

COMPUTERS - VIDEO - STEREO - TECHNOLOGY - SERVICE

Poritalie

Siontwive Rranive

Biydars guite

mexpensive and versatile
2 DUM CIICUITS your can hitidy

RLUS:

* Vitieogames $\boldsymbol{*}$ (Hobhy Bornci
\pm Computer Gorner \times Drawing Boarii * State-Of-Solit-State \rightarrow Equinment Repopts

Looking for a 70 or 100 Mk k scope? Bak-PiECISION just eliminated the competition.

If you use a general purpose oscilloscope for troubleshooting we can cut your present service time in half with the SC61 Waveform Analyzer.

It's ten times faster-ten times more accurate: The SC61 is the first and only instrument to integrate the speed and accuracy of a digital readout with the viewing capability of a high performance 60 MHz scope. Connect only one probe and you can view any waveform to 60 MHz . Then, just push a button to read DCV, PPV, frequency and time.

There are no graticu'es to count or calculations
to make so every measurement is 10 to 100 times faster than before.

The digital read out is 10 to 10,000 times more accurate than conventional

scopes as well, for measurements you can trust in today's high precision circuits.

Plus having everything you want to know about a lest point, at the push of a button, eliminates guesswork and backiracking

A special Delta function even lets you intensify any part of a waveform and digitally measure the PPV, time or frequency for just that waveform section. This really speeds VCR alignment and calibration procedures

And it's neat: No more tangled

wabash diskettes \$1.39 each!

Now...Get High Quality at a Low Price

Wabash means quality products that you can depend on. For over 16 years, Wabash has been making high quality computer products. Wabash diskettes are made to provide error-free performance on your computer system. Every Wabash diskette is individually tested and is 100\% certified to insure premium performance.

Why Wabash is Special

The quality of Wabash diskettes is stressed throughout the entire manufacturing process. After coating, all Wabash diskettes go through a unique burnishing process that gives each diskette a mirror-smooth appearance. Wabash then carefully applies a lubricant that is specially formulated to increase diskette life. This saves you money, since your discs may last longer. It also assists your disk drives in maintaining constant speed which can reduce read and write errors.

Special Seal... Helps Prevent Contamination

To keep out foreign particles, a unique heat seal bonds the jacket and liner together. A special thermal seal which avoids contamination from adhesives, is then used to fold and seal the jacket. This results in outstanding performance and true reliability. Wabash then packages each diskette, (except bulk pack) in a super strong and tear resistant Tyvek evelope. The final Wabash product is then shrink-wrapped to insure cleanliness and reduce contamination during shipment.

Each Diskette is 100\% Critically Tested

 Since each step in the Wabash diskette manufacturing process is subject to strict quality control procedures, you can be sure Wabash diskettes will perform for you. And every Wabash diskette meets the ultra-high standards of ANSI, ECMA, IBM and ISO in addition to the many critical quality control tests performed by Wabash. Wabash does all of this testing to provide you with consistently high quality diskettes. Reliability and data integrity - that's what Wabash quality is all about.
Flexible Disc Quantity Discounts Available

Wabash diskettes are packed 10 discs to a carton and 10 cartons to a case. The economy bulk pack is packaged 100 discs to a case without envelopes or labels. Please order only in increments of 100 units for quantity 100 pricing. With the exception of bulk pack, we are also willing to accommodate your smaller orders. Quantities less than 100 units are available in increments of 10 units at a 10% surcharge. Quantity discounts are also available. Order 500 or more discs at the same time and deduct $1 \% ; 1,000$ or more saves you $2 \% ; 2,000$ or more saves you $3 \% ; 5,000$ or more saves you $4 \% ; 10,000$ or more saves you $5 \% ; 25,000$ or more saves you $6 \% ; 50,000$ or more saves you 7% and 100,000 or more discs earns you an 8% discount off our super low quantity 100 price. Almost all Wabash diskettes are immediately available from CE. Our warehouse facilities are equipped to help us get you the quality product you need, when you need it. If you need further assistance to find the flexible disc that's right for you, call the Wabash diskette compatibility hotline. Dial tol|-free 800-323-9868 and ask for your compatibility representative. In lllinois or outside the United States dial 312-593-6363 between 9 AM to 4 PM Central Time.

SAVE ON WABASH DISKETTES

 Product DescriptionPart \#
F111
F111B
F31A
F131
F14A
F144
F145
F147
M11A
M11AB
M41A
M51A
M51F
M13A
M13AB
M18A
M43A
M53A
M14A
M44A
M54A
M15A 2.69
M16A

1.99

1.79
1.99
2.49
3.19
3.19
3.19
3.19
1.59
1.39
1.59
1.59
2.99
1.89
1.69
2.79
1.89

51/4" SSDD 16 Hard Sector w/Hub Ring
51/"" DSDD Soft Sector w/Hub Ring
51/4" DSDD 10 Hard Sector w/Hub Ring
51/4" DSDD 16 Hard Sector w/Hub Ring
51/a" SSQD Soft Sector w/Hub Ring (96 TPI)
51/a" DSQD Soft Sector w/Hub Ring (96 TPI)

SSSD = Single Sided Single Density; SSDD = Single Sided Double Density; DSDD = Double Sided Double Density; SSQD = Single Sided Quad Density; DSQD $=$ Double Sided Quad Density: $T P I=$ Tracks per inch.

Buy with Confidence

To get the fastest delivery from CE of your Wabash computer products, send or phone your order directly to our Computer Products Division. Be sure to calculate your price using the CE prices in this ad. Michigan residents please add 4\% sales tax or supply your tax I.D. number. Written purchase orders are accepted from approved government agencies and most well rated firms at a 30\% surcharge for net 30 billing. All sales are subject to availability, acceptance and verification. All sales are final. Prices, terms and specifications are subject to change without notice. All prices are in U.S. dollars. Out of stock items will be placed on backorder automatically unless CE is instructed differently. Minimum prepaid order $\$ 50.00$. Minimum purchase order $\$ 200.00$ International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. All shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Non-certified and foreign checks require bank clearance
For shipping charges add $\$ 8.00$ per case or partial-case of 1008 -inch discs or $\$ 6.00$ per case or partial-case of $1005 \frac{1}{4}$-inch mini-discs for U.P.S. ground shipping and handling in the continental United States.
Mail orders to: Communications Electronics, Box 1002, Ann Arbor, Michigan 48106 U.S.A. If you have a Master Card or Visa card, you may call and place a credit card order. Order toll-free in the U.S. Dial 800-521-4414. If you are outside the U.S. or in Michigan, dial 313-994-4444. Order your Wabash diskettes from Communications Electronics today
Copyright "1982 Communications Electronics
Ad \#110582

> OrderToll-Free!
> wabash 800-521-4414
> error-free diskettes
> In Michigan 313-994-4444

im
COMMUNICATIONS ELECTRONICS ${ }^{\text {" }}$

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

SPECIAL FEATURE 49 POCKET-SIZED AND PORTABLE SHORTWAVE RECEIVERS A look at the newest "small" shortwave receivers. Their features often rival those of older top-of-the-line table models. Danny Goodman

BUILD THIS

53 DIGITAL IC TESTER
Part 3. A versatile device that puts IC's through their paces and indicates how they function. Gary McClellan
59 TWO COMPACT DVM'S
Two inexpensive DVM circuits for your workbench. Clement S. Pepper

TECHNOLOGY

4 VIDEO ELECTRONICS
Tomorrow's news and technology in this quickly changing industry. David Lachenbruch

12 SATELLITE/TELETEXT NEWS
The latest happenings in communications technology Gary H. Arlen

14 VIDEOGAMES
A new stand-alone system and two game-cartridge reviews Danny Goodman

43 INSIDE A 757/767 COCKPIT
Part 2. A look at the Boeing 757/767's computer and automatedflight systems. Marc Stern
90 STATE OF SOLID STATE
A new IC for use in a professional-quality compressor, expander or compandor. Robert F, Scott

CIRCUITS AND COMPONENTS

65 ALL ABOUT VLF ACTIVE ANTENNAS
Part 2. Some practical VLF active antennas for wideband and narrowband operation. R.W. Burhans
73. HOW TO DESIGN ANALOG CIRCUITS

Audio power-amplifier circuits. Mannie Horowitz
78 NEW IDEAS
Control your household appliances using a clock radio.
80 HOBBY CORNER
Our readers solve the light-switch puzzle
Earl "Doc" Savage, K4SDS
82 THE DRAWING BOARD
Adding a digit se!ect to the BCD encoder. Robert Grossblatt

VIDEO

86 SERVICE CLINIC
Thermal problems and how to correct them. Jack Darr
88 SERVICE QUESTIONS
R-E's service editor solves technicians' problems
RADIO
56 HOW TO REPAIR ANTIQUE RADIOS
The ins and outs of restoring an old radio's appearance and performance. Richard D. Fitch

98 COMMUNICATIONS CORNER
Communications and the computer. Herb Friedman
COMPUTERS
94 COMPUTER CORNER
Choosing a printer. Les Spindle

EQUIPMENT REPORTS

28 Voicetech Industries Speech-Synthesizer Kit
32 Anders Model CM-100 Capacitance Instrument
38 Trio-Kenwood R1000 Communications Receiver

DEPARTMENTS

134	Advertising Index	105	Market Center
10	Advertising and Sales Offices	103	New Books
10	Editorial	40	New Products
135	Free Information Card	6	What's News

ON THE COVER

Portable shortwave-receivers with features like microjrocessorcontrolled PL_ tunirg and cigital readouts, and pocket-sized shortwave receivers with "big"-raxio performance, wzre once ust dreams. Both types are now ealifes, as you'll see in Jur stor, on packetsized and portable shortware receivers. The $\overline{\mathrm{c}}$-icle begins on page 49.

IF YOU'RE LOOF.IAG for a DVM for sce - workbench, one of those describec here $m \exists$ be for you. Thanks to the wse of LSI IC's, the eircuits are small and ine cpensive to build. Tr a story begins on page 5.

EVEN THOUGH NIDDERN RADIOS are sleek, and are great partcrmers, there's serething about the old ones that mehes most cf us feel nostalgic. Find oul row you can rester an old radio's original sound and ээpearance starting on page 56.

Radio-Electronics, (ISSN 0033-786\%) Publismed monthly by Gernsback Publications, inc., 200 Park Avenue South, New York, NY 1000 E Second-Class Postage Pad at New York. N.Y. and additional maling offices. One-year subscrip-
tion rate: US.A. and U.S. possessions. $\$ 14.97$. Canada, $\$ 17.97$. Other countrues $\$ 22.47$ (castiorders tirly payable in U.S.A currency.) Single copies \$1.50. © 1983 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A

Subscription Sertice Mail all Sjbscription orders. changes. corresponcence and Postmaster Notuces of undelivered copies (Form 3579) to Radio-Electronics Subscription Service. Box 3520 , Boulder, CO 80322

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disctaim any responsibility for the loss or damage of manuscripts and/or artwork or photographis while in our possession dr okherwise.

VIDEO ELECTRONICS

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

HIGH RESOLUTION

How do you get 1,000 -line resolution out of the 525 -line television system? Digitally. Based on word leaking from the labs, the TV set industry here, in Europe, and in Japan is working toward doubling the number of lines a television receiver will convey by means of digital "interpolation"-generating new lines based on the average of the lines above and below them-and eliminating interlace, which wouldn't be necessary in a 60 -frame-per-second picture. ITT Semiconductors in Germany has developed an all-digital signal-processing system (see Radio-Electronics, September 1982) which could accomplish that purpose, according to its engineers. RCA's principal goal in digital-TV circuitry is the development of a compatible high-resolution system, said William Hittinger, executive VP for research and development, who adds: "We believe it will come in this decade."

In Japan, Hitachi has developed a digital converter to separate the received luminance and chrominance signals, and double the number of scanning lines without a change in transmitter standards; it says that development of a VLSI chip could bring the cost down to the consumer level. Sony also has a digital-scanning system, non-interlaced, which doubles the number of lines by using a 60 -frame-per-second picture.

Later this year, your friendly neighborhood cable system may put a personal computer in your COMPUTER home for a few dollars a month, under a plan developed by Time Inc. and Matsushita Electric. Under the arrangement, Matsushita will develop and manufacture a combination teletext decoder and personal computer, to be distributed by cable systems carrying Time Video Information Services teletext transmissions. The decoder-computer would cost cable operators about $\$ 150-\$ 200$ and they'd rent it to subscribers as part of the $\$ 5-\$ 10$ monthly fee for teletext service. The same hardware, which probably will have 64 K capacity, may also be available for sale through dealers.

While most video addicts look forward to multichannel TV sound to bring stereo audio to TV, the networks and some independent broadcasters see other-and perhaps more lucrativepossibilities in the standards now being worked out by an industry committee (see RadioElectronics, January 1983 issue). They have their eye on "SAP"-which stands for "separate audio program," which will be a part of the new sound system, separate from the multiplexed stereo audio system. That separate channel, with a frequency response going out to 8 or 12 kHz (depending on which system is ultimately adopted) probably will get its first use in providing simultaneous dubbed Spanish sound on network shows in areas with large Spanish-speaking populations. Other suggested uses are descriptions of program action for the blind.

A high-output long-life light bulb may be the key to the future of home projection-TV. General Electric's Lamp Division is working to develop a light source that will free giant-screen home television from the cathode-ray tube. A high-priority effort at GE is the development of a super-bright high-resolution projection system for the home using the principles of its industrial Talaria system, which now sells for $\$ 40,000$ and up. Unlike most TV projectors, which depend on three cathode-ray tubes to develop light, Talaria uses electron guns to distort the surface of a viscous oil layer. An external light source (xenon lamps are used in the present models) is diffracted by that modulated layer of oil through a lens system and onto the screen. GE officials are hoping to come up with the super-bright home version of Talaria in perhaps two or three years, possibly at a price between $\$ 2000$ and $\$ 3000$.

Two-way protection from high
voltage surges for the appliances and electronics you sell or service!

A brief, high voltage surge - or spike - can occur in any electrical system and, at amplitudes lower than 600 V , cause liftle or no damage.

But at greater amplitudes, a spike can do real damage. And the greater the high voltage surge resulting from nearby lightning, for example - the greater the risk of harm, especially to solid-state devices.

That's why Zenith now introduces the Spike Suppressor: to protect the susceptible TV receivers and household appliances you sell or service from damaging high voltage surges!

And the Zenith Spike Suppres-
sor mrotects not one, but two ways. Frst, the new Zenith Spike Suppressor absorbs most line voltage spikes so only a safe voltage level reaches the protected equ pment.

Second, heavy or pro onged voltage surges cause the Zenith Spike Supp essor to cut off power corr pletely for added protection and to signal the need for a replacement.

T at's do -uble-duty protection aga nst spikes and reassn eno igh for you to stock and sell the Zenith Spike Suppressor. Your bottom line's another. So call your Zen th distrijutor now!

In this graph, the solid curve represents the excess voltage or "spike" imposed on an electric system and. represented by the dotted the, the eprotection provided
household appliances as the Zenith Spike Suppressor absorbs the excess voltage and prevents it from surging thru the system.

The quality goes in before the name goes on.*

WHAT'S NEWS

Two RCA satellites

for direct broadcast
RCA Astro-Electronics has been awarded a contract in excess of $\$ 100$ million to design and build two direct-broadcast satellites (DBS) for Satellite Television Corporation (STC), a wholly. owned subsidiary of COMSAT (Communications Satellite Corporation)

STC's initial DBS service will use two satellites to serve an area approximating the Eastern time zone of the United States. STC will offer three channels of pay television beamed directly from the satellites-which will be several times more powerful than conventional commercial satellitesto individual homes equipped with 2 - to $21 / 2$-foot receiving antennas

New satellite antenna

 cuts installation timeAn installation-time saving of up to 70 percent is offered by the new KLM 11-foot satellite receiving antenna. That includes installation of the new heavy-duty KLM PolarTrak mount. The average setup time of the new antenna is $21 / 2$ hours, as against the 6 to 8 hours normally required for older antennas. The new antenna is made up of radial rib sections and individual slide-in mesh panels, thus not only reducing setup time but making it shippable in compact cartons via UPS.

The KLM X-11 delivers 40.5 dB gain at 55 percent efficiency. It has
a focal length of 69 inches and a focal-length/diameter ratio of 0.47. Weight is 125 pounds and the wind resistance is up to 100 miles per hour.

Advertising aims to

 educate readers'A far greater amount of information that explains the expanding array of new electronic products," is the key to attracting the public to more high-class TV receivers and other video products, says Joseph Donahue of the RCA Consumer Products Division.

To that end, RCA is publishing a special magazine, Living With Video, as part of its current advertising campaign. It will "help bring the average TV viewer into the expanding video age where TV sets are also sophisticated monitors for use with other video accessories such as games, videodisc players, videocassette recorders, and home computers," says Donahue. Living With Video devotes special chapters to the major product categories with a combination of understandable technical information and a series of "Decorating with Video" articles.

Dialog adds nine new retrieval databases

Dialog Information Services, which claims the world's largest on-line information-retrieval system, has added nine databases to the 150 already in place:

SLOTTED RIBS AND SLIP-IN MESH SECTIONS cut the KLM X-11 installation time by 60 to 70 percent.

TELEGEN contains information about biology and genetic engineering in over 54,000 records.

BOOKS IN PRINT contains 650,000 records, listing the entire current U.S. book-publishing inventory.

LABORLAW has over 150,000 summaries of decisions on labor relations, fair employment, wages and hours, and occupational safety and health.

PAPERCHEM contains about 160,000 records, produced by the Institute of Paper Chemistry.

ELECTRONIC YELLOW PAGES-CONSTRUCTION DIRECTORY has more than 880,000 records covering all contractors and construction agencies

WATERNET, the file of the American Waterworks Association, contains 5,000 records from 1971 to date.

BLS EMPLOYMENT, HOURS AND EARNINGS, with 23,000 records, provides numerical data from the U.S. Bureau of Labor Statistics.

CHEMSIS $82+$, CA SEARCH, AND CHEMZERO are three databases that list almost 5 million chemical substances.

The price for searching the new databases ranges from $\$ 30$ to $\$ 130$ per connect hour-a full record printed off-line costs from 15 to 75 cents, with the majority available for 20 cents.

Literature is available from Dialog Information Services, 3460 Hillview Ave., Palo Alto, CA 94304

Computer now responds to anybody's voice

Software that enables a computer to respond to anyone's voice was exhibited in the Mini-Micro section of the recent WESCON convention in Anaheim, CA, by Votan, a leading supplier of computer speech-technology products. The system requires no user training. It recognizes the digits 0 through 9 and eight command words, including "yes" and "no."

Speaker-independent recognition provides a set of statistically sampled utterances of a particular word by a large and varied population base, thus eliminating any need for system training by the operator. Several thousand utter-
ances are collected and analyzed to form a specific word from the population sample. Thus the computer will respond to almost anyone's pronunciation of the digit or command

Speaker-independent word recognition eliminates timeconsuming user training, and allows the untrained public to access data bases or to control equipment, even over telephone lines. Applications such as shopping by phone, voice mail, and banking all become possible simply by picking up the telepone and talking

Votan believes that the new word-recognition product will be available in original equipmentmanufacturers' quantities for less than \$2,000.

Sony starts division
 to develop business

To match its rapidly unfolding technological developments with potential markets, Sony has announced the establishment of a Business Development Division. According to Sony's president, Kenji Tamiya, the new division "will provide Sony with a complete structure for effectively converting our research and development investments into new business opportunities for the company.

Based at Sony's Operations Headquarters in Park Ridge, NJ, the division will work closely with Sony's research laboratories in Japan and the United States, as well as with selected outside companies. It will concentrate on CATV systems and terminals, receivers for direct satellite broadcasts, subscription TV, videotex, and teletext systems and terminals in the immediate future

H.S. grads unqualified for engineering studies

Seventy-five percent of today's high school graduates-no matter how good their grades-just lack the necessary math and science they need to enroll in college engineering courses, reports the Electronic Industries Association (EIA). The Human Resources Council of the EIA blames the situation on "a declining national commitment" to interest high continlied on page δ

Tek's most successful scope series ever: At \$1200-\$1450, it's easy to see why!

In 30 years of Tektronix oscilloscope leadership, no other scopes have recorded the immediate popular appeal of the Tek 2200 Series. The Tek 2213 and 2215 are unapproachable for the performance and reliability they offer at a surprisingly affordable price.

There's no compromise with Tektronix quality: The low cost is the result of a new design concept that cut mechanical parts by 65%. Cut cabling by 90%. Virtually eliminated board electrical connectors. And eliminated the need for a cooling fan.

Yet performance is written all over the front panels. There's the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurerrents.

The cost: \$1200* for the 2213. \$1450* for the dual time base 2215. You can order, or obtain more information, through the Tektronix National Marketing Center, where technical personnel can answer your questions and expedite delivery. Your direct order includes
probes, operating manuals, 15day return policy and full Tektronix warranty.

For quantity purchases, please contact your local Tektronix sales representative.

Order toll free:

1-800-426-2200 Extension 47
In Oregon call collect: (503) 627-9000 Ext. 47

[^0]
WHAT'S NEWS

contimued from page 6
school students in math and science courses.

The report-available from EIA-gives information on technical education in the United States and its importance to high technology; the balance of supply and demand in various technical fields, and job opportunities in electronics.

The EIA hopes to reach local school systems-who are most important in making decisions about early science and math education-with the report, and is organizing a campaign to do so. "The problem is to be addressed," says EIA president Peter McCloskey, "at the local level with volunteer employees-at all levelsfrom our member companies.'

Copies of the report may be obtained by contacting the EIA Human Resources Council, 2001 Eye St., N.W., Washington, DC 20006 (phone 202-457-4925).

Self-converging tubes for projection TV

The problem of converging the three images of a color projection TV, formerly attempted with complex electronic circuitry and adjustable consumer controls is now solved, reports Zenith.

The patented solution is in the tubes themselves. In a conventional projection color-TV set, three tubes-red, green, and blue-are mounted side-by-side. Only the middle (green) tube can be aimed squarely at the screen. The others are tilted slightly inward. That distorts their images on the screen, and the picture has to be converged manually.

Zenith's solution was to tilt the faceplates on the red and blue tubes slightly. That distorts the image projected on the screen. The distortion produced by the tilted face place is in the opposite direction to the distortion caused by the off-center mounting of the outside tubes. The two distortions thus cancel each other, resulting in a perfectly "self-converged" picture. Since the correction is built into the tubes themselves, controls and electronic parts are eliminated, and correct convergence becomes automatic.

Another improvement in the new

THE SELF-CONVERGING PICTURE-TUBE system. Image beams from each of the three tubes follow carefully engineered paths through precision acrylic lenses, which weigh about half as much as glass lenses. The images are then reflected by two glass mirrors that reflect more than 94 percent of the light that strikes them.
tubes is a special bipotential gun designed to maintain resolution at high brightness levels. In many conventional tubes, the dots of color on the screen tend to "bloom" whenever the tube is driven to provide a bright picture, producing a fuzzy image. Brightness must be reduced before the dots return to normal size.

The new electron gun operates on a fixed DC voltage, and is designed to hold the dots as sharp colored points at high brightness. The result is sharper detail at all levels of brightness.

Bible now published on videodisc

Noting the strong consumer response to such videodisc programs as "The Ten Commandments," RCA has licensed five volumes of The New Media Bible, a video translation of the Bible by the Genesis Project. RCA also has options on the additional 27 volumes for use in its videodisc system.

Seth Willenson of RCA Videodisc notes that "The Ten Commandments" has sold about 30,000 copies, which amounts to
more than $\$ 1$ million at retail prices. "We are bringing spiritual values into the home in an historical, realistic, and entertaining way that appeals to all the family," Mr . Willenson said. "To those parents who are concerned about what their children watch on television, the videodisc permits them to select from a wide variety of familyoriented programs."

Alaskan satellite in orbit

Satcom V, is a 2,385 -pound advanced domestic communications satellite that was launched last October. It will provide longdistance communications within the State of Alaska, and between Alaska and the rest of the United States. The craft will also carry the state's rural area, television, and emergency medical networks.

RCA American Communications will operate the spacecraft as joint licensee with the owner, Alascom, Inc., the longlines carrier for the state of Alaska.

RCA Satcom V is the first all-solid-state communications satellite, and is the first of a series of advanced spacecraft. They will provide up to a 50 percent increase in voice/data capacity over their predecessors, while remaining compatible with present in-orbit Satcom satellites, and with terrestrial facilities.

New CBS-Columbia group to market software

A new unit, CBS Software, has been formed to develop, license, and market game, education, and home-management software for personal home computers.

Edmund R. Auer, Senior Vice President of the Columbia Group, reports that concurrently with establishment of the CBS Software unit, a license agreement has been signed with K-Byte for the exclusive worldwide marketing and distribution rights to K-Byte computer games, including those that will be developed during the next four years.

CBS Software will initially offer the K-Byte games for the Atari 400 and 800 systems, and is evaluating several other formats for the games.

For \$35.50 Here's your best VOM value.

It's compact, drop-proof (3 feet) and provides 21 color-coded ranges-volts, milliamps, ohms, temperature scale and decibels. True quality instrument for your portable applications. Tough, accurate, taut-band meter, fuse-protected. Sensitivity 20,000 ohms/volt DC. High-impact case, colored bright orange. Snap action, dual-detent range switch. Range limits: 1000 V DC and AC, 250 mA DC, one megohm, $+200^{\circ} \mathrm{C}$. Battery Test provision. Meter OFF position. Temperature scale (special probe optional).

WV-547D. Same instrument in impact-resistant carrying case. Handle converts to tilt stand.
$\$ 39.95$
Want full technical details and a demonstration? Call toll-free, 1-800-523-3696, for the VIZ distributor near you.
Look to VIZ for value, quality, availability. Over 70 instruments in the line-PLUS full accessories.

VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144

EDITORIAL

Electronics In Medicine

Electronics has a great impact on our day-to-day lives. It places a tremendous amount of information at our fingertips, reduces our day-to-day chores, improves the "quality" of life, and provides a virtually unlimited supply of entertainment right in our living rooms.

In fact, it we stopped to think about it for a moment, we could name many benefits that electronics makes possible. But after we finished, how many of us would have included medicine in our listings.

I'm not thinking of the electronic thermometer, either. Basic research continues to investigate new applications of electronics. For example, researchers are implanting electrodes in the inner ears of deaf people to help them hear. So far, success has been modest-patients hear medium-to-loud sounds only-but progress is continuing. When that technique is perfected, researchers envision a "bionic" ear. Along the same lines, researchers are investigating a technique for attaching an electronic camera directly to the brain; they will be using surgically implanted electrodes.

Researchers are also investigating the effects of electric fields on bone growth. Placing a fracture into an electric field has speeded the healing of bone injuries that have proven to be difficult to mend on their own.

Out of the University of Pennsylvania comes a pair of electric braces that researchers believe will cut in half the time required to straighten teeth.

On a completely different front, a researcher from the University of Florida has developed a device that shatters kidney stones. The patient lies in a bathtub and is subjected to shock waves created by high-voltage discharges. The shock waves are what break up the kidney stones.

And those are just some highlights of the intensive investigation of electronics applications in medicine. The bionic human is no longer just a fictional fantasy and may be children's reading compared to what is still to come. The promise of electronics and its limitations are still somewhere far in the distance and it's going to be a true-life experience as we live through the next few years.

ART KLEIMAN
Editor

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief

Larry Steckler, CET, publisher
Arthur Kleiman, editor
Josef Bernard, K2HUF, technical editor Carl Laron, WB2SLR, associate editor
Brian C. Fenton, assistant editor Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor Herb Friedman, communications editor Gary H. Arlen, contributing editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Danny Goodman, contributing editor
Dan Rosenbloom, production manager
Robert A. W. Lowndes, production associate
Stefanie A. Mas, production assistant
Joan Roman, circulation director
Arline R. Fishman, advertising coordinator
Cover photo by Robert Lewis
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
President: M. Harvey Gernsback
Vice President; Larry Steckler
ADVERTISING SALES 212-777-6400
Larry Steckler
Publisher

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-777-6400
MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co., Inc.
540 Frontage Road-Suite 325
Northfield, Illinois 60093
312-446-1444
PACIFIC COAST
Mountain States
Marvin Green
Radio-Electronics
413 So. La Brea Ave.
Los Angeles, Ca 90036
213-938-0166-7

SOUTHEAST

Paul McGinnis
Paul McGinnis Company
60 East 42nd Street
New York, N.Y. 10017
212-490-1021

TRACTOR-FRICTION PRINTER \$399

This all new COM-STAR deluxe line printer prints $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ letter quality full size, single sheet, roll or fan fold computer paper, labels, etc. $40,66,80,132$ columns. Impact dot matrix, bl-directional, 80 CPS. Includes speclal cable that plugs direct Into the VIC-20 printer port no other costly interface is needed! List $\$ 599.00$ Sale $\$ 399.00$.

SUPER 10" COM-STAR PRINTER \$499

Has all the features of the COM. STAR printer shown above, PLUS! 10^{*} carriage 100 CPS, Dot addressable blt Image graphics, 2.3 buffer, 18 character sets, $40,48,66,80,96,132$ columns, prints true descender, super and subscript, underilining. Includes special cable to plug Into the VIC-20 printer port. List $\$ 699$. Sale $\$ 499$.

60K MEMORY EXPANDER $\$ 79$

Allows memory expansion to 60K total (20K ROM and 40K RAM). Has six slots to add six cartridges - you can switch select any combination of memory or programs. Stop and start any program with reset button, you don't have to remove cartridges or turn off computer. This expander is a must to get the most out of your VIC-20 Computer!

PLAY ATARI GAMES ON VIC-20 $\mathbf{\$ 7 9}$

WOWII Plug In our new "GAME LOADER" and you can play all ATARI video game cartridges, Activision, Imagic M-Network on your VIC-20 computer. List $\$ 99$. Sale $\$ 79$.

LOW COST PLUG IN EXPANSION

Accessories plug in direct to thls computer, extra RAM memory, data cassette, telephone modem \$99.00, deluxe 80 column printer $\$ 399.00$, 170K disk drive $\$ 349.00$ all plug in drect! You do not have to buy an expensive expansion Interface!!

WE HAVE THE LOWEST PRICES

We sell direct to customers and you save the proflt margin normally made by computer stores, department stores and distributors, we are willing to take a smaller margin to develop volume. WE LOVE OUR CUSTOMERS - OUR PRICES PROVEIT!

IMMEDIATE REPLACEMENT WARRANTY
If your computer fails because of warranty defect within 90 days from date of purchase, you simply send your computer to us via United Parcel Service prepaid. We will "im. mediately" send you a replacement computer at no charge via United Parcel Service prepaid This warranty applies to all products we sell because WE LOVE OUR CUSTOMERS!!

15 DAY FREE TRIAL

Jont Mis this saleordee now

VIC-20 for only $\mathbf{\$ 1 3 9}$. plus
\$59. for 6 pack of programs
Specify pack wanted
$33 K \cdot$ VIC for only $\$ 199$.
41K.VIC for only $\$ 249$.
49K.VIC for only $\$ 299$.
Tractor Friction Printer $\$ 399$.
Super 10" Printer \$499.
60K Memory Expander $\$ 79$.
Game Loader-Atarl \$79.

We ship C.O.D. and honor Visa and Master Card.

Name

Address
City
State \qquad Zip Code
\square VISA \square MASTERCARD
\square C.O.D.
Credit Card No.
Expiration Date

Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAll orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express: mail!
Canada orders must be in U.S. dollars

SATELLITE/TELETEXT NEWS

GARY ARLEN
CONTRIBUTING EDITOR

NATIONAL BUSINESS TELETEXT

Satellite Network Delivery Corp., a new information-distribution firm, plans to beam teletexttype data and video material throughout the U.S. via a hybrid satellite signal that will be retransmitted by local TV stations. SND's service, due to start in April, will include two primary features: Business Teletext Network will carry about 100 medium-speed data channels, and T-Sat will use digital technology to send commercials and other video programming to TV stations. The teletext service will use the vertical blanking-interval lines of a satellite transponder; SND plans to use the new North American Broadcast Teletext Standard (NABTS) technology; that is the hybrid format combining French Antiope and Canadian Telidon standards. SND data service won't be formatted as conventional page-by-page teletext frames; rather the data will be "sliced" into 100 channels within the VBI, with data moving at 3,000 characters per second. All transmissions will be addressed and encoded so that only designated customers will have access to the services. At presstime, SND was still negotiating for satellite space; the assumption is that it will find transponder room aboard a Westar bird.

TWO NEW SATELLITE PROJECTS

NASA is putting new emphasis on two activities that could lead to a sizeable new effort in satellite communications. The Advanced Communications Technology Satellite (ACTS) program will develop multiple-beam satellites that do their own switching, operate in the $30 / 20-\mathrm{GHz}$ range, and have fixed scanning as well as spot beams. The ACTS birds would also have the capacity to handle system networking and would offer data speeds of up to 500 megabytes-per-second. The ACTS project had been shelved in recent U.S. budget cutbacks, but NASA is trying to bring it back to life, goaded in part by new Japanese activity to develop high-tech satellites of the same type

The other new NASA effort comes in the dynamic business of mobile communications, hooked into satellite networks. The Mobile Satellite Experiment (MSat-X) would offer thinroute mobile communications for mobile phones and other transportable communications systems. NASA is trying to develop a two-by-four-foot horizontal patch antenna which would cost under $\$ 500$ and could downlink mobile communications from atop a truck.

NASA is encouraging the participation of private companies in both projects, part of the new effort to develop joint ventures between government and business.

TELETEXT NEWS BRIEFS

The National Captioning Institute, which prepares closed captions using line 21 of the vertical-blanking interval, and British Videotex-Teletext, the U.S. marketing agency which champions U.K.-format teletext, recently demonstrated a hybrid system which decodes line-21 captions into the teletext format. That would permit captions to be sent simultaneously via either system, and would assure that the 60,000 homes now equipped with Sears TeleCaption decoders (a number likely to grow) won't be stuck with obsolete equipment when teletext catches on.

Time Inc. has included several novel features in its full-channel satellite-cable teletext service now being tested in San Diego and Orlando. Time Teletext includes an audio soundtrack (primarily background music), stemming from Time's belief that viewers using a TV text service will feel more comfortable if there's an audio factor accompanying the screen images. The Time service also has a sizeable capacity for downloading data; the Zenith decoder used in the test has the ability to allow users to format material in order to retrieve specific information. For example, users can ask for data, such as "movies to be shown on Tuesday," and the terminal will collect and display information (titles, description, ratings) about films featured on that day.

WGBH-TV, Boston Channel 2, has begun its "Scoop" teletext experiment, using Antiope technology. The 100 -page teletext magazine includes considerable educational and local information and is available at special receivers in public sites, such as libraries and schools.

More cable TV teletext services are springing up, among them a sophisticated package delivered by Cablevision Systems in Long Island, NY, developed in cooperation with Newsday newspaper. The system uses Telidon graphics and is the precursor of an advanced interactive videotex service which the cable and newspaper companies want to introduce in the near future. The Newsday Channel, due to begin service in April, will include news, weather, advertising, and a daily video newscast.

R-E

Select 5 fact-filled volumes for only \$2 $\mathbf{9 5}$ (tatal value ep wo sa9,75)

1486
List \$17.95

List $\$ 16.95$

1451

1475
List \$14.95

1169
List $\$ 17.95$

Lisı $\begin{gathered}1283 \\ \$ 12.95 \text { (paper) }\end{gathered}$

1245
Lisl \$15.95 (paper)

1435
Lis!
$\$ 15.95$

$\stackrel{1050}{10}$

1402
List $\$ 14$.

List $\$ 13.95$

7 very good reasons to try Electronics Book Club

Blue Ridge Summit, PA 17214

- Reduced Member Prices. Save 20% to 75% on books sŭre to increase your know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 13 times a year with dozens of up-to-the-minute titles you can pick from
- "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But . . . if you want an Alternate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling membership obligation, and qualify for discounts on many other volumes
- Bonus Specials. Take advantage of sales, events, and added-value promotions
- Exceptional Quality. All books are first-rate puolisher's editions, filled with useful, up-to-the-minute information

1183
ist $\$ 14.95$

1346
List $\$ 19.95$

1420
1705

1128
List \$11.05

List $\begin{gathered}33 \prime \\ \$ 14.95\end{gathered}$

1337
List $\$ 9.95$

I.ist $\$ 9.95$ (paper)

1296
List $\$ 18.95$
 TABLES \& CORMULE TABLLS \& FORMULA 1225 1225
List $\$ 16.95$

Video Electronics Technology

1474 list \$15.95

List $\$ 16.95$

List $\$ 17.95$

${ }^{143 t i}$

VIDEOGAMES

An exciting new home videogame-system.
 DANNY GOODMAN, CONTRIBUTING EDITOR

WALK INTO ANY ONE OF I.ITERALLY MILlions of homes across the country and you're sure to see this familiar sight: the tamily color-TV hooked up to a videogame console, wires running all over the place, and the family engaged in a "spirited"' conversation about whether Dallas or Missile Command will be on the screen tonight. That scene soon may be a little less common, however, thanks to the introduction of a self-contained cartridge-programmable videogame called Vectre. (sec Fig. 1).

That is no ordinary videogame. Made by General Consumer Electronics Corporation (233 Wilshire Blvd., Santa Monica, CA 90401), it features a built-in 9 -inch diagonal vector-scanning display monitor, Vector scanning produces razor-sharp outline graphics like those found on arcade games such as Battle Zone, Asteroids, and (in color) Tempest Screen characters spin or glide smoothly, and the tiniest specks of light serve well as high-resolution laser blasts

The other type of video-screen imaging, called raster scanning, allows areas to be colored in, but with less resolution. Home TV-receivers are of the raster-scan type.

Vectrex's self-contained design is unique. About the size of a small portable-TV (on its side), the unit simply plugs into any $A C$ outlet. There's a carrying handle built into the top of the case. and one controller panel stows securely in a compartment beneath the screen. The controls on that panel include a small joystick (it's a little too small to allow for comfortable control, however) and a row of four pushbuttons. A speaker. ON/OFF/ voluve and resel switches, and jacks for two controller panels are located on the front of the unit, in the compartment under the screen

Although the monitor is black and white, cach game cartridge comes with a color overlay that helps jazz up the display and indicates which controller pushbuttons do what. One game (Mine Storm) is "resident" in the unit when you buy it. Most of the 12 cartridges scheduled for introduction this year are space games, including a licensed version of Scramble. Other games include Berzerk. Arnor Atfack, a 3-D road race. and football.

Essentially a version of Asteroids, Mine Storm is challenging even for the

experienced game player. In fact, most of the cartridges are tough, especially at higher levels--as they ase intended to be. In fact, one early reviewer complained that the games were too toughapparently he hasn't seen what it takes to challenge an arcade video whiz.

This is one system with a lot of potential-interesting game play, coupled with 3-D effects and a very versatile sound package. GCE is already at work on future cartridges For the avid vidcogamer, Vectrex surely is the one to beat.

Odyssey's K.C.'s Krazy Chase for Odyssey 2

Ever since Odyssey"s (1-40 and Straw Plains Pike, Knoxville, TN 37914) munchkin, named K.C., was held in chains by Atari's legal pursuers. he has been eager to reappear on the TV screens of Odusser-2 players. Now he has his chance, this time pursuing multi-segment monster, called a Dratapillar, that roams through a maze. (Is that Dratapillar perhaps a relative of Atari's dreaded continued on page 21

RAVE

 REVIEWS

The second edition of TCG's Master Replacement Guide is bigger and better than ever! Electronic technicians across the nation have already made it their standard semiconductor cross reference book, and it's no wonder. With more than 2,600 quality TCG parts, cross referenced to over 210,000 part numbers, this guide has more replacement line numbers than G.E. or RCA!

LOOK FOR THE FULL LINE OF QUALITY TCG REPLACEMENT PARTS:

- Transistors
- Thyristors
- Integrated Circuits
- Rectifiers and Diodes
- High Voltage Multipliers and Dividers
- Optoelectronic Devices
- Zeners
G.E. is a re
G.E. is a registered trademark of the General Electric Company
- Memory IC's
- Thermal Cut-Off's
- Bridge Rectifiers
- Unijunctions
- RF Transistors
- Microwave Oven Rectifiers
- Selenium Rectifiers

TCG parts perform equal to or better than any other parts on the market, and come backed by an exclusive, full two-year warranty to prove it. You're assured of consistent quality because TCG parts are tested on state-of-the-art computerized equipment.
So be sure to ask your distributor for quality TCG replacement semiconductors in the bright green poly-bags and cartons that list device type, rating limits, diagrams and competitive equivalents right on the package! For your own copy of the cross reference guide that technicians are raving about, see your TCG distributor, or write:

NEW-TONE ELECTRONICS 44 FARRAND STREET
BLOOMFIELD, NEW JERSEY 07003

Now! Learn on the latest... NRItrcining includes 25"Heath/Zenith color TV with state-of-the-art features

- 6-function infrared remote control
- space phone lets you answer or call from your chair
- microprocessor-controlled PLL varactor tuner
- $82 \mathrm{VHF} / \mathrm{UHF}, 35$ cable channels
- 2t-hour programmable channel selection
- electronic time ciisplay
- 4-speaker FM sound system
- choice of three cabinets at student discount

We've taken the finest, most advanced, most complete TV/Audio/Video course available and made it even better. Now NRI brings your training up to and even beyond today's technology with the exciting, advanced performance Heath/Zenith Model 2501 TV. Now you can learn how to service even the latest circuitry on the most expensive TV sets as you assemble and perform experiments on your Heathkit/Zenith. Only NRI combines such complete training with such up-to-date equipment.

Choice of Three Specialties

And only NRI gives you the opportunity to specialize in any of three areas. You get the same complete training covering TV, audio systems, and video recorders, but you select your own specialty for practical, hands-on training.

You can choose to build the Heath/ Zenith color TV; specialize in audio systems and build your own AM/ FM stereo system; or take your bench training with remote-controlled videocassette recorder featuring NRI training on videotape. No matter

Choice of specialty training on TV, stereo, or VCR
which specialty you elect, your practical training also includes experiments and demonstrations with the exclusive NRI Discovery Lab ${ }^{\circledR}$ and your own professional digital multimeter. All equipment is yours to use and keep.

Learn in Your Spare Time

 No need to quit your job or tie up your evenings with night school...no classroom competition or rigid schedules. NRI trains you in your own home at your convenience. You're a class of one with complete course materials, practical training on the latest equipment, and the backing of a full staff of professional electronics educators. NRI brings it all to you.
The Professional's Choice

A million and a half students have already chosen the NRI way. And over half the practicing TV service technicians in the U.S. have advanced their careers with convenient home training. Among them, it's NRI 3 to 1 over any other school (summary of national survey on request).

Free Catalog... No Salesman Will Call

Get all the facts on complete, convenient NRI training. See all the equipment, look over complete lesson plans, check out our convenient time payment plans. And see the many other opportunities in fields like Microcomputers, Electronic Design, Communications Electronics, and more. Send postage-paid card and see what advanced training is all about. If card has been removed, please write to us.

Practical training on a real state-of-the-art TV using professional equipment

NRI Schools
McGraw-Hill Continuing Education Center 3939 Wisconsin Ave. Washington, D.C. 20016

We'll give you tomorrow.

The COEX Anatomy of a Printer

SPECIFICATIONS:
CHARACTER FORMATION PROCESS . . STANDARD FONT....
PRINTING DIRECTION
NUMBER OF COLUMNS NUMBER OF COLUMNS. CHARACTER SIZE. .

CHARACTER DENSITY
LINE SPACING. ... PRINTING SPEED. NUMBER OF COPIES PAPER WIDTH

INKED RIBBON .
\qquad .2 (original plus 2 copies for cabonless sets)
$8^{\prime \prime}$ to $10^{\prime \prime}$ for friction-fed paper and $3^{\prime \prime}$ to
$10^{\prime \prime}$ sprocket-fed paper
Standard Underwood spool type $1 / 2^{\prime \prime}(13 \mathrm{~mm}$) wide by 11.5 yards (10.5 m) long
DIMENSIONS.
$.387 \mathrm{~mm}\left(15.3^{\prime \prime}\right)$ wide by 309 mm ($12.2^{\prime \prime}$) deep by
$124 \mathrm{~mm}\left(4.9^{\prime \prime}\right)$ high. With tracto-feed assy, height is $171 \mathrm{~mm}\left(6.7^{\prime \prime}\right)$
POWER CONSUMPTION. WEICHT

90 watts maximum operation 25 watts standby 8.5 Kg (19 lbs.)

Best of all, the price...

COEX 80-FT

OPTIONS:
COEX Interface Card to Apple
$\$ 49.95$
Demo Disc for Apple Available to Dealers
Dealer Inquiries Invited
"Have You Kissed Your Computer Lately"
Components Express, Inc.
1380 E. Edinger • Santa Ana, Calif. 92705 • 714/558-3972
Terms of Sale: Cash, Checks, Credit Cards, M.O., C.O.D. Calif. residents add 6% sales tax.

VIDEOGAMES

CIRCLE 101 ON FREE INFORMATION CARD

Centipede"? No one is saying.)
K.C.'s Krazy Chase is one of the first Odyssey cartridges to be compatible with Odyssey's speech-synthes is module. The Voice, although that accessory is not required. The game is deceptively simple at first. You control K.C.'s movements through the maze. while the six-segment Dratapillar and two smaller characters (Drats) join torces to pursue K.C. Your goal at each level is to make K.C. gobble up the Dratapillar's segments without being caten by the Dratapillar's head or touched by a Drat. Once you eat a segment however, the Drats turn white and flee for a few seconds. Catching up to one causes it to stop and spin while you collect bonus points. The basic strategy then. is to have K.C. chase after the Dratapillar from behind. Of course, if you can cut of i a few segments from the moving Dratapillar, they stop. giving K.C. plenty of time to chew them up.

The Voice can be distracting during game play. It seems to issue warnings Iike, "Run" and "Hurty" at random-K.C. can be miles away from the nearest danger, and the voice will say
"Look Out. " That"s disappointing, but it redeems itself at the end of each level (when all Dratapillar segements are
eaten) by letting out a contagious. high-pitched laugh (while K.C. hops up and down) and saying, "Incredible!"' (while K.C. ©s mouth moves). It will take quite a while for the novelty of the laugh to wear avaly

I recently had out-of-town friends stay over a weekend. They didn't own a videogame, so their children. aged 7 and 9. were thrilled to have the luxury of having tive different video-game systems and dozens of cartridges to keep them busy. The one cartridge they kept coming back to-and one that the non-gaming adults seemed to enjoy most-was K. C. s Kraty Chase. That's a pretty good testimonial in my book.

Mattel's Bomb Squad for Intellivision

CIRCLE 102 ON FREE INFORMATION CARD

While the codebreaking games are not necessarily new. Bomb Squad from Mattel Electronics (5150) Rosecrans Ave.. Hawthorne, CA 90250) is decidedly different and fresh. The game is designed for use with the Imellivoice speech-synthesis module. The speech
from the module is used to prompt you through the steps of the game. Thus, although some is merely ornamental. much of the voice output is an integral part of the game play.

The scenario of the game puts you on a bomb-disposal team whose job it is to determine the correct code numbers (only one number at the casiest level) that will defuse a bomb set to destrov a large portion of the city within thirty minutes (game time, not real time). Each code number is hidden behind a grid of 20 squares. Each square of the grid in turn represents an electronic circuit that needs fixing hefore you can sce whether or not the syuare contains part of the number. You need to fix as many circuits as you can within the time period to figure out the code number from the exposed squares.

When vou choose a circuit to tix, the work really begins. The screen becomes a colorful circuit board. with several components highlighted. The demolitions expert, named Frank, calls out to you (via the Intellivoice module) to either cut out certain components (and substitute jumper wires) or replace them with spare ones located above the circuit. In the latter instance, however. you may have to try several components to determine whether you're to follow the shape or the color of the original. In any case. you have to follow the correct sequence that Frank calls out, or you're in big trouble.

While you and Frank are busy performing circuit surgery. Boris (the terrorist who planted the bomb) razzes you with phrases like, 'It won't be casy." and a European-style police-car siren rises and falls in the background.

Breaking the code is cause for celebration: an on-screen fireworks display over the citys skyline and Frank hearty proclaims that "You're a hero!", But if you guess wrong, he says 'Oh. no! - -and the skyline loses one-third of its buildings in an explosion while the waterfront ripples from the blast.

Bomb Squad is not a game to pick up for an easy or quick play. You'll need to understand the inanual thoroughly before you get the hang of it. And be prepared for a lengthy sit-down. If adventure and strategy are your games, you'll enjoy Bomb Squad. but it's not something you will play over and over in one session. R-E

- Mode automatically shifts between CHOP and ALTERNATE
- Bright P31 blue phosphor
- Front-panel X-Y operation
- Differential input capability
- 19 calibrated sweeps-. $5 \mu \mathrm{SEC} / \mathrm{cm}$ to $.5 \mathrm{SEC} / \mathrm{cm}$
- Sweep to $.1 \mu \mathrm{SEC} / \mathrm{cm}$ with 5 x ; $1.5 \mathrm{SEC} / \mathrm{cm}$ with uncalibrated vernier

BUKPRECISION 30 MHz TRIGGERED SCOPE

- Built-in signal delay line permits view of leading edge of high frequency pulse rise time.
- Triggers on signals up to 50 MHz
- Rectangular CRT with P31 phosphor
- Mode automatically shifts between CHOP and ALTERNATE

70 MHz . Dual Time BASE SCOPE

CALL FOR OUR GRAND OPENING MODEL PRICES

- $1 \mathrm{mV} /$ division sensitivity to 70 MHz
- $500 \mu \mathrm{~V} / \mathrm{division}$ cascade sensitivity
- Four-input operation provides trigger view on 4 separate inputs.
- Alternate time base operation
- Switching power supply delivers best efficiency and regulation at lowest weight

100MHz Dual Time BASE SCOPE

- $1 \mathrm{mV} /$ division sensitivity to 100 MHz
- $500 \mu \mathrm{~V} / \mathrm{division}$ cascade sensitivity
- $2 \mathrm{~ns} /$ division sweep rate with $10 \times$ magnifier
- Four-input operation provides trigger views or four separate inputs
- Selectable $1 \mathrm{M} \Omega$ or 50Ω inputs
- Alternate timebase operation
- 20 MHz bandwidth limiter for best view of low frequency signals
- Lighted function pushbuttons employing electronic switching with non-volatile RAM memory
- Switching power supply delivers best efficiency and regulation at lowest weight
- Selectable frequencies for chop operation PRICE DOES NOT
INCLUDE PROBES

KEITHLEY
 DIGITAL MULTIMETERS

Model 128: Beeper DMM designed to meet the tough specifications of a major computer manufacturer. See/hear display includes over/under arrow and on/off beeper.

Model 131: 0.25% accuracy added to the easiest to use handheld DMM. Color-coded front panels for maximum clarity, minimum confusion.

Model 128: ${ }^{5} 139.00$
Model 130: ${ }^{\mathrm{s}} 124.00$

Model 131: ${ }^{5} 139.00$
Model 130: Keithley user research led to unique DMM designs. Easy to read LCDs, largest DMM displays on the market.

Model 135: First $41 / 2$-digit handheld DMM, ideal for analytical/bio-medical service. 10A range standard on all Keithley handhelds.

Model 135: ${ }^{\text {s } 235.00 ~}$

- Mastercharge \& Visa shipped within 24 hours.
- Bank checks or Mon $\mathrm{m}_{\text {- }}$ Orders shipped within 24 hours.
- Personal checks - please allow 3 weeks for check to clear.
- All prices plus shipping charges. Please call for appropriate charges. Use our toll free number.
- New York State resicents add appropriate sales tax.
- PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

Quantitles are limited

(0) HITACHI OSCILLOSCOPES

V134 10 MHz Dual Trace Storage
V202 20 MHz Dual Trace
V203 20 MHz Dual Trace w/delay sweep
V209 20 MHz Dual Trace Portable
V352 35 MHz Dual Trace w/delay line
V353 35 MHz Dual Trace w/delay sweep
V509 50 MHz Dual Trace Portable
w/delay sweep
V650 60 MHz Dual Trace w/delay sweep
V1050 100 MHz Quad Trace w/delay sweep
All in Stork Ready for immediate shipment.
Call for our Special Grand Opening Prices
All Hitacri Oscilloscopes feature 2 year parts and labor warranty

BK patcision INDUSTRIAL
 TESTER $\$ 189^{95}$
was $\$ 239$
MODEL 520B

- Now with HI/LO Drive
- Works in-circuit when others won't
- Identifies all three transistor leads
- Random lead connection
- Audibly and visually indicates GOOD transistor

BK Prficision

\$27900 ${ }^{1601}$
was 354.

