Amazing new products in
HOME ELECTRONICS
They're almost here

Build for your bench
SYNTHESIZED RF GENERATOR
Thumbwheel kHz selection

Do it yourself
SATELLITE TV ANTENNA
It's inexpensive

Toot a tune
MUSICAL HORN
Build for your car

Explore the new frontier
100 GHz SOLID STATE DEVICES
For the experimenter

www.americanradiohistory.com
When you’re ready to “face” the music we have a tip for reduced distortion

Whether you are seeking to reproduce the full dynamic range in the grooves of today’s new superdiscs, or simply to obtain maximum listening pleasure from treasured “oldies” in your record collection, you need a phono cartridge that will deliver optimum trackability with minimum distortion.

Because the phono cartridge is the only point of direct contact between the record and your entire stereo system, its role is critical to faithful sound re-creation. That’s why upgrading your phono cartridge is the single most significant (and generally least costly) improvement you can make to your stereo system.

To that end Shure now offers the Hyperelliptical Stylus Tip configuration—first introduced on the critically acclaimed V15 Type IV—in a full line of cartridges with a broad range of prices.

The Hyperelliptical Stylus Tip has been called the most significant advance in decades in tip geometry. It has a narrower and more uniform elongated contact area that results in significantly reduced intermodulation and harmonic distortion.

Look over the list at left to see which Shure HE cartridge best matches your tracking force requirements.

Shure has been the top-selling cartridge manufacturer for the past 23 years. For full details on this remarkable line of cartridges write for AL667.

Go with the leader—Shure.

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204
In Canada: A. C. Simmonds & Sons Limited
Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

www.americanradiohistory.com
Entertainment
24 hours a day!

Install your personal earth station and receive programs from all over the world.

SKYSCAN offers the ultimate satellite earth station.
The SKYSCAN SS-6900 Satellite Earth Station is loaded with quality components designed to give years of trouble-free service. The SS-6900 is a complete package with everything you need to receive television from space.

Buy factory direct and save.
For a limited time SKYSCAN is offering the SS-6900 directly to the individual at a wholesale price. Order now and eliminate middleman commissions and mark-ups. You can afford the best system on the market today.

Yes. I want to take advantage of your special offer. Please enter my order for the SKYSCAN SS-6900 Satellite Earth Station which includes everything I need to start enjoying television direct from the satellites.

Send______SKYSCAN SS-6900 system(s)
☐ I enclose $3,995, payment in full per system (Skyscan pays shipping).
☐ I enclose 50% payment (balance C.O.D. plus shipping).

Note: 50% minimum with order; balance due on delivery plus shipping. Full payment with order. Skyscan will pay shipping—save even more.

Only SKYSCAN offers wireless remote control.
The SKYSCAN SS-6900 is a complete package easily installed in less than 4 hours. The system includes a deluxe 3-meter antenna with base, a 120° feed horn and a 24 channel receiver in a beautiful wood-like cabinet with direct channel access, lighted channel indicators, automatic polarization switching, 70MHz down converter...and WIRELESS REMOTE CONTROL.

The SS-6900 carries a typical retail price of $7,995. Buy factory direct and pay only

$3,995 complete

Local sales representatives wanted.

Skyscan Corporation (consumer division)
250 E. 36th Street, Tucson, Arizona 85713 (602) 622-2261

Name___________________________
Address________________________
City___________________________State__________Zip___________
Phone___________________________Date___________
Signature________________________

CIRCLE 36 ON FREE INFORMATION CARD

limited time offer
BUY FACTORY DIRECT
Sabtronics.
An entire range of low-cost, top-quality instruments.

Sabtronics revolutionized the market with the first low-cost, high-performance Digital Multimeter. Now we have an entire range of outstanding instruments in a reasonable range of prices. In fact, nobody can beat us in our price/performance ratio. And we can sell at a low price for some very good reasons. Our engineers design high performance products to be built at a low cost. And we refuse to stick on high mark ups. Plus we make sure your price stays low by selling directly to you. Because we sell so many instruments, we don’t have to charge a high price. Naturally, we also offer all the helpful accessories you might want. And all our products are under warranty for good quality and high performance. In addition, you get from us the same quality after-sale service as any high priced instrument manufacturer. With Sabtronics instruments available, there’s no need for you to spend a lot of money to do highly accurate testing and measuring.

2010A 3½ Digit LED DMM
2015A 3½ Digit LCD DMM
8610A 600 MHz 8-Digit Frequency Counter
8110A 100 MHz 8-Digit Frequency Counter
5020A 1 Hz to 200 kHz Function Generator
8600B 1 GHz 9-Digit Frequency Counter
8610B 600 MHz 9-Digit Frequency Counter
2035A 3½ Digit LCD Handheld DMM
2037A 3½ Digit LCD Handheld DMM
*price in kit form. Also available factory assembled, tested, and calibrated. Call us for prices.
**price fully assembled, tested, and calibrated.

Call us for more information:
(813) 623-2631 (9am to 5pm EST)

Making Performance Affordable
Sabtronics
INTERNATIONAL INC
5709 N. 50th Street Tampa, FL 33610
SPECIAL FEATURE

49 HOME ELECTRONICS
A look at some amazing new products that are almost here. Len Feldman

BUILD THIS

43 HI-FI ANALOG REVERB SYSTEM
Attach this to your hi-fi system and expand your listening room into a concert hall. Carl Sewell

56 MUSICAL HORN FOR YOUR CAR
Part 2. Toot your own tune with this easy to build and install musical horn. PROM's allow you to program whatever tunes you like. Fred Blechman and David McDonald

59 SATELLITE TV ANTENNA
Part 2. Before you receive TV signals from satellites, you need an antenna. Here's an inexpensive design using common available materials. H.D. McCullough

65 SYNTHESIZED RF GENERATOR
Part 2. Construction details for a 300 kHz to 30 MHz RF generator for your workbench. Gary McClellan

TECHNOLOGY

63 SOLID-STATE MICROWAVE DEVICES
Part 3. Explore the 100 GHz frontier with the latest solid-state devices. Joseph J. Carr

70 USEFUL TROUBLESHOOTING HINTS AND TIPS
Several easy-to-use ideas that really work. Elliot S. Kanter

72 STATE-OF-SOLID-STATE
An in-depth look at two useful IC's from National. Joseph Gartman and Robert Falkner

74 HOBBY CORNER
An easy way to etch a one-of-a-kind PC board without a darkroom. Earl "Doc" Savage, K4SDS

84 NEW IDEAS
A simple Tesla coil submitted by a reader.

VIDEO

4 VIDEO ENTERTAINMENT
Tomorrow's news and products in this quickly changing field. David Lachenbruch

78 SERVICE CLINIC
The more problems there are, the harder it is to find them. Jack Darr

79 SERVICE QUESTIONS
R-E's Service Editor solves technician's problems.

RADIO

76 COMMUNICATIONS CORNER
Speech processing can add "punch" to your signal. Herb Friedman

EQUIPMENT REPORTS

27 Code-A-Phone 1000 Telephone Answering Machine
33 Microconnection Computer Modem
36 Grove Enterprises SW/LW Tuner

DEPARTMENTS

14 Advertising Sales Offices
128 Advertising Index
91 Books
101 Computer Market Center
14 Editorial
129 Free Information Card

16 Letter
98 Market Center
94 New Lit
86 New Products
6 What's News

ON THE COVER

A reverberation system adds a sense of realism to any hi-fi system by duplicating the echoes associated with large concert halls. The reverberation device described in this issue is based on analog bucket-brigade IC's and it expands your listening room into a full-sized concert hall. The construction details start on page 43.

LISTENING TO A SCANNER receiver is becoming a popular pastime. This month we look at programmable scanners starting on page 53.

3D TELEVISION is just one of the amazing products that we describe. All are close to commercial introduction. Take a close look at this and other products starting on page 49.
DIGITS AND BROADCASTING

It probably will be a long time before home television goes digital, but everything in the broadcast chain except transmission to the home could be digitized sooner than you might think. Digital VTR's already are practical, and their commercialization awaits the establishment of standards. For worldwide networking of programs, international standards committees are very close to a single standard that would make all the world's color-TV systems compatible so far as "trunk" transmission by satellite is concerned.

The preoccupation with digital television stems largely from the fact that the quality of the picture would not deteriorate with repeated taping, transmission for long distances, and other signal processing during the pre-broadcast chain of events. CBS engineers have embarked on a major program to digitize the television picture from original production virtually to the transmitter, coverting it to a standard analog picture just before its transmission to homes. One of the major tasks before inter-city digital transmission becomes practical is to reduce the bandwidth required. CBS has already sliced the number of digital elements in the TV picture from 144 to 29 megabits with little sacrifice in picture and sound quality, and is working towards further reduction. CBS believes that television production in the studio can be digitized in as little as two years. It also forecasts that theatrical movies will be made with high-definition electronic digital techniques in four to five years, with a high-definition direct satellite-to-home broadcast system possible before the end of the decade.

REVOLUTIONS IN SOUND

While CBS is working towards digital TV, it's not nearly so optimistic about digital phonograph records, despite the fact that the Philips-Sony Compact Disc laser optical digital sound system is scheduled to reach the American market in 1983. CBS officials feel that digital turntables and discs will be far too expensive for the foreseeable future—perhaps 10 or 15 years—to make them mass-market products. Instead, CBS is pushing its CX (for "compatible expansion") noise-reduction system for records. CBS claims CX is completely compatible—that is, records made with the CX technique can be played satisfactorily on standard equipment, and there is an 85-dB signal-to-noise ratio when the record is played through a CX decoder. A-B comparisons with digital tape give the CX system extremely high grades, many experts being unable to tell which was which.

At press time, CBS was already releasing CX-encoded discs, and Warner Records had agreed also to use the process. Five small manufacturers were preparing to market decoders for about $100, and CBS expects most major Japanese amplifier manufacturers to announce amplifiers with built-in decoders next January.

At the same time, many manufacturers are preparing to market the Compact Disc (CD) digital turntables. Sony, Philips, Pioneer, Matsushita (Panasonic, Quasar, Technics), Nippon Columbia (Denon), Sanyo and Mitsubishi have indicated they expect to have players on the market. Although European and Japanese record makers say they'll produce the 4.7-inch hour-per-side discs, no American record manufacturers had been heard from at press time. Turntables initially may sell for as much as $800; discs will be priced in the high-premium area.

STEREO TV

Stereo is also the wave of the future for television. The 1982 lines in both large-screen direct-view and projection sets show an increasing preoccupation with stereo. Several brands have added stereo amplifiers and dual-speaker systems with input jacks for stereo videodiscs or TV-FM simulcasts. Those new sets, of course, will be the natural companions for the new stereo VCR's. In the next two years, we'll see increasing emphasis on television sets with stereo sound capability. While they'll be suited for stereo VCR's and stereo videodiscs (RCA will add a stereo disc player model next spring), they're actually anticipating the advent of stereo-sound telecasting here. Currently in the field-test stage, stereo TV could be approved by the FCC as early as next year. The new stereo-sound sets will require adaptors to receive stereocasts, of course—but more important to the set makers is the ability to add minor circuitry or an IC to those models and be ready when stereo TV actually starts.
Take a good look at VACO.

THE SUPER CASE
70260

The world famous Super Case. Complete with 48 of the most popular and professional problem-solving tools. From screwdrivers and nutdrivers to pliers, wrenches, crimping tools and more. A super variety and super value. All unconditionally warranted from Vaco, of course. The Super Case and all the other fine Vaco tools can be seen in our new 1981 catalog. It's free, just write. Say you want to take a good look at VACO.

Vaco Products Company, 1510 Skokie Blvd.,
Northbrook, IL 60062 U.S.A.

CIRCLE 8 ON FREE INFORMATION CARD
WHAT'S NEWS

Indiana appellate court O.K.'s radar detectors

An Indiana appeals court has ruled that the State's portable police radio law does not apply to radar detectors. Enforcement of the law has been said to have been erratic over the past two years, and some motorists' radar detectors have been confiscated by the police.

The appellate decision called the law "unconstitutionally vague," and ruled that "a law forbidding or requiring conduct in terms so vague that persons of common intelligence must necessarily guess at its meaning and differ as to its application violates due process of law."

It is expected that the Indiana decision will be cited in several other state courts where police radar and scanner laws are being applied to radar detectors, even though the laws were passed before police radar existed.

British teletext group files proposal with FCC

The United Kingdom Teletext Industry Group has requested the FCC to begin a rule-making procedure to allow use of the British "defined format" teletext system in the United States. That system, widely used in Europe, is said to have two critical advantages over the rival variable-format approach. The decoders are inherently simpler and less costly, and the defined format is more resistant to disruption by multipath transmission and interference. The system proposed by the British group is also compatible with the Canadian Teildon system and with line-21 captioning for the deaf.

Teletext will allow the viewer to use his TV receiver as a newspaper, shopping guide, or educational tool.

The British group put on an extensive display of their system and equipment at the National Association of Broadcasters convention in Las Vegas last April.

Remedial reading programs available for the TRS-80

The Radio Shack Division of Tandy Corp. has entered an agreement with the Philadelphia School District to convert to the TRS-80 microcomputer two mini-computer-based reading programs developed by the Philadelphia schools for students with reading difficulties. Radio Shack will distribute the programs, known as Computer Assisted Reading Development (CARD) and Systems Approach to Basic Reading Education (SABRE).

The Philadelphia reading programs are designed to provide individualized, self-paced reading instruction, and are based on established Computer Assisted Instruction (CAI) techniques for using computers to supplement and reinforce regular classroom instruction. They are intended to encourage positive attitudes toward learning, language, and reading in students, and to provide non-threatening, positive reinforcement in private sessions taken at the computer.

The Philadelphia system was originally developed about 10 years ago, for selected students who were reading below grade level. The programs have been improved and revised continuously since then, and researchers have recorded consistent gains as a result of their use.

The new TRS-80 reading series is expected to be available by September 1981.

"Cottage industries"

"Louise Priester," states a recent report in the New York Times "used to key-punch insurance claims into a computer in the office of Blue Cross-Blue Shield of South Carolina. Now, she does the same thing from a bedroom in her home, using a terminal connected to the office computer by the telephone line."

Thus the Times points out a new possibility for employment that can open the way for many who because of physical handicaps, young children, an invalid in the house who requires constant care, or other reasons, cannot readily leave the home. Mrs. Priester is an example: she had to stay home to take better care of her elderly mother.

One problem for employers is to control out-of-sight employees—to make sure they put in a full day's work. The very nature of the work, however, often makes it possible to operate on a piecework basis, as in the old cottage industries. Blue Shield of South Carolina says its four "cottage keyers" process claims at a lower cost than office keyers.

While requiring workers to be in the office during the day, the FMC Corp of Chicago has installed terminals in the homes of four programmers who are on call at night to handle problems. "They used to get a phone call," says FMC manager R. M. Copeland, "hop in the car, drive 45 minutes to the office, solve the problem in 15 minutes, than take 45 minutes to drive home. Now they can handle most of the problems in their pajamas."

Japan to invade U.S. microcomputer market

Japan will "undoubtedly" repeat in the microcomputer market what it has done in the U.S. automobile and consumer electronics markets. Consequently, it is "indefatigable" that Japanese microcomputers will be appearing in significant numbers in 1981, and that the superior Japanese quality will ultimately hurt the American manufacturers considerably more than Japanese costcutting.

Thus states a report, Retailing Personal Computers, produced and sold for $950.00 a copy by Strategic Inc. of San Jose, CA.

At present, the report states, the Japanese feel that the main reason their products are not reaching the United States sooner is that FCC regulations will require that they retool to make products that meet U.S. standards (There are no RFI standards in Japan).

Hand-held models are expected to be an important new product. Tandy was first to sell this type (made by Sharp in Japan) at $250, but Strategic Inc. expects to see Sharp, Quasar, and Panasonic models by the middle of 1981.

Incidentally, Apple, Commodore, and Radio Shack products are all being sold in Japan. Their market is decreasing, however, because of high prices and because the Japanese microsystems offer printers with Japanese as well as English characters, something the Americans do not supply.

Tronics 2000 established in ten metropolitan markets

Ten metropolitan areas in the United States are now under development by Tronics 2000, according to R. W. Lay, Tronics' Director of Internal Operations. Tronics 2000 is a new franchising corporation that aims at giving the independent electronic-serial-
YOU'VE SEEN THE REST...
NOW LOOK AT THE BEST!

PRESENTING EASY-METER®
UNPRECEDENTED FIVE-YEAR WARRANTY.

- Autoranging on Volts and Ohms
- Easy reading 3½ digit display
- CMOS–LSI advanced circuitry
- Autopolarity
- Automatic indication, unit and signs
- Easy to operate
- Economically powered with two "AA" 1.5V batteries
- Low battery drain, 300 hours continuous operation
- Low battery warning sign
- Lo Power and Normal Ohm ranges
- Range hold
- Buzzer continuity check

- Zero adjust feather-touch button
- AC/DC Lo Ω/Ω function selection by feather-touch button
- Safety fused
- Pocket-size, compact, lightweight, nicely balanced
- Shock resistant ABS housing
- Reliable, accurate, and rugged

A.W. SPERRY INSTRUMENTS INC.
The Measurable Advantage.

CIRCLE 44 ON FREE INFORMATION CARD
This man is looking for AN ELECTRONIC BREAKTHROUGH.

Join him in the incredible world of electronics with NRI's all-new training in the career of the future... Electronic Design Technology.
It's an electronic world we live in. And the designers of electronic circuits, controls, and systems are the people who are shaping it. Take your place in this exclusive company with this exciting new training from NRI.

You can learn Electronic Design Technology at home, in your spare time. Without quitting your job, tying up your evenings at night school, or wasting gas traveling to classes. Because NRI comes to you, makes you a class of one with a complete, effective, low-cost learning program designed exclusively for home study. You get it all... at your convenience.

Hands-On Training

NRI trains you for action. You get real-life experience that builds priceless confidence, gives you working knowledge of lab practices and techniques. It's all built into the NRI Design Lab®, a complete combination of equipment, hardware, training, and reference materials. You'll design your own circuits from the very beginning, progressing from basic passive networks through key circuits like power supplies, amplifiers, oscillators, digital and logic circuits, phase-locked loops and more. You'll move on to linear and digital integrated circuits, the heart of modern electronic equipment. You'll prototype your designs and verify operation, learning professional test and measurement procedures as you progress.

Professional Equipment Included

All the way, you work with professional-quality instruments like the Beckman 6-function, 26-range LCD digital multimeter. It gives you fast, accurate measurements of voltages, currents, and resistances, even forward voltage drops across in-circuit diodes and transistors.

You'll breadboard your designs on the unique NRI Circuit Designer. It features built-in multiple power supplies, variable signal generator, logic switches and LED indicators. It handles almost any circuit you can design...linear and digital integrated circuits as well as discrete components such as transistors and diodes.

Analysis and design work is speeded with the Texas Instruments TI-30 scientific calculator. This engineer's instrument includes full trigonometric functions, logarithms, square root, squares, powers, memory, and more. All this fine equipment is part of your training, yours to keep and use in your work.

NRI Fast-Track Training

This is the unique NRI lesson concept that simplifies and speeds learning. From the very basics to advanced, state-of-the-art electronics, each lesson is especially prepared for individualized instruction. Each subject is covered fully and thoroughly, but extraneous material is eliminated, language is clear and to the point, organization is logical and effective. From Fundamentals of Electronic Circuits through Microprocessors, your lessons are designed with you in mind.

No Experience Necessary

You don't have to be an engineer (or even a college student) to succeed. High school graduates with some algebra handle it without any trouble. We start you at the beginning, let you advance just as quickly as you're ready. We even include the NRI Math Refresher Module to help you brush up on your math and teach you any new concepts you may need.

Free Catalog, No Salesman Will Call

Our free, 100-page catalog gives you all the details, including lesson outlines, equipment specifications, and career opportunities. Send for it today and find the breakthrough for your future. If card has been removed, please write to us.

NRI SCHOOLS

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, DC 20016

We'll give you tomorrow.
vice-shop owner the prestige that small business proprietors in other fields have achieved through national franchise organizations. (See the March 1981 ("What's News") and April 1981 issues of Radio-Electronics.)

The areas now under development include a population of roughly nine million persons. They are Dallas, Minneapolis/St. Paul, sections of Chicago, Cleveland, Cincinnati, Louisville, Tampa/St. Petersburg, Orlando, Sarasota, and Daytona Beach. Those areas could support approximately 100 service centers, Mr. Lay believes.

Newest car stereo has liquid cooling system

"An auto stereo system that's so hot it has to be water cooled," says Toyota of its new stereo radio for compact cars. The company further claims that the new radio's sound is "just short of a live rock concert or symphony orchestra."

The new system is standard on 1981 Cressida models and optional on Coronas. It is the industry's first use of a "heat-pump" cooling system, similar to an engine's radiator. Fluid moves through tubes surrounding the radio and four separate amplifiers. Each amplifier drives one of four speaker channels, at a rate of 10 watts per channel.

"The heat pump was found only on the finest home stereo sets until this automotive unit was developed," reports a Toyota spokesman. "The added cooling allows increased power and vastly improved sound on a chassis small enough to fit in a subcompact car."

Along with the heat-pump cooling system, the radio has several other features normally found only on home receivers. A quartz synthesizer locks directly onto broadcast frequency channels. Tuner transistors adjust for constantly changing automotive reception conditions. Other circuits suppress radio interference noise. Touch-tuning also is used.

1,125-line video system is developed by Sony

A new high-standard video recording and playback system was demonstrated recently in Tokyo by Sony Corp. Its 1,125-line, 60-field system, with a bandwidth of about 30 MHz, can handle more than five times as much information as the present standard NTSC system, with its 525 lines and bandwidth of 4.2 MHz.

The high-definition video system (HDVS) has three channels, processing the red, blue, and green signals separately from camera input to video output. The bandwidth is about 30 MHz for each of the three color channels.

The 1,125-line system consists of a high-definition 3-tube TV camera, using the new 1-inch Saticon pickup tube developed and patented by the Japan Broadcasting Corp (NHK); a 1-inch wideband RGB video recorder, using a new high-density recording format, and a wideband digital time-base corrector, using a new wideband analog-to-digital converter.

The high-definition system, which produces quality at least equal to that of 35-mm movie film, is expected to change the production and distribution of motion pictures dramatically in the near future, much as high-quality sound tape changed the technology of phonograph disk recording. It has the same advantages of repetitive recording and playback for on-the-spot preview and trial editing. That will reduce production time, film consumption, and other costs greatly.

Not only is it a revolution in film production expected, but the system has applications in film distribution, satellite broadcasting, cable TV, and optical fiber transmission.

Utah approves police radar—also "fuzz detectors"

In their Spring 1981 session, Utah legislators defeated both a bill seeking to curtail the use of police radar on the highways, and one to prohibit Utah motorists from equipping their cars with radar detectors. Thus in the same session of the Legislature they gave tacit approval to highway radar and to attempts to neutralize it.

The bill to prohibit radar detectors was defeated 45 to 21, on the basis of probable unconstitutionality. The Communications Act of 1934 prohibits states from legislating in the area of radio reception, and thus covers radar detectors, which are receivers. Difficulty of enforcement was another factor that contributed to the defeat of the radar-detector bill.

The bill intended to curtail the use of police highway radar was defeated in the Utah Senate, with a vote of 18 to 9.

Visual-display terminals pose no radiation problem

Visual-display terminals (VDT's) are safe, the president of the Computer and Business Equipment Manufacturers Association told a Congressional committee.

The president, Vico E. Henriques, pointed out to the subcommittee on Investigation and Oversight of the House Committee on Science and Technology that a recent Food and Drug Administration report shows that radiation from VDT's is well within the existing international, federal, and state guidelines.

His industry, said Mr. Henriques, has been sensitive for years to the need of keeping RF radiation extremely low. Not only does human health and safety require it, but many of the association's products are used close to equipment which is also highly sensitive to RF. He mentioned communications equipment as an example, and also mentioned that some display terminals are used in militarily secure areas where RF radiation could reveal the presence of an installation to enemy forces or espionage agents. Designing safeguards against those problems, he said, resulted in RF radiation levels so low that no significant biological effects are anticipated.

Ray-O-Vac now making lithium batteries

Under the terms of an agreement with Matsushita Electric Industrial Co., Ray-O-Vac Corp is granted a non-exclusive license to make, use and sell lithium batteries produced under the Matsushita patents on carbon monofluoride lithium cells. The 10-year agreement also includes technical collaboration between the two companies.

Ray-O-Vac has also announced its introduction of three coin-size lithium-carbon-monofluoride batteries—BR2016, BR2320, and BR2325. They have a nominal voltage of 3.0 and an energy density five times (in some cases ten times) higher than conventional units of similar weight.

The high energy density of these batteries makes them an ideally suited power source for electronic watches, calculators, measuring instruments, and computer memory back-up power, as well.

www.americanradiohistory.com
Into electronics, computers, or amateur radio?

Choose 6 informative books for only $2.95

(values to $121.65)

7 very good reasons to try Electronics Book Club...

- Reduced Member Prices. Save up to 75% on books sure to increase your know-how.
- Satisfaction Guaranteed. All books returnable within 10 days without obligation.
- Club News Bulletins. All about current selections—main, alternates, extras—plus bonus offers. Comes 14 times a year with dozens of up-to-the-minute titles you can pick from.
- "Automatic Order." Do nothing, and the Main selection will be shipped to you automatically! But... if you want an Alternate selection—or no books at all—we'll follow the instructions you give on the reply form provided with every News Bulletin.
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling Membership obligation, and qualify for discounts on many other volumes.
- Bonus Specials. Take advantage of sales, events, and added-value promotions.
- Exceptional Quality. All books are first-rate publisher's editions filled with useful, up-to-the-minute information.

ELECTRONICS BOOK CLUB
Blue Ridge Summit, PA 17214

Please accept my Membership in Electronics Book Club and send the 6 volumes circled below. I understand the cost of the books selected is $2.95 (plus shipping/handling). If not satisfied, I may return the books within ten days without obligation and have my Membership cancelled. I agree to purchase 4 or more books at reduced Club prices during the next 12 months, and may resign any time thereafter.

714 733 841 905 955 1015 1062 1066 1076
1108 1120 1132 1211 1216 1218 1222 1230 1233
1245 1249 1251 1259 1265 1276 1278 1337 1339 8434

Name ___________________________ Phone ___________________________
Address ___
City ___________________________ State ___________________________ Zip ______

[Valid for new members only. Foreign and Canada add 20%.]

CIRCLE 14 ON FREE INFORMATION CARD

SEPTEMBER 1981

www.americanradiohistory.com
How Do You Stay Number 1?

The most important part of staying on top of the electronics industry is to be the first to know about new events that will shape the future of electronics. That’s an easy rule to make, but it’s not nearly as easy to make it work. It is, however, the kind of rule that we live by and it has made it possible for Radio-Electronics to bring its readers the first TV Typewriter in September, 1973; the first Build Your Own Computer in July, 1974; the first Build Your Own Satellite TV Receiver in February, 1980; and the first Build Your Own Robot in August, 1980.

What’s next? That’s our secret. To find out you must read every issue of Radio-Electronics or you’re going to have to travel along with us, in person, as we tour the world in search of the latest developments in the electronics industry.

For example, in October we are taking a trip that will encompass the Japan Electronics Show in Osaka; the Korea Electronics Show in Seoul; the Taiwan Electronics Show in Taipei; and the Hong Kong Consumer Electronics Show. We’ve already been to both Consumer Electronics Shows in the United States (they were held in Las Vegas in January and Chicago in June). We’ve also attended the Electronic Distribution Show in Atlanta; Electro-81 in New York; numerous computer shows and Hamfests in various locations throughout the country and we will be showing up at Wescon in San Francisco this month.

These are the places we go to see what will be next in electronics. These are the places where we get the input we need to decide what kinds of articles we are going to bring you next year. These are the places we meet the authors who are going to present those articles. These are the places we go to stay on the top of the heap.

What’s next in electronics? More than we both can imagine! There’s digital audio on a miniature disc scanned by a solid-state laser, Teletext/Teleview, flat-screen TV (shirt-pocket size), wrist computers, two-way TV, 3D TV, an entire TV set on a single IC, direct satellite-to-home TV reception and who knows what else.

But when that story breaks, we will be there. We will learn everything there is to find out and bring it to you as quickly and as accurately as possible. That’s our job and we believe we do it best. We made Radio-Electronics must reading. We intend to continue doing just that!

Art Kleiman
Managing Editor
No Surcharge for Credit Cards Orders • We Accept C.O.D.'s
All Equipment Factory Fresh With M.F.T. Warranty • Stock Shipments Same Day or Next

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIABLO 630</td>
<td>$2099</td>
</tr>
<tr>
<td>INTERTEC SUPERBRAIN 64K RAM</td>
<td>$2799</td>
</tr>
<tr>
<td>CD SUPERBRAIN</td>
<td>$3195</td>
</tr>
<tr>
<td>NEC 5510 SPINWRITER</td>
<td>$2495</td>
</tr>
<tr>
<td>NEC 5530 SPINWRITER</td>
<td>$2495</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-80</td>
<td>$399</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-82</td>
<td>$529</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-83</td>
<td>$769</td>
</tr>
<tr>
<td>APPLE II PLUS 48K</td>
<td>$1189</td>
</tr>
<tr>
<td>APPLE DISK w/3.3 DOS Controller</td>
<td>$545</td>
</tr>
<tr>
<td>APPLE DISK w/o Controller</td>
<td>$435</td>
</tr>
<tr>
<td>BASE II PRINTER</td>
<td>$599</td>
</tr>
<tr>
<td>HAZELTINE 1420</td>
<td>$799</td>
</tr>
<tr>
<td>NORTHEAST HORIZON II 32K QD</td>
<td>$2975</td>
</tr>
<tr>
<td>ANADEX DP-8500</td>
<td>$1295</td>
</tr>
<tr>
<td>TELEVIDEO 912C</td>
<td>$699</td>
</tr>
<tr>
<td>TELEVIDEO 920C</td>
<td>$729</td>
</tr>
<tr>
<td>TELEVIDEO 950</td>
<td>$959</td>
</tr>
<tr>
<td>CBM 8032 COMPUTER</td>
<td>$1225</td>
</tr>
<tr>
<td>CBM 8050 DISK DRIVE</td>
<td>$1449</td>
</tr>
<tr>
<td>CBM 4032 COMPUTER</td>
<td>$1090</td>
</tr>
<tr>
<td>CBM 4040 DISK DRIVE</td>
<td>$1090</td>
</tr>
<tr>
<td>CBM 4022</td>
<td>$679</td>
</tr>
<tr>
<td>CBM VIC-20</td>
<td>$289</td>
</tr>
<tr>
<td>CBM C2N</td>
<td>$85</td>
</tr>
<tr>
<td>RADIO SHACK II 64K</td>
<td>$3245</td>
</tr>
<tr>
<td>RADIO SHACK III 16K</td>
<td>$839</td>
</tr>
<tr>
<td>LEEDEX/AMDEK 100</td>
<td>$139</td>
</tr>
<tr>
<td>LEEDEX/AMDEK 100G</td>
<td>$169</td>
</tr>
<tr>
<td>LEEDEX/AMDEK COLOR-1 13" Color Monitor</td>
<td>$345</td>
</tr>
<tr>
<td>MICROTEK 16K RAMBOARD for Atari</td>
<td>$99.95</td>
</tr>
<tr>
<td>MICROTEK 32K</td>
<td>$165</td>
</tr>
<tr>
<td>ATARI 400 16K</td>
<td>$349</td>
</tr>
<tr>
<td>ATARI 825 PRINTER</td>
<td>$619</td>
</tr>
<tr>
<td>ATARI 850 INTERFACE</td>
<td>$139</td>
</tr>
<tr>
<td>or both together</td>
<td>$749</td>
</tr>
<tr>
<td>ATARI 810 DISK DRIVE</td>
<td>$449</td>
</tr>
<tr>
<td>ATARI 900 32K</td>
<td>$769</td>
</tr>
</tbody>
</table>

Prices are subject to change without notice.

Call for price list of ATARI software
NEC 12" MONITOR $229

WEST COAST 1-800-235-3581 EAST COAST 1-800-556-7586

OMEGA SALES CO. 12 Meeting St. Cumberland, RI 02864
3533 Old Conejo Rd. #102 Newbury Park, CA 91320
1-805-499-3678 1-800-556-7586
CA. TOLL FREE 1-800-322-1873 1-401-722-1027

CIRCLE 41 ON FREE INFORMATION CARD
WRONG ADDRESS
The address given for Design Specialty in the Lumitron-4 Light Sequencer article in the June 1981 issue of Radio-Electronics is wrong.
The correct address is: Design Specialty, 15802 Springdale St., Suite 80, Huntington Beach, CA 92649.
DAVID L. HOLMES

OOOOOOOPS!
I believe that there are several errors and inconsistencies in the article, “$60 Modem” (Radio-Electronics, June 1981). It appears as if changes were made to the parts list and parts-placement diagram, but those changes were not carried through to the other diagrams.
The parts-placement diagram lists no less than three R39 resistors: one within the dotted-line box at the lower left (call that one A); one between pins six and seven of IC2 (call that one B), and the last one hangs off pin one of IC2 (call that one C). From the circuit diagram (Fig. 3), R39-C clearly should be R25; that’s supported by the fact that R25 is entirely missing from the parts-placement diagram.
The other two R39’s are both described in the parts list. Let us allow one (my R39-B) to remain R39 at 22K ohms. That leaves the last one, R39-A, which is described correctly as 10K. Let R39-A become R40, and I believe that our problems are solved.
To correct the other diagrams: in Fig. 2, the input from the answer filter should read “FROM-R40,” and note that R25 is correct as output from the first stage of the originate filter. In Fig. 3, R39 in the upper left should be R40 (input to answer filter) and the R39 in the lower left is correct. R39 in Fig. 9 should also read R40.
Please continue to present us with the fine and useful articles that you have published in the past. An occasional typographical error will get by you—no one’s perfect—but you have a lot of people out here willing to make final corrections. And sometimes, as with my own experience with this ‘modern’ article, I find that I have benefitted more than had it been 100% correct.
MICHAEL D. HOFER.
Hicksville, NY

ANTI-RADAR WEAPON
The ever-increasing pollution of our highways with police radars, and the numerous local court decisions against American motorists who are ignorant of the workings of such devices, threaten to lead to the same state of lawlessness that our historical West became so famous for. As in old times, vigilantes have begun to organize, and have already found a famous scientist as their mentor: Heinrich Hertz. His celebrated, spark-excited wide-band microwave source is the ideal ECM

continued on page 22

Price Without Sacrifice.

HITACHI V302B & V152B
Put a proven Hitachi dual-trace oscilloscope on your bench for as little as $735. Our V152B 15MHz model includes unprecedented sensitivity (1 mV/div.), 10X sweep magnification...front panel XY operation...trace rotation...Z-axis input...and more. Need greater bandwidth? Our V302B model is the only 30MHz dual-trace scope with signal delay line priced under $1000, with all the above features, to make your testing operations fast, easy, and accurate. Reliability is exceptional, too. (As you'd expect from a manufacturer with over 20 years of experience "outscoping" the competition.) So exceptional, in fact, that Hitachi quality is backed by a 2-year warranty...the longest in the industry. Whether you use it for teaching or repairs, for video, audio, or computer testing, you can't find more scope for your dollar than at Hitachi. Write for more details.

Hitachi...The measure of quality.
V-152B 15 MHz Dual Trace ... $735*
V-302B 30 MHz Dual Trace ... $995*
*Probes included.

HITACHI
Hitachi Denshi America, Ltd.
175 Crossways Park West
Woodbury, NY 11797
(516) 921-7200
Look at the extra quality VIZ gives you for $159.95.

THINK OF PERFORMANCE.
With 0.1% DCV accuracy, VIZ 3½ DMMs perform as well in the lab as in the field. Bright LCD readout—settling speed is less than 1 second. Full range hi-lo power ohms means extra accuracy in all your resistance measurements. Readout window shows: function (V, A, Ω), value, AC or DC: minus or plus; and low battery.

THINK OF USE.
Easy-to-use range and function switches help avoid errors. Jacks or standard ¼" dual plug centers. Unit comes with tilt stand, deluxe probes and batteries. H.V. probe, AC adapter, LED continuity probe and carrying case, optional.

VIZ bench DMMs
Laboratory quality for bench or portable use. Battery or AC power. Accuracy 0.1% DCV. 10 amp. AC or DC. Voltage ranges 0.1 mV to 1000 V AC & DC. Fully shielded metal case. Long battery life. Deluxe test leads and AC adapter supplied. Optional accessories; H.V. probe.

Handy handheld WD-747
Premium quality 3½ DMM at low prices. Side switches. 0.5" digits. Accuracy 0.8% DCV.

VIZ reliability.

VIZ is a 50 year-old company. Our instruments are fully warranted, parts and labor for a year. All items tested to NBS standards. We offer service and parts availability for a minimum of ten years. Over 15 repair depots in U.S.A.

Look to VIZ for value, quality, availability.
Over 70 instruments in the line.
VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144

WD-759 3½ DMM

WANT LED?
WD-758 available with LED readout for $10 less.

VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144

CIRCLE 6 ON FREE INFORMATION CARD

www.americanradiohistory.com
tool against the shiny, over-expensive, tax-financed fetish of our much-underutilized police forces.

Today, Uncle Heinrich would take an old coffee can and cut it into two halves along its axis. He would mount into one of them, as a lambda-half dipole, two small nails (the more rusty, the better), and power that beam-forming contraption with an ignition coil from a junked car. Throw the switch and—victory! The ultimate anti-radar weapon in the battle on the roads is in full operation!

If Uncle Heinrich were to enter a state that outlaws such devices, he would simply say that he was re-checking his discovery.

Radio-engineers, amateurs, tinkerers—where has your pioneering spirit been in all these years since the first highway radar toys appeared?

REINHOLD GERHARZ, Fort Belvoir, VA

Z-80 TRAINERS

In the article, "Learning About Microprocessors," by Jorma Hyypia (Radio-Electronics, May 1981), the author states that there are no Z-80 trainers on the market. I think that is wrong.

SD Systems makes a very good microprocessor trainer and development system, called the Z-80 Starter System. It contains a hexadecimal keyboard; Z-80 microprocessor; Z-80 parallel interface; Z-80 counter-timer circuit; tape interface; two S-100 sockets; wire-wrap area, and an EPROM programmer.

Please let your readers know that they can have the best microprocessor on the market in a trainer that not only trains but lets them do it with style.

ROBERT SMITH, Michigan City, IN

UNICORN-1 ROBOT

Here's a picture of the Unicorn-Robot 1 that I am building. It's a close-up of the manipulator I designed and built. The "fingers" of this end effector are parallel, and open or close by moving toward or away from each other. This type of end effector gives my robot a better grip than those originally described.

I think your magazine is fantastic, and I look forward to it every month.

MELCOM P. STOKINGER, Ypsilanti, MI

If you're building the Unicorn-One robot (or any other) I have a suggestion about assembling the upper arm.

On the first crossbar rod, where the threaded rod fits, don't drill the hole all the way through. Instead, drill it to a depth of about 5/16 inch. File the end of the threaded rod smooth and, before inserting it, drop a small steel ball in the hole. Be sure to leave a 1/32-inch or so space between the gear and the crossbar rod. Then, when the assembly is pulled down by the weight of that lower arm, the rod will spin much more easily, and will take considerable strain off the motor, as the steel ball will act as a bearing.

That's a lot less trouble than trying to fit a regular ball bearing on the crossbars and much better than a plain hole.

A.M. FALCETANO, APO NY 09026

NEW COMPUTER CLUB

My name is Scott Summer. This letter is to inform your readers of a new computer club that I am forming in Rhode Island. Our club publication will be titled The National Apple Newsletter and it will be for owners and users of Apple II or Apple II Plus computer systems.

The newsletter will print anything that continued on page 26
INTRODUCTION TO THE THEORY AND DESIGN OF ACTIVE FILTERS. By L. P. Huelstein and P. E. Allen. 430 pp., illus. Once you add active filter design to your repertory of specialties, you'll possess a skill that's in great demand today. Here's one of the best texts we know on the theory, design, application, and evaluation of modern active filters and the various techniques used today.

308/323 Pub. Pr., $28.50 Club Pr., $21.50

USER'S GUIDEBOOK OF DIGITAL CMOS INTEGRATED CIRCUITS. By E. R. Hnatek. 339 pp., 245 illus. Providing the first comprehensive overview, this practical guide covers CMOS logic performance characteristics and selected circuit applications, data conversion and telecommunication circuits, CMOS memories, and commercially available CMOS microprocessors.

290/678 Pub. Pr., $24.50 Club Pr., $18.50

INTRODUCTION TO RADAR SYSTEMS, 2/e. By M. I. Skolnik. 698 pp., 244 illus. This new edition of a widely used text on radar from the systems engineer's point of view brings you full discussions of many major changes that have occurred in the field recently.

519/091 Pub. Pr., $38.50 Club Pr., $30.50

ELECTRONIC COMMUNICATION, 4/e. By R. L. Shrade. 801 pp., 870 illus. This thoroughly updated edition offers all the theory and fundamentals you need to prepare yourself for the FCC commercial and amateur grade license examinations—and pass them the first time!

571/503 Pub. Pr., $21.95 Club Pr., $16.95

PRINTED CIRCUITS HANDBOOK, 2/e. By C. F. Goombes, Jr. 327 illus.Blueprints every important phase of printed circuitry. Provides the information you need to establish a production facility and control the processes. A virtual encyclopedia in the field, five major sections cover engineering, fabrication, assembly, soldering, and testing.

125/085 Pub. Pr., $38.50 Club Pr., $28.95

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 11/e. By D. G. Finn and H. Beatty. 2,448 pp., 1,414 illus. Today's most widely used source of electrical engineering information and data serves you as no other single work when you need detailed, timely, and reliable facts and how to on the generation, transmission, distribution, control, conversion, and application of electric power.

209/144 Pub. Pr., $59.95 Club Pr., $44.95

Be sure to consider these important titles as well!

