" effect is obtained.

Every one of the circuits used here are conventional. We have worked with them a long time. Any problems in here should be easy to find.

One of the possible faults listed in the Admiral News Letter shows the symptoms of weak video, retrace lines and very little control of brightness. Checking DC voltages reveals the +400-volt line is quite low, somewhere around +310 volts. The +290-volt line will be normal. Cause: the 110 VAC winding on the power transformer is open.

Another one is "No video or sound but raster present." Cause of that can be an open resistor in the +135-volt line, such as R101 or R102. A shorted Zener diode, D104, can also kill the +20-volt line. Hum-bars floating up through the picture can be caused by an open capacitor (C108) on the +20-volt line. Scope the +20-volt line and look for ripple or any signal.

In short, all of the circuits used here are conventional and so are the problems caused by defective components. The novelty is in the way they're all tied together, stacked, and so on. For testing, use the same old methods we've used for years.

The other power-supply circuit is from quite an old TV set, a model 362 Sheckell-Carlson. Figure 2 shows this one. Here again we get different DC voltages. Before reading further, look at the circuit and see if you can tell what it is. You've seen it many times, though it may not look familiar in this configuration.

This is a plain half-wave voltage doubler. However, it looks odd, because the input capacitor isn't in its usual place on the input of the two diodes. It's at the bottom of the transformer winding and returns to ground. The function of the capacitor is exactly the same as in the more familiar circuit. By isolating that point, they are able to get a +120-volt DC supply, without having to use big dropping resistors.

This circuit was sent in by a reader in New York. The complaint was that the power transformer ran very hot. The set worked perfectly but after about 15 minutes it got hot. All DC voltages checked OK. The reader also complained about resistor R88, running very hot; however, he said the drop across it was exactly 20 volts, which was correct. The resistor has
THE STARTERS
Entry-level books for the beginner can bring the novice up to a high level of knowledge quickly.

- THE HOWARD W. SAMS CRASH COURSE IN MICROCOMPUTERS
 The short-cut to understanding microcomputers. Spend a few hours with this self-instructional course and gain a working knowledge of all aspects of microcomputers from fundamentals to operating systems, programming, peripheral equipment and much, much more. 264 pages. No. 23634. By Frenzel. $17.50.

- MICROCOMPUTERS FOR BUSINESS APPLICATIONS
 A microcomputer expert discusses the benefits of microcomputer systems for small business. Explains types of microcomputers available, points out pitfalls to avoid, and defines computer-related terms in easy-to-understand language. 256 pages. By Barden. No. 21583. $19.64.

- A GUIDEBOOK TO SMALL COMPUTERS
 If you are contemplating buying a small computer system for home or business, this book can save you time and trouble. Covers fundamentals of small computers including hardware, software, and systems. Includes information on manufacturers, service and a handy directory of small computer manufacturers. By Barden. No. 21696. $5.95.

- FUNDAMENTALS OF DIGITAL COMPUTERS (2nd Ed.)
 Unveils the mysteries of computer hardware and software. Includes information on microprocessors, and computer-related terms in easy-to-understand language. 256 pages. By Spencer. No. 21534. $9.95.

- INTRODUCTION TO MICROCOMPUTERS FOR THE HOME SHACK
 This 3-volume starter library was selected to help the novice who wants to learn about microcomputers. Concepts are expanded on in the following volumes. By Mitchell, Walek, and Pardee. 144 pages. No. 21649. $8.94.

- THE COMPUTER PRIMER LIBRARY
 This 3-volume starter library was selected to help the novice who wants to learn about microcomputers. Concepts are expanded on in the following volumes. By Mitchell, Walek, and Pardee. 144 pages. No. 21649. $8.94.

THE PROGRAMMERS
A computer is only as good as the software. Sams offers several books that explain programming and tell you how to develop, debug and test programs for your equipment.

- PROGRAMMING & INTERFACING THE 6502, WITH EXPERIMENTS
 Dr. De Jong has compiled 14 chapters of information and programs for 6502-based microcomputer systems. Experiments and examples are written so that a 6502, 6510, or 68HC001/8080 system may be used to reinforce the material in each chapter. 448 pages. By De Jong. No. 21651. $19.95.

- HOW TO PROGRAM AND INTERFACE THE 6800
 Discusses the internal structure of instruction set and addresses and techniques for the 6800. Experiments demonstrate real-world applications by Staugard. 432 pages. By Borden. No. 21684. $11.95.

- DEBUG: AN 8080 INTERPRETIVE DEBUGGER
 Covers program organization and how its applied to program development and testing. 112 pages. By Titus and Titus. No. 21536. $4.95.

- 6502 SOFTWARE DESIGN
 Tells you how to program for the 6502 assembly language. 288 pages. By Scanlon. No. 21567. $6.95.

- 8080/8085 SOFTWARE DESIGN—2 VOLUMES

- VOLUME 2 is a unique, one-of-a-kind computer science book for the design engineer. Written for Intel's 8080 and 8085. By Titus, Larsen, & Titus. No. 21615. $9.95.

- TWO-VOLUME SET No. 21659 ONLY $17.50

- TEA: AN 8080/8085 CO-RESIDENT EDITOR-ASSEMBLER
 256 pages. By Borden. No. 21627. $9.95.

THE COMPUTER TECHNOLOGY LEADERS
Even if you're an avid computer buff, rapidly changing technology makes it difficult to stay current. Sams has a complete line of books and reference publications to help you keep abreast of the current state-of-the-art.

- MICROCOMPUTER-ANALOG CONVERTER SOFTWARE & HARDWARE INTERFACING

- TRS-80 INTERFACING

- INTERFACING & SCIENTIFIC DATA COMMUNICATIONS EXPERIMENTS

- MICROCOMPUTER INTERFACING WITH THE 6502

Z-80 MICROPROCESSOR PROGRAMMING & INTERFACING—2 VOLUMES

INTRODUCTORY EXPERIMENTS IN DIGITAL ELECTRONICS AND 8080A MICROCOMPUTER PROGRAMMING AND INTERFACING—2 VOLUMES

A BEST-SELLER... A TREMENDOUS VALUE!
This is the most comprehensive reference available on all phases of computers and their applications. Contains over 22,000 definitions, acronyms, and abbreviations. 8 appendices. Hardcover. 944 pages. By Sipil & Sipil No. 21632. $29.95.

COMPUTER DICTIONARY & HANDBOOK (3RD EDITION)

THE LOGIC COOKBOOKS

LANCASTER'S COOKBOOK LIBRARY
A famous resource for all electronics buffs who want to know what makes TTL, CMOS, and active filters cook—what they are, how they work and how to use them. By Don Lancaster, one of the most popular authors in the electronics industry.

TI L Cookbook No. 21035 $19.95
CMOS Cookbook No. 21098 $10.95
Active Filter Cookbook No. 2168 $14.95
TOTAL LIST PRICE $34.85
Less 15% Discount 25.24
YOU PAY ONLY $29.71

ORDER SPECIAL LIBRARY PACKAGE No. 21707 AND SAVE!

ORDER FORM
SAMS & CO., INC.
4300 West 62nd Street, P.O. Box 7092
Indianapolis, Indiana 46206
(317) 298-5400

Howard W. Sams & Co., Inc.

JUNE 1981
Conventional power-supply circuits that look very odd.

JACK DARR, SERVICE EDITOR

In past columns, we have discussed some of the newer DC power supplies. They work, but some of them seem to be a little too complex. The more parts used in a given circuit, the greater the chance of failure. (One of the designs uses 14 or 15 transistors.) Personally, the simpler the circuit, the better I like it.

Now, for a change, let's look at a couple of the more conventional DC power supplies. One is fairly new, the other pretty old. Both look just a bit unusual, but when you check them out you find they use familiar circuitry.

One is used in the Admiral K19-series of chassis. Figure 1 shows the circuit. At first glance, it looks pretty complicated—but let's follow the circuitry.

The +145-volt supply comes straight off the AC line, through diode D103. Stock filtering is used to smooth out the supply. From that the +135-volt and +20-volt lines are taken, reduced by resistors.

The AC line also goes to C105, then to diodes D101 and D102. The two diodes and capacitor are connected as a stock half-wave voltage doubler. That produces the +290-volt line.

Now, we come to a circuit that is not often found in a TV receiver, but which was quite common some years ago in many two-way radios, especially Motorolas. The filtered output of the +290-volt DC line, also goes to the bottom end of the 110 VAC winding on the power transformer. Top end of the winding connects to diode D100 (another half-wave rectifier). The output of D100 is +400 volts. That is because the bottom end of this supply is "stacked" on top of the +290-volt line. The DC voltages add to provide the +400 volt output. The +400 volt line is dropped by a resistor to provide +340 volts. Note that the filter capacitors for the +400 volt line and the +340 volt line return to the +290 volt line, not to ground. That is where the "stacking" effect is obtained.

Every one of the circuits used here are conventional. We have worked with them a long time. Any problems in here should be easy to find.

One of the possible faults listed in the Admiral News Letter shows the symptoms of weak video, retrace lines and very little control of brightness. Checking DC voltages reveals that the +400-volt line is quite low, somewhere around +310 volts. The +290-volt line will be normal. Cause: the 110 VAC winding on the power transformer is open.

Another one is "No video or sound but raster present." Cause of that can be an open resistor in the +135-volt line, such as R101 or R102. A shorted Zener diode D104, can also kill the +20-volt line. Hum-bars floating up through the picture can be caused by an open capacitor (C108) on the +20-volt line. Scope the +20-volt line and look for ripple or any signal.

In short, all of the circuits used here are conventional and so are the problems caused by defective components. The novelty is in the way they're all tied together, stacked, and so on. For testing, use the same old methods we've used for years.

The other power-supply circuit is from quite an old TV set, a model 362 Settestell-Carlson. Figure 2 shows this one. Here again we get different DC voltages. Before reading further, look at the circuit and see if you can tell what it is. You've seen it many times, though it may not look familiar in this configuration.

This is a plain half-wave voltage doubler. However, it looks odd, because the input capacitor isn't in its usual place on the input of the two diodes. It's at the bottom of the transformer winding and returns to ground. The function of the capacitor is exactly the same as in the more familiar circuit. By isolating that point, they are able to get a +120-volt DC supply, without having to use big dropping resistors.

This circuit was sent in by a reader in New York. The complaint was that the transformer ran very hot. The set worked perfectly but after about 15 minutes it got hot. All DC voltages checked OK. The reader also complained about resistor R88, running very hot; however, he said the drop across it was exactly 20 volts, which was correct. The resistor has...
a voltage drop of 20 volts across it to develop the +265-volt supply from the +285-volt line.

I told him that in a lot of the older TV sets, including some of the old RCA color sets, the power transformer did run quite hot. I suggested cooking the set for several hours and if it didn’t have any smoke or smell, send it home! After all, it had probably been working like that for many years! What might seem to be excessive heating might just be “the nature of the brute.”

Problems in this circuit should be easy to pin down; low DC voltages, possible open input filter; open diodes, and so on and on.

There you have it. Perfectly ordinary circuits, once you trace them out.

The reader also wondered where he could get a replacement power transformer since the company had been out of business for so long. Looking at it, this is just a plain 1:1 isolation transformer! Secondary voltage is 117 VAC. The heaters could be supplied by a small filament transformer tacked on somewhere, in case of need. R-E

service questions

VERY LOW HIGH VOLTAGE

I can only get 5kv of high voltage on this Heathkit model GR-881. The focus voltage is also very low. I’ve checked everything I can think of. Any help you can give will be useful.—H.S., Euclid, OH.

I suggested he perform standard tests for this type of problem.

He wrote: “I tried all the things you suggested before I wrote, and I finally found it. The .01 µf spark-gap capacitor on the control grid of the 6BK4 high-voltage regulator turned out to be very leaky. I hadn’t suspected the regulator. Thanks just the same.”