- Isolated 0-50VDC, continuously varlable; 0-2A In fot. ranges
- Fully sutomatic shutdown, adjustable current Ilmit
- Perfect for solld state servicing

POWER SUPPLIES

was ${ }^{3} 375$

- Functions as three separate suppl
ies
- Excluslve tracking circult
- Fixed output 5VDC, 5A
- Two 0 to 25 VDC outputs at 0.5 A
- Fuily automatlc, current-IImited overload protection

FLUKE

4½ DIGIT MULTIMETERS

Frequency
MODEL 8060A measurements to 200 KHz

- dB measurements
- Basic dc accuracy 0.04%; $10 \mu \mathrm{~V}$, 10 nA and 10 ms . sensitivity.
- Relative measurements
- True RMS
- High-speed

Beeper

- Continuity and relative reference functions identical to

MODEL 8062A 8060A.

- True RMS measurements to 30 kHz .
- Basic dc accuracy 0.05\%; 10 $\mu \mathrm{V}, 10 \mathrm{nA}$ and 10 ms sensitivity.
- Beeper
\$27900 was $\$ 379$.

MODEL 3010

- Sine, square and triangle output
- Variable and fixed TTL outputs
- 0.1 Hz to 1 MHz In alx ranges
- Push button range and function selection
- Typical sine wave distortion under 0.5% from 1 Hz to 100 kHz

MJDEL 3010 $\mathbf{\$ 9}^{95}$

 was $\$ 220$.${ }_{3020}^{\text {MJDEL }} \$ 299^{95}$

FUNCTION GENERATORS

SWEEP FUNCTION MODEL 3020

- Fcar instruments In one package sweep generator, functlon generator, pilse generator, tone-burat generator Covers $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$
1000:1 tuning range
- LCN-distortion high-accuracy oitputs

CAPACITANCE METERS

BKYpRECISION
$\$ 179^{95} \quad \$ 149^{95}$ was $\$ 229$.

MODEL 830

- Automatically measures capacitance from 0.1 pF to 200 mF
- 0.1pF resolution
- 0.2\% basic accuracy
- 31/2 digit LCD display

MODEL 820

- Resolves to 0.1pF
- 4 digit easy-to-read LED display
- Fuse protected against charged capacitors
- Overrange indication

BK precision COLOR PATTERN GENERATOR

$\underset{1210}{\text { MODEL }} \$ 129^{95}$ was ${ }^{*} 159$

Generates 10 stable patterns including crosshatch, 7×11 dot. gated rainbow and purity. Compact for convenient field service use

LETTERS

Address your comments to: Letters, Radio-Electronics, 200 Park Avenue South, New York, NY 10003

RADAR DETECTORS

The October 1982 issue of RadioElectronics contains a letter on radar detectors by Mr. J. Frank Fields. Much of his letter is aimed at a letter of mine which had been published previously, but much of it is beside the point, because I had expressed no opinion in regard to the accuracy or reliability of radar speed measurements but had limited my discussion to the probable use to which radar detectors were put.

To support his views, Mr. Fields offers 20 years' experience as a physicist with the Department of Defense. To support mine I would offer over 50 years of driving experience. During that time, I have driven over a half million miles in 40 of the 50 States and in 10 of the 12 Provinces of Canada. Everywhere I have gone, I have observed that the vast majority of drivers exceed the speed limit when they think they can get away with it. Any impartial person can check that for himself by
taking his car on an unpatrolled section of expressway and seeing what happens when he drives at exactly the speed limit-nearly everyone else will pass him. From that, would conclude that is is the intent of most drivers to break the speed-limit laws.

At the same time, I have observed that when a police car is visible, all traffic slows down. From that I would conclude that it is the intent of most drivers to avoid getting caught for speeding. Whether they accomplish that by having one eye peeled for a police car, or by use of an electronic device is immaterial. The intent is the same.

Mr . Fields then gives some "other" uses for radar detectors, but it will be noted that in each case he starts with the assumption that 'the car is being driven within the speed limit. If my observation (that drivers who consistently drive within the limit even when they are unobserved by the police are insignificant portion of the total driving population) are cor-
rect, then it follows that Mr. Field's other uses for radar detectors are insignificant when compared to the primary most probable use, which is to avoid getting caught speeding. RICHARD KOLASINSKI
Richmond, MI

COMPONENT CHECKING

I enjoyed Karl Thurber's article on buying mail-order components (Radio-Electronics, September and November, 1982). I would really like to make several additions to his excellent article.

When checking diode or transistor junctions with a VOM, the readings are relative to the voltage and current impressed on the device. I have found the $\mathrm{R} \times 1$ current on various ohmmeters to be as much as 320 mA . Readers would be advised to measure their R
scale with a milliammeter so they don't overcurrent the device under test. A way to do

that is to measure the resistance of a good silicon or germanium diode with a milliammeter in series with it. Write the current reading (in the forward direction) on the VOM case for reference. Keep in mind that some ohmmeters may have reversed polarity on the test leads, and that some digital ohmmeters have such low voltage and current that a good junction will check open with either polarities.

Salvaging used components has great educational value. After testing thousands of resistors, capacitors, etc. the technician develops a good sense of how components change or fail. I use salvaged components to run "destructive" life tests. Do you know how hot a resistor gets at full load or how many volts you can put across a 400 -volt capacitor before it blows? Lastly the sources of components mentioned in the article are also a good place to buy good industrial quality but old test equipment.
DELBERT S. SHAFER, CET
Warren, OH

VOLTAGE FREEZER

Leonard Lee's voltage-freezer circuit (New Ideas, Radio-Electronics, November 1982) is a good solution to what is sometimes a vexing problem in circuit accessibility. I do have some comments on protecting the components in the circuit to ensure a long and healthy life, however.
First, if the circuit voltage being measured has a low impedance, the tantalum capactor could be damaged by a characteristic of solid tantalums-lack of electrolyte mobility. The current should be limited a series resistor to 333 mA . In addition, if the leads are even briefly reversed, the capacitor could be damaged. A better idea is to use a polypropylene on polycarbonate capacitor. An additional advantage to those capacitors is lower leakage, and no series resistor is required.
Second, a series resistor should be used between the capacitor and the non-inverting input of the op-amp. Since op-amps can be damaged in any number of ways (input signals outside the supply rails, excessive differential-mode voltage due to slew-rate limits, etc.) the resistor (about 10 K is enough) can limit the input stage current to a safe value in case of a reversed or out-of-limit input voltage. That series resistor will not add any error because of the high op-amp input impedance.
Third, be sure that you never turn off the supply voltage while the storage cap is still charged. That will result in a high substrate current in the IC after which you can kiss it goodby! Always discharge the cap before shutting off the voltage freezer. CHAS. HANSEN
Tinton Falls, NJ

WHAT'S BETA?

I must compliment Manny Horowitz on his fine series written about analog circuits. It is an excellent review for me, and it also enlightens me about some subjects I have not studied.
There is an error however, in an equation as published (Equation 3-b in August 1982 issue). As written it is $\beta=x /(x-1)$. When trying to prove the formula (i.e. how is it derived?) by substituting I_{C} / I_{B} for β and $I_{C} I_{E}$ for x and 1 replaced with I_{E} / I_{E}, it reduced to $I_{E}=$ $I_{C}-I_{B}$. This is incorrect because $I_{E}=I_{C}+$ $\left.\right|_{B}$. At first, I thought my algebra incorrect (I still
did not notice that the formula was wrong) and coly when plugging in an assumed x (x $=.99$ when $\beta=100$) in the original equation and getting a negative β for an answer did । realize that the denominator was reversed The correction equation is $\beta=\alpha /(1-\alpha)$.

There is also a statement that bothers me. It appears in the next-to-last paragraph on page 54: "Because the emitter current is equal to the base current multiplied by beta..." That is only an approximation. I learned that: $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}} /(\beta+1)$ so $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}(\beta+1)$ and I_{C} $=I_{B} \beta$, neglecting leakage currents. I realize that it seems nit-picky on my part; however, having survived through 3rd Semester Electronics at Idaho State University (an excellent program and faculty by the way), I am conditioned: $I_{C}=I_{B} \beta$ and not $I_{C} \approx I_{E}$, although that approximation can be used in many in-
stances. My point is that the word "approximately" should be used as a clarification and caution so that a beginner might not get misled and confused.
ANDREW HITT
Boise, ID

NOT HIS WHOLE LIFE

Hurrah for Joseph Miller's letter suggesting that you ease off computer articles. New allband receivers, amateur transceivers, scanners, radar detectors, and hi-fi receivers are hitting the market every day. Let's hear about them. Although I own a computer, it's not my whole life-l hope it doesn't become yours.
JOHN R. MYERS, K5CUY
Kingsland TX
R-E

ERASABLE CIRCUIT BUILDING.

Build a circuit almost as fast as you dream it up. Pull it apart and do anothereverything's as good as new. Our versatile Super-Strip mini-breadboards give you the same top-quality contacts you get in our fullscale ACE All-Circuit Evaluators. Not so "mini," either. You can build circuits with
> as many as nine 14-pin DIPs.
> Instant-mount backing and quick-removal screws make stacking and racking a snap, too. Where to buy? Phone (tollfree) 800-321-9668 for the name of your local AP distributor. In Ohio, call collect 216-354-21O1. And ask for our complete A P catalog.

A P PRODUCTS INCORPORATED
9450 Pineneedle Drive
P.O. Box 603

Mentor Ohio 44060
[216] 354-2101
TWX: 810-425-2250
In Europe, contact A P PRODUCTS GmbH
Baeumlesweg 21•D-7031 Weil 1 •W. Germany

"I built this 16-bit computer and saved money. Learned a lot, too:"

Save now by building the Heathkit $\mathrm{H}-100$ yourself. Save later because your computer investment won't become obsolete for many years to come.

Save by building it yourself. You caan save hundreds of dollars over assembled prices when you choose the new $\mathrm{H}=100$ 16-Bit/8-Bit Computer Kit money you can use to bu'y the peripherals and software of your choice.
H-100 SERIES COMPUTER SPECIFICATIONS:

USER MEMORY:
128K-768K bytes
MICROPROCESSORS
16-bit: 8088
8-bit: 8085
DISK STORAGE:
Built-in standard
5.25 disk drive.

320K bytes/disk
KEYBOARD
Typewriter-style. 108 keys. 13 function keys. 18-key numeric pád GRAPHICS:
Always in graphics mode. $640 \mathrm{~h} / 225 \mathrm{v}$ resolution; up to eight colors are available
COMMUNICATIONS: Two RS-232C Serial Interface Ports and one parallel port

DIAGNOSTICS:
Memory self-test on power-up
AVAILABLE SOFTWARE:
Z-DOS (MS-DOS)
CP/M-85
Z-BASIC Language
Microsoft BASIC
Multiplan
SuperCaic
WordStar
MailMerge
Data Base
Manager
Most standard
8-bit CP/M
Software

$$
128 \mathrm{~K} \text { bytes standard }
$$

The. $\mathrm{H}-100$ is easy to build the step-by-step Heathkit manual shows you how. And every step of the way. you have our"pledge "We won tlet you fail." Help is as close as your phone. or the nearest Heathkit Electronic Center. And what better way to learn state-of-the-art computing techniques than to build the world's only 16 -bit/ $/ 8$-bit computer kit? To run today's higher-speed. higher-performance 16 -bit software. you need an $\mathrm{H}-100$. It makes a significant difference by processing more information at faster speeds
Dual microprocessors for power and compatibility. The H-100 handles both high-performance 16 -bil software and most current Heath Zenith 8 -bit software
Want room to grow? The H-100's standard 128K byte Random Access Memory complement can be expanded to 768 K bytes compared to a 64 K standard for many desktop computers.
And the industry-standard S-100 card slots support memory expansion and additional peripheral devices. increasing future upgradability of the $\mathrm{H}-100$.
High-capacity disk storage. too. The H-100's 5.25 'floppy disk drive can store 320 K bytes on a single disk. The computer also supports an optional second 5.25 and external $8^{\prime \prime}$ floppy disk drives. And an optional multimegabyte internal Winchester disk drive will be available in the near future:

The H-100 gives me the most for my computer dollar!

Critical circiuits are pre-assembled, making the $\mathrm{H}-100$ easier and faster to build!

Want bèautifull high-re'solution graphics? You can create extensive charts. drawings. graphs and symbols to meet your needs using the H -100's bit-mapped graphics and its 640×225 pixel video display.
The $\mathrm{H}+100$ gives you total communicalions flexibility. Three interface ports let you plug in dot-matrix and letter-quálity printers. as well as other peripherals

Compare the H-100's exceptional capabilities with other desktop computers:

Learn by building. When you build and operate the $\mathrm{H}-100$ you learn more about this sophisticated computer sysfem and its unique 16-bit 8-bit software capabilities

Learn from outstanding documentation. One of the most important parts of any computer system is dכこumenfation and Heathkit documentation is amorç the industry s best. Our instruction and operating ma uals are fully detailed. in the world-famous Heathkit tradition.
Learn by doing. Many of our software programs come with a complete set-up and operating manlal. More complete than most other software documentation. each manual not only tells you what the program vil do it shows you the easiest way to accomplish each task.
We back you all the way. With Heathkit complter products. technical assistance and expertise is as close as your telephone - or the nearest Heathkit Electronic Center. © Complete technical assistance and service is available at over 60 locations nationwide.
Buy from a leader. When you choose a Heathkit computer. you get the backing and reliability of the world's leader in quality electronic kits for over 50 years! You can count on us for quality. service. reliability and value at kit prices that give you more computer for ycur dollar! See the H-100 in action: Visit your nearby Heathkit Elec-

Always in graphics mode. you can control each of the $\mathrm{H}-100$'s 144.000 screen dots! (Color graphics optional)

Heathkit Electronic Centers are units of Veritechnology Electronics Corporation Heath Company and Veritechnology Electronics Corporation are sabsidiaries of Zenith Radio Corporation. Prices. product'availability and specifcations are subject to change without notice.

EQUIPMENT REPORTS

Voicetech Industries Speech Synthesizer Kit

CIRCLE 103 ON FREE INFORMATION CARD

THOSE OF US WHO ARE INTO ELECTRONICS as well as computers enjoy the best of both worlds. Have you ever wondered

how computerists who are not electronically oriented get along? You have to assume either that they cannot enjoy the
full benefits of their computers or that they have fat wallets.

We, on the other hand, usually won't hesitate to pick up a soldering iron to build some add-on for our systems. We'll even take the covers off and go inside our machines to make a modification or repair now and then. What that means is that we can keep the expense of maintaining and expanding our computers relatively low.

Nonetheless, there is one computer application that, because of its cost, has been off limits even to builders. That application is speech synthesis. There are few computerists who would not at least like to experiment with adding speech capability to their systems. Many also have specific needs for computer speech; among the fields where it might be useful are early childhood education, working

TRITON MARKETING COFP.
TOLL FREE HOT LINE
670 REMSEN AVENUE
1-800-221-8838
BROOKLYN, N.Y. 11236
1-212-348-8000

mICROWAVE TV

MDC - $23 D$

- Commerclal styung
- 2 microwave stage:
- 53 se syotem alm
- 2.1-2.6 aHz
- Bult in A/b swhth
- All Cable a hardwara

工 $\$ 149.95=$

MDC - $23 P$

- 3.76 eq. f. Paraboht
- 2 Mkrowave suapen
- 37 de syatom Cam
- 2.1-2.6 aHz
- Buen mat awhon
- All cable a hardmare二 $\$ 199.95=$
WE CABIIY A GOWPLETE LINE OF CABLE TV CONVERTERS \& DECODERS

SATELLITE TELEVISION SYSTEMS

TRITON:

A NEW APPROACH
TO
SATELLITE TV

DON'T BUY LESE BYBTEM THAN YOU WANT, OR MORE THAM YOU MEED. OME PHONE CALL WILL INOURE THAT YOUR ©ATELLITE DOLLARE ABE WELL EPEMT.

ALL TRITON 8Y8TEMS ARE EXPANDABLE. START WITH THE "ADVENTUER" AND YOU CAM ADD COMPONENTE AB YOUN NEEDE CHAMEE.

MO 8Y\&TEM 18 COMPLETE UMTIL YOU DECIDE IT $18 . . .$.
ADVENTURER: 10^{\prime} fiberglass with pole polar mount, A vantek 120° K LNA, Gillaspie 7600 A receiver, electronic scaler feed, 100^{\prime} wire and instructions.
-2278.00
STARGAZER: The "ADVENTURER" plus East/West motor drive.
2826.00

STATESMAN: The "ADVENTURER" plus a programable motor drive.
3015.00
837.00

EXECUTIVE: The ultimate system with wireless remote control. Featuring a 10^{\prime} fiberglass reflector, pole polar mount, IR remote, auto polarization of A vantek $100^{\circ} \mathrm{K}$ LNA, all stereo formats, programable motor drive.
3750.00

URBANA: A true roof mountable system weighing only 160 pounds. With an A vantek $120^{\circ} \mathrm{K}$ LNA, Gillaspie 7600 A receiver, scaler feed and rotator, East/West motor drive, 100^{\prime} wire and instructions.

Fordham Lowers Prices on B RRemessen Test Equipment

Now Fordham is passing on to customers the hugest savings possible on test instruments. To help celebrate the opening of our new 40,000 square foot facility on Long Island, we've purchased an extra large inventory of B\&K Precision products.

We're offering the quality of name brand products and the benefits of our volume purchasing power. While supplies last we guarantee these unbelievably low prices.
 Bry

- 100 MHz response, 3.5 nS rise time - $2 \mathrm{nS} / \mathrm{div}$. sweep rate with 10X magnifier - Trigger views or four separate inputs - Dual time base - 1 M ohm inputs or 50 ohm inputs - 1 mV /div sensitivity to 100 $\mathrm{mHz} \bullet \mathrm{CH} 1$ frequency counter output - Delayed sweep, 20 ns to 0.5 seconds - Alternate timebase - Switching power supply - Selectable chop frequencies \bullet Voltage and current probe calib

Low Distortion
 Function Generator

- Generates sine, square and triangle wavetorms - Variable amplitude and fixed $T \mathrm{~L}$ squarewave outputs $\bullet 0.1 \mathrm{~Hz}$ to 1 mHz in six ranges - Typical sine wave distortion under 0.5% from 0.1 Hz to $100 \mathrm{kHz} \bullet$ Variable DC offset for engineering applications
- VCO external input for sweep-frequency tests.

Dynapeak Transistor
Tester
Model 520B
Reg. $\$ 239.00$
Now \$499 each

- Fast lesting - Hi/Lo drive - Works in-- Fast when others won't • identifies leads oircuit when ond Fipolars ands - Random lead connection - Audible test OK 'beep' - Automatic NPN/PNP and Si/Ge identification

CRT Restorer/Analyzer
Model 467
Reg. \$495.00
 b/w picture tubes like new! Uses the most powerful restoration.
method known win
CRT - Exclusive muinimal danger to the tests all three guns of colex test technique taneously under actual operating condition even CRT's with common G1 and conditions real dynamic tests - with 1 and G 2 , with tracking.
for ordering or Pricing on other test equipment

GRAB HOLD OF 1983 TECHNOLOGY WITH A SAMS BOOK!

Learn about digital basics, working with fiber optics, generating electronic music, building intrusion alarms, managing home energy with your microcomputer, and more! Find out how YOU can do them all with these Sams Books: HOWARD W. SAMS CRASH COURSE IN DIGITAL TECHNOLOGY is our newest Sams Crash Course! It quickly provides you with digital circuit fundamentals, including state-of-the-art components, ICs, techniques, methods, and developments. No prior knowledge of digitals is necessary! No. 21845, \$20.95

SAMS BOOKS

BUILDING AND INSTALLING ELECTRONIC INTRUSION

 ALARMS (3rd Edition) helps you build your own protection against robbery, burglary, and eavesdropping in your home or car. Also covers personnel identification and verification, as well as detection of concealed weapons! No. 21954, $\$ 10.95$FIBER OPTICS COMMUNICATIONS, EXPERIMENTS \& PROJECTS clearly explains light-beam communication fundamentals, introduces you to the simple electronic devices used, and lets you participate in transmitting and receiving both voice and music by means of a light beam traveiling along a slender glass fiber! No. 21834, \$15.95 ELECTRONIC MUSIC CIRCUITS shows you how to build a custom electronic music synthesizer, outlines numerous other designs, and then shows you how to modify them to achieve particular responses. Many of the circuits can be used for special effects with guitars and other musical instruments. No. 21833, \$16.95
COMPUTER-ASSISTED HOME ENERGY MANAGEMENT helps you create a working energy-monitor for your home, using your microcomputer coupled to inexpensive temperature sensors and other easily built system hardware. Includes all details, necessary programs, documentation, and more. No. 21817, \$15.95
To order your Sams Books, call 800-428-3696 or 317-298-5566 and reference AD255.

HOWARD W. SAMS \& CO., INC.
4300 West 62 nd Street • P.O. Box 7092 • Indianapolis, IN 46206 Offer good in USA only and expires 6/30/83. Prices subject to change without notice In Canada. contact Lenbrook Industries. Lid., Scarborough, Ontario

VITEOEGU PVIENTI QUALIY • LOW PRICES OFF-MBSSHZ- DELMERY from FORDHAM of course.

BP STABLIZER/IMAGE ENHANCER/RF CONVERTER/ VIDEO FADER/2-WAY DISTRIBUTION AMPLIFIER our price $\$ 135.00$
 each

Most versatile video processor. Contains tive units in one: stabilizer (video guard remover); image enhancer; video to RF converter; video fader; and dual output distribution amplifier.
Stabilizer Will correct entire range of copy guard distortion such as jitter, vertical roll or black bar travelling through picture.
Enhancer Lets you attain best picture for your own preterence.
RF Converter Allows your TV set to receive video and audio signals from your image enhancer, guard stabilizer, video camera, computer, VCR, etc. The direct video signal from any video component can be led into the $V-1880$ and converted to a usable RF signal that can go to your TV antenna terminals. Video Fader Used to produce protessional tade ins and fade outs.

BP video guard stabilizer MODEL V-1875

our price $\$ 45.00$
Has self contained A\&B and bypass swith Mary has ses, concerts and special programs for sale or rental are copy gurded This pmoves copy guard rental are copy guarded. This removes copy guard and allow you not play prerecorded tapes because copy guard causes picture to roll and jitter, turn to snow or disappear. Vıdeo Guard Stabilizer removes copy guard from signal.

BP VIDEO GUARD STABILIZER/

 RF CONVERTERMODEL V-1877

our price \$69.95
Same as above bul with a built-in RF Coriverter that gives the model V-1877 an RF output which can be led directly to the antenna terminals of a TV set. This enables you to remove the copy guard from a pre-recorded tape and view it on a TV using only a VCR.
Use as an RF Converter only. Used in conjuncion with your TV, you can feed direct audio and video signals from any video device such as video camera, computer, portable VCR, etc.

BP VIDEO COMMAND CENTER MODEL V-4803 our price $\$ 59.95$

 A switcher that can direct them to 3 and puts Utilizes switch puls. Unizes swilar home VCA's You avoid signal loss incurred by using splitters.JERROLD 60 Channel CORDLESS TV CONVERTER MODEL DRX-3-105

CALL FOR PRICES

- Receive up to 60 TV channels - Remote TV Control - Atrach to any age or model TV in minutes. - No tools required. On/Oft button - Charinel selection. Channel Stepping. - Fine Tuning.

JERROLD JRx TV REmote

 CONVERTERMODEL JRX-3C105 (SWITCH) our price $\$ 79.95$ each Consists of two unis - a receiver and transmitter. 20 ft. connecting cord is detachable at one end to help you position the unit. May be attached to any age or model TV in
minutes. No tools required - Receive up to 36 channels. Remote TV control.

BP VIDEO CONTROL CENTER MODEL V-4802

 our price \$19.95 each Provides remole control access of all Video. TV or Cable inputs to TV or Big Screen TV from one location by flipping switch.- One output, your

TV set or Big Screen TV

- Four inputs - Completely passive, ie. no AC power required to operate - Auxiliary input and output provides added flexibility.

BP UHF CONVERTER FOR TV AND VTR
MODEL V-5736

$$
{ }^{736} \text { OUR PRICE } \$ 24.95
$$

Use your VCR to its

$$
5 \text { FOR } \$ 100.00
$$ maximum capability Cable or Pay TV while watching any other

watching
FEATURES - 36 channels

- Allows complete programming
of VTR - Super color quality
- Watch or record any combination
of selectable channels. Receives midband,
superband/Pay and all VHF channels on UHF
- For Beta/VHS type recorders or TV set - Record and use TV's remote control.

BP image enhancer

MODEL V-1860
Dramatically improves performance
of video
cameras and VCR's
lott-the-air lofthe-air
or second generation recordings) by compensar ting for deterioration of detail and
 55.95 each sharpness. Inciudes video distribution amplifier with two video outputs, allowing you to make two copies at once without loss in signal level.

BP RF CONVERTER/MODULATOR MODEL V-1885

 our price $\$ 39.95$ eachAllows your TV
to receive video
and audio signals
from image en-
hancer, guard
stabilizer, video
camera, computer, VCR, et
The outputs of many video
components cannot be directly hooked up to the VHF antenna terminals on your TV set. This problem is solved by using the Model V-1885 RF Converter. Converts video signal from any video component to adjustable RF signal at antenna terminals. Allows your VCR output to feed two TV sets at the same time, with virtually no signal loss.

And You Can Build It "Instantly" With One Of E-Z CIRCUIT's Professional PC Design Kits... Ideal For Personal Computer Applications!

An E-Z CIRCUIT "Anything Board" is ust that. Anything you want it to be. Just use your imagination, plus an E-Z CIRCUIT Professional PC Design Kit, and you can build an instant one-of-a-kind PC board to accomplish virtually anything you want - at a substantial savings (up to 40%) over pre-etched boards on the market today. Ideal for building special function interfaces for personal computer applications. You can also prototype, repair or modify existing circuitry. And there's NO artwork, NO photography, NO screening, NO etching!
The secret? E-Z CIRCUIT's unique, pressure-sensitive COPPER mounting configurations and tapes that, when applied to your PC board, work like conven tional circuitry. You solder the components directly to them
RADIO-ELECTRONICS Editor "Doc" Savage says this about the E-Z CIRCUIT system: "Those patterns are not for making artwork - they are copper. When you have pressed them down on a board, you are ready to mount the circuit components, solder them in place and turn on the power! That is what I call instant PC boards." "Having used this E-Z CIRCUIT system, I can report that it is quick, easy and reliable. It is the best wayl have found to make one or two-ot-a-kind PC boards."

Choose from four E-Z CIRCUIT Kits (see chart at right) Distributor, or to place your order
保 $(800) 782-8766$ FREE
(8 to 5 PST Mon. thru Fri.) Cali., Hawaii and Alaska, call (213) 991-2600) (213) 991-2600)

EACH KIT CONTAINS a full assortment of pressure-sensitive copper design products as listed below, PLUS a special purpose PC board with matching connector patterns - OVER 200 PIECES!
FOR APPLE II APPLICATIONS
Order Kit Catalog No. EZ8954 ... \$63.20*

FOR S-100 APPLICATIONS
Order Kit Catalog No. EZ8953 . . . \$68.20*

FOR STANDARD BUS APPLICATIONS
Order Kit Catalog No.
EZ8952 ... \$62.80*

FOR EUROCARD APPLICATIONS

DESCRIPTION

QUANTITY
Terminal (Donut) Pad St
$300^{\prime \prime}$ Center-to-Center 5 Strips
Terminal (Donut) Pad Strips .200" Center-to-Center 5 Strips
Conductor Strip - 031"LW 1 Strip

Discrete Component Strip	1 Strip
DIP Pattern Triple Pat	1 Stip

DIP Pattern, Triple Pad
3 Strips
D/P Pattern, Four Pad

Donut Pads $-.125^{\prime \prime} \times .040^{\prime \prime}$	96 Symbols
Copper Tape $-031^{\prime \prime} . .062^{\prime \prime}, 100^{\prime \prime}$	1 Roll ea.

Insulating Tape $-.200^{\prime \prime}$	1 Roll
Distribution Strip $-400^{\prime \prime}$	3 Strips

Center to-Center Single Row
3 Strips
T0-5 Pattern, 4, 6, 8, $10 \& 12$-lead
10 Symbols ea.
Power Transistor Mig. Pattern
SCR Stud Mig. Pattern
X-acto Knite Holder \& Blade Alignment Pins

5 Symbols
trapping and easy-editing features, you can have your computer saying your name in a couple of minutes. From there on, the sky is the limit-mix and match the available 64 allophones as you wish.

You need not be concerned about the quality of the Voicetech synthesizer or the intelligibility of its speech. With the the two-inch speaker we got from Radio Shack, speech was quite intelligible, but when a better speaker was used, the synthesizer put out speech that was at least as good as that of any microcomputer synthesizer this reviewer has ever heard. The speech quality is higher than some off-the-shelf models that cost a good bit more. In addition, it is relatively easy to modify the audio-filter components to produce a sound that best matches your speaker, preferences, and needs.

Adding speech to enhance your programs is an easy matter. The speech is held in simple one-dimensional arrays. When words are needed, one or more of the appropriate arrays are fed through a short "talk" subroutine.

Of course, neither this nor any other speech synthesizer is capable of producing speech comparable to that from a TV or recorder-the speech has a definite "machine-made" quality to it and people seem to vary in their adaptablity to it. Some hear it clearly and distinctly right from the first, while others seem to require a bit of time before they get used to it. In any case, the Voicetech speechsynthesizer kit and manual provide the least expensive way to get good quality speech from your computer.

R-E

ALTHOUGH THE CAPACITANCE METER IS not usually mentioned in discussions of test instruments, it can be a very valuable
addition to your test bench. One paricularly useful meter is the model CM-100 Capacitance Instrument from Anders Precision Instrument Co., Inc. (4 Bridge St. Plaza, PO Box 75, Willimantic, CT 06226). It not only can measure capacitance values in or out of circuit, but it can also measure capacitance current-leakage-the usual cause of capacitor failure.

The CM-100 measures capacitance values from 1 pF to $25,000 \mu \mathrm{~F}$ in seven ranges: $\mathrm{pF} \times 10, \mathrm{nF} \times 0.1, \mathrm{nF}, \mathrm{nF} \times 10$, $\mu \mathrm{F} \times 0.1, \mu \mathrm{~F}$, and $\mu \mathrm{F} \times 5$. For most capacitors, the measurement procedure is straightforward. You plug one end of the supplied test leads into the capacitor jacks and clip the other end onto the capacitor (you must make sure that polarized capacitors are oriented correctly). If you do not know the approximate value of the capacitor you are measuring, start at the highest range ($\mu \mathrm{F} \times 5$) and work your way down. To make the actual measurement, hold in the capacitance button. Within eight seconds you will be able to read the value on the front panel's mirrored, $31 / 2$-inch, analog meter. That meter is marked from 0 to 100 in increments of two. The range switch provides you with the proper multiplier.

For capacitors larger than $5000 \mu \mathrm{~F}$, the measurement procedure is different-an external 0 -to- 10 -volt meter is required. That meter is attatched to the external meter jacks and the capacitance button is held in as before, but now the external meter is read. The voltage reading is converted into units of capacitance by using the External Range Calibration Curve that is found in the instruction manual. Be cautious when hooking your meter up to the $C M-100$ to make capacitance measuremnts. When the positive voltmeter-lead was attatched to the red external meter jack on our test model, the needle deflected backwards.

The null control is used to null out the capacitance of the test leads and the $C M$ 100 itself. It can null up to 10% of the measurement on any scale. Normally, the null controll is turned fully counterclockwise, but when using the lowest range ($\mathrm{pF} \times 10$), you must adjust the control so that the meter reads " 2 " without the capacitor connected.

When measuring capacitances greater than about $10 \mu \mathrm{~F}$, the meter's needle will fluctuate between $\pm 5 \%$. The instruction manual points out that a $10,000-\mu \mathrm{F}$ capacitor can be wired across the meter terminals to reduce the fluctuation. Although the time it takes to make a measurement is increased when the capacitor is attached, the meter is easier to read with it in place.

The instruction manual also includes a schematic diagram, a parts list, a partsplacement diagram for the CM-IOO, and test and calibration instructions. A simple weak-battery test is also described in de-
continued on page 38

vertical sensitivity 5 m V/div 5
and 1 m
amplifier - Trigo $1 \mathrm{~V} / \mathrm{div}$ with 5 x V/div
Normal * Trigger modes Auth
Nrobes. $N_{(}(t), T(\rightarrow) \bullet$ Comes Automatic, probes.
Model V353F-Same as above but
with Delayed Sweep
with Delayed Sweep.

100 MHz QUAD TRACE DELAYED SWEEP

arge, bright $8 \times 10 \mathrm{~cm}$ screen $\cdot \mathrm{Ch}$ Quad trace operation/Chigh sensitivity trigger and B trigger . Full TV $500 \mu \mathrm{~V} / \mathrm{div}$ (5 MHz) with probes. triggering • Comes with probes.

60 MHz DUAL TRACE DELAYED SWEEP

High sensitivity • $1 \mathrm{mV} / \operatorname{div}(10 \mathrm{MHz})$ - $5 \mathrm{~ns} /$ div sweep rate - 3rd chan display (trigger view) - Vall triggering trigger hold-off - Full 1 triggering - Single sweep - Automatic focus
correction - Comes with probes:

BP Model DVM-532

- Built-in conting 3-1/2 digit LCD read, $1 / 2^{\prime \prime}$ digut 1 ty buzzer • Easy to read, 1/2" digit LCD display E Easy to Overload protection display. indication.

CALL FOR SPECIAL INTRODUCTORY PRICES TOLL FREE (800) 645-9518 FORDHMM V/SA* - -
-

- Master Charge - VISA
- COD
- COD
- Money Order

"If you're going tolearn electronics, you might as well learn it right!"

You've probably seen advertisements from other electromics schools. Maybe you think they're all the same. They're not:

CIE is the largest independent home study school in the world that specializes exclusively in electronies.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one ... with the specialists . . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're special-

 ists, we have to stay ahead.At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it

Ourstep-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\text {w }}$ Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a Digital Learning Laboratory to apply the digital theory essential to keep pace with electronics in the eighties.

Dur specialists offer you persomal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up ... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Einjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day. You find out quickly how well you're doing!

CIE can prepare yon for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

Morz than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 CIE graduates whe take the exam get their Licenses!

Associate Degree

Now, CIE offers an Associate in Applied Science Degree in Electronics Engineering Technology. In fact, all or most of every CIE Career Course is directly creditable towards the Associate Degree.

Send for more details and a FREE sehool catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

EOUIPMENT REPORTS

continued from page 32
tail in the fifteen-page manual.
Measuring capacitance currentleakage also requires an external 0 -to- 10 volt meter. That meter and the capacitor are hooked up as betore. (Except now, the positive voltmeter lead is hooked up to the red jack.) To make the measurement, the outpur button is held in and the voltmeter is watched to determine the time it takes for the voltage to decrease to onehalf of its original value. The leakage can then be determined by using the equation $\mathrm{i}=\mathrm{C} \Delta \mathrm{V} / \Delta \mathrm{t}$. However, exact measurements of leakage are usually not necessary. and leaky capacitors can be easily spotted-especially when using an analog meter.

The CM-100 is primarily a bench-top instrument in an attractive $71 / 4 \times 71 / 2 \times$ $41 / 2$ inch aluminum and plastic walnutgrained case. It is powered by two 9 -volt batteries, so, although it won't fit in your shirt pocket. it is portable. Remember though, you will need the chart in the instruction manual to measure capacitances greater than $5000 \mu \mathrm{~F}$.

Besides measuring component values, the unit can be used to measure the capacitance between circuit-board traces (that "hidden" problem can often lead to
poor circuit performance) or to find the distance to a short (or open) in a coaxial cable. The device is also useful for checking large quanities of components-it will not only find those that are mismarked or have changed value, but also ones that suffer from current leakagetry doing that with a digital meter!

The CM-100 is available from the manufacturer for $\$ 89.95$, plus $\$ 3.50$ shipping and handling.

R-E

Kenwood R-1000 Shortwave Receiver

CIRCLE 105 ON FREE INFORMATION CABD

NOT TOO MANY YEARS AGO, SHORTWAVE listening required a lot of patience. Most often, that was because of the receiver itself. Though many were superhetrodyne types, their dials were often crowded because of their poor selectivity and it was nearly impossible to find a specific frequency without a great deal of patience and/or luck. Also, those radios-especially the less expensive ones-tended to drift. So, if someone was listening to one frequency and left the rig for a while, he could come back and find it several kilohertz away

The situation has changed in the last 10 years. Now shortwave receivers use phase-locked-loop tuning, sport digital displays, have excellent sensitivity and good selectivity, and have many of the features that were found only on superexpensive top-of-the-line receivers only a few years ago.

Kenwood's R - 1000 communications receiver is an example of a modern receiver. It is a general-coverage receiver, covering 200 kHz to 30 MHz , and has three reception modes: AM (both wide and narrow), USB, and LSB/CW

The heart of this unit includes a highly stable VFO and a phase-locked-loop frequency synthesizer for rock-stable reception. Frequency stability is 2 kHz for the first hour of use, but it settles down to 300 Hz maximum for every 30 minutes thereafter.

As with other modern, general coverage receivers, the $R-1000$ is relatively compact and lightweight ($123 / 4 \times 41 / 2 \times$ $85 / 8$ inches and 12 . I pounds) and has some respectable specifications. In actual use, we found that the performance of the receiver seemed to match its specifications.

Its claimed sensitivity, 10 dB or more $\mathrm{S}+\mathrm{N} / \mathrm{N}$, is $20 \mu \mathrm{~V}$ on the AM-Narrow setting in the $200-\mathrm{kHz}$ to $2-\mathrm{MHz}$ range and is $0.7 \mu \mathrm{~V}$ when set in the ssis mode. In that frequency range, the radio requires a high-impedance antenna (in the vicinity of 1 kilohm). In the $2-$ to $30-\mathrm{MHz}$ range, with a 50 -ohm antenna, the sensitivity figures are $2 \mu \mathrm{~V}$ on am-NARROW and 0.5 $\mu \mathrm{V}$ on SSB.

As mentioned before, the R - 1000 has both AM-wide and AM-narrow modes In the AM-wide mode, (which has a 12 -$\mathrm{kHz},-6-\mathrm{dB}$ bandwidth) local reception can be enhanced with better tone quality. The AM-narrow mode is used when unwanted signals are present near the frequency of the desired signal. In that mode, the receiver's bandwidth is narrowed, and interference is reduced. The $-6-\mathrm{dB}$ bandwidth is cut in half to 6 kHz . In use, I found that that setting does help improve AM reception, especially in high-static conditions on the mediumwave frequencies. (Kenwood suggests adding a jumper wire to further narrow the bandwidth of the AM-NARROW position to the same figure as the ssb position.

That indeed is an improvement.)
The image- and IF-rejection figures are also excellent for a general-coverage receiver. The image ratio is claimed to be more than 60 dB , while the IF rejection is better than 70 dB . Those figures are better than those of my ham transceiver! I believe that the $R-1000$ could be used as a separate receiver for amateur-radio operation on split frequencies. In fact, an accessory socket in the rear allows you to automatically mute the receiver when the transmitter is keyed.

The $-60-\mathrm{dB}$ selectivity figure is 5 kHz and the $-6-\mathrm{dB}$ figure is 2.7 kHz . Those figures indicates just how sophisticated general-coverage receivers have become

The $R-1000$ will operate with a variety of antennas, from simple random-length wire antennas to beam antennas. There are three antenna feedpoints, one for the standard SO-239 connector for coaxial cable and the others for simple wireantenna inputs. All of the antennas are meant to be used in an unbalanced condition, the grounding coming from the radio itself, through a ground-wire input terminal. Interestingly, if a listener wants to listen to frequencies from 200 kHz to 2 MHz , he has to use a separate antenna. The coaxial and short-wave antenna inputs can't be used in that range. However, that's a minor inconvenience.

The receiver is so easy to use that after only a few minutes of studying the own-
er's manual, I was listening not only to foreign shortwave broadcasts, but also to radio amateurs on their frequencies. The manual is complete and gives operating hints. but it is apparently aimed at the " appliance operator" because there is no explanation of theory and although a schematic is included, there is very little troubleshooting help.

A large green, fluorescent digital frequency display made finding frequencies very casy. Also, setting the receiver's frequency is quite simple. All that is required is a twist of the band switch to set the main frequency in megahertz. Then the latger, easy-turning main tuning knob is twisted to find a particular frequency within its $1-\mathrm{MHz}$ range. The lighted tuning dial is of the analog variety and serves well as a backup for the digital display. You'll find very little backlash in this knob.

Finding the correct mode to use for any type of reception was also easy because the mode switches are well marked and are just to the left of the band switch. A set of pushbutton switches changes the various modes

The signal-strength meter is a conventional D'Arsonval movement and scems a bit on the generous side. It also points up one area which could stand some improvement. When listening to Morse code transmission, the AGC accontinued on page 103

THE FIELD
 SERVICE SCOPES

Built for field service. Tough enough for the road.

The 2300 Series is unassailable proof that sensitive instruments needn't be delicate. No other scopes are so immune to abuse and to day-to-day wear and tear. They feature 50Gs shock resistance, our highest electromagnetic compatibility, and high-performance

measürement-all in an ultra-durable 17-lb. package.
Bottom line: the lowest life cycle costs of any high performance portable. Thanks to fewer components. Easier access to internal parts. Plus less downtime and fewer back-up instruments re-

quired, as proven by the toughest reliability testing we know ofour own.

> All that, and Tek performance tool Select dc to 100 MHz with 5 ns horizontal sweep. 2 mV /div vertical sensitivity. Built-in delta time and DMM. This time, get the scopes
that can handle the hard knocks of your business wherever the business takes you. Order today -or ask for the full Tek 2300 story! Call toll free:
Order toll free: 1-800-426-2200 Extension 28
In Oregon call collect: (503) 627-9000 Ext. 28

NEW PRODUCTS

For more details use the free information card inside the back cover

ASSEMBLY AID, model HPCB-15, is a unique holding stand for aiding all types of electronics and mechanical assembly work. It features two strong alligator clips for reliable holding action, plus quick and easy clamping and release.

Both clips are mounted in ball joints, and the connecting bar is mounted in a third ball

CIRCLE 111 ON FREE INFORMATION CARD
joint. enabling complete articulation and flexibility to suit any task. Finally, all ball joints may be locked in any position, and the entire assembly is mounted in a heavy cast-metal base to provide stability during use. The allsteel construction assures durability.

The model HPCB is designed for stuffing PC boards. electronics projects, mechanical work, and model making. It is priced at \$7.95.-OK Machine and Tool Corporation, 3455 Conner Street, Bronx. NY 10475.

CONVERSION KIT, model DVM-1, is designed for receiver-to-monitor conversion featuring both audio and video interfaces using special-purpose opto-isolators. The model DVM-1 will permit the user to operate in either a monitor or receiver mode of operation by selecting a switch position. It can be installed in either black-and-white or color sets, and permits the user to obtain high-resolution displays of up to 80 characters-per-line. It is a

CIRCLE 112 ON FREE INFORMATION CARD
direct-video modification which, in the monitor mode, bypasses the tuner and IF sections of a conventional television set and thus provides the user with a high-quality display. Ghosting, color-shifting, and RF radiation and interference problems are eliminated with the direct-video method. The model DVM-1 will work with all popular TV receivers presently on the market.

The model $D V M-1$ conversion dit is priced at \$64.95-V.A.M.P. Incorporated, 6753 Selma Avenue, Los Angeles, CA 90028.

TEST CLIPS, model TC-48 and model TC64, are designed for troubleshooting very large scale integration (VLSI) IC's. They are manufactured with nail-head pins that keep probe hooks from slipping off ends, or with long, headless, test lead pins for connection to AP jumper cable assemblies. They are constructed of thermoplastic molded around contact pins, and feature a long-lasting steel pin and hinge design.

CIRCLE 113 ON FREE INFORMATION CARD
The model TC-48 fits IC's with .5 to .6 -inch row-to-row spacing and is priced at $\$ 25.00$. The model TC-64 fits IC's with .9 -inch spacing and costs $\$ 32.00$.-AP Products Incorporated, 9450 Pineneedle Drive, PO Box 603, Mentor, OH 44060.

DMM, model $D M 25$, is a $31 / 2$-digit digital multimeter with a basic DC accuracy of $\pm 0.2 \%$ of full scale. It will measure $D C$ volts from 0.1 volt to 1000 -volts; DC current from 0.1 mA to

CIRCLE 114 ON FREE INFORMATION CARD
200 mA ; AC volts from 1 volt to 600 volts, and resistance from 1 ohm to 2 megohms.

Features include overload protection on all ranges, fuse-protected current and resistance ranges (to protect against excessive overload), automatic zeroing and polarity, and over-range and low-battery indication. An automatic limiter circuit will allow up to 140 -volts $A C$ to be applied on all ohms
ranges without blowing the fuse
The model DM25 measures $5.4 \times 3.4 \times$ 1.4 inches, weighs 10.5 ounces, and has an 0.4 -inch display. It is powered by a standard 9 -volt battery (included). Also included are safety-type test leads, carrying case, and instructions. Both the battery and the fuse are located in an easy-access compartment; there are no screws to remove.

The model DM25 is priced at \$69.25.Universal Enterprises, Inc., 14270 N.W. Science Park Drive, Portland, OR 97229.

POWER SUPPLY, model PEC SMPS 65W, is designed for computers and computer peripherals and can have 3 to 4 outputs, under-voltage protection, a maximum ripple/ noise factor of 2% peak-to peak, userselectable input voltage, and 80% efficiency typical at maximum power at nominal line voltage. Choice of packaging can include PC board, open frame, or enclosed unit.

CIRCLE 115 ON FREE INFORMATION CARD
The model PEC SMPS 65-W is priced at \$99.00.--Power Electronics Corp., 96 Milton Road, PO Box 2208, Rochester, NH 03867.

We've added 47 pages and 250 new devices to the 1983 SK Guide.

This book carries more weight than any other solid state publication. It is backed by one of the biggest names in replacement devices. RCA. We have been deeply involved in the design, manufacture and testing of solid state devices for decades. When RCA introduces new types, you can trust them to perform reliably.

This year, the RCA SK Replacement Guide is 512 pages strong. With over 2100 SK and KH types available to replace over 170,000 industry types, and a convenient dual numbering system.

Why trust your solid state business to a source that is not involved in solid state manufacturing? Pick up your copy of RCA's hardworking 1983 SK Replacement Guide (SKG202B). See your RCA SK Distributor, or send $\$ 2.50$, in check or money order, to RCA Distributor and Special Products Division, P.O. Box 597, Woodbury, NJ 08096.

The more logical way to look inside an IC.

LTC Logical Analysis Test Kits: everything you need for over 90\% of your digital testing.

Everything you need is at your fingertips. Circuit-powered. And easy to use. Ready to read logic activity at a glance, point-by-point or IC by IC. Or to inject digital signals for testing

Let the LEDs of our Probes, Pulsers and Logic Monitors light the way to answers for your troubleshooting, design and educational needs The Logical Analysis Test Kit comes in two versions: our \$270.00* High-Speed Kit, LTC-2, which captures pulses as narrow as 6 nsec, rep rates to 60 MHz ; and our $\$ 240.00$ * Standard Kit, LTC-1, which goes to $50 \mathrm{nsec}, 10 \mathrm{MHz}$. Both include complete manuals, accessories and a compact, custom-molded case. Either way, you've got a strong case for simplified digital testing
Smarter tools for testing and design.

GLOBAL SPECIALTIES CORPORATION

70 Fulton Terr., New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227 OTHER OFFICES: San Francisco (415) 648-0611. TWX 910-372-7992
Europe: Phone Saffron-Walden 0799-21682, TLX 817477
Canada: Len Finkler Ltd. , Downsview, Ontario

Call toll-free for details 1-800-243-6077

*Suggested U.S. resale. Available at selected local distributors. Prices, specifications subject to change without notice

Microcomputers can fly the Boeing 757/767 airliners from takeoff to landing. Here, we will look at the major subsystems of the Flight Management System and the controls and displays that interface the pilots to the system.

Part 2 who would have believed ten years aco that it would one day be possible for an airline flight crew to say in effect, "Look Ma No Hands!!??"

At that time, just to think that a computer could fly an airliner was the realm of science fictior. But, today it's true with the introduction of the sophisticated Boeing 757/767. Why was it done? The reasons are quite obvious. The skies today are more crowded than ever and the cost of fuel is exorbitant. Computers are needed to assist the captain and flight crew in planning not only the safest, but also the most economical route.

Using state-of-the-art microcomputers, the flight crew can fly this airliner from takeoff to landing without using the controls for other than minor corrections. The real "pilot" is the microcomputer-based Flight Management System (FMS), the' result of more than 10 years of research.

What can this system do? It can determine correct control surface and engine-thrust settings for any given condition. Further, because of the interactive nature of the system, the flight crew can change the flight configuration, if necessary, with a few button pushes, and the system will then respond by flying the new parameters.

As you can see, with this system the flight crew is freed of many of the arduous tasks it had to perform by hand. This fact was indicated by Henry McGlynn, manager of propulsion control systems engineering for General Electric's Aerospace Control Systems Department in Binghampton, N.Y. His department developed the 757/767 Thrust Management Computer (TMC), one part of the FMS.

The system, as a whole, "takes a load off the pilots' shoulders. Before (the development of the TMC), the pilots carried tables and charts and the work was manually done and complex,' he noted. Now with a few button pushes, the same job is done. This is just one example of how the pilots are freed from routine tasks. It enables them to devote more of their time to managing the aircraft.

Flight management system

The FMS is actually more than just one microcomputer. In reality, it is made up of four major microcomputer-driven subsystems and the Flight Management Computer, the overall commander. The four major subsystems consist of the Flight Control System, the Inertial Reference System, the Emergency Indication and Crew Alerting System, and the Flight Symbol Generation System. (An overall block diagram of the system was presented last month.) The subsystems communicate with one another via a serial communications bus, operating at 12.5 and 100 kHz , which meets ARINC Standard 429.

Using bit-slice technology, the data stream is 32 bits wide. Instructions to and from components of the system are transmitted in 19-bit words, with the rest of the bit package reserved for data and machine address. This type of architecture is confirmed by the fact that the manufacturers of the major subsystems use bit-slice technology, applying 16 -bit microprocessors to the task. When two 16 -bit microprocessors are used in parallel, they can address a 32 -bit data stream. However , the actual structure of the system, since the command microprocessors are 16 -bit devices, is 16 bits. Only the communications are handled with a 32 -bit path. Each major subsystem also communicates with members of its immediate grouping via the same bus.
According to a Boeing spokesman, system architecture is based on a consensus concept. If all subsystems involved in a task agree, then the task is performed. Further, because of the loose

THE ADI (ATTITUDE DIRECTION INDICATOR). Flight Director Command Bars, generated ky the Flight Control Computer, provide the pilot with steering guidance.
nature of the system, if one component fails, the other subsystems can continue operating. Called fail-soft, this allows safe airliner operation in the event of a major failure.

What all this means is that those systems interact and provide total flight management. It differs markedly from common practice on noncomputerized airliners. Let's look at the key differences between current airliners and the 757/767.

In other aircraft, the captain and first officer must generate their own information using charts, tables, and calculators. This requires a great deal of mental work and detracts from airplane management.

In the $757 / 767$, the information is available to the flight crew at the push of a button. It appears on one of the flight deck's five CRT displays.
For instance, if the captain wants to change a parameter in the flight plan he has entered into the FMS, then entering the data via a keyboard and punching the execute button displays these new parameters on the Control/Display Unit (CDU). That unit is the key interface between the Flight Management Computer (FMC) and the flight crew. (See Fig. 1.)

Essentially, the CDU is a system terminal. It consists of a green-on-black display and an alphanumeric keyboard,

FIG. 1-THE FLIGHT MANAGEMENT COMPUTER lets the crew concentrate on overall airplane management. It executes all phases of the flight in the most economical way.