DIGITAL FILTERS. By A. Antoniou. 201/171 Pub. Pr., $32.95 Club Pr., $24.95

ELECTRONIC DISPLAYS. By E. G. Bylander. 055/108 Pub. Pr., $24.50 Club Pr., $18.50

MICROCOMPUTER-BASED DESIGN. By J. Z. Peatman. 491/380 Pub. Pr., $33.50 Club Pr., $27.50

MICROPROCESSORS/MICROCOMPUTERS/SYSTEM DESIGN. By Texas Instruments Learning Center & Engineering Staff. 33/588 Pub. Pr., $24.50 Club Pr., $19.50

ENGINEERING MATHEMATICS HANDBOOK, 2/e. By J. J. Tuma. 854/296 Pub. Pr., $38.95 Club Pr., $29.95

RADIO HANDBOOK, 2/e. By W. Orton. 772/630 Pub. Pr., $31.50 Club Pr., $25.60

TRANSFORMER AND INDUCTION DESIGN HANDBOOK. By W. T. McVeyan. 718/515 Pub. Pr., $35.00 Club Pr., $26.50

CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION. By M. E. Frenkling. 784/973 Pub. Pr., $18.95 Club Pr., $14.95

MICROELECTRONICS. By J. Milligan. 423/276 Pub. Pr., $31.95 Club Pr., $24.50

ELECTRONICS DICTIONARY, 4/e. By J. Markus. 404/312 Pub. Pr., $29.95 Club Pr., $22.50

MAIL THIS COUPON TODAY

McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club
P.O. Box 582, Hightstown, New Jersey 08520

Please enroll me as a member and send me the two books indicated, billing me for my first selection only at the discounted member's price, plus local tax, postage and handling. If not satisfied, I may return the books within 10 days and my membership will be canceled. I agree to purchase a minimum of 3 additional books during the next 2 years as outlined under the club plan described in this ad. Membership in the club is cancellable at any time after the four book purchase requirement has been fulfilled.

Write Code # of FREE selection here

[]

Write Code # of FIRST selection here

[]

Orders from outside the U.S. must be prepaid with international money orders in U.S. dollars.

Name

[]

Address/Apt #

City

State _____ Zip

This order subject to acceptance by McGraw-Hill. All prices subject to change without notice. Offer good only to new members. A postage and handling charge is added to all shipments.

E33480

September 1981

21
8 CHANNEL SCOPE MULTIPLEXER, DM-12

Convert your single channel scope into 4 or 8 channel instrument; just connect the 8 DM-12 8-channel scope modules to your scope, step the 8 most probes to the outputs you wish to view. Simply, easy, fast — can handle logic level TTL signals from DC to 30MHz. Features separate triggering and trace amplitude controls and selectable sampling rate — all to insure easy clear scope display.

Completely assembled and tested: Ready to use!

- 8 TTL compatible input channels (1 TTL level per channel) can drive 50 ohm scope cable
- Maximum full screen sweeps: 15mV to 30V, 15mV to 3V, 15V to 30V
- Trace amplitude and spacing controls
- 4 or 8 channel output switch
- External 6.3V DC power supply included (Model: MMAC-2)
- 3.75 x 2.5 x 7.5" size
- BNC-1/2-0.125
cable Assembly (Model: PSA-2 and 114.85)

VIEW 8 CHANNELS AT ONCE!

$69.95

LOW COST CAPACITANCE METER MODULE, DM-8

Convert this high quality low cost Capacitance Meter Module, DM-8 to your digital Volt Meter and turn it into a Digital Capacitance Meter — the Low Cost Way!

Completely assembled and tested: Ready to use!

- Push to read range (buttons) from 1 pF to 1000 pF
- Zero deflection control
- In one easy to use, self-contained package
- Battery powered, with push to read battery saver circuit (9V batteries not included)
- Size: 2.5" x 3.75 x 2.5"

$69.95

REGULATED TRIPLE POWER SUPPLY, LOW PRICED!, DM-6

A fully assembled and tested power supply that provides a solid, key wired triple power supply including 5V, 12V, 15V, 1.25A, 5V, to 15V, 0.5 A, and 5V to 15V (0.5 A), and 5V to 15V (0.5 A) DC power supply regulating short points. Each supply has 10% regulated LED, complete and ready for use in a double (8x4.5 x 1/2) metal case

$99.95

ALBIA SATISFACTION: FREE!!

NEW 1981 FALL CATALOG

Exciting new products! Send today!!

LOW COST HIGH FREQUENCY COUNTER

MODEL NO. DM-7

The Albia Model DM-7. 8 Digit high frequency Counter is easy to use, switch selectable time base input by a single BNC, nothing to build!

- 1Hz to 500Mhz
- 8 digit display: 4-1/2" high LED display
- Gated (5 x 125ns at 20) Comprises 1 or 10 sec. time intervals
- Aluminum/brass case size 6 1/2 x 4 1/2 x 1/4 for desk sitting or bench top use

COMPLETELY ASSEMBLED: PRE-CALIBRATED: PRE-TESTED

LOW OHM METER MODULE, DM-10

MODEL V-151B WITH 2 YEAR MFG. WARRANTY

ONLY $499.95

WITH FREE DM-12 8 CHANNEL MULTIPLEXER A COMBINED VALUE AT LIST OF $639.95 YOU SAVE $140.00

If for any reason, whatsoever, you are not completely satisfied with your purchase, return it within 30 days of purchase date for a full refund — it's as simple as that! Shipping & Handling charges are not refundable.

ALBIA SATISFACTION: WARRANTY:

FOR FAST AND DEPENDABLE DELIVERY SERVICE CALL TOLL FREE: 1-800-243-6953

WE ACCEPT MASTER CHARGE, VISA AND AMERICAN EXPRESS

Connecticut Residents add 7 1/2% Sales Tax • Prices shown in U.S. currency only • Foreign orders add 15%

FREE ALBIA DESIGNER TEMPLATE WITH EVERY ORDER RECEIVED

ALBIA ELECTRONICS INC
44 KENDALL ST. • P.O. BOX 1833 • NEW HAVEN, CT. 06508

CIRCLE 38 ON FREE INFORMATION CARD
SEPTEMBER SPECIAL

New Portable Digital Capacitance Meter

KEITHLEY

Model 169
BENCH/PORTABLE DMM
- 3½ Digit liquid crystal display
- 0.25% basic accuracy
- 26 Ranges
$189.00

80MHz Counter with Period Function

MODEL 1820
- 5Hz to 80MHz reading guaranteed—100MHz typical
- Period measurements from 5Hz to 1MHz
- Period average, auto and manual positions
- One PPM resolution
- Totals to 999999 plus overflow
- Elapsed time measurements from 0.1 to 9999.99 seconds plus overflow
- One-megohm input resistance
- Bright 4.3'' high LED readouts

New Low Distortion Function Generator

MODEL 3010
- Generates sine, square and triangle waveforms
- Variable amplitude and fixed TTL square-wave outputs
- 0.1 Hz to 1MHz in six ranges
- Push button range and function selection
- Typical sine wave distortion under 0.5% from 0.1 Hz to 10kHz
- Variable DC offset for engineering applications
- VCO external input for sweep-frequency tests

New Sweep/Function Generator

MODEL 3020
- Four instruments in one package—sweep generator, function generator, pulse generator, tone-burst generator
- Covers 0.02Hz-2MHz
- 1000:1 tuning range
- Low-distortion high accuracy outputs
- Three-step attenuator plus vernier control
- Internal linear and log sweeps
- Tone-burst output is front-panel or externally programmable

ADVANCE ELECTRONICS

THE TEST EQUIPMENT SPECIALISTS

TOLL FREE HOT LINE
800-223-0474

54 WEST 45th STREET, NEW YORK, N.Y. 10036
IN NEW YORK STATE 212-687-2224

HITACHI

V-151B 15 MHz Single Trace
V-152B 15 MHz Dual Trace
V-202 20 MHz Dual Trace
V-301 30 MHz Single Trace
V-302B 30 MHz Dual Trace
V-352 35 MHz Dual Trace
V-500B 50 MHz Dual Trace,
Dual Time Base
V-1050 100 MHz Dual Trace,
Dual Time Base

We carry a full line of multimeters, oscilloscopes, frequency counters, audio and RF generators, power supplies and accessories.

Just call our Toll-Free number and one of our experts will answer all your questions about test equipment.
THESE 1981 B&K OSCILLOSCOPES ARE IN STOCK AND AVAILABLE FOR IMMEDIATE DELIVERY

1479A Dual-Trace 30 MHz
1477 Dual-Trace 15 MHz
1432 Dual-Trace 15 MHz Portable
1476 Dual-Trace 10 MHz
1466 Single-Trace 10 MHz
1405 Single-Trace 5 MHz
1420 Dual-Trace 15 MHz Portable

CALL FOR OUR EARLY BIRD SPECIAL LOW PRICE

PORTABLE OSCILLOSCOPES
BATTERY OPERATED

Non-Linear Systems
Call For Our Prices

MS-15
Single Trace 15MHz

MS-215
Dual Trace 15 MHz

MS-230
Dual Trace 30MHz

KEITHLEY MODEL 130
DIGITAL MULTIMETER

$125.

DC VOLTAGE
200mV, 2V, 20V, 200V, 1000V .5%

AC VOLTAGE
200mV, 2V, 20V, 200V, 750V 1%

DC CURRENT
2mA, 20mA, 200mA, 2000mA, 10A 2%

AC CURRENT
2mA, 20mA, 200mA, 2000mA, 10A 3%

RESISTANCE
200Ω, 2kΩ, 20kΩ, 200kΩ, 20MΩ .5%

CALL US FOR OUR LABOR DAY SPECIALS!

DIGITAL MULTIMETERS

Model 8022B: The Troubleshooter
$139

Model 8020B: The Analyst
$189

Model 8024A: The Investigator
$239

NEW

Six functions
• 3½-digit resolution
• dc voltage
• ac voltage
• dc current
• ac current
• resistance
• diode test

Model 8022B: The Troubleshooter

0.25% basic dc accuracy
• LCD display
• Overload protection

Model 8020B: The Analyst

Three line LCD display
• Overload protection

Model 8024A: The Investigator

Peak hold on voltage and current functions
• Selectable audible
• indicator for continuity or level detection
• 3½-digit resolution
• 0.1% basic dc accuracy
• LCD display
• Overload protection

www.americanradiohistory.com
Designing Digital Systems

Two programmed learning courses: hardware and software; theory and application.

RADAR DETECTORS

I would like to reply to the letter in the June 1981 Radio-Electronics by Mr. Delton T. Horn. Your magazine is quite excellent, and has no reason to apologize for anything he has commented upon. (1) Computerized ticketing—Big Brother would love that one—it sounds like something that Hitler would have produced. (2) Radar detectors—they have not been shown to be foolproof, and are indeed subject to errors and abuse. Police, being all to human, are all too capable of using radar for harrassment, speed traps, etc. Since the courts tend to view radar evidence as gospel, our only defense is offense: radar detectors. Also a receiver is still a receiver, whether it provides communication or not. (3) Pay-TV decoders. Since they are still legal, Radio-Electronics has every right to publish anything about them.

I am a concerned electronics technician. My concern is with the government taking more and more control over our life. The "irresponsibility" lies in too much big government.

MARK A. RECROB.
Madison, WI

I agree with your comments. However, pay-TV decoders have been ruled to be illegal devices by several courts. Thus, to make the situation worse, decoders are legal in some states and illegal in others.—Editor

SUPER TWIN LEAD

In reference to Mr. Dennis C. Brown's informative article, "How to Improve UHF Reception," in the July 1981 Radio-Electronics, it is possible that neither he nor the Georgia Tech group know of a type of twin lead made by Belinder (Beinder type 8235), which is rated at 2.2 db losses per 100 feet at 400 MHz? I believe that the loss is less than 4 db at 800 MHz. It is 1-kilowatt transmitting lead made primarily for hams, but the cost is about that of shielded UHF lead. I have used it for years and receive 100-mile distant stations on a VHF-UHF antenna. Best of all, it is not affected by rain!

PRESTON C. RICE,
Birmingham, AL

AUDIO-SIGNAL RESTORATION UNIT

After consultation with Mr. Joseph Gorin about his article, "Audio-Signal Restoration Unit" (Radio-Electronics, April 1981), I would like to alert those who are building the unit from their own parts stock (as opposed to the prepackaged kits). The unit will not work when 4739 preamplifier IC's are substituted for the 739 units required. Many retailers are shipping 4739 IC's from Exar or Raytheon when 739's are requested. Fairchild is the only manufacturer making the 739 at the present time. Using the 4739 will elicit correct operation of the noise-filter part of the circuit—but only silence from the expander.

ALAN J. FRIDLUND.
Martinez, CA

ROBOT-BUILDERS' CLUB

I am hoping to start a club in northern New Jersey/New York City/Long Island for anyone interested in building robots or working with them. I would like to make a list of all the people in those areas who are interested in joining such a club.

Even if you are too far away to attend a meeting, please get in touch with me. At a later time, there might be a club in your area to which I could steer you.

For the presently proposed club, there is as yet no meeting time or place, but we shall probably choose a location in New York City and meet on a week night.

If you have any questions or problems with robots, please write to me, I might be able to help.

DAVID SMITH
4505 Kennedy Blvd.,
North Bergen, NJ
Ford Industries
Code-A-Phone 1000
Telephone-Answering Machine

FOR YEARS TELEPHONE-ANSWERING MACHINES were used only by businesses, and usually leased from local telephone companies. Now privately-owned telephone-answering devices are becoming more common every day. Certainly among the most easy-to-install—and use—telephone-answering machines is the Code-A-Phone 1000, from Ford Industries, Inc. (5001 S.E. Johnson Creek Blvd., Portland, OR 97222). Although the Code-A-Phone 1000 is their bottom-of-the-line unit, with a suggested retail price of $139.95, it has features not found on more expensive units made by other manufacturers.

The Code-A-Phone 1000 operates on AC power (it uses a UL-approved wall-plug transformer), so you don’t need to worry about dead batteries. It uses a modular plug to connect to the phone line (the connection is FCC-approved). If you have the older 4-prong jacks, adapters are available from Ford Industries or your local electronics store.

The beige plastic Code-A-Phone 1000 case has brown trim and silver knobs. The entire unit weighs only five pounds, and measures 12 X 9 X 3½ inches. All controls are “human-engineered” for very simple use. Both the wall-plug transformer and the modular phone plug are at the ends of cables that are longer than six feet each, so you should have no difficulty in finding a suitable location for the unit.

Among the unexpected features for a low-price telephone-answering machine are a call-counter, ring selection, built-in microphone, variable announcement length, selective mes-

CONTINUED ON PAGE 32
Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that enables you to train for this booming field by working with your own production-model microcomputer.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

Send for the full color catalog in the electronics area of your choice — discover all the advantages of home study with NTS!

NTS also offers courses in Auto Mechanics, Air Conditioning and Home Appliances. Check card for more information.
1. The NTS/Rockwell AIM 65 Microcomputer A single board unit with on-board 20 column alphanumeric printer and 20 character display. A 6502-based unit 4K RAM, expandable.

2. The NTS/KIM-1 Microcomputer A single board unit with 6 digit LED display and on-board 24 key hexadecimal calculator-type keyboard. A 6502 based microcomputer with 1k RAM, expandable.

3. The NTS/HEATH H-89 Microcomputer features floppy disk storage, "smart" video terminal, two 280 micro-processors, 16K RAM memory, expandable to 48K.

sage erase, auto-stop, fast-forward, and a monitor. Let's discuss those in turn.

Most answering machines in the low-price range don't have a call-counter, although some indicate when the unit has received at least one message, using a "flag" or a light. The Code-A-Phone 1000 has a window at the top of the unit through which you see a number (0–20). If you've received four calls, for example, the number shown is 4. The counter also tells you which call you're listening to on playback.

The ring select feature allows you to choose which ring activates the device, from the first to the fourth, using a simple screwdriver adjustment located at the bottom of the unit. This feature lets you leave the Code-A-Phone 1000 on most of the time, with the option of answering personally if it is convenient. To do that, set it to answer on the third or fourth ring. On the other hand, if you'll only be using the unit when you're away, set it to answer on the first or second ring.

The built-in condenser microphone makes it easy to change your outgoing message, and eliminates another plug and cord as well as the danger of losing the microphone. Since it is so easy to change, the Code-A-Phone 1000 allows you to set the length (in seconds) of the outgoing message. That eliminates having to "fill" a predetermined time period, or to have a long silence after your outgoing message before the tone signals the caller to start talking. The Code-A-Phone 1000 outgoing announcement can be set for 5, 10, 15, or 20 seconds with a well-marked lever control, and is easily reviewed using the CHECK function on the main selector knob.

A source of confusion on many answering machines is the "old" messages. New messages, of course, automatically erase old ones as they record. But if previously you had, say, seven old messages, but only three new ones this time, the last four of the old messages are still on the tape. As you play back your messages, you can hear a message that was recorded days or weeks before and not realize it's an old message, since people rarely identify the time or date of their call. With the Code-A-Phone 1000, you can hold down the REWIND and MESSAGE ERASE key-type pushbuttons at the same time, erasing all messages back from that point on the tape. You can also erase while in the fast-forward mode.

Most answering machines have a fast-forward control, so that on playback of your messages you can quickly move ahead past short messages or calls where people hung-up without leaving any message. A nice feature of the Code-A-Phone 1000 push-button FAST-FORWARD switch is that it only needs to be pressed and released. It latches, moves ahead to the next message, and resumes normal speed automatically. If you wish, you can hold it down and move forward to whatever message you wish by watching the counter advance.

To monitor incoming calls, just turn up the volume control and you can hear the caller speaking. If you wish to speak directly to the caller, just pick up your telephone handset, it is not necessary to turn off the Code-A-Phone 1000. The Code-A-Phone 1000 will record both sides of the conversation until it shuts off. (Incoming message length is fixed at 30 seconds, for 20 messages total.) Your caller will have no trouble hearing you (although your voice's volume level will be a little below normal). When the Code-A-Phone 1000 turns off, continue your conversation normally.

Using the Code-A-Phone 1000 is easier than using any answering machine I've owned previously, and I've had several. When you leave the house, just move the main control knob to ANSWER—that's it! When you return, if the counter has not advanced, just turn the main control knob to OFF. If the counter has advanced, move the control to PLAYBACK, press the REWIND key until the counter is back to where it was when you left (usually at zero) and press the START button. Unlike some machines, only the incoming message is heard; you do not have to listen to your outgoing message over and over. Since the Code-A-Phone 1000 has automatic level control on record, you do not need to adjust the volume control when you leave.

The booklet that accompanies the 1000 is very easy to follow, with large well-labeled photos and step-by-step instructions. The only suggestion I could make to improve the Code-A-Phone 1000 would be to add a small light to show when the unit is in the standby condition (answer or playback). That condition is easy to overlook, since the sound control knob has only a short pointer limit to indicate position, and the line is not visible from a distance. I added an LED to mine, and now I can tell from across the room when the unit is on. However, be aware that if you make this change yourself, you could void the 90-day labor and 1-year parts warranty on your Code-A-Phone 1000.
The Microperipheral Corporation

Microconnection Modem

CIRCLE 102 ON FREE INFORMATION CARD

A WHOLE NEW AREA OF INTEREST IS OPENING IN THE PERSONAL COMPUTING FIELD—TELECOMMUNICATIONS, THE TRANSFER OF COMPUTER DATA OVER TELEPHONE CIRCUITS. WITH A TERMINAL OR COMPUTER AND A MODEM TO INTERFACE IT TO A TELEPHONE LINE, YOU CAN TRANSMIT ELECTRONIC MAIL IN THE FORM OF LETTERS OR MESSAGES USING COMPUTERIZED COMMUNITY BULLETIN BOARDS AND ACQUIRE MATERIAL FROM TIME-SHARING SERVICES. YOU CAN HAVE ACCESS TO COMPUTERIZED DATA BASES, UP-TO-DATE NEWS FROM THE WIRE SERVICES, FINANCIAL INFORMATION, AND STOCK MARKET DATA. YOU CAN, IN EFFECT, HAVE YOUR COMPUTER TALK TO ANOTHER COMPUTER!

If you have a Radio Shack TDS-80, you would normally need an expansion interface with an RS-232 serial interface and a modem to join the telecommunications world. That would cost almost $600. (And a lot more if you add a disk and more memory!) However, for about $25 you can purchase the Microconnection, a 300-baud modem with an RS-232 interface and several additional features as well.

The Microconnection is an FCC-approved "direct-connect" modem. It plugs into both your phone line and the TDS-80 keyboard. No expansion interface is required, and the Microconnection has six screw-terminals and an RS-232 output connector on the back for a multitude of uses. No modification of any kind to the TDS-80 is required. No power is drawn from the TDS-80, since the Microconnection has its own power supply fed by a wall-plug transformer. The necessary software—a "dumb terminal" machine-language program (SRO)—is supplied on cassette. Extensive optional software is available to make your TDS-80 a "smart-terminal," allowing the transfer of programs and offering some of the power of disk-based systems.

The Microconnection measures just 7 1/2 X 4 X 2 inches and weighs less than two pounds. Two large circuit boards are housed in a two-piece black wrinkel-finish metal case. White silk-screened lettering identifies the two red LED’s that protrude from the top and shows the settings for the two front-mounted push switches. There are two switches, and they are the only controls. One is set for simplex (one-way) or duplex (two-way) communication; the other is placed in the voice position for normal telephone use, or data for modem use. One LED is a power-on indicator. The other LED lights only when the carrier (signal) is being transmitted.

Installation is simple. With your TDS-80 off, you push the connector (at the end of a 12-inch ribbon-cable) onto the card-edge at the back of the keyboard unit. If you have an expansion interface, the connector pushes onto the card-edge of the screen printer port. The Microconnection now plugs into the phone line using the modular plug (at the end of a six-foot telephone cord that extends from the rear of the Microconnection). That plug mates with the standard telephone RJ11 modular jack, using a duplex jack (such as Radio Shack 279-357). Other adapters may be required if you have older 4-prong telephone plugs.

The RS-232, DB-25 female connector on the back of the Microconnection can be used for a serial printer, plotter, graphic display, another computer, or any other RS-232 driven device.

The excellent, detailed manual (that includes several photos, which is unusual in documentation for low-priced peripherals) guides you through the connection procedure, as well as the loading and operation of the software program. You’ll need to learn a few new commands using UP-ARROW and SHIFT keys. There continued on page 36

RCA Receiving Tubes—FOR ONE TRIP SERVICING.

Most callbacks aren’t caused by bad servicing. Components are the reason.

That’s why you need receiving tubes you can trust, dependable receiving tubes from RCA. We offer over 1,000 types—all produced to exacting specifications.

For miniatures, Novars, Compactrons, Nuvistors, Glass Tubes, Metal Tubes and more, count on your RCA Distributor. He’s got the tubes that help you finish the job in just one trip.

INCREASE YOUR PROFITS WITH RCA SERVICE AIDS AND SALES PROMOTION AIDS.

See your local RCA Tube Distributor for RCA’s technical guides, service tools and tube caddies. They all make your service work faster and easier while RCA’s in-store signs and eye-catching displays promote your business professionally.

RCA Receiving Tubes

RCA Distributor & Special Products Division, Deptford, N.J. 08096

SEPTMBER 1981

www.americanradiohistory.com
Pick a strong partner

A computer purchase is the beginning of a long term partnership between you and the people you buy from. Your ongoing need for software and accessories requires a partner who will stand by you with a growing line of products. And nowhere will you find a more complete line of hardware, software and accessories than at your Heathkit Electronic Center. Here are twelve strong reasons to make Heath/Zenith your partner.

1. The All-In-One Computer
The heart of the Heath/Zenith line is the stand-alone 89 Computer. It's a complete system with built-in 5½-inch floppy disk drive, professional keyboard and keypad, smart video terminal, two Z80 microprocessors, and two RS-232C serial I/O ports. It comes with 16K RAM, expandable to 64K.

2. Peripherals
These include the popular Heath/Zenith 19 Smart Video Terminal, loaded with professional features. And the 14 Line Printer, priced as low as $495. Other printer brands are on display, including high-speed, typewriter-quality printers.

3. Software
Word processing, includes reliable, easy-to-use Zenith Electronic Typing and powerful, full-featured WORDSTAR.
Small Business Programs, feature General Ledger and Inventory Control.
HUG, Heath Users' Group, offers members a library of over 500 low-cost programs for home, work or play.

4. Programming Languages
For your own custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL.

5. Operating Systems
Three versatile systems give you the capability to perform your specific tasks.
CP/M by Digital Research makes your system compatible with thousands of popular CP/M programs.
UCSD P-System with Pascal is a complete program development and execution environment.
HDOS, Heath Disk Operating System gives you a sophisticated, flexible environment for program construction, storage and editing.

6. Utility Software
Expand the performance range of your computer with a broad selection of utility tools, including the best of Digital Research and the complete line of innovative Softstuff products.

7. Disk Systems
The 8-inch Heath/Zenith 47 Dual Disk System adds over 2 megabytes of storage to your 89 Computer. Diskettes are standard IBM 3740 format, double-sided, double-density. The 5½-inch 87 Dual Disk System adds 200K bytes of storage to your 89. Both disk systems feature read/write protection and easy plug-in adaptability.

8. Self-Study Courses
Learn at your own pace with Programming Courses that teach you to write and run your own programs in Assembly, BASIC, Pascal or COBOL.
A course on Computer Concepts for Small Business gives you the understanding to evaluate the ways a computer can benefit your business. Personal Computing is a complete introduction to the fundamentals for the novice. Every Heathkit/Zenith course is professionally designed for easy, step-by-step learning.

All Heath/Zenith Computer Products are available completely assembled and tested for commercial use. Or in easy-to-build, money-saving kits.
9. Expansion Options
Communicate with the outside world through a Threeport EIA RS-232C Serial Interface. Expand RAM to 64K with easy-to-install expansion chips.

10. Accessories
Your Heathkit Electronic Center has the latest in modems, black-and-white and color video monitors, computer furniture and a full line of supplies, accessories, books and parts.

11. Service
No one stands by you like Heath/Zenith. We help you get your system up and running smoothly. Service is available from trained technicians, over the phone or at one of 56 Heathkit Electronic Centers.

12. Value
Your money buys you more because Heath/Zenith prices are among the industry's most competitive. Make your own comparison and find out how much you can save.
Complete, integrated computer hardware and software, designed to serve you and to grow with you—that's what to look for in a strong partner. And with Heath/Zenith you get it all under one roof.

All at your Heathkit Electronic Center
Pick the store nearest you from the list at right. And stop in today for a demonstration of the Heath/Zenith 89 Computer System. If you can't get to a store, send $1.00 for the latest Heathkit Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write to Heath Co., Dept. 020-814, Benton Harbor, MI 49022.

Visit Your Heathkit Electronic Center*
where Heath/Zenith Products are displayed, sold and serviced.

PHOENIX, AZ
2727 W. Indian School Rd.
602-279-6247

ANAHEIM, CA
330 E. Ball Rd.
714-776-9420

CAMPBELL, CA
2350 S. Bascom Ave.
408-377-8920

EL CERRITO, CA
6000 Pitzer AVE.
415-236-8970

LA MESA, CA
8363 Center Dr.
714-461-0110

LOS ANGELES, CA
2309 S. Flower St.
213-749-0261

POMONA, CA
1550 N. Orange Grove Ave.
714-623-3543

REDWOOD CITY, CA
2001 Middlefield Rd.
415-365-8155

SACRAMENTO, CA
1860 Fulton Ave.
916-486-1575

WOODLAND HILLS, CA
22504 Ventura Blvd
818-832-0331

DENVER, CO
5940 W. 38th Ave.
303-472-3408

AVON, CT
595 W. Main St. (Rt. 44)
203-678-0323

HAILEAH, FL
4725 W. 16th Ave.
305-833-2280

PLANTATION, FL
7173 W. Broward Blvd.
305-991-7300

TAMPA, FL
4019 W. Hillsborough Ave.
813-885-2541

ATLANTA, GA
5255 Roswell Rd.
404-252-4341

CHICAGO, IL
3462-66 W. Devon Ave.
312-583-3920

DOWNTOWN GROVE, IL
224 Ogden Ave.
312-852-1394

INDIANAPOLIS, IN
212 E. 62nd St.
317-257-4321

MISSION, KS
3560 Lamar Ave.
913-367-4236

LOUISVILE, KY
12401 Shelbyville Rd.
502-245-7811

KENNER, LA
1900 Veterans Memorial Hwy.
504-467-3321

BALTIMORE, MD
1713 E. Joppa Rd.
301-661-4446

ROCKVILLE, MD
5542 Nicholson Lane
301-881-5420

PEABODY, MA
242 Andover St.
617-531-9330

WELLESLEY, MA
165 Worcester Ave.
617-237-1540

DROFT, MI
18149 E. Eight Mile Rd.
313-735-6440

DETROIT, MI
18149 E. Eight Mile Road.
313-772-2496

HOPKINS, MN
101 Shady Oak Rd.
612-938-3671

ST. PAUL, MN
1045 White Bear Ave.
612-778-1211

BRIDGETON, MO
3794 Mckelvey Rd.
314-291-1850

OMAHA, NE
9207 Maple Dr.
402-251-2887

ASBURY PARK, NJ
1013 State Hwy. 35
732-775-1231

FAIR LAWN, NJ
35-07 Broadway (Rt. 4)
201-791-9395

AMHERST, NY
3475 Sheridan Dr.
716-835-3090

JERICHO, L.I., NY
15 Jericho Turnpike
516-334-8181

ROCHESTER, NY
1717 Jefferson Rd.
716-242-2560

N. WHITE PLAINS, NY
7 Reservoir Rd.
914-761-7690

CLEVELAND, OH
28100 Chagrin Blvd.
216-232-2552

COLUMBUS, OH
2500 Morse Rd.
614-745-7200

TOLEDO, OH
48 S. Byrne Rd.
419-537-1887

WOODLAND, OH
10133 Springfield Pike
513-771-8830

OKLAHOMA CITY, OK
2727 Northwest Expressway
405-948-7593

FRAZER, PA
630 Lancaster Pike
(Ph. 30)
215-647-5555

PHILADELPHIA, PA
6318 Roosevelt Blvd.
215-288-0180

PITTSBURGH, PA
3482 W. Penn Hwy.
412-824-3546

WARWICK, RI
506 Greenwich Ave.
401-738-5140

DALLAS, TX
2710 Ross Ave.
214-286-4053

HOUSTON, TX
1704 W. Loop N.
713-869-5260

SAN ANTONIO, TX
7711 Blanco Road
210-341-8467

MIDVALE, UT
58 East 7200 South
801-386-4276

ALEXANDRIA, VA
6201 Richmond Hwy.
703-765-5515

VIRGINIA BEACH, VA
1055 Independence Blvd.
757-460-0997

SEATTLE, WA
505 6th Ave. N.
206-682-2172

TUKWILA, WA
15439 53rd Ave. S.
206-246-5358

MILWAUKEE, WI
5215 W. Fond Du Lac
314-873-8250

*Units of Veritechnology Electronics Corporation in the U.S.

HEATH/ZENITH
Your strong partner

35

www.americanradiohistory.com
ADVANCE IS PROUD TO INTRODUCE the
KEITHLEY Line of High Quality Digital Multimeters
Featuring The New 130 Hand-Held DMM

Rugged DMMs from Keithley — all feature large, bright LCD display, easy-to-use rotary switches, externally accessible battery and fuse, 10A current range, diode test capability, low battery indicator, cushioned controls.

Model 131. Similar to Model 130, with increased accuracy...$134

Model 130. Our most popular model, the price/performance champ...$125

Model 135. First 4½-digit DMM with hand-held convenience...$219

ACCURACY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DCV</th>
<th>DCA</th>
<th>ACV</th>
<th>ACA</th>
<th>REL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0.5%</td>
<td>1%</td>
<td>1%</td>
<td>0.5%</td>
<td>1%</td>
</tr>
<tr>
<td>131</td>
<td>0.25%</td>
<td>0.75%</td>
<td>2%</td>
<td>0.05%</td>
<td>1%</td>
</tr>
<tr>
<td>135</td>
<td>0.05%</td>
<td>0.1%</td>
<td>1.5%</td>
<td>0.02%</td>
<td>1%</td>
</tr>
</tbody>
</table>

SENSITIVITY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DCV</th>
<th>DCA</th>
<th>ACV</th>
<th>ACA</th>
<th>REL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>10µV</td>
<td>1µA</td>
<td>100µV</td>
<td>1µA</td>
<td>100µm</td>
</tr>
<tr>
<td>131</td>
<td>1µV</td>
<td>1µA</td>
<td>100µV</td>
<td>1µA</td>
<td>100µm</td>
</tr>
<tr>
<td>135</td>
<td>1µV</td>
<td>1µA</td>
<td>100µV</td>
<td>1µA</td>
<td>100µm</td>
</tr>
</tbody>
</table>

Case $10.00 Shipping $3.00

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE
800-223-0474

Grove Enterprises Shortwave/Longwave Tuner

CIRCLE 103 ON FREE INFORMATION CARD

GROVE LW/SW TUNER

OVERALL

<table>
<thead>
<tr>
<th>EASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF USE</td>
</tr>
<tr>
<td>INSTRUCTION MANUAL</td>
</tr>
<tr>
<td>PRICE</td>
</tr>
<tr>
<td>VALUE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHILE A NUMBER OF RECEIVER PRESELECTORS and tuners are on the market, the Grove Enterprises Shortwave/Longwave Tuner is the first to tune the entire 10 kHz—30 MHz frequency range.

A multi-position rotary switch selects a resonant inductor that is placed in series with a tuning capacitor (tune control). That circuit optimizes coupling between the antenna and the receiver at the desired frequency. Two buttons are used to connect one of two antennas to one of two receivers. That lets you select

continued on page 81
Light-torque rotary switches make the LM-3.5A DMM as easy to operate as it is to carry.

Convenience. That's the key to Non-Linear Systems' best-selling LM-3.5A. A high-performance, competitively-priced, all-purpose mini DMM. Convenience from light-torque rotary switches. So operation's a cinch. Convenience from bold, bright LEDs. For instant, accurate, numeric answers. Unlike some competitive meters, the LM-3.5A features both vertical and horizontal readings. And an optional leather carrying case with belt loops and shoulder strap assures hands-free operation.

At 9.2 oz., the LM-3.5A is portability at its best. There's more. The LM-3.5A is a 3½-digit DMM. Features 2,000 counts per range - 100% over-ranging. Result? Increased accuracy and resolution between readings of 999-2,000. It also reduces the amount of range shifting when measuring near 1,000.

Troubleshooters swear by it. Repairmen find the LM-3.5A works wonders on his business machines, even cameras. Checks all quiescent AC and DC voltage values. Spots current drains. Measures the resistance of suspect components. Quickly and precisely.

Other DMMs to match your needs. The LM-3.5A is just one in a full series of 3 to 4-digit DMMs. If you need LCD convenience for measurements outdoors, we market the LM-350, among others. You don't pay for true RMS capabilities you don't need. But if you do need true RMS readings, Non-Linear Systems can oblige.

FM-7. The bantam frequency meter. Portability teams with performance in the FM-7. The smallest, 7-digit, 60-MHz battery or AC line-operated instrument available.

Operator convenience is the key to our line of frequency and temperature meters, too. Pictured left to right, SC-5 prescaler, FM-7 frequency meter, LED format LT-3 digital temp meter and its LCD cousin, the LT-31. Top, the ML-1 digital logic probe.

Hobbyists, radio and TV studios, phone companies and the military all depend on the versatile FM-7. Whether the job calls for calibrating fixed, variable frequency or voltage-controlled oscillators, checking flowmeters, high-speed photocell counters, or setting the IF or heterodyne frequency in communications equipment, the FM-7 is a standout performer.

SC-5 Prescaler. Top range booster. This 512 MHz, battery or AC line-operated prescaler was developed to extend the frequency range of the FM-7 from 60 to 512 MHz. Adapts to most other frequency meters, too.

Get the word on us. We offer a full lineup of convenient, competitively-priced products. From DMMs, frequency and temp meters to miniscopes and DPMs.

For further technical information or the names of your nearest distributors, contact Non-Linear Systems Inc., 533 Stevens Ave., Solana Beach, CA 92075. Telephone (714) 755-1134. TWX 910-322-1132.

Non-Linear Systems, Inc.
Specialists in the science of staying ahead.
© 1981 Non-Linear Systems, Inc.
Learning electronics is no picnic.

At any level it takes work and a few sacrifices. But with CIE, it's worth it.

www.americanradiohistory.com
Whoever said, "The best things in life are free," was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics at home by spending just 12 hard-working hours a week, two hours a day. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don't have to go to a classroom. The classroom comes to you.

Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to apply the wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.

Which CIE training fits you?

Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. People who may have:
1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, FCC License and career.

Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

CIE specializes exclusively in electronics.

Why CIE? CIE is the largest independent home study school that specializes exclusively in electronics. Nothing else. CIE has the electronics course that's right for you.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It's built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

Programmed learning.

That's exactly what happens with CIE's Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand.

CIE prepares you for your FCC License.

For some jobs in electronics, you must have a Federal Communications Commission (FCC) License. For others, some employers tend to consider your license a mark in your favor. Either way, your license is government-certified proof of your knowledge and skills. It sets you apart from the crowd.

More than half of CIE's courses prepare you to pass the government-administered exam. In continuing surveys, nearly 4 out of 5 graduates who take the exam get their licenses! You can be among the winners.

Associate Degree

Now, CIE offers an Associate in Applied Science Degree in Electronics Engineering Technology. In fact, all or most of every CIE Career Course is directly creditable towards the Associate Degree.

Today is the day. Send now.

Fill in and return the postage-free card attached. If some other ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Print Name ____________________________ Apt. ____________________________
City ____________________________ State ____________________________ Zip.
Age __________ Phone (area code) ____________________________
Check box for G.I. Bill bulletin on Educational Benefits: □ Veteran □ Active Duty

MAIL TODAY!

www.americanradiohistory.com
Good news for you and your customers. NESDA/ISCET rates RCA serviceability:

"Excellent"

"The RCA CTC 108 and CTC 109 chassis have earned the highest possible serviceability rating category... Excellent... by incorporating serviceability features required in the IS CET Serviceability Rating Form.

"RCA's many years of cooperation with ISCET's Serviceability Committee has helped produce excellent results."

—Dean R. Mock, Chairman, NESDA/ISCET Serviceability Committee

ISCET's 92% (CTC 108) and 93% (CTC 109) ratings were good news to us. Because they mean that some of the most demanding critics in the industry agree that we've succeeded in designing chassis that not only give your customers a first rate picture, but are easy to repair too. Here are some reasons why they think so:

All subassemblies plug into chassis. No tools are needed to remove chassis (main circuit board). Just remove the cabinet back, unplug subassemblies and the chassis is ready for removal.

Roadmapping on both sides of the board. Although the XL-100 chassis use single-sided circuit boards, double road-mapping means you can easily trace circuits from either side.

Circuits and voltages directly identified. Major circuit areas as well as power supply source and key pulse voltages are labeled by name on the board. So you can find them fast.

That all means that when you do have to repair our new XL-100 chassis, in most cases you can fix them quickly and easily.

And you won't have to waste your valuable time trying to find out where to go to fix what you already know is wrong.

Because to us that's what really counts. Making your job easier and your customers happier.

RCA

RCA IS MAKING TELEVISION BETTER AND BETTER.

For your free subscription to RCA COMMUNICATOR, our magazine of news and advice for service technicians, write RCA Department 443, Box 100, North Benton Drive, Indianapolis, IN 46211.
THE USE OF DELAY LINES IN AUDIO reproduction is an increasingly popular way to add a sense of realism to recorded music. By simulating the reverberation characteristics of a large room or hall electronically, and feeding that information to loudspeakers, the sensation of a large listening area is created. State-of-the-art systems using digital storage and microprocessors are capable of producing a complex, realistic simulation of large concert halls in a typical living room. Simpler systems, using either mechanical or electronic (digital or analog) delay schemes can produce a significant improvement in the audible performance of a music system, particularly if they can avoid the artificial quality that is associated with electronic reverberation.

Ideally, it would be desirable to simulate the natural reverberance of a concert hall. When a sound is produced on stage, a small fraction of the sound reaches a listener in the audience directly. This direct (first arrival) sound determines the direction and pitch of the source. Shortly thereafter, echoes (reflections) reach the listener by the shortest path from a wall. More reflec-

tions occur as the sound bounces off other walls, the ceiling, the floor, and objects in the hall. Because there are, in essence, an infinite number of paths for the reflections to follow, the reverberation is not a series of individual echoes, but a continuous flow of sound. It builds up in a short period of time (typically a few milliseconds) and may take several seconds to die away. The reverberation time of a hall is defined as the time required for the sound level to decrease by 60 dB.

Electronic reverberation

Unfortunately, using either digital or analog delay lines, this sort of reverberation is difficult to simulate. The typical scheme for producing reverberation electronically is shown in Fig. 1. When a signal is applied to the input, it is delayed before it appears at the output. The delayed signal is fed back to the input after being reduced in level, so that it is delayed again. That feedback arrangement allows the reverberation quality to be changed, either by increasing the delay time or by changing the amount of delayed signal fed back to the input.

A system of this type does, however, have several drawbacks. First, the

R-E TESTS IT

LENS FELDMAN

CONTRIBUTING HI-FI EDITOR

THE ANALOG REVERBERATION SYSTEM IS AN audio add-on unit that simulates the ambience and acoustic environment of large listening spaces such as concert halls, night clubs, auditoriums, and even cathedrals. An audio delay is introduced by using charge-coupled devices (CCD's), commonly referred to as bucket-brigade systems, instead of the A/D and D/A converters and digital signal-storage used by some other time delay/reverberation units. In use, program signals are taken from the main stereo system (using a tape out jack-pair) and connected to the two inputs on the reverberation unit. Some delayed and, if desired, reverberated, signals are fed from the output of the reverberation system to a secondary amplifier and, in turn, to one or more speakers positioned behind or to the sides of the listener. A single speaker, without an amplifier, can also be used.

As is true of all time-delay units of this type, the longer the time delay introduced, the narrower the bandwidth or pass-band of the time-delay system. The time delay available on this reverberation system varied from ap-

Continued
proximately 5 to 50 milliseconds. Those delay times are illustrated in the oscilloscope traces shown in Figs. 1 and 2. The upper trace in Fig. 1 is a tone burst. That tone burst was used as the input signal to the analog reverb system. With its delay control at minimum (fully clockwise) the output signal (the lower trace in Fig. 1) was displaced by approximately 5 milliseconds (the sweep rate is 5 ms per division in both Figs. 1 and 2). Figure 2 shows the maximum time-displacement between the input (upper trace) and output (lower trace)—about 50 milliseconds.

Two frequency-response curves are shown in Fig. 3. The upper curve, which has a rolloff of 3 dB (at the output of the device) at 3.5 kHz, shows the response obtained with the minimum time delay. The lower curve, in which response is already down by some 4.5 dB at the same 3.5 kHz test frequency, shows the response obtained with the delay control set to maximum.

