

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

BUILD A DIGITAL IC TESTER

COMPUTERIZED TESTER WORKS IN OR OUT OF CIRCUIT

THE EARLY DAYS OF RADIO

A NOSTALGIC LOOK AT
IMPROVEMENTS IN AUDIO

ANALYZING WAVEFORMS

THE RIGHT WAY TO USE AN OSCILLOSCOPE

STRAIN-GAGE TRANSDUCERS

THE THEORY YOU NEED TO PUT THEM TO WORK

Computerdigest

FLOPPY-DISK DATA STORAGE BUILD A 68000-BASED COMPUTER

PUBLICATION

ChEAN UP THE MACROVISION MESS

REMOVE COPY PROTECTION FROM VIDEO CASSETTES FOR A BETTER PICTURE

NEW FROM TEK ATJUST S995!

Light weight makes the 2225 easy to carry even to remote servicing sites.

Fully segmented graticule lines ease the way for quick, accurate voltage and time measurements

Proven design and rugged construction offer reliability at its best. And the Tek reputation for meeting rigid environmental requirements means confidence in your measurements - and in knowing that his scope is built to last.

Sweep speeds to
$5 \mathrm{~ns} / \mathrm{div}$ are fast enough for making accurate pulse and timing measuremments on most digital logic families, with
good resolution
with minimal geometric distortion and crisp. small spot size delivers sharp trace definition.

One-button beam finder locates offscreen signals, even when intensity is turned down.
 pendent bandwidth limting on each channel to $5 \mathrm{MHz}, 500 \mu \mathrm{~V} / \mathrm{div}$ sensitivity for low-level signal measurements and differential applications

New low-cost probes (with nearly unbreakable tips) complement the rugged scope design. Compensation adjustments in the probe body itself eliminate the bulky compensation box at the front panel. Scope and probes are a perfect match!

Fast, accurate alternate horizontal magnification lets you choose any of three expansion levels to magnify any part of the normal waveform dis-play-including the trigger point and end of sweep

Now for the first time! Two vertical-channel inputs and an external Z-axis input all on the front panel. An excellent combination for manufacturing test stations and rackmount applications. And at the simple flip of a switch you can trigger on the Z-axis signal

Versatile, easy-to-use triggering functions solidly trigger the sweep on either channel. Included are asynchronous triggering capability; flexible coupling via DC. AC. HF and LF reject filtering; hands-free triggering from virtually any signal; plus independent selection of either TV line or TV field triggering regardless of time-base setting.

Now, the professional quality and performance you expect from Tektronix ...at an unexpected price: $\$ 995$ for scope, probes, 3 -year warranty and 30 -day free trial on approved credit. No portable in its class can match the Tek 2225 for features, versatility, convenience and value. It's the easy, economical answer to scope needs at bench and field sites, on the manufacturing floor and in the classroom. Call Tek to order, for application assistance or to get the name of your nearest Tek representative or distributor.

December 1987 Bileerranics

Vol． 58 No． 12

BUIIT THIS

47 ELECTRONIC CHRISTMAS TREE
Blinking LED＇s make this a unique holiday decoration．
Thomas L．Jozwiak

49 MACROVISION STABILIZER

Clean up your VCR＇s picture．
D．Dupre
55 IN－CIRCUIT DIGITAL－IC TESTER
Part 2．Build the tester and put it to work．
Bill Green
67 R－E ROBOT
Part 12．An electronic eye．
Steven E．Sarns
69 PC SERVICE
Foil patterns for Macro－Scrubber，Christmas Tree，and IC Tester．

THATHOLOHY

59 HOW TO ANALYZE WAVEFORMS

Digital readouts make waveform analysis a snap
Gregory D．Carey，CET

61 STRAIN－GAGE TRANSDUCERS

A look at how they work and how you can use them．
Clinton M．Wood

64 THE EARLY DAYS OF RADIO

Part 5．More nostalgia．
Martin Clifford

1）Paparingits

12 VIDEO NEWS

What＇s new in video．
David Lachenbruch
35 EQUIPMENT REPORTS
Mark V Professional Color
Light Controller．
40 AUDIO UPDATE
Can you believe your ears？
Larry Klein

42 STATE OF SOLID STATE
An electronic potentiometer．
Robert F．Scott
74 SATELLITE IV
What＇s next？
Bob Cooper，Jr．
77 DRAWING BOARD
Designer RAM
Robert Grossblatt

PAGE 86

PAGE 47

ATiD MOA：

126 Advertising and Sales Offices
126 Advertising Index
101 Annual Index
15 Ask R－E
4 Editorial
127．Free Information Card
24 Letters
105 Market Center
32 New Products
6 What＇s News

OHPH:COH:

ULIDA HI-TECH X-MAS TREE

Copy protection is commonplace in today's movie industry. The Macrovision encoding process is used on many new video tape releases, and some cable companies have expressed interest in it as well. Its advocates claim that Macrovision affords unimpaired viewing of the original tape while making it impossible to copy it. However, many sets are unable to process the encoded signal correct-ly-resulting in a clouded picture that might also roll or flash. If your TV is one of those that can't handle the encoded picture, our MacroScrubber can help. It eliminates only the Macrovision encoding, with no effect on normal video signals. For a clean picture all the time, build the Macro-Scrubber. The story begins on page 49

THE JANUARY ISSUE IS ON SALE DECEMBER 3

NATIONWIDE PAGING SYSTEM
Wherever you are, you'll get your message.

BUILD AN UNINTERRUPTABLE POWER SUPPLY
A 40-watt unit keeps going when your power company quits.

SEMICONDUCTOR TESTING

How to test TTL devices.
ComputerDigest
Get your PT-68K up and running.

[^0]IIPI
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Liter ature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 126. LOGIC MONITOR
B\＆K－PRECISION＇s Model 550 and 552 IC Comparator Tester／Logic Monitors test IC＇s by comparison to a known good reference in one simple operation．As logic monitors，they simultaneously indicate the logic states of up to 20 IC pins．They test nust 141020 pin， 54 and 74 Series TTL（Model 550）or 4000 and 74C Series CMOS（Model 552）devices．Both models are available from distributors at $\$ 395$ ．Contact your local distributor or： B\＆K－PRECISIÓN，Dynascan Corp．， 6460 W．Cortland St．，Chicago，IL．60635．（312） 889－9087

LOGIC／PULSER PROBES MELP LOCATE DIGITAL FAULTS IN LAB OR IN FIELO SERVICE
BSK－PRECISION now offers logic and pulser probes to fill the needs of engineers and technicians．The DP－21 is a 20 MHz probe that also displays pulse presence and logic status．Both LED and zudible logic state indicators are featured．The DP－31 pulser probe can be used alone or with a logic probe or scope．It produces a $10 \mu \mathrm{~S}$ pulse at 0.5 or $\$ 00 \mathrm{PPS}$ rates and features an external square wave and synchronizing terminal．Both probes are multi－family compatible．The DP－21 is $\$ 32$ ．The DP－31 is $\$ 33$ ．Contact your local distributor or：B\＆K－PRECISION Dynascan Corp， 6460 W ：Cortland St ． Chicago，IL 60635．（312）889－9087．

CIRCLE 77 ON FREE INFORMATION CARD

AODS ICICOMPONENT NEW COMPARATOR Test virtually any type of passive or act ive compronent or module with B\＆K－PRECISION＇s new 541 Com－ ponent Comparator．The 541 is designed for use with the 540 component tester or virtually any $x-y$ oscilloscope．It is svell suited for both in－circuit and out－of－circuit tests．It＇s fast and easy to use．Unlike single function testing，the 541 can be used on series parallel or series／parallel circuits．$\$ 395$ ．Contact your local distributor or：B\＆K－PRECISION，Dynascan Corp．， 6460 W．Cortland St．，Chicago，IL． 60635 （312）889－9087．

NEW COMPONENT TESTER LOCATES FAULTS ON UNPOWERED BOARDS IN FIELD OR PLANT The new Model 540 component tester is an extremely cost effective，highly flexible trouble－shooting aid that can assist in rapidly locating faults on unpowered boards．Faults can be traced to the component level without specific circuit knowledge．Individual com－ ponents can also be tested．Test results are displayed as a curve on a built－in CRT display．Curve tracing allows matching of components．Two channels allow production testing against known good boards．Ideal for field service or production testing．\＄995．Con－ tact your local distributor or：B\＆K－PRECISION， Dynascan Corp．， 6460 W．Cortland St．，Chicago， IL 60635．（312）889－9088

PROGRAMMABLE IC TESTER TESTS TTL， CMOS，RAM AND ROM IC＇S，IN OR OUT－OF－ CIRCUIT
Called the＂lirst cost－effective way to test IC＇s both in and out－of－circuit，＂the new B\＆K－PRECISION Model 560 fills the void between basic component testers and costly ATE systems．Over 1500 different 14 to 24 pin devices can be tested，including TTL and CMOS digital IC＇s，RAMs and ROMs．The 560 speeds testing，simplifies diagnostics and doesn＇t re－ quire prior test skills．Plain－English user prompts guide every step of operation．Test results are dis－ played as positive＂pass＂or＂fail．＂＂Test results can be fed 10 a printer．Applications include incoming inspection，QC，production line testing and troubleshooting faulty products．$\$ 3,500$ ．Contact your local distributor or：B\＆K－PRECISION，Dynas－ can Corp．， 6460 IV ．Cortland St．，Chicago，IL 60635. （312）889－9087

Whe－her your needs are for production board iesting，incoming inspect c．n or field service B\＆K－PRECISION has you covere．I with time saving，accurare digiral test products．

The Mcdel 560 Programmable In＇Out－of－circuit IC Tester is the first costeffective nay to rapidl；test IC＇s both in and out－of－circuit．Punch un the－umber ycu need from a reside themony of over 1500 TL, CMOS ICs， RAM＇s and RO：1＇S．

The Madel $\vdots 40$ Component Tester loc Jtes faults an unpowered board； down to the component level．Curve－tracing method also cillows fast com－ parison of components or bocrds．

The Model 541 Component Comoarctor is a companion in it ument for use with vo 1 s scope or the 540 ．It tests ICs，semiconductors，sapacitors incuctors tranisformers and nore．

The Madels 550 and 552 KC Comparator Tester／Logic Monit．）rs are hand－held po tables for TL ard CMOS applications．In－circuit Jynamic tests corr pare a known－good C to an o7－boa－d IC．A 20－char nellogic monto is builtin．

The B\＆＜－PRECISION digita test line－up s rounded out by consenient and economical pulser and logic probes．

Fo－immediate delivery of complete specific atiors anc applications information，call your local distributar or B\＆K－PRECISION．

EDITORIAL

Where is ComputerDigest going?

It's been almost four years since the first issue of ComputerDigest appeared inside Radio-Electronics. We have proven wrong the thousands of readers who felt that we would soon become "just another computer magazine." We have proven that Radio-Electronics is dedicated to covering the entire scope of electronics from satellite TV to antique radio, from digital audio tape to computers.

We hope you've noticed that ComputerDigest has changed during the last year. We've been taking our coverage of computers more seriously, and we've been covering more serious computers.

We've seen how computers can be used to design printed-circuit boards, and we've seen how graphics coprocessors work to make CAD programs faster and more powerful. We've looked at the computers of tomorrow with reports on IBM's PS/2. And, although we got off to a false start, we've begun to show you how to build a computer based on Motorola's powerful 68000 microprocessor.

Our hands-on reviews have kept you on top of the latest hardware and software. And we hope that our in-depth product comparisons have helped make your buying decisions easier by keeping you informed.

The construction projects have ranged from a clock board for your PC to a complete, powerful, yet low-cost 68000-based machine. We have also shown you how to install a 3-1/2-inch disk drive, and how you can dramatically increase the performance of your PC.

But that's enough talk about 1987. As we prepare our first issue for next year, we wonder how we can make ComputerDigest better. What type of articles do you want to see in 1988? More reviews? More construction? More indiustry news? Only you know how ComputerDigest can serve you better. Please don't keep it to yourself-we need to know. Write to us at 500-B Bi-County Blvd., Farmingdale, NY 11735. Let us know what computers you use and how you use them, and share your views with us..

Thanks for making 1987 a successful year for Radio-Electronics. We hope your holiday season is happy, and we wish you all the best for the new year.

Your Best Source for Banana Plugs and Adapters is POMONA ELECTRONICS

STANDARD DOUBLE BANANA PLUG: MODEL MDP	BNC FEMALE TO STANDARD DOUBLE BANANA PLUG: MODEL 1269	STANDARD DOUBLE BINDING POSTS TO BNC NALE: MODEL 1296
DOUBLE BANANA JACK: MODEL 2269	FREE 1987 GENERAL CATALOG PONOT A ELISCTRONCS TEST ACCESSORIES 1987 ITI Pomona Electronics 1500 E. Nimth St., Pomona, CA 31766 Tel: (714) 623-3463	SINGLE BINDING POST TO BNC MALE: MODEL 3430
STANDARD BINDING POST: MODEL 3760	CONNECTOR TEST ADAPTERS: SOCKET TYPE (LEFT) MODEL 4690; PIN TYPE (RIGHT) MODEL 4691	BNC FEMALE TO PHONO PLUG: MODEL 2957

What's News

Novel developments in artificial intelligence

In spite of fantastic advances, computers remain remarkably stupid about certain things. In particular, their language level is below that of a two-year-old child. And they are notoriously poor at finding things only slightly different from those asked for. Another weakness of computers is overprecision-without the exact information the computer cannot reach a conclusion. (An officer on the battlefield, on the other hand, must make instant decisions based on incomplete-and sometimes conflicting-information.)

Scientists at the General Electric Research and Development Center recently presented eight papers aimed at those problems at the Tenth International Conference on Artificial Intelligence,
held in Milan, Italy. Possibly the most topical were two papers by Dr. Urik Zernik of the Center. Both of them were based on attempts to answer two questions: How do human beings learn language?" and "How can the process be taught to computers?"

Past computer-language programs have followed academic models-the computer is "taught" a vocabulary (or fitted with a "dictionary") and given a set of grammatical rules. But humans don't learn a language that way, says Dr. Zernik. They learn with everyday experience with new words, phrases, and idioms.

His solution is to equip his program (called RINA) with a "dynamic lexicon" containing entire phrases (including idioms). RINA

DR. URI ZERNIK, General Electric scientist, with a few of the idioms that his language, RINA, helps the computer to figure out.
is also equipped with a set of mathematical instructions that tell the computer how to work with the lexicon and how to use it to gain new knowledge.
As an example, the computer was given the statement: "Israel and Egypt buried the hatchet." The computer interpreted that as "The nations buried a knife", but it rejected the phrase; in its experience, nations do not bury physical objects. The user helped out: "Israel and Egypt were in a long conflict, they signed a peace agreement." The computer, correctly deducing the meaning of the idiom, then replied: "They buried the hatchet; they terminated the conflict." Later, given the idiom in a totally different context, it responded correctly by applying what it had learned.

A system that is designed to enable a computer to make decisions based on incomplete information was described by Dr. Piero Bonissone, in a paper detailing RUM (Reasoning with Uncertainty Module). The system helps the computer to make sense out of fuzzy terms, like "almost" or "probably" and to weigh the similarities and differences of the current situation against a previous one.

Another paper, by GE scientist Van-Duc Nguyen, describes advances in image understanding-a computer's ability to recognize objects shown by the lines and angles of their outlines. (See "What's News" Radio-Electronics, April 1987). That process of "line labeling", or identification, is improved by adding information showing all lines as either concave, convex, or occluding.

R-E

NEW！ CB Radios \＆ Scanners

Communications Electronics，＂ the world＇s largest distributor of radio scanners，introduces new models of CB \＆marine radios and scanners．
NEW！Regency TS2－RA
Allow 30.90 days for delivery after receipt of order due to the high demand for this product
ist price \＄499．95／CE price $\$ 339.95$
12－Rend， 75 Chennel Crystallesi e AC／DC requencyrange： $29 \cdot 54,118 \cdot 175,406 \cdot 512.806-950 \mathrm{MHz}$ The Regency TS2 scanner lets you monitor Military，Space Satellites，Government，Railroad Justice Department，State Department，Fish \＆ Game，Immigration，Marine，Police and Fire Depart ments．Aeronautical AM band，Paramedics，Am ateur Radio，plus thousands of other radio fre quencies most scanners can＇t pick up．The Regency TS2 features new 40 channel per second Turbo Scan＂so you wont miss any of the action．Model TS1－RA is a 35 channel version of this radio without ine 800 MHz ．band and costs only 5233.95 ．

Regency ${ }^{\text {Z }}$ 60－RA

List price $\$ 299.95 /$ CE price $\$ 148.95 /$ SPECIAL B－Rend，eo Channel－No－crystel scanner Bands： $30-50,88-108,118-136,144-174,440-512 \mathrm{MHz}$ The Regency 260 covers all the public service bands plus aircraft and FM music for a total of eight bands．The 260 also features an alarm clock and priority control as well as AC／DC

Regency ${ }^{*}$ Z45－RA

259．95／CE price $\$ 139.95 /$ SPECIAL －Bend， 45 Chennel e No－crystel scanner

The Regency 245 is very similar to the 260 model isted above however it does not have the commer－ cial FM broadcast band．The 245 ，now at a special price from Communications Electronics．

Regency ${ }^{\bullet}$ RH256B－RA

List price．\＄799．95／CE price $3329.95 /$ SPECIAL
18 Channel－ 25 Wett Transceiver Priorlty The Regency RH256B is a sixteen－channel VHF land mobile transceiver designed to cover any frequency between 150 to 162 MHz ．Since this radio is synthesized，no expensive crystals are needed to store up to 16 frequencies without battery backup． All radios come with CTCSS tone and scanning capabilities．A monitor and night／day switch is also standard．This transceiver even has a priority func－ tion．The RH256 makes anideal radio por any polce and high performance．A 60 Watt VHF 150－162 MHz ．version called the RH6068－RA is available or $\$ 459.95$ ．A UHF 15 watt， 10 channel version of his radio called the RU150B－RA is also available and covers $450 \cdot 482 \mathrm{MHz}$ ．but the cost is $\$ 439.95$ ．

Bearcat ${ }^{\oplus}$ 50XL－RA

ist price $\$ 199.95 /$ CE price $\$ 114.95 /$ SPECIAL 10－Band， 10 Channel Mendheld scenner The Uniden Bearcat 50XL is an economical，hand－ held scanner with 10 channels covering ten fre－ quency bands．It features a keyboard lock switch to prevent accidental entry and more．Also order the new double－long life rechargeable battery pack part \＃BP55 for \＄29．95，a plug－in wall charger，part \＃AD100 for $\$ 14.95$ ，a carrying case part \＃VCOO1 for \＄14．95 and also order optional cigarette lighter cable part PS001 for \＄14．95．

NEW！Scanner Frequency Listings you find all the action your scanner can listen to．These you listings inew new list gs inde police，rivate police agencies． squads，local governmen，private police agencies． hospitals，emergency medical channels，news media forestry radio service，railroads，weather stations，radio common carriers．AT\＆T mobile telephone，utility com panies，general mobile radio service，marine radio service，taxi cab companies．fow truck companies． trucking companies，business repeaters，business radio （simplex）federal government，funeral directors，vet－ erinarians，buses，aircraft，space satellites，amateu redio，broadcasters and more．Fox frequency listings feature call letter cross reference as well as alphabetica listing by licensee name，police codes and signals．Al Fox directories are $\$ 14.95$ each plus $\$ 3.00$ shipping． State of Alaska－RLO19．1；Baltimore，MD／Washington DC－RL024－1；Chicago，IL－RL014－1：Cleveland．OH RL017－1；Columbus，OH－RLOO3－2；Dallas／Ft．Worth， TX－RLO13－1；Denver／Colorado Springs，CO－RLO27．1 Detroit，MI／Windsor，ON－RL008－2；Fort Wayne，IN ／Lima，OH－RLOO1－1：Houston，TX－RLO23－1：Indian． apolis，IN－RLO22－1：Kansas City．MO／KS－RLO11－2； Los Angeles，CA－RL016－1；Louisville／Lexington，K RL007－1：Milwaukee，WI／Waukegan，IL－RL021－1 Minneapolis／St．Paul，MN－RLO10－2；Nevada，E．Central CA－RLO28－1；OKlahoma City／Lawton，OK－RL005－2； Pittsburgh，PA／Wheeling，W－RL029－1；Rochester／ Syracuse，NY－RLO20－1；Tampa／St．Petersburg，FL－ RLOO4－2；Toledo，OH－RLOO2－3．A regional directory RLoO4－2；Toledo，OH－RLOO2－3．A regional directory
which covers police，fire ambulance \＆rescue squads， local government，forestry，marine radio，mobile phone， arrcraft and NOAA weather is available tor $\$ 19.95$ each RDOO1－1 covers AL，AR，FL，GA，LA，MS，NC，PR，SC，TN 8 VI．For an area not shown above call Fox at 800.543

Regency ${ }^{*}$ Informant ${ }^{\text {r }}$ Scanners

Frequency coverage： $35 \cdot 54,136 \cdot 174406.512 \mathrm{MHz}$
The new Regency Informant scanners cover virtu ally all the standard police，fire，emergency and weather frequencies．These special scanners are preprogrammed by state in the units memory．Just pick a state and a category．The Informant does the rest．All informant radios have a feature called Turbo Scan＂to scan up to 40 channels per second The INF1－RA is ideal for truckers and is only $\$ 249.95$ ．The new INF2•RA is a deluxe model and has ham radio，a weather alert and other exciting features built in for only $\$ 324.95$ ．For base station use，the INF5－RA is only \＄199．95 and for those who can afford the best，the INF3．RA at $\$ 249.95$ ，is a staterot－the－art，receiver that spells out what service you＇re listining to such as Military，Airphone，

Regency ${ }^{\text {© }}$ HX1500－RA

tt－Eund 55 Chamel © Mandheid／Portable

 Search Lockout－Priority Eant Belect Sidellt liquild crystal display e EAROM Momor Direct ChannelAccessFoeture Ecandelay The new handheld Regency $\mathrm{H} \times 1500$ scanner is fully keyboard programmable for the ultimate in versatility．You can scan up to 55 channels at the same time including the AM aircraft band The LCD display is even sidelit for night use．Includes belt clip．flexible antenna and earphone．Operates on 8 1．2 Volt rechargeable Ni －cad batteries（not included） Be sure to order batteries and battery charger from
the accessory ist in this ad

Bearcat ${ }^{\circ}$ 100XL－RA

 Search－Limil－Mold E Lockoul－AC／DC Frequency range： $30-50,118.174,406.512 \mathrm{MHz}$Included in our low CE price is a sturdy carrying case earphone，battery charger／AC adapter，six AA ni－cad batteries and flexible antenna．Order your scanner now．

＊${ }^{*}$＊Uniden CB Radios

The Uniden line of Citizens Band Radio transceivers is

 styled to compliment other mobile audio equipment． Uniden CB radios are so reliable that they have a two year limited warranty．From the feature packed PRO540 e to the 310 e handheld，there is no better Citizens Band radio of the market today
PRO31OE－RA Unden 40 Ch ．Portable／Mobile CB $\$ 8595$ NINJA－RA PRO＇310E with rechargeable battery pack．$\$ 9995$ NINA－RA PROANE with rechargeable battery pack．$\$ 9995$ B－10－RA 12 VAA Nr－cad batt．for Ninja（set of 10
PRO520E－RA Uniden 40 channel CBMobile PRO520E－RA Uniden 40 channel CB Mobile PRO540E－RA Uniden 40 channel CB Mobil $\begin{array}{lr}\text { PRO710E－RA Uniden } 40 \text { channel CB Base } & \$ 119.95 \\ \text { PC22－RA Uniden remote mount CB Mobile } & \$ 99.95\end{array}$ $\$ 29995$
$\$ 11995$ PC55－RA Unidenmobile mount CB transceiver \＄5995
$\star \star \star$ Uniden Marine Radios $\star \star \star$
CEI．The Unimetrics SH86．RA has 50 transmit and 60 Only $\$ 16905$ The Unmetrics SH B8－RA is a deluxe tuin tunction marine radiotelephone teaturing 55 transm and 90 receive channels and scanning capability for only $\$ 259.95$ ．The Unimetrics SH3000－RA is an exce lent digital depth sounder，good for 300 tees．It has an LCD continuously backlit with red light display and a ft ．or 10 ft ．alarm．Only $\$ 189.95$ ．Order today．

Bearcat ${ }^{\circ}$ 800XLT－RA
List price $\$ 499.95 /$ CE price $\$ 289.95 /$ SPECIAL
12－Bend， 40 Channel Noerystel scenner
Priorlty control－Seerch／scen＊AC／DC
Bands：29－54，118－174，406－512，806－912 MHz
The Uniden 800 XL T receives 40 channels in two banks

OTHEA RADIOS AND ACCESSORIES

$\$ 179.95$

 RD55．RA Uaiden Visor mount Radar Detector $\$ 9895$ RDO－RA Uniden＂Passport＂size Radar Detector \＄16995 NEWIBC 70XLT－RABearcal 20 channel scanner $\$ 168.95$ BC 140－RA Searcal 10 channel scanner $\$ 9295$ BC $145 \times$－RA Bearcal 16 channel scanner $\$ 9895$ BC 175 XL－fA Bearca！ 16 channel scanner $\$ 15695$ BC 210 XLT．RA Bearcat 40 channel scanne BC．WA－RA Bearcal Weather Alent $\$ 19695$ BC－WA．RA Bearcal Weather Alent＂\＄35．95 R1080－RA Regency 30 channel scanner $\$ 11895$ R1090－RA Regency 45 channel scanner \＄14895 UC102－RA Fiegency VHF 2 ch ． 1 Watl transcerver $\$ 117.95$ P1412－RA fiegency 12 amp reg．power supply MA549－RA Drop－in charger for HX1200 \＆HX1500 MA518－RA Wall charger for HX1500 scanner MA553－RA Carrying case for $H \times 1500$ scanner MA257－RA Cigaretle Inghter cord for $\mathrm{H} \times 12 / 1500$ MA917－RA NI－Cad ballery pack for HX1000／1200 SMMX7000－RASVC．man for MX7000 \＆M $\times 5000$ B－4－RA 12 VAAA NrCad batteries iset of tourl B－8－RA $12 \checkmark$ AA Nr－Cad batteries（set of eight） FB－E－RA Frequency Direciory for Eastern U．S A FB－W－RA Frequency Directory for Western U．S A ASD－RA Air Scan DirectorySRF－RA Survival Radio Frequency Directory TSG－RA＂Top Secret＂Registry of U．S Gout Freq IC－RA Tecnniques for Intercepting Comm RRF－RA Ra Iroad frequency directory
EEC－RA Embassy 8 Espionage Communications CIE－RA Covert Intelligenct，Elect Eavesdropping MFF－RA Midwest Federal Frequency directory A60－RA Majnet mount mobile scanner antenna A70－RA Base station scanner antenna
MAS48－RA Mirror mount Informant antenna USAMM－RA Mag mount VHF ant．w／ 12 cable USAK－RA 3 \％hole mount VHF ant．w／ 17 cable Add $\$ 300$ sripping for all accessones ordered at the Add $\$ 1200$ shipping per shortwave receiver

Add $\$ 700$ shipping per radio and $\$ 3.00$ per antenna．

BUY WITH CONFIDENCE

oger the lane your order directly 10 our Scanner

 send or Distribution Center．Michigan residents please add 4% sales tax cr Supply your tax I．D．number．Written pur－ chase orders are accepted from approved government agencies and mosi well rated firms at a 10% surcharge for net 10 billing．All sales are subject to availability． acceptancs and verification．All sales on accessories are final．Prices，terms and specifications are subject to change without notice．All prices are in U．S．dollars．Out of stock ite $n s$ will be placed on backorder automatically inless CE is instructed differently．A $\$ 5.00$ additional handling fee will be charged for all orders with a merchandise total under $\$ 50.00$ ．Shipments are F．O．B． Ann Arbor，Michigan．No COD＇s．Most products thai we sell have i manufacturer＇s warranty．Free copies of warranties on these products are available prior to bank clearance．Ning to Censible for typographical eprors． Mail ofders to：Communications Electron． cs．Box 1045．Ann Arbor，Michigan 48106 U．S．A．Add \＄7．00 per scanner for R．P．S．／U．P．S． ground shipping and handling in the continental U．S．A．Fop Canada，Puerto Rico，Hawaii，Alaska， or APO／FPO delivery，shipping charges are three times continental U．S．rates．If you have a Discover，Visa or Master Card，you may call and place a credit card order．Order toll－free in the U．S．Dial 300－USA－SCAN．In Canada，order toll－ free by calling 800－221－3475．FTCC Telex any time，dial 825333．If you are outside the U．S． or in Micr igan dial 313－973－8888．Order today． Scanner Distribution Center ${ }^{*}$ and CE logos are trade－ marks of Communications Electronics Inc．＊Bearcal is，a registered trademark of Uniden Corporation Regency and Turbo Scan are registered trademarks of

For credit card orders call

 1－800－USA－SCANConsumer Products Division

"If you're going to learn electronics, you might as well learn it right!"

You＇ve probably seen adver－ tisements from other electronic schools．Maybe you think they＇re all the same．They＇re not！

CII is the largest independent home study school in the world that specializes exclusively in electronics．

Meet the Electronics Specialists．

When you pick an electronics school， you＇re getting ready to intest some time and money．And your whole future depends on the education you get in relurn．

That＇s why it makes so much semse to go with number one ．．．with the spectalists with CII：

Pick the pace that＇s right for you．

ClE underwands people need to learn at their own race．There＇s no presure to keep up ．．．no slow learners hold you back．If you＇re a beginner，you tart with the basios．If you alreads know some electronics，you mone ahead to your own level．

Enjoy the promptness of CIE＇s ＂same day＂grading cycle．

When we receive your lesson before noon Monday through Saturday，we grade it and mail it back the same day You find out yuickly how well you＇re doing！

CIF offers you an Associate Degree．

One sf the bev credentials you can hate in electronic－or any other career field－is a college degree． That＇，why Cle gives you the oppor tunity ${ }^{\text {W }}$ carn an Associate in Applied Science in Electronics Engineering Technology，Any CII：career cource can offer you credit toward the degree－ more than half of the number needed in some caser．
＂Cletcland Institute of Electronics is the only ateredited institution of higher kearning offering an Associate Degree progran with tuition based on actual sudy time uned．The favter voll com－ plete beur degree assignments．the kess your owrall tuition．＂Steve Simcic Vice－President Academic Affairs

There＇s no such thing as bargain education．

If you talk with some of our graduates，chances are you＇d find a lot of them shopped around for their training．Not for the lowest priced but for the best．They pretty much knew what was a ailable when they picked CIE as number one．

We don＇t promise you the moon．W＇e do promise you a proven way to build valuable career skills．The CII faculty and saff are dedicated to that． When you graduate，your diploma shows employers you know what you＇re about．Today，it＇s pretty hard to put a price on that．

Because we＇re specialists we have to stay ahead．

At Cll，we＇ve got a position of leadership to maintain．Here are some of the ways we hang onto it

Programmed Learning

That＇s exactly what happens with CIF＇s Auto－Programmed I essons．Each lesson uses famous＂programmed learn－ ing＂methods to teach you important principles．You explore them，master them completely，before you tart to apply them．You thoroughly understand each sep before you go on to the next You learn at your own pace．

And，beyond theory，some courses come fully equipped with electronic gear the things you see in technical magazines）to actually let you perform hundreds of＂hands－on＂experiments．

Experienced specialists work closely with you．

Even though you study at home，you are not alone！Each time vou return a completed lesson，you can be sure it will be reviewed，graded，and returned with appropriate inseructional help． When you need additional individual help，you get it fast and in writing from the faculty technical specialist best qualified to answer your question in terms you can understand．

State－of－the－art Laboratory Equipment

Some courses feature the（＇II Microprocessor Training Laborators An integral part of computers． microprocessor technology is used in many phases of business，including ser vice and manufacturing industris．

The MTL give you the opportunits to program it and interface it with LLED displays，memory devices，and witehes． You＇ll gain all the practical expereme needed to work with state－of－the－art equipment of today and tomorros．

Which CIE Training fits you？
Beginner？Intermediate？ Advanced＇？CIE home sud courses are designed for ambitious people at alt entry lerels．People who may have：
1．No previous electronics hnowledge，but do have an interest in it：
2．Some basic knowledge or experience in electronics；
3．In－depth working experience or prior training in electronics．
You can start where you fit and fit where you start，then go on from there to your Diploma，Associate Degree． and carcer．

Today is the day． Send now．

Fill in and return the postage－free card attached．If some ambitious person has remoed it，cut out and mail the coupon You＇ll get a IRI：I school catalog plus complete information on independent home study．For your consenience，we＇ll try to have a CIL representative contact you to answer any quevtions you may have．
Mail in the coupon below or，if you prefer，call toll－free 1－80（0）－321－2155 （in Ohio，1－800－523－9109）．

VIDEO News

DAVID LAACHENBRUCH, CONTRIBUTING EDITOR

- What's in a name? Not much, evidently. Take RCA, for example: In 1986, it was sold to General Electric, which was one of the original founders of RCA. General Electric then sold off RCA Records to German publisher Bertelsmann, which not only continues to use the RCA name but has restored the old RCA "meatball" trademark- R, C, and A in a circle, with a lightning bolt at the bottom of the A. Then GE proceeded to sell both GE and RCA consumer electronics to France's giant Thomson combine. Now the RCA initials will be used on records by a German company and on TV's by a French one. The David Sarnoff Research Center (once called RCA Laboratories) was donated to SRI
International, which still calls it by the name of RCA's guiding genius.

Or take Philips, the worldwide tradename of the Dutch electronics giant. In the early days of electroisics, the company reached an agreement to keep the Philips name out of the United States because it might be confused with Philco, which was here first. Philco was sold to Ford, Ford sold it to GTE, and GTE sold it to North American Philips, which in turn was absorbed by Dutch Philips. So Philips ended up owning Philco, which, not surprisingly, no longer had any objection to the use of the Philips name. Thus, the Philips name finally has come to America on lightbulbs and appliances, and soon on electronics, including TV sets.

Good old names never seem to die; but sometimes they go to sleep for a while. That's what's now happening to Pilot, a historic name. It was Pilot Radio that introduced the first bigselling component FM tuner, the Pilotuner. Then in 1948 Pilot brought out the first portable TV (it was in a large suitcase and had a 3 -inch picture); that was also the first TV set with a list price permutations, and eventually when audio marketer Morse sold out to Curtis Mathes, Pilot was one of the names that went with it. Curtis Mathes tried selling Pilot audio equipment for a while, but phased out the line this year. So Pilot is now in limbo, but the brand will probably make a comeback sometime soon, like oldtimers such as

Capehart, Emerson, Symphonic, and DuMont; all of those are still around, but the equipment is being manufactured by companies that have no connection to the brand's originator.

- Zenith goes digital. Apparently encouraged by the success of its original digital offerings last year, Zenith has introduced 15 new TV sets with all-digital signal processing, in 20-and 27 -inch sizes, all with built-in TV stereo and teletext reception. That's far more digital models than any other TV manufacturer will be selling in the U.S. In other introductions, Zenith became the first American manufacturer to offer a TV set with a $35-$ inch tube (the tube is Japanese). Also, Zenith has introduced a new vertical VCR about sixinches wide by 12-inches tall, designed for bookshelves and other tight places. One 27-inch TV set has a removable panel that conceals a compartment just the right shape to hold Zenith's vertical VCR-and nobody else's. For its lower-priced sets, Zenith has introduced the new highly automated Duratech chassis, which contains 46% surface-mount parts, 80% machine-inserted components, 20% fewer connectors, and is 100% computer tested and aligned.
- Compact disc-video postponed. If you've been looking for those Compact Disc-Video (CDV) records and players (Radio-Electronics, August 1987), you'll have to wait a little longer. Although they were formally "introduced" last summer, nothing has come on the market, and they're now scheduled for a new launch early in 1988. The CD-V format is an overall name given to the old Laservision videodisc, as well as the new five-inch discs that play five minutes of analog video and 20 minutes of digital audio. Pioneer has introduced combination players that will play the 5 -inch discs as well as 8 - and 12 inch ones, and others are due soon. CD-V's sponsors want to go through the hoopla of a launch after they have about 200 music-video titles in the 5 -inch size. At press time, fewer than 100 selecticns had been committed to the short audio-video singles.

R-E

TEST EQUIPMENT THAT MEASURES UP TO YOUR SPECIFICATIONS
 2f De instruments

DMM-300 \$79.95

3.5 D'GIT DMM / MULTITESTER

Our beas model a highly accurate, full function Dht M Haded with many extra fearums Audible consimuit, capacitanca, transistma, tempers ture and conductance all in one bandheld nusees Tempersture probe, test leacts and battery included

- Basic De accurscr plus or minus 0.25% OC voltuge: 2 Jonav $1000 \mathrm{v}, 5$ ranges - Resiriance: $200 \mathrm{chms}-20 \mathrm{M}$ ahms 6 ramojes
- AC/OC currene 200uA - 10A, 6 ranges - Capanitance: 2000pf - 20 ut, 3 rames - Transstar zester: hpe test. NPN, PNF * Temperature terater 0° - $2000^{\circ} \mathrm{F}$ - Conducrance: 200ns
- Fullr rovar loen protected - Input intpedarice 10 M ohm

DMM-200 \$49.95

3.5 DIGITFULL FUNCTION DMM High accuracy, 20 amp current capebility and many range settungs make this model ideal for serious bench or field work. Tilt stand for hands-free eperation. 2000 hour battery life with standard 3v cell. Probes and battery included

- Basic DC accuracy: plus or minus 0.25%
- DC vcitage: $200 \mathrm{mv}-1000 \mathrm{v}, 5$ ranges
- AC vortag: $200 \mathrm{mv}-750 \mathrm{v}, 5$ ranges

6 rangas
6 rangas

* AC/DC curtent: $200 \mathrm{uA}-20 \mathrm{~A}, 6$ ranges
- Fully cverload protected
- Input mimpodance: 10 M ohm
- $180 \times 38-37 \mathrm{~mm}$, weighs 320 grams

DMM-700

$\$ 49.95$
3.5 DIGIT AUTORANGING DMM Autorangs convenience or fully manual operation. Sesectable LO OHM mode permits accurate on-circuit resistance measurements involving semi-conductor junctions. MEA mode for measurements relative to a specific reading. Fnobes and battery incuded.

* Basic DC bccuracy: plus or minus 0.5% - DC voltage: $200 \mathrm{mv}-1000$. autorangiry AC voltere or 5 manual ranges * AC volege: $2 v-750 \mathrm{v}$, autcranging
- Resistance: 200 ohms - 20 H ohms.
- AC/DC current: 20 mA - 10A. 2 ranges
- Fully over - toad protected
- Audible continuity tester
- Input impedance: 10 M ohm
- $150 \times 75 \times 34 \mathrm{~mm}$, weighs 230 grams

MODEL $2000 \quad \$ 349.95$ 20 MHZ DUAL TRACE OSCILLOSCOPE Model 2000 combines usefut features and exacting quatity. Frequency calculation and phase measuriment are quick and easy in the X - Y Made. Servie technicians will appreciate the IV Syme circuity fos vewing TV-V and TV-H as well as accurate synchronization of the Video Signal, Blanking
and Verticle/Horizontal sync pulses

* Lab quality compensated 10 X probes included - Butt-in component tester

MODEL $3500 \quad \$ 499.95$

35 MH ? DUAL TRACE OSCILLOSCOFE Wide bandwidth and exceptional 1 mV /DIV sensitivier make the Model 3500 a powerful diegncstic tool for engineers or techniclans. Delayed triggering allows any portion of a waveform to be isolated and expander the cioser inspection. Vanable Holdof makes possibie the sable viewing of complex waveforms.

- Lab quality compensated 10X probes included
- Delayed and single sweep modes
- Axis intensity modulation
- 2 Axis intensity modulation
- X-Y operation *Bright 5" CRT *TV Sync filea

> 2 YEAR тавraнті ON ALL MODELS

DPM-1000

DNM-100
 Now- $\$ 29.95$
 DCNET SIZE DMM Shirt-packet portability with no compromise in features or ascuracy. Latge easy 10 read $5^{\prime \prime}$ LCI display 2000 hour baittery life with $5^{\text {" }}$ LCI display 2000 hour baittery life with standard $9 v$ cell provides ovir two years of average use Probes and battery included average use Probes and battery included.
 - Basic DC arcerracy; plus or minus 05%
 - DC roltage $2 \mathrm{v}-1000 \mathrm{v} .4$ ranges
 - AC voltage $200 \mathrm{v}-750 \mathrm{v}, 2$ ranges - Resistance 2 2r ohms - 2 M ohms, 4 rangës - DC eurrent $2 m A-2 A$, 4 ranges
 - Fully mever-mall protected
 - Inpur ampertance: 10 M ohm
 * $130 \times 75 \times 2 \mathrm{Emm}$, weighs 195 grams

 HJDR INSTRUMENTS110 Knowies Drive, Los Gatos, CA 95030 (408) 866-6200 • FAX (408) 378-8927 • Telex 171-110

ORDER TOLL FREE 800-538-5000

IF YOUWANTA BETTER COMPUTER BUILDIT YOURSELF.

Heath makes building the powerful 386 computer quick, fun, easy... and a great value.

Now you can own the fastest, most powerful home computer available today-at an affordable cost. Just by building it yourself.

Introducing the Heathkit H-386 Desktop Computer. With its powerful 32-bit processor, 16 MHz computing speed and "zero wait" technology,

Ask R－E

WRITE TO：

ASK R－E
Radio－Electronics 500－B Bi－County Blvd．
Farmingdale，NY 11735

FIG． 1

S－METER AND HEADPHONE JACK

Please show the circuit of a signal－ strength meter for an AM radio．Also describe how I can add a headphone jack that will automatically silence the speaker when the phones are plugged in．－l．D．，Turnersville，NJ．

I don＇t know anything about the radio you＇re moditying，so the best bet for a signal－strength in－ dicator is an FET DC voltmeter（Fig． 1）connected to the set＇s ACC bus． As shown，the meter reads upward when connected to a positive－go－ ing AGC．If the radio uses tubes or has a negative－going AGC，com－ pletely isolate the voltmeter＇s positive and negative leads from

FIG． 2
the receiver and then reverse the meter movement＇s connections so it responds to a negative voltage input．Or，do as was often done on communications receivers：Turn the meter upside down so a de－ clining voltage input will cause the meter to appear to read up－scale．

Figure 2 shows how low－imped－ ance headphones can be con－ nected into the audio output circuit of the radio．Inserting the phone plug connects the phones across the audio output while dis－ connecting the speaker．

PRECEDENCE DETECTOR

We are planning to update the in－ dicator system used in our＂Scholas－ tic Bowl＂events．The present system uses relays and we want to use solid－ state circuitry．

The moderator or quiz－master asks a question and the first con－ testant to believe that he has the an－ swer presses a pushbutton switch that causes his indicator lamp to light，and，at the same time，locks out the indicators of the other con－ lestants．The judge determines the winner and then resets the system．－ J．R．，Cuba，IL．

TALK IS CHEAP．

Have you heard？For less than $\$ 90$ your AT or XT－compatible com－ puter can talk！All it needs is the HV－2000 Computer Voice Kit from Heathkit．

Reading letters，transcriptions and computerized instruction can be easier and quicker than you ever thought possible．Computer games gain a new dimension．Your com－ puter can even entertain children with stories and songs．

Computer Voice will allow your computer to recite reference and research information from time－ sharing services．Or，speak radio transmitted ASCII information．

The HV－2000 Computer Voice Card，containing speech synthesizer and audio amplifier．plugs into any AT or XT－compatible computer＇s expansion slot．An external speaker is also included．Versatile．Heath－ developed software gives you a wide variety of voices and easy in－ terface to high and low level languages．

The HV－2000 Computer Voice At less than $\$ 90$ ，talk IS cheap．To order，call toll－free 1－800）－253－0570． Ask for operator 312．Use your Visa， MasterCard or Heath Revolving Charge card．Or call 616－982－3614 for the nearest store location．
Heathkit

Prices，product availability and specifications are subject to change without notice．

CIRCLE 86 ON FREE INFORMATION CARD

HITACHI SCOPES AT DISCOUNT PRICES!

20 MHZ

100 MHZ

Model V212 \$475

Model V-212 20MHZ Dual Channel (1mV Sens.) $\$ 475$ Model V-422 40MHZ Dual Channel (1mV Sens.) $\$ 699$ Model V-425 40MHZ Dual Channel (with cursor) $\$ 795$ Model V-660 60MHZ Dual Channel (Delayed Sweep) $\$ 999$ Model V- 1060100 MHZ Dual Channel (Delayed Sweep $\$ 1,375$ All above scopes have a 3 year guaranty on parts and labor

15-25\% OFF LIST PRICE

ELENCO PRODUCTS AT DISCOUNT PRICES!

20MHz DUAL TRACE OSCILLOSCOPE \$359 MO-1251

35 MHz DUAL TRACE OSCILLOSCOPE
$\$ 498$ MO-1252

Tup quality scopes at a very reasonable price. Contains all the desired features. Elenco's 2 year guarantee assures you of continuous service. Two $1 \times, 10 x$ probes. diagrams and manual included. Write for specs. 100 MHz Test Probes, $1 \mathrm{X}, 10 \mathrm{X}$. Ref. (Complete with 5 accessories) Fits Most Scopes $\mathbf{-} \mathbf{\$ 2 2}$

DIGITAL 3 AMP POWER SUPPLY
Model
XP. 750

\$175
0.40 V (6).5A 0.20 V 3A

Fully regulated, short circult protected cuprent IImit control
XP. 650 with Analog Meters $\$ 129.50$

MULTI-FUNCTION COUNTERS

Frequency, Perlod, Totallze, Self Check with High Stabilized Crystal Oven Oscillator, 8 Digit LED Display

Our files contain a number of precedence-detector circuits that indicate which of two pushbuttons is pressed first. One circuit, which uses incandescent lamps for high visibility, is shown in Fig. 3.

The circuil, which was de scribed by M. Jennings in the English magazine Radio \& Electronics Constructor, is designed for SCR switching. The SCR's, of which there is one per "player," remain off until one of them is turned on when a player momentarily closes his pushbutton switch. The switch

FIG. 3
closure produces a positive trigger pulse on the gate of the corresponding SCR, turning it on. As soon as one SCR turns on, its corresponding indicator lamp lights and the other SCR is locked out so that it cannot fire.
Any number of switching circuits can be added to the detector by duplicating the circuitry to the right of point " X . The SCR's are low-power types such as the Radio Shack 276-1020 and the diodes are silicon rectifiers such as the 1N4002. Switches S1 and S2 are normally-open pushbutlons. Switch S3 is used by the judge or reteree to apply power and to reset the precedence detector. That switch may be a single-pole push on/push-off type.

The precedence detector works this way: Even with S3 closed to energize the detector, the SCR's do not conduct because their gates are isolated from a positive voltage source. Assume that two (or more) players hit their pushbuttons at almost the same instant, but contestant No. 1 closes his switch (S1) a fraction of a sec-

Nine Test Probes with only one difiterence between them and your scope's original equipment

Now you get it all. . training for America's fastest growing career opportunity . . .training to service all computers training on the newest total computer system, the Sanyo 880. Only NRI can give you the well-rounded training you need, because only NRI gives you a complete computer system. . computer, monitor, disk drive, software, even test instruments like a digital multimeter and logic probe to work with and keep. It all adds up to training that builds the knowledge, competence, and ability you need to succeed as a computer service specialist.

Get inside the newest, fully IBM PC compatible Sanyo Microcomputer

As an NRI student, you'll get total hands-on training

high paying career computers

Understanding you get only through experience You need no previous knowledge to succeed with NRI．You start with the basics， rapidly building on the fundamentals of electronics with bite－size lessons．You perform hands－on experiments
with your NRI Discovery Lab and then move on to master advanced concepts like digital logic，microprocessors，and computer memories．

Learn at home in your spare time

You train in your own home
at your own convenience， backed at all times by your own NRI instructor and the entire NRI staff of educators and student service support people．They＇re always ready to give you guidance，follow your progress，and help you over the rough spots to keep you moving toward your goal．

100 page free catalog

 tells more．．．send todaySend the postage－paid reply card today for NRI＇s 100 page catalog that gives all the facts about computer training，plus career training in robotics， data communications，TV audio／video servicing，and many other fields．If the card is missing，write to NRI at the address below．

McGraw－Hill Continuing Education Center 3939 Wisconsin Avenue Washington，DC 20016 We＇ll give you tomorrou
ond before any of the others. At the instant S1 closes, gate current flows through R1, S1, and diodes D2 and D3, so SCR1 conducts. Its anode current flows through indicator lamp L.M|'1, and the anode voltage falls to around 0.6 voltthe anode-cathode voltage drop across SCRI. That causes DI to be forward-biased, so it also conducts, dropping point X to 1.2 volts-the sum of the diode-voltage drops across SCRI and D1.
With point X at 1.2 volts, all the
other circuits are locked out, because when any other pushbutton is pressed, the two series-connected silicon diodes (D5, D6, etc.) are not sufficiently forwardbiased to pass the gate current needed to fire the associated SCR. Alter determining the winning contestant, the unpire resets the board by pushing S 3 once to turn off the conducting SCR, and again to restore power.
The indicator lamps should be low-current types-drawing ap-

CABLE TV SPECIALS CONVERTERS

JRX-3 DIC- 6 Channel Corded Remote $\$ 139.95$
JSX-3 DIC_ $\mathbf{3 6}$ Channel Set Top \$129.95
SB-3 _ 'The Real Thing' $\$ 109.95$
SB-M-Refurbished $589 .{ }^{95}$
DRZ-3D1C-68 Channel Wireless with Decoder $\$ 199.95$
2EMITH: 2-TAC Cable Add-On ${ }^{3} 199 .{ }^{\circ}$
VIEW STAR: EVSC- 2010-60 Channel Wireless - with Parental Lockout. - $99 .{ }^{\circ}$
EVSC-2010 A-B -Same as above with A.B Switch ${ }^{3} 109 .{ }^{\circ}$
View Star 2501 - 60 Channel Wireless. with Volume 8119.:
Unika MR-702-72 Channel Wireless with Parental Lockout $\$ 89 .{ }^{95}$
MISCELLANEOUS
OAK: N-12 Mini-Code ${ }^{3} 89 .{ }^{\circ}$
N-12 MInI-Code Varl-Sync \$99. 95
N-12 Minl-Code Vari-Sync Plus Auto On-Oft
*29. ${ }^{\circ}$
HAMLIN: MLD-1200 * $99 .{ }^{\circ 5}$
NEW ITEMS:
OAK: E-13 Mini-Code Substitute 8 79.95E-13 Mini-Code W/Nari-Syn.\$ 89.95ALL UnITS GUARAMTEED. quantITY PRICES AYAILARLE.UNITED ELECTRONIC SUPPLYP.O. BOX 1206 - ELGIN, ILLINOIS 60121 • 312-697-0600
proximately 60 mA or so. 17 you use higher current types make sure that their cold resistance (as measured with an ohmmeter) is high enough to limit the initial inrush of lamp current to the maximum sur-ge-current rating of the SCR.
If you need something more elaborate, consider building the "Electronic Umpire" described in the December 1970 issue of RadioElectronics. It handles two teams of three players each, and indicates the order of response for the first four contestants.

USING AN OPTOELECTRONIC COUPLER

I am trying to design a circuit that uses a Motorola MOC7811 slotted opto-coupler as a sensor, but I can't locate any applicalions data. Can you help?-B.J.D., Peoria, AZ .

Slotted couplers in that series consist of an infrared-emitting diode and a photodetector facing each other across a slot in the housing, as shown in Fig. 4. The slot provides a means of interrupting the path between the infrared source and its detector.

We don't have any idea as to

FIG. 4
what you want to accomplish, so your best bet is to seek applications data from Motorola Semiconductors, 616 West 24 th St., Phoenix, AZ 85282. For typical circuits and additional applications information, see one or more of the following: General Electric Optoelectronics Manual, the Motorola Optoelectronics Device Data book, or The Op. toelectronics Data Book for Design Engineers from Texas Instruments.

WHAT KIND OF RESISTORS

l'm interested in resistors and want information on the differences
between a thermistor, thermister, thyristor, and varistar. I have found some definitions, but they are conflicting. I'm particularly interested in the thermistor because one is used in my oscilloscope's power supply.B.C., San Diego, CA.

The word "thermistor" is an acronym for Thermally-Sensitive Resistor. A thermistor is a ceramic semiconductor whose resistance varies greatly with changes in its temperature. The change in temperature may be due to internal heating due to current flow, or to heat from an external source. Thermistors are available with either positive or negative temperature coefficients. The NTC (Negative Temperature Coetficient) device is one that exhibits a decrease in resistance with increases in body temperature. A PIC device is one that develops an increase in resistance with an increase in temperature.
"Thermister" is a misspelling or corruption of the correct spelling.

I never heard of a "varistar." Perhaps the word you are looking for
is "varistor"-meaning a two-terminal voltage-sensitive semiconductor whose resistance decreases rapidly as the applied voltage is increased.

A thyristor is a stable (two-state) semiconductor device having three or more junctions. It can be rapidly switched between its oft and on states. The term "thyristor" is often used to include SCR's and gate-controlled switches.

UNLOADED VACUUM-TUBE AMPLIFIERS

I've serviced car stereo and home hi-fi equipment for more than ten years. Occasionally, an old tubetype amplifier is brought in for service. Recently, a new service manager "hit the roof" when he found me working on a vacuum-lube power amplifier when I had not connected a load to its outputs. He says that I could have destroyed the amplifier, but won't explain how or why. What's the problem?-B.F., Mamaroneck, NY.

Solid-state power amplifiers can be run without a load on the oir out-
puts but can be damaged if a short circuit is inadvertently connected across the output terminals. Converselv, a vacuum-tube power amplitier can be damaged if you "crank up the power" before connecting a speaker or resistor load across the secondary of the output transformer.

Here's what happens: Without a load on the secondary winding, the orimary winding appears as a very-high impedance and the audio voltages across it can rise to very-high values. The peak voltages can be high enough to cause arcing in the output tubes or cause a breakdown in the insulation between turns in the primary winding.