THE HSI (HORIZONTAL SITUATION INDICATOR). Here it is shown in the Instrument Landing System mode with the optional compass display.
which also includes 14 special function keys. Instead of using a traditional typewriter-type of keyboard, Boeing opted for one which is alphabet-oriented. (See Fig. 2.)

The special function keys allow onekey access to important information. For instance, if the captain would like to check on the progress of the flight, all he has to do is punch the RTE key on the CDU

FIG. 2-THE CONTROL DISPLAY UNIT (CDU) gives the pilot complete control of the Fiight Management Computer System.
console located below and to the right of the command seat. This key gives instant access to either of two flight plans entered in the FMC. Using the active flight plan, a press of the key displays the current leg of the flight plan and then reads out its continuation.

The clb or climb key enables the flight crew to display the current or any planned climb mode. Further, this key also allows the crew to take a look at other climb modes and allows their evaluation. The same is true of the pre-programmed CRZ key, which displays current or any planned cruise mode.

With a touch of the prog key, the flight crew can monitor current dynamic flight information. This key allows an information readout only. It is presented in page or screen format.

Not only does the CDU provide this information, but as the airliner approaches an airport, it allows the crew to look at arrival procedures with a press of the DEP ARR button. These procedures can be integrated into the overall flight plan. And, as you can see, it also helps to facilitate flight management as the plane readies for landing because the crew no longer has to pore over lists of landing procedures as the airliners approaches the airport. In fact, FMS will handle the landing if the crew opts for that function.

If, however, the airliner is stacked up and put into a holding pattern anywhere during a flight, a push of the hold button allows the crew to choose a holding pattern, whether halfway to destination or waiting for landing.

But, even before a landing can take place, there's still the takeoff to deal with and the INIT/REF (initialization/reference) button on the CDU allows the flight crew to initialize both the FMC and the Inertial Reference System. This button also allows the flight crew to access various categories of reference data. It also begins the crew's part of the information process. At that time, the crew enters all the parameters the FMS will use during the flight.

Once the FMC is initialized and the airliner is in the air, the DIR/INTC button enables the crew to use FMC guidance from a current position to any designated geographic point or to intercept a selected course.

Meanwhile, the legs button gives detailed information on every leg of a flight plan. Further, this function allows detailed data entry of each leg.

If, during this time the captain or first officer would like information concerning the range and bearing to a particular entered position, one of them can press the fix key. This function brings up a display of the information and further will cause radials from the fix to be displayed on the Horizontal Situation Indicator (HSI), another of the system's CRT's and the visual roadmap for the flight crew.

While all of this information is neces-
sary for the captain and flight crew, it really wouldn't be much use if they weren't able to manipulate it. That function is handled by six line-select keys on the CDU. In the non-aircraft microcomputer world, information entry and retrieval functions are all pretty much standard fare. Most systems depend on some sort of keyboard for input and most use some sort of command address language. Programmers may use BASIC, COBOL, FORTRAN, or many other languages, while those people using word processing use English. However, the FMC language is unique, but one with which the captain and first officer are quite familiar -Air Traffic Control terminology.

This type of interface puts the FMS and flight crew on familiar terms and it eases the transition to a computerized airliner.

Lying below this human interface mechanism is the FMC itself. It is the master link in the FMS. This microcomputer is able to receive inputs from all the subsystems and is then able to compute its decision. It also commands the subsystems to perform their tasks.

Developed by the Sperry Flight Systems Division of Sperry Rand, headquartered in Phoenix, Ariz., the FMC is driven by a 16-bit processor.

The FMC houses preprogrammed navigation and flight planning information. The program is updated every 28 days and is contained on a 4 megabyte disk. Other information resides in PROM (Programmed Read-Only Memory). This system also has up to 64 K of RAM (Random Access Memory), which is a necessity because of the interaction between the FMC and the pilots.

The system receives inputs from other subsystems and determines how best to fly a course. This function is, in turn, determined by a set of cost index parameters that are biased toward time and fuel factors, according to Larry Bowe, head of the engineering department at Sperry Flight Systems.

The FMC interfaces directly with the flight control system and the autopilot and it receives positional inputs from both. It then generates a map display on the Horizontal Situation Indicator (HSI) CRT. It also receives inputs from the VHF Omnidirectional Range (VOR) finder and from the Distance Measuring Equipment (DME), which are also used in its computations. When all of the information is digested and weighed by the FMC, it generates the flight readout, which is displayed on the CDU.

As one would expect in a system as critical as this one, there's redundancy for safety. Rather than relying on one FMC for both the captain's and first officer's CDU's, Boeing and Sperry designed the system so each unit is driven by a separate microcomputer. In this way, should one of these units fail, the other can be used to fly the aircraft.

Reliability is also a feature of this unit.

IN ITS MAP MODE, the Horizontal Situation Indicator shows the desired flight path and navigation features.

Bowe estimated the mean time between failures is 6,000 hours and since an air liner operates about 3,000 hours per year, the average time between failures will be
on the order of two years.
As important as the CDU is for interfacing the Flight Management System and the flight crew, there's another key
interface at the top of the pilots' glareshield, the Mode Control Panel. (See Fig. 3.) This system not only interfaces with the Flight Management Computer, but also the TMC and the Flight Control Computer (FCC) and the Inertial Reference System. The Inertial Reference System is shown in Fig. 4.

It is with this panel that the flight crew inputs such parameters as air speed, rate of climb and ultimate altitude. This panel provides a central area for all autopilot control selections and modes. Those functions include the autopilot, autothrottle and flight director. It is from this panel that the flight crew also has access to a backup landing option in the event of a major system failure.

The Mode Control Panel also initiates automatic tracking of the Flight Management Computer's flight plan in either the lateral or vertical planes.

Thrust management computer

Another panel, beneath the Mode Control Panel-the Thrust Mode Select Panel-also interfaces with TMC.

Mounted in two line replaceable units,
the TMC is responsible for determining and setting correct engine parameters after the flight crew makes its determinations of such variables as speed, altitude, heading, climb rate and whether the airliner is in a takeoff or cruise mode. These figures are entered through the Mode Control Panel. The TMC also looks at other variables and reports to the FMC and Engine Indication and Crew Alerting System (EICAS), which displays engine information on a color CRT.
Further, the TMC also acknowledges the crew's engine operational choices entered via the Thrust Mode Control Panel. This unit gives the pilot the ability to derate the engines from the TMC settings for better fuel economy. It further allows him to override the system for emergency power.

Proper thrust control is of primary importance to the air lines, explains McGlynn. If an airliner's engines run too hot it wears them out much more quickly than if the settings were cooler. Also, in this condition the engines use more fuel.

So, the primary function of this system is to limit engine thrust according to the

FIG. 3-THE MODE CONTR̄OL PĀNEL is the centralized location for all autopilot-control selections and modes.

FIG. 4-THE INERTIAL REFERENCE SYSTEM uses Ring Laser Gyros. It can align its reference axes to true north by analyzing the spin vector generated by the earth's rotation.
aircraft's flight condition, height and temperature. This system also functions to bleed off engine power for such functions as cabin air conditioning and deicing.

TMC also aids in an important display function. Since it is involved with vertical navigation and flight level changes, its inputs, along with those from those of the Mode Control Panel, help drive the Attitude Direction Indicator (ADI). This instrument tells the flight crew whether the airliner is in level flight, climbing, descending or banking. This indicator is familiar to many fliers as the floating ball airplane whose wings have to be kept level with the artificial horizon.

Driven by a 16 -bit General Electric MCP-701A 16-bit fixed point processor, the TMC is an accumulator-based system designed specifically for avionics control products. When it was first designed, this system relied on medium-scale integration and bit-sliced system architecture to achieve the same goal the one-board system now handles. However, the 701A allows GE to keep the system unit to one motherboard.

The microcoded instruction set emulates the one that is found in one of the nation's most sophisticated fighters, the F-18. Programmed in machine language, much of the memory is Read-Only Memory (ROM)-based. However, there is a small scratchpad area of Random Access Memory for storage of current flight information.

Via its transmitters and receivers, this system interfaces with the Air Data Computer, which computes air speed, wind speed and delivers these inputs to the system; the Thrust Mode Select Panel; the Flight Management Computer, and the throttles. Performance management functions are performed in concert with the FMC and the autopilot/flight director system.

The Mode Control Panel, also driven by a microprocessor, also interfaces with another of the major microcomputer subsystems of the FMS, the Flight Control Computer (FCC).

Flight control computer

Its primary functions are controlling vertical speed, providing takeoff assistance and integrated autopilot and autothrottle speed control, autolanding and autorollout control, and heading and altitude control.

In reality, the Flight Control Computer acts on the airliner's control surfaces. After receiving the inputs from the Flight Management Computer, inertial reference units, Air Data Computers, radio altimeters, instrument landing receivers, air-ground logic unit and the airspeed indicators, it sets those surfaceselevators, ailerons and rudder-for each flight condition. (See Fig. 5.) If, for instance, the Flight Management System is programmed to climb at a certain point,
the FCC will respond with setfings for the climb.

Responsible for developing the FCC was Rockwell International's Collins Air Transport Division in Cedar Rapids, Iowa. This division also developed the circuitry for the highly advanced Electronic Flight Instrument System (EFIS), EICAS, the ADI and HSI displays. Those systems provide the key visual and warning indications for the entire Flight Management System.

Access to the various EFIS controls is obtained through the EFIS control panel. As with other system control panels on this aircraft, there are separate panels for the pilot and first officer.

The upper section of the panel controls the ADI and allows the pilot to enter his decision height prior to making an approach. This number is automatically displayed on the ADI during the approach and automatically shifts to a DH display when this height is reached. The lower section controls the HSI and allows the pilot to select a display mode.

If MAP or PLaN are chosen, then the display will be scaled according to the maximum range chosen by the Range knob. The map mode displays the map oriented along the current track of the airliner, while plan displays a north-up orientation. Buttons on either panel control access to supplementary navigation information. This information is then displayed on the color CRT's in front of the flight crew.

Those cólor displays are very sophisticated instruments themselves. Using 16 bit 8085 microprocessors, the CRT's are capable of high-level graphics. For instance, the ADI combines both CRT and
electromechanical functions to present the flight crew with a picture of the airliner's attitude. The traditional ball-type of ADI indicator is combined with a surrounding CRT for quick information updates.

Further, the CRT displays the groundspeed, autothrottle mode, autopilot-flight director mode, glideslope deviation and localizer deviation scale. It is quite an advance over traditional ball-only mechanisms and centralizes these functions on one screen, instead of in several places on the instrument panel. As one can easily see, this eases the work of the flight crew.

Other displays

A color CRT, the HSI presents the crew with a look at the horizontal position of the aircraft in relation to the flight plan. Further, it displays a map of navigation features and aircraft track. This map also shows where the airliner will be turning and the desired flight path. Also, it indicates where the aircraft is in relation to a desired position.

This type of display allows rapid and accurate flight path correction and maneuvering by the pilots, if needed.
Further, it gives the flight crew other needed information such as wind speed and direction, lateral and vertical deviation from the selected flight profile and distance to a waypoint. This information is selectable as desired by the captain or first officer.
Since the HSI is programmable, the captain and first officer can adjust the composition of the display to suit their specific needs. Color weather radar displays may be selected and presented at the same scale and orientation as the map, as

FIG. 5-THE FCC (FLIGHT CONTROL COMPUTER) receives inputs from many systems, including the Flight Management System, The Thrust Management Computer and the Inertial Reference system.
well as navigation aid information and airport and ground reference symbols. There's even the option of displaying speed, altitude, and time of arrival for each flight path waypoint.

All of these functions are possible thanks to the programmability of the system. For instance, if the captain or first officer chooses the VOR or Instrument Landing System (ILS) mode on the EFIS panel, then the HSI shows the relationship of the airliner to a selected VOR or ILS course. This information is displayed in a similar format to current electromechanical devices. This last feature, alone, should help insure that even a newcomer to the system will feel comfortable with it. Again, weather radar displays can be overlaid on this display.

An optional compass display, which combines many of the features of the other displays, can also be chosen, if the airline operating the aircraft chooses to have it.

A similar type of Collins-developed system is used for the EICAS function of the FMS.

Set dead center in the instrument panel, EICAS monitors display not only engine parameters, but also give the crew warnings in the event of a problem with the aircraft. Urgent messages are displayed in red on the color CRT's, while less urgent messages are displayed in yellow. Aural warnings are also provided.

Access to this system is through the EICAS control panel, located directly below the pair of CRT's. An uncluttered panel, the pilot or first officer can have access to a full readout with the push of the engine button. In normal operation, EICAS only displays primary engine readouts. When either flight officer pushes the status select button, the lower EICAS display will show data relating to the status of the airplane including such information as hydraulic fluid levels and control surface positions. On the ground, these monitors will display maintenance information to technician. The flight crew has no control over this information.

Interestingly, this system was developed with an eye toward keeping costs down. If an HSI CRT should fail, it can be replaced with one of the EICAS monitors. Further, the entire EICAS system, which consists of two color CRT monitors, two EICAS computers, supplementary caution and warning annunciator and a standby liquid crystal engine indication display, consists of only six line-replaceable units. These are units which can be easily replaced by maintenance technicians right on the flight line. That contrasts with more than 40 in other standard airliners.
Even with all this computerization, you can again see the level of safety backup. If EICAS system should fail completely, then the LCD provides the flight crew with the information it needs to continue flying the aircraft.

R-E

IT WASN'T MANY YEARS AGO THAT shortwave listening was a hobby enjoyed only by technically capable individuals who had tabletops full of complicated receiving equipment. But that has changed dramatically over the past year or two as advanced semiconductor technology has found man? applications in portable communications receivers, making them as easy to use as your TV set.

Today, affordable portable shortwave radios offer features previously available only on professional-quality equipment costing many thousands of dollars more And some of the newest portables use integrated circuits and miniature components, allowing the sensitive electronics to be housed in cases that are small enough to fit in your pocket.

The shortwave spectrum

By international agreement, users of the high-frequency (shortwave) spectrum $(3.0-30.0 \mathrm{MHz})$ confine broadcasts intended for general listeners to several segments of the spectrum, called bands. Each band is identified by both its frequency and its wavelength (in meters) as

> The newest generation of portable shortwave receivers offers features and performance previously found only on top-af-the-line table models. Here's a look at what's available, and what these small powerhouses can do.

DANNY GOODMAN

shown in Table 1 Thas, the shortwave broadcast band that begins at 9.5 MHz is also called the 31 -meter band, while the band of frequencies that begin at 17.8 MHz is called the 16 -meter band (see Table 1). You'll note, of course, that as the frequencr increases, the wavelength decreases.

The thing that makes shortwave listening so fascinating, however, is theat under certain conditions a transmitted signal
can be heard halfway around the world. That's because signals with frequencies below 30 MHz are reflected by the ionosphere. That phenomenon makes longdistance shortwave listening possible.

Because the ionosphere is strongly affected by the sun, the nature of that reflection-and hence, how far away the signal can be received-depends mainly upon the time of day and time of year. What that means is that not all frequencies are useful for broadcasting at all times. What's more. various factors can make conditions unstable even on a day-to-day basis. Radiation from the sun (more accurately, from sunspots) changes daily (and, on a larger scale, over an approximately 11 -year cycle), adding uncerainty as to how well a signal will be received in a particular area. Signals may be strong on one frequency today, suffer from periodic fading tomorrow, and occasionally be almost inaudible. The last occurs especially during sudden ionospheric disturbances.

Broadcasters study radio-wave propagation carefully to help plan the times and frequencies for their broadcasts.

Equipped with predictions from propagation scientists, station planners may choose several frequencies in more than one band to make sure that a target area is adequately served during the season, no matter what the daily propagation variances may be. Then, even if they have correctly predicted the proper bands, they must hope that other broadcasters choose frequencies in those bands so that neither one interferes with the other. That is a far cry from the fixed-frequency allocations of our own AM and FM broadcast bands, which are strictly regulated by the Federal Communications Commission.

Tuning in

To help SWL's keep track of broadcaster's schedules, the World Radio TV Handbook (WRTH) is like an annual TV Guide updated three times a year by a subscription newsletter. The WRTH is the most comprehensive listing of radio and television stations from practically every country in the world. Included with each listing is the mailing address for each of the stations, many of whom have detailed schedules available on request.

Once you know the time and frequency of a program you'd like to hear, you'll need to tune your receiver precisely to that frequency. However, on many multiband radios with shortwave capability, the shortwave spectrum may be divided into only two or three sections. The tuning rates-how big a chunk of the spectrum is covered with a single revolution of the tuning dial of those receivers are inadequate for the number of stations you can tune in one revolution of the dial

Consider. for example, that the entire AM broadcast band ($0.550-1.600 \mathrm{MHz}$) is slightly more than one megahertz wide, and takes up the entire width of the tuning dial. That makes for comfortable tuning, given the local station spacing of 30 kHz or more. But a tuning range marked SW1 on a portable radio may use the same tuning dial space to cram nine megahertz;

Size (inches)	Wght.	BFO	Wide/Narrow Filters	Dual Conversion	Tuned RF Amplifier
$\begin{aligned} & 47 / 16 \times 6 \times 15 / 16 \times 11 / 4 \\ & 215 / 16 \times 51 / 4 \times 7 / 8 \end{aligned}$	$\begin{array}{r} 17 \mathrm{oz} \\ 8 \mathrm{oz} \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & N \\ & N \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Y} \end{aligned}$
$45 / 8 \times 71 / 8 \times 11 / 4$	22 oz	N	N	Y	Y
$145 / 8 \times 103 / 4 \times 6$	8 lbs	Y	Y	Y	Y
$13 \times 9 \times 41 / 4$	8 lbs	Y	Y	Y	Y
$93 / 8 \times 131 / 2 \times 49 / 16$	$7 \mathrm{lbs}, 40 \mathrm{z}$	Y	Y	Y	Y
$911 / 16 \times 15 \times 43 / 4$	$8 \mathrm{lbs}, 100 \mathrm{z}$	Y	Y	Y	Y
$43 / 4 \times 14 \% / 16 \times 91 / 2$	$7 \mathrm{lbs}, 10 z$	Y	Y	Y	Y
$61 / 2 \times 113 / 8 \times 4$	4 lbs , 10 z	Y	N	Y	N
$71 / 4 \times 17 / 8 \times 9$	13 lbs	Y	Y	Y	Y
$101 / 4 \times 4 \times 131 / 8$	$14 \mathrm{lbs}, 9 \mathrm{cz}$	Y	Y	Y	Y
$131 / 2 \times 173 / 4 \times 81 / 8$	$33 \mathrm{lbs}, 150 \mathrm{z}$	Y	N	Y	Y
$91 / 4 \times 6 \times 21 / 4$	5 lbs	N	N	N	
$69 / 16 \times 10^{15 / 16} \times 25 / 18$	31bs, $70 z$	N	N	S	r
$111 / 16 \times 171 / 6 \times 53 / 16$	11 lbs , 7 oz	N	N	Y^{*}	Y
$209 / 16 \times 145 / 32 \times 81 / 32$	$50 \mathrm{lbs}, 11 \mathrm{oz}$	Y	Y	Y^{*}	Y
$63 / 15 \times 12^{13 / 16} \times 23 / 16$	4 lbs	Y	N	Y	Y

three categories: sensitive pocket portables with analog (slide-rule) tuning; those with simple digital frequency readouts, and those with microprocessorcontrolled phase-locked-loop (PLL) tuners. Table 2 lists some of the units currently available

Shirtpocket shortwave

Among the small shortwave portables, Sony's $/ C F-7600 A$ is a good example of an easy-to-use receiver even though it features an analog, rather than digital, tuning-system.

The receiver covers the local AM and FM bands, plus seven shortwave bands from 49 to 13 meters in a most useful way: Each shortwave-broadcast band has its own tuning range. That spreads out the stations within a given band so that tuning is not so critical. Moreover, you are better

Panasonic's model RF-085 five-band receiver.

able to tune to a specific frequency with the help of dial markings spaced every 50 kHz .

The receiver covers the 49- through 11 -meter bands. That coverage, plus a bit of tuning above and below those ranges, includes most of the English-language stations you'll want to hear. Some broadcasts, however, like Radio Peking's clear frequency of 15.52 MHz (one of several frequencies) and a growing number of stations above 12.0 MHz , are outside the internationally agreed bands. and the tuning range of the unit.

Miniaturization plays a big role in the circuit design of that small receiver. Each shortwave band has its own crystal oscillator for tuning stability. It uses dual-
conversion (two intermediate frequencies) superheterodyne circuitry on shortwave for good sensitivity and to help reduce unwanted images from interfering with the station you want to hear-a common problem in small portables. It also features a tuned RF amplifer to help insure that the best possible signal-to-noise ratio is obtained. There is even a ceramic filter to help limit interference from stations on adjacent frequencies, thus improving selectivity. While the performance of a radio its size-even with all its "big radio" features-won't measure up to table-model standards, that receiver holds its own rather well against many of the receivers listed in Table 2.

The 7600A's little brother, the Sony ICR-4800 is one of the smallest portable shortwave receivers available, measuring $51 / 4 \times 2^{15 / 16} \times 7 / 8$ inches. It features Am broadcast and five shortwave bands: 49 , $31,25,19$, and 16 meters, the ones most popular with broadcasters. The tuning range of some bands is a little wider than that offered by the ICF-7600A, making it possible to pick up more of those broadcasters who are slightly "out of band."

What neither of those receivers can tune, however, is the standard time signal station, WWV, a service of the National Bureau of Standards in Ft. Collins, CO. Usually audible on $5,10,15$, and 20 MHz , a voice announces the time (with, atomic clock accuracy) on the minute, plus severe ocean-storm warnings and radio-propagation forecasts at appointed times during the hour. The paperback-book-sized $R F$-() 85 from Panasonic does allow you to receive WWV as it provides continuous tuning from 2.3 to 18 MHz (120 to 16 meters) over three bands. But, although it is remarkably sensitive for its small size, a beginning SWL may find the cramped and inexact shortwave band tuning a bit frustrating at times.

With those small radios-all of them wonderful travel companions-you'll have adequate signal quality under most conditions with the built-in telescoping antennas. Reception can often be improved by placing the radio as close to a window as possible, or by adding an external antenna, as discussed later.

Digital readout

Another recent advance in portablereceiver technology is the addition of digital frequency-readouts to assist in tuning. The units offering that feature are anything but pocket sized, yet once you ve experienced the convenience of such a readout, you won't want to return to the analog style unless you need to travel very light. With the digital display, there is no guessing whether you have the correct frequency. If you know that Swiss Radio International begins transmitting in English on 9.725 MHz at 0145 Greenwich Mean Time ($8: 45 \mathrm{pm}$ EST), then
simply dial up 9.725 on the readout a few minutes before, and you'll be ready for the start of their broadcast. Digitalreadout receivers are available with vacuum fluorescent displays (which consume a lot of battery power but can usually be turned off when not needed for tuning). or liquid crystal displays (LCD's). The latter require a backlight for viewing under low-light conditions.

General Electric's 7-2990 is a new receiver in this category. The GE receiver offers AM, FM, and four bands of shortwave tuning giving you continuous coverage from 2.3 to 31 MHz . That means you can hear all shortwave broadcast bands as well as amateur radio and commercial bands. Frequency can be read on either an analog- (slide-rule type) or vacuum-fluorescent digital-display. In that receiver, as in others in its class, the digital readout is provided by adding a frequency counter (with some modifications) to a standard analog shortwave receiver. An sw calibrator control on the front panel helps you align the receiver and the counter by tuning to a frequency standard like WWV.

The unit features dual conversion as well as a tuned RF amplifier. Another control you'll notice on that type of receiver is a wIDE/NARROW bandwidth switch. The intent of a narrow bandwidth is to reduce the amount of interfering signals on either side of the desired signal from reaching the speaker or headphones. Ideally, a narrow setting should keep out extraneous signals. But in practice, portable-receiver bandwidth filters are generally not as effective as those used in more expensive table radios. The wide setting may be fine for local AM stations with their healthy frequency spacing between stations, but is impractical for tightly spaced shortwave stations. Among today's portables, the Sony $C R F$ I has the most effective narrow bandwidth, according to specifications, but its price is out of reach for many

The Panasonic $R F-3100$ is one of a new generation of portable receivers. Adapting a technique used in expensive tablemodel communications receivers, the
unit features PLL frequency synthesis-a sign of a very stable tuning section. Even solid-state receivers can be unstable and drift off their original frequency, particularly during the first 10 minutes of operation. They may also suffer from mechanical instability-just lightly tapping the receiver case with a finger will make the unit change frequency. But a PLL synthesized tuner "locks" onto the desired frequency. Nowhere is that more appreciated than when tuning single sideband (SSB) amateur radio or commercial stations. Successfully tuning those stations requires that the receiver"s beat frequency oscillator (BFO) be engaged and tuned to the signal's natural voice pitch. The slightest drifting will raise or lower the voice's pitch beyond intelligibility.

To tune, say, 15.260 MHz on the $R F$ 3100 , you first turn the rotary band switch to the $15-\mathrm{MHz}$ band, and then tune the large tuning knob until the last three digits on the display read 260 . The tuning range is divided into 29 one-megahert? bands, plus AM and FM. Sometimes, as when you're just tuning through the spectrum to see what you can pick up, that one- MHz stepping can be just a little inconvenient because, if you want to tune continuously, you must whirl the tuning knob back to the beginning of the band every time you increment from one range to the next.

The $R F-3 / 00$, like many other portables its size, comes with a soft shoulder strap for the SWL on the go; it can be removed if the receiver stays mostly at home.

Computerized shortwave

The third type of portable receivers we will discuss takes the concept of PLL tuning a step farther. In those, microprocessors control the PLL circuit. The tuning knob, as we've known it, doesn't even exist. Instead, pushbutton keyboards let us "punch in" the frequency we want to hear. If we want to casually tune up or down the band looking for stations, we just push an appropriately marked button and the synthesizer will step up or down in frequency under mic-

SOURCE LIST

$$
\begin{aligned}
& \text { General Electric Company } \\
& \text { Audio Electronics Products } \\
& \text { Syracuse, New York } 13221 \\
& \text { Magnavox } \\
& \text { N.A.P Consumer Electronics } \\
& \text { Corp. } \\
& \text { 1-40 \& Straw Plains Pike } \\
& \text { Knoxville, Tennessee } 37914 \\
& \text { World Radio TV Handbook } \\
& \text { c/o Watson Guptill } \\
& 1515 \text { Broadway } \\
& \text { New York, New York } 10036
\end{aligned}
$$

Gilfer Shortwave
Box 239
Park Ridge, New Jersey 07656
MFJ Enterprises, Inc.
921 Louisville Road
Starkville, Mississippi 39759
Sony Corporation of America
Sony Drive
Park Ridge, NJ 07656
Panasonic
One Panasonic Way
Secaucus, New Jersey 07094
roprocessor control until the button is released. The microprocessor can also store favorite frequencies in memories; those can be instantly recalled by just pressing a button.
The first affordable pushbutton shortwave was Sony’s $/ C F-2001$. More recently, Panasonic and Magnavox have added "smart" portables to their shortwave lines.

The Magnavox D2924, though offering only limited shortwave band coverage (49 through 19 meters), has a number of features useful for the shortwave neophyte and veteran as well. The radio has essentially four broad bands: longwave, AM, shortwave, and FM, each selected by pushbutton. In the shortwave mode, each press of the sW sel ector button puts the receiver at the lowest frequency in one of the five international broadcast bands. An indicator on the LCD display shows which band you're tuned to. From the bottom of each band, you can either tune up or down in steps with the corresponding manual tuning buttons, or have the receiver search the band for a strong signal. Pressing search silences the receiver's audio as the radio's frequency display shows where it's tuning. If a strong signal is detected, scanning stops on that frequency, and the audio is restored. If the station is not what you want to hear, press SEARCH again, and the tuner will quietly continue up the band. When it reaches the top band edge, it re-starts the search from the bottom. If no signals are found, the receiver searches twice more, just in case a station had briefly faded out when the tuner first raced by. If no signals are heard after three passes. the receiver then goes back to the lower band edge, awaiting further instructions.

Just because no strong stations were found in the search mode, doesn't necessarily mean there aren't weaker stations on the band that could be tuned manually. But for inexperienced listeners, using the SEARCH mode is one way to hear a variety of signals without a lot of extraneous signals to distract you along the way
If, on the other hand, you know what frequency you want to tune, simply press keyboard (which tells the microprocessor that you're about to enter a frequency on the keyboard) and key in the frequency. With the D2924, you can also store up to six frequencies from any band in the radio's memories using a simple two-button sequence. When you're tuned to one of the stored frequencies, the memory number appears on the LCD display along with the frequency. With receiver memories, you can switch instantly back and forth among broadcasters transmitting on different bands at the same time. Of if you have a set sequence of programs
cominued on page 102

Digital IC Tester

An IC tester can be a valuable addition to your test bench. Once you use one, chances are you'll wonder how you ever did without it.

GARY McCLELLAN

Part 3WHEN WE LEFT OFF last time, we were almost finished wig the panel board. Here, we'll finish that up and complete assembly. Then we'll make sure that everything operates properly.

Now for the cable to the display board; that's shown in Fig. 14. Each lead from the 16 -wire cable goes to one of the bus wires you just installed. Be sure you get the kind of cable with a 16 pin DIP plug attached; you'll need that (PlOl) to mate with the display board. If you can get multicolored ("rainbow") cable, that's better; it will help you trace your wiring.

Measure ten inches of cable from the header end, and cut off the excess. Then separate the wires at the cut end for three inches. Prepare the ends of the wires for soldering. Note that as the wires are connected. pin 1 of the header corresponds to the pin-1 jacks, pin 2 to the pin- 2 jacks. etc. To keep things neat, connect the wires for pins $1-8$ to the wire near the HI jacks and the wires for pins $9-16$ to the wire near the Lo jacks: that will allow the cable to run between the two rows of jacks. You'll probably have to use an ohmmeter to identify the wires in the cable because there are so many; jot down the color associated with each pin number on a piece of paper. When you are finished you should have a nice neat assembly like the one shown in Fig. 15.

There are six wire jumpers to be installed next. They aren't obvious because they just go through the board, from one side to the other, connecting the front wiring to the rear. The jumper positions are marked by asterisks (*) in Fig. 14. and are to the lett of the jacks. Start at the top
of the board. at the Hi jack on pin 9. Run a piece of bare wire through the hole, and bend it over on both sides of the board. Solder it and clip off any excess. Move down to the pulse jack, and repeat the process. Kcep moving down until there are jumpers in all six holes
Now for the switch and power wiring. Cut 11 pieces of hookup wire six inches long, and prepare one end of each. Still
using Fig. It as a reference, solder wires to all the terminals of the two switches. and to the three pads above the overload LED. Then carefully solder wires to the leads of that LED. Work quickly and with low heat so you don't damage the device.

Bundle up the wires into a cable. and measure four inches. Cut the wires off at that point. Prepare the ends, and solder them to a 12 -pin socket (SOl02) to mate

FIG. 14-EACH TRIO OF JACKS is connected to the appropriate pin of the test socket SO101. Separate 11-wire cable goes to SO102, which mates with P102.

FIG. 15-FOIL SIDE OF COMPLETED PANEL BOARD shows connections to jacks and board, and illustrates routing of wires and cables.
with P102 from the display board. Note that the pushbutton-switch connections may not be what you expect-on the switch I used the common terminal was at the edge of the body, and not at the center as on the other switch! Save yourself some embarassment by checking the pinouts marked on the switch body before you wire the connector. Once all the wires are connected, lace them into a professional looking cable. That completes the assembly of the panel board

Finishing up

At this point, the cabinet should be prepared for installation of the panel board. You'll have to make a large cutout in the top for that board. Start by placing

FIG. 16-CONNECTIONS BETWEEN display board and panel board, and display board and power-supply jack.
strips of masking tape along the edges of the box. Then, using the panel board as a template. mark its outside dimensions on the tape with a pencil. Then, measure in $3 / 8$-inch on each side to allow material for screw mounting of the board; the board will overlap the cutout slightly. (The overlap also allows for a sloppy cut, which will be hidden by the panel board.)

Drill holes at the corners of the cutout, and then use a keyhole saw. After the cutout has been made, drop the panel board in place to check for fit. It may be necessary to file slots for the spacers, but otherwise the fit should be good. Center the board and mark the positions for the seven 0.125 -inch ($1 / 8$ inch) mounting holes. Remove the board, and drill the holes. Finish up by drilling holes for J201 and S201, the power jack and switch. The best place is on the right side of the box, near the bottom. That way, they won't interfere with the boards.

Now for the final assembly, which will go quickly. Clean up the box, removing any tape or shavings. Mount the panel board in place with 4-40 $\times 1 / 2$ hardware. Then install the display board; it should just drop into place. If it doesn't, check tor a bent LED. Secure it with $4-40 \times 1 / 4$ hardware. Now refer to Fig. 16 for the connections between the two boards. Mate SOI and PI01 first, then PIO2 and SOI02. Install J201 and S201 on the box next. Connect the power leads from the display board to them. That completes assembly of the IC tester.

Power sources

The Programma III is designed to operate from any $12-18$-volt-DC power source. If you like, you can build the power supply shown in Fig. 17. You can use any 12.6 -volt filament transformer with a capacity of 600 mA or greater.

The last thing you'll need for the IC tester is a number of shorting plugs for the jacks on the device-they select the inputs to each IC pin. Get about 20 miniature phone plugs. Remove the housing from each, and solder the two terminals together. Then, replace the housings. That's all there is to it. Later on, you may want to get more plugs and wire them up for special uses; that will be discussed in the applications section.

Checkout

Now it's time to see if everything works. Apply power and watch the LED's. They should all come on green,

FIG. 17-SIMPLE POWER SUPPLY to provide 18 -volts DC for Programma III.

PARTS LIST-POWER SUPPLY

F301-1/a-amp fast-blow fuse (and holder)
BR301-50 PIV, 1-amp bridge rectifier
T301-12.6-volt filament transformer, 600 mA or greater
P301-2-conductor polarized connector to mate with J201 (phone plug OK)
which indicates that the circuitry is OK. If they don't, unplug P|01. That will tell you if there is a short in the display or panel board

If everything has checked out so far, you can proceed. Insert a plug into the HI jack for pin 1. Immediately the pin-1 lamp should glow red, indicating a logichigh state. Do the same for the other pins, and if the wrong LED turns red, check the Pl01 wiring. Then insert a plug into the pulse jack for pin 1. The pin-l LED should turn red. If it doesn't, check the pulse switch wiring. Press the pulse switch; the LED should change back to green. Press it quickly and repeatedly; the LED should appear yellow. Try the other jacks in the same manner. That completes the checkout

Applications

The best way to get aquainted with the Programma III is to check some familiar IC's. Once you ve seen it in action. you
can go on to more sophisticated applications, like determining the types of "unknown'" IC's. You should have at least one good IC data book available for TTL devices, and another for CMOS. That way, you'll know how to connect your IC's. Since both the National and Texas Instruments data books are widely distributed, you should have little trouble getting a copy

A good way to get started is with the CD4017. It's widely available, and, in addition, causes the tester to produce a spectacular display. The 4017 is a CMOS Johnson counter with ten decoded outputs; it is useful in applications like light sequencers, so you can probably use it elsewhere after testing.

After turning the tester on, since you'll be checking out a CMOS device, set the TrL/Mos switch to MOS. Do not insert the IC yet! Next, refer to your manual for the 4017 pinout. In this case, you can use Fig. 18-a.

First, identify the power-supply pins. In the case of the $\mathrm{CD} 4017, \mathrm{~V}_{\mathrm{SS}}$ is ground, and $V_{D D}$ is positive. Turning to the tester, insert a plug at the Lo jack for pin 8 . That grounds the pin. (From now on, we'll use a kind of shorthand to indicate plug positions; Lo at pin 8 becomes 8 -LO.) Then, insert a plug at $16-\mathrm{HI}$. That supplies power to the IC socket.

The next step is to identify the inputs of the IC. Sometimes you'll have to read the databook carefully to determine what they are for. In the case of the 4017 , pin 14 is the clock input, which we will want to pulse. Therefore, insert a plug at 14pulse. What about other inputs? The 4017 has both reser, and CLOCK ENABLE pins. The data sheet indicates that a logichigh on the reset pin resets the counter. So, insert a plug at 15 -Lo to make the counter run. As for the Clock enable pin, the data sheet shows that it must be at a logic-low for the counter to run. So, insert another plug at 13-LO.

If you don't know the functions of the inputs, you can easily change the plugs around until the device works. Don't confuse the inputs with the outputs, though. You could do some damage.

You can now insert the IC, making sure that pin 1 is positioned properly. (It's clearly indicated on the panel board.) When the ZIF socket is open, no con-

nections are made to the IC pins; it's only when you close it that V_{CC}, input signals, etc., are applied.
Press the pulse button slowly, and note that different LED's turn red each time. Only one of the outputs will be high at a time, and the LED that corresponds to it will be illuminated. Pressing the button will step the counter. and each output will go high in sequence

Reser the counter by removing the plug from $15-\mathrm{LO}$, and inserting it in $15-\mathrm{HI}$. Then return the plug to $15-\mathrm{LO}$. The pin- 3 LED should be glowing red, indicating that the counter has been reset to zero. Press the rulse button, and note whether the next LED lights just after the switch is pressed, or as it is released. The 4017 will increment (count up) when you release the switch. That shows that the counter is positive-edge triggered, as the data sheet indicates, because the output of the IC tester's pulse generator is positive-going when the rulse switch is released. You

000000PS!

In going from Part 1 to Part 2 to Part 3 of this article, several connector designations were confused. The following will, we hope, correct that confusion.

Description

12-pin Molex plug
12-pin Molex socket
16-pin IC socket
16-pin DIP header
16-pin ZIF socket
Power jack
Power plug
Power switch

```
Part no.
P102
SO102
SO1
P101
SO101
J201
P301
S201
```

Connects with
SO102
P102
P101
SO1
panel board
P301
J201
pads on display board
have just discovered an important lact: knowing whether a device is positive- or negative-edge triggered is vital when working with counters. flip-flops. and shift registers. Spend some time experimenting with the 4017 : change the RESET. CLOCK ETABLE, and CLOCK plugs. You'll quickly learn a great deal about the IC. and have some fun at the same time!

If you "borrowed" your 4017 from another device. and it didn't operate as described above, it's bad! What you ve done is to contirm that the IC operates as described in the databook.

That sort of check came in handy for me a while back. When I used a +017 as a programmable counter. An output was connected to reset. changing the division ratio. The idea was fine for large divisors, but wouldn t work for the small ones. The Programma III pinpointed the problem quickly-a "tine print" error in the data sheet.

By now you should have a good idea of how to use your IC checker. For practice. here's another example. Suppose you have a suspect 7400 TTL IC. Here's a brief reprise of the test procedure:

Step 1: Power up the unit. Since the
7400 is a TTL device. the TTL/MOS switch is set to TTL. Do not plug in the IC yet
Step 2: Look up the IC in your databook. (For your convenience, the pinout is indicated in Fig. 18-b.) Study the illustration.
Step 3: Locate the power and ground pins of the $I C$. On the $7400, V_{C C}$ is pin 14 and ground is pin 7 . Since the 7400 is a 14-pin device, there will be nothing in the pin-8 and pin-9 positions of the test socket. Always line up IC packages so that pin 1 goes into the pin- 1 position of the socket. The pin numbers on that side of the IC will be correct, but you'll have to make adjustments on the other side--pin 16 of the socket is now pin 14 of the IC, so put a plug in 16 - HI . Ground is still pin 7 . so put a plug at 7-LO.
Step 4: Detemine the inputs of the IC, and connect them accordingly. Since the 7400 is a quad (four-section) NAND gate, check each section separately. Since pins 1 and 2 are inputs, you could start with them. Make pin 1 high, and put the pulse on pin 2 for starters. Step 5: Insert the IC, and pulse it. Pin 3 should change state if the IC is good. Change pin 1 to ground, and note that the output doesn't (shouldn't) change state. Transpose the inputs to pins 1 and pin 2 and repeat the tests. Check the other gates in the same manner. If they work, fine! Don't bother to continue testing if you detect a fault, unless you need to use only a part of the IC.
That in a mutshell, is the technique for testing IC's. With a little practice, it becomes routine and, after a while, you can introduce some shortcuts. For example. once the power and ground pins of the test socket are connected. the IC may be inserted. Just don't get careless when you insert the plugs-most IC's object strong-

While most collectible radios are not old enough to be classified with antique furniture, many of them can be called antiques in their own right. You may be young enough to think that a radio from the thirties or forties is old. And, if you are a newcomer to the hobby of collecting radios, it is good to start with radios from that era because there are plenty to choose from. Often, you can even get such a radio for free. But, can it be restored?

As with any type of restoration, the task begins with what you have to work with in the first place. There are many old radios that are not worth restoring. (Of course, any radio that you identify with in some special way is worth restoring.) Also, some old radios are considered to be more of a classic than others (such as the cathedral-cabinet table model) and are more in demand. If you find one of these "classics'' cheap, take itno matter what the condition. Later, you may lind another, and make one complete, working set.

When restoring an old radio, it is important to keep it as original as possible. That applies to everything from the chassis and parts to the knobs and the finish on the wood cabinet. That does not apply if you want only a working conversation piece and not a trulyrestored radio. Any good cabinet can be fitted with a working radio chassis with a little alteration. Remember that proper ventilation and insulation must be observed. Although you might not have the rich, deep tone of the original, any modern radio in a cabinet from the thirties in daily use in your home will attract much attention

Where to find old restorable radios

Radios that can be restored are all around-but not in your local TV and appliance store. Try the classified ad columns, flea markets, and garage and yard sales. There are also many ads in magazines dedicated to this hobby. One example is The Horn Speaker (9820 Silver Meadow Dr., Dallas, Texas 75217). Some of your friends and relatives may have an old radio lying around for the asking. Of course you have to know what to look for when trying to find a radio to restore. We'll go into that next.

First, the radio should be old (whatever is old to you) and should have most if not all of its parts. The cabinet will be the first thing you will see. Can the cabinet be refinished to some semblance of its original condition? (Only knowing your own limits and abilities in wood-working and refinishing can answer that.) Are the knobs there? If not, you can most likely get some
that fit and look original.
The big question is: Does it play? Ask the seller if he can play the old radio for you, or at least turn it on. If the old radio hasn't been played for years and the line cord and plug are corroded, you will have to rely on just what you can see. That will include the speaker assembly, the chassis, and the cabinet.

The speaker assembly

The speaker assembly is a monstrous arrangement in old radios. Along with the cone and the voice coil, there is a field coil and impedence-matching transformer all mounted on a massive frame (see Fig. 1). That array, called an electrodynamic speaker should be intact, even if it needs a little work. While it may be possible to replace the dynamic speaker with a PM (Permanant Magnet) type, it will take much from the originality. The most visible problem might be the speaker cone. Finding a fifty-yearold radio with a speaker cone that is not warped or torn will be rare. If the cone isn't torn badly, it can usually be repaired with a little speaker cement, available in any parts shop. A warped speaker cone is not as obvious as a torn cone, but it is just as easy to repair.

Any radio that has not been used for many years is likely to have at least one of those speaker-cone problems. Checking for a warped speaker cone is a fairly simple procedure. With the set off and unplugged, of course, remove the speaker and examine the cone. (The wires are usually long enough to turn the speaker around without having to cut them.) A warped cone can cause an offcenter voice coil. To determine if the voice coil is off center, apply a slight pressure around the center of the cone as shown in Fig. 2. If a scratching noise is heard, the voice coil is off center. That test must be done very carefully or you may put your finger through the cone. If you hear the scratching noise, all is not lost, for there are a few things that can be done to re-center the voice coil. Some old sets have small set-screws in the center of the cone that need simply be adjusted to re-center the voice coil. Also, the outer edge of the cone may be reglued to the frame to solve the problem.

Even if your speaker cone is completely tattered there is still hope. There are still a few places around that re-cone speakers. The cost of re-coning the old speaker will not be much more than buying a PM speaker and you will avoid the electrical and physical conversion problem. Also, keeping the set original will
always be an asset when showing or discussing your restored set to knowledgable people.

If you are unable to pass a signal through the speaker because of unrelated problems with things such as tubes, line cords, etc., make a continuity test of the speaker components. With the set off and unplugged, check the voice coil, field coil. and both sides of the output transformer. Any inexpensive ohmmeter can be used, as the exact resistance is not important at this time. If you should fail to find continuity at any one of those points, the problem may be less than an inch away. The soldered connection where the coil or transformer is joined to the lead wire is the most likely culprit. You might have to carefully remove a little paper from the transformer to get to the connection. Even if there is no obvious break at the connection it still may have built up corrosion or a resin block. All those connections should be resoldered to make a good contact so they will cause no future problems.

The chassis

You can get a wealth of information from the chassis just by looking at it. Naturally, the first question to ask is whether or not all the parts are there. It will be easy to see if there are any tubes missing. Finding tubes for those that are missing will be one of the easier chores. Many old sets had the tube number stamped on the socket or on the chassis near the socket. It might be your good fortune to find a legible diagram with all pertinent information (such as the model number, IF frequency, tube locations, and filament diagram where applicable) fixed to the inside of the cabinet. Missing chassis parts other than tubes can create big problems. If an exact or a similar schematic isn't available, finding out what was in that hole with the wires hanging out will challenge even an expert. Large, tapped, wire-wound resistors, capacitors, IF transformers, and coils are some of the parts that may have been ripped from a chassis over the years. Unless you have full schematic information or for some reason want the set very badly, pass it up if it has parts missing other than tubes and knobs.

Some old radios seem to withstand age better than others. Where a radio was stored is especially responsible for its condition, as is the quality of material used in its manufacture. One chassis may be completely corroded and have a cabinet warped beyond repair, while another of the same vintage-maybe even of the same make-will appear like-new. A corroded chassis can entail a lot more work than a warped cabinet and can make

the project not worth your while. What's so serious about a corroded chassis? There are two big problems-the tube sockets and potentiometers. If the tubes are corroded in the sockets, removing them without any further damage to the tube or socket will take much patience-and a lot of solvent. And, you will still have a rusted socket when you are finished. To answer any question about the extent of the corrosion, you will have to remove the chassis from the cabinet for a look underneath. Often the underside of the chassis will be spared the corrosion and rust that was evident on top.

Cabinet restoration

How well the cabinet can be restored is limited mostly, by your own ability. If you enjoy woodworking and do it well, almost any cabinet can be restored. Even a cabinet with the plies separated can be re-glued. It is important that you take care to preserve any decals or designs (like that shown in Fig. 3) on the front of the cabinet. Before removing the finish, try restoring it with polish. However, if the finish must be removed, light-sand over those areas. Sometimes, furniture polish will restore an old finish and cover up minor scratches. If there are any deep scratches or dents, wood filler can be used. However, since the wood filler will rarely match the original cabinet, it will have to be tinted after the final finish is started so that it won't show through.

Before attempting any work on the cabinet, be sure to remove everything from inside. Also, all removable name plates, decorative speaker bolts, and even the grill cloth should be removed. Getting sanding dust and paint products on the chassis parts will not do anything to improve your old radio. If any parts of the cabinet are beyond restoration, they may be able to be replaced by a patient woodworker. That will apply most often to the bottom of a cabinet that absorbed moisture because it was stored in a damp place. Just be sure to replace any vent holes that were in the original cabinet, because an old radio with its big tubes and wirewound resistors radiates considerable heat.

Troubleshooting old radios

Troubleshooting old radios is not much different than troublehooting new radios. (And it is just as important to be familiar with all safety procedures.) Many old radios have the grid cap conviently sticking out the top of the tube envelope.

FIG. 1.-MAKE SURE WHEN BUYING an old radio that alic chassisis parts are included. Without a schematic it may be impossible to identify a missing part.

FIG. 2.-THERE IS A SIMPLE TEST to determine whether or not the speaker's voice coil is off center.

That permits a signal injection or circuit-disturbance test without even removing the chassis from the cabinet. Most of the rest of the parts are similar to those in newer radios, but are much larger. of course.

When you select an old radio to restore, don't be surprised if it lights up but doesn't play. Even if there is just some slight hum from the speaker don't give up hope. There are a few factors to consider on early models that should be checked. If there is no built-in aerial, there should be a terminal on the back of the chassis for connection to an external one. (The radio might play weakly or not at all if it was designed to use an outside aerial.) Any piece of wire can be attached to the terminal screw for test purposes.

Keeping the equipment original is not as difficult as it sounds. The band switches, potentiometers, coils, and even IF transformers can be dismantled and repaired. As with speakers, the most likely problem with an intermediate-frequency transformer that will not pass a signal is a poor connection. Remove

FIG. 3.-WHEN RESTORING A CABINET, take great care to preserve any decals or designs.

FIG. 4.-A TUBE TESTER can save you a lot of time and aggravation, especially if you buy a large numbers of used tubes.
the transformer's shield and carefully resolder all of the connections. (A turn can even be taken from the winding if more of the hair-like wire is needed to make a good connection to the trimmer terminal.) If you have to remove the trimmer screw to clean it, you will want to reset it as closely as possible to its original position. You can do that by counting the turns as you screw it down as far as it will go. Then remove the screw and clean it and the trimmer if needed. Replace the screw and turn it as far in as it will go, then back it off the number of turns needed. You will probably have to align the entire set after the IF transformer work.

There isn't much that can be done to repair a bad tube. A partial solution is a good collection of used tubes. Also, there are still some mail-order houses offering old tubes. Even some long-established repair shops have some tubes for early sets. One source for tubes and information that comes to mind is Puett Electronics (P.O. Box 28572, Dallas, TX 75228). A tube tester with an older roll-chart, like the one shown in Fig. 4, is a priceless piece of equipment for the old-radio buff.

Even if restoring your nostalgic radio ends up costing you more than the radio did when it was new, the pleasure of restoring it and the pride of accomplishment can far outweigh the cost. And, if that's not enough, you can expect many offers to buy your restored radio.

R-E

BuTMD Txdic
 Two
 DVM's

Equip your bench power-supply

 with its own digital voltmeter. LSI circuits make the project simple and inexpensive.
CLEMENT S. PEPPER

THE POWER SUPPLY I USE ON MY BENCH has five outputs, two of which are variable over a range of ± 25 volts. I found having to connect a voltmeter to either of those two merely to set a voltage or to make a status check to be a bother, and was thinking of adding an analog panel meter with selector switching, when I stopped to ask myself why I wanted to do a dumb thing like that. High performance linear and digital IC's now available make a built-in digital voltmeter practical at about the same cost as a high quality panel meter. All the semiconductors and the 4-digit display, for example, can be purchased for less than twenty-five dollars.

The circuit I designed performed so well that I modified it and made a generalpurpose DVM for use on the bench. It is quite compact, so it can be close to the work at hand while taking up little space.

At the heart of both versions is the LM331 precision voltage-to-frequency converter. That device, along with the MM740925 (a 4-digit counter with multiplexed 7 -segment output drivers) and the NSB3881 4-digit common-cathode multiplexed LED display, contributes to the high performance and compact construction of the DVM's. All three IC's are made by the National Semiconductor Corporation.

LM331 V-to-F converter

The LM331 is a monolithic circuit designed for voltage-to-frequency or frequency-to-voltage conversion. Figure l shows the LM33l in simplified biockdiagram form, along with the external resistors and capacitors needed for standalone $\mathrm{V}-\mathrm{F}$ operation. The principal parts
of the device are a switched currentsource. an input comparator, and a oneshot timer.

The switched current-source establishes a positive reference voltage. V_{X}, as one input to the comparator, and a positive input-voltage, $V_{I N}$, as the second. If $V_{\text {IN }}$ exceeds V_{X}, the comparator will trigger the one-shot. The oneshot then turns on the output transistor and the switched current-source for a time, t. equal to $1.1 R_{t} C_{t}$. During that time, current i provides a fixed charge Q, equal to $i_{X_{t}}$, to capacitor C_{L}. That will normally raise V_{x} to a higher level than $V_{\text {IN }}$. At the end of the timing period, current i will turn off, and the timer will reset itself. Since there is then no current flowing from pin 1 , capacitor C_{L} is gradually discharged by resistance R_{L} until V_{X} falls to the level of $V_{I N}$, Then the cycle will repeat.