While those response curves may appear to be anything but "high fidelity," you must understand that reflected sounds (which the delayed sounds are intended to simulate) also have their high frequencies highly attenuated. Highs are more easily absorbed by walls, floors, ceilings, and other surfaces, while mid-frequencies and lows tend to bounce back with little, or no loss. Thus, the tendency of the analog reverberation system to increasingly attenuate high frequencies as the delay time is increased is desirable, and is not an unwanted side-effect of this, or any other time delay/reverb system.

We measured the total harmonic distortion of the reverberation system for a mid-frequency (1 kHz) and for a relatively low frequency, with 1 volt applied to the inputs. With delay time set to minimum, the total harmonic distortion was 1.6% at 1.0 kHz and 3.1% at 100 Hz. Turning the delay control to its opposite extreme, we measured a total harmonic distortion of 1.3% at 1 kHz and 1.55% at 100 Hz. Again, while these levels may seem a bit on the high side to audio buffs, it must be remembered that the total contribution of sound energy by the delayed channel is but a fraction of the total sound reaching the listeners' ears. That's because in an ideal setup of this kind, the listener adjusts the rear-channel (delayed) sound so that he or she is not consciously aware that there is a separate source at the rear of the listening room. Thus, if the contribution of the delayed channel is even just 3 dB lower than that of each of the primary channels, the total harmonic distortion added by the rear channel is only one-third as great as the numbers would imply.

Figure 4 shows what happens when the reverberation control is advanced, while the basic time delay is kept at its minimum and the feedback delay control is set to one extreme. Note the appearance of additional, delayed signals of decreasing intensity. Those extra signals have a decay characteristic similar to what would be found in a large hall with its own natural reverberation delay-time. Additional reverberation effects can be obtained by altering the setting of the feedback delay control, as can be seen in Fig. 5. In that figure the feedback delay control was set to its opposite extreme.

Listening tests
In addition to the measurements and observations just described, we hooked up the analog reverberation system to our own sound system and to an extra amplifier (in the "mono" mode) and pair of speakers. We played a variety of musical material through this system, alternately switching in and switching out the reverberation unit. The unit, once properly adjusted for the type of program material (and that is very important), added a sense of space to our modestly proportioned listening room. We found that the reverberation control should be used in moderation. If used to excess, it gave a false quality—almost a ringing or oscillatory characteristic—to the music. That was not the case with the delay control however. When that control was varied, the apparent size of the listening room simply seemed to change.

FIG. 1—ELEMENTS OF A REVERBERATION SYSTEM. Part of the output-signal is attenuated and fed back to the input to the delay line to generate a slow decay.

FIG. 2—THE RESPONSE OF A SIMPLE REVERBERATOR TO a short pulse. If the delay time is long, the echoes can be heard individually producing a flutter effect.

FIG. 3—REVERBERATION SYSTEM RESPONSE. The response obtained with the minimum time delay is the upper trace (fully clockwise) the output (lower trace) was displaced by approximately 5 milliseconds.

FIG. 4—REVERBERATION SYSTEM RESPONSE. The response obtained with the delay control set to maximum is the lower trace, in which response is already down by some 4.5 dB at the same 3.5 kHz test frequency.

FIG. 5—REVERBERATION SYSTEM RESPONSE. The response obtained with the feedback delay control set to one extreme is the lower trace (fully clockwise). The upper trace shows the response obtained with the delay control set to minimum.
and the delayed signal are 180 degrees out of phase at 50 Hz. (The period of a 50-Hz signal is 20 ms.) When added together, the sum is the difference of the two, and the result is a decrease in output level. At 100 Hz, the input and output are in phase (360-degree phase shift), and add together. Under those conditions, dips in the response would also occur at 150 Hz, 250 Hz, 350 Hz, and so forth. Likewise, peaks in the response would occur at every 100-Hz interval. Figure 3 illustrates that response. Over a 10-kHz range, there would be 100 of those peaks and dips. And as the amount of feedback is increased, the height of the peaks and the depth of the dips also increases.

These problems are actually quite similar to those encountered in a room of poor acoustical design. A large tiled shower is a good example. The hard, reflective walls and the boxiness of the room's shape will create the same sort of flutter echoes. The room's dimensions will also set up "standing waves" that will simulate the "comb-filter" effect described earlier.

Fortunately, the physical solutions to the problem of poor room acoustics can be carried over into the design of an artificial-reverberation device. Instead of changing the dimensions of the room to give more echoes of different lengths, we can provide delay lines of different lengths in the device. Instead of breaking up the standing waves with objects or acoustical treatment, we can inject delayed signals into the electronic feedback to break up the pattern. A block diagram of the simple system to do that is shown in Fig. 4.

The multiple-feedback reverberation technique is still not a close simulation of an actual concert hall reverberation, with its complex combination of delays. This technique does, however, eliminate or reduce the most objectionable artificial aspects of electronic reverberation. If delay line DL1 is 10 ms as before, and delay line DL2 is 3 ms, then the resultant echoes will be as shown in Fig. 5. Note that not only do more echoes appear, but that the number of echoes increases with time, just as it would in a natural environment.

The frequency response of a multiple-feedback reverberation device is complex. The peaks and dips remain, but are irregular. The large peaks occur only if the delayed input, the output, and the delayed output are all in phase, which makes the number of large peaks decrease; however, that situation is unlikely to occur. The number of deep dips in the response tends to be reduced similarly. There are still many ripples present, but they are not deep.

A block diagram of the complete reverberation system is shown in Fig. 6. The stereo signal from a receiver or preamp is converted into a monaural signal by a summing amplifier. The input-level control allows the signal level to be adjusted for the optimum signal-to-noise ratio. The signal is then filtered through a five-pole "anti-aliasing" filter to minimize intermodulation distortion. Aliasing is a phenomenon that occurs in sampling systems. Our delay lines use bucket-bridge IC's. Essentially, those IC's are sampling devices with the sampling rate being determined by the clocking frequency of the IC's. If the input signal being sampled contains components that are higher in frequency than can be handled by the sampling rate, aliasing occurs. Then, the high-frequency components are "read" as low-frequency components and appear at the output of the sampling device along with the low-frequency components of the input signal. The low-frequency components mix together and intermodulation distortion results. To prevent aliasing from occurring, the input signal is filtered before it reaches the sampling device by either a low pass or bandpass filter to eliminate the signal components that are too high in frequency for the sampling rate to handle. A filter of that sort is commonly referred to as an anti-aliasing filter.

The main delay line in Fig. 6 is DL1. Its output is filtered by a seven-pole active filter to eliminate switching waveforms, ultrasonic signals, and to reduce the likelihood of creating beat frequencies from the high-frequency signals present in the system. The de-
FIG. 7—SCHEMATIC DIAGRAM of the analog reverberation system. The delay required by the system is provided by IC3, IC4, IC5, and IC6—four TDA1022 "bucket-brigade" IC's (how they work is discussed in the text).
The one that has received the most attention lately is digital delay, shown in Fig. 1. In that system, the signal is measured at regular intervals (sampled) and the sampled voltage is converted to a number (quantized). The sampling operaion is done by a sample-and-hold capacitor that uses a capacitor to store a voltage representing the instantaneous signal level. The voltage stored by the capacitor is temporarily held on the input, making it possible for an anti-alias-digital converter to derive the digital value for it. (Not all A/D's will require sample-and-hold devices, but those commonly used for audio produce significant errors if the input voltage changes during the conversion process.) A number representing the signal can be stored in digital memory and, after the desired delay time, be reconverted to an analog voltage. The output of the D/A converter may also contain a sample-and-hold circuit to store the output voltage during the main delay time.

The second method is the bucket-brigade delay line (BBD), a single-
IC delay system that is, in effect, an analog shift register (see Fig. 2). Like the digital delay-line, the bucket brigade is a sampled system, but no digitizing is involved. Manufactured as a long string of MOSFET switches and capacitors, the bbd acts like a long string of sample-and-hold devices. At the beginning of a clock cycle, the input signal is stored by the first capacitor. During the second half of the clock cycle, that voltage is transferred to a second capacitor, and the input capacitor is ready to store a new voltage. During the next clock cycle, the original input signal is transferred from the second to the fourth capacitor, and so on. After 256 clock pulses, the original input-voltage appears at the 512th storage capacitor, which is the output of the TDA1022. The length of time it takes to transfer a signal (the delay) depends on the frequency of the clock used.

How the circuit works

Figure 7 shows a complete schematic of the reverberation system. The input is taken from the tape-monitor outputs of your hi-fi system. Because the input signal will typically come from the tape output of a preamp or receiver, the inclusion of a second set of jacks (J3 and J4) allows for the connection of a tape deck. The input impedance of the reverberation unit is 100 kilohms and it should not load down your hi-fi's tape-monitor circuit significantly.

Capacitors C1 and C2 couple the input signal into summing amplifier ICl-a. The gain of this stage is 6 dB and can be modified by changing the value of R3. You may want to alter the gain if the unit is to be used in applications with particularly low-level signals, such as those from a microphone or electric guitar, or with high-level ones like the output of a power amplifier. Since the INPUT LEVEL control, R9, follows this first stage of amplification, it is important that the signal applied to it not be too large, or overload will result. (As designed, the inputs will safely handle a 2-volt input level, more than sufficient for line-level inputs from a receiver.)

Op-amps IC2-a and IC2-b form an active low-pass filter with a cutoff frequency of 9 kHz. Together with the filtering action of summing amplifier ICl-b, they form a five-pole anti-aliasing filter that rolls off the input signal at a rate of 30-dB per octave. This filter reduces noise and distortion in the system by reducing the potential for intermodulation distortion (aliasing) in the delay lines. The slew rate of the input signal is also reduced by this filter. Too high a slew rate involves distortion in the op-amps. (This is not to imply that this would be a significant problem. The NE5512 op-amp specified can produce full output at 20 kHz without reaching its slew-rate limit.)

Philips TDA1022 bucket-brigade delay IC's are used for the main delay line. These are called out as IC3, IC4, and IC5 in Fig. 7. Although identical to other commercially available bucket-brigade IC's in most respects, the TDA1022 is unusual in that it uses p-channel MOSFET's. The three delay IC's are driven by a common clock and are cascaded to give three times the de-
lay of a single IC. Capacitive coupling between stages minimizes the effects of DC offsets in the delay line.

The output of the third bucket-brigade device, IC5, is filtered by another 9-kHz R-C filter and fed into op-amp IC6-a, which is connected as a voltage follower. This is followed by three more active-filter stages consisting of IC6-b, IC7-a, and IC7-b. This active filter provides a 36-dB-per-octave rolloff above 9 kHz and is designed so that the complete system—including the input and output filters—has a flat response below the cutoff frequency. This means that neither the input filter nor the output filter has a flat response, but the minor ripples in the responses tend to cancel and give a flat frequency-response below 9 kHz followed by a 72-dB-per-octave rolloff.

The output of the filter is fed to a fourth bucket-brigade device, IC8, which was shown as DL2 in Fig. 6. Both the filter-output and the output of IC8 are fed to the reverse control and combined with the input signal by summing amplifier IC1-b. The output of the filter is also fed to the OUTPUT LEVEL control, which is the primary volume control for the system.

The signal from the OUTPUT LEVEL control is fed to IC13-b. Two major functions are provided by op-amp IC13-b. First, it supplies drive for the output-amplifier stages. Although certainly not a high-power amplifier, its output is adequate for most purposes, and it eliminates the expense of having to add a power amplifier to the system. This IC also acts as the variable-bandwidth filter in a noise-reduction circuit. By making the bandwidth vary as a function of the signal level, the noise in the output signal is reduced.

A transconductance amplifier, the NE5517, was selected for IC13. This IC contains two independent transconductance-amplifiers in one package. By varying the current applied to pins 1 and 16, the gains of the two sections can be controlled independently.

To minimize audible side-effects of the noise-reduction circuit, the bandwidth of IC13-b is made a function of the high-frequency content of the input signal. The high-frequency content is sensed by a bandpass filter composed of IC9-a and its feedback network. The input to this filter is taken from a point ahead of the OUTPUT LEVEL control so that it is not dependent on the volume setting. The output from IC5 feeds IC13-a, which is configured to operate as an active rectifier. The gain of IC13-a is set to 51 by bias resistor R48. After the signal is rectified by IC13-a, a DC potential exists on C25 that is a measure of the high-frequency level, and determines the bandwidth of the dynamic filter.

The variable-bandwidth output filter works by varying the gain of IC13-b. Compensation for the amplifier is provided by capacitor C26, which sets the gain-bandwidth product. If the gain of the amplifier is varied by changing the bias current applied to pin 16, the bandwidth is also varied. To accomplish this, the control voltage from C25 is fed to pin 16 of IC13-b through a network consisting of R50, R55, and Q6 which develops a current proportional to the rectifier output. This causes the bandwidth of the amplifier to be proportional to the high-frequency level detected by the rectifier circuit.

The power amplifier's output stage uses four VMOS power transistors (Q1-Q4) in a push-pull configuration. Transistors Q1 and Q2 act as a source follower to drive the load directly. Transistors Q3 and Q4 are driven by Q5, a small-signal PNP-type, which senses the gate drive-voltage on Q1 and Q2 through diode-string D6-D8. When the gate drive-voltage is low (Q1 and Q2 beginning to turn off), Q5 provides drive for the gates of Q3 and Q4, which supply drive current for the negative portion of the cycle. Although Q1 and Q2 will turn off completely on large negative swings with a low-impedance (speaker) load, for most purposes the amplifier operates class A. The operating current is set by trim pot R57. In the case of high current-loads, D11 and D12 prevent the gates of Q1 and Q2 from being pulled negative with respect to the source, an undesirable condition for the VMOS transistor.

The amplifier is coupled to the speaker through capacitor C25. The R-L-C network at the amplifier's output decouples the loudspeaker from the feedback loop to improve stability. Although this amplifier has a limited power-output (due primarily to power-supply limitations), it can safely be used with 4-ohm loads. Transistors Q1 and Q2, as well as Q3 and Q4, are connected in parallel for this purpose. No current-hogging or thermal instability results from connecting VMOS devices in parallel (as continued on page 104)
Home Electronics

WHAT THE FUTURE WILL BRING

LEN FELDMAN
CONTRIBUTING EDITOR

We're always interested in knowing what the future holds. The most recent Consumer Electronics Show gave us a look at that future—as it exists today.

THE FOUNDER OF THIS MAGAZINE, HUGO Gernsback, was one of the true prophets of the electronics industry of his time. Many readers of Radio-Electronics will recall issues of this magazine which were devoted to predictions, by Hugo Gernsback, of "electronics miracles" still to come. Amazingly, many of his predictions that might then have seemed far-fetched have indeed come true and exist today in the form of readily available consumer electronic products.

At the most recent Consumer Electronics Show in Chicago, held in early summer, 1981, one of the largest electronics manufacturing and research companies in Japan—Matsushita Electric Industrial Co.—exhibited more than 190 electronics products in a 12,000-square-foot exhibition that was in much the same tradition as the prophetic early editions of Radio-Electronics but with one major difference: All of the products were in the form of working models, with many of them already scheduled for early production and distribution throughout the world. Of particular interest to readers of Radio-Electronics were the latest in video and audio products, communication equipment, and component technology. Matsushita's exhibit also included products for the business and industrial fields as well as medical-electronics products.

We can only highlight a few of the items we saw, but from our description of these innovative products, you should get some idea of the diversity of the exhibit and of what the electronics-based home of the future is likely to contain.

High-definition color TV

It has been said that the U.S. pays the penalty for "being first" by ending up with inferior-technology systems,
while countries that are content to wait benefit from our early mistakes. Nowhere is that more true than in the case of TV standards and, in particular, those for color TV.

Many experts feel that the PAL and SECAM systems used in other parts of the world deliver better pictures than does our NTSC system, which is also used in Japan. Bypassing all three of those systems, Matsushita (whose trade names Panasonic, Technics, and Quasar are probably more familiar to American consumers than is the more-difficult-to-pronounce name of the parent company) has developed, and showed, an SHF (Super High Frequency) DBS (Direct Broadcasting Satellite) system combined with a high-definition, wide-screen, TV camera and receiver. The elements of the entire system are shown in Fig. 1. The SHF satellite-TV system is considered by many to be one of the most promising new concepts in broadcasting because of its ability to improve poor reception in remote areas and to eliminate the problem of "ghosts" in other problem-receptive areas such as densely populated cities. The SHF band extends from 3 GHz to 30 GHz and the current lack of crowding in that band would permit the establishment of channel bandwidths that are wide enough to support the high-definition standards which Matsushita—along with others, such as CBS in this country—has proposed.

The high-definition TV system would produce better images than those obtained with 35 mm film, using 1125 scanning lines as opposed to the existing NTSC system which uses only 525 scanning lines. Among the newly developed elements and components that make the system practical are a low-noise SHF/RF converter, an easy-to-install dish antenna, an 1125-line high-resolution color picture tube, a high-resolution color TV camera with a 30-MHz-bandwidth amplifier and edge-enhancer, and a high-definition TV-signal transmission system using fiber optics technology.

3-D television

One of the most frequently made predictions about electronic products of the future has concerned three-dimensional television. Some have even imagined a holographic display system to create what appear to be live, moving, three-dimensional images in your living room. At the Matsushita exhibit, a much more straightforward approach was used; one which, in fact, can be used with existing VCR's and conventional TV sets or monitors. It is expected to find wide application in the field of entertainment, education, and training and industrial applications, including computer displays.

![FIG. 1—THE SHF DBS SYSTEM, combined with high-definition equipment can offer high-quality video with more than twice the resolution and clarity of existing systems.](image1)

![FIG. 2—TWO VIDEO CAMERAS, one for the right-eye image, and one for the left-eye image, are required for 3-D television.](image2)

The 3-D system consists of a specially designed camera, signal-processing circuitry and eye glasses with electronic lens-shutters. The 3-D TV camera (see Fig. 2) consists of two video cameras, positioned slightly apart, but focusing on the same image—working in much the same way as a pair of human eyes. The video signals from the right and left camera are fed alternately to the TV set or video recorder, a field at a time. The alternating fields are viewed through special glasses equipped with operated shutters synchronized with the changing left-eye and right-eye images. The mind combines the two images and the viewer sees a three-dimensional one.

A videodisc with record capability

Business journals and the general press have been reporting of late that the sales of videodisc players are not meeting the original expectations of their manufacturers. One reason given for that is the notion held by uninitiated shoppers that videodisc machines can record as well as play back. Once they learn that this is not the case, prospective customers frequently opt for a videocassette recorder instead. That may soon change.

One of the products at the Matsushita exhibit was a compact disc-type still-video (single-frame) record/playback system. Using semiconductor-laser technology, the unit can record 15,000 individual frames of information on a 200 mm disc with access to any given frame in 0.5 second. The new system uses a single semiconductor-laser as an optical source and a disc with 15,000 concentric grooves coated by a thin film of highly sensitive recording material. The disc is made of a plastic substrate on which a recording layer of sensitive tellurium suboxide film is coated. The recording layer is a vapor deposit of 15,000 concentric grooves of 2.5 micron pitch. Each groove is 0.8 micron wide and contains an address signal that guides the laser beam for stable recording and playback. While the new material is sensitive enough to permit the use of a semiconductor laser, it also resists temperature and humidity variations. Unlike conventional optical-disc recording systems, the laser does not make any holes on the disc surface. Rather, the recording is made by changing the optical characteristics of the disc.

The video signals are modulated by varying the intensity of the laser beam. The optical recording material on the disc absorbs the laser-beam energy and its optical characteristics are changed by the heat. The irradiated regions have different reflectivity compared with that of the non-laser-irradiated regions. The signal for a single still picture is recorded in a single groove on the disc. During playback, the laser beam, this time using less power than during recording, is reflected from the disc and reconverted into the original video signal.

To retrieve a single picture, a linear motor drives an optical head for a rough search, and then the head pinpoints the desired single frame using an electronic tracking-system. Both mechanisms are controlled by a microcom-
puter that permits fast image retrieval within 0.5 seconds. Some 95 patents are being applied for in Japan for this new device, with 9 more patents being applied for elsewhere.

High-speed videotape duplicator

The relatively high cost of pre-recorded videotapes is caused at least in part by the fact that duplication of tapes is a real-time process. A two-hour movie master-tape takes two hours to copy and, while many “slave” copiers can be fed from a single master-tape player, the process is still quite time-consuming and expensive. Now, the high-speed videotape printer shown in Fig. 3 can duplicate two or four-hour VHS video cassettes in less than four minutes. The printer is fully automatic and features a built-in 15-cassette feeding system for continuous, unattended tape duplication.

The tape-duplicating system consists of a master-tape recorder and a separate high-speed printer. The master-tape recorder records mirror-image signal patterns on a master tape in the usual real-time. The master tape is then transferred to the printer, which produces copies at high speed by transferring the signal patterns from the master tape onto the blank “slave” tape. The recording unit uses a direct-drive cylinder and capstan for highest possible tape-motion accuracy.

The duplication method is known as “video anhysteretic-transfer copying” by biffar tape-winding.” In it, the special formulations, and very-highly-magnetized master tape is brought into contact with the blank “slave” tape, both of which moving at extremely high speed. The master actually imprints an image of itself on the “slave” by magnetizing it directly with the video and control signals. The audio information is transferred by a recording head when the tape is rewound after the video and control signals have been imprinted. The system promises to lower the cost of pre-recorded VCR tapes in the future, and just what effect that will have on public acceptance of video disc formats (one of whose chief arguments has been the lower cost of software) is difficult to predict.

Micro video systems

Nearly a year ago, Sony Corporation demonstrated a mini-sized color video camera that incorporated a tape-transport and all the electronics needed for a single-piece, lightweight home video-taping system. At that time, officials of the corporation estimated that the new videotaping format would not be available before 1985. In typical one-upmanship not uncharacteristic of Japanese electronic firms, a combination color video-camera/recorder claimed to be the smallest, lightest, and lowest in power consumption of “any previously proposed format” was demonstrated at the Matsushita exhibit.

The system, shown in Fig. 4, uses a solid state micro-video system in which the camera portion uses a newly developed single-chip CPD (Charge Priming Device) image sensor which is said to combine features of both MOS and CCD image sensors; namely wide dynamic range and low noise. Maximum recording time would be two hours using a new high-density “metal evaporated” magnetic tape that is just 7 mm wide and is housed in a cassette package that is a bit smaller than an ordinary audio cassette. The unit is extremely compact, measuring 7.8 by 4.7 by 2.6-inches and weighs only 4.2 pounds. Power consumption is just 4.2 watts.

This system, obviously a step ahead of the Technicolor videotape format that has been marketed for more than a year, brings to at least six the number of home videotape formats that are likely to coexist in the near future (Beta, VHS, Philips, Technicolor, Sony’s future all-in-one, and now, Matsushita’s single-piece camera/tape-mechanism entry). Whether all of them can survive is highly questionable, though at present both Beta and VHS seem to be having no difficulty in the marketplace and we are told that Sony, for one, is having a tough time turning out enough Betamax machines to meet worldwide demand, even though the Beta format is outsold by first-place VHS machines by about seven-to-three!

How would I look as a blonde?

...Or with a mustache, or beard, or wearing horn-rimmed glasses, or with a radically different hair style or...yes...even with a hairpiece? If you have ever wondered about those or other matters of style and appearance, imagine being able to walk into a store, standing in front of a video camera and watching yourself being transformed by a new hairstyle, a pair of glasses, or other cosmetic changes.

Actually, Matsushita’s new “Style-setter” TV system, far from being an item in our future, is already in use in beauty parlors in Japan. The system works by taking a video picture of the customer, freezing the image on a TV monitor, and then superimposing various hair styles, glasses, etc. over the stationary image. The unit consists of a compact video camera, a magnetic-sheet-memory recorder, and a video image-synthesizer—the unit that superimposes the changes over the original image. The image recorded on the sheet-memory recorder does not have to match a predetermined posture since the synthesizer adjusts superimpositioned images to the recorded image by means of a joystick-type control. The size and shape, and even the color, of the changes can be adjusted to fit the contour of the subject.

Another use for the synthesizer has been to provide police departments with a more accurate means for creating identification pictures of crime suspects. Police artists can modify standard identification-kit models to fit witnesses’ descriptions and create highly accurate likenesses of suspects.

Largest projection-TV yet

Projection-TV screens have been growing steadily larger as better and brighter high-intensity CRT’s are developed, but unless you attend the Summer ’81 CES and the Matsushita “show-within-the-show” you’ve probably never seen anything as large as their new high-brightness picture projected on an 11½ by 8½-foot screen. The system, designed for institutional use, can be adapted for either front or rear projection and includes a projector featuring a new 13-inch cathode-ray tube. The system provides superb resolution as well as a light output of 300 lumens. The unit is contained in a floor or ceiling-mountable box measuring about 42 inches wide by 34 inches deep to 23 inches high and weighing 230 pounds. Depending upon the image-size desired, projection distance can be as little as 3.8 yards (2.7 yards behind the screen if

![FIG. 3—THIS HIGH-SPEED videotape printer can duplicate a two or four-hour VHS video cassette in less than four minutes.](image-url)

![FIG. 4—INTEGRATED CAMERA/VCR unit weighs just 4.2 pounds. The cassette is about the same size as a standard audio cassette.](image-url)
a mirror is used) or as much as 5.4 yards.

Three 13-inch monochromatic CRT's (red, green and blue) combine a newly introduced bipotential-field electron gun with a large main-focus lens, and a decelerating-potential-field-type pre-focusing lens. The system projects its images through a magnifying lens onto a flat plastic screen.

In tests, the system has been used at hotels and in school auditoriums, with a viewing angle as wide as that for normal motion-picture viewing. Some uses envisioned for the system include projection of surgical operations for medical classes, display of real-time data to business or government executives, and presentation of special events to large audiences. The company has indicated that it plans to introduce the system commercially into the United States by late 1982.

The ultimate sketch pad

Remember the little slate with the lift-up plastic sheet that we all played with and drew on when we were kids? I was reminded of that toy when I saw Matsushita's Compu-Cassette audio/visual communication system which uses conventional stereo audio-cassette tapes for recording sound and digitally processed graphic information.

Video information is recorded digitally on the right channel while analog audio information is recorded on the left channel. A one-hour cassette tape can store approximately 200 pictures with sound. The system includes a video signal-processor, stereo cassette-deck, light pen and color monitor, with a keyboard, remote control, and printer as options. The video signal processor, shown in Fig. 5, includes a controller, memory, interfaces, and a video-display generator. Figures and illustrations are shot sequentially by a monochrome camera with three color-filters. The video-image data is converted to digital form and stored on a floppy disk for editing and arranging. The system is also capable of generating eight-color graphics displays.

With the development of the appropriate software it should find application as an information center, learning aid, home amusement-center, or even as an electronic magazine or textbook.

While the products in Matsushita's "Technology Today" exhibit that we have discussed were largely in the video and TV fields, you should know that there were equally impressive products in such categories as audio, business products, home appliances (even a microwave oven that talks to its user), component technology, medicine, and manufacturing. Many of the products of the future already exist in today's technology.

What's News

Sears catalog on videodisc

The Sears Summer 1981 catalog has been put on videodisc for viewing in selected Sears stores and catalog-sales offices in the Washington, DC and Cincinnati areas, as well as in about 1,000 homes that have compatible videodisc players hooked to their TV sets.

Universal external interface of DiscoVision players

SSM Microcomputer Products has developed a microprocessor interface to read-only video discs, which, with appropriate supporting equipment, can give the user possession of a vast library of information. This Universal External Interface (UEI) is being made exclusively for DiscoVision Associates, a joint project of IBM and MCA. DiscoVision markets laser-based videodisc playback units.

In its "constant angular velocity" mode, the DiscoVision player, has 54,000 tracks, with one complete video frame stored per track. The theoretical digital data storage capacity is 50,000 megabytes per side. That means that each side of a disc could hold the equivalent of about 180 300-page books. When the player's "constant linear velocity" mode is used, the capacity is nearly double.

A typical setup would include the Universal External Interface, a microcomputer complete with keyboard and video terminal, the DiscoVision player, and a TV monitor. That setup could offer facilities equal to those that would be found in an immense library, accessible within seconds by microcomputer control. For example, a doctor could refer immediately to an amount of information equal to that in the finest medical library. A student could have all of the text and reference works that he or she could possibly require for eight years of undergraduate and graduate studies on a single disc. The videodisc, tied to a personal computer, could be a significant competitor to the broadcast and wired network services in the distribution of inexpensive mass information. It could also be the ultimate system for computer-assisted instruction and reference, since sound, video, and digital data can be mixed on a single disc.

Computer-originated mail system

RCA's Government Communications Systems unit has been awarded a contract by the U.S. Postal Service to develop and install an electronic computer-originated mail system (E-COM). The system will offer mailers high-speed delivery of notices, statements, and other computer-originated items. Computer-generated messages will be transmitted from the mailers by domestic common carriers to some 25 serving post offices around the nation. The system, scheduled to be in operation by early next year, will deliver a message anywhere in the continental United States within two days of its transmission to the appropriate E-COM serving post office.

RCA will install equipment, develop computer programs, train postal employees, and provide initial maintenance. Cost of the contract is being negotiated.
COMMUNICATIONS

All About

SCANNERS

Have you ever wondered what makes scanning receivers so popular? Sophisticated electronics and, perhaps more important, exciting listening are two good reasons.

ROBERT B. GROVE

THE FIRST SCANNERS

THE BASIC SCANNER PATENTS WERE ASSIGNED TO LOVELL'S NEW COMPANY, BEARCAT. ELECTRA, BEARCAT'S PARENT COMPANY, IS UNDERSTANDABLY PROUD OF THE ROLE IT HAS PLAYED IN THE INDUSTRY SINCE THOSE EARLY DAYS.

BUT ITS SCANNERS ARE NOT THE ONLY PRODUCTS ON THE MARKET. MANY EARLY ENTRIES, FROM SUCH FIRMS AS Tennenec, JIL, SBE, AND OTHERS HAVE COME AND GONE. TODAY, REGENCY AND RADIO SHACK ARE THE TWO MAJOR CONTENDERS IN THE RACE WITH ELECTRA FOR SCANNER SALES.

AS WE WENT TO PRESS, ANOTHER COMPANY, COMRADAR CORPORATION, ANNOUNCED ITS ENTRY INTO THE SCANNER MARKET. ALL FOUR COMPANIES OFFER QUALITY PRODUCTS.

HOW SCANNERS WORK

THE SAME TECHNOLOGY IS STILL USED IN LOW-COST CRYSTAL SCANNERS (SEE FIG. 1).

THE FIRST FREQUENCY-SYNTHESIZED SCANNER WAS DEVELOPED BY THE TEABERRY COMPANY. ITS SCANNER, ORIGINALLY SCHEDULED FOR INTRODUCTION IN 1972, NEVER WAS RELEASED BECAUSE OF NUMEROUS PROBLEMS WITH THE DEVICE. IN THE TEABERRY SCHEME, A SINGLE CRYSTAL-CONTROLLED MASTER OSCILLATOR WAS USED FOR ALL ALLOWABLE FREQUENCIES.

THAT MASTER OSCILLATOR WAS A COMBINATION OF FREQUENCY DIVIDERS, MIXERS, AND MULTIPLIERS (SEE FIG. 2). THAT IS THE SAME TECHNIQUE THAT IS USED TODAY. THE MASTER OSCILLATOR CAN GENERATE AN ALMOST INFINITE NUMBER OF FREQUENCIES, EACH SPACED TO MATCH THE INCREMENTAL FREQUENCY ASSIGNMENTS THROUGHOUT THE VHF/UHF SPECTRUM. IN TODAY'S SCANNERS THE ACTUAL FREQUENCY GENERATED AT ANY INSTANT IS DETERMINED BY A MICROPROCESSOR.

THREE YEARS AFTER THE TEABERRY SCANNER WAS TO HAVE BEEN INTRODUCED ANOTHER MANUFACTURER, TENNENEC, ACTUALLY RELEASED A PROGRAMMABLE SYNTHESIZED SCANNER. THE MEMORYSCAN WAS A PREMATURE PRODUCT, AND DID NOT LAST LONG. NEITHER DID THE SCANNER ENTRIES FROM SBE/LINEAR SYSTEMS (OPTISCAN) OR JIL (MODEL...
FREQUENCY LISTS AND SCANNER CLUBS

Owning a scanner is the first step. Knowing where to listen is the next. Hobby-radio stores are excellent sources for local frequency lists. For more extensive listings, several excellent publications are available.

For hobbyists who enjoy listening primarily to public safety communications, Gene Hughes’ Police Call Radio Directory is hard to beat. It is regionalized by state and costs $5.95 from Radio Shack, or is available directly from the publisher, Hollins Radio Data, P.O. Box 35002, Los Angeles, CA 90035.

Handler Enterprises offers the Radio Communications Guide, concentrating on shortwave frequencies but featuring VHF/UHF listings as well. It costs $5.95 and is available from Handler Enterprises, P.O. Box 48, Deerfield, IL 60015.

Tom Kneitel’s Top Secret Registry of U.S. Government Radio Frequencies is available for $4.95 from CRB Research, P.O. Box 56, Comack, NY 11725. Only VHF and UHF frequencies are listed.

Among hobby scanner clubs, two organizations stand out. The Radio Communications Monitoring Association is a truly professional organization, and its monthly magazine shows it. Send for a free sample copy by writing: RCMA, P.O. Box 4563, Anaheim, CA 92803.

A hobby-scanner users club, SCAN, publishes Scanning Today. Loosely sponsored by the Electra Company, its magazine is published bi-monthly and features articles of interest to scanner listeners. For more information, write to: Scanner Association of North America, Suite 1212, 101 East Wacker Drive, Chicago, IL 60601.

SX-100.

Regency’s first programmable scanner, the Whamo-10, proved to be awkward to use with its frequency combs, and bulky when combined with its accessory control unit. It was also very expensive.

The first programmable scanner to enjoy widespread acceptance was Electra’s Bearcat 101, even though initial units had problems like overheating, and sometimes “lost” programmed channels stored in memory. But the rapid introduction of competitive receivers from Radio Shack, Regency, and even Electra itself, reduced the Bearcat 101’s lead.

State of the art

Modern scanners have come a long way since the early days. Regency’s first real programmable, the model ACT-T-16K Touch, has been replaced by the model K-100, model K-400, model K-500 (shown in Fig. 4), Digital Flight Scan, and model M-100.

Radio Shack has replaced their classic PRO-2001 with two newer models, the PRO-2002 and PRO-2008 (shown in Fig. 5). The largest selection of new programmables has come from Electra. The Bearcat 250, Bearcat 211, Bearcat 220, Bearcat 300, and Bearcat 160 have all appeared on the market within three years. Electra recently introduced a fully synthesized, hand-held scanner, the Bearcat 100.

The Bearcat 300 is the most expensive scanner presently on the market. It features Service Search, a specially preprogrammed memory that searches the spectrum by service (marine, fire, police, etc.). A total of eleven factory-programmed SERVICE buttons allow instant selection of hundreds of scanning channels for a particular service without having to program discrete frequencies manually into the scanner. The Regency model K-400 has a similar feature.

A new entry in the frequency-synthesized scanner field is the Fox BMP 10/160 from ComRadar Corporation (Fig. 7). That receiver can be used as a portable or mobile unit, or as a base station.

Frequency ranges

Typically, scanners cover frequency ranges of 30-50, 144-174, and 420-512 MHz. Some of the newer models also cover the 118-136 MHz aircraft band and aircraft tower OMNI and VOR transmissions. The Bearcat 5/800 crystal scanner covers the 800 MHz “microwave mobile” band.

Antennas

While scanner manufacturers normally include a small plug-in antenna, that type of antenna is not suitable for receiving distant stations; an outdoor antenna is recommended. But, because large antennas also capture large amounts of local signal, some problems may result. One of those problems is intermodulation, the appearance of the same signal at several places within the tuning range of the scanner. That problem is different from image interference, which will always be heard at a fre-
the heard very strong Shack receivers For fusing at frequency of frequency that scanner.

FIG. 4—THE TOUCH K506 from Regency uses a touch-sensitive keypad instead of conventional pushbuttons.

FIG. 5—REALISTIC MODEL PRO-2008 is a six-band, frequency synthesized, programmable scanner.

quency that is twice the intermediate frequency of the receiver away from the carrier frequency. This sounds confusing at first, but it is easy to calculate. For example, Regency and Radio Shack receivers typically have an IF of 10.7 MHz; twice that is 21.4 MHz. If a very strong mobile telephone signal is heard at 152.54 MHz, chances are there will be present at 173.94 MHz (152.54 + 21.4 = 173.94).

Image interference can sometimes be used to receive frequencies that are below the normal range of the scanner; the signals will be much weaker, but they will be there nonetheless. For example, some early programmables would not tune all the way down to 144 MHz, the low end of the two-meter amateur band, but images of two meter signals could be copied near 165-166 MHz if the signals were strong enough. In some cases intermodulation may be reduced by turning a directional beam antenna away from the interfering signal.

Scrambled transmissions

Many law enforcement agencies are very concerned about the number of people who are eavesdropping on their sensitive messages. While the vast majority of listeners are merely curious, there are some who use scanners to elude the law while committing a crime. For that reason, some agencies use scramblers to encode their transmissions. A few manufacturers sell decoders that defeat the most common form of scrambling: speech inversion. Advertisements for the decoders frequently appear in various hobby radio magazines.

Because of the ready availability of those decoders, some agencies have switched to more sophisticated voice-encoding techniques. One of those, Motorola’s DVP (Digital Voice Protection) is said by the manufacturer to be virtually unbreakable. Will consumer technology eventually break the unbreakable code? Only time will tell.

Where to listen

A great deal of exciting listening is waiting for you out there; all you need to know is where to look! Low band (30-50 MHz) is used primarily for wide-area coverage. Military training exercises, National Guard units, State Police systems, and construction and freight companies are among the things that can be heard in this portion of the spectrum.

High band (151-174 MHz) is the most congested part of the VHF/UHF spectrum. Mobile telephone, business, and public safety communications dominate the first 11 MHz, while 162-174 MHz is used almost exclusively by the Federal Government.

The UHF band (450-512 MHz) is used mostly in metropolitan areas where high-band congestion poses a problem to new radio systems. Assignments in the UHF band are very systematic. Repeaters, high-powered transmitters that rebroadcast weak signals received from mobile and portable units, are found either 5 MHz lower than the original signal (between 450-470 MHz), or 3 MHz lower (between 470-512 MHz).

Table 1 is a listing of services and the frequency ranges (in MHz) in which you’re most likely to find them. You should note that the ranges given are approximate.

In addition to the frequency ranges given in the table, police, fire, and medical assignments are shared throughout the following UHF frequency ranges: 470.3-471.2, 473.3-474.2, 488.3-489.2, 491.3-492.2, and 494.3-494.4 MHz.

In conclusion

The scanner is a fascinating instrument. It features electronic sophistication hardly dreamed of ten years ago. Advances made possible by the space program, and the CB boom let home hobbyists tune in to a world of excitement. What does the future hold in store? We can only guess, but until then, take your pick from some of the finest consumer technology available.

TABLE 1

(Frequencies in MHz)

<table>
<thead>
<tr>
<th>Police</th>
<th>Fire</th>
<th>Medical</th>
<th>Fed. Gov't.</th>
<th>Marine</th>
<th>Mobile Tel.</th>
<th>Ham</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.02-37.42</td>
<td>33.42-34.0</td>
<td>33.0-33.1</td>
<td>30.0-30.56</td>
<td>156.25-157.4</td>
<td>35.26-35.7</td>
<td>144-148</td>
</tr>
<tr>
<td>39.0-39.98</td>
<td>46.03-46.5</td>
<td>37.9-38.0</td>
<td>32.0-33.0</td>
<td>161.6-162.0</td>
<td>43.26-43.7</td>
<td>152-152.2</td>
</tr>
<tr>
<td>42.0-42.94</td>
<td>154.0-154.5</td>
<td>47.0-47.65</td>
<td>34.0-35.0</td>
<td>152.0-152.2</td>
<td>420-450</td>
<td></td>
</tr>
<tr>
<td>44.62-46.02</td>
<td>159.0-159.2</td>
<td>49.6-50.0</td>
<td>36.0-37.0</td>
<td>152.51-152.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.65-156.0</td>
<td>453.0-454.0</td>
<td>151.0-151.13</td>
<td>38.0-39.0</td>
<td>158.49-158.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453.0-454.0</td>
<td>458.0-459.0</td>
<td>155.16-155.4</td>
<td>40.0-42.0</td>
<td>454.0-455.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>458.0-459.0</td>
<td>156.0-156.25</td>
<td>138-144</td>
<td>459.0-466.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460.0-460.5</td>
<td>462.9-463.2</td>
<td>148.0-150.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465.0-465.5</td>
<td>162.025-173.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>173.4-174.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>406.0-420.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4

(Frequencies in MHz)

<table>
<thead>
<tr>
<th>Police</th>
<th>Fire</th>
<th>Medical</th>
<th>Fed. Gov't.</th>
<th>Marine</th>
<th>Mobile Tel.</th>
<th>Ham</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.02-37.42</td>
<td>33.42-34.0</td>
<td>33.0-33.1</td>
<td>30.0-30.56</td>
<td>156.25-157.4</td>
<td>35.26-35.7</td>
<td>144-148</td>
</tr>
<tr>
<td>39.0-39.98</td>
<td>46.03-46.5</td>
<td>37.9-38.0</td>
<td>32.0-33.0</td>
<td>161.6-162.0</td>
<td>43.26-43.7</td>
<td>152-152.2</td>
</tr>
<tr>
<td>42.0-42.94</td>
<td>154.0-154.5</td>
<td>47.0-47.65</td>
<td>34.0-35.0</td>
<td>152.0-152.2</td>
<td>420-450</td>
<td></td>
</tr>
<tr>
<td>44.62-46.02</td>
<td>159.0-159.2</td>
<td>49.6-50.0</td>
<td>36.0-37.0</td>
<td>152.51-152.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.65-156.0</td>
<td>453.0-454.0</td>
<td>151.0-151.13</td>
<td>38.0-39.0</td>
<td>158.49-158.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453.0-454.0</td>
<td>458.0-459.0</td>
<td>155.16-155.4</td>
<td>40.0-42.0</td>
<td>454.0-455.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>458.0-459.0</td>
<td>156.0-156.25</td>
<td>138-144</td>
<td>459.0-466.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460.0-460.5</td>
<td>462.9-463.2</td>
<td>148.0-150.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465.0-465.5</td>
<td>162.025-173.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>173.4-174.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>406.0-420.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advertisements for the decoders are found either 5 MHz lower than the original signal (between 450-470 MHz), or 3 MHz lower (between 470-512 MHz).

Table 1 is a listing of services and the frequency ranges (in MHz) in which you’re most likely to find them. You should note that the ranges given are approximate.