Whether the voltage peaks door don' cause catastrephic iube or transformer failure depends on such factors as the transtormer's design and the amplifier's output power. You have been lucky thus far, sofollow the service manager's instructions and always kerep a load on the output of a vacuumlube power amplifier. R-E

NEW RUGGEDIZED SCOPE PROBES

 Just a phone call away. 425 P610350 MHz 10x Compensation Range 15 to 35 pF

450 P6109
$150 \mathrm{MHz} \mathrm{10x}$ Compensation Range 18 to 22 pF

> These new passive voltage probes can be used with any oscilloscopes having matching compensation ranges.

Screw in tips mean easy repair, no downtime.
To order call tol tee 1-800-426-2200
In Oregon, call collect (503) 627-9000
VISA and MasterCharge accepted.

LETTERS

ON ARTIFICIAL INTELLIGENCE
I read your article, "Artificial Intelligence," in the May 1987 issue of Radio-Electronics, and I was amazed that nothing was mentioned about the following

Democratic electronic circuits or systems would consist of not only series/serial circuits, but parallel as well. That type of system would also include analog chips and circuits, which convey data based on the degree that a circuit is on-in short, waveforms-and not just based on electronic
switching chips or circuits. Those analog chips would simulate how the neurons work in the brain. They would probably be called almost and nalmost chips, or maybe on and not maybe on chips. Chips and circuits such as those would make it possible for a computer to learn, memorize, and understand, and to relate or think- 10 know.

Interface data bridges would allow the thousands of neuronic microprocessors in the computer to have the same data stored in each
one as the entire computer has stored in its memory bank overall. Those would make it possible for the computer to have a hologramic memory bank, just as the brain has.

A circuit that performs like an electronic mirror, composed of a simulated data-constructed model of reality, would enable a computer to compare incoming data with that data model for analysis and interpretation. Within that index memory bank should be a form of self-consciousness, so that the

RADIO-ELECTRONICS
SOO-B B/-COUNTV BOULEVARD
FARMINGOALE, NY 11735

Your Career in ELECTRONICS or COMPUTERS

Add prestige and earning power to your technical career by earning your Associate or Bachelor＇s Degree in electronics or computers－through independent home study．
No commuting to class．Study at your own pace，while continu－ ing on your present job．Learn from easy－to－understand lessons， with help from your Grantham instructors when you need it．

Grantham College of Engineering is a specialized institution catering to adults who are employed in electronics and allied fields such as computers．These fields are so enormous that opportunity for advancement is always present．Promotions and natural turn－over make desirable positions available to those who are prepared to move up！

Grantham College of Ongineering

has conferred on
John Hoe
the degree of
Essociate in Stience in Cofnginering Geechnology
with major emphasis in Computers

Grantham Collegr of Ongineering

tas onetrere on
Jobn Hoe
the Degree of
Bathelor of Sxience in Oingineering Gertbnology with major emphasis in Computers
In wieness thereof，thin diploma duty signed hal been issurd by thr College Admimistration upon recommendation of the Forully，at the College in
【（G）ranthan Coilege of Ungineering bas conferred on
John 粘 0
the ofegree of
Associatt in Stience in Ofngineering Eextyology with major emphasis in Electronics

Grantham College of Ongineering

has conterred on
Jonn loe
the Degree of

Bacthelor of Science in Engineering Gecthnologe

Put Professional Knowledge and a
COLLEGE DEGREE
in your Technical Career through

NHSC Accredited
Grantham College of Engineering 10570 Humbolt Street Los Alamitos，California 90720

Write for our free catalog （see coupon below）or phone （213）493－4423（no collect calls） and ask for our＂degree catalog．＂

Grantham offers two B．S．degree programs－one with major em－ phasis in ELECTRONICS and the other with major emphasis in COMPUTERS．Either program can be completed by correspond－ ence（also known as＂distance edu－ cation．＂）An A．S．degree is awarded along the way in each B．S．program， but the B．S program is not com－ plete without the A．S．part．Our catalog gives complete details．

Now in Our
 37th Year

Grantham College of Engineering
P．O．Box 539，Los Alamitos，CA 90720
Please mail me your free catalog which explains your distance－education degree programs．

Test RS232C In A Zip.

Test RS232C dath communications interfaces-like computers to printers, computers (t) mondenls, and computers to computers-fast and easy in the palm of your
 hand with Beckman Industrial's low-cost, easy-to-use line of testers. Fach is self-contained in a loughpak case. including five models in a durable zippered pouch, and a lo-vear warranty on every model. Prices start as low as $\$ 49.95$

See vour nearest Becknan Industrial distributor todav. or send for free brochure. We'll send it to you in a zip.

Quick Cable Customizing
Fast RS232C Interfacing and Testing
LEI) ldentification of Cable
Comfigurations
Proket and Hand-heid Compactness
spreeds ('p Trouble Shooting
10 Standarkh LIns-Cast Moriels

InService Instruments, We'reThe One.

Beckrmer Inatustria!

Beckman Indusinal Corporation Instrumentatron frexduts Invisun A Subsidary of Ernerson Electric Company 3883 Ruffin Rd San Dieko, California 92123.1898 (619) 565 4415 • FAX (619) 268.0172 • TI.X 240032 (C) 198^{\sim} Beeckman Industrial Corporation
computer can know itseli better and have an identity. That would allow it to relate itself better to the outside world.
Circuits such as those would enable a computer to mimic the brain realistically. They would be able to modity and re-program themselves relative to outside circumstances and basic built-in programming, for survival and the expansion or evolution of consciousness. The circuits would be flexible and therefore capable of change and growth
Today's computers are nothing more than inert slave mecha-nisms-like electronic slide rules, card catalogs, or books. We need computers that have more feedback in them.
HERBERT D. STAFFIERI
Bridgeport, CT

MICRO-FLOPPY RETROFIT

Betore I read the article, "Microfloppy Retrofit," in the August 1987 ComputerDigest, I converted my XT B : drive to $31 / 2$ inch, using the

No costly school. No commuting to class The Original Home-Study course pre pares you for the "FCC Commercial Radio telephone License". This valuable license is vour "ficket" to thousands of exciting jobs in Communications. Radio-TV. Microwave. Computers. Radar. Avonics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy. fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

[^1]Toshiba ND-354A with their "Universal kit." The kit is very inexpensive and complete, with accessories for the $\mathrm{PC}, \mathrm{XT}, \mathrm{AT}$, Compaq2, AT\&T PC6300, and compatibles. Besides costing less than the IBM kit, the Toshiba kit has the advantage of not requiring the IBM's 37 pin D-connector

My original configuration was one half high $5 \frac{1}{4}$ FDD and one hali-height 20 -megabyte hard disk. The half height $31 / 2$-inch disk drive tits very nicely on top of my A: drive

1 am using PC DOS 3.2, and to format $31 / 2$ inch disks at 720 K I used the undocumented DOS command called DRIVPARM in my CONFIG.SYS tile. The complete command is DRIVEPARM = /D:1/ $F: 2$, where $/ D: 1$ is the drive number (B :) and $/ F: 2$ indicates the $31 / 2$-inch drive type.

Having a $31 / 2$ inch drive is necessary for me to maintain compatibility with the new IBM computers at work-and it is nice to have 720 K floppy storage.
RICHARD F. PELLY
Huntinglon Beach, CA

AMPIIFIER DESIGN

I enjoy Radio-Electronics very much-in fact, I can barely wait for the next issue. I want to thank vou for including computer program listings with some of your articles. I find them almost as much fun as the projects.

The article,"Transistor Amplifier Design," by lack Cunkelman in the August 1987 issue was a great source of information on common emitter amplifiers. Maybe he could do more on common-base and common-collector amps.

Line 280 in the program listing reads

$$
R 2=I Z^{*} R^{*} 100 /\left(\left(R E^{*} 100\right)-I Z\right)
$$

Two problems were solved when I changed line 280 to read:
$R 2=\operatorname{INT}\left(\left(Z^{*} R E^{*} B /((R E * B)-I Z)\right)\right.$
First, the formula now considers the "input" value for beta. And I no longer get a negative result for R2 with certain "input" data.

I hope that is useful to other readers, and thanks again.
MICHAEL H. PERKINS
louisville, KY
continued on page 37

An extensive line of capacitors for both standard and high voltage applications from NTE Electronics.

NTE, the name you've come to trust for all your replacement semiconductor needs, now has a line of subminiature aluminum electrolytic capacitors

These quality capacitors are available with both radial and axial leads and are dependable over a broad temperature range. Ratings include capacitance of $0.1 \mu \mathrm{~F}$ to $10000 \mu \mathrm{~F}$ tolerance of $+1-20 \%$ (-10% to $+50 \%$ for the high voltage line), and voltage range of 6.3 to 100 volts (160 to 450 for the high voltage line), making them ideal for the most demanding applications

LOOK FOR THE FULL LINE OF QUALITY NTE REPLACEMENT PARTS AND PRODUCTS:

- Transistors
- Thyristors
- Integrated Circuits
- Rectifiers and Diodes
- High Voltage Multipliers and Dividers
- Optoelectronic Devices - Zeners
- Microprocessors and

Support Chips

- Memory ICs
- Thermal Cut-Offs - Bridge Rectifiers - Unijunctions RF Transistors Microwave Oven Rectifiers
- Selenium Rectifiers - Flameproof Resistors - Wire Ties
- Electrolytic Capacitors - Static Control Products

For more information or the name of you, local distributor, call or write NTE

NTE Electronics, Inc.

MATH：

Electronics Math
Puh．Price \＄2：．95
Club Price $\$ 18.95$
Book $=205$

tie emcrclopeda of ELECTRONIC CIRCUITS

－\sim R
－ローかーロー
－ー～ーが
The Encyclopedia of Electronic（＇ircuils Pub．Price $\$ 50.1010$ Clut Price \＄39．95 Book \＃7014 COUNTSASZ SELEETION

Industrial Robotios Puh．Price \＄4：3．9： Club Prier \＄5．5． 15 Brok \＃ie！！
COINTSAS？
SELECTIOAS

Semiconductor Porer
Electronics
Puh．Price \＄10．95
Club Price $\$ 37.55$

CIMTSASL
SELECTIONS

The Complete Compact
Dise Player
Pub．Price \＄33．14

Boon \＃ises

Linear If Handbook Puh．Price $\$ 49.95$ Club Price S．39．95 Book \＃72ld （OUNTSASZ SELECTIONS

Softrare Enginpering Encironmpals Puh．Price ： $\mathbf{3} \mathbf{3 8} .95$ （lub）Prices S31． 15 Book ${ }^{7} 247$

Thoubleshooting
Techniques for Microprocessor （＇ontrolled liden）
Equipmens
Puh．Price \＄24．95
Chob Price S19．9．5
Hook＂ 75.49
Elementary
Electricity
and
Electronics
componem b component
Menve Horomera

Elempntary Electricily and Electronics
Pub．Price $\$ 23.95$
Club Price \＄19． 15
Book \＃7285

Cost Estimating urith Microcomputers Pub．Price $\$ 29.95$ Club Price \＄23．95 Book 0037

Hendbook of
Computers and
（＇omputing
Pub．Price 577.50
Cluh Price $\$ 62.35$
Book 700° ．
COUTSAS 2 SELECTIONS

Digital Telephony and Deturork Integration Pub．Price $\$ 44.50$ Club Price $\$ 35.95$ Book \＃ 204 CUCNTSASZ SELECTIONS

DISCOVERING ELECTRONICS

Discorering Electronics With lseful Projects and tpplications Pub．Price \＄29．95 Club Price S？．3． 9.5 Book \＃45to

Handbonk of Lidpo Camera Serricing and Troubleshooting「echniques．
Pub．Price \＄29．95
Club Pricp \＄2．3．95
Book \＃4：13

MICROCONTPUTERS

The Illustrated Dictionary of Microcomputers Puh．Price $\$ 24.95$ Club Price \＄19．95 Book \＃T 246

The Parador
（＇ompanion
Pub．Price $\$ 24.95$
Club Price $\$ 19.95$ Book \＃T24．5

COMPLETE TV SERVICING HANDBOOK secomo emmon

\qquad

Complepe TI＇．Serricing Handbook
Puh．Price $\$ 3,3,301$
Club Price S？5．35
Book \＃i3s 5

Bob Middketon＇s
Handlowak of Electronic
Times－Stavers and

Bob．Middlfon：s
Handbook of Electronir Time－sarers and Shorrcuts
Pub．Price $\$ 29.95$
Club Price \＄23．95
Book 4.595

Until you write them yourself, you won't find better books than these...or a better deal!

Take any 3 books for just $\$ 1.00$ each. Take 1 more at our special Club Price.

Not only will you save as much as $\$ 120.63$ off publishers' list prices on 4 of the most popular - and indispensable - technical books in print today... but also fulfill half the usual 2-book purchase obligation - automatically!

Examine your 4 books FREE for 15 days!

EBS is the professiomal service designed specifically to keep you on top of everything new in electronic theory and application. Every book is reviewed and approved by our Technical Advisory Board. And every mont h we bring you the kind of information you want - and need - to know in the field of advanced electronics...access to new thoughts on systems design, op amps, Tll, bit-slice microprocessors. circuits, LSI/VLSI, optoelectronics, satellite communications, L.ANs, linear control, feedback, instrumentation, A/I) crossovers and more. Everything it takes to keep you going and succesful throughout your career!

6 Unbeatable Reasons for Joining Electronics Book Service

1. Our Introductory Offer - 3 books for just $\$ 1.00$ each...a 4th at our special Club l'rice - a savings of as much as $\$ 120.63$ off publishers' list prices.
2. Automatic Fulfillment of half the usual 2-book purchase obligation - Once you have selected and paid for your 4 introductory selections, you auto matically fulfill half of EBS's usual 2-book purchase obligat ion. Your only obligation is to then purchase 1 additional book - at Member discounts - during the first year of your Membership. You may cancel any time after that.
3. Original publishers' editions - Never cheaplymade reprints.
4. A complete book store by mail - Choose from the best, most popular books in your field - by mail and from the comfort and convenience of your home or office. Here's how it works: Every $3-4$ weeks (15 times a year) you'll receive the Bulletin describing a new Main Selection and several Alternates. If you want the Main Selection, do nothing. It will be shipped automatically. If you prefer an Alternate - or no
book at all - simply indic ate your choice on the order card always provided and return it by the date indicated. You'll always have 10 days to decide whether or not you want a Main Selection.
5. Special Member Discounts - 20% to 30% - and more - off regular list prices. A small shipping and handling charge is added to all orders.
6. The Electronics Book Service Guarantee - You never buy books you don't want. If you ever receive a book that does not live up to your expectations. return it for full credit.

Say YES and become an electronics know it all!

Send this coupon today!

Electronics Book Service

A Prentice Hall Book Club P. (O. Box 10621, Des Moines, IA $50380-06621$
YES! Please enroll me as a trial Member of Electronic Book Service and send me the 3 books listed below for just $\$ 1.00$ earh and I more book for the special (lub Price plus postage and handling and applicable state sales tax. I understand the Membership Ilan as described in this ad and that by accept ing your offer. I automati cally fulfill half the usual 2 - book purchase obligation. I agree to then purchase I additional book - at Member discounts - during the first year of my Membership. If not completely satisfied with my introductory selections I may return them within $1 \overline{5}$ days and owe nothing.

Send me these 3 books for $\$ 1.00$ each:
Book \#
Book \#
Book \#
Name
Address
(ity 'State/Zip

Signature

(not valid without sismature)
Offer good for new Members amty in the cont inental $1 \$$ and (${ }^{\circ}$ anatha
All applicat ions subjert to crealit approsal

ELECTRONIC COMPONENTS CATALOG
 yours FREE by dialing

1-800-992-9943

In Texas: 817/ 483-4422

Call Today for your FREE subscription to the 1988 Mouser Electronics Catalog. Contains 176 pages featuring over 16,000 in-stock, quality electronic components.
.PLUS..Mouser's proven service and prompt delivery.
(Outside U.S.A., Send \$2.)

MOUSER ELECTRONICS

 2401 Hwy 287 North Mansfield, Texas 76063
DISTRIBUTION CENTERS NATIONWIDE

CIRCLE 117 ON FREE INFORMATION CARD

Any* signal coming in on your cable can be completely "remeved" with this powerful filler. Particularly useful on "pay" channels. Also can be used to eliminate any" orer-the-sir signal which prevenis normal reception. The filter's external adfustmants allow precise tuning to any frequency required.
*AVAILABLE FOA THE FOLLOWING CHANNELS:
MODEL 26 - For any channel between 2 and 6 (Tuning range 54-108 Mhz)
MODEL 713 - For any channel between 7 and 13 (Tuning range $174-216 \mathrm{Mnz}$)
MODEL 1422 -For any channel between 14 (A) and 22(I) (Tuning range 120-174 Mnz)
$\star \star$ ONLY $\$ 30$ EACH $\star * 30$ DAY FAEE TAIAL $\star \star$ To order, send $\$ 30$ check or money order. Specily Model. If not completely satisfied, simply return within 30 days for a full and speedy refund.

- All models in stock \quad One year warranty - Fast, free delivery \quad Quantity discounts to 50% STAR CIRCUITS/DEPT.1-R
P.O.BOX 8332, PEMBROKE PINES, FL 33084

New
 PRODUCTS

CIRCLE 10 ON FREE INFORMATION (ARI)

FM DUAL-BAND TRANSCEIVER. The Kenwood TW'-flold is rated for 45 watts on 2 meters and 35 watts on 70 cm . It features selectable fullduplex cross-band ("tole-phone-style") operation. ('rossband repeater operation is also possible. (A controt operator is needed for repeater operation. I ln addition, there are programmable band scan and memory scan with
memorv-channollock-out foalures.

The model 7W-A10日A is $5.9 \times 1.97 \times 7.87$ "and weighs less than four pounds. Prequency coverage is $142-149 \mathrm{Mttz}$ fallows Operation on certain MARS and (AP' frequencies), and 440-449.995 MHz . The suggested price is $\$ 049.95$. —Kenwood, 2201 1. Dominguer Street, Long Beach, CA 90810.

DIGITAL MULTIMETER. The Beckman IDMITI is a handheld pen-type meter that features a $3^{1 ⁄ 2}$-digit display with 0.7% accuracy ($2-\mathrm{mV}$) (range) and auto-ranging; it fits edsily into a shirt pooket.

The meter has been designed for ease of use, having a rotary function dial instead of the usual combination-pushbutton operation. A IJala Ho Hif function allows

the user to manually freere the display so that it can be read without rushing, or under better tighting conditions. The unit teatures a 9()-hour battery life.

The model DMITI has a sug. gested retail price of 549.94 . Beckman Indusirial Corporation, 3883 Ruffin Road, San Diego, (A 92123-1898.

SWITCH MODULE. The lee SNAP. T / C° is a now approach to mounting data-entry switches directly onto a printed-circuit board without the need for soldering.

Designed for low- to mediumspeed switching applications, the SNAP-TEC uses a stainless-sted smap-dome mounted in a plastic housing along with a plastic keyCap/actuator. The switch module snaps into two holes in a . Ofe-inch

CIRCIE 12 ON IREE INFORMAIION CARI
PC board directly over mating con－ tact circuitry．
Available in a variety of colors and keycap slyles，the SNAP－TEC can be mounted on .500 －inch cen－ ters．Custom－designed keycaps are also available．Actuation force is 220 grams with a 0.015 －inch nom－ inal travel．The price per unit is under $\$ 0.30$ each when purchased in quantities of 1000．－Tec，Incor－ porated， 2727 North Fairview Ave－ nue，P．（）．Box 5646，Tucson，AZ 85703.
（ABLE TIES．Two new cable ties from Panduit，the PAN－TY（shown） and the STA－STRAP，are double－ loop lies whose bent lips provide faster orientation．

Both types are made of natural 6／6 nylon（white），which is U．L．94－ V2 self－extinguishable．They are also available in heat－stabilized nylon（black）and weather resis－ tant outdoor nylon（black）．Tem－ perature ranges are $-40^{\circ} \mathrm{F}$ to $+221^{\circ} \mathrm{F}$ for heat－stabilized mate－ rials and $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$ for the other two materials．

PAN－TY double－loop cable ties are one－piece construction；two sizes are available for up to a max－ imum combined bundle diameter of $3.8^{\prime \prime}$ ．They have a minimum loop tensile strength of 50 pounds． Prices，which depend on size，start at $\$ 10$ per 100 ．

STA－STRAP double－loop cable ties have a two－piece design， which allows the tirst loop to be

CIRCIE 13 ON FREE INFORMAAIION CARD
reteased prior to final tensioning． That design has zero insertion force and can be hand－installed only．Maximum combined bundle diameter is $7.25^{\prime \prime}$ ；minimum toop tensile strength is 30 pounds．Pric－ ing depends on size．－Panduit Corp．， 17307 Ridgeland Avenue， Tinley Park，IL 60477－（0981．

DEDICATED ADAPTER．The Pro－ gram Automation Surface Mount Adapter，for Data I／O＇s 120／121A programmers，can program 10 de－

CIRCIE It ON FREE INFORMATION CARI）
vices at a time on the upper and／or lower 10 sockets of the program－ mer，and uses all standard pro－ grammer instructions and read－ outs．For added throughput，two adapters can be used to program 20 devices at a time．

CONNECTION Protichion
SWITCHES $_{\text {\& RELAYS }}$
EDGE CONNECTORS
R-2 TERMINAL STRIPS

PLUGS \& SOCKETS
POTENTIOMETERS GATTEAY CONTACTS

CRAMOLIN*

Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss.

"MORE THAN A CONTACT CLEANER"

CRAMOLIN is a fast-acting, anti-oxidizing lubricant that cleans and preserves all meal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN ${ }^{\text {® }}$ removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivlty.

CRAMOLIN ${ }^{2}$ - USED by THOSE WHO dEMAND THE BEST:

CIRCLE 50 ON FREE INFORMATION CARD

Features include: easy drop-in lock-in adapter; pop-out ejector after programming; vertical sockets ior ease of handling and insertion; sockets designed to meet manufacturer's specs and ensure coplanarity; small footprint for ease of handling.

The Surface slount Adapter can be used for production planning of OTP PICC EPROMS, for incoming inspection of preprogrammed parts, and in a maintenance environment for checking questionable parts. It is priced at $\$ 2000.00-$ Program Automation, Inc., 22706 Aspan, Suite 308, El Toro, CA 92630.

PRECISION ALIGNMENT KIT. The Jensen Y 236840 hit contains a selection of precision tools that are manufactured to extremelv tine tolerances and are designed tor adjustments of VHS and Beta vid-eo-cassette recorders.

The kit includes a base-plate relerence iig and a height gauge (used for precision height adjustment of the reel discs, guide posts, combimued on page is

NRI's At-Home Training in Electronic Design Technology Can Put You in a High-Paying Career as an In-Demand Design Technician

The best jobs in electronics today go to the people who have the skills to think and work creatively. Conseive and design circuits and equipments. Initiate ideas and carn them through. Now NRI can help you be one of these peoplc-design technicians who command up to $\$ 22,000$ as starting salaries. carn $\$ 35,000$ or nore with experience.

NRI's Electronic Design Techonology course starts you with the fundamentals and builds from there to prepare you for an clectronics carcer with real growth potential!
No Previous Experience Necessary
Even if you've never had any previous training in

```
Your hands on training includes
``` all this: the unique NRI Circuit Designer, a soldetless bread. boarding system you build and use for circuit design. prototype for circuit design, prototype
construction, component evaluation, construction, component evaluatron,
and festing ... The NRIModel 250010 MHz triggered sweep oscillos cope, invaluable in elctronic frouble shooting ... a IT-30 calculator for fast. accurate computations... and 3 .1/2 digit hand held digital multimeter you learn to use as professionals do
perform electronic rests and perform etectron

electronics you can succeed with NRI training. You star with the basics, then rapidly build on them to maser advanced electronics concepts. NRI Circuit Designer Gives You Invaluable HandsOn Experience The hear of your lab training is the exclusive NRI Circuit Designer you build It's a totally unique instrument with full breadlowarding capability, built-in multiple power supplies. and a multifunction signal generator for circuit esting. Fast, simple connections let you create prototype circuits, immediatcly dreck them out for function or faults. Your Circuit Designer will handle both lincar and digital integrated circuits as well as discrete components such as transistors and diodes.

\section*{Send for FREE Catalog}

Send the coupon today for NRI's free catalog that gives you all the details about the Electronic Design Technology course. If the coupon is missing, please write to

NRI School of Electronics, 3939 Wisconsin Avenue, Washingoon, DC 20016.

\section*{Send coupon today for free NAI catalog.}

\section*{SCHOOL OF ELECTRONICS}
| McGraw-Hill Continuing Educaton Center 3039 Wisconsin Avc. Washingıon. D.C. 20016 Pleave send information about NKI Ir,uining in Electronic Design Technology.

\title{
EOUIPMENT REPORTS
}

\author{
Mark V SM-328 Professional Color Light Controller
}

Control your lights for excitement

If YOU ARE A Professional dI-OR If you just want to pretend you areyou'll be interested in the SM-328 protessional light controller from Mark V Electronics, Inc. (248 E Main Street, Suite 100, Alhambra, CA 91801). The SM-328 can be used for dance-hall lighting, to add chasing lights to advertising dis-

CIRCLE 20 ON FREE INFORMATION CARD
plays, or just to add a new dimension to your parties
The 4-channel controller is a distant relative of the color organs you might remember from the 1960's. It has a power output of better than 1000 watts per channel, so it can be used to control more than forty 100 -watt spotlights or more
than 8005 -watt bulbs! But whatever lighting array you choose, there are three main ways that the SM-328 can control it: It can run its own chaser programs, it can control the lights based on an external audio signal, or it can use a combination of the input signal and the chaser program.

\section*{Chaser programs}

The SM-328 can run four chaser programs, which can be used for dramatic displays of chasing lights. The first program lights each channel in sequence, with one channel active at a time. The second program does the opposite. It darkens each channel in sequence, while the other three channels appear lighted. The third

\section*{Test VCR Mechanics Fast and Dasy!}

Take the guesswork and hassles out of VCR mechanical problem diagnosis!

\section*{Four Universal, Powerful Tools for VCR Service}

into the VCR just like a cassette. The new TSH-V5 into the VCR just like a cassette. The new TSH-V5
pertorms 6 critical measurements to eliminate tape binding and edge damage. This gauge quickly locates problems that can't even be detected by other methods. Fully illustrated instruction manual is included TSH-V5 for VHS: \(\$ 395\)

\section*{Spindle/Elevator Gauge: The TSH gauge inserts}
\(\qquad\)
Torque Gauge: A universal, inexpensive, accurate torque gauge for VHS and Beta VCAs. Calibrated in Gram-Centimeters both clockwise and counterclockwise. Complete with easy-to-follow, detailed instruction manual for VHS recorders. Includes a modified VHS cassette for ease-of-use
Complete System
TQ-600 \(\$ 139\)

Tentel \({ }^{6}\) provides the most powerful, easy-to-use, field calibrateable, universal VCR test equipment available for various mechanical tests. Call our application engineers today for answers to your questions. Ask about the combination discount when ordering all 4 gauges.

\author{
Tentel Corp. \\ 1506 Dell Avenue \\ (800) 538-6894 \\ (408) 379-1881
}

\section*{CIRCLE 198 ON FREE INFORMATION CARD}

\section*{ATHENTIOME CEETRONGS ELEGHAMA TEBEDIGLA: \\ }

\section*{THROUGH HOME STUDY}

Our New and Highly Effective Advanced.Place ment Program for experienced Electronic Tech nicians grants credit for previous Schooling and Professional Experience, and can greatly re duce the time required to complete Program and reach graduation No residence schooling re quired for qualified Electronic Technicians Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree Up grade your status and pay to the Engineering Level. Advance Rapidly! Many finish months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Lit erature

\section*{COOK'S INSTITUTE}

OF ELECTRONICS ENGINEERING

347 RAYMOND ROAD
P.O. 80× 20345

JACKSON. MISSISSIPPI 39209
program lights two chamels at a time and alternates back and forth between them. Finally, the fourth program also lights two channels at a time, but in a sequence of 1-2, \(2-3,3-4,4-1\). The speed of the chasing is controlled by a lighted slide potentiometer.

The chaser program and its operating modes are selected via a 9button keypad. For example, an auio control mode can be selected to automatically vary the time that each channel remains lighted; or, a slide polentiometer can be used to manually control the on-off timing. The direction of the chase is also controlled from the keypad.

\section*{Music control}

By connecting the SM-328 in parallel with one of your loudspeakers, you can use the audio signal fed to the speaker as the controlling source for the lights. The actual audio level is unimportant because the SM-328 will accept signals ranging from 100 millivolts to 28 volts (or a maximum of 100 watts of audio power). Since the SM-328 has a high impedance (bridging) input it has no affect on either the speaker or its associated amplifier

A master levil control allows the user to adjust the overall brightness of the lamps in proportion to the volume of the music input. Alternately, the user can create unusual or customized lighting effects, even "ride gain" on the effects, because each channel has its own level control-a lighted slide control

The output of each channel's level control feeds an op-amp filter that determines the channel's frequency response. One channel responds to treble irequencies, one to midrange frequencies, and two channels respond equally to bass frequencies. The op-amps, in turn, control optically-coupled Triacs. In addition to a level control, each channel features a three-position slicle switch that can be used to instantaneously dim or cut the light

Some of the most interesting and eye-catching lighting displays can be obtained by using a music signal to control the execution of the light-chaser programs.

\section*{Good layout}

The front panel is specifically designed to be used in dim light-ing-even in virtual darkness. For example, only those potentiometers that can be used in a given mode are lighted in that mode. Also, the brightness of the levelcontrol potentiometers changes with the music signal in its channel. But while the LED's that illuminate the potentiometers can be used for quick set-up adjustments, they aren't adequate for use as an overall lighting guide; for precise lighting control it's still necessary to view the actual lights.

We found the keypad switches difficult to use. Their tactile feedback was very poor, and the keys did not always do what they were supposed to. However, we were able to clear up the problem by disassembling the case and cleaning the switch contacts. Other than the keypad, the SM-238 is solidly constructed, and its solid metal 14 -inch rack-mount case can take a good amount of abuse. The controller carries a suggested list price of \(\$ 150\).

R-E

\section*{LETTERS}
comtinered tromphorge 2or

\section*{SCA RECEIVER}

I'm glad to see that Radio-Electronics is showing an interest in FM subcarriers, with "Build This SCA Receiver" in the August 1987 issue. The authors mention that SCA is inherently "noisy." However, with the Signeties' 565 PI L (whose basic design the authors follow) most of the noise is due to the unnecessarily wide bandwidth inherent in the SCA receiver design published in the Signetics' application notes.

Ironically, that wide-bandwidth noise shows up mostly in more advanced SCA receivers, such as the one teatured in Radio-Electronics that amplify the signal betore input to the PLI. Below 100 mV , the lock range (thus, the capture range as well) decreases with decreasing input voltage. Therefore, a simple receiver accepting a weak SCA signal of \(10-20 \mathrm{mV}\) has build-in bandwidth limiting. In general, however, increased input voltage will improve the 565 's demodulation characteristics (AM reception,
etc.).
Fortunately, there is a simple sollution to the wide-bandwidthnoise problem in advanced SCA receivers: reduce the lock range by connecting a 25 K potentiometer between pins 6 and 7 of the 565 . While some people will enjoy having direct control of the bandwidth from the "front panel," it turns out that simply shorting pins. 6 and 7 (minimum lock range) gives acceptable results.
I have one more suggestion: substituting a 47()-pF capacitor for (43 and a 4.7 K resistor for R 55 will give the 10 K potentiometer (R?2) sufficient range to tune both the \(92-\mathrm{kHz}\) and the \(67-\mathrm{kHz}\) SCA sul)carriers.
The above discussion notwithstanding, designing an SCA receiver with the Signetics 565 is much more staightforward than with Exar's XR2217. But I did find the reward-a portable receiver that works from a single supply of 4.7-6 Volts-to be worth the effort of using I xar's model.
GII ROBERTS
Duarte, CA

\title{
Performance Tools.
}

\author{
Our AR-130A is always ready -
} thanks of intelligent
 - Liteal multi-purpose meter
- DOAmpay Mo capabilitu
- liams stor bif:
me:antrement

Our AK-170 NL sets new standards in telecommunications © aution equipipluent testing. - Direct |lbm reatling (600) (thins) of sisterns:
 - True Rus an me:tsurembert - Heng accuract: 20 min.
 - J"』10. accuracl

Our AR-460 D is an advanced LCR meter rivalimes bemeh instruncems un both accurale and cost-- birectlo meabures "disimation" ... leakage in al capacitor andel (? int all inductur - Ideal for ()A and engiberering laths.
- Inductance or 2ll.
 resintance to 20, Megatolims

Tur: american Reliance line of Test and Measurement Equipment has been getting the job done all over the world for nearly a decade. For the location of a distributor in your area. call us for more information.

American Reliance Inc., 9241E. Valley Rhd. Rosensead. CA 91770.FAX: (818) 287.8855
 HI-TECH SALE Cobrai Ston Cun gencrates 45,000 volts of stopping power, the Cobra also delivers a burst of high intensity light directly into an attackers cyes. Chances are that his optic nerves will be so overdosed with excess light cnergy that he will not be able to see you let alone continue the attack. If he does, the Cobra delivers its painful bite, leaving him dazed and confused. \(\$ 49.95\). With NiCad battery \& charging kit \(\$ 59.95+\$ 3.74 \mathrm{shp}\)

Centron Security Light The Contron security light puts unwelcome visitors in the spotlight.. instandy! This smant lighting system's infrared sensors guards your yard or conver way when you're away or home alone. It senses the presense of people or cars by changes in temperture pattems and instantly floods the area with bright light. It guides your gucst to your door and scares away would-be prowlers \(\$ 55.00\) plus \(\$ 4.99\) shipping. Remote Control Pen. Not only is it a hand-some high quality ball point writing per, but a powerful remote-control device.
 Effective at distances up to 75 y yss, the Remote Control Pen is perfect

CIRCLE 15 ON FREE INFORMATION CARD
lape transport, pinch wheel audio, synchronization, and erase heads), and an eight-piece driver/ wiench set with precisely configured bits for adjusting the tapeteed guide, tape-tension heads, tape transport, audio, and control heads.

The tools are furnished in a padded, vinyl zipper case having elastic straps to hold the drivers and the height gauge. A velcro-closure pouch holds the base-plate reterence jig. Case size is \(10 \times 8 \times 1 \frac{2 \prime \prime}{2}\).

The kit is priced at \(\$ 169.00-J e n s e n\) Tools, Inc., 7815 S. 46th St., Phoenix, AZ 85()44.

PORTABLE OSCILLOSCOPE. The Tektronix 2225 is a \(50-\mathrm{MHz}\) scope, and comes with a library of support material that includes a demonstration video tape, a full-color

CIRCLE 16 ON FREE INFORMATION CARD
brochure, a 36 -page primer (The \(X Y\) 's of Using a Scope) and five lechnical briets on oscilloscope measurements.

Viewers of the video tape will see demonstrations of the model 2225's dual-channel operation, alternate horizontal magnification, 500-microvolt sensitivily, and extensive triggering features. The

\title{
Fluke breaks the old mold.
}

Dollar for dollar the Fluke 37 breaks into the market with more features for the money than any other bench DMM. ll's bold new design includes built-in handle and storage compartment, and it has all the high performance features of the world's best, most reliable 3 12 -digit DMMs.

Autoranging, to eliminate guesswork. Audible Continuity, So you don't have to look at the display. An exclusive analog and digital display. Superior EMI shielding. Plus a two-year warranty.

And, how many other bench/portable meters give you these features? Min-Max recording, for monitoring signals. 38 components dedicated exclusively to input protection. Relative mode, to help you calculate changes in readings. And Fluke's patented Touch Hold, to give you an extra set of hands when you're taking critical measurements.

None. Only the Fluke 37.
For more information call 1-800-426-0361.

\section*{FLபK툴}
primer provides a study guide that expands on all aspects of the scope＇s operation and use．The technical briefs provide further details on specitic measurement methods－period，frequency， phase，risetime，amplitude，ete．

The model \(2!25\) is priced at \(\$ 995.00\) ．－Tektronix，P．（）．Box 500， Beaverton，（）R 97077

RATCHET TOOL SET．Electronic Technology Today＇s Cuecraft 716 consists of a reversing and locking ratchet handle having an integral 1／4－inch socket wrench／driver－hold－ er and a fingertip shaft－spinner， number I and 2 Phillips－head driv－ ers， \(3 / \ldots "\) and \(1 / 4 "\) flat－blade drivers．

CIRC LI 18 ON HREE INF（）RMATION CARD
and two Forx drivers in sizes that are commonly used in auto－ mobiles and appliances．A \(2 / 1 / 8-\) inch handle extension is aloo provided for the times when you need a little extra reach or torque．

The set also includes \(1 / 1, "\) and \(8 / 3:\)＂ that－blade screwdrivers for mini－ ature screws，and a fingertip slide－ knife．All parts fit inside a form－ fitted，foam－lined 4 Fh＂\(\times 3 \%\)＂\(\times\)「／n＂hard－plastic travel case．
Price is \(\$ 12\) postpaid．New York residents must add appropriate sales Lax．－Electronic Technology Today，Inc．，P．（）．Box 240，Massape－ qua Park，NY 11762－（0240

\title{
Walk＂Tough Dog＂Troubles Out Of Any TV \＆VCR In Half The Time ．．．Guaranteed！
}

with the exclusive，patented VA62 Universal Video Analyzer \({ }^{\text {TM }}\) ．．．\(\$ 3,495\)

Would you like to ．．．
Reduce your analyzing time？Isolate any problem to one stage in any TV or VCR in minutes，without breaking a circuit connection，using the tried and proven signal substitution method of troubleshooting．

Cut costly callbacks and increase customer referrals by completely performance testing TVs and VCRs before they leave your shop？Own the only analyzer that equips you to check all standard and cable channels with digital accuracy．Check complete，RF，IF，video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis，plus set traps dynamically and easily right on the CRT．

Reduce costly inventory from stocking yokes，flybacks，and other coils and transformers for substitution only，with the patented Ringing Test？Run dynamic proof positive test on any yoke，flyback，and integrated high voltage transformer．

Protect your future by servicing VCRs for your customers before they go to your competition？Walk out＂tough dog＂troubles in any VCR chrominance or luminance circuit to isolate problems in minutes．Have proof positive tests of the video record／play heads before you replace the entire mechanism．

Have one piece of test equipment that doesn＇t need replacing every time technology changes？Be able to service Stereo TVs \＆VCRs profitably，and get in on the ground floor of this growing market with exclusive phase－locked accessories．

Find out how the VA62 Universal Video analyzer will make servicing easier and more profitable in your shop？Call WATS Free \(1-800 \cdot 843-3338\) and ask your area Sales Engineer for a＂Try before you buy＂ 10 Day Self Demo or a full color brochure and join the many servicers already on the road to more profitable servicing with the VA62．

\section*{Universal Video Analyzer is a trademark of Sencore．Inc}

WATS Free 1－800－843－3338 In Canada WATS Free 1－800－851－8866

\section*{SENCORE}

Means Success In Electronic Servicing
3200 Sencore Drive，Sioux Falls，Scuth Dakota 57107 Call Collect 605－339－0100 in SD \＆AK

\title{
Audio UPDATE
}

Can you believe your ears?

THE TERM "PSYCHOACOUSTICS" HAS recently become a prominent part of the audio vocabulary. But despite the fact that its use seems mostly reserved for those devices that are designed, electrically or acoustically, to enhance stereo imaging, as we've discussed in previous columns, the term covers much more than that. The study of psychoacoustics specifically involves the relationship of the subjective sensations of the human ear/brain mechanism to objective acoustical events.

The significant differences between the subjective and objective worlds of sound are illustrated nicely by the inconsistent ways in which the ear responds to frequency and intensity-or in psychoacoustic terms, pitch and loudness. Three examples: (1) More than fifty years ago Harvey Fletcher demonstrated that the subjective judgment of the pitch of a pure tone can be shifted as much as \(10 \%\) by simply varying the intensity of the sound. (2) Aside from the pitch shift, as shown in Fig. 1, the human ear's sensitivity to lowand high-frequency ranges diminishes disproportionately as the volume (intensity) of the sound is reduced. The loudness controls found on most amplifiers and receivers are meant to compensate for that fact. (3) Most of us are aware that the ear does not respond linearly to increases in the intensity of the stimulus. For example, the measured acoustic power of a sound has to be raised about ten times before the average person hears it as merely twice as loud.

FIG. 1

Those are only three of the psychoacoustic peculiarities of human hearing, and I'm sure that most of you have read discussions of such matters before. But what is not generally appreciated is that the stereo-reproduction process itself is a totally artificial phenomena dedicated to deceiving the ear's psychoacoustic sound-localization process. Think about it-where in nature do you encounter two widely spaced, discrete sound sources each producing a portion of the sound that is heard as coming from between them?

\section*{Localization}

Two main differences between the sounds reaching each ear are
used for localization: time-of-arrival differences, and sound-pres-sure-level (SPL) differences. In general, differences in arrival times are used to localize the lower-frequency sound sources, SPL differences are used for the higher frequencies; the crossover point between the two is about \(1,200 \mathrm{~Hz}\).

There's a good reason why the ear/brain uses (actually, needs) at least two different sound cues for localization. For high- to mid-frequency audio wavelengths, your head is an acoustic barrier that partially blocks the sound reaching the ear most distant from the sound source. The measured difference at the ears is something like 16 dB at \(5,000 \mathrm{~Hz}\), falling to
about 7 dB at \(1,000 \mathrm{~Hz}\) ．When the frequency is low enough（the wavelengths long enough），the head is no longer an adequate baf－ fle and approximately the same signal level is heard by both ears． However，your brain is still sen－ sitive to the relative timing of the signals reaching each ear，even though there＇s only about a 0.6 － millisecond difference when the source is located fully on one side of your head．That fraction of a mil－ lisecond difference provides the brain with the data needed for lo－ calization．When the audio wave－ lengths get very long－below 200 Hz or so－arrival time differences also disappear and localization is completely lost．That，by the way， explains why subwoofers operat－ ing below 200 Hz can be installed almost anywhere in the room with－ out confusing the directional in－ formation．

\section*{Sonic masking}

Most noise－reduction tech－ niques rely on psychoacoustic masking to help achieve their ends．Masking describes the ear＇s loss in sensitivity to sounds in one frequency area when there are louder sounds within the same，or adjacent octaves．Hiss is not heard when there is a lot of music going on in the octaves at or adjacent to the hiss frequencies．Only when the musical frequencies are low（a drum or cello solo），intermittent（a solo piano or guitar），or absent， does hiss become obtrusive．Ob－ viously，the task of a noise－reduc－ tion circuit is eased if it has to cope with hiss only in the absence of masking musical sounds．

Masking can be a severe prob－ lem in a car because the music gets obscured by wideband wind and tire noises，rather than vice versa． The soft passages in a wide－dy－ namic－range compact disc will in－ evitably be masked unless player volume is turned up high enough to override the road noise．But with the volume turned up that high，the louder passages are like－ ly to be unbearably loud！I＇ve not seen any indication that the man－ ufacturers of \(C D\) car units recog－ nize the problem and are about to install switchable dynamic－range attenuator（compression）circuits continued on page 45

\title{
Discover How The World＇s Only 100\％Automatic，Dynamic，\＆Portable LC Analyzer Gives You Total Confidence In Your Cap／Coil Testing ．．． Call 1－800－843－3338 Today！
}

\author{
LC77 AUTO－Z \({ }^{\text {TM }}\) \\ Automatic Capacitor and Inductor Analyzer Double Patented \(\$ 1,895\)
}
\[
\text { IEEE - } 480
\]

The first cap／coil analyzer guaranteed to reliably test anywhere，without calculations，look－up tables，or error－ \(\mathbf{1 0 0 \%}\) eutomatically so you＇re confident of your accuracy．

Do you want to eliminate doubt from your cap／coil testing？＇The LC77 AUTO－Z tests all key parameters with results anyone can understand．Automatic good／bad results eliminate the guesswork for error－free analysis．Touch－ sensitive keypad and one－two－three setup makes your AUTO－Z the easiest and fastest LC analyzer on the market．

Are you frustrated trying to test the new high－tech caps／coils used in modern electronics？Only the LC77 AUTO－Z allows you to test them all．Test capa－ citors from 1 pf to 20 farads，with leakage tests to 1000 V and ESR to 2000 ohms for locating failures other testers miss．Inductor value from 1 uh to 20 H and a patented ringing test for dependable，error－free coil testing every time．

Do you need the freedom of a battery－operated portable LC meter？The LC77 is \(100 \%\) battery portable for use in the field or factory．The full power and potential of the LC77 AUTO－Z is packed into a light－weight，portable package． The AUTO－Z puts the complicated electronics on the inside for ease of operation on the outside．

Do you want maximum efficiency with a bus compatible LC testing system？ Your LC77 AUTO－Z is IEEE 488 compatible for automated cap／coil analysis for data collection，incoming inspection，and quality assurance tests．

Be satisfied that you can meet all the challenges new technology brings．Call WATS Free 1－800－843－3338 today and tell your Area Sales Engineer you want to＂try before you buy＂with Sencore＇s exclusive 10 Day Self Demo．

AUTO－Z is a trademark of Sencore，Inc．

WATS Free 1－800－843－3338 In Canada WATS Free 1－800－851－8866

Means Success in Electronic Servicing
3200 Sencore Drive．Sioux Falls．South Dakota 57107
Call Collect 605－339－0100 in SD \＆AK

\title{
State Of Solid State
}

An electronic potentiometer

ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

UPON hlearing or rtaiding; the words potentiometer or pot, we immediately think of a variable resistor having a rotary control shaft. But this is the age of electronics, and a potentiometer need no longer be a mechanical device adjusted by turning a shaft; it can be an electronic device that uses small voltages to emulate a potentiometer. One kind of device that can do that is Xicor's \(E^{2} P O T\) Digitally Controlled Potentiometer, which is available in several different versions as the X9MME 8pin miniDIP series of solid-state non-volatile potentiometers. Basically, the device functions as a digitally-controlled trimmer resistor.

A digitally-controlled potentiometer can be adapted to many applications where mechanical potentiometers or digital-to-analog circuits cannot be used, or would be inconvenient to use. For example:
- It provides for automatic potentiometer calibration or adjustment on an assembly line.
- It eliminates the need for manual adjustments of mechanical potentiometers.
- It makes possible remote control via a keyboard of variable adjustments, such as volume and brightness.
- It simplifies adjustment or control of a remote device via a radio, LAN, or modem link.

\section*{99 resistors}

The device is essentially an array composed of 99 resistive elements with 100 tap points that are accessible to the "wiper" element. (100)

FIG. 1

TABLE 1
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Mode Selection} & \multirow[t]{2}{*}{Mode} & \multirow[t]{2}{*}{Power} \\
\hline CS & INC & U/D & & \\
\hline L & 2 & H & Wiper Up & Active \\
\hline L & \(\checkmark\) & L & Wiper Down & Active \\
\hline \(\bigcirc\) & H & - & Store Wiper Position & Active \\
\hline
\end{tabular}
points because the taps are located between adjacent resistor elements and at each end of the resistor string.) The X9MME's functional diagram and pinout are shown in Fig. 1. The wiper's position is digitally controlled by TTLLevel voltages on the \(\overline{\mathrm{CS}}, ~ U / \bar{D}\), and
\(\overline{\mathrm{INC}}\) inputs. Table I shows the mode selection. The position data is stored in a non-volatile memory and is automatically recalled on power-up. The memory is capable of retaining the wiper position data for 100 years.

The X9MME E \({ }^{2} P O T\) is available in three versions, each having different value ranges. The X9103P is 10 K , the \(X 9503 \mathrm{P}\) is 50 K , and the \(X 9104 \mathrm{P}\) is 100 K . The resolutionthe value between tap pointsequals the maximum end-to-end resistance divided by 99 , or 101 , 505, and 1010 ohms for the X9103P, X9503P, and X9704P, respectively.

Other E2POTS features include:
- Single-chip MOS implementa-
tion - Three-wire TTL control
－Operation from a 5－volt supply
－Analog voltage range of \(\pm 5\) volts
－Temperature compensation for \(\pm 20 \%\) of end－to－end resistance range
－Wiper current of \(1-\mathrm{mA}\) max－ imum
－Typical wiper resistance 40 ohms at 1 mA
－Resolution \(1 \%\) of resistance
For information on pricing arid availability of the E－POTS＇s，write to XICOR INC． 851 Buckeye Court，Milpitas，CA 95035．

\section*{New 8－bit D／A converter}

The ZN438 is a new low－cost monolithic D／A converter that re－ quires only two external passive components for full 8－bit con－ version．Features include a trim－ mable 2．5－volt bandgap reference， which is also available externally for use as a system reference．A trim pin can be left lloating to provide the nominal 2.5 volts，or it can be connected to a loK potenti－ ometer to provide a \(\pm 5 \%\) trim range．The ZN438 has a settling time to \(\pm 0.5 \mathrm{LSB}\) of \(1.25 \mu \mathrm{sec}\) ．

The ZN348E device is available for commercial applications in a lo－lead plastic DIP package，and is priced at \(\$ 5.44\) ，in 10000 －piece lots． The ZN3481 is ceramic packaged and operates in the military tem－ perature range．Price is \(\$ 10.37\) each，in 1000 －piece lots．For addi－ tional information，contact Ferranti Semiconductors， 87 Mod － ular Avenue，Commack，NY 11725.

\section*{CMOS megabit memory}

In the Mega－Project，in conjunc－ tion with Philips，Siemens is producing the first laboratory sam－ ples of a CMOS memory chip with more than 4 －million bits of storage capacity．The project＇s 1－Megabit DRAM will be mass－produced at Siemens＇Regensburg facility this year；followed by the 4－Megabit DRAM in 1989．The 4－Megabit chip stores \(4,194,304\) bits on a surface of \(91 \mathrm{~mm} \div(6.5 \mathrm{~mm} \times 14 \mathrm{~mm})\) ．It lea－ ture the novel＂trench cell＂－a trench not wider than \(1 \mu \mathrm{~m}\)（1／1000） mm ）etched \(4 \mu \mathrm{~m}\) deep into the silicon．

\section*{1987 data book}

The 320－page 1987 Data Convert－ ers and Voltage References data book features information on \(27 \mathrm{~A} /\)

Does your success in servicing RF distribution systems depend on locating problems quickly and accurately？If so，here＇s why your all new Sencore FS74 CHANNELIZER SR．will mean success for you．．．
Quickly ture in all TV／FM channels from 5 MHz to 890 MHz ．Exclusive all channel，microprocessor－controlled digital tuner checks every standard and cable channel with better than FCC accuracy to fully analyze any system．
Exclusive 5 microvolt sensitivity to bring in even weak signals．Autoranged attenuator automatically selects the best sensitivity for simplifying your VHF，UHF ，or FM signal measurements like never before possible．
Automatic hassle－free \(\mathbf{S} / \mathbf{N}\) ratio， \(\mathbf{A} / \mathrm{V}\) ratio，and hum level tests．Exclusive on－ channel signal－to－noise ratio test eliminates time－consuming signal comparison and chart reading．Exclusive audio－to－video ratio test measures directly in dB for easy comparison to specifications．

Exclusive checks for ghosts，co－channel interference，line reflections，and other signal quality checks．Portable 4 MHz wideband battery－operated monitor lets you finally check the quality of your cable or MATV system and stop annoying callbacks．
Built－in autoranging AC／DC volt／ohmmeter makes troubleshooting a snap． Exclusive all－weather design holds tighter than FCC specifications from \(-4^{\circ} \mathrm{F}\) to \(+104^{\circ} \mathrm{F}\) ．Truly portable，field－tested tough fcr dependable ease of use．
Begin successfully locating TV－RF signal problems more quickly and accurately than ever before possible，with the new FS74 CHANNELIZER SR．Call WATS Free 1－800－843－3338 today for a free Product Guide or an industry exclusive＂Try before you buy＂ 15 Day Self Demo．

WATS Free 1－800－843－3338 In Canada WATS Free 1－800－851－8866

Means Success In Electronic Servicing
3200 Sencore Drive，Sioux Falls，South Dakola 57107
Call Collect 605－339－0100 In SD \＆AK

\title{
Crystek Crystals
}

\section*{QUARTZ CRYSTALS} FOR
\(\square\) Industrial Equlpment/Instrumentation
- Micro-processor control
- Computers/Modems
- Test/Measurement - Medical

- General Communlcatlons
- Channel element Service (VHF/UHF)
- Land Mobile 2-way
- Marine
* Aircraft
- Telemetry
- Monitors/Scanners/Pagers
\(\square\) Amateura/2-Meter/General Coverege CB/Hobblest/Experimenter

FOR OPTIMUM STABILITY AND RELIABILITY IN FREQUENCY MANAGEMENT

Pulse of Dependable Communications
Crystek Crystals offers their new 16 page FREE catalog of crystals an oscillators. Offering state of the art crystal components manufactuered by the latest automated technology. Custom designed or "off the shelf," Crystek meets the need, world wide. Write or call ioday!

CRYSTEK CORPORATION
DIVISION OF WHITEHALL CORPORATION
2351/2371 Crystal Drive •Ft. Myers, FL 33907
P.O. Box 06135 •Ft. Myers, FL 33906-6135

TOLL FREE 1-800-237-3061
PH 813-936-2109/TWX 510-951-7448/FAX 813-939-4226 TOLL FREE IN THE U.S.A. EXCEPT FLORIDA, ALASKA, HAWAII

CIRCLE 187 ON FREE INFORMATION CARD

D converters (including 16 new devices), 20 new D/A converters, and 11 voltage references from Maxim Integrated Products. A complete product listing, converter selector guides, and package information selector guides, and package information sections are also included.

For a free copy of the 1987 Data Converters and Voltage Reterences data book, contact a Maxim sales representative or distributor, or call Customer Service direct at 408/737-7600. Maxim Integrated Products 510 N. Pastoria Avenue, Sunnydale, CA 94086.

\section*{New Hall-effect switches}

Sprague has developed a new sensor chip that makes possible the new UGN/UGS-3119, UGN/ UGS-3120, and UGN/UGS-3140 monolithic Hall-effect switches that are less susceptible to mechanical stress and have better stability over their operating temperature ranges than earlier Halleffect devices.