FIG. 1-SIMPLIFIED BLOCK DIAGRAM of voltage-to-frequency converter showing LM331 with external components

The output device is an open-collector transistor, a real convenience in translating between the 15 -volt supply for the converter and the 5 -volt one for the display. The output is a train of negativegoing pulses that is input directly to the counter's clock input for counting and count display. The output frequency is given by the equation:

$$
F_{\text {OUT }}=V_{\mathbb{N}} / 2.09 \times R_{\mathrm{S}} / R_{\text {IN }} \times 1 / R_{\mathrm{t}} C_{\mathrm{t}}
$$

The current flowing into C_{L} is $\mathrm{i}_{\text {AVE }}=\mathrm{i}$ $\times\left(1 . \mid R_{t} C_{1}\right) \times F_{\text {OUT }}$, and the current flowing from C_{L} is exactly V_{X} / R_{L}. which. in turn, is very nearly equal to $V_{\text {IN }} / R_{L}$. If $V_{\text {IN }}$ is doubled. $F_{\text {OUT }}$ will also double to maintain that balance. The converter can provide an output that is proportional to its input voltage over a broad range of frequencies. The voltage-tofrequency linearity in a circuit having values very nearly the same as those in the two versions of the DVM described here. is specified by National as $\pm 0.14 \%$ worst-case over the range of 10 Hz to 11 kHz .

MM74C925 4-digit counter

The MM74C925, shown in Fig. 2. is a CMOS device containing a 4 -digit decade counter, an internal latch, NPN output sourcing drivers for a 7 -segment display. and internal multiplexing circuitry with four multiplexing outputs. It has its own free-running oscillator; no external clock is required for digit strobing. The counters advance on the negative edge of the incoming clock signal. A high on the reSET input will reset the counter to zero. A high on the latch enable input allows data to flow through the counters without being latched; a low latches the number in the counters. The display can be driven

FIG. 2-INTERNALSTRUCTURE of 74C925 4-digit counter with multiplexed 7 -segment output drivers.

FIG. 3-NATIONAL SEMICONDUCTOR NSB3881 4-digit LED display.

FIG. 4-BLOCK DIAGRAM of general-purpose DVM. Low-voltage $60-\mathrm{Hz}$ current is used to clock display control-logic.
without external segment-currentlimiting resistors, but they should be used to minimize power dissipation and chip heating.

NSB3881 4-digit LED display

The NSB3881 is one of a family of multidigit LED-displays mounted on a small PC card, which greatly simplifies assembly and wiring. The individual digits are prematched for brightness and are mounted so as to be end stackable. Figure

3 shows the display and its pin assignments.

DVM features

A block diagram of the DVM is shown in Fig. 4. The input range is ± 50 volts, and the input is connected to an absolutevalue amplifier through a voltage divider having a ratio of $1: 5$. That ratio can be changed-it just happened to meet my needs. The one strict requirement is that the maximum voltage to be measured re-

PARTS LISTGENERAL PURPOSE DVM

All resistors $1 \%, 1 / 4$ watt unless otherwise specified
R1-1 megohm
R2-20,000 ohms, multi-turn trimmer potentiometer
R3-250,000 ohms
R4-200,000 ohms
R5, R6, R8, R12- 10,000 ohms
R7, R11-5000 ohms
R9-1000 ohms, multi-turn trimmer potentiometer
R10-4750 ohms
R13, R15-100,000 ohms
R14-47 ohms, 5\%
R16-5620 ohms
R17-10,000 ohms, 5\%
R18-10,000 ohms, multi-turn trimmer potentiometer
R19-6800 ohms
R20, R23, R36-1000 ohms, 5\%
R21-220 ohms, 5\%
R22-see Table 1
R24-R26, R35-3300 ohms, 5\%
R27-R34-82 ohms, 5\%

Capacitors

C1, C3, C5, C7-C10-0.1 F , ceramic disc C2- 1000 pF , ceramic disc
$\mathrm{C} 4-1 \mu \mathrm{~F}$, Mylar or tantalum
C6, C11-C13-0.01 F , ceramic disc

Semiconductors

IC1-TL084C quad biFET op-amp
IC2-LM311N (or -H) voltage comparator
IC3-LM331N precision voltage-to-frequency converter
IC4-74121 monostable multivibrator
IC5-7492 divide-by-12 ripple counter
IC6-7490 divide-by-10 ripple counter
IC7-74123 dual monostable multivibrator
IC8-74C925 CMOS 4-digit counter w/multi-
plexed digit and segment drivers
IC9-MCT2E opto-coupler
DISP1-NSB3881 4-digit, 7-segment LED display
LED1-jumbo red LED
Q1-2N2907
Q2-Q5-2N2222
D1, D2-1N914
Miscellaneous: regulated power supply, perforated construction board, IC sockets, hardware, etc.
sult in a $\mathrm{V}_{\text {IN }}$ to the voltage-to-frequency converter of no more than ten volts. That will keep the maximum signal within the linear operating range of the operational amplifier.
The output of the absolute-value amplifier is always postive, regardless of the polarity of the input voltage. That's necessary because of the input requirements of the LM331. An output is also taken from pin 7 of the amplifier (IC1-b) to light an LED and provide a visible indication of the polarity of the input. When the LED is lit, the voltage is positive; when it's dark, it's negative.
The $60-\mathrm{Hz}$ line current serves as the clock source for the display. Division by 60 provides a one-second timebase. (The

FIG. 5-CIRCUITRY IN UPPER PART of schematic of general-purpose DVM contains absolute-value amplifier and V-F converter. Lower section is for timing and display.
equation for $F_{\text {OUr }}$ assumes a one-second timebase.) However, any clock frequency can be used, provided that $\mathrm{F}_{\text {out }}$ stays the same. The easiest component to change to compensate for a different timebase is R_{S}.

A schematic of the general-purpose voltmeter circuit is shown in Fig. 5. The TL084C quad bi-FET op-amp is used primarily because its very low bias currents allow the use of high-value resistors for the input divider

Figure 6 helps to explain how the absolute-value amplifier section works. When $\mathrm{V}_{\text {IN }}$ goes negative, the output of the first amplifier goes positive by the amount of one diode-voltage-drop (about 0.7 volt), shutting of the upper diode and bypassing the amplifier by virtue of the lower diode connected to the input. The second amplifier inverts $\mathrm{V}_{\text {IN }}$ to provide a
positive output equal in amplitude to the negative input. When $V_{I N}$ is positive, both amplifiers invert, but the output of the first is $-2 \mathrm{~V}_{\mathrm{iN}}$ which, when summed with $V_{\text {IN }}$ at the input to the second, results in an actual input equal to $-\mathrm{V}_{\text {IN }}$, and thus an output of $V_{I N}$.

Referring once more to Fig. 5, the second amplifier, ICl-b, is connected to the non-inverting input of a LM311 comparator. Whenever $\mathrm{V}_{\text {IN }}$ is positive, that input is negative and the LED lights. The three trimmer potentiometers should be preset to approximately midpoint for R 2 and R9 and to about 6000 ohms for R18. The National data book suggests that C4 be a Mylar capacitor, but I used a tantalum with no apparent problems. If you are looking for accuracy on the order of one percent or so, and good long-time stability, you should use cermet trimmers and
metal-film resistors throughout the amplifier and converter circuits.
As shown in Fig. 7, an opto-coupler is used to extract a clock signal from the low-voltage winding of the transformer used by the power supply that will be monitored. Table 1 will help you select a

FIG. 7-POWER IS TAKEN from power supply being metered. Regulators provide voltages required by meter circuits. Two positive regulators require heatsinks. Resistor R22 and opto-coupler IC9 also appear in Fig. 5 and serve same functions as R20 and IC14 in Fig. 11.

TABLE 1

	RABLE
V_{rms}	$\mathrm{R} 22(\mathrm{R} 20)\left(I_{\mathrm{rms}}=20 \mathrm{~mA}\right)$
7	270Ω
10	390Ω
13	560Ω
16	680Ω
19	820Ω
22	1000Ω
25	1200Ω

suitable value of R22 for your transformer. Power for the meter circuit itself can also be obtained from within the power supply; $\pm 18-20$ volts DC will do the job nicely.

The $60-\mathrm{Hz}$ divider is quite conventional. When you build the circuit, keep in mind the fact that the 7490 and 7492 power pins are 5 and 10 , rather than the more common 14 and 7 for V_{CC} and ground, respectively. The leading edge of the output of the 7490 triggers IC7-a, a 74123 dual monostable-multivbrator. The output pulse, which has a duration of about ten microseconds, latches data from the 74 C 925 counter (IC8) for display updating. Its trailing edge triggers IC7-b to reset the counter.

The 74C925 is capable of driving the display directly-that is, without currentlimiting resitors-but then you must heatsink the counter, and you may have a power-supply problem as well. The $82-$ ohm current-limiting resistors provide more-than-adequate brightness for good readability on a well-lighted bench. The 2N2907 transistor is used to turn on the second-digit decimal point. The counter does not feature leading-zero blanking, and I didn't think it worth the effort to include it. If you do wish to blank the leading zero, add logic to detect when segments " $a-f$ '" are at a logic-high, and segment " g '' and pins 7,9 , and 10 of IC 8
are low. The logic should inhibit the drive to the base of Q2 whenever those conditions are met, and the first digit will remain dark.

Construction and calibration

Construction can be quite compact if reasonable care is taken to prevent shorts and solder bridges. There are two things you should do to avoid oscillations: Connect $0.1-\mu \mathrm{F}$ ceramic capacitors fairly close to the amplifier's "+" and " -" DC-power pins, and take care to separate the input and output circuits of the amplifiers.

I usually combine construction and testing. That is, I construct a block of circuitry, such as the analog portion of the meter, and then stop to check it out before proceeding. I assembled the amplifier and comparator circuits, followed by the voltage-to-frequency converter, the timebase, and the display.

It's a good idea to assemble the amplifier circuit, then stop to test and adjust it, before connecting it to the LM331. The reason is that the voltage-to-frequency converter will respond to positive voltages only, but should there be a defect in the amplifier wiring you could input a negative voltage. (That's because the initial step in the test-and-adjustment procedure is to connect a negative voltage to the input.) With a calibrated meter connected to pin 8 of the TLO84CN, apply a known negative voltage to the input of the meter you built. You should read a positive voltage equal to one-fifth the input. Adjust R2 to obtain that value.

Next, replace the negative voltage with a positive one of a similar amplitude and adjust R9 for the correct reading-again one-fifth the value of the input voltage. There is a somewhat larger error for a positive input than for a negative one, so you may want to make the adjustment

PARTS LISTREGULATOR SECTION

All resistors $1 \%, 1 / 4$ watt unless other-
wise specified
R22-see Table 1

Capacitors
C1, C2, C4, C6- $-4.7 \mu \mathrm{~F}, 25$ volts, tantalum $\mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 7-0.1 \mu \mathrm{~F}$, ceramic disc

Semiconductors
IC1-7815 15-volt. positive regulator IC2-7805 5 -volt positive regulator IC3-7915 15 -volt negative regulator IC9-MCT2E

Miscellaneous: heatsinks for positive regulators
using an input voltage of a value you will be measuring frequently (l used 15 volts).

The third-and final-adjustment has to be made after assembly is complete. Simply adjust R18 so your display shows the same input-voltage as does the meter you're using for calibration. Again, you may wish to perform that step with a voltage you use often. At $11 / 2$ volts my completed meter displayed a positive voltage that exceeded its negative counterpart by about 30 millivolts. That error approached zero at my calibration value; then the positive error increased slightly more than the negative as I continued upward. Overall, with an input span of 20 volts, the positive and negative values tracked my calibration meter within about two percent of full scale.

A dual-input DVM

The longish rectangle to the left of the banana plug in Fig. 8 is the 4 -digit display of a version of the DVM that monitors my power supply's variable outputs (the jacks between the two knobs). That version features two inputs-one for a positive voltage, the other for a negative one. Because the range of the supply is about 27 volts, I designed the meter circuit to span 30 volts. I constructed the circuit in three sections, as can be seen in Fig. 9, so I could tuck it all into the cramped space available inside the supply

A function diagram of that meter is shown in Fig. 10. An inverting amplifier is required for the negative input; a noninverting one for the positive, so that each provides a positive source for the voltage-to-frequency converter. Connection to the converter is made through a solidstate analog switch controlled by measurement logic derived from the onesecond timing logic. The control logic for the display differs somewhat from that of the general purpose DVM, but the remainder of the circuitry is the same.

A schematic of the dual-voltage meter is shown in Fig. 11. A general-purpose

PARTS LIST—DUAL-INPUT DVM

All resistors $1 \%, 1 / 4$ watt unless otherwise specified
R1, R3-20,000 ohms
R2, R4-R6- 10,000 ohms
R7, R19-10,000 ohms, multi-turn trimmer potentiometer
R8-8200 ohms. 5\%
R9, R10-5600 ohms, 5\%
R11, R17-100,000 ohms
R12-47 ohms, 5\%
R13-4700 ohms, 5\%
R14, R16-10,000 ohms, 5\%
R15- 5600 ohms
R18-220 ohms, 5\%
R20-see Table 1
R21, R34- 1000 ohms, 5\%
R22-R24, R33-3300 ohms, 5\%
R25-R32-180 ohms, 5\%

Capacitors

C1, C5, C10-C12-0.01 μ F, ceramic disc C2, C4, C6-C9-0.1 $\mu \mathrm{F}$, ceramic disc C3- $1 \mu \mathrm{~F}$, Mylar or tantalum

Semicoriductors

IC1, IC2-741 op-amp
IC3-4016 CMOS quad bilateral switch
IC4-7407 hex buffer, open collector
IC5-LM331N precision voltage-to-frequency converter
IC6-74121 monostable multivibrator
1C7-7492 divide-by-12 ripple counter
IC8- 7490 divide-by-10 ripple counter
IC9-7474 dual D flip-flop
IC10-7408 quad 2-input NAND gate
IC11-7432 quad 2-input or gate
IC12-74123 dual monostable multivibrator IC13-74C925 CMOS 4-digit counter with multiplexed digit and segment drivers
IC14-MCT2E opto-coupler
DISP1-NSB3881 4-digit, 7-segment LED display
Q1, Q3 Q6-2N2222
Q2-2N2907
Miscellaneous: regulated power supply, perforated construction board, IC sockets, hardware, etc

FIG. 8-DISPLAY OF DUAL-INPUT DVM can be seen at teft of power supply. General purpose DVM is in foreground.

FIG. 9-DUAL-INPUT DVM was built in three sections to fit in tight cabinet. Timing logic is on left-hand board; amplifiers, switching, and V-F converter on senter one, and display and display logic on front-panel mounted board at right.

FIG. 10-BLOCK DIAGRAM of dual-input DVM. Timing and displąy circuits are essentially the same as those in general-purpose meter.

FIG. 11-UPPER SECTION of schematic of dual-input DVM shows input amplifiers, switching, polarity indicator, and V F converter. Lower section shows timing and display circuits,

DVM requires a high input-resistance not necessary here. so I used less resistance in the divider, permitting use of the popular, low-cost 741 op-amp instead of the TL084C.

The TTL IC's used in the timer logic operate from 5 volts. A section of a 7407 open-collector buffer, IC4-a, provides translation to 15 volts for control of the 4016 quad CMOS switch. The switch is controlled by the + measure and mEASURE outputs of IC9-b, a 7474 flipflop. The section of the 4016 used to drive the front-panel polarity LED is also controlled by the measure output of the 7474.

A timing diagram is included in Fig. II as an aid in following the logic timing. A
complication arises in this DVM in that the voltage presented the voltage-tofrequency converter can change by as much as ten volts in going from one source to the other. There is a time constant in the $\mathrm{V}-\mathrm{F}$ circuitry that will cause a large error unless it is dealt with. My way around that was to allow the LM331 two seconds of measure time, then take only the last half of that time for display.

While at first glance it may appear that the display logic is providing the counter with a simultaneous Latch and ReSET. That, however, really isn't so. The $7+32$ (IC11-a) triggers IC12-a with the leading edge of its output to reset only the counter (and not the latch) while the display continues to show the currently-latched
count. One second later, the trailing edge triggers IC $12-b$ to latch the new count for display

Construction

I tailored the construction of this meter to fit the location. The board at the rear (seen at the left in Fig. 9) contains the timing logic. The one in the middle holds the two $7+1$'s, the measure switching, and the $\mathrm{V}-\mathrm{F}$ converter. The display logic and the display snuggle up to the front panel so the display can poke through.
The display is supported on the circuit board only by its wiring-short lengths of No. 22 bus wire (quarter-watt resistor leads). Each short piece of wire has a 90° continued on page 99

ALL ABOUTL

Part 2In The first article of this series, we presented some of the fundamantals of act. ve recessing an:znnes. That type of antenna has several advantages jver wire antennnas, especially at very-low and low frequencies ZVLF and LF). First. active antennas hase a short physica. lengh. Tre active antenna sys:ems that we vill d.scuss here are used with a onz-ncter long whip. That helps reduce the sersinivity to local noise from: sources such as power lines Becalse of the active antenna's higb infut-impecance ard low oalfut-impedarce, it is more efficient than ε simple wire antenna in convertirg a rezeived signal at the antenra to a corresponding veltage level at the receiv-$\mathrm{e}-\mathrm{s}$ antenna terminals.
In zeneral the properties that we want our astive reseiv ng an=erna to have are: higi input-inpedance, low inputcepacitance, lo \geqslant output-inpedarce, and m.nimum distot on/high linearits.

Another cbjective is to reep the cirsuit as simple as possible. A sing c-stage JFET amplifer has the best combination of properties fo- active antenna preamolifier applications-and it allows the sircuit to be kejt ectaively simple. (This is not to suggest that there might rot be better, more cemplex circuits, using several semizonçuctors o: IC's)

Wide-band amplifier ci-cuit

The JFET that we have zhosen to use is the Siliconix. J-E1C (or U-310 ir metal cen) That JFET is of en used as a grounded-gate t-ansmiss on-line amplifier for TV and $\equiv \mathrm{M}$ reception (at a 75 -chm ipputoutpul level). The J-310 wil. asually handle short-duration static su-ges up to ICO volts or so without damage, so a

> An active receiving anten.7a can dramatically improve your receiver's performañe, especialls at very ow requencies. Here we wiy discuss some practical circuits for both widebani and narrowband operaticn.
single low-capacitance neon bulb can provide ir fur static-charg= protection. Toas is of watue since semioonductor diodes wually rave a much higher junctioncapezitanca when used as protection devices and, if sed. would increase the irpur zapasitance of the pramplifier.

Ir cur appl cation as an ective VLF-HF peemplifier, tre J-310 s used in a common-sonrce common-drain conf guation vi:h inductive feedback (that irnp ores the line arity and lowers the outpıt impedsrce). Figure I shows our wideband circuit for the rarge of 10 kHz te 33 MHz . Note that the reedback from dain to so ree is large beca ise of the low resistence cf tiae transformer and its 1:1 turn- ratio o We will discuss how to wind that transformer in Part 3 of this series: that part wil cortain actua construction catails.) Fer the circuit to operate proFarly, the ransformer's ouput should be Cכp jsite ir, Jhese to its inpu (with respect to ercund).

The amaifier circuit is intended to be wed with 1 -mieter vertical whip. The antenia ard is mount capz itances serve as patt of an insu: filter. The input capaxitance of the JFET is quite low (abou: 7 pF) The $22, \mu \mathrm{H}$ inducto- at the gate of the JFET serves as a lowpase filter or trap, rescaating with the junct on and circuit (ncluding artenna) capac tances at a frequeacy near 30 MHz . That input filter cids in recuz n $£$ FM-VFF interference ave a raner of 50 to 500 NHz where the I-Ir eler wifecis like a resc nant antenna.

Receiver coupler

Tae recziver coupler both provides pover to tie jeemplifier a-d extracts the signa: frorr. the coaxial transmission I.ne (from the rream). A wice aand receiver

FIG. 1 -THE WIDEBAND AMPLIFIER. The transformer should be connected so that the polarity of the output is opposite in phase to that of its input.

FIG. 2-THE RECEIVER COUPLER both provides power to, and extracts signals trom, the amplifier, as well as acting as a highpass filter
coupler is shown in Fig. 2. Capacitor Cl and inductor Ll form a highpass L section filter (with about a $10-\mathrm{kHz} 3-\mathrm{dB}$ rollolf). Resistor R1 is used to ensure that the preamplifier output sees a lowimpedance load no matter what sort of receiver is connected. Resistor R2 is used for matching to a receiver with a higher input impedance. That resistor would cause a signal loss of 6 dB if the input impedance to the receiver were 500 ohms.

The coupler circuit provides DC power to the preamp through the coaxial cable. Power sources less than about +8 volts will reduce the dynamic range and linearity of the amplifier. The power dissipation of the JFET using a +8 -volt supply will be about 200 mW . The rating of the J 310 at $25^{\circ} \mathrm{C}$ is about 360 mW maximum. In practice. we have not burned one up even when operated with a +12 volt supply for an extended length of time.

The active antenna preamp is like at Class-A amplifier (where the output has low distortion, but the power furnished by the $D C$ power supply is much greater than the power dissipated in the load). However, some distortion does ultimately appear in the output at high input-signal levels. That is due to the fact that a JFET biased in that way cannot be made perfectly linear over a wide dynamic swing of the output voltage. Other modes of operating the JFET with different biasing have been tried, but they have not resulted in any significantly better performance. So, in a sense, the circuits of Figs. 1 and 2 are of the "simpler is better" type.

Intermodulation distortion

A wideband active antenna covering
from 10 kHz to 30 MHz has poor performance with regard to IMD (/nterModulation Distortion) because little input filtering is provided. Interlerence will be noted especially it the observer is close to strong A.M broadcast-band transmitters. The standard method for evaluating the intermodulation response
of a receiver is to measure the 2 nd and 3 rd order intercepts.

Figure 3 shows a plot of the output power of the two fundamental signals (f_{1}, f_{2}) versus the output power of the second order and third order distortion products. (We discussed intermodulation distortion products in the first part of this series, which appeared in the February issue of Radio-Electronics). Those are shown as a function of the power of a two-tone input signal.

One thing we should mention first is that when the input signals are too large, the amplifier output will not follow the input linearly. That is called gain compression and can be scen in Fig. 3.

If the linear portions of the curves are extended, they will eventually cross each other. That is shown in Fig. 3, where the curves are extended by dotted lines and cross at an output level that cannot be reached by the amplifier. The point where they cross is called the amplifier intereept. The input and output coordinates where they cross give you the input and the output intercepts.

In general, the higher the intercept point is on the graph, the better the amplifier's capability. Those measurements are best made with a sensitive spectrum analyzer, but an approximate idea can be obtained by using a receiver and recording the S-meter readings with appropriate signal-generator sources. The relatively low number of only +10 dBm for the 3 rd order intercept indicates that the active antenna should be used

FIG. 3-THE HIGHER THE INTERCEPT POINTS, the better the amplifier's intermodulation rejection.
over a wide frequency range only where the local interference level is not severe. The antenna. of course, might be used in a high-signal area but the observer has to exercise some caution in making sure that the IM signals are not obscuring some desired signals on the same frequency.

For the wideband case of 10 kHz to 30 MHz , those intermodulation-distortion measurements suggest that only a short antenna of perhaps I meter or even less will provide the least amount of spurious responses-increasing the antenna length will only tend to increase the distortion level. Longer antennas should be used only when the active preamplifier is provided with some form of input and/or output filtering to reduce the out-of-band interference effects. With added input filtering, an active antenna with a 1 -meter whip can provide less IMD because the input filter reduces the likely interfering signals before they have a chance to operate on the preamp input circuitry.

Although the wideband active antenna should not be used with anything longer than a 1 -meter whip in areas of high adjacent-channel interference, longer antennas-perhaps up to 10 meters- can be tried in a "quiet" location for operating in the VLF-LF range. However, when using long antennas in the HF region there is an additional interference problem because the antenna is resonant at more than one frequency. One rule to follow here is to keep the length of the antenna less than 1/10 wavelength at the highest frequency used for a wideband system. Although that is short at the highest frequency, an

FIG. 4-THE INPUT INDUCTORS and circuit capacitance form a lowpass filter that makes this an amplifier for restricted use in the VLF-LF range.
antenna of that length used with the wideband preamp will perform almost as well as a 48 -inch top-loaded vertical connected to a 50 -ohm system (as in mobile CB radios at the $27-\mathrm{MHz}$ region). A. primary reason for using an active-antenna system is to provide good performance over a wide range with small physical size. Thus, if the antenna is to be used only for the CB range, it would be simpler to use an ordinary CB antenna and avoid all of the wideband problems.

Amplifier circuit-VLF and LF

At frequencies below about 500 kHz . the amplificr circuit is modified to provide input filtering and higher voltagegain. Figure 4 shows the modified circuit. Two input inductors and the circuit capacitances form a lowpass tilter with a cutoff frequency near 4.50 kHz (see Fig.

FIG. 5-VARIOUS INPUT NETWORKS for VLF-LF operation can improve performance at particular frequencies or increase the antenna's selectivity.

5 -a). The choice of those inductors is somewhat critical because the preamp's operation depends partly on the resonant frequency of the coils, the distributed capacitance, and the capacitance of the windings to the shield housing. To reduce mutual coupling. the coils are connected in series with their windings opposing each other. Therefore, they still can be mounted close together on a small circuit board with no interstage shield. That arrangement provides at least another 30 dB of attenuation for broadcast-band signals directly at the input to the preamplifier where the problem of intermodulation starts. A single inductor can be used, but it will not provide quite as sharp a cutoff for interfercnce from the AM broadeast band

The output transformer is an ultraminiature audio-output transformer with a 200 -ohm center-tapped primary and an 8 -ohm center-tapped secondary. (We will talk more about that transformer when the series continues.) The output transformer has good response to at least 400 kHz , even though it was originally intended for audio-frequency use. The sinatler amount of feedback applied from drain-to-source results in higher voltage gain of about +6 dB at the expense of slightly less power gain. or a higher output impedance when compared to the $1: 1$ wideband toroid. However, we use the iron core transformer because of its low cost as well as the lou pass output filtering provided.

When used with a 1 -meter whip, the VILF-LF version of the active antennawith an input lowpass filter with about a +50 KHz rolloff-provides higher intercept points with respect to broadcastband interference (although it is about the same for interference from other frequencies). If you are located in a region free from high-power broadcast-band transmitters, then you can use the preamplifier of Fig. 4 with longer antennas. However. a point is reached with any active system where merely increasing the antenna size does not improve the overall signal-to-noise ratio because the atmospheric noise level increases at the same rate as the signal.

EOUIPMENT AMD TRAIIIIIG NO OTHER SCHOOL CAN MATCH.

NTS HOME TRAINING INUITES YOU TO EXPLORE MIPROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EOUIPMENT YOU ASSEMBLE AND KEEP

Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that offers you training for this booming field with a choice of 3 production-model micro computers.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We
believe
that training
on production-
model equipment,
rather than home-made learning devices, makes home study more exciting and relevant. That's why you'll find such gear in most of NTS's electronic programs.

For instance, to learn Color TV Servicing you'll build and keep the $25^{\prime \prime}$ (diagonal) NTS/HEATH digital color TV.

In Communications Electronics you'll be able to assemble and keep your own NTS/HEATH 2-meter FM transceiver, plus test equipment.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly acquire practical know-how.

Serd for the full color catalog in the electrorizs area of ycur shoice-discover all the adva tages of Fome study with NTS!

N TS also offers courses in Auto Mechanics Air Jenditioning and Home Appliances. Chect. card for more information.

Resonant input circuit

Figure 5 illustrates various highimpedance input networks for restricted use in the VLF-LF region (such as LoranC only, or WWVB. or for the 160 $\mathrm{kHz}-190 \mathrm{kHz}$ experimenters' licensefree band). A series inductor with a small input tuning capacitor can be used to further reduce interference and increase the antenna performance. A miniature trimmer-capacitor with a tuning range of 8 to 50 pf placed from the gate to ground, directly across the 1 megohm input resistor (see Figs. 5-b and 5-c) provides a means of tuning the series inductor for a peak at the desired frequency range. The result is a sharp. high-frequency cutoff with a more gradual low-frequency rollolf. The inductor was chosen to be selfresonant (remember. real inductors also have capacitance) at a somewhat higher frequency than the top of the desired tuning range. That technique will work for some pot-core or slug-wound inductors but will usually not work well with large toroids, as they have too much distributed capacitance at VLF. It is also possible to shunt a slug-tuned inductor from the gate to ground (as in Fig. 5-c) but the preamp will then require a larger housing. For that parallel-tuned case, the 1 -megohm resistor can be removed because the inductor provides the ground return for the gate. The antenna is then connected directly to the gate terminal with the inductor chosen to resonate with the antenna, inputcircuit, and antenna-mount capacitances. The minimum of external tuning capacitance provides the highest Q (most selective) antenna in this application. For DX hunting in the low-frequency experimenters' band (at 180 kHz) a narrowband antenna with a Q of more than 50 can be achieved with a parallel-tuned circuit.

One problem with using a tuned circuit is that it restricts the remote applications of the active antenna. That is because the antenna must be located conveniently so that it can be retuned. However, for covering some fixed frequency (such as
the experimenters' band) the antenna system can be aligned on the bench and then mounted for unattended operation. When tuning those systems, it is advisable to temporarily mount the preamplifier assembly in a fairly clear area (preferably where it will be permanently located) to avoid nearby capacitive coupling, which might detune a very selective system.

One technique for broadbanding a tuned circuit is to place a resistor in parallel with the inductor (See Fig. 5-d). Resistor values in the range of 50 K to 500 K ohms can help broaden Loran-C systems where a wide bandwidth is necessary

Traps

Series-connected transmission-line traps tuned to local broadcast-band stations and placed just ahead of the receiver coupler can improve the IMD somewhat and reduce overload or gain-compression problems (see Fig. 6). The tuning capacitors must be isolated from ground and the inductor must be chosen so as to have a reactance greater than 50 ohms at the desired notch frequency. Dual traps are possible. For example. Fig. 6 shows a trap for 970 kHz and another for 1340 kHz connected in series. The combination of input lowpass filters at the antenna and traps at the preamp output can usually provide sufficient attenuation for cases of severe interference in the VLF-LF band from stations in the broadeast band.

A summary of some measurements made with different antennas at 60 kHz for WWVB reception is shown in Table 1. It should be noted that a 2 -meter vertical whip is about equivalent in sensitivity to the much larger flat-top antena. However, the flat top is much more susceptible to noise and interference, even when it is operated with a low pass filter al the preamp input. The effective-height estimate may not be the same over the entire frequency range. For example the flat top appears to have an effective height of about 2 meters at 200 kHz but less than 0.9 meters at 60 kHz . That is because of

TABLE 1

FIG. 6-TRAPS CAN BE USED to reduce interference from broadcast band stations-in this case from stations at 970 and 1340 kHz .

K-the shielding effect and conductivity of the local ground terrain, which includes all the trees, power lines. and building structures. However. we are still able to operate the antenna even down to the 10.2 kHz Omega frequency with reasonable success and it is used routinely to check GBR on 16 kHz for VLF propagation conditions. (GBR is a highpower military VLF station from Great Britain.) In practice. it is always wise to check for 1 M effects at the specific frequency range that you plan to use the antenna. Sometimes they are severe but only at relatively narrow frequency ranges usually not in the VLF range.

For general wideband surveillance, the 1 -meter whip with an eflective height of about 30 cm is the best antenna of all, because it has fewer IM interference effects and less local noise from the power lines.

A general conclusion from all of the experiments is that the local environment and the ground-conductivity effects of nearby structures are the most important factors in determining antenna sensitivity. Small changes in antenna location can produce remarkable differences in the antenna's periormance.

Another observation is that the best location for a short whip is invariably up high in the clear. (That can especially be scen in aircraft applications where a very short vertical whip is used with remarkably good performance.)
L.ow-frequency experimental radio station operators have reported good results in mobile operation with reception of 160 to 190) kHz signals using 2.5 -meter CB whips and parallel-tuned input networks. We have conducted similar experiments with Omega and Loran-C receivers in mobile vehicles where the only problems were those of shielding from buildings or when driving under bridges or near power lines. An additional problem in mobile operations is harmonic radiation from the vehicle's AC alternators.

When we continue this series, we will discuss construction details and include printed-circuit board layouts for the active antenna preamplifier and receiver coupler. We will also discuss how to bench test the preamp, and how to mount the system.

R-E

MANNIE HOROWITZ

Here's a look at some practical audio power-amplifier circuits. Circuits using both bipolar and FET
 devices will be covered.

AI THOUGH IN THE PAST MANY PIECES OF audio equipment used transformers to couple the driver stage to the power transistors, and those transistors to the loudspeaker, output transformers are currently used only in equipment providing very low output power. You are likely to find an output transformer in a portable radio, but in little else. As for sophisticated equipment, economy may dictate that a driver transformer be used, but output transformers are usually avoided because they may severely limit the fidelity of the signal delivered to the loudspeaker. Instead, most modern audio equipment uses one of a variety of types of transformerless circuits to drive the power-amplifier stages.

Transtormerless amplifiers have in the past mainly used bipolar powertransistors. The present trend, however. is to use power VFET's and MOSFET's. One reason for that is the absence of problems such as thermal runaway and second breakdown inherent in bipolar transistors. Another important reason is that FET characteristics are more linear than those of their bipolar counterparts. Consequently, when amplifiers using FET's as output devices are compared with those
using bipolar transistors, the distortion is lower in the FET circuits. As a result, you need less feedback to reduce distortion to near ideal levels with FET amplitiers than you would in bipolar amplifiers. And, because less feedback is required in FET amplifiers, instability problems due to feedhack are less.

Driver transformer circuits

A circuit using a driver transformer is shown in Fig. 1. The input signal is fed to the base of Q1 and amplified. The amplified output appears across the primary winding (winding 1) of the driver transformer, T 1 . The signal from that winding is induced into the two secondary windings and applied from there to output transistors Q2 and Q3. Note that in Fig. I there is a dot shown at one end of each secondary. Those dots indicate which ends of the various windings are in phase. While a signal is applied to the base of output transistor Q3 from the end of winding 3 with the dot, a signal of the opposite phase is applied from winding 2 to the base of Q2 from the terminal without the dot-in other words, the same signal is applied out of phase to the two output transistors. If the transistors were biased
so that they did not conduct when idling, each transistor would conduct only when a signal was present-in this case only during alternate halves of the cycle. The outputs from Q2 and Q3 will then combine across the loudspeaker load to reproduce the original signal.

Transistors are not biased for zero idling current. There is always some current flowing so that the output devices operate in Class-AB. Bias current for Q2 flows through R3 and through winding 2 of the transformer to the base. Although some of the current from R3 is diverted through $R 4$, there is sufticient current left for the base of Q2 to keep it turned on while idling. A similar arrangment involving R5 and R6 keeps Q3 turned on.

Resistors R 7 and R 8 in the emitter circuits of Q2 and Q3 respectively are not used exclusively in circuits with driver transformers. They are irequently found in completely transformerless circuits. Those emitter resistors increase the voltage gain of the driver stage while significantly reducing the voltage gain of the output devices. To minimize that loss of gain, the values of the resistors are kept small, and the circuit is designed so that between 0.5 and I volt is across each of

FIG. 1-POWER AMPLIFIER with driver transformer. The outputs from Q2 and Q3 recombine across the speaker to reproduce the input signal
the resistors when the transistors idle.
As is true with just about every other transistor circuit using a resistor in series with the emitter, resistors R7 and R8 help to stabilize both $A C$ gain and $D C$ bias. Those resistors also serve as outputtransistor protection devices. That protection is important because an output transistor may break down if a short develops across the loudspeaker. But the protection that those resistors provide is somewhat limited; more complex feedback circuits do a better job.

In Class-AB push-pull amplifiers, during different portions of the cycle either one transistor or the other conducts more heavily. During one half cycle, Q2 may conduct heavily and Q3 may not conduct at all, while in the other half the situation may be reversed. In each cycle, however, both transistors must change from a conducting to a non-conducting state and vice versa. Resistors R7 and R8 help to make that transistion smooth, keeping crossover distortion to a minimum. To really improve the smoothness of the transistions, diodes can be substituted for the emitter resistors.

Driver transistor Q1 supplies the bulk of the voltage gain for the circuit while providing sufficient power to drive output transistors Q2 and Q3 through the transformer. The turns ratio of the transformer is selected for minimun distortion across the output load, and is found by trial and error. Typically, however, the turns ratio is usually about 1.7:1. If transformers are not readily available for substitution into the circuit, you will have to live with what you do have but add a feedback circuit to reduce distortion to reasonable levels.

Let's now see how feedback can be used to reduce distortion. The signal is
fed back from the output to Q 1 through R_{F} and C_{F}. If the phase is proper, the voltage gain of the circuit is reduced when those components are connected as shown. (Should gain increase or should the circuit oscillate, improper phasing is usually at fault. To correct that situation, just reverse the connections to the primary of the driver transformer.) The network adds what is referred to as negative feedback. When the gain is reduced so is the distortion. If gain is reduced too much, however, the circuit may oscillate. You can determine the amount of usable feedback by trial and error--by varying both R_{F} and C_{F}.

A circuit may become marginally unstable even when negative feedback is added. That is because feedback may be negative within a specific frequency range (the range in which the quantity of feedback is being measured) but become positive outside of that range. A squarewave generator and an oscilloscope car be used to check the stability of an amplifier with feedback. Start by feeding a $10-\mathrm{kHz}$ squarewave to the input of the
amplifier. Note the waveform across the amplifier's output-it should be reasonably square. The three displays that you are most likely to see are shown in Fig. 2. In Fig. 2-a. the ringing on the top and bottom of the squarewave tends to rise with time while in Fig. 2-b it decreases. In Fig. 2-c, there is no ringing, but the leading edge of the squarewave is rounded.

When the output is as shown in Fig.2a, the circuit has a tendency to oscillate. That is indicated by the rising amplitude of the ringing signal. Even though the signal in Fig. 2-b also shows ringing, it is more stable because the ringing decreases with time and tends to disappear. To go from the state shown in Fig. 2-a to the one shown in Fig. 2-b usually involves simply increasing the value of C_{F}. If, however, C_{F} is made too large, ringing may be climinated but the leading edge of the squarewave will become rounded as shown in Fig. 2-c. If that happens, there may be a loss of high frequency response. The best compromise to adjust C_{F} so that the waveform is somewhere between those shown in Figs. 2-b and 2-c.

Do not disregard the information presented here concerning the proper design of transformer-coupled circuits with feedback. You may think that it does not apply when no transformer is used, but that is not true. The information presented here applies to all types of power amplifiers. As for feedback, the details and characteristics will be covered in a later article in this series.

Amplifiers using a complementary circuit

For best results from a push-pull circuit, the two halves of the output circuit must be identical. That is not the case in the circuit shown in Fig. 1. There, the output from Q2 is is taken from its emitter while the output from the Q3 is taken from its collector. Consider, on the other hand, the circuit shown in Fig. 3. In that transformerless circuit, transistors Q2 and Q3 (NPN) and transistors Q4 and Q5 (PNP) form two darlington pairs.

The loudspeaker load is fed by one Darlington pair during the first half of the cycle, and the other one during the second so that the output signal is perfectly

FIG. 2-IF A SQUAREWAVE is applied to the input of an amplifier, the waveforms shown here may be observed at the output. The waveforms in a and b indicate oscillation (ringing); the one in c indicates loss of high-frequency response. All of those conditions can be changed by changing the value of C_{F}

voltage developed across .. Is one of the load resistors in . wilector circuit of Q1.) The others, wired in series with R3, are R4 and R5. When collector current flows through Q1, the voltage required to forward bias Q2 and Q4 is developed across R3. Transistor Q1 is biased through resistor R1, which is connected to the junction of R8 and R9. When idling, the voltage at that junction is ideally $1 / 2$ of $+\mathrm{V}_{\mathrm{CC}}$. Resistor R1 is connected to that point to help stabilize the bias of Q 1 against temperature variations.

In order to minimize distortion, a considerable amount of negative feedback must be used around the circuit. If a lot of feedback is applied, however, the gain will drop to low levels. To compensate for that, the forward gain of Q1 must be made very high. Capacitor C_{B} helps the circuit meet that gain requirement. Signal is fed back through C_{B} from the output to the junction of R4 and R5. That is known as a "bootstrapping" circuit. That bootstrap circuit makes R 4 appear to be much larger than it actually is. And, as R4 is part of the collector load-resistance, the forward gain of Q1 is very high because it is approximately equal to the ratio of the resistance in its collector to the resistance in its emitter.

Capacitor C_{B} also serves a more important purpose. When the signal is large, the emitter of $Q 2$ is at $+V_{C C}$ volts. When that happens, no current can now flow through its base-emitter junction because the emitter is more positive than the base and Q2 does not conduct. Peaks in the signals are consequently cut-off causing distortion. Let's see how including C_{B} in the circuit corrects that situation. That capacitor is charged to about $1 / 4$ of $+V_{C C}$ when the circuit is idling. When a peak is present in the signal, not only is the emitter of Q 2 at $+\mathrm{V}_{\mathrm{CC}}$, but since the bottom of C_{13} is effectively at the same potential

FIG. 3-DARLINGTON PAIRS are used in the output circuit of this audio power-amplifer.

FIG. 4-COMPLEMENTARY PAIRS are used in the output circuit of this amplifier. The signals from them combine across the speaker to reproduce the input signal.
as the emitter, that terminal of the capacitor is also at $+V_{\text {cc }}$. Because the capacitor is charged to about $+\mathrm{V}_{\mathrm{CC}} / 4$, the top terminal of C_{B} is att $+V_{C C}+V_{C C} / 4$. That voltage is applied to R4 to make the base of Q2 positive with respect to its emitter, turning Q2 on. Being turned on, peak positive pulses can now pass through Q2, and the balance of the circuit, to the loudspeaker.

When the circuit is idling, C_{B} does not affect the performance of the amplifier. Resistors R4 and R5 are chosen so that base current in Q2 and Q4 is proper for the desired idling current to flow through the output transistors. The values of R4 and RS are usually identical. As before, R_{F} and C_{F} form the negative feedback cir-
cuit. The method used to find the values for those components are identical to the one previously discussed

Complementary circuits can be used in place of the Darlington pairs in the poweroutput circuit. The complementary pair was described in the article on coupled circuits. A circuit using complementary pairs is shown in Fig. 4. Here, Q1 performs the same function as it did in the circuit shown in Fig. 3. Transistors Q2 and Q3 fom one complementary pair; transistors Q4 and Q5 form a second.
One of the big draw backs of the two transformerless circuits dicussed thus far is the presence of a capacitor beiween the output circuit and the loudspeaker. That capacitor must have a high value if it is to
pass the low frequencies. Since the capacitor gets charged through the output transistors, and since the initial charge current is very large, more current may flow through Q3 and/or Q5 at that moment than can be handled safely. Because of that, one or both of those transistors may break down.

A second drawback using that capacitor is that it is almost always an electrolytic because of the high values required. An electrolytic capacitor is not linear, and consequently just the presence of that capacitor can add to distortion somewhat.

The circuit shown in Fig. 5 can be used to overcome some of those drawbacks by simply eliminating the need for a capacitor. Arrangements similar to the one shown there are used in some very highquality amplifiers.

The big problem in amplifiers that do not use a capacitor between the output transistors and the loudspeaker is that there is no way of keeping DC from flowing through the speaker. The circuit in Fig. 5 eliminates that problem. If the output devices are connected to equal positive and negative voltage supplies, the voltage at the junction of the output devices is zero. That assumes that equal idling current flows through the two complementary pairs of transistors. Current can usually be adjusted to satisfy that requirement. However that relationship will hold only at one temperature; it will not when the temperature rises or falls in the preceding DC-coupled stages. To overcome that, differential amplifiers are used to drive the output stages-if the current changes in one of the devices. an equal current change will occur in the second device, keeping the overall circuit in balance. Let's see how that circuit works.

Transistors Q1 and Q2 form one differential amplifier. They drive a second differential amplifier consisting of Q3 and Q4. The output from Q3 is applied directly to the Q6/Q7 complementary pair while the signal from Q4 must first pass through Q5 before being applied to the Q8/Q9 complementary pair. Transistor Q5 is required because it shifts the phase of the signal from $\mathrm{Q}+$ so that the signal fed to Q6 is in phase with that at the input of Q8. Resistors in the base and emitter circuits of Q5 are adjusted so that the current from Q5 is equal to the current from Q3. No bootstrap capacitor is required in that circuit as the proper current levels are always present at Q6 and Q8, through Q3 and Q5 respectively

Potentiometer R1 is adjusted so that there is 0 volt at the junction of Q7 and Q8, and across the loudspeaker. Transistor Q10 is in a constant current source circuit, required for proper operation of the differential amplifier.

The circuit shown in Fig. 6 is similar to the one in Fig. 5. The op-amp, as discussed in a previous article, is actually a combination of differential amplifiers.

FIG. 5-THE HEART OF THIS high-quality circuit is a pair of differential amplifiers.

FIG. 6-SINCE OP-AMPS are simply combinations of differential amplifers, they can be used in this variation of the circuit shown in Fig. 5.

As such, its DC-output level is extremely stable despite temperature changes. Because that stable voltage is coupled to the output devices, a loudspeaker can be connected directly to those output transistors without an intervening capacitor.
Note two items peculiar to this circuit. Instead of using Darlington or complementary pairs in the output, a single output transistor is used in each leg of the push-pull circuit. Second, the voltage de-
veloped across DI and R1 is used to establish the bias for Q2 and Q3. The desirable idling current for the output transistors is set by adjusting R l because that potentiometer varies the voltage applied to the base circuits. Diode DI helps keep that voltage, and hence the idling current, constant despite variations in temperature.

Next month we'll continue our discussion of power amplifiers.

15 MHz DUAL TRACE PORTABLE W/INTERNAL BATTERY PAK

20 MHz DUAL TRACE W/BUILT-IN COMPONENT CHECKER

 - AC/DC powered • $2 \mathrm{mV} /$ Vertical sensitivity • TV (Video) sync filter • $31 / 4$ " internal graticule, high brightness CRT - X-Y display mode - Add/Sub mode with ch. 2 invert • Automatic and triggered time base - Trace rotation adjustable from front panel - Internal rechargeable pak included Lightweight' 12.1 lbs with battery • Small size (4.4" x 8.8" x 11.7")

SPECIFICATIONS

 Vertical System CH. A and CH. B-Deflection Factor, $2 \mathrm{mv} / \mathrm{div}$ 10v/div, 12 steps • Frequency Response, $\mathrm{DC}-15 \mathrm{MHz}(-3 \mathrm{~dB}) \cdot$ Risetime, 24 ns - Maximum Input Voltage, 300 V iDC + AC peak) - Input Impedance, $1 \mathrm{M} \Omega \pm 5 \%, 20 \mathrm{pF} \pm 3 \mathrm{pF} \cdot$ Display Modes, CH-A, CH-B, DUAL, ADD, CHOP • Internal Horizontal System (Sweep Operation) - Deflection Factor, $0.5 \mu \mathrm{~s} / \mathrm{div}$. $0.5 \mathrm{~s} / \mathrm{div}(\pm 5 \%)$, 19 steps • Magnification, 5 x all ranges • Trigger System - Sources, NTT, CH-A, CH-B, EXT - Modes, AUTO, NORMAL • Sensitivity, INT: 1 Div or more, EXT: 1V p-p • Coupling, DC, TV SYNC.MODEL
620C

FEATURES

- Component checker for locating defective components in or out of de-energized circuits. 6 " high brightness, internal graticule CRT - TV (Video) sync filter $\bullet \mathbf{Z}$ axis (intensity modulation) - High sensitivity X-Y mode - Front panel trace rotator \cdot Low power consumption - 3PCB modular construction - Comes with 2 year warranty

SPECIFICATIONS

Vertical System CH. A and CH. B-Deflection Factor, $5 \mathrm{mV} / \mathrm{div}-$ $20 \mathrm{v} / \mathrm{div},(\pm 3 \%) 12$ steps - Frequency Response, DC-20MHz (-3 dB) - Risetime, 17 ns or less - Maximum Input Voltage, 300 $V(D C+A C$ peak $) \cdot$ Input Impedance, $1 \mathrm{M} \Omega \pm 5 \%, 20 \mathrm{pF} \pm 3 \mathrm{pF} \cdot$ Invert, $\mathrm{CH}-\mathrm{B}$ only - Operating Modes, $\mathrm{CH} .-\mathrm{A}, \mathrm{CH} .-\mathrm{B}, \mathrm{DUAL}$, ADD, X - Y • Internal Horizontal System (Sweep Operation). Time Base, $0.2 \mu \mathrm{~s} / \mathrm{div}-0.5 \mathrm{~s} / \mathrm{div}(\pm 3 \%) 20 \mathrm{steps} \bullet$ Magnification, 5 x • Trigger System - Sources, INT, CH-B LINE, EXT - Modes, Norm, Auto - Coupling, AC, HF rej, TV • Slope + or Sensitivity, INT: 1 div or better, EXT: 1V p-p or better.

A.W. SPERRY INSTRUNIENTS INC.

FEATURES A FULL 2 YEAR PARTS AND LABOR WARRANTY ON OSCILLOSCOPES.

AWS DIGITAL MULTIMETERS

Models EZ-6100, 6110, 6200 \& 6220

- Autoranging on volts and ohms
- Self-contained 10 Amp AC/DC ranges (EZ-6110 \& 6220)
- Low power ohm ranges-applied voltage $\leqslant 0.3 \mathrm{~V}$.
- Continuity buzzer (EZ6100 \& 6110), 5 settings
- Range hold (EZ6100 \& 6110)
- Large 3½ digit LCD display
- 300 hours continuous operation FIVE-YEAR WARRANTY

TOLL FREE HOT LINE
$800-223-044$
THE TEST EQUIPMENT SPECIALISTS

NEW IDEAS

Use a clock radio as an appliance controller

do you think that your clock radio should do more than just turn on its tiny internal radio (if its radio still works!)? Well, I have a solution. With this easy modification, you can use the clock to turn on any device of your choice automatically. If you are a heavy sleeper who doesn't usually wake up when the alarm rings, you can use this modification to "customize" your alarm to turn on lights, sirens, or anything else that may help you wake up more easily. As an added feature, a three-conductor cable allows you to remotely control one or two sets of devices.

I should point out right away that you do not have to cannibalize a clock radio that you are satisified with. Many surplus outlets (many of which advertise in the back pages of Radio-Electronics) offer the clock "guts" from clock radios. However, if you have a clock radio without a working radio, then this sure beats throwing it out!

The circuit for the modification, shown in Fig. 1, is fairly simple. We ll start with SI and S2 which are the remote-control switches that are mounted at the end of a three-conductor cable. When one of those
switches is closed, it will set its half of the flip-llop made up of IC1-a and IC1-b. That causes the output of IC2-b to go high, which, in turn, enables either IC 1-c or $\mathrm{IC} 1-\mathrm{d}$. That causes one of the relays to turn on, which drives one of the triacs that power the output sockets. (However, if you close both remote switches at the same time, though, the flip-flop hecomes unstable.)

Switch S3 is part of the clock. On most clocks, it is a normally-open switch that closes when the alarm "rings." If the switch on your clock is a normally-closed type, don't worry-all you need to do is tie it to +5 volts and tie the 1 K resistor to ground.

The resistor-capacitor network rejects all pulses (glitches) from the switch that are not long enough to charge the capacitor. When a long-enough pulse is sensed, IC4-a is clocked and Q is set. That enables $\mathrm{ICl}-\mathrm{c}$ and $\mathrm{ICl}-\mathrm{d}$ through IC2-b, which tuins on the last device used, according to the $S-R$ flip-tlop. To turn off the alarm, either open S3, or close either SI or S2. That causes IC3 to reset the alarm flip-flop. When $S+$ is pressed, the last device that was used turns on for as

FIG. 1
long as it is held down.
An eight-volt transformer is used to develop 12 -volts peak across the 4700 $\mu \mathrm{F}$ capacitor. I used two panel lamps to illuminate the clock's face, but they are, of course, optional.

It you don't want to use the remote switches to shut off the alarm and instead want to use only S. 3 for that purpose, then you can eliminate IC3 and IC 4 and connect S3 directly to IC2-b. If you need to control only one device instead of two, and also don't want S1 and S2 to shut off the alarm, then you can eliminate all of the IC's and comect the switches directly to the relays or the triacs.-Donald H. Delorie, Jr.