In addition to the frequency ranges given in the table, police, fire, and medical assignments are shared throughout the following UHF frequency ranges: 470.3-471.2, 473.3-474.2, 488.3-489.2, 491.3-492.2, and 494.3-494.4 MHz.
Part 2
We were examining how tones were generated by the musical horn when we stopped last month. Now we'll finish up. Whenever a match is found between the output from IC8 and the output from IC9, then IC6 and IC7 are reset at the frequency of the note called for by IC8, until the input to IC8 changes. The greater the number of counts IC6 and IC7 produce, the longer the time period for each reset cycle, and therefore the lower the frequency of the note that is produced.

Let's use some actual numbers to illustrate this. Suppose IC3 is adjusted by R5 to pulse at 87560 Hz. To produce a 220-Hz musical note, “A,” binary code 0011 (decimal 3), at address 199 of IC9, is used. Each second IC3 counts up to that memory location 440 times (87560/200=440). Each time location 199 is reached, a 0011 output appears at the “B” input of IC10. With the “A” input to IC10 also 0011, a pulse appears at IC10 output-pin 6—in this case, at the rate of 440 times per second. This is converted to a square wave with a frequency of 440/2, or 220 Hz, by flip-flop IC11-b, and this is the frequency fed to the amplifier.

Using the same IC3 pulse rate, if the musical note “E” (decimal 7) were specified by IC8, then address 133 of IC9 would contain the matching binary code (see Fig. 6) and would cause IC10 to output pulses at the rate of 658.35 per second (87560/133=658.35). That would be divided in half by IC11-b to 329.18, very close to the ideal 329.63-Hz frequency of “E-above-middle-C.” Figure 6 shows all the musical notes programmed in IC9 by location, along with the decimal code notation used in Fig. 1. (Figures 1 and 6 appeared in last month’s issue.)

The 7473 dual J-K flip-flop, IC11, requires a little explanation. Input K of IC11-a is connected to VCC. Since J is low, Q is low. Whenever input J goes high (because of an output pulse from IC10), the next time the clock pulse from pin 3 of IC3 goes low, the Q output (pin 12) of IC11-a goes high and resets IC6 and IC7. That stretches the length of the reset pulse to equal the duration of the clock period of IC3, making it wide enough to be recognized by IC11-b. The resetting routine may occur hundreds of times per second, depending on the settings of R1 and R5, and on the note and duration called for by the song PROM.

With both J and K inputs tied to a positive voltage, IC11-b is used as a toggle flip-flop. Every time the Q output of IC11-a goes low, it clocks IC11-b and causes the IC11-b Q output, at pin 9, to change state. The result is a square wave output from IC11-b equal in frequency to one-half the IC10 pulse frequency. The squaring of the IC10 pulses results in a sound more closely resembling that produced by a sine wave.

Positive halves of the square wave from pin 9 of IC11-b pass through dropping resistor R8 and isolation diode D1 to bias NPN transistor Q1 into conduction. That path now provides, through R9, the forward base-bias for power transistor Q2 to conduct heavily,
passing current through the speaker coil. Resistor R10 is a 2-watt series current-limiting resistor which must be used with speakers rated at less than 10 watts, as shown in Table 1.

A five-volt regulator, IC12, is protected from reverse-voltages by diode D2. Its output is filtered by C6. Switch S1 is used to operate the horn.

A song can be played in different keys as each note is not “locked into” a specific frequency. In a musical scale each note bears a fixed mathematical relationship to every other note. You can vary the frequency of the notes as long as all the notes maintain the same relationship. PROM IC9 establishes that relationship, so you can vary song speed with R1 and change the pitch (key) by adjusting R5.

One final note: When IC8 is programmed for “silence” (binary 0000) it actually causes “matching” at an ultrasonic frequency with the first address in
IC9, which also is binary 0000. This causes slightly more current than might be expected to be drawn from the battery, due to the high-speed saturation effects of Q1 and Q2 (fast turn-on and slow turn-off).

Construction

You can build this project on construction board, or use the double-sided printed circuit board layouts shown in Figs. 7 and 8. However, if you make your own boards you must be very careful to have good registration between the top and bottom surfaces. Furthermore, unless you are able to plate through the holes after drilling, you will have to solder each component on both sides of the board, since many circuit paths depend on continuity through the board!

Frankly, the double-sided, plated-through PC board offered for this project (see Parts List in last month's issue) is the most practical way to go. A parts kit, including sockets for all IC's and the tone PROM, but not including case, is also available.

Assembly should take less than an hour, and requires no special techniques. Use a small-tip 25-43 watt soldering iron and good rosin-core solder. All parts are mounted on the component side of the board. Insert and solder all the resistors first; be very careful to get the right values in the proper locations, as shown in the parts-placement diagram (Figure 9). Install all the IC sockets next, being careful not to install 4-pin sockets in 6-pin locations! Bend down the corner pins of each socket on the underside of the board to hold the socket firmly in place before soldering. Now install the two diodes (watch the polarity—the banded ends should point toward IC12). Next install the three small flat disc capacitors and then the larger one. Be careful when you install the two electrolytic capacitors; they are different values and so must be oriented correctly.

Transistor Q2 and voltage regulator IC12 look alike—don't mix them up! IC12 is clearly marked "LM309 or LM340", but Q2 may have numbers other than "2N301" (such as SP-2540). Put each one in the proper location and secure it to the printed-circuit board with 6-32 hardware. Now insert and solder the small transistor, Q1.

You can either program the two PROM's, IC8 and IC9 (N825129's or 74S287's) yourself (see the "Inexpensive PROM Programmer" in the February 1981 issue of Radio-Electronics), using the information provided last month in Figs. 3 and 6, or obtain them pre-programmed from the source indicated in the Parts List.

Insert the IC's into their sockets, being careful that the notched or indented (pin-1) ends are oriented as shown in Fig. 9.

The finished board should look like the one in Fig. 10.

Checkout

You should test the unit before packaging it up. Solder short leads (bare wires clipped from resistors after soldering them to the board, for example) to the PC-board pads that will connect to the two potentiometers, the switch, the power supply, and the speaker. Use alligator-clip leads to make the test connections from them to the outboard components. When connecting the potentiometers, the center and left terminals (looking at the front of the potentiometers) are the active ones. The right terminal can be left unconnected or wired to the center terminal, as you wish—it makes no difference electrically. The

TABLE 1

<table>
<thead>
<tr>
<th>SPEAKER RESISTOR RATING</th>
<th>RESISTOR (R10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 watts</td>
<td>39 ohms</td>
</tr>
<tr>
<td>0.1 watts</td>
<td>27 ohms</td>
</tr>
<tr>
<td>1 watt</td>
<td>16 ohms</td>
</tr>
<tr>
<td>5 watts</td>
<td>3 ohms</td>
</tr>
<tr>
<td>10 watts</td>
<td>none</td>
</tr>
</tbody>
</table>

Note: If a speaker rated at less than 10 watts is used, a current-limiting 2-watt resistor must be used in series with the speaker.

PARTS LIST

- **Resistors** 1/4-watt, 5% unless otherwise specified
 - R1—100,000 ohms, potentiometer
 - R2, R7—10,000 ohms
 - R3—1000 ohms
 - R4—100,000 ohms
 - R5—500 ohms, potentiometer
 - R6, R9—100 ohms
 - R8—330 ohms
 - R10—see Table 1

- **Capacitors**
 - C1—1 µF, electrolytic
 - C2, C4, C5—0.01 µF, ceramic disc
 - C3—0.1 µF, ceramic disc
 - C6—10 µF, electrolytic

- **Semiconductors**
 - IC1-IC3—555 timer
 - IC4-IC7—7493 4-bit binary counter
 - IC8, IC9—N825129 or equivalent 256 x 4-bit PROM (see below)
 - IC10—7485 4-bit magnitude comparator
 - IC11—7473 dual JK master/slave flip-flop

NOTE: The following are available from PPG Electronics, Dept. RE, 14663 Lanark St., Van Nuys, CA 91402: Complete kit including PC board and all parts except case and IC8 (No. 1082), $39.95; PC board only (No. 782), $11.95; IC9 tone PROM (PPG-0), $6.95; IC8 song PROM "Cucaracha": PPG-1, "Dixie": PPG-2, "Charge": PPG-3, $6.95 each; 2N301 output transistor, $1.99. Add $2.00 shipping & handling for orders within U.S.A. residents please add 6% tax.
Part 2

ALTHOUGH YOUR 8-Ball antenna is starting to look like the finished product, we'll finish the lattice and install the screen.

Before installing the adjustment bolts in the ends of the two outermost vertical strips, cut a piece of 3/4 x 2-inch strip long enough to reach across the corner adjustment bolts. Drill a hole at each end to match the position and size of the adjustment bolts and install as shown in Fig. 10.

Cut another piece of 3/4 x 2-inch strip to fit across the corner in between the vertical strips and install it across the corner between the vertical strips. It must be on top of the first diagonal-corner strip and underneath the horizontal strips as shown in Fig. 11. Finish across the corners and down the sides with 3/4 x 2-inch filler strips cut from scrap and installed as shown in Figs. 12 and 13 respectively. Those filler strips are necessary in order to do a good job of stretching the screen. Attach all short pieces with brass wood screws. Trim off the excess ends of the strips with a saw and tighten all of the adjustment bolts. That completes the frame and lattice, and the assembly should look like Fig. 4.

Installing the screen

Study the assembled frame from all angles, making sure that its curves are uniform. Be sure that all adjustment bolts are secure.

Up to now, we have not needed to do any precision assembly. However, the screen must be installed properly (meaning good and tight). If possible, move the antenna close to the spot where it will be located before beginning.

Start rolling out the first run of screen so one edge is on the middle horizontal strip of the lattice (Fig. 14). The screen is 26 inches wide. That allows for a good overlap as the screen runs repeat every 24 inches. There are six runs of 12 feet each—requiring a total of 72 feet of material.

Align the screen so that one overlap falls on the middle horizontal strip and another overlap falls on the third strip up (all overlaps should be equal). Leave equal overhangs at the ends. Use 3/16-inch or 3/8-inch long rustproof staples—whichever works best in your staple gun. The staples should drive into the wood far enough to hold the screen snugly—without going in far enough to cut the screen. Start with four or five staples in the center of the antenna at
you'll have to drill holes in VR2, VR4, RL1, RL2, and leg extensions RLX. Drill four holes in VR2 and VR4 (see Fig. 20-a). Above the center line, drill holes at 4 inches and 48 inches. Below center, drill holes at 48 inches and 68 inches. In RL1 and RL2 drill holes 1 and 48 inches from the top end and 1.3, and 5 inches from the bottom (see Fig. 20-b). Use special care in spotting the holes drilled and remember that you will have right- and left-hand members. Drill 3/4-inch holes 2 inches apart along the length of RLX. Drill holes in braces B6 3/4 inch apart for 12 inches from one end.

The tilt angle and base pad dimensions (see Table 1) are determined by your longitude and latitude, and the satellite(s) that you want to receive. That will be covered in detail next month.

Move the antenna off the support blocks and place two short 2x4's (or blocks) under the BF base across the bottom of the antenna to prevent bending the bottom row of adjustment bolts. Raise the top of the antenna three or
The reflector most often used in TVRO (TV Receive-Only) antennas is shaped like a parabola as shown in Fig. 1. Its design is based on the equation \(y^2 = 4fx \) where \(f \) is the distance from the center of the antenna to the focal point. A characteristic of the parabolic shape is that all signals from far away will be reflected to the focal point. This assumes that the antenna is pointed exactly toward (bore-sighted at) the signal source.

A second characteristic of the parabola is that the distance traveled from point A to point B to point F is the same as the distance from C to O to F and from D to E to F, with points A, C, and D lying on a line parallel to the Y axis. In that case, all signals reaching the focal point are in phase with each other and add together, no matter what part of the dish they are reflected from.

A horn is generally used to couple the signal to the focal point to the LNA waveguide. Its size is selected to match the F/D ratio (focal length: diameter) of the reflector. Most TVRO antennas have an F/D ratio in the range of 0.3 to 0.5. A 12-foot parabola with a 0.4 F/D ratio would be about 22½ inches deep.

The reflector surface of the 8-Ball is spherical rather than parabolic. It is like a 12-foot-square section cut from the surface of a sphere (ball) 60 feet in diameter (see Fig. 2). The depth of the 8-Ball reflector is about 7¼ inches (7.27347 inches) to be exact. On the other hand, if a 12-foot parabolic antenna were built with a 15-foot focal length, it would be 7.2 inches deep. Thus, the difference between the surface of the spherical antenna and a true parabolic antenna is only about ¼ inch (0.025 wavelength at 4GHz), and that much difference only occurs at the extreme edges of the antenna. The difference is much less at most points on the reflector surface.

There are, however, several practical advantages to the spherical reflector. One is that it can be easily checked for accuracy using a simple 30-foot radius wire. Remember all points on the surface are the same distance from the radius point. Another advantage is that, being spherical, the curve is the same all over the dish. That means, that for the amount of curvature in the 8-Ball, it will function with good efficiency even if it is aimed to a point as much as 15 degrees either side of the exact location of the satellite (or up to 20 degrees in most areas of the U.S.). Thus the spherical dish can be used to receive signals from more than one satellite at a time, so long as the difference between the look-angles of the two (or more) satellites is less than about 30 degrees—although the difference in look-angles can be as much as 40 degrees in areas with strong signal levels.

A very useful advantage of this antenna is the fact that the reflector can be mounted in a fixed position and all satellites with look angles up to 15-20 degrees on either side of the bore-sight direction can be received simply by moving the feed horn to the proper focus point. This is shown in Fig. 3. Use two or more LNA/fead horns if you would like to receive two or more satellites simultaneously.

Still another advantage of the spherical reflector is that for elevation look angles of 30° or less, if you tilt the 8-Ball back from the vertical an amount equal to half the look angle, the focal point will be level with the center of the dish or about six feet off the ground (Fig. 4-a). That is a convenient height for the feed horn—particularly if you plan to shift the feed horn about to receive several satellites. (If it is necessary to have the feed horn lower than the center of the dish, you must cover the opening with something to keep the rain out because in that position, the horn is pointing up toward the center of the antenna.)

For elevation look angles of over 30 degrees, the feed horn must be mounted higher off the ground because you shouldn’t have more than 15 degrees difference between the satellite look angle and the pointing angle of the dish. Figures 4-b and 4-c show how the feed horn height must be increased as the elevation look angle increases. In those cases, the tilt-back angle is 15 degrees less than the look angle.

FIG. 1

FIG. 2

FIG. 3

FIG. 4
FIG. 19—THE REAR LEGS and the braces set the tilt of the reflector surface. Tilt is adjusted by lengthening or shortening the rear legs.

FIG. 20—DRILL HOLES in VR2 and VR4 as shown in a. The holes in RL1 and RL2 are drilled as shown in b.

<p>| TABLE 1 |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Antenna Tilt Angle (Degrees)</th>
<th>RL Length</th>
<th>Base Pad Dimensions (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11' 7"</td>
<td>7' 0"</td>
</tr>
<tr>
<td>8</td>
<td>11' 4"</td>
<td>6' 11"</td>
</tr>
<tr>
<td>10</td>
<td>11' 1"</td>
<td>6' 9"</td>
</tr>
<tr>
<td>13</td>
<td>10' 7"</td>
<td>6' 6"</td>
</tr>
<tr>
<td>17</td>
<td>10' 1"</td>
<td>6' 4"</td>
</tr>
<tr>
<td>21</td>
<td>9' 7"</td>
<td>6' 2"</td>
</tr>
<tr>
<td>26</td>
<td>9' 1"</td>
<td>6' 0"</td>
</tr>
<tr>
<td>31</td>
<td>8' 7"</td>
<td>5' 11"</td>
</tr>
<tr>
<td>37</td>
<td>8' 0"</td>
<td>5' 9"</td>
</tr>
</tbody>
</table>

That finishes the assembly of the basic 8-Ball antenna. Next month we'll show you how to find the satellites that you're interested in, pour the concrete basepads, mount the antenna, and adjust the reflector for best reception.R-E
Higher and higher frequencies require better and more efficient microwave generators. These devices represent the current state-of-the-art.

JOSEPH J. CARR

Part 3 AS WE SAW LAST month. RCA successfully developed a higher efficiency microwave generator in 1967. But there was some disagreement on how RCA’s TRAPATT worked.

Cornell University physicists offered a somewhat different explanation of the high efficiencies observed. The Cornell theory maintained that avalanche resonance pumping was the responsible mechanism, so advanced the acronym ARP. The Bell Labs view seems to have prevailed. The difficulty in determining the proper theory of operation caused a two-year delay between the first observations of the TRAPATT mode and the explanation of how it worked. Part of the problem is that TRAPATT operation is not amenable to small-signal analysis, so the correct theory had to be worked out somewhat more laboriously than would have otherwise been possible.

It has been demonstrated that ordinary PN junction diodes (silicon) can be made to oscillate in the TRAPATT mode. It is, however, rather tricky to adjust such circuits, so they do not find much application. Most commercial TRAPATT devices use the \(p^+n^-n^+ \) structure of the single-drift IMPATT. A typical TRAPATT device is shown in Fig. 16-a.

The structure of the TRAPATT device is very similar to that of the IMPATT. In fact, some TRAPATT devices will oscillate in either the TRAPATT or the IMPATT modes, depending upon the bias and other circuit conditions. It is noted that numerous TRAPATT oscillators actually start out in the IMPATT mode for a few nanoseconds after turn-on, and then convert to the TRAPATT mode when certain circuit conditions are satisfied. To make the device switch from the IMPATT to the TRAPATT mode, we need to drive it hard with a current pulse. Since the risetime of that pulse must be very short, it is usual to use the IMPATT mode to generate the pulses. (It is very difficult to obtain the risetimes needed with external circuitry.) What is a trapped plasma (the “TRAP” in “TRAPATT”), and how ever there is a large density of charge carriers (holes and electrons) present.

If the electric field in that region is very low, then the plasma is said to be trapped, i.e., it takes a long time to sweep carriers out of the region under the influence of the electric field. The carrier velocity is considerably lower than the saturation velocity.

Figure 16-b shows the electric-field distribution within the \(n^- \)-region. The device is biased to just punch-through; i.e., the depletion zone reaches through the entire length of the \(n^- \)-region, but is biased at a point less than the avalanche voltage \(V_Z \). The slope of the electric field (Fig. 16-b) is dependent upon the charge density. Because we are operating in the punch-through region, there will be no free charge-carriers present.

If we excite the TRAPATT diode with a large, fast-risetime current pulse, \(I_O \), then we will observe a point in the constant-bias field \(V_B \) move as an avalanche shock front. We find that the velocity of that shock front can be faster than the saturated velocity of the holes and electrons, a phenomenon that
is much like the behavior of water waves at the beach striking the shore at an angle. Typical times for the avalanche shock front to traverse the n-region are around 100 picoseconds.

Notice what happens to the terminal voltage in Fig. 16-b. Shortly after the initiation of each shock front, the terminal voltage drops from a very large value down to a very small value. The falltime of that drop is very rapid, so the TRAPATT operates as a very fast, low-impedance electronic switch. If we were to place the diode at one end of a half-wavelength transmission line as shown in Fig. 17, then that phenomenon would result in a pulse being applied to the transmission line. The current pulse has a fast risetime, and a waveform that is nearly square, so it is rich in harmonics. The harmonics are taken out by a lowpass filter so that the fundamental could be applied to the load Z_l. The value of the current pulse will be $I = V_p / Z_p$, where V_p is the applied bias potential and Z_p is the characteristic impedance of the transmission line.

The description above required a current pulse to be applied to the TRAPATT diode before the TRAPATT mode could be realized. That pulse could easily be an IMPATT pulse when the device is operating in the IMPATT mode. But the TRAPATT mode will build up in a nearly exponential manner until it becomes self-sustaining. The foregoing discussion does not explain how the TRAPATT mode could become self-oscillatory. For that type of operation we must rely on the actions of the lowpass filter at the end of the resonant half-wavelength transmission line. It will transmit energy at the fundamental TRAPATT frequency, but will reflect energy at the harmonics of the fundamental frequency. Those harmonics are reflected with a phase reversal (i.e., reflection coefficient of -1 in the ideal case) so they will initiate another avalanche shock front. The small rise in the terminal voltage in Fig. 18 is caused by that returning reflection. The return pulse will, then, cause the TRAPATT-mode oscillations to be continuous. In the typical TRAPATT oscillator, the device will begin in IMPATT operation. The IMPATT-mode oscillations will build up in an exponential manner until the current becomes large enough to trigger a shock-front transit. (Hence the use of "triggered transit" in the device's acronym.)

BARITT devices

Consider the $p^+ - n - p^+$ structure shown in Fig. 19. That device contains a pair of back-to-back junctions. One of those junctions will be slightly forward-biased, while the other junction is slightly reverse-biased. The flow of current under conditions when the bias voltage is less than the punch-through voltage will be limited by the ordinary leakage current of the reverse-biased junction. If the bias is increased to the point where the device is operated in the punch-through mode, then the depletion region exists across the entire n-region until it reaches the forward-biased junction. That will cause all of the carriers (holes) at the forward-biased junction to be swept across the n-region, causing the current to increase rapidly as shown in Fig. 20. That current can be used in a microwave oscillator provided that the field is large enough to make the holes drift across the n-region at the saturated velocity and the voltage applied is kept below the point at which avalanching will occur. Devices that use that phenomenon are called BARITT (BARrier Injection Transit Time) oscillators.

Suppose that a BARITT device is biased with a DC potential close to the potential required for punch-through operation. Further suppose that the device is operated in parallel with a resonant tank circuit (as was done in our discussion of the Gunn device earlier). Noise pulses will ring the tank circuit and cause an RF alternating potential to appear across the diode as shown in d.

FIG. 17—A FAST-RISING, nearly square, current pulse is applied to a half-wavelength transmission line that has a TRAPATT device at its end.

FIG. 18—HARMONICS reflected by a lowpass filter cause the TRAPATT-mode oscillators to become continuous.

FIG. 19—BARITT DEVICE has two back-to-back p^+ junctions, one of which is slightly forward-biased while the other is slightly reverse-biased.

FIG. 20—CURRENT INCREASES rapidly in the BARITT device as the carriers are swept across the n-region.

FIG. 21—IF A BARITT DEVICE is operated in parallel with a resonant tank circuit, noise pulses will ring the tank circuit and cause an RF alternating potential to appear across the diode as shown in d.

continued on page 93
Part 2

With the theory of operation of the Programma-2’s control board out of the way (it’s always helpful to know what you’re doing) we can now start work on the board itself.

Position the board as shown in Fig. 5 and start construction by installing the 24-pin IC socket. After that, install 16-pin sockets in the IC103 and IC102 positions. In the same manner, install a 14-pin socket at IC101 and then two 8-pin sockets at IC106 and J101. That takes care of the IC sockets.

Install crystal XTAL101 next. Push it flush against the board and quickly solder the leads. Don’t apply excessive heat, or you may crack the seal.

Now you can install the 100K resistors around IC102. Insert R108 and R107 first, then solder and clip the leads. Then install the group of four just below. Start with R104, continue with R105, and R131, and end with R106. Solder each connection and clip the leads. Then move to the right, and install another group of four resistors, beginning with R111, continuing with R110 and R109, and ending with R103. Solder and clip. Finally, move up and install the last group of four resistors in the same manner. Note that this group starts with R115 and ends with R112. Continue with the rest of the resistors. Refer to Fig. 5 for details. Starting at the top left corner, install 100K resistors at R101 and R102. Then move down below IC102 and install a 100-ohm resistor at R127. Move to the right slightly and install a 150-ohm unit at R120. Keep going right and install 10K resistors at R119 and R129. After that, install a 22K resistor at R130. Stop for a moment and check your work. There should be spaces left for C104 and C103. Continue by moving to the right and installing a 47-ohm resistor at R118. On the other side of IC103, install a 10K unit at R116. Move down and install a 2.2K resistor at R117. Keep going by installing the remaining 100K units at R123 and R124. Install 33K resistors at R125 and R126. Then move up slightly and install a 68K unit at R122. Install a 1-meg resistor at R121, next XTAL101. That takes care of the resistor installation, and the board is now taking on a finished appearance.

There are five wire jumpers on this board, and they should be installed next. Use leftover resistor leads. The jumpers are identified with a “J” in Fig. 5. Install the first two as shown between IC101 and IC102. Bend the leads to fit with needle-nosed pliers, and insert them into the holes. Make sure they aren’t touching, then solder and clip off the excess lead. Install the next jumper near pin 1 of IC102. Move to pin 1 of IC103, and install a jumper just below it. Finally move over to pin 1 of IC105 and install the last jumper.

Now for a few odds and ends. Start by installing C111, a 5-30 pF trimmer, by the crystal. Before installing it, turn it over and identify which pin goes to the adjusting screw. This pin must go to the ground foil, and is usually wider than the other pin. Insert the trimmer so that this pin points up, and solder. Then install R128, a 5K pot. Install as shown, being sure to press it flush against the board before soldering.

Next come the transistors. Start with Q101, a 2N3906. Install it as shown next to IC103, with the flat side pointing down. Then install Q102, an MPS-A13, as indicated next to the pot. Be sure to position the case so that the flat spot points to the right. Finish up with the power-supply components. Install IC104, a 78L05 regulator, as shown, next to the crystal. Be sure the flat side of the case is pointing down. Then install D101, a 1N5229 Zener diode near the right edge of the board. Note that the banded end points toward the center of the board. Stop at that point and double check the installation of the parts. It’s a good idea to correct any mistakes before going any farther!

All that’s left are the capacitors. They will be installed like the resistors, from left to right in Fig. 5. Start by installing C101, a 0.001 µF disc above IC101. Then install C108, a 0.1 µF disc, on the other side of the IC. Keep going and install C104, a 22 µF tantalum type. Note that the “plus” side faces R120. After that, install 0.1 µF Mylar capacitors at C102 and C103. Continue by installing C110, a 220 µF electrolytic. Note that the “plus” side faces the edge of the board. At the other edge, install C105, a 100 µF electrolytic. Be sure the “plus” side faces the center of

Gary McClellan

This month we’ll show you how to assemble the Programma-2’s two main boards. When we’re done, the RF generator will be nearly complete.
the board. Move down and install C114, a 0.1 µF disc next to IC105. Keep going down, and install C115, a 0.1 µF Mylar capacitor near the pot. Then, just above this capacitor, install C116, a 0.001 µF Mylar capacitor. At the top of the board install C113, a 68 pF mica. And right next to it, install C112, a 39 pF mica unit. Finish up by installing two 0.1 µF discs on either side of D101 at C106 and C107.

Stop at that point and check your work. Make sure the capacitors are installed in the proper places, and that the polarized ones are oriented properly. Correct any mistakes before going any farther. The board should look like the one in Fig. 6.

Turn the board over and install C109 (100 pF) on the foil side, between pins 1 and 8 of the IC106 socket. Trim the leads to about 1/4-inch first, then solder across the pins as shown. Bend the capacitor so that it is flush with the board. This completes the control board.

Switch connections
Now is a good time to connect the FREQUENCY-SET switches to the board, and install the IC's. Those switches, S1-S4, are the ones that mount on the front of the instrument and program the desired frequency. All wiring is done around IC102.

Refer to Figs. 7 and 8 for details as you wire the switches. It is suggested that you use short lengths of 4 conductor cable for the connections; this makes the wiring easier to follow and less messy.

The first step is to prepare the cables. Prepare four six-inch strips. Then remove two conductors from one of the strips. Separate the ends of all cables for at least 1/2-inch, then strip and tin the ends. Also cut a 6-inch piece of hookup wire and strip and tin its ends. Now you are all set for the wiring.

Look carefully at your switches' terminals. They should be marked: "C, 1, 2, 4, 8," "COM, A, B, C, D," or similarly. Run a piece of bare wire through all the "COM" lugs and solder at each. Then solder one end of the single piece of hookup wire to one of the common lugs. Now turn to the front of the switches, positioning them so you can read them. The switch position to the farthest left is S1. Connect the two-conductor cable to the "A" and...
“B” (or “1” and “2”) lugs. The switch section next to S1 is S2. Solder the wires from a four-conductor cable to each of its terminals. If possible, match the colors to those used on S1 (and do the same for the other sections). It's easier to connect a switch, if, say, all "A" leads are green, "B" leads are blue, and so on. Wire up S3 and S4 in the same manner.

Finish up by connecting the switches to the board. Start by inserting the wire from the switches' common bus into the COM pad on the board. Solder it in place. Then match up the leads from S1 to the "B" and "A" holes below R107 and R108 on the board. Insert and solder. Match up the leads from S2 with the points on the board above the resistor group starting with R104. Note that the connections are “DCBA” reading from left to right. Insert and solder. Likewise, insert and solder the leads from S3 into the holes above the resistor-group starting with R111. Note that the connections are arranged as “DCBA” like those for S2. Finally, insert the wires from S1 through the holes by the resistor-group starting with R112. Note that R112 is the “A” connection, and that the others follow in order. That ends the switch installation.

Check over your wiring for errors, and correct any mistakes. Then finish up by installing the IC's. Refer back to Fig. 5 for placement. Install a CD4013 at IC104, a CD4059 at IC102, and a CD4046 at IC103. Make sure they are plugged in properly (watch out for bent pins) and then install a CD4060 at IC105 and a CA3130 at IC106. That completes the control board. Next we'll cover the VCO board and start discussing final assembly.

How the VCO works

The VCO board contains three oscillators, a divider, a modulator, and an RF amplifier. Also included is some switching circuitry for both RF signals and power. and two power supplies. At this point you may want to refer to the schematic in Fig. 9 as you read about the circuitry.

The oscillators consist of IC201 through IC203, Motorola MC1648's, together with a few external components. The 10–30 MHz signals are generated by IC201, while IC202 generates the 5–10 MHz signals and IC203 handles the 3–5 MHz range. Tuning within these ranges is done by D201 through D203, Motorola MV1404 tuning diodes. Think of them as electrically controlled variable capacitors; an input voltage ranging from 0.5-volt to 9-volts will cause each oscillator to tune through its frequency range.

Since only one oscillator at a time can be operating in this device, some switching has to be done. Transistors Q204 through Q206 perform this task. The desired oscillator is turned on by grounding the base one of the transistors. This is done by the switch board, which will be described later.

The outputs of the oscillators are ECL-level (0.8 volt AC), but transistors...
Q201 through Q203 increase those signals to TTL levels for use by
the circuit that follows. The diodes are included for biasing and switch-
ing. Finally, IC204-a is used to buffer the signal, insuring that it is at
TTL levels.

The VCO signal from the buffer is fed to both IC205, a divide-by-10
counter, and to IC204-b. That gate, together with IC204-c and IC204-
d. act as an SPDT switch and select either the "direct" VCO signal or
the divided-down signal from IC205. This solid-state switch is con-
rolled by the HI/LO switch, S6, on the front panel. When the HI
line from the switch is grounded, the VCO signal feeds straight through over
a range of 3 to 30 MHz. When the LO line is grounded, the divided-down signal
is selected (300 kHz to 3 MHz). This elimi-
nates the need for extra VCO's. The
output of the divider also goes to the
DIY jack, J202, which provides the sig-
nal required for the control board's
programmable-divider circuit.

The output of IC204 drives the mod-
ulator circuit. This circuit is unusual in
that it uses diodes to modulate the
VCO signal. Basically, it is nothing
more than a voltage controlled atten-
duator. The amount of signal passing
through it depends upon the control voltage,
which is really the sine wave from the
MOD IN jack. Resistor R219 sets the
bias so that the signal will continue to pass
through the circuit when there is
no modulation.

In operation, diodes D219 and D220
are forward biased, although to dif-
erent degrees. Diode D220 tends to be
more heavily biased because there is
less resistance between it and the
power source. At the cathode end
of this diode there are several resistors.
The 500-Hz modulation is also applied
at this point, and the voltage across the
resistors causes the current flow
through the diode to vary. As the cur-
rent through D220 varies, it can be
greater or less than the current through
D219.

At this point an interesting charac-
teristic of diodes enters the picture—
diodes can act as variable resistors; the
greater the current flow through a diode,
the more signal it will pass. Sometimes
D219 conducts more signal—to ground,
and sometimes D220 conducts more
signal—to the RF amplifier. This cir-
cuit is known as a T attenuator. In the
Programma-2 it causes the level of the
RF signal to be controlled by the level
of the 500-Hz tone.

From the modulator the signal goes
to a broadband RF amplifier, which
boosts it to useful levels. This is the job
of Q207, which has a maximum gain of
5. The output level is controlled by
adjusting the power supply voltage—in
this case from 1.2 to 10 volts. This
supplies from 10 mV to over 300 mV of
signal at the RF OUT connector.

The rest of the circuitry on this board
consists of power supplies. There is the
usual 5-volt regulated source for the
ECL and TTL devices, plus an adjust-
able source for the RF amplifier. An
LM317-T adjustable regulator handles
the latter job.

Construction

A foil pattern for the VCO board is
provided in Fig. 10. If you prefer not
to make your own, refer to the Parts List
for a supplier.

Start construction by studying Fig. 11.
To simplify matters, we'll break the
board into two sections and concentrate
on completing each separately; this
makes construction a lot easier.

The first thing to do is to enlarge the
holes for coils L201-L203. Using the
IC pads as a guide, orient the board as
shown in Fig. 11 and locate the three
holes. Note that they are part of the
ground foil that runs around the edges
of the board. Using a set of progressively
larger drills, increase the size of the

FIG. 11—CONNECTORS FROM THE COILS to the board are made using leftover capacitor leads. Capacitor C202 is soldered directly to the lugs of coil L201.
PARTS LIST
VCO BOARD

All resistors 1/4-watt, 5% unless oth-
erwise specified.
R201-R203—47,000 ohms
R204-R206, R213, R214, R222—1000
ohms
R207-R209—100 ohms
R210—270 ohms
R211, R212—10,000 ohms
R215, R216, R220—470 ohms
R217, R218—2700 ohms
R219—100,000 ohms
R221—4700 ohms
R223—680 ohms
R224—47 ohms, 2 watts, carbon
composition (see text)
R225—10 ohms

Capacitors
C201, C206, C210, C217, C218, C220,
C222, C224, C227—0.01 µF, 16 volts,
ceramic disc
C202—12 µF, ceramic disc or mica
C203, C205, C207, C209, C211, C213,
C215, C221, C223, C228, C229—0.1
µF, 16 volts, ceramic disc
C204, C208, C212—not used
C216—1000 µF, 25 volts, PC-mount
electrolytic
C219—15 µF, ceramic disc
C225—1 µF, 16 volts, electrolytic
C228—10 µF, 16 volts, electrolytic

Semiconductors
IC201-IC203—MC1648P MECL voltage-
controlled oscillator (Motorola)
IC204—74LS00 quad NAND gate
IC205—74LS90 decade counter
IC206—7805 or LM340-T 5-volt regula-
tor TO-220 case
IC207—LM317-T adjustable voltage
regulator, TO-220 case
D201-D206—1N4148 or equivalent
D207—2N2219 or equivalent
D208-D209—MV1404 tuning diode
(Motorola)
D210-D219—1N4148 or equivalent
D211—1N4002, 100 PIV, 1 amp
D217, D218—1N5231 Zener, 5.1-volts,
500 mA
L201—0.33 5.56 µH coil (Miller 4201 or
equivalent)
L202—2.5 5.5 µH coil (Miller 4203 or
equivalent)
L203—10-25 µH coil (Miller 4205 or
equivalent)
J201-J204—PC-mount RCA-type phono
jacks
Miscellaneous: PC board, IC sockets,
slip-on TO-5 heat sink for Q207, solder,
etc.

A complete set of three boards for the
Programma-2 is available for $22.90 ppd.
from: Technico Services, PO Box 20HC,
Orangehurst, Fullerton, CA 92633. CA
residents please add 6% tax; foreign orders
please add $3.00 for shipping. Order No.
SSG-1.

A complete set of parts, excluding
boards, crystal, transformer and case,
is available for $112.00 ppd. from:
Circuit Specialists, Inc., PO Box 3047,
Scottsdale, AZ 85281. Order No. KT-5.
Phone orders (800) 526-1417; all other
inquiries (602) 966-0764. AZ residents
please add tax.

holes to 3/4-inch. Then use a reamer or
small file to enlarge them farther, to
3/8-inch.
Next, install the IC sockets. Note that
there are five of them, and that
they are all 14-pin units. If the sockets
have an identifying mark for pin 1,
position them as shown.

The four RCA jacks, J201-J204, are
installed next. You may have to en-
large the holes in the board so that
they can be mounted.

Install the capacitors as shown. Be-
gin with the 0.01-µF discs, and install
one each at C201, C206, and C210.

Note that these parts are located near
the coils. Then continue with the 0.1-
µF capacitors. There are quite a few.
Install one at C205, C203, C209, C207,
C213, and C211. Then move to the top
left corner of the board and install one
at C215. Move down and install one at
C214. That almost takes care of the
 capacitors: there's one left to mount on
a coil.

The coils are next. They just snap
into place. Be sure to observe the posi-
tioning of the terminals before you
snap them in place; this is important.

Install the No. 4201 coil at L201, the
No. 4203 coil at L202, and finally, the
No. 4205 coil at L203. Wire the coils to
the two pads below them as shown,
using short lengths of solid wire. The
clipped leads from the capacitors should
work fine. Be sure to keep the leads
as short as possible; that makes the coils
more shock resistant. After the wiring
is done, install a 12-pF capacitor, C202,
directly across the terminals of L201.

The resistors come next. Install the
47K ohms first, with one at R201, R202,
and R203. Note that you'll have to
bend the leads of R202 so that they
don't touch the coil wire. The 100-ohm
units are next. Install one at R207,
R208, and R209. Be careful to get them
in the right places. Then come the 1K
units by IC204. Install one at R211 and
another at R212. After that come the
1K resistors. Install one at R204, R205,
and R206 near the bottom of the board.
Finish up by installing a 270-ohm resis-
tor at R210.

The three jumpers go near IC201,
above IC205, and next to IC203. Use
leftover leads from the resistors for the
jumpers. Install the jumper next to
IC201 first, then the one below IC202,
and last, the jumper above IC205.

Now for the diodes. Note that there
are two kinds—MV1404 and IN4148.
The MV1404's come first. Be careful
when you install them because they are
rather expensive! Avoid bending the
leads right at the body as this will break
them. Install three MV1404 diodes at
D201, D202, and D203 as shown. Note
that the banded ends point to the
right. Then come the IN4148's. Install
them at D205, D207, and D209 near R210.
Then install the rest at D204, D206, and
D208. Be sure to check your installa-
tion before going further.

Continue with the transistors. They
are all 2N3906's, which makes installa-
tion easier. Install one at Q201 and
Q202. Be sure the flat in the case points
to the right. Then do Q203 with the flat
side pointing up. When done, move
down and install the three remaining
transistors at Q204, Q205, and Q206,
with the flat side facing right.
continued on page 97
A SHORT TIME AGO, I RECEIVED A CALL from a sales engineer who I'd helped before with certain technical problems. This time he had a serious problem that demanded an immediate resolution, as human lives hung in the balance. It seemed that around four in the afternoon each day, the telemetry units in his hospital's coronary-care unit were "clobbered" by brief but overpowering interference.

As you might suspect, the tiny radio transmitters (Fig. 1) that were attached to the patients are low-power (power output is about 1 microwatt) and they transmit in the VHF portion of the radio spectrum. Not being able to drive the 150 miles or so to the hospital, I reasoned that there was a pattern (i.e. specific time each day) and that only the telemetry equipment was being interfered with. About a week or so before, I had posed a question to my class of BMET's (Biomedical Equipment Technicians), that asked them to determine a harmonic relationship between a CB transmitter and patient telemetry, and if a harmonic relationship could be identified, what specific telemetry frequencies (there are about eighty) would be affected.

I pulled out my list of calculations, and determined that the telemetry-transmitter frequency was the same as the seventh harmonic of a CB frequency. A quick call to the engineer with the suggestion that he take a walk around the area immediately surrounding the hospital resulted in both identification of the source and a cure. It appears that a nearby citizen was operating an illegal linear amplifier or "kicker." After a few words of explanation, he disconnected the linear and the interference was gone.

The majority of CB users do not operate illegally, but if you do come across a problem like that one, why not stop a minute and determine what frequencies could (not necessarily would) have a harmonic relationship that might cause problems. Remember, it is not the properly-operated RF source that will cause the problem, but rather one improperly used or adjusted that can frequently be at the root of a problem.

NATURALLY, THE MAJORITY OF CB USERS DO NOT OPERATE ILLEGALLY, BUT IF YOU DO COME ACROSS A PROBLEM LIKE THAT ONE, WHY NOT STOP A MINUTE AND DETERMINE WHAT FREQUENCIES COULD (NOT NECESSARILY WOULD) HAVE A HARMONIC RELATIONSHIP THAT MIGHT CAUSE PROBLEMS. REMEMBER, IT IS NOT THE PROPERLY-OPERATED RF SOURCE THAT WILL CAUSE THE PROBLEM, BUT RATHER ONE IMPROPERLY USED OR ADJUSTED THAT CAN FREQUENTLY BE AT THE ROOT OF A PROBLEM.

Staying with low-powered RF sources for a while longer, I found that I needed an easy and cheap method of being certain that one of those small telemetry transmitters was really putting out RF. Again, I was faced with the fact that one particular model didn't even put out a full microwatt, and a frequency counter was a clear case of overkill.

What did evolve is shown in Fig. 2, a simple, cheap, and easy-to-build RF sniffer, in a shielded metal case.

If you are an "old-timer," you will recall the circuit as an add-on RF probe for use with a VTVM. It can be used with digital voltmeters as well. If you deal with devices like medical telemetry equipment, you might want to replace the probe and ground leads with either plugs or jacks to match the input (which is also the output) of the telemetry transmitter. Shielded cable is a must (RG-38/U or RG-174/U) from the probe to the VTVM. The device detects RF and displays it as a DC voltage. While that will not give you a calibrated indication of the power output, it will show you when RF output is there.

PC board component replacement

Usually, changing a resistor, capacitor, or diode on a PC board isn't too difficult or time consuming. All you have to do is unsolder the old part, re-
move it, make certain the PC board holes are clear, insert the new component, resolder and clip off the excess leads. I know you are saying that's nothing new and, in fact, those five steps are just what you always do... right? WRONG!

Consider a service request I had from a client: She (the head nurse) wanted all twenty of her heart-rate alarms modified for a longer delay before going off in the high-rate mode. That meant that I would have to alter a time constant determined by a resistor and capacitor on each of twenty modules. It was obvious that it would be simpler to change the 22K resistor to 39K than to match a capacitor, but I didn't especially relish all of that soldering and unsoldering. Hence the five-easy-step method illustrated in Fig. 3.