The 3119 is recommended for applications that provide steep magnetic slopes and low residual levels of magnetic flux density. The 3120 is for applications that require precise switch points. The 3140 is for use with small inexpensive magnets or for applications where there are relatively large distances between the magnet and the Hall cell.

The UGN types are rated for operation over the \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) temperature range. The UGS series has an operating range of \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). All types are offered in two 3-pin plastic SIPS-a \(60-\mathrm{mil}\) thick (1.54 mm) " U " package and a 80 -mil-thick (2.03 mm) " T " package. They also come in SOT 89 (TO-24AA) packages and in hermetically sealed 3 -pin ceramic packages.

The UGN-3119, -3120, and -3140 are priced at \(\$ 0.47, \$ 0.50\), and \(\$ 0.81\), respectively in lots of 100 . The UGS-3119; -3120, and -3140 are priced at \(\$ 0.79, \$ 0.90, \$ 1.20\) each, respectively.

For detailed technical information,. request Data Sheets 26621, 27622, and 27627 from Technical Literature Service, Sprague Electric Co., P.O. Box 9120, Mansfield, MA 02048-9120.

R-E

\section*{AUDIO UPDATE}
continued from page 41
in their players；but it seems to me that they are a necessity．The com－ pression circuit could even be controlled by the brake system and arranged so that compression would be off when the car is stopped and on when it is moving． Or better yet，let＇s stay with cas－ settes－which to my mind are far more sensible for car use．At least one manufacturer（NAD）is pro－ ducing a cassette deck with a novel car－tape recording feature．When the circuit is switched in，cassettes are recorded with both compres－ sion and equalization to compen－ sate for both the noise and the special acoustics of the auto－ motive environment．

As might be surmised，I＇m all for psychoacoustic manipulation of the stereo signal if greater realism can be achieved．I＇ve long since given up any hope of being able to provide facsimile reproduction in my home of an original acoustical event．I would be content with a reproduced musical performance that sounded plausible In other words，it might have been heard that way live in some other acous－ tic space and time．Plausible repro－ duction，in my use of the term，is not easy to achieve．Perhaps half a dozen times in my 30 years of au－ dio involvement have I experi－ enced the acoustic illusion＂I am there＂or＂they are here．＂And in almost every case，for it to suc－ ceed，the illusion required multi－ ple channels or binaural head－ phone reproduction．

I hope this brief guided tour through some of the mysteries of psychoacoustics has been inter－ esting，instructive，and has provoked some appreciation of what it takes to delude your ears into believing that they are hearing music freshly producec：without artificial preservatives．Psycho－ acousticians are well aware that they do not as yet have all the an－ swers as to how to hear．However， I＇m convinced that there＇s an R\＆D） Twilight Zone inhabited by a few special psychoacoustically－ori－ ented equipment designers from whose joint efforts the audio mil－ lennium will one day emerge．R－E

\section*{Analyze defective waveforms faster，more accurately，and more confidently－every time or your money back}

If you value your precious time，you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you． 10 times faster， 10 times more accurate，with zero chance of error．
End frustrating fiddling with confusing controls．Exclusive ultra solid ECL balanced noise cancelling sync amplifiers，simplified controls，and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever．
Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping \(3,000 \mathrm{~V}\) without hesitation with patented 3,000 VPP input protection－eliminates expensive＂front end＂repairs and costly equipment downtime．
Make only one circuit connection and push one button for each circuit parameter test：You can instantly read out DC volts，peak－to－peak volts and frequency \(100 \%\) automatically with digital speed and accuracy． It＇s a real troubleshooting confidence builder．
Confidently analyze complex waveforms fast and easily．Exclusive Delta measurements let you intensify any waveform portion．Analyze glitches，interference signals，rise or fall times or voltage equivalents be－ tween levels；direct in frequency or microseconds．
Speed your digital logic circuit testing．Analyzing troublesome divide and multiply stages is quicker and error free－no time－consuming graticule counting or calculations．Simply connect one test lead to any test point，push a button，for test of your choice for ERROR FREE results．
To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence，CALL TODAY，WATS FREE，1－800－843－3338， for a FREE 15 day Self Demo．

Call Today Wats Free 1－800－843－3338
曰三NCOF三
3200 Sencore Drive
Sioux Falls，SD 57107
605－339－0100 In SD Only
innovatively designed with your time in mind．

Before you hear about it on your old radio, hear it live on your new \(\operatorname{lnform}-\) ant Information Radio. Whether its an all-pointsbulletin from the State Police, the dispatcher for the city's Fire Department, an ambulance racing to the hospital or a National Weather Service report, the new Informant from Regency makes you a part of all the action... instantly.

\section*{Breakthrough Technology. Instant Information.}

Informant Information Radio uses a revolutionary new technology that allows you to constantly monitor your police, fire and
 as well as NOAA weather information channels in all 50 states. All pre-programmed. This new Information Radio utilizes a principle similar to the seek and scan feature found on expensive AM/FM radios. Your information radio scans the public service channels in the area, locates the active signals, locks in and broadcasts all the information right to you. With revolutionary TURBO-SCAN speed!

Hear Your Hometown Like You've Never Heard it Before.

Just turn it on. As easy to use as your AM/FM radio. Instantly, you're tuned into real life adventures. One touch control lets you select and hold police, fire and emergency broadcasts so you don't miss a single minute of the action.

Hear the amazing Information Radio today. Take it home and be a part of the action tonight!!

BY REGENCY

\section*{Information Radio} for Real Life Adventure

THOMAS L．JOZWIAK

\section*{This po＇cket－size electronic}

\section*{Christmas tree will give your} holiday lighting a new and

\section*{festive look．}

FOR ABOUT \(\$ 10\) YOU CAN BUILD A UNIQUE high－tech Christmas tree that will add a new and festive look to both your home and office holiday decorations．And be－ cause it＇s powered by two AA batteries，if you can＇t be home for the holidays you can pack one along in a suitcase to remind you of your loved ones．

The electronic Christmas tree is really a \(61 / 2\)－inch high tree－shaped printed－circuit board that＇s outlined by what appears to be randomly－blinking red，green，and yellow LED＇s．The tree＇s trimming is the components for the electronic circuit that makes the LED＇s wink and blink．The Christmas tree＇s base consists of two AA－ size battery holders cemented together with the tree＇s PC board sandwiched be－ tween the two．A little imaginative spray painting before the components are in－ stalled puts a realisic finishing touch to the Christmas－tree project．

Because the LED＇s are continuously cycled on and off，two alkaline batteries provide more than 300 hours of continu－ ous operation：that＇s enough to provide almost two full weeks of window display or entertainment before the batteries need to be replaced．

FIG. 1-THREE INDIVIDUAL FLASHER CIRCUITS having unrelated flash rates create a pseudorandown blinking of the LED's because the LED's from each individual circuit are intermixed around the edges of the tree.

\section*{How it works}

As shown in lite. 1, three imdividual flashinge circuits that use an I.M.30) I.E: \()\) thasher/oseillator IC create the appearance of a prewdo-randem firinge order. The
 control the blinh rate. Which in between . 3 and 8 second. while the inherent wide
 standard electrolytic capacitors add to the irregulatity of the bimh eycles. The com tinuous current drain is aboul 10 ma: howeser, if sou derease the values of R+6 or (- - 3 in order to lo increase the blinh rate, the current will then increase proportionately

FIG. 2-TAKE EXTRA CARE THAT THE LED'S are installed with the correct polarities. If you want to decorate the "tree", do it before drilling the mounting holes for the components.

\section*{PARTS LIST}

All resistors are \(1 / 4\)-watt, \(5 \%\).
R1-R3-200 ohms
R4- 3000 ohms
R5-2200 ohms
R6-2700 ohms
R7-R18-39 ohms
Capacitors
1-C3- \(500 \mu \mathrm{~F}, 6\) volts, electrolytic

\section*{Semiconductors}

IC1-IC3-LM3909, LED flasher
LED1, LED4, LED7, LED13, LED 16, LED
19-Red, diffused 5 -mm LED
LED2, LED5. LED6, LED11, LED14. LED17-Yellow, diffused \(5-\mathrm{mm}\) LED
LED3, LED6, LED9, LED12, LED15, LED18-Green, diffused 5-mm LED
LED10-Red flasher LED (Radio Shack 270-401 or equivalent)

\section*{Other Components}

B1, B2- 1.5 -volt AA alkaline battery
Miscellaneous: battery holders, PC board, wire, solder, etc.

Note: An etched and drilled PC board is available for \(\$ 10\) postpaid from Fen-Tek P.O. Box 5012, Babylon, NY 11707-0012. NY residents must add appropriate sales tax.

Note in partentar that external currentlimiting resistors aren't neded for ILEDI3 through L.ED) 8 : the resistors atre buit into the \(1(\cdots\). I.I: \()\) IO. which serves ats the trec゙s "star," is a special kind of flashing I.E:) that blinks contimunsly at aned ratce

Power can be turned off he simpls re mowing either battery or by slipping a small piece of paper between ant battery and either of is batlery-hoder kerminals ()f course, a switch call also be added continuced on page 8?

\title{
MACROVISION STABILIZER
}

\title{
Are copy－protected video tapes also mucking－up normal viewing on your TV？Then use a Macro－Scrubber to make the picture squeaky－clean． \\ D．DUPRE
}

YOU ARE PROBABIY AIRI：NDY NWARI that the movic industry has launched a new tront against viden tape conpying with a new＂encoding＂stheme called \(N / a\)－ rovision．Although many new releases from Emhassy，Cl3S／Fox，MCM／LA． HB （）／Canmon．MCA，and Dismey have heen prolected with it．its use is gemerally not advertised on the lahel．However，boid cann casily identify a Maconvision－pro－ cessed tape by turning the vertical hold control on your TV＇（if your set hats onc）so that the black bar across the lop of the picture becomes visible．If the signal con－ tains Marorision encokling，you will see five or sit gray or white pulsitting ＂boxes＂on the left side of the hlack har．

According（o）a lop Marron：ion ex－ ecutive．platas alle already in the work 10 transmit Matrovision－encoded signals through cathle systerns．

The hasic idea behind the W／acronision process is tor render the program material uncopyathe to a VCR while allowing the unimpaired vicwing of the originat tape fa goal not achicved hy fer origialal CopN（illard system．Which has since passed atwaty）．Although some proponemts of the Macronision process clatm that the system mests those goals．numerous con－ sumers who have either purchased or rented at number of Marromision－encouded tapes can attest to the contrary＇lhat is evidenced by the large intlus of letters to
magarinces predominant in the viden tield． and ny continuous complaints to video rental and redal shores

Both the users and developers of the Wacrovisian process athot that some TV＇s and \(V \mathrm{C}^{\prime} \mathrm{R}\) sare adversels atfected in the Pl i \({ }^{\prime}\) mode hut that that percentage is very somatl．So，it you are one of the ＂smatl pereentige＂you probathly have a significant sum of money invested in the hest eatures that state－allothe－art video hats （o）or er：vet with it vou wind up watching a dark murky picture that maty he tlashing． rolling or streaking as well．

It youre atolong the users who have discovered that your V＇CR or TV equip）－ ment simply can＇t handle the so－called

FIG．1－MACROVISION DELIBERATELY injects interference during the vertical－blanking interval（a）．
The Macro－Scrubber restores the signal to standard NTSC（b）．

FIG. 2-AN ELECTRONIC DPDT SWITCH is used to restore the video signal to the conventional NTSC format.
"invisible" Macrovision encoding, then you need the Macro-Scrubber. a device that simply eliminates the encoding. Plug the device between your VCR and its TV or monitor and you won't know that Marrovision even exists.

\section*{Macrovision encoding}

Muctovision is not an encoding process at all. If it were, then an appropriate decoder would have to be made available to the consumer just so he could view a Mac-rowision-encoded tape. In fact, the video information remains intact and unmoditied in the signal, as does the audio. The encoding is really a disturbance in the TV signal's vertical-blanking interval that is supposed to affect only a VCR attempt-
ing to copy the tape. Unfortunately the encoding also affects some TV: By simply eliminating the disturbance and returning the offending signal to normal NTSC standards you can view a completely normal picture while playing a Macrovision-processed tape.

As shown in Fig. 1. the Macrovision process merely injects noise bursts and solid pulses into the signal duringeselected line times within the vertical blanking interval. One possible form of Macrovision encoding is shown in Fig. 1-a; the same signal in conventional NTSC form is shown in Fig. 1-h. The peak level of the bursts is randomly varied from black to white. Sometimes the bursts are pumped between two or three different levels: at

\section*{WARNING}

Duplication of copyright material is prohibited by law. The Macro-Scrubber is recommended for use only between a VCR and its TV or monitor as a solution to viewing problems that are generated within the TV or the monitor by Macrovision encoding.
other times the burst level is ramped slowly up and down. The location of the injected noise is also tandomly altemated between the available line times; however. the location and level of solid pulses usually remains constant for the duration of a particular title-thus all copies of a particular title have the same encoding.

The Macrovision imegularities created during the vertical retrate time are intended to upset a VCR's recorno-mode AGC cireuit so that it records an unviewable picture. Since a VCR is designed to record only the NTSC video signal-which contains no noise transitions during the vertical blanking interval-any fast irregularities in the vertical hlanking interval cannot be tracked by the AGC.

The effectiveness of the Matrovision anti-copying system varies with the type of VCR used, but in general, synchronization is los, leaving an anviewat hle picture on the attemptedcopy. At best. the resulting dubbed copy will exhibit erratic brightness changes. Sometimes the picture will roll vertically due to a noise burst injected just before vertical syne.

FIG. 3-THE INPUT-SIGNAL LEVEL must be within a specified range for the Macro-Scrubber to work properly. If there is some problem with the input-signal level it is suggested that R24-shown with dashed lines-be substituted for R3 and R4.

\section*{COMPLEX IS REALLY BETTER}

The majority of devices sold with a pur－ pose similar to that of the Macro－Scrubber either blank or clip the entire vertical－ blanking interval，which also removes any other VBI data（color correction signals， closed captions，teletext，etc．）．They then attempt to economically reconstruct the entire vertical－blanking interval，including horizontal sync．equalization，and serra－ tion pulses．From a technical viewpoint， that is often not very successful because the characteristics of the reconstructed pulses are usually set to some form of ＂standard＂value，and as such do not really match the actual input signal．Since those units do not actually detect and se－ lectively remove the Macrovision noise， they also strip the vertical－blanking inter－ val of a normal TV signal if not bypassed or removed from the system．

Many models also require factory－type calibrations of numerous timing potenti－ ometers．Their new blanking level is either preset to some kind of standard value or an external adjustment is provided to compensate for signals from different vid－ eo tapes or sources．

What makes the Macro－Scrubber unique，when compared to the restoration devices，is that there are there are no pre－ cision adjustments；digital filters remove only the Macrovision pulses and pass the original vertical－blanking interval data and sync pulses，while sample－and－hold cir－ cuits reproduce the correct vertical－blank－ ing level，which is switched into the output signal in place of Macrovision pulses． Also，the use of a crystal oscillator elimi－ nates the need for timing adjustments． And since the Macro－Scrubber has no effect on normal video signals，there is no need to switch the Macro－Scrubber out of the system for normal viewing．

Unfortunately，similar symptoms some－ times are experienced when merely play－ ing the original tapes on some VCR／TV combinations．

\section*{A logical solution}

In comparing Figs．1－a and 1－h，you can
see that a normal NTSC video waveform is held at the vertical blanking level during times when injected noise exists in the Macrowision－encoded waveform．By lo－ cating the individual noise bursts and sol－ id pulses，and by connecting the output to a \(D C\) volage that is equivalent to the ver－ tical blanking level at those times．we can essentiatly recreate the NTSC version of the waveform．When no encoding signals are present，we connect the output to the clamped video input．

Figure 2 shows a block－diagram of how the encoding can be removed．First，the incoming video signal is clamped to hold the negative syne tips at the same level， thereby removing any \(A C\) hum or other time－varying offset from the signal；that step is critical for detecting signal transi－ tions against a fixed reference level．The clamped video is then sent to a tiltering circuit to accurately locate the noise bursts and the solid pulses from which the switch－timing and the control signal are created．（A crystal oscillator is used so that timing adjustments aren＇t necessary．）

The sample－and－hold circuit continu－ ously samples the video waveform to gen－ erate a DC voltage equivalent to the vertical blanking level of the incoming signal．That assures that the switched－in blatnking level is always correct for the actual input signal applied and eliminates the need for any manual adjustment． Fi － natly，an electronic double－pole，single－ throw switch that is controlled by the noise－locating signal connects either the clamped input video or the reproduced blanking level to the output buffer ampli－ fier．In so doing，Macrovision noise is eliminated and the signal is restored to normal NTSC video．

\section*{Circuit description}

Figure 3 shows Macro－Scrubber＇s cir－ cuit．The Macrovision－encoded video sig－ nal is applied to jack JI and is fed through back－to－back capacitors Cl and C2 to a resistor／diode network that clamps the negative sync tips close to ground poten－

FIG．4－THE MACRO－SCRUBBER GENERATES noise pulses which are used to locate and suppress the Macrovision noise－burst interference．

\section*{PARTS LIST}

All resistors are \(1 / 4\)－watt， \(5 \%\) unless oth－ erwise noted．
R1－470，000 ohms
R2，R23－680 ohms
R3－ 3,570 ohms， \(1 \%\)
R4－ 12,100 ohms， \(1 \%\)
R5－R7，R10－R13，R15－10，000 ohms
R8－10，000 ohms， \(1 \%\)
R9－22，100 ohms，1\％
R14－1 Megohm
R16－267，000 ohms，1\％
R17 R18－ 1,000 ohms
R19－220 ohms
R20－75 ohms
R21－470 ohms
R22－47，500 ohms，1\％
R24－20，000 ohms，trimmer potentiome－ ter
Capacitors
C1，C2，C14，C22－22 \(\mu \mathrm{F}, 16\) volts，elec－ trolytic
C3－ \(1 \mu \mathrm{~F}, 35\) volts，electrolytic
C4，C5，C9－C11，C13，C15，C19，C23－ \(0.01 \mu \mathrm{~F}\) ，ceramic disk
C6－ 330 pF ，NPO
C7，C8，C18－390 pF，silver mica
C12－470 pF，polypropylene
C16，C17－20 pF，NPO
C20，C21－470 uF， 25 volts，electrolytic
Semiconductors
IC1，IC5－LM311 comparator
IC2－4047B multivibrator
IC3－4013B dual D flip－flop
IC4－4526B binary counter
IC6－4069B hex inverter
IC7－4011B quad NAND gate
IC8－4016B quad analog switch
IC9－LF353 dual JFET op－amp
IC10－7812，12－volt regulator
Q1－2N5640，JFET transistor
Q2－2N3906，PNP transistor
Q3－2N3904，NPN transistor
D1－D4－1N914，switching diode
LED1－Light－emitting diode
Other components
XTAL1－4－MHz crystal，AT cut（parallel）， HC－18 package
J1，J2—RCA－type phono jacks
Miscellaneous：PC board materials， 16－18－volt， \(200-\mathrm{mA} \mathrm{AC}\) adapter，etc．
Note：A complete Macro－Scrubber kit， model MAK－1，which includes the PC board，cabinet，all components，and an AC adapter，is available for \(\$ 52.95\) plus \(\$ 3.00\) shipping and handling from：The Hobby Helper，P．O．Box 308，Bridgewater，MA．02324．（617） 339－1026．Massachusetts residents must add appropriate sales tax．
tial（approximately 0.2 volt）．The clam－ ped video input applied to ICl＇s inverting input（pin 3）resembles the waveform shown in Fig．1－a．A DC reference voltage derived from diode D2 is fed to ICl＇s non－ inverting input（pin 2）．Since the DC refer－ ence is slightly higher than the clamped voltage．ICl＇s output goes positive when－ ever the input signal is lower than the reference signal．As shown in Fig．4－a， ICl outputs a waveform that is normally low（0）volts）with high－going pulses con－
current with negative-going pulses below the vertical-blank ing level (i.e horian-tal-synce pulses. equalization pulses. ver-tical-serfation pulses. and Marromision noise bursts).

The clamped video signal is also delivcred to the impur of a sample-and-hold circoit, which consists primarily of and log switch IC8-a, hold capacitor C12. and op-amp (C). The switch is driven in such a way that it samples the level of the video signal only during vertical-syne time at the peaks of the verticat-serration pulses The output of ICY is a DC voltage eytal to the vertical-blanhing level, which will be switched into the oupur waveform in place of the Macrontision noise bursts and solid pulses

Clamped impur viden is fed to the input of anakey swith ICX-h. and the DC output voltage from \(/ \mathrm{C} 9\) is fed to the input of analog switch ICX-c. Notice that the outputs of antalog switches \(1 C X-h\) and \(1 C 8-c\) are connected together, and that hecallse of inverter IC6-e, their control inputs at pins 5 and 6 respectively are driven \(180^{\circ}\) out of phase. That arrangement creates the electric equivalent of a single-pole. dou-ble-throw switeh. with either the clamped imput video or at DC voltage that is coutal to the vertical-hlanking level being led to bufter amplitier Q1 at any one time

It is through control of the electronic DPDT switch shown in Fig. 2 that the encoded video is restored to a nomal NTSC signal. Alt that is needed is a proper signal to pin or of ICX

The signal from IC1 pin 7 (Fig. foid. which comtains pulses that comespond to the syne and the Macroviston noise pulses, is fed oo IC2 pins 8 and 12. IC2 isa multivibrator that in configured as a digital low-pass filter. The time constant determined by RX and C 7 caluses trequencies greater than twice the horizontal frequency 1o be tillered out. IC2soutput at pin 11 loohs like a squared-up and inverted version of its imput. except that the highfrequency pulses corresponding to the Macrovision noise bursts have been filtered out, leaving a low level for eath burst duration. (See Fig. 4-h).

The filtered signal is fed to pin 3 (IENABIL:) of binary counter \(1 \mathrm{C}+\). A +MH . crystal-oscillator circuit leeds dual thpflop IC3. which divides the erystat irequency by four. yielding a \(1-\mathrm{MHz}\) clock imput iol \(\mathrm{C}+\mathrm{pin} \mathbf{6}\). When the input at ICt pin 3 goes high. that connter is asynchronously prese to the binary value detemined by prese lines P3, P2, P1, and \(P()\) (pins 2, 14. 11, and 5 respectitvely). With the connections shown in Fig. 3. the preset count is 14 decimal (1110 binary). Whenever the count is not zero. the counter ouput at pin 12 is low. The counter decrements once for each clock pulse it sees on pin 6 while pin 3 remains low. Thus. It \(\mu \mathrm{s}\) atter the leading. negativegoing edge of the input signal on pin 3 goes low. the count waches 0 and the counter's output switches high. The high output is fed hach to pin 4 , the influm line, which prevents any further counting.

When the input signal at pin 3 returns high, the counter is again preset to a 14 count and the output returns to its low preset state. Low input pulses having a duration less than it \(\mu\) sece are ignored beciluse the counter is preser before the count ever raches zero.

The resulting output signal at lC + pin 12 is nomally low, with high-going pulses that start \(14 \mu\) salter the beginning of each herizontal-synce pulse that precedes a Marrovision noise burst. The 14 \(\mu\) sec delay forces the horizontal syme pulses (and color-bursts) to be switehed into the output waveform. Each of the noise-burst locating pulses returns to a low at the end of the corresponding Macrovision burst. Those pulses, as shown in Fig. 4-c, define the points in time when the hurss occur, with one exception. Concurtent with the vertical-serration pulses. there are a string of pulses that must be removed in order to create a signal that will totally isolate the Macrorision noise. In order to remove those pulses we must create a gating signal with a single pulse that lasts only for the duration of the vertical syne pulse in each frame. To do that, syne and noise pulses from CL pin 7 (Fig. \(4-a\) are fed to a lowpass filter consisting of R9 and C6.

Narrow, positive-going pulses are attenuated because Co never gets a chance to charge to a logic-high level unless the pulses are longe compared to the time constant detemined by R9 and C6. The only pulses wide enough to atlow C6 to charge

FIG. 5-VERTICAL SYNC AND BLANKING level sampling pulses are derived from the Macrovisioninduced noise bursts.

FIG．6－WINDOWS DERIVED FROM the burst－location pulses provide the switch control signals that eliminate the Macrovision interference from the output signal．
and is then fed to NAND gate IC7－b 10 gate the burst－locating signal from ICt pin I2 （Fig．4－6）The oulput signal at IC 7 －b pin 4 （Fig．6－u）is nomally high，with logic－ low pulses that last for the duration of the corresponding Macrovision noise burst．
Notice．from Fig．1－a，that some Mac－ rovisiom bursts are followed by a solid pulse that doesint have a negative transi－ tion．Since the Macrovision noise－locat－ ing pulses shown in Fig．6－a were created by detecting high－frequency hursts below the blanking level．they do not locate the solid pulses．In order to remove the solid pulses without aflecting any non－Moc－ rovision pulses we must：1）deteet positive transitions above the vertical blanking level that oceur during the Macrovision－ encoded areas of vertical blanhing，and 2） combine the new signal that locates the Macrovision solid pulses with the signal that locates the Macrovision moise bursts at \(1 C 7-b\) pint 4

Macrovision－encoded areas of the sig－

FIG．7－THE NTSC SIGNAL IS CREATED by selectively switching the encoded input and the sampled vertical－blanking level into the output．
（6）a logic－high value are those corre－ sponding to the vertical serration pulses．

Therefore as shown in Fige 5－a，at ICo－ 0 pin 5 we have a signat that has＋5－volt putses corresponding to the horizontal sync pulses，and +12 －volt pulses con－ current with the serration pulses during vertical－sync time

Inverter ICh－e discriminates fatther． since input pulses lower than a logic high （apposimately +7 V for a +12 V vapply） will not trigger output pulses．Therefore． as shown in Fig．5－b，at inverter ICO－c pin fowe have a nomally high signal with low gome pulses accurring only during the vertical syne period．When that signal senes low．diode［ + hecones formad－hi－ ased and inverter \(1(0-d\) pin 9 is imme－ diately pulled low as welt．When ICo－6 pin 6 goes high．I） 4 is reverse－hiased．so
that pin 9 chatrges to a logic－high level at a rate delermined by R22 and C8．Sce Fig． 5－6．）Again，narrow pulses are ignored and，as shown in Fig． \(5-d\) ，the menters output（IC \((6-d\) pin 8 ）is nomally low with logic－high syme pulses．
The insenters output signal furns on sampling－switel \(1 C 8\)－a during the ver－ dical－sertation time and CI2 charges to the vertical blanking level．The high input impedance of op－amp IC9．and ICs－a in its ont state．prevent the charged voltage on CI 2 from leaking of between samples． Unity－gain amplitier IC9 fieds CIOSDC－ voltage level to analog switch ICS－c． where it will be switched into the output waveform in place of the Merconistom noise．

As shown in Fig．5－e．the vertical－syne signal at ICO－d pin 8 is inverted by IC6－f．
nat are detined by feeding the signal at IC7－b pin 4 （Fig．（6－a）to a low－pass tilter consisting of D3， K 16 ，C18，and IC7－a． The resulting waveform at IC7－a pin 3 contains wide pulses，or wimetons，that detine the time periods in which the Mac－ rowision enooding is present．That signal is shown in Fig．（6－b．

The DC output voltage from the sam－ ple－and－hold circuit is led to the inverting input of comparator IC5．while the clam－ ped viden input signal is eid tolC5＇s non－ invertang input．A train of high－going pulses appears at IC5 pin 7 that corre－ spond to all transitions above the blank－ ing level including viden．vertical－ blanking interval data and Morrovision pulses．See Fig．6－C

The signal from IC5 pin 7 （Fig．6－C）is gated by the window pulses from \(1 C 7\)－a

FIG. 8-RESISTOR R24, SHOWN BY THE DOTTED LINES, isn't usually used. If it is needed, you must remove resistors R3 and R4.
pin 3 (Fig. 6-b) at NAND gate IC7-d. yielding the waveform shown in Fig. 6-d at 1C7-d pin 11. That signal is combined with the burst-locating signal from IC7 pin 4 (Fig. 6-a) by Nand gate IC7-c.

The final Macrovision-locating signal appears at ICX-c pin 6 and looks very similar to an inverted version of the original burst-locating signal (Fig. 6-a), but the pulses have been stretched to include both the bursts and the solid pulses. (See Fig. (6-e.) Notice that no locating pulse exists to remove the single solid pulse occurring at the start of the vertical blanking shown in the sample input waveform (Fig. I-a). That is because there is no preceding negative noise burst that can be used to locate the solid pulse. As a result, that pulse will remain in the output waveform (Fig. 7-c), but it doesn't cause a problem because it is narrow and is not pumped.

The signal shown in Fig. 6-e directly feeds the control input, IC8-c pin 6, and an inverted form of the signal (Fig. 7-a) feeds analog switch IC8-b via inverter IC6-e

The removal of the Macrovision encoding signal works as follows: During video time, horizontal-sync time, vertical-serration time, and all non-Macrovision-encoded vertical-line times, the control input of analog switch IC \(8-\mathrm{c}\) is low-the switch is open. At the same time, the control input of analog switch IC8-b is
high-it is closed, connecting the clam-ped-video video (Fig. 7-b) to Q|'s gate. During Macrovision noise times, the situation is reversed. Switch IC8-b is open and switch IC8-c is closed, thereby connecting the DC blanking voltage from sample-and-hold amplifier IC9 to QI. An impedance-matching amplifier stage, consisting of Q1, Q2, and Q3, provides a match for the 75 -ohm videooutput. Thus. as shown in Fig. 7-c, a "normal" NTSCcompatible video signal is reconstructed at the output, eliminating only the Macrovision noise.

\section*{Construction}

The circuit is assembled on a printedcircuit board. The foil pattern for that board is provided in PC Service. The parts-placement diagram for that PC board is shown in Fig. 8.

Begin stuffing the printed-circuit board by first installing all resisitors, diodes. and capacitors. Make sure that all of the electrolytic capacitors and the diodes are installed with the proper polarity. Save the clipped component leads for use as jumpers.

Capacitor C12 must be a "polypropylene" type because the extremely low-leakage characteristic of the material prevents the vertical-blanking hold voltage from sagging between samples. As correct R-C time constants are critical to the proper operation of the circuit, use of
the component values shown in the schematic is essential.

The PC board's spacing for crystal XTAL 1 is for an HC-18 pachage. Values specified in the Parts List for resistors R1t and R15, and capacitors C16 and C17. must be used in order to insure proper operation of the oscillator.

Mount the transistors and voltage regulator IC10 next. Transistor QI is an FET and should be handled with proper regard for static charges. A heatsink should be mounted on the voltage regulator, especially if the circuit is housed in a case that has limited ventiation. Potentioneter R24, which is indicaled by dashed lines in the schematic, is not normally used, so its holes in the P'C board will remain empty. (We'll explain R24 later.)

Finally, mount the IC's, using proper precautions for static electricity because most of them are CMOS. Sockets aren't necessary but using them would make any troubleshooting or repair easier. The project will fit nicely into a PAC-TEC CM5-125 case.

\section*{Checkout and hookup}

Apply power and check that the AC adapter's output voltage is between \(14-24\)-volts DC when it is powering the circuit, and that IC10's output voltage is +12 -volts DC, \(\pm 0.6\) wolt .

Connect an input signal and monitor or a TV to the Macro-serubber. Comnect the VCR's video output to JI. If you have a video monitor or a TV having a video input, connect the Macro-scrubbers output. J2, directly to that piece of equipment's video input.

If your equipment lacks a video input. you'Il need an RF modulator for the channel you normatly use when watching your VCR (channel 2. 3, or 4). Connect the video output to the modulator's video input. Connect the VCR's audio output to the RF modulators audio input. Conneet the modulator's RF output to the TV's antenna-input jack or terminals.

Play a video tape that you have already identified as containing Macrovision pulses. The picture you see should now be free of interference.

If the Macrovision-related viewing problems still exist. or if part of the picture is blanked out, the input-signal level from your VCR may be excessively high or low. In that case, a pattern of holes has been provided in the PC pattern so that fixed resistors R3 and R4 can be replaced with a \(20.000-\) ohm potentiometer. The potentiometer is shown in the schematic by dashed lines, and is identitied in the schematic and on the PC placement diagram as R24. (Remember, if you install R24 you must remove R3and R4.)

To adjust R24, play a Macrovision tape, and while observing the TV picture. adjust 224 until the picture appears to be normal-interference-free.

R-E

\section*{BUTM D D FITls}

Part 2Last month we built the tester and dis． cussed basic test methodology．Now we \({ }^{\prime} 1\) go on and provide specific examples showing how to set up your own test rou－ tines on paper and by computer，and how to send those files to and from your desh－ top computer．

Before we get stanted，lets correct a few errors from last month．The schematic of the driver hoard incorrectly identified P2 and P4．Also，the ordering information should have noted that ICI6 and IC17 are not included in the partial hit

\section*{7404 test data}

Here is how to generate test data．This procedure applies whether data is entered via external computer using the data－entry routine discussed later．or is entered via the tester＇s keyboard．

Our first example illustrates the process for a 7404 hex inventer．First，obtain the pin numbers for inputs，outputs，\(V_{\mathrm{CC}}\) and
ground，and the functional description（or truth table）from the devices data sheet．

To ease the process of generating the test data，make a copy of the template shown in Fig．7；then fill in the blanks for the part number，number of pins，and group number．You must make a template for each test group if you need more than one．You may also shetch the parr＇s logic diagram in the box on the template．

Next fill in the data blanks．leaving room to write eight binary digit，at each pin that must he tested．If we put al into an inverter，we should get a 0 out of it．So put a 1 in the blank for pin 1 ，and a 0 by pin 2．Repeat the procedure with the remain－ ing five inverters．Then put an \(X\) at pins 7 and 14 to indicate that they will be ig－ nored．Now we have all data for the first test cycle．

There is a total of eight test cycles，so now place a 0 at each input and a 1 at each output．（The \(\lambda\)＇s should remain by pins 7 and 14．）That accounts for two of the eight
bits in this test group s byte，so duplicate the hit pairs four times．Then convert the eight－bit data，four bits at a time，to two hexadecimal digits using the binary／hex－ adecimal chat it the bottom of the tem． plate．The completed test form is shown in Fig． 8

The rest information，along with the part number and the number of pins，is then stored in the tester＇s memory using the procedure outlined last time．There is no need for more than one test group to lest a 7404 completely．

\section*{In－circuit example}

The data for an in－circuit IC depends on how the IC is connected．For example． input pins may be tied to \(\mathrm{V}_{\text {Cc }}\) or to ground．so we tell the tester to ignore those pins．Or，if the IC＇s input is con－ nected to one of its outputs，ignore the input because its data will be supplied by the output it＇s connected to．A sample chart is shown in Fig． 9.

\section*{TEST ROUTINE TEMPLATE}

PART NUMBER (8 Alphanumeric Digits Maximum:
NUMBER OF PINS (2 Digits Maximum, Even Numbers 4 to 24):
GROUP NUMBER (1 to 5):
REMARKS:

\begin{tabular}{|cccc|}
\hline & BINARY TO HEXADECIMAL CONVERSION TABLE & \\
BINARY & HEX & HINARY & HEX \\
0000 & 0 & 1000 & 8 \\
0001 & 1 & 1001 & 9 \\
0010 & 2 & 1010 & A \\
0011 & 3 & 1011 & C \\
0100 & 4 & 1100 & D \\
0101 & 5 & 1101 & F \\
0110 & 6 & 1110 & \\
0111 & 7 & & \\
\hline
\end{tabular}

FIG. 7-COPY THIS TEMPLATE to simplify generating your own test routines.

\section*{Multiple test groups}

IC"s with pins that can function ans both inputs and outputs can be tested as follows. We'll use a 74I.S245 octal bus transceiver for illustration. That IC is commonly used to buffer data into and out of a microprocessor: direction of data llow is controlled by a single otr input (pin I).

The data for testing the IC in send mode is shown in Fig I(): the data for testing it in receive mode is shown in Fig. II. Notice that the data in both cases is identical except for the setting of the direction line.

The enable line of a registered (latched) IC must be toggled to ensure that the IC responds when it is enabled, and does not respond when it is not enabled. Fig. 12 shows the test pattern for a \(7+1 . S 37.3\) octal data lateh. The outputs should follow the inputs when the enable line (pin \(I I\)) is high. and shouldn't change otherwise.

\section*{Clocked logic}

A clocked IC that has no means of setting or clearing its outputs will have an indeterminate state before it is clocked. Therefore, all outputs must be listed as indeterminate (D). The first state of a pin defined as indeterminate will he cleared to zero. (Only outputs can be indeterminate. The remaining 7 states of the group will be processed normalty. If more than one test group is needed. the first state of each additional group will not he indeter minate and should be detined as Output Note in the test data that the clock line goes high in the odd-number cycles (1, 3. 5 , and 7). The outputs will only change on those cycles, because the \(7+1.5374\) changes state during the leading clock edge. Test data is shown in Fig. 13.

\section*{Multiple-output-state devices}

An IC with many inputs or outputs may require more than one test group. (Remember that there is a maximum of tive fest groups per part number). For exam-

RADIO-ELECTRONICS

FIG. 8-TEST DATA FOR A 7404 hex inverter. All states are redundantly checked four times.

FIG. 9-TEST DATA FOR AN IN-CIRCUIT 7404. Input pins 3, 5, and 13 are marked \(X\), for "ignore." Those pins might be hard-wired to ground, \(V_{c c}\), or elsewhere in an actual circuit.

FIG．10－TEST SETUP FOR A 74LS245 octal bus transceiver in send mode．

FIG．11－TEST SETUP FOR A 74LS245 octal bus transceiver in receive mode．
ple，the \(74154+\)－to－16 line decoder has four address inputs（pins 2（）－23），two ac－ tive－low gate inputs（pins 18 and 19 ），and 16 outputs，one of which goes low when both gate inputs are low，depending on the state of the four address inputs．Figures 14． 15 ，and 16 show the data required to test the IC completely．

\section*{Advanced commands}

After generating test data you＂ll proba－ bly want to store it in your desktop com－ puter．The tester provides storage for as many as 105 test routines，which you may upload to and download from the tester＇s internal memory．

After entering test data，if you wish to store it，press the Store key，and the data will be stored in memory for future use under the part number that is entered with the data．

To load a test routine from the tester＇s local memory，press Load and then enter
the part number．If a corresponding rou－ tine is in memory，Cl．EAR OR ENTER：＂ will appear on the display．Press Clr to crase the entry from memory，or press Enter to leave the data in the test bulfer for testing or transfer to the external comput－ er．To upload the data，press Send．To download it．press Rece．If you wish to retain a received file，press Store．Use the BASIC programs shown in Listings I and 210 send and receive programs．

\section*{Remote data generation}

The BASIC program shown in listing 3 can be used to create test patterns some－ what more conveniently than on the tester itself．It is important to note that when using the program to generate test files． only hex characters（ \(0-9\) ．A－F）may be used in the part number（TF\＄）if the file is to be stored in the Tester＇s memory．The reason for this is that the Tester＇s keyboard has no other characters to access the test
routine in its memory．Therefore you would not be able to load or delete the lest routine．For example．a part entered as 74L．SI 38 would be inaccessible because there is nol．or S on the Tester＇s keyboard．

\section*{Usage hints}

First a few words of caution．Nevercon－ nect the test clip to an IC that has power on it unless the tester is on and COMMAND： is scrofling in the display．Conversely． never shut the tester off when the clip is connecod to a powered IC．And always make sure when testing in－circuit IC＇s that the tester and the DUT（／）evice Under Test）share a common ground．Connect the black test hook clip to a ground on the board near the IC＂s to be lested．
The test drivers（IC7－IC15）are rated at 7 volts maximum．so be careful what you conneet the test clip to．A powered RS－232 driver might have \(\pm 12\) volts，or even more，and voltages at those levels

FIG．12－TEST SETUP FOR A 74LS373 octal transparent data latch．When－ ever the enable line（pin 11）is high，each output follows the corresponding input．

PARI NUMHEH（8 Alphatmume＇IC Digils Maxirnum－\(\quad 7425374\)
NUMBER OF PINS（2 Uisits Misimmum．Even Numbers 4 10 24）－20

FIG．13－TEST SETUP FOR A 74LS374 octaI D flip－flop．Data on each input is clocked into the corresponding output on the leading edge of each clock pulse．Clock pulses are applied to pin 11.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{PARI NUMBER (8 Alphanumerıc Diguls Maximum: \(74 / 54\)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{NUMBER OF PINS (2 Digit GROUP NUPABER (1 to 5): REMARKS \(\qquad\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{is Maximum. 1}} & Numb & \multicolumn{4}{|l|}{ers 4 10 24): 24} \\
\hline & & & & & \multicolumn{5}{|l|}{- 4-TU-16 LIAE DECODEA} \\
\hline Binary Data III Ofll & \[
\begin{aligned}
& \text { Hex } \\
& F 7
\end{aligned}
\] & Funct 0 & Pinn I & 40 & Vec & \[
\begin{aligned}
& \text { Pin } \\
& 2 y
\end{aligned}
\] & Binary Oata & Hex & Funcl \\
\hline 1110 InI & ER & 0 & 2 & \(Q 1\) & A & \(2)\) & O101 2111 & 57 & 1 \\
\hline 1101111 & OF & 0 & \()\) & Q2 & \(A\) & 22 & Ollo olll & 67 & I \\
\hline 10118111 & 知 & 0 & 4 & Q 3 & \(<\) & 21 & luve ofll & 87 & 1 \\
\hline 01/1 1171 & 7 F & 0 & 5 & 04 & 0 & 20 & 0000 olll & 07 & \(I\) \\
\hline l/fl \(41 / 1\) & Ff & 0 & 6 & Q \({ }^{4}\) & 62 & 14 & outv ooll & 03 & \(I\) \\
\hline 6/1 71\% & \(f^{p}\) & 0 & 7 & Q6 & 61 & 18 & 00001001 & 05 & I \\
\hline Iifl \(/ 171\) & FF & 0 & 8 & Q7 & Q15 & 17 & (III IIII & FF & 0 \\
\hline 1171111 & \(F\) & 0 & 9 & 88 & 414 & 16 & IIII \(11 / 1\) & 解 & 0 \\
\hline 1111 1117 & FF & 0 & 10 & Q4 & Q11 & 15 & IIII 11/1 & FF & 0 \\
\hline II/I 1/1) & fF & 0 & 11 & P10 & Q12 & 14 & IIII IIII & EF & 0 \\
\hline & & \(\times\) & 12 & GND & Q 11 & 1) & H1/ 111 & P & \(\bigcirc\) \\
\hline
\end{tabular}

FIG. 14-A 74154 demultiplexer has six inputs and 16 outputs, so it requires three test groups to test all combinations. Group 1 is shown here.

PARI NUMBER (8 Alphanumetic Oigils Maxumum:
74154
NUMBER OF PINS (2 Digits Maximum, Even Numbers 4 10 24) 24 GROUP NUMBER (1 to 5): \(2 \quad 4-\) TU- 16 LINE DCCODEA
REMARKS.

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pin } \\
& 24
\end{aligned}
\] & Binary Data & Hex & Func \(\gamma\) \\
\hline 23 & 0101 arol & 55 & 7. \\
\hline 22 & 0110 0110 & 66 & \(\bar{L}\) \\
\hline 21 & love olll & 87 & \(\bar{l}\) \\
\hline 20 & IIII flect & 88 & I \\
\hline 14 & OUN ervo & 00 & I \\
\hline 18 & Devo omm & 00 & I \\
\hline 17 & flil lill & FF & 0 \\
\hline 16 & 116i 1/11 & \(F F\) & 0 \\
\hline 15 & (ill \(1 / 1 / 1\) & FF & 0 \\
\hline 19 & CIIf fiir & 7 F & 0 \\
\hline 1) & 1016 IVII! & \({ }^{5}\) & 0 \\
\hline
\end{tabular}

FIG. 15-GROUP TWO OF THE 74154 TEST set is shown here.

FIG. 16-GROUP THREE OF THE 74154 TEST set is shown here.
could damage the drivers easily. The display will probably dim if you inadvertently connect the test clip to an IC incorrectly, or if you have entered test data incorrectly. If the display does become

\section*{PARTS LIST}

All resistors are \(1 / 4\)-watt, \(5 \%\) unless otherwise noted.
R1-22,000 ohms
R2-330 ohms
R3-R6-1000 ohms
Capacitors
C1, C8-1000 \(\mu \mathrm{F}\), 16 volts, electrolytic
C2, C4-C7, C9-C17- \(0.1 \mu \mathrm{~F}, 10\) volts, ceramic disc
C3- \(10 \mu \mathrm{~F}\), 16 volts, electrolytic

\section*{Semiconductors}

IC1-Z80 microprocessor
IC2-DS1230-104 32K nonvolatile RAM
IC3-MAX233 7S-232 interface
IC4-75499 custom decoder
IC5-75498 custom decoder
IC6-75500 custom decoder
IC7, IC10, IC13-NE591 open-emitter octal driver
IC8, IC11, IC14-NE590 open-collector octal driver
IC9, IC12, IC15-74LS373 octal latch
IC16-7805 5-volt regulator
IC17-2.Mhz crystal oscillator
D1-1N4001 rectifier
DISP1-DL1414 16-segment decoder/driver/display
Other components
F1-1-amp pigtail fuse
J1-9-pin D connector
P1, P2-right-angle double-row 20-pin male header strips
P3-right-angle double-row 26 -pin male header strips
S1-minature SPDT toggle switch
S2-momentary SPST pushbution
S3-S14-momentary SPST keyboard switches
T1-Transformer, \(9.5-12\)-volts, 1 -amp, wall-mount
Miscellaneous: One 10 -pin, two 20 -pin and one 26 -pin doublerow female IDC header connectors. Two 12-pin single-row female IDC header connectors. Flat ribbon cable and test clips.
Note: The following are available from: ALPHA Electronics Corporation, P.O. Box 1005, Merritt Island, Florida 32952-1005, (305) 453-3534: Kit of parts for \(\$ 299.00+\$ 6.00\) P\&H. Includes all parts, punched and screened panel, case, and labeled keys. Test cable and clips not included. Completely assembled tester for \(\$ 399.00+\$ 6.00\) P\&H. Includes test cable with 16-, 20-, and 24 -pin IC test clips. Partial kit, including all IC's (except IC16 and IC17), display, and PC boards for \(\$ 199.00+\$ 5.00\) P\&H. Three custom IC's (75498,75499 and 75500) for \(\$ 60.00+\$ 4.00\) P\&H. Florida customers please add 5\% State sales tax. Canadian customers please add \(\$ 3.00\) additional postage to all orders. All foreign orders add appropriate postage for Air shipping and insurance.

INSIDE THE IC TESTER. Last time we showed you how to build the project; this month we show you how to use it.
dim, disconnect the test clip and remove power immediately.
In addition to testing IC's both in and out of circuit, the tester can also be used as a simple logic analyzer to test as many as iwenty four points in a digital circuin. Simply replace the DIP clip with individual test-hook clips. Some lines would be used as outputs to stimulate the circuit, and others would be used as inputs to read the results.

An oscilloscope is an indispensable troubleshooting tool. Adding a digital readout makes it ideal.

\title{
How tot Analyze Waveforms
}

\section*{GREGORY D. CAREY, CET}
 stethoscope-it allows you to contirm a circuit's "health" by examining the signals flowing through it. Whether you are designing a circuit. building a project from a magazine or repairing circuits for a living, the ability to andyre waveforms quichly, accurately, and without mistahes can let you make the most of your technical shills. L'ntortunately, many technicians only use their scopes when absolutely necessary. Becaluse of that, they often are unfamiliar with the units operation. making waveform interpretation seem difficult. Combining a digitat readout with the scope's graphic display, eliminates most of the problems of waveform interpretation.

\section*{What is a waveform?}

Before we go on. let's be certain that you understand what the waveform on an oscilloscope's CRI screen represents. The CRT graphically displays the relationship between the voltage and time at the test point you're measuring. The vertical movement (detlection) indicates the signal's voltage, with more deflection representing larger voltages. Simultaneously, the heam is moving horizontally at a constant rate, so that each horizontal division on the CRI represents a constant time interval.

Analyzing the signal helps identify
which components are responsible for circuit problems. Let's look at how each parn of the wateform helps find different component problems.

\section*{The seven waveform parameters}

The seven parameters shown in Fig. I fully define any signal. Four of those parameters apply to any signal, and the other three apply to complex signals. We will explain how to interpret each parameter and which components are most likely to affect each one.
(1) Waveshape: The signal's waveshape contirms the general operation of a circuit. Waveform distortion is often caused by a problem in a reactive compo-
nent, such as a coil or a capacitor. Waveform clipping ("flat-topping") may be calused by saturation of a stage or a power supply with low output. After discovering a waveshape problem. other parameters can be used to provide additional clues about the circuit's operation.
(2) I)(level: The D) ('hias at a test point is such an important troubleshooting patrameker that many people use their voltmeters as their main piece of test equipment. D(problems may be responsible for problems with any of the other parameters. including distorted waveshape, or incorrect amplitude or frequency. IC problems may be caused by powersupply problems or an open or shored

FIG. 1-TO FULLY ANALYZE A WAVEFORM, these seven parameters must be measured or observed.

component somewhere in the circuit. A I)(-coupled scoper expecially one with a digital reatoun, athows youtomeanure DC bias directly, while simultancously observing the signals waveshape. The I)(and waterom readings aho work together when a pewersupply hatsexcessive ripple. even though its D) (output is correct.
(3) Amplitude: The next kest is to confirm that the signal has the corred peak-to-peak voltage. I onw signal amplitude may be calused by low stage gatin or by excessive loading. Foor gain ofien results from a defective transistor or \(1 C\), low power-supply woltage, or a defective emit-ter-bypass capacitor. Excessive loading may be the result of a componemt that has shorted or has changed value.
(4) Frequency: Some circuits, such as oncillators. gencrate signals for use by later stages. Other stages may be referenced to an external source such as in VCR serw circtits. phane-locked loops. digital counter stages. or television sweep circuits. Testing the frequency of those circuits contirms, whether they are working correctly.

\section*{Delta measurements}

The previous four tests will fully andly心 a signal if you ate testing a simple wateshapro, such as a sinewate or spoarewave. If, on the other hand sou are testing a complex signal. you may need to know the chetails of the secondary parts of the signal to complete the analysis. Those added tests are called delta measurements. There are three typer of delta meatstrements ans follows:
(5) Delta amplitude: The peak-topeak voltage test cowered carlier measured the total amplitude from the signals, lowest to its highest peims. But many signals have additional signals buried within them. For example. an incorrect color-hurst level on a composite video waveform (see lige 2) maty calle color

FIG. 2-PERFORMING A DELTA PEAK-TO-PEAK measurement confirms that the color burst of a composite video signal has the correct amplitude.

FIG. 3-MAKING A DELTA-TIME MEASUREMENT shows that the difference between a tracking fix and a head-switch signal to be \(352 \mu \mathrm{~s}\); factory specifications call for a \(400 \mu \mathrm{~s}\) delay.
problems. An incorred sync-pulse level on the same componite signal may callse syne matahility. Ripples or glitches. riding atong the top of digital soparewabe may cause later circuits to operate encosrectly. Those conditions can be detected by using delta paak-to-paak voltage measurements. which allow the level of seeondery signals to be meatsured indepent dently of the main signal level.
(6) Delta time: Time measurement fatl intotwo categories: those that are pat of one signal, and those involvin:- the time difference between iwo signals. An example of time within one signal would be the duty eycle of a switching power supply, where the "on-time" compared to the "offtime" determines the power delivered to the load. The time delay be tween two signals is important in many VCR serwo adjustments. Sce Fig. 3. Either of those applications uses a point on the waveform an ateference for a deltatime measurement.
(7) Reciprocal time measurements: You car determine the apposimate frequency of a signat by measuring the time for a cingle cycle and then inverting the time meandrement mathematically: You can use that method to determine the time consam of circuits responsible for ring-
ing, or the frequency of an interfering signal to determine its source.

\section*{Digital measurements}

Yout make all seven of those measure ments every time you fully analye a signat with an oscilloncope: Consentional seopes require you to make cevery paramcter reading by meatsuring beam displacement on the CRT. and multiplying that by the sentings of the vertical or horisontal circuit controls. Some scopers with micro-processor-controlled measuring circuis. such as the Sencore scol shown in the openingol this article allow every parameler to be converted 10 a direct digital eesding. The CR' is then only used to di,play the overall shape of the signal.

A digital readout offers three advantages wer uning the ('R' for meanurements: Speed, accurats and freedom from errors. Lets look at each of those advantages in a litte more detail.

Speed: You may heein to appreciate the time that direet digital reading s save when you look at the number of weps needed to insthe a single measurement on a conbentional CRT. Thone suepsareoutined in Table 1. If you use an uscilloscope often. sou perform those steps whotht even
comimuted on paper

 crythine from attomobiles to zine plants． have found their way into our homes，bur supermathets．our factories and our hos－ pitals．They ie commonly uxed in nearly every branch of science and technology． including research．space llight．product development．robotics．athtomation，ener gy production．agriculture and comsumer products．They can be used to meantie a wide range ol force－redated physical prop－ erties like weight，acceleration，pressure． volume．liguid level，flow rate，and ve－ locity．Further they are atcurate durable． inexpensive．linear，and inheremly simple 10 use

Since stram－gage transducers are lin－ ears，it＇s easy to determine the value of a foree－related input．All thats required is to divide the output voltage by the tallas ducer sensitivity as shown in Fig．I That＇s hecatlose the imput and oupput are related by a simple lincar equation．In this anticle we ll see where that eytutton comes from．and．in the process．leatry some thing ahoun the underlying principles that are common to all stram－gage fams ducers．Fonvard that end，we have divided the strain－gace transducer into three com－ ponents：I）the sponge cloment．2）the stratil gage and i）the bridee cireuit We ll tathe a look att eatlof of those compor
nents to see what they contribute to the operation of the transdacer．Then we．ll put them bach tugether to see how the complete transducer worhs．

\section*{The spring element}

The principle of elasticity．that is the tendency of solids to deform or change dimensions whern subjected to an external force is central to the eperation of the strain－gage transducer．It mahes no dif ference whether the force is from a weight．a lluid pressure，or even mechan icat inemiat the result is the same

FIG．1－IN A STRAIN－GAGE TRANSJUCER the relationship between the applied force and the output voltage is linear．

As all exalmple．Fige 2 shows a steel hat subjected to a force in the form of a weight．In tig．2－a the bar is maloreded and hats a kenght of L ．In fieg．2－b．Whe bar is anchored at the wp．and the weigh is attace led to the bottem．In that case．the resulang deformation will appeall ats ant increane in length．In lige．2－6，the weight is placed on top of the hatr．That will result in a decrease in length．Note that no mat－ fer how the bar is loaded．in will remern to its original leneth when the weight is \(\begin{gathered}\text { e－}\end{gathered}\) moved．provided that the applied force wats not so laree as lo catuse the bar to permanemly stretch or breath．The change in length resulting from an applied force is hnown als strain．For metallic solids lihe sted or alluminum．the maximum allowat bee stain before delormation is in the range of a lew thousiandtho of an inch．

The property of elasticity in widely used in the manufacture of insaruments because there is a lincal relationship hemeen stratin and the applied boree．This telat tionship can be exprensed an
\[
\begin{equation*}
S=k F \tag{1}
\end{equation*}
\]
where \(f\) is the appliced lowes．\(S\) is the resulting strain．and \(h\) is the springece ment constant：the value ol \(h\) dependsonal number of things like the geomery and bype of material．and the direction of the

FIG. 2-IF A STEEL BAR (a) is loaded, its length will change. Depending on the placement of the load, the bar will either expand (b) or contract (c).