NEW IDEAS

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn \$25. In addition, Panavise will donate their model 333-The Rapid Assembly Circuit Board Holder, having a retail price of $\$ 39.95$. It features an eight-position rotating adjustment, indexing at 45-degree increments, and six positive lock positions in the vertical plane, giving you a full ten-inch height adjustment for comfortable working

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

Title of Idea

Signature

Print Name
Date

Street

City State Zip

Mail your idea along with this coupon to: New Ideas Radio-Electronics, 200 Park Ave. South, New York, NY 10003

New from Keithley. TRMS DMM and Digital Thermometer all-in-one.

It's two-for-one to give you one less tool to worry about when you're fighting electronic and temperature dragons both. And both for the price of a TRMS DMM alone. It's the only combination DMM and digital thermometer to give you all the features listed here and our one-hand, no-mistake rotary thumb wheels. All backed by Keithley's 30-year reputation for lab accuracy. Keithley DMMs and thermometers. The Dragon Slayers.

132 Features

DMM

- Full range and function
- True RMS
- 0.25\% DCV accuracy

THERMOMETER

- Fasí response
- Thermocouple-based (Type K)
- Integrated TC connector - requires no adapter
- Chaice of ${ }^{\circ}$ F or
${ }^{\circ} \mathrm{C}$ models
- $0^{\circ} 102000^{\circ} \mathrm{F}, 1370^{\circ} \mathrm{C}$
- $\$ 199^{\circ} \mathrm{C} / \$ 209^{\circ} \mathrm{F}$

HOBBYCORNER

Light-puzzle solution and more
 EARL "DOC" SAVAGE, K4SDS, HOBBY ECITOR

THE FIRST ORDER OF BUSINESS TODAY IS to consider the responses to John Cirillo's light-switch problem that was presented in the November issue. The question, as you may recall, was how a single light bulb could be controlled independently by three single-pole double-throw switches. The word "independently" means that the light could be turned on and off from each switch regardless of the position of the other two switches.

It does seem that John's puzzle really got to you! Each day for several weeks, the mail included many letters about those switches. I read every one, checked it out, and put it into one of several stacks. The great majority of you got the switching correct, but I would like to share some ideas from some of the other stacks (of incorrect answers) before getting to the answer directly

A small group of you did send circuits with three SPDT switches in which one or more positions of two switches made the third inoperative. In two circuits, certain combinations of positions placed a direct short across the AC line!

One reader, David Potts of Ohio couldn't work out an SPDT solution but he said that there is an easy solution if the three apartments are on three seperate floors of a building. His solution is shown

AN INVITATION

To better meet your needs, "Hobby Corner" will undergo a change in direction. It will be changed to a question-and-answer form in the near future. You are invited to send us questions about general electronics and its applications. We'll do what we can to come up with an answer or, at least, suggest where you might find one.
If you need a basic circuil for some purpose, or want to know how or why one works, let us know. We'll print those of greatest interest here in "Hobby Corner." Please keep in mind that we cannot become a circuitdesign service for esoteric applications; circuits must be as general and as simple as possible. Please address your correspondence to: Hobby Corner Radio-Electronics
200 Park Ave. South
New York, NY 10003

FIG. 1

FIG. 2
in Fig. 1. It seems that he once rigged such a system in a lighthouse. Good for you, David.

A few of my friends out there chided me for not knowing the answer. Then, they proceeded to give me the answeran answer which did not meet the conditions of John's problem. In other words, their answers did not use SPDT switches exculsively
Actually, that question reminds me of a puzzle on which I whiled away many pleasant hours in junior high school. In case you have never run across it, look at the sketch in Fig. 2. The question here is how to serve three houses ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) with gas, water. and electrical utilities from their respective distribution points $(\mathrm{G}$, W, E) without any branching lines. Each house must have direct, independent service and the kicker is that no line can cross another. (Come now, I have run all but one line-surely you can figure out how to run the last one!)

FIG. 3

As you may have gathered, no one came up with independent control of a light with three SPDT switches. A number of you took the time to offer a proof that there could be no solution to the problem as stated. The closest thing to a solution, as most of you pointed out, requires one DFDT and two SPDT switches. Such a circuit is shown in Fig. 3 Check it all you like-each switch can turn the light on or off regardless of the positions of the other two.

1 must agree with those of you who thought that John somehow missed seeing in one of the apartments a DPDT or "four-way" switch. For those of you who have not seen this circuit before, be advised that you can put as many DPDT switches as you wish between the SPDT switches on the ends. Thus, you can have independent control of a light that can

FIG. 5
come from any number of locations.
John should be sleeping soundly now that he knows no one else can solve his problem either. Thanks to all of you who responded to John's question.

Touch plate timer

Robert Allen of Washington has a lowvoltage "touch plate" wiring system in his home. That is one in which momentary switches operate 24 -volt latching relays which control lights, outlets, and so on. You should note that any number of parallel switches can control any one relay. That is a very effective system for several reasons but it does have a disadvantage.

With the setup as shown in Fig. 4-a, what kind of timers can you use to turn lights on and off at preselected hours? Robert's best solution to date is to use a 120 -volt relay between the timer and the touch-plate circuit as shown in Fig. 4-b. It does the job but not with complete dependability. In the absence of frequent contact cleaning, it gets out of synchronization and turns the lights on when they should be off and vice versa.

Well, Robert, why not use the familiar 555 IC timer to produce the controlling pulses? As shown in Fig. 5-a, a clock timer would control a 12 -volt power supply for an astable 555 timer set to pulse the latching relay at the desired hours. That relay itself is a SPST latching-type that closes with the short pulses from the 555.

The 555 circuit and its output waveform are shown in Fig. 5-b. The values of R1, R2, and C are determined by the desired times. The relay contacts will close when it sees the leading edge of the pulse (low-to-high transition). Time t_{1}, the length of the pulse, can be determined by the formula: $t_{1}=0.693 \times(\mathrm{R} 1+\mathrm{R} 2)$ \times C. Time t_{2}, the length of time between pulses, can be determined by the formula:
$\mathrm{t}_{2}=0.693 \times \mathrm{R} 2 \times \mathrm{C}$.
The length of time that your light will be on is the sum of t_{1} and t_{2} and is equal to $0.693 \times(\mathrm{RI}+2 \mathrm{R} 2) \times \mathrm{C}$.

Set the clock timer to apply 12 V to the 555. When power is first applied to the 555, the lights turn on. The next low-tohigh transition (after time t_{2}) turns the lights off. Set the clock timer so that it goes off and removes power from the circuit before the 555 produces a third pulse (the third pulse would turn the lights back on).

Depending upon the intervals desired, you may need to cascade a couple of 555 IC's or insert a counter IC between the 555 and the relay.

That is an effective but fairly cumbersome approach to the problem. Next month I'll show you how to do the job in a much simpler way with a digital clock. Stick around.

R-E

BIG

PERFORMANCE

small

PACKAGE

Video Generator

- Video output for all VCR, CCTV and Monitor Applications + 1 volt into 75Ω load
- RF output: $\mathrm{CH} 2,3,4$
- Scope trigger output for V or H sync
- 10 step gray-scale staircase signal for video circuit analysis
- 10 bar and 3 bar gated rainbow pattern
- 8 other dot, bar and line patterns
- Operates from 2 std. 9 V batteries or

115VAC

- Single slide switch control
- Complete with test leads, protective cover, AC adapter, comprehensive instruction manual

PRICED UNDER \$200.

THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Dupont Avenue - Cleveland. Ohio 44108 (216) 541-8060 • TWX: 810-421-8286

THE DRAWING BOARD

Adding a digit select to a BCD encoder ROBERT GROSSBLATT

IF YOU BREADBOARDED THE BCD ENCODer we designed last month you found (we hope) that it was a trouble free, reliable circuit. However, its use was somewhat limited because the encoded data wouldn't latch and only one digit at a time could be placed on the bus. This month we're going to add additional logic to the circuit so that we can display and latch up to 10 digits at a time. We'll stick to the set of design criteria we listed last month and we'll use the same sort of step-by-step approach to add the new sections to our design. The choice of components will still be weighted in favor of those that are easily available and reliable, and that put the smallest possible dent in your wallet.

The digit select

We want the digit select to sequentially address one thing after another. You could use some sort of shift-register approach for that, but the clocking can be a problem and the package count can get pretty heavy. There's a neater way to solve the problem that also happens to work out better in the long run. Not only can we solve the addressing problem with only two IC's, but expanding the circuit to handle ten digits will only call for one additional IC.

Instead of the shift-register approach, we'll create an input data bus and design circuitry that will enable one digit at a time. We take the "any key pressed" output of our BCD encoder and use that to clock a 4017 one-of-ten decoder. That means that each time we close one of the keyboard switches, we put a corresponding nybble (4 bits) on the data bus and the 4017 puts a high on one of its output pins. A new digit entry will result in a new nybble on the bus and a new high from the 4017. That continues for up to ten entries (sequentially). Figure 1 shows how you would connect the 4017 to handle four digits with the encoder circuit we started last month. Although the circuit will handle ten digits we'll limit our illustration to four. (The principle is the same and it makes the circuit easier to understand.)

Capacitor C8 serves the same purpose that Cl did in last month's circuit. It gives us a reset to zero at power-up and makes sure that everything starts out at the beginning. With the 4017 set up as shown in Fig. 1, it will reset after four low-to-high

FIG. 2

Figure 2 shows the pinouts for a 4511 -the decoder we will use to drive our display. The lamp test and blanking control pins (pins 3 and 4) are active low and should be kept high for normal operation. The store input controls the internal latch and is active high. If it's held low, the 4511 will decode whatever $B C D$ data is presented to its inputs. If it's made high it will latch and display the last nybble on the bus at the moment it went high. Any invalid BCD code will blank the display.
The obvious step in creating our data bus is to connect the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs of the 4511's together and tie them to the appropriate BCD outputs of the encoder. Our four digit-select outputs would be connected to the sTORE pins of the respective 4511's and we would be in business. Unfortunately that would fail miserably and a moment's reflection will show you why. The outputs of the encoder are constantly scanning from zero to nine at the clock rate, so the 4511's that weren't selected would display constant eightsand not even real eights at that. The selected digit would display the keyed number but would go to eights as soon as the digit selector shifted to the next digit.

What we need is a way of delivering a brief pulse to the store pin to open the latch just long enough to enter the nybble at the selected 4511 . Now, pulse generators are a dime a dozen, and perfectly workable ones can be built with 555 's and other IC's. In real down-and-dirty situations, you can get by with just a capacitor

transitions of the "any key pressed" output. If you want it to handle more than four digits all you have to do is connect the reset pin, (pin 15), to the numbered output that is one past the number of digits you want to deal with. If you want to go all the way and encode ten digits, ground pin 15 through a 1 K resistor.
and a resistor, but the discharge time of the capacitor creates a very sloppy slope at the trailing edge of the waveform. The easiest way to get the job done and still be true to our design criteria is to use a half monostable.

Fig. 3 shows the basic configuration of half monostables. In actual fact they

Switch to Bambi!

Electronically

Bambi Electronic Video Switch
makes switching of your VCR/VIR. Pay TV Decoders, Cable TV, Video Discs Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.

The Ba nbi Electronic Video Switch is an electronic switching network which can accept up to six different sources of video signals and provide the flexibility o directirg the inputs to any or all of the three outputs.
Now you can eliminate ... the drudgery of disconnecting and reconnacting your video equipment each time you use it the tangled mess of cables which are impossible to trace out ...not being able to use more than one function at a time.
Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push ó a button.

Model BEVS- 1 Completely Wired and Assembled. Includes comprehensive instruction/Operation Manual and Decal Set for ${ }^{5} 129{ }^{95}$

FREE
Bambi

Poster
with customizing your Video Switch installation

Bambi's fromt panel was designed with the user in mind. Computer styled construction, with sott-touch keyboard (rated for over 10 million operations). arranged in matrix form allows asy input/output selection without refering to charts. Functions selected through re abor are immediately displayed on the 18 IEO status indicators.

Check the quality of Bambi against that of much higher priced competition. All solid state electronic switching provides low atte 890 MHz), and excellent isolation berween signal sources (each I/O section individually sheilded for 65 dB min . isolation).

| - Input/Output Impedance
 - Signal loss
 - Noise
 - Inpur Razurn loss
 - Isolation
 $\begin{array}{ll}\text { - Power Req. } & 11 \\ \text { - Dimensions } & 10 \%\end{array}$ |
| :---: | - Signal Loss

- Nolse
- Nous Razurn Loss
- Isolation
- Power Req. $\quad 11$
- Dimensions $\quad 10 \%$
- Weight

7+11 PW PABTS KIS
INTRODUCING OUR

\section*{7+11 PWD} PARTS KITS | Kit |
| :---: |
| No |

1VTI-PWD

2 2CBI-PWD
3 3TP 11-PWD
4 4FR-31-PWO
5 5PT1-PWD
6 6PP2-PWO Panel Mount Potentiometers and Knobs, 1-1KBT and $1-5 \mathrm{KAT}$ with switch
IC's 7-pcs, Diodes 4-pcs, Regulators 2-pcs Transistors 2-pcs, Heat Sinks 2-pcs Electrolytic Capacitor Kit, 14 -pieces Caramic Disk Capacitor Kit, 50 WV, 20-pcs Varible Ceramic Trimmer Capacitor, 5-65pfd, 5-pieces
Coll Kit, 18 mhs 3 -pts, $22 \mu \mathrm{hs} 1$-pieca forewound inductors) and 2 T37-12 Fernte Towoid cores with 6 ft . $\# 26$ wire.
IC Sockets, Tin inlay, 8 pin 4 -pcs, 14 pin 1-ps and 16 pin 2-pcs.
Enclosure with PM Speaker and Pre-drilled Backpanal for mounting PCB and Ant. Tarms Misc. Parts Kit, Includes Hardware, (8/32, 8/32 Nurs \& Bolis), Hookup Wris, Solder, Ant. Terms DPOT Ant. Switch, Fuse. Fuseholder, Mylar Capacitors, 14 -pcs and Silver Mica Capacitors 2 -pieces. 159.95
 Operation, not factory seconds or stock close-outs. We service your completed kits that you ve purchased and built. You will never get stuck with a BAG OF PARTS when ordering from Simple Simon.

SIMPLE SIMON ELECTRONIC KITS, ${ }^{\text {™ }}$ Inc.
3871 S. Valley View, Suite 12, Dept. R, Las Vegas, NV 89103 702-871-2892
NEED 6 Of MAPE OX AN IEM
WRITE FOR
QUANTITV DISCOUNTS
Outside Nevada Call:

Available by Mail Order Only
Send Check* or Money Order. Minimum Order: \$16.95. Add 10\% Shipping and Handling on orders under $\$ 40.00$. For orders over $\$ 40.00$, add 5%. Minimum Shipping and Handling \$2.00. Cat. \$1.00 - VISA and Mastercard Acceptable

FIG. 4
should really be called edge detectors because they respond to either the leading or trailing edge of a logic level transition. With resistor R connected to $\mathrm{V}+$, the gate input is held high. When the input goes low it forces the gate to change state for a period of time determined by the values of the resistor and the capacitor. The duration of the output pulse depends on the $\mathrm{R}-\mathrm{C}$ value and the slope of the waveform depends on the transition time of the gate. A 4049 is a good choice here because it has enough internal gain all by itself to clean up the sloppy edge of the input waveform. The inherent hysteresis of a Schmitt trigger also makes it a good candidate for a half monostable. If you build those circuits with non-inverting gates, the same analysis applies but, of course, the output pulses will be in the opposite direction. The "big if", with these half monostables is that the input pulse has to be longer than the desired output pulse.

That is really self evident-a moment's thought will tell you that you have to give the capacitor enough time to charge up. If that condition isn't met the circuit won't blow up, but the output pulse will be the same width as the input pulse. In our case that's not a problem because the outputs
of the 4017 latch high when they're decoded. All we have to do is make sure the output pulse-width of the half monostable is less than the fastest speed we can enter data from the keyboard. One millisecond should be fast enough for anybody-even for the world's fastest supermarket cashier.

Itı Fig. 4 we've completed the digit selector and display and connected it to the encoder we built last month. When we turn the power on, the 4017 is reset to zero and pin 3 goes high. Since the negative-to-positive transition is what triggers the half monostable, the first digit we enter will be on the negative-to-positive transition of output No. 1 (pin 2) of the 4017 That's why the schematic shows the zero output (pin 3) of the 4017 connected to the last digit.

In any event, as soon as power is applied, the circuit prepares itself to enter the first digit. When we close one of the keyboard switches, a BCD nybble is held on the data bus and the 4017 goes high on output No. 1. That triggers the half monostable and opens the 4511's latch just long enough to enter the nybble and then closes it again. The result is that the selected number appears in the display and stays there. When a second keyboard
switch is closed, the 4017 enables the latch in the second 4511 and the number appears in the second display. That whole procedure continues until the fourth digit is entered and the 4017 resets. From that point on, the entered digits will write over the previously entered ones. The 4511 is designed to be used with commoncathode displays; we used Fairchild FND-500's. Only one current-limiting resistor was used for each numeral because I don't mind the slight differences in brightness that shows up when different numbers are displayed. If you want the numbers to be all of equal intensity, connect the cathodes of the display directly to ground and get yourself a huge supply of low-value resistors because you've got to put one on the line between each 4511 output and LED anode. Keep in mind that the 4511 can only supply about 25 milliamps per segment, so choose the resistor value accordingly You can play with this circuit for a while but it will soon be painfully obvious that it leaves a bit to be desired.
Since we don't have any access to the nybble in the internal latch of the 4511 and decoding the segment outputs is, to put it mildly, a strange way to go about continued on page 99

CABLE TV CONVERTERS DESCRAMBLERS

BUY DIRECT \& SAVE
\qquad 40 CHANNEL CONVERTER $\$ \mathbf{3 8}$ Regular $\$ 69$
Advanced Solid State design and ciruitry allows you to receive mid \& super band channels. Restores programming to Video Recorders

36 CHANNEL REMOTE CONTROL CABLE CONVERTER $\$ 88.00$
LINDSEY JET 1 WIRELESS THE ULTIMATE CABLE T.V. CCNVERTER

36 CHANNEL INFRARED REMOTE CONTROL COMPLETELY $\$ 169.00$ PROGRAMMABLE

Send $\$ 1$ for Complete Catalog VSA - MASTERCARD - COD
direct VIDEO salies P.O. BOX 1329

JEFFERSONVILLE, INDIANA 47130 CALL TOLL FREE
1-800-626-5533

ENGINEERS CHOOSE PANAVISE!
 Being professionals, they demand the very best.

CONVENIENT PORTABLE VERSATILE ACCURATE

Model 381 Vacuum Base Panavise

PANAVISE, America's largest manufacturer of work positioners has a full line of interchangeable bases and heads to fit all your latoratory and production line needs.

Our catalog explains it all. Send for one today.

For more information, contact your dealer or PANAVISE PANAVISE PRODUCTS, INC. 2850 E. 29th St., Long Beach. Ca. 90806 (213) 595.7621

POCKET SCANNER CLOSE OUT

Thanks to a European Distributor's overstock, you can get a great deal on a pocket scanner. It's a six channel, three band unit that is actually the smallest scanner available on the market. You'll hear your choice of police, fire and emergency calls and get extra features like channel lock-outs, manual control, two antennas plus an AC

$\$ 79^{95}$
 Includes TWO FREE frequency crystals. Additional crystal \$4.85 ea., other accessories available

Order product 1050. Visa/Master Charge or COD customers may call toll free. Or send check for $\$ 79.95$ plus $\$ 2.00$ shipping and handling. 90 day warranty.
MTN 800-528-6050. Ext. 1035
P.O. Box 215

Yankton, S.D. 57078
CIRCLE 20 ON FREE INFORMATION CARD
charger/adapter. Coverage includes UHF bands, VHF high bands and mid-band.

We've taken what is already a good value and made it a steal! From the original price - the equivalent of $\$ 190$ - we've lowered the price a full \$110. Plus you get two frequency crystals of your choice at absolutely no charge. And, you'll have our 25 day no-hassle refund privilege so you can try it out before making your decision. Don't Delay. Supplies are limited. Call Today. 24 hrs . a day 7-days a week. In AZ 800-352-0458 Ext. 1035

No costly School. No commuting to class. The Original Home-Study course that premares you fol the FCC Radiotelephone license cham in your spare titne! Passing the exam is your "ticher" it thouthands of excting opportunities Communicatiolls. Broadcasting, Mohile two-way systems Vicrowave stations. Radar installations, Aerospace and more NO NEED TO QUIT YOUR JOB OR GO TO SCHOOL You learn how to pass the ICC 1 icense exam al home al youl a few short weeks you could be on your way to being one of
 US Federal law requise you to have an FCC L wence is you
 want 10 operate and maintain virnum, ant communcations DO nced an CC License. With this Home-Stuly course DO need an lec lik FCC Goum houly course you'll he ready 10 pass, the FCC Govelmmenl licensing coam No obligation. No sakemmen will call. MAIL COUPON TODAY!

COMMAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. E
P.O. Box 2223, San Francisco, CA 94126 Rush FREE fauls on how I can prepare for my FCC NAME adDress
CITY
STATE
CIRCLE 30 ON FREE INFORMATION CARD

SERVICE CLINIC

Troubleshooting thermal problems

JACK DARR, SERVICE EDITOR

A LOT OF THE PROBLEMS WE RUN INTO are temperature-related. Transistors are inherently temperature-sensitive. And, if you think things are bad now, you should have seen some of the early sets that used germaniums! Their normal leakage is much greater than silicon transistors, and the hotter they get, the worse the leakage gets. Leakage increases almost linearly with temperature, until it "stops the works." In a curve tracer, the "fingers" of the curve start out fairly straight, and then curl as the temperature is raised, until the pattern looks like the one shown in Fig. 1. That's why you find such huge heat-sinks in carly models.

b
FIG. 1

Silicon transistors also can have that type of problem, especially if they aren't derated enough. (See Service Clinic in the October 1982 Radio-Electronics for more on that.) Even IC's will do it. In one case (a small import black-and-white TV
set) the sound would distort badly after it was on for about an hour. After much experimenting. and hard thinking, we found that the the 1 C that handled the sound was the cause. Cooling the IC down brought the sound back. Adding a heat-sink cured the problem

The key symptom in thermal problems is what we'll call the "time-constant"the length of time the set runs before the problem appears. If that length of time is always about the same, the cause is very likely to be thermal. There's a subsymptom here that can help. Short time constants (for anywhere up to $5.10 \mathrm{mi}-$ nutes) point to a problem that's apt to be in a power-handling circuit-some part that normally carried a good deal of current.
Some potential problem sources are resistors that overheat and change value, transistors that develop more and more leakage as they warm up. and (watch this one!) small, low-voltage electrolytic capacitors that have some leakage to begin and which gets worse as the set runs and they warm up. (I have a built-in suspicion of all low-voltage electrolytics anyhow, especially in the cheaper sets.)

If the time constant is quite longanywhere from a full hour up to several hours-the trouble is apt to be in some part or circuit that normally does not develop enough power to get hot "by itself." The heat that causes the trouble is either conducted through the chassis or PC board to the part, or radiated from a nearby part that gets quite hot.

In the first case (power-handling parts) wait till the problem occurs and then carefully feel various parts to see which one is too hot. (Carefully! Some of them can get really hot.) Faulty voltage regulators are a common cause of those problems.

If the problem seems to be thermal, there are two things you do to find the cause: either heat or cool the suspected circuit or component to see if you can make the problem show up or go away. Cooling is the easier way. Just spray coolant on suspected parts to see what happens. The best type of spray coolant is the one with a long thin nozzle that lets you hit only one part at a time. Metal nozzles are thinner but plastic is safer!

Application of heat is a bit more difficult, but not impossible. A heat-gun like the Wahl Thermal Spot is ideal. It has a nozzle so that you get the heat right
where you want it. If you don't have one, sneak out your wife's hair-drier, and rig up a plastic nozzle to give a smaller stream of hot air

I've run across a bunch of sets with real oddball problems over the years. One of my pet oddballs is a tube from a set that would work perfectly for a minute then go out. It was the AGC tube. When I tried it in a tube-tester. it would come up to normal for exactly 60 seconds. then drop to zero! It would do this over and over. l've still got the tube on my bench!

One my favorite solid-state oddballs was a transistor, used as the 3rd video IF When I tried it in a curve tracer, I would see a perfect pattern at room temperature. If I held the tip of a soldering iron near the case for a few seconds, pow-it would drop to zero. Let the transistor come back to room temperature and up it would come up normal again. If l sprayed coolant on it, out it would go. When it warmed up, it would come back! The thing would work perfectly over a range of temperature that couldn't be more than about 5 or 6 degrees! You can imagine what it did in the set. On a cold morning it wouldn't work till the room heated up!

All thermal problems aren't transistors either. Bad solder joints can either open up or close with temperature. Here again, the spray coolant and heat gun can save you an awful lot of time in pinning down the cause of the problem. The oddball in this department was a solder joint with a nice sharp spike of solder sticking up out of it. When the set heated up enough, this spike would penetrate the plastic insulation of a wire too close to it. (That one took a while to find, too.)

Hot IC's can cause some problems such as the sound problem mentioned previously. In another set, the color would drop out. The $3.58-\mathrm{MHz}$ oscillator was a simple op-amp type IC. When it got hot, it went out. That was pinned down by spraying coolant on it. Replacing the IC turned out to show the same symptoms! The fix was attaching a good sized, very thin aluminum heat-sink to the case of the IC. That kept the temperature down to the point where it still worked. The heat sinks can usually be cemented to the top of the case, or if there's room. held by a clamp to the chassis.

At first. they told us that solid-state sets ran cool. That is true-they run cooler than tube-type sets, but from much field

Bionic "Ears"

The Dyna-Mike Transmitter

It's smaller than a quarter. But DYNA-MIKE will transmit every sound in the room to an FM radio tuned to the proper unused frequency, up to half a mile away.

It you're at a neighbor's home a block from your own, you can hear your baby's cry, or you can tell the instant your spouse comes home. If two of you are driving tandem in two cars. one or both of you can
communicate with the other even if other cars drive

between you.
DYNA-MIKE has as many uses as your imagination can think of. For a business conterence let the tiny microphone sit unobtrusively on the table or concealed on a shelf, and you'll be able to record every word. For businesses, put an FM receiver in a warehouse or remote office and "broadcast" instructions or orders to be filled.

Public speakers never had a better friend than the DYNA-MIKE. No wires or setup - just turn on one or more radios and your speech will come through with perfect fidelity. Put one on the front porch. It you hear a suspicious sound, turn on the radio and you'll hear the doorbell of even a

muttered conversation

Choose Your Model

New Horizons is introducing three models of the DYNA-MIKE supersensitive broadcast microphone. Model AR-7 is the world's smallest microphone it's a miracle of electronic miniature power, with a range of 750 feet and a battery life of 90 hours Introductory price is $\$ 12995$ (two for $\$ 119.95$ each).
Model 9-DX is a long-range microphone. broadcasting an unbelievable half-mile distance. This miniaturized wonder is $\$ 149.95$ (two for only $\$ 139.95$ each). Normal battery life is 25 hours, or you can have the special Power-Pak, which operates 200 hours, for $\$ 19.95$

The AR-7 and 9-DX are sensitive. They'll pick up sounds from 40 teet away. But for super-sensitivity. nothing beats the $\mathrm{A}-5$.
The A-5 will pick up a whisper from more than 60 feet away and broadcast it to a receiver 750 feet distant. The A-5 comes with a special 200 hour long-lite battery and is introductory-priced at $\$ 99.95$ (two for only $\$ 89.95$ each).

The Telephone Voice Changer

and the VOICE CHANGER gives your voice completely difterent characteristics. The person on the other end of the phone wont know it's you

he VOICE

CHANGER is more than an "electronic handkerchief' doesn't cause your voice to sound filtered. it literally changes tone and timber.
Choose from two separate, distinct Changer Channels. If you're alone in a business office, it'll sound like an employee answering. If you live alone, you can get rid of pesky calls by pushing Channel 1 or Channel 2 and saying, "Sorry, that person isn't in.

How it Works

The VOICE CHANGER is powered by two ordinary penlight batteries. One set of lead-in wires connects to your telephone base; the other clips to the wires leading to the handset.
Pushing the button labeled "Ordinary" puts your normal voice through the line. Pushing "Channel 1 " changes timber and texture. Pushing "Channel 2" creates different characteristics from Channel 1 Thus you have three voice options - your own, plus two changed voices.
MAKE NO MISTAKE! THE VOICE CHANGER DOESN'T MUFFLE YOUR VOICE OR MAKE IT UNINTELLIGIBLE. It literally changes the quality of sound - space-age electronics at work
Use the VOICE CHANGER to reach that doctor, lawyer, or business executive whose secretary knows your voice and who always is "out when you call. Use it to screen your own incoming calls. Use it for just plain fun Any lime you like during a conversation, push the "Ordinary" button and your regular voice returns to the wire
The VOICE CHANGER is yours for $\$ 99.95$ - two for $\$ 89.95$ each (plus $\$ 2.50$ shipping per total order). When you consider the many uses of this brilliant electronic instrument, it's a real bargain. Of course it has the standard New Horizons

guarantee

The Super Ear
 You'll hear it all

Effortlessly, you can hear not just a baby's cries. but quiet breathing - through a concrete wall a foot thick. Put the earphone in your ear and place the SUPER-EAR on the wall. That's all there is to it.
SUPER-EAR hears everything - and, even more astouding, hears clearly It's as though the wall weten't there it you're coming home late at night and think intruders are in your residence, let SUPER EAR find out for you. Want to know if the meeting is over in the room with the closed door? SUPER-EAR will
 ell you in a second
SUPER-EAR is undetectable from the other side of the wall. The quality of sound has amazing fidelity - grod enough to record, and SUPER-EAR has its own built-in recorder jack.
Because SUPER-EAR is the ultimate listening device, you can use it to pinpoint hidden squeaks in your car or the source of mysterious engine noises. Construction experts use it to check for flaws or

cracks in buildings.

It Works Anywhere!

Ever put your ear to a railroad track to try to hear the train? Try it with SUPER-EAR. You'll hear that train many miles away. Use it as a powerful stethoscope on yourself, a friend, or a pet. You can even hear a bird's breathing.
The only source for SUPER-EAR is New Horizons. Choose from two models - Model SB-5, with ultrasensitive microphone $\$ 139.95$ (two for only $\$ 129.95$ each); or Model SB-1, with suctiontype microphone. $\$ 99.95$ (two for only $\$ 89.95$ type mi

The Private Transmitter/Receiver

Thecial radio band No one

 a special radio band No one without equipment can hear vour transmitted messages. The reception is unbelievably clear and bright - commercial broadcast quality Your receiver clicks into any of three separate channels. In the suburbs the range is up to 2000 feet, and in the city 850 teetWith your special receiver is an inconspicuous high fidelity earphone. You can put three
transmitters in three locations and then switch back and forth, monitoring all three. Someone with an FM or police band receiver can tune his dial all day, but he won't pick up these signals.
With two receivers, you can have a complete two-way system without the inconvenience and annoyance of the semi-public CB channels. The NCZ-10 channels are private.
This professional-quality electronic miracle is easy to use and completely dependable. Monitor your baby's room. Leave a transmitter in an inconspicuous place in your office or your home, and you'll hear anything going on in that room.
One NCZ-10 receiver with one transmitter is \$279.95; with iwo transmitters (two separate bands), it's $\$ 379.95$; with three transmitters (three separate bands), it's $\$ 479.95$.
For a complete private communications system, order two receivers, each with a transmitter (we'll send them with different bands). Special high performance batteries enable you to operate the receiver for 40 hours continuously, the transmitter for 35 hours.

We Absolutely Guarantee!

Use any electronic instrument acquired from us for up to 30 days. If you decide for any reason you don't want to keep it, return it for a 100\% refund. ORDER TOLL-FREE
For fast delivery on credit card orders, call ;ollfree 24 hours a day, seven days a week

800-824-7888

Ask for Operator no. 55

(in California, call 800-852-7777)
Or send check or money order. Please add $\$ 2.50$ per total order for shipping. Order any or all these state-of-he-art electronic instruments:

* Dyna-Mike AR-7. \$129 95
(two for $\$ 119.95$ each)
Dyna-Mike 9-DX, \$149.95
(two for \$139 95 each)
9-DX rechargeable power-pak, \$1995
Dyna-Mike A-5. \$99.95
(two for $\$ 89.95$ each)
Super-Ear Model SB-5 microphone, $\$ 139.95$ (two for \$129.95 each)
Super-Ear Model SB-1 microphone. \$99.95 (two for $\$ 89.95$ each)
* Voice Changer, $\$ 99.95$
(two for $\$ 89.95$ each)
* NCZ-10 transmitter and receiver, $\$ 279.95$ (two transmitters, one receiver, \$379.95) (three transmitters. one receiver $\$ 479.95$)

DEPT. RE-3 - 245 Fifth Ave. New York, NY 10016
experience we've found that they get as many thermal problems, or even more. So, when you run into a set that shows symptoms of thermal problems, get out the spray coolant and the heat-gun and go after it. Use the methods outlined. They work, and can save you a lot of time and perspiration!

R-E

SERVICE OUESTIONS

WIDTH TOO WIDE

I have a problem with a CTC-68 RCA chassis. There is too much width, especially on the left side. The width control works, but not enough.-H.S., New York, NY

I suggested that he check the two $1.5 \mu \mathrm{~F}$ capacitors from the horizontal yoke to ground. He wrote back and said that their values were right on the nose. However, experimenting, he found that using larger capacitors cleared up the problem. He settled for $5.7 \mu \mathrm{~F}$, and says that everything's fine.

RAIN MAKES SNOW

I have a satellite-TV receiving system that normally gives good reception. However, when it rains, it looks like l'm in a fringe area without a booster! I didn't think that rain was supposed to have any effect. All the components are good quality, or so I thought.-J.H. Pine Ridge, KY

Rain shouldn't usually have any effect. Try this: Sprinkle each component, especially the coax fittings, one at a time while watching the picture to see whether and when snow shows up. You could have a bad socket or plug, etc.
(Feedback: When I "rained" on the LNA, there came the snow! The coax fitting wasn't waterproof. The unit was still under warranty, so I exchanged it. Thanks!)

SMART SUBBING

I had a GE YA-E that kept blowing its horizontal amplifier, Q702. I found that two capacitors were shorted and leaking electrolyte, respectively. One, the .0075$\mu \mathrm{F}, 1600$-volt capacitor was replaced. The other, a $.01-\mu \mathrm{F}, 2400$-volt device, was hard to find. The best that my local supply house could come up with was a $.01-\mu \mathrm{F}$ disc rated at 3 KV . I didn`t like to replace a tubular electrolytic with a disc, but I gambled on a Sprague "Safety Capacitor'' type PP16S11S. That came up just right. The heat sink and Q702 stopped running hot, and everything's working fine. I must admit that I learned that trick from a "Service Clinic' back in 1979.

Thanks to Eric Urscher of Huntington. WV. Good work, Eric!

R-E

How can I intercept smugglers? Secret satellites? Rescue Missions? Signals from space? What is the truth about antennas? Tuners? Preamplifiers? How can I choose the best receiver? Antenna? Uncover listening excitement you never thought possible! For your Free copy of MONITORING 'TIMES-CALL NOW! Toll-free 1-800/4388155 (Cont. US except NC). Others dial 1-704/837-2216 or write Grove Enterprises, Dept. G, 140 Dog Branch Road, Brasstown, NC 28902.

CIRCLE 32 ON FREE INFORMATION CARD

APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, ranges, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. $\$ 3.65$ to $\$ 4.90$ each. Free brochure. Appliance Service, P.O. Box 789, Lombard, IL 60148. 1-(312) 932-9550.

CIRCLE 39 ON FREE INFORMATION CARD

- Reaches 220.500 readers
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 212-777-6400 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS. RADIO-ELECTRONICS. 200 Park Ave. South. New York. NY 10003 ก็ากคロ \triangle DS

THE MEAN LITTLE KIT
New compact kit of electronic tools. Includes 7 screwdrivers, adjustable wrench, 2 pair pliers, wire stripper, knife, alignment tool, stainless rule, hex-key set, scissors, $2-$ flexible files, burnisher, soldering iron, solder aid, solder and desoldering braid. Highest quality padded zipper case. Send check or charge Bank-Americard, Mastercharge, or American Express. The JTK-6 sells for $\$ 95.00-J e n s e n$ Tools Inc., 7815 S. 46th Street Phoenix, Arizona 85040, (602) 9686231.

CIRCLE 34 ON FREE INFORMATION CARD

TeleMatic's Update Kit (Model 10J107; modernizes older test jigs for servicing the increasingly wider range of today's TVs which require a test jig equipped with a selection of yoke matching values. The 10 J 107 allows quick selection of 9 horizontal and 5 vertical impedance values. Adapts most $19^{\prime \prime}$ test jigs. Sold through distributors only. For more information phone 212-271-5200, or write to: TeleMatic, Division of U.X.L. Corp., 108-02 Otis Avenue, Corona, NY 11368.

CIRCLE 35 ON FREE INFORMATION CARD

Turn telephones into control devices Teltone offers 10 DTMF Receivers. The largest selection in the industry. With them you can turn the phone system into a control network. They outperform other receivers in noisy environments and operate over a wide dynamic range. For PABX 's, radio-to-phone, computer, and peripheral interfaces specify Teltone DTMF Receivers. Call: 800/227 3800×1130. (In CA 800/792-0990 X 1130). CIRCLE 84 ON FREE INFORMATION CARD

New Product - Computerized Addressable Cable T.V. Descrambler In/out Channel 3. Restores picture to normal Sync. Passes undistorted Audio signal. Kits \$59.95 Wired and tested $\$ 119.95$. Check, money orders, C.o.d. only. Add 5% Shipping under $\$ 100.00$ Quantity discounts. Send $\$ 2.00$ for Complete catalog on Converters and unscramblers.

Mean Electronics

P.O. Box 347

Boston, Mass. 02188
CIRCLE 40 ON FREE INFORMATION CARD

TELEVISION MODULE includes VHF, UHF and CABLE-TV TUNERS, IF AMPLIFIER, VIDEC DETECTOR, SOUND DETECTOR and AMPLIFIER, and SYNC PROCESSOR: \$85.00. TELEVISION SIGNAL PROCESSING MANUAL explores standard and nonstandard television: \$15.95. Add 5\% handling and sripping. Catalog $\$ 2.00$. VISA and MC accepted. ORDER DESK (415) 439-7470. ABEX, P.O. BOX 26601-RZ, SAN FRANCISCO, CA 94126
CIRCLE 38 ON FREE INFORMATION CARD

VAGNIFIER LAMP FOR LESS
All metal construction, UL approved $5^{\prime \prime}, 3 \times$ magnifier, 22 watt fluorescent circline lamp. $45^{\prime \prime}$ arm reach, heavy duty clamp mount. Only $\$ 59.95$ plus shipping. (California residents add sales tax.) To order call (800) 4235336. In California, (800) 382-3663 or send $\$ 59.95$ plus $\$ 5.00$ shipping to ORA ELECTRONICS, 18215 Parthenia St., Northridge, CA 91325 (213) 701-5848.
CIRCLE 36 ON FREE INFORMATION CARD

ANDERS CM-100A is a rugged battery powered portable instrument capable of measuring capacitors from 10 pF to $500 \mu \mathrm{~F}$. The instrument can detect capacitor leakage of 1 na or .005 CV whichever is greater. Send check or money order for $\$ 89.95$ plus $\$ 3.50$ shipping and handling to: Anders Precision Instrument Co., 4 Bridge St. Plaza, P.O. Box 75, Willimantic, CT 06226 or call (203) 4237940

CIRCLE 91 ON FREE INFORMATION CARD

Still the best GRAPHIC EQUALIZER kit *See Radio-Electronics 5/78 cover story * 12 bands/channel - *.02\% distortion *92dB S/N ratio - *Solid walnut ends *Kit only \$100 postpaid via UPS

Free catalog full of audio kits
Symmetric Sound Systems (707) 546-3895 856G Lynn Rose Ct., Santa Rosa, CA 95404 CIRCLE 74 ON FREE INFORMATION CARD

SOLDERING STATION FOR LESS
Front display of tip temperature, adjustable temperature $200^{\circ} \mathrm{F}$ to $900^{\circ} \mathrm{F}$. UL listed, low current leakage, high insulation. Complete as shown. 7 tips available, also takes standard tips. ORDER MODEL XY-168. $\$ 79.95$ plus shipping. To order call toll free: (800) 423 5336. In California (800) 382-3663. Or send $\$ 79.95$ (California residents add sales tax) plus $\$ 5.00$, shipping to ORA ELECTRONICS DEPT. RE, 18215 Parthenia St., Northridge, CA 91325 (213) 701-5848.

CIRCLE 93 ON FREE INFORMATION CARD

STATE OF SOLID STATE

Compressors, expanders, and compandors
ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

SINCE THE EARLY DAYS OF HIGH-FIDELITY audio, engineers have worked to improve the realism and signal-to-noise ratio of both recorded and broadcast music. Recording engineers, however, often limit or compress the dynamic range, and broadcasters limit or compress the signal amplitude, of that music. That is done to prevent overloading a tape or overcutting a record, and to prevent overmodulation. However, those same efforts cause the full dynamic range of the original music to be lost to you-if your playback system does not include a dynamic volume expander.

The Signetics NE570 compandor

You can build a professional-quality expander, compressor, or compandor (a combination compressor and expander circuit) for your hi-fi system by using circuits designed around the Signetics NE570 IC compandor. The pin-out of the IC is shown in Fig. 1. As a compressor, the device provides a $2: 1$ compression ratio-for example, a $100-\mathrm{dB}$ dynamic range of +20 dB to -80 dB is com-

FIG. 1

COMPRESSION EXPANSION

FIG. 2
pressed into a $50-\mathrm{dB}(+10$ to $-40 \mathrm{~dB})$ range as shown in Fig. 2. As an expander, it has a $1: 2$ expansion ratio, taking the +10 to -40 dB compressed signal and restoring its original full dynamic range.

A compandor can be used for noise reduction. In that application, the signal is compressed before noise can be introduced, and expanded afterwards. Figure 2 shows how that method of companding (compressing and then expanding) can improve the signal-to-noise ratio by about 45 dB .

A block diagram of one half of the NE570 is shown in Fig. 3. Each half of the IC consists of a full-wave rectifier, a variable-gain cell ($\Delta \mathrm{G}$), an op-amp, and a biasing system. The full-wave rectifier and an external capacitor (tied to the RECT CAP terminal) detect the average value of the input signal. The rectifier output current $\left(\mathrm{I}_{\mathrm{G}}\right)$ controls the gain of the variablegain cell. Therefore, the gain of that section of the circuit is proportional to the average value of the input-signal voltage. The Δ G output current, $I_{O U T}$, is fed to the inverting input of an on-chip op-amp that is biased at $V_{\text {REF }}$. That reference voltage is 1.8 volts and is provided by a very stable internal low-noise source. (That internal precision voltage-source also biases the THD TRIM circuit used for temperature compensation.)

The speed with which the circuit gain can follow changes in the amplitude of the input signal depends on the value of the external capacitor the one attached to the RECT CAP terminal). A small capacitor will provide fast attack and fast decay times, but may not provide enough lowfrequency filtering. In that case, residual
low-frequency signal components will appear on I_{G} and will modulate the signal passing through the variable-gain stage. That results in third-harmonic distortion, so there must be a compromise between fast response and distortion.

The expander's output is determined by the DC gain provided by the op-amp. The output is related to the internal reference voltage and also to biasing resistors R_{3} and R_{4} as expressed by the equation: $\mathrm{V}_{\text {DC OUT }}=(1+\mathrm{R} 3 / \mathrm{R} 4) \mathrm{V}_{\text {REF }}$. When $V_{\text {CC }}$ (the supply voltage) is higher than 6 volts, R_{+}should be shunted with an external resistor to bias the output up to $1 / 2$ V_{CC}

Resistor R_{3} is brought out from the op-amp summing node and is used when you want expander or compressor gain to be set solely by on-chip components. You can adjust that gain to your needs by placing external resistors in series with R_{3}. You can also connect an external resistor across R_{4} to change the bias to any value desired.

The basic expander

Figure 4 shows the circuit of a basic expander. Input signal $\mathrm{V}_{\text {IN }}$ is applied to the rectifier and ΔG stage inputs in parallel. The expander can handle a signal input up to 3 volts peak. Rectifier irput current can be as high as $300 \mu \mathrm{~A}$. while the input to the ΔG stage should be limited to $140 \mu \mathrm{~A}$. If the compandor will see input signals greater than +2.8 -volts

FIG. 5
peak. use suitable resistors in series with R_{1} and R_{2} to limit currents to the specified values.

Voltage offsets in the ΔG stage can cause distortion; primarily even harmonics. The rhid trisi pin permits a compensating external voltage to be applied to neutralize the effect of the offiset voltages. A voltage divider composed of a 20 K pot and series resistor R is connected between $V_{c c}$ and ground as shown in Fig. 4. A 6.2 K resistor is connected to the rHD rRim pin. The value of resistor R is selected to develop 3.6 volts at the high end of the pot.

In Fig. 4 coupling capacitors are shown in series with both the rectifier and ΔG stage inputs. However. R_{1} and R_{2} can be tied together and connected to the signal input through a single coupling capacitor. In that case, though, tracking at low input-signal levels will be degraded
The comparator transfer-rtacking tends to he a linear $2: 1$ ratio down to a very low inpur-signal level. Then. tracking may deviate in either direction from the normal 2:1. Either resistor R_{A} or R_{k} (but not both) may be needed to adjust transfer linearity. To correct low-level tracking error. select a suitable value for R_{A} ranging from around 1 megohm to 100 K or for R_{B} between 250 K and 5 megohms.

FIG. 6

SEE YOUR DEALER TODAY

ALSO ANTENNAS FOR
CORDLESS TELEPHONES
MONITOR SCANNERS
Dealer \& Distributor Inquiries Invited SEND FOR FREE CATALOG
'Firestil' Antenna Company
2614 East Adams Phoenix, AZ 85034

Communications Markel Since 1962.
5-YEAR REPLACEMENT WARRANTY
CIRCLE 27 ON FREE INFORMATION CARD

The basic compressor

Figure 5 shows that the dynamic compressor is essentially an expander inserted in the feedback loop of an op-amp. The inputs of the ΔG stage and the rectifier are tied to the op-amp output. The variablegain stage is set to provide AC feedback only: DC feedback is provided by an external low-pass network composed of $R_{D C 1}, R_{D C 2}$, and $C_{D C+1}$. The sum of the values of the two feedback resistors determines the bias at the op-amp's output The output voltage V_{DC} our can be written:

$$
\begin{gathered}
V_{\mathrm{DC} \text { OUT }}=1+\frac{R_{\mathrm{DC} 1}+R_{\mathrm{DC} 2}}{R_{4}} V_{\mathrm{REF}} \\
=\left(1+\frac{R_{\mathrm{DC} \text { TOT }}}{30 \mathrm{~K}}\right) 1.8 \mathrm{~V}
\end{gathered}
$$

When internal bias resistors R_{3} and R_{4} are used alone, the expander output will be:

$$
\begin{aligned}
& V_{\text {DC OUT }}=1+\frac{R 3}{R 4} V_{\text {REF }} \\
= & \left(1+\frac{20 \mathrm{~K}}{30 \mathrm{~K}}\right) 1.8 \mathrm{~V}=3.0 \mathrm{~V}
\end{aligned}
$$

You can shunt a suitable resistor across R_{+}to raise the output bias to the desired level; and you can connect a resistor in series with R3 to increase op-amp output gain.

For the widest possible dynamic range. the compressor's output-level should be as high as possible. Therefore, the input
to the rectifier should be as high as pos sible without exceeding the $+300 \mu \mathrm{~A}$ peak-current limit. If the average inputsignal le vel is low, a higher output cin be obtained by using a shunt resistor to reduce the effective value of R_{3} or by using an external series resistor to increase the effective value of R_{2}. Note well that a reduction in the effective value of R_{3} reduces the circuit's input impedance

A high-fidelity compressor

Figure 6 shows a circuit for a hi-fi dynamic compressor that would make an ideal accessory for your tape-recording setup. It features high gain and wide bandwidth. Its external rectifiercapacitor (C 9) is not grounded. Instead, it is connected to the output of an op-amp network (IC1-a and ICI-b) to shorten the compressor attach-time at low signallevels. (The attach time of the basic circuits in Figs. 4 and 5 is relatively long.) That external op-amp is used to to provide improved high-frequency gain.

Diode D3 and D4 clamp the compressor output to a 7 -volt peak-to-peak suing. That is necessary at times when the compressor is operating near maximum gain-as with a small signal input-and is suddenly hit with a highlevel signal. Normally, the output would swing from V_{CC} to ground and would overload the circuit the compressor was feeding-a tape recorder for example.

The attack time and the time it takes for the compressor to recover from an overload depend on the value of C9. A value of about $I \mu F$ is a good compromise.

Breathing

Even some of the best broadcastquality compressors have been said to have a problem with breathing. That term refers to slow cyclic variations in background level that can be heard as the compressor changes gain. Breathing is minimized in this circuit by high-frequency pre-emphasis networks C2-R5 and C8R14. Naturally, the expander should have a de-emphasis network to complement the compressor's pre-emphasis network We'll take a look at the expander circuit, before we go on to other things. next month.

This material was abstracted from the Signetics Compandor Product Guide from the Analog Division, Signetics Corp. PO Box 409. Sunnyvale. CA 94086

R-E
 U. S. Dapartmenl of Health, Education, and Wellare.

M-21 SYSTEM FEATURES

Very High Gain System
36' Parobolic Antenna
Microwave Downconverter enclosed in aluminum die-cast case
Antennas only $\$ 40.00$
$\$ 135.00$ Single/ $\$ 115.004$ Lot

TITAN II SYSTEM FEATURES

High Gain System.
$22^{\prime \prime}$ Parabolic Antenna
Microwave Downconverter enclosed in probe
$\mathbf{\$ 7 0 . 0 0}$ Single/ $\$ 60.005$ Lot

M-21 \& T-2 Systems

come complete with:
Power Supply \& Coax
Amateur Microwave Systems
not available to Michigan Residents

AMATEUR MICROWAVE TV ANTENNA THE BEST FOR LESS!

COMPLETE SĀTELLITE RECEIVING SYSTEMS
from $\$ 1695.00$ Dealer inquiries invited.

> THIS CATALOG IS YOUR KEY TO INCREASED EFFICIENCY AND PRODUCTIVITY. AND BECAUSE IT'S FREE, YOU'VE ALREADY STARTED TO REDUCE COSTS!

This is our current catalog... The Wire Handlers. It's filled with wire handling tools designed and engineered to make your life easier. The tools are unique. unique in design. and unique in the way they perform.
You may know about our Wire Strippers...but we also offer the finest power electric
 desoldering tools, termination kits, wire and cable cutters, slitters, crimpers, and low cost voitage testers, available. Ask for your copy of The Wire Handlers today! Just send your business card.

Suite 106, 31332 Via Colinas, Westlake Village, CA 91362 Call [213] 991-4970.

JAPANESE SEMICONDUCTORS

CLCLITEDC
ELECTRONICS
770 Amsterdam Ave., New York, NY 10025

COMPUTER CORNER

Choosing a printer
 LES SPINDLE*

Of all the peripherals that you will select as you assemble a complete computer system, a printer may at first seem to be the least necessary. You can still manipulate data and perform almost all the functions you want to by accessing data from the CRT screen. But sooner or later-especially in a business environment-you will want printed records of your computer transactions.

You may want to print invoices, statements, or mailing labels. You may want to send out form letters-or simply handle regular correspondence more conveniently. Or, you may simply need to share the computer's output with a number of people who need to have access to the information. How do you go about selecting the printer that is best for your needs?

Printer prices can range from about $\$ 200$ up to $\$ 4000$ or more. You'll be surprised to learn that an adequate printer will, in many cases, actually cost more than the computer itself. As in all computer-product purchases, you will need to analyze your specific requirements to find the printer that will provide the most cost-effective solution for you.

Printers used with microcomputers fall into two categories: dot-matrix and impact. Dot-matrix printers press small "hammers" against the paper through a ribbon, making patterns of dots that form the characters. Impact printers, which produce solid "letter-quality" type, usually fall into two major categories: ball-type (similar to the IBM Selectric) and daisy-wheel.