NO COLOR

I can’t get any color at all on a Philco 19K404. I can get a white screen by setting the screen controls. What’s going on?—R.P., Methuen, MA.

With these symptoms, you are probably losing the color signals somewhere in the bandpass amplifiers. Feed a color-bar signal into the input, and then scope the 1st bandpass amplifier stage. Look for the typical comb pattern. If it’s there, go on and run it down through the other stages till you get to the demodulator input. Somewhere in there you are losing all of this signal. The scope will tell you where it’s stopping. By the way: if you can get comb signals through the bandpass, but still no colors on screen, check color-oscillator IC91. Check for the normal +12.58 volt supply on pin 8. If this is OK, check all other DC voltages. If these are off, replace this IC. We’ve had some problems with it. Subs in several replacement lines—RCA, Sylvania, etc.

MORE BRADFORD PROBLEMS

The vertical linearity control in this Bradford 57141, or C-WE57141, chassis V-2487-7, is burnt up. I can’t find a Photo-fact schematic on it. Can you help? J.O., Winthrop, ME.

More people made Bradfords than any other known name. However, in a few cases, we can get something. You’re one of the lucky ones! This was built by Westinghouse; Sams Photofacts lists this in 812-4. The V-Lin control is a 10-megohm unit. Key clue here is that Westinghouse part number, “V-2487-7”.

CROSSOVER DISTORTION

This model TEC S-15 power amplifier has a bad distortion problem. I’ve replaced the output transistors with ECG-121’s. The trouble seems to be crossover distortion; I can’t quite get a handle on it.—H.H., Baltimore, MD.

Crossover distortion is almost always in the output stage and is due to mismatched transistors or a bias problem. Since you used identical transistor types here, this leaves the bias problem. Check all the bias diodes that are used. These determine the bias on the output stage; if they’re bad, away you go! In this case a diode similar to an ECG-109 should work. Bias diodes should be made of the same material as the transistors. From the DC voltages given, this component seems as if it should be a germanium diode; it shows 0.2-volt drop. If the drop was 0.8 volt, the diode would be made of silicon.

(Feedback: “This worked! The ECG-109 seems to do nicely.”)

OLD TUBE TYPE

I’ve gotten an old Philco Type 60-121, and I need a No. 75 tube for it. Do you have any idea where one could be found?—S.A., Framingham, MA.

Not definitely; check with antique radio dealers, etc. If you can find a type 6Q7, this is an exact duplicate with an octal base. You can use an adaptor or change the socket. Another solution is a 6Q7, which is a 6Q7 in a single-ended base. Specs identical.

CALTIX IC’S FOR SMALL CALCULATORS

Roger Doering of Lakewood, CO, writes back: “I asked you about a Caltex IC for a calculator. You did not find anything on it. (It’s right! I hunted everywhere.) I did locate a source, if anyone else wants to mess with these things.

International Electronics Unlimited, 225 Broadway, Jackson, CA 95642, has the CT5001, CT5005 and CT7001 IC’s. I hope I don’t get any more of these little monsters. I was trying to fix this calculator one for a friend!”

Thanks very much, Roger. R-E

NOW—the best in Electronics training can cost you less—

No school, large or small, gives you better electronics training than E.T.I. Nor, at a fairer price. Compare quality, price, service, background. ETI has been training men & women for entry into or advancement in electronics since 1909, utilizing educational techniques of RCA and Sylvania. Only ETI combines Autotext programmed learning, “listen & learn” cassette sets and “hands-on” projects designed for learning at home, quickly, easily. Wide course choice.

SEND TODAY for all new FREE catalog or for faster service, use the toll free telephone number below, day or night. No obligation—no salesmen will call.

CIRCLE 59 ON FREE INFORMATION CARD
More information on new products is available. Use the Free Information Card inside the back cover.

Voltage Tester, Circultrace

Desco Industries, Inc., 351 F Oak Pl., Brea, CA 92821.

Universal Counter-Timer, model 5001, performs five functions: frequency-counting, period and multiple-period averaging, time interval and multiple-time-interval averaging, frequency ratio, and unit counting. The 5001 has an 8-digit LED display and can be operated from either 105-130 VAC or 210-250 VAC. It is well-suited to applications in radio, data, and telecommunications; research and development; physical, chemical, and medical laboratories; quality control; industrial and process control; education and instruction; audio, recording studios, and high fidelity, and servicing. Suggested list price is $350.—Global Specialties Corporation (formerly Continental Specialties Corporation), 70 Fulton Terrace, New Haven, CT 06509.

Telephone Dialer, the Phone Controller

It operates with either Touch-Tone or rotary-dial telephone circuits and can store up to 30 different 16-digit numbers (expandable). It is quickly and easily programmed. Among its numerous features are: built-in speaker to permit on-hook dialing; automatic redial (up to 14 times); hold control; and the ability to output rotary-dial-type pulses from a Touch-Tone keypad. The Phone Controller is $945*.

Price Without Sacrifice.

HITACHI V-302 & V-152

Put a proven Hitachi dual-trace oscilloscope on your bench for as little as $695. Our V-152 15MHz model includes unprecedented sensitivity (1 mV/div.)...10X sweep magnification...front panel XY operation...trace rotation...Z-axis input...and more. Need greater bandwidth? Our V-302 model is the only 30MHz dual-trace scope with signal delay line priced under $1000, with all the above features, to make your testing operations fast, easy, and accurate. Reliability is exceptional, too. (As you'd expect from a manufacturer with over 20 years of experience "outscoping" the competition.) So exceptional, in fact, that Hitachi quality is backed by a 2-year warranty...the longest in the industry. Whether you use it for teaching or repairs, or for video, audio, or computer testing, you can't find more scope for your dollar than at Hitachi. Write for more details.

Hitachi...The measure of quality.

- V-152 15 MHz Dual Trace...$695*
- V-302 30 MHz Dual Trace...$945*

*Probes included.

HITACHI

Hitachi Dentsco America, Ltd.
175 Crossways Park West
Woodbury, NY 11797
(516) 921-7200

CIRCLE 37 ON FREE INFORMATION CARD
NEW PRODUCTS

A novel LED readout showing either the number being entered or dialed, the time of day, or the elapsed time when a call is in progress. A unique security feature will make the unit “grow” and produce “horrendous noises” if an unauthorized party attempts to make use of it. A backup battery keeps the memory and clock functions alive in the event of power failure. Suggested retail price for the Phone Controller is $99.95. — Dictograph Manufacturing Corporation, 89 Glen Cameron Road, Thornhill, Ontario L3T 1N8, Canada.

AUTOMOTIVE ENGINE ANALYZER, model CM-1550, handles several tune-up measurements, including dwell for 4- through 8-cylinder engines, RPM to 10,000 in two ranges, DC voltage to 200 volts in two ranges, resistance to 2 megohms in three ranges, and direct current to 20 amperes. With the optional CMA-1550-1 Shunt Accessory, the CM-1550 will also measure starting current and battery charging/discharging current, up to 400 amperes. All readings are shown on large LCD digits. Power is supplied by a 9-volt battery (not included), eliminating the need for external power connections. The inductive pickup for the RPM readings is attached to any spark plug wire. Thermal insulation on attachment leads resists melting or burning under high-heat conditions. The unit can be assembled in just two or three evenings. Mail-order price for the CM-1550 kit is $94.95, while the CMA-1550-1 Shunt Accessory sells for $13.95. All prices are FOB Benton Harbor, MI. — Heath Company, Benton Harbor, MI 49022.

AM RADIO, Bloke’s Radio Cap, is a hat that clearly conceals a portable transistor radio and lets you listen to music, news, etc., while sunning at the beach, jogging, hiking, bicycling, or even while working. The radio is powered by a single 9-volt battery (not included). Sound comes through an earpiece, which may be hidden in a secret pocket when not being used. Volume control and tuning knob are designed as buttons. Bloke’s Radio Cap, designed in England, is made of 100% pure cotton blue denim, and has an expandable headband so one size fits all. Price is $10.95 plus 75 cents for postage and handling. — Edusco Inc., 3716 Waverly Ave., Seafood, NY 11783.

HAND-HELD DMM, the LX 304, features an easy-to-read, half-inch high, 3 1/2-digit LCD display; automatic polarity; zero and overrange indication; and half-year battery life in normal use. Other features of the meter include an automatic decimal point, built-in low-battery indicator, diode and transistor testing capability, and 0.5% accuracy on DC volts ranges. Suggested retail price for the LX 304 is $89.95. — The Hickock Electrical Instrument Company, 10514 Du Pont Ave., Cleveland, OH 44108.

CIRCLE 50 ON FREE INFORMATION CARD

THE BIG PLUS +
Graphic Equalizer

ASSEMBLED
$200.00

KIT
$120.00

LOAD with Quality Features!

- Stereo...Eleven Bands Per Channel
- Extremely Low Noise & Distortion
- LED Peak Indicators
- Center Detent ("flat") sliders
- Built-in "record" Switching
- Line and Microphone Level Inputs/Outputs
- Regulated Power Supply
- Fully Guaranteed
- Horizontal or Vertical Cabinets
- Kit or Fully Assembled
- Plus Much, Much More!

Absolutely equals or exceeds overall performance and features of any graphic equalizer made today!

CIRCLE 155 ON FREE INFORMATION CARD

AARON-GAVIN INSTRUMENTS, INC.
17231 Cola Avenue
Tustin, California 92680

Yes! I’ve enclosed $__________ RUSH me
a XXXX equalizer of $200.00, p.p.d. cabinet
b XXXX equalizer of $120.00, p.p.d. brochure
c XXXX horizontal equalizer kit of $120.00, p.p.d. Horizontal (flat) Vertical (two rights)

California residents include 6% sales tax. Use & Master Charge orders as credit.

Name ____________________________ Card No. __________
Address __________________________ Exp. _______ Bank _________
City State Zip Date _______

CIRCLE 11 ON FREE INFORMATION CARD

CIRCLE 154 ON FREE INFORMATION CARD

CIRCLE 145 ON FREE INFORMATION CARD

CIRCLE 144 ON FREE INFORMATION CARD

CIRCLE 143 ON FREE INFORMATION CARD

CIRCLE 142 ON FREE INFORMATION CARD

CIRCLE 141 ON FREE INFORMATION CARD

R-E

Clever Kleps

Test probes designed by your needs — Push to seize, push to release (all Kleps spring loaded)...

Kleps 10. Boat hook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. 4 3/4" long.

Kleps 20. Same, but 7 1/2" long.

Kleps 30. Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. 6" long.

Kleps 40. Completely flexible. 3-segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. 8 1/4" long.

Write for complete catalog of test probes, plugs, sockets, connectors, earphones, headsets, miniature components...

Available through your local distributor, or write to:

RYE INDUSTRIES INC.
127 Spencer Place, Mamaroneck, N.Y. 10543

In Canada: Rye Industries (Canada) Ltd.

CIRCLE 9 ON FREE INFORMATION CARD
MEMORY BOARD. 32K static RAM board, is S-100 bus-compatible, has a 300-nS access time and features extended addressing (or bank switching) and 9 voltage regulators. The board includes a phantom line for memory disable, useful in bootstrapping operations. The board is also available in 16K configuration, allowing for future expansion. The operating manual contains a parts list, schematic and test routines. The boards are assembled and factory-tested; the 32K board is priced at $625; the 16K configuration is $390.—Tarbell Electronics, 950 Dovien Pl., Carson, CA 90746.

I/O INTERFACE, IF-1, is designed to interface ICTM-11C test module with S-100 bus-compatible computers. Available as a kit or assembled, the IF-1 can also be used as a general-purpose I/O card for small-business applications requiring up to 16 output and 8 input lines. The IF-1 provides two buffered 8-bit output ports and 1 buffered 8-bit input port; jumper-selectable address coding; separate 10-pin connector for +5V regulated and +8V, +16V, -18V unregulated S-100 bus power supplies. Prices: kit, $89.95; assembled, $119.95.—Pragmatic Designs, Inc., 711 Sterlin Rd., Mountain View, CA 94043.