FIG. 3-WHEN FORCE IS APPLIED to the free end of the arm, the upper surface will expand and the bottom surface will contract.
applied lorce. That selationship, known as Hooke's Latw, was originally applied to coil springs for use as a measure of weight. But we have since recognized that, within limits. it is essentially true for all solids.

The spring element is the foundation of the strain-gage Iransducer. It is an clastic solid (usually metallic) designed to lincarly transtate an applied force into an equivalent strailn. Its size and shape depend on the magnitude and type of foree that the transducer is to sense. A spring element could be as simple as the steel har in Fig. 2, but a design of that type provides only one direction of strain in response to an applied force. It the applied force can produce two equal strains that are opposite in direction. the resulting transducer will be more accurate. That is often done by applying a force to the spring element in a way that will make it bend.

Digure 3 shows one way that can be done. A rectangular steel har is anchored all one end in a cantilever contiguration. The force is applied to the free end of the bar. perpendicular to the axis, rather than along the axis as in Fig. 2. As a result. the upper surface of the bar will streteh. and the boltom surfine will compress. The surface strain will vary along the bar, from a maximum near the end that is anchored. to \%ero at the other end. But at any given position along the har, the strain of the
upper and hower surtaces will be equal in magnitude and opposite in direction. later we will see that those opposing strains can help stabilize the transitued against tarying environmental condition. that may uccur.

Some commercial transtucers uice spring elements that are similar to the cantilever configuration. but there are a great many other designs that are used as well-in fact. too many to diseuss here realistically. Fortunately, a study of the design cariations is unnecessary as long as you remember that a spring element is a structural component designed to provide a linear deformation in response to an applied forse.

\section*{The strain gage}

The purpose of the strain gage is to convert the strain of the spring element into an equuivalent change in resistance. A strain gage is just a metallic conductor that is bonded to the spring element. stretching and compressing in the sanne way as the spring element. We know from hasice electricity that the resistance of a conductor depends on its length. And. we know that if we place it in tension its. length will increase as the steel har did in Fig. 2. Since resistance is proportional to length, that stretching will result in an increase in resistance. If we turn that around and put the conductor into compression, its resistance will decrease

Figure 4 shows a typical commercial stain gage. It consists of a thin foil comductor bonded to a plastic hacking material. The backing, which serves as a carrier for the metal foil and provides insulation from the spring element. must be fiexible enough to follow the spring element, yet tough enough to transter the strain to the metal foil. The foil conductor is usually made of an alloy having a low temperature coefticient, like constantan. To keep the strain gage reasonably short. the foil has been laid out in a criss-cross pattern over the surface of the backing material. At one end the foil expands to form two solder tabs which are used to attach lead wires to the strain gage. Although the design shown in Fig. 4 is typical, a number of other designs are awailable including multiple gages on a single backing and circular gages for une with diaphragm-lype pressure transducers. A number of designs from one supplier. Transducers Inc. (140.30) Bolsa

FIG. 4-A TYPICAL strain-gage design.

FIG. 5-STRAIN GAGES are made in a number of configurations and designs for different applications.
I.n. Cerritos. (A \(9(1701)\), are shown in Fig. 5

The strain gage is ustally bonded to the spring clement with an adhestue like epoxy. The quality of the bond is critical since the athesive must accurately transfer any spring-element deformation to the strain gage. A poor bond will result in "creep"-a slippage between the strain gage and the spring clement. That will make it look as if the input is slowly changing when, in fact, it is not.

The change in stratin-gage resistance is related to strain by the gage factor. that is detined as the ration of the unit change in resistance to the strain, or:
\[
\begin{equation*}
G=\left(r^{\prime} R\right) / S \tag{2}
\end{equation*}
\]
where G is the gage factor, R is the initial (unstrained) resistance of the gage, \(S\) is the strain, and \(r\) is the change in resistance resulting from a change in length. Most strain gages have an initial resistance of 120 or 350 ohms. For most metal-foil strain gages. the gage lactor is usually between 2 and 3 : the precise value depends on the composition of the alloy used for the foil conductor.

The last equation can be rewritten in terms of r , or:
\[
\begin{equation*}
\mathrm{r}=\mathrm{GRS} \tag{3}
\end{equation*}
\]

That shows that. since both \(R\) and \(G\) are constants of the strain gage, the change in resistance is proportional to the strain.

Most strain-gage transducers use met-all-foil strain gages. However, transducers using semiconductor strain gages are gaining poputarity. Instad of a metal alloy. they are built using a semiconductor material. Functionally. they are similar to metal-foil gages. but they have a higher initial resistance and a larger gage factor. Since they can be made very small. they are often used in miniature tramsducers.

\section*{The bridge circuit}

So far. we ve seen that the change in strain-gage resistance is proportional to the change in the length of the spring element. And we ve seen that the change in the length of the spring element is proportional to the applied force. Since both of those relationships are lincar, we can
sty that the change in resistance is propur－ tomal to the applied force．But a resis－ tance change itself is not alwats a convenient parameter to measure becatuse data loggers．computers．and process controllers usually require a voltage or current signal．

We could convert the resistatnee dhange into a voltage change hy connecting a resistor in series with the stratingage and applying a 1 （ （ voltage across the patir．If We uned at series resistor of the same value as the strain gage and applied 5 －volts 1 ）（． the voltage at the junction of the strain gage and the resistor would be 2.5 volts． A change mate in the strain－gage resis－ tance would then produce a change in that voltage

Notice that it is the change in voltage that we want，becatuse it is the change in voltage that is proportional to the change in resistance．But the change will be very small eompared to the initial value of 2.5 volts．It a is if the desired signal voltage has been summed with a large．unvanted ID＇bias voltage．We can＇t amplify the small change until we climinate the initial 2.5 volts．In transistor amplifiers．I）（ hias is often removed with a coupling capaci－ tor．but we can t use that technique here becatuse we want the steady－state voltatge change as well as the dynamic change What we need is some way to null out the initial voltage level．

One approach would be to contigure the strain gage in a resistance bridge．as shown in Fig．6．If the three resistors and the stratingage were all of the same resis－ tance．the voltage at the junction of each pair would be the same．As a con－ sequence．the voltage difference from one junction to the other would be lero．Il we consider that voltage difference to be the output．（e．）then we have elfectively nul－ led out the initial voltage but preserved the DC response of the strain gage．We hate also re－invented the Wheatstone bridge．

Unlike the Wheatstonc bridge though． balancing serves only to null out the initial voltage level．To make a measurement with that type of circuit，the bridge must

FIG．6－USING A BRIDGE CIRCUIT allows us to null out the bridge supply voltage and only see the \(D C\) response of the strain gage．
he unbalanced by at change in the strain－ gate resistance．That will cause a change in whtage diference across the bridge． Wie can use that chatnge as an indication of the change in stran－gage resistance．

In the circuit of Fig．6．you will find that for very small resistance changes．the out－ put voltage appears to be a linear function of the change in resistance．But．as the change becomes larger it is no longer lin－ ear．We could limit the non－linearity to an axceptathe level hy limiting the change in resistance．But there is a hetter way．

Non－linearity can be eliminated en－ tirely by building the bridge from lisur identical statingages．instead of oust one． The resulting circuit，which is known as at four－arm，fully－active bridge．is shown in 1g． 7.

FIG．7－A FOUR－ARM，FULLY－ACTIVE BRIDGE is made up of four identical strain gages．

The outpur of that bridge is a linear function of the change in strain－gage re－ sistance．provided that the change in each strain gage is identical and that the change in two of the gages will result in an in－ crease in ressitance while the change in the other two will result in an identical decrease．In addition to being lincar．the output of the circuit is higher and less sensitive to environmental changes than that of the single－gage bridge configura－ tion．That tyme of circuit is used atmost exclusively in strain－gage transducers．

To see hou it works．let suse the spring element again as shown in Fig．8．At some point near the fixed end of the har，we will bond two of the strain gages to the upper surfice，and the other two directly below them on the lower surface．In Fig．8，R， refers to the gages on top of the spring element and \(\mathrm{R}_{\mathrm{b}}\) refers to those on the bottom．When no force is applied to the har，the top and hottom surlaces will be the same length．Since all four of the strain gages have the same initial resis－ tance，the bridge will be balanced and the potential difference across the bridge will he zero．If we now apply a force to the end of the bar．the upper strain gages will increase in length and the lowergages will decrease．That is shown in Fig．\＆as \(\mathrm{R}+\mathrm{r}\)

FIG．8－WHEN FORCE IS APPLIED to the end of the spring arm，the resistance of the strain gages on its upper and lower surfaces change by equal but opposite amounts．
and R －r．Note that since the upper and huer trains are equall．\(r\) is the satme for all fourgges．But．since they are opposite in direction．\(r\) is then added to the gages on top and subtracted from the gages on the bottom．

We can show that the relationship be－ tween the voltage difference across the bridge and the change in resistance is lin－ ear．The first step is to find atm expression for the voltage at point a（e \()\) ol the bridge （as shown in Fig．7）as a function of the change in resistance．If we look at the bridge circuit as the parallel combination of two series resistances，we catn see that the voltage at point A is given by：
\[
\begin{equation*}
e_{a}=l(R+r) \tag{4}
\end{equation*}
\]
where \(l\) is the current in the left leg of the hridge．But I can be expressed as：
\[
\begin{equation*}
E^{\prime}[(R-r)+(R+r)]=E /(2 R) \tag{5}
\end{equation*}
\]
where \(E\) is the bridge supply voltage Combining those equations yields：
\[
\begin{equation*}
e_{a}=E(R+r) /(2 R) \tag{6}
\end{equation*}
\]

We can find an expression for the voltage at point \(s\) of the bridge in the stane way． which yichls：
\[
\begin{equation*}
e_{b}=E(R-r) /(2 R) \tag{7}
\end{equation*}
\]

Since \(e^{\circ}\) and \(e_{b}\) are both relerred to ground．the difterence in potential（e．） between point a and point is is just the difterence between \(\mathrm{c}_{\mathrm{i}}\) and \(\mathrm{e}_{\mathrm{b}}\) ，or：
\(e_{o}=e_{a}-e_{b}=E[(R+r) /(2 R)]-E[(R-r)(2 R)]\)
That can he further reduced to：
\[
\begin{equation*}
e_{o}=E r / R \tag{9}
\end{equation*}
\]

The fast equation shows that the bridge output voltage is directly proportional to the change in strain－gage resistance．

The four－arm fully－active bridge has an－ wher advantage over the single strain－ gage bridge．While the single stran gage is mounted on the spring element．the other three resistors must be mounted in a strain－free location．That means that the strain gage could be subjected to tem－ perature changes that are different from those seen by the other three resistors． Since a temperature change will catuse a
comtimucd on page 83

More nostalgia from radio's pioneer days.

\section*{Part 5 As indroktani as ampplification was during} radiosearly days. an even more important receiver criterion was selectivity. Solectivity is a measure of the ability of rewive closely spaced signats withou interference from eath wher. Improwed selectivity was usually attained by using taps on the amterna coit to incrase its \(Q\) through better impedance matching on both sides of the antenna coil. Figure ! shows two "selective" circuits used by the eearly radio experimenters. In Ifig. I-a the taps on both the primary and the secondary of antenma coil I I are adjusted for best reception or minimum interference. In tig. I-ha separate tapped antema loading coil (1.2) is used to peak the anlemna itself for a particular range of frequencies. and a tapped inductor (1.3) increases the
impedance that I, "sees" when looking into the rectitier.

But hetter selectivity created an unforseen problem: insufficient receiver sensitivity. Being able to tune belween the local powerhouse signals allowed the listener to partially hear much weaker signals from far-away places, and so was born "DX ing"-DX"ing meaning the reception of distant signals. Unfortunately. erysald detectors could not provide subticient volume from the weak 1)X sations. The need for mone volume. coupled with at shatp decrease in the price of vacum tubes, sounded the death kinell for the crystal receiver. At first, only one tube was used for amplification; then. wos and timally three or more as designers learned hou to build multi-stage amplifiers that didn't hreak into self-oscillation it the catnary chirped.

\section*{Audio coupling}

As sown in Fïg. 2. Carly andio amplifiers used transformer coupling between
stager. Nailting at the eryatal celector. The translormers provided an amplifiers plate load. I) Cobeking. and AC coupling into the following stage. Though the tramsformer simplitied intersage connections. the I)(current flowing in the primary winding of the amplitier-output transformers callued core satuation, which reduced the effective inductance of the tramsformer- thereby producing a disborted mond. Kinown as hasteresis distortion. it marked the beginning ol awatreness of the need for beller sound quality.

Various altempts were made to get atround core saturation. The most eflective. of course, was to use a transformer with "more irom." hut this led to transformers that weighed more than a small hoat anchor. The next attempts at reducing core satuation were the circuits shown in try. 3. where the transomer was isobated from the e (C circuit. The tube got its plate voltage either through an adjustable power resintor (R in lige. 3-a) or though

FIG．1－SIMILAR TUNING METHODS were used for both single－tube and crystal receive＇s．

FIG．2－INITIALLY，A CRYSTAL receiver＇s multistage audio amplifier was transformer coupled．
an inductor（1，in ties 3－h）．In both in－ samees．capaciter（＂effectively inolaters interstage trambormer from the bx plate voltage current．

Neither cercuit became popular be－ catuse revistor R required a larger－tham－ untal battery vodages，while inductor 1 ． ＂ar freguencselective．
（Sace of the tirstatlempts to eliminate the intervage trambermer completely wan the impedance－couplinge circuit soull find shewn in lig．t．Unlike the internage trathsormere it did not supply whate sep－ up．Alan，an with other atlempts to une an inductor an the plate feed．coil 1．Was fre－ yluenes－selectio．

\section*{Resistance coupling}

The really big breath throngh in both per－ formance and production cons was dere－
sistance－coupled circuit hown in lig． 5 It was inexpensive to build．had mo inder－ then or transtomers to saturatc．and was not freyuency－sclective Hences．it re－ suthed in betler sound gualits．The disath－ bantage of resistance conpling wat that the witage drop atrons plate loadi－resistor \(R\) necersitated a higher battery voltage to mate up fir the voltage drop．

The diadvantages of resistance．trans－ former．and impedance coupling were wereone in 1931 by the invention of the lirs practioal direct－couphang wstemb E EH LontinandS．Y．White Arshown in Hig．6．in the ditect－coupled amplitier the plate of ante stage was direetly comeneded to the grid of the follow ing satere．Its and－ vantages mere its low mandachering cont． and the pessibility of greater tidelits．be－ catuse it contained no freyuene discrimi－
nating components．Sarly units had a flat frequency－response capability of 30 Hz to \(7 .(149) 13 \%\) ，wh the prowibility of extend inge the upper limit to 10.000 H／．which was an upper limit for thone days．

\section*{Electron flow}

Prior to the invention of the diode and

FIG．3－THESE ARE TWO WAYS by which DC was kept out of the interstage transformer．

FIG．4－IMPEDANCE COUPLING eliminated the interstage transformer，but still used an induc－ tor（L）for the plate load．

FIG．5－IN RESISTANCE COUPLING there is nei－ ther a transformer nor an inductor．Resistors \(\mathrm{R}_{\mathrm{n}}\) and \(\mathrm{F}_{\mathrm{c}}\) and capacitor C 3 provide the interstage coupling．

FIG. 6-DIRECT INTERSTAGE COUPLING provided the best fidelity. Note that the direction of the arrows indicates what is called "conventional current flow"; something that never really existed.

FIG. 7-EXPERIMENTERS MADE CAPACITORS from interleaved strips of tinfoil and paper held together by a rubber band or string.
triode tubes. the mowement of an electron current was thought to be from positive to negatioc, a concept based on the ideas of Benjamin lianklin. Who, having a \(50-50\) chance of gucssing right. gucssed wrong. Comrent flow in a vacumm tube clearly showed that current moved from at negative tilament (cathode lo a plate (anode) that carried a positive charge. Ahhough correci, the celecton concept confused gilleras who had adopted the positive-tonegativeconcept and were most unwilhng to give it up) Comserpuenty. the elearic and electronic industrics compromined. and positice-to-nceative current then was called commentomal rarmot flens: while negative-to-postive čurcolt fow was called electron flom: For example the atr-
row - thom nin lig. O, an original drawing at the I altin- White direct-coupled anplificr. indicates comventional current how ended in a headband.

\section*{Capacitors}

In the carly davs of radio. to atoid the relatively high cost of capacitors. matns experimenters and hobbyists "rolled the ir own" using the tinkiol from a pach ol cigarettes and smatl sheets of paper. A shewn in Fige. 7 -a, athernate laver of laid formed the plater of the capacitor, whereas the paper was uned for the dielectric The interteaved sheets of tinteib and paper

Wrev helal together with string or a rub) hand (F"g. 7 -h). The balue of the capacilance thus achicoed was unk mown. but it didn't matter becaane it was usualls uned for a non-critical recciser circuit.

\section*{Headphones and speakers}

As shown is lig. \(K\). headphonč conled from the telephone intustry: in fact. the liss earphone was the "poring Iwentier standard selophone receiser. and it? ypin-ofl wath hesse receiser (f゙g \(8-(d)\) which was specifically devigned for use with a radio. Although both typer Worked with radion receisers. the had two problems: (A) the were fatiguing be catuse they had on be supported hy hand. as shown by the complete radio in Fig. \(X\) - \(b\); (B) they had a very bow impedance ol approximately 75 almas. Iventually. their

FIG. 8-THE DEVELOPMENT OF HEADPHONES: It started with a conventional telephone receiver. and
impedamee was increased to athout 100 ohms. and finally to about 1000 (300) ohms. Hatligue was mitigated when the headhand shown in lig. 8 -c 1 als insented. It allowed the user to literally "wear" the recelser. When one or thoreceriers were mounted in a heathand the entire asemh! was called a "headphone." "head phomes." or "headses
comtinued oll pase 7 7

Part 12Ar Illis bunt．ollk robot is an efficient tractor unit．moderately intelligent．with plenty of pulling power．He can carry items from place to place，and can under－ stand complex instructions．However．he is also as blind as a bat．To make the unit as useful as possible，we most give it a way to see．

You can fully appreciate the severity of the problem by imagining the following example：You are at the end of a hallway． Several doors can be chensen．Look care－ fully，close your eyes and．without touch－ ing or peeking．watk forward and lurn into a derornay．

That is what we were asking the robot to do when we programmed the MAILBEIC example in Part 9 of this series（Radio－ Flectronics．August 1987）．Instructions like＂（io forward IO steps，turn right．and then go forward again 10 steps＂seem clear enough on paper．but what if you did not turn exactly 90 degrees．？What if your steps were short for some reason？＂Worst of all．what if you lost your bearing and had to start over，all without peeking？

To make it casier for the rober to get around．we will give it the ability to deted and track light sources．That capability will allow the robot to follow a light heam or an optical stripe on the floor．

Ideally，we also would like to provide the robot with the capacity to determine the distance to a light source and to tri－ angulate its position using several light sources．Unfortunately，the software re－ quired to perform those last wo tasks is quite formidable．and at this time is far from being fully developed．For now，we will discuss the problems involved in gis－
ing the robot those capabilities，and the hardware needed to input the data that future software will require．

The robol eve will eventually be mounted on a rotating plathorm．or ＂head．＂The head will contain the elec－ tronies for a number of the robots semems and will be discussed in more detail in the nevt installment of this series．The head will move the eve through a feu degrees． mapping light intensities at several points． The data colleced in that way wilt he used by all of our navigation scheme

\section*{Navigation schemes}

The navigation scheme that we will im－ plement now permits the robot to track a light beam．The robot will rotate the eve until a light－intensity maximat is deter－ mined．The robot will then angle toward that maxima．

For the future position－finding is merely an extension of that navigation technique．By mapping the maxima of several known light sources．the robot can determine its position fairly acurately using triangulation．

For range－finding，we will need to add a second eve to the head．Then，the robot can use patallax to determine the distance between it and an unk nown light source． The parallax principal．in which the dif－ ference in viewing angle at two points that are equidistant from the third are used to determine the distance to that point．is
what pros ide humans with depth percep－ tion：the two equidistant view ing points． are our two eyes．See figy．I．Note that the techolique is only good at relatively cone ranges．But rementer that even humans lowe their depth perception at distances beyond 30 fee

\section*{The human eye}

In terms of design，the humatn eye is difticult to math．The upectral response is not 100 wide．ranging from 360 （10 780 namon cters．but color in of secondary im－ portance to other factors．The ceve is capa－ ble of resolving detaik as smatl an one minute of are ＇\(^{1}\) ex of a degree ．And most importanly，the ele can operate in a very wide range of light intensitios．ranging from tar－lit night to bright sumbight．If those ight levels are quantiod．you will find that the range is on the order of IXO） dis．or a billion to onco

FIG．1－USING PARALLAX to determine the dis－ tance to an object．

FIG.2-THE ROBOT'S EYE. The photodiode, D4, can be configured to source or sink current by 152.

\section*{The robot eye}

Our design goal was to make the robot's eye useful over as wide a range of light conditions as possible. While it is unlikely that you will need to have the robot navigate by starlight. giving the robot how-light capabilities will increase its distance range. Since light follows the inverse square law, that is. the illumination is inversely proportional to the square of the distance, light levels lath rapilly as you move away from the source. At the same time, operation at conventional ambient light-levels must be possible, and the robot should te able to deal with most common light sources.

Therefore, we feel that the minimum acceptable range should span at least 4 orders of magnitude (\(10,(0) 0\) : 1 or 80 dB): that corresponds (using the inverse square law) to trakking an ideal light source over a \(100: 1\) distance range. The maximum possible dynamic range using readily available components is about 120 dB . That corresponds to a light range of \(1.000 .000: 1\), or a distance range of I(O) \(): 1\).

We choose . Of lux as the lowest light level that we wish the sensor to respond to. A lux is the amount of light falling on

\section*{TABLE 1}
\begin{tabular}{r|r}
Light Level & \begin{tabular}{r}
Photodiode \\
Current
\end{tabular} \\
\hline 10.000 lux & \(100 \mu \mathrm{~A}\) \\
1,000 lux & \(10 \mu \mathrm{~A}\) \\
100 lux & \(1 \mu \mathrm{~A}\) \\
10 lux & 100 nA \\
1 lux & 10 nA \\
0.1 lux & 1 nA \\
0.01 lux & 100 pA \\
0.001 lux & 10 pA \\
0.0001 lux & 1 pA
\end{tabular}
one square meter from a cande located one meter away. That is at the extreme lowend of most detectors so to improve performance we will enhance the unit's lightgathering power with a Fresnel lens. Focusing at-square-inch liresnel lens will amplify the light level by a lactor of lok If we were to focus such a lens on the sensor. a light level of . Ol lux at the lens will result in a light level of l lux at the sensor. Most delectors can work with such a light level.

As we mentioned carlier, future rangefinding requires that the robot be equipped with two cyes. Those will he mounted 10 inches apart on the head. If the robot can locate a light source to within 5 degrees of arc, that spacing will allow range finding at distances of up to .30 leet.

\section*{Selecting a sensor}

Many different sensors for measuring illumination are available. Phototransistors. photodiodes, and PIN photodiodes are all common and well understond.

If our prime design criteria is dynamic range, then we must choose the device with the largest sensitivity range. The hey parameter in determining a unit's sensitivity is its dark currem; that is the leakage current that flows when no light reaches the device. In general, photodiodes have the greatest ratio between dark current and high-illumination output. One the Siemens BPW 32 has a rated dark current of less than IO pA and a highlevel output at 10.0 ()O lux of \(1(0) \mu \mathrm{A}\). Those figures represent a dynamic range of 140 dB . Typical output currents of that photodiode for various light kevels are shown in Table 1.

Note that the photodiode's output current hecomes non-linear above I.(OK) lux and below .(M)I lux. Also, remember that linearity can also be afleeted by the supporting circuitry. If you can not locate the

\section*{PARTS LIST}

All resistors are \(1 / \curvearrowright\)-watt, \(5 \%\)
R1-390 ohms
R2-R4-10,000 ohms

\section*{Capacitors}

C1, C2, C4-100 pF, ceramic disc
C3, C5, C6- \(0.1 \mu \mathrm{~F}\), ceramic disc
Semiconductors
IC1-LT1022 op amp (Linear Technology)
IC2-LTC1043 IC switch (Linear Technology)
D1. D6-1N754 Zener diode
D2, D3, D5-1N4148 diode
D4-BPW32 photodiode (Siemens)
Other components
J1-male header
Miscellaneous: Fresnel lens, PC board, wire, solder, etc.
The 2.3-inch Fresnel lens can be ordered for \(\$ 10.00\) each, plus \(\$ 6\) postage and handling, from Edmund Scientific Company, 101 East Gloucester Pike, Barrington, N.J. 08007, (609) 573-6250. The part number is \(E 32,589\). NJ residents must add appropriate sales tax.

A bare printed-circuit board for the eye can be obtained from Vesta Technology Inc., 7100 W. 44th St., Wheatridge, CO 80033, (303) 422-8088, for \(\$ 19\) each. An assembled and tested eye PC board, Fresnel lens not included, is available for \(\$ 59\). CO residents must add appropriate sales tax.

Siemens component, a suitable substitute is NE (C : PH2OIA photodiode.

\section*{The circuit}

A schematic diagram of the cye circuit is shown in Fig. 2. The BPW32 photodiode. D4. provides an output current that is proportional to the illumination level. That small current will span a range of I0 million to one. If we were to conver the current into a voltage and the voltage into a binary number with an analog-(odigital converter, we would need a 23-hit unit! For example, it the full-scale voltage was 5 , then the least signiticant bit would be 5 microvolts. Such a unit, if you could find one. would cost thousands of dollars.

Instead. we will convert our cument into a frequency and use the RPC (Robotic Personal Computer) to determine the period of the frequency. That will give us the dynamic range that we nede since a 140 -dB range can be accommodated using a frequency band of 0.1 He to I MIIz. The circuit will output approximately 200 kHz when held 3 inches away from a 60 - watt light buth in at rellective lamp. The circuil will output \(0.5 \mathrm{H} / \mathrm{z}\) when illuminated by the trace of an oscilloscope 2 feet away.

The freyuency range used is critical. The eye must rotate a small amount, take a reating and repeat the process continu-
contimuct on poger it

\title{
PC Service
}

THE IC TESTER＇S DRIVER BOARD．The foil side is shown here．

MOUNT THE COMPONENTS ON THIS SIDE of the IC Tester＇s driver board．The PC pattern for the main board will be shown next time．

One of the most difficult tasks in build－ ing any construction project featured in Radio－Electronics is makıng the PC board using just the foil pattern provided with the article．Well，we re doing some－ thing about it．

We ve moved all the foil patterns to this new section where they＇re printed by themselves，full sized，with nothing on the back side of the page．What that means for you is that the printed page can be used directly to produce PC boards！

Ncte：The patterns provided can be used directly only for direct positive pho－ toresist methods．

In order to produce a board directly from the magazine page，remove the page and carefully inspect it under a strong light and or on a light table．Look for breaks in the traces，bridges between traces，and in general．all the kinds of things you look for in the final etched board．You can clean up the published artwork the same way you clearı up you own artwork．Draftıng tape and graphic aıds can fix incomplete traces and doughnuts，and you can use a hobby knife to get rid of bridges and dirt．
An optional step．once you＇re satisfied that the artwork is clean，is to take a little bit of mıneral oil and carefully wipe it across the back of the artwork．That helps make the paper transluscent．Don＇t get any on the front side of the paper（the side with the pattern）because you＇ll con－ tamınate the sensitized surface of the copper blank．After the oil has＂dried＂a bit－patting with a paper towel will help speed up the process－place the pattern front side down on the sensitized copper blank，and make the exposure．You＇ll probably have to use a longer exposure time than you are used to
We can＇t tell you exactly how long an exposure tıme you will need as it depends on \(r\) any factors but，as a starting point． figure that there＇s a 50 percent increase in exposure time over lithographic film．But you＇l have to experiment to find the best method for you．And once you find it．stick with it．

Finally．we would like to hear how you make out using our method．Write and tell us of your successes，and fallures，and what technıques work best for you．Ad－ dress your letters to：

\section*{Radio－Electronics}

Department PCB 500－B Bi－County Blvd． Farmingdale，NY 11735

\section*{PC SERVICE}

BUILD THE MACROSCRUBBER using this board．

\title{
EIA/CEG AUGMENTS DIGITAL AND MICROPROCESSOR COURSE HIGH TECH PARTS KITS NOW AVAlLABLE
}

זhe members of the Electronic Industries Association Consumer Electronics Group (EIA/ CEG) through the Product Services Committee, has marketed the illustrated parts kit for vocational schools, educators and technicians. This is the same material used in the Digital and Microprocessor Course during EIA's summer workshop programs. These workshops are organized by the Consumer Electronics Group and co-sponsored by national service organizations and state departments of vocational education.

Parts and components are contained in a lightweight tool box with individual compartments. It includes a breadboard, power supply, pre-dressed jumpers, resistors,

capacitors, and integrated circuits to perform all digital exercises 1 through 25 of the Digital/Microprocessor course book listed in the table of contents. Some parts have been included for the microprocessor section but other components will have to be acquired (as listed in the Introduction to Exercises 26-31).

Individual and classroom size quantities are available at the following cost: quantities \(1-9, \$ 69.95\) each, quantities \(10-19, \$ 67.95\) each, and for quantities 20 or more, \(\$ 64.95\) each (cost includes shipping and handling). The kits will also include the Digital and Microprocessor Course book. Additional books are available at the cost of \(\$ 2.00\) per copy.

\title{
PLEASE COMPLETE ORDER FORM FOR PARTS KITS AND BOOKS
}

Send to: EIA/CEG, Department PS, P.O. Box 19100, Washington, D.C. 20036

\title{
Satellite TV
}

\section*{What's next?}

\author{
BOB COOPER, Jr. SATELLITE-TV EDITOR
}
by hif mosi accurall couni, tht home-dish industry was producing, selling, and installing as many as 70,000 home-dish systems per month in the fall of 1985 . Now, the most accurate figures suggest that fewer than 12,000 home-dish systems are being sold per month at the present time.

Those numbers mean different things to different groups. The ca-ble-television industry sees a "thriving low-power satellite broadcasting business". The home-satellite industry, the people who manufacture, distribute, and install such systems "sees a business on the verge of collapse". Both of the preceding quotes appeared in the luly 20, 1987 issue of Broadcasting Magazine, which contained a full report on the status of the home-dish industry.

\section*{Death of an industry}

Which view is correct? One only has to peruse the few remaining trade publications serving the TVRO market, or to attend an electronic.. flea market to witness the depth of the industry's doldrums. Complete home systems with 10foot dishes are wholesaling for under \(\$ 400\); individual parts, such as \(70^{\circ}\) Kelvin LNB's are selling for as little as \(\$ 40\). Much of the merchandise warehoused in the spring of there.

Several pieces of legislation have been introduced to provide some form of assistance to an ailing industry and a stunted communications medium. Hearings in support of that legislation were
held, but the legislation was never enacted. And even if it were, at best it would have made it slightly more difficult for satellite programmers and cable-televisionsystem operators to maintain their present monopolistic control over programming access.

Control over programminghow it is distributed to home-dish owners and what it costs per service per month-is the central issue. Some say it is the only issue. Cable programmers and cable operators have married one another at the corporate level. TCI, the largest cable-system owner in the world, has bought substantial stock in services such as WTBS/ CNN and others. Virtually every programmer making a profit has some or all of its stock owned by its customers, the cable system owners.

Home-dish proponents believe that such cross ownership has worked against the development ot a "competitive delivery system". As David Wolford, a publisher in the home-dish industry told Congress: "Programmers such as HBO and Showtime/ Viacom derive the vast majority of their revenue from cable operators. Are they really going to undercut the prices of their primary customers? The market is moving into a dangerous situation. If present conditions are allowed to continue, satellite TV will (end up) being) controlled by its one and only natural competitor, cable TV."

Programmers such as HBO and Showtime have refused to date to allow anyone but themselves or their cable affiliates to market pro-
gramming to home-dish owners. Cable operators are further controlled by specified geographical territories outside of which they cannot sell to home-dish owners. That has resulted in a form of price control because there are no competitive forces at work. If you live within a cable franchise area and want HBO , you must buy from the local-cable HBO affiliate. If you live outside a cable franchise ared, you must buy from HB() directly.

Cable trade-association head James Mooney told Congress: "Cable programming is readily dvailable to home-dish owners at prices less than those paid by the average cable subscriber for the same service."

Others, such as Bob Phillips of the National Rural Telecommunications Corporation testified that his firm has not been able to buy cable programming for resale to home-dish owners at all, or in the best case they are paying \(500 \%\) to \(700 \%\) more per home than cable systems are paying for the identical programming service.

Stephen Shulte of Viacom/ Showtime has his own pet theory as to why the home dish industry suddenly dried up and quit functioning. He told Congress: "The infrastructure of the (TVRO) industry grew up during a time when the basic selling argument (to wouldbe consumers) was erroneous...that cable programming was available at no charge (with a dish). When services started to scramble (their programming), the sales were simply no longer great enough to support the industry that had been created."

Charles Rule，acting assistant at－ torney general for the antitrust di－ vision of the Department of Justice seemed to agree with that assess－ ment when he told Coñgress ＂（our）investigation has not un－ covered the existence of any illegal concerted activity among cable operators（or programmers）．＂

\section*{The next generation}

Is this to be the end of direct broadcasting satellites for North America，an industry that did too well，too fast，and then was ill－ equipped to face its adversaries？ Probably not，but a significant period of readjustment is certainly ahead．Even the most optimistic cable－system operators admit that when the cable－television industry has completed the＂wiring of America＂between ten million and twenty million homes will still be without the magical cable inter－ face．Would those homes be suffi－ cient to support a direct－to－home satellite industry？
The answer of course is yes．But not using the present C－band sat－ ellites or frequencies．All planning for the future centers on the use of the \(11-12 \mathrm{GHz}\) band，generally called the K or Ku band．Several large firms，such as Comsal，have planned satellites to operate in those frequency bands．Most of those firms have suspended work on the project．Hubbard Broad－ casting，a Minnesota－based televi－ sion and radio station owner has plans to make use of that band． Hughes，the same people who pushed C－band satellite tech－ nology to new limits，plans a 1991 launch of a pair of satellites for Ku band as well；those satellites are intended specifically for direct－to－ home broadcasting．RCA（GE）－ Americom，in conjunction with HBO ／Time－Life，also plans to launch Ku－band satellites some－ time between 1989 and 1990.

But none of those would－be sat－ ellite operators has yet been suc－ cessful in attracting programming to their satellites．Americom might have a slight advantage here；they have an investment in program－ ming through their association with HBO and could at least fill up some channels from their own stock．But Hubbard and Hughes are offering some attractive finan－
cial deals to cable programmers such as Showtime，Turner，or ESPN．

For now，the route to the next generation of home－satellite broadcasting is not clearly marked．Nor is there any certainty that it will happen unless program－ mers such as Showtime feel com－ fortable that an offering on the Ku band will not in any way anger their existing cable－TV clients． HBO is even now trying to head off future problems by offering their
present cable customers exclusive rights to the sale of Ku－band pro－ gramming within their cable－fran－ chise territories．That of course trarslates to monopolistic control of programming rates and terms； the very thing that has has stifled C－band sales and growth．R－E

\section*{SCRAMBLE FACTS}

718－343－0130
3 minutes of industry news，technical tips，and new product information．

\title{
IF YOU LIVE IN THE CARIBBEAN， CENTRAL AMERICA，NORTHERN S．AMERICA or FLORIDA．．．
}

\section*{WIN A PARACLIPSE HOME DISH SYSTEM！}

Bob Cooper＇s CARIBBEAN ELECTRONICS MAGAZINE is giving away 12 complete Paraclipse 12＇home dish systems between Sep－ tember 1， 1987 and August 31，1988．FREE．No obligation of any kind！If you are an amateur radio operator in the＇qualifying area＇（see map），simply send us your Ham radio QSL card If you are in elec－ tronics but not a licensed amateur，send your business card You may enter once per month for each of the 12 months but no more than once per month．The home dish system winners are announced in ＇CEM＇monthly starting with the Novemver 1987 issue．

PLUS－when we receive your QSL card or business card，we will send you a FREE sample copy of the most exciting electronics magazine in the Caribbean；Caribbean Electronics．CEM covers every aspect of communications and broadcasting，just for those who live in the Caribbean and countries surrounding the Caribbean． And we do it in English and Spanish with special Spanish summaries for all feature articles．

OUR twelve FREE home dish systems eature the highly acclaimed Paraclipse 12 foot dish with tuned feed，state－of－the－art solid state actuator／controller，and the top rated by test AVCOM 2 series receiver system with remote control．This is the best，quality system for home or commercial use in the Caribbean．Find out how our CEM Lab rates everything from power line filters to VCRs，shortwave radios to home computers for Caribbean use in Caribbean Electronics Magazine． Send us your QSL card or business card today！

> CARIBBEAN ELECTRONICS MAGAZINE
> P．O．Box 100858 ，Ft．Lauderdale，FL 33310 USA Telephone：305／733－9955；in Florida 800－367－81 50

\section*{117 PRACTICAL IC PROJECTS BUILD YOU CAN}

2645 T—117 PRAC. TICAL IC PROJECTS YOU CAN BUILD..... \(\$ 10.95\). Dozens of fully-tested, ready-tobuild circuits you can put together from readily-available, low cost IC's! There are a total of 117 IC circuits
 ranging from an audio mixer and a signal splitter to a tape-deck amplifier and a topoctave generator organ! From TAB Books. To order your copy send \(\$ 10.95\) plus \(\$ 2.75\) shipping to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240

\section*{LINEAR IC EQUIVALENTS \& PIN CONNECTIONS}

BP141—Shows equivalents \& pin connections of a popular user-oriented selection of European. American and Japanese liner IC.'s 320 pages. \(8 \times 10\) inches. \(\$ 12.50\) Plus \(\$ 2.75\) shipping. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park. New York 11762-0240.

\section*{EARLY RADIO}
cominued from page on
There were two types of headphones: used in the early 20 . One type hat an iron armature that was medhanically connected to a mica or comperation diaphragm. In the other. an electromaget was used to attract an iron diaphagm that was suppoited around its circumference. An unusual design. called a "Baddwin receiver." used a liber diaphragm: a later model had a diaphagem made of aluminum. Compared to speathers that were uncd during the carly 1920s. a Badduintype headphone rencered superier sound.

The eartiest speaker was a headphone put into a resonamt chamber such as a glass howl or a word box. Subscyuently. an enterprising experimenter developed a horn with tubular extension arms to ate

\section*{FCC LICENSE PREPARATION}

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains the necessary preparation for ONLY \(\$ 25.00\).

WPT PUBLICATIONS 979 Young Street. Suite E Woodburn, Oregon 97071 Phone (503) 981-6122

CIRCLE 186 ON FREE INFORMATION CARD

HANDHELD GENERATOR/TESTER KITS • Function Gen. 1 HZ to 300 KHZ \$79.95 - Audio Gen. 8 steps 40 HZ to 20 KHZ \$69.95 - IF Gen. \(455 \mathrm{KHZ} \& 10.7 \mathrm{MHZ}\), irternal modulation \(\$ 59.95\) - Transistor Tester. Tests PNP. NPN \(\$ 34.95\) - FM Gen. 80 to 120 MHZ , internal modulation \(\$ 59.95\) - All kits include test leads. Any kit assembled \& tested add 25\%. Send \$1 for complete catalog \& coupon. SEL LABS, 22848 LEADWELL ST., CANOGA PARK, CA 91307. (818) 347-1960.

CIRCLE 184 ON FREE INFORMATION CARD

FIG. 9-ONE OF THE EARLIEST ATTEMPTS to get more volume was a small horn that fitted over an earphone.

\section*{CALL NOW AND RESERVE YOUR SPACE}
- \(6 \times\) rate \(\$ 800.00\) per each insertion.
- Reaches 245.824 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to:
Engineering Admart. RADIO-ELEC. TRONICS, 500-B Bi-County Blvd., Farmingdale. NY 11735.
commodatce a heatset (fig. Y).
Commercial horn ypeakers were som manntactured. Some were litile mome than oservised headphome unia attached 0 cursed metal or paper-mache funncls for cese to hrass atomothile homs). (Mhers. like the Magenano flive to introduce the wice coil) with a (o-volt. 1 -anpere fich coil. and the Wessern lilectric, produced

 Mow of the early one were "hatathedarmature" types like at Baldwin headphone. A stios from the atmature connected to the center of the conc.

These were superseded by the "dynanis speaker." still in use. A volece coil in at strong magnetic field is connected acom a low-impedance winding on the receivers output transformer. The coil and the cone moses in and out of the lield in accordance with the signat. R-E

\title{
Drawing
}

\title{
BOARD
}

ROBERT GROSSBLATT， CIRCUITS EDITOR

IVIR SINCI（D／M BIGAN IO）DICIINI， people have been saying that the days of the Z80 were numbered－ don＇t you believe it．It＇s true that you won＇t see many new comput－ er designs done around a Z80，but it＇s also true that the \(Z 80\) has too much muscle to wind up on the silicon scrap heap．It＇s still one of the microprocessors of choice to use as a dedicated controller．

Building our dynamic－RAM sys－ tem around a Z80 makes sense be－ cause the chip＇s built－in features relieve us of the burden of imple－ menting much of the design in ex－ ternal hardware．We＇ll still need glue to put all the pieces together，
but not anywhere as much if we were building the whole circuit from gates alone．

There are four \(Z 80\) control sig－ nals that are critically important in the construction of our circuit． Understanding what they are，how they work，and what their timing relationships are，is the first step in the design．The four signals，all of which are active low，are：
－Memory Request（ \(\overline{\text { MRFO }}\) ），pin 19
－Read（RD），pin 21
－Write（ \(\overline{W^{\prime} R}\) ），pin 22
－Refresh \((\overline{\operatorname{RFSH}})\) ，pin 28
Let＇s discuss them one at a time．
\(\overline{\text { MRIC }}\) is a control signal that is active whenever the \(\mathbf{Z 8 0}\) ）has been

FIG． 1

fIC． 2
instructed to pertorm an opera－ tion that involves external memo－ ry．As soon as the \(Z 80\) has an address ready to put out on the bus it brings this line low．That happens for all memory opera－ tions：read，write，and refresh．
\(\overline{R D}\) goes low when the \(Z 80\) wants data from the outside world， which can be from either a memo－ ry location or an I／O port．There－ fore a request for a read from memory must be sensed by watch－ ing \(\overline{\text { ARLQ }}\) as well as \(\overline{R I)}\) ．
\(\overline{W R}\) is the opposite of \(\overline{\mathrm{RD}}\) ．When it goes low，the Z 80 has data that it wants to send to either memory or an I／D device．Just as with \(\overline{\mathrm{RD}}\) ，the destination is determined by watching the \(\overline{\mathrm{MRFO}}\) line．
\(\overline{R t s t}\) is the signal that keeps the Z80 popular．When it goes low it signals that the microprocessor has incremented its internal re－ fresh counter and has put the new refresh address on the lower seven bits of the address bus（A0－A6）．By combining \(\overline{\text { RISH }}\) signal with \(\overline{\text { MRI }}\) ， you can determine exactly when a refresh operation must take place in your system．

All memory operations require two \(\mathbf{Z 8 0}\) ）control signals，so it＇s im－ portant that we have a good under－ standing of the timing rela－ tionships between them．And any discussion of timing must start with a look at the basic heartbeat of the \(Z 80\) ：the instruction cycle．

\section*{\(M\) and \(T\) cycles}

Figure 1 is a representation of the two fundamental parts of all Z80 instruction cycles：the \(M\)（ma－ chine）cycle，and the T（time，or clock）cycle．Every instruction that

THE MOST POPULAR WIRE-WOUND CB ANTENNAS IN THE WORLD
Because...they perform!

\section*{FACT}

When CB was legalized in England 'Firestik' antennas were barred from sale because the emitted signal was too strong. Fortunately, no other country including the U.S.. limits antenna efficiency

\section*{you can have second BEST OR, 'Firestik'!}

Call or Write for FREE Catalog
'Firestik' Antenna Company 2614 East Adams
Phoenix, Arizona 85034
(602) 273 -7151

MILLIOMS OF SATISFIED OWNERS

CIRCLE 100 ON FREE INFORMATION CARD

The International Society Of Certified Electronics Technicians offers permanent certification by administering the CET exam with the FCC recognized communications option for \(\$ 20\). A second exam on FCC regulations for a \(\$ 10\) fee is re quired for a Radiotelephone License. Upon passing, technicians receive both a permanent Radiotelephone Operator Certificate and a CET Certificate issued by ISCET.

\section*{ISCET Offers License Renewal}

ISCET has developed a program for registration of those who currently hold a valid Radiotelephone Operator License. By sending a completed application, a photocopy of your FCC License, and \$10 your license will be renewed with the assurance of a recognized national technicians association behind it.

For More Information Contact:
ISCET 2708 W. Berry, Ft. Worth, TX 76109. (817) 921 -9101
the \(\mathbf{Z 8 0}\) executes requires from one to six machine cycles, M1-M6. During M1 the Z80 fetches the opcode of the next instruction. If the op-code is more than one byte long there will be more than one M1 cycle. In addition, it's during M1 that the Z 80 handles refresh addressing. By the way, as shown in the figure, M 2 and M 3 are used for reads and writes.

Figure 2 is an expanded look at the M1 cycle. During T1 and T2, the Z80 places the contents of the program counter on the the address bus to get the next op-code. The microprocessor uses the next two T cycles, T3 and T4, to decode the op-code; it doesn't need the bus during that time. So, during T3 and T4, the address bus is divided in half to provide two kinds of data. The upper eight bits, A7-A15, have the contents of the I (index) register, and the lower seven bits, A0-A6, have the contents of the R, or refresh, register.

When the refresh address stabilizes, both \(\overline{\text { MRE }}\) and \(\overline{\text { RFSH }}\) go low. That combination of signals is therefore a guaranteed-stable refresh address that can be used to systematically refresh dynamic memory.

In case you missed it, what the Z80 is doing for us is to eliminate the need for the external counters and logical glue that used to be necessary to ensure that dynamic memory would be refreshed at the right time and in the right order.

Now that you understand how much work the Z 80 is ready to do for us, let's see what we have to do to take advantage of it.

\section*{Putting it to work}

In using dynamic RAM with a Z80, the most important design task is to ensure that the memory is fast enough to work in the amount of time available for refresh. In our circuit we'll use a Z80B and run it at a maximum speed of 2.5 MHz , which translates into 400 nanoseconds (1/(2.5 \(\times\) \(\left.10^{\circ}\right)\)) per T cycle, or 800 ns to complete one refresh. In fact, however, we can't count on having the full 800 nanoseconds. Some time is eaten by delays internal to the Z80; more is needed to allow for propagation delays in our support circuitry; and all dynamic RAM
needs a refresh "precharge" time. Keeping that in mind, let's see how much of the 800 nanoseconds we actually have for refresh.

Even though Fig. 2 is only a representation of actual timing, it's clear that there are delays associated with the memory-control signals generated by the Z80. It takes about three quarters of a T cycle for the Z80 to put the program counter on the address bus and then guarantee that the memory control signals (\(\overline{\mathrm{MREQ}}\) and \(\overline{\mathrm{RD}}\)) are stable. And after the op-code appears on the data bus, we also must allow for settling time on the data bus.

Assuming the maximum clock speed of 2.5 MHz , we can expect to see the following timing for the whole op-code fetch cycle, (T1-T2):
```

T(OP-CODE) = (T1 + T2) - T(ADDRESS/
SIGNAL) - T(DATA)
= 800-300-50

```
 \(=450\) nanoseconds

The amount of time needed for a memory read is also an important consideration, but it is usually longer than the time needed for an op-code fetch. For our 2.5 MHz system, a memory read requires about 650 nanoseconds. Not only is that longer than an op-code fetch, but both numbers are well within the bounds of the modern 150-nanosecond (and faster) RAM.
The logic that we'll need to make our system work also has built-in delays. Each of the buffers and gates that comprise the circuit contributes to the total amount of time the circuit needs to operate. ITL and fast CMOS parts have very small propagation delays, but if you add enough of them together you can wind up with a circuit that is too slow. A worst-case analysis might look like this:
- 40 ns for memory buffer delays
- 40 ns for data buffer delays
- 30 ns for gating delays
- 40 ns for Z80 buffer delays

That's a total circuit-propagation delay of 150 ns .

Those figures are not exact, but if you look through a TTL or CMOS data book, you'll see that l've overestimated the maximum possible times by a large margin.

Now that we have all the numbers worked out, we also have the maximum access time for the RAM

\title{
Plug a Friend into Radio-Electronics this Christmas ... and Save \$12!
}

\begin{abstract}
This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.
\end{abstract}

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get complete plans and printed circuit patterns for building valuable test equipment and electronic devices for home and car practical money-savers like these ... a TV signal descrambler ... a video test generator .. an auto exhaust analyzer ... a clockboard for his PC ... a radio commercial zapper ... a solid state barometer ... a working robot ... and many others!

PLUS ... equipment repair and troubleshooting ... circuit design ... new
product news and buyer's guides ... service clinics ... equipment test reports ... a special "Computer Digest" section ... regular columns on video, stereo, radio, circuits, solid state, satellite TV and robotics ... and lots more exciting features and articles.

SAVE \(\$ 12\)... OR EVEN \(\$ 24\)... For each gift of Radio-Electronics you give this Christmas, you save a full \(\$ 12.00\) off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate - you save an additional \(\$ 12.00\) ?

No need to send money ... if you prefer, we'll hold the bill till January, 1988. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

we'll need. You don't need a lot of equipment to see that even if we used some slow \(25(0\)-nanosecond RAM, the total circuit delay time would only be 400 (150 plus 250) ns. Most mail-order houses don't even stock 250 -ns parts. The bottom line is that by using 150 -ns RAM we can eliminate all the potential problems that would be caused by timing restrictions.

\section*{System design}

There are a couple of things to keep in mind when using a \(Z 80\) to control a RAM system. All of them come from one general principle: It the \(Z 80\) stops running, all our memory data will be hisfory.

That principle is of critical importance and it's also really easy to forget. As long as the Z80 is executing instructions it will continue putting out new refresh addresses during each MI cycle. However, anything that puts the Z80 to sleep will also trash the memory. Fortunately, there are only a few circumstances in which that can happen:
- A reset pulse longer than 1 millisecond.
- A wait state longer than 1 millisecond.
- A DMA operation longer than 1 millisecond.

In our system, all memory access will be done through the \(Z 80\), we don't have to worry about the last two on the list. DMA simply won't be used in our system; any external request to store or retrieve data will be done by loading latches and then asking the \(\mathbf{Z 8 0}\) to perform a read or a write. Similarly, we simply don't have any wait states.

Any slow I/O device using our memory system will talk to buffers and latches, not directly to memory. Some memory systems (like that of the IBM PC) must place wait states into every memory request because there isn't enough time for the "precharge time" required by the dynamic RAM. As we've seen from the mathematical analysis above, we surely don't have that problem.

Next month we'll start building the circuit. If you haven't done so already, you should get good data sheets on the \(Z 80\) and dynamic RAM.

ZENITH SSAV1 from \$16S, UHF INPUT, reconditioned. Level 11 modules available for SSAV1s. UHF SSAV1 project handbook \(\$ 6.50\) ppd. Sylvania 4040 \$169. Z-TAC. N-12. MLD-1200s. Converters, amplifiers anc accessories. Satellite components. Radar speed guns for car/boat racing. bowling. skiing; baseball, etc, from \(\$ 275\) used. Professional police models. IBM-compatible computer systems from \$895. Catalog \$1. AIS SATELLITE, INC., P.O. Box 126-E, Dublin, PA 18917. (215) 249-9411.
CIRCLE 81 ON FREE INFORMATION CARD

TOOLS \& TEST EQUIPMENT. Contact East's latest catalog contains many new and innovative products for testing, repairing, and assembling electronic equipment. A ful selection of test instruments, precision hand tools, tool kits. and soldering supplies are just some of the products featured. Products are shown in full color with detailed descriptions. pricing and a \(100 \%\) satisfaction guarantee. CONTACT EAST, P.O. Box 786, No. Andover, MA 01845. Call (800)-225-5370 CIRCLE 55 ON FREE INFORMATION CARD

\section*{CALL NOW AND RESERVE YOUR SPACE}
- \(6 \times\) rate \(\$ 745.00\) per each insertion.
- Reaches 245.824 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages avallable. Mail materials to: Computer Admart. RADIO-ELEC. TRONICS, 500-B Bi-County Blvd.. Farmingdale. NY 11735.