1. Take long-nose pliers and crush the resistor (or diode or capacitor). You might also need side cutters to do the job, but the object is to destroy the component, leaving only the leads.

2. Clean off the wires, and blow or brush away any residue from step one from the PC board.

3. Use your long-nose pliers and bend both of the leads upward so that they will form two posts.

4. Make a loop in each end of the replacement component (I did that before I arrived on site) and slip the replacement component over the two posts prepared in step three. Be sure to observe polarity indications.

5. Solder both connections.

Since you can pre-form the replacement components, you have cut your work at least in half and besides, you have done a neat, professional job without risking heat damage to the PC board traces, which is more than I can say for the conventional (still five steps) method of replacing components. Just be sure that you use a well-tinned iron and only enough heat and solder to do the job right.

Versatile heat sink

Like most hobbyists and technicians, I build some equipment myself, either from scratch or in kit form. No matter how careful you are, that old demon—Murphy's Law—tends to rear his ugly head and make junk out of what should have been a lovely, neat project. Most problems seem to be heat-related and take place while following the instructions that state: "Flip the board all components over and solder each connection..."

While modern components are a great deal less heat sensitive than older transistors such as CK722's heat can, and often does, alter specifications. Besides, there nothing as upsetting as a fully loaded PC board sliding across the table top as you try to solder.

The solution is to locate an ordinary kitchen sponge slightly larger than the PC board in question. You can throw caution to the wind and purchase one or more sponges at your local hardware or discount store. For less than two dollars, you should be able to acquire a collection of assorted man-made sponges which, when damp, will serve two distinct purposes. First, they will act as a slip-resistant PC board holder and second, they will function as a heatsink. If you are a non-believer, the first sizzle you hear while soldering will make a "true-believer" out of you. A bonus is that the PC board is elevated slightly for better access. That hissing will warn you that things are getting hot and will prevent component values from "shifting" due to excessive heating.

Iron idler

There's nothing quite so frustrating as having to wait for your soldering iron to heat up from a dead start. Well, maybe there is something equally frustrating—replacing tips that have been rendered "inoperative" due to overheating. You might suggest the use of a soldering gun but remember, very few

continued on page 101
STATE OF SOLID STATE

From keypad to display using IC's

JOSEPH GARTMAN AND ROBERT FALKNER

LET'S TAKE A LOOK AT TWO EXCITING digital IC's from National Semiconductor. The MM74C922 16-key encoder that outputs binary code from a 4 × 4 row-column matrix of switches, and the MM74C912, a 6-digit BCD-display decoder/driver that does all the housekeeping for a 6-digit by 7-segment-plus-decimal-point display.

The MM74C922 encoder scans columns in a 4 × 4 16-key keyboard with a 2-bit counter and then reads out rows with a 4-line 2-bit encoder. A single capacitor completes the on-chip clock circuit, or an external clock can be used. When the 2-bit column clock counter, which is decoded to four discrete lines, scores a "hit" in the row encoder, a key-detect plus is sent through an on-board key-bounce eliminator and provides a strobe for the data available pin. It also latches the 4-bits (2 from the counter, 2 from the row encoding logic) of BCD data near the output. These latches are followed by on-chip Tri-state buffers that can disable or enable the data-output lines. The row encoding logic also incorporates a two-key rollover.

The MM74C912 decoder/driver accepts a 4-bit binary input (plus a decimal-point control line) and a 3-bit address, plus write enable, chip enable, and two output and multiplex-scan oscillator-enable control lines. The 3-bit digit address loads the appropriate latch of six 5-bit latches with the BCD plus-decimal-point data strobed into the IC. An on-chip oscillator (requiring only an external capacitor) drives a count-to-6 counter. This both selects the digit that is being driven by the digit driver and multiplexes the appropriate latch's 4 data bits (the decimal point is driven separately with its own line) into a 16-line by 7-bit ROM. The ROM outputs segment information (and the decimal-point control line) to an array of NPN segment drivers that can typically output 80 mA. And, according to Na...continued on page 93

FIG. 1—THE KEYBOARD/DISPLAY circuit displays inputs from the keyboard on the 6-digit LED readout.
Look no further! One of these nine SIMPSON DMMS is right for you!

Now there are nine value-engineered Simpson DMMS from which to choose... with the performance and features you really need!

Each one is a best design for hands-free measurements on the bench or in the field. Engineered for reliable service by the maker of the world famous 260® VOM.

Built to last with quality-selected components, built-in protection systems and high-impact cases.

Every Simpson DMM is given a double burn-in, and is backed by Simpson's one-year warranty.

The New Model 467 hand-portable DMM introduces the new exclusive Digalog™ Display LCD digital and analog readout. Additional unique features include differential peak hold, pulse detection, visual/audible continuity and logic level indication, true RMS measurement.

Other value-priced Simpson compact DMMS give you a choice of LED or LCD displays, autoranging and even more wanted features.

Our bench DMMS offer large, bright LED displays, and a choice of extra features such as AC or battery operation, 10-amp AC current range, auxiliary analog meter, autoranging.

Every Simpson DMM is given a double burn-in, and is backed by Simpson's one-year warranty.

SEE THEM ALL AT YOUR LOCAL ELECTRONICS OR ELECTRICAL DISTRIBUTOR... OR WRITE FOR A FREE CATALOG.

SIMPSON ELECTRIC COMPANY
853 Dundee Avenue, Elgin, Illinois 60120
(312) 697-2260 • Telex 72-2416 • Cable SIMELCO
IN CANADA: Bach-Simpson, Ltd., London, Ontario
IN ENGLAND: Bach-Simpson (U.K.) Ltd., Wadebridge, Cornwall
IN INDIA: Ruttonsha-Simpson Private, Ltd., Bombay

CIRCLE 13 ON FREE INFORMATION CARD

* Price for AC version. AC/rechargeable battery version available at extra cost!
An easy way to etch one-of-a-kind PC boards without a darkroom

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

WE HAVE ON SEVERAL OCCASIONS DISCUSSED the various methods of making printed circuit boards, especially those methods that are most suitable when you need only one or two of a given board. You are aware of my inclination to avoid the etching process, which I have always considered to be time consuming and messy.

Not long ago I told you about Bishop's copper stick-on patterns that produce a good board with no etching. Some of you have written to say that you don't mind etching all that much but inquired about how you could avoid using a darkroom.

Well, to each his own. (Wouldn't it be a boring world if we were all alike?) Here is some information for you no-darkroom etchers. This method and the associated products are from DATAK Corp. (Box 192, Sparks, NV 89431 or 65 71st Street, Guttenberg, NJ 07093).

You may be familiar with Datak's panel and equipment marking sets. Those rub-on letters, numbers, titles, and symbols have been available for years. The really neat and professional looking projects you see in Radio-Electronics were probably marked with Datak materials.

Their Direct Etch dry-transfer system consists of the standard PC patterns mounted on plastic sheets. Those sheets appear very much like black patterns made for photographic reproduction by Datak and other manufacturers, but there is a significant difference. The photo patterns are printed with ink and the Direct Etch patterns are made of black plastic. The Direct Etch sheets are very clearly marked with the words ETCH RESISTANT.

In use, the Direct Etch dry transfer patterns are simply rubbed on copper clad boards. To insure sharp etching without undercutting, the patterns should be burnedished down. When the circuit pattern is in place, as shown in Fig. 1, you are ready to etch. A clean copper board, adequate burnishing, and proper etching will assure you of a good PC board.

When the etching is completed, completely remove the Direct Etch material. A PC board with the Direct Etch partially removed is shown in Fig. 2. A finished, ready-to-drill board is shown in Fig. 3.

That's all there is to the system. There are advantages and disadvantages, just as there are to other systems we have discussed. You should select the system you prefer, and the one that best meets your needs.

Datak Direct Etch dry transfer materials, including complete kits, are available through your local dealer. Either Datak office should be able to furnish you with information on that product as well as their others.

Do unto others

Just the other day I received a copy of a letter from a "Hobby Corner" reader. The original had been sent to a respected, long-established national company. It seems that this reader had ordered an item that had been mentioned in this column but he did not receive it. He enclosed a photo-copy of his cancelled check.

Now I know that there are some crooks out there in the mail-order business. But it is a very small minority and most don't stay in business very long once word gets out.

Most people that you deal with through the mail are quite honest and they do their best to serve you well. Yet, I can think of a number of reasons why they may fail to get ordered merchandise to you.

For example, they may have done a part but the carrier failed to deliver. I have had even first class mail and packages misdelivered, and on occasion lost by the US Postal Service. If that happens to first class mail, how much more frequently must it happen to third and fourth class packages?

Another reason for not receiving merchandise may be honest error. Of course, the reputable firms attempt to keep the number of errors to a minimum but one will creep in now and again. (I don't know of any organization or individual who is perfect?) It does happen sometimes that an order gets marked "Filled" when it hasn't been. Occasionally a wrong address gets placed on a label. And sometimes some very strange things happen—about two weeks ago I received a sturdily wrapped empty box!

Getting back to the reader's letter, I regret that Radio-Electronics and my name were mentioned in it. The writer was abusive and accused the company of dishonesty. That's not the way to go about getting a mistake corrected! If you write such a letter, you should not expect the seller to be in a big hurry to solve your problem.

When you do not receive an order, keep your cool. Let the seller know and give him a chance to correct the error whether it was his or the carrier's. Give him the benefit of the doubt—do not jump to the conclusion that he is trying to cheat you.

Of course, you deserve the merchandise that you've paid for. If you don't receive it after a reasonable notification and a reasonable time, complain to
the postal service and to the state and federal consumer protection offices. And write our advertising department in New York City, giving full details. They usually can get results.

I should also mention that you should allow ample time for your order to be filled. All kinds of things can prevent a company from getting your order out within a day or two of its receipt—illness, holidays, trouble with their suppliers, and so on. (They are required to notify you if it will take more than 30 days.) Recently I mailed a small first class package; it took two and a half WEEKS to make the 350-mile trip!

So if you have trouble with an order, remember that the other guy is most likely as concerned as you are and is really trying to serve you well. Start with reasonableness and patience.

Packrat

Perhaps I am unduly influenced by the “Be prepared” motto or perhaps I suffer from the “get-it-while-the-price-is-right” syndrome. For whatever reason, I seem to gravitate toward bargain tables.

Bargain tables are a source of unending delight to me. They may contain almost anything—discontinued merchandise, slow-moving stock, returned kits that someone goofed up—you never know. And I just can’t resist.

How about a communications receiver that cost $10 and required that I spend one-half to locate and replace a reversed electrolyte? Or a $5 two-way telephone amplifier with one cold solder joint?

You get the idea. I have bought hundreds of diodes, resistors, IC’s, transistors, capacitors, and so on because “someday I’ll need that.” And in most cases, I have!

What brought all that to mind is that last week a friend lost a large gold class ring in some tall grass near his home. A diligent search proved useless. He told me a couple of days ago that he had to find a metal detector somewhere. You can imagine my response: “Let’s see—I think I have one.”

I did! It was a bargain kit that I picked up a couple of years ago after dropping a key that I didn’t find until the snow melted. Following a little assembly time, my friend was out trying to locate his ring. He’s still out there making sectional sweeps.

Now I’m going to have to get back in that storage closet. I saw some other forgotten bargains in there—an electronic thermometer, three 100-kHz calibrators, and two VOM’s. I wonder what else I have packed away in that closet in the last several years.

Theatrical light control

Rod Schmidt of Mascoutah, IL is looking for some help in designing a system to control theatrical lighting in his school. He needs to control six identical circuits (independently, I assume). Each circuit carries 600 watts on 110-volt lines.

Rod has reviewed the “Hobby Corner” (Radio Electronics, December 1977) on SCR’s and triacs. He plans to use triacs for full-range control but the final design is a bit more complex.

The dimming system must be operable from backstage and from a remote location at the back of the auditorium. It’s also possible to control the triacs with a microprocessor.

I am sure that some of you have encountered lighting problems similar to those Rod is facing. How did you solve them? Let me know and I’ll pass the best solution along.

Automotive microprocessor

M. A. Anderson of Julian, CA has written to inquire about the Mostek 3870 IC that is billed as an “8-bit automotive microcomputer.” The IC itself is inexpensive but some of the devices using it are quite costly.

Anderson feels that there must be many applications in which a hobbyist can use a 3870. I suspect that he is correct but I have not had a chance to experiment with it myself. The IC contains a programmable timer, a clock, 64 x 8 RAM, 2K PROM, I/O’s, and other goodies. That sounds like the makings of a variety of interesting devices.

Let us know if you have used the 3870 as the basis for a project and we’ll pass the information along.

Coming soon

I am sure that you have seen ads for the 76477 sound generator IC. It makes some of the best and worst sounds you’ve ever heard. We’ll be looking at a project using the 76477 in the near future. Stick around.
Speech processing can add "punch" to your signal for better DX.

HERB FRIEDMAN, COMMUNICATIONS EDITOR

THE FIRST TRANSMITTER I EVER BUILT was an AM unit with "modulation clipping"—a circuit that simply lopped off the peak of any speech waveform that would have produced more than 100% negative modulation (see Fig. 1-a). (It is carrier interruption, produced by negative peaks "below zero-volts," that causes sideband splatter.)

My latest transmitter is a store-bought appliance with a host of circuits that provide speech processing to increase the average audio level, or "talk power" of my signal. In fact, any circuit or system—regardless how simple or sophisticated—is a "speech processor" if, in any way, it modifies the original modulation so that it can convey more information.

How we increase that "talk power" depends primarily on current technology. The earliest form of speech processing was the modulation clipper I mentioned earlier. Basically, it was a high-voltage rectifier tube in the secondary of an AM plate-modulation transformer. That tube prevented modulation peaks from driving the B+ to the final RF-amplifier plate below zero-volts. When the B+ was driven to precisely zero-volts, the RF amplifier was said to be modulated 100% negative. When the B+ was driven to twice the DC value, the amplifier was modulated 100% positive. Since the positive modulation can be any level without adversely affecting adjacent frequencies, most attention was given to the negative modulation, for if it exceeds 100% the carrier is literally cut off and the RF-distortion products generate spurious signals that cause interference on adjacent frequencies. (Actually, the FCC was somewhat fussy about the positive modulation, and broadcast transmitters were limited to a maximum of 125% positive modulation.)

Early signal processing

There is a characteristic of the human ear known as "average-power sensitivity" that got technicians working on the idea that the required 100%/125% modulation-limiting could be used to increase that esoteric characteristic called "talk power." While the transmitter's modulation is determined by the modulation's instantaneous peaks, the ear senses the volume of the "average-power modulation level," which is 10 dB to 20 dB below the peak value. For reasons too complex to go into at this time, the peak-to-average ratio is assumed to be 10 dB. In practical terms that means that if the transmitter is modulated to 100% by unprocessed speech, the effective modulation level is approximately 30%.

Early radio technicians and engineers figured that, since the modulation peaks aren't necessary to convey intelligibility (fidelity, yes; intelligence, no), if the microphone's preamplification was increased so that the modulation was driven deep into peak clipping at the modulation transformer, the average-to-peak ratio would be less than 10 dB, increasing the average modulation level. That would cause the signal to sound louder at the receiving station; in essence, a boost in "talk power." (A peak-to-average ratio of 5 dB provides 55% average modulation-depth.) Logically, with greater clipping all peaks could be eliminated; and if high volume-levels were clipped to boost low volume-levels effectively, the signal could have an almost unvarying, high, modulation-level. Heavy clipping was tried, but the trouble is that clipped waveforms produce distortion, and the greater the clipping the greater the distortion. It takes heavy filtering above 3 kHz to prevent distortion products from spilling to adjacent RF frequencies; also, beyond a reasonable limit of about 8 dB the distortion makes the signal "mushy," and actually less readable when buried under interference and static.

Out of all this early experimentation came the observation that readability was improved if the voice's normal dynamic range was sharply reduced; that is, if the weak sounds or words could be amplified in relation to the stronger sounds. The most successful early method for transmitters was the "limiting amplifier" (not a peak limiter), a circuit used very successfully in CB transceivers because it does not produce excessive distortion products.

It works this way. The audio preamplifier works at maximum gain until it senses a predetermined input-signal level, after which it provides less than "normal" gain. As a general rule, a limiter provides a 1:2 ratio; above the limiting threshold it delivers 1-dB output for each 2-dB increase in input level. (Some limiters have a 1:3 ratio, providing a 1-dB increase in output level for each 3-dB increase in input level above the limiting threshold.)

Combined peak/volume limiters—often simply called "limiters"—actually provide almost no amplification above the threshold; a 10-dB rise in input level might result in less than 1-dB rise in output level. This type of "limiting" is extremely effective, though it produces excessively "hot" highs because the low frequencies—which are generally considerably stronger than the high frequencies—trigger the threshold, producing reduced gain for the lows and normal or "wide open" gain for the highs. The resulting waveform is shown in Fig. 1-b. This type of limiter is generally used only to protect against over-modulation (since it does not really boost the average modulation level). It's a standard limiter for broadcasting sta-

Fig. 1

PEAKS
CLIPPED

100%
MODULATION

a

b

100%
MODULATION
CLIPPING OR
LIMITING

SIGNAL-PEAK
LIMITING

COMPRESSOR/LIMITER

www.americanradiohistory.com
Speech processing today

Solid-state devices really made a big difference in speech processors. Transistors, and in particular IC circuits, are very easily adapted to low-distortion filter designs. The modern speech processor first strips off the frequencies that don't convey much intelligence. Those are the frequencies below about 300 Hz and above 3kHz. The lows help us distinguish who is speaking but we don't need them to convey intelligence. Besides, they burn up a lot of power and tend to foul up limiter and gain-riding adjustments.

The frequencies above 3000 Hz also contribute little to intelligence and take up an unreasonable amount of spectrum.

Finally, we push what's left through a compression amplifier—an amplifier that provides maximum gain to weak signals, and little (or even negative) gain to very loud signals. Combined with peak limiting (fixed peak-signal threshold), what modulates the transmitter is a more or less constant "average power" signal (see Fig. 1-c)—literally a wall of audio. Whether the input signal is a scream or a whisper, it comes out as nearly 100% average "voice-power" modulation.

It would be nice to be able to assign some value and say that processed speech was 10 dB, 15 dB, or 20 dB more effective than unprocessed modulation, but there's really no way to specify a value. A loud sound into the microphone might gain only 6 dB or 10 dB, but a very low voice or a whisper might be 20 dB or even 30 dB more effective than if it were unprocessed. And this is where the advantage really lies: it is the weaker sounds that get the greatest boost through speech processing.

We've come a long way since the early AM transmitter peak-limiters. While a signal may not have the best fidelity, at least we can be certain we will hear all we need to.

R-E

"Beautiful, Henry! How did you ever achieve such clarity and purity of tone?!"
I'VE OFTEN MENTIONED CASES OF DOUBLE troubles: two different problems in the same set. I have also mentioned problems due to overlooking a very significant symptom. We see it, of course, but we don't recognize it for what it means. Here are a pair of "doubles," different in one way but alike in another.

The first case involves a Magnavox T-910-01. No vertical or horizontal sync at all. After doing some checking, I found that the horizontal oscillator circuit wouldn't "free-wheel." The capacitor across the oscillator coil (hold control) was shorted. Replacing it restored the horizontal sync with a fairly good picture, but still no vertical sync. The oscilloscope showed the vertical sync-pulse present on the coupling capacitor to the vertical oscillator input, but the pulse was very ragged. Checking the output of the video detector showed a problem.

Video was present, but the waveform looked like the one shown in Fig. 1, instead of the normal one. The sync is negative-going at that point, as it should be, but note the amplitude of that pulse; it's at least four times too high (and the video is way too low). A bit more looking around with the oscilloscope showed that the AGC filter capacitor, C2 (see Fig. 2), was open. That allowed a number of signals to get into the AGC line, causing feedback. A little experimenting with a capacitor substitution-box showed that marginal filtering in this AGC circuit can cause a loss of picture detail before the vertical sync is affected. That fact may be worth remembering if you run into a similar problem.

That is an elegant example of how much faster you can diagnose a problem when you use a scope intelligently. In fact, in cases like that, it is about the only instrument that will give you any valid data on exactly what the circuit is doing. The key clue in this kind of analysis is to look for the presence of signals (or pulses, etc.) at points where they should not be. Do that at any circuit point that is filtered or bypassed.

Now we get to a much worse case, unless you're looking for a good example of how to foul up a fairly easy diagnosis! The set was a Philco hybrid (solid-state IF, etc., and tube amplifiers). When I was called in, the problem was no picture. The screen showed only a pattern of faint vertical bars with "squiggles" in them. The technician said that when the set had first come in the trouble had been a "smooth white screen"—no snow, no picture. He'd tried a tuner-subber on it but without luck. After putting the original tuner back, the symptoms changed.

So, we checked the IF stage. The DC voltages there were close to normal, though the AGC was low. A video signal from a color-bar generator was fed into the grid of the first video-amplifier tube. That signal came through and made a perfect picture on the screen. It told us that everything beyond that point was OK. This also fed some video to the AGC input of the first video-amp's plate-circuit. We found that the AGC didn't work, either.

We now had the trouble pinned down between two points. We tried overriding the AGC with a bias box but that had no effect on the pattern. We still saw the faint bars on the screen. At this point we had all the clues needed to find the trouble, but we didn't know it.

After some more fruitless checking, I had to leave but the technician kept working on it. When I came in the next day, he told me he had found the problem: The video-detector diode was shorted! The vertical bars/squiggles on the screen were due to a less-than-perfect job of hooking up the tuner IF cable to the chassis! The ground was open, and that upset the IF input.

With perfect 20/20 hindsight, we both agreed that we had overlooked two significant clues. First, the change in the symptoms after the tuner substitute had been tried. That should have told us that something wasn't hooked up correctly. The second was the fact that overriding the AGC had no effect at all on the symptoms. It should have; even if the IF was in oscillation, we should have been able to cut it off and get back the white screen symptom. If we had not been distracted by the tuner-hookup problem, there were a couple of tests that could have been made that would have helped. The scope would have shown nothing at all on the video-detector output. By using a crystal-detector probe on the scope, we could have coupled this loosely to the third video-IF and seen that there was a normal signal at that point. Between this and the output there was only one thing that could cause the problem—the diode.

So, let that be a lesson to you. When you're making tests, pay close attention not just to what you're seeing, but especially to what it means.

Power supply

I've just gotten some data on a DC power-supply circuit with an unusual feature. Let's have a look at it so that you'll have an idea of what's going on when you run into it. It's used in a Magnavox chassis, the model 13C2.
That is one of those switching-regulator types that have been discussed in previous columns. A pass-transistor does the actual regulating. It is switched on and off to vary the pulse-widths, at the horizontal frequency.

The unusual thing here is that the oscillator used is in an IC on the voltage-regulator board, the 70419 module. Some similar circuits use two horizontal oscillators, one of which is the main horizontal oscillator, with the other one synched to it. Here, there is only the one, and that does it all. The IC also incorporates the phase detector and over-current, over-voltage, and under-voltage protection circuits. It even has a protection circuit to guard against any faults in the control-loop of the IC itself. If any of those circuits are faulty, the same thing happens: The DC power supply is turned off. That is done by simply turning off the pass transistor so that no current flows at all, and that stops everything.

Hope that some of this will be of help, and good luck!

SERVICE QUESTIONS

TOP LINES "TEAR"

I'm tearing my hair over this Sylvania Video Monitor. It works fine, but there's a "tearing" in the first three or four lines at the top of the picture. The rest of the raster is stable. This unit is used as a computer display terminal. The horizontal oscillator will free-wheel, and the tearing disappears in this model! Any help would be appreciated.—J. A., Richardson, TX

Here's a suggestion, and I hope it works! Since you changed the AFC diodes, this stage should be OK. Scope the bottom end of the diode unit. There are resistors and bypass capacitors used in this area and if one of them is open, it can create some funny problems. I had a very similar case some time back: I found some of the bypass capacitors were bad...after I'd already replaced two or three diode units! Incidentally, an imbalanced diode can have the same effect.

INTERMITTENT TURN-ON

The complaint on this Panasonic model CT-254 was intermittent turn-on. Press the switch several times and it would either start or would flicker several minutes, then it worked fine. It played on the bench for seven days in a row, then it started jittering, contracting and expanding in both directions. I changed the pass transistor in the regulator. The set played three days with no problems. I took it home; it wouldn't work.

So, back to the bench. I changed the SCR in the regulator. The set worked for a

Put your ideas in our box.

Meet the Idea Box. The shortest distance between idea and working prototype or one-of-a-kind instrument.

It's a great time-saver! You design the circuit, we provide the power supplies...assembled and tested...and the right case to house it all.

The Idea Box comes complete with three highly regulated low-ripple power supplies (fixed 5VDC @ 1A, + and -15VDC, variable, @0.5A). Plus your choice of a solderless breadboard, a pre-etched, pre-drilled PCB which emulates the hole connection of the solderless breadboard's pattern, or a blank foil board you can use for existing PCB designs.

Put your ideas in our attractive, high-impact case (4"H x 10"W x 7"D), complete with aluminum front panel and hardware. Priced from just $149.95.

The Idea Box has the capacity for big ideas as well as small ones. You can stack any of the three circuit cards, in any combination.

So, before you tackle your next project, get a head start with a little help from us: have an Idea Box on hand. After all, good ideas shouldn't be kept waiting.

GLOBAL SPECIALTIES CORPORATION

70 Fulton Ter., New Haven, CT 06509 (203) 624-3003. TWX 710-465-1217

OTHER OFFICES: San Francisco (415) 648-1801. TWX 990-372-7992. Europe Phone: Saffron Walden 0796-29682, TLX 87477

Canada: Len Finkler Ltd., Downsview Ontario

Call toll-free for details 1-800-243-6077

During business hours

*Suggested U.S. resale. Prices, specifications subject to change without notice.
©Copyright 1981 Global Specialties Corporation.

CIRCLE 39 ON FREE INFORMATION CARD

SEPTEMBER 1981

79
week then started acting up again! I changed the VDR and checked the junctions on all the regulator transistors. I swapped C205 and C207 and found the sawtooth generator waveform output was a fair squarewave! The same waveform showed up in the clipper. I replaced both capacitors. Now I see a good sawtooth; the set works normally!—L.C., Mena, AR Hooyay!

ADD A HORIZONTAL CENTERING CONTROL

John Rusinko of Little Falls, NJ sends in this interesting idea on how to add a horizontal-centering control to a chassis that does not have one.

FLYBACK TRANS

ADDED PARTS

REVERSE DIODE IF PICTURE CENTERS ISOLATED FROM GROUND

FIG. 1

FIG. 2

Lift the lead from pin 6 of the horizontal yoke plug and place the parallel combination of a 25-ohm pot and a 1N4005 diode in series with the lead. Adjust the pot until the picture is centered. Measure the value of the pot and then replace it with a fixed resistor. The diode/resistor combination is covered with heat-shrink tubing for safety. The modified circuit is shown in Fig. 1. The value of R1 will, of course, vary from set-to-set.

If you wish, a pot may be permanently installed as shown in Fig. 2, but care must be taken to isolate the pot from the chassis, because boost voltage is present.

BUZZ IN SOUND

Just serviced a Panasonic CT-329. Complaint was low-level buzz from the speaker when the set was turned off via the remote control. It was caused by T801, the remote-power transformer. That is mounted too close to T251, the audio-output transformer. T801 is on even with the set off and it was coupling a 60-Hz signal into the output transformer! Only one screw holds T801 and the leads are long enough to move it to another area a couple of inches away.

Thanks to Frank Ferrell of Bala-Cynwyd, PA for that one.

A 3.16 MEGOHM RESISTOR

In the “Service Questions” column (Radio-Electronics, November 1980) there was a question on a CTC-27X with no color. The stated cure was replacing a 3.16-megohm, ½-watt resistor.

“There ain’t no such thing!” Checking with RCA Service Co. in Medford, MA, they said: “Go out to the open market and buy a 3.3-megohm, ½-watt resistor. That will work.” I tried it and it works.

Thanks to A.W. Martell of Nick’s TV, Watertown, MA and the RCA Service Co. in Medford.

INTERMITTENT GREEN SCREEN

This Panasonic model CT-91T works fine except for an intermittent all-green screen. When this happens, the voltage on the green screen jumps to +840. I changed the green-screen control and the bypass capacitor. At turn-on, the screen stays green for a few minutes, then clears up for an indefinite time. Help!—C. C., Johns Island, SC

Well, you’ve changed the screen control and the arc-gap capacitor across it. So, something is shorting across the screen control and letting the full boost voltage reach the screen grid. Here’s a suggestion: Take off the screen control and examine the location very closely. See if there isn’t a short piece of bare wire (the end of the resistor lead, clipped off, etc.) floating around behind the control. This short seems to be “thermal”, i.e., when the set is cold it shorts the control, and when the set heats up, it opens. Solder blobs can also cause these kinds of problems.

COLOR PROBLEM

This model T-995 Magnavox has a bad case of yellow fever! The color intermittently turns yellow and then clears up. Any help would be appreciated.—Q. H., Blue Springs, MO continued on page 82
EQUIPMENT REPORTS

continued from page 36

between two antennas for different frequency ranges, and selectively feed the tuned signal into one of two separate receivers, or into the two separate antenna jacks frequently found on modern wide-coverage receivers.

Jacks and screw terminals on the rear of the cabinet let you attach antenna leads and connect the unit to the receiver(s). While coaxial cable is recommended for connecting the tuner and the receiver, for short distances insulated single-conductor wire with a separate ground lead or even shielded phone cable can be used.

The Shortwave/Longwave Tuner is not an antenna matchbox in the truest sense; it is not intended to provide near-perfect impedance-matching between the antenna system and the receiver. Rather, it is a preselector circuit that can be made resonant at a particular frequency, improving reception, or near, that frequency while simultaneously rejecting out-of-band interference. That makes the device useful with modern low-cost communications receivers that feature high sensitivity but fall short in selectivity. The background clutter from intermodulation and front-end overload may be reduced or even eliminated with this tuner.

Our test

We tried the Shortwave/Longwave Tuner with several receivers: the Radio Shack DX-300 and 302, Kenwood R-1000, Drake R7/DR7, and the Yaesu FRG-7700. While signal improvement varied with the receiver tested, some improvement was noted with every receiver. The improvement was most noticeable on the lower frequency ranges (AM broadcast band and below).

While the manufacturers of most general-coverage receivers capable of tuning below 100 kHz usually state that frequency as a nominal cut-off point, using the Shortwave/Longwave Tuner extended low-frequency reception considerably. When used with a 50 to 100-foot wire antenna, reception of WWVB (60 kHz) and even Omega (12 - 15 kHz) was possible! In their literature, Grove Enterprises indicates that the low-frequency reception is best when using a 100-foot insulated wire lying on the ground as an antenna! Using that for low-frequency reception and a shortwave dipole would make an excellent antenna system.

The Grove Shortwave/Longwave Tuner is not perfect; in order to keep the cost competitive, rather than a large-diameter wire inductor, were used. As a result, there is series resistance, as well as low Q, on the lowest frequency ranges. Despite that shortcoming, the tuner gives an excellent accounting of itself when used for casual longwave reception, and provides some improvement on the higher frequencies as well.

The Shortwave/Longwave Tuner sells for $59.95 plus $1.75 shipping from Grove Enterprises, Inc., Brasstown, N.C. 28902. R-E

Easily the best.

In terms of resolution and accuracy, the Model 135 is easily the best handheld DMM available at any price. It's the only handheld offering 4½ digits. That gives it 10 times better resolution than the best 3½-digit DMM and provides 3 to 4 times more usable accuracy. Resolution isn't all you get. You get an easy-to-use instrument that's rugged and reliable enough to live in the read world. You get Keithley packaging. Its large, crisp LCD makes it easy to read. Rotary switches and a color-coded faceplate make it easy to use. Once-a-year calibration and long battery life make it easy to own. Easy to buy at $235.

Best in price, best in performance.

There is a DMM designed specifically for your application in the Keithley line. Your Keithley distributor has instruments in stock for your convenience. Call today for complete information and a demonstration.

Sound Choice.

New Model 128 Beeper DMM. Audible/visual indication on all 5 functions of this 3½-digit DMM lets you test faster, and the user adjustable threshold and special diode test function make it a sound choice. Unique features, $139.

Bench Bargain.

Model 176, Portable Bench DMM. Full 5-function LCD 4½-digit bench DMM offers 0.05% basic DCV accuracy. Keithley ease of use features include range and function annunciators, 1000 hour battery life and optional line operation. A bargain at $269.

KEITHLEY

Keithley Instruments, Inc.
28775 Aurora Road/Cleveland, Ohio 44139/(216) 248-0400
CIRCLE 46 ON FREE INFORMATION CARD
SERVICE QUESTIONS
continued from page 80

Well, the most likely thing I see in the crystal ball is that you are losing your blue completely. This leaves red and green, which together make yellow. So you have to start at the picture tube and eliminate the various possibilities.

Check the control grid, cathode and screen voltages on the blue gun. For example, if you were losing the blue screen voltage, the blue gun would cut off. There are three screen controls on the "Retrace/Screen" module; check this area for a possible hairline crack or a bad solder joint on the blue screen control.

Check the collector voltage on the blue video output transistor to see if it goes off (either up or down!) when the trouble shows up. If this transistor is intermittently opening, this lets the blue cathode voltage go more positive, which cuts off the blue gun.

LOSS OF VERTICAL SWEEP

There's an odd problem in this RCA CTC-53XP chassis. It begins losing its vertical size, forms a thin line, and then the breaker trips. I found that the vertical oscillator plate voltage drops slowly, goes clear out, which is when the breaker trips. Can you give me a clue?—A. S., McKeesport, PA

There's one good clue: This plate is fed from the +600-volt boost. When you check, you'll see that the horizontal oscillator plate is also fed from the same boost voltage. If you lose the grid drive to the 31L6, it draws enough current to make the breaker trip.

Try a new 17CT3 damper tube. You might just fix the problem! If this doesn't help, then check through the complete boost circuit from the flyback to the points fed from it. I doubt that this problem is caused by a leaky capacitor, since when this happens, it is usually permanent. However, tubes can short, cool off and clear up.

PICTURE PROBLEM

This Airline model 129462 (Sams 1544-2) has a picture problem. Contrast, brightness and brightness-limiter controls have no effect at all. There's a whitish raster with heavy retrace lines. When I turn up the color a funny picture comes on that looks like a film negative. I tried a new M800 video module with no help. The picture tube is good.—F. C., Gainesville, TX

The crystal ball says you've lost the video or the black-and-white signal. When this happens, turning up the color will give you a funny picture. Since the video module is OK, check back through the video circuits. There's another video-amplifier transistor (Q204) on the front board along with the IF's, etc.

If transistor Q204 is shorted, it will give you a negative video and a severe loss of gain. If the transistor is OK, check the video-detector diode to make sure whether it is open or shorted. There should be 6.2 volts of video signal on the Q204 collector, with the sync going negative; if there isn't, everything from here on in will be bad.

BREAKER TRIPS

After about a minute of operation, the circuit breaker trips in this Sylvania model D-14. If I disconnect the degaussing coil, the set works OK. I decided the coil was bad and replaced it. The breaker still trips! Any leads?—C. G., Amityville, NY

Since there are only two items in the degaussing circuit—the coil and a positive-temperature coefficient thermistor—I suspect that the thermistor is shorted. Because the symptom goes away when this circuit is open, the thermistor is the only thing left to go wrong. This part is a Sylvania No. 38-33206-1. Use only an exact replacement. Normal resistance is 25 ohms cold and must go up very quickly.

THICK HORIZONTAL LINE

The screen of this Zenith model 14Z33 shows a horizontal line. The 8BA11 and
Electronic Projects for Beginners

- ELECTRONIC PROJECTS FOR BEGINNERS
- A wide range of easy-to-build projects
- No soldering required

1OGK6 tubes test OK, but the vertical linearity and vertical size controls do nothing. Any ideas? — J. P., Brooklyn, NY

I have one: I note (from the photo you sent along) that the screen line is approximately an inch high and not very thin. This generally means that the vertical-output stage is trying to work. It picks up enough stray AC on its grid to create a thick line.

However, the vertical oscillator obviously isn’t running. Using just your fingertip, touch the EBBAl pin 9 grid, the input grid of the vertical oscillator. If this causes the vertical deflection to increase slightly, you have eliminated this tube as a cause of the symptom. The chances are that one of the parts in the feedback loop is open; without feedback, there’s no oscillation.

MORE BROADMOOR DATA

George R. Welker, Spokane, WA sends this supplemental data on Broadmoor chassis. He says that the 691-C chassis was made by Midland for many private labels such as Bradford, Tru-Tone, and Coronado as well as Broadmoor! You can get parts and data from Midland International Corp., 1900 Johnson Drive at State Line Road, Shawnee Mission, KS 66205.

Thanks a lot, George! If we keep on trying, we’ll get some useful data in our files on those.

R-E
NEW IDEAS

Simple Tesla coil

I'm sure that many readers found the article on the recreation of Tesla's original experiments by Robert Golka (see Radio-Electronics, February 1981 issue) very interesting. I know that I did, especially since I built a small version of a Tesla coil not too long ago (although I'm only age 14). I'd like to share the details with you.

There is one important thing to keep in mind before we even begin. The Tesla coil described here can generate 25,000 volts so, even though the output current is low, be very careful!

The main component of the Tesla-coil circuit is a flyback transformer. You can get one from a discarded TV.

The first thing you must do is to get rid of any excess wire or other debris that's on the transformer's core, as shown in Fig. 1. Leave the high-voltage winding alone; but if there is a capacitor at the end, it should be removed.

After that, you can start winding a new primary coil. Begin by winding 5 turns of No. 18 wire on the core. Then twist a loop in the wire and finish by winding five more turns. Wrap with electrical tape, but leave the loop exposed.

A four-turn winding has to be wound over the ten-turn winding that you've just finished. That is done the same way. First wind two turns of No. 18 wire, then make a loop, and finish up by winding two more turns. Again, wrap the new winding with electrical tape, leaving the loop exposed.

When the windings are finished, the two loops shouldn't be more than 1/4-inch apart (but take care that they do not touch). Connect a 240-ohm resistor between the two loops. The modified transformer now should look like the one shown in Fig. 2.

Connect the transformer as shown in Fig. 3. The 27-ohm resistor and the two transistors should be mounted on a heat sink and must be insulated from it.

The output of the high-voltage wind-

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc. All published entries, upon publication, will earn $25. In addition, Panavise will donate their model 324 Electronic Work Center, having a value of $48.95. It combines their circuit-board holder, tray base mount, and solder station (see photo below). Selections will be made at the sole discretion of the editorial staff of Radio-Electronics.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material had not been previously published.

Title of Idea

Signature

Print Name Date

Street

City State ZIP

Mail your idea along with this coupon to: New Ideas Radio-Electronics, 200 Park Ave. South, New York, NY 10003
All new!
All construction projects!

They're the kind of projects you want to build, the kind only *Radio-Electronics* has the expertise to design, and this new issue is filled with great construction articles like these:

Test Equipment
Digital Scope Multiplexer—to convert almost any scope into a 4-trace unit.
Frequency Multiplier—to extend the range of your frequency counter.
Safety Cooker—that protects unattended equipment against electrical problems.
Battery Box/ Switching Box—a great accessory for any bench.
Car Test Probe—use it to test automotive electrical systems.
Digital IC Tester—to make quick work of testing digital IC's.
Electronic Music
The Chord Egg—to generate an endless series of chords automatically.
Words And Music—a programmable music generator that's ideal for doorknobs.
Big Sound For Chord Organs—to enhance the sound from electromechanical chord organs.
Computers
Digital Logic Trainer—that teaches how microprocessors work.
Save Your Files—cassette tape recorder controller makes using tape as computer memory storage easy.
Programmable Sound Generator—adds sound capability to almost any computer system.
Hobby
Adventures of the IC's—applications for LMC214 and VMOS power FET's.
Digital Do-Nothing Box—lights, counts, teaches binary and digital number systems.
Communications
Digital Readout
Add-on For Communications Receivers—to update older receivers easily.
Microphone Acoustic Coupier—a simple add-on for any communications system.

And lots more—all new, and all on your newstands October 2

Or...
Use the handy coupon and get your advance copy of *Radio-Electronics Special Projects* delivered right to your door. Make sure you get your copy by ordering...today!

We will ship your magazine, postpaid in U.S. and Canada, within 6 weeks of receipt of your order. All other countries add $3 for postage.
I want _______ magazines @$3.00 each. First-Class postpaid. Includes handling (U.S.A. & Canada)
I have enclosed $ ________ (Foreign, add $3.00 for Air Mail postage per copy) US Funds only

Radio-Electronics Special Projects
45 East 17th Street
New York, N.Y. 10003

Name

Street Address

City

State

Zip

REF-81

SEPTEMBER 1981

www.americanradiohistory.com
NEW PRODUCTS

For more details use Free Information card inside back cover.

FREQUENCY COUNTER. model IM-2420, is a new 512-MHz digital frequency counter that is available both in kit and fully-assembled versions.

The model IM-2420 features four gate times and 8-digit resolution for precise readings. It does more than just measure the frequencies of input signals. A polling function can give cycle time in seconds, while the frequency-ratio function provides the user with the ratio between two input frequencies.

FM PORTABLE. Two new options are now being offered by Motorola for their Series MT500 FM 2-way portable radios—touch code, and touch-code encoders with automatic number identification (ANI). The MT500 series includes almost 100 different models, each specifically tailored to the customer's options.

THE ASCII SET. Two user-defined keys are provided for custom applications. The unit is fully buffered and there is a "caps lock" for upper case and alpha characters. The system has a 40-pin ROM with outputs compatible with TTL/DTL or MOS logic arrays. The keyboard assembly requires +5 VDC at 150 mA and -12 VDC at 10 mA for operation. Interfacing is accomplished by a 16-pin DIP socket or an 18-pin edge card connector. Step-by-step wiring instructions and circuit diagram are also included. Suggested retail price is $79.95, less enclosure. Available in kit form only. —Jameco Electronics, 1550 Shoreway Rd., Beimont, CA 94002.

CIRCLE 50 ON FREE INFORMATION CARD

FM PORTABLE. Two new options are now being offered by Motorola for their Series MT500 FM 2-way portable radios—touch code, and touch-code encoders with automatic number identification (ANI). The MT500 series includes almost 100 different models, each specifically tailored to the customer's options.