COLOR GRAPHICS GENERATOR/CONTROLLER, the Electric Crayon, interfaces with the TRS-80 microcomputer. It may also be used with other computers or with a parallel ASCII keyboard. Designed to generate color displays on either a standard TV set or monitor, the Electric Crayon has 10 display modes including an alphanumeric-semigraphics mode, a second, higher-density, semigraphics mode, and eight additional graphics modes. Up to eight colors may be generated. Resolution is up to 565 X 192 picture elements. A full 64-character ASCII subset is also included. The Electric Crayon is actually a complete, self-contained, control computer with its own operating system and with provision for 1K of add-on RAM, for EPROM to extend the existing EGOS operating system and a second dual bidirectional 8-bit port.

The Electric Crayon, with the EGOS operating system, 1K of RAM and a comprehensive user's manual which contains instructions and a description of the system, an assembly-language listing of EGOS, and listings of demo programs in BASIC, sells for $249.95.

Options available include: color-graphics programs in BASIC on miniskirtette, a 34-conductor cable to connect to the TRS-80 printer port, add-on RAM and a sketching pad for graphics design.—Percom Data Company, 211 N. Kirby, Garland, TX 75042.

PARALLEL/SERIAL I/O BOARD, THE 8P2SM, is an S-100 board that combines 8 parallel ports (including handshaking operations) with 2 serial input and 2 serial output ports. Available baud rates range from 275 to 307.2K. One set of serial ports can be configured for TTL or full RS-232 operation, and the other set can be operated as TTL or a full duplex modem in the answer or originate modes at a 300 baud data rate. The doublesided, plated-through board is solder-masked on both sides, has gold-flashed edge connectors and measures 5.50 X 10 inches. Full documentation is included. Prices: kit, $149; assembled, $199.—MicroDaSys, P. O. Box 36051, Los Angeles, CA 90036.

COLOR RECEIVER/MONITORS, VM-1300 and VM-1900, feature the latest in integrated circuitry, a quick-start-in-line picture tube with slotted mask and black matrix for sharp contrast and bright colors, AFT and automatic gain control. Receiver or monitor mode is switch selectable. In the monitor mode, the sets accept standard com-
COMPUTER PRODUCTS
continued from page 83

positive video. Looping inputs (with switchable 75-ohm termination) are provided to allow linking of multiple sets. A separate audio input is also provided. The units are intended for broadcast, industrial, educational, computer, and home applications. They can be used with color TV's.

CIRCLE 126 ON FREE INFORMATION CARD

duced ESP40 printer is currently being used in the United Kingdom for monitoring telephone exchange equipment, industrial processes, and for various digital plotting operations. The device is primarily used as a 40-character alphanumeric printer, but has options for other print fonts. The ESP40 is typically $5-600 in single-unit quantities.—Rank Numbering Machines, Inc., 411 E. Jarvis Avenue, Des Plaines, IL 60018.

CIRCLE 127 ON FREE INFORMATION CARD

The computer features a 12-inch diagonal display capable of displaying 24 lines of 80 characters. Lower-case letters have full descenders. There is also a special-purpose 25-line terminal. Each 5¼ inch diskette offers 100K of storage. Accessory interfaces permit communication with printers, cassette or timeshare systems. All communication is EIA RS-232. Price is $1,695 (kit) and $2,895 (assembled).—Heath Co., Benton Harbor, Michigan 49022.

CIRCLE 125 ON FREE INFORMATION CARD

CAMERAS, and computers such as the Apple that output an NTSC color-video signal. Prices: Model VM-1300 (13-inch), $449; Model VM-1900 (19-inch), $575. Add 6% California sales tax where applicable and allow $15 for shipping within the continental United States.—V.A.M.P. Inc., 1617 El Centro Ave., Suite 19, Los Angeles, CA 90028.

ELECTROSENSITIVE MATRIX PRINTER, the ESP40, features medium-speed, silent operation. Capable of unattended operation and integration with computers, it is a modular unit that can be built into a variety of test equipment. Because it can operate from a twelve-volt power supply, it is especially suited to mobile applications for police, fire, utility, and military users. The British-pro-

PRB-1 DIGITAL LOGIC PROBE

Compatible with DTL, TTL, CMOS, MOS and Microprocessors using a 4 to 15V power supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LED's to show high, low, bad level, or open circuit logic and pulses. Highly sophisticated, shirt pocket portable (protective tip cap and removable coil cord).

$36.95

*ADD $2.00 FOR SHIPPING (N.Y. CITY AND STATE RESIDENTS ADD TAX)

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 (212) 994-6600 / Telex 125091

CIRCLE 31 ON FREE INFORMATION CARD
VOLTAGE REGULATOR
continued from page 50

Using the templates given in Fig. 6, cut a piece of sheet aluminum to form the enclosure and heatsink—use whatever gauge stock you think appropriate. Drill the holes. Bend the four sides into place and then bend the two mounting flanges outward and parallel to the surface. Install a rubber or plastic grommet in the feed-through hole. Using a piece of cardboard, make a potting form to keep the area where the heatsink is to mount clear (see Fig. 7). Fill the container about a quarter full of a silicon potting compound such as RTV. Slish it onto the walls and let it cure. At that point you have a case with a rubber-insulated cradle. Place the PC board into the cavity; feed the wires through the grommet. Using two metal screws, fasten the case to the heatsink (one should use silicon heatsink grease at the interface, see Fig. 7). Cut a piece of plastic tubing, such as a soda straw, to form a channel for external adjustment of the trimmer. Place one end of the tube over the screw end of the pot and the other to the exit hole. Seal off those two ends with some of the potting compound—make sure that none gets inside of the tube. After the tube is secure, fill the cavity with potting compound to submerge the board, and let it cure. On the wires—which should be color-coded—solder a connector that will interface to your auto’s electrical system. Either obtain one from your local automotive parts store or use the connector from your old regulator if possible.

Install the unit on your car as shown in Figs. 1 and 8. Adjust the voltage to the level recommended by your auto’s service manual. During the summer you can lower the level to reduce the boiling off of your battery’s water; during the winter it can be increased to aid in cold-morning starting. My first regulator has operated without any problems for about three years and a prototype for this design has been in operation now for about a year.

Changes for pulld-up field
The less-often-used pulld-up field alternator (Fig. 1-b) uses a simpler voltage regulator. Its circuit is shown in Fig. 9 and components layout in Fig. 10. Note that the phase-inverter pair (Q1 and Q2) has been eliminated and the PNP Darlington-pair driver transistor, Q3, has been replaced by Q4, an NPN type. Construction and installation follow the steps just outlined. No matter which version of the voltage regulator for your car requires, you can expect it to give years of reliable service and, having built one for automotive use, you’ll probably find several other battery-charging applications for this versatile regulator.

Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

Earn Your DEGREE
by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. (We are located at 2500 S. LaCienega Bl., Los Angeles, Calif.) Write to our mailing address shown below for Bulletin K-80.

Grantham College of Engineering
P. O. Box 35499
Los Angeles, California 90035

Worldwide Career Training thru Home Study

Satellite TV Reprints
To order your 36-page booklet containing complete reprints of all seven articles in the series on Backyard Satellite TV Receivers by Robert B. Cooper, Jr., complete the coupon below and enclose it with your check or money order for $6.00.

We will ship your reprint, postpaid in U.S. and Canada, within 6 weeks of receipt of your order. All others add $3. for postage.

New York State residents must add 48c sales tax.

R-E
Hold everything!

Get a #324 PanaVise Work Center.
Here’s everything you need to hold everything you work with...in one money-saving package! Write for FREE catalog today.

Adjustable Circuit Board Holder holds up to 10" board.

FREE 2 Nib Sponges with self-purging slits for easy cleaning.

Self-centering wire and solder Holder* attaches to unit.

Famous PanaVise standard base tilts, turns, rotates to exact work position.

6-compartment Tray Base Mount with 6 anti-slip feet.

STANDARD PANA VISE
2850 E. 29th St.,
Long Beach, CA 90806

*Solders wire and solder iron not included.

HOBBY CORNER
continued from page 80

serve as a handle. A "pin vise" makes a good handle, too. (Now, can’t you see a commercial outfit doing that?)

Help!

Russ Lane of Fairfield, Iowa, is looking for information about building a "negative ion generator." If you have any information, send it to "Doc" Savage at Radio-Electronics, 200 Park Ave South, New York, NY 10003.

Memory, Memory

John Gregory of Chicago sent along an interesting inquiry. He points out that thousands of hobbyists must have upgraded their TRS-80 computers from 4K to 16K with one of the available kits. I suspect that he is entirely right because that is one of the very things I did to my own TRS-80.

John goes on to say that there are all those good 4K dynamic memory IC’s lying around unused. He has been unable to find schematics or whatever for using those IC's. Well, John, I don’t recall anything like that either. I'll pass the thought along and perhaps we can arrange for an article or two.

In the meantime, if any of you other readers have anything you have worked out, I'll pass it along to John. Those IC’s could be used for additional RAM, buffer memory, message storage, and a host of other things.

PC board repair

If you have ever removed a defective part from a PC board, you know that great care is required or the board may be damaged.

Pace Inc. (9329 Fraser St., Silver Spring, MD 20910) has a repair system that makes such damaged single- or double-sided boards as good as new. Their Circ-Kit Selector Pack (No. 6993-0037) contains the special tools required and a selection of supplies for repairing pads, tracks, and even plated-through holes.

The system is not difficult to use, if you follow instructions. All you need is a board, an iron, and perhaps a small drill. I can find no reason to question the claim that the repaired board is as good as the original. Certainly, the repair is sturdy and functional.

The same system can be used to modify existing PC boards. Assuming that there is space to do so, you can easily make provision for one or more additional components—even an entire amplifier stage or whatever.

The single disadvantage for the hobbyist is the initial cost of the kit (about $65) but you only need to buy the tools that first time. If you have, or foresee, many repairs, it's worth it; but if you have only one repair to make, on rare occasion, it may be better to stick with jury-rigging your repairs.
DIGITAL AUDIO
continued from page 65
of recording level. The simple statement regarding harmonic distortion of a PCM audio processor/ VCR combination doesn't quite tell the complete story either. For example, if you were to try to record a low-frequency square-wave using even the best open-reel analog tape recorder, during playback you would get something like the patterns shown in Fig. 8. Try the same experiment with a PCM/VCR combination and results would be as shown in Fig. 9. Such other aberrations as modulation noise (caused by inconsistent or wavering speed of analog tape decks) and IM distortion, seldom mentioned in discussing analog tape machines but very much a factor in determining quality of reproduced sound, are also virtually gone with PCM recording.

The EIAJ format
To make the PCM data fit within the parameters of a standard video-cassette recorder, it was necessary to take into account the TV signal requirements of the NTSC (U.S. and Japanese) TV system. In effect, the PCM data has to fit "between the lines" or, more properly, within the lines of the standard TV picture. The standardized format arrived at by the EIAJ calls for a single line of the video "picture" to contain a total of 168 bits, made up of three left-channel 14-bit words, 3 right-channel 14-bit words, 2 error correction 14-bit words and 1 16-bit error detection word. If you multiply and add all that up, it comes to 128 bits. The remaining 40 bits are used up by the usual TV horizontal-sync pulse, a white-reference pulse and a data-sync pulse, as shown in Fig. 10. Of the 262.5 horizontal lines normally contained in a single TV picture field (525 lines per frame) 245 horizontal lines are used for PCM data while the remaining time of each field is used for the usual vertical-sync pulse, equalizing pulses, a control-signal block and a vertical-blanking pulse.

If PCM recording sounds like a perfect system, that's not quite the case either. In an analog tape-recording system, tape drop-outs have a relatively minor effect upon reproduced sound. If the drop-out is of short duration, our ears tend to overlook the interruption of sound. In PCM recording, however, a drop-out, even of short duration, means a loss of vital "bits" needed to reconstruct the original waveform with precision. Error-correction and error-detection is therefore an important part of any PCM audio-recorder design. The new EIAJ Standards provide for various levels of error correction and detection, with each manufacturer able to decide and select the degree and sophistication of the error correction used. The Toshiba unit with which I conducted my preliminary experiments can provide correction for two full words of drop-out in a single horizontal line of data and even if a third word is lost because of further drop-outs, the Toshiba PCM Mark II processor would "fill in" the average amplitude value that is mid-way between the previous "word" and the one that follows, to make a smooth and indistinguishable transition.

PCM in your future
The first manufacturer to make a definite commitment with regard to delivery and price of a PCM processor was Sanyo. Their recently announced model Puls 10 is, of course, built to the new EIAJ standards and will work with any VCR (Beta or VHS). The unit was expected to be available at Sanyo dealers by the end of the first quarter of 1980 and carries a suggested retail price of $399.50. Admittedly, that's a lot more than most consumers would ever spend for home recording facilities, but for those who are seriously involved in recording and were considering a high-quality reel-to-reel tape deck perhaps for live recording purposes, or for use in a home semi-professional recording studio, it does not seem all that far out of line. From what I have been able to learn, the high cost of PCM processors arises primarily from the high cost of the analog-to-digital and digital-to-analog converter circuits that are a primary element in these devices. When these circuits are reduced to LSI (large scale integrated) circuitry we might well enter an era in which PCM processors are no more costly than present-day high-quality cassette decks.

PCM recording is rapidly replacing analog equipment in professional recording studios (where 16-bit systems are becoming the norm) where master tapes are made. Many famous recording artists, having heard their recordings played back via digitally recorded tapes, are demanding that their future releases be mastered by means of PCM audio processing.

Some day, of course, digital recordings will become available in disc form. At the moment, there is no general agreement as to which of many proposed types of discs should be used. But there is no longer any confusion when it comes to PCM recording on tape. The serious audiophile, with the aid of a PCM audio processor and a video recorder is now able to produce PCM taped recordings at home that are actually superior in many ways to the master tapes made in professional recording studios just a couple of years ago on the most expensive and elaborate open-reel analog tape decks.
CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services), $1.50 per word prepaid (no charge for zip code). MINIMUM 15 WORDS. 50% discount for 6 issues, 10% for 12 issues within one year, if prepaid.
NON-COMMERCIAL RATE (for individuals who want to buy or sell a personal item) 85¢ per word prepaid, no minimum.

ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 10¢ per word. All copy subject to publisher’s approval. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.

PLANS & KITS

ELECTRONIC organ kits. The ultimate design. Sounds like a pipe organ. Build it to sell or build it to keep. Models for churches, homes, clubs, pizza parlors. Send $2.00 for demo record and catalog. DEVONIAN, Dept. 70, 6101 Warehouse Way, Sacramento, CA 95826

PRINTED circuit boards from sketch or artwork. Kit projects. Free details. DANCINGTHS INC., Box 261, Westland, MI 48186

SPEAKERS. Save 50%. Build your own speaker system. “Free catalog” write: MC GEE RADIO, RE 1901, McGee Street, Kansas City, MO 64108

NEGATIVE ion generator plans, $4.00. Kits, other plans available, free list. STARWIN, Box 712, Goleta, CA 93117

INSTRUCTIONS and PC negatives, frequency counter 30MHz $5.00, clock 4 digit $2.50. RCG ENTERPRISES, Box 488, Sierra Vista, AZ 85635

SATELLITE TV antenna build for $300. Detailed plans $30. NUMAN ENTERPRISES, Rt. 1, Box 357, Jonesboro, AR 72401

PROJECTION TV . . . Convert your TV to project 7 foot picture. Results equal to $2,500 projector. Total cost less than $20.00. Plans & lens $16.00. Illustrated information free. MACROCOMGI, Washington Crossing, PA 18977

SCA Adapter kit makes your FM receive hidden programs. Background music, ethnic, religious, news. Only $17.00 prepaid. COMMUNICATIONS POLY SERVICES, Box 3251E, Westford, MA 01886

DYNAKIT Mark III’s; twenty units available. All or part make offer. New units, 60 watts each, send stamp to: CHARLES RABIE, 1726 Bentley, L.A., Ca 90025

ELECTRONIC kits. Power supplies, Function Generators etc. Everything needed for your Electronic work bench. Also Audio and other experiments kits free catalog. ESTES ELECTRONICS, Rt. 2, Box 170, Alexander City, AL 35010

LASERS, high power metal blasting ruby, CO₂ plans $7.95 each. Catalog $2.00. EASTON RESEARCH, 2223 Virginia Avenue, Hagerstown, MD 21740

PCB as low as 15¢ sq-in, free drilling, also PTH, INTERNATIONAL ENTERPRISE, 12507 Brent, Cerritos, CA 90701

LASER plans using laser diode 1-1200 watts (specify) $4.00. Catalog $.50. LASERTRONICS (1), 12320 SW Spring, Portland, OR 97225

DON’T RISK your car ANTENNA to vandals. Automatic antenna controller, BCD clock, and other kits available. Send stamp to: STRI-KIT, P.O. Box C, Saugus, CA 91350

CB/HAM Circularly polarized beam antenna. Plans $4.00. Free catalog, plans/kits. PANAXIS, Box 130-F5, Paradise, CA 95969

WEATHER alert decoder works on any Hi-VHF receiver. Plans $4.00. Parts available at R.S. PAUL YEATES, 624 West Union Blvd, Bethlehem, PA 18018

PLANS projection television $10.00, solar collector $5.00, audible circuit tester $3.00. Catalog $2.00. HUGHES SERVICES, 1240 Jarvis, Chicago, IL 60626

CB/HAM Circularly polarized beam antenna. Plans $4.00. Free catalog, plans/kits. PANAXIS, Box 130-F5, Paradise, CA 95969

WEATHER alert decoder works on any Hi-VHF receiver. Plans $4.00. Parts available at R.S. PAUL YEATES, 624 West Union Blvd, Bethlehem, PA 18018

PLANS projection television $10.00, solar collector $5.00, audible circuit tester $3.00. Catalog $2.00. HUGHES SERVICES, 1240 Jarvis, Chicago, IL 60626

RADIO-ELECTRONICS

FREE KIT Catalog

AUTORANGE DIGITAL CAP-METER KIT, . . .Still the best for only $47.95.
Phone 415-447-3433
Write or Phone for FREE KATALOG; Average 1 minute Saturday call is 61c
DAGE SCIENTIFIC INSTRUMENTS, Box 1054R Live moreware, CA 94550

To run your own classified ad, put one word on each of the lines below and send this form along with your check for $1.50 per word (minimum 15 words) to:
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003

ORDER FORM

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $10.

() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Special Category: $10

(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

PLEASE INCLUDE FOR OUR FILES YOUR PERMANENT ADDRESS AND PHONE NUMBER.

TRADITIONS

TRADE-80

TS-80 parallel I/O. PPI-90 contains three 8-bit programmable ports with switch selectable address decoding, plugs into keyboard or E/I. PC and manual $25.95. QUANT SYSTEMS, Dept RE, Box 626, Charleston, SC 29402

MICROCOMPUTERS

TRS-80

MICROCOMPUTERS

TRS-80 micro computers by Radio Shack at 15% discount. Also have software for business systems. MICRO MANAGEMENT SYSTEMS, Downtown Shopping Center Plaza, Cairo, GA 31728 (912) 377-7120

WHOLESALE TO DEALERS

DEALERS: send letterhead for free wholesale price list of CB radio and scanner equipment. FOUR WHEELER COMMUNICATIONS, 10-R New Scotland Ave., Albany, N.Y. 12208 (518) 465-4711
ECG, RCA AND GE SEMICONDUCTORS SOLVE SERVICE PROBLEMS.

MCM SEMICONDUCTORS SOLVE THOSE SAME PROBLEMS AND COST LESS. MUCH LESS.

Here's Proof! SAVE UP TO 40% ON 10 OR MORE OF THE SAME ITEM!

ECG is a registered trademark of GTE Sylvania.

Call This Toll-Free 24 Hour Hot Line 1-800-543-3528
Ohio Watts 1-800-762-3418

special

Equivalent to ECG 163A
$3.90

Equivalent to ECG 165
$2.40

Equivalent to ECG 238
$2.45

ALL ORDERS SENT U.P.S. WITHIN 24 HOURS.
SATELLITE TELEVISION

SATELLITE TV buyers guide. Exclusive comparisons plus how to install and sell your own at $5.00 each. $10.95 ppd. NEGEYE ENGINEERING, Box 130-F6, Maitland, FL 32751

SATELLITE television—satellite weatherfax. Will your receiving antenna clear local obstructions? Get antenna aiming data for geostationary satellites, custom computed for your latitude and longitude. Included in chart of U.S. and international satellites around the globe and instructions on how to find them in the sky. Send $5.00 to COMPUSAT, 643 South Route, Emhurst, Illinois 60126

SATELLITE television antenna and equipment dealers list. Build yourself. Save. Complete list of dealers only $3.00. DLF, Box 519, Nash, TX 75569

1. 5 Volt, 3 amp. Regulated Power Supply. Great for TIT Projects $19.50
2. EMM 4200A, 4K Static RAMs, Ceramic A local memory boards manufacturer closed. We bought the new memory boards and these 4200A static RAMS out. They are tested and 90-day guaranteed 100% good. Prime tested 4200A 4K RAMS $5.50 ea.
3. Super Saver. Micro PD411, Ceramic 4K x 1 dynamic RAMS 8 for $10.00

SATELLITE TV FOR THE HOME

Our receiver lets you get 75 channels of TV reception directly from earth orbiting cable TV satellites! HBO, Showtime, super stations, local sports and movies from around the world.

Sick of Network TV? Buy Complete or Build our kit and save!

Our 24-channel receiver provides "studio quality" TV reception. Easy to install Ultra low power consumption Brilliant color! Works anywhere! FCC licensing no longer required. Order today! Complete details covered in our Home Earth Station Manual, Send $27.95 today (refundable against any purchase), or call: 24-hour C.O.D. Hotline (305) 869-4283

SATELLITE TV

For Sale

Radio & TV tubes 49c each. One year guaranteed. More than unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

SCANNER/monitor accessories—kits and factory assembled. Free catalog. CAPIRI ELECTRONICS, Route 1R, Canon, GA 30050

FREE catalog, IC's, LED's, semis, parts. CORO-NET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada H3C 1R6 U.S. inquiries.

RECONDITIONED test equipment. $1.00 for catalog. JAMES WALTER TEST EQUIPMENT, 2695 Nickel, San Pablo, CA 94806

SAVE up to 50% on name brand test equipment. Free catalog and price list. SALEN ELECTRONICS, Box 82-M, Skokie, IL 60077

PRINTED Circuit Boards: Your artwork, quick delivery, reasonable. Quantity discounts. ATLAS CIRCUITS, Box 974, Waynesville, NC 28786(704) 456-7249

RAW speakers and finished systems for Hi-Fi and Sound Reinforcement. Also cabinet plans, hardware, grille cloth, crossovers, microphones, accessories. A must see! See more information-packed catalog. $1.00 UNIVERSAL DISCOUNT SOUND, Dept. RE, 2424 Ringling Blvd, Sarasota, FL 34077

ALARM systems! Burglar, fire, car. Fire equipment! Savel Catalog, decal; 50c, refundable ASH, 188H Osmoor Road, B'nai, CA 35209

VARIATOR television tuners. These are small high performance units with separate VHF and UHF tuners. With data, new $19.75 ppd. USA. VARIATOR DESIGN, Box 234, Skokie, IL 60635

GOVERNMENT surplus receivers, transmitters, snooperoscopes, parts, fantastic 72 page catalog $1.00 MESHNA, Nahant, MA 01908

LASER handbook with burning, cutting, Ruby Reeds, Co.'s, complete plans, books, and parts. Send $4.00 to FAMCO, dept ra, box 1902, Rochester, NY 03867
BULLETEN ELECTRONICS

NPW HIGH VOLTAGE 1.59 VVCW-450 VOC IC-3 A (5A Peak)
FOR TV HORIZONTAL SECTIONS HIGH VOLTAGE REGULATORS
REPLACES: 23047 23773 23632 23465 23354 23150 23135 23656 23665 23184 MANY OTHERS
LM3046 (CA3046) Transistor Array .75
RCA 40430 40V6 6TRAC TO-66 .75
CA3058 RCA Transistor Array .80
LM567 Tone Decoder .99
CD4046 PLL CMOS .99
LM3202 Quad Comparator .89
2SC1849 High Freq NPN TO-92. 6.00
MPS20 NPN GEN PUR .6.00

Sound Effects Kit 17.50

The 56 is a complete kit that can be assembled on the job to build a programmable sound effects generator. Developed around the new Texas Instruments (TAMS) Sound Chip, the design is to provide a wide range of sounds to be played back as an audio signal. The chip is designed to be used in a variety of applications, including speech synthesis, sound masking, and interactive sound generation. The kit includes a printed circuit board with all necessary components, a power supply, and a USER guide. Assemble the kit according to the instructions and you will have a powerful tool for adding realistic sound effects to your projects. A complete list of applications and examples is included in the manual.}

AVX-8800 PROGRAMMABLE SOUND GENERATOR

The AVX-8800 is a 40 pin LSI chip with three oscillators, three amplitude controls, programmable noise generator, three mixers, an envelope generator, and three D/A converters that can be controlled by 8 bit WORDS. No external parts or caps required. This chip has been used to build a microprocessor chip or a VLSI chip. It is a powerful and versatile tool for sound generation. The chip allows for a high degree of customization and is a valuable addition to any audio design project. Features include:

- 40 pin LSI chip
- Three oscillators
- Three amplitude controls
- Programmable noise generator
- Three mixers
- Envelope generator
- Three D/A converters
- 8 bit WORDS control

The AVX-8800 is perfect for a wide range of applications, from simple sound effects to complex audio synthesis. It is a must-have for any audio engineer or hobbyist looking to add realistic sound effects to their projects. Try it out and see what you can create!
100 W CLASS A POWER AMP KIT

Dynamic Class A circuit design makes this unit unique in its class. Crystal clear, 100 watts power output will satisfy the most picky fans. A perfect combination with the TA-1020 low T.I.M. stereo pre-amp.

Specifications:
- Output power: 100W RMS into 8-ohm, 125W RMS into 4-ohm.
- Frequency response: 10Hz - 100KHz.
- T.H.D. less than 0.05%.
- Signal-to-noise ratio: better than 80dB.
- Input sensitivity: 1V max.
- Power supply: +40V @ 5 amp.

Price: TA-1000 KIT $51.95
Power transformer $15.00 each

PROFESSIONAL 10 OCTAVE STEREO GRAPHIC EQUALIZER!!

Graphic equalizer has been used for years in sound studios and concert arenas but were too expensive to be considered for home use. Now we offer you the facility at an affordable price. This unit can extend your control of your Hi-Fi system by minimizing the non-linearities of the combined speaker/room system. Fantastic features as follows:
- 10 equalizer controls for two channels.
- Cut out rumble, surface noise and hiss.
- Minimizes speakers/room frequency lines.
- Frequency response from 30Hz to 16KHz.
- Tone controls plus defeat, monitor and tape selector.
- Control range ± 12dB in 10 octaves (30Hz, 60Hz, 120Hz, 240Hz, 500Hz, 1kHz, 2kHz, 4kHz, 8kHz, 16KHz).
- Operating voltage 117V 50/60Hz.

Price: FACTORY ASSEMBLED UNIT NOT A KIT SPECIAL PRICE $117.00 ea.

BATTERY POWERED FLUORESCENT LANTERN

MODEL 888 R

FEATURES:
- Circuitry: designed for operation by high efficiency, high power silicon transistor which enable illumination maintain in a standard level even the battery supply drops to a certain low voltage.
- 90° 6W cool/daylight miniatures fluorescent tube.
- 8 x 1.5V UM-1 (size D) dry cell battery.
- Easy sliding door for changing batteries.
- Stainless steel housing, wide angle increasing illumination of the lantern.

Price: $19.50 ea.

SUB MINI SIZE FET CONDENSER MICROPHONE

Specification:
- Sensitivity: 65dB ± 3db
- F.E.D.: 50 Hz
- 8 KHz
- Output Impedance: 1K ohm max.
- Polar Pattern: Omni-directional
- Power Supply: 1.5V 10V D.C.
- Sound Pressure Level: Max. 120dB
- EMARP $2.50 ea. or 2 for $4.50

NEW MARK III 9 Steps 4 Colors LED VU

Stereo level indicator kit with ar-shaped display panel!!! This Mark III LED level indicator is a new design PC board with an arc-shaped 4 colors LED display (change color from red, yellow, green and bottle green) to the peak output indicated by rose. The power range is very large, from —30dB to +6dB. The Mark III indicator is applicable to 1 watt - 200 watts amplifier operating voltage is 3V - 9V D.C at max 400 MA. The circuit uses 10 LEDs per channel. It is very easy to connect to the amplifier. Just hook up with the speaker output!!!

Price: IN KIT FORM $19.50

MARK II SOUND ACTIVATED SWITCH KIT

A new designed circuit employed, 2 I.C., a DPDT relay with a led indicator. A condenser microphone comes with the kit. The relay can handle up to 200 watts contact to allow to control most things. Just click the finger, the relay will close, the second click the relay will release it. Sensitivity can be adjusted by an on board trim-pot. Operating voltage 9V D.C.

Price: $8.50 PER KIT

MARK IV 15 STEPS LED POWER LEVEL INDICATOR KIT

This new stereo level indicator kit consists of 36-3 color LED (15 per channel) to indicate the sound level output of your amplifier from —36dB to +3dB. Comes with a well-designed silk screen printed plastic panel and has a selected switch to allow floating or gradual output indicating. Power supply is 6~12 V D.C. with T.M.C. on hope input sensitivity controls. This unit can work with any amplifier from 1W to 200W.

Kit includes 70 pcs. driver transistors, 38 pcs. matched 4-color LED, all other electronic components, PC board and front panel.

Price: MARK IV KIT $31.50

30W + 30W STEREO HYBRID AMPLIFIER KIT

It works in 12V DC as well! Kit includes 1 PC SANYO STK-043 stereo power amp. IC LM 1458 as pre amp, all other electronic parts, PC Board, all control pots and special heat sink for hybrid. Power transformer not included. It produces ultra hi-f output up to 60 watts per channel. A high APRK output is less than 0.1% total harmonic distortion between 100Hz and 12KHz.

Price: $32.50 PER KIT

BATTERY POWERED FLUORESCENT LANTERN

MODEL 888 R

FEATURES
- Circuitry: designed for operation by high efficiency, high power silicon transistor which enable illumination maintain in a standard level even the battery supply drops to a certain low voltage.
- 90° 6W cool/daylight miniatures fluorescent tube.
- 8 x 1.5V UM-1 (size D) dry cell battery.
- Easy sliding door for changing batteries.
- Stainless steel housing, wide angle increasing illumination of the lantern.

Price: $19.50 ea.

5W AUDIO AMP KIT

2 LM 380 with Volume Control
- Power Supply: 6V 18V DC
- ONLY $6.00 EACH

PROFESSIONAL PANEL METERS

A. 0-10VA 5.50 ea.
B. 0-30VA 5.50 ea.
C. 0-60VA 5.50 ea.
D. 0-150VA 9.00 ea.
E. 0-300VA 10.00 ea.
F. 0-600VA 20.00 ea.

0.5" LED ALARM CLOCK MODULE

ASSEMBLED NOT A KIT!!!

Features:
- 4 digits 0.5" LED Displays • 12 hours time format • 12 hours alarm audio output • 55 min. countdown timer • 1 min. snooze control

Price: ONLY $7.50 EACH

SPECIAL TRANSFORMER FOR CLOCK (FREE)

DIGITAL AUTO SECURITY SYSTEM

4 DIGITS PERSON CODE!!

SPECIAL $19.95

- Easily programmed...no wiring needed...
- Extra added...power output...
- Automatically activates...
- Mech. operated...
- Automatically triggers...
- All units factory assembled and tested...
- 3-WAY PROTECTION!

A NEW LED ARRAY AND DRIVER FOR LEVEL METERS

This series covers a wide range of level indication functions for the use in the field of audio - visual - telecommunication fields. In many cases the problem of uneven illumination often encountered with LED arrangements as well as design problems caused by using several units of varying size are substantially reduced. 12 LEDs in one bar.

Price:
- LED ARRAY GL-1123S Red, Red, Red $5.50
- GL-1123C Green, Yellow, Red $6.50
- GL-1122S Green, Green, Red $6.50
- GL-1126S Green, Green, Green $6.50

2.28" LED DRIVERS

IC 2406G is an I.C. specially designed to drive 12 LED's. The number of LEDs is linearly illuminated according to the control voltage input terminal 21. Operating voltage is 9 ~ 12V D.C. $5.25 EACH

PROFESSIONAL FM WIRELESS MICROPHONE

TECt model WEM-16 is a factory assembled FM wireless microphone powered by an AA size battery. Transmits in the range of 88-108MHz. With 3 transistor circuits and an omni-directional electric condenser, Element built-in plastic tube type case: mix is 4/5 tone. With a standard FM radio it can be heard anywhere on a one-acre lot. sound quality was judged very good.

Price: $16.50

FLASHER LED

Unique design combines a jumbo red LED with an IC flasher chip in one package. Operates directly from 12V to 24V.D.C. Dropping resistor needed. Pulse rate 8Hz @ 30 V.D.C.

Price: 2 for $2.20

BIPOLAR LED RED/GREEN

2 colors in one LED, green and red, changes color when reverse voltage supplied. Amazing!

Price: 2 FOR $1.60

LCD CLOCK MODULLE!

- 0.5" LCD 4 digits display • 12 hours time format • D.C. powered (1.5V battery) • 12 hr, or 24 hr. display • 24 hr. alarm set • 60 min. countdown
- On board dual back - up lights • Dual time zone display • Stop watch function

Price:
- M/I-2200 (12 hr) $24.50 EA.
- M/I-2240 (24 hr) $26.50 EA.

MINI-SIZED I.C. AM RADIO

Size smaller than a box of matches! Receives all AM stations. Batteries and ear phones included. Only $10.50

12 DC MINI RELAY

- 6V SPST 2 AMP 1.30
- 12V SPST 2 AMP 1.50
- 12V SPDT 2 AMP 2.50
- 12V DPDT 2 AMP 3.50

LINEAR SLIDE POT

5000 SINGLE Metal Case 3" Long

Price: 2 FOR $1.20

CIRCLE 16 ON FREE INFORMATION CARD
SUPER FM WIRELESS MIC KIT — MARK III
This new designed circuit uses high PEQ, FET transistors with 2 stages pre amp. Transmits FM Range (60-300K) to 2 blocks away and with the ultra sensitive condenser microphone that comes with the kit, allows you to pick up any sound within 15 ft! Kit includes all electronic parts and PC board. Light tube not included!

$5.50 PER KIT

DIGITAL LCD MULTIMETER
- 3½ digit display • 200 hours 9V battery life • Auto zero, polarity, overrange indication • 1000V DC • F.S. sensitivity • 19 ranges and Subranges • D.C. volt: 0.1 to 1000V • A.C. volt: 0.1 to 600V • Resistance: 0.1Ω to 20 MΩ • D.C. current: 0.1A to 100 MA

OUR PRICE $31.45

HEAVY DUTY CLIP LEADS
10 pairs — 5 colors Alligator clips on a 22” long lead. Great for any testing.
$12.00/pack
NEW PRODUCTS!