DECODE NEARLY ANY SINGLE LEVEL GATED PULSE SIGNAL. New circuit works with Hamlin, Jerrold, Sylvania, and Eagle systems. Decodes In-band, Out-band. AM or FM reference. Complete educational kit including P.C. board, parts, case, and 40 page gated pulse theory booklet is only \(\$ 47.00\) plus \(\$ 3.00\) shipping. Order no. 1PFD-1K. ELEPHANT ELECTRONICS INC. P.O. Box 41865-R, Phoenix, AZ 85080. (602) 581-1973
CIRCLE 120 ON FREE INFORMATION CARD

BUILD STEVE CIARCIA＇S NEW SUPER IC TESTER Tests over six hundred 7400 －series TTL．L．S．H．C．HC．HCT．F．AS．and ALS devices． 4000 －series CMOS and PALs．Iden－ ilfies unmarked chips and bad IC pins．User definable test sequence and user expanda－ ble ROM library．Tester operates standalone with LCD display，or with IBM PC or terminal． Partial kit－\＄99．Full board kit－\＄179．CCI， 4 Park St．，Suite 12．Vernon．CT 06066．（203） 875－2751．
CIRCLE 52 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DE－ SCRAMBLERS．Large selection of top quality merchandise．Low prices．Quantity discounts．We ship COD．Most orders are shipped within 24 hrs．Send \(\$ 2.00\) for catalog． CABLETRONICS UNLIMITED，P．O．Box 266 Dept．R．S．Weymouth，MA 02190 （617） 843－5191
CIRCLE 188 ON FREE INFORMATION CARD

2706T－BUILDING METAL LOCATORS，A Tresure Hunter＇s Projects Book．．．．．\＄9．95． Build your own high－quality metal detector for a fraction of the factory－built cost！The detec－ tors described in this unique project guide will locate anything from coins and jewelry to gold and silver－and can be built quickly and easi－ ly！From TAB Books．Get your copy today． Send \(\$ 9.95\) plus \(\$ 1.75\) shipping to Elec－ tronic Technology Today Inc．，P．O．Box 240，Massapequa Park，NY 11762－0240．

SIMPLY SNAP THE WAT－50 MINIATURE FM
TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away！Adjustable from 70－130 MHZ．Use with any FM radio．Complete kit \(\$ 29.95\) \(\$ 1.50 \mathrm{~S}+\mathrm{H}\) ．Free shipping on 2 or more！ COD add \＄4．Call or send VISA，MC，MO．DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．

CIRCLE 127 ON FREE INFORMATION CARD

\section*{CALL NOW AND RESERVE YOUR SPACE}
－ 6 ．rate \(\$ 745.00\) per each insertion
－Reaches 245.824 readers．
－Fast reader service cycle．
－Short lead time for the placement of ads

Call 516－293－3000 to reserve space Ask for Arline Fishman．Limited number of pages avallable Mall materials to Computer Admart．RADIO－ELEC TRONICS．500－B Bi－County Blva．，Farm－ ingdale．NY 11735.

PANASONIC CABLE CONVERTERS， Wholesale and Retail．Scientific Atlanta and Pioneer Cable Converters in stock．Pan－ asonic model 130 N 68 channel converter \＄79．95，Panasonic Amplified Videc Control Switch Model VCS－1 \＄59．95．Scientific Atlan－ ta Brand new Model \＃8528 550MHZ 80 Channels Converter \(\$ 89.95\) ．Video Corrector （MACRO，CCPYGUARD．DIGITAL）EN－ HANCER \(\$ 89\) 95．We ship to Puerto Rico． Carıbean countries，\＆So．Amer．Write or call BLUE STAR IVD．， 4712 AVE．N，Dept 105. Brooklyn，NY 11234．Phone（718）258－9495． CIRCLE 85 ON FREE INFORMATION CARD

CHRISTMAS SALE on the Line Zapper II． During Nov．and Dec．only，the complete KIT （not recommended for the beginner）is only \(\$ 49.95\) and the fully assembled unit is only \(\$ 89.95\)（．add \(\$ 3.00\) ea．postage）．Decode the Marco－Mess and start watching recent video tape movie releases without the flashing． jumping jittering and video norse．ELE－ PHANT ELECTRONICS INC．，P．O．Box 41865．Fhoenix，AZ 85080 （602）581－1973 CIRCLE 180 ON FREE INFORMATION CARD

FREE 24 PAGE OCTE CATALOG！Cable TV converters，hand controls．stereo decoders and swithing centers．Negative cable TV traps and noise filters．Descrambler books． schematics and parts．SCA books and kits． Nite viewers．Microwave downconverters． Telephore privacy assurance devices and automatic conversation recorders．Bug and tap detectors．Parabolic microphones．Power supplies Surplus electronics parts．OCTE ELECTRONICS，Box 276，Alburg，VT 05440．（514）739－9328．
CIRCLE 80 ON FREE INFORMATION CARD

PC－601 XT BUS EXTENDER BREAD－ BOARD LAB connects to any IBM PC com－ patıble computer and extends all PC electrical bus connections out to the PC－601 for easy ircuit prototype connection，testing and troukle－shooting．Includes large 3060 tie－ point breadboard． 5 V and \(=12 \mathrm{Vdc} \mathrm{AC}\) line powered power supplies．Includes buffer card． 2 ＇ribbon cable \＆1－Year warranty．Price： \＄369．95 CHENESKO PRODUCTS， 21 Ma － ple St．．Centereach，NY 11720. 516－736－7977．Fax：516－732－4650 CIRCLE 193 ON FREE INFORMATION CARD

\section*{XMAS TREE}
cominuced fiom patse +8

\section*{Construction}

The P' board can be made pholographically using the foil pattern shown in P'C Service. or the patlern catl be used as a guide for applying liquid and tape resist by hand. Although the foil pattern itself is only 5 -inches high. the PC board material must be \(6^{3 / 2}\) inches high because the tree's \(1 / 4\)-inch trunk is part of the \(P^{\prime}\) (board. Since etching large copper areas not only takes excessive time but also shortens the life of the etchant. We sugeest you trim away the unwanted P(board material before you etch the board. (Or. if you prefer to eut the tree to size after the pattern is etched, protect the foil of the large unused trunk area with resist and simply let the copper remain. As long as the trunk's foil doesn't come in contact with any of the circuit traces it makes no difference whether it's there or not

If you want to decorate the front of the tree, do it belore the holes for the components are drilled. For example, the author sprayed the component side with a bright automotive metallic-green paint. To prevent a detined line. a cardboard mask was held about \(1 / 2\) inch above the board. Then. the edge of the PC' board was "dusted" with a tine mist of white paint to simulate snow. Alter allowing for adequate drying. again using a cardboard mask, the trunk portion of the board was painted with a metallic-brown paint

Allow the decorative paint to dry overnight before drilling the component mounting holes. Then install and solder the eight jumpers, the resistors, the IC"s. and the capacitors. Then insert all the L.ED)s, ohserving the polarities show in Fig. 2. Position the LED's so that they are raised approximately \(1 / 2\) inch off the hoard. To do that, turn the board over and lay it down on a flat surface being careful not to allow any LED's to fall out: that can be done casily by holding a piece of stiff cardborard against the LED's while turning the board over. Keeping the board parallel to your work surface, solder one lead of each LED. Turn the board over and carefully look across the surface to see whether the LED's are straight and at the same height. If not, correct as needed. When you're satisfied with their alignment, solder the other lead of each LED

\section*{Adding the base}

Prepare the surfaces ol the battery holders and the PC board for gluing by sanding the back of each holder and a \({ }^{3 / x}\)-inch strip on both sides of the circuit board at the bottom of the trunk. Mix a small amount of a S-minute epoxy and apply some to the \(3 / x\)-inch strip on both sides of the circuit board. With the battery polarities opposite
each other, sandwich the P(board between the holders. Hold the assembly tirmly on a llat surlate that's covered with a piece of wa paper. You will have a fers minutes working time belore the epory sets to ensure proper alignment. Make certain that the holders are even and that the circuit board is centered and upright between the holders. In about 5 minutes the glue will have set up sufficiently, and the tree can be lifted from the wax paper. Use acetone or thux remover to clean excess glue from the bettom of the batten holders. As with most other cleaners. he careful not to touch the painted surfiese
Aler allowing at least one hour for the epoxy tocure. solder a jumper wire at one end of the battery holders. across the ad jatene positive and negative terminal lugs. From the battery source ends. solder the positive and negative leads directly to the foil traces -as shown in Fig. 2. The LEED's will start to thash as somen as the batteries are installed. Any L.ED) that fails is mosi likely defective, or instatled with reversed polarity

When you're certain the project is working, you can add a final "dress up by gluing a colorful fiet materiat over foil traces on the back of the board.

R-E

\section*{ANALYZE WAVEFORM}
cominued from page 60
thinking about them, but you do go through them.

A properly designed digital readout reduces each measurement to simply pushing a button and reading a number. including the correct decimal placement and the range multiplier. Since the tests are so much easier to do, you will probably analyze waveforms more often, instead of using less effective troubleshooting methods.

Accuracy: Digital readings provide much higher accuracy than a CRT. Most people don't think much about the accuracy of a reading, but errors can add up quickly when using a standard oscilloscope. First, no scope reading can be more accurate than the calibration of the vertical and horizontal circuits. Published accuracies range from \(2 \% ~ t o 5 \%\). but only if the scope has been recalibrated within the past few months. If not, the circuit errors may be higher.

Next, consider the errors in determining the displacement of the trace on the CRT. A typical CRT trace has 8 major vertical divisions, each divided into 5 minor divisions. If a waveform is 4 major divisions tall (one-half the screen height). it covers a total of 20 minor divisions. Since the width of the trace is about 1 minor division, the trace thickness adds an extra \(5 \%\) error to the calibration uncertainly. When we add interpolation and

\section*{TABLE 1}

Peak-to-peak volts
1. Turn vertical vernier to CAL.
2. Lock waveform and adjust horizontal circuits until desired number of waveforms appear.
3. Adjust volts/Division control until waveform is 2 to 4 divisions tall.
4. Adjust VERT POSITION control until the bottom of waveform sits on a horizontal graticule line.
5. Adjust horiz position control until tallest portion of waveform is on center CRT graticule.
6. Count divisions between bottom and top of waveform.
7. Multiply number of divisions times volts/oIvision setting.
8. Multiply times 10 if a \(\times 10\) probe is used and input is calibrated for direct readings.

\section*{DC volts}
1. Set vertical vernier to CaL.
2. Lock waveform and adjust horizontal circuits until desired number of waveforms appear.
3. Adjust volts/Division setting until waveform is 2 to 4 divisions tall.
4. Set input coupling switch to ground.
5. Adjust vert position control until line is on a horizontal graticule line. 6. Move input coupling switch to the DC position.
7. Readjust volts/OIvision switch if has trace moved off screen.
8. Estimate vertical midpoint of waveform.
9. Count number of divisions from reference in step 5 to midpoint of step 8. 10. Multiply number of divisions by the volts/Division setting.
11. Multiply by 10 if a \(\times 10\) probe is used and input is calibrated for direct readings.

Time or frequency
1. Turn horizontal vernier to CAL
2. Lock waveform and adjust horizontal circuits until desired number of waveforms appear.
3. Adjust the horiz position control until left edge of signal touches a vertical graticule line.
4. Adjust VERT POSITION control until right edge of signal crosses center CRT graticule.
5. Count number of divisions between left and right edge of waveform.
6. Multiply number of divisions by the setting of the timebase-freo switch. 7. Divide by 10 if the horizontal \(\times 10\) expander is on.
8. For frequency, invert results.
parallax errors. a scope reading will only be accurate to within \(10 \%\) to \(20 \% /\).

Digital scope readouts offer a much higher degree of accuracy. For instance. the peak-to-peak voltage function of the Sencore \(S(6)\) is accurate to \(2 \%\). The accuracy improvements are even greater for frequency measurements; that is because comimucd on page it

\section*{STRAIN GAGE}
conimued from pesece 63
resistance change any difterence in tem－ perature between the stratingage and the other resistors could look like a legitimate output．But when four stratingages are used，and all are mounted on the spring clement．They all see the same tem－ perature variations．Then they will all in－ crease or decrease by the same amount． thereby preserving the bridge balance and producing no output

\section*{Putting it together}

We are now in a position to say that the bridge output voltage is directly propor－ tional to the lorce applied to the spring element．To find out what that rela－ lionship looks like all we have to do is combine equations 1,3 ，and 9 ．Reviewing what we ve learned so far：
\[
e_{0}=E(r / R), r=(G S) R \text {, and } S=k F
\]

By substituting \(k F\) for \(S\) in the gate－fictor equation and then substituting（GkF）R for \(r\) in the bridge equation we lind that
\(e_{0}=(E G K) F\)
You maty recognize that as the equation of at straight line that patses through the
origin．The applied lorice．F．is the inde－ pendent variable and the bridge output voltage．e is the dependent variable．The slope of the line is represented by the three constants．E．G．and \(k\) ．They are shown in parentheses because once the oransducer has been assembled and supplied with a suitable operating voltage．they can he treated as a single constant．The slope of the line is also known as the sensitivity of the ransducer．We must know the sen－ sitivity of the transducer in order to deter－ mine the applied lorce．We can make that conversion simply by dividing the output voliage by the sensitivity．

Strain－gage transducers can be pur－ chased with or without built in amplifica－ tion．The transducer＇s sensitivity is spec－ ified a little differently in ciach case．First of all．a transducer with built in elec－ fronics is ustatly provided a lixed bridge－ supply voltage and enough gain to bring the maximum output up to some standard level．Adding that additional gain toe epuat－ tion 10 will result in：
\[
\begin{equation*}
e_{0}=(A E G k) F \tag{11}
\end{equation*}
\]
where \(A\) is the gain of the built－in ampli－ lier．Since the gain and the bridge supply voltage．as well as the gage lactor and spring constant．are all fixed at the time of assembly，they can all be combined into one constant ats the transducer sensitivity．

But．rather that specitying tansducer sensitivity outright．Transducer manulac－ turers often list the maximum value of the input force and the corresponding max－ imum output－voliage level．Both of those specifications are important in them－ selves，and the sensitivity is implied in the iwo numbers．Since equation 10 defines a line that passes through the origin，all we have to do is divide the full－scale output voltage by the full－scale input force to determine the sensitivity．A typical value for the maximum output might be 5 volis． \(1 f^{\circ}\) the maximum input force is 500 pounds．then the sensitivity of the trans－ ducer would be 5 －volts／500 psi \(=0.01-\) volts／psi．

If the ransducer does not have built－in electronics．it is up to the user to provide the bridge supply voltage and whatever gain mity be required．Sisce the output voltage is a linear function of both the applied force and the bridge supply volt－ ane．sensitivity is then specilied as output volt：per bridge supply volis per input force．The maximum output voltage cor－ responding to a maximum input is listed for a bridge supply ol one volt．That way we can delermine what the maximum out－ put voltage will be when some other value of supply voltage is used by simply multi－ plying the listed maximum by the supply voltage actually used．

R－E

\begin{tabular}{|c|}
\hline R-E ROBOT \\
\hline comimucd firm pase os \\
\hline
\end{tabular}
ously throughout a fult \(3600^{\circ}\) rotation of the head. Under low-light conditions the output of the eye will be a low frequency. If the eye is operating at 1 Hz and light readings are taken every \(5^{\circ}\). it will take over a minute to rotate the head. Obviously, then, the higher the frequency output of the eye, the better. We can always divide the frequency down to get it in a range that the RPC will be able to process effectively: however, we cannot multiply a low-frequency input to obtain information faster.

The active integrator used in the circuit is based on a simple, classic design. The photodiode's output current is used to charge a capacitor: the charging time. of course, is the integral of the input voltage. A novel twist, however, is that we will use the photodiode to both charge and discharge the capacitor. A newly developed IC from Linear Technology Corporation. the LTC1043, will be used to switch the photodiode from a current-sourcing to a current-sinking configuration. That IC is also used to conver the output of the integrator to a frequency signal for input to the robot's RPC.

The integrator is built around op-amp ICI, a Linear Technology LTIO22. That op-amp is chosen for its high-speed operation, modest input-bias current, and low cost. Other operational amplifiers can be substituted, but be aware that any increased input-bias current will degrade the low-light performance, and decreased output slew-rate will degrade high-lightlevel performance.

\section*{Construction}

The PC-board's design is somewhat different in that all of the components except JI are mounted on the foil side of the board: the PC pattern can be found in PC Service, and the parts-placement diagram is shown in Fig. 3. The components are mounted in that way so that the PC board can be used as one side of a lighttight structure supporting the Fresnel lens as shown in Fig. 4. Placing the traces on the inside of the box protects them somewhat from contamination: over time, that contamination can build up on the circuitry and affect performance. The completed board can also be covered with a conformal coating (that's a coating that closely conforms to the surface that it is applied to) or potted to minimize any contamination problems.

The printed circuit board is 2.3 inches by 2.3 inches. Those are the same dimensions as the Fresnel lens available from the supplier mentioned in the Parts List. Use screws or standolifs to mount the lens 1.3 inches from the photodiode. That is the

FIG. 3-ALL OF THE COMPONENTS, except J1, mount on the foil side of the PC board.

FIG. 4-A FRESNEL LENS is used to concentrate the light on the photodiode.
focal distance of the lens and will result in maximum light gathering power. To finefocus the lens. attach an oscilloscope to the photodiode and, with the eye pointed towards a light source located several feet away, adjust the lens supports for maximum frequency output. If you find that your eye saturates too quickly. you can simply defocus the lens slightly to reduce the light level that reaches the photodiode.

After the lens has been focused, cut and mount the remaining sides of the box. Cardboard or a similar material is suitable for that: the author used Foamcore board, which is available at ant supply stores. Hot-melt glue is a handy means of attaching the sides.

Paint the cardboard sides black to reduce the amount of light entering the eve except through the lens. That won't do much to stop infrared light, however. If interference due to infrared noise becomes a problem, laminate a layer of aluminum foil to the sides.

\section*{Next time}

That completes the eye's construction. Now it's time to hook it up and test it. Unfortunately, at the moment theres nothing to hook it up to. That shortcoming will be taken care of next time when we show you the robot's rotating head. R-E

\section*{ANALYZE WAVEFORM}
cominued from page 82
a \(0.001 \%\)-accurate frequency counter replaces the 10 (0 \(20 \%\) errors associated with CRT-based frequency measurements.

Freedom from errors: The third difference may have even more impact than the first two. That's because an error in counting or multiplication-or forgetting to set the horizontal or verical vernier to the cal. position-may lead you down a completely wrong path.

What is worse is that you won't realize that you've made the error until some time later when you re-test a signal. A directreading digital readout prevents that because it gives accurate results independently of display settings.

Other problems can happen, too. The verniers can be out of their calibrated position: the signal can be off of the CRT; or the triggering circuits can even be out of sync. But none of those problems will affect the digital readings.

Digital readings make it easier to use waveform analysis for more and more of your troubleshooting. You can lock the waveform onto the CRT when you want to fully analyze all seven parameters of conplex waveforms. When making general tests, however, you don't even need to adjust the CRT circuits, if DC voltage. peak-to-peak voltage, or frequency readings are enough to tell you whether the circuits are operating correctly. Such gencral testing can speed your circuit analysis even more. And, what service technician or engineer could possibly argue with that?

R-E

"Next year we get a computer."

\title{
Compunan iczit
}

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

\section*{floppy DISKS \\ Bits, bytes, and copy protection}

\section*{68000 COMPUTING}

The big moment

\section*{DGBUGGING TOOLS}

\section*{Hands-on report}

\title{
CONTENTS D \(\in C \in M B \in R\) 1987 \\ Vol. 4 No. 12
}

91 ALL ABOUT FLOPPY DISKS
Focus on Apple and IBM formats.

95 CD CLASSROOM, PART 3
Instoll the microprocessor.

\section*{87 EDITOR'S WORKBENCH}

HARDUARE: Periscope
SOFTUARE: TDebug Plus
TurboSmith

\section*{Computer Digest}

\section*{Larry Steckler,}

EHF, CET: publisher \& editor in chief
Art Kleiman,
editorial director
Brian C. Fenton,
managing editor
Jeff Holtzman
technical editor
Byron G. Wels,
associate editor
Carl Laron,
associate editor
Robert A. Young, assistant editor Teri Scaduto editorial assistant Ruby M. Yee, production director Karen Tucker, production advertising Robert A. W. Lowndes, production associate Marcella Amoroso production assistant Andre Duzant, technical illustrator Jacqueline P. Cheeseboro
circulation director Arline R. Fishman, advertising director

ComputerDigest
Gernsback Publications, Inc. 500-B Bi-County Blvd. Farmingdale, NY 11735

ADVERTISING SALES 516-293-3000
Larry Steckler
Publisher

\section*{NATIONAL SALES}

Joe Shere
1507 Bonnie Doone Terrace
Corona Del Mar, CA 92625
714-760-8697
Cover Photography by Herb Friedman and Jeff Holtzman

\section*{EDITOR＇S WORK BENCH \\ }

\section*{Periscope}

Debug is the standard MS DOS machine－ anguage debugger It is included with every copy of DOS，so every programmer hacker，and hobbyist is familiar with it．De－ bug is useful for tracing and analyzing both software you write yourself，and software written by others．And with care you can even use it to create short programs without the aid of an external assembler．

However，you don＇t have to use the pro－ gram for very long to realize that it has limitations，the most severe of which are limited breakpoint facilities，lack of win－ dowing，and lack of support for the sym－ bols generated by the assembler or compiler you use to generate object code
Attempting to remedy those deficien－ cies，the Periscope Company sells a line of high－quality debugging tools with varying capabilities．The latest incarnation includes an expansion card that allows you to trap bus events in real time，thereby providing many of the capabilities of a development system for about \(10 \%\) of the cost
Actually，there are four models of Per－ iscope，which differ mainly in the hardware included
－Periscope I（\＄345）includes a memory board with 56 K of write－protected memory and a break－out switch．The memory is in－ stalled outside of the 640K DOS limit（usu－ ally in segment D000 or E000），the Periscope software runs from that memory． Pressing the break－out switch at any time－ even when the system is apparently locked－ up－generates a hardware interrupt that activates the Periscope software
－Periscope II（\＄175）includes just the break－out switch；the software runs from normal DOS memory，so it may be overwrit－ ten by a run－away program．In that case you may not be able to regain control of a hung system．The break－out switch does not re－ quire an expansion slot；a small finger slips in an in－use slot between the expansion card and the connector＇s own finger
－Periscope II－X（\＄145）includes just the software and no hardware．You may use your own break－out switch or a keyboard hot－key to activate the software
－Periscope Ill（\＄995）is a full－lengin expan－ sion card（shown in Fig．1）that includes 64 K of write－protected memory，a break－out switch，and additional circuitry that contin－ uously monitors the expansion bus and al－ lows you to create breakpoints that are activated when memory locations，I／O ports，or microprocessor registers attain certan values．A small module must be inserted into your motherboard＇s 8087 （or 80287）socke：

FIG．1－The Periscope board．
The software functions pretty much the same for all versions，given the hiardware differences．In fact，the same sottware is included with all versions；during the in－ stallation you must specify your tardware configuraticn

\section*{How to use it}

The Periscope software comes in two parts：PS．EXE，the 50K debugger，and RUN COM，a 7 K program that loads and runs your software．First you run PS，which lies dormant in memory until you Run a pro－ gram．When you do，the Periscope screen comes up，a register dump is displayed， and the first instruction is disassembled You can then execute your program in vari－ ous ways

To ease the learning process，Periscope duplicates many Debug commands，so you can Trace a single instruction or a group thereof，or Go，starting at an address you
specit，with breakpoints at addresses you specifa In addition，you can Dump memory in the standard Debug format，Read and Write tiles and disk sectors，Unassemble， Examine，Search，and Fill memory，etc

Normally，all output scrolls up the screen in standard fashion．However，you can open windows（see this month＇s cover for an exampile）that maintain information in fixed places on the screen，thereby making that information much easier to find and assimi－ late．Window size and color is easily spec－ ified，windows may contain registers， memory dumps（in several formats），dis－ assembled instructions，stack dump，and a text file dump．Pressing Ctrl－F9 or Ctrl－F10 brings up default windows for mono and color windows，respectively．
The disassembly will contain the sym－ bols and high－level instructions of your pro－ gram，if an appropriate MAP file is available（Most assemblers and linkers can generate such a file．）For example，the pro－ gram shown in Fig． 2 is written in Turbo Pascal；a utility sold by Turbo Power created the rec：ured MAP file．Note that both Turbo source lines and the generated object code are shown See this month＇s software re－ views for more information

You can add your own labels to pro－ grams and save them separately That ca－ pability is useful when disassembling third－ party s．oftware

\section*{Breakpoints and program tracing}

Youcan set an almost bewil dering variety of breakpoints with Periscope BC sets a Code Breakpoint，activated when your pro－ gram tiles to execute code at the specified addres．s That address may be specified using rex notation or symbolically．Bl sets an Interrupt Breakpoint，activated when a soft－ ware interrupt is executed．For example，to stop execution any time a DOS function （Interrupt 21 h ）was to be executed，you＇d type

BI 21
You can also set breakpoints on source－

FIG. 2-The Periscope debugging screen.
code line numbers (BL), memory addresses (BM), I/O port addresses (BP), registers (BR), user-specified conditions (BU), memory contents (BW), and subroutine exit (BX). Note that those are not hardware-activated breakpoints, so execution must be started via the GT command, in which machine instructions are executed one at a time, breakpoint settings are examined, and then control reverts either to Periscope or to the user program, depending on whether the breakpoint conditions were met.

Each of the breakpoint commands may be cleared by entering the command with an asterisk. In addition, breakpoints of a particular type may be enabled (by typing +), disabled (by typing -), or displayed (by typing?).

\section*{Hardware control}

All of the commands discussed thus far may be used on any version of Periscope. Periscope Ill enables an additional set of breakpoint, trace, and display commands that let you execute your program in real time until a specified condition is met. The HB command, for example, sets a breakpoint when a specific bit pattern appears on the data bus. Values of 0,1 and X (don't care) are legal. You can also trap memory and port reads or writes (or either) using the HM and HP commands, respectively. Further, using the JD command you can qualify the breakpoint so that execution will continue until data within a specified range, and at the specified address is accessed.
Periscope Ill's hardware buffer has sufficient memory to trap 8192 bus events. When defining a breakpoint, you can instruct the hardware to save the 8 K events preceding the breakpoint, the 8 K following it, or 4 K on either side. You can also set up a pass count, so that, for example, the breakpoint will not be executed until the fifth time an ODh is output to port 61h. The HC (Hardware Control) command sets those modes

Operation on an AT is somewhat more complicated For example, when setting a bit breakpoint, you must specify the upper or lower half of the bus (or both). In addItion, you can force a hardware breakpoint to be executed when memory beyond the one-megabyte area is accessed, again using the HC command.

\section*{Hardware buffer display}

There are four commands for displaying the contents of the hardware buffer; a fifth (DW) saves the buffer to disk (or memory) for future examination. The display commands are as follows

The HR command provides a full-screen display of the raw contents of the hardware buffer. Each line contains an address, da:a, operation type (input, output, read, write, DMA, instruction pre-fetch), plus an address symbol, if available. A sequence number that corresponds to the 8 K of stored data is also displayed You can scroll through the buffer and search for address, data, and operation types.

HS displays a single line in the same format as the HR command.

HT and HU provide a full-screen display of the hardware buffer, but in a more digestible format. HT provides a disassembly (with labels) plus the operation types (in, out, etc.), and HU provides just the disassembly.

\section*{Other goodies}

Naturally, Periscope includes a built-in assembler. The surprise is that you can use symbols for address references-those from your program's MAP file, or those that you've defined within Periscope (using ES).

There is also (optional) on-line help. Pressing ? brings up a list of commands; pressing ? plus a command brings up a brief summary of that command
Periscope can use two monitors-one for your program's output, and one for the Periscope debug display. When used with
an EGA and enhanced color display, the Periscope display can optionally run in the 43-line mode.

The Periscope command line is fully edıtable, and the program maintains a stack of recently issued commands, which you can scroll through and then edit and execute the new line. Limited macro-type facility is avalable, and you can repeat the last command executed by pressing F4.

A word about the break-out switch: If you run the following piece of code under Debus, the only way to regain control of your machine would be by resetting:

\section*{XXXX:0100 JMP 0100}

A break-out switch will, however, allow you to escape from the loop.

\section*{Conclusions}

With or without a break-out switch, Periscope impresses us as one of the finest pleces of development software we've ever seen. It will be part of our tool kit for years to come. The hardware models aren't cheap, but if you need one, you need it bad, so cost should be no object. If you're on a tight budget, you can buy the soft-ware-only version and add your own breakout switch.

Turbo Pascal Debuggers

Turbo Pascal, when it was introduced some four years ago, laid to rest forever the notion that serious software development could only be done by means of the traditional and time-consuming edit-com-pile-Ink-test-repeat loop. Comprising less than 40 K of code, and widely available at well under \$100, Turbo Pascal also dispelled the notion that a professional compiler had to be big or expensive. In addition, it's available for a number of operating systems (CP/M, CP/M-86, and MSDOS)

The only thing missing from Turbo Pascal was a symbolic source-level debugger of the type that companies like Periscope (see this month's hardware review) have been selling for some time.

That lack was addressed a few years ago when a program called TDebus appeared on BBSes across the nation. Since then, the product has gone commercial; the commercial implementation, called T-DebusPlus, adds a host of new features and several extremely useful utility programs.

TurboSmith, a latecomer, provides many of the features of T-DebugPlus, as well as several unique ones, including an integrated machine-language debusger.

\section*{Turbosmith}

The program is contaned in a single 120K file (TSM.EXE). In keeping with the Turbo philosophy, TurboSmith costs \(\$ 69\) It's writ-
ten entirely in assembly language，and re－ quires 512 K of free RAM to pun．In fact， TurboSmith really needs most of 640 K to function properly；it wouldn＇t work at all on a 3Com network station，which gobbles about 200K of memory for device drivers．
You run TSM to get into Turbo；TSM loads Turbo and adds a new item，Trace，to Tur－ bo＇s main menu．（See Fig．3．）The editor and compiler functions work just as they do without TSM；the new Trace option com－ piles the current program and then brings up the debusging screen．（See Fig．4．）

That screen can display as many as three windows simultaneously．One is the source－code window，which is always dis－ played．The other two may contain program variables，a hex／ASCII memory dump，or a machine－language control window．
You switch among windows cyclically by pressing the F10 key；pressing F2 inside any window brings you to a command line where you can initiate various operations． For example，by typing \(Q\) you return to the Turbo menu．A full range of line－editing functions is available at each command line．

Other non－command－line operations are initiated by Ctrl－key and Alt－key combina－ tions，and the commands work as much alike as possible inside different windows． For example，pressing Alt－B inside either the source or the machine－code window sets a breakpoint where the program will stop when it tries to execute that Pascal state－ ment or that machine－language instruction， respectively．
In either program－control window you can execute a single statement or instruc－ tion by pressing the + key by the numeric keypad．Or press Alt－X（eXecute）to ex－ ecute full－speed until a breakpoint is reached or Alt－S（Stop）is pressed．Another way of starting executing is to press Alt－A （Auto single－step）．In that mode，a state－ ment or instruction is executed，the screen is updated，and then the next program ele－

\section*{Products Evaluated}
－TurboSmith（\＄69），Visual Age， 642 N ． Larchmont Blvd．，Los Angeles，CA 90004， 800－732－2345，213－534－4202（CA）．

CIRCLE 31 ON FREE INFORMATION CARD
－T－DebugPlus（\＄60），Turbo Power， 2109 Scotts Valley Drive，Scotts Valley，CA 95066， 408－438－8608．

CIRCLE 32 ON FREE INFORMATION CARD
－Turbo Pascal（\＄99．95），Borland Interna－ tional， 4585 Scotts Valley Drive，Scotts Val－ ley，CA ，800－255－8008，408－438－8400（CA）．

CIRCLE 33 ON FREE INFORMATION CARD
－Periscope（price varies according to model），The Periscope Company， 14 Bonnie Lane，Atlanta，GA 30328，404－256－3860．

CIRCLE 34 ON FREE INFORMATION CARD

FIG．3－TurboSmith adds a new item so the Turbo menu．

ment is executed．Terminate Auto mode by pressing any key Auto mode is not as useful as it might be because you can＇t control the speed at which statements are executed You might want to slow execution in order to get the feel of how a loop was executing， for exarple

The Variables window displays the val－ ues of all global variables，Turbo＇s internal variables as well as your own．You can only view variables inside a nested procedure or function when the program is executing that procedure or function．Further，you can open as many as eight window levels，each of which overlays one of the three on－ screen windows．You cycle among dis－ played windows by pressing F10，and among levels by pressing F9．You are free to change the values of variables within any window．

Versın 2.1 （which was not available in time for this review）should automatically open variable windows in nested pro－ cedures and functions

\section*{Screen swapping}

Most programs produce some sort of screen output；TSM can deal with screen output in two ways．First，and best，you can use wo monitors，one mono（IBM or Her－ cules）and one color（CGA or EGA）．In that case，farogram output must go to the mono screen；the debugging windows come up on the color screen．Otherwise，on a single－ monitor system，you can use screen swap－ ping，wherein TSM maintains memory im－ ages of both the debugging data and the program＇s output data，swapping them at the press of a key．

One useful feature is that TSM will re－ spond to a break－out switch．If your pro－ gram zets locked in a loop and the keytoard won＇t respond，chances are the break－out switch will allow you to regain contro and continue debugging．See this month＇s hardware review for more informa－ tion or break－out switches．

TSM＇s machine－language debugger prov des powerful breakpoint facilities．You
can set passpoints, breakpoints that will occur only when an instruction has been executed a number of tımes (ranging from 1 to 65535). In addition, you can tag an instruction or a group of instructions with a number ranging from 1 to 99; you can then set, clear, or disable breakpoints by tas number. The ML debugger also provides DEGUG-like facilities for searching, filling, moving, and disassembling memory, computing hex values, inputting and outputting values to \(1 / O\) ports, etc. You can also append comments to disassembled instructions, but the comments may not be saved. A macro facility allows you to record sequences of keystrokes and assign them to any key. Macros may not be saved. TSM wil also accept keystrokes from a file

In the machine-code window, you can use a non-symbolic assembler to enter as-sembly-language instructions into your program in one of two ways. First, by pressing Ctrl-A, you enter an overwrite mode in which your instructions overwrite whatever instructions currently reside in memory. Second, by pressing Ctrl-P, you enter a patch mode in which your instructions are inserted between current instructionseven if there is no space for them!

You can also patch memory in the mem-ory-dump window, in either hex or ASCII notation. You can also force the memorydump window to track the machine-code window, so that any time you execute a machine instruction that accesses memory, that area of memory will be displayed.

One deficiency is that you can't use TSM to debug graphics programs. Future versions of the program may correct that deficiency, but for now, you'll have to stick to text-mode debugging. Our only other complaint is that window position is hard to control; by contrast, some machine-language debuggers allow window placement by screen line number.

\section*{T-DebugPlus}

Turbo Power has been selling Turbo enhancements for a long time, and the company has a number of products, including TDebugPlus; Turbo Extender, which allows you to create very large (greater than 64 K) Turbo programs; Turbo Optımizer, which allows you to compact the size of run-tıme files and to create and link libraries of oftenused routines; and Programmer's Utilities, which contains a program structure analyzer, an execution timer and profiler, pretty printer, and several file-management utilities. Source code is available for all programs, all of which are written in Turbo Pascal.

T-DebugPlus is contained in one.COM file and one overlay file, which together occupy about 100 K of disk space. To run TDebugPlus you need about 256 K of free memory. The main features that distinguish T-DebugPlus from TSM are that (a) the program is written in Turbo Pascal, anc the source is included; (b) the program has no

FIG. 5-The T-DebugPlus debugging screen.
bult-in machine-language debusger; (c) the program does support graphics modes; (d) program and debug screens can appear on either mono or color monitors in a dual-monitor system. T-DebugPlus also has a screen-swapping mode

In addition, T-DebugPlus includes several useful utilities, including TMAP, which generates a MAP file for use with an external symbotic machine-language debugger; TMERGE, which allows T-DebugPlus to debug large Turbo programs (when used in conjunction with Turbo Extender), and two program-listing programs, one of which generates a symbolic disassembly. In add ition, several files contain information about varıous routines in Turbo's run-tıme library that information is extremely useful for learning about now Turbo works. All source files are contanned in a single. ARC file on the distribution disk

To use T-DebugPlus, you run the program, which, like TurboSmith, loads and runs Turbo for you. When you Run your program from Turbo's menu, T-DebugPlus's debuyging screen comes up. (See Fig. 5). There you can single-step individual statements and entire functions and procedures. You can set breakpoints that become active when a variable changes or becomes equal to a specified value, or when a particular memory location is altered. You can also set breakpoints by line number and by routine name. A breakpoint may also include passpoint count values, so that the breakpoint would be executed after a routine was executed the specified number of times. In addition, you can open a memory-dump window in one of several formats, display "watch" variables, whose values are updated on the screen each time a breakpont is reached, and examine and change the values of variables.

All commands are executed from a com-
mand line, which can be edited No macros are allowed, but the function keys provide shortcuts to the most common commands, and F4 repeats the last command.

Although T-DebugPlus has no built-in ma-chine-language interface, it can be used in conjunction with an external debugsereven Debug. The DG command will drop you into your debugger. Source-level debugging is not possible in that manner. However, you can use TMAP, one of the utilities included with the package, to generate a .MAP file, which most source-level debuggers can use to link source code and machine instructions.

Several miscellaneous commands provide useful functions. For example, a brief command summary is avalable by pressing F1. In addition, the \(X\) command allows you to find the machine addresses of variables, source-code line numbers, procedures, and functions. Conversely, you can find the nearest statement to a specified address

\section*{Conclusions}

T-DebugPlus and TurboSmith are both extremely useful accessories to anyone programming in Turbo Pascal.
Points to keep in mind, however, are that T-DebugPlus does graphics, has full dualmonitor support, and slightly more convenient breakpoint facilities (at the source level). In addition, it requires less memory, and its documentation is more concise and better produced. For beginners and those not needing full machine-language support, it may be the better choice. TurboSmith's strength are its windows, its bult-in machine-language interface, and its ability to work with a break-out switch. But considering the reasonable prices of these packages, you may want to get copies of each. (D)

Nmatter what you use your computer for，it＇s safe to say that you spend a great deal of time dealing with floppy disks and floppy－disk drives．Loading programs and saving data are such common operations that we tend to forget how fragil？the whole system is But ali it takes is one disk disaster to remirid us of that fragility．
Of course，there are ways of protecting against those types of disasters，and other ways of dealing with them when they do occur Performing regular backups is the best protection，but even that is not fail－safe What happens if a disk crashes during a backup procedure？
In order to have any chance at all of recovering that data，as well as to back up copy－protected software，you need to know how data is stored on your disks The more of the process you understand，the better your chances of successfully recovering a crashed disk．So in this article we＇ll examine how data is stored on both IBM and Apple floppy disks The information provided will put you far on the road toward being a reat＂disk jockey＂

\section*{Tracks and sectors}

The standard \(5 / 4\)－Inch floppy disk consists of a disk of mas－ netically coated plastic that is contained in a jacket，as shown in Fig．1－a In order for your computer to use the disk，it must have a way of finding its way around the magnetic coating on the surface It does so by treating the disk as a group of tracks that are divided into sectors As shown in Fig 1－b，the tracks are a series of concentric circles，each of which is divided irito a number of segments，the sectors In addition to tracks and sectors，disks also have two sides，as shown in Fig 2 Not all disk
control rardware and software can use both sides，however The number of tracks and sectors determınes how much data will fit on the disk That amount is dependent on your comput－ er＇s hardware and disk operating system（DOS）The numbers vary among computers and disk sizes，but the basic principles of operation are the same
When you tell your comp iter to format a disk，the hardware moves the read write head ：o track zero，the outermost track， and then forces it to deposit information on the surface of the disk that indicates the sector locations．The process is repeated for each rack untll the last track has been formatted．
Standard \(5 \% / 4\)－inch Apple disks have 35 tracks on one side of the disk anly，and the most common IBM format has 40 tracks on each side of the disk．Double－sided \(3 /-\)－inch and 8 －inch disks have 77 tracks per side，and the AT＇s quad－density \(5 / \mathrm{s}\)－inch disks have 80 tracks on eachı side
DOS（IBM or Apple）uses tracks and sectors to organize the disk＇s surface At the DOS izvel，to find a particular piece of information，all you need are two pleces of information．track and sectior numbers＂With couble－sided disks，you must also specify the head number
The number of tracks per disk is usually a function of the hardware The DOS talks to the disk controller，which，in turn， talks to the stepper motor if the drive and tells it to move the head in or out the desired number of tracks
The number of sectors，however，is controlled by the DOS IBM＇s DOS，for example，can format for eight or nine sectors per track，but standard Apple disks have sixteen sectors per track So you can have more small sectors or fewer large sectors

FIG. 1-DISK CONSTRUCTION: The magnetically coated disk is contained in a jacket (a), and is formatted to contain tracks and sectors (b).

FIG. 2-BOTH SIDES of a disk are used by some disk control hardware and software.

\section*{Disk formatting}

When a track is formatted, DOS writes three kinds of information in each sector: ID bytes, sync bytes, and gap bytes. The exact format of those bytes differs from computer to computer, 'out the same sort of scheme is used by every DOS The reason is that DOS must have a way of determining exactly which sector it's looking at. Not only that, but there must be a way of ensuring that the special formatting bytes are never overwritten by data. If that does happen, DOS has no way to identify the sector and the result is what you might expect-a crashed disk.

There are actually two kinds of ID bytes on a sector-one is the signpost that marks the sector's location on the disk, and the other lets DOS know that it's looking at the beginning of the data stored in the sector

Figure 3-a shows a dump of an Apple DOS 3.3 sector, and Fig 3-b shows a dump from an IBM DOS 3.1 sector At first glance, they both look meaningless-clearly different but equally meaningless. Those disk formats are the two most popular, and both the hardware and the software used to create them are
totally incompatible. It's even more interesting, therefore, to see that they use similar schemes to write disk data.

The ID marks on the IBM sector are written in hex on the disk; you'll find them in Fig. 3-b at offset 00A1h. The first three bytes (00,00 , and \(0 \uparrow\)) show that you're looking at track 0 , side 0 , sector 1. The next byte (02) shows that the sector can hold 512 bytes

Other sector sizes can be accommodated, as shown in Table 1. Normally, a maximum of about 6000 bytes can be written per track, so the final entry in the table may seem questionable. On the other hand, perhaps IBM has something up its sleeve.

The two bytes following the ID bytes contain a special errordetecting code called a CRC (cyclic redundancy check). The CRC is used by DOS to make sure that data read from the disk is correct. If the CRC calculated from the data that is read from the disk doesn't match the four CRC bytes in the header, DOS considers the data corrupt. Every time you change the data in a sector, DOS recalculates the CRC and writes it to the disk
in order to keep those bytes from being overwritten accidentally, DOS uses sync bytes to mark the location of the ID bytes. Wien the floppy-disk controller writes a data byte on the disk, it sends out a steady clocked stream of ones and zeros. The Apple, for example, writes bytes to the disk at intervals of 32 microseconds. Sync bytes, however, are written at a different interval so they're easy to spot on the disk. Apple sync bytes are written in 40-microsecond intervals, and each sync "byte" is 10 bits long.

IBM sync bytes differ. The IBM sector in Fig. 3-b shows that there are three bytes containing a value of A1 beginning at offset 9D. Those are the specially written sync bytes that the floppydisk controller uses to mark the location of the ID bytes. The twelve 00 bytes preceding the A1 bytes are also sync bytes You can understand how they're used by tracing through the mechanics of a normal disk read.

When an IBM controller must read data, the first thing it does is make sure that it's looking at the right sector. It starts reading data, watching for a stream of 00 sync bytes, which lets it know that there's a chance that A1 sync bytes will follow. If they do, DOS knows that the following bytes are ID bytes.

Although ID bytes are used to mark both the signposts and your data, DOS can tell the difference by looking at the byte immediately foll owing the A1 bytes. If it's an FE, the ID bytes are signposts, but if it's an FB then it's data. The amount of data is

Although Apple＇s disk fcrmat is structurally similar to IBM＇s， the details are different because Apple＇s disk control hardware and software are unique Most disk controllers store data in un－ encoded format，so that a dump of an ASCII text file，for example，will be comprehensible

The Apple hardware，however，limits the values that can be stored on disk The hish bit of each byte must be set，there can＇t be more than two ad，acent zero bits，and at least two adjacent bits must be set in each byte Some values are reserved for use as ID bytes，and hardware restrictions eliminate many others，so there are only 64 possible values that can be written to the disk to represent your data．

So，in order to be able to write all 256 combinations of eight bits，it＇s clear that the data ir ust be encoded In fact，Apple has gone through three major revisions of their encoding scheme However，that＇s not a subject that can be covered here；see the books in the References sidebar for more information

\section*{Apple format}

Apple＇s sector format is somewhat different Referring back to Fig 3－3，the signpost ID bites are located at offset 0013h after the serie；of FF sync bytes．The signipost bytes always begin with a prologue（D5 AA 96），which serves the same purpose as the FE marking the IBM signoost．The next eight bytes are encoded versions of the disk volume number，track，sector，and checksum． As shown in Table 2，by decoding them we see we＇re looking at volume 254，track 6，sector 13 The checksum is calculated by sequentially XORing all daté bytes in that sector together．

Following that informatioris an epilogue，which can be seen beginnirg at offset CC．1Eh It marks the end of the signpost area and has no counterpart on an IBM disk．The epilogue is there so that DOS can make sure it＇s been reading the correct signpost marks and that it is still in sync with the disk They＇re not really necessary，but remember thait the Apple system was devised in the late seventies when disk drives were not as reliable as they are today
Following another group of sync bytes comes the data bytes． At offset 0028h is the prolcgue（D5 AA AD）；then follow 342 bytes of data Apple stores \(\$ 56\) bytes of data in each sector，but， because the data is encoded， 342 bytes are needed to do it．A checksurn is calculated for the data and stored at the end of the data space along with the epilogue（DE AA EB）

\section*{Sector numbering}

Although sectors are numbered sequentially，often they＇re not stored sequentially，When DOS looks for a particular sector，it must locate the signpost markers，read them，verify the read，and then see if they＇re the ones it was looking for．All that takes time， but meanwhile the disk keeps spinning，so there＇s a good chance the next sector will have passed beneath the read／write head while the previous sector was being analyzed

FIG. 4-LOGICAL AND PHYSICAL sector orders are not necessarily the same.

So, to make things more efficient, the sectors are interleaved, or skewed, as shown in Fig. 4. The inner circle indicates physical sector numbering; the outer circle indicates logical sector numbering.

\section*{Disk organization}

Now that we know how data is stored on the disk, the next step is to see how it's organized. Once again, although the details vary from computer to computer, the basic method is the same. Let's look at the general principles and then see how they're actually applied in both Apple and IBM systems.

DOS divides the disk into four areas: System, Directory, Table of Contents, and Data. Any disk operation makes use of the information stored in all four areas.

DOS itself is stored in the System area of the disk-the first few tracks on the disk. The number of tracks depends on the size of DOS and the type of computer. The very first sector on the first track is called the boot sector and it's used whenever you boot a disk. It has a short machine-language program that tells the computer how to go about loading DOS from the disk. In addition, in some systems it contains data related to the directory structure, disk format, and so on.

When you boot your computer, the disk controller reads the boot sector into memory. Then the computer turns control over to the program, called the bootstrap loader, that is contained in that sector. Things are done that way because the controller can read in only a sector at a time. You can read in more than one sector at a time-but that's DOS's job. So it's a chicken-and-egs problem: you need DOS to read multiple sectors and you can only read in multiple sectors by using DOS. But because DOS is located in a specific place on the disk, the bootstrap loader knows how to transfer it to the computer's memory.

The Directory and the Table of Contents go hand in hand. The former is a list of the files stored on the disk, and the latter is a list of sectors telling DOS where to find them. Every time you tell DOS to access a particular file, it first goes to the Directory to see if the file exists and, if it does, DOS then tums to the Table of Contents to get the file's location on the disk.
As you might have guessed, the Data space is where DOS stores your data.

IBM stores DOS in three disk files: IBMBIO.COM, IBMDOS.COM, and COMMAND.COM. (Clones running MS-DOS store the first two of those programs under different names.) In order for the computer to load DOS from the disk, IBMBIO.COM and IBMDOS.COM must be the first two files on the disk. If they're not, the bootstrap loader won't be able to find them, and you'll get the infamous "NON-SYSTEM DISK OR DISK ERROR" message. Those two files contain the routines the computer uses to control the disk hardware. The third file, COMMAND.COM, is loaded after the first two and it's the part of DOS that executes internal DOS commands (DIR, REN, DEL, etc.), external prosroms, and batch files.

IBM's Table of Contents is called the FAT (file allocation table). It's used to keep track of where each chunk of each file is stored on the disk, which sectors are available for use, which sectors are bad, and so on. The basic unit of the FAT is called the cluster, and it represents a variable number of disk sectors, depending on the operating system and on the format of the disk. For example, single-sided IBM disk clusters are one sector long, double-sided IBM disk clusters are two sectors lons, and higher density disks rave even larger clusters.

The Directory is also located on track 0, right after the FAT. It stores the names of your files, their attributes, the date and time they were created, their size, and the location of the file's first entry in the FAT. The rest of the disk is set aside for your data. When you change anything on the disk by writing new data, DOS must update the Directory and the FAT, because they work together to keep your files organized.

The Apple also has a boot sector to start the process of loading DOS irto the computer. The actual contents of the boot sector (as well as the organization of the disk) depends on which Apple DOS you're using. Both systems, however, differ from the IBM version in that the only job of Apple's boot sector is to start the process of loading in DOS.

There are major differences in the two current Apple operating systems, DOS 3.3 and ProDOS. Although the basic sector formatting is the same, the organization of the disk is quite different. The older system, DOS 3.3, stores the System on the first three tracks, and the directory on track 11h (in the middle of the disk). That was done, the reasoning went, because, on average, the head would have less distance to travel to get to the directory than if the directory had been located in track 0 , as on the IBM. Leiss distance means less time, so that wasn't bad reasoning.

ProDOS, on the other hand, has a closer resemblance to the IBM system in that the directory is stored in the lower tracks. Disk space is allocated a sector at a time under DOS 3.3, and a block at a time under ProDOS. (A block equals two consecutive sectors.) The Table of Contents is called the Volume Table of Contents in DOS 3.3 and the Volume Bit Map in ProDOS.

Both are similar to the IBM's FAT in that each contains a table that DOS uses to keep track of which sectors are free, which are reserved, and which are otherwise used. Each file on the disk reserves a track-and-sector list sector (or block) that contains a list of the sectors where each file's data is stored. Overall, the Apple has to do about the same amount of housekeeping as the IBM. It must update the directory, the table of contents, and the track/sector list for each file you use.

\section*{Copy protection}

With those facts in mind, let's examine various copy-protection schemes. But before we get into the details, let's talk about the philosophy behind copy protection. Both software publishers and software owners make strong arguments about protecting their investment-and they're both right. Nobody wants to get ripped off, so publishers should be able to make money, and owners should be able to make legitimate backup copies of software they have purchased. Of course, there is much comrinucd om page \(1(\%)\)

\title{
BUILD тНє РТ－68K
}

\author{
The big moment： \\ add the microprocessor．
}

PETER STARK，STARK SOFTWARE SYSTEMS CORPORATION

\section*{－Did \\ ！！！！！！！！！！！！！！！！！！！！！！！
}

\section*{Part 3 In the first installment of the Computer Digest Classroom，we presented an overview of the} PT－68K．In part two，we built clock，reset，and test circuits．Now let＇s install the 68000 and start learning how it works．

\section*{Step 7：hardware basics}

The pinout of the 68000 microprocessor is shown in Fig． 1 Though it＇s a 64－pin IC and looks complex，it really is straightfor－ ward．Let＇s go over it pin by pin．

In the figure，notice first the data bus，with its 16 lines labeled D0－D15，and the address bus，with its 23 lines labeled A1－A23 In case you＇re wondering，there is no A0－see below．

The remaining signals are known collectively as the control lines；let＇s look at them in more detall Each control line is labeled with an arrow to indicate whether it is an input，an output，or，in some cases，both．

The three active－high output lines \(\mathrm{Fc}, \mathrm{FC1}\) ，and F c2 output a function code that can be decoded to indicate what the 681000 is doing internally；the function code can also be used to increase the 68000＇s addressable memory to 64 megabytes．
The enable line（ \(\overline{\bar{E}}\) ），the valid memory address line \((\overline{\mathrm{VMA}})\) ，and the valid peripheral address \((\overline{\mathrm{VPA}})\) line are all useful when the 68000 is used with older input－output IC＇s，particularly those originally intended for use with Motorola＇s 6800 processor．Also， \(\overline{V P A}\) provides some interrupt information
\(\overline{I P I O}, \overline{I P L 1}\) ，and \(\overline{\mathrm{PLL}}\) are interrupt－level inputs．We will discuss interrupts later；for now let us just say that an event such as a keypress can interrupt the 68000，cause it to stop whatever it＇s doing，and then respond to the interrupt．The three interript inputs tell the 68000 whether an interrupt is being asked for，and what kind of an interrupt it is．

The RE \(\overline{\mathrm{FI}}\) and \(\overline{\text { FAAll inputs come from the } 555 \text { circuit shown in }}\) Part 2，Fig．6．Note，however，that those two pins are also outputs That explains why an open－collector 7406 inverter was used to drive them；occasionally the 68000 may output a low on one of those lines，and that would conflict with the normally high output of a standard inverter（such as a 7404）
\(\overline{B R}, \overline{B G}\) ，and \(\overline{B G A C K}\) are used with DMA circuitry，which is used to transfer blocks of data without help from the microprocessor．If DMA were used，the DMA controller would send a bus request \((\overline{\mathrm{BR}})\) signal to the 68000 ，which would release the date and

FIG．1－THE 68000 MICROPROCESSOR has sixteen data lines， 23 address lines，and 21 control lines．

FIG. 2-68000 TEST CIRCUIT. By disabling all interrupts and grounding the entire data bus, you can force the 68000 to repetitively cycle through four million "phantom" instructions.
address buses and return a bus granted (BG) signal. The DMA controller would then send a bus grant acknowledge (\(\overline{\mathrm{BGACK}})\) to confirm that it has control of the buses. Then the 68000 would sit back and wait while the DMA controller did its thing.

We mentioned that \(\overline{L O S}\) and UUS replace address line A0; they

\section*{Past, present, future}

What follows is a listing of the contents of past and projected future articles in the Computer Digest 68000 Classroom. The precise number of articles-and their contents-will depend on your response, so let us know what you're interested in!
Part 1: System overview, block diagram, parts list, memory map, ordering information.
Part 2: Parts-placement diagram, power connector mounting, LED, speaker, reset, and clock circuits.
Part 3: Introduction to the 68000 , test circuit, EPROM and RAM circuits, address-bus waveforms.
Part 4: Logic symbols, \(\overline{M A P}\) circuit, address decoding, \(\overline{B E R R}\) and \(\overline{\text { DTACK, RAM and ROM, HUMBUG }}\)
Part 5: Serial interfacing and IBM-compatible expansion slots
Part 6: Dynamic RAM
Part 7: Disk control hardware and software. SK*DOS.
do so in an interesting way. The 68000 has a 16 -bit data bus, but memory is organized as eight-bit bytes. Even so, the data bus can access two bytes at a time. The memory is wired so that half of memory-the odd-numbered locations-connects to the lower part of the data bus (bits D0-D7), and the other half of memory - the even-numbered locations connects to the upper part of the data bus (bits D8-D15). The 68000 asserts 105 when it wants to use the lower half of the data bus, UDS if it wants to use the upper half of the data bus, or both if it wants to transfer 16 bits on the entire data bus. Thus an odd address turns on \(\overline{L D S}\), and an even address turns on \(\overline{U D S}\). The overall effect is similar to that provided by address line A0 in other microprocessors, where A0 is low for an even address and high for an odd address.
\(\overline{\mathrm{AS}}\) is an address strobe which is generally asserted by the 68000 at the same time as either \(\overline{L D S}\) or \(\overline{U D S}\); it simply relis external circuitry (address decoders, for example) that there is a valid address on the address bus. That's an importarit point, because the address bus often carries data that is meanıngless; \(\overline{A S}\) provides a way of preventing decoders from responding 10 invalid addresses.

Next comes the read/write line (\(\mathrm{n} \sqrt{\mathrm{W}}\)), which is used by the 68000 to tell other circuitry whether it wants to read data in (when \(R \sqrt{w}\) is high) or write data out (when \(R \sqrt{w}\) is low). In other words, \(R \sqrt{W}\) is high when data goes from RAM or ROM to the

FIG．3－EPROM AND STATIS－RAM WIRING is shown here．

FIC．4－USE MOLEX SOLDERCCIM PINS o ground all daia lines witnout soldering．

\section*{Thanks}

I＇d like to thank Fred Brown of Peripheral Technology，Inc．，kit supplier for this CD Classroom series．Fred is the wizard who designed the hardware of the PT－68K；without his assistance， the project would never have gorten off the ground．

68000，and low when data goes from the 68000 to RAM Normally we don＇t write to a ROM

BERR is an input to the 68000 that external circuitry uses to tell the 68000 when something has gone wrong on one of the buses．We will see how that is done later．

Last，DTACK stands for data transfer acknowledge．Whenever the 68000 wants to read or virite to memory（or an \(1 / O\) device），it （a）puts the address on the address bus，（b）puts a high or low on \(\mathrm{r} \sqrt{W}\) ，（C）asserts \(\overline{A S}\) ，（d）asserts \(\overline{D S S}, \overline{U D S}\) ，or both，and（e）waits until either DIACK is asserted，indicating that the transfer has comple：ed successifully，or BERR is asserted，indicating that something went wrong．When DTACK is recelved，the 68000 goes on to the next instruction．We＇ll discuss what happens if BERR is asserted later

If DTACK were permanently grounded，the 68000 would as－ sume that all transfers finished quickly，so it would zip along at maximum speed．In most cases，though，\(\overline{\text { DTACK }}\) is generated by an external timer that gives memory and I／O just enough time to finish their jobs．And if a memory or I／O device is particularly slow，DTACK Can then be deleyed so that the 68000 will wait for it to finish

In practice，each 68000 memory or I／O access takes a specific amount of time，which is measured in clock cycles．If DTACK is delayed，for even an instant，the 68000 lets an extra clock cycle slip by and checks again．If DTACK is still off，the 68000 waits another clock cycle，and so on．Each of those clock cycles is called a wait state．Ideally，everything would be fast enough so that the 68000 could contirue processing without wait states However，some computers have slow memory or I／O devices， and therefore run with one or even more wait states，which obviously slows everything down You＇ll be happy to know that the PT－68K runs with no wait states！

\section*{68000 test circuit}

Last tıme we built the clock and reset circuits，and now that we have some basic familiarrity with the 68000，it＇s time to get the system running．Normally，you need quite a bit of external hardware to get a 68000－based computer running，but there is a

FIG. 5-EACH SUCCESSIVE ADDRESS LINE runs at half the frequency of its predecessor.
way of fooling the microprocessor into thinking the necessary support circuitry is connected, even though it isn't. Figure 2 shows how. Basically, the circuit ensures that interrupts are disabled and jams the data bus with "phantom" instructions that the 68000 will execute over and over

In order to minimize the amount of extra wiring we have to do, we will take advantage of circuitry already on the printed circuit board (which will be needed later anyway). For exam ple, we can use \(\overline{\text { RESEI, }}\) HALT, and cIK as-is.

The circuit works like this: IC37-b is a nand gate that asserts VPA when FC0, FC1, and FC2 are all high, and negates vPA at all other times. That is done because \(\overline{V P A}\) is used only during interrupt processing; for now, we need to force it high

Also dealing with interrupts is IC89, a priority-encoder IC. In normal operation, when an interrupt request appears on one of the \(\overline{\mathrm{RO}}\) lines (\(\overline{\mathrm{RQ}} \mathrm{I}-\mathrm{RQQ})\) IC89 functions as a traffic cop that determines which line has the highest priority \(\overline{\mathbb{R Q} 7}\) has a higher priority than \(\overline{\mathbb{R O C O}}\), which is in turn higher than \(\overline{\mathbb{R Q S}}\), and so on. Depending on which interrupt lines are active, IC89's three outputs send a binary number corresponding to the highest priority interrupt to the IPL0, IPL1, and IPL2 lines of the 68000 . For example, if the highest priority interrupt request is \(\overline{\mathrm{RQ}^{4}}\), U89 sends the binary number 100 (4) to the 68000 by forcing \(\overline{\mathrm{PPL}}\) high and the others low.

In our test circuit, however, the seven resistors in R19 are pulling all of the IRQ lines high. Therefore, IC89 sees no interrupt request, so it sends the binary number 000 to the 68000, telling it that there are no interrupt requests
By the way, we could have achieved the same result by grounding the three IPL. pIns of the 68000 and by tying VPA high However, we can save ourselves extra labor by installing R19, IC89, and IC37, which we'll have to do eventually anyway
Two of the inputs, labeled \(\overline{B R}\) and \(\overline{B G A C K}\), are already tied high, and a number of other pins are unconnected
That leaves the data bus, \(\overline{B E R R}\), and DTACK to contend with.

First, \(\overline{\text { BERR }}\) must be tied high so that the 68000 won't think a bus error has occurred That is easily done by installing a short jumper between pins 14 and 22 of the 68000 , on the foll side of the board

Normally Dtack will carry a meaningful signal, but for now we want to ground it to make the 68000 think that all is well on the outside. The inverter (IC66-a) that drives DTACK was installed previously, so force the input high by installing a jumper from pin 1 to pin 14 of that IC on the foil side of the board

Last, as shown in Fig. 2, we want to ground all sixteen data lines. The reason is that, when the 68000 is running normally, it fetches instructions and addresses from memory, so we have to provide it with some apparently meaningful data. By grounding the entire data bus, every time the 68000 tries to read anything from memory, it will read the number 0000. As it turns out, that is a valid 68000 machine-language instruction, which is written: OR.B \#O,D0
That instruction tells the microprocessor to or a 0 to register D0; the instruction consists of four 00 bytes

Though that OR instruction seemingly does nothing, the 68000 thinks that all 16 megabytes of memory are filled with 4 million OR instructions, and so it starts executing them one after another. When it gets to the top of memory at \$FFFFFF, it simply wraps around" and starts over at \(\$ 000000\).

\section*{Fire it up}

Now let's wire up the circuit and see what happens. Insta|l the following components: sockets for IC37, IC47, and IC89; R19, a 10K single-in-line package. Pin 1 of R19, identified by a white line or dot, should point toward J25. Then install C14, C48, and C66 (\(0.1 \mu\) F disc capacitors), and last jumpers from pin 14 to pin 22 of IC47 and from pin 1 to pin 14 of IC66. Both jumpers will be removed later, so install them neally and in a way such that they can be removed easily.

Grounding all sixteen lines of the data bus at the micro- insertions \(\mathbf{\$ 7 7 5}\) ．each．Closing date same as regular rate card Send order with remittance to Computer Admart．Radio Electronics Magazine． \(500-\mathrm{B}\) Bi－County Blvd．，Farmingdale．NY 11735．Direct telephone inquiries to Arline Fishman．area code－516－293－3000．Only 100\％Compster ads are accepted for this Admant．

\section*{CALL NOW AND RESERVE YOUR SPACE}
－ 6 ．rate \(\$ 800.00\) per each insertion
－Reaches 245．824 readers．
－Fast reader service cycle．
－Short lead time for the placement of ads．

Call 516－293－3000 to reserve space．Ask for Arline Fishman．Limited number of pages available．Mail materıals 10 ： Computer Admart．RADIO－ELEC． TRONICS．500－B Bi－County Blvd．．Farm－ ingdale．NY 11735

\section*{CHRISTMAS SPECIAL}

12－16－20 MHZ． HIGH SPEED
TURBO－286／386
－CPU－286－12／386－16 MHZ
－ \(287 / 387\) and 16－20 MHZ．opt．
－ 1 MGB．on board．Max． 16 MGB．
－ 2 Teac 1．2，or 360／3．5／720．
－ 60 MGB． 28 MLS．with W．D．Contr．
－1／O，Serial，Parallel，Game．
－PGA，EGA，CGA，MGA，HERC．S．Sw
－Deluxe Keybrd．102／12 Funct．Keys．
－ 200 W．P．S．Case．Digital Display．
－的 TURBO－XT－W／Monitor．．． 5899.00 TURBO－286／386－\＄2，499．00／\＄3，499．00 COMPSTAR，INC． （818）842－4606
239 E．Alameda Ave．，Burbank，CA 91502
TELEX： 797196 FAX：（818）845－0739

\section*{COMPUTER ASSEMBLY MANUALS Confidence} BU BUILDERS！ Parts list，placement diagrams，instructions， mods，for assembling over 90 IBM－ compatible bare cards．Latest version with guides for 640K，Turbo，AT \＆Baby AT MthBds．
\(\$ 17.95\)
APPLE＇BUILDERS NEED APPLE SEED！ Instructions for assembling over 90 Apple－ compatible bare cards including II + \＆Ile MthBds．For ALL Apple enthusiasts and hobbyists
\(\$ 14.95\)
SAVE \(10 \%\)－ORDER TWO OR MORE MANUALS OVER 40 BARE IBM \＆APPLE CARDS IN STOCK （Mhneds．Disk－Video－Burner．MumFn．I O．Modem．Prowo encl
Check Money－order，VISA／MasterCard to NuScope Associates＊，Dept RE

PO Box \(790 \quad\) PO Box 742，Stn B
Lewiston．NY 14092 Willowdale，Ont M2K 2 R1

\section*{CIRCLE 194 ON FREE INFORMATION CARD}

\section*{LASER PRINTER＇}

HP，Apple．OASYS．oms．and more
Recharge Your Used Toner Cartridges．
\begin{tabular}{lcc|}
\hline RECHARGING & PRINTER COPIER \\
BLACK & \(\$ 45\) & \(\$ 40\) \\
DK BLUE BROWN & \(\$ 65\) & \(\$ 60\) \\
NEW CARTRIDGE & \(\$ 89\) \\
IRETURN SHIPPING INCLUDED） \\
\hline
\end{tabular}

\section*{20 Years of Laser Printing and Xerography Experience －Unconditional Guarantee－}

800 W．Burlington，Fairtield，IA 52556 （800）635－8088 （515）472－7850

\section*{CIRCLE 197 ON FREE INFORMATION CARD}
\begin{tabular}{|c|c|}
\hline － & IF YOU KNEW HOW EASY IT IS TO BUILD AN IBM \({ }^{\text {© }}\) XT COMPATIBLE COMPUTER， YOU WOULDN＇T PAY IBM \({ }^{(6)}\) SIO00 TO DO IT FOR YCUI \\
\hline － & －Anyone can do itl No special skiliss required a Takes less than 2 hoursi With a screw diner and my ndeo tape you can save up to \(\$ 1000\) over the price of an assemoted IBM＊ O in－ chudes a list of suppliers of computer knts（All kits have 90 day warranty and hill compatibility \(\square\) MONEY Binck GUNRANTEE－If you aren＇t whally convinced that you can assemble your own computer atter newing my fall－ safe，step by step video instructions．
you pay nothing！ \\
\hline & SEND 329 FOR VIDEO TAPE TO： WOLFER PRODUCTIONS．Dept R 101531／2 Riverside Dr \＃153 Toluca Lake．CA 91602 ICanforna rewdents add of \(5 \%\) wates tar \\
\hline
\end{tabular}

CIRCLE 61 ON FREE INFORMATION CARD

IBM PC／COMPATIBLES
－ten programs－ \(100 \%\) BaSIC －EASYTOLEARN－EASYTOUSE
－WRITTEN BY EMERALD DIRECT
\[
\text { - SINCE } 1981
\]

NOT COPY PROTECTED
 818－346－7024

\section*{TURBO CHARGE YOUR PC WITH THE ACCELERATOR 286 Replaces your PC，XT，or compatibles 8088 with an 80286 processor．It includes 8 K of zero－wait－state cache memory，and your software can run up to 7 times faster．So why buy an AT？ Upgrade your PC with the Accelerator． \\ \＄275}

\section*{VIDEO SHARING \\ DEVICE}
\＄59．95
Transmits color computer／VCR signal to any TV at home without cables．Simply plug it into com－puter＇s composite outlet or VCR＇s jacks．This is the least expen－ sive way of upgrading your system to color without buying a color monitor． Mirior assembly required．

PC Plus Corp．Monterey Park
California 91754 （818）571－6y）1
processor's socket could lead to problems later, so we'll do it another way. The data bus is more accessible at the two EPROM sockets (IC20 and IC27) and at the two static RAM sockets (IC21 and IC28). The wiring diagram of the EPROM and static-RAM circuitry is shown in Fig. 3. Install a 28 -pin socket at IC27 and a 24-pin socket at IC21.

The D0-D7 lines of the data bus are connected to IC27 via pins 11-13 and pins 15-19, and pin 14 is conveniently grounded. So we need to short pins 11-19 together. In the same way, the D8-D15 lines of the data bus are connected to \(I\) C21 via pins \(9-11\) and 13-17, and pin 12 is conveniently grounded. So we need to together pins 9-17 together.

On both IC21 and IC27, those are the bottom four pins on the left and the bottom five pins on the right. Instead of soldering any wires, take a strip of Molex Soldercon pins and insert them into the sockets as shown in Fig. 4, with four pins on the left, five pins on the right, and a section of six or so pins bent in a \(U\) shape below. Molex pins are normally sold as an inexpensive substitute for sockets; they consist of individual clips joined by a perforated carrier strip that is normally broken off after soldering the pins to the PC board. In our case, we insert the thin pins into the socket, and use the entire strip as one big short circuit.

Now plug in the IC's, being careful not to bend pins, and turn on the power. Connect your LED probe to pin 52 of the 68000 ,

\section*{Ordering Information}

Complete details were given in part one (in the October issue). To summarize: The basic kit (PT1, \$200) contains all parts except power supply, case, and video terminal or personal computer to get a small system (ROM monitor, 2 K RAM) up and running. The full basic system (PT68K, \$460) includes 512 K of dynamic RAM, floppy-disk controller, parallel port, battery-backed clock/calendar, and three PC-compatible expansion slots. To order, or for more information, contact Peripheral Technology, 1480 Terrell Mill Road \#870, Marietta, GA 30067, (404) 984-0742.
which is address line A23. If all is well, the LED will light for about 2 seconcs, 80 off for about 2 seconds, and so on. (That flashing rate wil be faster if your PT-68K's clock is faster than 16 MHz .)

If the LED does not flash at the expected rate, recheck the signal at every pin of the 68000 . Look especially for a low on \(\overline{\text { DTACK, }}\), lows on all data lines, highs on \(\overline{\text { BERR, }} \overline{\text { HALT, }}\), and \(\overline{\text { RESET }}\). When looking at the clock signal, the LED should be slightly dim.

If the LED flashes as expected, all is probably well. What's happening is that the 68000 is racing through memory (or what it thinks is memory, all 16 megabytes worth), executing or instructions at maximum speed, one instruction per microsecond. One complete run through four million instructions (\(4,194,304\) instructions, to se exact) therefore will take slightly more than four seconds.

During that time, the address bus is counting off the addresses where the 68000 thinks those instructions are coming from. If you look at the address bus you see that A1 alternates 0 , \(1,0,1,0,1, \ldots\). A2 also alternates, but slower: \(0,0,1,1,0,0, \ldots\), and so on.

Figure 5 shows the waveforms present on the upper eight bits of the address bus. When the LED probe is connected to A23, it flashes on and off once every four seconds. If it is connected to A22, it repeats once every two seconds; on A21 it repeats once per second. As we go down to A20, A19, and so on, it flashes faster and faster, until at A16 (pin 44) it flashes so fast (about 32 times per second) that we can barely see it flicker; A15, flashing about 64 times per second, looks absolutely steady.

Last, if you have access to an oscilloscope or frequency counter, examine each address line to make sure that its frequency is half that of its next higher neighbor. This ensures that there are no shorts between adjacent address lines. If you use a frequency counter, keep in mind that real-world waveforms are not as well defined as the idealized ones shown in Fig. 12, so some counters may have difficulty properly counting the frequency of such a square wave.)

Next time we'll add address decoders, ROM and RAM. See you then. \({ }^{\boldsymbol{\omega}}\)

\section*{FLOPPY-DISK DATA STORAGE}
continued from page 94
illegitimate software floating around, so it seems that something has to be done about basic human nature before copy protection will cease to be an issue.

Even thoush there are obvious (and subtle) differences between the hardware and software comprising various types of computers, the basic approach to copy protection is the same: Make the disk unreadable by the standard DOS. It's easy to do because any DOS must make a number of assumptions about disk format before it tries to read or write information. It must assume, for example, that it's going to find tracks formatted in a particular way, that each one will contain a specific number of sectors, and that those sectors will contain data written in a predefined fashion. If any of those conditions aren't met, DOS will throw in the towel, and, instead of data, all you'll get is an error message. The point is that any disk that has data organized in a non-standard way must also have a non-standard way to read that data.

When Apple introduced its disk system in the late seventies, the company emphasized software rather than hardware. That was a departure from the norm, because most disk systems were and are built around a single-IC LSI controller. As a result, Apple disks were (and still are) unreadable by most other machines. However, Central Point Software's Option Board allows an IBM to read Apple disks, and many others as well.

Doing most of the disk control in software makes it simple to
upgrade DOS. It also makes it easy for creative programmers to write copy-protection schemes that do strange things with the disk. That dependence on software, as we'll see, has produced methods of copy protection that are unique to the Apple.

\section*{Non-standard data formats}

There are many methods of storing data in a non-standard format; we'll examine several in what follows. The most popular methods are these:
- Oddball track formatting
- Nibble counting
- Modified DOS
- Non-standard sectoring
- Unique data encryption
- Synchronized tracks
- Quarter tracks
- Spiral tracking

Of course, there are variations on those methods, and they're often used in combination. But attaining a good understanding of them will help you unravel any copy-protection scheme likely to come your way.

Those methods of copy protection are used on the Apple; due to differences in the IBM's disk-control hardware, it has fewer means of copy-protecting a disk. For example, the IBM cannot do quarter tracking. The most popular methods are:
- Oddball formatting
- Weak bits
- Laser burning

We'll examine those and other means of copy-protecting software next time. \(\boldsymbol{\omega}\)

\title{
1987 \\ ANNUAL INDEX
}

\title{
Eadertronies Volume 58
}

\section*{and}

\section*{ComputerDigest Volume 4}

\begin{abstract}
Abbreviations：（AR）Antique Radio；（ARE）Ask Radio－Electronics；（AUD）Audio Update；（C）Construction； （COMC）Communications Corner；（D）Department；（DB）Drawing Board；（DN）Designers Notebook；（ED）Editorial； （ER）Equipment Report；（LTR）Letter；（NI）New Ideas；（PCS）PC Service；（SC）Service Clinic；（SQ）Service Questions：
\end{abstract}
（SOSS）State Of Solid State；（STV）Satellite TV

\section*{A}

Base Unit，R－E Robot（C）（Sarns）Mar 52
Battery
Backup for CMOS－Based Circuits（DN）Apr 79
（Grossblatl） \(\begin{array}{ll}\text { Over－Voltage Indicator（DN）（Grossblatt）} & \text { Oct } 101 \\ \text { Using the Folapulse（Blechman）} & \text { Feb } 61\end{array}\) Beckman industrial DM 800 DMM（ER）Jan 71
Biometal
Mondo－Tronics Space Wings Robotics Kı（EA）Oct 22
Black Vertical Bars（Shane）
Blue Box and Ma Bell．The（Friedman）Nov 49
Broadcast－Band RF Amplifer（ N ）（Housley）Mar 42
Bulletin Board Service
Using the RE－BBS May 122
Buyers Guide to Camcorders（Vizard）Mar 47

\section*{C}

Camcorders．Buyers Guide to（Vizard）Mar 47
Car Audio
Great
Installations（Vizard）Jul 39

Systems（Vizard）
Jul 39
Cassente Fidelity（
Apr 12
CATV Lingo．Understanding（ARE）
Mar 12
Cellular Telephone，Inside（Bernard）
Sep 53
Certification for Electronic Technicians（Small）
Clock Module．TSM 201
Aug 52
CMOS Circuits．A Battery Backup For（DN） （Grossblam）

Apr 79
Color－Bar Generator
NCM＇s Video Wonderbox（EA）
Nov 14
Commercial Zapper for your Radiol（）（Rumreich）Apr 45
Communications
Corner（D）（Friedman）Jan 86，Feb 94，Mar 44
May 127．Jun 82．Oct 3
Image Interierence
Light Makes the Perlect Wire
Marconi Lucked Out

Aug 26
Feb 94
Feb 94
Oet 31
Jun 82
\begin{tabular}{|c|c|}
\hline Noise Isn I Always Bad Think Ferrite Turable if & \begin{tabular}{l}
Mar 44 \\
May 127 \\
Jan 86
\end{tabular} \\
\hline Communications in 2001 The Third Age of Vide （Ju Jice） & May 102 \\
\hline Inside Cellular Telephone（Bernard） & Sep 53 \\
\hline Compact Disc．Philips Test Sel（ER） & Feb 27 \\
\hline Computer & \\
\hline All About A－to－D Converters（Trielley） & Feb \\
\hline Artitical Inteltgence．The Future of（Hellmeier） & May 85 \\
\hline \begin{tabular}{l}
Computer Board，80188－Based for R－E Robot \\
（C）Sarns） \\
Apr 39．（PCS）Apr 65．（PCS）
\end{tabular} & \\
\hline Orchis PC Turbo 286E IBM－PC Accelerator CanderI & eb 24 \\
\hline Pencept Penpad 320（ER） & Jan 22 \\
\hline Conducive Inks and Adhesives（Mims） & Nov \\
\hline onstruction & \\
\hline Acid Rain Montor（C）（Scont） & Apr 48 \\
\hline Amplifier，Minıature Wideband（C）（Clawson） & \\
\hline （PCS） & May 67 \\
\hline mmercial Zapper for Your Radio（C）（Rumreich & ）Apr 45 \\
\hline escrambling & \\
\hline Tri－udode Cable－TV（C）（Cotlell） & \\
\hline
\end{tabular}

Cotlell）
（LTR）May 13．（PCS）Feb 43
Feb 78
TV Signal Descrambling（C）（Sheets and Graf）Jan 53. Diguta Speedometer for Your Car（C）（Ortman）（PCS）Mar 73 Digita Tachometer for Your Car（C）（Oriman）（LTR）Nov 8 Electronic
（PCS）Jun 71.
Jun 45 ．
Electronic
Digtal Lock（C）（Renton）
Xmas Tree（C）（Jozwiak）

Nov 107
Amas Tree（C）（Jozwlak）Dec 47．（PCS）Dec 69
16 Tester．In－Circunt Orgital（C）（Green）Nov 43，Dec 55
Laser ListeneriC）（Pearson）Oct 39，（LTR）Nov 8
Macrovisıon Stablilizer（C）（Dupre）Dec 49，（PCS）Dec 69
New Ife for Old Car RadiosiC）（McClellan）May 42.
（LTR）Jul 12．（LTR）Oct 15
Nine－＇Station Intercom（C）（Morrison）（PCS）Jan 67
Phonl nk Interactive Remote Control（C）（Roseth）May 39,
S）Jun 71
Jan 42．Feb 48，Mar 52.
Apr 39，May 62，Jun 58
Jul 44．Aug 57．Sep 56 Oct 56．Dec 67
（LTR）Jul 12，（LTR）Oct 15
（PCS）Apr 65．（PCS）May 67
Sep 46．（LTR）Oct 15
SMT Project Business－Card Tone（PCS）Sep 69
GeneratoriC）（Mims）
Nov 85
SMT Project I－R Remote on a Keychain（C）（Mirms）Nov 77 SMT Droject LED FlasheriC）（Mims）Nov 73
SMT Project Light Meter（C）（Mims）Nov Stereo TV Decoder（C）（Templin）Jan 37．Feb 51 videc Eftecis Generator（C）Aug 45
Videc Effecis Generator（C）
（Sheels and Graf）
Sep 41．Oct 48 （PCS）Oct 75
Crossower Networks（ARE）（Scott）

\section*{E}

Early Days of Radio. The(Clifford) Apr 59, Jui 52, Dec 64 Editorial(D)

Jan 12, May 4, Jun 4.
\begin{tabular}{lc}
& Oct 4. Dec \\
Another Attack on Home Taping(Home & \\
Recording Rights Coaltitın) & Oct \\
Home Appliances(Kleıman) & Jan \\
Welcome to the Twenty-First Century(Fenton) & May \\
Why Digital Audio Tape Isn't Here(Fenton) & Jun \\
EEPROM's & \\
Non-Volatile Memory IC's(Grossblatt) & Oct
\end{tabular}

Electronic
Digital Lock(C)(Renton) Nov 107 Christmas Tree(C)(Jozwiak) Dec 47, (PCS) Dec 69
Eye. R-E Robot(C)(Sarns)
Dec 67 Motor Controls(ARE)(Scott) Feb 12
Energy
Storage in 2001: Superconductivity(LTR) Jun 14 Equipment Reports(D) Jan 22, Feb 24, Mar 28 Jan 22, Feb 24, Mar 28
Apr 24, May 24, Jun 21 Aul 15, Aug 16, Sep 22; Oct 22, Nov 14, Dec 35 Avcom PSA-35A Portable Spectrum Analyzer Jul 15 Beckman Industrial DM 800 DMM Leader LCD-100 Portable DMM. Storage Oscilloscope
Mark V Professional Color Light Controller Mondo-Tronics Space Wings Robotics Kit NCM's Video Wonderbox
Onkyo Unifier Universal Programmable Remote Control
Orchid PCTurbo 286E IBMM-PC Accelerator Card
Pencept Penpad 320
Philips Compact Disc Test Set
Regency Informant Scanning Receiver
Sencore LC75 "Z Meter II
TI/P-CAD PAL Starter Kit
Universal Wireless Remote-Control/Stereo TV Tuner

Jun 21
Jec 35
Oct 22
Nov 14

Evolution of VHSIC. The(Grossblatt
Sep 22
Feb 24
Jan 22
Feb 27
Aug 16
Apr 24
Mar 32
May 24
Mar 59

Future of Artificial Intelligence. The(Heilmeier) May 85 G
\begin{tabular}{lr}
Gated-Pulse Decoder(C)(Sheets and Graf) & Jan 53, \\
& (PCS) Mar \\
& 73 (LTR) Apr 12 \\
Gravity Waves(LTR) & Jan 18 \\
Great & \\
Installations(Vizard) & Jul 39 \\
Systems(Vizard) & Jui 31
\end{tabular}

-

IC Tester, Digital In-Circuit(C)(Green) \(\begin{gathered}\text { Nov 43, Dec } 55, \\ \text { (PCS) Dec } 69\end{gathered}\)
I-R Remote on a Keychain. SMT Project (C)(Mims) Nov 77 Industrial SMT Assembly(Mims) Nov 65 inside

Cellular Telephone(Bernard) Sep 53
The Telephone(LTR)
Feb 16, (LTR) Mar 16
Nov 59

\section*{K}
nılt Report: TSM 201 Clock Module
Nov 122 12 Man 4 Jun 4

Listener(C)(Pearson)
Oct 39, (LTR) Nov 8

Latching Continuily Tester(LTR)
Jan 18
Leader LCD-100 Portable DMM/Storage
Osciloscope(ER)
ED Flasher, SMT Project(C)(Mims)
Jun 21
LED Flasher, SMT Project(C)(Mims) Nov 73
\begin{tabular}{lr}
Letters(D) & Jan 18, Feb 16, Mar 16, \\
Apr 12, May 13, Jun 14, \\
Jul 12, Aug 12, Sep 13, \\
& Oct 15, Nov 8, Dec 24
\end{tabular}

Light Oct 15, Nov 8, Dec 24 Oct 104
Dec 35
\(\begin{array}{ll}\text { Color Controller, Mark V(ER) } & \text { Dec } 35 \\ \text { Meter, SMT Project(C)(Mims) } & \text { Nov } 75\end{array}\)
Neler, SMT Projoc(C)(M,
Nov 107
Logic-Family Translatıon(DN)(Grossblat1)
Aug 30
Logic-Gate Fundamentals(Marston)
Apr 50
Sep 32
Logıc Tester, Audible(NI)(Kane)
Sep 32
May 81
Looking Into the Future(Clarke)
May 5
M
Macrovision Stabilizer(C)(Dupre) Dec 49, (PCS) Dec 69 Mark V Prolessional Color Light Controller(ER) Dec 35 Medical Technology in the 21st Century(Fish) May 112 Minıature Wideband Amplifier(C) (Clawson)

May 45, (PCS) May 67
Mondo-Tronics Space Wings Robotics Kit(ER) Oet 22
Monitor, Acıd Rair(C)(Scott)
Apr 48
Multi-Tone Generator, Simple(NI)(Khan)
Nov 31

\section*{N}

Fiber Optics
Light Makes the Perfect Wire(COMC)(Friedman) Oct 31 Findıng Cable Faults(Martın) Mar 66 Flasher, Sequential(Ni)(Cinc) Feb 36 Flip-Flops. Working With(Marston) Jun 64, (LTR) Oct 15 Fluke LCA-10 Line Current Test Adapter(ER) Mar 28 FM Commercial Zapper for Your Radio(C)(Rumre'ch)

Apr 45, (LTR) Sep 13

\begin{tabular}{|c|c|}
\hline Strain-Gage Transducers(Wood) & Dec 61 \\
\hline Sunrise Sunset Simulator(ARE)(Scott) & Aug 8 \\
\hline Surface-Mount Technology & \\
\hline Surface-Mounted Components(LTR) & Feb 16 \\
\hline Conductive Inks and Adhesives(Mims) & Nov 81 \\
\hline Hand-Soldering SMC's(Mims) & Nov 71 \\
\hline Industrial SMT Assembly(Mims) & Nov 65 \\
\hline Introduction to SMT(Mims) & Nov 59 \\
\hline SMT Project & \\
\hline Business-Card Tone Generator(C)(Mims) & Nov 85 \\
\hline I-R Remote on a Keychain(C)(Mims) & Nov 77 \\
\hline LED Flasher(C)(Mims) & Nov 73 \\
\hline Light Meter(C)(Mims) & Nov 75 \\
\hline Resource Directory & Nov 89 \\
\hline Service Log(Poe) & Nov 32 \\
\hline Surround Sound, Resurgence ol(AUD)(Klein) & May 74 \\
\hline \(T\) & \\
\hline Telegraph, and WWI(AR)(Fitch) & Feb 88 \\
\hline
\end{tabular}
Telephone
Blue Box and Ma Bell, The(Friedman)
Inside Cellular Telephone(Bernard)

Nov 49
Sep 53 Nine-Station Intercom(C)(Morrison)
(PCS) Jan 67
Phonlink Interactive Remote Controi(C)(Roselh) Way 39 ,
Television(See VIDEO)
Tesla, Father of Radio
(LTR) Jun 14
Test Equipment
Avcom PSA-35A Portable Spectrum Analyzer(ER) Jul 15 Beckman Indusirial DM 800 DMM(ER
Finding Cabie Faults(Martin)
Jan 71
Mar 66
Fluke LCA-10 Line Current Test Adapter(ER)
How to Analyze Waveforms(Carey)
In-Circuit Digital IC Tester(C)(Green)
Leader LCD-100 Portable DMM
Storage Oscilloscope(ER)
Mar 28 NCM's Video Wonderbox(ER)

Jun 21 Nov 14
Philips Compact Disc Test Set(ER) Feb 27
\(\begin{array}{lr}\text { Poor Man's Storage Scope(Bernard) Nov } 113 \\ \text { Sencore LC } 75 \text { "Z Meter II"(ER) } & \text { Apr } 24\end{array}\)
Temperature Transducer(SOSS)(Scott)
Mar 84
Testıng Semiconductors(Byers) Feb 58, Mar 71, Apr 62 May 59, Jun 61, Aug 12,
(LTR) Aug 12, (LTR) Nov 8
Tf'P.CAD PAL Starter Kit(ER) Mar 32
Tımer. Versatile Digual(C)(Ortman) Aug 45, (PCS) Aug 75
Tıming Light Modification(ARE) May 10
Tone Generator IC's(SOSS)(Scott)
May 10
Apr 80
Tool Organizer, Maszota(LTR)
Mar 16
Transducers, Strain-Gage(Wood)
Dec 61
Transformerless 5-Volt Regulator(SOSS)(Scott) Feb 92
Transistor Ampllfier Design(Cunkelman)
Aug 55
Triacs
Using Triac's and SCR's(Marston)
Sep 64
Working With Triacs and SCR's(Marston)
Tri-Mode Cable-TV Scrambling(C)(Coffell)
Trıgger Pulses(DN)(Grossblatt) (LTR) May 13
TSM 201 Clock Module Noy 122
Tunable IF(COMC)(Friedman) Jan 86
TV Signal Descrambing(C)(Sheets and Graf) Mar 63, Juf 58
2001
Automotive World of the 21st Century, May 91
The(Petersen)
Communications in 2001: The Third Age of Video(Judice)
Dear Sue,...(Oliver)
Energy Technology in the 21 s
Century(Kuznetsov)
May 107
May 115

Vacuum Iubes(LTR) Feb 16
Versatile Digital Timer(C)(Ortman) Aug 45, (PCS) Aug 75 VHSIC. The Evolution ol(Grossblatt) Mar 59

Video
Communicatıons in 2001-The Third Age
of Video(Judice)

May 102 Black Vertical Bars(Shane)
Buyert. Guide to Camcorders(Vizard) Jun 70
Mar 47 Effects Generator(C)(Sheers and Grai) Sep 41, Oct 48,
\begin{tabular}{lr}
Palette(C)(Sheets and Graf) & (PCS) Oct \\
High Definition TV(Bernard) & (PCS) Oct 4 \\
&
\end{tabular} News(D) (sschenbruch)

Jan 16, Feb 6, Mar 6 . Apr 7, May 8, Jun 8, Oct 6, Nov 6, Dec 12 Stereo TV Decoder(C)(Templin) Jan 37, Feb 51, (PCS) Feb 79
Tri-Mode Cable-TV Scrambling(C)(Coffell) Feb 43,
(PCS) Feb 79, (LTR) May 13
TV Signal DescramblingiC)(Sheels and Graf) Jan 53,
Mar 63, (PCS) Mar 73. Juf 58

Universal Wireless Remote Confrol/Stereo TV Tuner (ER)
VHSIC. The Evolution of(Grossblatt)
May 24
Mar 59
Videocipher
Praclical Descrambling(STV)(Cooper) The Zits Fraud(STV)(Cooper) Feb 83
Zis Fraud(STV)(Coopen) (STV)
Why Videocipher is Dead(STV)(Cooper)
Zombies, Zits, and Zowee!(STV)(Cooper)
Voltage Tiransformers(LTR)
Vollage iransformers(LTR) Aug 12

\section*{w}

Wavełorms, How to Analyze(Carey) Dec 59
Welcome to the Twenty-First Century(ED)(Fenton) May 4

\section*{What's}

A Gate-Turnoff Rectifier?(ARE) May 10
New in Solid State(Scott) Jan 61
News(D)
Jan 14, Feb 4, Mar 4
Apr 4. May 6. Jun 6.
Jul 5. Aug 4, Sep 4
Working With Traacs and SCR's(Marston) Oct 64

\title{
ComputerDigesi Volume 4
}

\section*{January 1987 - December 1987}

Abbreviations: (C)Construction; (D)Department; (Ed)Editorial; (EW)Editor's Workbench; (HWR)Hardware Review; (LTR)Letter; (SWR)Software Review

\section*{FOR SALE}

REPAIR your own TV．．．it＇s easy．Write RE． SEARCH，Rt．3．Box 601BR．Colville．WA 99114.

CIRCUIT boards，kits，\＆assemblies for OST mag－ azine artucles．For price lisi SASE to：A \＆A ENGI－ NEERING， 2521 W．La Palma Ave．．Anaheim，CA 92801．（714）952－2114

\section*{CLASSIFIED AD ORDER FORM}

To run your own classified ad，put one word on each of the lines below and send this form along with your check to：
Radio－Electronics Classified Ads，500－B Bi－County Boulevard，Farmingdale，NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear．For special headings，there is a surcharge of \(\$ 23.00\) ．
（ ）Plans／Kits（ ）Business Opportunities
（ ）Education／Instruction（）Wanted （ ）

\section*{Special Category：\(\$ 23.00\)}

\section*{PLEASE PRINT EACH WORD SEPARATELY，IN BLOCK LETTERS．}
（No refunds or credits for typesetting errors can be made unless you clearly print or type your copy．）Rates indicated are for standard style classified ads only．See below for additional charges for special ads．Minimum： 15 words．
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 （\＄42．75） \\
\hline 16 （\＄45．60） & 17 （\＄48．45） & 18 （\＄51．30） & 19 （\＄54．15） & 20 （\＄57．00） \\
\hline 21 （\＄59．85） & 22 （\＄62．70） & 23 （\＄65．55） & 24 （\＄68．40） & 25 （\＄71．25） \\
\hline 26 （\＄74．10） & 27 （\＄76．95） & 28 （\＄79．80） & 29 （\＄82．65） & 30 （\＄85．50） \\
\hline 31 （\＄88．35） & 32 （\＄91．10） & 33 （\＄94．05） & 34 （\＄96．90） & 35 （\＄99．75） \\
\hline
\end{tabular}

We accept MasterCard and Visa for payment of orders．If you wish to use your credit card to pay for your ad fill in the following additional information（Sorry，no telephone orders can be accepted．）：

Card Number
Expiration Date
\(\overline{\text { Please Print Name }} / \overline{\text { Signature }}\)

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES．ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED． CLASSIFIED COMMERCIAL RATE：（for firms or Individuals offering commercial products or services） \(\$ 2.85\) per word prepaid（no charge for zip code）．．．MINIMUM 15 WORDS． \(5 \%\) discount for same ad in 6 issues； \(10 \%\) discount for same ad in 12 issues within one year；if prepaid．NON－COMMERCIAL RATE：（for individuals who want to buy or sell a personal item）\(\$ 2.30\) per word，prepaid．．．．no minimum．ONLY FIRST WORD AND NAME set in bold caps at no extra charge．Additional bold face（not available as all caps） 50 c per word additional（ \(20 \%\) premium）．Entre ad in boldiace，add \(20 \%\) premium to total price．TINT SCREEN BEHIND ENTIRE AD：add \(25 \%\) premium to total price．TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD：add \(45 \%\) premium to total price．EXPANDED TYPE AD：\(\$ 4.30\) per word prepaid．All other items same as for STANDARD COMMERCIAL RATE．TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD：add \(25 \%\) premium to total price TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD：add 45\％premium to total price．DISPLAY ADS： \(1^{\prime \prime} \cdot 21^{\prime \prime}-\) \(\$ 320.00: 2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 640.00 ; 3^{\prime \prime} \times 21 /{ }^{\prime \prime}-\$ 960.00\) ．General Information：Frequency rates anc prepay ment discounts are available．ALL COPY SUBJECT TO PUBLISHERS APPROVAL．ADVERTISEMENTS USING P．O．BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER．Copy to be in our hands on the 12 th of the third month preceding the date of the issue．（I．e．．Sept．issue copy must be received by May 12th）．When normal closing date falls on Saturday．Sunday or Holiday，issue closes on preceding working day．

RESTRICTED technical information：Electronic surveillance．schematics．locksmithing．covert sci－ ences，hacking，etc．Huge selection．Free bro－ chure．MENTOR－Z．135－53 No．Blvd．，Flushing，NY 11354.

TV iunable notch filters，free brochure．D．K．VIDEO， Box 63 6025．Margate，FL 33063．（305）752－9202．
DESCFAMBLER catalog．All brands Special com－ bo Jerrold 400 and SB3 \＄165．Descrambler kıt \(\$ 39.00\)（assembles in halt hour）Send \(\$ 1.00\) MJ INDUS\({ }^{-}\)RY，Box 531，Bronx，NY 10461.
IS it irue．．．Jeeps for \(\$ 44\) through the government？ Call for lacts！ 1 （312）742－1142，ext． 4673.
OLDTIME radio programs on high quality tapes． Comedv！Adventure！Music！Free catalog．CARL F． FROELICH，Heritage Farm．New Freedom．PA 17349.

TEST equipment．reconditioned．For sale．\(\$ 1.25\) for catalog WALTER＇S， 2697 Nickel．San Pablo．CA 94806．（415）724－0587

\section*{CB RADIO OWNERS！}

We specialize in a wide variety of technical infor－ mation，parts and services for CB radios． 10 M － FM conversions，repairs，books，plans，kits， high－performance accessories．Our 11th year！ Catalog \＄2．
CBC INTERNATIONAL，P．O．BOX 31500 FE ． PHOENIX，AZ 85046

TUBES new，unused．Send self－addressed，stamp ed envelope for list．FALA ELECTRONICS，Box 1376－2．Milwaukee，WI 53201
PHOTOFACT folders，under \＃1400 \＄3．00．Others \(\$ 5.00\) ．Postpaid LOEB， 414 Chestnut Lane．East Meadow，NY 11554.
Ti－99／4A software hardware bargains．Hard－to－find tems．Huge selection．Fast service．Free catalog． DYNA， \(30 \times 690\) ．Hicksville，NY 11801.
FLASHLIGHT that needs no batteries measures \(5^{\prime \prime}\) \(\times 3^{\prime \prime}\) ideâl for every situatıon，money back guarantee \＄10．－SAMUELS ENTERPRIZES， 724 East 231 Street．Bronx，NY 10466.
CUSTOM front panel nameplates for your projects． For detalls：J \＆E ENTERPRISES， 2457 N．Mar－ mora．Chicago，IL 60639
FREE power supply（ \(\$ 7.95\) value）with ASSORT－ MENT \(\% 103\) ，（February＇ 84 article）printed circuit， toko colls，transistors，IC＇s，diodes \(\$ 25.00\) ． Five／\(\$ 12.50\) ．Shipping \(\$ 3.00\) ．JiM RHODES INC． P．O．Boz 3421，Bristol，TN 37625.

Quality Microwave TV Antennas
Multi－Channel 1.9 to 2.7 GHz 40 dB Gain 12－Channel System complele \(\$ 104.95\) 12－Channel System complete \(\mathbf{5 1 0 4 . 9}\)
2－Chanmel System complete sa4．95 Oealerahips．Oty．Pricing．Replacement Parts Pilliliss－Tach Elactrontcs
Pa．Bax 8588 －ecettrethe，al s5e5s
（602）947－7700 is300 Credit all phone orders！

COMMODORE chips repairs C－64 repair \(\$ 39.95\) complete．We sell chips at low cost（eg 6526 65．10－\＄9．95 and many others）C－64 P．S \＄27．95．＂Commodore Diagnostıcian，＂＂a complete chart for diagnosing faulty IC＇s \(\$ 6.95\)＋postage． Send for catalog．KASARA MICROSYSTEMS INC．， 33 Murray Hill Drive．Spring Valley，NY 10977 （800）642－7634（outside NY）or（914） \(356-3131\).
NEW 30 channel microwave TV antenna－com－ plete \(\$ 1 ; 9.95\) ．Standard 2 channel \(\$ 99.95\) ．Lifetime warranty－dealer pricing－C．O．D．－MC－VISA－ HIGH－TECH ELECTRONICS， 337 Vineyard Ave． Sulte 300，Ontario，CA．91764．（714）391－1655

\section*{AMATMU SCIENTIFIC \& ELECTRONIC PRODUCTS \\ PLANS-Buld Yourseli-All Parts Avalable in Stock - LCT-BURNING CUTTING CO2 LASEA \\ - RUBA-PORTABLE LASER RAY P \\ PLANS T0 15 MEV \\ - 10G1-ION RAY GUN \\ - GRA1-GRAVITY GENERATOR \\ - EML - ELECTRO MAGNET COIL GUNLLAUNCHER \\ KITS \\ - MFIK-FM VOICE TRANSMITTER 3 MI RANGE \\ - WWPM5K - TELEPHONE TRANSMITTER J MI RANGE \\ - BTC3K-250.00 VOLT 10-14 - SPARK TESLA COIL. \\ - LHCZK - SMMULATEO MULTICOLOR LASER \\ - BLS1K-100.000 WATT BL ASTER OEFENSE OEVICE \\ - ITMIK-100.000 VOLT 20' AFFECTIVE \\ RANGE INTIMIOATOR \\ PSP4K - TMME VARIANI SHOCK WAVE PISTOL \\ PTG1K-SPECIACULAR PLASMA \\ TORNADO GENERATOR \\ - MVPIK SEE IN DARK KIT \\ \(\qquad\) \\ ASSEMBLED \\ - PG7OH-MULTICOLORE D VARIABLE \\ MOOE PLASMA GLOBE \\ - BTC10-50.000 VOLT-WORLO S SMALLEST \\ TESLA COIL \\ - LGU4O- 1 WW HeNe VISIBLE REOLASER GUN - TAT2O AUTO TELEPHONE RECORDNG DEVICE - GPVIO-SEE IN TOTAL DARKNESS IR VIEWER - LIST1O-SNOOPER PHONE MFINITY TRANSMITTER HER LPG70-SNOPL PANFIELD CENERATOR MULTIMODE \\ - CATALOG CONTAINING DESCRIPTIONS OF ABOVE PLUS HUNDREOS MORE AVAILAB \\ PLEASE INCLUDE \(\$ 300\) PH ON ALL KITS AND PROOUCTS PLANS ARE POSTAGE PAID SEND CHECK. MO VISA. MC IN US FUNDS \\ INFORMATION UNLIMITED
P.D. BOX 716 OEPT.RE, AMHERST, NH 03031}

\section*{DEAR SANTA}

WI7H 7 HE WORLD POPULATION AT IT'S HTMES EVER FIGURED YOU COULD SIAND 70 SAVE A BUCK OR 2!BELOW VALLEY SURPIUS* HOLIDAY SALE
MSDOS BOOK SET This four book set for vers. 2.11
have the lollowing tities User's
\(\$ 13^{99}\) Guide, Debug Utility, Programmers Reference, \& Pivot Enhancements
MACINTOSH NOTEBOOKS A well illustrated 3 book set by t1
Prentice Hall each book is 8 by by \(3 / 4\) A seperate book ro Macpaint, Macwrite, \& Multiplan 1598

Multitech NDUSTRAL CORP.

KEYBOARDS
FOR IBM \({ }^{\circ}\) AT Works on the PC or the AT. but not the XT If you do notinke the reel 15 days lor a reund. limsted quanity on hand
84 KEYS KBO84 \(\$ 33^{000}\)
15 no hassle money back trial IBM COMPATIABLE FLOPP DISK
CONTROLLER WITH
\(\$ 12^{\circ \circ}\)
CENTRONICS PRRT
cannot be changed on this Tandon cannot be changed on this pcoa 188400
\(3 / 4\) size card

CIRCLE 51 ON FREE INFORMATION CARD

CABLE TV converters. "new" Zenith flash. Scientific Atlanta, Jerrold, Oak, Zenith, Hamlin. Many others. "New" video hopper "The Copy Killer" Visa, M/C \& Amex 1 (800) 826-7623. B\&B Inc., 10517 Upton Circle, Bloomington, MN 55431.
TUBES 59.. Year Guarantee. Free catalog. Tube tester \$8.95. CORNELL, 4215 University, San DIego. CA 92105.
OAK 56 channel wireless remote converter/descrambler, original refurbished equipment, exceptional video, \(\$ 175.00\); legal to own your equipment. however. Federal law prohibits hookup without cable company permission. PONDEROSA, (303) 661-1659. (We ship C.O.D.)!
FREE remote control converter with any descrambler below: Oak VN12 \$85.00; new Hamlin MLD1200 \$90.00; new SB3 \$89.00; new Trimodel Bistate \(\$ 125.00\); Starcom -6 system \(\$ 125.00\); Zenith cable \$175.00; legal to own your equipment. however. Federal law prohibits hookup without cable company permission. PONDERSA, (303) 661-1659. (We ship C.O.D.)!
ADD 5 important features to your home telephone. SASE (805) 583-4272. B\&M ENGINEERING, Box 823. Simi Valley, CA 93062

SPEAKER \& ELECTRONICS CAIALOG 1001 BARGAINS IN SPEAKERS toll free 1-800.346. 2433 for ordering only. 1904 MCGEE STREET KANSAS CITY, MO. \(\mathbf{4 1 0 8}\)

CABLE TV equipment S.A., Jerrold, Zenlth, Hamiln, Oak, Eagle, filters, remotes and more. Best prices C.O.D.'s accepted dealers needed. Ours work where others failed and we gaurantee it! TRANS-WORLD CABLE CO., (218) 543-6671.
TUBES, name brands. New. \(80 \%\) off list. KIRBY 298 West Carmel Drive. Carmel, IN 46032.
TRANSISTORS-tubes: MRF421 \$24.00, MPF454 \(\$ 15.00\), MRF \(455-\) MRF \(477 \$ 12.00\). MRF492 \(\$ 16.95\) SRF2072 \$13.50. 3800 \$18.95. 2SC2879 \$25.00 6LF6-6LQ6.6JS6 \$10.95, 8950 \$15.95. New Ranger AR3500 all mode 10 meter transceiver \(\$ 319\). Quantity discounts! Best prices on hard-to find parts, antennas, mics, power supplies. \& equip ment! Catalog \(\$ 1.00\) (refundable), or free with order RFPC, Box 700. San Marcos. CA 92069 . For infor mation or same day shipment-call (619) 744-0728 Visa MC/C.O.D.

CIRCUIT board assembly at 60: per hour. FAB RICANTES ELECTRONICS, Apartado 391 Pavas. Costa Rica, C.A. Ph 320074.

SATELLITE \& cable equipment. We have those hard-to-find units ready to go. Tired of junk that don work properly, try our 10 day satisfaction guarantee \& 90 day warranty (wholesale only) HI TEC ELEC TRONICS, PO Box 42423, Detroit, MI 48242. (313) 722-9381.

TUBES - 2000 TYPES DISCOUNT PRICES!
Early, hard-to-find, and modern tubes. Also transformers, capacitors and parts lor tube equipment. Send \(\$ 2.00\) for 20 page wholesale catalog.
ANTIQUE ELECTRONIC SUPPLY 688 W. First St. \(\bullet\) Tempe, AZ 85281•602/894-9503

PLASMA sphere colorful bottled lightning. low cos prefilled \(5^{\prime \prime}\) globes used in easily built for \(\$ 60 \mathrm{com}\) plete detailed plans \(\$ 10\), kits, complete \(5^{\prime \prime} \& 9^{\prime \prime}\) units also available, info \(\$ 2\). RIESS, Box 54625 , Phoenix AZ 85078.
ALARM do-it-yourself and save. Send SASE: ERIC'S ALARM, P.O. Box 8331, Bossier. LA 71113-8331.
TUBES: "oldest." "latest." Parts and schematics SASE for list. STEINMETZ, 7519 Maplewood Ave. R.E. Hammond, IN 46324

HACKING, crashing, pirating, and phreaking. Whos doing it, why they're doing it, and how they're doing it. Sample programs, phone numbers, and the tools of the trade. Hacker's Handbook, \$12.95. Computer Underground, \(\$ 14.95\). \(\$ 1\) postage to CABLETRONICS, Box 30502R, Bethesda, MD 20814.

Cable Converters \& Decoders - Jerrotd S.B. Add On................................... \(\$ 89.00 \quad \$ 58.00\) Jerrold Tri-Bi Add On.............................. \(\$ 98.00\) \$78.00 Jerrold Starcom CSV........................... \$139.95 Cal MTS Converter + Remote..................... \(\$ 85.00\) \$69.00 Jerrold 450 DRZ-3A........... Parental Control MTS Plus................... \(\$ 100.00\) \$85.00 Hamlin MLD 1200-3...
Scientific Atlanta Add On
M-35 B Combo With VariSync..........
Mini Code N-12 VariSync.
442 VariSync (\(\mathrm{N}-12\) Substitute)....
Wireless Video Sender \(\qquad\) thas Equipment it might just solve your problems. Call or write for Free Catalog. All products Guaranteed 90 days plus M.D. Electronics 5078 So. 108th Suite 115 Omaha NE, 68137 Phone (402) 554-0417

LASER, components and accessories. Free catalog. M.J. NEAL COMPANY, 6672 Mallard Court, Orient. OH 43146.
MODULES. Build protessional, custom, audiomusic electronic devices easily. Catalog \(\$ 1.00\) (refundable). TONIX, Box 770. Vernon, NJ 07462-770. INTRODUCTORY offer: 100 pack 4 inch wire ties, one-piece molded \(6 / 6\) nylon. self-locking adjustable \(\$ 1.99\). Product and price listing free with order or send \(\$ 1.00\) refundable with first order. NUTTER RIDGe PURVEyORS, Star Route Province Road. Strafford, NH 03884.
DESCRAMBLER parts: I.C.'s, I.F. transformers, transistors. coils. capacitors, misc. Send S.A.S.E. to: T-ROY, P.O. Box 597 Marine City, MI 48039
ELECTRONICS components, lowest prices. Free flyer. send SASE. SANTECH ELECTRONICS, 11 Revere. Tappan, NY 10983. (914) 359-1130.
SAMS photo facts under \#1300 \(\$ 2.99\) post pard. "SURPLUS," P.O. Box 219, Edgewood, NM 87123-0219.

PHOTOVOLTAIC battery chargers by Arco sola Cars, RVs, marine, etc. From \(\$ 49.50\). Brochure. SUN POWER-TEXAS, P.O. Box 2788A, Freeport. TX 77541
USED books: electronics. physics, mathmatics, mechanics, etc; big list: \(\$ 1.00\) in stamps: SOFTWAVE, 1515 Sashabaw, Ortonville, MI 48462.
INTERCOM 2001-An inexpensie home intercom and control system that utilizes existing touch tone telephones and their associated wiring! Easy to install and easy to use! \$499.95. JACKSON COMMUNICATION PRODUCTS, 604 Burnham Road Phila., PA 19119.

\section*{PLANS AND KITS}

\footnotetext{
HI-FI speaker systems, kits and speaker components from the world's finest manufacturers. For beginners and audiophiles. Free literature. A\&S SPEAKERS, Box 7462, Denver, CO 80207. (303) 399-8609.

VOICE disquisers! FM bugs! Telephone transmitters! Phone snoops! More! Catalog \(\$ 1.00\) (Refundable): XANDI ELECTRONICS, Box 25647. Dept. 60 V , Tempe, AZ 85282
}

STRANGE stuff Plans, kits, new items. Build satel lite dish \(\$ 69.00\). Descramblers, bugs, adult toys Informational photo package \(\$ 3.00\) refundable. DIRIJO CORPORATION, Box 212. Lowell. NC 28098
DETECTIVES, experimenters. Exciting new plans Hard- 10 -find micro and restricted devices. Large
catalog \(\$ 5.00\), refundable on 1 st order. WILSON, P.O. Box 5264, Augusta, GA 30906

VIDEOCIPHER II manual \(120+\) pages,Oak Orion 120 + pages, either- \(\$ 27.45\)-both \(\$ 49.95\). Plans kits. descrambling books. Catalog-\$2.00. MICRO TRONICS. P.O. Box 6426, Yuma, AZ 85364-0840
PLANS. Plasma display, H.V. generator, CB modu lator, linear amplifiers, pain field generators, shock sensor. Plans for all \(\$ 20.00\) complete. AET, Suite 173, 5800-A. North Sharon, Amity Rd. Charlotte NC 28215.
NOVELTY type electronics projects for the gadgeteer. Unusual, fascinating, and fun. Free information. TAYLOR ELECTRONICS, P.O. Box 1612 Destin, FL 32541.

BUILD this five-digit panel meter and square-wave generator including an ohms. capacitance and trequency meter. Detailed instructions \(\$ 2.50\). BAGNALL ELECTRONICS, 179 May. Fairfield, CT 06430
CATALOG: hobby/broadcasting/1750 meters/ham/ CB: transmitters. antennas, scramblers, bugging devices. more! PANAXIS, Box 130-F12. Paradise, CA 95967.

CRYSTAL radio sets, plans, kits, catalog \$1.00 MIDCO, 660 North Dixie Highway. Hollywood, FL 33020.

DECODING plans and theory booklets. Video tape copy protection, removes flashing and jitter, 30 pages, \(\$ 15.45\). Jerrold DI and DIC decoder theory, 12 pages, \(\$ 6.95\). Gated pulse decoding plus new universal single level suppression decoder, works on Hamlin, Jerrold, Sylvania. Eagle. 39 pages, \(\$ 15.00\). Video scrambling techniques, the orioinal secrel manual sinewave and Zenith SSAVI 57 pages. \$14.95. Hidden signals on satellite TV. 178 pages, \(\$ 16.95\). P.C board and kits available. ELEPHANT ELECTRONICS INC., P.O. Box 41865-J. Phoenix. AZ 85080. (602) 581-1973

TV-SCOPE

\section*{FINALLY!}

An interesting and worthWhile project. This EASY-TO-8UILD circuit lets you use any regular TV sei as
a simple OSCILLOSCOPE. Bulld for less than \(\$ 10\). WO molifications TO TV!
single or dual trace Send for frie catacog of
other plans and kits.

FREE catalog 99-cent kits-audio, video. TV computer parts. ALLKIT, 434 W .4 th St. West Islip. NY 11795.

PROJECTION TV Convert your TV to project 7 foot picture. Results comparable to \(\$ 2.500\) projectors...Total cost less than \(\$ 30.00\). Plans and 8 lens \$21.95...Illustrated information Free...MAC ROCOMA-GD, Washington Crossing. PA 18977 Creditcard orders 24hrs. (215) 736-3979
ELECTRONIC House Bimonthly magazine cover ing smart houses, integrated electronics. security. energy, sensors, more. Send \(\$ 14.95\) for one year subscription to: ELECTRONIC HOUSE, Dept. RE 524 East McKinley, Mishawaka. IN 46545. (219) 256-2060

\section*{surpus \\ SATELUTE ECNPMENT \\ SPARTAN DISTRIBUTING \\ new suntus mventony frow gatilife soul. manur. cownlete plans to suld a moch ounuty satelite mock necentan
 thont Panel minito cincuit soard mit cowthols attacme. s3a.00 \& 2.50 smr. WOMY ORDERE OR CABMEAS CKECK OMLY.}

TOP quality imported domestic kits. surplus, discount electronics. computer components. free cata\(\log\). TEKTRASONIX, 1120 Avenue of the Americas 1/fi suite 4038, New York, NY 10036
PLANS. Car radio amplifiers. 50W., 100W. 200W per channel. Plans for all \(\$ 10.00\) complete. DBS PO. Box 261632. Tampa. FL 33685
SELECT TV patents plus complete explanations of authorization. polarity status, audio, sync modificafions \$14.00 SIGNAL, Box 2512-R. Culver City. CA 90231.

PLANS: solar, wood differential thermostat: woodstove audible blower control: microprocessor AC DC controller; auto tremble alarm; VLF receiver. \(\$ 5.00\) each. AUTOMATION CONTROL SYSTEMS, 823 W. Durham, Cary. NC 27511.

If you would like to know more about these Tenma products，ask for our free catalog．．．
Call TOLL－FREE 1－800－543－4330
In Ohio call 1－800－762－4315
In Alaska or Hawaii 1－800－858－1849

\section*{\＃7c－370 Tenma LCR Meter} －Measures inductance from \(1 \mu \mathrm{H}-200 \mathrm{H}\) in six ranges a Measures capacitance from．IpF－200 \(\mu \mathrm{F}\) in seven ränges a Measures resistance from .01 ohm 20 Mohn in seven ranges a \(31 / 2\) digit LCD displav －Fuse protected a Low battery indicator a Comes corrplatie wi：h test leads，carrying case and owners marual

\＃72－445 Tenma Compact DMM／Logic Probe
－ \(31 / 2{ }^{\prime \prime}\) shock－mounted l．CD display －Transistor gain and diode test
－Audible continuity test a Overload
protection e Low battery indicator －Comes complete with test leads，
\＃7ء－040 Tenma Capacitance Meter － 3 tes digit LCD display - Zero adjustment - In or out of circuil measurements \(\oplus\) Fuse protected －Lcw battery indicator－Comes complete with test leads，carrying case and owners manual
\＃72－050 Tenma 3½ Digit LCD Multimeter

－Transistor gain and diode test －10Mohm input impedance \(=A C\) ard DC current up to 10A a Low battery indicator \(=\) Overload protection －Comes complete with test leads． －O．carrying case and owners manual
\＃72－045 Tenma Combination DMM：Capacitance Meter －Measures capacitance from \(1 \mathrm{pF}-20 \mu \mathrm{~F}=10 \mathrm{Mohm}\) input ir pedance \(\quad\) Transistor gain and diode test －Audibie continuity test © AC and DC current up to 1 A ．－Resistance up to \(20 \mathrm{Mohm}=\) Overload pro ection a Auto－polarity－Comes complete with test leads，carrying case and owners manual

\＃T2－058 Tenma Autorange DMM － \(31 / 2\) dicil LCD diaplay \(=10 \mathrm{Mohm}\) niput impedance －Auto＇manual range selector a Aldible contimuity tester＝AC and C．C cursenl lp to 10A－Switchable L．c／Hi pawer ohms for in－zircuit＇resistance tests －Overlead protection aLow battery indicator －Auto－plarits © Comes complete with－est lead， carrying case and owness ma－ual

\＃72－060 Temma Compact DMM
－ \(3^{1} \mathbf{R}^{2 n}\) shocili－nc．anted LCD display －Transistur gain and diode tes？ －Ojerloal pro zcrion
－Law baliery indicalor －Cumes comolkte with test leads ar．d

\＃72－075 Tenma Rotary Dial DMM －AC ard DC cur－ent up o 204＝IOMohm input impeda ce © Ove－load protection a Auto－polarity －L．ow bettery indicator a Cones camplete wit test leads，carryir g case and nstructior marnal
\＃72－430 Tenma True RMS DMM／Frequency Counter －41／2 digit I CD display a True RMS AC voltage anc curent measurement － 10 Mohm inplt impedanze －Frequency ccunter \(n\) Deta hold －Audible continurity test © AC and DC current measu－pmenis up to 10 a nos －Overload proter tion a Cliode teat －Auro－polar ry in Eones complete with test keads，érrring case and owners maneal
Note：All products shown have a 1 yeat limited warranty．
MCM ELECTRONICS
858 E．CONGRESS PARK DR．
CENTERVILLE，OH 45459 A PREMIER Company SOURCE NO．RE－39

REMOVE vocals the easy way from records. Monocable complete with instructions \(\$ 12.95\). TRONCO, Box 453, California, MD 20619

ULTRASONIC ranging system measures distances from \(6^{\prime \prime}\) to \(35^{\circ}\). I/O is TTL compatible, can be connected directly to most computers. Experimenter's kit includes one SN28827 ranging module. one Polaroid 50 KHz electrostatic transducer, and user's manual with data sheets. Great for alarms. computer mapping, robotics, etc. \(\$ 59.95+\$ 2.00\) postage, \(\$ 2.50\) for COD. I.O. MICRODEVICES, P.O. Box 2386, Canoga Park. CA 91306. (818) 348-8312
DESCRAMBLING, new secret manual. Build you own descramblers for cable and subscription TV. Instructions, schematics for SSAVI, gated sync sinewave. (HBO, Cinemax, Showtime, etc.) \$8.95, \$1 postage. CABLETRONICS, Box 30502R. Beth esda. MD 20814

\section*{Cable TV Converters}

Why Pay A High Monthly Fee? Jerrold Products include "New Jerrold Tri-Mode," SB-3, Hamlin, Oak VN-12 M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity dis counts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info (312) 658-5320. Midwest Electronics, Inc./, HIGGINS ELECTRONICS, 5143-R W. Diversey, Chicago, IL 60639. MC Visa orders accepted. No Illinois orders accepted. Mon.-Fri.-9 A.M.-6 P.M.CST
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Multi-Channel Microwove Th Recelyers} \\
\hline & \begin{tabular}{l}
1.92 .7 GHz Parabolic Dish \(40 . \mathrm{dB}\) Gain LIFETIME WARRANTY \\
Complete System 889.95 (Sthipping Incl.) \\
Dealer Rates. Replacement Components \& Expert Repairs Available
\end{tabular} \\
\hline & \\
\hline & 52 credit on phone ordes \\
\hline
\end{tabular}

\section*{SATELLITE TV}

SATELLITE TV receiver kits! LNAs! Instructions Schematics! Catalog \(\$ 1.00\) (refundable): XANDI ELECTRONICS, Box 25647. Dept. 21 Y. Tempe, AZ 85282.

SATELLITE TV equipment Buyers quide discount prices. \(\$ 2.00\) N.E.C.S. INC., Box \(22808 \cdot R 4\). Little Rock, AR 72221

CABLE TV Secrets-the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Sup pliers list included \$8.95. CABLE FACTS, Box 711. R, Pataskala. OH 43062
DESCRAMBLER, Build our low cost satellite TV video only descrambler for all major movies and sports. Uses all Radio Shack parts. Order P.C. board and instructions by sending check, money order, or Visa for \(\$ 35.00\) U.S. funds to: VALLEY MICROWAVE ELECTRONICS, Bear River. Nova Scotia, Canada. BOS-1BO. (902) 467-3577
SEE "after dark" with TELEASE-MAST assortment \#301 (October "86 article) printed circuit, IC's, transistors, alodes. \(\$ 25.00\). Shipping \(\$ 3.00\). JIM RHODES, INC., P.O. Box 3421. Bristol. TN 37625.

DESCRAMBLERS for movies, networks. \$149. video only, \$399 complete. Catalog \$4. SK YWATCH, 238 Davenport Road, Toronto, Ontario. Canada M5R-1J6

SATELLITE antenna special. 6 1/2 loot. mesh con struction polar mount. UPS shippable, \$159 D.N.F, (313) 437-5565.

SATELLITE descrambling manual, Video Cypher II. Schematics. thorough explanation of digital audio encoding. EPROM code, DES. (HBO. Cinemax, Showtime.) \(\$ 10.95\), \(\$ 1\) postage. CABLETRONICS, Box 30502R. Bethesda. MD 20814.

\section*{PAY TV AND SATELLITE DESCRAMBLING}

\section*{Shojiki Eleclronics Corp. 1327A Niagara St.}

\section*{BUSINESS OPPORTUNITIES}

YOUR own radio station! AM, FM, cable. Licensed or unlicensed. BROADCASTING Box 130-F12. Paradise. CA 95967
EARN thousands with your own part time electronics business. I do. Free proof, information. INDUSTRY, Box 531, Bronx. NY 10461
DEALERS wanted. Notch filters for any channel Send for further information or \(\$ 15\) for sample unit (specify output channel of converter). DB ELECTRONICS, P.O. Box 8644. Pembroke Pines, FL 33084.

HOME assembly. Assemble PC boards for video accesories. We supply materials. No experience needed \(\$ 7.50\) per hour. Send self-addressed stamped envelope, 10: MICRON-ELECTRONICS, Box 4716 Akron. OH 44310

\section*{SUPER SAVINGS - SHOP G.E.I.}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
MULTI NI-CAD BATTERY CHARGER \\
Recharge 2 or 4 NI-CAD "AA Batt" or "AAA Batt" 10.00 each
\end{tabular} & \begin{tabular}{l}
COMMODORE 64 CARTRIDGES \\
- Num. Nabber - Star Post Financlat Advis. Fros Master Super Smash - Avenger - Radar Rat Jupliure Landing - Megic Basic e Vidurzies. Star Ranger - Gort - Blue Prinl ABC Volce - Salea Damo \\
\$1.50 ea. (\(10 \mathrm{pc} . \mathrm{min}\).)
\end{tabular} \\
\hline \begin{tabular}{l}
POWER SUP PLY FOR THE COMMODORE AMIGA \\
+5VOC © \({ }^{\text {E Amps }}\) \\
 \$39 ea.
\end{tabular} & \begin{tabular}{l}
MINI FLOPPY DISK DRIVE \\
by Sinugar \#SA465.3AA 1/2 height \\
Quad Densily \\
5\% Inch \\
Fa 0 ?
\end{tabular} \\
\hline \begin{tabular}{l}
PATCH CORDS \\
color coded stereo cords

\end{tabular} & \begin{tabular}{l}
OPEN FRAME MONITORS \\
12 " montor \(40-80\) comoosite Green
\end{tabular} \\
\hline \begin{tabular}{l}
Plug in WALL TRANSFORMER \\
-9.5 VDC@ 1 Amp 53.00 \\
- 19 VAC@300 MA S 1.50
- 25.4 VAC@ 1 Amp \(\$ 195\) \\
- 14 VDC@200 MA \$100
\end{tabular} & \\
\hline
\end{tabular}

PERSONAL computer owners can earn \＄1000 to \(\$ 5000\) monthly selling simple services part time Free list of 100 services．A．I．M．J．K．，Box 60369 ．San Diego．CA 92106－8369
PROJECTION TV ．．．Make \(\$ \$ \$\)＇s assembling proj ectors．．．easy．．．results comparable to \(\$ 2.500\) proj－ ectors．．．Total cost less than \(\$ 30.00 \ldots\) Plans， 8 lens and dealers information \(\$ 20.50\) ．．Illustrated infor－ mation free．．．MACROCOMA－GDX，Washington Crossing．PA 18977．Creditcard orders 24hrs．（215） 736－2880
CRT equipment rebuilds Sony／color tubes other CRT SYSTEMS， 633 North Semoran．Orlando．FL 32807．Call（305）275－9543．
MICRO－Electronics engineer to design and man－ ufacture receiver．JPH， 4218 Bunker Hill．Bettendorf IA 52722．（319）355－2927．

\section*{WANTED}

INVENTORS！AIM wanls－ideas，inventions，new products improvements on existing products．We present ideas 10 manufacturers．Confidentiality guaranteed．Call toll free 1 －（800）225－5800 for infor－ mation kit
INVENTIONS ideas，new products wanted！Indus－ try presentation／national exposition．Call free 1－（800）288－IDEA．Canada．1－（800）528－6060． \(\times 831\)
WANTED excess inventories of I．C．s．disk drives circult boards．computers．etc．WESTERN TECH （818）882－1355（CA）

\section*{INVENTORS}

INVENTORS！Can you patent and profit from your idea？Call AMERICAN INVENTORS CORPORA． TION for free information．Over a decade of service 1 －（800）338－5656．In Massachusetts or Canada call （413）568－3753

\section*{BIG \\ PROFITS \\ ELECTRONIC \\ ASSEMBLY BUSINESS}

\section*{experience unnecessary BIG DEMANO assem \\ oling electronic devices．Sales handled by prole} FREE Complete illustrated literature

\section*{DESCRAMBLER MODULE}

COMPLETE cajle－TV decoder in a min－module Latest technology upgrade for Jerrold SB－3 or Ra－ dio－Electronics Feb． 1984 project．Versatie sophis－ ticated，and low cost．For literature，SOUTHTECH DISTRIBUTING．（813）222－3293．

\section*{NOTCH FILTERS}

THE Positrap Cookbooi：build \(50-60 \mathrm{~dB}\) notch fil－ ters for pennies．Construction．allignment．fixed tunable trimable．Comprehensive cable TV scram－ bling and descrambling theory and practice．Iden－ tifying various systemis \(\$ 9.95\) ．CLEARVIEW CABLE COMPANY，P．O．Box 207．Sterling Heights， MI 48311

\section*{EDUCATION \＆INSTRUCTION}

\section*{F．C．C．Commercial General Radiotelephone} license．Electronics home study．Fast，inexpensive ＂Free details．COMMAND，D－176．Box 2223．San Francisco．CA 94126
SUPERFAST Morse Code supereasy Sublimina cassette．\＄10．Learn Morse Code in 1 hour Amazing new supereasy technique \(\$ 10\) Both \(\$ 17\) Moneyback guarantee Free catalog：SASE BAHR，2549－E7 Temple．Palmbay．FL 32905

\section*{LEARN TV／VCR REPAIR}

Now you can irain at home in spare time for a money－maxing e necessary No need to quit your ob or school．Everything is explaned in easy－to－understand language with plenty of diaw ings．diacrams and photos．We show you how to troublesyoot and repal－video－cassette recorders and IV sets．how to handle house calls and shop repairs for almost any make of televisiom of CR Tocis are included with your course so you can ge Send lor tree facts about the exciting opportunities in TV VCR Repair and tind out how you can start making money in this grear career MAIL COUPON TODAY

FCC Commercial General Radiotelephone license correspondence course． 60 individual lessons for \(\$ 89.50\) ．Payment plan．Results quaranteed＇Details free．AMERICAN TECHNICAL INSTITUTE，Box 201，Cedar Mountain，NC 28718
RECORD changer repairing is very profitable．Be an expert．Learn at home Info－R．C．T．G．，P．O．Bx 1503．Leesburg．FL 32748
CHANCING careers？Complete handbook shews you how．\(\$ 5.00\) ．Easy steps．MBL，P．O．Box 12002 Akron．OH 44312.

\section*{BUY BONDS}

\section*{SCIENTIFIC ATLANTA \& SB-3}

SCIENTIFIC Allanta models 8500-8550, remote included... \$250.00. SB-3's...\$74.00. TRIBl's... \(\$ 95.00\). SBSA-3's... \(\$ 99.00\). Zenith (Z.Tac) Descramblers... \(\$ 169.00\). \(\mathrm{N}-12\) (Vari-sync) ... \(\$ 89.00\) M-35 B (Vari-sync) .. \(\$ 99.00\). Jerrold- 550 converters .. \(\$ 95.00-\$ 99.00\). Dealer discount on 5 units. Brochure available. Call...N.A.S. INTERNA. TIONAL. (213) 631-3552.

\section*{CABLE TV TURN-ON'S}
"TURN-ON" boards \& kits for Jerrold 400; Jerrold 450 (all models--no internal modification); Tocom 5504 \& 5503. Special requests no problem. Let us know what make and model you are interested in. Fully guaranteed. Call or write for information and prices. VIDEO SOLUTIONS, 3938 E. Grant. Suite 236. Tucson. AZ 85712. (602) 323-6072

\section*{1. VIDEO TAPE \\ }

Ellminate the latest copyguard problems units from \(\$ 59^{95}\) to \(\$ 169^{95}\)
Defure Electronics
(714)998.6866 1432 Yeim H4., Orarge, Ca 92665

THIS IS AN EXPANDED-TYPE AD WITH A TINT SCREEN. See how it jumps out on the page. To order your ad in this format calculate the cost at \(\$ 4.30\) per word lor the ex-panded-type and add 25\% for the tint background.

You can help us raise the colorectal eancercure rate.

W'Then ckeoted empy the cure rate for coldereet, in Ganker is vers high That "hy we urge regular checkuph for men and
 Karning sgins are Atange in fowel bat
hilur dixtor all perfiven the digital and prexto exans and son alde care of lise stomil bumbleot at home

Nome mees STamerican cancer socem

CALL FOR FREE CATALOG

\footnotetext{
\section*{TEXT TO SPEECH BOARD!}

PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK! A VERY POWERFUL AND AMAZING SPEECH CAAD USES THE NEW GENERAL
INSTRUMENTS SPO256-AL2 SPEECH CHIPAND THECTS256A-AL2TEXT TO SPEECH INSTRUMENR
THIS BOARD USES ONE SLOT ON THE MOTHERBOARD AND REQUIRES A COM SERIAL PORT. BOARO MAY ALSO BE USED IN A STAND ALONE ENVIRONMENT WITH ALMOST ANY COMPUTER THAT HAS A RS232 SERIAL POAT. FEATURES ON BOARD AUDIO
MAY BE USED WITH EXTERNAL AMPS.
DEMONSTRATION SOFTWARE AND A LIBRARY BUILDING PROGRAM ARE INCLUDED ON A \(5 \%\) INCH PC/XT DISKETTE. FULL DOCUMENTATION AND SCHEMATICS ARE ALSOINCLUDED

NEW!

\section*{Digital Research Computers}
P.O. BOX 381450 - OUNCANVILLE, TX 75138 - (214) 225-2309

TERMS: Add \(\$ 3.00\) postage. We pay balance Orders under \(\$ 15\) add 75 f handling. No C.O.D. We accept Visa and MasterCard. Texas Res. add \(6-1 / 4 \%\) Tax. Foreign orders (except Canada) add \(20 \%\) P \& H. Orders over \(\$ 50\) add 85 f for Insurance.
}

\title{
Copies of articles from this publication are now available from the UMI Article Clearinghouse.
}

For more information about the Clearinghouse, please fill out and mail back the coupon below.

\section*{UMMIArticle Clearninghouse}

Yes! I would like to know more about UMI Article Clearinghouse. I am interested in electronic ordering through the following system(s):
\(\square\) DLALOG/Dialorder
\(\square\) OnTyme
\(\square\) ITT Dialcom
\(\square\) Other (please specify)
\(\square 1\) am interested in sending my order by mail
\(\square\) Please send me your current catalog and user instructions for the system(s) I checked above

Name
Title.
Institution/Company

Department
Address.
City
State
Zip
Phone

Mail to: University Microfilms International 300 North Zeeb Road. Box 91 Ann Arbor, MI 48106

NEC V2O \& V30CHIPS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{7400} \\
\hline Part No. & 1.9 & \(10 *\) & Part no. & 1.9 & \(10+\) \\
\hline 7400 & 29 & 19 & 7485 & 65 & 55 \\
\hline 7402. & 29 & 19 & 7486 & 245 & 35
.95 \\
\hline 7405 & & 19 & 7490 & 2.05 & +39 \\
\hline 7406 & 39 & 29 & 7493. & 45 & 35 \\
\hline 7407 & 39 & 29 & 74121 & 45 & 35 \\
\hline 7408 & 35 & 25 & 74123 & 55 & . 45 \\
\hline 7410 & 29 & 19 & 74125. & 55 & 45 \\
\hline 7414 & 49 & 39 & 74126 & 69 & . 59 \\
\hline 7416 & 39 & 29 & 74143 & 3.95 & 385 \\
\hline 7417 & 39 & 29 & 74150 & 135 & 125 \\
\hline 7420 & 35 & 25 & 74154. & 135 & 1.25 \\
\hline 7430. & 35 & 25 & 74158 & 1.59 & 1.49 \\
\hline 7432
7438 & 39 & 29 & 74173
74174 & 85 & 75
49 \\
\hline 7442 & 55 & 45 & 74175. & 59 & . 49 \\
\hline 7445 & 79 & 69 & 74176 & 99 & 99 \\
\hline 7446 & 89 & 79 & 74181. & 1.93 & 1.85 \\
\hline 7447 & 89 & 79 & 74189 & 1.95 & 185 \\
\hline 7448
7472 & 2.05 & 195 & 74193 & 79 & 69 \\
\hline \({ }_{7473}\) & 89 39 & 79 & 74198
74221 & 1.85 & 1.75 \\
\hline 7474 & 39 & 29 & \({ }^{7} 4273\) & 1.95 & 185 \\
\hline 7475 & 49 & 39 & 73365 & 65 & 55 \\
\hline 7476 & & & & & \\
\hline \multicolumn{6}{|c|}{7415} \\
\hline 7 74.500 & 29 & 19 & 744.S165 & 75 & 65 \\
\hline 74LS04. & 35 & 19 & \({ }_{74 \mathrm{LS} 173 .}\) & 99
59 & \\
\hline 74LSO5 & 35 & 25 & 74LS174. & 49 & 39 \\
\hline 74 LSO6 & 1.09 & 99 & 74LS175 & 49 & \\
\hline 74.507. & 1.09 & 99 & 74LS189. & 4.59 & 4.49 \\
\hline 74.508 & 29 & 19 & 74L.S191. & 59 & 49 \\
\hline \({ }_{7}^{74 \mathrm{LS} 10 .}\) & 29 & 19 & 74LS193. & 79 & \\
\hline 74LS27. & 45 & 25 & 7445240 & . 69 & 5 \\
\hline 74LS30 & 29 & 19 & 74LS243. & . 69 & \\
\hline 74LS32 & 35 & 25 & 74LS244. & . 69 & \\
\hline \({ }^{744542}\) & 49 & . 89 & 7415245
7415250 & 89 & 79 \\
\hline 74LS73. & 39 & 29 & \(74 \mathrm{LS273}\) & 89 & 79 \\
\hline 741574. & 35 & 25 & 7415279 & 49 & 39 \\
\hline 74LS75. & 39 & 29 & 74L5322. & 4.05 & 3.95 \\
\hline 741576
74.585 & 55 & 45 & 74LS365 & 49 & \\
\hline 74LS86 & 35 & 25 & \({ }_{7415367}\) & 49 & 39 \\
\hline 74LS90. & 49 & 39 & 74.5368 & 49 & 99 \\
\hline 744593, & 49 & 39 & \(74 \mathrm{LS373}\) & 79 & 69 \\
\hline 74LS123. & 59 & 49 & 74L5374 & 79 & \\
\hline 74LS125
74 LS 138 & 49 & 39 & 7415393 & 89 & 59 \\
\hline \(74 \mathrm{LS139}\) & 49 & 39 & \(74 \mathrm{LS624}\) & 2.05 & 1.95 \\
\hline \({ }^{7415154 .}\) & 1.09 & 99 & 7415629. & 2.95 & 2.8 \\
\hline 74LS157. & . 45 & 35 & 74LS640 & 1.09 & 9 \\
\hline \({ }^{74.5158}\) & 45
59 & 35
49 & (\(\begin{aligned} & 7415645 \\ & 74.5670\end{aligned}\) & 1.09
1.09 & \\
\hline 74LS164. & 59 & 49 & \(74 \mathrm{LS688}\) & 2.39 & 2 \\
\hline
\end{tabular}

74SIPROMS*

MICROPROCESSOR COMPONENTS

\section*{MICROPROGESSOR SALII \\ 8052AHBASIC
MC68008L8
MC68701
MC68705P3S
MC68705UBL
\(80286-10\)
\(80287-8\)
\(80287-10\)
\(80387-16\) \\
\begin{tabular}{|c|c|c|c|}
\hline Part No. & \multicolumn{2}{|r|}{dYNAMIC RAMS} & Price \\
\hline 4116-15 & \(16.384 \times 1\) & (150ns) & 89 \\
\hline 4128-20 & \(131,072 \times 1\) & (200ns) (Phggyback) & 3.25 \\
\hline 4164-120 & \(65.536 \times 1\) & (120ns). & 1.75 \\
\hline 4164-150 & \(65.536 \times 1\) & (150ns). & 1.25 \\
\hline 4164-200 & \(65.536 \times\) x 1 & (200ns) & 99 \\
\hline TMSA416-12 & \(16.384 \times 4\) & (120ns) & 3.49 \\
\hline 8118 & \(16.384 \times 1\) & (120ns). & 49 \\
\hline 41256-100 & \(262.144 \times 1\) & (100ns). & 4.95 \\
\hline 41256-120 & \(262.144 \times 1\) & (120ns). & 3.95 \\
\hline 41256-150 & 262,144 x 1 & (150ns). & 3.25 \\
\hline 5046415 & \(65.536 \times 4\) & (150ns) (4464). & 4.95 \\
\hline 5110000 & \(1.048 .576 \times\) & (1 (loons) 1 Meg & 34.95 \\
\hline 514256-10 & \(262,144 \times 4\) & 4 (100ns) 1 Meg & 29.95 \\
\hline & Static & RAMS & \\
\hline 2016-12 & \(2048 \times 8\) & (120ns) & 1.69 \\
\hline 2018-45 & \(2048 \times 8\) & (45ns) & 6.95 \\
\hline 2102-2L & \(1024 \times 1\) & (250ns) Low Power & 1.95 \\
\hline 2114 N & \(1024 \times 4\) & (450ns). & 99 \\
\hline 2114 N -2L & \(1024 \times 4\) & (200ns) Low Power & 1.49 \\
\hline 21014 & \(1024 \times 4\) & (200ns) (CMOS). & 49 \\
\hline 2149 & \(1024 \times 4\) & (45ns). & 2.49 \\
\hline 5101 & \(256 \times 4\) & (450ns) CMOS. & 1.95 \\
\hline 6116p-3 & \(2048 \times 8\) & (150rss) CMOS. & 1.89 \\
\hline 6116 LP -3 & \(2048 \times 8\) & (150ns) LP CMOS. & 1.95 \\
\hline 6264LP 12 & B192 \(\times 8\) & (120ns) LP CMOS. & 4.25 \\
\hline 6264P-15 & \(8192 \times 8\) & (150ms) CMOS & 3.49 \\
\hline 6264LP-15 & \(8192 \times 8\) & (150ris) LP CMOS. & 375 \\
\hline 6514 & \(1024 \times 4\) & (350ns) CMOS & 3.49 \\
\hline 43256-15 & \(32.768 \times 8\) & (150ns) Low Power & 11.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EPROMS} \\
\hline TMS2516 & \(2048 \times 8\) & (450ns) 25 V . & 6.95 \\
\hline TMS2532 & \(4096 \times 8\) & (450ns) 25 V & 6.95 \\
\hline TMS2532A & \(4096 \times 8\) & (450ns) 21 V & 595 \\
\hline TMS2564 & \(8192 \times 8\) & (450ns) 25 V & 9.95 \\
\hline TMS2716 & \(2048 \times 8\) & (450ns) 3 Voltage & 9.95 \\
\hline 1702A & \(256 \times 8\) & (1, \({ }^{\text {S }}\)) & 695 \\
\hline 2708 & \(1024 \times 8\) & (450ns). & 495 \\
\hline 2716 & \(2048 \times 8\) & (450ns) 25 V . & 3.75 \\
\hline 2716-1 & \(2048 \times 8\) & (350ns) 25 V & 4.25 \\
\hline 27 C 16 & \(2048 \times 8\) & (450ns) 25 V (CMOS) & 5.49 \\
\hline 2732 & 4096x 8 & (450ns) 25 V . & 3.95 \\
\hline 2732A-20 & \(4096 \times 8\) & (200ns) 21 V . & 4.25 \\
\hline 2732A-25 & \(4096 \times 8\) & (250ns) 21 V & 3.95 \\
\hline 27 C 32 & \(4096 \times 8\) & (450ns) 25V (CMOS) & 595 \\
\hline 2764-20 & \(8192 \times 8\) & (200ns) 21 V . & 4.25 \\
\hline 2764-25 & \(8192 \times 8\) & (250ns) 21 V . & 3.75 \\
\hline 2764A 25 & \(8192 \times 8\) & (250ns) 12.5 V & 3.95 \\
\hline 2764-45 & \(8192 \times 8\) & (450ns) 21 V . & 2.95 \\
\hline 27C64-15 & \(8192 \times 8\) & (150ns) 21 V (CMOS) & 6.49 \\
\hline 27128-20 & \(16.384 \times 8\) & (200ns) 21 V . & 6.95 \\
\hline 27128-25 & \(16.384 \times 8\) & (250ns) 21 V . & 5.95 \\
\hline 27128A-25 & \(16.384 \times 8\) & (250ns) 12.5 V . & 5.25 \\
\hline 27C128-25 & \(16.384 \times 8\) & (250ns) 21V (CMOS) & 695 \\
\hline 27256-20 & \(32.768 \times 8\) & (200ns) 12.5 V . & 6.95 \\
\hline 27256-25 & \(32.768 \times 8\) & (250ns) 125 V & 595 \\
\hline 27C256-25 & \(32.768 \times 8\) & (250ns) 12.5 V (CMOS) & 7.95 \\
\hline 27512-20 & \(65,536 \times 8\) & (200nsi) 12.5 V . & 13.49 \\
\hline 27512-25 & \(65,536 \times 8\) & (250ns) 125 V & 11.95 \\
\hline 68764 & \(8192 \times 8\) & (450ns) 25 V & 13.95 \\
\hline \multicolumn{4}{|c|}{EEPROMS} \\
\hline 28164 & \(2048 \times 8\) & (350ns) 5V Read/Wule & 5.95 \\
\hline 2817 A & \(2048 \times 8\) & (350ns) 5V Read/Wrile & 7.95 \\
\hline \begin{tabular}{l}
2865A \\
\(52813(21 \mathrm{~V})\)
\end{tabular} & \(8192 \times 8\)
\(2048 \times 8\) & (250ns) SV Read/Wite
(350ns) 5 V Read Only. & 9.95 \\
\hline
\end{tabular}

SATELLITETV DESCRAMBLER CHIP
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{INTERSIL Also Available!} \\
\hline \multicolumn{4}{|l|}{74HCHI-SPEEDCMOS} \\
\hline Para No. & Price & Part No. & \\
\hline \({ }^{744} \mathbf{H C O}\) & & \(74 \mathrm{HC1}\) & \\
\hline \({ }_{74 \mathrm{HCO}}{ }^{\text {a }}\) & & \({ }_{744 \mathrm{C} 2}\) & \\
\hline & \[
\begin{array}{r}
29 \\
29
\end{array}
\] & 74HC244. & 99 \\
\hline \({ }^{74 \mathrm{HCC}}\) & & \(74+C 2\) & \\
\hline 74HC30 & & \(7 \mathrm{7HC25}\) & \({ }_{89} 9\) \\
\hline \(74 \mathrm{HC32}\) & \[
\begin{array}{r}
29 \\
29
\end{array}
\] & \(74 \mathrm{HC273}\) & \\
\hline \({ }^{7} 4 \mathrm{HC74}\) & & , & \\
\hline C76 & & 74HC595 & \\
\hline 7анC85. & 79 & \(74 \mathrm{HC688}\) & \\
\hline \(74 \mathrm{HC86}\) & & \(74 \mathrm{HC9}\) & 95 \\
\hline HC123 & \[
\begin{aligned}
& 89 \\
& 49
\end{aligned}
\] & 7, 7 HCA 4 & 9 \\
\hline \(74 \mathrm{HC132}\) & 69 & \(74 \mathrm{HC4050}\) & 59 \\
\hline \({ }^{7} 74 \mathrm{HCl} 138 \mathrm{Cl}\) & \({ }_{49}^{49}\) & 74HCAO & 129 \\
\hline \({ }^{4} 15454\) & +49 & 744 & 179 \\
\hline \({ }^{74 \mathrm{HCl}} 163\) & 69 & 74HCA & \\
\hline
\end{tabular}

74HCT - CMOS TTL

\section*{LINEAR}

IC SOCKETS

\section*{Worldwide－Since 1974
}

J Erchiown Gl General Purpose NEW！Prototype PC Boards Wire Wrap Component Testing
Point－to－ Point Wiring 31／62 Connection JE411（645＂，No Pads．Gen Purp．）．．．．\＄12．95 JE415（6\％，No Pads．PC／xt）．．．．．．．\＄14．95 JE417（6＇s＂．Pated w／Pads，PC／XM）．．．\＄19．95
 Extender Boards Designed for Troubleshooting and Testing

JE4 19 （5\％Extender．22／44 Connector）．．\＄19．95 JE421（4＊4 Extender．31／62 Connector）．．\＄19．95
ADAB \begin{tabular}{c}
Accessories \\
for Commodore
\end{tabular}
＊CM1（300B Modem vic－20．C－64）．\＄19．95 ＊JE232CM（As232 Inter．vic－20．C－64）．\＄39．95 CPS10（c．－64 Power Supoly）．．．．\＄39．95 CPS128（c－128 Power Supply）．．．S59．95

\section*{चUC：K゚にI？I？}

\section*{TANDY 1000}

Expansion Memory
Half Card

TE512 TANC Expand the memory of you
Tandy 1000 ，128 Version）
as much as 640 K Also noludes －w Clock option chip（only）．．．．\(\$ 39.95\) T20MB 20 Meg Hard Disk

\section*{INTRODUCING JAMECO＇S NEW COMPUTER KITS！！}

Jameco＇s IBM \({ }^{\text {™ }}\) AT Compatible Kit！
 EGA Card
 Pant No． Description JE1043 \(1.2 \mathrm{~m} / 360 \mathrm{~K}\) Fopir Price JE1015 xT／AT Style Keyboard．．．\＄ 59.95 41256－120 512K RAM（18 Chips）．．\＄ 71.10 JE1012 Baby AT Flip－Top Case．．．\＄ 69.95 JE1032 200W Power Supply．．．．．\＄ 89.95 JE1022 5\％＂Migh Density Disk Orive \＄109．95 JE 1003 Baby AT Motherboart （Zero－K RAM－Incl．Award BIOS ROM）．\(\$ 399.95\) Regular List \(\$ 850.80\) SAVE S50．85！
JE1008 IBM＂＂AT Compatible Kit．．．．．．．．\＄799．95

BM PC／XT Compatible Kit \(\begin{array}{llll}\text { 4164－150 } & \text { 128K RAM（18 Cmips）．．．．} & \$ 22.50 \\ \text { JE1040 } & \text { Flopoy Controller Card } & \$ 29.95\end{array}\) \(\begin{array}{ll}\text { JE1040 } & \text { Floppy Controller Card ．．} \$ 29.95 \\ \text { JE1010 } & \text { Fhp－Top Case．．．．．．．．．．} \$ 34.95\end{array}\)
 JE1015
JE1030
IT／AT Style Kerboard．．．．\(\$ 59.95\)
ISO Warl Power JE1030 \(\quad 150\) Watt Power Supply．\(\$ 69.95\)

\section*{商eca}

Ji4crioniss Solderless Breadboard Sockets

\begin{tabular}{|c|c|c|c|c|}
\hline JE23 & \multicolumn{2}{|c|}{JE24} & \multicolumn{2}{|l|}{JE27} \\
\hline Part & \[
\mathrm{L}_{\mathrm{w}}^{\mathrm{W}}
\] & Contact Points & Binding Posts & Price \\
\hline JE20 & \(6^{\prime} 2 \times{ }^{1}\) & 200 & 0 & \＄ 2.29 \\
\hline JE21 & 3＇．\(\times 2^{1 / 8}\) & 400 & 0 & S 4.49 \\
\hline JE22 & \(6^{1 / 2} \times 1{ }^{1 / 8}\) & 630 & 0 & S 5.95 \\
\hline JE23 & \(6^{1} 2 \times 2^{18}\) & 830 & 0 & \＄ 7.49 \\
\hline JE24 & \(6^{1 / 2} \times 3^{18}\) & 1.360 & 2 & \＄14．95 \\
\hline JE25 & \(6^{1} \times 4^{1 / 4}\) & 1.660 & 3 & \＄22．95 \\
\hline JE26 & \(6^{3} \times 5^{3 / 4}\) & 2.390 & 4 & \＄27．95 \\
\hline JE27 & 74．\(\times 7 \%\) & 3，220 & 4 & \＄37．95 \\
\hline
\end{tabular}

SX20MB \(\quad \begin{array}{ll}\text { for Tandy } 1000 \\ 20 \mathrm{MB} \text { Hard Disk Drive Board }\end{array}\) SX20MB lor Tandy 1000SX．．．．．．．\＄499．95

TANDY 1000 Multifunction Board with Clock Calendar Expand the memory on your Tandy 1000 （128K Version）toas
much as 640 K Complete with an RS 232 Dort．clock／calendat． MT512 Includes 512K ram．
\＄199．95
\[
\begin{gathered}
9 \text { DANATILRODUCS } \\
2400 / 1200 / 300 \text { modems }
\end{gathered}
\]

1200H 1200／300 Baud Internal Modem 2400 S 2400／1200／300 Internal modem 1200C 1200／300 Baud External Modem． 2400E 2400／1200／300 External Moderm
\(\$ 119.95\)
\(\$ 219.95\)
U．S．Funds Only
Shipping：Add 5\％plus \＄1．50 Insurance

IBM is a registared trademark ol intemational Business Machines
 \(\begin{array}{ll}\text { GREEN } & 12 \text { Mono．Green Monitor } \$ 99.95 \\ \text { JE1000 } & \text { XT Motherboard（Zero－K RAM．}\end{array}\) XT Motherboard（Zero－K RAM． Incl,
Award
Bios RON）．．．．．\(\$ 89.95\) FREE！QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED！ Regular List \(\$ 557.10\)
JE1004（IBM \({ }^{\text {m }}\) PC／XT Compatible Kit）． \(\$ 479.95\)
Jameco＇s \(4.77 / 8 \mathrm{MHz}\) Turbo I8M Compatible Kit Same as JE 1004 except comes with 640 K RAM．JE 1001 （Turbo） \(4.77 / 8 \mathrm{MHz}\)

SAVE \＄70．70 Regular List \(\$ 670.65\) JE1005（IBM \({ }^{\text {nu }}\) PC／XT Turbo Compatible Kit）．\(\$ 599.95\)

I8M Compatible Motherboards \(4.77 / 9 \mathrm{MHz}\) operation（Turbo onlyi
 8087 Math Co－processor capablity BiOS ROM included

JE1001 \(477 / 8\) 4．77／8MHz－8129．95 \＄104．95 . .6109 .95 \＄ 89.95

JE1020（360K Dive．PC／XT／AT ．．．\＄ 89.95 JE1022（1．2mв．AT Compatitre）．．．\＄109．95

\section*{DATA BOOKS}

3000 National Linear Data book（82）．．．．．．\＄19．95
30005 Logic Data Book－Holl II（84）
30005 Intersll Data Book（87）．
21398 CMOS Cookbook（86）．．．．．
210830 Inter Memory Mandbook（87）
\(\$ 19.95\)

鲑
MUFFIN／SPRITE－STYLE FANS

ta450s．
\(\$ 11.95\)
torin indus
SU2A1
EGUGA1
Data Sheets－50c each
Prices Subject to Change Send \＄1．00 Postage for a Products Available

Seagate 20 30 \＆ 40 MB Half Height Hard Disk Drives
\(\$ 269.95\) \(\$ 319.95\) \(\$ 299.95\) \(\$ 339.95\) \(\$ 369.95\)
\(\$ 549.95\) \(\$ 589.95\)
ameco PC／XT AT Compatible Disk Drives \(\begin{array}{r}89.95 \\ 109.95 \\ \hline\end{array}\)

\section*{}

\section*{}

， 9.95
4.95
4.95 .95
\(\sqrt{\text { ameco }}\)

VISA
MasterCard

FREE 1988 CATALOG

Telex： 176043
1987 Jameco Electronics

California Residents：
Add 6\％，6 \(1 / 2 \%\) or \(7 \%\) Sales Tax
FAX 415－592－2503 12／87

Visit our retail store located at 1256 S . Bascom Ave. in San Jose, (408) 947-8881

\section*{}

CAPACITORS

VOLTAGE REGULATORS ro. 22 \(\begin{array}{llllll}78051 & 49 & 7805 K & 159 & 7905 K & 1.69\end{array}\) \(\begin{array}{lllllllllll}78087 & 49 & 7812 \mathrm{~K} & 1.39 & 7912 \mathrm{~K} & 1.49\end{array}\) 7951 7912 T
7915 T LM 323 K 5 VOLTS. 3 AMPS, TO. 3

\section*{RESISTOR NETWORKS}

RESISTOR NETWOR
SIP 10 PIN 9 RESISTOR \(\begin{array}{ll}\text { SIP } 8 \text { PIN } & 7 \text { RESISTOR } \\ \text { DIP } \\ 16 \text { PIN } \\ 8 \text { RESISTOR }\end{array}\) \(\begin{array}{r}.59 \\ .59 \\ \hline\end{array}\) \(\begin{array}{llr}\text { DIP } 16 \text { PIN } & 8 \text { RESISTOR } & .59 \\ \text { RESISTOR } & 1.09\end{array}\) \begin{tabular}{lll}
DIP & 16 PIN & 15 RESISTOR \\
DIP & 14 PIN & 7 RESISTOR \\
\hline
\end{tabular}

\section*{BYPASS CAPACITORS} \(.01 \mu\) CERAMIC DISC \(100 /\) S5.00 .01 /f MONOLITHIC \(100 /\) s 10.00 1 ıf CERAMIC DISC \(100 /\) s6.50 1 If MONOLITHIC \(100 / \$ 12.50\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PART
NUMBER & dimensions & oistaibution STAIPIS & POIE & TERMINAL
STAIPIS STAIP(S) & POINTS & BINDING & Price \\
\hline wBu. \({ }^{\text {d }}\) & \(38 \times 6.50{ }^{\circ}\) & 1 & 102 & & . & & 2.95 \\
\hline weu-t & \(138 \times 6.50^{\circ}\) & & & 1 & 630 & ... & 6.95 \\
\hline WBu 204.3 & 394×8.45 & 1 & 100 & 2 & 1260 & 2 & 17.95 \\
\hline WBU-204 & \(5.13 \times 8.45\) & 4 & 400 & 2 & 1260 & 3 & 24.95 \\
\hline WBU 206 & \(6.88 \times 9.06\) & 5 & 500 & 3 & 1890 & 4 & 29.95 \\
\hline WBU-208 & \(8.25=9.45\) & 7 & 700 & 4 & 2520 & 4 & 39.95 \\
\hline
\end{tabular}

EXTENDER CARDS FOR IBM
EXT. 8088 \$29.95
EXT-80286 \(\$ 39.95\)

SHORTIMG BLOCKS . 1 "CENTERS 5/\$1.00

WIREWRAP PROTOTYPE CARDS
FR-4 EPOXY GLASS LAMINATE WITH GOLD-PLATED EDGE-CARD FINGERS XT
BOTH CAROS MAVE SILK SCREENED LEGENDS IBMPR1 WITH SV AND GROUND PLANE 1BM-PR2 AS ABOVE W DECODING LAYOUT AT

\author{
IBM-PRAT LARGE SV \& GROUND PLANES
}
\(S-100\)
BARE NO FOILPAOS
HCRIZONTAL EUS
VERTICAL BUS SIUGLEFOIL PADS PER HOLE
APPLE
P500 1 BARE NO FOIL PADS
P500 3 HORIZONTAL BUS
P500 3 HORIZONTAL BUS
P500 4 SINGLE FOIL PAOS
P5004
\(7060-45\) FINGLE FOIL PADS PER HOLE
FOR APPLE IIE AUX SLOT

WHY THOUSANDS CHOOSE JDA
* GUALITY MERCHANDISE COMPETITIVE PRICES
* MOST ORDERS SHIPPED IN 24 HOURS * FRIENDLY, KNOWLEDGEABLE STAFF
* MONEY BACK GUARANTEE (ASK FOR DETAILS)
* TOLL FREE TECHNICAL SUPPQRT
* EXCELLENT CUSTOMER SERVICE

EPROM ERASERS SPECTRONICS CORPORATION

DATARASE
\(\$ 34.95\)
ERASES 2 EPROMS IN 10 MINUTES TIME THIN METAL SHUTTER PREVENTS UV LIGHT
FROM ESCAPING

Light Emitting Diodes LED DISPLAYS

\section*{\(\begin{array}{ll}\text { FND. } 357(359) & \text { COMCATHODE } \\ \text { FND. } 500 \text { (503) } & \text { COMCATHOOE }\end{array}\)} FND. \(507(510)\) MAN. 72 COM ANODE MAN 74 COMANODE TI. 313 COMCATHODE

\section*{DIFFUSED LEDS}

RIBBON CABLE
CONTACTS SINGLE COLOR COLOR CODED
25 PIN D-SUB
GENDER
CHANGERS
\(\$ 7.95\)

MUFFIN FANS
Squme 16.95
LINE CORDS

\title{
4164 150ns \(^{\$ 128}\)
}

MONITOR STANDS
MODEL MS-100
\(\$ 12.95\)
THITS \& SWIVELS
MODEL MS-200
MODEL MS-200
stuadr plastic cons
struction
TILTS AND SWIVELS BUILT.IN SURGE SUPRESSOR BULTT-IN POWER STATION INDEPENDENTLY CONTROLS .

\section*{NASHUA DISKETTES}

BOXES OF 10
\begin{tabular}{|c|c|}
\hline & \\
\hline & DS DO 360k \\
\hline & DS HD 1.2M s \\
\hline & DS.00720k \(\$ 16\) \\
\hline
\end{tabular}

5/4 DS/
49Се 39Сеа
bulk ory 50 вulk ory 250

\section*{51/4" DISKETTE STORAGE FILE}
\(\$ 8.95\)
HOLDS 70 5/, FLOPPIES
STUROVATTRACTIVE
SMOKED ACRYLIC CASE
COMPEETE WITH HINGED IVIDER
VERSION FOR \(3^{1 / 2} 2^{\prime}\)
FLOPPIES AVAILABLE \(\$ 9.95\)

2 WAY SWITCH BOXES
\(\$ 39.95\)
CONNECT PRINTERS TO 1 COMPUTERO
SERIAL \& PARAHEL MODEIS AVAILABIE AHLLNES SWITCHED
- GOLD PLATED CONNEC TORS \& QUALITY SWITCHES

\section*{6' INTERFACE CABLES}

MEETS FCC REQUIREMENTS \(100 \%\) SHIELDED IBM COMPATIBLE PARALLEL PRINTER \(\mathbf{s 9 . 9 5}\) CENTRONICS (MALE TO FEMALE) \(\$ 15.95\) CENTRONICS (MALE TOMALE) \(\$ 14.95\) IBM COMPATIBLE MODEM CABLE \(\$ 7.95\) RS232 SERIAL (MALE TO FEMALE) \(\$ 9.95\) RS232 SERIAL (MALE TO MALE) COILED KEYBOARD EXTENDER

\section*{SWITCHING POWER SUPPLIES}

\section*{PS-135}
\(\$ 59.95\) FOR IGM \(\times\) CTOMPATBLE ULAPP
\(.5 \mathrm{~V} \quad 15 \mathrm{~A}, 12 \mathrm{~V}\)
4.2 A

PS 150

\section*{MONITORS}

\section*{SAMSUNG} MONOCHROME IBM COM
INPUT
\(12^{*}\) NON 12" NON-GLARE, LOW DISTORTION AMBER SCREE
- RESIVO 350
-
SWIVEL BASE

> VEAR WARRANTY
\(\$ 119.95\)
MULTISYMC

AUTO FREGUENCYADJUSTMENT RESOLUTION AS HIGH AS \(800 \approx 560\)

\section*{EGA}
by Casper
\$399.95
- 15.75. \(21.85 \mathrm{KH}_{2}\) SCANNING FREQUENCIES
- RES: \(640 \times 200 \quad 350\)
\(-14^{\prime \prime}\) BLACK MATRIX SCREEN \(\quad .16\) COLORE FROM 64

\section*{RGB br CASPER \\ \(\$ 279.95\)}
- COLOR GREEN AMBER SWITCH
- RGB IBM COMPATIBLE RES: \(640 \times 240\)
\(14{ }^{\prime \prime}\) NON GLAR SCREEN - RGB IBM COMPATIBLE CABLE FOR IBM PC IVCLUDED
-39 mm DOT PITCH

MONOCHROME byhyundal \$69.95
- IBM COMPATIBLE TTLINPUT
- attractive casing with a tilt swivelbase

\section*{TOLL FiEF U.S. 8 GIMID (800) 530-5000 20MB HARD DISK ON A GARD \\ }

SAVES SPACE AND REDUCES POWE R CONSUMPTION
IDEAL FOR PCS WITH FULL
HEIGHT FLOPPIES
HEIGHT FLOPPIES
LEAVES ROOM FOR A HALF LENGTH CARD IN ADJACENT SLOT

\(\$ 549.95\)

\section*{DISK DRIVES}

51/4" SEAGATE HARD DISK DRIVES
ST. 225 HALF HEIGHT 20 MB 65 ms
ST. 238 HALF HEIGHT 30 MB 65 ms (RLL \(\$ 259\) ST. 251 HALF HEIGHT 40 MB 40 ms (ST 277 HALF HEIGHT 60 MB 40 ms (RLL 5469 \(\begin{array}{lll}\text { ST } 4038 \text { FULL HEIGHT } 30 \mathrm{MB} & 40 \mathrm{~ms} & \$ 599 \\ \$ 559\end{array}\) \(\begin{array}{lll}\text { ST. } 4096 \text { FULL HEIGHT 80MB } 28 \mathrm{~ms} & \$ 895\end{array}\)
\(1 / 2\) HEIGHT FLOPPY DISK DRIVES
51/", TEAC FD-55B DS/DD 360K
\(\$ 109.95\)
\(5 \%\) "TEAC FD-55F DS/QUAD 720K
51/" TEAC FD-55GFV DS/HD 1.2 M \$124.95
\(51 /{ }^{\prime \prime}\) MITSUBISHIDS/HD 1.2 M
51/4" DS/DD 360K
\(\$ 119.95\)
\(31 / 2^{\prime \prime}\) MITSUBISHI DS/DD (AT OR XT) \(\begin{array}{r}\$ 69.95 \\ \$ 129.95\end{array}\)

\section*{DISK DRIVE ACCESSORIES}

TEAC SPECIFICATION MANUAL
TEAC MAINTENANCE MANUAL
\(1 / 2\) HT MOUNTING HARDWARE FOR IBM
\(1 / 2\) HT MOUNTING HARDWARE FOR IBM
MOUNTING RAILS FOR IBM AT
" \(Y\) "POWER CABLE FOR \(51 / 4\) FDDs
5 \(\%\) FDD POWER CONNECTORS
DRIVE ENCLOSURES
WITH POWER SUPPLIES
CAB-2SV5 DUAL SLIMLINE FOR \(5 \%\) CAB-1FH5 FULL HEIGHT FOR S \({ }^{1 / 4}{ }^{\prime \prime}\)
\(\$ 49.95\) CAB 2SV8 DUAL SLIMLINE FOR 8. \(\$ 69.95\) CAB-2FH8 DUALFULLHEIGHTFOR 8 . \(\$ 219.95\)

\section*{EASYDATA MODEMS}

All models feature auto-dial answer redial on busy power up self test. touchtone or pulse dialing. built-in speaker. Hayes and Bell Systems 103 \& 212A com
palible. full or hall duplex. PC Talk III Communica

IMTERNAL
12H 1200 BAUD \(1 / 2\) CARD \(\$ 69.95\)
24B 2400 BAUD FULL CARD \(\$ 179.95\) EXTERNAL

12D 1200 BAUD 2400 BAUD
\$119.95
240
\$219.95

\section*{COMPUTER CASES}

Altraclive sfurdy steel cases fll the popular sized motherboards and inclucte speakers, faceplates avonson slots and all nocescary hardwarc

KT STYLE FLIP-TOP \(\$ 34.95\) KT STYLE SLIDE-TOP \(\$ 39.95\) AT STYLE SLIDE-TOP \$89.95. JR. AT STYLE FLIP-TOP \(\$ 149.95\)
- INCLUDES 180 WATT POWER SUPPLY
- FRONT PANEL KEVLOCK AND LED INDICATORS

\section*{8067 5MHz \(89900 \quad 80267 \mathrm{mHz} \$ 179^{95}\)}

\section*{IITterface caros}

FROM MODULAR CIRCUIT TECHNOLOGY MULTIFUNCTION CARDS
MCT－MF
MULTIFUNCTION
\(\$ 7995\)
－ 0.3 Bak All tMe features of 6 Pack．at malf tme paice
：O．3E4K DVNAMIC RAM USING 4164 S
MCT－MGMIO monographics I／O \＄11985
－ 2 FLOPPY CONT，SERAAL PARALLEL GAME PORT CLOOKK CAA
RUN COLOR GRAPHICS SOFTWARE ON A MONOCHROME MONITOR MCT－MID MULTI IO FLOPPY \＄7985
－SERIAL PARALIEL GAME PORT．CLOCK CALENDAR Mo Seral mio－Serial 2na Serial port
MCT－IO
MULTI I／O CARD
\(\$ 5985\)
－SERIAL PORT，CLOCK／CALENDAR WITH A BATTERY BACK．UP
－PARALLEL PRINTER PORTADDRESSABLE AS LPTY ORLPT2 IO－SERIAL 2nd SERIAL PORT

115＂
MCT－ATMF ATMULTIFUNCTION \＄13995
－USER EXPANDABLE TO 1.5 MB OF MEMORY IZERO K INSTALLED） includes serial port and parallel port
ATMF－SERIAL 2nd SERIAL PORT
\(344^{3}\)
3290
MCT－ATIO
AT MULTI I／O
\(\$ 59^{85}\)
－SERIAL PARALLEL AND GAME PORTS
－USES 16450 SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION a fio－serial 2nd SERIAL PORT

\section*{MEMORY CARDS}

MCT－RAM
576K RAM CARD
－USER SELECTABLE CONFIGURATION AMOUNTS UP TO 576 K USING 64 K \＆ 256 K RAM CHIPS（ZERO K INSTALLED）
MCT－EMS Expanded memory card \(\$ 12995\) －CONFORMS TO LOTUS INTEL EMS USER EXPANDABLETO 2 MB MCT－ATRAM atambramcard \(\$ 14995\) －BACKFILL TO G4OK，FLEXIBLE STARTING ADDRESS
UP TO 2 MB ON CARD， 4 MB WITH OPTIONAL PIGGYBACK BOARD
MCT－ATAAM－MC PIGGYBACK BOARD（NO MEMORY）＇39
MCT－ATEMS
at Compatible ems \(\$ 139^{95}\)
－CONFORMS TO LOTUS INTELEMS USEREXPANDABLE TO 2 ME －CONFORMS TO LOTUS INTEL EMS O USER EXPANDABLE TO 2 ME
－PAMDISK．PRINT SPOOLER AND LIM／EMS SOFTWARE INCLUDED

\section*{DRIVE CONTROLLERS}

MCT－FDC FLOPPY DISK CONTROLLER \＄2995 －INTERFACES UP TO 4 FDDS TO AN IBM PC OR COMPATIELE \(\because\) ：SUPEPRACESUTH BOTHSDD AND DS／OO WITH DOS 3.2
MCT－HDC hard disk Controller \(\$ 7995\)
－SUPPORTS 16 DRIVE SIZES INCLUDING 5．10，20．30 \＆ 40 MB －SUPPORTS 16 DRIVE SIZES INCLUDING 5．10，20， \(308,40 \mathrm{MB}\)
MCT－FDC－1．2 1．2mb floppy controllea \＄6995
－SUPPORTS 2 DRIVES．BOTH MAY EE 3 OOK OR 1,2 MEG
uows data to fow
MCT－FH FLOPPY／hard Controller \＄13995 －INTERFACES UPTO 2 FDD \＆ 2 HDDS，CABLING FOR 2 FDD \＆\＆ 1 MDD
MCT－ATFH AT FLOPPY／HARD CONtROLLER \＄14995 －SUPPORTS UP TO 2 360K \(720 \mathrm{~K} / .2 \mathrm{MB}\) FDD
AS WELL AS 2 HDDs USING STANDARD CONTROL TABLES

\section*{DISPLAY CARDS}

MCT－EGA Enhanced graphics adaptors14995
：256K OF VIDEO RAM ALLOWS 640 ． 350 IN 16 OF F 64 COLORS
COMPATIELE WITH COLOR AND MONOCHROME ADAPTORS
MCT－EG COLOR GRAPHICS ADAPTOR \＄4995
：SHORT SLOT SUPPORTS RGB，COLOR E COMPOSITE MONOCHRDME
MONOCHROME GRAPHIS
\(\$ 5985\)
－SOF TWARE ORIVERALLOWS COLOR GRAPMICS PRDGRAMS TO RUN
－ON A MONOCHROME MONITOR GAP PARALLEL PRINTER PORT

\title{
HALF HEIGHT HARD DLSK DRIVES \\ 40 ms \({ }^{8} 46960\) m \({ }^{8} 649\)
}

Seaga e model ST－251 5 ：hal height Seagate model ST－277 5＇＂halt heigh
FAST 40 ms access fime
HALF HEIGHT HARD DISK SYSTEMS
20 ms 8289 30 ms 8329

\section*{IBM COMPATIBLE MOTHERBOARDS}

FROM MODULAR CIRCUIT TECHNOLOGY
MCT－TURBD тURBо \(4.77 / 3 \mathrm{MHz}\) \＄10995
-4.77 OR 8 MHZ OPERATION WITH 8088.2 g OPTIONAL
8087.2 CO．PROCESSOR
8087． 2 CO－PROCESSOR
DYNAMICALLY ADJUSTS SPEED FOR MAXIMUM
THROUG TPUT \＆RELIABILITY DURING DISK
THROUG HPUT \＆RELIABILITY DURING DISK IVO
－CHOICECFNORMAL／TURBOMODE OR SOFTWARE SELE こT
PROCESEOR SPEED
MBT－ATMB \(802866 / 8 \mathrm{NHz}\) S37985
－ 8 SLOT 12 EIGMT BIT， 6 SIXIEEN BITI AT MDTHERBOARD －HARDWARE SELECTIDN OF 6 OR 8 M tz
1 WEAT S ATE
KEYLOCKSUPPORTED，RESET SWITCH，FRONT PANEL LED
SOCKETS FOR 1 MB OF RAM AND 80287
－batterr backed clock
MCT－BATMB mini 80236 \＄42995
－REPLACE MENT BOARD FOR XT STVLE CHASSIS
－OPERATE AT \(6 / 10\) MHI WITH UP TO TMB ON．BOARD MEMORV（ZERO K（NSTALLED）
SOCKET IOR 80287 MATH CO．FORCESSOR
BATTERY BACKED CLOCK
8 SLOTS ？EIGHT BIT， 6 SIXTEEN BIT
USES CMIPS \＆TECHNOLOGY CMIP SET FOR RELIABILIT，
－USES CMRLL SIZE
WHY BUY A SYSTEM FROM JDR？
＊gUILD T POURSELF AND SAVE
＊TOLL fREE TECMNICAL SUPport ih THE U．S．
ANO CANADA
＊MONEY BACK GUARANTEE（ASK FOA DETAILS）

\section*{IBM COMPATIBLE KEYBOARDS}

 \(+\)

MCT－5339
\(\$ 7995\)
SOF TWARE EED STYLE LAVOUT COMPATIBLES
AUTO REPEAT FEATURE
SEPARATE CURSOR PAD

\section*{MCT－5060}
\(\$ 5995\)
－IBMAT STVLE LAYOUT COMPATIBLES
－LED INDICATORS
－AUTO REPEAT FEATURE
MCT－5150 xi strie layout \(\$ 4995\)
МСТ－5151 кв5151 eauv．\({ }^{56995}\)

\section*{BUILD YOUR OWM}

\section*{256K KT COMPATIBLE}
＊MOTHERBOARD
＊256K OF MEMORY
＊ 135 WATT POWER SUPPLY
＊FLIP－TOP CASE
＊ 5060 STYLE KEYBOARD
＊360K FLOPPY DRIVE
＊DRIVE CONTROLLER
＊MONOCHROME MONITOR
＊GRAPHICS ADAPTOR

\section*{FOR ONLY \＄49915}

ANYONE CAN BUILD A SYSTEM IN ABOUT
2 HOUFS USING A SCREWDFIVER AND
OUR EASY－TO－FOLLOW INSTRUCTIONS！

\section*{DEVELOPMENT TDOLS}

FROM MOJULAR CIRCUIT TECHNOLOGY
MCT－EPROM PROGRAMMER \＄12995
SUPPORTS VARIOUS PROGRAMMINE FORMATS
AND VOUAGES
SPLIT OR COMBINE CONTENTS DF SEVERAL EPROMS DF DIFFE AENT SIZES
SOFTWAFE FOR MEX ERASE CHECK RND VERIFY
MCT－EPROM－4 4 GANB PROQPMMER \(\$ 18995\)
MCT－ERROM－10 10 GANO PROARMMER \(\$ 299^{83}\)
MCT－PAL pal programmer \＄26995
MCT－MP processorprog．\＄19995

\section*{\(L_{4}^{4} M E R R Y\)}

\title{
What's New at AMERICAN DESIGN COMPONENTS?
}
"The Source" of the electro-mechanical components for the hobbyist.

W American Design Components expensive, often hard-to-find components for sale at a fraction of their original cost!
You'll find every part you need either brand new, or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display.

OPEN MON. - Sat., 9-5
THERES No RISK,
With our full 90 -day warranty,
any purchase can be returned for
any reason for full credit or refund.
ADAM COMPUTER

diagram included. Includes: Keyboard, 1 cas sette digital data drive, 2 game controllers, power supply, \& one cassette. Capable of r
ning \(\mathrm{CP} / \mathrm{M}\), has built-in word processor. \begin{tabular}{ll}
Item \(\$ 7410\) & Complete \(-\$ 99.00\) \\
\hline ADAM & \\
\(51 / 4^{\prime \prime}\) & \\
DISK & \\
DRIVE &
\end{tabular}
Gives your Adam fast, reliable data storage \& retrieval. Can hold up
to 160 K bytes of information. Uses industry-standard SS/DD disks. Connects directly to your Adam memory console. Comes w/disk drive power supply, Disk Manager disk and owner's manual. Mir - Coleco, model 7817 liem \(\$ 12830\) Like New - \(\$ 199.00\) ADAM PRINTER

Complete, less top cover plate. Friction feed. Takes standard paper \(81 / 2^{\prime \prime} \times 11^{\prime \prime}\) (Customer returns; tested - operational.) Item \#8839 \$69.50

\section*{ADAM Accessories}

Data Drive -
Item *6641 \$19.95
Printer Power Supply Item 6642 \$14.95
ASCII Keyboard
Item *6643 \$19.95
Controllers
Hem \#7013 \$9.95
Adam Cassettes -
IConsisting of Smarr Basic, Buck Rogers \& blank cassette.) Item \#7786

BAKER'S DOZEN - \$19.95
Adam Link Modem -
(Software included.)
Hem \#12358 \$29.95
Auto-Dialer
Address Book
Hem \#12365 \$19.95
Adam Daisy Print Wheel
Item \#13305 \$3.95
Adam Ribbon Cartridge Item \({ }^{13306}\) \$3.95
Disk Drive Power Supply Item 14603 \$14.95

(IBM \({ }^{-}\)
Compat.)
Fits standard \(51 / 4\) " spacing. Shock Mrd. High speed, low power Mit - Seagate/Tandon艮 \(13250 \$ 159.00 \mathrm{New}\)
Controller Card tor above
liem \#10150 \$89.00
51/4" FLOPPY DISKETTES

Single side/single density; 16 hard sectors. Mfr -- Xerox \({ }^{111 R 61630}\) Item \#14537 14537
Pack of

\section*{American's}

IBM PC/XT-
COMPATIBLE COMPUTER

Contains.
- 256K RAM
- XT/AT Style Keyboard;
- \(51 /{ }^{\prime \prime}\) Full-Height Floppy Disk Drive
- 10 Mb Full-Height Hard Disk Drive
- Hard Disk \& Floppy Disk Controller Cards
- Color/Monochrome Monitor Card (monitor not included)
COLECOVISION
GAME
Factory returns -
tested good!)

Also includes power supply, instruction manual, modulator, and one Donkey Kong cartridge.

\section*{COLECOVISION.}

Accessories

\section*{ColecoVision to Adam}

\section*{Expansion Kit}

Just plugs into your Coleco Vision
Item \#918 \$59.50
Expansion Module \#2 Incl. Turbo cart. \(\$ 39.95\) New
Itern 13146 .
Roller Controller
Item \#13147 \$39.95 New
Super Action
Controller Set
ncl. Baseball cart
tem \#13148 \(\$ 3\)

Double sided/double density, full height drive. 48 T.P.I., 80 tracks. Mfr - Tandon TM100-2

Hem \#7928 \$79.00
2 for \$150.00
96 TPI, DS/Quad Density
Mir - CDC \(\# 9409{ }^{T}\)

\section*{115 CFM MUFFIN \({ }^{\circ}\) \\ FAN With Adjustable \\ Speed \\ }
\(115 \mathrm{VAC} / 60 \mathrm{~Hz} ., 21 \mathrm{~W} ., 28 \mathrm{~A}\). 3100 RPM; 5 -blade model, aluminum housing. Can be mounted for blowing or exhaust
Dim_: \(4^{11 / 4 e^{n}} \mathrm{sq} . \times 11 / 2^{n}\) deep
Hem \#5345s \$8.95
51/4 1/2 HT.
DISK DRIVES
\(48 / 96 \mathrm{TP}\)
1.2 Mb
1.2 Mb .
(A)
Compat.)
DS/single-double density; 80 track Mit - Panasonic JU 475
Item \#10005 \$119.00 Na
96 TPI, DS/Quad Density
(DOS 3.2 Compatible) Tandon TM55-4; DS/Quad
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

\section*{MINI \\ FANS}

\section*{\(50 / 60 \mathrm{~Hz}\)}

12 W . Low noise level fans, can be motd for blowing or exhaust.
\(11 / 2^{\prime \prime}\) STANDARD
7 metal blades
Dim.: \(31 /{ }^{\prime \prime}\) sq. \(\times 11 / 2^{\prime \prime}\) deep NEW - Rotron \#SU2A1 Item \#5970 \$7.95
USEO - Rotron
Item \(1873 \quad \$ 5.95\)

Item \#14331
\(\$ 549.95 \mathrm{New}\)

TIMEX-SINCLAIR 1000 \& ZX-81 CASSETTES

Consists of 13 assorted cas settes. May include: Money Analyzer II, States \& Capitals, Casino Craps, Statistics, The Carpooler, and others. Carpooler, and
Set of \(13 \quad \$ 19.95\) New

\section*{PLUG-IN
POWER}

SUPPLIES

\section*{COMPUTER/}

GAME

\section*{ADAPTOR}

\section*{Outpur: \begin{tabular}{rl}
& \(+5 \mathrm{VDC}, 9 \mathrm{~A}\) \\
& -5 VDC \\
\hline
\end{tabular}}
\begin{tabular}{l}
-5 VDC, 1 A \\
12 VDC \\
\hline
\end{tabular}

\section*{Inpur: \(120 \mathrm{VAC} / 60 \mathrm{Mz}\)., 25 A} Mfr - Coleco \({ }^{4} 55416\)
liem \#1882 \$4.95 New
9VDC ADAPTOR
Input: \(115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) Output: 9.5V @1A.
Dim.: \(2 \%\) "W \(\times 3 \%\) " \(\mathrm{H} \times 2^{\text {n }}\) deep Mft: Commodore 251539.01/02 (Hi-Voltage)

\section*{7300 VAC}

\section*{(a) 5}

May be used for powering neon lights, replacing oil burner ignition iransformer, building Jacob's ladder (spark gap). A high-volt. output: \(1 /\) quick connect terminal \& case ground input fully enclosed metal case. Weight: 12 lbs. Base mount: \(41 / 2 \times 51 \quad \$ 9.95\) RFE
Item \(\$ 151 \quad \$ 9\).

\section*{NICAD}

BATTERIES
(Rechargeable)

\section*{12V@450ms}

Contains 10 AA cells. Recharge rate: 45 ma . 16-18 hours. Dim. : \(21 / 10\) " \(H \times 11 / "^{" W} \times 2^{1 "}\) Mir - GE 123233 or equiv

Item \(\$ 5443\) \$5.95 New 'D' CELLS

\section*{Dual Pack}

\subsection*{2.4V@1.2Ah}

2 D cells, stacked \(\&\) series connected leasily ganged for carryingl. Recharge in \(12-14 \mathrm{hrs}\). OA Dim, : \(11 / x^{*}\) dia. \(\times 41 / 2^{\prime \prime} \mathrm{L}\)
Item 112142 (pack of 2) \(\$ 5.95\) (Major mís.) 5 packs/\$25.00

5" COMPOSITE VIDEO MONITOR

Power regulated, 12 VDC. Mrd. in plastic cabinet, w/brighiness controrn. Mr - Sperry W \(\times 8^{-1} \mathrm{H} \times 814^{\text {" }}\) deep
Item \#14536 \$24.95
12/24 VDC
MUFFIN-
TYPE
FANS
55/100 CFM \(\mathrm{B}+\mathrm{d}\)
8 W. Can be mounted for blow-
ing or exhaust. Aluminum hous ing, brushless, ball-bearing type. 1" Thin: 5 plastic blades with reathered edges.
Mir - Centaur \#CUDC24K4.601 Hem "8541 \$19.95 New 11/2" Standard: 5 plastic blades Mir - Centan "CNDC24 MAGNIFYING LAMP

Multi position, \(30^{*}\). completely adjustable swing arm w/3-way metal C-clamp. Has \(4^{\prime \prime}\) diopter magnitying lens, w/ruler. Porcelain lamp socket, \& on/off switch; uses up to a 60 W bulb. Color: Belge. UL listed Item 13136 \$24.95 New

\section*{- :ATTERISS -}

FANS - BLOWERS

\section*{GELLCELL/LEAD ACID} BATTERIES
RECHARGEABLE - Used for solar energy storage, alarm systems,
remote control boats, robots, etc

6V@7.5AH
Dim. \(5^{\% \sim} \times 3 \%{ }^{*} H \times 2^{n} D\)
Mfr - EPC HOO3
Itern \#13324 \$5.95
6V@2.6AH

Mír - EPC 00030
liem \#13326 \$3.95
12V@4.5AH
Dim.: \(6^{\prime \prime} \mathrm{L} \times 3 \mathrm{~B}^{\prime \prime} \mathrm{H} \times 2 \mathrm{H} \times \mathrm{m} \mathrm{D}\)
Mir - EPC 0027
Hem \#13325 \$7.95
12V@2.6AH

Mir - EPC \#0026
Item \(\# 13323\) \$5.95
12V@1.2AH
Dim.: \(3 \% \mathrm{~L} \times 2^{\prime \mu} \mathrm{H} \times 1 \%^{*} \mathrm{D}\)
Mfr - EPC \#OO25
Itern \#13327

\section*{"The First Source" - for electromechanical \& electronic} equipment and components - AMERICAN DESIGN COMPONENTS!

BLACKLIGHT ASSEMBLY
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Complete, functioning assembly includes ballast, on-off switch, power cord, sockets and F4T5-BL. blacklight. Mounted on a \(71 / 8^{\prime \prime} \times 31 / 8^{\prime \prime}\) metal plate. Use for specia effects lighting or erasing EPROMS. \\
CAT BLTA \(\$ 10.00\) EACH
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{1 mA METER} \\
\hline \begin{tabular}{l}
Modutec 0-1 mA signal \\
strength meter with KLM \\
\(\log 0.1 / 4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 7 / 8^{n}\) deep. \\
CAT: MET-2 \(\$ 2.00\) each
\end{tabular} & \(\frac{\square}{\frac{10 y}{8}}\) \\
\hline
\end{tabular}

RECHARGEABLE NI-CAD BATTERIES AAA SIZE 1.25 V 180 mAH C) C SIZE 1.2V 1200 mAH 1 SUB-C SIZE solder tab COMPUTER GRADE
CAPACITORS CAPACITORS 1,400 MFD 200 VDC

7,500 MFD 200 VDC CAT: CG-75 \(\quad \$ 4.00\)
22,000 MFD 25 VDC CAT. CG-22 \(\$ 2.50\)
72,000 MFD 15 VDC \begin{tabular}{|l|l|}
\hline \(2^{\prime \prime}\) dia. X 4 4/8" & h. \\
CATi CG-130 & 33.50 \\
\hline
\end{tabular}

TRANSTSTORS
2N2222A
PN 2222 A 2N2904 2N 2905 2 N3055

PN3569
A/B SWITCH JVC: PU53593lligh
quality quality A/B
switch. Measures \begin{tabular}{l}
Yeasur \\
\(33 / 4^{4}\) \\
75 OH \\
\hline
\end{tabular} 75 OH
CAT0

\$2.25

\section*{\(\$ 2.00\)}
\(\$ 2.20\)

\subsection*{4.25}
4.25 .25

\subsection*{13.8 VDC REGULATED POWER SUPPLY}

Soldd state, fully regulated 13.8 Vdc power supplifes.
Both reature 100\% solid state constructon, fuse
2 AMP CONSTANT, 4 AMP SURGE
CAT* DVP-412 \(\$ 22.50\) each
3 AMP CONSTANT, 5 AMP SURGE

LED'
Siandard Jumbo Diffused \(\begin{array}{ll}\text { RED } & 100 \text { for } \$ 13.00 \\ \text { CAT LED-1 }\end{array}\) 1000 for \(\$ 110.00\)
10 for \(\$ 2.00\) \(\begin{array}{lr}\text { GREEN } & 100 \text { for } \$ 17.00 \\ \text { CAT LED-2 } & 1000 \text { for } \$ 150.00\end{array}\) \(\begin{array}{lr}\text { YELLOW } & 10 \text { for } \$ 2.00 \\ \text { CAT } & 100 \text { for } \$ 17.00\end{array}\) CAT LED- 31000 for \(\$ 150.00\)
FLASHING LED poerates on 5 Volts RED \$1.00 each GREEN \(\$ 1.00\) each CAT LED-4G 10 for \(\$ 9.50\)
BI-POLAR LED Lights RED one direction, GREEN the other. iwo leads.
CAT LED- \(\quad 2\) for \(\$ 1.70\) LED HOLDERS holder. 98 CLIPLITE LED HOLDER Makes L.E.D. look like a
fancy indicato
CLEAR
RED
GREEN
YELLOW

\section*{10}

CAT HLDCL-C CAT HLDCL-R
CAT HLDCL-G

\section*{STORES}

LOS ANGELES
905 S. VERMONT AVE LOS ANGELES, CA 90006 (213)380-8000

VAN NUYS 6228 SEPULVEDA BLVD. VAN NUYS, CA 91411
(818)997-1806

MAIL ORDERS TO: ALL ELECTRONICS P.O.BOX 567 VAN NUYS, CA 91408 TELEX TWX-510 1010163 ALL ELECTRONICS Poreign Customers

\section*{FOUL FREE}

800-826-5432
INFO:(818)904-0524
FAX:(818)781-2653 ouantities limiteo
MINHUM ORDERS \(\$ 10.0\)
CALIF ADD SALES TAX CALIF. ADO SALES TAX
USA: 83.00 ShiPpino NO C.O.O. 1 FOREIGN OROERS incluoe suffic

\section*{RELAYS}
 CAT 4 PRLY-12

\section*{1OAMP SOLID STATE}

CAT SSRLY-10
25 AMP SOLIC STATE OPTO 22: 240025 pist TTL compatable.
INPUT: \(3-32\) VD OUTPUT: 25 AMPS 240 CAT: SSRLY-2524 \(\$ 1500\)

VIC 20 MOTHERBOARD

26 IC's including 6502A and 6560. 2 ea. 6522 2 es. 8128,2 ea. 901486,3 ea. 21 lf . Not experimentation.
CAT VIC-20 \(\$ 15,00\) each

SWITCHING POWER SUPPLY

LIGHT ACTIVATED MOTION SENSOR

TRANSFORMERS

5.6 VOLT- 750 ma

CAT TX-56 \(\$ 3.00\)
12 V.c.t.-1 amp CAT: TX-121 \$4.00
12 V.c.t.-2 amp CAT TX-122 \(\$ 4.85\)
12 V.c.t. -4 amp CAT: TX-124 57.00
18 VOLT-650ma
CAT TX-186 \(\$ 2.00\)
24 V.c.t. -1 amp
CAT TX-241 \(\$ 4.83\) 24 V.c.t.-2 amp CATV TX-242 56.75
24 V.c.t.-3amp CATA TX- 243 59.50
24 V.c.t. -4 amp

\section*{SWITCHES}
miniature toggle SWITCHES
rated 5 Amps S.P.D.T. (ON-ON) Non threaded Nonshing P.C. mount. 75 c each S.P.D.T. (ON-ON) Solder lug
terminals. CATI MTS-4 10 for \(\$ 9.00\) D.P.D.T. (ON-ON) Solder fug terminals. \(\$ 2.00\) each MINI PUSH BUTTON
\(\qquad\) POLARITY SWITCH Designed to control an external
soxial relay on a satellite i.v.
system. Ideal for parts. Contains a 5 vola res. and many other parts on
CAT* RPDS \(\$ 1.75\) each \(\qquad\)

\title{
Radio Shaek Parts Place HOLIDAY VALUES AT A STORE NEAR YOU
}

\section*{Special Order Hotline}

No Postal or Shipping Charge －Fast Service ■ No Minimum

Your Radio Shack store manager can special order parts and accessories not a part of our regular stock． These items include linear and digital ICs．micropro－ cessors，diodes．semicon－ ductors tubes phono styli， crystals and more．We＇ll call you when it arrives－in about a week

FM Receiver on a Chip
NEW！
No IF Transformers Needed

TDA7000．Combines RF mixer，IF and demodulator stages in one monolithic IC．Just what you need to build a small，inexpensive mono FM band receiver． repeater monitor or public service band monitor with a minimum of external components．Frequency－locked－loop sisstem with 70 KHz IF．Includes pin－ out and application notes．\＄276－1304

\section*{Reference Guide and How－To Books}

\section*{NEW！ \\ Essentials For \\ Your Test Bench}

NEW！ 1988 Semiconductor Reference Guide． Over 80,000 types． 288 pages．
\＄276－4011
3.99 projects 128 electronics Timer IC Mini－Notebook．Learn to use the versa－ tile 555 and 556 ICs． 32 pages． \＃276－5010

\section*{TTMTMTTMTI}

Add Speech to Your Computer

SPO256－AL2 Speech Synthe－ sizer．Easy to interface with most computers．With data．Requires 3.12 MHz crystal（special order） 28－pin DIP．\＃276－1784

CTS256－AL2 Text to Speech IC Translates ASCII characters into control data．Requires 10 MHz crystal（special order）．40－pin DIP． \＃276－1786

Sight＇n Sound

（1）NEWI Brilliant Ruby－Red LED With Hoider．\＃276－088 （2）Tri－Sound－Siren Buzzer．Three extra－loud outputs．W276－072．．．5．95 （3）Pulsing Buzzer．Outputs \(80 \mathrm{OB}, 2 \mathrm{~Hz}\) pulse＊276．058
Micro Controls

NEW！
（8）Variable Tun
（272．1337 Tuning Capacitor． 335 pF （9）5－Watt，25－Ohm Rheostat．Wire wound pot 271－265 2.99 （10）High－Precision Thermistor． Range \(-50^{\circ} 10+110^{\circ} \mathrm{C}\) ． \(271 \cdot 110 \quad 1.99\)

Blue styrene plastic．Internal slots for PC boards．With screws．
\begin{tabular}{|c|c|c|}
\hline Size & Cat No & Each \\
\hline \(4 \times 2 \times 17{ }^{16}\) & 270.220 & 1 \\
\hline \(4 \times 2^{1 / 16 \times 1 / 16^{0}}\) & 270.221 & 189 \\
\hline \(4{ }^{4} 4 \times 21 / 2 \times 11 / 16^{\prime \prime}\) & 270.222 & 219 \\
\hline \(6 \times 3716 \times 1\)／fa＂ & 270－223 & 269 \\
\hline \(71 / 2 \times 41 / 3 \times 21 / 4^{4}\) & 270.224 & 299 \\
\hline
\end{tabular}

Parts Bargains

（12）

（15）
\begin{tabular}{|c|c|}
\hline \(\mathrm{F}_{10}\) & Description \\
\hline 11 & Circuit Breaner 2 Amps \\
\hline
\end{tabular} \begin{tabular}{|c|}
\hline Cat No \\
\(270-4390\)
\end{tabular} \(\begin{array}{lll}11 & \text { Circurt Breaker，} 2 \text { Amps } \\ 12 & \text { Fuses Therm } \\ 13 & \text { Rogtal Fuse Anarser Clio }\end{array}\) \begin{tabular}{|l|}
\hline \(270-1320\) \\
\(270 \cdot 1\) \\
270.1219 \\
270.206 \\
\hline
\end{tabular} 14 DPOI Relay． 3 A 125 AC 270.206 5 SPST On／Ot！Swrch

With Pin－Out \＆Specs 4000－Series CMOS ICs．
\begin{tabular}{|l|l|r|}
\hline Type & Cat．No． & Each \\
\hline 4001 & \(276-2401\) & 99 \\
4011 & 276.2411 & 99 \\
4013 & \(276-2413\) & 1.19 \\
4017 & \(276-2417\) & 1.49 \\
4049 & \(276-2449\) & 1.19 \\
4066 & \(276-2466\) & 1.19 \\
\hline
\end{tabular}

Line Driver ICs for Data
MC1488 RS－232 Quad Line Driver．For sending peripheral data． 14 －pin DIP \＃276－2520 ． 1.29 MC1489 RS－ 232 Quad Line Re－ ceiver．Use with above 14 －pin DIP \＃276．2521

CMOS \＆Bipolar Timers
TLC555．Low－power CMOS Same pin－out as 555 but operates up to 2 MHz 8－pin DIP
\＃276－1718
1.39

Bipolar Resettable Timers．
\begin{tabular}{|c|c|c|c|}
\hline Type & OIP & Cat No & Each \\
\hline 555 （Singie） & 8－P PI & \(276-1723\) & 119 \\
556（Dual） & 14．Pin & \(276-1728\) & 1.49 \\
\hline
\end{tabular}

\section*{First－Quality ICs} 56 （Dual）14．Pin 276 －1728 1.49

\section*{Audio Hookups}

RS－232 Hardware （16）NEW！

（16）RS： 232 Inline Tester．Diagnose in terface problems in micros and periph erals 276－1401 ．．．．．．．．．．．．．． 14.95 （17）RS－232 Spike Protector．AC line prolection is nol enough－Guard each port to be sure！276－1402 ．．．． 16.95

\section*{Dual－Track Split Supply}

Soldering Tools／Supplies （18）

（18）Ten－Plece Electronic Tool Set．＂64－2801
\begin{tabular}{|l|l|l|l|}
\hline Fig． & \multicolumn{1}{|c|}{ Description } & Cat No & Each \\
\hline 19 & Vacuum Desoldering Tool．Non－Stick Tip & \(64-2098\) & 495 \\
20 & Helping Hands．2 Adjustable Clips & 64.2093 & 7 49 \\
21 & Rosin Flux Remover， 602 & 64.2324 & 189 \\
\hline
\end{tabular}

Bench LCD Multimeter

99＊5
Low As \(\$ 15\) Per Month．

Manual／Autoranging－Stores Min／Max Values The 31－segment anatog bar graph displays input peaks and Irends．Transistor checker，diode－checker，memory function and buzzer continuity checker．Measures to \(1000 \mathrm{VOC} .750 \mathrm{VAC}, 10 \mathrm{ACIDC}\) amps， 30 megonms re－ sistance．Impedance： 10 megohms ．22－195

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Free Information Number} & Page & 191 & Daetrun . 126 & - & NRI. & 34. 18 \\
\hline 81 & A.I.S. Salellite & . 80 & 127 & Deco Industries 80. 81 & 71 & New-Tone Electronics & \\
\hline 108 & AMC'Sales. & & 82 & Digi-Kıy . 120 & 194 & NuScope Asmociates. & 99 \\
\hline 107 & All Ellectronics & 124 & - & Digital Research Computers 112 & 810 & OCTE Electronits & . 81 \\
\hline 113 & Allen W.B. & 8.3 & - & Elec. Industry Aswociation 73 & 1111 & Omnitron & 24 \\
\hline - & Amazing Devices. & 16\% & - & E.lcetronic Technology Tiodas 11.3 & 211 & PC' Plus. & (9) \\
\hline 116 & American Design Compments & 3. 122 & 120. 180 & Elephant Filectronics 80.81 & - & Pacific (\({ }^{\text {able }}\) & 107 \\
\hline 195 & American Reliance & . 37 & 1013 & Firestik 11. 78 & 56 & Parasts Express. & 110 \\
\hline - & Amuay & .94) & 121 & Fluhe Mrg. is & 111 & Pomona Filectronics & 5 \\
\hline 77. 2115. & H\&K Precision. & & - & Fordham Radio V \(^{\text {d }}\) & - & Prentice-Hall/College Division. & 28 \\
\hline 216. 207 & B\&K l'recision. & 3 & 191 & CEFI. 110 & 78 & Radio Shach. & 125 \\
\hline 2108 & B\&K Precision. & 3 & - & Grantham College of Engineering 25 & 196 & Regenty & 46 \\
\hline 98 & Beekman Industrial & 26 & 62 & Hammg . 35 & 184 & Stil l Labs. & \\
\hline 85 & Mlue Star Industries & . 81 & 86 & Heath . 15.14 & 176. 177 & Siencore. & 39.41 \\
\hline 109 & (\& S Sales & \(\ldots 16\) & - & 18CEI . 78 & 178. 179 & Sencure. & 4.3. 4.5 \\
\hline 6) & CIE & . 8 & 59 & JIDR Instruments. 13 & 51 & Silicon Valles Surplus. & 166 \\
\hline 188 & Cabletronics. & . . 81 & 113. 181 & JIDR Microdevices. 116. 117 & 74 & Solid State Sales & Iox \\
\hline 511 & Caig & . \({ }^{4}\) & 182, 183 & JIIR Micrudevices. IIX. 119 & - & Star Circuits & 32 \\
\hline - & Caribberan Electromics & . 75 & 114 & Jamero. 115.114 & 73 & TSM & . \(\mathrm{CV}^{3}\) \\
\hline 193 & Chenesko Products & ... 81 & 104 & Jan Crystals . \({ }^{37}\) & 92. 185 & Tektronix & 23. CV2 \\
\hline 52 & Circuil Cellar & 81 & - & , Joseph's . 33 & 198 & lentel & 36 \\
\hline - & Command Prosductions. . & . 26 & 197 & I Laser's Fidge . \({ }^{\text {g }}\) & 123 & Iest Prubes. & ... 17 \\
\hline 79 & Communications Eilectronics. & . . 7 & 87 & St 'M Ellectronics (k) & 199 & C.s. Cahle/Movic Tïne & \\
\hline 202 & Compstar. & . .99 & 9.3 & Mark V. Eilectronics 121 & 192 & I nited Electronic Supply . & 22 \\
\hline 55 & Contact East & . 80 & 6.3 & Micro-Mart 111 & 53 & United Imports & 3x \\
\hline 189 & & . 36 & 61 & Microprocessors (Inldd. \({ }^{\text {¢4 }}\) & 186 & WPT Publications & 76 \\
\hline 187 & Crystek & . . \(4+\) & 117 & Mouser . 32 & - & Wolfer Productions & (k) \\
\hline
\end{tabular}

\section*{DOES YOUR DIGITAL CAPACITANCE METER DOTHIS?}

SHIPPING INSTRUCTIONS:
All units shipped out F.O.B. Buffalo NY via United Parcel Service (except Hawall \& Alaska) unless otherwise indicated (in which case shipments will be F.O.B. Canada)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{PLEASE SEND ME} & U.S. FUNDS \\
\hline - (QUANTITY) MC300(S) (a & \$169.95 & \$ \\
\hline CARRYING CASE & \$ 16.95 & \\
\hline AC ADAPTOR & \$ 9.95 & \\
\hline \multicolumn{3}{|l|}{SHIPPING AND HANDLING \(\mathfrak{f}\) \$5.00 PER INSTRUMENT} \\
\hline \multicolumn{2}{|l|}{[ICHECK []MONEYORDER} & \\
\hline []VISA []MASTERCARD & TOTAL & \\
\hline \multicolumn{3}{|l|}{[] CARD No.} \\
\hline \multicolumn{3}{|l|}{EXPIRY DATE _ SIGNATURE} \\
\hline \multicolumn{3}{|l|}{NAME} \\
\hline \multicolumn{3}{|l|}{ADDRESS} \\
\hline CITY _ STAT & _ ZIP & \\
\hline
\end{tabular}

Gernsback Publications, Inc.
500-B Bi-County Blud.
Farmingdale, NY 11735
(516) 293-3000

President: Larry Steckler
Vice President: Cathy Steckler
For Advertising ONLY
516-293-3000
Larry Steckler publisher
Arline Fishman advertising director
Shelli Weinman advertising associate
Lisa Strassman credit manager
Christina Estrada advertising assistant

\section*{SALES OFFICES}

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
\(259-23\) 57th Avenue
Little Neck, NY 11362
718-428-6037. 516-293-3000

\section*{MIDWEST/Texas/Arkansas/}

Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road-Suite 339
Northfield, IL 60093
312-446-1444
PACIFIC COAST/ Mountain

\section*{States}

\section*{Marvin Green}

Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys. CA 91401
1-818-986-2001

\section*{FOR FREE INFORMATION USE THESE POST－PAID CARDS}

1 Print your name，ad－ dress and Zip Code on one of the attached postage－paid cards．

\section*{2 Circle the number（or numbers）on the card that matches the} number at the bottom of each ad or editorial item that you want in－ formation on． Advertisers＇free infor－ mation numbers also appear in the ad index on the facing page．

Mail the card．It＇s Postage－Paid．
The bottom free－informa－ tion card is a BUSINESS／ PROFESSIONAL CARD．If you use this card you MUST I complete the spaces for Company Name，Title，and Phone Number．If these are not filled in，the card will not be processed．

\section*{NOTE：}

Use the postcard address for Free Product Informa－ tion only．Address all edi－ torial inquiries to Editor， Radio－Electronics，500－B Bi－County Blva．，Farm－ ingdale，NY 11735

Pallo
Your favorite electronics magazine and still getting better都

 N N N N N N N N N －ELECTRONICS？
\(8 \sqcap\) No \(6 \square\) Yes \(\begin{array}{ll}91 & 109 \\ 92 & 110\end{array}\) Nさパト

 の号 のロニッツさッロミロ

\section*{BUSINESS REPLY MAIL \\ FIRST CLASS PERMIT NO 59：BOULDER COLORALO}

\section*{Electronices SUBSCRIPTION SERVICE P．O．Box 51866 BOULDER，COLORADO 80321－1866}

\section*{NO POSTAGE \\ NECESSARY \\ IF MAILED IN THE UNITED STATES}

\section*{BUSINESS REPLY MAIL \\ FIRST CLASS PERMIT NO 132 DALTON MA}

POSTAGE WILL BE PAID BY ADDRESSEE
Fadia-
FREE PRODUCT INFORMATION P.O. Box 388 DALTON, MA 01226-9990

\author{

}

4SM73
Subscribe today to the magazine that keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

\section*{check offer preferred}
\(\square 1\) Year-12 issues ONLY \(\$ 16.97\) (You save \(\$ 10.03\) off single copy price)2 Years (SAVE MORE)-24 issues \$32.97 Canada-12 issues \$22.97(Yous (SAVE MOR EHCanada-24 issues \(\$ 44.97\)
ALL SUBSCRIPTIONS PAYABLE IN U.S. FUNDS ONLY
Payment enclosed
\(\square\) Bill Me
\(\square\) Check here if you are extending or renewing your subscription

Name (Please Print)
Company Name (If applicable) \(\qquad\)
Address \(\qquad\)
City State \(\qquad\)
Allow 6-8 weeks for delivery of first issue

\section*{For New} Ideas In Electronics read RadioElectronics every month. During the next 12 months

Radio-Electronics will carry up to
the minute articles on:
- Computers - Video
- Solid-state technology
- Outstanding construction projects
- Satellite TV - Telephones
- Radio - Stereo - Equipment Reports
- Test equipment - VCR's
- Servicing
- Industrial electronics

NEW IDEAS AND INNOYATIONS
IN ELECTRONICS APPEAR IN EVERY ISSUE OF RADIO-ELECTRONICS
KEEP UP TO DATE! DON'T MISS ANY ISSUES!
SUBSCRIBE TODAY!
USE THE ORDER CARD ON YOUR LEFT!

Formerty Special Projects
Delivers construction article after construction article.....Exciting columns including Jensen on DXing,
Freidman on computers, Tost bench
tips, Noll with Calling All Hams, New

\section*{BUSINESS REPLY MAIL \\ FIRST CLASS PERMIT NO 132 DALTON. MA}
postage will be paid by addressee

FREE PRODUCT INFORMATION
P.O. Box 388

DALTON, MA 01226-9990

SUBSCRIBE TODAY!
USE THE REPLY CARDS ON YOUR LEFTI TEL 914.937-2447 OR 914-834-7190

\section*{}

 SENSITIVY INPUT 4 TKJ 300 mV , OUTPUT 2.5BR VOUME, BNLANCE, BASS,
TREBE CONTRIS POWERSUPRLY

\section*{T5ाM 44}

AUDO POWER MCOULE. SOW PEAK PONEA 25W RMS. INPUT SENSITIW BOOTVIATK OUTPUT MPPEDANCE WBI POWER SUPPLY 40 V.C. 12
 RMS. INPUT SENSITIVY ATVU15OmV, 2.5 TO S OUIPUT COMPE ETE WTH VOUME BASS, TREEL E CONTMOL. POWER SUPPLY TSM 5B
AUDO POWER MOOUE SOW PEAK POWER 4SW RMS: INPUT SENSITIVY ATWSOOMV TSM 18
\begin{tabular}{l}
TSM 18 \\
AUDO AMPLIFER \(15 W\) PEAK POWER \\
\hline 12.07
\end{tabular} RMS, INPUT SENSTIUY \& TKI ISOMV, 2.5 TOBS OUTPUT COMPLETE WTH VOLLME BASS, TREQLE CONTAO POWER SUPPLY

\section*{TSM 19}

9 PEAK POWER 35.05
AUDIO 24OW PEAK POWER. \(220 W\) RMS THD \(0.3 \times\), RESPONSE 15 HZ 100 KHZ POWER SUPPLY TOV MAX. HEAT. SINKS NOT WCLUOED WTTH THE KIT. TSM \(66 \quad \$ 16.50\) AUDIO POWE A MCDULE LOW PE AK POWER 2OW FMS. INPUT SENSITIVY A 7 K 300 mV
OUTPUT 2 SIBR POWER SUPPLY IVV D.C. 24 TSM 68 STEREO AMPLFIER \(2 \times 20 \mathrm{~W}\). INPUT ATKK 300 mV , OUTPUT \(2,56 \Omega\) SUP VOL ME, BASS, THEALE, POWER SUP PI

\section*{}

STEAEO MMP \(2 \times 50 \mathrm{~W} \quad \$ 46,30\)
PEAK. NPLT SENSTTIV ATKR300mV OUTPUT WAR. SUPPLIEDWITH HEATSNMK AND BNANCE, VOLUME. BASS, TREBLE CONTAOLS POWER SUPPLY LOV D.CRAASY TSM 118 SOWER AMR 562.31 Sn OUTPUT IMPEDANCE INPUT ATHEOOOM BR OUTPUT IMPEDANCE INPUT SOKBOO POWER SUPPLY \(2 \times 40 V\) D.C BA MEATSHKS NOT MCLUDED NTHE KIT.
TSM \(89 \quad 330.38\) AUDVO BOOSTEA STE REO \(2 \times 40 W\) FOR CAR RADIO, OUTPUT \(2.5 \Omega\) POWER SUPPLY
\(12 / 16 \mathrm{~V}\) D.C /4A.
TSM 102
18LED OUTPUT POWERLEVE METER POWERED BY THE MOOULATION.
TSM 128
\(2 \times 8\) LEO OUT PUT LEVE METEA, STEAEO \(2 \times 50 W\). POWER SUPPLY 1520 V D.C.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Nutron Computers \& Electronics \\
821 E Rooscreit Road \\
Lombard I 90146 \\
Tel 3126918900
\end{tabular} & \begin{tabular}{l}
Auto Sound System \\
1269 East Main Street \\
El Cajon. CA 9202 \\
Tel \(618-442\)-7022
\end{tabular} \\
\hline Kelvin Electronice 7 Farchild Avenue Plantiew. NY 18803
Tel \(516-349-7620\) Tel & Omnitron Electronics 770 Amslerdam Ave Tel 212.865-5580 \\
\hline
\end{tabular}

TSM 35
MICROPHONE STEAEO PREAMPLIERER: NPUT SENSTIVY STVIROOR OA MOAE
OUTPUT JOOmV, POWER SUPPLY \(12 V\) D.C.

\begin{tabular}{|lc|}
\hline TSM 62 & \(\$ 13.00\) \\
CAA ANTEANA PAE AMPLIFIER MWA W/FM.
\end{tabular} ROWER SUPPLY \(12 / 16 \mathrm{Y}\) DG/O.1A. TSM 335 PHYSHOOIC TONE CONTHOL. STEREO.
PH INPUT IMPEDANCE \(150 \mathrm{mV} / 160 \mathrm{~K}\). OUTPUT

TSM 146 833 STEREO \(2 \times 5\) BANDS EOUNLIZER, SUPPLIEL WITM 10 ROTENTIOMETERS, FREOUENCH
RES PONSE SOHR TO 15 KH P POWER SUPR 32 K 12 V D.C 10.2 A
\(\qquad\) MONO 5 BANDS EOUMLZER SUPPLIED WTTH 5 POTENTIOMETERS FREOUENCY AESPONESE 50 HZ TO 15 KHZ . POWER SUPPLY \(2 \times 12 \mathrm{~V}\) D.C. 0.15 A .

TSM 61 FM RECEIVER OUTPUT I WATT 48 an POWER SUPPLY 1 IIGV D.C. 102 z

TSPA 158 127.42 FM RECEIVER, OUTPUT 20 WATTSAR POWER SUPPLY 12/16V D.C. 12A.

\section*{TSM 211}

MEDIUM WAVE RECEIVER. 1 w.0.5 w RMS ALOHO ROWER POWERSUPPLY

\section*{TSM 205}

TSM 205 ,
PM REC ENER HEADPHONE STEREO OUTPUT
POWER SUPPIY \(\$ 12 \mathrm{~V}\) O.C 10.1 A

SCCPE \(\mathrm{IN}^{1 / 2 \text { Digital }}\)
muvimeters

\section*{SCOPE}

SCOPE \(31 / 2\) Digil Pocket Sized Audio

Model DVM-636 • 7 function, 32 ranges 5.5150

Sigial Generator Model RC-555 35 Test leads included -8 ranges with full
values 102000 UF values to 2000 uF
- LSt crrcuit - Cryal time - LSt circuit - Crysrancy range
base. Frequenc x 50 KHz
450

SCOPE \(4 / 2\) D Digit LCD SCOPE \(4 / 1 /\) Digit
Bench Digital Mutimeter

Model DVM-6005 -42 95
Test lead set 6, " batteries include haracters - 0.4 " high charal priod: 500 - Conversion. Automatic. Test leads \& \(9 V\) batatortion included Low signal 46 step sine-wave frequency \({ }^{-x H}\) selected frequency 1.5 KHz
range 20 Hz to negative polarity range range 2 KHz to
\(\times 100\) rater

\section*{Thin with 8 Full Functions} Mode DVM- 632 Measures only \(53 / 8^{\prime \prime} \times 213 / 16^{1 "} \times 1 / /^{\prime \prime}\) Measures oniuxe test leads included - \(0.5 \%\) accuracy - Transistor gain test • Audible continuity checking \& diode test
- 10 Amp measuremen zipped Carning Case
cc-30 zipped Carying Case
cc-30 \(5,4,495\)

ASK POR FREE CATALOG
Money orders, checks accepted. C.O.D.'s require 25\% deposit.

Toll Free
800-645-9518
In NV State 800-832-1446
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Service \& Shipping Charge Schedule Continental U.S.A} \\
\hline FOR ORDERS & ADD \\
\hline \$25.5100 & S4 50 \\
\hline \$101.5250 & S6.00 \\
\hline \$251-500 & \$8.00 \\
\hline \$501-750 & \$10.50 \\
\hline \$751-1.000 & \$12.50 \\
\hline \$1.001-1500 & \$16.50 \\
\hline \$1.501-2000 & \$20.00 \\
\hline \$2,001 and UD & \$25.00 \\
\hline
\end{tabular}```

[^0]: As a senvice to readers. RADIO-ELECTRONICS publishes avallable plans or information relating to newsworthy products rechniques and scientific and technological developments Because of possible variances in the quality and condition of materials and workmansh1p used by readers. RADIO.ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine
 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents equipment or circuitry. and suggests that anyone interested in such projects consult the making, using, or selling of any such quipment or circuitry. and suggests that anyone interested in such projects consult a patent attorney.
 RADIO-ELECTRONICS, (ISSN 0033-7862) December 1987. Published monthly by Gernsback Publications, Inc.. 500 B Bi-County Boulevard. Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices \$16.97. Canada $\$ 22.97$. all other countries $\$ 25.97$ All subscription orders paye-year subscription rate U.S.A. and possessions money order or check drawn on a U.S A. bank. Single copies $\$ 1.95$. 1987 by Gernsback Publications. Inc. All rights reserved Printed in U.S.A

 POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept. Box 55115. Boulder, CO 80321.5115

[^1]: ## COMmAND PRODUCTIONS

 FCC LICENSE TRAINING, Dept 90
 P.O. Box 2223, San Francisco, CA 94126

 Please rush FREE details immediately!
 NAME
 ADDRESS
 ciIY
 state