Dot-matrix printers

Dot-matrix printers are fine for routine office paperwork, file reports, or informal documents. They are not generally considered good enough for generating prolessional-looking correspondence, however, or for documents that need to be photocopied. If your office generates a lot of correspondence, you may well want an impact printer (see below). Many users, though. are drawn to dot-matrix printers because they offer very fast speed at a reasonable cost. Many print 132 columns (characters-per-line) at 120-180 characters-per-second, although some recent models offer even higher speeds. A

[^1]

FIG. 1
typical dot-matrix printer might cost $\$ 500-1000$.

What features should you look for in a dot-matrix printer? The first criterion, of course, is print quality. Although dot-matrix-formed characters, almost without exception, are inferior to those produced by impact printers, some dotmatrix printers produce better-quality output than others

One very important factor to consider is whether the characters have descendeis. Descenders are the portions of lowercase letters like " j ," " g ," and " y " that are printed "below the line." If there are no descenders, some characters will look "scrunched-up," and it may be difficult to tell the difference between, say, a " g " and an "s."

You will also want to check the unit's method of feeding paper. Some units accept single sheets, like letterhead, readily, while others can't. Many printers can use only continuous-form paper with sprocket holes.

Impact printers

Impact printers vary widely in type and quality. It is important to understand atl of the variables involved in order to make the appropriate choice

Daisy-wheel printers use a print element shaped like a daisy. Each "petal" contains one character. The daisy-shaped wheel is rotated by a shaft, and, when the the appropriate character is in position, its "petal" is struck by a hammer and an impression is made. through the ribbon, on the paper.

Most daisy-wheel printers operate at only 40-60 characters-per-secondconsiderably slower than most dot-matrix units. They are also somewhat noisy-as are all other impact printers-but in many cases specially-designed enclosures will solve that problem. (That is not to say that dot-matrix printers are silentsometimes the lower-volume noise they produce can be more irritating than that made by impact printers.) You may want to consider the cost of a noise-reduction enclosure when you are doing your comparison shopping. Daisy-wheel printers range in price from about $\$ 900$ (for a 10 -characters-per-second device) to over $\$ 4000$.

Several manufacturers offer a thimbleshaped print element instead of a daisy wheel; both systems work on the same principles. Ranging in price from $\$ 2000$ to $\$ 4000$, thimble printers, such as the one shown in Fig. 1, are praised by many

FOR ONLY \$129.95 Learn Computing :From The Ground Up

Build a Computer kit that grows
with you, and can expand to 64 k with you, and can expand to 64 k : RAM, Microsoft basic, Text Edi: tor/Assembler, Wurd Processor, Floppy Dishs and more
EXPLORER/85

quires mure mir mury
of a momory dirarily
Gik of memary hy med

Microsoft BASIC

ORIDERA SPEGIAL-PRICE
EXPLORER 85 PAK - THERES
ONE FOR EVERY NEED.

TO ORDER
Call Toll Free:
800-243-7428
To Order From Connecticut or For Technical Assistance, Call (203) 354-9375

SEND ME THE TTEMS CHECKED ABOUE

 NEED A PO)NER SUPPIV' (insider nur if I It can
\qquad

\qquad

NETRONICS Research\& DevelopmentLtd. 333 Litchfield Road, New Milford CT 06776

ANNOUNCING TWO NEW TERMINALS

Smart • Fast • Graphics • Matching Modem and \$295 Printer
 printer porf tor making hard copy of all incoming data. and ootional provisions for block and special character graphics. The smart" version, SMARTERM-80, teatures elther 24 line by 80 characters per line or 16 by 40 characters per line. It ofters on screen editing with page-at-a time printing, 12,000 pixel graphics, line graphics, absolute cursor addressing, underlining.
reverse video, one-hall intensity and much more . simply plug them into your computer or our phone modem and be on-line instantly. Use your TV set (RF modulator required) or our delux green-phosphor monitor pictured above for hard copy just add our matched printer Price breakthrough!!! Own the FASTERM-64, a complete terminal kit, ready to plug in for
just $\$ 199.95$ or order the SMARTERM-80 kIt for just $\$ 299.95$, (both available wired and tested. Be on line with the milhon-dollar computers and data services today. we even supply the necessaty subscription forms
More good news: All the components in our terminals are avallable separately (see More gor news: all ine coryou need
FASTERM 84 ... DISPLAY FORMAT: 64 of 32 characters/line by 16 lines... 96 displayable
ASCII characters (upper \& lower Case) 8 baud pates. $150,300,600,1200.2400,4800,9600$.
 line cursor up \& down, auto cariage returniline feed at end of line \& auto scrolling.
REVERSE VIDEO BLINKING CURSOR.. PARITY: oft, even or odd. STOP BITS: 2 ... DATA BITS PER CHARACTER $5,6,7$ oI 8 . CHAFACTER OUTPUT 5 DY 7 dot matrix in a 7 by 12 cell PRINTER OUTPUT: prints all incoming data 1 K ON BOARD RAM
$2 K$ ON BOARD ROM CAYSTAL CONTROLLED COMPLETE WITH POWER SUPPLY OPTIONAL GRAPHICS MODE- includes 34 Greek \& math characters plus 30 special graphics characters. ASCII ENCOOED KEYBOARD: 56 key/ 128 characters.
SMARTERM- 0 . DISPLAY FORMAT. 80 charactes by 24 lines or 40 chacters by 16 lines 128 displayable ASCII characters (upper \& lower case) 8 baud rates $110.300,600,1200,2400$
$4800,9600,19,200$ LINE OUTPUT. AS232GC or 20 ma current loop... VIDEO OUTPUT: IV PD EIA RS 170 . EDITING FEATURES, insert/delete line, insert/delete character, for-
wardiback tab
LINE OR PAGE TRANSMIT. PAGE PRINT FUNCTION..CURSOR POS TIONING. Up, down, right. left, plus absolute cursor positioning with read back. VISUAL
ATJRIBUTES: Underine blink, everse video, hatitinensity. \& blank. GRAPHICS. 12.000 pixel resolution block plus line graphics.. ON.SCREEN PARITY INOICATOR PARITY: of
even or odd STOP BITS: 110 baud 2, all others,...CHAR. OUTPUT 7 by 11 character in a 9 by 12 block PRINTER OUTPUT, 60 OR 50 Hz VERTICAL REFRESH BLINKING
BLOCK CUASOR CAYSTAL CONTROLLED $2 K$ ON BOARD RAM ASCII ENCODE BLOCK CUASOR CAYSTAL CONTROLLED $2 K$ ON BOARD RAM ASCII ENCODED
KEYBOARD 56 kEy 128 chaqacter. $4 K$ ON BOARD ROM COMPLETE WITH POWER
TELEFHONE MODEM 103 OIA FULL DUPLEX. FCC APPROVED... DATA RATE: 300 baud INTERFACE RS232/C and TTY CONTROLS talk/data switch (no need to connect and
disconnect phone). originatelanswer swith on rear panel...NO POWER SUPPLY RE. disconnect phone). originatelanswer swith on rear panel ...
QUIRED
ASCII KEYBOARD ASCII•3 $\quad 56 \mathrm{KEV/128}$ CHARACTER ASCII ASCII KEYBOARD ASCII 3 LOWER CASE FULLY DEBOUNCED 2 KEY ROLLOVER POS OR NEG LOGIC WITH POS STROB
REQUIRES + 5 \& $12 V$ OC (SUPPLED FROM VIDEO BOARDS) PRINTER COMET
CHARACTER COLUMN (132 COMPAESSED IO TRACTOR F 4 CHARAC
PRINTING

Continental U.S.A. Credit Card Buyers Outside Connecticut
CALL TOLL FREE 800-243-7428
To Order From Connecticut Or For Tech. Assist. Call (203) 354-9375
NETRONICS R\&D LTD. Dept.
333 Litchfield Road, New Milford, CT 06776
Please send the items checked below
COMPLETE FASTERM-64 TERMINAL (includes FASTVID-64 video board Cll3 keyboard, steel cabinet and power supply)... kit \$199.95 plus \$3 P\& wired \& tested $\$ 249.95$ plus $\$ 3$ P\&I. . graphics option: add $\$ 19.95$ to
each of above
COMPLETE SMARTERM- 80 TERMINAL (includes SMARTVID- 80 video board, ASCII. 3 keyboard, steel cabinet and power supply)...kit $\$ 299.95$ plus
 P\&I...graphics option add $\$ 19.95$...wired \& tested $\$ 129.95$ plus $\$ 3$ P\&I graphics option add $\$ 19.95$

- SMARTVID-80 VIDEO BOARD (requires $+5 \&+1 / 12 \mathrm{VDC}$) ... kit $\$ 199.95$ plus $\$ 3$ P\&i. wired \& tested $\$ 249.95$ plus $\$ 3$ P\&I

DELUXE STEEL TERMINAL CABINET... $\$ 19.95$ plus $\$ 3$ P\&
ASCII-3 KEYBOARD (requires $+5 \&+12 \mathrm{VDC}$)... kit $\$ 69.95$ plus $\$ 3$ P\&I ired and tested $\$ 89.95$ plus $\$ 3$ P\&1
POWER SUPPLY (powers ASCII-3 keyboard \& video boards) . . . kit only $\$ 19.95$ pius \$2 P\&I

ZENITH VIDEO MONITOR (high resolution green phosphor) . . . wired \& tested $\$ 149.95$ plus $\$ 6$ P\&I
TELEPHONE MODEM MODEL 103 OIA ... wired \& tested $\$ 189.95$ plus $\$ 3$
DOT MATRIX PRINTER Comet I wired \& tested $\$ 299.95$ plus $\$ 10$ P\&I RF MODULATOR MOD RF. 1 , kit Only $\$ 8.95$ plus $\$ 1$ P\&
3FT- 25 LEAD MODEMITERMINAL OR PRINTERITERMINAL CONNECTOR CABLE . $\$ 14.95$ ea plus $\$ 2$ P\&I

For Canadian orders double the postage Conn. res add sales tax
Total Enclosed \$
Personal Check
VISA
Acct. No MasterCard

Cashier's Check/Money Order

Signature
Print Name
Address
City
State
Zip
users as offering superior speed and more reliable performance than other correspondence-quality printers.

Another type of printer has a ball-type print element, like that used by the IBM Selectric. They are slower than most other impact printers (about 15 characters-per-second), but normally range from $\$ 1500$ to $\$ 2000$ in price. For do-it-yourselvers who want to invest their time in some weekend labor, rather than spending a large amount of cash, a computer interface for the IBM Selectric is available from Escon Products (Pleasant Hill. CA). That kit enables you to modify your existing typewriter so that it will print output from your computer. It will
work with most computers. Prices range from $\$ 500$ to $\$ 800$-plus labor cost. if you can't do the work yourself.

Among the pluses for the impact printers are the fact that they produce solid characters (as opposed to dot patterns) and, because the print elements can be removed and replaced with others, they allow you to use a variety of type styles.

Interfacing

One important point to keep in mind when you purchase your printer is the interface between it and your computer. The appropriate cables and software are required to achieve effective communication between the two. There are two types

SPECLAL REPRIAT

BUILD YOUR OWN ROBOT!

Send today for your 52-page ($81 / 2 \times 11^{11}$) booklet containing complete reprints of all eleven articles in the Build Your Own Robot series by Jim Gupton.
This all-inclusive reprint gives you all the data you need to build your own Robot. - TELLS EVERYTHING YOU NEED TO KNOW to build the Unicorn-1 Robot without the need for an engineering degree or special equipment. The robot is fully mobile with manipulator arms to grasp, lift and carry.

- MANIPULATOR ARMS and end-effectors (hands) are what enable the robot to perform useful tasks. Details of construction techniques and considerations are fully explored.
- MOBILITY BASE is not a lunar space station. It is the drive system that permits the robot to move from here to there. Full construction details along with a discussion of power sources is included.
- THE BODY-FRAME AND ROTATION MECHANISM. This is the part that makes Unicorn-1 look like a robot. Wood and Formica are the materials for the body. Motors and gears are what make it function.
* COMMUNICATIONS. How you can tell your robot what to do. Preprogramming techniques....radio control....computer control are all detailed.
■ SENSORS. How to add sensors so your robot doesn't bump into things.
of interfaces: parallel and serial. Parallel interfaces generally allow greater speed, but require that the printer be very close to the computer. Serial interfaces need simpler cables, and allow the printer to be separated from the computer by 50 feet or more
Parallel interfaces are commonly used with dot-matrix printers. Bear in mind that not all parallel interfaces are the same and, as you shop for a printer, be sure to inquire whether a specific unit will work with your (specific) computer. That can avoid an enormous amount of frustration, and wasted time and effort, on your part.

Serial interfaces are more standardized than parallel ones, and allow a variety of printers to be used with a variety of computers. The common RS-232C serialcommunications standard is used not only for printers, but also for telephone and Teletype communications.

If your computer is equipped for communications capability, it almost certainly has a serial interface. In some cases, additional software may be required to take advantage of all the capabilities of your printer. Make sure that it's available for your computer.
As is the case for all computer purchases. an important criterion is after-sale support and service. Consult with other users to be certain that you are making your purchase from a reputable manufacturer or vendor.

More than any other computer peripheral, a printer will require maintenance after a certain period of usage, due to its mechanical complexity. You'll want to be sure that you will be able to get prompt and reliable service and repair when it is necessary-and know that it won't cost an arm and a leg. If lost time is going to hurt you. see whether a service contract is available

There are many decisions to make in fi-ding the printer with the features and cost-effectiveness that are best for your applications. Sample a number of different offerings before narrowing your choices down, and try to talk to others who are using the printers you are considering. The time you spend in making your choice will be well worth it in the end.

'Cloudy again!' That makes it twentr-six straight dass."

SATELLITE TELEVISION RECEIVER

KITS

Raintow makes a top-of-the-line Receiver affordable

The Electronic Rainhow Receiver consists of a receive? with an external down-converter that mounss al the antenna, feeds the voltage to the LNA through the coax catle. The 4 GHz signal is down converted to 70 Mizz and is fed through the RGSO/U coax to the receiver

Rainbow Kits are supplied with simple step by step instructions. All the circuits that you need expensive test equipment to do are pre wired and tested. All printed circuit boards have the outline of each part printed on them.

RECEIVER FEATURES

Built in RF modulator - Detent Turing- 3.7 to 4.2 GHz - Variable Audio-5.5 to 7.5 MHz • Invert Video - Channel Scan - Voltage monitoring • Meter output • Remote Tuning SPECIFICATIONS:
Single Conversion Image Rejection Downconverter - Threshold 8 db CNZ - IF Bandwidth $24 \mathrm{MHz} \cdot$ Output IV Audio and Video - IF Frequency 70 MHz - Video Bandwidth $4.5 \mathrm{P} H \mathrm{~Hz}$ • Size $312^{\prime 2} H x 81 / 2^{\prime \prime} \mathrm{Dx} 111 / 4^{\prime \prime}$ W

Complete Satellite TV Receiver

KIT \#1 - Con:ains:

- Mainboard - Tuning Board - Downconverter Board - Modulator Board - All parts neeced to complete receiver - Down Converter כuilt in case.
- Cabinet, attractive black brushed anodized metal with silk screened front and back for a srofessional look
- 70 MH 2 Filter is pre-wired and tested.
- Complete instruction $\$ 395.00$

> Ask about guaranteed to play

We will accept telephone orders for Visa \& Mastercard No C.O.D. Orders
 Complete Kit Weighs 10 pounds Please add Suticient Postage 6254 La Pas Trail
Indianapolis, hdiana 46258

KIT \#2 - Board Kit Contains:

 - Main Board - Tuning Board - Down= converter board - Modulator Board- Parts List, assembly and alignment manual
- 4 GHz local oscillator and 70 MHz filter is pre-wired and tested. $\$ 129.00$

Instruction manual. Contains printed circuit board layouts, parts placement, and alignment instructions. \$25.00

CIRCLE 88 ON FFEE INFORMATION CARD

Keep Magazincs, Catalogs, Manuals, Journals
 NEAT \& ORGANIZED
 End Clutter In Home, Office, Workshop With
 SHIT FILES

Eliminate the mess of loose magazines, catalogs and newspapers. Find what you want when you want it by using these handy shelf or desk top files. Attractive brown front panel. Adhesive ID labels included

6 POPULAR SIZES AVAILABLE

From digest size to newspaper size! Popular letter and magazine size ($9^{\prime \prime} \times 11^{1 / 2^{\prime \prime}}, 3^{3 / 4^{\prime \prime}}$ box width) 8 for $\$ 13.95 .25$ for $\$ 31.95$ prepaid. Sturdy, heavyduty fiberboard will last for years! Charge it! Call or mail coupon today.
Professional Aids Co., Suite 133

1678 S. Wolf Road, Wheeling, IL 60090 • 312/459-6828 Pleese rush postpaid Fiberboard Desk and Shelf Files as checked below: Check for | How Many | aty | Size | Price | Total Price |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{l}\text { Free Catalog. } \\ \text { I enclose }\end{array}$ | | | | | enclose $\$$ tull payment. Skip postpaid

illineis Residents add 6% Sales Tax, please Other sizes from digest to newspaper availabte.

 \square Charge it to \square VISA \square MasterCard IOTALCard No
Exp Oate

Name

Address
City, State, Zil

For Lab or Original Equipment
FEATURES: Efficient 30, Hz switching frequency • Four Models setisfy most applications - Years of trouble-free service \& Each side AC line fuse protected - Tele-Tale LED "PwrOn" Pand Indicator © Three seperare woltege outputs \& Metal enclosure provices phyical and EMI protection - For experimental use or permanent power source \& Saft start feeture protects critical circuits o Parallel operation accepteble for higher current nexds e Push-in terminals, cecept wirn or text lead - Light-weipht, easy to use \bullet AC line cord permanently atteched - Most reliable power scurce for a varioty of use and applications o 48 hour burn-in manrs

SPECIFICATIONS: Input: $90132 \mathrm{VAC}$.47440 Hz • Dual AC Input Fuses • Line Regulation: $\pm 0.1 \%$ Max. for 10% input change Load Regulation: $\pm 0.2 \%$ Max. on \#1 Out. put - Ripple Noise: Typ. 1\% PP Max. Over Voltage Protection \bullet Reverse Polarity Protection - Compact, only $71_{2}^{\prime \prime} \times 4^{\prime \prime} \times 2 \%^{\prime \prime} \bullet$ Fast load transient response $\bullet 5$ volt adj. $\pm 10 \% \bullet$ DC Output: 42 Watts continuous - 70% Efficiency

SCHOOLS-LABS: QUANTITY PRICING ON REQUEST.
COD inc 1545 osgood St. Unit 11K, No. Andover, MA 01845

COMMUNICATIONS CORNER

Computerized communications
 herb friedman, communications editor

NO MATTER HOW MUCH OR HOW FAST I read. it becomes more and more difficult to keep up with computerized communications. Just as I am learning about the latest developments, others come into use that open up new horizons for day-today communications. The adventures of one young fellow 1 know illustrates just how deeply we (meaning the government) have come to depend on computerized communications.

This fellow and some friends went down to Virginia for some scuba diving at Virginia Beach. As you might expect to happen to a car full of laughing teenagers, they were pulled over by a police cruiser. No hassling or anything, just a "routine check. "My young friend reached into his wallet for his driver's license and registration and they weren't there. Somehow, he left them back in New York
lnstantly, he has visions of making big rocks into small ones. The cop asks a few questions, such as name, address, insurer, owner of car, previous traffic violations and so forth. He goes to his cruiser, and in a few minutes is back with my friend's life story: name; address, car identification, violations, etc. Everything was transmitted down the New York Motor Vehical Bureau computer to the Virginia police cruiser. Since everything that my friend said checked out, he was waved off with a warning to keep his license and registration with him in the future

Now just consider for a moment that it wasn't some well-intentioned teenager out for a weekend of exploring the sea, but rather someone who had robbed a bank, or beat up on some uld lady. Today, a call on the radio will bring forth in a matter of minutes the life history of both the driver and the car in question. That's a lot better than having to rely on luck.

A lot of folks will think this is nothing more than another example of how Big Brother is watching. I don't want to get

FIG. 3
involved in that discussion. All I'm trying to illustrate is one way in which the computer has dramatically altered one aspect of police radio communications

The magic of ASCII

As a general rule, computerized communications-data and control-signals are transmitted using ASCII code (ASCll is an acronym derived from the American Standard for Communications Information Interchange). It provides for 128 characters that represent the alphabet, numerals, punctuation, special symbols, and 32 control codes. Control codes provide, among other things, the printer's carriage return and linefeed, signals that turn peripherals on and off, and can cause characters not to be printed.
The ASCII code accommodates the original teletypewriter design, which was entirely mechanical, and was in fact originally intended for use as computer inpul/ output using a terminal such as the model 33 teletypewriter, a mechanical workhorse still being used for computer I/Othough it's fast being phased out because it is slow

Early teletype circuits used the serial communications loop shown in Fig. 1. The keyboard at each end of the loop is in series with its associated printer, which is also in series with the equipment at the other end. What was typed on a keyboard appeared at its associated printer as well as at the receiving end. Each time a key was pressed, a mechanically-produced series of pulses (a pulse train) was transmitted through the loop. The pulse train consisted of a start pulse to let the printers know a character was to follow, then the pulses that represented the character itself, and finally a pulse(s) to let the printer know the character was complete, cause the character to print, and force a reset of the printer so that it was available for the next character.

In the normal series-TTY connection, current flows through the communications loop during the standby condition and is called the mark, representing a "l" or a "high." The pulses are caused by interrupting the current flow; they are called the spaces, representing a " 0 " or a "low."
The ASCII code presently used (it is
almost universal for communications, with the exception of the IBM EBCDIC code. which is less and less frequently used) provides for a total of 10 or 11 bits of information. Those bits include a start bit, seven bits which represent the character, one bit for parity (which is a check that can be used to test the reliability of the transmission), and one or two stop bits. A complete II-bit character representing the letter " U " (decimal code 85) is shown in Fig. 2. For common mechanical teletypewriters, the information is transmitted at 110 bps (bits-persecond), which incidentally works out to a 110 -baud rate. Two stop bits are used because 110 baud is intended for mechanical TTY devices that aren't all that precise: the two stop bits insure that the mechanical printer does indeed reset for the next character. Note that the stop bit(s) is a mark, so essentially a mark at least two bits in length signals a reset. The stop bits ensure a minimum mark two-bits in length. The total transmission length for a character at 110 baud is 100 milliseconds, so each bit is 9.09 milliseconds. Maximum data rate is 10 characters-persecond while is about 100 real-words per minute.
At 300 baud and higher, (the rate used by electronic-controlled TTY`s and printers) only one stop bit is necessary because we are dealing with electronic precision; we don't have to allow for mechanical tolerances. A typical 300 -baud ASCII character is shown in Fig. 3. Note the total transmission length is 33 ms , with each bit requiring 3.3 ms . This works out to a maximum data rate of 30 characters-per-second, or 300 real-words per minute. A comparison between 110 and 300 baud ASCII characters is shown in Fig. 3.

For computers and computerassociated communications equipment, the ASCII code is handled by what is called an RS-232 interface, a device that translates the ASCII characters to a particular voltage standard. We will cover the RS-232 interface in more detail in a future column.

DRAWING BOARD
continued from page 84

things, it's clear our circuit is far from being complete. What we need is an output bus as well as the input bus used by the keyboard encoder. Another shortcoming is that we don't have any easy way to clear an entry other than entering zeros. We can enter numbers from a keyboard and have them show up in a display and even though we can expand to ten digits, more circuitry is needed before the encoder can be put to any practical use.

Next month we'll add all the bells and whistles to our encoder. We'll add a Tristate data bus, an audio indication of keyboard entry, and the ability to clear the display from the keyboard.

TWO COMPACT DVM's

continued from page ot

bend at the final $1 / 16$-inch of one end. With the display supported in a small bench vise, I dropped each wire into the appropriate hole in the display board. where it hung suspended while I soldered it into place. I only installed wires where they were required. When all the wires were in. I straightened them sufficiently to work them into the holes in the construction board. I soldered just one wire at first. to simplify adjusting the height of the display over the board, and then did the rest.

Testing and calibration

You should assemble the two 741 circuits. and then calibrate them before continuing. Connect a known DC-voltage to the $+V_{1}$ input and measure the output of 1 C 1 at pin 6 . It should be exactly one-third of the input. Trim either R1 or R2 if it is not. Then. connect a negative voltage to the other input and adjust R7 so you read one-third that value at IC2's ouput.

You should set R19 to about 3500 ohms before wiring it into the circuit; if you do that the display will show very nearly the correct voltage when you first turn the system on. After that. it's a simple matter to trim R19 for the final calibration.

R-E

VIC20 TOP 10 ARCADE GAMES VIC- 20 TAPE PROGRAM SALE!!

IC TESTER
cominued fiom page 55

ly to having their outputs tied to ground or 5 volts. Also. if a multi-section IC is being checked out, only the section(s) you will be using in the circuit it's intended tor need be tested.

Of course, if inserting an IC causes the overload LED to light brilliantly, the device may be shorted. Check a good part to be sure before discarding the questionable one. Checking counters or long shift registers can be tedious, so the pulse source may be replaced by the Programmal pulse generator (see the Octoher 1980 issue of Radio-Electronics). Make up a cable with a miniature phone plug on one end to go between the pulse generator and the IC tester. Instead of using the tester's internal pulsegenerator insert that plug into the lo input for the 1 C 's clock pin. and use the Programmma I to clock the IC rapidly. You can then watch the outputs of the last stages change state on the LED's. That's great for devices like the 4020 binary divider.

Adding external circuits

So far, we have concentrated on checking fairly simple IC's. But others-like one-shots and timers. which require additional circuitry to function-can also be checked. The trick is to obtain additional phone plugs, and connect the external circuitry to them. Then plug in that network whenever an IC requiring it is being tested.

For example, suppose you want to check a one-shot. Most one-shots require an external resistor-capacitor network to set the length of the output pulse. A tivesecond pulse is a good place to start; you can determine the values needed from the IC's data sheet. Solder the parts to the center terminals of two phone plugs (and possibly the outside terminal in the case of the resistor). and insert the plugs into the jacks corresponding to the appropriate IC pins. Trigger the one-shot using the internal pulse-generator: the outputs should immediately change state. and stay the way for about five seconds. If they don't, the part is bad.

There's one type of IC that can cause problems. and that's the device with open-collector outputs. Examples include the 7401 nand gate. The outputs of those devices won't go high unless an external pull-up resistor is used. The solution is to solder a 1000 -ohm resistor across the terminals of a phone plug, and insert it in the hi jack corresponding to the output pin of the section of the IC you're testing (Note that the open-collector outputs are indicated on the data sheet for the part).

You're sure to find other uses for your IC tester: try it as a logic analyzer. R-E

Huntington's Disease Kills on and on and on an

A PRACTICAL DIGITAL ELECTRONICS KIT FOR LESS THAN S40 ! Suitable for Beginners

 quickly you are designing your own circuits. The kit your SUPERKIT contains:Seven LS TTL integrated circuits, breadboard, LED's, and all the DIL switches, resistors, capacitors and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available seperately). All this comes in a pocket size plastic wallet for only $\$ 39.95$. This course is for true beginners:

Needs no soldering iron.
Asks plenty of questions, but never leaves you stuck for an answer.
Teaches you about fault-finding improvisa tion and sub-system checking.
The only extra you need is a 4.5 voll battery or a stablilized 5 volt supply.
Using the same breadboard you may construct literally millions of different circuits.
This course teaches Boolean logic, gating, R-S and J-K flipflops, shift registers. ripple counters and half adders.
Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7 -segment displays etc.

NO RISK GUARANTEE
There's absolutely no risk to you. If you're not completely satistied with your Courses, simply return them in good condition to CLI within 30 days. We'll send you a full retund.

AIR MAIL

The prices shown include surface mail postage anywhere in the World. For Air-Mail shipment olease write for additional cost, specifying Courses you will order.

CAMBRIDGE

LEARNING Inc.

Jucith Drive

North Reading
MA 01864
(617) $664-3657$

- Order free by phone
- Mastercard / VISA
- No shipping charges
- Money-back guarantee
- Tax deductible

TO: Cambridge Learning Inc., 1 Judith Drive, North Reading MA 01864
Please send me

SUPERKITS	\$39.95	\$
sets of Digital Computer Design	\$17.95	\$
sets of Digital Computer Logic \& Electronics	\$13.95	\$

> Enclosed is check/money order for total (payable to Cambridge Learning Inc.) Mass. Residents add 5\% Sales Tax

NAME.
ADDRESS
CITY / STATE / ZIP

The world of electronics gee-wizardry

32-pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send $50 t$ for first class mail.

108 New South Road
Hicksville, N.Y. 11801

Put Professional Knowledge and a COLLEGE DEGREE
in your Electronics Career through
 DEGREE
No commuting to class. Study at your own pace, while continuing your present job. Learn from easy-to-understand lessons, with help from your home-study instructors whenever you need it.

In the Grantham electronics program, you first earn your A.S.E.T. degree, and then your B.S.E.T. These degrees are $a c$ credited by the Accrediting Commission of the National Home Study Council.

Our free bulletin gives full details of the home-study program, the degrees awarded, and the requirements for each degree. Write for Bulletin R-s?
Grantham College of Engineering 2500 So. LaCienega Blvd. Los Angeles, California 90034

RemoveVocals

Rembve the lead vocal and substitute your own voice with most stereo recordings using our new. Iow cost VOCAL ZAPPER ${ }^{\text {TM }}$ Greal for practice, professional demos or just for fun

WITH ThE

CHARGE TO VISA OR MC TOLL-FREE 1-800-654-8657 9AM to SPM CST MON-FRL

OIRECT INQUIRIES TO

Fins Electronics, Inc.

\square Rush my vocal Zapperkit $\$ 24.95$ plus $\$ 3$ postage 8 handling enclosed.
\square Send assembled vocal Zapper. $\$ 39.95$ plus $\$ 3$ post age enclosed \square Send Free Catalog
name
address
city
state $\quad 21$
PAIA Elecrronics. dept 3 3R 1020 W Wilshure, Okla. Cliy OK $73+16$ CIRCLE 26 ON FREE INFORMATION CARD

\square Build Your Own Satellite TV Receiver	\$7.00	\square Radio-Electronics back issues (1981)	\$3.50
\square 8-Ball Satellite TV Antenna	\$5.00	(March, December 1981 not available)	
\square Build Your Own Robot.	\$12.00	Write in issues desired	
\square TV Descrambler (January. February 1981)	. $\$ 3.00$		
\square Video Entertainment (January 1982).	\$2.00	\square Radio-Electronics back issues (1978-79)	\$4.00
\square Your Own Computer (October 1981)	\$3.00	(October. November 1978 not available)	
\square Radio-Electronics back issues (1982)	\$3.00	\square Write in issues desired	
Write in issues desired			
		\square Special Frojects (Winter 1980)	\$4.00
\square Radio-Electronics back issues (1980) (March, May 1980 nol available) Write in issues desired	\$4.00	\square Special Projects (Spring 1981).	\$4.00
		\square Special Frojects \#4 (Summer 1982)	\$4.00
		\square Special Frojects \#5 (Winter 1983)	\$3.00
		\square Radio-Electronics Annual 1983	\$2.50
		\square How to Make PC Boards.	\$2.00
		\square All About Kits	\$2.00

To order any of the items indicated above, check off the ones you want Complele the order torm below include your payment, check or money order (DO NOT SEND CASH), and mail to Radio-Electronics, Reprint Department, 200 Park Ave. South, New York, NY 10003 Please allow 4-6 weeks for delivery.
If you need a copy of an article that is in an issue we indicate is unavailable you can order it directly from us. We charge 50e per page. Indicate the issue (month \& year), pages and article desired. Include payment in full, plus shipping and handling charge.

MAIL TO: Radio-Electronics
$\overline{\text { TOTAL PAGES }}$ @ $50 ¢$ each \quad TOTAL PRICE
All payments must be in U.S. funds Total price of order
Sales Tax (New York State Residents only)
Shipping \& Handling (U.S. \& Canada only) (Includes FIRST CLASS POSTAGE) $\$ 1.00$ per item All other ($\$ 2.00$ per itern, sea mail)
($\$ 4.00$ per itern, air mail)
Total Enclosed
$\overline{\text { ARTICLE }}$

MONTH
$\overline{Y E A R}$

PAGES

[^2] $)_{\infty}$ $\$ \square$
$\$ \square$
$\$ \square$
$\$ \square$ Name
Address
City

YOUR EXCITING NEW HOBBY!

v Enjoy fantastic savings by assem: bling your own organ. or piano.
y It s easy. No technical. knowledge required.
\boldsymbol{v} Just follow our clear. pictured instructions.
v) Choose from mány módels from portables to consoles.
v Ask about our interest•free installment plán.

(1) WERTI ORGAN \& PIANO KITS

WERSI Dept M40 P.O. Box 5318
Lancaster. PA 17601
\square Free Info Pack. コ Organ \subset Piano - Catalog \& Demo Record

Name
Address \quad State Z_..._ 210
Phone
\qquad

SHORTWAVE RECEIVERS

continued from page 52
you like to listen to, you can line up all the pre-sets and go from one to the next as the evening progresses

Antennas

All portables are equipped with telescoping whip antennas for shortwave (also used for FM if the radio has that band). While the whips are adequate for strong stations like the BBC, Radio Moscow, Radio Nederland, Radio Australia, and many others, you will be able to hear more stations and overcome more adverse propagation conditions with the help of an external antenna when you're at home. And all portables, including the shirtpocket radios, have provisions for attaching an external antenna.

Basically, an antennas function is to intercept as much extremely low power radio energy (signals) as possible. Therefore, antennas that are high, long, and located as far away from trees or buildings will be most effective.
Outdoor wire antennas meet those requirements and are easy to install. Wire length for a receiving antenna is not critical, but the longer it is the better. Several

CIRCLE 25 ON FREE INFORMATION CARD

Power Line Spikes and Hash often cause memory loss or erratic operation. Often floppies, printer \& processor interact!
OUR patented ISOLATORS eliminate equipment interaction AND curb damag. ing Power Line Spikes, Surges and Hash.
Filtered 3-prong sockets and integral Spike Suppression. 125 VAC, 15 Amp, 1875 W Total - 1 KW per socket.
ISO-1 ISOLATOR. 3 Filtered Sockets; 1000 Amp 8/20 usec Spike Suppressor
$\$ 76.95$
ISO-4 ISOLATOR. 6 Filtered Sockets: 1000 Amp $8 / 20$ usec Spike Suppressor
$\$ 128.95$
ISO-3 SUPERISOLATOR. 3 DUAL filtered Sockets; 2000 Amp 8/20 usec Spike Suppressor \$115.95
ISO-7 SUPER-ISOLATOR. 5 DUAL filtered Sockets; 2000 Amp 8/20 usec Spike Suppresor \$186.95 Master.Charge, Visa. American Expross
TOLL FREE ORDER DESK 1-800-225-4876 (except AK, HI, MA, PR \& Canada)

Electronic Specialists, Inc.
171 South Main Street. Natick. MA 01760 Technical \& Non-800: 1.617.655-1532

CIRCLE 24 ON FREE INFORMATION CARD
commercially made antennas have tuned "traps' to help peak the wire's performance on the shortwave frequencies. Even if apartment. condominium. or aesthetic rules won't allow an outdoor antenna, you have the optior of running wires in the attic, along exterior-wall baseboards, etc.

There is another type of indoor antenna that doesn't need any long lengths of wire, and can be almost as effective as an outdoor aerial: the active antenna. That type of antenna consists of either a telescoping whip or dipole antenna fed to the receiver through a tunable amplifier. The amplifier boosts the signal intercepted by the shortencd antenna. The MFJ-1020 active antenna (from MFJ Enterprises) with its short 21-inch whip far outperforms a receiver's built-in whip. Stations barely audible on the built-in antenna can be heard comfortably with the help of that active antenna. As with many active antenna amplifier sections, there are connectors to use the amplifier with external wire antennas for superb performance if you later add an outdoor wire.

A recent addition to MFJ's line is the MFJ-102 4 outdoor active antenna. A $41 / 2$ foot telescoping whip and its small RF amplifier can be mounted inconspicuously outdoors, and connected to the control unit located next to the receiver via 50 feet of coaxial cable (which is supplied).

Gilfer Shortwave, a mail-order shortwave specialist. offers two active antennas made by Datong. one each for indoors and outdoors. Both are dipoles (i.e., two short antenna elements emanating from a central preamplifier box) and can be mounted horizontally. which often reduces atmospheric and local electrical noise in the receiver, while also being less conspicuous

Unlike local radio stations, which are limited in their range, international shortwave programs can join you on your travels. literally anywhere in the world. Often the sound of a familiar commentator or program will help you feel more "at home" even if you're far from home. And the latest generation of portable shortwave receivers let you take it all with you.

R-E

"He should have known better than to tangle with a solid-state computer

EOUIPMENT REPORTS
continued from page 39
tion remains in a slow setting, which is good for listening to sideband transmission, but which doesn't promote top CW reception. It needs a switchable fast/slow AGC action. However, that really would be noticed more by the CW fanatic, rather than the casual listener.

The R-1000 is one of the few rigs on the market with as much as 60 dB of signal attenuation. It is switchable in $20-\mathrm{dB}$ steps. In the $60-\mathrm{dB}$ position, the built-in attenuator virtually eliminates front-end overload.

While there is no provision for 12 VDC mobile operation, the $R-1000$ still comes equipped with a noise blanker to take care of pulse-type noise. It does eliminate ignition noise from nearby cars, which can be a problem if you live near a major road.

No modern receiver would be complete without a few other bells and whistles and this one is no exception. It features an easily-settable digital clock which is accurate to about 15 seconds per month. There is also a timer which can serve as a wake-up alarm or can serve to tire up the radio for taping various broadcasts while you are away from home.

The $R-I 000$ also features more than enough audio output potential with a minimum of 1.5 watts available at 10 percent distortion. The built-in speaker provides excellent fidelity; however, there is also a jack for an external 8 -ohm speaker. The internal speaker is muted when an external one is used. A headphone jack is also included.

Power consumption is a nominal 20 watts, making this a cool-running unit.

The $R-1000$ is a superheterodyne receiver with a few image problems. It uses a standard frequency-down-conversion to achieve the final 455 kHz intermediate frequency. The down conversion begins with a first IF of 48.055 which is heterodyned with other frequencies to produce the 200 kHz to 30 MHz range of this receiver.

Overall, I was quite pleased with the simplicity of operation and the straightforward but sophisticated design of the $R-1000$. About the only drawbacks are the necessity for the extra mediumwave antenna input and the slow AGC action. A good feature is its ability to operate on a variety of voltages from 100 to 240 VAC. Thus it should be able to be used almost anywhere in the world you care to take it.

The Kenwood R - 1000 would be a worthy addition to anyone's radio shack, whether that person is a shortwave listener or an amateur radio buff. It is available from Trio-Kenwood Communications, Inc. at 1111 West Walnut St., Compton, CA 90220 and its price is $\$ 499$. R-E

For more details use the free information card inside the back cover

THE MASTER HANDBOOK OF ACOUSTICS, by F. Alton Everest. TAB Books, Inc., Blue Ridge Summit, PA 17214. 352 pp. including appendix, references, and index; $5 \times 81 / 2$ inches; softcover; $\mathbf{\$ 1 2 . 9 5}$.
Acoustics, the science of sound, has two natures: physical and psychophysical. Sound as a disturbance in the air is physical; sound as perceived by the ear is psychophysical. The old conundrum, "If a tree falls in the forest with no ear to hear it, is sound produced?", distinguishes between sound as a stimulus and sound as a sensation.

This book deals with both the physical and psychophysical aspects of sound because the two are interrelated so inextricably. Whether the end product is a recording, a radio or television program, or a live performance, the human ear-brain mechanism is involved intimately. In the electronics medium, room acoustics is involved twice: once in the pickup and recording in the studio, and again in reproduction in the home or classroom. Human ears listen and evaluate at both ends of the process.

All the basis of sound are covered: frequency, wavelength, simple sinusoid and complex waves, harmonics, phases, octaves, the sound spectrum, and white and pink noise. There is much detail on hearingincluding discussions on ear sensitivity, ear anatomy, audibility, loudness versus frequency, loudness versus intensity, and loudness versus bandwidth. Hearing impulses, binaural localization, pitch versus frequency, timbre versus spectrum, the nonlinearity of the ear, Haas sense, the ear as a measuring instrument, hearing-loss with age, occupational and recreational deafness-all are outlined clearly

The bcok is fully illustrated with diagrams, schematics, and actual photos of acoustical test equipment, thus serving as a complete sourcebook and comprehensive manual on acoustics that will appeal to any audio buff. CIRCLE 121 ON FREE INFORMATION CARD

COMPUTERS AND THE RADIO AMATEUR, by Phil Anderson. PrenticeHall, Inc., Englewood Cliffs, NJ 07632. 208 pp , including index; $7 \times 91 / 2$ inches; hardcover; \$18.95.

This book is designed for radio amateurs who have had little or no exposure to computers. It explains in detail how they work, how to program them, and how to attach them to other equipment.

Chapters one and two explore present and future uses for computers in amateur radio, and the history and background of the computer. Chapter three explores how computers work. An analogy is made to how people solve mathematical problems, the point being that once a procedure for solving a problem is programmed, the computer will then follow, step by step, as laid out. The building blocks
of the computer are examined and the reader is shown how they work together to follow a program that has been stored in memory.

Chapters four and five deal with programming procedures, first the fundamentals of BASIC, then assembly-language programming. The 6502 microprocessor is used as an example, and several straightforward programs are presented. Further chapters deal with logic circuits, interfacing amateur equipment, the computer as an electronic keyer, the computer as a random-code generator, the computer as a code reader, the computer as a contest secretary, and the computer as a programmable calculator.
CIRCLE 122 ON FREE INFORMATION CARD
PRACTICAL BASIC PROGRAMS: IBM PERSONAL COMPUTER EDITION, edited by Lon Poole; Osborne/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710; 170 pages; $83 / 8 \times 107 / 8$ inches; softcover; \$15.99.

Considering all the small computers people have bought in recent years, one would think that it is easy to find practical computer programs, particularly since fewer users consider their computers as just a diversion. However, practical programs are not readily available, and most packages on the market today are specialized and expensive. In this book users will find 40 useful programs that cost less than $50 c$ each; they are fully documented and each program has been tested and debugged, and is ready to run.
The programs run from income averaging to musical transposition, and include present value of a tax deduction, checkbook reconciliation, home budgeting, transportation algorithm, data-forecasting divergence, temperature conversion, and numeric base conversion. Each program is presented with a description, sample run, practical problems, and BASIC source listings. Using the documentation, anyone can run a program and easily make modifications to it.
CIRCLE 123 ON FREE INFORMATION CARD
SHORTWAVE FREQUENCY DIRECTORY, $1.6-30 \mathrm{MHz}$, Worldwide Edition, edited by Robert B. Grove; Grove Enterprises, Inc., Brasstown, NC 28902; 218pp., $81 / 2 \times 11$ inches, spiral bound; $\$ 12.95$ plus $\$ 1.50$ UPS or $\$ 1.00$ bookrate USPS.

There are thousands of worldwide listings in this book, many never published before. The listings include US Air Force, US Navy, US Coast Guard, US Army, foreign military, Department of Energy, Federal Emergency Management Administration, US State Department and Embassies, Federal Communications Commission, Department of Interior, spy numbers schedules, drugsmuggling networks, mysterious beacons, pirate and clandestine broadcasters, and innumerable others.

R-E CIRCLE 124 ON FREE INFORMATION CARD

Electronics Paperback Books Quality Paperbacks at Affordable Prices BUY 12 PAY FOR 10-TAKE 2 FREE!

30 SOLDERLESS GREADBOARO S5.75. Whenever possl-
bie the same parts are
 yectis. Even a lif
buider can con
nese cricuins. YOUR ELECTRONIC YOUR ELECTRONIC
PROJECTS WORK. ING. $\mathbf{~ S 5 . 0 0}$. Helps you
 nome. Dulut propects of
every descriotion

Z KROJECTS. S5.co. RROJECTS. S5.6. lized oo-amp clrcuis inclucing lo-noise 15 . distortion, ullra: hi hi Inoul impedance, e BOARIT-CIRCUCTT, S5.90. 21 farrty simple oroiects that can all be puill on a single pinted-circull board. All
are powered by a 9 V
battery.
\square IC PROJECTS

- MIN.MATRIX BOARD PROJECTS. $\$ 5.00$ A A variety of projects thal can all be
built upon a mint-matrox bult upon a minhtmatrix
soard that has 10 strios and is 24 hoies long.
 clude tuil screen, scrol. ing. PEEK \& POKE. pius aclual working programs
 programmer. Adiscus-
sion of 6 Bog teatures reterence work for the
reg programmer.

PRACTICAL COMPUTER EXX-
PERIMENTS. S4.SO.
Fills in background io Fills in background to microprocessor by con. strueting typical compu crete logic component.
\square ART OF PRO GRamming THE 1 K 2×81. 55.00 . How to
use the lealures of the use
2×81 in progegrams that It the 1 K machine and
are still lun to use. are still un to use. TO BASIC PROGRAMMING TECH NIQUES 55.00 . Base on authors sown experl|
ence in learnmo BASIC ence in iearning BAS
and helpong oliners io eam 10 program. \square A MICROPROCESSOR PRIMER. 54.50. computing lor the beginner. Sliep-by. slep explains computer op

\qquad TIONS AND FORMU. eference work that ween complicated INTERNATIONAL GUIDE, S5 75. Helios you tind substilues the many difterent
types ol sericond
diod

o international

 TRANSISTOR EQUI ALENTS GUIDE. S7.50. Products ofmore than 100 man more than 100 manutacturers are isted \& cross-referenced with
posside replacements.

- 1

$$
\begin{aligned}
& \text { ELECTRONIC } \\
& \text { SYNTHESIZER PI } \\
& \text { JECTS. } \$ 4.50 .
\end{aligned}
$$

$$
50 \text { CIRCUITS US- }
$$ NG GERMANIUM, SILICON \& ZENER OEES. $\$ 3.7$ I 50 PROJECTS US ING RELAYS, SCR'S

\& TRIACS. $\$ 5.00$. 50 (FET) FIELD.
EFFECT TRANSISEFFECT TRANSIS TOR
$\$ 4.50$.

50 SIMPLE LE
CIRCUITS. 54.25.
50 cIRCUITS US G 7400 SERIES CC. 54.50

50 SIMPLE LE CIRCUITS BOOK CiRCU
53.95.

PROJECTS US
555 IC'S. $\$ 5.00$.
7 PROJECTS USIN
LM3900 IC'S 54.75 .
\square RADIO CONTROL OR BEGINNER S.

CPLECTRONIC PROJECTS FOR BE-
GINNERS. $\$ 5.00$. \square ELECTRONIC MUSIC \& CREATIVE TAPE RECORDING.
$\mathbf{\$ 5} .00$ SECURITRONIC
SECURITY DEVICES. $\$ 5.00$.
\square HOW TO BUILD STATE OSCILLO SCOPE, $\$ 5.00$.
${ }^{\circ}$ SECOND BOOK JECTS. \$4.25.
П) PRACTICAL CONSTRUCTION TONE CON TROLS. FILTERS AND ATIENUATORS.
$\$ 3.75$.

Q BEGINNERS GUIDE TO DIGITAL \square ELECTRONIC HOUSEHOLD PRO-
JECTS. $\$ 4.50$. C ELECTRONIC $\$ 4.50$.

GAMES $\$ 4.50$.

SINGLE IC PRO

WAL HOW TO MAKE 55.00. Descrices equip ment tor low-powes handheid operation. 112 dages of must
reading for the dedicated experimenter.

CELECTRONIC CALCULATOR US. $\$ 3.95$. Presenls form lae data, methods of calculation, conversion lactors \& more from the
view ol the calculator view ol

LINEAR IC EQU ALENTS AND PIN CONNECTIONS. $\$ 8.25$. Shows equivatents 8 pin Shows equivatents 8 pin connections of a popula user-onented selection user-onente linear ICs.
 LINEAR IC EQUIV-

FIAST BOOK OF HI-FI SPEAKER ENCLOSURES. $\$ 4.50$.	ENGINEERS \& MACHINISTS REFER. ENCE TABLES. $\$ 3.50$.
\square SOLID STATE NOVELTY CIRCUITS. $\$ 3.50$.	\square SECOND BOOK OF TRANSISTOR sQUIVALENTS \& SUBSTITUTES. $\$ 4.50$.
28 TESTED TRAN. SISTOR PROJECTS. $\$ 4.25$.	52 PROJECTS USING IC 741, $\$ 4.00$.
\square SOLID-STATE celvers for be. GINNERS. $\mathbf{\$ 4 . 5 0}$.	$\begin{aligned} & \text { BEGINNERS } \\ & \text { GUIDE TO } \\ & \text { «PROCESSORS \& } \\ & \text { COMPUTING. } \$ 4.50 \text {. } \end{aligned}$
$\square 50$ PAOJECTS US: ING IC CA 3130 .	vmos projects. $\$ 5.00$.
\$4.50.	(0. HOW TO USE OP. AMPS. 55.75 .
$\begin{aligned} & 50 \text { CMOS IC PRO- } \\ & \text { JECTS. } \$ 4.50 \text {. } \end{aligned}$	[\triangle AUDIO PROJECTS. $\$ 5.00$.
[] How to bullo ADVANCED SHORTWAVE RECEIVERS.	MODEL RAILWAY PROJECTS. $\$ 5.00$
\$5.00.	$\begin{aligned} & \square \text { CE PROJECTS. } \\ & \$ 5.00 . \end{aligned}$
BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS. $\$ 5.00$.	\square HOW TO GET YOUR ELECTRONIC PROJECTS WORK. ING. $\$ 5.00$.
\square ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST. $\$ 5.00$.	\square MULTI-CIRCUIT BOARD PROJECTS. $\$ 5.00$.
\square FIRST BOOK OF TRANSISTOR EQUIV. ALENTS. \& SUBSTITUTES. $\mathbf{\$ 3 . 7 5}$.	\square ELECTRONICS SIMPLIFIED CRYSTAL SET CONSTRUCTION. $\$ 4.50$.
PRACTICAL COMPUTER EXPERIMENTS. $\$ 4.50$.	\square ELECTRONIC HOUSEMOLD PRO JECTS. 54.50 .

\square POWER SUPPL PROJECTS. 54.50 construction detalls for almost any power supply the experimenter is tikely to need
星 femote con. RE REMOTE CON.
TROL PROJECTS \$5.00. Radio-contro intra-red, vsible light, ultrasonic systems are
all
incluced all included, aiong win method
them.
[ELECTRONiC TEST EQUIPMEN SONSTRUCTION. tails of a wide range of test equipment the ex-
perimenter can build at

\square ELECTRONIC

 ROJECTS USING SOLAR CELLS. \$5.00 Simple circuits tha plications around the home.B ELECTRONIC TIM. A PROJECTS. $\mathbf{5 5 . 0 0}$. Timung clicuits tor
almost any application most any application need. A most vaiuable eterence.

COUNTER DRIVER ISPLAY PROJECTS. S4.50. Fealures appications \& projects sing vanous types of uces.

ELEMENTS OF ELECTRONICS Spectal
\square ANTENNA PROJECTS. $\$ 5.00$. Cover practical antenna de
stgns uncluding active stgns including active, are easy 8 inexperisive oo build

GUADIO STATION prehensive listing of ransmitlers around the world. Presents loca-
lion. frequency, power.

7 LONG OSTANCE TV RECEPTION (TVDX) FOR THE EN
THUSIAST $\$ 5.00$. Practical \& auhoratative introduclion to this unusual aspe
\square CB PROJECTS 55.00. A number of useful and interesting
designs for CB accessories. Spee processor, interference filter \& more
 ONSTRUCTION. 54.50. Packed full o easy to duplicate de-
signs tor crystal radio recalvers.