ASCI ENCRODED KEYBOARD KIT. the J65-10, is designed to interface with almost any computer system. It comes complete with a 62-key keyboard switch assembly, IC's, sockets, connector, and a double-sided PC board. The switches are SPST mechanical action, and 60 keys generate the 128 characters (both upper and lower case) of the ASCII set. Two user-defined keys are provided for custom applications. The unit is fully buffered and there is a "caps lock" for upper case and alpha characters. The system has a 40-pin ROM with outputs compatible with TTL/DTL or MOS logic arrays. The keyboard assembly requires +5 VDC at 150 mA and -12 VDC at 10 mA for operation. Interfacing is accomplished by a 16-pin DIP socket or an 18-pin edge card connector. Step-by-step wiring instructions and circuit diagram are also included. Suggested retail price is $79.95, less enclosure. Available in kit form only. —Jameco Electronics, 1550 Shoreway Rd., Beimont, CA 94002.

CIRCLE 110 ON FREE INFORMATION CARD

INTEGRATED AMPLIFIER, the Plus A75, features a moving coil preamplifier and left- and right-channel 12-stage LED input/output peak indicators. The preamp section features a wideband, DC-coupled Class A design. Controls include "triple-turnover" bass and treble equalizers, a sharp-cutoff switchable subsonic filter, and separate dubbing and monitoring facilities for two tape decks.

The Plus 75 has a minimum rated power of 75 watts-per-channel into four or eight ohms. Response is from 20 Hz to 20 kHz with less than
A LOW-BUDGET COURSE IN SOLID STATE CIRCUITS

ED NOLL'S SOLID STATE CIRCUIT FILES VOLUMES 1 & II provide sensible you-do-it experience with solid-state circuits. Bipolar transistors, field-effect transistors, linear integrated circuits, TTL digital circuits and CMOS integrated circuits are covered. More than 100 basic and advanced circuits. Each circuit is complete, fully explained, and most include suggested procedures for experimentation. All use low-cost, readily available components. Circuits can be constructed quickly on a solderless breadboard. Available from your local electronic distributor.

If you're a student, technician, experimenter, radio amateur, teacher or computer enthusiast, order these invaluable solid-state circuit training programs today.

VISIT SAMS AT WESCON. BOOTH NO. 1516 & 1518.

NORMARK introduces Factory Accessories For The Do-It-Yourselfer:

- Power Windows
- Power Door Locks
- Automatic Headlight Control
- Lights-On Alarm
- Wiper Delay Control
- Power Trunk/ Hatchback Release
- Low Washer Fluid Alarm
- Low Coolant Level Alarm
- Low Fuel Alarm
- Electronic Dipstick™

Normark has just what your car, van or truck needs. Write for a complete catalog and name of your local dealer.

Manufacturing Corporation
2000 Hurd Drive, Dept. RE-9
Irving, Texas 75062
(214) 659-1800

©1981 Normark

CIRCLE 34 ON FREE INFORMATION CARD

CIRCLE 113 ON FREE INFORMATION CARD

0.00% THD. The LED display shows not only output power but can also show input levels to aid in monitoring the output of signal sources connected to the amp. The amp section uses fully complementary DC-coupled output devices that have a slew rate of 120 volts-per-microsecond. Suggested retail price is $509.95. —Sanyo Electric, Inc., Consumer Electronics Div., 1200 W. Artesia Blvd., Compton, CA 90220.

SPEECH CONTROLLER, the VSC (Variable Speech Control), offers self-paced listening. Recent studies show that comprehension and retention increase by as much as 42% when material is heard at a rate of 250 to 300 words per minute—twice as fast as most people speak. The VSC Speech Controller enables the user to regulate that speed.

CIRCLE 114 ON FREE INFORMATION CARD

For studying, previewing, transcribing, reviewing, or analyzing tapes of lectures, conferences, interviews, or personal notes, the unit can play up to 2½ times faster than a normal recorder and still reproduce voices without distortion. Speech can also be slowed down without distortion. There is a built-in microphone, 3-digit counter, record-level meter, cue-review control, 12-volt DC adapter jack, headphones, earphone, and remote microphone jacks. An external microphone, earphone, and stand are also available as accessories.

The VSC Speech Controller is priced at $259.00—Edmund Scientific, 7082 Edscorp Bldg., Barrington, NJ 08007.

Hi-Fi PREAMPLIFIER, Linear Preamp, is designed to serve as the basic control/preamp unit of any stereo setup. In addition to the standard function-select controls, the unit features a sub-sonic filter, two tape-monitor circuits plus selection of either the left or right channel in the monaural mode and channel-reverse capability in the stereo mode. A gain switch offers 20 dB of additional gain when needed. This compact preamp is housed in an enclosure with solid walnut end

CIRCLE 115 ON FREE INFORMATION CARD

CIRCLE 19 ON FREE INFORMATION CARD
Learn Microprocessing on Your Own Computer!

You Learn How To:

- Design & Code Microprocessor Software
- Draw Logic & Interconnection Diagrams
- Write Machine Language Programs
- Test & Execute Programs
- Set Up Your Own Computer
- Understand Microprocessor Architecture & Support Logic
- Write Correct Programs
- Implement Parallel and Serial Input/Output Ports
- Implement Real-Time Average Handling & Data Transfer
- Design Your Own Microcomputer

You Will Receive:

- A fully tested & guaranteed 8080A Microcomputer with 16K RAM, 1K EPROM and 1K PROM Memory. Programmer, wiring, keyboard, printed circuit, card kit, display and operating system. 44 pin edge connector can be configured to any bus structure. Used on IBM Card for Custom wiring. Based on the latest microprocessor circuits, completely expandable.

- Complete user's manual with programs included.
- 302 page 8080A Guidebook. Shows you from basic microprocessor concepts to actual design of your 8080A Microcomputer.
- 3 pop-up IBM Selectware Design issue 1 w/over 1000 expandable program examples plus detailed examination of all 304 instructions and complete assembly language program for the 8080A Microprocessor.

Sample Program: If not completely satisfied you may return the product within 30 days for a full refund.

RATED BEST VALUE BY INSTRUCTORS

1981 Discount Electronics Catalog

JOIN THE PAK!

Send for our Free catalog and become a member of our exclusive Pak. Our members receive Poly Pak's exciting catalog several times a year. We offer: Penny Sales, Free Premiums and Low, Low Prices on a wide variety of Electronic Products such as Computer Peripherals, Integrated Circuits, Speakers, Audio Equipment, Rechargeable Batteries, Solar Products, Semiconductors, and much, much more! Take advantage of our 25 years as America's foremost Supplier of discount electronics.

RUSH ME YOUR FREEDISCOUNTCATALOG!

NAME:

ADDRESS:

CITY:

STATE:

ZIP:

CLIP AND MAIL COUPON TODAY TO:

POLY PAKS, INC.
P.O. Box 842, RAG
B. LINFIELD, MA. 01840

817/245-3828

CIRCLE 16 ON FREE INFORMATION CARD

CIRCLE 116 ON FREE INFORMATION CARD

audibly, and electronically that there is a power failure, giving the user time to bring the system to an orderly shutdown with all data files intact. An interrupt feature can be used to generate an interrupt to transfer memory content automatically to disk or to operate any external device requiring less than 60 mA. Suggested retail price is $295.00. A 20-minute version is available for $249.00. - High Technology, Inc., P.O. Box 14665, Oklahoma City, OK 73113.

CIRCLE 117 ON FREE INFORMATION CARD

receiver on the front end, to insure sensitivity and selectivity of signal reception. The automatic transmitter power control maintains a steady transmission at the rated power output over a widely varying input voltage. A microstrip RF power amplifier reduces tuning time and makes for over-all easier alignment and service. Private channel (CTCSS) operation is available as an option. The model 867L is priced at $425.00 for the one-channel version; $545.00 for the two-channel version. - Standard Communications Corp., P.O. Box 92152, Los Angeles, CA 90009.

CIRCLE 118 ON FREE INFORMATION CARD

1000 seconds to 1 millisecond. There is also a variable DC offset and auxiliary TTL output.

The model 1200A is priced at $305.00. - Kronh-Hite Corporation, Avon Industrial Park, Avon, MA 02332.

PRINTERS. EUY-5E and EUY-5T are miniature alphanumeric printers, that print either on electronicsensitive paper (EUY-5E) or thermostensitive paper (EUY-5T). Both print 32, 40, 64, or 80 characters per line. Characters are formed by a 7 X 5 dot matrix, and are 0.11-inch high. The EUY-5E can print two lines per second while the EUY-5T prints 0.8 lines per second. Both printers measure 7.68 x 2.56 x 2.76 inches and print on 5-inch wide paper and have an expected life of 1 X 10^6 lines; that makes them suitable for applications where inexpensive hardcopy output is required, including computer peripherals, measuring instruments, analyzers and others.

CIRCLE 119 ON FREE INFORMATION CARD

The printers come without a case, ready to be mounted and connected via their ribbon cables and PC connectors. The EUY-5E requires two ±24 VDC sources at 100 mA each and a +5 VDC supply at 30 mA. The EUY-5T requires one ±24 VDC supply at 100 mA, one ±24 VDC at 1 amp for the thermal head, and +5 VDC at 30 mA for the logic. In OEM quantities, the EUY-5E is priced at $145 and the EUY-5T is priced at $195. - Panasonic, Electronic Components Div., 1 Panasonic Way, Secaucus, NJ 07094.

CIRCLE 120 ON FREE INFORMATION CARD

ANTENNA TUNERS. models 226 and 227, feature two-inch, 47-tap toroids with silver-plated 18-gauge wire and tap selectors. Used in a wide-range "T" network with variable capacitors, the toroids permit vernier tuning for easy, accurate adjustment.

CIRCLE 121 ON FREE INFORMATION CARD

www.americanradiohistory.com
A front-panel five-position antenna select switch offers a choice of dummy load, one of three different antennas, or tuner bypass for one of the antennas. Also, one antenna may be a long-wire type.

The tuners will match conventional 50-75 ohm unbalanced outputs to a variety of unbalanced or balanced load impedances. A built-in balun converts one antenna to a balanced configuration if desired (max. balanced load on 160 and 80 meters is 500 ohms). Power ratings are 200 watts RF intermittent, 100 watts continuous (ideal for any transceiver with input power up to 200 watts).

The model 228 has a built-in SWR bridge, forward-reverse switch, sensitivity control, and a meter that indicates SWR's between 2:1 and 5:1. The size is 3 3/4 X 10 1/4 X 7 3/4 inches. Model 227 is identical except that there is no SWR bridge, and the size is 3 3/4 X 8 1/2 X 7 3/4 inches. Both models are styled to match Ten-Tec transceivers.

The model 228 is priced at $95.00; the model 227 sells for $79.00.—Ten-Tec, Inc., Highway 411 East, Sevresville, TN 37862

LOUDSPEAKERS, the L112, is a 3-way bookshelf speaker system designed in “mirror-imaged” pairs for greater stereo imaging. The L112 features include a one-inch dome radiator, a five-inch midrange driver and a 12-inch woofer. A high-resolution dividing network provides smooth transition between the drivers. The 12-inch woofer uses a Symmetrical Field Geometry (SFG) flux-circuited magnetic structure. The driver is equipped with a 10% pound magnet and a 3-inch copper-edges assembly to offer high-powert-handling, low distortion, and good transient response. The L112 can be driven by an amplifier with as little as 10 watts or as much as 300 watts continuous sine-wave output per channel. The enclosure is constructed of wood panels finished in black walnut with a three-dimensional brown grille. Measures 24 X 14 X 13 inches. Suggested retail price is $450 for each speaker.—James B. Lansing Sound, Inc., 8500 Balboa Blvd., Northridge, CA 91329.

CIRCLE 121 ON FREE INFORMATION CARD

stabilized magnetic structure. The driver is equipped with a 10% pound magnet and a 3-inch copper-edges assembly to offer high-power handling, low distortion, and good transient response. The L112 can be driven by an amplifier with as little as 10 watts or as much as 300 watts continuous sine-wave output per channel. The enclosure is constructed of wood panels finished in black walnut with a three-dimensional brown grille. Measures 24 X 14 X 13 inches. Suggested retail price is $450 for each speaker.—James B. Lansing Sound, Inc., 8500 Balboa Blvd., Northridge, CA 91329.

UNIVERSAL COUNTER, model 412, is a panel-mounted, 8-digit counter/timer measuring 3 X 2 X 0.5 inches in a red acrylic case that requires no panel cut-out for front mounting; only a 5/16-inch diameter hole is needed.

CIRCLE 122 ON FREE INFORMATION CARD

The model 412 has eight bright .35-inch LED's in addition to the LSI IC, a few discrete components, and two micro DIP switches that are

CIRCLE 45 ON FREE INFORMATION CARD
The most advanced — most versatile organ you ever dreamed of is now within most everyone’s reach … because you build it yourself the exclusive WERSI way.

Expand your instrument according to your taste and budget. With WERSI’s ‘Building Block’ system, you’ll never need to trade organs again!

Superior WERSI quality also available in pianos, synthesizers, amos, rhythm units, etc. . . . kit or factory assembled.

Send $6 for the exciting Sight and Sound package everyone raves about. You’ll receive the famous "WERSI TIME 2" 12" LP with accompanying libretto as well as a full color, 104 page manual, widely acclaimed as the encyclopedia of organ builders, introducing you to the Wonderful World of

wersi electronics, inc. Dept. M4 P. O. Box 5318, 1720 Hempstead Road Lancaster, PA 17601

Please send above demo pack @ $6.00.

Name

City State Zip

The power requirements are 5-volts DC at 180 mA, or 120/240-volts AC at 50-60 Hz when the wall-mount plug-in power pack is ordered. Applications include either portable or panel-mount rate indicator, frequency monitor, process timing, period measurement, event counter, frequency comparator, and others. Sealed units with dedicated function and gating time are available for use in harsh surroundings.

The price of the model 212 is $175.00 for the standard unit. $225.00 for the sealed unit — International Microtonics Corporation, 4016 E. Tennessee Street, Tucson, AZ 85714.

REINFORCE RINGS, designed to protect flexible disks and minidisks, prevent hole tearing and help reduce coating removal and rippling damage that causes premature flexible disk failure. Made of heavy-duty Mylar, the rings are especially rec

ommended for use with Wang and other drives which require reinforced flexible disks. The Reinforcer Ring Kit contains 50 adhesive-backed rings, an easy-to-use applicator, and instructions. Re-order packages of 25 rings are also available. Price of the kit is $9.95. Refills are $6.95 — MISC, CO, Inc., 963 Hoiimdel Rd., Box 399, Hoiimdel, NJ 07733.

CASSETTE DECK, model TCD-420A, is a two-head metal-tape compatible record/playback deck. The combination of the Actinlinear Recording System, the DNYEQ—the dynamic recording-

equalization system, plus the Diamond Cut Multi-core Senalloy record/playback head provides the higher saturation limit required for new metal tapes. The TCD-420A also features a 3-motor, servo-controlled dual-capstan transport system, dual-scale peak-reading equalized meters, plus horizontal, vertical, or wall-mount operation. Suggested retail price is $850—Tandberg of America, Inc., LaBriola Cl., Armonk, NY 10504.

DIGITAL MULTIMETER, model 274, is a hand-held instrument with a 3%-digit liquid crystal display. It measures AC and DC volts, DC current, and resistance in 21 ranges. The model 274 features single-chip LSI logic, automatic decimal point and overload-protection, and operates up to 200 hours from a single 5-volt transistor battery. An automatic lo-bar indicator warns the user when the battery life is down to 20%. Accuracy is

better than 0.8% and input impedance is 10 megohms. The model 274 comes with 9-volt battery, deluxe test probes, spare fuse, and carrying case; it is priced at $89.95 — EICO Electronic Instrument Co., Inc., 108 New South Road, Hicksville, NY 11801.

SPEAKER AMPLIFIER SWITCHER, model MP-3, allows up to four pairs of stereo loudspeakers to be driven from a single amplifier without overloading the amplifier’s output stage. Each pair of speakers may be volume-controlled independently of the others, without changing the load impedance “seen” by the amplifier. Input switching for two separate power amplifiers is provided so that any loudspeaker pair may be driven from either of two signal sources.

CIRCLE 123 ON FREE INFORMATION CARD

The model MP-3 uses constant-impedance “L pads” as the control elements, instead of the variable resistors that are usually used for that purpose. Though more costly than variable resistors, the L pads provide a minimum load impedance of 4 ohms, resulting in more stable operation of the driving amplifier and allowing extension loudspeakers to be turned up, down, or off without altering the volume of the main speaker pair.

The model MP-3 will accept power inputs from any commercially available amplifier, and will drive loudspeakers of any nominal impedance in any combination up to a level of 70 watts per speaker. It is packaged for home or office in a metal case of black painted finish and measures 9 x 4 x 4 inches. It is also available in a rack-mount version, as model MP-3R, for professional installations, with dimensions of 19 x 3 1/4 x 7 1/2 inches. The model MP-3’s price at $149.95; the rack-mounted model MP-3R costs $159.95. — Ruskis FMP, Inc., Box 2369, Woburn, MA 01888.
NEW BOOKS

For more details use free information card inside back cover

This book provides a comprehensive discussion of the Z80 microprocessor assembly language. It assumes that the reader is already familiar with An Introduction to Microcomputers: Vol I—Basic Concepts (particularly Chapters 6 and 7), and does not discuss the general features of computers, microcomputers, addressing methods, or instruction sets.

Features included in the present volume are sample programming problems (more than 80); problem solutions in source code and object code; full explanations of each Z80 instruction; complete Z80 instruction set reference tables; Z80 assembler conventions; Z80 I/O devices and interfacing methods, and comparisons of Z80 and 8080/8085 instruction sets and interrupt structure.

CIRCLE 131 ON FREE INFORMATION CARD

MICROSOFT BASIC, by Ken Knecht, dilithium Press, P.O. Box 92, Forest Grove, OR 97116. 158 pp. 5 1/2 X 8 1/2 in. Softcover, $9.95.

This is a book that describes the BASIC programming language. After an initial explanation of BASIC and a chapter on definitions, the author presents a complete course on programming in Microsoft BASIC. The examples given, starting with the simplest, are all workable ones.

Subjects covered include branching and loops, arithmetic in BASIC, strings, editing, arrays and files, the disk, additional useful features, and a description of the Radio Shack Level II BASIC. There are four appendices, the third of which illustrates erro messages and how the computer informs the user that something is amiss.

CIRCLE 132 ON FREE INFORMATION CARD

Covering the entire range of present electronic devices this is a definitive source of price and operating information that goes into the capabilities and limitations of each.

Personal computers, electronic games, TV devices (including those that edit out commercials), home security systems, burglar and fire detection systems, solar energy devices—all the above and more are covered in this consumers' manual which tells both what you want and need to know.

CIRCLE 133 ON FREE INFORMATION CARD

Japan is the source of most CB transceivers, but most CB test equipment is produced in the USA. The present book explains the considerable range of the latest service equipment that is produced to meet the requirements of technicians and CB service people. An introductory chapter deals with both first and second-generation 40-channel transceivers as well as the 80-channel SSB transceivers and transceivers for use in other countries. Also covered farther on are the newest trends in transceiver design, including the PLL and microprocessor control techniques. Circuitry of all types is described and illustrated with diagrams.

Specialized test equipment, designed to reduce the time required for repair jobs, is explained; and in the chapters dealing with troubleshooting, the techniques described are applicable to either 40-channel or 23-channel transceivers.

There is a chapter on making initial tests in troubleshooting, and another spelling out the most commonly encountered symptoms and the procedure in handling them. Another chapter is devoted to RF interference and noise elimination. The book includes an appendix with diagrams of various crystal combinations in 23-channel transceivers with multivcrystal synthesizers.

CIRCLE 134 ON FREE INFORMATION CARD

The first part of this handbook, devoted entirely to DC power supply, theory, and associated circuits, includes power supply circuitry, power supply components and ratings, dynamic regulation, electronic regulation, protection, rectifiers, voltage multiplication, metering, and safety circuits.

Each chapter in the book ends with a set of study questions, the answers to many of which you must deduce from the text. They are not there explic-

the antenna specialists co.

the antenna specialists co. presents the latest advance in high-performance antennas for professional CB communications ... and major support for REACT

Formula cars and our new Model M-710 Formula-1 share an identical engineering strategy: continually refine a proven basic design with one objective; maximum performance.

That's Formula-1: direct descendant of A/S's classic base-loaded mobile police antennas. Born for performance, built to last. Formula-1 is the result of over 25 years of continuous development. Today's new state-of-the-art in mobile CB antennas.

- Precision-wound, water-proof coil. Lifetime burnout guarantee.
- Factory tuned: set-screw ultra-fine tuning.
- Longer whip for more reach.
- Tapered stainless steel whip minimizes range-robbing wind deflection.
- Anti-static whip ball-tip.
- New quarter-turn quick-disconnect tested over 2,500 times.
- Easy to install. 17" pre-assembled cable, miniature in-line connector, contour-forming protective mounting gasket, hardware for both roof top or trunk-lip mounting.
- 5-year limited warranty.

* Formula-1 contributes more than just performance: To encourage CB for serious highway communications, we're donating $100 to REACT International for every Formula-1 purchased in 1981. Join REACT. Get involved. Ask your dealer.

CIRCLE 65 ON FREE INFORMATION CARD

SEPTEMBER 1981

www.americanradiohistory.com
Would you pay $20 a month for a highly skilled technician?

Here's your opportunity!

Our exclusive COMPUTECH manual is an organized, easily accessible source of solutions to those frustrating "tough-dog" service problems. Most importantly, this manual is expanded and updated each month to keep you in step with the rapidly changing television industry.

COMPUTECH can save hours of frustrating and unprofitable diagnostic time!

- approximately 6500 symptoms and solutions to "tough-dog" problems
- indexed numerically by SAMS number
- symptoms listed alphabetically for faster access
- monthly updating provided
- contains step-by-step procedures to locate the most difficult problems
- standardizes your trouble shooting techniques
- excellent training aid
- saves you time and guesswork

Over the past two years "COMPUTECH" has combined hundreds of hours of experience by professional technicians with the unique advantage of a computer to produce an attractive, easy to read, 8 1/2"x11" binder that contains the type of information needed to make TV servicing faster, easier, and more profitable.

COMPUTECH — AT TODAY'S PRICES... YOU CAN'T AFFORD NOT TO!

Call us direct (801) 277-2655 or mail this coupon today.

4685 Holladay Blvd.
Salt Lake City, Utah 84117

Due to the importance of its monthly updating, COMPUTECH can only be obtained on a subscription basis at $240 a year. Enclosed is _____ check _____ money order or _____ C.O.D. requested.

Name
Service Company
Address
City, State, Zip

RADIO-ELECTRONICS

COMPUTECH

An Industry 1st!

COMPUTECH ASSISTED TELEVISION REPAIR SYSTEM

CIRCLE 62 ON FREE INFORMATION CARD

CIRCLE 135 ON FREE INFORMATION CARD

This is a book of exercises in computer use for high school and college students, as well as for self-learners of any age. The 90 problems presented for computer solution cover such areas as arithmetic, algebra, geometry, trigonometry, number theory, probability, statistics, calculus, science, and general problems. The student is also given an opportunity to try his or her hand at three of the famous unsolved problems in mathematics.

There are no answers to the problems given in the Student Edition; those are to be found in the Teacher's Edition. Those who want to take up the challenge this volume offers on their own will have to obtain both editions.

CIRCLE 136 ON FREE INFORMATION CARD

ALL ABOUT TELEPHONES, by Van Waterford. TAB Books, Blue Ridge Summit, PA 22734. 100pp. 7 1/2" x 9 7/8 in. Softcover $4.95.

It is now possible for you to own your own telephone system, rather than rent the equipment from the telephone company. After one chapter briefly relating the history of the telephone, and another on how it works, this book tells what kind of private telephone systems exist, how they work, and the problems each kind, and what legally you may and may not do with them. You'll also learn what regulations apply to the telephone company and the manufacturers of private telephone systems.

The author describes an astonishing variety of new telephones and telephonic devices, including the picturephone, the electronic telephone, the speaker phone, and cordless telephones. There's also a chapter on telephone security devices, such as voice-scramblers, wire-tap debuggers, and the voice stress analyser system. There are two appendices: I. Glossary, and II. List of Suppliers. The book is well filled with diagrams and the material is presented crisply and clearly.

CIRCLE 137 ON FREE INFORMATION CARD

MORSE, MARCONI, AND YOU: UNDERSTANDING AND BUILDING TELEGRAPH, TELEPHONE AND RADIO SETS, by Irwin Math. Charles Scribner's Sons, 597 Fifth Avenue, New York, NY 10017. 79pp. 7 1/2"x 9 1/2 in. Hardcover. $5.95.

For young hobbists, this little book explains the basic principles of electricity clearly and shows the experimenter how to build working telegraph sets, telephones, and radios using the same materials that the great inventors of those devices used: wood, tin cans, and bell wire. Following clearly put directions, the experimenter will not only be able to build devices that work, but will learn in the process exactly why they work as they do. The few components that will have to be purchased can be bought cheaply.

Each construction program leads inevitably to another, slightly more complicated one. When the experimenter has done with the projects offered here, he or she will have a solid foundation in electronics as well as skill in a fascinating and constructive hobby.

CIRCLE 138 ON FREE INFORMATION CARD

THE BUGBOOK IV: MICROCOMPUTER INTERFACING USING THE 8255 PPI CHIP WITH EXPERIMENTS, by Dr. Paul Goldborough. Howard W. Sams & Co., Inc., 4300 West 62nd St., Indianapolis, IN 46265. 240pp. 5 1/2" x 8 1/2 in. Softcover $8.50.

This book details the major microcomputer input/output techniques and their implementation with the 8255 Programmable Peripheral Interface (PPI) IC. When the techniques are mastered, the same principles can be applied to other PPI IC's. The full range of operation modes is detailed, including data transfer process, flag testing, bit testing, etc.

Experiments are presented with each chapter, and range from the simple input and output ports through the more complicated master-slave microprocessor configurations.

CIRCLE 139 ON FREE INFORMATION CARD

AUDIO AND VIDEO INTERFERENCE CURES, by Larry Kahaner, Hayden Bank Company, Inc., 50 Essex Street, Rochelle Park, NJ 07662. 128pp. 5 1/2" x 8 1/2 in. Softcover $5.50.

This book provides all the information needed to deal with noise sources of all types. There are step-by-step instructions on how to find the source of interference and put it under control. Also included are schematic wiring diagrams of filters for all types of receivers and transmitters. They include simple filter diagrams to eliminate radio and TV interference caused by noisy home appliances, neon lights, and motors. For those who have an especially difficult interference problem, the final chapter supplies a list of outside resources that can be helpful.

CIRCLE 140 ON FREE INFORMATION CARD

American Cancer Society
2,000,000 people fighting cancer.
tional, there's enough dead time between digits to allow multiplexing gas-discharge displays.

We've breadboarded a little circuit (Fig. 1) to exercise these IC's. The circuit simply displays what is entered on the keyboard. Each time an entry is made, the display shifts one digit to the right and the new entry appears in the left-most display digit. The circuit accepts keyboard data entry, encodes it to binary, and counts digits (we cheated, the circuit accepts 8 key strokes but we only drive 6 digits; so after the 6th digit, two more key strokes are required before we reload the first digit). The circuit provides the data to the display controller, limits current to the segments, and uses 2N2222's as digit drivers. We used a 7805 (or a LM340-T5.0) to regulate the voltage at 5.0 DC from our 9-volt battery supply.

The Digitran 4 x 4 16-key keyboard provides a path from the row-output pin (there are four) to the column-output pin (of which there are also four) when a key at any row-column intersection is pressed. This data is encoded by the 74C922 into a 4-bit binary code. The data available strobe is used three times: first, via an inverter, to enable the output of the 74C922; second, through a second inverter, to advance the count of the three least-significant stages of 4024-type 7-stage binary counter; and third, without any inverter, to drive the write enable control of the 74C912. The 74C912 drives 6 digits of a 6-digit LED counter through 2N2222 drivers. Segment currents are limited through 1000-ohm resistors.

Note that the 4024 Q6 outputs are inverted before driving the 74C912 address lines. If they were not inverted, digit would load from right to left. Five sections of a 4069-type hex inverter are used.

MICROWAVE DEVICES
continued from page 64

21-c). If we plot the power (i.e., product of Figs. 21-a and 21-c), then we will obtain the power-vs-time waveform of Fig. 21-d. Notice that, for substantial periods during the cyclic excursion, the power is negative—meaning that the device is oscillating and will deliver energy to the external tank circuit. There is only a brief period in which the terminal current and terminal voltage are both positive and that will limit the efficiency of the BARITT oscillator.

The BARITT device is a low-power microwave energy source, and is considered superior to the Gunn device for many applications.
NEW LIT

For more details, use free information card inside back cover

MICROPROCESSOR PRODUCT GUIDE, No. MPG-1800C, contains 60 pages describing all the elements needed to build a microprocessor system. It covers the complete line of IC's, support systems, and accessories that make up the COSMAC microprocessor family. The guide describes the CDP1802 microprocessor and contains data for a wide variety of RAM's, ROM's, I/O and interfacing devices. Basic descriptions, characteristics, and functional and terminal diagrams for other general-purpose memory IC's are also presented. Other features of the guide are a cross-reference guide listing RCA types as equivalents to other manufacturer's devices and an index to the line of manuals and application notes on the COSMAC system.—RCA Solid State Div., Box 350, Princeton, N.J.

CIRCLE 141 ON FREE INFORMATION CARD

HIGH-VOLTAGE COMPONENTS GUIDE, is a six page two-color brochure describing components used as replacements in color television sets. It is designed to provide comprehensive product data to electronic parts distributors, service dealers, and technicians. It contains sections on high-voltage multipliers including a variety of tripler and quadrapler devices, high-voltage rectifiers and resistive divider/focus assemblies. Circuit diagrams and package outlines are also given. Solid-state devices are cross referenced in the brochure to 615 industry part numbers listed in alphanumeric order.—Sylvania/Philips Electronic Components, 1025 Westminster Dr., William, Pa. 17701

CIRCLE 142 ON FREE INFORMATION CARD

WATTMETER/ANALYZER BROCHURE, No. PA4381-1179, is a full-color 4-page guide introducing a series of multipurpose digital RF directional wattmeters. The microprocessor-based model 4381 RF Power Analyzer offers measurement of several signal parameters in addition to bi-directional power from 0.5 to 2300 MHz and 0.1 to 10,000 watts. The brochure features application of VSWR, return loss, % modulation, dBm and peak envelop power functions. Also described are a delta display and min/max memory on any of the displayed quantities. Full specifications are included.—Bird Electronic Corp., 30303 Aurora Rd., Cleveland, OH 44139.

CIRCLE 143 ON FREE INFORMATION CARD

ELECTRONIC SURPLUS CATALOG, contains 40 pages of brand-name merchandise at bargain prices. Items such as AM/FM stereo car radios, AM tape-deck stereos, Hi-Fi speaker-system kits, car alarms, telephones, microwave timer boards, TV games, and computers are all offered at low prices. Other electronic items such as relays, batteries, capacitors, heat sinks, IC's, semiconductors, switches, and many more, are also included in the catalog.—B & F Enterprises, 119 Foster St., Peabody, MA 01960.

CIRCLE 144 ON FREE INFORMATION CARD

PRECISION TOOL CATALOG, No. FL-979, is a 24-page compact flier of tools designed for electronics, telecommunications, and aerospace for use in maintenance and production departments. The flier features over 500 various spring adjusters, tension and thickness gauges, burnishers, tool kits, and precision hand tools. It also shows a line of wire wrapping and unwrapping tools, and contact connector insertion and removal tools.

Included is a price list of the products.—Jonald Industries Corp., Precision Tools Dept., 134 Marbiedale Rd., Tuckahoe, NY 10707.

CIRCLE 145 ON FREE INFORMATION CARD

MAGNETIC TAPES BOOKLET, Sony Magnetic Tapes, is a four-color 11-page brochure explaining different tape formulations and their recommended applications. It offers information on how the raw materials are selected and combined to create a variety of tape formulations and also explains how the tape, cassettes, reel transport mechanisms, and winding tension are prepared for final assembly. There are separate sections on each of the six types of tape which include cassettes, open reel, 8-track, microcassettes, and videocassette cassettes. The booklet also contains information for each tape, including length, bias and equalization settings, and frequency response. A selection chart is also offered.—Sony Magnetic Tape Div., Sony Industries, 9 W. 57th St., New York, NY 10019.

CIRCLE 146 ON FREE INFORMATION CARD

SWITCH BROCHURE, Tini DW Multi-Switch Switches, NPB-349, is a full-color 8-page brochure describing those subminiature switches with 10 and 15 mm centers. The brochure covers the basic design features of the switch, plus the switching functions, material specifications, and terminations. Special features such as available pushbuttons and legends are also covered. These nonilluminated switches are used in electronic and digital computers, analyzers, transmitters and receivers, and intercoms, and are available in up to 18 stations in a single row. Ordering information is included.—Switchcraft, Inc., 5555 N. Eton Ave., Chicago, IL 60630.

CIRCLE 147 ON FREE INFORMATION CARD

CONNECTOR CATALOG, Adapta-Con Catalog ACPB-6, 18 pages, offers information on UBS and UBC series crimp contacts. The catalog contains 10 photographs and 30 drawings of the connectors and features standard information for material and finishes, mechanical features and electrical data. It also includes instructions on how to order unshrouded headers, which electrically connect rigid PC boards with UBC crimp housing or ribbon-cable socket connectors.—ITT Cannon Electric, 666 E. Dyer Rd., Santa Ana, CA 92702.

CIRCLE 148 ON FREE INFORMATION CARD

COMPONENTS AND TEST EQUIPMENT, Catalog No. 21, is a 30-page, 2-color catalog offering products from leading manufacturers. Included is a wide selection of IC's and transistors, along with a listing of their ECG equivalents. Other products offered are capacitors, tape heads, test cassettes, soldering equipment, wire and cable, lamps and fuses, LED's and crystals, power supplies, and test equipment that includes oscilloscopes, signal generators, and DMM's. Technical specifications for the products are provided along with pricing and ordering information.—Ora Electronics, 7241 Canby Ave., Reseda, CA 91335.

CIRCLE 149 ON FREE INFORMATION CARD

UHF & VHF RADIO MODULES CATALOG is a pocket-sized guide containing 24 pages of kits and assembled units for transmitting and receiving converters, FM receivers, receiver preamps, etc.

www.americanradiohistory.com
SPECIAL REPRINT
BUILD A BACKYARD SATELLITE TV RECEIVER

Third Printing: Sold Out!
Fourth Printing—Just Off Press!
Reprints Now Available!

Don’t miss out again!

Send away today for your 36-page booklet containing a complete reprint of all seven articles in the series on Backyard Satellite TV Receivers by Robert B. Cooper Jr.

This all-inclusive report gives you all the data you need to build your own Backyard Satellite TV Receiver.

- TELLS ALL ABOUT domestic satellite communications, with full details on how you can pull those elusive TV signals from space.
- LEGAL REQUIREMENTS, technical specifications, and how you, the home constructor, can meet them. Find out what mechanical and electronics skills you need.
- RECEIVER CHARACTERISTICS, technical details and specifications, along with examples of actual receivers built at comparatively low cost.
- ANTENNA DESIGN... and exactly how you can build a spherical antenna, while keeping total earth-station cost for the complete system under $1,000.
- THE FRONT END is critical when you build your own system. We help you explore several different approaches to making one that will work for you.
- RECEIVER-SYSTEM hardware, and how it goes together to bring you direct-from-satellite TV reception in your own home.

To order your copy: Complete coupon and enclose it with your check or money order for $6.00. We will ship your reprint, postpaid in U.S. and Canada, within 6 weeks of receipt of your order. All others add $4.00 for postage. New York State residents must add 48c sales tax.

Radio-Electronics
Satellite TV Reprints
45 East 17th Street
New York, N.Y. 10003

I want _______ reprints @ $6.00 each, postpaid.
I have enclosed $________. N.Y. State residents must add 48¢ sales tax.

RE9 Please print

(Name)

(Street address)

(City) (State) (Zip)
Finish up this half of the board by installing the IC’s. Orient them as shown in Fig. 11. Install the MC1488’s first, at IC201, IC202, and IC203. Then install a 74LS00 at IC204, and a 74LS90 at IC205.

Take a breather at this point; then carefully check your work. Correct any mistakes you find before going any farther.

Now for the rest of the board. Start with the voltage regulator IC’s. Install an LM317T at IC207 with the tab to the right. Then mount a 7805 (LM340T-5) at IC206. Note that this IC mounts flat against the board, and that no heatsink is required. Use 4-40 hardware to fasten it in place before you solder the leads.

Next mount the rest of the capacitors. Use extra care with them because there are quite a few, and they can wind up in the wrong places. Start by installing a 1000-μF electrolytic at C216. The ‘+’ lead goes nearest D216. Then install two 0.01-μF capacitors at C217 and C218. Move up and install a 10-μF electrolytic at C228, and a 0.1-μF disc beside it at C226. Install another 0.1-μF capacitor at C229. Then move up a bit and install a 0.01-μF capacitor at C227. After that install a 1-μF electrolytic at C225, just above. Note that its positive side is to the right. Three 0.01-μF disc capacitors come next. Install one at C224, another at C222, and the remaining one at C220. Continue with two 0.1-μF capacitors; one goes at C221 and the other at C223. Finish up by installing a 15-pF unit at C219.

Now, more diodes. First, there are seven 1N4002 rectifiers for the power supply. Install them as indicated at D210 through D216. Then install two more 1N4002’s at D219 and D220. Be careful not to install D219 in D217’s place! Mount the two IN5231 Zeners as indicated at D217 and D218.

The resistors come next. Install 1K resistors at R213 and R214. Next, install 470-ohm resistors at R216 and R215. Move down the board a bit and install 2.7K resistors at R217 and R218. Then install a 100K unit at R219. Continue by installing a 47-ohm, 2-watt resistor at R224. Note that this must be a carbon composition type, and not wire-wound. If you use a wire-wound type the RF output will be erratic. Below R224 install a 4.7K resistor at R221, a 1K resistor at R222, and a 10-ohm resistor at R225. Finish up by installing a 680-ohm resistor at R223 near the LM317-T, and a 470-ohm one at R220.

The last component to be installed is a transistor. Install a 2N2219 at Q207 and slip a small TO-5 heatsink over it. Carefully check your work. Make sure that the diode and electrolytic capacitor polarities are right, and correct any errors you find. The assembled VCO board is shown in Fig. 12.

You’ve just completed the Program-2’s most complex board. In the next part we’ll finish building the unit and put it to work.

THE NEW

performers

INJECT-A-PULSE®... CATCH-A-PULSE®

THE DYNAMIC DUO FOR CMOS, MOS, TTL, DTL & μP TESTING.

These neat shirt-pocket logic probes can quickly and accurately analyze or troubleshoot the static and dynamic conditions of logic circuitry. The Model 215 INJECT-A-PULSE® probe provides a switchless 10 Nsec. pulse with pulse stretching to 50 Msec. Its high input impedance eliminates loading. Frequency response is better than 500MHz. The proper logic threshold is automatically selected and circuit open detection is provided.

The Model 205 CATCH-A-PULSE® offers a lot of "automatics". Like single pulse or pulse train logic level sensing... current limiting... programmed output voltage level... and input protection ± 70 VDC.

Probes are furnished complete with a detachable 6 ft. coiled cord with mini-alligator clips, instruction manual and storage case. Kits include a high voltage adapter and coiled cord with microhooks. The COMBO KIT offers the most compact, automatic and economical logic probe team on the market.

For a free, no-obligation demonstration, contact your Triplet Distribution, Mod-Center or Representative.

Triplett performance... a tough act to follow

Bluffton, Ohio 45817
Telephone (419) 358-5015
TWX: 810-490-2400

Take stock in America.
NEW! 1981 2ND
"MONEY SAVER" CATALOG

TTL -- STANDARD, SCHOTTKY AND LOW POWER SCHOTTKY

Zilog

CPU 80188 27 MHz 16-Bit
CPU 80198 27 MHz 16-Bit
CPU 80286 16-Bit
CPU 80386 16-Bit
CPU 80486 16-Bit

COMPUTER SUPPORT CENTER

120-CPU 2.5 MHz $105
286-CPU 2.5 MHz $115
386-PIC 2.5 MHz $145
586-PIC 2.5 MHz $205
PS/2 75 2.5 MHz $115
PS/2 90 2.5 MHz $145
PS/2 100 2.5 MHz $215

PMOS MEMORY

MOS STATIC RAM's

PART NO.

2101-25 8K x 1 25ns 16 PIN $1.75
2102-25 8K x 1 25ns 16 PIN $2.50
P2112-35 (256 x 4) 25ns 20 PIN $3.50
2114-45 4K x 16 45ns 20 PIN $3.50
2174 4K x 1 50ns $1.50
2184 4K x 1 45ns $1.50

UART's

A9S-1932A
40 KHz Single Supply 5V

IK CMOS RAM

5101 1K x 8 (5V) Low Power 2.98
4K CMOS RAM

P6504 4K (4k x 1) 45ns 18 PIN 15mV 5.84
P6514 4K (4k x 1) 45ns 18 PIN 15mV 5.84

SHIFT REGISTERS

1403A (TO-5)
1404A (TO-5)
3343PCF 64 bit
3343PCF 60 bit
ECL RAM

1040A/D/C/DR203
256 x 1 bit fully decoupled 15ns 16 pin

CLOCK CHIP

MSM5622RG
Microprocessor Real-Time Clock/Calendar 12.57

DUAL-IN-LINE LOW PROFILE IC 5000 SERIES

200N 14 14-pin Single 15ns 2.38
201N 14 14-pin Single 15ns 2.38
201B 16 16-pin Single 15ns 2.38
202N 16 16-pin Single 15ns 2.38
251N 14 14-pin Single 15ns 2.38
252N 16 16-pin Single 15ns 2.38
252B 16 16-pin Single 15ns 2.38
302N 16 16-pin Single 15ns 2.38

LOWEST PRICE ANYWHERE FOR THE HIGHEST QUALITY, UNBEATABLE COMBINATION

OPTOELECTRONICS

L.E.D. LAMPS

LED207 1 3 mm Red
LED208 1 3 mm Yellow
LED309 1 3 mm Green

TOUCH SENSOR 414U7-1 11.5 mm Square

TIMERS

TJ100 1 10 nF

ISOLATORS

LZ-1 Optoisolator 150V 1.29
Opto Coupler 150V 1.29
Opto Coupler 32V 1.29

DIODES & RECTIFIERS

1 AMP RECTIFIERS

2N5401 4N35C, 2N3607 4N3637 2N3637-3 (2 watt) 14
2N5403 4N35C, 2N3607 4N3637 2N3637-3 (2 watt) 14
2N5407 4N35C, 2N3607 4N3637-3 (2 watt) 14
3 AMP RECTIFIERS

IN4001 16 IN4007, IN4007 16
IN4007 16 IN4007, IN4007 16
IN4001 4N4004, 4N4005, 4N4005-6 (4 watt) 14

PLASTIC POWER TRANSISTORS

2N3904 3904C 59, 3904B, 3904C 59
2N3904 3904C 59, 3904B, 3904C 59
2N3904 3904C 59, 3904B, 3904C 59

PLASTIC POWER TRANSISTORS

2N3904 3904C 59, 3904B, 3904C 59
2N3904 3904C 59, 3904B, 3904C 59
2N3904 3904C 59, 3904B, 3904C 59

SINGLE BOARD COMPUTERS

Motorola Am 65

16-bit microcomputer system with full sized keyboard. Alphanumeric 20 character display and alphanumeric 20 column bar graph printer. Price $455.00

Spartan syn 5

Powerful 8-bit microcomputer 6 digit LED display. Single 5V power supply. Price: $29.95

"ATTENTION!" 1981 IC MASTER

Bigger and better than ever before.
150 manufacturers.
3000 pages of data and technical information.
Eight manufacturer selection guides.
One hundred IC devices listed with changes from the 1980 edition.
New investment system and custom IC selection.
Four full quarterly updates.

"If you work with electronics, you can't do without it"

Special $69.95

Bi-Fet OP AMPS

Bi-Fet OP AMPS

Bi-Fet (Low Power)

Bi-Fet (Low Power)

Metal Can, Small Signal Transistors

Metal Can, Small Signal Transistors

Mail Orders Should Be Sent To:
U.S.A. P.O. Box 1035 Framingham, Massachusetts 01701
Telephone Orders & Inquiries: (617) 879-0077
Canada & Foreign: 5651 Ferrier St., Montreal, Quebec H9P 2K5, Canada
Foreign customers please remit payment on an international bank draft or international money order payable in U.S. dollars.
Prices are in U.S. dollars. Minimum Order: $10.00
Add $3.00 to doves' postage & Handling

VISA and Master Card Accepted

Circle 37 on Free Information Card

September 1981

www.americanradiohistory.com
MUSICAL HORN
continued from page 58
switch should be a normally-open type. If you use a speaker rated at less than 10 watts, see Table 1 for the series resistor to use. If you're not sure of the speaker rating, use a 39-ohm, 2-watt resistor to be safe. Bear in mind that driving a 10-watt horn speaker with no resistor provides the loudest, most directional sound.

Be particularly careful about the power connections. Use fairly heavy leads, and make sure that the positive side of the power source is connected to the positive-input lead. The power source should be 12 volts, capable of providing over 1 ampere of current. That means a 12-volt car battery or heavy-duty power supply!

Troubleshooting
If you don't get a melody, disconnect the board from the power source and remove the song PROM, IC9. Now re-

apply power, press S1, and you should hear a steady tone. If not, check your connections and the polarities of the diodes and capacitors, make sure the correct components are in the correct locations, and make sure that Q1 is inserted correctly. Next verify the orientation of all IC's—and check for bent-under pins. Defective IC's are rare, but they may be checked most easily by substitution, if no other problems are found.

Packaging
This unit is intended to be used in a vehicle, drawing power from the vehicle battery. No power is drawn except when switch S1 is held down. The unit should be installed in a plastic case under your dashboard (not in the engine compartment) with the potentiometers, speaker jack and switch on the cover, and a power supply jack on the side, for example. Use a 3-amp fuse in the power leads, and use heavy wire for the leads and speaker connections. Mount the speaker somehow behind the grill.

Send 15c sample or $1.25 for information and type on other HAL-TRONIX products. To order by phone: 313-331-7783.
HAL-TRONIX
P.O. Box 1101
Southgate, MI 48195

CIRCLE 64 ON FREE INFORMATION CARD

FREE KIT Catalog
FUNCTION GENERATOR KIT $59.95
Write or phone for FREE CATALOG.
Phone 415-447-3433
AVERAGE 1 MINUTE SATURDAY CALL IS 212.

DAGE SCIENTIFIC INSTRUMENTS
BOX 104 LIVERMORE, C.A. 94550

TRI-S-80 DISCOUNT
BUY DIRECT
1-800-841-0860 TOLL FREE
MICRO MANAGEMENT SYSTEMS INC.
DEPT. NO. 15
Downtown Plaza Shopping Center
119 Expressway Ave. S.W.
Coral, Georgia 31728
912-777-1120 Go. Phone No.
Write For Free Catalog

COMPUTER MARKET CENTER

COMPUTER MARKET CENTER ADVERTISING RATES
1" by 1 column (1 5/8") $55.00. 1 1/2" by 1 column (1 5/8") $82.50. 2" by 1 column (1 5/8") $110.00. All ads must be prepaid. Send order and remittances to Computer Market Center, Radio-Electronics Magazine, 200 Park Avenue South, New York, New York, 10003. Address telephone inquiries to 212-777-6400. Frequency rates are available.

TEXAS

PDB Options
CH8-E (CTL) $720
DXE8 (CTL) $400
DKE8 (CTL) $500
DKE9A $500
H948-8A $550
H960-2A $550
H967-AB $1,050
H963-C $2,000
KAB-E $450
KCB-2A $652

Federated
Consultants
1215 South Enslow
Dallas, TX 75215
214-428-3000 (Brier)
Master Charge & Visa Accepted

CALIFORNIA

FREE! INFO-PAK for small computer users mailed twice a year. We sell and trade all kinds of SMALL COMPUTER SOFTWARE from S-100 to TRS-80 SOFTWARE REVIEW, 704 Solano Ave., Albany, CA 94706 (415) 527-7730.

DYNAMIC INFORMATION TECHNOLOGIES LTD., P.O. BOX 553 STN A, SAINT JOHN, N.B., CANADA E2L 4 R9 (506) 642-4260 TERMINALS, PRINTERS, MICROCOMPUTERS SOFTWARE.

SUPPORT MARCH OF DIMES

BUY THIS SPACE
$55.00 puts your ad in this space in front of 197,553 active Radio-Electronics readers. To place your ad write Computer Market Center, Radio-Electronics, 200 Park Avenue South, New York, New York 10003 or call 212-777-6400.

RETAILERS
An ad for your computer store in this space in Radio-Electronics COMPUTER MARKET CENTER puts you in touch with our computer audience. They use microcomputer equipment for both business and hobby interests. For further details call 212-777-6400.

Guns have a small delicate tip suitable for working around IC's and other tiny components. What you really need is a soldering iron with two temperature settings: one for regular use; the other an "idle" setting that keeps the iron warm but won't allow it to overheat. No doubt there are a number of those on the market, but half the fun of doing it yourself is not to spend all that money.

The circuit shown in Fig. 4 changes any AC soldering iron into a two-setting, switch-selectable soldering "tool." All of the parts are available from your local electronics dealer, or you just may have them already in your junk-box. There's nothing really critical about the circuit or the components: a cord assembly to bring 117 volts AC in, a diode that rectifies the 117 volts AC into pulsating DC at a lower effective voltage, a chassis mount AC receptacle to plug the soldering iron into, and a switch. With S1 open as shown in the schematic, pulsating DC is sent to the soldering iron, keeping it warm but not allowing it to reach full operating temperature.

When S1 is closed, the diode is by-passed and full-line voltage reaches the soldering iron, which heats up to full temperature and is ready to use in a matter of seconds. You might want to get fancy and use a leaf-switch for S1. When the iron is lying across it, the diode is in circuit, and when the iron is lifted, the diode is bypassed. No matter how simple or fancy you make that circuit, you will find it helpful in your work or hobby.

Hints, kinks, and tips are all great and useful, but in closing, I'll share a secret with you—one which has been of immeasurable assistance to me for years: KISS (Keep It Simple, Stupid)!

Don't try to reinvent the wheel; the best ideas are the simple ones.

BUSINESS OPPORTUNITIES

MECHANICALLY Inclined Individuals desiring ownership of Small Electronics Manufacturing Business—without Investment. Write BUSINESS ES, 92-A, Brighton 11th, Brooklyn, NY 11235

SUCCESSFUL TV stereo specialties sales/service store. $200,000/year income, will consider trade. (209) 442-1816. 3134 Palm, Fresno, CA 93704

HIGHLY PROFITABLE ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Postcard will do. Barta-RE-O, Box 248, Walnut Creek, CA 94597.

$700 per month earnings possible filling out income tax forms at home or tax office during tax season. We show you how. Simple, quickly learned. Details mailed free. No salesmen. Hurry. Big demand. FEDERATED TAX, 2015 Montrose, Chicago, IL 60618.

PROJECTION TV...Make $200.00+ per evening assembling projectors...Easy...Re-Results equal to $2,500 projectors...Your total cost less than $15.00...Plans, lens & dealer's information $14.00...Illustrated Information free...MACROCOMGAX, Washington Crossing, PA 18997. Credit card orders 24 hours. (215) 796-2880

NATIONWIDE listings of major companies actively employing engineers and technicians. Free details. AVI, Box 264R, Buffalo, NY 14215

LCD pen watch USS10.00/pc airfreighted, discounts given dealers, reply: RELIANT (ENGINEERING) CO., P.O. Box 33610, Sheungwag, Hong Kong.

AFTV Reassembly...specialists in CTV and computer monitors!

Video monitors - color & B/W * TV Cameras, kits, parts & plans * Video-to-RF modulators * Free catalog, Phone or write. (402) 361-3171

13-RE Broadway Dakota City, NE. 68731

CB RADIO

GET more CB channels and range! Frequency expanders, boosters, speech processors, interference filters, VOX, how-to books, plans. Catalog $2. CB CITY, Box 31500RE, Phoenix, AZ 85046

American Red Cross

Together, we can change things.

A Public Service of This Magazine & The Advertising Council

HOBBY ROBOTICS' Shoppers Mart

For the SERIOUS Hobbyist

Complete R2-2 Manual! Everything you need to build your own robot shown, detailed! Build from taped audio with Hobby Robotics' R2-2. High quality parts, simple, uncluttered instructions. Send $2.50, stamped, self-addressed return envelope. Add $1.00 for postage and handling. Receive hobby culture, hobby, hobbyists, hobby-related items! Only $3.50. Get your's now!

HOBBY ROBOTICS

800 N. Township Highway Norristown, PA 19403

Price: $3.50, plus postage and handling.

HOBBY ROBOTICS, Parts Supplier Directory

Check-out all the latest hobby robotics and associated items. 60 pages, 54 listings, 300 items. Includes parts prices, contact information, etc. $3.50, plus postage and handling.

HOBBY ROBOTICS' ROBOT BASE

Ready to ship! ONLY $49.50 includes shipping.

HOBBY ROBOTICS' ROBOT BASE

Ready to ship! ONLY $49.50 includes shipping.

ADAMS

www.americanradiohistory.com
might be the case if bipolar transistors were used), and this configuration serves to split the power dissipation between the transistors and increases the transconductance (gain).

The power supplies for this unit are somewhat unusual. A separate supply is used for the power amplifier. This 25-volt supply (V_A) is formed by D3, D4, and C29 in a simple full-wave rectified unregulated supply. Since this voltage may drop considerably when driving a speaker at high levels, separate rectifiers and filter capacitors are provided for the main supply (V_{CC}). This supply is regulated by IC12 to $+18$ volts.

It was found that using split supplies for the op-amps introduced excessive noise—any variation in the positive supply appeared at the outputs of the op-amps along with the signal. To eliminate this problem, an artificial "AC ground" was created that closely tracks V_{CC}. That artificial AC-ground serves two purposes. First, it is used as the ground reference for the input signal. Second, by connecting it to the "un-used" input of the op-amps, it cancels the variations originally induced by V_{CC}.

The AC ground is generated by a resistor divider-network, R73 and R74, and applied to op-amp IC9-b. The ground is coupled closely to V_{CC} by capacitor C31. Integrated circuit IC9 is a 5532 dual op-amp, used because of its high drive-current and its high slew-rate; it reduces voltage variations much better than a voltage-regulator IC.

You should note there is a possibility for confusing the input and output grounds. The input should be grounded to "AC Ground." This provides minimum noise and is most consistent with the rest of the circuit. If the output is used to drive another amplifier or other electronic device, care must be taken because AC ground is the output of an op-amp, and only about 30 mA can be drawn from this supply.

Because of this situation, direct connection to a speaker is made to the negative supply, V_{EE}, which is 10 volts below AC ground. The loudspeaker ground must remain isolated from the AC ground or the supply will short out! (This will cause no damage, but will result in silence. The 5532 is fully protected against such abuse.)

The last circuit we will discuss is the one for clocking the bucket brigades. The NE556-1 (IC10) is a dual 555 timer configured in the astable (oscillator) mode. The clock signal for the main delay-line (IC3, IC4, and IC5) is produced by IC10-a and the clock signal for the feedback delay-line (IC8) is produced by IC10-b. The frequencies are determined by the values of capacitor C32 for IC10-a and C33 for IC10-b, and by the current available to charge them.

Instead of using resistors to develop charge-current, transistors Q7 and Q8 provide the currents directly. These currents are adjusted by potentiometers R64 (feedback delay) and R66 (delay). The outputs of the 556 are applied to IC11, a dual-D flip flop. The flip-flop converts the pulse outputs from the 556 to square waves of one-half the original frequency. The availability of both Q and Q outputs provides the out-of-phase square wave clock-signals needed for the bucket-brigade devices.

Now that you know how the Analog Reverberation Unit works, you probably want to know how to build one. We'll show you when we continue this article next month.
100 W CLASS A POWER AMP KIT

Dynamic Bias Class "A" circuit design makes this unit unique in its class. Crystal in, 108 watts power output will satisfy the most picky fans. A perfect combination with the TA-1020 low T.I.M. stereo preamp.

Specifications:
- Output power: 100W RMS into 8 ohm
- 12W RMS into 4 ohm
- Frequency response: 100 Hz - 10000 Hz
- B.S.P. less than 1.0 dB
- S/N better than 80dB
- Input sensitivity: 1V max
- Power supply: ±15V lasting 15 amp

One channel

TA-1000 KIT
$31.95
Power transformer
$18.00 each

REGULATED VARIABLE D.C. POWER SUPPLY KIT

Uses UA723 C.I.C and 2N3055 transistor as regulator. Output voltages can be adjusted from 0-30V at an internal resistance of less than 0.005 ohm, ripple and noise less than 1% with built-in 2.5W regulated output. This unit can work with any amplifier from 1W to 20W! It includes 70 pcs driver transistors, 38 pcs matched 4-color LED, all other electronic components, card board and front panel.

MARK IV KIT
$31.50

$59.50 per kit

WHISTLE ACTIVATED SWITCH BOARD

All boards are pre-assembled and tested. You will like its TE1 condenser microphone from a distance of at least 30 feet away. The switch on off button can be easily adjusted, just by turning the switch on off, hit the button and off again. This is ideal for remote control toys, electrical appliances such as lights, pots, fans, radio or other projects. Unit works on 9V D.C.

Model 866
$4.50 each

SUB MINI SIZE FET CONDENSER MICROPHONE

- Sensitivity: 65dB
- F.C. Response: 50-18,000 Hz
- Output Impedance: 1K ohm max
- Polar Pattern: Omni directional
- Power Supply: 1.5V 200V D.C.
- Sound Pressure Level: Max: 120dB
- EMARK: $2.50 ea or 2 for $4.90

NEW MARK III

- 9 Steps 4 Colors

LED VU

Stereo level indicator kit with arc-shape display panel. This Mark III LED level indicator is a new design. Preassembled kit with an arc-shape 4 colors LED display (change color from red, yellow, green and blue while level is received). The power range is very large, from ±3dB to ±6dB. The Mark III indicator is applicable to 1 watt - 200 watts amplifier operating voltage is 3V - 9V DC at max 400 MA. The circuit uses 10 LEDs per channel. It is very easy to connect to the amplifier. Just hook up with the speaker output.

IN KIT FORM $11.50

2 WATT AUDIO AMP

Pre-assembled units. All you need is to hook up the speakers. The complete Control Supply voltage from 6V - 15V D.C. measures only 2" x 3/4", making it good for portable or discrete applications. Comes with hook up data.

BUY 2 FOR $4.99

MARK IV 15 STEPS LED POWER LEVEL INDICATOR KIT

This new stereo level indicator kit consists of 36 4-color LED (15 per channel) to indicate the sound level output of your amplifier from -36dB to 0dB. Comes with a well-designed silk screened printed panel and has a selection switch which allows you to allow fading or gradual output indicating. Power supply is 6 - 12V D.C. with 1W on board input sensitivity controls. This unit can work with any amplifier from 1W to 20W! It includes 70 pcs driver transistors, 38 pcs matched 4-color LED, all other electronic components, PC board and front panel.

MARK IV KIT $31.50

BATTERY POWERED FLUORESCENT LANTERN

MODEL 888 R

- FEATURES:
 - Circuitry: designed for operation by high efficient, high power silicon transistor which enables illumination in a standard room even when the battery supply drops to a certain low voltage:
 - 9" 6W cool/daylight/miniature fluorescent tube:
 - 8 x 1.5V UM-1 (size D) dry cell battery:
 - Easy sliding door for changing batteries:
 - Stainless reflector with wide angle increasing illumination of the lantern.

$10.50 EA

30W STEREO HYBRID AMPLIFIER KIT

Kit includes 1 PCB, RAYCO STX-034 stereo power amp, 1 LM-1458 as pre amp, all other electronic parts, PC board, all control parts and special heat sink for hybrid. Power amplifier not included. It produces ultra high power output up to 30W. 30W per channel, yet gives out less than 0.1% total harmonic distortion between 100Hz and 10KHz.

$32.50 per KIT

5W AUDIO AMP KIT

- 2 LM-380 with Volume Control Power Supply 6 - 18V D.C.
- ONLY $5.00 EACH

CUBO CLOCK CASES

All brand new top quality plastic cases, originally designed for Cubo clock. Cases come with top and bottom cover with a detachable front panel. All are finished with LED receipts. This can be used for many projects such as 1LED volt meter, light box, FM counter, etc.

3 ATTRACTIVE COLORS (white, lime green or orange)

BUY 3 FOR ONLY $2.50

TV GAME BOARD

PLAYS 4 GAMES: TENNIS, HOCKEY, HANDBALL AND JAI-ALAI

All boards complete with all parts ready to play. Requires 60 size batteries and a small speaker for sound effects. The boards are supplied from a famous game manufacturer. They will play on all 2.5 standard black and white or color TV sets. Regular price for these games were $30.50 each. OUR PRICE ONLY $5.50 EACH

MULTI-FINS HEAT SINK

Ideal for high power output. Heats preminated for 1 to 3 transistors. Made of aluminum with ten radiating fins.

2 FOR $4.50

PROFESSIONAL FM WIRELESS MICROPHONE

TEC model WEM-16 is a factory assembled FM wireless microphone powered by an AA size battery. Transmits in the range of 88-108MHz with 3 transistors for circuits and an omni-directional electrocondenser. Element built-in plastic body is 61/2" long. With a standard FM radio, you will hear anywhere on a one-acre lot, sound quality was judged very good.

$16.50

FOR 'BOX' BUILDERS

Pre-Drilled PC Board
$17.50

Tooled Coils (Set of 4)
$3.00

Multi Turn Trim Pots (10K ohm)
$2.50

Trimmer Capacitor 0.035 microfarad
$0.80

MC1358
$2.50

RC1458
$1.00

MC185
LM380
$1.80

MC1330
$3.50

LM340T-12
$1.50

NE565
$2.00

We also have transformer, capacitors, set, resistors, set antenna transformer. Please call for price.

L.C.D CLOCK MODULE!

- 0.55" LCD 4 digits display
- X11 timer controlled circuits
- D.C. powered (1.5V battery)
- 12 hr. or 24 hr. display - 24 hr. alarm set - 60 min. countdown timer
- On board dual back lights - Dual time zone display - Stop watch function

NIC1202 (12 hr) ON SALE
NIC2402 (24 hr) $16.00

SANYO UHF VARACTOR TUNER

For UHF Ch 14-15

Tuning voltage: ±15V - 25WPC. Input impedance 75
D.1.F. Band width 7 - 16 MHz. Note figure 11.5 db
Max size 2 1/2" x 1 1/2" x 1 1/2". Supplied in C5V D.C.
Sound 1 F: 58.0 MHz. Video 1 F: 62.5 MHz

All units are brand new from Sanyo.

MODEL 115-B-05A $30.00 EACH
KNAPP ELECTRONIC PARTS

<table>
<thead>
<tr>
<th>Part</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burglar Alarm</td>
<td>$5.95</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td>$0.49</td>
<td></td>
</tr>
<tr>
<td>Signal Meter</td>
<td>$0.99</td>
<td>0-15 V</td>
</tr>
<tr>
<td>Jumbo Leds</td>
<td>$10/$1.00</td>
<td>red diffused</td>
</tr>
<tr>
<td>Dip Tantalum Caps</td>
<td>$0.25</td>
<td></td>
</tr>
<tr>
<td>Pl-259</td>
<td>$0.60</td>
<td></td>
</tr>
<tr>
<td>Push Button Switch</td>
<td>$0.29</td>
<td>red blue black yellow open</td>
</tr>
<tr>
<td>Dipoles</td>
<td>$0.15</td>
<td>10.11.12.13.15.16.18</td>
</tr>
<tr>
<td>BNC Connectors</td>
<td>$0.25</td>
<td>for RG58U or RG590 Crimp on</td>
</tr>
<tr>
<td>Rs232</td>
<td>$0.69</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>$0.25</td>
<td></td>
</tr>
<tr>
<td>Nicad Battery</td>
<td>$0.79</td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td>$5.25</td>
<td></td>
</tr>
<tr>
<td>Buzzer/sonar alert</td>
<td>$0.98</td>
<td></td>
</tr>
<tr>
<td>Low profile dip sockets</td>
<td>$0.99</td>
<td>24 and 12 pin</td>
</tr>
<tr>
<td>Slide Switch</td>
<td>$0.19</td>
<td>3 pDt Pc Mount</td>
</tr>
<tr>
<td>Dipswitch</td>
<td>$0.99</td>
<td>5 pos. .89</td>
</tr>
</tbody>
</table>

SELL YOUR ELECTRONICS!

SEND FOR FREE CATALOG

H.J. KNAPP OF FLORIDA INC.
4750 96th St. N., St. Petersburg, Florida 33708

FOR SALE

- **TV projection lenses**: Create your own TV projection system using our lenses. Free information. SOLAR OPTICS LAB, 2046 Barks St., Flint, MI 48503.
- **RF power transistors—tubes—special parts for “ham” lines**: MF454 $17.00, MF455 $14.00, 8950 $9.00, 6LF6 $6.50, catalog and cross-reference help available. COD—Visa/MC. WESTCOM 1320 Grand, San Marcos, CA 92069. (714) 744-0728
- **COMPLETE line of microwave television converters and accessories to suit your needs. Converters have a one year warranty backed by a 3 year replacement. Call or write for complete specifications and pricing. Dealer inquiries invited. TRITON MARKETING, 1933 Rockaway Parkway, Brooklyn, NY 11236 (212) 331-9004**
- **NOSTALGIA crystal radio. Expertly handcrafted. Traditional style. Assembled and tested. Write for information. BOB RYAN, P.O. Box 3039, Anaheim, CA 92803**
- **SCANNER monitor accessories—kits and factory assembled. Free catalog. CAPPEL ELECTRONICS, Route 1A, Canon, GA 30520**
- **SAMS, complete set through 2025 with seven heavy duty cabinets, excellent condition $54,400 plus complete TV shop of nearly new test equipment at bargain prices. Phone 818-690-3393 or write: 5480 S. Waco, Aurora, CO 80015**
- **RECONDITIONED test equipment: $1.00 for catalog. JAMES WALTER TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806**
- **2510 megahertz downconverters $99.95 up, assembled. Details for SASE. GW ELECTRONICS, POB 688, Greenwood, IN 46142**
- **SEVEN new unused mini-computer units. Each includes color display, color printer, disk drive, power pack, cpu, Diablo Hy-type printer, monitor. Consider any reasonable offer. CLAREMONT COLLEGES, 747 N. Dartmouth, Claremont, CA 91711 Attn: R. Kemmerer**
- **RESISTORS 5/8W. 5% carbon films 36 ea. No minimums. 1% metal films. Send for details. Bulk pricing available. JR INDUSTRIES, 5384-C Swan creek, Toledo, OH 43614**
- **BALL Brothers, Hi-Res 12" TV monitors. New. Great with Apple, TRS80 or Ham TV. $150.00. MARIO KLAS, 215 Osceola Ave., Deer Park, NY 11729 (516) 242-2321**
- **BAR graph voltmeter 10 element LED display. Smoked glass front, ready for panel mounting. 3 input ranges, requires 4 to 15-VDC supply and $14.95. FARTHEST FRINGE S.A., 101 Highway Blvd., Pekin, IL 61554**
- **PICTURE tube rebuilding equipment—sell and buy new and used equipment. Free training. ATOL TELEVISION, 642S irving Park, Chicago, IL 60634, Phone 312-345-6661**
- **SATELLITE parabolic antenna, including polar mount, fiberglass and steel construction 1/4-45, 12-4186-$150.00. BATRONIC COMMUNICATIONS, P.O. Box 2824 St. A., Champaign, IL 61820 (217) 398-2873**
- **FM MPX generator ST-1000A with manual and cables. Will ship. $1000.00. (414) 646-3666. Unit new**
- **ANALOG delay, audio, and music synthesizer IC's plus more! Free flyer. PGS Electronics, P.O. Box 735B, Terre Haute, IN 47808**
- **TELEPHONE or office bugged? Latest detection equipment finds out fast. Free literature. CLIF-FON Box 220-M, Miami, FL 33161**
- **MICROWAVE receiver for MDS TV complete and ready to install. 24 db gain, $250. ALEX, (215) 568-4264**
- **SAVE up to 50% on name brand test equipment. Free catalog and price list. SELL ELECTRONICS, Box 82-F, Skokie, IL 60077**

WRITE FOR MCGEE'S SPEAKER & ELECTRONICS CATALOG

1001 BARGAINS IN SPEAKERS
Tel: 1 (816) 842 5092

1901 MCGEE STREET KANSAS CITY, MO. 64106

CIRCLE 29 ON FREE INFORMATION CARD

CIRCLE 72 ON FREE INFORMATION CARD
Radio Shack is America's Parts Place
No Minimum Order! No Waiting! Low Prices!
FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES!

1. Proven Quality
 Factory tested products only
 CALL FOR VOLUME PRICING

2. Guaranteed Satisfaction
 Call For Special School Discounts

S-100 WW $2.99 each
FIRST QUALITY AT SURPLUS PRICE

2708 EPROMS PRIME-450 Ms.
8 for $29.95

2K STATIC RAM SELL-OFF
Zilog 6104-4
Same as TMS4044 but designed specifically for 260 based systems. This is full-spec 4K x 1 RAM-40 MOS.
While supply lasts $1.49 each.

SPECIAL PURCHASE
$49.95 Limited Supply $49.95
8 K static RAM boards. Fully populated as is.

FLOPPY DISK DRIVES
ACP LOW PRICE $569.95

SPEAKER CONES
Double-Sided $19.95

PRINTERS

MONITORS

TERMINALS

TV CHIPS/SOUND

CONNECTIONS (GOLD)

CCTS DIPSWITCHES

CONNECTORS (GOLD)

TV CHIPS/SOUND

EPOX

TERMINALS

NEC PC-8000 Series Microcomputer System.

NEW INTRO PRICING $1999

FLOPPY DISK I/O

FLOPPY CHIP SET

WAVEFORM GENERATOR

DIGITAL MULTIMETERS

ZERO INSERTION FORCE

LED READOUTS

INTERSYSTEMS The preferred S-100 Box.
The new Series III CPU boards feature a 4 MHz 2660A CPU and full-feature front panel. 20 slot actively terminated motherboard, with 20 amp power supply (50 Hz operation, incl. 68 cpm fan).
DPS 1, List $1795

MICROPROCESSORS

CENTRONICS PRINTER

MICROPROCESSORS

NEW! from Zilog

Z8 CPU compatible
Tiny Basic & debug program on the I.C.

IEEE 488 Interface Board

NEC PC-8000 Series Microcomputer System.

CENTRONICS PRINTER

NEC PC-8000 Series Microcomputer System.

S-100 WW $2.99 each
FIRST QUALITY AT SURPLUS PRICE

2708 EPROMS PRIME-450 Ms.
8 for $29.95

2K STATIC RAM SELL-OFF
Zilog 6104-4
Same as TMS4044 but designed specifically for 260 based systems. This is full-spec 4K x 1 RAM-40 MOS.
While supply lasts $1.49 each.

SPECIAL PURCHASE
$49.95 Limited Supply $49.95
8 K static RAM boards. Fully populated as is.

FLOPPY DISK DRIVES
ACP LOW PRICE $569.95

SPEAKER CONES
Double-Sided $19.95

PRINTERS

MONITORS

TERMINALS

TV CHIPS/SOUND

CONNECTIONS (GOLD)

CCTS DIPSWITCHES

CONNECTORS (GOLD)

TV CHIPS/SOUND

EPOX

TERMINALS

NEC PC-8000 Series Microcomputer System.

NEW INTRO PRICING $1999

FLOPPY DISK I/O

FLOPPY CHIP SET

WAVEFORM GENERATOR

DIGITAL MULTIMETERS

ZERO INSERTION FORCE

LED READOUTS

INTERSYSTEMS The preferred S-100 Box.
The new Series III CPU boards feature a 4 MHz 2660A CPU and full-feature front panel. 20 slot actively terminated motherboard, with 20 amp power supply (50 Hz operation, incl. 68 cpm fan).
DPS 1, List $1795

MICROPROCESSORS

CENTRONICS PRINTER

MICROPROCESSORS

NEW! from Zilog

Z8 CPU compatible
Tiny Basic & debug program on the I.C.

IEEE 488 Interface Board

NOW! A 12 HOUR TAPE RECORDER for only $95.00*

High quality AC-DC Cassette Recorder provides 6 continuous hours of recording & playback. True fidelity, distortion free recordings on each side of cassette for a total of 12 hours. Built-in features incl.: Auto level control, Auto stop, Digital counter, AC Adapter & TDK DC-180 Cassette incl.

$24.50

PHOTO PHONE RECORDING ADAPTER

Record incoming and outgoing calls automatically with the all solid state unit connected to your telephone line. Phone & tape recorder. Lift phone when hung up. $24.50

VOX VOGUE AUDIO CONTROL RECORD

Solid state, adjustable level control, VOX enabled, automatically activates and deactivates recording. $24.50

SOLDIERTAIL SOCKETS AT A GREAT PRICE

8 pin 100/156 $5.95 20 pin 40/54 $9.50 14, 16 pin 50/54 $9.50 40 pin 20/54 $9.50

POWER SUPPLIES

12 VOLT 8 AMP $44.50. With crowbar overvoltage protection, current limiting, adjustable output 11-14V, HF suppression, self assembly. Does not include enclosure and line cord. Allow $10 for shipping, excess surcharge.

1/2 AMP POWER SUPPLY $8.00 (specify 5, 6, 8, or 12 Volt Operation). Regulated, short-proof, thermally limited, 1/2 AMP intermitent operation. Case less and hardware.

BIPOLAR SUPPLY $13.95 $15.00 (specify 5V, 7V, 5V, 12V) $15.25 (specify 12V) or 15V (specify 15V). Regulated, very simple assembly, virtually blow out proof, delivers ± 50 mV minimum per side.

SPECIAL! EPROMS AT A GREAT PRICE: 2708 EPROM $3.50 Each; 2716 EPROM $8.50 Each. LIMITED QUANTITY.

FREE CATALOGUE: Find out more about our exceptional product line. For 1st class delivery, add $2 cents in stamps; foreign orders add $2 (refundable with order).

FOOTO-SLAVE TRIGGER KIT

Popular game device uses LEDs, transistors, and IC to trigger the effect of a brignt red ball spinning around numbers. Unit emits sound and light effects on a number. Incl. all parts, instructions & PC boards.

WHEEL OF FORTUNE KIT

Individual numbers and letters on 16 color strips. PLays standard Wheel of Fortune game for up to 4 players. Full color; 100% instruction. $9.95

FASCIATION STAR KIT

Provides exciting flash & nickel metal flashe motions. Many designs to choose from. Ideal for school projects. $12.00

FOOTO SLAVE KIT

Retro look, LED, push button, with 16 color strips. $7.00

SOLAR COMPACTOR KIT

Solar compactor, with color LED, with battery and solar cell. $5.00

120VAC Xenon strobe kit

$12.00

CMOS ICS

4012-S Dual 4 input NAND 12/52
4022-S 1 stage coupler 12/52
4032-S Triple 3 input NAND 12/52
4042-S Quad H-S latch 4/12
4052-S Phase locked loop 4/12
4071-S Quad 2 input OR 12/52
4092-S Quad 2 in NAND Schmitt trig 4/12
4067-S Quad E X-OR 4/12
4150-S BCD up/down counter 3/12
4511-S BCD to 7 seg decoder/divter 3/12
4512-S 8 channel data selector 3/12
5101-S CMOS 1K power memory 10/17/50

TO-220 NEG VOLT REGULATORS

7805 -5V regulator 2/52
7806 -6V regulator 2/52
7812 -12V regulator 2/52
7815 -15V regulator 2/52
7924 -24V regulator 2/52

MISCELLANEOUS SPECIALS

1000 uf 35V axial capacitor 10/52.00
100uf 10V axial capacitor 5/12.00
S-100 card edge connectors 10/20/50
Resistor array (cut & bent leads) 10/50.05
RCA phone jacks - these are super quality, closed circuit jacks that are the best we've seen in years. American made 20/15.00
2102 low power 1K static RAM 10/59.90
General purpose audible signal diodes 10/52.00
GTS360 DPN Darling, min 1000, 250V 10/20/50
252 100uf 10V axial capacitor 10/52.00
10uf 25V axial capacitor 5/10.02
PNP transistor, 700ma 100/57.95
PNP transistor, 5ma 100/57.95
4N28 color-coupler 6 pin minidip 5/32.00
MOT-31L-1 pinout 1/12.00
SN74147 complex solid state 1/12.00

$34.99

LATEST AUDIO TECHNOLOGY FROM JAPAN

Model A501 Power Amp
- Pure Class A 25W + 25W
- Switchable to Class AB 100W + 100W
- Switchable to Bridge Class A 100W mono
- Switchable to Bridge Class AB 300W mono
- Frequency Response 5-20kHz (-1dB)
- Signal-to-Noise Ratio 90dB
- Non-magnetic Chassis
- "Out-board" comprehensive protection circuitry
- DC circuitry with limited use of NFB
- High Efficiency Fluid Convection Cooling
- THD under 0.007%

| KIT ONLY | $299.00 |

Model A502 DC Stereo Control Center
- Direct DC coupling from Input to Output DC servo circuitry
- Cascade FET Input in all stages
- Separate Moving Coil RIAA amplifier
- Distortion below 0.005% (1V)
- Max Output 15V
- Frequency Response 20Hz-20kHz ±0.2 dB
- Maximum Phone Input
- MC = 16mV RMS (1kHz) MM = 100mV RMS (1kHz)
- Built-in Headphone amplifier
- Relay Output Muting

| KIT ONLY | $349.00 |

Model A1033 Integrated Tube Amplifier
- Latest Japanese Design
- Distortionless Output Transformer using special winding techniques
- Most circuitry on PCB for easy assembly and humfree performance
- Output 30W x 2 Ultra Linear (Switching tube code) 15W x 2 Triode Output (near class A performance)
- THD under 0.4%
- Frequency Response 30~30,000 Hz (-1dB)
- Separate Pre-Out and Main-in

| KIT ONLY | $499.00 |

Fujitech Audio Kits

Send $5.00 for each assembly manual, refundable with order.

Master Key Engineering, Inc. 380 Swift Avenue, Unit 21 South San Francisco, CA 94080 Visa or Mastercharge acceptable.

CIRCLE 33 ON FREE INFORMATION CARD
“TANK BATTLE” TV GAME
In just a short time and with a few minor parts, the most novice hobbyist can complete this exciting Tank Battle game. Create a fun-filled evening for the whole family. Two independent tanks rumble through land mine fields, shell-shatter and fragment when hit. Four distinct engine sounds are produced for the different speeds. Sounds of gunfire, shell bursts and tank explosions are realistic. Automatic on-screen scoring. Supplied with schematic drawing.
SOLD AS IS
$9.95 ea.

COPPER CLAD BOARD
(Double Side)
Size 9 25 x 10.75
Thickness .062
$2.00 ea.

PANEL METERS
25-0-25 VDC, 2 1/4" x 3"
0-25 VDC, 2 1/4" x 2 1/4"
0-50 VAC, 2 1/4" x 2 1/4"
(Shunt required)
$4.00 ea. 2/$7.00

E. F. JOHNSON METER
Edge Meter 250 UA, fills in a 9 x 14" bolt. Black background.
Scale 1-20 Top, 0-5 Bottom.
$1.25 ea. 5/$5.00

COMPUTER GRADE ELECTROLYICS
VALUE/MFD
63,000 @ 15V
10,000 @ 20V
2,700 @ 25V
2,900 @ 25V
3,000 @ 25V
100,000 @ 30V
39,000 @ 30V
34,800 @ 50V
450 @ 75V
500 @ 100V
240 @ 300V
50 @ 450V

DIAM./LGTH.
PRICE
3" x 5 1/4"
$4.00 ea.
1 1/2" x 5 1/4"
$3.00 ea.
1 1/4" x 2 1/4"
$2.00 ea.
1 1/2" x 2 1/4"
$2.00 ea.
1 1/2" x 4 1/4"
$2.00 ea.
3" x 5 1/4"
$6.00 ea.
1" x 5 1/4"
$4.00 ea.
3" x 5 1/4"
$3.00 ea.
1 1/4" x 2 1/4"
$2.00 ea.
1 1/4" x 3 1/4"
$2.00 ea.
1 1/4" x 2"
$2.00 ea.

DIP SWITCH
7 Position $1.30 ea.
8 Position $1.50 ea.
12 Position $2.00 ea.

TRIMMER CAP
1.5-20P (ARCO PC-402)
$0.50 ea.

COAX CONNECTORS
UG 275/G BNC-F/FFFFF
$2.50
UG 275/G BNC-M/FFFFF
$3.00
UG 145/G V-2 BNC-F/FFFFF
$4.50
UG 145/G V-2 BNC-M/FFFFF
$4.50
UG 175 RG-58 Adapt
$2.20
UG 176 RG-58 Adapt
$2.00
UG 1094 BNC-F/Panel
$1.00

SO393 50c
PL259 60c

COAXIAL CABLE
50 OHM-RG 174
$9.45/100' $3.00/50'
75 OHM-RG 82/11
$100.00/100'

Terms: All material guaranteed unless otherwise stated. If you are not satisfied with our product, it may be returned within 10 days for a refund (less shipping). Please add $4.00 for shipping and handling on all orders. COD’s accepted for orders totaling $5.00 or more. All orders shipped UPS unless otherwise specified. Florida residents add 4% sales tax. Minimum order, $15.00. Foreign orders—US funds only, add 30% for shipping and handling.
JUST WRAP KIT
Just Wrap tool for daisy chain wiring. Tool strips as it wraps and cuts. Includes one 50 foot spool of wire.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>JW-1*</td>
<td>Just Wrap Tool</td>
<td>$14.95</td>
</tr>
<tr>
<td>JWK-6</td>
<td>Tool with Sponges and Wire</td>
<td>$24.95</td>
</tr>
<tr>
<td>R-JW*</td>
<td>50 Ft. Replacement Wire</td>
<td>3.49</td>
</tr>
<tr>
<td>JUW-1</td>
<td>Unwarping Tool</td>
<td>3.49</td>
</tr>
</tbody>
</table>

*Specify Color: Red, Blue, White or Yellow.

HAND WRAP TOOL

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSU30</td>
<td>Regular</td>
<td>$6.95</td>
</tr>
<tr>
<td>WSU30M</td>
<td>Modified</td>
<td>7.95</td>
</tr>
</tbody>
</table>

TERMINALS
- .025 (0,63mm)
- Square Post
- 3 Level Wire
- Gold Plated

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWT-1</td>
<td>Slotted Terminal</td>
<td>$4.98</td>
</tr>
<tr>
<td>WWT-2</td>
<td>Single Sided Terminal</td>
<td>2.98</td>
</tr>
<tr>
<td>WWT-3</td>
<td>IC Socket Term.</td>
<td>4.98</td>
</tr>
<tr>
<td>WWT-4</td>
<td>Double Sided Terminal</td>
<td>1.98</td>
</tr>
<tr>
<td>INS 1</td>
<td>Insertion Tool for above</td>
<td>2.49</td>
</tr>
</tbody>
</table>

SOCKET WRAP – ID
Slipped onto socket before wrapping to identify pins.