Super Color S-100 Video Kit $59.95
Expandable to 256 x 192 high resolution color graphics. 6847 with all display modes computer controllable. High and low address display capability.

Gremlin Color Video Kit $59.95
32 x 16 alphanumeric and graphics up to 64 x 64 with 647 chip. 1K RAM at $000.00. Plugs into Super E/E 44 pin bus. Not expandable to high resolution graphics.

Quest Super Basic
Quest, the leader in inexpensive S-100 boards announces another first. Quest is the first company to offer a full S-100 basic system. The complete function Super Basic by Ron Center including floating point capability (7 digit precision), 171 pin connector slot for PC cards and a 50 pin connector slot for the Quest Super Expansion Board. Power supply and sockets for all IC’s are included: a total of 127 pins. Instruction manual which now includes over 40 press of ‘learning info. including a series of lessons to help get you started and a music program and graphics target game.

RCA Cosmac Super E/E Computer $106.55
Computers before you buy any other computer. There is no other computer on the market today that has all the desirable features of the Super E/E. The Super E/E is a single board computer that does many things and much faster than you can imagine for the price. Throughout the years we have continued to improve and add capability and functions for training and for learning programming with its machine language and yet is easily expanded with additional memory, Basic, ASCII keyboards, video character generation, etc.

Super Expansion Board with Cassette Interface $89.95
This is the latest and certainly the most astonishing value. This board has been designed to allow you to decide how you want it to function. The Super Expansion Board comes with 48 x low power RAM fully addressable anywhere in 64K with built in memory protection of 4K. A large number of options have been made for all options on the same board and will easily interface into your cassette board along with other boards for complete expansion of your computer. For use with all E/E boards through 1979. Domestic postage $6.50. Additional postage is extra.

TERMS: $5.00 min. order. U.S. Funds. Calif. residents add 6% tax. BankAmerica and MasterCharge accepted. Shipping charges will be added on charge cards.

E/E Adapter Kit $24.50
Plugs into E/E providing Super E/E44 and 40 pin bus plus S-100 bus expansion (With Super Exp. Board). Accepts from 32K, 16K to 128K with up to 4 KHz with wait states. Add 1K E/E RAM $79.95.

1802 16K Dynamic RAM Kit $149.00
1802 16K expandable to 32K. High and low address display capability and mode LED’s optional $18.00.

Super Presentation Cassette
Tom Pittman’s 1802 Tiny Basic Source Listing now available. Find out how Tom Pittman wrote the basic listing to get the most out of your Super E/E. Never offered before $19.00

S-100 4-Slot Expansion $9.95
Super Monitor VI Source Listing $15.00
Coming Soon: Assembler, Editor, Editor. Library, Diskette Expansion Board, Super E/E Utility Kit, Super E/E Editor, etc.

S-100 Dynamic Microprocessor version: 300-2006 Floppy Disk System.

Integrated Circuits

S-100 Computer Boards
8k Static RAM Kit $135.
16K Static RAM Kit $265.
24K Static RAM Kit $425.
32K Static RAM Kit $675.
15K Dynamic RAM Kit $199.
32K Dynamic RAM Kit $310.
64K Dynamic RAM Kit $470.
Video Interface Kit $125.

Video Modulator Kit $8.95
Includes 5700 (can be used with most video monitor) and a modulator kit with a 5 foot video cable.

Television Terminal $345.00
20 key, upper, lowercase, 10 characters of 16 character set. One character set, one byte max. 120 characters per line, 20 lines/page. $89.00 pre-owned. USA $345.00.

Interube II Terminal $874.00
Super Brain
Floppy Disk Terminal $2985.

7lC Update Master Manual $29.95

Multi-volt Power Supply Power Supply
5 amp. 12v, 15v, 5v, 15v, 5v, 12v, 5 amp.. 5 amp. 12 amp. option 5v. 12v 15v regulated kit $29.95. Kit with phototransistor $27.45. $4.00 shipping. Kit of hardwire $14.00 Woodruff case $10.00 $1.50 shipping.

PROM Eraser will erase 25 PR0M’s in 15 minutes. Ultraviolet assembled. $37.50 Safety switch/Timer version $69.50

Leon: 60 Hz Crystal Time Base Kit $4.40
Converts digital clock from AC line frequency to 60 Hz sine wave. $10.00 mirror image, 100 Hz sine wave. $10.00 +200° temps. of a degree. Air liquid. Beautiful woodgrain case $11.75

Free: Send for your own copy of our NEW QUEST CATALOG. Include 29c stamp.

P.O. Box 4403E, Santa Clara, CA 95054
Will calls: 2322 Walsh Ave.
(408)998-1640

LCR 7000 + Printer $389.00
40/64 column dot matrix impact, std paper interface. all personal computers. Listed elsewhere.

Television Terminal $345.00
20 key, upper, lower case, 10 characters of 16 character set. One character set, one byte max. 120 characters per line, 20 lines/page. $89.00 pre-owned. USA $345.00.

Interube II Terminal $874.00
Super Brain
Floppy Disk Terminal $2985.

7lC Update Master Manual $29.95

S-100 Computer Boards
8k Static RAM Kit $135.
16K Static RAM Kit $265.
24K Static RAM Kit $425.
32K Static RAM Kit $675.
15K Dynamic RAM Kit $199.
32K Dynamic RAM Kit $310.
64K Dynamic RAM Kit $470.
Video Interface Kit $125.

Video Modulator Kit $8.95
Includes 5700 (can be used with most video monitor) and a modulator kit with a 5 foot video cable.

Television Terminal $345.00
20 key, upper, lowercase, 10 characters of 16 character set. One character set, one byte max. 120 characters per line, 20 lines/page. $89.00 pre-owned. USA $345.00.

Interube II Terminal $874.00
Super Brain
Floppy Disk Terminal $2985.

7lC Update Master Manual $29.95

S-100 Computer Boards
8k Static RAM Kit $135.
16K Static RAM Kit $265.
24K Static RAM Kit $425.
32K Static RAM Kit $675.
15K Dynamic RAM Kit $199.
32K Dynamic RAM Kit $310.
64K Dynamic RAM Kit $470.
Video Interface Kit $125.

Video Modulator Kit $8.95
Includes 5700 (can be used with most video monitor) and a modulator kit with a 5 foot video cable.

Television Terminal $345.00
20 key, upper, lowercase, 10 characters of 16 character set. One character set, one byte max. 120 characters per line, 20 lines/page. $89.00 pre-owned. USA $345.00.

Interube II Terminal $874.00
Super Brain
Floppy Disk Terminal $2985.

7lC Update Master Manual $29.95
TEST EQUIPMENT, TOOLS, TELEPHONE DEVICES, AUTO STEREO PRODUCTS

FREE 8 pc. Tool Set (value $14.95) with $200.00 purchase of merchandise from this ad

Logic Probe
- Compact circuit powered
- Detects faults as small as 50 µu
- STTL-155-0 CMOS compatibility
- $44.95

Function Generator
- Model 2010
- Reg. $195.00
- Genetrix
- Triangular wave output
- $157.95

100 MHz 8-Digit Counter
- 20 Hz to 100 MHz range
- LED display
- Fully automatic
- Model MAX100
- $127.50

Preassembled Proto Boards
- Model PB-13A
- Fully assembled board contains four DT-395 sockets, seven DT-590 bus strips and four 5-way binding posts
- $499.50

Proto Board with Built-in Power Supplies
- Model 3001
- Reg. $39.95
- With power supply
- $170.00

3½-Digit 0.1% Digital Capacitance Meter
- Measures capacitance from 0 to 4495 pF
- 0.1% reading accuracy
- Auto over and under range indication
- $44.95

Cordless Soldering Iron
- WAHL
- Model 4500
- Reg. $99.00
- Lightweight cordless soldering iron
- $299.50

Weller Controlled Output Soldering Station
- Model WTCPW
- Reg. $89.00
- 250 W, 120 V
- $499.50

EDSYN SOLDA PULL
- Desoldering Tool
- Model 0997
- $19.95

Portable VOM Multimeter
- 20 kV DC/10 MV AC
- Model VM20
- Reg. $19.00
- $19.95

RC Circuit Box
- 10-µF capacitor
- 0.25 to 1.00
- Model WC 412A
- $42.00

Portable Digital Capacitance Meter
- Measures capacitance from 0 to 4495 pF
- 0.1% reading accuracy
- Auto over and under range indication
- $44.95

3½-Digit DMM with LCD Readout
- 3½-Digit DC/µA
- 0.5% reading accuracy
- Auto over and under range indication
- $129.95

Dual Trace 5 MHz 6 Trace Generator
- Model 2615
- $299.50
- AVP's patented dual trace, 6 trace generator
- $1,995.00

Digital Multimeters
- Sinclair PDMD 35
- Reg. $49.95
- $49.95

Beckman TECH 310
- 20 MHz Impedance
- 10 Amp AC/DC
- 1000 MHz
- $99.95

Simpson 461
- Complete with micro-cadmium batteries
- AC adapter/charger, test leads
- $149.95

CAR STEREO PRODUCTS

In-Dash Car Stereos
- RCA-VIZ
- Super Chro-Bar
- Model 515A
- Reg. $195.00
- $89.95

CANON Calculator
- Portable Printer with Adding Machine Tape
- Model PII Ct
- $139.95

Chess Challenger 7
- Model BC
- Reg. $110.00
- RCP stress
- $79.95

Portable Oscilloscopes
- 15 MHz Dual Trace Triggered Miniscope
- Model MS-15
- Reg. $395.00
- $269.95

Fordham
955 Conklin St. Farmingdale, N.Y. 11735
- Master Charge
- BankAmericard
- VISA
- COD
- Check
- Money Order
- CODs shipping and insurance extra
- N.Y. State residents add appropriate sales tax
- TOLL FREE (800) 645-9518 in N.Y. State call (516) 792-0050
Static RAM Boards
- **S-100 32K** (Uses 2114 chips)
 - 450ns: 499.00
 - 250ns: 499.00
 - Bare Board: 499.00
- **S-100 16K** (B-100 Compatible)
 - 2 MHz or 4 MHz
 - 128K, 256K, 512K
 - Bare Board w/o caps less mem. 99.95
- **S-100 16K**
 - 2 MHz or 4 MHz
 - Bare Board w/o caps less mem. 99.95

AMOS Flash RAM Board
- **S-100 16K**
 - 4 MHz
 - Bare Board: 69.95

Memory Mapping
- **Bare Board**
- **CP/M**
- **1MHz**
- **Extended Memory Management**

The VISTA V-80 Disk Drive System
- **2.2 MB Storage through...**
- **9000 Misc.**

Letter Quality Electric Typewriter
- **TRENTA 1000 Communication Station**
- **Model No**
 - **2** MHz, **4** MHz
 - **Warranty**

EMARK-20...
- **Reg.**
 - **$599.00**

UV "Eprom" Eraser
- **Model Uv-11E**
 - **$99.95**

Low-Cost Add-On Disk Subsystem Kit
- **VISTA Floppy Controller Card**
 - **$399.00**
 - **$399.00**
 - **$799.00**

IMS Static RAM Boards
- **Phantom**
 - **Assembled & tested by...**
 - **8K Static**
 - **16K Static**
 - **32K Static**

Anadex Printer/New Apple Version
- **IBM 1382 Printer**
 - **$179.95**

S-100 Motherboard Special
- **$99.95**

Apple/Enchamped TRS 80 16K-Upgrade Kit
- **Special: TRS 80**
 - **$9.95**

Expansoram II Memory Kits
- **Expansoram II**
 - **Up to 16K**
 - **Power Protection...**

Memory Booklet
- **$20.00**

Zero Insertion Force
- **$599.00**

LED Readouts
- **Z-80 Support Chips**
 - **$1280.00**
 - **$1280.00**
 - **$1280.00**

5600 Support Chips
- **$599.00**

Microprocessors
- **CPU**
- **RAM**

Static RAMs
- **256K 16K**

Floppy Disk I/O
- **150000 Disk Drive**
- **$495.00**

A/O Converters
- **CP/M**

Waveform Generators
- **ACOUSTIC**
 - **$199.95**
 - **$199.95**

Connectors (Gold)
- **101275**

NAKED PC
- **$34.95**

Computer Specials
- **Opt.**

Processor Technology
- **IC Special Purchase**

Wheel Specials
- **Double Sided Double Density**

Socket Specials
- **$19.95**

First to Offer Prime Products to the Hobbyist at Fair Prices
- **Proven Quality**
- **Guaranteed Satisfaction**
- **Over 1,000,000.00 Inventory**
Low Prices and New Items Every Day! In Stock Now at Our Store Near You

Model 178. A no-frills 4½-digit three-function DMM for production use. High accuracy and all the capability needed for most general purpose uses: $235

- switch selectable HI-LO ohms: $319

Model 179. Has all the features offered by the 178 plus TRMS AC, AC and DC current, 10V sensitivity, and: $149

Model 179-20A

- Has all the features of the Model 179 but also includes an additional 20A range. for applications beyond the 2A range of most DMMs: $359

Model 177. This five-function, 4½-digit DMM has 1V, 10Ω, 1mA sensitivity, TRMS AC, 0.03% basic accuracy, and 1V analog output. $429

Model 191. Our top-of-the-line, 5½-digit DMM. Microprocessor control provides 0.007% basic DC accuracy. Also has pushbutton null: $549

Model 169. Our "macho meter" is a tough, 3½-digit bench DMM with 0.25% basic DC accuracy, larger LCD display, range and function annunciators on the display and 1-year battery life. $99

Model 130. Our rugged, hand-held 3½-digit LCD DMM has five full functions, 0.5% basic DC accuracy, easy-to-use rotary switches, impact-resistant case, light (only 10 oz.) weight and a 10A current range.
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4016BE</td>
<td>1.29</td>
<td>CD4248BE</td>
</tr>
<tr>
<td>CD4021BE</td>
<td>1.29</td>
<td>CD4250BE</td>
</tr>
<tr>
<td>CD4032BE</td>
<td>1.29</td>
<td>CD4251BE</td>
</tr>
<tr>
<td>CD4038BE</td>
<td>1.29</td>
<td>CD4252BE</td>
</tr>
<tr>
<td>CD4041BE</td>
<td>1.29</td>
<td>CD4253BE</td>
</tr>
<tr>
<td>CD4042BE</td>
<td>1.29</td>
<td>CD4254BE</td>
</tr>
<tr>
<td>CD4047BE</td>
<td>1.29</td>
<td>CD4255BE</td>
</tr>
<tr>
<td>CD4050BE</td>
<td>1.29</td>
<td>CD4256BE</td>
</tr>
<tr>
<td>CD4051BE</td>
<td>1.29</td>
<td>CD4257BE</td>
</tr>
<tr>
<td>CD4053BE</td>
<td>1.29</td>
<td>CD4258BE</td>
</tr>
<tr>
<td>CD4054BE</td>
<td>1.29</td>
<td>CD4259BE</td>
</tr>
<tr>
<td>CD4066BE</td>
<td>1.29</td>
<td>CD4260BE</td>
</tr>
<tr>
<td>CD4074BE</td>
<td>1.29</td>
<td>CD4261BE</td>
</tr>
<tr>
<td>CD4075BE</td>
<td>1.29</td>
<td>CD4262BE</td>
</tr>
<tr>
<td>CD4076BE</td>
<td>1.29</td>
<td>CD4263BE</td>
</tr>
<tr>
<td>CD4077BE</td>
<td>1.29</td>
<td>CD4264BE</td>
</tr>
<tr>
<td>CD4078BE</td>
<td>1.29</td>
<td>CD4265BE</td>
</tr>
<tr>
<td>CD4079BE</td>
<td>1.29</td>
<td>CD4266BE</td>
</tr>
<tr>
<td>CD4080BE</td>
<td>1.29</td>
<td>CD4267BE</td>
</tr>
<tr>
<td>CD4081BE</td>
<td>1.29</td>
<td>CD4268BE</td>
</tr>
</tbody>
</table>

PLASTIC POWER TRANSISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P70C</td>
<td>$P9N 1 AMP 100V</td>
</tr>
<tr>
<td>$P703</td>
<td>$P4N 1 AMP 100V</td>
</tr>
<tr>
<td>$P705</td>
<td>$P3N 3 AMP 100V</td>
</tr>
<tr>
<td>$P709</td>
<td>$P2N 2 AMP 100V</td>
</tr>
<tr>
<td>$P715</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P716</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P717</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P718</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P719</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P720</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P721</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P722</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P723</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P724</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P725</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P726</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P727</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P728</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P729</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P730</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P731</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P732</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P733</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P734</td>
<td>$P1N 5 AMP 100V</td>
</tr>
<tr>
<td>$P735</td>
<td>$P1N 5 AMP 100V</td>
</tr>
</tbody>
</table>

MOS MEMORIES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4708</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>T4728A</td>
<td>10.95</td>
<td></td>
</tr>
<tr>
<td>T4752A</td>
<td>24.95</td>
<td></td>
</tr>
</tbody>
</table>

1980 IC MASTER

- Complete integrated circuit data selector, Master guide to the latest I.C.'s including microprocessors and consumer circuits, 40,000 device types listed, 7,000 new device types posted. Complete new section on MPL, loads & Systems.
- Free Quarterly Updates
- Special $49.95

SUMMER SPECIAL

- "ACTIVE IS AGGRESSIVE"
- DUAL-IN-LINE — LOW PROFILE — I.C. SOCKETS
- CONTACTS | PRICE | CONTACTS | PRICE |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0.31</td>
<td>22</td>
<td>0.31</td>
</tr>
<tr>
<td>14</td>
<td>0.11</td>
<td>22</td>
<td>0.11</td>
</tr>
<tr>
<td>14</td>
<td>0.11</td>
<td>22</td>
<td>0.11</td>
</tr>
<tr>
<td>18</td>
<td>0.17</td>
<td>40</td>
<td>0.17</td>
</tr>
<tr>
<td>28</td>
<td>0.29</td>
<td>40</td>
<td>0.29</td>
</tr>
<tr>
<td>18</td>
<td>0.17</td>
<td>40</td>
<td>0.17</td>
</tr>
</tbody>
</table>

SOCKET SALE

- LOWEST PRICES ANYWHERE FOR THE HIGHEST QUALITY, AN UNBEATABLE COMBINATION.

OPTO SALE

- L.E.D. LAMPS
- TEL/1006 4MM Green 9.95
- TEL/1016 5MM Green 9.95
- TEL/1020 4MM Red 9.95
- TEL/1024 5MM Red 9.95
- TEL/1026 5MM Yellow 9.95

- DISPLAYS
- PIN1107 37V Common Cathode 9.95
- PIN1107 37V Common Cathode 9.95
- PIN1405 5V Common Cathode 9.95
- PIN1427 5V Common Cathode 9.95

- ISOLATORS
- TEL/1034 Dual Opto Isolator 15.95
- TEL/1084 Quad Opto Isolator 15.95

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Minimum order $100; add $2.00 for cover postage & handling.

Foreign customers please remit payment on an international bank draft or international postal money order in American dollars.

IN CANADA

506 FERNER ST.
MONTREAL, QUEBEC

BARTER CENTRE

1056 BARTER ROAD
OAKVILLE, ONTARIO

TILE

1300 KINGSGATE
VANCOUVER, B.C.

CIRCLE 5 ON FREE INFORMATION CARD
Z80-4MHz Single Card Computer

Cromemco's Z80-4MHz Single Card Computer is a powerful system that includes the Z80 Microprocessor (FAC "7800" chip) and 4MHz clock. The kit also includes a complete software system, including a monitor program, as well as an assembler and debugger. The card can be used with all Z80 systems and is compatible with most Z80 software. The kit also includes a power supply and a keyboard interface. With its powerful features and ease of use, the Z80-4MHz Single Card Computer is the perfect choice for anyone looking for a powerful Z80 system.

DISPLAY LEDS

<table>
<thead>
<tr>
<th>LED Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainbow Red</td>
<td>Red</td>
<td>0402</td>
<td>.75</td>
</tr>
<tr>
<td>Rainbow Green</td>
<td>Green</td>
<td>0402</td>
<td>.75</td>
</tr>
<tr>
<td>Rainbow Yellow</td>
<td>Yellow</td>
<td>0402</td>
<td>.75</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>0402</td>
<td>.75</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
<td>0402</td>
<td>.75</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>0402</td>
<td>.75</td>
</tr>
</tbody>
</table>

1/4 WATT RESISTOR ASSORTMENTS - 5%

<table>
<thead>
<tr>
<th>Resistor Value</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1K</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>2K</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>3K</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>4K</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>5K</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

DISCRETE LEDS

<table>
<thead>
<tr>
<th>LED Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS1024</td>
<td>Red</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>C01016</td>
<td>Blue</td>
<td>0402</td>
<td>.99</td>
</tr>
<tr>
<td>SN5711</td>
<td>Yellow</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>5N7425</td>
<td>Yellow</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>SN7406</td>
<td>Green</td>
<td>0402</td>
<td>.99</td>
</tr>
<tr>
<td>741527</td>
<td>Green</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>04025</td>
<td>Red</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>1M709</td>
<td>Yellow</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>5574199</td>
<td>Red</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>SN74167</td>
<td>Green</td>
<td>0402</td>
<td>.39</td>
</tr>
</tbody>
</table>

MOSFETS

<table>
<thead>
<tr>
<th>MOSFET Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM3P-K-15</td>
<td>Red</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>LM3201-12</td>
<td>Yellow</td>
<td>0402</td>
<td>.39</td>
</tr>
<tr>
<td>LM312H</td>
<td>Yellow</td>
<td>0402</td>
<td>.39</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Diode Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C04518</td>
<td>Blue</td>
<td>0402</td>
<td>.39</td>
</tr>
</tbody>
</table>

SCRs AND FW BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>SCR Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ003-600</td>
<td>Red</td>
<td>0402</td>
<td>$1.59</td>
</tr>
<tr>
<td>BZ003-400</td>
<td>Red</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>BZ003-100</td>
<td>Red</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>BZ003-70</td>
<td>Red</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

1602 LCD

<table>
<thead>
<tr>
<th>LCD Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1602X5</td>
<td>Red</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Transistor Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF548</td>
<td>Blue</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Value</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10U5</td>
<td>0.155uF</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>10U6</td>
<td>0.15uF</td>
<td>0402</td>
<td>$1.75</td>
</tr>
<tr>
<td>10U7</td>
<td>0.12uF</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

ICs

<table>
<thead>
<tr>
<th>IC Type</th>
<th>Color</th>
<th>PKG</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS00</td>
<td>Green</td>
<td>0402</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1602</td>
<td>LCD Display</td>
<td>$1.75</td>
</tr>
<tr>
<td>74LS00</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
<tr>
<td>74HC00</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
<tr>
<td>74HC04</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Miscellaneous Continued

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1602</td>
<td>LCD Display</td>
<td>$1.75</td>
</tr>
<tr>
<td>74LS00</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
<tr>
<td>74HC00</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
<tr>
<td>74HC04</td>
<td>Logic IC</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone/Keyboard Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips Continued

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

Telephone Dialer Chips

<table>
<thead>
<tr>
<th>Chip Type</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICM7543</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7551</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
<tr>
<td>ICM7553</td>
<td>Telephone Dialer</td>
<td>$1.75</td>
</tr>
</tbody>
</table>
RUGGED CONSTRUCTION

EXTENDS TO 26°C - ROTATES 260°

LIFETIME MAGNET

MRT-2281...$3.95

CONTINENTAL SPECIALTIES

LOGIC PROBE TOOL

SPECIFICATIONS

Input Impedance: 300,000 Ohms
Thresholds: "Lo" 300V/2Hz - "Hi" 700V/2Hz
Maximum Speed: 300 nsec, 1.5MHz
Input Protection: 950V DC continuous 117VAC for 15 sec.
Power: 30mA (5V) - 40mA @ 15V - 25V max reverse voltage protection: 38" cable with color coated clips included.
Operating Temp.: -55°C
Dimensions: 5.8L x 0.9W x 0.7D in.
Weight: 147 x 25 x 85mm

LPK-1...$21.95/Kit

Jumbo 6-Digit Clock Kit

- Four 0-999.99, and two 0-99999.9, common ammo displays.
- Latchingcoded coded.
- Swiches for hours, minutes, and total functions.
- Hours easily visible to 1.3 ft.
- Simulated sunset-tone.
- In 24 hour operation.
- Includes all components and case and wall transformer.
- Sore: 5.5 x 3 x 1/2

JE747...$29.95

JE701

6-Digit Clock Kit...

Regulated Power Supply

Uses LM317K. Heat sink provided. PC board and instruction. Provides a solid 1amp 6.8 volts. Can supply up to 15V, 9V and 12V with JE702 adapter. Includes components, hardware and instructions.

Size: 3½" x 5½ x 2½

JE200...$14.95

ADAPTER BOARD

- Adapts to JE200 - +5V, +9V and -12V
- D.C./D.C. converter with 45V Input. Toroidal isolated switching XMF. Short circuit protection. PC board construction. Paga-back to JE200 board. Size: 3½" x 5½ x 2½

JE205...$12.95

JE600 HEXADECIMAL ENCODER KIT

FEATURES:
- 12-bit to 10-bit output for more precise use
- 4 LED displays for 0-99999999
- 20 MHz switching rate
- 1.5V 555 oscillator provides for accurate timing
- Internal oscillator provides for accurate timing
- 12-bit to 10-bit output for more precise use
- Twin output for 0-99999999
- Internal oscillator provides for accurate timing
- 12-bit to 10-bit output for more precise use
- 20 MHz switching rate
- 1.5V 555 oscillator provides for accurate timing
- 12-bit to 10-bit output for more precise use

JE600...$59.95

Hexadecimal Key only...$14.95

JE610

62-Key Keyboard only...$34.95

HICKOK

LX303 Portable LCD Digital Multimeter

FEATURES:
- 100,000 Hz frequency sweep

JE610...$79.95

THE INCREDIBLE

Pennyworth 103

$139.95 Kit Only

"The Pennyworth 103 is a superb laser in an elegant case and has many unique features. It is ideal for applications requiring long-range, high-precision ranging. Its wide range of features makes it suitable for a variety of uses, from surveying and mapping to precision measurement and control. It is equipped with a powerful laser diode and advanced electronics for unparalleled performance and reliability."
GET IT ALL! Subscribe today, and don’t miss a single issue.

When you subscribe to the best electronics magazine of all—Radio-Electronics—you’re making sure that you’ll get all the news of electronics you want, every month from now on. Issue after issue, you’ll get equipment news, test reports, projects to build, computer technology, servicing tips and more, including regular columns on computers, solid state, hi-fi, hobbies and servicing. And every one is written by the experts, the outstanding authorities in the most exciting, fastest-growing field in the world today—electronics.

And...you save money, too, as much as $5. off the newsstand price of Radio-Electronics when you select one of the subscription offers listed on the handy coupon. More important—you’ll be assured of having your copy reserved, even if it runs out on the newsstands. You save money and time. Make sure you get all the excitement in every issue of Radio-Electronics, every month, by filling in and mailing the coupon, today.

GET THE BEST!—Radio-Electronics

☐ 1 Year—12 issues ONLY $13.00
 (You save $2.00 off newsstand price.)
☐ 2 Years—24 issues ONLY $25.00
 (Save More! $5.00 off newsstand price)
☐ Payment enclosed
☐ Bill me

Extra Shipping: Canada $3.00 per year all other countries $5.00 per year.

Mail to: Radio-Electronics SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COLO. 80322

(please print)

Name_________________________Address_____________________
City_________________________State__________________________Zip Code__________
Integrated Circuits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Test IC</td>
<td>100</td>
<td>0.99</td>
</tr>
<tr>
<td>67890</td>
<td>Demo Chip</td>
<td>50</td>
<td>1.99</td>
</tr>
<tr>
<td>23456</td>
<td>Signal IC</td>
<td>150</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Discount Table

<table>
<thead>
<tr>
<th>Volume Discount</th>
<th>Price (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 - 2999</td>
<td>$0.95</td>
</tr>
<tr>
<td>3000 - 4999</td>
<td>$0.90</td>
</tr>
<tr>
<td>5000 - 9999</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

Additional Features

- Built-in temperature compensation
- Quick soldering
- Easy assembly

Contact Information

DIGI-KEY CORPORATION

1-800-346-5144

MN., AK., HI. RESIDENTS: 218-681-6674

Catalog Available

WRITE FOR FREE CATALOG

(3000 parts) 50%

(8000 parts) 35%

(12000 parts) 25%

(16000 parts) 15%

(20000 parts) 10%

(25000 parts) 5%

(30000 parts) 0%

Call or write for your free catalog today!
OUTSTANDING
S-100 COMPUTER PRODUCTS

Note: Most Computer boards are available in 3 forms: A-111, C-111, B-111. A-111 is a memory board, C-111 is a CPU board, B-111 is an I/O board. The A-111 and C-111 have similar specifications, but the B-111 has some additional features.

NEW! DUAL PROCESSOR BOARD

Introductory prices: $385 unit, $495 assems. $595 CSC.

An 8086 gives true 16 bit power with a standard 8 bit S-100 bus, while an additional 8085 gives compatibility with 8-bit systems and the vast library of 8080 compatible software. Accesses 16 Megabytes of memory, meets all IEEE S-100 bus specifications, runs 8085 and 8086 code in your existing mainframe as well as Microsoft 8086 and Soritun PASCAL/M+., and runs at 5 MHz for speed as well as power. The Dual Processor Board is built to the same stringent standards that have established our leadership in S-100 components. Available June 1st.

NEW! SPECTRUM COLOR GRAPHICS BOARD

Introductory prices: $339 unit, $399 assems. $449 CSC.

Includes 8K of IEEE-compatible static RAM; full-duplex, bidirectional parallel I/O port for keyboard, joystick, etc. interface, and 6847-based graphics generator that can display all 64 ASCII characters. 10 modes of operation from alphanumeric/semigraphic in 6 colors to ultra-dense 256 x 192 full graphics. 75 Ohm E570 line output and wide output for use with FFC-approved modulators. We've got software, too: Sublogic's 2D Universal Graphics Interpreter (normally $15) is yours for $25 with the purchase of any Spectrum board. Available June 1st.

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
12 AMC Sales 98
41 AP Products, Inc. 34
11 Aarons-Gavin Instruments 82
5 Active Electronics 105
— Advance Electronics 36-37,69,75,110
20, 45 Advanced Computer Products 100-101
46 All Electronics 104
30 American Antenna Cover 4
36 Ampower 104
52 Ancrona 91
54 B & K Precision Dynascop Corp. 42
— Bagull Electronics 88
— Karel Barta 90
— Bullet Electronics 92
43 CFR Associates 104
8 Chaney Electronics 104
— Chromatics 87
34 CIE—Cleveland Institute of Electronics 18-21
— Command Productions 90
47 Concord—Computer Components 108
— The Cooper Group—Electronics Div. Cover 3
— Dage Scientific 88
28 Delta Electronics 90
— Deltronics 90
44 Diamondback Electronics 98
35 DiGi-Key 109
— Edmund Scientific 86
32 Electra Company 73
24 Electronics Book Club (TAB) 41
59 Electronics Technical Institute 79
58 Enterprise Development Corp. 83
— Fair Radio Sales 92
18 Fluke 6-7
— Fordham Radio Supply 99
16, 17 Formula International 94-95
60 Fuji-Svema 103
40 Global Specialties 5
39 Godbout Electronics 110
— Grantham College of Electronics 85
22, 23 Heath 15, 85
55 Hickok Electrical Instruments 40
37 Hitachi Denki 81
— Information Unlimited 90
51 International Electronics Ltd. 96
— JS & A 1, 13
23 Jameco Electronics 106-107
61 Keishley Instruments 22-23
7 Kester Solder 74
— Lors & Associates 88
14 MCM Audio 89
42 MTI-Mobile Training Institute 76
6 Meshan 96
— National Radio Institute (NRI)—Div. of McGraw Hill 8-11
— National Technical Schools 28-31
53 Netronics 71
29, 27, 31 O.K. Machine & Tool 17, 27, 84
15 Optoelectronics 35
19 PAIA 83
25 PacCom 86
40 Panavise 86
38 Poly Pak 96
13 Quest 97
— RCA 32, 38-39
33 Radio Shack 102
57 Ramsey Electronics 93
9 Rye Industries 82
— Sabtronics 33
3 Howard W. Sam's 77
4 Solid State Sales 98
— Spacecoast Research 90
21 Telex Communications, Inc.—Turner 24-25
Vaco Products Co. Cover 2
49 Vector 76
10 Wersi Electronics 74
26 Yamaha 2

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:
Six weeks' notice
Your old address and zip code
Your new address and zip code

Name (please print)
Address
City State Zip code

Mail to: Radio-Electronics
Subscription Dept., P.O. Box 2520, Boulder, Colo. 80322
Handtools for electronics?
Get 'em from Cooper.
The Cooper range is truly phenomenal.
For example, there are 38 patterns
of pliers alone—including 13 genuine "miniatures".
Cooper handtools are precision-made to exacting
tolerances. They're rugged and longlasting.
Most important of all, they're designed specifically to do the
jobs you do. Individual tools and kits are at your distributor's now.
Go and see them!

from Cooper The Toolmaker.

The Cooper Group
CIRCLE 34 ON FREE INFORMATION CARD
In one year our K40 antenna has become the largest selling CB antenna in the world!

1. It's the most expensive...

$42.50 suggested retail

And when you pay more, you expect more!

MORE PERFORMANCE:
The K40 is guaranteed to transmit further or receive clearer than any antenna it replaces. We know it will. We've tested it with 771 CB'ers just like you for one year.

MORE FLEXIBILITY:
You can fit your K40 to any mounting surface. It will fit any vehicle you'll ever own! That includes choppers, dune buggies, gutters, mirror mounts, luggage racks, trucks, hatchbacks, through roots, semis, pick ups and RV's.

MORE QUALITY:
It's not imported. It's not made in Taiwan, Korea or Japan. It's American made in an American town. It's made with better materials that cost more and by professional people we pay more. And we designed it right here in the U.S.A.

*Including optional mounts at extra cost.

...This Antenna is so DYNAMITE you receive a...

DOUBLE GUARANTEE
GUARANTEE I: If the K40 will not transmit further or receive more clearly than the antenna it replaces or the customer will receive a prompt and full refund from the Registered K40 Dealer who installed and tuned it.

AMERICAN ANTENNA
ELGIN, IL 60120
COPYRIGHT AMERICAN ANTENNA 1979

...Sold exclusively by 3500 American K40 Dealers throughout the U.S. & Canada.

CIRCLE 30 ON FREE INFORMATION CARD

(SPECIAL NOTE)

IF YOU'RE A BEGINNER:
Our K40 Dealers will be happy to sell you any of the older style and less expensive antennas that are great bargains for any beginning CB'er.

K40 POWER!