AN INTRODUC. TION TO RADIO DXIG. $\$ 5.00$ Listen, in our home, to broad housands of miles way. Tells how y
\square THE SIMPLE \square SEMICONDUCTOR ELECTRONIC CI CUIT \& COM-
PONENTS. $\$ 5.75$ PONENTS. S5.75. All needed to lead to a full

ECHNOLOGY. S5.75 Everytung you always soeded to know abou one volume. understanding of the simple electronic circuin and is components.
\square ALTERNATING CURRENT THEORY \$5.75. Altemating c ent theory withoul comprehension of speech, music, radio
\square COMMUNICATIONS 57.50. Covers most systems. Line. micto. wave, submarne, sat. elthite. digital multionex radoo \& lelegraphy.
\square AUDLO. 59.00. Cnapter ather chapter investigates every important aspect of audio
circutry. arcuiny.
MICROPROCESS ING SYSTEM \& CIR comprehenswe guide to all of the elements of a microprocessing Complete set of all gain volumes-a bar gain that saves you
S6.25- SPECIAL
PAICE $\$ 35.00$ FOR PRICE $\$ 35.00$ FOR
THE COMPLETE SET
ELECTRONIC TECHNOLOGY TODAY INC
P.O. Box 83, Massapequa Park, NY 11762

Name_State_ ZIP_

MARKET CENTER

PLANS \& KITS

CABLE TV converters and equipment. Plans and parts. Build or buy. For information send $\$ 2.00$. C \& D ELECTRONICS, PO Box 21, Jenison, MI 49428
TAILGATERS beware! Clever device ends this hassle. Quick, easy installation. Kit \$4.95, two for \$8.95. TAlLGUARD, 8 Alpine Place, Franklin, MA 02038
DIGITAL UHF STV kit $\mathbf{5 2 5 0 . 0 0}$. Deluxe sine wave kit \$153.00. Others. STVCO, Box 18039, Orlando, FL 32860

NEW! Repair any TV ... Easy. Anyone can do it. Write RESEARCH, Box 517E, Brea, CA 92621
MICROWAVE television "downconverters." Exclusive new five stage design. Easily assembled. Catalogue: $\$ 2.00$ (refundable). NDS, Box 12652-R, Dallas TX 75225

SEE THE WEATHER AND SAVE \$1,000!

A leading manufacturer of commercial weather chart recorders has developed a facsimile Weather Chart Recorder Kit for use by hobbyists, amateurs, pilots, and educators.

All you need is a stable HF generalcoverage receiver to tune in weather facsimile frequencies-your recorder will print out accurate weather charts. Major components in this easy-to-build kit are pre-assembled and tested. And the recorder is backed by a limited warranty against defects. Special kit price is $\$ 995$. Add $\$ 5$ for shipping and handling in the U.S. and Canada. (For Massachusetts delivery, add $\$ 49.75$ sales tax.) MasterCard and Visa accepted. Call or write for more information

ALDENELECTRONICS
10 Washington Street, Westborough, MA 01581 (617) $366-8851$

To run your own classified ad, put one word on each of the lines below and send this form along with your check for $\$ 1.90$ per word (minimum 15 words) to
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 15.00$
()

Plans/Kits () Business Opportunities) For Sale
Education/Instr	uction () Wanted () Satellite Television

Special Category: $\$ 15.00$
PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS:)

1.	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

PLEASE INCLUDE FOR OUR FILES YOUR PERMANENT ADDRESS AND PHONE NUMBER.

CLASSIFIED COMMERCIAL RATE for firms or individuals offering comercial products or services) $\$ 1.90$ per word prepaid (no charge for zip code)... MINIMUM 15 WORDS. 5% discount for 6 issues, 10% for 12 issues within one year, if prepaid.
NON-COMMERCIAL RATE (for individuals who want to buy or sell a personal item) $\$ 1.25$ per word prepaid...no minimum.
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at 15 C per word. All copy subject to publisher's approval. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 20th of the third month preceding the date of the issue (i.e., August issue closes May 20th). When normal closing date falls on Saturday, Sunday, or a holiday, issue closes on preceding working day.

SAVE steps, money. Use your telephones as an intercom. Plans $\$ 5.00$. dB Enterprises, Box $453 R$, Westwood, NJ 07675

CATALOG-transmitters, linears, MDS downconverters, scramolers, broadcasting, CB , hobby plans \& kits. \$1.00. PANAXIS, Box 130-F3, Paradise, CA 95969
PROJECTION TV ... Convert your TV to project 7 foot picture. Results equal to $\$ 2,500$ projector Total cost less than $\$ 20.00 \ldots$ Plans \& lens $\$ 17.50$ Illustrated information free...Credit card orders 24 hours. (215) 736-3979. MACROCOM GG, Washington Crossing, PA 18977
CLOCK-calendar kit for Apple II. $\$ 49.95$ postpaid Other kits available. SASE for spec sheets. MICROMATION ENGINEERING, Box 9375, Fort Wayne, IN 46899
UHF conversion kits, gated, sinewave, addressable, and more. Micro antennas, cable equipment We are the biggest in the area. Call or write for free information. (301) 882-9362, SATELLITE ELECTRONICS, P.O. Box 9534, Baltimore, MD 21237 Catalog $\$ 2.00$ refundable
IT'S easy to make your own video game cartridges, average cost is only $\$ 10.00$ per game. Complete detailed plans \$9.95. RANDOM ACCESS, Box 41770R, Phoenix, AZ 85080
ELECTRONIC SURVEILLANCE: Incredible manual, "Homebrew Bugging" outlines wiretapping, bugging and many other ingenious, yet simple techniques used by professional operatives$\$ 15.00$. We also have manuals on remote control, covert communications, weaponry, exotic alarm systems, and other related topics. Send $\$ 3.00$ for our book listings, Catalog B. A.T.I.S., Box 4068, Dearborn, MI 48126
AMAZING Electronic Devices: VOXs, miniature transmitters, telephone transmitters, telephone wiretap defeats, telephone monitors, telephone rec ording equipment, and much more! Send $\$ 3.00$ for our electronic listings (Catalog E) \$3.00 A.T.I.S., Box 4068, Dearborn, MI 48126
LIGHT display sequencer kits. Send stamp for flyer. DESIGN SPECIALTY, P.O. Box 1995, Huntington Beach, CA 92647
MINI-COM colourkit-it converts Franklin Ace Microcomputers to instant colour. No colour interference in documentation. Kit plugs under keyboard. Easy installation. 1013 MERIVALE ROAD, Ottawa, Ontario K1Z 6A6, \$61.95
SINE wave decoder problems? Manual includes trouble shooting, alignment, antenna hook-up, improvements, theory $\$ 15.00$. SIGNAL, BOx 2512-R, Culver City, CA 90230
PRINTED Circuit Boards from your sketch or diagram. Free information. BUDGET CIRCUITS, 6201 Hilston, Dept. E, Austin, TX 78745
PROFESSIONAL electronic devices plans, kits P.O. circuitry, famous drop-in microphone cartridge debugging equipment, more items available. For information send $\$ 2.00$ MOUNTAIN ELECTRONICS; R2, Box 186A, Charlotte, TN 37036

SUBSCRIPTION TV KITS

UHF Gated Pulse Kit...... $\$ 39.00$
UHF Sinewave Kit.......... $\$ 37.00$
Special Both Kits......... $\$ 59.00$
Informative Catalog..... $\$ 2.00$

Kits include all parts, manual and an etched \& drilled PC board. Send for our "Informative Catalog" and find out what type you need.

J \& W ELECTRONICS, NC.
P. O. B0X 61-8

CUMBERLAND, RI. 02864

BUSINESS OPPORTUNITIES

ATARI repair business. Start your own. Send $\$ 5.00$ for more information to: IRATA REPAIRS, 2562 East Glade, Mesa AZ, 85204
MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, 92-R, Brighton 11th, Brooklyn, NY 11235
DEALERS wanted: MATV/CATV, antennas, needles, films, free catalog. 212-897-0509. D \& WR, 66-19 Booth, Flushing, NY 11374

E-Z learn security alarm systems. Employmentbusiness terrific. Information \$1.00 (Redeemable) P.O. BOX 1456-R, Grand Rapids, MI 49501
START your own business. We send everything you need free! No strings! AF ASSOCIATES, 424 East St., So. Hadley, MA 01075
PROJECTION TV ... Make \$\$\$'s assembling projectors ... Easy ... Results comparable to $\$ 2,500$ projectors ... Your total cost less than $\$ 17.00$... Plans, lens, \& dealer's information $\$ 15.50 \ldots$ Illustrated information free ... MACROCOMGGX, Washington Crossing, PA 18977. Credit card orders 24 hours. (215) 736-2880

ASSEMBLE profitable devices at home. We ship parts to be assembled. Exceptional opportunities without investment. Write: ENTERPRISES, $1133-R$ Linwood Place, Utica, NY 13501

MAKE your computer pay its own way. Sample newsletter \$1. COMPU-PROFIT, Dept. RE2, Fairfax Station, VA 22039-0332

HIGHLY
 PROFITABLE
 ONE-MAN ELECTRONIC FACTORY
 nvestment unnecessary, knowledge not re quired, sales handled by professionals. Ideal home business. Write today for facts' Postcard will do, Barta-RE-X, Box 248 Walnut Creek, CA 94597.

LONG-PLAY RECORDERS

RECORD up to 15 hours on a single standard cassette tape! Our modified, name-brand recorders offer the longest recording times, best long-play fidelity, and most features! Models as small as $11 / 2$ pounds. Compare before you buy! Free brochures: EXTENDO-TAPE SYSTEMS, BOx 16000 LC , Temple Terrace, FL 33687

WIRELESS MICROPHONES

SURVEILLANCE-QUALITY professional wireless microphones that far outperform others. As small as $7 / 8^{\prime \prime}$! Sold elsewhere for $\$ 130.00$. Our price only $\$ 89.99$! Also, wireless micro telephone transmitters and 15 hour recorders weighing less than $11 / 2$ pounds. Free brochures. EXTENDO-TAPE SYSpounds. Free brochures. EXTENDO-TAPE SYS-
TEMS, Box 16000 LC , Temple Terrace, FL 33687

COMMUNICATIONS EQUIPMENT

VIDEOSCAN 1000 Slow Scan TV-HIGH RESOLUTION (amateur, phone line, surveillance, teleconferencing). CODE*STAR-DECODE Morse RTTY, ASCII. LARGE LEDs or connect computer printer. MORSE-A-KEYER-CW keyboard. TRIVOLTAGE POWER SUPPLY. Kits/Assembled FREE brochures. MICROCRAFT CORP., Box 513 RE, Thiensville, WI 53092. (414) 241-8144

COMPUTERS

TI-99/4A owners. Send for free list of new and exciting software. DYNA, Box 124, Hicksville, NY 11801

CABLE TV FILTERS

SUPER powered notch filters. 70 db . Eliminate any unwanted signals. VHF channels 2-6, 14-22, A-I. Highest quality. Guaranteed. Retail or dealers. For literature write CUSTOM COMMUNICATIONS, P.O. Box 17621, Ft. Laud., FL 33318

HOME ASSEMBLERS WANTED

ELECTRONIC firm is looking for assemblers interested in working at home. Send $\$ 3.00$ application fee: IRDC L'Joppa Hill Road, Manchester, NH 03102

CONVERTERS

DELUXE sine wave UHF, parts $\$ 175.00$. Phase inversion VHF/Cable/UHF, parts $\$ 300.00$ Both have sound out of TV like normal with only antenna connection to TV or VCR. Gated pulse wave UHF (speaker box type), parts $\$ 140.00$. All have true (speaker box type), parts $\$ 140.00$. All have true
A.G.C. Plans SASE. Quality discounts. $1-312267-$ 3455. LSR ENGINEERING, P.O. Box 6075, Chicago, IL 60680

VIC-20

"MYSTERIOUS CASTLE" adventure game. Designed by electrical engineer especially for VIC-20 Needs no extra memory! Cassette tape. $\$ 23.95$ Ask for free list of other games, programs. SHANKLE PRODUCTS, RT5, Box 373AG, Texarkana, TX 75501

TIMEX/SINCLAIR SOFTWARE

ZX-81 and TS1000 software cheap! Catalog plus two special programs for $\$ 1.00$ and SASE: FLOR IDA CREATIONS, RE2, Box 16422, Jacksonville, FL 32245

SINCLAIR/TIMEX COMPUTERS

YOUR Sinclair can drive a video monitor with our direct video kit, only $\$ 9.95 .12$ " B \& W video monitor \$98.45. RANDOM ACCESS, Box 41770R Phoenix, AZ 85080

REEL TO REEL TAPES

TRUCKLOAD sale Ampex high quality open reel tape, 1800^{\prime} or 2400^{\prime} on 7 reels, used once. Case of 40, \$45.00. Cassettes available. VALTECH ELECTRONICS, Box 6-RE, Richboro, PA 18954

REVERBERATION FOR ORGANS

Solid state with controls for rever-

beration and room size.
EVERYORGANSHOULD
OWN ONE.
Send for free fly
DEVTRONIX ORGANS, INC
6101 WAREHOUSE WAY
SACRAMENTO, CALIFORNIA 95826 Dept. B

> | THE BEST PLACE bo BUY, SELL or |
| :--- |
| TRADE NEW and USED EQUIPMENT |
| NUTS \& VOLTS MAGAZINE |
| BOX.IIII-E PLACENTIA. CA 92670 |
| (714) 632.7721 |
| Join Thousands of Readers Nationwide |
| Every Month |
| ONE YEAR U.S. SUBSCRIPTIONS |
| 57.00-3rd Class - $\$ 12.50$ - Ist Class |
| \$25.00 - Lifetime - 3rd Class |

SATELLITE TELEVISION

SATELLITE polar mount antenna break through, build best under $\$ 160$ metal or wood kits. PROTOTYPE ENGINEERS, Box 1812, Deming, NM 88030

LOOK what $\$ 1795.00$ buys: Satellite system includes receiver with modulator, 10^{\prime} dish, 120° LNA 100^{\prime} cable with connectors. One year factory warranty. SUNDOWN SATELLITE SYSTEMS, BOX C1, R.R. \# 1, Riverdale, NE 68870 . After 4P.M. CST call 308-893-2526
MICROWAVE antenna systems $\$ 49.95$, factory direct 24 hour shipping, CODS, guaranteed. NEVA DA SATELLITE COMPORATION (702) 367-0333
SATELLITE TV low noise amplifier or downconverter. Easy to build. Save hundreds! Beautiful instruction manuals include everything you need to know. $\$ 10.00$ each. Computerized antenna pointing information FREE on request with each order. Satisfaction guaranteed. XANDI, Box 25647, Dept. 21G, Tempe, AZ 85282

Satellite ORBIT Magazine

The Complete Monthly Satellite Program Guide
\$5.00 Sample Copies Available
Satellite ORBIT
P.O. Box 1700 , Hailey, ID. 83333

Idaho or foreign countries, 1-208-788-4936

SATELLITE TV WEEK

The most complete weekly listings. We cover more than just SATCOM 3. Send $\$ 1$ for sample copy

Satellite TV Week
 P.O. Box 308, Fortund, California 95540

 Call toll free: (800) 358.9997 • Callfornia (707) 725.2476
EDUCATION \& INSTRUCTION

YOUR own radio station! AM, FM, cable, licensed, unlicensed. Low cost transmitter kits, free info BROADCASTING, Box 130-F3, Paradise, CA 95969
ELECTRONICS computer books. Internationa publishers. Lowest rates. Ask list. BUSINESS PRO MOTION, Lajpat Rai Market, Delhi, India

ELECTROATIC TNTEOHNICIANS Highly Effective Home Study BSEE Degree Program for Experienced Electronic Technicians Credit for previous Schooling \& Professional Ex. perience. Advance Rapidly! Our 36th Year! FREE DESCRIPTIVE LITERATURE!
 Cook's Institute of Electronics Engineering DESK 15 . P.O. BOX 20345, JACKSON, MS 39209

FOR SALE

THE Intelligence Library. Restricted technical se-crets-books on electronic surveillance, lockpicking, demolitions, investigation, etc. Free brochures: MENTOR, Dept. Z, 135-53 No. Blvd., Flushing, NY 11354
RESISTORS $1 / 4$ W, $1 / 2$ W 5% carbon films 36 ea. NO MINIMUMS. Cabinet assortments, 1% metal films. Request details. Bulk pricing available. JR INDUSTRIES 5834-C Swancreek, Toledo, OH 43614

SAVE up to 50% on name brand test equipment. Free catalog and price list. SALEN ELECTRONICS, Box 82-G, Skokie, IL 60077
PCB 150 sq-in. Free drilling. Quantity discount INTERNATIONAL ENTERPRISE, 6452 Hazel Circle, Simi Valley, CA 93063
ANIK noise filter eliminates unwanted audio noise from Canadian Satellite fully assembled and guaranteed. $\$ 65.00$ \& $\$ 2.00$ shipping. ARK ELECTRONICS, PO Box 5689, Toledo, OH 43612
FREE catalog of surplus electronic parts and hardware. UNIVERSAL SOUND, RES, 2253 Ringling Blvd., Sarasota, FL 33577, (813) 953-5363
FREE speaker catalog! Woofers, mids, tweeters, hardware, crossovers, grille clothe, kits, information, much more. Discount prices. UNIVERSAL SOUND, Dept. RE 2253 Ringling Blvd., Sarasota, FL 33577 (813) 953-5363
TUBES. Large selection. Unused, in original cartons. SASE brings list. FALA ELECTRONICS, Box 041 34-2, Milwaukee, WI 53204
MICROWAVE antennas $2100-2600 \mathrm{MHz}$ downconverter probe $18^{\prime \prime}$ parabolic dish 50^{\prime} cable, power supply, 6 month warranty. MDS ASSOCIATES, $2116-2 n d$ Avenue North, Minneapolis, MN 55405. JUST \$109.95

WIND POWER an investment in the future. The right decision is essential. Information $\$ 2.00$ WINDESIGN, Box 138, Boston, NY 14025
TV shop closed out: Retired. Inventory for sale. Low price. P.O. BOX 425, San Ysidro, CA 92073
VIC 20 color 2 games on one cassette "slots" and "horse race" send $\$ 6$ to THOMAS PROD, 600 E . Weddell \#263, Sunnyvale, CA 94086
ELECTRONIC TV - FM antenna outstanding reception. Plugs in electric outlet $\$ 4.95+$ ($\$ 1.00$ p.h.). Project your TV to giant 7 foot screen. Lens \& plans $\$ 11.00+(\$ 1.50$ p.h.). MOSES IMPORTS, 680 East 81st, Brooklyn, NY 11236 (212) 763-4585
ZX81 and TS1000 software - for information write to: TINSAVE SOFTWARE, 2820 Augusta Avenue, Ontario, CA 91761

PAY-television manual covers cable, microwave and antennas; downconverters, descramblers Send $\$ 10.00$ to ST. JAMES \& HARRIS, 256 S Robertson, Beverly Hills, CA 90211
CHRONOGRAPH circuits measure bullet velocities easily. Kits or assembled. SASE brings information ICD, P.O. Box 10261 C.C. Fairbanks, AK 99701
SUBSCRIPTION TV manual, covers both sinewave and gated sync system, only $\$ 12.95$. Complete coverage including theory, circuits, waveforms, and trouble shooting units. Information $\$ 2.00$, refundable. D \& S ENTERPRISES, Box 09292R, Cleveland, OH 44109
UNUSUAL UHF subscription TV kits. Also microwave downconverters. Catalog 50c. TROJAN, 2920 Shelby, Indianapolis, IN 46203
METAL enclosure will hold S-100 M.F. power supply $2-8^{\prime \prime}$ or $2-51 / 4^{\prime \prime}$ drives with mounting hardware. Unpainted $\$ 65.00$. Painted $\$ 75.00$. A.B.M., Box 144, Hessmer, LA 71341, 318-563-4428

SPEAKER \& ELECTRONICS CATALOG
1001 BARGAINS IN SPEAKERS

Tel:: 1 (846) 0425092

4904 MCGEE STREET KANSAS CITY, MO. $6410 e$
CABLE TV SECRETS - the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included. Send $\$ 7.95$ to CABLE FACTS, Box 711-R, Pataskala, OH 43062
COLOA computer VIC-20 programs hardware RTTY code EPROM Programmer RS-232, FRANK LYMAN Box 3091, Nashua, NH 03061
FAST, dependable mail-order! Prime semiconductors, parts, supplies. Free 55 Page catalog THE PARTSTORE, Dept. 165, 999 44th St., Mar ion, IA 52302. (319) 373-1803
ADVENT TV Parts. All models, all parts BONTRONICS, 499 Medford, Somerville, Mass 02145. 617-623-5039

START MAKING MONEY IN COMPUTER REPAIR

Train at home in spare time. No pre-

 vious experience needed. Experts show you what to do, how to do it! Even beginners can learn how to repair small computers. Everything explained in easy-1o-understand lan-guage Y You learn by doing with tools guage You learn by doing with tools Easy home-study plan shows how you can get in on ground floor of this fastgrowing business.

MAIL COUPON TODAY!
There's no obligation and no salesman will call.
r Fis SCHOOL OF COMPUTER REPAIR, Dept. OEO23

- sluce ro9y Scranton, Pennsylvania 18515

Yes! I want to get into computer repair: Rush me free facts and $\begin{gathered}\text { color brochure. }\end{gathered}$

MORE GAIN
THAN A VARACTOR UHF TUNER SATISFACTION gUARANTEED $\$ 15.00$ Freq. Range UHF470. 889 MHz Channels 14.83 Output Chamnel 3.

Part No. B20

Available on request: Ch 2 or 4
Modified HightGain Tuner
\$15.00

1. The first thing we do is change the standard diode found in every tuner to a Hot Carrier Diode.
2. The tuners output is then measured and compared to our computer derived chart from which we determine the correct value coil to add across the IF output for maximum Pre-Peaked gain.
3. The tuner is fed a standard 10 db antenna input, and while monitoring the output on our Spectrum Analyzer, the tuner is tuned to the desired channel and its oscillator is offset for the desired output frequency as follows:
Ch. $2: 58 \mathrm{Mhz}$ Ch. $3: 63 \mathrm{Mhz}$ Ch. $4: 68 \mathrm{Mhz}$ We call this step peaking because the tuners output looks like a peak on our spectrum analyzer and the highest point of that peak is actually adjusted tor the desired output.
4. Finally, we measure the tuners output one more time which is again compared to our computer derived performance chart to ascertain the correct value of the second coil which is added to the tuners internal connections.
This procedure was developed by GILCO and its our computer derived performance charts that make our tuner better. That's because almost every funer gets a different value coil before It's peaked and then a different value coll atter It's peaked. The combinations are endless and the way we determine the values

is our secret.

PAINTED CIRCUITBOARDS
Part No. B21 Printed Circuli Boara.
$\$ 17.00$

1. This Printed Circuit Board uses only one jumper, others use 9.
2. The component layout is screen printed on the Component side of the pre-drilled P/C Board.
3. The solder side of the P/C Board is covered with High Temperature Solder Resist for ease of assembly.
4. This P/C board was designed to take advantage of the Gilco High Gain Tuner which means its circuitry is simpler and more efficient than those circuits that require inferior Varactor Tuners.

ELECTRONIC PARTS KITS

Part No. B22 Complete Parts Kit. $\$ 80.00$ All resistors (30), Potentiometers ($1.5 \mathrm{~K}, 3.10 \mathrm{~K}$). Panel Mount Potentiometer (10K). Electroytyic Capacitors (6), Ceramic and Mylar Disc Capacitors (35). Varrable Capacitors (4). All Inter grated Circuits (7), Voltage Regulator, Heat Sink. Otodes (4), IC Sockets ($4-8$ pin, 3.14 pin). Power Transtormer (24V/1A), Coil Kit with No. 26 wire (4), Speaker ($4^{\prime \prime} \cdot 3$ Oz.), Standotts, Coaxial cable, All misc. Hardware, eftc. All parts are individually packaged and labeled.
All components including the wire, Hardware, Coaxial Cable and heat sinks are included in the parts kit. This means your as sembly time from start to tinish is only 4 nours.
Order all 3, B20, B21, B22
110.00

Order 5 each, B20, B21, B22.....95.00/set

ACCESSORIES: AMPLIFIERS

Part No.

A02 New 2 Stage Low
Kit \$18.00 Noise 28db gain RF Amplifier Specially designed for kit builders
A03 New 1 Stage Low Kit $\$ 10.50$ Noise 14db gain Amplifier
A04 $\quad 75.300 .0 \mathrm{HM}$ matching $\quad \$ 1.00$ Transformer.
F59 Coaxial Connectors. .. . 30
Mail order only. Send check or money order to GILCO INTERNATIONAL, INC.
GILCO
Tel. (305) 823 -5891 For C00 orders add 10% shipping and handling or tor orders over $\$ 50$, add 5%.
FL recidents add 5% sales tax. Please write for more internaton

ACTIVE RECEIVING ANTENNA
 Gives excellent reception, 50 KHz to 30 MHz .

New MFJ-1024 Active Receiving Antenna mounts outdoors away from electrical noise for maximum signal Gives excellent reception of 50 KHz to 30 MHz signals. Equivalent to wire hundreds of feet long. Use any SWL MW, BCB VLF or Ham receiver.
High dynamic range RF amplifier. in. whip. 50 foot coax. 20 dB attenuator prevents receiver overload. Switch be tween two receivers. Select auxiliary or active antenna. Gain control. "ON' LED. Remote unit, $3 \times 2 \times 4$ in. Control $6 \times 2 \times 5$ in. 12 VDC or 110 VAC with
 optional adapter MFJ-1312, \$9.95
${ }^{5} 129$?
Order from MFJ and try it. If not delighted, turn within 30 days for refund (less shipping) One year unconditional guarantee.
Order today. Call TOLL FREE 800-647-1800. Charge VISA, MC. Or mail check, money order Write for free catalog. Over 100 products.
CALL TOLL FREE. 800-647-1800 Call 601-323-5869 in Miss., outside continental USA, tech/order/repair info. TELEX 53-4590

CIRCLE 79 ON FREE INFORMATION CARD

Free Buyers Guide 84 poges of the latest in components, tools and instruments - a must for DESIGNERS, instructors and maintenance engineers. NEW ZENITH ZXM 121 High legibility 12 " green phosphor monitor. 15 Mhz bandwidth, 40 or 80 character selectable full compotability . . $\$ 99.95$ RESISTOR BUYOUT MOST STANDARD VALUES $1 / 4$ WATT 5\% RESISTORS 1 OHM TO 10 MEG. OHM 2 K MIN. BUY 1 K MIN. PER VALUE CALL OUR HOT LINES IN CALIF. (714) 527-2554 OUTSIDE CAL (800) 854-8660 SCR ELECTRONICS CENTER 5303 Lincoln Ave., Cypress, CA 90630

CIRCLE 64 ON FREE INFORMATION CARD
 Call Toll Free 800-343-0874 MASS. custømers call (6)71 366-0500

More BLOCKBUSTER BARGAINS!

ParalleI, TTL Input I/O "Selectric" ${ }^{(0)}$ TYPEWRITER / PRINTER
The manulacturer put 'em into storage to depreciare 'em... Now they're FINALLY AVAILABLEII Removed from working syslems these lantastic machines have rake TTL level. 6-bit characier, plus 4-bit ake TTL level. 6-bit characler, plus 4-bi unction inpui signals... Easily oriven by $\frac{\text { most }}{\text { add' }} \frac{\text { any micro Use as a typewriter (with }}{\text { repeat circuitry) or as a KSR }}$ printer or both. Requires 115.60 Hz lor ivpe
 Seleric. 5 VDC for TTL and 24 VDC for solenords. "Table Top" style case Each data case platen and ribbon.

$$
\text { Type Elements.s } 21.00 e a
$$

$\$ 399.00_{\text {ea }}$
\qquad service.

Used, Off-Lease GE "Terminet 1200
 PRINTER TERMMALS

1200 Baud. AS-232 ASCII 96 jupper \& lower casel FULLY FORMED characters
at up to 120 chars. $/ \mathrm{sec}$. 120 columns wide!

- Letter Quality Print at Dot Matrix Speed!
- 150.300 \& 1200 BAUD Serial Input Rate

Built \& Serviced NATIONWIDE by
WITH
General Electric [GE]
ESTED 息 OPERATIONAL!! $\begin{aligned} & \text { Forms Tractor not ineluded } \\ & \text { (Available from General Elec }\end{aligned}$
Current NEW price over $\$ 5000^{0}$ each. Our Price
29500

RS-232 CABLE with temale DB-25 connectors on each end. female connector has pins, male has sockets) for interfacing the above. S19.00ea

We Otter New \& Used FLOPPY DRIVES, DISK DRIVES, PRINTERS, \& MORE at BARGAIN PRICES! Write or Call for Our Latest Flyer NOW!

Bomputer
Broducts \&
eripherals nlimited

WAREMOUSE: 18 Granite SI. Haverhill. Mass. 01830
MAIL ORDERS: Box 204 . Newton. New Hampshire 03asa $617 / 372.8637$

12" B\&W MONITOR

Contrast Power/Bright V-Hold H-Hold

VIDEO 100 by AMDEK
FULL
FACTORY
WARRANTY
$\$ 79^{95}$
for APPLE 16K RAM PARD
Language Transparent COEX FACTORY WARRANTY

51/4"Floppy DISKETTES

All Certified-100\% Guaranteed
BOX of 100 ${ }^{5} 149^{00}$ Above with Hub Rings $\$ 169.00$

FLOPPY DISK DRIVE

From Fourth Dimension Systems with - Track Zero Micro Switch - DOS 3.2.1 \& DOS 3.3 -CP/M and PASCAL DESIGNED FOR YOUR APPLE" . $\$ 99795$ Controller Card for above.
$\$ 99.00$

COEX 80-FT DOT MATRIX PRINTER

- Interface with Apple, ${ }^{\text {ru }}$ Centronics RS-232, IEEE-488
- 9x7 Dot Matrix, 80 CPS, Bi-Directional Printing
- 2K Buffered Memory
- 80, 96, 132 Columns, Graphics and Block Printing
- Selectable Char Pitch, Line Spacing and Feed
COEX InterfaceCard to APPLE \$49.95

VISION-80 ${ }^{\circ}$ \$24900
 80×24 Video Display Card

症
vista Computer Company's new Vision-80 board is a sophisticated yet easy to use video display card for the Apple"' computer.

PARALLEL INTERFAGE
EPSON TO APPLE New From \$/1095 CABLE COEX $4+$ INCLUDED

PROTOTYPING CARDS
for APPLE. . . \$19.95
for I.B.M. $\$ 49.95$

EXTENDER CARDS

for APPLE. . . $\$ 16.95$
for I.B.M..... \$19.95
"Have You Kissed Your Computer Lately"

Components Express,Inc.

FREE

32 pages with 47 exciting,
low cost electronic projects! at your local electronics store CALL for store nearest you 1-800-453-1708 S SEE
these electronic kits in Kit Centers throughout the

Combo-Lock
Slot Machine
U.S.A.

?

sil fote Die

coll

ock

${ }^{2}$

and chane coat rian
and

386 Autio Amp/hitercom
336

 Also available
PPG's Basic
Electronics Course

NEW
 from PPG Eloctronics BODY BLINKER available NOWI for only
 $\$ 5.95$

Allow 2 weeks for delivery of your FREE 1982-83 PPG CATALOG.

PPG ELECTRONICS CO., INC.
791 Red Rock Road, St. George, UT 84770 1-801-628-3627

"The Deluxe II"

Is The Ultimate In UHF Sine Wave Converter Technology PC BOARD \& PLANS $\mathbf{\$ 2 0 . 0 0}$

With purchase of COMPLETE SET OF PARTS \& ENCLOSURE

The latest state or the art electronics comeined with the excellence ${ }^{\text {th }}$ printed circuit manufacturing creates this high performance UHF Sine wave Conyent kit that outperforms the imitations by 3 long shot.
Engineered for reliable stabilityand outstanding reception clarity, uninterrupted modulated audio and fully illustrated instrugtións with the amateur in mind.

TOLL FREE
beta electronics, 1700 e. desert inn road, suite 222, las vegas, nevada, 89109 1-800-782-2701

OTY	DESCRIPTION OF ITEM	cost EACH	$\begin{aligned} & \text { SHIPPING } \\ & \text { EACH } \end{aligned}$	TOTAL	PLEASE
	PC BOARD, PLANS, PARTS \& ENCLOSÚRE	\$152.99	\$4.95		
	PARTS \& ENCLOSURE JNLY	\$132.99	\$4.95		
	PC BOARD \& PLANS ONLY	\$30.00	\$1.50		END T
NAME \qquad total ADDRESS					
ADDRESS \qquad QUANTITY DISCOUNTS AVAILABLE					
CITY/STATE/ZIP__ ORDER DATE MO. DAY YR.					
\square visa	\square MSt. CARD CARD No.			Exp. Da	

 CIRCLE 61 ON FREE INFORMATION CARD

CIRCLE 69 ON FREE INFORMATION CARD
DISK DRIVE For APPLE !!
\rightarrow metal cabinet

$\rightarrow 35$ track
\rightarrow w/cable

Computer Games:
APPLE \& ATARI (specify)

Choplifter
Frogger
Apple Panic
Crossfire
Raster Blaster

 $4116-2 \rightarrow 8 / 9.95$ $2716(5 v) \rightarrow 3.25 e a$ $2732(5 \mathrm{v}) \rightarrow 5.25 \mathrm{ea}$ $2532(5 \mathrm{v}) \rightarrow 8.75 \mathrm{ea}$ Z80.A.CPU-5. 525 ea 1982 I.C. (2vol.) Masteı
$\$ 49.95$

12 in. 15MHz./GREEN Phos. $\mathrm{l} \rightarrow \$ 102.00 \hat{\text { of }}$
BMC\#BM-1200SU
12 in . 18 MHz ./GREEN Phos. Non-Glare Screen
$\mathrm{I} \rightarrow \$ 128.00 \boldsymbol{\beta}$
BMC\#BM1401RGB 13in. "RGB" COLOR with Apple interface!! $1 \rightarrow \$ 425.00$ 动

Diskette SALE!! iltolice "Wabash"		REAL-TIME CLOCK CALENDAR (MSM 5832) $\$ 6.25 / \$ 1.25 \times$ tal.
51/4	8nch	Syntron
SS/SD 18.50	21.50	Comput
SS/DD 27.40	30.40	$\star 48 \mathrm{~K}$ RAM
DS/SD 0	34.90	* Runs Apple Softwa
DS/DD 32.40	37.40	\$649.00

COMPONENTS

	1400	SEPIES		IAS SE	Ifs
	18			14500	36
	18	$7{ }^{3} 9$	30	${ }^{4} 503$	\%
		3472	8	[74504	45 65
	23	7175	48	${ }^{4} 4508$	${ }_{6}$
	18	7476	38	7650 70519	35
	${ }_{22}$	7480	18		
	3	748	38	${ }^{4} 4527$	15
	32		3	74530	15
	15	7491	5	nes37	125
	24	7492	3	Ms51	6
	18	74		$\xrightarrow{3}$	\$8
	30	74190	8	masas	, 0
	3	74		74585	
	25	${ }^{4} 1$		14	
	18	4125	8	${ }^{745} 132$	10
	55	7414	2	${ }^{245138}$	9
	18			745140	25
	45	7415	1.80		25
	88	7157	15	Msips	5
	8	74,	8	745181	400
	8	7,	O	745183	3 m
	6	${ }^{4} 174$	8	${ }^{4} 5188$	350
	18	74181		,6528	50
		74393	1.8	74547	${ }_{-1} 5$
	9			SAT?	1500

DISK DRIVE FOR YOUR APPLE

QUIETER THAN SHUGGART DRIVES!
Enclosed in a handsome metal enclosure, color matched to your Apple. Connects to your Apple Disk Interface Card or to our own Apple Compatible Disk Drive Card. 90 day warranty. Includes cable. If not satisfied return within 30 days for full refund
Disk Drive \$274.99
Controller Card
\$ 89.95

16K Apple
 Ram Card Kit

- Upgrade your 48 K Apple to full 64 K Ram.
- Hardware/Software compatible with Apple language card and Z80 card.
- Run Apple Fortran or Pascal

Bare Card
\$13.95
R.F. Modulator

Combine both audio and video output onto channel 3 or 4 of your T.V. set.
Single I.C. chip (MC 1374) makes for quick and easy assembly. Single adjustment control! A must for every video recording or computer enthusiast.
VH-0 Kit
$\$ 19.95$

UHF T.V. Preamp

Features: - 25 dB gain! - Kit

Your reception will dramatically improve! This unit will enable you to pull in signals you never knew were there!
For both indoor and outdoor use. Input and output impedance 75 ohm. No adjustment! Easy assembly.
JH-O Kit
\$22.95

Tired of getting up to change channels? Get rid of that mechanical cable controller. Relax with...PHILIPS CTC8R Remole Cable Converter

- Micro computer technology
- Quartz controlled IC's lock in picture \& prevent drift - 60 channel selections
- Programmable time on and off
- Favorite channel memory and recall, plus scan
- Wireless hand held "infra-red" transmitter system (25 ft .)
- Automatic fine tune
- Adaptable to any brand television
- One year warranty service

CTC8R
$\$ 139.95$
CTC9R (with 24 hr. LED digital clock)
\$149.95

SATELLITE TV KIT!!!

It's not ready yet, but we guarantee it will be revolutionary in size and price. Send or inquire for preliminary information. Priced below $\$ 350.00$. Available in April.
LSS-1
less than $\$ 350.00$

AUDIBLE

DIGITAL MULTIMETER MIC-6000Z

- $31 / 2$ Digits
- DC 0.5\% Accuracy
- DCA and ACA up to 10A
- OHM up to 20 M OHM

- Audible Continuity Test
- Diode Check
- Leads and Battery Included

The MIC-6000Z is a professional Multimeter at an inexpensive price.
The 60002 works up to 1000 hours on a common battery, also can withstand 1000 VDC loads. Resistance ranges are protected up to 400 VDC. For your added convenience the MIC-6000Z has a built-in 10 amp current capacity, so you don't need an accessory shunt.
MIC-6000Z Assembled
Carrying Case
\$ 9.95

ADJUSTABLE DUAL POWER SUPPLY KIT

- Adjustable Positive \& Negative Supplies - Positive and negative 1.2 VDC to 15 VDC - Power Output (Each Supply) 5 VDC @ 500 ma , 10 VDC @ $750 \mathrm{ma}, 12$ VDC @ $750 \mathrm{ma}, 15$ VDC @ 175 ma - Two 3 Terminal Adjustable Regulators
with Overload Protection - LED on indicator
- P.C. Board Construction - 120 VAC Input

RM1 Kit
$\$ 24.95$

MORE GAIN Than a
MODEL ELC 1045 Mitsumi
FRED, RANGE
UHF $470-889 \mathrm{MHZ}$ Tuner
CHANNEL 14-83
OUTPUT CHANNEL 3
75 OHM INPUT

Comes with adapter board. You can plug Philips Tuner directly in place of a Mitsumi
Part No. Description
PWD10 Philips UHF Tuner ELC 1045
Price

MICROWAVE RECEIVER SYSTEM

Commercial grade reception - $1.9-2.5 \mathrm{GHz}$ - Sturdy Parabolic aluminum reflector antenna - High gain 50 db !

- Line of sight distance 45 miles!
- Downconverter located in your house not outdoors in the antenna.
- Complete system, power supply, cable, assem-
bled reflector antenna, and downconverter.
- Downconverter mounted in attractive cabinet.

PS-5 Assembled...................... $\$ 129.95$
Kit Form \$99.95

MICROWAVE PREAMP

For your Parabolic Dish Antenna

- Improve your picture quality
- Increase your reception distance
- 15 db gain. 2 db noise factor!
- Easy assembly
- Easy assembly
- Mounts indoors or outdoors
- Cante used with PS-5!

DCS-1 KIT
$\$ 39.95$

Digital Multimeter MIC-3300A

- Kit Form - $31 / 2$ Digits - DC $.5 \%$ Accuracy
- DCA up to 10 Amps - OHM up to 20 M OHM
- nFE measurement - Floating decimal point - Leads + battery included - Easy instructions A high quality Digital Meter Kit at an affordable price. Educational and enjoyable to build, the MIC 3300A is a high quality meter for all hobbyists and maintenance work
MIC-3300A KH Form
$\$ 59.95$ Carrying Case
9.95

Microwave Receiver

1.9-2.5 GHZ

PS-1 Assembled 32 element antenna
$\$ 19.95$
PS-2 20 dB gain microwave receiver kit with variable power supply kit.
$\$ 50.00$
PS-3 Complete package PS-1 \& PS-2 . . $\$ 65.00$
Mounting Hardware Included
NEW

Microwave Preamp!!!

Use with PS-3 Kit. Adds 20-25 db gain to boost reception distance.

- Low Noise
- High Gain
- Can be used with all existing stop sign board receivers!!!!
- $1.9-2.5 \mathrm{gHZ}$ Freq. Range

MPSYSTEMS
 Fast Reliable Service is Our Specialty.

MP SYSTEMS
WILL IMPROVE
YOUR MEMORY
16K EXPANSION KIT 64K EXPANSION KIT 8 pcs $4116200 \mathrm{~ns} \quad 9$ pcs 4164200 ns \$11.95
$\$ 74.25$

AND DRIVE YOU

IM1 s"* Industry Standard 5 1/4" Winchester Disk Drive
6 mB
\$865.00
Siemens'" 8 Floppy Disk Drive
FDD 100-8
$\$ 300.00$

FRANKLIN ACE 1000 \$1350.00

APPLE CLOCKCHIP

 MM58I67AN.EPROMS
2708
2732
5652716

DB CONNECTOR

```
DB25S (Female)
Hood
D825 (Female)
180
DB9P
DB9S
Cover
OB15P
DB15S
Cover
```

6500 FAMILY

R6502P
R6511P
R6520P
R6522P
R6532P
R6545P
R6551F
LPS II

ASK FOR FREE FLYER

 ASK FOR QUANTITY PRICING$\$ 100.00$ minimum order
Terms C.O.D. Prepaid or credif to rated firms
F.O.B. Laguna Hills, CA.

Shipping charges will be added.
All pricing subject to change without notice.
Call for quantily pricing.
Bank cards accepted: MasterCard, Visa
MPSYSTEMS
23341 DEL LAGO LAGUNA HILLS, CA 92653 (714) 770-6411.

CIRCLE 56 ON FREE INFORMATION CARD

Fujitech Model M-64 Programmer

- Very Easy to Operate
- Various test, check and protection functions for correct programming
- Programs 10 pieces of the following at one time:

2716
2732
2732A
2764

(models for other types of EPROM's also available)

- Lowest price in the industry: $\mathbf{\$ 9 9 9 . 0 0}$
- Write for brochure

MONARCHY ENGINEERING INC. 380 Swift Ave. \#21 So. San Francisco, CA 94080

CIRCLE 81 ON FREE INFORMATION CARD

DoKaU compuese prodestes, ine $3 z 30$ Kelater streat. as Santa Clara, CA 95050 (800) 538-8800

Local Calif. Residents (408) 988-0697

TERMS: For shipping include $\$ 2.00$ for UPS Ground. $\$ 3.00$ for UPS Blue Label Air. $\$ 10.00$ minimum order. Bay Area residents add 6 $\% / 2 \%$ Sales Tax. California residents add 6\% Sales Tax. We reserve the right to limit quantities and substitute manufacturer. Prices subject to change without notice. Send SASE for complete list.

LIQUIDATION CLOSEOUT!

BUY DIRECT AND SAVE Due to the increasing costs ofwarehousing, Mura is forced to discount its current stock of DVOM's to make room for new inventory. This means you can purchase these fine instruments direct from Mura at an extremely advantageous price.
These prices are in effect only while current supplies last, so order the Mura DVOM you need today.

MURAModel LCD-200

- $31 / 2$ digit readout \quad Large, easy-toread $1 / 2^{\prime \prime}$ LCD display Automatic probe function switching $¥ 200 \mathrm{hr}$. continuous use battery life \boxplus DC V, .001-1000 DC mA, 1-200 AC V 1-500 K ohms 1-2M - Size: $53 / 4^{\prime \prime} x$ $37 / 8^{\prime \prime} \times 15 / /^{\prime \prime} \boxminus$ Weight: 12 oz . (incl. "AA" cells) \quad Test leads \& batteries incl. An optional

MURAModel LCD-250

$\$ 49.95$

GUARANTEE-

ORDERING INFORMATION-

Mura Corp. (Dept. RE)
177 Cantiague Rock Road Westbury, 'N. Y. 11590

Name Address
Please send
_._LCD-200@\$39.95ea.
\qquad LCD-250 @ \$49.95 ea.

__ LCD-200 carrying case

Total \$ amount of order.

City
State \qquad Zip

$$
\$ 7.00
$$

$$
\begin{aligned}
& \text { FBT-7 PLANS } \$ 7.00 \text { FBT-7K PLANS \& KIT } \$ 34.50 \\
& \text { WIRELESS TELEPHONE TRANSMITTER - LONg }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WIRELESS TE } \\
& \text { range, automatic. }
\end{aligned}
$$ carrying case

$$
\begin{aligned}
& \text { range, automatic } \\
& \text { VWPM-5 PLANS } \$ 10.00 \quad \text { VWPM-5K PLANS } \& \text { KIT } \$ 34.50
\end{aligned}
$$ is available@ $\$ 4.95$ each

- $31 / 2$ digit readout - Large, easy-toread $1 / 2^{\prime \prime}$ LCD display Automatic probe function switching $\llbracket \mathrm{DC}, ~ .7$ $\mathrm{mV}-1 \mathrm{kV} \quad \mathrm{ACV} .7 \mathrm{mV}-.7 \mathrm{kV} \mathrm{AC} /$ DC Current-. 1 uA-1A Ohms-. 7 $20 \mathrm{M} \square$ Size: $6^{\prime \prime} \times 3^{3} / 4^{\prime \prime} \times 1 \frac{1}{2 \prime} 2^{\prime \prime}$ Weight: 12 oz . (incl. 9 V batteries) Test leads, batteries \& carrying case included

If not completely satisfied with your Mura DVOM, return it to Mura within 10 days of receipt for a full refund (less postage and handling)

Check or M.O. payable to Mura Corp.Add $\$ 2.00$ per unit for shipping and handling-N. Y. residents add appropriate sales tax-Allow 4-6 weeks delivery

Send for FREE catalog descripton of above plus hundreds more plans, kits and completed items. We accept MC or Visa or when ordering, send check or money order We pay shipping charges on orders over $\$ 50.00$. otherwise include 10% with remittance.
SENOTO: SCIENTIFIC SYSTEMS
DEPT. R8, BOX 716, AMHERST, N.H. 03031

ELECTRONIC KITS FROM HAL-TRONIX

2304 MHZ DOWN CONVERTERS. TUNES IN ON CHANNELS 2 TO 7 ON YOUR OWN HOME T.V. HAS FREQUENCY RANGE FROM 2000 MHZ TO 2500 MHZ EASY TO CONSTRUCT AND COMES COMPLETE WITH ALL PARTS INCLUDING A DIE-CAST ALUM CASE AND COAX FITTINGS, REQUIRE A VARIABLE POWER SUPLY AND ANTENNA (Antenna can be a dish type or coffee can type depending on the can be a dish type or coffee can
signal strength in your area.)
2304 MOD 1 (Basic Kit) $\$ 19.95$
2304 MOD 2 (less case \& litings) 2 (Basic/Pre-amp) $\$ 29.95$

2304 MOD 3 (Hi-Gain Pre-amp) $\$ 39.95$

POWER SUPPLY FOR EITHER MODEL ABOVE IS AVAILABLE. COMES COMPLETE WITH ALL PARTS, CASE. TRANSFORMER, ANTENNA SWITCH AND CONNECTORS
(Kit) $\$ 24.95$
Assembled $\$ 34.95$
Slotted Microwave Antenna For Above
Downverters
$\$ 39.95$

PREAMPLIFIERS

HAL PA. 19- 1.5 mhz to 150 mhz . 19db gain operates on 8 to 18 volts at 10 ma . Complete unit $\$ 8.95$.
On 8 to 18 volts at 10 ma . Complete unit $\$ 8.95$.
HAL PA- $1.4-3 \mathrm{mhz}$ to 1.4 ghz .10 to 12 db gain op HAL PA- $1.4-3 \mathrm{mhz}$ to 1.4 ghz .10 to 12 db gain op
erates on 8 to 18 volts at 10 ma . Complete unit $\$ 12.95$
(The above units are ideal for receivers, counters, etc.)
16 LINE TOUCH TONE DECODE KIT WITH P.C. BOARD AND PARTS
$\$ 69.95$
12 LINE TOUCH TONE DECODER KIT WITH P.C.
BOARD AND PARTS $\$ 39.95$
16 LINE ENCODER KIT, COMPLETE WITH CASE, PAD AND COMPONENTS $\$ 39.95$ 12 LINE ENCODER KIT, COMPLETE WITH CASE, PAD AND COMPONENTS \$29.95 Complete Sets of P.C. Boards Available For: Unicorn Robot Project and Heart-A-Matic Project.

MANY, MANY OTHER KITS AVAILABLE

Hal-Tronix
P.O. Box 1101

Southgare. MI 40195
SHIPPING OROERS OVER 525.00 WLL BE SHIPPEO POSTPAIO EXCEPT

CIRCLE 86 ON FREE INFORMATION CARD

Easy to assemble! All components are clearly silk-screened on the high quality double-sided mother board. All integrated circuits, IC sockets, peripheral connectors, keyboard, switching power supply and the professional high impact plastic case are included

High Quality 16K RAM Card Kit

(no cable required)
Same feature as the one we've been selling but without the mess of Dip-wire for Apple ${ }^{\circledR}$ \& Pineapple ${ }^{\text {M }}$.
$\$ 59.95$ per kit

51/4" Flexible Disc Sale

Why buy other brands when you can buy WABASH discs for much less and backed by 1-year factory warranty. All discs come with Hub Rings

M13A411X	51/4" SSDD Soft Sector	\$2.25	
M43A411X	5 $1 / 4{ }^{\prime \prime}$ " SSDD 10 Hard Sector	\$2.25	10-99
M53A411X	5 $1 / 4 "$ SSDD 16 Hard Sector	\$2.25	
M14A411X	51/2" DSDD Soft Sector	\$3.65	
F111111X	$8^{\prime \prime}$ SSSD IBM compatible	\$2.45	
F131211X	$8^{\prime \prime}$ SSDD 26 sectors 128 bytes	\$3.05	

At last! Here's the computer case everyone has been looking for!
ideal for your homebrew
*AP-II 6502 MPU based computer. Made with high impact plastic Color and shape are compatible with the standard Apple II
computers.

Introductory Offer

$\$ 150.00$ ea
Keyboard not included see our Ad in this page. MODEL: AP-II
-AP-II model is compatible with Apple II but not manufactured by Apple Computers, Inc. Apple or Apple Il is a registered trade mark of Apple Computers, Inc.

6502 MPU Based Computer Motherboard! You ask for it, you got it!

$\star 48 \mathrm{~K}$ on board memory (4116)
$\star 12 \mathrm{~K}$ on board EPROM memory (2716 or 2732)

* 8 expansion slots for peripheral cards
- Composite-video output
* size: $141 / 4^{\prime \prime} \times 81 / 2^{\prime \prime}$

$\$ 99.95$ ea.

16K RAM Card Kit For Your Apple ${ }^{\circledR}$ \& Pineapple ${ }^{\text {TM }}$ Computer

Kit includes:

- High Quality P.C. Board • 8 ea. 4116 (200ns) - All the IC's \& parts - 16-pin Dip wire - Easy to assemble. You can do it in less than 30 minutes!
$\$ 49.95$ per kit

5114" Disc Drive 100\% Apple ${ }^{\circledR}$ \& Pineapple ${ }^{\text {™ }}$

 CompatibleWe did it once, response was great! - -
 Now we are doing it again, don't miss it! \$295.00 ea. w/o controller \$385.00 ea w/controller

Replacement Keyboard For Your Apple ${ }^{\circledR}$ II Computer

Got a bad Keyboard? Here's the alternative!

* Full ASCII code
*N-key rollover function
* TTL level output
\star On-Off indicator

* Low power consumption
* With upper/lower case function
\$99.95 ea

Switching Power Supply For

Apple®, AP-II, and Pineapple Computer

Compact size switching power supply

Speciflcation:	4006 A	4007 A	
+5 V at	3 A	5 A	
-5 V at	2 A	3 A	
+12 V at	.5 A	1 A	
-12 V at	5 A	1 A	

4006A... \$99.00 ea. $4007 \mathrm{~A} . \$ 145.00$ ea.
Size: Width $31 / 2^{\prime \prime}$, Depth $9 \frac{3 / 4^{\prime \prime}}{}$, Height $2^{1 / 4^{\prime \prime}}$
Size and mounting holes will be same as the one used in Apple II.