<table>
<thead>
<tr>
<th>Wrap-ID</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRODUCTS

P.C.B. TERMINAL STRIPS
The TS strips provide positive screw activated clamping action, accommodate wire sizes 14-30 AWG (1.50, 26mm). Pins are solder plated copper, .042 inch (1mm) diameter, on .200 inch (5mm) centers.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-4</td>
<td>4-Pole</td>
<td>$1.69</td>
</tr>
<tr>
<td>TS-8</td>
<td>8-Pole</td>
<td>2.59</td>
</tr>
<tr>
<td>TS-12</td>
<td>12-Pole</td>
<td>3.49</td>
</tr>
<tr>
<td>TS6MD</td>
<td>2-Pole Interlocking</td>
<td>31.79</td>
</tr>
</tbody>
</table>

DESOLDERING PUMP
Easy one hand operation. Rugged all metal construction. Replaceable TEFLO® Tip. Self cleaning on each stroke. Suction precisely regulated for reliable desoldering without damage to delicate circuitry.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPI</td>
<td>Desoldering Pump</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

LOGIC PROBE
Compatible with all logic families using a 4 to 15V power supply. Thresholds automatically programmed. Visual indication of logic levels to show high, low, high level or open circuit logic pulses.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB-1</td>
<td></td>
<td>$36.95</td>
</tr>
</tbody>
</table>

LOGIC PULSER
Superimposes a pulse train (20 pps) or a single pulse onto the circuit node under test without un-soldering IC's.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL-1</td>
<td></td>
<td>$48.95</td>
</tr>
</tbody>
</table>

VACUUM VISE
Unique vacuum-based light duty vise for precision handling of small components and assemblies. Rugged ABS construction. 1½" (32mm) travel for maximum versatility. Also features screw lugs for permanent installation.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV1</td>
<td>Vacuum Vise</td>
<td>$3.49</td>
</tr>
</tbody>
</table>

HOBBY WRAP TOOL BW2630
- Auto-Indexing
- Anti-Overwrap
- Modified Wrap

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW2630</td>
<td>Tool</td>
<td>$19.85</td>
</tr>
<tr>
<td>BT30</td>
<td>#30 Bit (not incl.)</td>
<td>3.95</td>
</tr>
<tr>
<td>BT2028</td>
<td>#28 Bit (not incl.)</td>
<td>7.95</td>
</tr>
<tr>
<td>BC1</td>
<td>Batteries & Charger</td>
<td>14.95</td>
</tr>
</tbody>
</table>

INSERTION/EXTRACTION TOOLS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS1416</td>
<td>14-16 pin inserter</td>
<td>$3.49</td>
</tr>
<tr>
<td>MOS1416</td>
<td>14-16 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS2428</td>
<td>24-28 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS40</td>
<td>40 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>EX1</td>
<td>14-16 pin IC Extractor</td>
<td>1.49</td>
</tr>
<tr>
<td>EX2</td>
<td>24-40 pin IC Extractor</td>
<td>7.95</td>
</tr>
</tbody>
</table>

WK-7 IC INSERTION KIT
Complete IC Inserter/Extractor Kit Individual Components (listed above) $22.95

IC DISPENSER
Allows IC's to be dispensed from their tube at a time and picked up by insertion tools above.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD1</td>
<td>1 Chan. Dispenser</td>
<td>$21.85</td>
</tr>
<tr>
<td>MDD5</td>
<td>5 Chan. Dispenser</td>
<td>83.43</td>
</tr>
<tr>
<td>MDD10</td>
<td>10 Chan. Dispenser</td>
<td>160.45</td>
</tr>
</tbody>
</table>

*No Discount.
IDC CONNECTORS

RIGHT ANGLE HEADERS
SOLDER TAIL
WIRE WRAP

Size	Part No.	Price	Part No.	Price
10 | IDH100SB | $1.20 | IDH10WRB | $2.60
20 | IDH200SB | 1.90 | IDH20WRB | 4.15
26 | IDH26WRB | 2.75 | IDH26WRB | 5.65
34 | IDH34SRB | 3.75 | IDH34WRB | 6.25
40 | IDH40SRB | 3.75 | IDH40WRB | 7.35
50 | IDH50SRB | 4.75 | IDH50WRB | 9.20

EDGE CARD CONNECTORS

Size	Part No.	Price
10 | IDE10B | $3.95
20 | IDE20B | 4.35
26 | IDE26B | 5.00
34 | IDE34B | 6.05
40 | IDE40B | 6.90
50 | IDE50B | 7.50

1" Spacing. Crimps onto cable with ordinary vise & mates with standard .062" Card Edge.

CABLE PLUGS

Size	Part No.	Price
14 | IDP14B | $1.45
16 | IDP16B | 1.65
24 | IDP24B | 2.50
40 | IDP40B | 4.15

1" Spacing. Crimps onto cable with ordinary vise & plugs into standard IDC Socket.

WIRE WRAP WIRE
#30 Wire Wrap Wire

Length	1000 Bag	5000 Bag	1K/Bag
2.5" | $.38 | $3.94 | $6.81
3.0" | 1.43 | 4.25 | 7.46
3.5" | 1.51 | 4.57 | 8.11
4.0" | 1.56 | 4.88 | 8.73
4.5" | 1.63 | 5.21 | 9.39
5.0" | 1.69 | 5.54 | 10.04
5.5" | 1.74 | 5.92 | 10.69
6.0" | 1.82 | 6.23 | 11.34
6.5" | 2.11 | 7.08 | 12.99
7.0" | 2.19 | 7.44 | 13.68
7.5" | 2.29 | 7.78 | 14.40
8.0" | 2.35 | 8.12 | 15.10
8.5" | 2.40 | 8.46 | 15.80
9.0" | 2.46 | 8.92 | 16.51
9.5" | 2.53 | 9.55 | 17.22
10.0" | 2.63 | 9.99 | 17.91

All lengths are overall, including 1" strip on each end. Choose from colors: Red, Blue, Black, Yellow, White, Green, Orange, and Violet.

WIRE WRAP SUPPLIES

Size	Part No.	Each	Tube
08 ICM06WSBG | .44 | 52x 39 = $29.28
14 ICM14WSBG | .53 | 30x 46 = $13.80
16 ICM16WSBG | .58 | 26x 50 = $13.00
18 ICM18WSBG | .76 | 23x 68 = $15.64
20 ICM20WSBG | 1.00 | 21x 85 = $17.85
22 ICN22WSBG | 1.07 | 19x 92 = $17.48
24 ICN24WSBG | 1.09 | 17x 108 = $15.98
26 ICN26WSBG | 1.43 | 15x 123 = $18.45
40 ICN40WSBG | 1.85 | 10x 160 = $16.00

Selective Plating provides gold in contact; where it counts. 3-level wrap. Save by buying sockets by the tube. All gold available at '3¢/pin extra charge.'

** * No Discount

ORDERING INFORMATION
Prepaid orders over $50 shipped prepaid via UPS. All others add $3.00 for handling. VISA, MC, COD's and open account orders will be charged freight, $15 minimum order. $100 minimum open account order.

DISCOUNT SCHEDULE

Order	Amount
$15 - 99 | Net |
100 - 199 | less 10% |
200 - 499 | less 15% |
500 - 999 | less 20% |
1000 up | less 25%

Discount and the name of this magazine must be mentioned at time of order to get discount. Discount applies on all items except as noted, "No Discount."
SCOPE SALE
OUR LOWEST PRICES OF THE YEAR!

HITACHI
Hitachi Denshi Ltd.

Single and dual trace. 15 thru 100 MHz. All high sensivity Hitachi oscilloscopes are built to demanding Hitachi quality standards and are backed by a 2-year warranty. They are able to measure signals as low as 1mV/division (with X5 vertical magnification). It's a specification you won't find on any other 15 or 30 MHz scopes. Plus, X axis modulation, trace rotation, front panel XY operation for all scope models, and X10 sweep magnification. And, 30 thru 100 MHz oscilloscopes offer internal signal delay lines. For ease of operation, functionally related controls are grouped into three blocks on the color coded front panel. Now, here's the clincher: For what you'd expect to pay more, you actually pay less. Check our scopes before you decide. All scopes come with probes.

Hitachi...The measure of quality. HITV302B
LIST $995.00
SALE $819.00

30MHz DUAL TRACE OSCILLOSCOPE

HITV152B DUAL TRACE 15MHz (no delay)
LIST $735.00
SALE $629.00

APPLE II MODEM
SYNCHRONOUS SERIAL INTERFACE THE ULTIMATE IN DATA COMMUNICATIONS FOR THE APPLE II

The new CAT for Apple by Nuvation is a complete data communications system for the Apple II computer. It consists of a single cord LSI modem that offers automatic dialing, answer and disconnect functions plus full selectable operation from 110 to 1200 baud including the BAUDOT code for the Data Network.

• 300/1200 Baud. LSI Dual Speed. Direct connect modem with receiver sensitivity greater than -43dB
• Auto answer/mute pulse 7 touch tone dialing/auto disconnect
• Single cord with pluggable firmware
• Software selectable communication speeds compatible with Bell 203 (300 Baud) or Bell 222 (1200 Baud)
• CDC approved for direct connect to phone network-no external couplers required.
• FSK/PSK data on 2200 baud or Hald duplex at 1200 Baud
• Modem plugs into Apple Bus (No external units)
• Easy to use operating program supplied on Disc
• Separate RS232C 5-wire port for operating Printer/Terminal at 110 to 1200 Baud
• Power supplied to Apple (minimum load)
• Optional handset provides full telephone capability
• Optional programs ROMs for parallel and CP/M
• Optional Tape input for recording incoming voice messages

List
Price
APLCAT $389.00
NOV-40043 Expansion Module 39
NOV-40044 Handset 29
NOV-40045 RS232C to Rec. Cable* 19
NOV-40047 Touch Tone Receiver 99
NOV-40048 Firmware 29
NOV-40049 Dial Firmware 99
NOV-40010 Software Diskette 29

*Requires expansion module

S-100 COMPATIBLE PLUGBOARDS FOR INTERFACE, MEMORY EXPANSION, EXPERIMENTATION

VCT- 8800V
Universal Microcomputer/processor plugboard, 1U, 100 MHz. Complete with heat sink & Hardware. 5.3" x 10" x 1.16" 1-4 5-9 10-24 $22.48 $20.37 $18.26

VCT- 8801-1
Plain no etched circuitry except contacts. Produces maximum flexibility. 1-4 5-9 10-24 $15.67 $14.24 $12.86

ANOTHER FAMOUS PRIORITY 1 ELECTRONICS TRUCK LOAD PURCHASE
10 MHZ 16K A&T STATIC S-100 RAM
GBT-143A List $349.00
$169.00 Ea
3/$450.00

OTHERS

COMPUPRO FROM GOODFELLAS ELECTRONICS

California Computer Systems
CCS2422A FLOPPY DISK CONTROLLER WITH CP/M VERSION 2.2 SALE $375.00
IEEE S-100 COMPATIBLE SINGLE/DUAL DENSITY 5 1/4"/3" DISK DRIVES SINGLE/DUAL HEAD ASSEMBLY AND TESTED
CCS2810 280 CPU 2/4 MHZ CPU W/SERIAL I/O

SHUGART SA801R

SALE
SHU-SA801R 2 OR MORE $410.00 ea

PRIORITY ONE ELECTRONICS
9161-R DEERING AVE. • CHATSWORTH, CA 91311

Terms: U.S., VISA, MC, BAC, Check. Money Order, U.S. Funds Only. CA, residents add 6% Sales Tax. Minimum prepaid order $15.00. Include additional shipping & handling of $2.50 for the first 3 lbs, plus $2.50 for each additional pound. Orders over 50 lbs. sent freight collect. In case of return goods, please include your phone number. Prices subject to change without notice. We will do our best to ship within 2 weeks. 1981 SOCKET and CONNECTOR prices based on GOLD, not exceeding $700/00 per oz. Sales prices are for prepaid orders only. Credit Card orders will be charged appropriate freight.

ORDER TOLL FREE 1-800-423-5922 CA., AK., HI., (213) 709-5464

www.americanradiohistory.com

Moving Sale

2708
450es BK EPROM
$8.50 EA.
8/$32.00

2716
$11.95 EA.
8/$48.00

2114-3L
4096 bit (1024 x 4) 300ns LOW POWER STATIC RAM
8/300
100 + 30°

2016P3
2K x 8 200ns
L/P STATIC RAM
8/$100.00

TRS-80/APPLE MEMORY EXPANSION KITS
4116's RAMs from Leading Manufacturers

8 for $24.00
ADD $3.00 for PROGRAMMING JUMPERS for TRS-80 keyboard
4116's 100 pcs & UP $2.75 each
1000 pcs $2.50 each

Powerline Insulator
GOF-IBARW3
SH. WT. 3 LBS
LIST PRICE $59.95
SALE PRICE $29.95

A Must for every Office with Data Processing Equipment

Protect your Investment
Protect your Data with

Isobar
GOF-IBAR46
- inadequately grounded systems
- protects individuallyfn, individually
- backflow with isolated 8" cord reel
- LIST PRICE $79.95
- SALE PRICE $39.95

6 Outlet Multi Use Cord Reel
The Convenience of an Extension Cord and Power Distribution Panel in One Compacted, Self-Storing Unit
- SIX GROUNDED 2-PRONG OUTLETS
- CIRCUIT BREAKER FOR SAFETY'S SAKE-
- GUARDS AGAINST OVERLOADS ABOVE 10 AMPS
GOF-CR21 22 Ft. - 5 lbs. $24.95
GOF-CR50 50 ft. - 10 lbs. $39.95

Priority One Electronics
9161-6 DEERING AVE. • CHATSWORTH, CA 91311

Terms: US. & Visa. MC. BAC. Check. Money Order. U.S. Funds Only. CA. Residents add 8%. Sales Tax. Minimum ORDER $15.00 Incl. Kits. Orders under $15.00 include a $3.00 Handling Charge. No Cash/Checks. We will do our best to maintain prices thru 1981. SOCKET and CONNECTOR prices based on GOLD, not exceeding 10Q:

Order Toll Free 1-800-423-5922 CA., AK., HI., (213) 709-5464

www.americanradiohistory.com
4K X 16 MEMORY board with 64 IC chips (2101) in sockets. Complete board with data. Super deal. 50.00
4116-4 MEMORY 16K $2 each or 8 for . . . 14.00
MK 8164 MEMORY 64K Dynamic Ram 25.00
MP1 8 inch single side disc drive (OK, used) 175.00
MP1 8 inch dual sided disc drive (OK, used) 350.00
SHUGART 8 inch drive 850 FDD (ok, used) 420.00
MOTOROLA MONITOR 9 inch 115 volt 60.00
MOTOROLA MONITOR 12 inch 115 volt 85.00
Above 2 units accept composite video, no case, used. 2 units below accept TTL. Hi voit supply only. Used
BALL BROS. 12 inch monitor 50.00
BALL BROS. 5 inch monitor, used. 60.00

DATA STATION CONSOLE w/keyboard & 9 inch monitor, power supply. Logic boards broken send for details on this one. 80.00
IR SCOPE see in the dark, new, portable. 260.00
IR SCOPE KIT pre-assembled, modular 150.00
12 VOLT GEL CELL 21/2 AH $14.00 5 AH 17.00
12 inch CRT bonded face plate, new, with specs. Made for computer work. $25 each for $100.00
UNDERWATER HYDROPHONE 200 KC 10.00

WALKY TALKIES Govt surplus used condition 475-54 mc range with schematics. Govt AN/PRC-6
S25 each 2 for $45. Ant. S5 each
ASCII KEYBOARD parallel $50 RED LEDS 10 for $1.00
MIN ORDER $10.00 CATALOG No. 20 now ready

Shipping extra on all merchandise
Meshna Inc., PO Box 62, E. Lynn, Mass. 01904

CIRCLE 23 ON FREE INFORMATION CARD

"JOIN THE PK"
DON'T MISS OUR 25th ANNIVERSARY CATALOG

POLY PAKS
P.O. Box 942, RE-9
S. Lynnfield, MA. 01940

Total Amount of Order

INCLUDE SHIPPING AND HANDLING: U.S. ADD $3; FOREIGN, ADD $7. MASS. RES. ADD 5% SALES TAX.

NAME
ADDRESS

CITY
STATE ZIP

Enclosed is $ CHECK, MONEY ORDER
Charge my MASTER CARD, VISA

ACCT. # EXP. DATE

Summary of ORDER

INSTRUCTIONS: Indicate quantity on line or box near item desired. Complete coupon section. Cut out and mail to Poly Pak's, Inc.

CIRCLE 42 ON FREE INFORMATION CARD

CIRCLE 10 ON FREE INFORMATION CARD

4.50K X 16 MEMORY board with 64 IC chips (2101) in sockets. Complete board with data. Super deal. 50.00
4116-4 MEMORY 16K $2 each or 8 for . . . 14.00
MK 8164 MEMORY 64K Dynamic Ram 25.00
MP1 8 inch single side disc drive (OK, used) 175.00
MP1 8 inch dual sided disc drive (OK, used) 350.00
SHUGART 8 inch drive 850 FDD (ok, used) 420.00
MOTOROLA MONITOR 9 inch 115 volt 60.00
MOTOROLA MONITOR 12 inch 115 volt 85.00
Above 2 units accept composite video, no case, used. 2 units below accept TTL. Hi voit supply only. Used
BALL BROS. 12 inch monitor 50.00
BALL BROS. 5 inch monitor, used. 60.00

DATA STATION CONSOLE w/keyboard & 9 inch monitor, power supply. Logic boards broken send for details on this one. 80.00
IR SCOPE see in the dark, new, portable. 260.00
IR SCOPE KIT pre-assembled, modular 150.00
12 VOLT GEL CELL 21/2 AH $14.00 5 AH 17.00
12 inch CRT bonded face plate, new, with specs. Made for computer work. $25 each for $100.00
UNDERWATER HYDROPHONE 200 KC 10.00

WALKY TALKIES Govt surplus used condition 475-54 mc range with schematics. Govt AN/PRC-6
S25 each 2 for $45. Ant. S5 each
ASCII KEYBOARD parallel $50 RED LEDS 10 for $1.00
MIN ORDER $10.00 CATALOG No. 20 now ready

Shipping extra on all merchandise
Meshna Inc., PO Box 62, E. Lynn, Mass. 01904

CIRCLE 23 ON FREE INFORMATION CARD

POLY PAKS
P.O. Box 942, RE-9
S. Lynnfield, MA. 01940

Total Amount of Order

INCLUDE SHIPPING AND HANDLING: U.S. ADD $3; FOREIGN, ADD $7. MASS. RES. ADD 5% SALES TAX.

NAME
ADDRESS

CITY
STATE ZIP

Enclosed is $ CHECK, MONEY ORDER
Charge my MASTER CARD, VISA

ACCT. # EXP. DATE

Summary of ORDER

INSTRUCTIONS: Indicate quantity on line or box near item desired. Complete coupon section. Cut out and mail to Poly Pak's, Inc.

POLY PAKS
P.O. Box 942, RE-9
S. Lynnfield, MA. 01940

TOTAL AMOUNT OF ORDER

INCLUDE SHIPPING AND HANDLING: U.S. ADD $3; FOREIGN, ADD $7. MASS. RES. ADD 5% SALES TAX.

NAME
ADDRESS

CITY
STATE ZIP

Enclosed is $ CHECK, MONEY ORDER
Charge my MASTER CARD, VISA

ACCT. # EXP. DATE

Summary of ORDER

INSTRUCTIONS: Indicate quantity on line or box near item desired. Complete coupon section. Cut out and mail to Poly Pak's, Inc.
4K STATIC RAMS 8/18.95
2114 LOW POWER 450ns

ALL MERCHANDISE 100% GUARANTEED

CALL US FOR VOLUME QUOTES

SEPTEMBER SPECIALS

4116 150ns NEC 8 for 19.95
4116 200ns NEC 8 for 17.50
2708 2.99 8 for 2.75ea
2716 Intel and NEC 5.95 8 for 5.50ea
2732 Intel 16.50 8 for 15.95ea
2532 Ti and Hitachi 19.95ea

Z80A 6.00ea
Z80A P10 6.00ea
Z80A SIO/1 15.00ea

8251A Intel 4.75ea
UPD 765 (8272) 35.00ea
LM323K 3.50ea 10 for 3.00ea

LS SPECIALS
LS240 .99 LS245 1.90
LS241 .99 LS373 .99
LS244 .99 LS374 1.75

(Sale Ends September 30, 1981)

EPROMS

1702 256 x 8 (1us) 4.95 4.50
2708 1024 x 8 (450ns) 3.95 3.50
2716 5V 2048 x 8 (450ns) 6.95 5.95
2758 5V 1024 x 8 (450ns) 5.95 8.95
2716-1 5V 2048 x 8 (350ns) 12.95 11.95
TMS2716 2048 x 8 (450ns) 9.95 8.95
TMS2532 5V 4096 x 8 (450ns) 21.95 19.95
2732 5V 4096 x 8 (450ns) 17.95 16.95

PROMS

74S188 (82S23) OC 32 x 8 3.95
74S287 (82S129) TS 256 x 4 4.75
74S288 (82S123) TS 32 x 8 4.45
74S387 (82S126) OC 256 x 4 5.75
74S471 TS 256 x 8 9.95
74S472 (82S147) TS 512 x 8 16.85
74S474 (82S141) TS 512 x 8 17.85
74S570 (82S130) OC 512 x 4 7.80
74S571 (82S131) TS 512 x 4 7.80

 TERMS: For shipping include $2.00 for UPS Ground; $3.00 for UPS Blue Label A/C; $10.00 minimum order. Bay Area Residents add 5% sales tax. Call for ex-

CIRCLE 59 ON FREE INFORMATION CARD

SEPTEMBER 1981
LOW COST PARTS

KEY SWITCH 4.5/6.75V 4 DC 120 VOLTS
RATED 4 AMPS $3.95 EA.
D.P.D.T. CENTER TOGGLE 130.2 VOLT
RATED 5 AMPS 120 VOLTS $2.00 EACH

PHONE JACK 12/300 NO STAND
NO STAND 50¢ FOR 100
50¢ FOR 500
100¢ FOR 1,000
150¢ FOR 5,000

MINI SIZE 5/5 BUZZERS $1.25 Each
WITH WIRE LEADS $1.25 each
3 to 7 Volts
WITH PIN TERMINALS $1.25 each
7 Volts each

TRANSFORMERS

2 Volt primaries
4 Volts at 150 ma $1.25
12 V at 500 ma $2.50
16.5 V at 3 Amps $6.50
20 Volts at 1 Amp $2.60
25 V 2 Volts at 2 Amps $2.60
440/220 TO 110 VOLT TRANSFORMER
SOLA # MB8201 (440 to 220 volts to 110 volts)
Rated 100 VA
$15.00

SEND FOR FREE CATALOG!

FLASHER L.E.D.
Litronix FRL4003
1000 foot length with each
intermittent clap $1.15/package
2" for $1.15

SUB MINI L.E.D.

0.098" X 0.098" 20 mA @ 1.75V
10 for $1.00
200 for $18.00
400 for $32.00
1000 for $67.00

RFI LINE FILTER
for line to line $1.50, June to ground $1.00, to ground $0.60

BI-POLAR L.E.D.

30,000 VDC RATED 10 VDC
RED ON DC, GREEN OR BLACK ON DC
YELLOW ON BLACK AG.
2 FOR $1.70

RECHARGEABLE BATTERIES

L.E.D.'s
RED JUICE DIFFUSED 10 for $1.50
GREEN JUICE DIFFUSED 10 for $1.50
YELLOW JUICE DIFFUSED 10 for $1.50

4PD7 RELAY
3 Amp Contacts
$2.50 ea.
120 Volt, 24 Volt
$1.70 EACH

ALL ELECTRONICS CORP.
905 S. Vermont Ave.
Los Angeles, Calif. 90006
(213) 380-8200

CIRCLE 48 ON FREE INFORMATION CARD

VIDEO PRODUCTS & ACCESSORIES

36 Channel Up Converter for TV & VTR
Cable VHF to UHF
1-3 pieces $29.95
4 pieces & up $24.95

Model V3736
- Allows complete programming of VTR
- Watch or record any combination of standard or pay TV programs
- Receives Midband and Superband channels on UHF
- For Beta/VHS type recorders

- TÉKNIKA Wireless Remote Control TV Tuner

MODEL 3051
- TV Accessories
- VHF/FM Amplifier
- VHF/FM Amplifier
- Coax Accessories
- F3F, 75 ohms RG59 cable, F connector
- F6F 6 ft, 75 ohms RG59 cable, F connector
- MIT-1 75-300 ohms matching transformer
- CA-2411 5-900 MHz, 2-way mini splitter
- CA-2444 5-900 MHz, 4-way splitter
- DCS A/B A/B CATV/MATV Switch
- $9.95 ea.

CIRCLE 53 ON FREE INFORMATION CARD

FORDHAM
655 Conklin St. Farmingdale, N.Y. 11735
- Master Charge
- BankAmericard
- VISA & COD
- Money Order
- Check

N.Y. State residents add appropriate sales tax.
Minimum order $25 plus $4.00 shipping and handling.

TOLL FREE (800) 645-9518
in N.Y. State call (516) 752-0050

J. SEPTEMBER 1981

GUARANTEED LOWEST PRICES ON PRINT IC's

Electronic Specialists, Inc.
171 South Main Street
Natick, MA 01760
Technical & Non-800 1-617-655-1532

CIRCLE 67 ON FREE INFORMATION CARD

ESP

DON'T BLAME THE SOFTWARE!

Power Line Spikes and Hash often cause
memory loss or erratic operation. Often
floppies, printer & processor interact!
Our patented ISOLATORS eliminate
equipment interaction AND curb
damaging Power Line Spikes, Surges and Hash.
Filtered 3-prong sockets and integral
 Spike Suppression. 125 VAC, 15 Amp, 1875 W Total - 1 KW per socket.

ISO-1 ISOLATOR. 3 Filtered Sockets; 1000 Amp 8/20 usec Spike Suppressor.$629.00
ISO-4 ISOLATOR. 6 Filtered Sockets; 1000 Amp 8/20 usec Spike Suppressor.$106.00
ISO-3 SUPER-ISOLATOR. 3 DUAL filtered Sockets; 2000 Amp 8/20 usec Spike Suppressor.$94.95
ISO-7 SUPER-ISOLATOR. 5 DUAL filtered Sockets; 2000 Amp 8/20 usec Spike Suppressor.$154.95

Master-Charge Visa, American Express
TOLL FREE ORDER DESK 1-800-225-4678 (except AK, HI, MA, PR & Canada)

CIRCLE 63 ON FREE INFORMATION CARD
BULLET ELECTRONICS

Sound Effects Kit $18.50

The SE-22 is a compact unit that contains at the point (which is capable of producing a wide range of sound effects. It is used with the new Texas Instruments Servo-Drive Microlute, a small and versatile electronic circuit which provides a wide range of functions. The unit is housed in a steel case and measures 2 x 3 x 4 inches. It requires a 9V battery, and is powered from 110V AC. The kit includes a manual, programming charts, and detailed 3867 chip specifications. It runs on a 20 volt battery and includes all necessary components. The unit is capable of producing a wide range of sound effects, from animal noises to special effects.

Doomsday Alarm Kit $9.95

If you have trouble stepping up and you would like the rest of the neighborhood to share your misery then this little kit will be for you! There is no way to accurately describe this unearthly howl, screams and thones that come out of this kit. Four separate tone oscillators are mixed, canceled, and stepped at a varying rate. 90 sounds of crazy sounds. A great fun kit or a practical burglar alarm. Complete with PC board and all necessary components less speaker. For 6-12 VDC ORDER DA-62.

Overvoltage Protection Kit $6.95

Protect your expensive equipment from overvoltage damage. Every computer should have one. Works with any fused DC power source from 10 to 20 volts up to 25 amperes.

Watt Audio Amp Kit $5.95

SMALL SINGLE WATT Audio Components Kit AT A 3 x 3 x 2 BOARD (no ICs). RUN ON DCVDC GREAT FOR ANY PROJECT THAT NEEDS INDEPENDENT AMP. LESS THAN .25W. 5 WATTS COMPATIBLE WITH 0 TO 5VDC! A GREAT SOUND KIT.

Stereo AMP/Power Supply Board

Takes low audio drive and drives 8 ohm speakers onpc board, B经过. Good for transmission and filter supply power for AMP and TUNER, VOLUME, BALANCE, and TUNER CONTROL. PLUG COMPATIBLE WITH 0 TO 5VDC! A GREAT SOUND KIT.

AMP ONLY

$6.95

TUNER ONLY

$12.95

TOTAL KIT

$19.95

FEATURES:
- AM/FM Stereo Tuner
- AM/FM Magic MA Cord.
- Hi-Fm Bluetooth Audio
- Standard Turntable Black
- 5-Watt TUNER

ONLY $19.95 (214) 278-3535

P. O. BOX 401244R
GARLAND, TX. 75040
(214) 278-3535

Sound Effects Kit $18.50

The SE-22 is a compact unit that contains a wide range of sound effects. It is used with the new Texas Instruments Servo-Drive Microlute, a small and versatile electronic circuit which provides a wide range of functions. The unit is housed in a steel case and measures 2 x 3 x 4 inches. It requires a 9V battery, and is powered from 110V AC. The kit includes a manual, programming charts, and detailed 3867 chip specifications. It runs on a 20 volt battery and includes all necessary components. The unit is capable of producing a wide range of sound effects, from animal noises to special effects.

Doomsday Alarm Kit $9.95

If you have trouble stepping up and you would like the rest of the neighborhood to share your misery then this little kit will be for you! There is no way to accurately describe this unearthly howl, screams and thones that come out of this kit. Four separate tone oscillators are mixed, canceled, and stepped at a varying rate. 90 sounds of crazy sounds. A great fun kit or a practical burglar alarm. Complete with PC board and all necessary components less speaker. For 6-12 VDC ORDER DA-62.

Overvoltage Protection Kit $6.95

Protect your expensive equipment from overvoltage damage. Every computer should have one. Works with any fused DC power source from 10 to 20 volts up to 25 amperes.

Watt Audio Amp Kit $5.95

SMALL SINGLE WATT Audio Components Kit AT A 3 x 3 x 2 BOARD (no ICs). RUN ON DCVDC GREAT FOR ANY PROJECT THAT NEEDS INDEPENDENT AMP. LESS THAN .25W. 5 WATTS COMPATIBLE WITH 0 TO 5VDC! A GREAT SOUND KIT.

Stereo AMP/Power Supply Board

Takes low audio drive and drives 8 ohm speakers onpc board, B经过. Good for transmission and filter supply power for AMP and TUNER, VOLUME, BALANCE, and TUNER CONTROL. PLUG COMPATIBLE WITH 0 TO 5VDC! A GREAT SOUND KIT.

AMP ONLY

$6.95

TUNER ONLY

$12.95

TOTAL KIT

$19.95

FEATURES:
- AM/FM Stereo Tuner
- AM/FM Magic MA Cord.
- Hi-Fm Bluetooth Audio
- Standard Turntable Black
- 5-Watt TUNER

ONLY $19.95 (214) 278-3535
9 DIGITS 600 MHz $129 95 WIR ED

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>20 Hz to 600 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Less than 10 mV to 150 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 Hz (5 MHz range)</td>
</tr>
<tr>
<td>Display</td>
<td>7 digit 5 1/2 digit LED</td>
</tr>
<tr>
<td>Time base</td>
<td>1.0 sec, 20-40°C</td>
</tr>
<tr>
<td>Power</td>
<td>12 VAC @ 250 ma</td>
</tr>
</tbody>
</table>

The CT-90 is the most versatile, feature packed counter available for less than $300.00! Advanced design features include three selectable gate times, nine digits, digit gate, and a unique display function which controls the display counter after the input signal is removed. Also, a 10/12/Hz TCXO time base is used which enables easy zero calibration checks against WWV. Optionally, an internal NCD battery pack, external time base input and Micro-power high stability crystal oven time base are available. The CT-90, performance you can count on!

7 DIGITS 525 MHz $99 95 WIR ED

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>20 Hz to 525 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Less than 50 mV to 150 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 Hz (5 MHz range)</td>
</tr>
<tr>
<td>Display</td>
<td>7 digit 5 1/2 digit LED</td>
</tr>
<tr>
<td>Time base</td>
<td>1.0 sec, 20-40°C</td>
</tr>
<tr>
<td>Power</td>
<td>12 VAC @ 250 ma</td>
</tr>
</tbody>
</table>

The CT-70 breaks the price barrier on lab quality frequency counters. Deluxe features such as three frequency ranges - each with pre-amplification, dual selectable gate times, and gate activity indication make measurements automatic. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's .0001%! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack.

7 DIGITS 500 MHz $79 95 WIR ED

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1 MHz to 500 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Less than 25 mV to 150 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 Hz (5 MHz range)</td>
</tr>
<tr>
<td>Display</td>
<td>8 digit 5 1/2 digit LED</td>
</tr>
<tr>
<td>Time base</td>
<td>2.0 sec, 20-40°C</td>
</tr>
<tr>
<td>Power</td>
<td>110 VAC or 12 VDC</td>
</tr>
</tbody>
</table>

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat. Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the-field" frequency checks and repairs.

8 DIGITS 600 MHz $159 95 WIR ED

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>20 Hz to 600 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Less than 25 mV to 150 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.0 Hz (5 MHz range)</td>
</tr>
<tr>
<td>Display</td>
<td>8 digit 5 1/2 digit LED</td>
</tr>
<tr>
<td>Time base</td>
<td>2.0 sec, 20-40°C</td>
</tr>
<tr>
<td>Power</td>
<td>110 VAC or 12 VDC</td>
</tr>
</tbody>
</table>

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double-duty!

DIGITAL MULTIMETER $99 95 WIR ED

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>DC AC volt 1000V to 1 KV, 5 ranges</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1 μA to 2.0 Amps, 5 ranges</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.1 ohms to 20 Megohms, 6 ranges</td>
</tr>
<tr>
<td>Impedance</td>
<td>10 Megohms, DC AC voltg</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.1% basic DC volts</td>
</tr>
<tr>
<td>Power</td>
<td>4 C cells</td>
</tr>
</tbody>
</table>

The D-700 offers professional quality performance at a hobbyist price. Features include, 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large 3½ digit, ¾ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overload protection up to 1250 volts on all ranges, making it virtually goof-proof! The D-700 looks great, a handsome, jet black, rugged ABS case with convenient retractable test leads makes it an ideal addition to any shop.

NEW ACCESSORIES

Audio Scaler

- **Audio Scaler**
 - For high resolution audio measurements, multiples
 - UPN frequency
 - Great for PL tones
 - Multiples by 10 or 100
 - 0.01 Hz resolution
 - Price: $29.95 Kit, $39.95 Wired

Accessories

- **Telescopic whip antenna - BNC plug**
- **High impedance probe**
- **Low pass probe, for audio measurements**
- **Direct probe, general purpose usage**
- **Tilt base, for CT 70, 90, MINI-100**
- **Color burst calibration unit, calibrates counter against color TV signal**

Counter Preamp

- For measuring extremely weak signals from 10 to 1,000 MHz
 - Small size, powered by plug transformer included
 - Price: $34.95 Kit, $44.95 Wired
The ultimate APPLE® copy program

COPY II PLUS

$39.95

VERSATILE — Copy II Plus copies multiple formats — DOS 3.2, 3.3, PASCAL, FORTRAN and most "protected" diskettes!

FAST — Copy II Plus copies nearly any diskette in less than one minute. That's faster than most standard copy programs. Written entirely in ultra fast assembly language.

Search no more for that universal copy program. Copy II Plus is the most advanced copy program available for the Apple II Computer. Compare capability, compare speed, compare price, then call or write to order Copy II Plus. Requires Apple II with 48K and at least one Disk Drive.

CIRCULAR POINT
Software, Inc.

P.O. Box 3563
Central Point, OR 97502
(503) 773-1970

Deliveries from stock. No C.O.D.'s.

Apple is a registered trademark of Apple Computer, Inc.
Electronic Tool Catalog

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page
25 AMC Sales ... 112
37 Active Electronics 99
39 Advanced Computers 110-111
38 Advance Electronics 24-25,25,32,36
28 Alba Electronics 23
48 All Electronic Components 123
12 American Antenna Back Cover
49 Ancora .. 119
65 Antenna Specialist 91
47 B & Precision 86
20 Berti .. 101
10 Bilt-Rite Electronics 124
10 CCF Associates 118
46 CIE, Cleveland Institute of Technology 38-41
17 Cambridge Learning 26
30 Central Point Software 126
18 Chiprock 22
27 Chyan Electronics 92
38 Command Producers 58
68 Communications Electronics 98
76 Computer 127
51 Components Express 126
17 Contact East 128
28 Cook's Institute 98
28 Jan Crystal 95
72 Dage Scientific 100
79 Diamond-Bak 108
60 Digi-Key .. 105
14 Edu-Cal 83
13 Electronic Book Club 13
13 Electronic Technology Today 83
46 Electronics Specialist 123
75 Electro .. 104,127
75 Fanon .. 128
60 Formulate International 106-107
39 General Specialties 79
46 Global TV 98
53 Goodheart 112
23 Grantham College of Engineering 89
64 Hal-Con .. 100
59 Hamling Inc 93
15-22 Heath .. Cover 3, 34-35, 75
53 High Frontier 98
69 Hitachi 16
18 Hobby Robotics 101
59 Information Unlimited 128
59 International Aerial Communications Co. 98
59 International Circuit Company 128
59 International Electronics 104
39 JBM, Microwave 120
25 Jameco .. 103,107
33 Javan .. 122
46 Kelvin Instrument Co 81
29 H.J. Knupp 108
70 MIT .. 94
23 McIntyre's Radio 108
25 McGraw-Hill Book Club 18-21
35 McKay Dymek 128
23 Minn Electronics 118
20 Morse .. 124
20 Micro Ace 124
20 Micro Management 100
51 Micro-tenna Associates 128
20 Microelectronics 98
51 Monarchy Engineering 112
60 Mountain West 90
51 Mouser Electronics 95
61 NRI Schools 8-11
51 NTS Schools 28-31
51 Netronics 52
51 Non-Linear Systems 37
51 Northgate 51
41 Omega Sales 87
41 Omega .. 51
51 Pacem ... 88
55 Pac Inc .. 77
51 Page Digital 114-115
51 Priority One 116-117
51 Priority Paks 88,118
51 RCA .. 33-42,77
24 Radio Shack 109
24 Ramsey Electronics 125
32 SCR .. 89
51 Santronics 2
51 Shure Brothers 2
51 Simple Simon 127
33 Simpson 73
36 Skyscan 71
84 Solid State Sales 128
70 Spacecoast 98

AMAZING ELECTRONIC PROJECTS and PRODUCTS:

MICROWAVE HORN ANTENNA KIT
17.266 GHz Frequency Range 17-18 GHz Kit w/Accessories Instructions $29.95
Order Complete Kit for 19.95 or Individual Parts Kit for 9.95 by Antenna or Build $24.95
Complete Package (Antenna, Board & Parts Kit) $39.00

MICRONET ASSOCIATES
235 South 220 West, Salt Lake City, Utah 84119
Cash or M.O only - Allow 2-3 Weeks Service (list includes shipping)
Resellers Please Ask For Sales Tax

PRINTED CIRCUIT BOARDS
We manufacture PC Boards from your artwork—
we can handle any size order.
only $.25 per sq. in. Small size - 30 sq. in. double side-
drilling and tin plating at no charge
Send check or money order payable to
International Circuit Company
103 Tyler Avenue, Dover, Indiana 46931
(219) 865-9023

NEED A COMPACT ANTEANA?
McKAY SETS THE STANDARD
with the DA1000 Outdoor Antenna and the DA2-D4 Combination
Indoor Leaf Antenna
For Ideas and details contact dealers:
MCKAY RADIO New York City
MCKAY RADIO Los Angeles CA
MCKAY RADIO Chicago IL
GILBERT Associates Portland, OR
ELECTRONIC EQUIPMENT RENTAL 207-264-2283
HAMILTON RADIO Boston, MA
BRIDGEWATER CUSTOM SOUND Mailing, HULL, MASS.
AGASSIZ PERFECTION Bellingham, WA
STANDARD SUPPLY Co. San Jose, CA
SILVERTREE MARCHWOOD, England
MCKAY DYMKE COMPANY Box 5000
Claremont CA 91711 U.S.A.
800/854-7769 Local 714/621-6711
except CA, Alaska, Hawaii
TWX 910-501-4990

Rush me your catalog
Enclosed is $2.00
(Refundable with first order)

Name
Address
City
State
Zip

Clip and mail to:
Contact East, Dept. 0073
P.O. Box 160, 7 Cypress Dr.
Burlington, MA 01803

128
www.americanradiohistory.com
Now the stars are within your reach

Movie Stars
Concert Stars
Sports Stars

Heathkit
Scientific-Atlanta

Your favorite stars are coming on the satellites right now in one of the greatest selections of family and adult entertainment ever offered. And now there's a new satellite receiver system that puts it all within your reach - at a price that's within reach.

The new Heathkit Earth Station

It includes a 3-meter Satellite Antenna with a single-axis adjustable mount that lets you direct your antenna to receive signals from the entire satellite arc. It's a heavy-duty, commercial-quality antenna, made by Scientific-Atlanta and designed for long, reliable performance.

Special Low-Noise Amplifier and Down-Converter converts signals to 500 MHz band for transmission on ordinary TV cable.

The Receiver features electronically-synthesized tuning for stable, drift-free reception, and 24 channel selections for a broad variety of programming. It even includes a special Zenith Space Command Remote Control so you can change programs without leaving your easy chair.

Special Earth Foundation Kit anchors your antenna firmly to withstand winds of up to 100 mph.

Unique Site Survey Kit

You can trust Heath to do it right. The first step in establishing your station is the purchase of a special Site Survey Kit that includes everything you need to determine a clear line-of-sight to the satellites. So you know your location is correct before you buy the Station.

Easy-to-follow, step-by-step assembly

Like all Heathkit products, the Satellite Earth Station includes a clearly written manual that guides you every step of the way through assembly and installation. And, over-the-phone assistance is always available.

For complete details and prices on the Heathkit Earth Station and 400 other electronic kits for home, work or play, send today for the latest free Heathkit Catalog or visit your nearby Heathkit Electronic Center.

Send for free catalog
Write to Heath Co., Dept. 020-816,
Benton Harbor, MI 49022

Visit your Heathkit Store

Heathkit products are displayed, sold and serviced at 56 Heathkit Electronic Centers in the U.S. See your telephone white pages for locations.

*Heathkit Electronic Centers are units of Visteon Technology Electronics Corporation.

Viewing of some satellite TV channels may require the customer to obtain permission from, or make payments to, the programming company. The customer is responsible for compliance with all local, state and federal governmental laws and regulations, including but not limited to construction, placement and use. For use only in Continental U.S. This device has not been approved by the Federal Communications Commission. It is not, and may not be sold, offered for sale, lease, or sold or leased until the approval of the FCC has been obtained.

CIRCLE 15 ON FREE INFORMATION CARD
IF YOU OWN A RADIO, THIS MICROPHONE WILL LET YOU TRANSMIT FURTHER AND CLEARER OR WE'LL GIVE YOU YOUR MONEY BACK!

Guaranteed to out perform any mic on any radio!

A speech processor microcircuit, designed by us, that eliminates splatter, boosts power and recharges its own battery. A patented American invention made in an American town.

CHECK OUT THE EXCLUSIVE FEATURES!

- CLIPS ANYWHERE
- PROCESS'S SPEECH WITH COMPUTER CIRCUIT
- SOUND SENSITIVE 2 INCHES OR 2 FEET
- NOISE CANCELLING
- TWO MICS WITH ONE SWITCH
- FRESH CHARGE WITH NO BATTERIES

YOUR DOUBLE GUARANTEE

GUARANTEE I:
The K40 Speech Processor is guaranteed to outperform any microphone it replaces or return it for a complete and full refund within 7 days from the K40 Dealer that installed and tuned it.

GUARANTEE II:

$44.50 Suggested Retail

...Sold exclusively by 3500 American K40 Dealers throughout the U.S. & Canada.