- Apple is a registered trademark of APPLE COMPUTERS, INC:

SHIPpiNG AND HANDLING CHARGE S
Under $\$ 50$ oo Purchase Over. $\$ 50$ do Puictoss

STORE HOURS MON-FRI - 10.7 SAT - $10-6$

(602) 266-9758 (602) 234-3026 IZONA ELECTPO SURPLUS
Wholesale - Retail-Surplus Electronic Parts
6835 N. 16th Street - Phoenix, AZ 85016 The Most Unbelievable Electrolytic Sale in the USA!

AXIAL			RADIAL	
33/6.3	12/1.00	\bigcirc	15/10	20/1.00*
100/6.3	10/1.00	\sim	1000/10	12/1.00
220/6.3	20/1.00*	*	10/16	30/1.00*
470/6.3	10/1.00	-	47/16	30/1.00*
220/10	15/1.00		220/16	25/1.00*
47/15	15/1.00	\cdots	470/16	20/1.00*
1000/16	10/1.00*		47/25	20/1.00*
2200/16	8/1.00*	S	1/100	15/4.00
47/35	12/1.00	U	47/100	5/100
220/35	10/1.00	W	100/100	4/1.00
3300/35	1.00 each	\square	4.7/160	10/1.00
4000/35	1.00 each	0	10/160	10/1.00
15/50	20/1.00*	-	22/160	10/1.00
22/50	20/1.00*	¢	4.7/250	10/1.00
47/50	20/1.00*		10/250	8/1.00
100/50	10/1.00	4	22/250	5/1.00
150/50	8/1.00		1/350	8/1.00
220/50	8/1.00		3.3/350	6/1.00
10/75	12/1.00	\cdots	10/350	6/1.00
47/100	5/1.00*			
1500/100	2/1.00*	S	\$1.00	ECIALS
2.2/150	12/1.00	U		
3.3/150	12/1.00	U		AR
47/200	5/1.00	0	100/10	10/1.00
1/250	15/1.00	\cdots	4/50	10/1.00
2.2/250	12/1.00	-	10/50	10/1.00
1/250	15/1.00	-	22/50	8/1.00
150/350	2/1.00*	Γ	4.7/75	4/1.00
1/500	12/1.00	()	10/75	4/1.00

YES, All Prices are Correct! - 5^{500} Minimum Order on All Above Capacitors - Some Quantity Pricing Available

MORE \$1.OO SPECIALS

1N4152.25/s1.00 Similar to 1N914	$\begin{gathered} 1 \text { N5 } 239.20 /{ }^{\text {s }} 1.00 \\ 9 \mathrm{~V} .2 E N E R \end{gathered}$
1N4001 . 15/s1.00	1 N 4007 . $10 /^{\text {s }} 1.00$
TIP 3055 . 3/s1.00	2N3055 . . 3/51.00
MJ $3000 \ldots{ }^{\text {s }} 1.00$ Pwr Darlington TO3	2N6055.. ${ }^{5} 1.00$ Pwr Darlington TO3
TRIAC 200 V. 30A	$\begin{gathered} 7 \text { Seg. LED Readout } \\ \text { HP } 5082-7650 \\ 5 /{ }^{5} 1.00 \end{gathered}$
3	DIP Relay D.P.S.T Diode Protect 2/s1
$3 /{ }^{\text {s }} 1.00$	$\begin{aligned} & \text { Horz P.C. Trimpots } \\ & 250 \Omega, 500 \Omega, 5 \mathrm{k} \Omega, \\ & 10 \mathrm{k} \Omega, \end{aligned}$
2N2142 2N3905 2SC828 5/51.00 2SC644 SPS7390/ECG123P	
	MC3420P . . ${ }^{\text {s } 1.00}$
	$75150 \ldots{ }^{\text {. . . }} 1.00$
	LM3909 ${ }^{\text {s }} 1.00$
$\begin{aligned} & 5 \mathrm{~V} \text {. DIP Relay } \\ & \text { SPST5/s } 1.00 \end{aligned}$	RED LED . . 8/*1.00
	$\begin{gathered} \text { Transformer }{ }^{3} 1.00 \\ 12 \text { V.C.T. } 250^{\mathrm{MAA}} \end{gathered}$
MINI D.P.D.T. Slide 4/s 1.00	$\begin{gathered} \text { TO39 Heat Sinks } \\ \mathbf{3 / s 1 . 0 0} \end{gathered}$

MOP MICROWAVE DOWN

PC Bd., 3-MRF901's. 2-MBD 101 's 1 Thermistor, 1 Choke, 3-Chip Caps, 'F" Connector. 8 Resistors + Instructions

DOWN
CONVERTER PWR. SUPPLY 8-12 V.D.C. or
$12-18$ V.D.C

TEMS MC, VISA, COO VIA UPS VAM

Graymark Electronic Kits

Quality Products for 18 Years

Sound Operated Switch

Switch AC ON or OFF with just a clap of your hands. Latching Circuit with Sensitivity Control. AC operated. Includes all necessary parts, PCB and instructions.
Order Model 147B
Only $\$ 13.20$ each

Digital Car Clock

4 digit mini-LED display, adjustable crystal time base for accuracy, IC clock chip, 12 V operation. PCB, in structions and all parts included

Order Model 139B
Only $\$ 19.30$ each

Battery Checker

Unique bar graph LED readout shows condition of 1.5 V or 9 V batteries. Precision resistance ladder Battery operated. Comes complete with parts, instructions and PCB.
Order Model 136B
Only $\$ 11.90$ each

Double Fuzz Box

Hook between amplifier and guitar for expanded sound. Select different Fuzz 1 or Fuzz 2 sounds. Battery operated. Parts, PCB and instructions are all included

Order Model 138B
 Only $\$ 16.60$ each

FM Wireless Mic

Broadcast through any FM radio or listen without being seen. High sensitivity. Battery operated. Comes complete with parts, PCB and instructions.
Order Model 143B
Only $\$ 9.70$ each
VBA MC \& VISA orders oply call Toll Free 800-854-7393

CA residents add sales tax - We pay shipping on orders over $\$ 25.00$, otherwise add $\$ 2.50$. Sorry no COD.
Graymark
(In CA 714-540-5480)
Send $\$ 1.00$ for Catalog [over 60 Kits]
Box 17359 • Irvine, CA 92713 SATISFACTION GUARANTEED

[^3]CUALITY parts at DISCOUNT PRICES

FREE! SEND FOR OUR NEW 198340 PAGE CATALOG FREE!

CIRCLE 53 ON FREE INFORMATION CARD

Largest Selection of Equipment Available \$ Buy Warehouse Direct \& Save \$

36 channel converter $\$ 4595$

36 channel

Send $\$ 2$ for complete catalog of converters and unscramblers
Quantity Discounts - Visa - Master Charge Add 5% shipping - Mich. residents add 4% saies la

C\&D Electronics, Inc. P.O. Box 21, Jenison, MI 49428 (616) 609-2440

Burglar/Fire Alarms

FREE CATALOG

over 2000 profluts

CCTV

MAmountain west ${ }^{\text {TM }}$
425 N. 16th Street Dept. RE-3 Phoenix, AZ 85016
1-800-528-6169 toll-free

\section*{rallsey

 the first name in Counters !

 the first name in Counters ! 9 DIGITS 600 MHz \$129

The CT-90 is the most versatile, feature packed counter available for less than $\$ 300.00$! Advanced design features include, three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV Optionally, an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90 performance you can count on

Sensitivity Less than 10 MV to 150 MH
Less than 50 MV to 500 MHz
Resolution: 0.1 Hz (10 MHz range) 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display: $\quad 9$ digits 0.4" LED
Time base: \quad Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Optional Micro-power oven- $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Power. $\quad 8-15$ VAC @ 250 ma

7 DIGITS 525 MHz \$99 ${ }^{95}$

SPECIFICATIONS:
Range: $\quad 20 \mathrm{~Hz}$ to 525 MHz
Sensitivity: Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolution: $\quad 1.0 \mathrm{~Hz}$ (5 MHz range) 10.0 Hz (50 MHz range) 100.0 Hz (500 MHz range)

Display: $\quad 7$ digits $0.4^{\prime \prime}$ LED
Time base: $\quad 1.0 \mathrm{ppm} \operatorname{TCXO} 20-40^{\circ} \mathrm{C}$
Power 12 VAC @ 250 m

The CT-70 breaks the price barrier on lab quality frequency counters. Deluxe features such as, three frequency ranges - each with pre- amplification, dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack

PRICES:
CT-70 wired, 1 year warranty $\$ 99.95$ CT-70 Kit, 90 day parts warranty
AC-1 AC adapter BP-1 Nicad pack + AC adapter/charger

$\left(\begin{array}{l}5+1 \\ \hline\end{array}\right.$
 7 DIGITS 500 MHz
 \$79 95
 WIRED

PRICES:

MINI-100 wired 1 year wartanty
AC-Z Ac adapter for MINI 100
BP-Z Nicad pack and AC adapter/charger

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI- 100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the field" frequency checks and repairs.

SPECIFICATIONS:

SPECIFICATIONS:	
Range:	1 MHz to 500 MHz
Sensitivity:	Less than 25 MV
Resolution	100 Hz (slow gate)
	1.0 KHz (fast gate)
Display.	7 digits, $0.4^{\prime \prime} \mathrm{LED}$
Time base:	$2.0 \mathrm{ppm} 20.40^{\circ} \mathrm{C}$
Power.	$5 \mathrm{VDC} @ 200 \mathrm{ma}$

8 DIGITS 600 MHz \$15995

SPECIFICATIONS:

Range:
Sensitivity:
Sensitivity:
Resolution:
10.0 Hz (600 MHz range)
$\begin{array}{ll}\text { Display, } & 8 \text { digits } 0.4 \\ \text { Time base: } & 2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}\end{array}$
Power. $\quad 110$ VAC or 12 VDC

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The. adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double-duty?

PRICES:
CT-50 wired 1 yearwarranty $\$ 159.95$ CT-50 Kit, 90 day parts wartanty
RA-1, receiver adapter kit RA-1 wired and pre-programmed (send copy of receiver med (send

DIGITAL MULTIMETER \$99 $\frac{95}{w}$

The DM-700 offers professional qualizy performance at a hobbyist price Features include; 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overlogd prorection up to 1250 volts on all ranges, making it virt ually goof-proof The DM-700 looks great, a handsome, jet black, rugged ABS case with convenient retractable tilt bail makes it an ideal addition to any shop.

SPECIFICATIONS

DC/AC volts: 100 uV to $1 \mathrm{KV}, 5$ ranges DC/AC
current $\quad 0.1 \mathrm{uA}$ to 2.0 Amps 5 ranges Resistance. 0.1 ohms to 20 Megohms, 6 ranges Input
impedance: 10 Megohms, $\mathrm{DC} / \mathrm{AC}$ volts Accuracy: 0.1% basic DC volts Accuracy:
Power. $4^{\prime} \mathrm{C}$ ' cells

PRICES:

DM-700 wired 1 year wartanty DM-700 Kit, 90 day parts
warranty
AC-1, AC adaptor
BP-3. Nicad pack +AC
adapter/charger
MP-1, Probe kit
$\$ 99.95$
79.95
3.95
19.95
2.95

COUNTER PREAMP

Telescopic whip antenna- BNC plug. High impedance probe, light loading
Low pass probe. for audio measurements Direct probe general purpose usage Tilt bail for CT 70,90 , MINI- 100 .
Color burst calibration unit, calibrates counter against color TV signal.
7.95

For high resolution audio measurements, muluplies UP in frequency

- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution!
$\$ 29.95 \mathrm{Kit} \quad \$ 39.95$ Wired

ACCESSORIES

AUDIO SCALER

rembey alagitctias, ilt.
2575 BAIRD RD. • PENFIELD, NY 14526
ing extremely weak signals from 10 to 1,000 MHz . Small size, powered by plug transformer-included - Flat 25 db gain

- BNC Connectors
- Great for sniffing RF with pick-up loop \$34.95 Kit \$44.95 Wired

7400

$\frac{\text { Part No. . P Phs Price }}{547472 \mathrm{~A}}$
 SN7
SN7
SN7
SN7
ST $\frac{\text { Pat No. . PPins Prices }}{\text { SN } 74155 \mathrm{~F}}$

MICROPROCESSOR COMPONENTS

Pat Mo.	\cdots PMas			Prico
1103	${ }^{18}$	1024×1	(300ns).	9
4027	18	4096×1	(250ns)	49
$41.16 \mathrm{~N}-2$	16	16.384×1	(150ns)	89-8/14.95
$4116 \mathrm{~N}^{-3}$	16	16.384×1	200ns)	69-8/12.95
$4116 \mathrm{~N}-4$	15	16.384×1	(250ns)	1. $49 \cdot 8 / 810.95$
4164N-150	16	65.5.56x 1	1150ns	7.95-8/59.95
${ }^{4164 N} \cdot 200$	16	${ }^{65.536 \times 1}$	120075	.7.49-8/54.95
MM326	18	1024×1	300n5)	49-811.95
MM5262	22	2048×1	${ }^{365 n 5)}$	48-811.95
MMs270	18	4096x1	${ }^{\text {250055) MK4096 }}$	
MM5280	${ }_{16}^{22}$	${ }^{4096 \times 1}$	${ }^{200055}{ }^{210}$	189-8i414.85
MmS $5900-2$	16	16,384x1	(150n5	${ }^{1} .89-8 / 14.95$
MMS	116	${ }_{16}^{16.384 \times 1}$		1. $1.69 \cdot 8 / 8 / 12.95$
MM5298-3	16	8192×1	(200ns)	169

74500	14	35	748/PROMS*			${ }^{745243}$	14	2.49
74502	14	35				745244	20	2.49
74503	14	35	745124	16	295	74S254	16	t. 19
74504	14	. 45	745133	16	45	745253	16	1.19
74505	14	. 45	745134	16	50	745257	16	1.19
74508	14	. 39	745135	16	. 69	745258	16	1.19
74509	14	. 39	745136	14	1.39	745260	14	. 79
74810	14	35	${ }_{745138}$	16	. 89	745280	14	1.95
74511	14	. 35	745139	16	89	${ }^{745287}{ }^{\text {c }}$	16	1.95
74815	14	. 35	745140	14	. 55	$745288{ }^{\circ}$	16	1.95
74520	14	35	745151	18	. 99	745373	20	2.49
7452?	14	. 35	745153	16	99	745374	20	2.49
74530	14	. 35	745157	16	. 99	745387°	16	1.95
74532	14	. 45	745158	16	93	745477°	20	5.95
${ }^{745388}$	14	. 89	745160	16	2.49	745472.	20	4.95
74549	14	. 39	${ }^{745174}$	16	99	745473.	20	4.95
74551	14	35	75173	16	. 99	748474*	24	4.95
${ }^{74564}$	14	. 39	745188°	16	1.49	745475°	24	4.95
74565	14	39	745194	16	1.49	745570°	16	2.95
74574	14	. 55	745195	16	1.49	745577^{*}	16	2.95
74586	14	55	745196	14	1.49	745572*	18	4.95
745112	16	. 55	745240	20	2.25	${ }^{745573}{ }^{\text {- }}$	18	4.95
${ }_{74} 5113$	14	. 55	745241	20	2.25	745943	20	2.49
745114	14	55	745242	14	2.49	745941	20	2.49
$\begin{aligned} & \text { CA3010H } \\ & \text { CA } 3013 \mathrm{H} \\ & \text { CA } 3023 \mathrm{H} \\ & \text { CA3035 } \\ & \text { CA } 3039 \mathrm{H} \\ & \text { CA } 346 \mathrm{H} \\ & \text { CA3059 } \end{aligned}$		99	CA-LINEAR			Ca3088N	16	1.59
		2.15	CA3050N 15 3.25			CA3096N	16	1.19
		3.25	Ca30boe	8	. 89	CA3130E	:	1.49
		5.95	Ca3081N	16	1.49	CA3140E	8	99
		1.35	CA3082N	16	1.49	CA3150H		1.95
	14	. 89	Ca3083n	16	1.49	Ca3401N	14	59
	14	3.25	Ca3086N	14	${ }^{69}$	СаЗ 3600 N	14	395
	14		CD-CMOS			COPO988	15	1.95
CO4001	14	29	C04040	16	. 79		16	1.19 39
C04002	14	29	C04041	14	. 79	COASO8	24	3.95
CD4006	14	. 89	c04042	16	. 69	C04510	16	. 89
CO4007	14	29	coa0d 3	16	. 79	C04519	16	.89
CD4009	16	. 39	CD9044	16	. 79	C04512	18	.89
CDAato	15	. 39	CD2046	16	. 99	COA514	24	1.79
COPOH1	1	. 29	CD2047	14	89	C004515	24	1.79
CO4012	14	. 15	CDA048	16	. 39	C04516		. 99
CDO4 13	14	39	CD4049	16	. 39	C025 $\%$ \%	16	99
c00014	16	79	CDA050	16	. 39	C00459	16	39
CD4015	16	. 39	COPO_{51}	16	79	C04520	16	79
C04016	14	39	C34052	16	. 79	CDIS25	15	1.19
C04017	16	. 75	${ }^{\text {coios }}$	16	. 79	CD04528	16	1.19
C04018	16	. 79	${ }^{\text {cos056 }}$	16	2.95	C04529	16	1.19
C04019	16	. 39	ca4059	24	7.95	COOS43	16	1.19
C04020	16	.75-	coacto	16	. 99	C04562	14	6.95
C04232	16	. 79	COA066	14	. 39	C04566	16	1.39
C04022	16	79	ca4068	14	. 39	CD4583	16	2.49
COH023	14	. 29	c34069	14	29	C04584	14	. 59
C04024	14	. 69	co4070	14	39	CDA723	16	1.19
${ }^{\text {co4025 }}$	14	. 23	C04071	14	29	C04724	16	1.19
c00026	16	2.48	CP4072	14	29	MC14409	16	13.95
C04027	16	. 45	C04073	14	29	MC144 10	1	13.95
${ }^{\text {cos }}$ 4228	16	.59	c04075	14	. 29	MC14411	24	11.95
C04029	16	.79	C04076	16	. 79	MC144i2	16	13.95
C04030 C04034	14	. 39	CD4078	14	. 49	MC14419	15	7.95
${ }_{\text {CDO }}$ C03035	${ }_{16}^{24}$	${ }_{\text {1 }}^{1.95}$	CD4081	14	29	MC14433	24	13.95
	mere in	Cotatog)	C04082 C04093	14	. 29	MC14538 MC14541	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.79 \\ & 1 \end{aligned}$

355 SHOREWAY ROAD, BELMONT, CA 94002 3/83 PHONE ORDERS WELCOME - (415) 592-8097 Telex: 176043
-

DT1050 - Applications: Teaching aids, appliances, clocks, automotive
tions, language translations, etc
\qquad possibla to output single words or words eonsatenated inio phrases
of even sentences. The "voice" output in to 1050 is a highly inteillpible male volc
ed. The vocabular ice. Fermale and children"s voices can be synthesiz-
try is chosen so that it is appllcabie to many pro-
 diagram on the appliceaion sheot. \$34.95 ea.
DT1057 - Expands the DT1050 vocabulary
from 137 to over 260 words. Incl. 2 ROMs and specs.
DT1057 $\$ 24.95$ ea.

RADIO CONTROL CIRCUITS

ETCO ELECTRONICS
DEPT. 582
Mailing List Control Center Box 840
Champlain, N.Y. 12919
I Enclose \qquad (cash OK)
Please rush postpaid

CIRCLE 65 ON FREE INFORMATION CARD

Electronics inc
$\begin{array}{ll}- \text { Minimum Order } 59.00 & \text { We accept visa and } \\ \text { - Please include } \$ 1.50 \text { tor } \\ \text { MASTEACHAREE }\end{array}$ shipping (UPS) - EXTRA FAST SERVICE P.O. BOX 27036, DENVER, COLO. 80227 PHONE ORDERS: 303-781-5750

TRAVELLER'S COMPANION

Portable Smoke Detector And Intrusion Alarm

The Traveller's Companion is an extremely sensitive portable smoke detector and burglarfintrusion alarm system. it's made o protect you wherever you are: in hotels or motels, mobile homes, R.V.'s, offices, apartments, dormitory room and at at home. Features
Extra loud 85db alarm horn
Extremely sensitive dual ioniza chamber smoke detector
Fully portable - hangs on door
Handsome carrying case for travel
One-year limited warranty

- Operates from one 9 V alkaline battery (not included

Size - only $5 \frac{1 / 2^{\prime \prime} \times 21 / 2^{*} \times 1 / 2^{\prime \prime}}{}$
We are a factory authorized dealer and are offering this incredible advanced design system at this low introductory price.
$\$ 24.95$

TigerTEGHI ELEMPRONENTS
 PO BOX 576

BROOMFIELD. COLO. 80020
FREE Catalog with order (70 C without) ADD $\$ 2.00$ for postage
US MONEY ONLY PLEASE

5 VBC Computer power supply. 120 VAC $50-400 \mathrm{HZ}$ input. External sense limited quantity us $\$ 78^{95}$!

INSTRUMENT CASE
Beautiful solid anodized aluminum case with insert that holds up to six $1^{\prime \prime} \times 4$ " cards. Two lense colors! US $88.391-1 / 2^{\prime \prime} h \times 4-1 / 2^{\prime \prime} \times 3-1 / 2^{\prime \prime} \mathrm{d}$

Now You Can Afford Another 64K. . .

WHY PAY MORE? SHOP AMERICA'S PARTS PLACE" Low Prices! High Quality! Wide Selection! In Stock!

 data. 277-1011
1.99
 38\% Off

CdS Photocell

129

3 megohms in darkness to 100 ohms in bright light. 200 mW at

Electret Mike
Element
119
Omnidirectional. PC board mounting. 2 to 10VDC, 1 mA $\max .20$ to $15,000 \mathrm{kHz}$ 270-090

Precision Panel Meters 895 Each

Monitor Your Critical DC Circuits Jeweled movements. Accuracy: $\pm 5 \%$ full scale. $2^{3 / 4} \times 2^{1 / 4} \times 1^{1 / 4^{\prime \prime}}$. Require $1^{7 / 8^{\prime \prime}}$ round mounting holes. 0-50 $\mu \mathrm{A}$ DC. 270-1751 0-1 mA DC. 270-1752 0-15VDC. 270-1754
8.95

Books to Program Your TRS-80 ${ }^{\oplus}$

(A Programming Rechniques for Level II BASIC. Reg. \$4.95. A "cookbook" of program applications for the TRS-80 line. Describes Level II commands, data search, string manipulation, high-speed graphic:; and much more. Everything you need to write BASIC computer programs. 224 pages. Softbound.

62-2062

[固 TRS-80 Graphics. Reg. \$7.95. Explores the computer's aptitude for graphic displays, particularly line printer, character and pixel graphics. With sample programs and suggested problems and solutions. 132 pages. Softbound. 62-2073

Measures AC and DC volts, DC milliamps, resistance and dB. Range-Doubler switch. Requires one "AA", one 9 V battery. With leads. 22-204

150 Disc Capacitors Cut 31\%

Reg. 9.95
688

\$30.25 Individual Parts Value. 50WVDC. Contains $15.005 \mu \mathrm{~F}$, ten each of 100,220 and $470 \mathrm{pF}, .001$ $.002, .01, .02, .05, .1 \mu \mathrm{~F} .29$ other assorted values. With chart. 272-601 Sale 6.88

Waveform Generator

595

ICL8038. Produces precise sine, square, triangle, sawtooth and pulse waves with minimum external parts. Simultaneous high-level sine, square and triangle outputs. Range: . 001 Hz to $300 \mathrm{kHz}+$. Single/ angle outputs. Range: . 001 Hz to $300 \mathrm{kHz}+$. Single/
split supply. 14-pin DIP. $276-2334 \ldots5 .95$

Submini Toggle Switches

Low As

199

- 10 Amps at 125 VAC
- $1 / 4^{\prime \prime}$ Mounting Holes

Description	Cat. No.	Each
SPST	$275-324$	1.99
SPDT	$275-326$	2.19
SPDT Center Off	$275-325$	2.39
DPDT	$275-1546$	2.69
DPDT Center Off	$275-1545$	2.89

Panel Mounting

Assemblies have one am ber, one blue lens. Mounting tabs for $1 / 2^{\prime \prime}$ dia. hole. 4 leads. With bulbs. 272-335 ... Pkg. of 2/1.89
Metal Project Enclosure 28\% off
Reg. 10.95
788

Heavy-duty. Vented steel top, aluminum front/bottom. Handles. $51 / 4 \times 91 / 2 \times 63 / 4^{11}$. 270-270

A DIVISION OF TANDY COFPORATION • OVER 8500 LOCATIONS WORLDWIDE Retail prices may vary at individual stores and dealers

4164 बax praname $\$ 625$

ALL MERCHANDISE 100\% GUARANTEED!

CALL US FOR VOLUME QUOTES

STATIC RAMS

5101 5101 2102-1 $2102 \mathrm{~L}-4$ $2102 \mathrm{~L}-2$ 2102 L 2111 2112 2114 2114L-4 2114L-3 2114 L -2 2147 \(\begin{array}{lll}2147 \& 4096 \times 1 \& (55 \mathrm{~ns})
TMS4044-4 \& 4096 \times 1 \& (450 \mathrm{~ns})\end{array}\) \(\begin{array}{ll}TMS4044-3 \& 4096 \times 1 (300ns)
TMS4044-2 \& 4096 \times 1 (200ns)\end{array}\) MK4118 TMM2016-200
256×4 (450ns)
256×4 (450ns) (cmos)
024×1 (450 ns)
024×1 (450 ns) (LP)
\(\begin{array}{ll}1024 \times 1 \& (250ns)
256 \times 4 \& (450 \mathrm{~ns})\end{array}\)
256×4 (450 ns) $256 \times 4(450 \mathrm{~ns})$
$256 \times 4(450 \mathrm{~ns})$ $1024 \times 4(450 \mathrm{~ns})$ 1024×4 (450ns) 1024×4 (450ns) (LP) 1024×4 (300ns) (LP) 1024×4 (200 ns) (LP) TMM2016-200 2048×8 (200ns) TMM2016-150 2048×8 (150ns) HM6116-4 2048×8 (200ns) (cmos) HM6116-3 2048×8 (150ns) (cmos) HM6116LP-4 2048×8 (200ns) (cmos) HM6116LP-4 2048×8 (200ns) (cmos)(LP) HM6116LP-3 2048×8 (150ns) (cmos)(LP) HM6116LP-2 2048×8 (120ns) (cmos)(LP 4096×8 (300ns) (Ostat)

DYNAM\|C RAMS			
TMS4027	4096×1	(250ns)	1.99
UPD411	4096×1	(300 ns)	3.00
MM5280	4096×1	(300ns)	3.00
MK4108	8192×1	(200ns)	1.95
MM5298	8192×1	(250ns)	1.85
4116-300	16384×1	(300ns)	8/11.75
4116-250	16384×1	(250ns)	8/11.95
4116-200	16384×1	(200ns)	8/13.95
4116-150	16384×1	(150ns)	8/15.95
4116-120	16384×1	(120ns)	8/29.95
2118	16384×1	(150ns) (5v)	4.95
4164-200	65536×1	(200ns) (5v)	6.25
4164-150	65536×1	(150ns) (5v)	7.25
$5 \mathrm{~V}=$ single 5 voll supply			
EPROMS			
1702	256×8	(1us)	4.50
2708	1024×8	(450ns)	3.95
2758	1024×8	(450ns)(5v)	5.95
2716	2048×8	(450ns)(5v)	3.95
2716-1	2048×8.	(350ns)(5v)	6.25
TMS2516	2048×8	(450ns)(5v)	5.50
TMS2716	2048×8	(450ns)	7.95
TMS2532	4096×8	(450ns)(5v)	7.95
2732	4096×8	(450ns)(5v)	4.95
2732-250	4096×8	(250ns)(5v)	12.95
2732-200	4096×8	(200ns)(5v)	16.95
2764	8192×8	(450ns)(5v)	16.95
2764-250	8192×8	(250ns)(5v)	18.95
2764-200	8192×8	(200ns)(5v)	24.95
TMS2564	8192×8	(450ns)(5v)	24.95
MC68764	8192×8	(450ns)(5v)(24 pin)	39.95
$5 v=$ Single 5 volt Supply			

EPROM ERASERS

	TimerCapacity Chip	Intensity $\left(u W / \mathrm{Cm}^{2}\right)$		
PE-14		6	5,200	83.00
PE-14T	X	6	5,200	119.00
PE-24T	X	9	6,700	175.00
PL-265T	X	20	6,700	255.00
PR-125T	X	16	15,000	349.00
PR-320	X	32	15,000	595.00

DISC
 CONTROLLERS

 1.95 1.95.89

2-80		8000		6800	
2.5 Mhz		8035	5.95	68000	59.95
280-CPU	3.95	8039	6.95	6800	4.95
280-CTC	5.95	INS-8060	17.95	6802	7.95
Z80-DART	15.25	INS-8073	24.95 3.95	6808	13.90
Z80-DMA	17.50	8080 8085	3.95 5.95	6809E	19.95
Z80-P1O	5.75	8085	5.95 11.95	6809	12.95
Z80-SIO/0	18.50	$80854-2$ 8086	11.95	6810	2.95
Z80-S10/1	18.50	8086 8087	29.95	6820	4.95
280-S10/2	18.50	8087 8088	CALL 39.95	6821	3.25
280-S10/9	16.95	8088 8089	39.95 89.95	6828	14.95
4.0 Mhz		8155	89.95 7.95	6840	12.95
		8156	8.95	6843	34.95
Z80A-CPU	6.00	8185	8.95 29.95	6844	25.95
780A-CTC	8.65	8185-2	29.95 39.95	6845	14.95
Z80A-DART	18.75	8741	39.95 39.95	6847	12.25
Z80A-DMA	27.50	8748	39.95 29.95	6850	3.45
Z80A-PIO	6.00	8755	29.95 32.00	6852	5.75
Z80A-SIO/0	22.50			6860	9.95
Z80A-S10/1	22.50	8200		6862	11.95
Z80A-SIO/2	22.50			6875	6.95
Z80A-SIO/9	19.95			6880	2.25
6:0 Mhz		8202	29.95	6883	24.95
		8203	39.95	68047	24.95
Z80B-CPU	17.95	8205	3.50	6800 68 MHZ	
Z80B-CTC	15.50	8212	1.80		
Z80B-PIO	15.50	8214	3.85	68B00	10.95
ZILOG		8216	1.75	68B02	22.25
		8224	2.25	68B09E	29.95
26132	34.95	8226	1.80	68B09	29.95
28671	39.95	8228	3.49	68 B 10	7.95
		8237	19.95	$68 \mathrm{B21}$	12.95
S		8238	4.49	68845	35.95
S		8243	4.45	$68 \mathrm{B50}$	12.95
32.768 khz	1.95	8250	10.95	$68 \mathrm{B00}=2 \mathrm{MHZ}$	
1.0 mhz	4.95	8251	4.49		
1.8432	4.95	8253	6.95	6500 1 MHZ	
2.0	3.95	8253-5	7.95		
2.097152	3.95	8255	4.49		
2.4576	3.95	8255-5	5.25	6502	5.95
3.2768	3.95	8257	7.95	6504	6.95
3.579535	3.95	8257-5	8.95	6505	8.95
4.0	3.95	8259	6.90	6507	9.95
5.0	3.95	8259-5	7.50	6520	4.35
5.0688	3.95	8271	39.95	6522	8.75
5.185	3.95	8272	39.95	6532	11.25
5.7143	3.95	8275	29.95	6545	22.50
6.0	3.95	8279	8.95	6551	11.85
6.144	3.95	8279-5	10.00	2 MHZ	
6.5536	3.95	8282	6.50	6502A	9.95
8.0	3.95	8283	6.50	6522A	11.70
10.738635	3.95	8284	5.50	6532A	12.40
14.31818	3.95	8286	6.50	6545A	23.50
15.0	3.95	8287	6.50	6551A	12.95
16.0	3.95	8288	25.00	3 MHZ	
17.430	3.95	8289	49.95	6502B	17.95
18.0	3.95				

FUNCTION GENERATORS		$E M A R$	
MC4024	3.95	XR 2206	3.75
LM566	1.49	XR 2207	3.85
XR2206	3.75	XR 2208 XR 2211	3.90
8038	3.95	XR 2211	5.25 3.25
INTERSIL		9000 SERIES	
ICL7 103	9.50	9316	1.00
ICL7106	9.95	9334	2.50
ICL7107	12.95	9368	3.95
ICL7660	2.95	9401 9601	9.95 75
ICL8038	3.95	9602	.75 1.50
ICM7207A	5.59	96502	1.95
ICM7208	15.95		. 95

JDR MICRODEVICES, INC.
 1224 S. Bascom Avenue San Jose, CA 95128 800-538-5000 • 800-662-6279 (CA) (408) 995-5430 • Telex 171-110.

2716 16K EPROMS

\section*{| 74LS00 | . 24 | 74LS86 | 39 |
| :---: | :---: | :---: | :---: |
| 74LS01 | . 25 | 74LS90 | . 55 |
| 74LS02 | . 25 | 74LS91 | . 89 |
| 74LS03 | . 25 | $74 \mathrm{LS92}$ | . 55 |
| 74LS04 | . 24 | 74LS93 | . 55 |
| 74LS05 | . 25 | 74LS95 | . 75 |
| 74LS08 | . 28 | 74LS 96 | . 89 |
| 74LS09 | 29 | 74LS107 | . 39 |
| 74LS10 | . 25 | 74LS109 | . 39 |
| 74LS11 | 35 | 74LS112 | . 39 |
| 74LS 12 | . 35 | 74LS113 | . 39 |
| 74LS13 | . 45 | 74LS114 | . 39 |
| $74 \mathrm{LS14}$ | . 59 | 74LS122 | 45 |
| 74LS15 | . 35 | 74LS 123 | . 79 |
| 74LS20 | . 25 | 74LS124 | 2.90 |
| 74LS21 | . 29 | 74LS125 | .49 |
| 74LS22 | . 25 | 74LS126 | .49 |
| 74LS26 | . 29 | 74LS132 | . 59 |
| 74LS27 | . 29 | 74LS133 | . 59 |
| 74LS28 | . 35 | 74LS136 | . 39 |
| 74LS30 | . 25 | 74LS137 | . 99 |
| 74LS32 | . 29 | 74LS138 | . 55 |
| 74LS33 | . 55 | 74LS139 | . 55 |
| 74LS37 | . 35 | 74LS145 | 1.20 |
| 74LS38 | . 35 | 74LS147 | 2.49 |
| 74LS40 | . 25 | 74LS148 | 1.35 |
| 74LS42 | . 49 | 74LS151 | . 55 |
| 74LS47 | . 75 | 74LS153 | . 55 |
| 74LS48 | . 75 | 74LS154 | 1.90 |
| 74LS49 | . 75 | 74LS155 | . 69 |
| 74LS51 | . 25 | 74LS156 | . 69 |
| 74LS54 | . 29 | 74LS157 | . 65 |
| 74LS55 | . 29 | 74LS158 | . 59 |
| 74LS63 | 1.25 | 74LS160 | . 69 |
| 74LS73 | . 39 | 74LS161 | . 65 |
| 74LS74 | . 35 | 74LS162 | . 69 |
| 74LS75 | . 39 | 74LS163 | . 65 |
| 74LS76 | . 39 | 74LS164 | . 69 |
| 74LS78 | . 49 | 74LS 165 | . 95 |
| 74LS83 | . 60 | 74LS166 | 1.95 |
| 74LS85 | . 69 | 74LS 168 | 1.75 |

74LS00

74 S 00	.32	74 S 163	1.95
74 S 02	.35	74 S 168	3.95
74 S 03	.35	74 S 169	3.95
74 S 04	.35	74 S 174	.95
74 S 05	.35	74 S 175	.95
74 S 08	.35	74 S 181	3.95
74 S 09	.40	74 S 182	2.95
74 S 10	.35	74 S 188	1.95
74 S 11	.35	74 S 189	6.95
74 S 15	.35	74 S 194	1.49
74 S 20	.35	74 S 195	1.49
74 S 22	.35	74 S 196	1.49
74 S 30	.35	74 S 197	1.49
74 S 32	.40	74 S 201	6.95
74 S 37	.88	74 S 225	7.95
74 S 38	.85	74 S 240	2.20
74 S 40	.35	74 S 241	2.20
74 S 51	.35	74 S 244	2.20
74 S 64	.40	74 S 251	.95
74 S 65	.40	74 S 253	.95
74 S 74	.50	74 S 257	.95
74 S 85	1.99	74 S 258	.95
74 S 86	.50	74 S 260	.79
74 S 112	.50	74 S 274	19.95
74 S 113	.50	74 S 275	19.95
74 S 114	.55	74 S 280	1.95
74 S 124	2.75	74 S 287	1.90
74 S 132	1.24	74 S 288	1.90
74 S 133	.45	74 S 289	6.89
74 S 134	.50	74 S 301	6.95
74 S 135	.89	74 S 373	2.45
74 S 138	.85	74 S 374	2.45
74 S 139	.85	74 S 381	7.95
74 S 140	.55	74 S 387	1.95
74 S 151	.95	74 S 412	2.98
74 S 153	.95	74 S 471	4.95
74 S 157	.95	74 S 472	4.95
74 S 158	.95	74 S 474	4.95
74 S 161	1.95	74 S 482	15.25
74 S 162	1.95	74 S 570	2.95
		74 S 571	2.95
7			
7			

ORDER TOLL FREE

 800-538-5000 800-662-6279[CALIFORNA ARSIOENTS)
IF YOU CAN FIND A PRICE LOWER ELSEWHERE, LET US KNOW AND WE LL MEET OR BEAT THEIR PRICE!

* Computer managed inventoryvirtually no back orders!
* Very competitive prices!
* Friendly staff!
* Fast service - most orders shipped within 24 hours!

LED DISPLAYS

7400

IC SOCKETS

4000

$29 \quad 4527$

 40004001
4002

			N	$A R$							
LM301	. 34	LM348	. 99	NE564	2.95	LM1496	. 85	CA 3023	2.75	CA 3082	1.65
LM301H	. 79	LM350K	4.95	LM565	. 99	LM1558H	3.10	CA 3039	1.29	CA 3083	1.55
LM307	. 45	LM350T	4.60	LM566	1.49	LM1800	2.37	CA 3046	1.25	CA 3086	. 80
LM308	. 69	LM358	. 69	LM567	. 89	LM1812	8.25	CA 3059	2.90	CA 3089	2.99
LM308H	1.15	LM359	1.79	NE570	3.95	LM1830	3.50	CA 3060	2.90	CA 3096	3.49
LM309H	1.95	LM376	3.75	NE571	2.95	LM1871	5.49	CA 3065	1.75	CA 3130	1.30
LM309K	1.25	LM377	1.95	NE592	2.75	LM1872	5.49	CA 3080	1.10	CA 3140	1.15
LM310	1.75	LM378	2.50	LM 703	. 89	LM1877	3.25	CA 3081	1.65	CA 3146	1.85
LM311	. 64	LM379	4.50	LM709	. 59	LM1889	1.95			CA 3160	1.19
LM311H	. 89	LM380	. 89	LM710	. 75	LM1896	1.75				
LM312H	1.75	LM380N-8	1.10	LM711	. 79	LM2877	2.05				
LM317K	3.95	LM381	1.60	LM723	. 49	LM2878	2.25				
LM317T	1.19	LM382	1.60	LM723H	. 55	LM2900	. 85	TL494	4.20	75365	1.95
LM 318	1.49	LM383	1.95	LM733	. 98	LM2901	1.00	TL496	1.65	75450	. 59
LM318H	1.59	LM384	1.95	LM741	. 35	LM3900	. 59	TL497	3.25	75451	. 39
LM319H	1.90	LM386	. 89	LM741N-14	. 35	LM3905	1.25	75107	1.49	75452	. 39
LM319	1.25	LM387	1.40	LM741H	. 40	LM3909	. 98	75110	1.95	75453	. 39
LM320 (se	e 7900)	LM389	1.35	LM747	. 69	LM3911	2.25	75150	1.95	75454	. 39
LM322	1.65	LM390	1.95	LM748	. 59	LM3914	3.95	75154	1.95	75491	. 79
LM323K	4.95	LM392	. 69	LM1014	1.19	LM3915	3.95	75188	1.25	75492	. 79
LM324	. 59	LM394H	4.60	LM1303	1.95	LM3916	3.95	75189	1.25	75493 75494	. 89
LM329	. 65	LM399H	5.00	LM1310	1.49	MC4024	3.95			75494	. 89
LM331	3.95	NE5 31	2.95	MC1330	1.69	MC4044	4.50				
LM334	1.19	NE536	6.00	MC1349	1.89	RC4136	1.25				
LM335	1.40	NE555	. 34	MC1350	1.19	RC4151	3.95				
LM336	1.75	NE556	. 65	MC1358	1.69	LM4250	1.75		-		
LM337K	3.95	NE558	1.50	MC1372	6.95	LM4500	3.25	TL071			
LM337T	1.95	NE555	. 34	LM1414	1.59	LM13080	1.29	TL072	.79 1.19	LF347	2.19 2.19
LM338K	6.95	NE556	. 65	LM1458	. 59	LM13600	1.49	TL074	2.19	LF351	2.60 .60
LM339	. 99	NE558	1.50	LM1488	. 69	LM13700	1.49	TL081	. 79	LF353	1.00
LM340 (see 7800)		NE561	24.95	LM1489	. 69			TL082	1.19	LF355	1.10
								TL083	1.19	LF356	1.10
$H=$ TO-5 CAN			$T=T O-220$		$K=T O-3$					LF357	1.40

CONTACTS	SINGL	COLOR	COLOR	CODED
CONTACTS	1 '	10^{\prime}	1^{\prime}	10^{\prime}
10	. 50	4.40	. 83	7.30
20	. 65	5.70	1.25	11.00
26	75	6.60	1.32	11.60
34	. 98	8.60	1.65	14.50
40	1.32	11.60	1.92	16.80
50	1.38	12.10	2.50	22.00

WE HAVE THE COMPLETE LINE OF IDC AND D-SUBMINIATURE CONNECTORS

WIREWRAP CARDS

FR-4 Epoxy Glass Laminate
With Gold Plated Contact Fingers

S-100 BUSS

P100-1
P100-2
P100-3
P100-4 Single Foil Pads Per Hole

APPLE

P500-1 Bare - No Foil Pads
P500-3 Horizontal BUSS
P500-4 Single Foil Pads Per Hole

IBM

IBM-PR BUSS Lines + Pads
IBM-PR BUSS Lines + Pads
GENERAL PURPOSE
22/44 PIN (.156" SPACING) $\begin{array}{ll}\text { P441-3 } & \text { Vertical BUSS, } 4.5^{\prime \prime} \times 6^{\prime \prime} \\ \text { P442-3 } & \text { Vertical BUSS, } 45^{\prime \prime} \times 9^{\prime \prime}\end{array}$
P442-3 Vertical BUSS, $4.5^{\prime \prime} \times 9^{\prime \prime}$ 36/72 PIN (.1" SPACING)
$\begin{array}{ll}\text { P721-3 } & \text { Vertical BUSS, } 4.5^{\prime \prime} \times 6^{\prime \prime} \\ \text { P722-3 } & \text { Vertical BUSS; } 4.5^{\prime \prime} \times 9^{\prime \prime}\end{array}$
15.95
$22: 95$
22.95
23.95
15.95
22.95
23.95
55.00
13.95
14.95
13.95
13.95
14.95

BEST SELLING BOOKS

OSBORNE/MC GRAW-HILL
Apple II User's Guide
CRT Controller's Handbook
68000 Assembly Language
Programming
CBASIC User Guide
SYBEX
Your Your First Compute
The CP/M Handbook
The PASCAL Handbook
Microprocessor Interfacing
Techniques
16.95

MICROCOMPUTER

 HARDWARE HANDBOOKFROM ELCOMP - \$14.95
Over 800 pages of manufacturers data sheets on most commonly used IC's. Includes:

* TTL - 74/74LS and 74F
* CMOS
* Voltage Regulators
* Memory - RAM, ROM, EPROM * CPU's - 6800, 6500, Z80, 8080 . 8085, 8086/8
* MPU support \& interfàce - 6800,
$6500,280,8200$, etc

DISK DRIVES

TANDON
TM100-1 $5 / /^{\prime \prime}$ (for IbM) ss/dd 229.00
TM100-2 5\%/" (FOR IBM) DS/do 295.00

SHUGART

SA 400L $5 /{ }^{\prime \prime \prime}$ (40 TRACK) SS/DD 199.95 SIEMENS
FD100-8 8 s. ss/00
(801 REPLACEMENT) 259.00
PERTEC
FD-200 5/4" SS/DD
179.95

FN-250 5/4" DS/DD
199.95

CABINET FOR $511^{\prime \prime}$ DISK DRIVE

* COLOR MATCHES APPLE
* FITS SHUGART

SPECIAL - ${ }^{29.95}$

BYPASS CAPS

.01 UF DISC
100/6.00
. 1 UF DISC
100/8.00
1 UF MONOLITHIC 100/15.00
WE NOW STOCK A
COMPLETE LINE OF
DISC, ELECTROLYTIC,
MONOLITHIC AND
TANTALUM CAPACITORS

RESISTORS

$1 / 4$ WATT 5\% CARBON FILM ALL
STANDARD VALUES
FROM 1 OHM TO 10 MEG OHM
50 PCS. SAME VALUE
.025 EA.
100 PCS. SAME VALUE
1000 PCS. SAME VALUE

1224 S. Bascom Avenue
San Jose, CA 95128 800-538-5000 • 800-662-6279 (CA) (408) 995-5430 - Telex 171-110

4116 16K DYNAMIC RAMS 250 NS $\mathbf{8 / 5} \mathbf{1 1}^{95}$

ALL MERCHANDISE 100\% GUARANTEED!
CALL US FOR VOLUME QUOTES

NEW VIEWMAX 80

A Full Function 80 column card for Apple II* - Compare these
features with any other:
$\star 7 \times 9$ dot matrix; Upper and lower case with true descenders

* Soft Video switch
* Inverse video characters
* Shift key support
* Fully compatible with Apple* DOS, CP/M*, PASCAL, and most popular word processors
* 2 YEAR WARRANTY

s21995

JDR COOLING FAN

FOR YOUR APPLE II

* Easy installation - no modification of Apple required
* Eliminates overheating problems
* Switch on front controls fan, Apple, and extra outlet
* Rotron whisper fan is the quietest, most reliable on the market

DISK DRIVE

* Fully Apple* compatible
* 35 Track - Will read half tracks!
* Use with our controller (call for price) or with your Apple controller
* Price includes case anc cabla - ready to plug in
* Attractive cabinet matches Apple drive
* 90-Cay Warranty

\$29995

ORDER TOLL FREE

 800-538-5000 800-662-6279(CALIFORNIA RESIDENTS)
IF YOU CAN FIND A PRICE LQWER ELSEWHERE. LET US KNOW AND WE LL MEET OR BEAT THEIR P:IICE! (SEE TERMS BELOW)

* Computer managed inventory virtually no back orders!
* Very competitive prices!
* Friendly statr!
* Fast service - most orders shipped within 24 hours!

OKIDATA PRINTERS

* $120 \mathrm{cps}, 9 \times 9$ Dot Matrix
* 50% faster than EPSON
* Parallel and Serial interfaces are standard
ML-82A $\$ 479^{50}$
ML-83A \$6999ㅗ
ML-84 parallel... \$105900
CALL FOR PRICES ON 82A TRACTOR OPTION AND 82A, 83A GRAPHICS OPTION. CABLES AND INTERFACE CARDS AVAILABLE

51/4" DISKETTES

ATHANA SS SD SOFT . . . 24.95 MENOREX SS SD SOFT 26.95 VERBATIM SS DD SOFT 29.95 VERBATIM 10 SECT. HARD 29.95

NASHUA

TOP QUALITY - LOW P FICE! Single Sided, Single Density Solt Sectored with Hub Zing
$\$ 19.95$ вох OF 10

JDR 16K RAMCARD

For Apple II*

* Expand your 48 K . Apple to 64 K
* Fully compatible with Apple Language System - Use in place of Apple Language card
* Provides extra memory for Visicalc ${ }^{\text {M }}$
» Run PASCAL, FORTRAN, Integer Basic with appropriate software
* Highest quality card features: gold edge connector, sockets for all IC's
NOW WITH 2 YEAR WARRANTY ASSEMBLED \& TESTED
WITH WARRANTY $\$ 495$ s4095 PARTS \& INSTRUCTIONS. \$1495
WITH INSTRUCTIONS

MONITORS

GREEN PHOSPHOR
NEC ${ }^{\text {јв1201м }}$
\$16900
ZENITH zvм-121
\$11900 COLOR
AMDEK color $\boldsymbol{1}^{\$ 33500}$

NEWPORT PROSTICK

* Professional Quality Atari-Type Joystick
* Extremely Rugged - Actual Arcade game Joystick
\star All parts are replaceable
* 6 Month Warranty

$$
\$ 31^{00} \text { EA } \quad 599^{95} P R
$$

SPECIAL THANKS TO MARC AND AL FOR THEIR HARD WORK AND DEDICATION

Beckman DMMs stay on the job when others call it quits. They're a hard-nosed breed of $31 / 2$ digit handheld multimeters you can always count on for outstanding performance.

Staying power

Beckman DMMs work up to 2000 hours on a common 9 V battery. That's ten times longer than other DMMs. And to prevent burnout on the job, Beckman DMMs can withstand 1500 Vdc loads and 6 kV transients. Current ranges are protected with a $2 \mathrm{~A} / 250 \mathrm{~V}$ fuse, and resistance ranges are protected up to 500 Vdc .

Easy to work with

No matter how hard they work, they're never hard to work with. Their single rotary switch makes function and range selection simple and sure. For your added convenience, most Beckman DMMs have built-in 10-Amp capability and Insta-ohms ${ }^{\circledR}$ continuity indication. That means you never have to carry an accessory shunt or wait for a continuity check.

SELECTION CHART

mosall	SPECIAL FEATURES	$\begin{aligned} & \text { mese } \\ & \text { DCen } \\ & \text { nher } \end{aligned}$		10 anme	
Tech 300	Basic six functions	0.5\%			\$120
Tech 310	Added features	0.25\%	\checkmark	\checkmark	145
Tech 310UL	UL-listed	0.25\%	\checkmark	\checkmark	155
Tech 320B	Audible continuity beeper	0.1\%	\checkmark	\checkmark	189
Tech 330	High accuracy \& true RMS ($\mathrm{AC} \& \mathrm{DC}$)	0.1\%	\checkmark	\checkmark	219
HD-100	Heavy duty (drop-proof, contamination-proof)	0.25\%	\checkmark		169
HI)-110	Heavy duty, plus 10 Amps	0.25\%	\checkmark	\checkmark	189

And to make sure that the job is done right the first time, Beckman DMMs have superior RF shielding, and an impressive 22 Meg-ohm input impedance that reduces circuit loading to ensure accurate readings.

No matter how much the job demands, you can count on Beckman DMMs to see you through. There's a Beckman DMM just right for every application. Use the selection chart to find the model best for you.

For a closer look at the workaholics, see your local Beckman distributor today. To locate the one nearest you, call or write Beckman Instruments, Inc., Instrumentation Operations, 210 S. Ranger Street, Brea, CA 92621. (714) 993-8803.

ITB-100 Lead Bender and Crimper

The new LB-100 component lead bender is totally unique in that it also contains a remarkable and handy lead crimper. The LB-100 handles all common axial components including resisfors, diodes and capacitors, and can be used on many radicl and 'TO' packages as well. The lead bending section enables simple rightangle layover of leads of any centers from 0.375 to $1.500^{\prime \prime}(9.5-38.1 \mathrm{~mm})$ while on addliional feature enables vertical' bends. For applications reauiring 'stand-off' or 'snap-in' lead forms. just use the built-in crimper. This device is easily adjusted for both lead diameler and crimo size and requires no additional foollng or die changes. Simply set the adjusting screw. insert the lead, and crimo. Provides all the versafility of expensive cutomotic machines at a fraction of the price. May be hand-held or mounted in a vise. Ideal for prototype. laboratory. and light production applications

0.5 Machine \& Tool Corporation

3455 Conner St., Bronx, N.Y. 10475 J.S.A
Tel.(212) 994-6600 Telex 125091

[^0]: -Price F.O.B. Beaverton, OR. Price subject to change

[^1]: Managing Editor, Intertace Age magazine

[^2]:

[^3]:

 au may poy by chec:

