

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

ONET DRIVE DRUNK!

alidotirelect

BREATH.

Ehatroris Alcohal Checker -.) . 16

$$
\begin{aligned}
& \text { (e) } 10 \mathrm{FAIL} \\
& 08 \text { WARN }
\end{aligned}
$$

$=\sim 25$

BUILD A DIGITAL PHONE LOCK ELECTRONIC THERMOMETER PROJECT DIFFERENTIAL DISTORTION TESTS \star Computeringest \star HARDWARE HACKER

Fluke. FirstFamilyofDMMs.

When accuracy, performance and value are important, professionals the world over look to Fluke - the first family of DMMs.

Reliable Fluke-quality $31 / 2$ - or $41 / 2$-digit DMMs fit every need - from design engineering to industrial troubleshooting.

There's the low-cost 70 Series - the most DMM you can get for the money. The high-energy protected 20 Series - built to survive the toughest jobs. The reliable 8020B Series - made to withstand the rigors of the field service environment. The precise 8060A Series - the most powerful and complete test and measurement system available in a handheld package. And, of course, the versatile Bench/ Portables that carry on the Fluke tradition for precision and durability in lab-quality bench instruments.

Fluke comes in first again with the world's largest selection of quality accessories to help extend the capabilities of your DMM even further.

There's no need to look anywhere else. Uncompromising Fluke design and leading edge technology are the reasons why attempts at imitation will never fool the millions of professionals that accept nothing less than a Fluke.

For your nearest distributor or more information, call toll-free 1-800-44-FLUKE, ext. 33.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke's newest $31 / 2$-digit bench meter, the 37 , oflers 0.1% basic dc accuracy, analog/digilal display, fused 10A range, MIN/MAX recording, Touch Hold, and internal storage compartment.

FLUKE

October 1988

Vol. 59 No. 10

BUITI THIS

51 BREATH-ALERT
Too much to drink? Test your blood-alcohol level electronically. John DiLalo

55 ELECTRONIC THERMOMETER
A fun, easy-to-build desktop novelty item!
Marc Spiwak, Associate Editor
58 DIGITAL TELEPHONE LOCK
Build the Tele-Guard to prevent unauthorized use of your phone.
Steve Sokolowski
62 DIFFERENTIAL AUDIO-DISTORTION ANALYZER
Test your amplifier's sound quality by comparing its input and output signals.
Herb Friedman, Communications Editor
Eadie
65 Fletronirs ADVANCED CONTROL SYSTEM
Part 9. Wireless home automation.
Jim Bybee

TMGHINLOGY

41 ISDN: THE TELEPHONE OF TOMORROW
How the Integrated Services Digital Network can bring the world into a New Age of Information.
Eric E. Summer

Drpaituinits

6 VIDEO NEWS

What's new in this fast changing field.
David Lachenbruch
24 EQUIPMENT REPORTS
Lattice Semiconductor's GAL39V18 Development Kit.
36 COMMUNICATIONS CORNER
Multiplexing by color. Herb Friedman

39 SHORTWAVE RADIO
General conditions and fundamentals.
Stanley Leinwoll
71 HARDWARE HACKER
Patents and patenting.
Don Lancaster
80 AUDIO UPDATE
The Audio Answerman returns Larry Klein

auld a syuthey card
To mprow vour broia power poye to
SUIL A BIOFEDABCK MONHOR worn be concol wert broin wows foge os

PAGE 85

 xaw

PAGE 41

ATin LOPRE

122 Advertising and Sales

 Offices122 Advertising Index
12 Ask R-E
123 Free Information Card
16 Letters
101 Market Center
32 New Products
69 PC Service
4 What's News

ON THE COVER

It isn't easy to judge when you've had too much to drink-or to convince someone else that he's in no condition to get behind the wheel of a car. The Breath-Alert offers a friendly, yet definitive, measurement of a person's blood-alcohol concentration by analyzing his exhaled breath. The convincing test is done by simply blowing into a straw. The Breath-Alert's different-colored LED's indicate increasingly dangerous levels of alcohol in the bloodstream, and when the legal limit is reached a buzzer sounds also. To learn how to build this life-saving and educational device, see page 51.

COMING NEXT MONTH

THE NOVEMBER ISSUE IS ON SALE OCTOBER 4

THE FUTURE OF FAX

A pair of articles examine the history of fascimile, and how it works.

COPING WITH COILS

The easy way to pick the proper inductor, and how to make your own.

DIGITAL PHONE LOCK

Finishing up construction, and adapting the unit for pulse lines.

ComputerDigest

The new EIA-232 standard replaces the RS-232.

[^0]
Padio
 = eatroniss

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Art Kleiman, editorial director
Brian C. Fenton, editor
Carl Laron, WB2SLR
editorial associate
Marc Spiwak, associate editor
Jonathan A. Gordon,
assistant technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman,
computer editor
Robert A. Young, assistant editor
Byron G. Wels, editorial associate
Jack Darr, CET, service editor
Robert F. Scott,
semiconductor editor
Herb Friedman,
communications editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch, contributing editor
Don Lancaster. contributing editor
Richard D. Fitch,
contributing editor
Kathy Campbell, editorial assistant
Andre Duzant, technical illustrator
Injae Lee, assitant illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes, editorial production
Karen Tucker, advertising production
Marcella Amoroso, production traffic
CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro, circulation director
Wendy Alanko, circulation analyst
Theresa Lombardo. circulation assistant
Nancy Estrada, manager. R-E Bookstore
Typography by Mates Graphics Cover photo by Herb Friedman
Background photo by
Alfred T, Campbell
FPG International
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 122.

Intermittents. We HearYou.

Introducing The Heavy-Duty DMM With An Audible Readout That Lets You Keep Both Eyes On The Job.

Intelligent design and solid construction make the new HD 150 Series the best DMMs in their class.

They're the latest in a distinguished line that began when Beckman Industrial pioneered heavy-duty DMMs with their distinctive yellow color. Many competitors have since imitated that color. As for imitating their performance, no one comes close.

The HD 150 Series attains new levels of excellence with a range of advanced features. They're waterproof. Drop proof.

Auto-ranging. Slim-styled for onehand comfort and convenience. With auto-off to prolong battery life. Plus 2 fuses, PTC resistor and MOV for unsurpassed overload protection.
Audible readout. A "sound" reason to go with the HD 150 Series. With this unique feature on the HD 153, you measure parameters by listening to a continuous variable tone. As the parameter you measure rises or falls, the tone's frequency increases or decreases, accordingly. Use it for volts, amps, or ohms. It's

Beckman Industrial

Beckman Industrial Corporation
Instrumentation Products Division
A Subsidiary of Emerson Electric Company
3883 Ruffin Road, San Diego, California 92123-1898
(619) 445-3200 • FAX: (619) 268-0172 • TLX: 249031 Were'the One.

ideal for peaking and nulling, too.

Intermittent alert. A key application of audible readout. The HD 153 pinpoints, intermittents by emitting a "crackling" sound when they're detected. The esponse sounds in about 1 msec -far faster than the information appears on any DMM display.

Built tough to work hard. The HD 150 Series DMMs are so tightly sealed against water and grime that they're guaranteed for five years against contamination. And, because they're built so tough, they're guaranteed for two years against amy damage (except abuse). Crashes, overloads, moisture, dust. . you name it. The HD 150 Series can handle it all!
Listening is believing. For a hands-on demo, see your distributor now. learn why the HD 150 Series is the soundest DMM value you'll see. Or hear.

Key Specifications
Logic function. The HD 153 detects TTL or CMOS logic pulses using standard test leads.

Easy to use.

The HD 150 Series lets you read the LCD even at wide angles. With the large rotary dial you
select functions with one-handed
(right or left) convenience. Autoanging speeds you to the right range. A. tilt-stand and Skyhook let you set or hang the DMM almost anywhere.

What's News

GE SCIENTIST DR. RICHARD I. HARTLEY examines the layout of an IC designed with the aid of PARSIFAL.

Scientists from the GE Research and Design Center (Schenectady, NY) described an advanced "silicon compiler,"intended for the design of algorithm-specific IC's for high-speed digital-signal processing, at the recent 25th Design Automation Conference at Anaheim, CA. Speeds in the order of 500 million operations per second are possible with IC's that are compiled with the new software, called PARSIFAL.

The greater operating speed of integrated circuits that are compiled with PARSIFAL is a result of that computer-aided design tool's ability to create IC's that can add, multiply, and perform other operations on "words" up to 16 bits wide. Earlier compilers could han-
dle only one-bit words. Computational throughput is thus remarkably improved.

A fantastic decrease in design time is also possible by using PARSIFAL. One example is a $60,000-$ transistor IC that was successfully developed for a medical application. It can execute 10 million computations per second. Once the mathematical equations describing the IC's functional requirements had been finalized, it took a designer only one day-using PARSIFAL-to generate an initial layout. That feat could have taken up to five person-years with older design methods. The complete design/optimization cycle involved ten iterations of the IC, and took two weeks.

Electronic "artificial nose" detects dangerous gases

Scientists at Sandia National Laboratories, in Albuquerque, NM, have developed an "artificial nose" that can sniff out several hazardous gases. Concentrations of only a few parts per million can be detected.

The sensor-which has no moving parts, is about the size of a pencil eraser, and operates on a few nanoamps-consists of an array of six tiny diodes. Their active part is a thin layer of catalytic metal, less than 2,000 angstroms thick. Different combinations of palladium and a second metal-typically gold or silver-are placed on individual diodes during manufacturing to tailor their sensitivity to specific gases.
At room temperature, the sensor detects thre, types of hydrogen gas, and other gas compounds such as hydrogen sulfide and formic acid. At temperatures between $100^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$, it responds more quickly and detects some gases that cause no response at room temperature.
Various industrial and home applications are seen for the safety/ warning device. Particularly in the petrochemical industry, it might be used to indicate accumulations of noxious or explosive gases.

New ceramic superconductor works up to 120° Kelvin
A new ceramic compound that maintains its superconductivity at up to $120^{\circ} \mathrm{K}\left(-243^{\circ} \mathrm{F}\right.$) is reported by researchers at Sandia National Laboratories, Albuquerque, NM. The new superconductor is composed of thallium, barium, calcium, copper, and oxygen. It is capable of carrying currents in its superconductive state that are as high as those carried by the yt-trium/barium/copper-oxide type, which is superconductive only to 90° Kelvin.

R-E

DMM-3DO

3.5 DIGIT DAMIMULTITESTER

This fuil function 3.5 digit DMM offers highly accurate performance and a host of added features like audible cuctance to help you do the job-fast. Temperature orobe tesileads and blattery included.

* Basic DC accuracy: plus/minus 0.25%
* DC voltage: $200 \mathrm{mv}-1000 \mathrm{~V}$, 5 ranges
* Resistance: 200 ohms-20 M ohms, 6 ranges
* Capacitance: $2000 \mathrm{pi}-20 \mu \mathrm{f}$, 3 ranges
* Transistor Tester: $0^{\circ}-2000^{\circ} \mathrm{F}$
* Conductancer 200ns
- Fully overioad protected
* Input impedance: 10 M ohm

DMM-100

3.5 DIGIT POCKET SIZE DMM

Serfact for the fiedd service :echnicion. Shict poctet size without compromising features or accuracy Large easy \rightarrow read $1 / 2^{\prime \prime}$ LCD display. Fully overload protecteof or aafety. 2060 hour battery lite with standard $9 v$ cell. Probes and battery includers

* Basic DC accuracy:plus/minus 0.5\%
- DC voltage: $2 v-1000 \mathrm{v}$, 4 ranges
* AC voltage: $200 \mathrm{ov}-750 \mathrm{v}, 2$ ranges
* Resistance: zk ohms-2M ohms, 4 ranges
- DC current: 2 mA-2A, 4 tanges
* Fully overload protected
* Approx. $5^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$. Under 7 ozs

MODEL 2000 \$389.95

20 MHz DUAL TRACE OSCILLOSCOPE
Model 2000 makes frequency calculation and phase measurement quick and easy. The component tester aids in tast troubleshooting. Service echnicians appreciate the TV Sync circuits for veewing TV-V and TV-H and accurate synchronization o he video signal, Blanking, VITS, and V/H sync pulses.

* Exceptionally bright $5^{\prime \prime}$ CRT
* Built-in component tester

TV Sync filter
X-Y operation "110/220 volts

DMM-200

$\$ 49.95$
3.5 LIGIT FULL FUNCTION DMM

Get highly accurate performance at a very affordable price. Rugged construction, 20 amp current capability and 22 ranges make it a perfect choice for serious field or bench work. L.ow battery indicator and tilt-stand. Probes and 2000 mour battery imeluded.

- Basıc DC accuracy: plus or minus 0.25%
- DC voltage: $200 \mathrm{mv}-1000 \mathrm{~V}, 5$ ranges
- AC boltage: $200 \mathrm{mv}-750 \mathrm{~V}, 5$ ranges 6 ranges
- AC/DC current: $200 \mu \mathrm{~A}-20 \mathrm{~A}, 6$ ranges
* Input impedance: 10 M ohm
- Fully overload protected
- Approx. $7^{\prime \prime} \times 3^{1 / 24} \times 11 / 2^{\prime \prime}$. Wt. 11 ozs.

DPM-1000

3.5 DIGIT PमOBE TYPE DMM

Custom 80 pin : SI chip provides accuracy and relability in such a compact size. Autoranging, audible contiruily and gata hold feature help you plinpoint the probiem quickly Case and batteries included.

- Basic DC accuracy: plus'minus 1%
- DC voltage: $\overline{z v}-500 \mathrm{v}$, autoranging
- Resistance: $\Sigma \mathrm{k}$ ohms -2 M ohms autorangias
- Fully overload protected
- Insut impedance: 11 M ohm

* 2 YEAR REPLACEMENT WARRANTY
 * 3DDAY MONEY BACK GUARANTEE
 * TOLL FREE TECHNICAL SUPPORT
 * NEXT DAY AIR SHIP AVAILABLE

JOR INSTRUMENTE, 110 KNOWLES DRIVE, LOS GATOS, GA 95030 RETALL STORE: 1256 SOUIH BASGOM AVE, SAW JOSE, CA (408) 947-8881

VIDEO

 News

DAVID LLACHENBRUCH, CONTRIBUTING EDITOR

- HDIV Battle in high gear. Broadcasters, cable-TV operators, and equipment manufacturers are actively lobbying the FCC and Congress for their own approaches to highdefinition TVV. There's no unanimity on ths subject, but there seems to be some agreement that cable or direct satellite broadcasting may be the first to introduce HDTV in the United States. Broadcasters are urging the FCC not to reallocate some UTHF channels to other spectrum users, but to save them instead for added frequencies which probably will be needed for HDTV.

The networks and some other broadcasters have shown support for the ACTV system (Advariced Compatible TV), under development by the Darid Sarnoff Research Center, NBC, and Thomson Consumer Electronics (RCA- and GEbrand TV sets), which is designed to achieve HDTV in two steps. ACTV I would provide a compatible widescreen picture with improved definition in the bandwidth of a current TV channel. ACTV II would use a second channel to supply augmentation signals to realize true high definition at a future date.

Several other compatible systems are under development. Philips' HDS-NA (High Definition System for North America) would maintain existing channels but add "augmentation" material for additional definition and wide-screen extensions, along with digital audio, on one-half of an additional channel-thus one standard 6MHz channel could provide augmentation for two standarc NTSC channels. Other compatible systems are being developed, including systems by William Glenn of the New York Institute of Technology, and by the Del Ray Group, which would $g \in t$ a compatible HDTV picture into a single channel. As news continues to spread here about Japanese plans for satellite broadcasting of a non-compatible HDTV signal, agitation for quick action to develop a standard and get moving in the U.S. accelerates.

- Airvision. You take your seat in the airliner and instead of listening to music or reading a magazine, you flip the switch in the armrest to the TV news, a choice of several movies, language
instruction, or a live picture of the plane's takeoff-and watch the small bright color sereen embedded in the back of the seat in front of you (or in the between-seats console if you're traveling first class). You might even choose to play an exciting video game or two to while away your travel time.

How far in the future is all of that? Would you believe this year? Philips of the Netherlands and Warner Brothers pictures say the first aircraft equipped with Airvision will take off some time in 1988. The viewing screens initially will be three-inch active-matrix back-lighted LCD's; at least five VHS videocassette players in the aircraft will be used as signal sources, with other sources possible. They're proposing the system not only for aircraft, but for buses, taxicabs, trains, ships, and other modes of transportation. And a competing system, called ACES (Airborne Cabin services and Entertainment System), with four-inch flat color CRT's has been developed by Sony and Sundstrand Data Control.

- Bigger tubes coming. The larger-size direct-view picture tubes have been decreed a winner. So far, they're all made in Japaneverything larger than 17 inches in diagonal measurement, that is. But their success on the American market means that they'll soon be made here, too. The new Matsushita picture-tube plant, scheduled to start production next spring in Troy, Ohio, will specialize in larger sizes and be designed to produce 27 - and 31 -inch tubes. Toshiba-Westinghouse Electrcnics, currently producing 19- and 20-inch tubes in Horseheads, New York, is being expanded to turn out 30- and 32-inch sizes. Mitsubishi's plant in Canada is exploring production of larger tubes as is Thomson Consumer Electronics, which makes RCA and GE tubes in two American locations. Other plants looking into the larger sizes are Philips and Zenith. The biggest tube size in general use is the 35 -inch, currently made only by Mitsubishi in Japan. So far, there are no plans to produce that size in Fmerica, although there is some conjecture that Matsushita's new plant may turn out 36 -inch giants later.

R-E

HITACHI SCOPES AT DISCOUNT PRICES!

\$100 Price Reduction

was \$475 List $\$ 560$

40MHz V-425 List 995 CRT readout $\$ 835$

60MHz V-660
List 1,195 Delayed sweep $\$ 949$

100 MHz V-1060 List 1.595

Plus 'Frea' 9600 Function Generator
All Hitachi scopes include two 50 MHz probes V-223 20MHz D.T. 2 mV Sens. Delayed Sweep $\mathrm{V}-422 \quad 40 \mathrm{MHz}$ D.T. 1 mV Sens. DC offset V-423 40 MHz D.T. mV Sens. Delayed Sweep DC offset V- $1065 \quad 100 \mathrm{MHz}$ D.T. 2 mV Sens. Delayed Sweep $\begin{array}{lll}V-1065 & 100 \mathrm{MHz} & 0 . T \\ \mathrm{~V}-1100 & 1 \mathrm{mV} \text { Sens. Curser meas. DVM counter } \\ \mathrm{V}-1150 & 150 \mathrm{MHz} & 0 . \mathrm{T} .1 \mathrm{mV} \text { Sens. Curser meas. DVM counter }\end{array}$
\$1,285

List		
770	Our Price	Save
875	695	75
955	795	180
1,895	1,575	160
2,295	1,995	300
3,100	2.565	535

ELENCO PRODUCTS AT DISCOUNT PRICES!

Train for the Fastest Growing Job Skill in America

Only NRI teaches you to service all computers as you build your own fully IBM compatible microcomputer

With more and more new applications being developed for every facet of business, education, and personal computer use, the demand for trained computer service technicians surges forward. The Department of Labor ranks computer service high on its list of top growth fields, with accelerated demand creating more than 30,000 new jobs in the next 10 years.

Total systems training

 No computer stands alone. . it's part of a total system. And if you want to learn to service and repair computers, you have to understand computersystems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

You start with the step-bystep assembly of the highly rated Sanyo 880 computer. You build and test the "intelligent" keyboard, install the power supply and $5^{1 / 4}{ }^{\prime \prime}$ floppy disk drive, and interface the high-resolution monitor. But that's not all. You go on to install a powerful 20 megabyte hard disk drive--today's most-wanted computer peripheral, now included as part of your hands-on training.

It's confidence-building, real-world experience that includes training in programming, circuit design, and peripheral maintenance.

No experience necessaryNRI builds it in

 Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab ${ }^{\circledR}$,
Learn Computer Servicing Skills with NRI's "Hands-On" Training

After you build this digital logic probe, you'll explore the operation of the Sanyo detacined "intelligent" keyboard and its dedicated microprocessor

professional digital multimeter, and logic probe. Like your computer, they're all yours to keep as part of your training. You even get some of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

Send for 100-page free catalog

Send the post-paid reply card today for NRI's 100-page, full-
color catalog, with all the facts about at-home computer training, Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.

If the card has been used, write to NRI Schools, 3939 Wisconsin Ave., N.W., Washington, D.C. 20015.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, NW Washington, DC 20016

We'll Give You Tomorrow.
IBM is a Registered Trademark of International Business Machine Corporation

as You Build Your Own Sanyo 880 Computer System.

The power supply is assembled in the main unit of the computer. You check out keyboard connections and circuits with the digital multimeter included for training and field use.

Next, you install the $51 / 4^{\prime \prime}$ floppy disk drive, leaming disk drive operation and adjustment. Later, you increase your data storage capacity dramatically by installing a 20 meg hard disk drive

Using the monitor, you focus on machine a eguage program ming, an indispensable troubleshooting t xd for he technician. You continue by leaming BASIC lang age programming.

Ask R-E

FIG. 1

AUTO RADIO FOR AM DX

I enjoyed the articles on converting old car radios for home use in the May and June, 1987 issues. We are moving onto five acres of rural land in central Florida, and wish to consistently receive the high-power AMbroadcast stations in the vicinity of Cleveland, Ohio. I would like to use a converted car radio for that purpose. I assume that a long-wire antenna will be appropriate. Please show me how to connect it to the low-impedance cable input of an auto radio.-T.J.W., Lake Buena Vista, FL.

There are several variations on the antenna input circuit of a car radio. A typical circuit is shown in Fig. 1-a and the equivalent circuit in Fig. 1-b. The antenna connects to a high-impedance point on the antenna coil through a short length of shielded cable and blocking capacitor C_{B}. The shielded cable, or coax, is not a matching device. It simply shields the antenna lead-in wire against electrical interference coming from under the hood or dashboard.

Capacitor C_{A} is the capacitance
between the antenna and the body of the car, and C_{C} is the capacitance of the shielded cable. Trimmer capacitor C_{T} peaks the antenna-input circuit at the highfrequency end of the band. The blocking capacitor is not shown because it is effectively in series with C_{T} and can be ignored.

I, too, am in the Southlands, but not as far south as you are. Much of my late-night radio fare comes from WWWE (1100 kHz) in Cleveland, WCKY (1530 kHz) in Cincinnati, and WOWO (1190 kHz) in Ft. Wayne, Indiana. I have several old auto radios in the junkbox so I thought l'd see how a longwire compares with a fully extended car-radio antenna. After several weeks and a half dozen different sets, I concluded that a long-wire does not have any advantages, or that the disadvantages outweigh the advantages. Some radios are overloaded by the stronger signal provided by the long-wire antenna, resulting in distortion, birdies, and whistles. If the radio can cope with the stronger signal, you will encounter cochannel interference as the anten-

WRITE TO:

ASK R-E

Radio-Electronics
500-B Bi-County Blvd.
Farmingdale, NY 11735
na pulls in stations from Cuba, the West Indies, and South America.
All things considered, I'd settle for a car-radio antenna mounted on top of the set and a connection to a good outside ground. Just connect the antenna to the set's antenna terminal. Tune in WWWE or the stations that you want, turn the volume control wide open, and use an insulated alignment tool to adjust for maximum output.

TOUCH-SENSITIVE LAMP

There is a new line of table lamps that use some form of touch-sensitive switch for control. Touch the metal frame of the lamp and the lamp comes on low, the second and third touches switch the lamp to medium and then to full brightness. The next touch turns the lamp off. Do you know of a circuit that I can use to accomplish that feat?-I.S., Jamaica, NY.

LSI Computer Systems, Inc., 1235 Walt Whitman Road, Melville, NY 11747 has a line of touch-sensitive light dimmer/switch IC's that can be used in the type of lamp you asked about. One of those light dimmers, the LS7237, was covered in the "State of Solid State" column in the May 1985 issue.
Details on the workings of those LSI devices were also given in that column. The light-dimmer/switch IC's will cost nearly $\$ 10.00$ when you order only one from the man-ufacturer-approximately $\$ 3.50$ for the device plus $\$ 5.00$ for postage and handling.

Instead of constructing your own touch-sensitive lamp, and possibly developing a dangerous shock hazard, we suggest that you

POCKET SIZE

SIZE: 4" H x 3.5" Wx1" D MADE IN USA
\#TA-100S
FREQUENCY COUNTERS TO 2.4 GHZ

8 LED DIGITS • 2 GATE TIMES ALUMINUM CABINET INTERNAL NI-CAD BATTERIES INCLUDED AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY \& ACCURACY

AC-DC•PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.3 GHz and $2.4 \mathrm{GHz}, 8$ digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the $1300 \mathrm{H} /$ A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

\#1300H/A	Model $1300 \mathrm{H} / \mathrm{A} 1-1300 \mathrm{MHz}$ counter with preamp, sensitivity, $<1 \mathrm{mV}$, 27 MHz to 450 MHz includes Ni -Cad batteries and AC adapter	\$169.95
\#2400H	Model $2400 \mathrm{H} 10-2400 \mathrm{MHz}$ microwave counter includes Ni-Cad batteries and AC adapter	\$299.95
\#CCA	Model CCA counter/counter, for debugging, ultra sensitive, <50 micro volts at $150 \mathrm{MHzl} 1-600 \mathrm{MHz}$ with adjustable threshold, RF indicator LED. Includes Ni -Cad batteries and AC adapter	\$299.95

ACCESSORIES:

shop around for a "Touch and Glow" light-control module that converts any table lamp into a "touch-on" lamp. You simply unscrew the bulb, screw in the Touch and Glow module and then screw the bulb into the module's socket. Touch the metal base of the lamp for on-off control and three brightness levels. The Touch and Glow module is UL-listed and is almost completely encased in porcelain, or a similar ceramic, so it reduces the possibility of a shock.

The Touch and Glow module is available in the housewares department of several large department stores and is on display in home-improvement and buildingsupply stores for around $\$ 11.00$. It is often on sale for much less. If you can't find the Touch and Glow control in your area, write to Bright Image, Inc., PO Box 507, Techny, Illinois, for information on availability.

Nursery departments of discount stores often carry several

touch-sensitive lamps. The control device that is mounted in the lamp's base is a ceramic cube with four leads for connections to the $A C$ line and the lamp. It appears that the module can be easily removed and incorporated in a lamp of your choice. The nursery lamps are about $\$ 10.00$.

SHORTWAVE CONVERTERS

I really enjoyed the article "New Life for Old Car Radios" in the May and June 1987 issues. In the June issue you showed a converter circuit for receiving WWV (5 MHz), and the 49- and 31-meter shortwave broadcast bands on the AM band of car radios.
I'd like to convert the AIR band (about $110-134 \mathrm{MHz}$) down to the standard AM broadcast band. Can you show me how to replace the G2 input of the 40673 mixer with a suitable oscillator circuit, and will the antenna and output circuits still work properly?-I.O.M., West Springfield, MA.

What you want to do cannot be done using a single frequencycontrol crystal. You'd need a separate crystal for each $1-\mathrm{MHz}$ sector of the AIR band.

A crystal-controlled converter worked into an AM broadcast radio cannot cover more than about 1 MHz of the band you want to receive. When we feed the output of a crystal-controlled converter into the input of a tunable receiver, we have, in effect, a double superhet, or double-conversion receiver. In that case, the tunable radio can be considered as the IF amplifier for the down-converted output of the converter mixer. The intermediate frequency, $F_{I F}$, is equal to $\mathrm{F}_{\text {SIG }}$ (the signal frequency) $\pm \mathrm{F}_{\text {OsC }}$ (the oscillator frequency). We are using a $550-$ to $1650-\mathrm{kHz}$ receiver as the tunable IF in a down-conversion scheme in which the incoming high-frequency signal is converted to a lower frequency for processing. The lower frequency, F_{IF}, is equal to $\mathrm{F}_{\text {SIG }}-\mathrm{F}_{\mathrm{OSC}}$. The band of incoming signals cannot be any wider than the tuning range of the receiver, or approximately 1000 kHz (550 to 1650 kHz).

When a converter is used to receive the 49 - and 31 -meter bands (5900 to 6200 kHz and 9200 to 9700
kHz , respectively), the 49-meter band is tuned in between 950 and 1200 kHz on the broadcast-band dial; 31 meters comes in between 700 and 1200 kHz .

Now look at the AIR band; it's $24-\mathrm{MHz}$ wide. To cram 24 MHz into the 1 MHz of the broadcast band, you'd have to divide it into twenty four $1-\mathrm{MHz}$ segments. To cover 110 to 134 MHz in one tuning range, you would need a tunable converter with a variable oscillator, and pick some point on the broadcast receiver, say 1500 kHz , as a fixed first IF. For further information on that type of converter, consult current and back editions of The Radio Amateur's Handbook, and the Radio Handbook, along with back issues of QST, CQ, and Ham Radio magazines.

"RED STAR" 6L6's

l've been servicing electronic equipment for more than ten years, in an area famous for its recording studios and patriotism. I have maintained both vintage and modern amplifiers owned by my clients. Recently I was retubing a guitar amplifier when I noticed that just below the 6L6-GC type number, a small star and the letters "USSR." Perhaps I've been a bit brainwashed, but I'm worried about the quality of tubes made by the Russians. I'm also wondering how my clients would react if they knew that I'd installed tubes that were made in "The Evil Empire" in their 30-year old Fender amplifier. Will I get in any kind of trouble with the authorities if one of the studios reports that I've been using tubes that were made in the USSR?G.O.P., Sheffield, AL.

We don't believe that the 6L6's were made in the USSR. Instead, we have a hunch that those tubes were made for use in Russian electronic equipment and are from World War II surplus stock.

During the war, the Russians were, of course, our allies. Supplies we sent to Russia ranged from food and fuel up to and including Liberty ships (freighters), with all the equipment carrying Russian markings so that Russian crews could operate them with little or no additional training. The 6L6's were probably used in shipboard PA systems or in the audio stages of radio transmitters. R-E

Philips ECG's Master Guide gives you all the replacement semiconductor information you'll ever need.

For speed, accuracy and ease-of-use, nothing beats the Philips ECG ${ }^{\infty}$ Master Guide!
\square Contains technical data for 4000 Philips ECG semiconductors that replace over 240,000 industry part numbers
\square Contains the most accurate cross-references available. \square New edition has 13,000 additional cross-references and 230 new devices

All this, all in one book. Contact your Philips ECG distributor or call 1-800-225-8326. It just might be the smartest call you make all week.

CIRCLE 186 ON FREE INFORMATION CARD

The Smart Choice. PhilipsECG

A North American Philips Company

ECG ${ }^{*}$ DM-76 Auto-Ranging Digital Multimeter: The smart choice for value!

ECG DM-76 Multimeter is accurate, priced right and packed full of features. Here's what you get:
\square Auto or manual range selection
$\square 0.5 \%$ basic accuracy
$\square 31 / 2$ digit LCD with range indicator
\square Data hold
$\square 20$ megohm full scale
\square Transistor hFE
\square Diode V_{F}
\square Audible continuity test
Accuracy! Value! All the features you need! Contact your ECG products distributor or call 1-800-225-8326. It just might be the smartest call you make all week.
CIRCLE 250 ON FREE INFORMATION CARD

Keep equipment in top shape with Philips ECG's top of the line Audio/Video products.

The best performance from any piece of equipment. The line-up that delivers it looks like this:
\square To measure and adjust frequency response of audio tape decks, the AR20 frequency response cassette
\square To accurately adjust audio tape running speed and record/playback head alignment, the AR30 speed and adjustment cassette
\square To observe tape travel path in the VCR, the Video tape path view cassette
\square To measure torque in play or fast forward/rewind modes, the Video torque meter cassettes
Contact your Philips ECG distributor or call 1-800-225-8326. It just might be the smartest call you make all week.

The Smart Choice.

CIRCLE 68 ON FREE INFORMATION CARD

LETTERS

IN-CIRCUIT IC TESTER

Those of you who built the IC tester we featured on last month's cover may have found the checkout and final-assembly instructions a bit confusing. To clarify the procedure, we have reprinted on page 106 revised, unambiguous instructions.

TV FREQUENCY STANDARD UPDATE

I'd like to share some updated information about my article, "TV Frequency Standard"(Radio-Electronics, April 1988.) Regarding James Brodsky's informative letter about frame synchronizers in the July 1988 issue, I have noticed that the non-network affiliate stations will use their own master-sync frequency, but often switch to network sync when carrying network programing.
Other readers using the project noticed the same phenomenon. Generally speaking, however, the network-affiliate stations are using network sync. The project's $1-\mathrm{MHz}$ output is usually within $\pm 2 \mathrm{~Hz}$ under any circumstances, due to the FCC-imposed tolerance of \pm 10 Hz of 3579545.454 Hz . (Most stations I measured hold within 5 Hz.)

I don't have professional knowledge of broadcasting equipment, so I can only relate my personal observations while using this project. I'm sure that the output frequency is accurate enough for most uses without considering the broadcast source.
Anyone having difficulty locating a source for the MV834 can use the MV209-available from Active Electronics (237 Hymus Blvd., Montreal, Quebec, Canada H9R

5O7, 514-694-7710) -as a substitute. Some of the general-replacement devices for the MV843 fail to work well in the circuit.

The jumpers shown in Fig. 2 of the article go to the following points on the circuit board at T-S, L-M, H-G, and U-V. The ground wire to front panel is soldered to $\mathrm{U}-\mathrm{V}$. The value specified for C 8 is 33 pF . That is an average value; it can vary from $22-47 \mathrm{pF}$ for the tuning of some crystals. With some brands of 4069's there is a tendency for the output at pin 8 IC11-d to have high-frequency oscillations riding on the sine wave. That can cause a slight instability in the project's output. To control highfrequency gain, add a $.01 \mu \mathrm{~F}$ capacitor between pin 8 and ground. I have found that the value of C 8 must be between 40 pF and 150 pF for various brands of 4046 's; select the value needed to allow proper tracking at 1 MHz .

Connect a jumper from pin 9 of IC8 to ground and see that the output at pin 4 is about 900 kHz . If it is not, adjust the value of C8. Next, connect a jumper from pin 9 to +12 V and check for 1.1 MHz . Adjust the value of R5 to correct.

Adjusting the VCO for operation over a narrow range limits any phase-lock jitter in the output. A

4011 can be substituted for the 4001 in the Parts List. Almost any switching transistor can be substituted for the 2N3643.
The user will need to experiment with the placement of the antenna near the TV. Use only enough coupling to give a clean square wave at pin 3 of IC1, the 555. Ferrite rods can vary in characteristics quite a bit; a good way to compensate for that is to wind the coil on a paper tube and slide the rod in to find the resonate peak. A substitute antenna can also be fashioned from old te levision hori-zontal-circuit coils with a selected resonating capacitor.
A properly operating project gives very stable 3.58 - and $1-\mathrm{MHz}$ outputs. Use a coupling capacitor or a 10:1 probe between the project and your frequency counter. A direct coupling into some counters causes instability. A grounded metal enclosure-to minimize radio interference-is a good choice for the project.
I will contract with those wanting assembled, ready-to-use units for $\$ 220.00$ each. The style of the enclosure will vary from that shown in my article, but it will be custom-built to the same quality as my working model. I also have the assembled antenna coils, less cable and enclosure, for $\$ 12.00$ each. LUTHER STROUD
P.O. Box 1951

Fort Worth, TX 76101

ATARI DEFENDED

As a long-time Atari-computer user, at first I was looked down upon and joked about because I had a "toy" computer. I quickly learned that my Atari 800 with 16 K of RAM was vastly superior to almost any other computer on the
market. (I do use an IBM at work. While I'm not a great fan of IBM's, I realize that all computers can do a lot of wonderful things when put together with the right software and peripherals.)

I became an Atari fan early on, and paid my dues waiting for decent software and hardware addons. Those eventually came, and my computer was gradually upgraded to the maximum of 48 K RAM, with a couple of drives and a decent printer. I was happy and paid no attention to those jokes at all.

A few years ago, I upgraded to the $5205 T$, with no regrets. I have another vastly superior computer in the Atari 520ST.

I can understand your lack of enthusiasm for the machine as a result of your surveys-but I don't think you should operate on surveys alone. From your reply to Carl Kona in Radio-Electronics' July 1988 "Letters" column, it looks as though you might not even know what an Atari 520ST is.
In brief, it is a 16 -bit, 512 K of RAM computer that can be expanded to

4 megs. (512K of RAM will run most available software.) It has doubleor single-sided 3.5 -inch disk drives, and even a hard-disk drive is available. Its RGB color monitor has 2 screen resolutions (320×200 pixels and 640×200 pixels); or a black-and-white monitor with a screen resolution 640×400 pixels can be used. With its RS-232 port and a parallel-printer port, you can equip the 520ST with any RS-232 modem, and add just about any printer. It also has MIDI input and output ports. Although it doesn't have expansion slots like the IBM, you get just about everything you need in the stock machine. If needed, expansion is possible in a variety of ways.
Just because it is cheaper than most other computers doesn't mean it is an inferior product. This is not a case of "You get what you pay for." The Atari 520ST is a serious computer that is used by a lot of serious people, including European Space Agency, Rockwell Systems, General Dynamics Fort Worth, NASA Ames Research Cen-
ter, and Yale University. Polaroid Holography Lab in Cambridge uses it because of its outstanding graphics. Several well-known recording artists-Dave Mason, B.B. King, Mick Fleetwood, and the Pointer Sisters, to name a fewuse the Atari $5205 T$ because of its outstanding MIDI capabilities.

As for compatibility to IBM's and MAC's, there are some penalties on speed, depending on the software package. However, as you stated, there is no "truly seamless, bug-free hybrid." I personally don't use those compatible products, because there is so much high-quality Atari software already available
As for desktop publishing, I don't know if Atari can run PageMaker or Ventura Publisherand I really don't care. It can run Publishing Partner, Fleet Street Publisher, and Timeworks Desktop Publisher ST, which are all excellent packages. I print a newsletter for my department at work using a drawing program-Easy Draw by Migraph, that has many

 pass the Certified Electronics Technician Exam.

CIE

CLEVELAND INSTITUTE OF ELECTRONICS 1776 East 17th Street • Cleveland Ohio 44114 PHONE TOLL FREE 1-800-321-2155 / In Ohio 1-800-523-9109

FITMING

A CAREER IN ELECTRONICS STARTS WITH CIE.

For the last few years, the electronics field and related industries have been growing at an incredible pace. And today, a career in electronics offers more opportunities and greater rewards than ever before.

Just ask any of the many graduates of the Cleveland Institute of Electronics who have landed high-paying positions with aerospace, computer, medical and communications firms. They'll tell you success didn't come easy. but that CIE made it all worthwhile.

PECIALIZED
TRAINING CIE isn't just another be-everything-to-everybody correspondence school. We're accredited by the National Home Study Council. And with more than 1100 graduates each year, we're the largest independent home study school specializing exclusively in electronics. CIE has been training careerminded students like yourself for over 50 years and we know the business inside and out.

Some courses feature the CIE Microprocessor Training Laboratory, an integral part of computers. You'll gain all the practical experience needed to work with state-of-the-art equipment of today and tomorrow.

RACTICAL

TRAINING CIE students learn by doing, using sophisticated electronic learning tools that we've designed and developed. One such tool, our 4K RAM Microprocessor Trairing Laboratory, teaches programming, interfacing and lets you work with a broad range of computers in a way that working with a single, stock computer simply can't.

We combine that valuable handson training with our unique Auto Programmed ${ }^{\text {® }}$ lessons, designed to teach you step-by-step and prin-ciple-by-principle. The result is practical training. . .the kind of experience you can put to work in the marketplace.

ERSONALIZED

TRAINING While some of our students have a working knowledge of electronics others are just getting started. That's why we have 10 career course levels from Basic to Advanced. They let you start where you want. Learn at your own pace. And learn as much as you like. You can even earn an Associate in Applied Science Degree in Electronics. And when you need help, our trained professionals are on hand to assist you by phone or mail.

Learning electronics isn't easy, but getting started is. For a CIE catalog and enrollment information, just mail the coupon below. Or call toll-free 1-800-321-2155. In Ohio, call 1-800-523-9109.

YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree program.
Accredited by the Accrediting Commission of the National Home Study Council. Washington, D.C.
desktop publishing features built-in-and a 24 -pin printer.

Concerning piracy in the Atari community, 1 admit that it is a problem. However, most computer families face the same problem. IBM probably has the most software pirates, but it isn't as noticeable because of the enormous base of IBM computers and clones. Piracy is a serious problem for everyone involved in the computer industry.

I'm glad you are still fascinated
by the Atari. I offer a challenge to you. Go out and get an Atari system and see for yourself. Take it apart to see what makes it tick-it's easy. Then put it back together-it will still work. Check out what software is available, and put it through its paces.

True, it's not an IBM, but it's not supposed to be. It's an entirely different system, and an entirely different environment. There is another world out there, besides MS-DOS and CP/M. The ST's oper-

POMONA leads the way to reliable SMTest.

Surface-mount technology is the wave of the future, and POMONA is riding the crest, with the broadest line of products designed to test surface-mount devices. Our ever-expanding selection includes PLCC test clips (patent pending), SOIC test clips, SMD Grabber ${ }^{\text {TM }}$ test clip and other single-point test devices. All built to POMONA's high quality standards.

For your FREE 1988 General Catalog, circle reader service number printed below
ating system is probably the easiest to learn.

ComputerDigest runs quite a few articles using Commodore computers. It would be nice if you would include Atari in some of those articles, and see what the reaction would be. After all, Jack Tramiel switched. I do enjoy the PT-68K series; I've learned a lot about the 68000 reading those articles. I do not plan on building one, as I have a 68000 -based computer in the Atari 520ST.
All I can say to Mr. Kona is, "Hang in there!". Join an Atari computer club. (They are not all pirates.) Subscribe to an Atari-specific magazine. Invest in a modem; the telecommunications end of computing seems to have taken the Atari more seriously than any other. Lastly, enjoy your "toy."
DAVE ROMAN
Redwood City, CA

CORRECTION

In "Editor's Workbench," in the July 1988 issue of ComputerDigest, there was a review of the OS/2 Programmer's Guide, by Ed lacobucci. It is an excellent tutorial and reference, and I highly recommend it. However, Ed Iacobucci is the OS/2 design-team leader at IBM-not at Microsoft, as was stated in the column.
DONALD R. BLAKE
Apalachin, NY

RADIATION SCARE

Good grief! You should be ash-amed--a respected technical magazine like Radio-Electronics should not use scare tactics by placing Chernobyl and Three Mile Island side-by-side in the same sentence. ("Build This Radiation Monitor,"
Radio-Electronics, June 1988.) That is the sort of yellow journalism used by the National Enquirer.
The amount of radiation released at Three Mile Island was no more than any Denver resident receives in a year. Chernobyl was a meltdown without a containment building.
ALEX THOMAS
San Antonio, TX
The article clearly states, side-byside in one sentence, that the Chernobyl nuclear plant "exploded" and the Three Mile Island
plant "almost had a meltdown." Scary, yes. Scare tactics? We don't think so. There is legitimate cause for concern about radiation levels in the atmosphere, whether or not one lives near an accident site. And, judging from the feedback we've had on that article, RadioElectronics readers are among the most concerned.-Editor.

TRANSMITTER HUNTING

In "Ask R-E" in the July 1988 issue of Radio-Electronics, G.P.R. of Salt Lake City asked about transmitterlocator systems. You suggested that he consult back issues of ham magazines for information on direction finding and hidden transmitter hunts.

While that is a good suggestion, unfortunately there is a limited amount of information in the ham journals, since transmitter hunting is somewhat of a specialty of ham radio.

I have written a book, Transmitter Hunting: Radio Direction Finding Simplified, that is a comprehensive source of information about direction-finding techniques for almost all of the radio spectrum. The book is available from the publisher, TAB Books, Blue Ridge Summit, PA 17294, (book \#2701), or directly from Ka-leido-Concepts, P. O. Box 3655, Fullerton, CA 92634 (714-447-3000). JOSEPH MOEL
Fullerton, CA

PENDULUM PROBLEMS

I have never written to a magazine before, but I can hold my pen no longer. As a horologist of many years, I must protest the advice given to J.D.G. in "Ask R-E" (RadioElectronics, June 1988). Your "simple answer" will cause him nothing but frustration and grief.

A pendulum has a resonant frequency that is determined mostly by the length of the pendulum. Trying to drive the pendulum with pulses from the circuits shown will cause the pendulum to get out of phase with the pulse generator and stop. No matter how carefully the pulse generator is adjusted, the pendulum will eventually get out of phase, because the pendulum changes length with temperature changes.
J.D.G. would be much better off
with a circuit that "senses" the position of the pendulum and gives it a magnetic "kick" at the same point during each swing. That could be accomplished with a small bar magnet, a sensing coil, a "kick coil," and some simple trigger circuit. (That is probably the original design of his clock.)

He will still have a clock that is tied to the variations effecting pendulums-but at least it will run, and he can adjust the timing by changing the lergth of the pen-
dulum
ALAN LOWE
USNAS, FPO NY

USEFUL NETWORK THEOREMS

For a free, 7 -page listing of up-to-date network theorems (the latest Thevenim-Norton and associated theorems, etc.) send a 45 cent stamped envelope to Sercolab, Box 767, E. Dennis, MA 02641.

DR. HARRY E. STOCKMAN East Dennis, MA

Equipment Reports

LATTICE SEMICONDUCTOR GAL39V18 GAL DEVELOPMENT KIT

Use your PC to configure programmable logic devices CIRCIE 45 ON FREE INFORMATION CARD
there is no question that programmable logic devices are becoming more popular among designers. Even some of the construction projects we present in

Radio-Electronics-including the REACTS system and the in-circuit IC tester we presented last month-use PLD's.

You can expect to see PLD's be-
come even more popular because they can help reduce the size and cost of a given design, improve its reliability, and even simplify the design process by giving the designer the ability to implement the exact logic functions required. User-programmable logic devices can also dramatically decrease the time required to take a given design to market. But there's another reason: The design and production of PLD's are becoming easi-er-and less expensive. A case in point is the GAL39V18 Design Development Kit from Lattice Semiconductor Corp. (P.O. Box 2500, Portland, Oregon 97208).

Lattice's development kit is de-

XEROX/DIABLO DAISY WHEEL

 PRINTER

FREE CABLE!

Enjoy the ease and speed of printing with this Xerox/Diablo 630 ECS/API Daisy WheeI Printer. Prints both graphics and letter quality text without changing Daisy Wheel!

- API (All Purpose interface) works with most
personal or business computers on the market including:

Serial: RS232-C, 110-300-1200-2400 baud.

- Parallel: Centronics, 8 -bit.
- Includes: IBM Interface cable, Ribbon. Manual, \& Plastic print wheel.
- ECS (Extended Character Set) supports 96 \& up to 192 extended character set print wheels.
- 40 characters per second with plastic print wheels. - Paper width: 16.53 " max. if using friction feed: 15.25 " max. if using forms tractor (not included). - Graphics, HyPlot Vector Plotting, Word Processing -90-Day Warranty!

Manufacturer's Suggested Retail \$1995.00

DAMARK PRICE:

${ }^{\text {s }} 398$

LIQUID CRYSTAL COLOR TV
ACTION!
COLOR! EXCITEMENT! All in the palm of your hand! The latest in electronics provides the best possible signal reception. Perfect for sporting events, picnics,
traveling. \& al-
most anywhere!
One-Touch Auto Tuning - One touch and the unit automatically searches for \& locks in on the nearest receivable station.

- Built-In Backlight - for
brighter pictures night or
day.
Manufacturer's Suggested Retail $\$ 229.95$
Dim: 1-1/4"H x 3-3/10"W
5-1/8"D.
DAMARK PRICE:
Uses 4 "AA" bat. (included). Soft case. - Model \#: TV-400
s149 Full Factory Warranty!

ENSDM:

Create your own home entertainment center with these Deluxe, Genuine Oak Audio and Video Cabinets! Makes a perfect pair! This is TRUELY a beautiful combination.
AUDIO CABINET

GENERAL

PORTABLE CELLULAR TELEPHONE
never be without A PHONE! Take this portable cellular phone anywhere! To the golf course, on your boat, in your car, or even in your back yard. COMES READYTO DIAL!! No Assembly! No Phone Number Setup! No Hassle!

- Stores 10 preset numbers - Portable - requires NO installation. Just plugs into your cigarette lighter or power pack (included). - Extremely tight weight. - Made in U.S.A. - Can be moved from vehicle to vehicle in seconds. - Programmable Lock - prevents unauthorized use of phone - Backlight which illuminates keypad for ease of visibility. - Comes with preassigned phone number - Comes complete with 12 volt DC charger. battery pack with case and belt, antenna \& mount, carrying case w/ shoulder strap
- Full 3 Year Parts \& Labor Warranty!

FACTORY NEW! FACTORY PERFECT

Manufacturer's
Suggested Retail \$1,695.00
DAMARK PRICE:
s899
Order No. 8 835-105460

AUDIO \& VIDEO CABINETS

Deluxe Video Cabinet Features:

- New Weathered Oak finish featuring genuine hardwood solids.
- Accommodates 19"-27"Color TV. VCR \& accessories.
Tempered satety glass doors with magnetic catches.
Adjustable interior shelves.
Easy to assemble.
Dim: $19^{\prime \prime} \mathrm{H} \times 29^{\prime \prime} \mathrm{W} \times \operatorname{cog}^{\text {D }}$.
Deluxe Lift-Top Audio Cabinet Features Genuine Oak solids highlight a handsome Weathered Oak finish.
Magnetically-secured tempered safety

Four adjustable interior shelves.

- Easy to assemble.

AUDIO	VIDEO	COMPLETE
CABINET	CABINET	SET
Manutacturer's	Manufacturer's	Manufacturer's
Suggested Retail	Suggested Retail	Suggested Retai
$\$ 219.95$	$\$ 139.95$	$\$ 359.90$
DAMARK PRICE:	DAMARK PRICE:	DAMARK PRICE:
$\$ \$ 0$	$\$ 50$	$\$ 0$

Order No. B-835-105289 Order NO B 835-105271 Order No B 835105569

FOR FASTEST SERVICE
CALL TOLL FREE

1-800-832-5555

VISA MasterCard

NAME \qquad ADDRESS
CITY \qquad ST
$T-Z$ PHONE
\square MasterCard \square Discover CARD NO.

signed to work exclusively with their GAL or Generic Array Logic devices, which are fabricated using E ${ }^{2} \mathrm{CMOS}$ (Electrically Erasable CMOS) technology. $\mathrm{E}^{2} \mathrm{CMOS}$ offers high-speed operation (at least as fast as any other TTL-compatible PLD) with the inherent low power consumption of CMOS devices. Since the devices are easily erasable, they are ideal for prototyping and developing, and they can be fully tested.

Like PAL (Programmable Array L ogic) devices, GAL's contain a programmable AND plane and a fixed OR array. That configuration offers high performance and the most efficient architecture for most logic functions. GAL devices are capable of emulating PAL architectures, and they can drop right into any PAL socket.

However, unlike PAL devices, each GAL output can be individually set to active-high, or activelow, with either synchronous or asynchronous configurations. That's because GAL's feature programmable output logic macrocells instead of a fixed output
structure. That extra flexibility over fixed-architecture PAL's is extremely important to the designer.

Using the kit

The GAL39V18 development kit, which lists for $\$ 795$, includes everything that an engineer needs to design and program GAL devices: a GAL programmer, programmercontrol software, a high-level compiler, samples of 20 - and 24 -pin GAL devices, and handbooks. The programmer, Programmable Logic Technologies' (Longmont, CO) LogicLab is controlled via the RS-232 port of a PC-compatible computer; no internal card is required, and hookup is very easy.

The programmer contains no switches, and its operation is controlled completely via the serial port. While the programmer conceivably could be controlled by any computer with a serial port, software is available only for PC/ XT/AT's and compatibles.

The development software includes the high-level LC-9000 GAL compiler (also from Programmable Logic Technologies). That com-
piler doesn't offer such advanced design features as equation minimization, truth-table syntax, or schematic capture entry but, to say the least, it's a far cry from the early 1970's when each of the 3000 or so individual fuse locations in the programmable devices had to be programmed by hand. The LC-9000 compiler is RAM resident and is very fast. The editor supplied with the compiler can be replaced easily with the editor of your choice.

Also included in the design package is FastMap, which is the software that controls the programmer through the computer's serial port. Fast-map includes an assembler that allows you to input standard Boolean equations, and upload the resulting file into the programmer, and then to the device. While Fastmap is not very sophisticated software, it lets you get started programming GAL devices immediately

If you or your company has ever considered using programmable logic, Lattice's GAL Design Development kit may be the entryway you've been waiting for. R-E

Cut Your Video Servicing Time By 54\%

With the Market Proven VA62 Universal Video Analyzing System.

Today's VCRs, TVs, and MTS Stereo TVs require a proven method to quickly isolate the defective component. New technology has made simple problem solving a time-consuming and expensive procedure.

A survey of over 1500 Video Analyzer owners has shown that the VA62's unique signal substitution method has reduced their video servicing time by an average of 54%, and increased their servicing profits.

You can join the successful service centers that have cut their video servicing time and increased their profits with the VA62 Universal Video Analyzing System. Call for a brochure on the VA62. Call 1-800-843-3338, and increase your profits
In Canada Call 1-800-851-8866.

3200 Sencore Drive, Sioux Falls, SD 57107
100% American Made

Now you can put your fingers on
 214,000 replacement semiconductors.

Finding the precise, quality solid state replacement device is as easy as opening one book, the SK Solid State Replacement Guide

Inside you'll find listings for making over 214,000 solid state replacements using some 2,900 quality-built SK and KH types. From transistors and thyristors to integrated circuits and microprocessors. All cross-referenced so.you can replace original parts of all makes quickly and easily.

When you need a solid state replacement part for servicing a VCR, TV, audio component or personal computer, this is one book your fingers will turn to automatically.

To get your SK Guide (SKG202E), see your local SK Distributor. Or write: Sales Promotion Services, Thomson Consumer Electronics, Inc., Distributor and Special Products, 2000 Clements Bridge Road, Deptford, NJ 08096-2088.

Replacement
Solid State

Digital scopes with a

Give up real-time capability for storage? Not with Tek!

That's because analog capability is integral to low-cost Tek digital storage oscilloscopes. So you need only one instrument to make all your measurements efficiently. With no trade-offs.

It's another Tek advantage: analog and digital in one familiar, affordaible package.

Select either mode at the push of a button.
With digital storage you can capture events which are difficult if not impossible to see on conventional scopes. Pre and post trigger events. Fast transients.

Single-shot events.
Elusive glitches.
Low-speed phenomena.

Any waveform can be viewed for as long as you like. Or stored in 4K of memory for later analysis or comparison to other waveforms. And if there's a question about a digital measurement, just push a button for real-time display analysis.

Four screen photos spliced end to end illustrate the benefit of full four-screen capture using the 2230's 4 K record length.

real-time
 The affordable portables.
 These are the world's best-selling digital storage oscilloscopes. And with the new 50 MHz Tek 2210 joining the family, there's now an even better selection-in bandwidth, perform-

advantage.

 ance and price.Select for advanced features such as 100 ns glitch capture at any sweep speed, CRT readout, measurement cursors, multiple acquisition modes and hardcopy output, plus optional GPIB or RS-232C interfaces and software.

These scopes are perfect for first-time digital users. And seasoned operators will appreciate even more their versatility, convenience and value. All backed

Tektronix

CIRCLE 92 ON FREE INFORMATION CARD

New Products

CIRCLE 10 ON FREE INFORMATION CARD

ELECTRONIC STILL CAMERA. Casio's VS-107 is a personal electronic still camera that can both record and play back images on a standard TV set. Unlike traditional cameras, the $V S$-101 requires no photographic film or chemical processing for development and printing. Instead, it records to, and plays back from, special magnetic disks-"video floppies"-for immediate viewing of photographs.

The VS-101 features a high pic-ture-quality MOS-image sensor, resulting in an advanced electronic camera that integrates both recording and playback functions within a single unit. Photographs can be viewed immediately after they are shot, via a simple, direct
connection to a TV or video monitor.

The compact unit weighs only 2.1 pounds, and has a high-resolution automatic-exposure system with lock function. It can operate at a high speed-up to five frames per second.

The still camera has a wirelessremote controller featuring such functions as forward, reverse, and direct-track access for playback of any frame. Up to fifty frames for recording/playback are possible on a single floppy disk, and the built-in erase function permits multiple reuse of disks.

The suggested retail price for the VS-101 is \$1,499.00.-Casio, Inc., 570 Mt . Pleasant Ave., P. O. Box 7000, Dover, N\} 07801.

SIGNAL GENERATOR. B\&K Precision's Model 2005 signal generator covers a wide range of RF frequen-cies- 100 kHz to 150 MHz in six fundamental bands, and up to 450 MHz on harmonics. Its output can
be amplitude-modulated by an internal $1-\mathrm{kHz}$ source or externally modulated by any audio-frequency source.

The Model 2005 features output attenuation to 40 dB , variable am-
plitude modulation from 0-100 percent, auxiliary output for the internal $1-\mathrm{kHz}$ audio source, and separate outputs for the RF connection and an external frequency counter. Output frequency is adjusted by an anti-backlash vernier dial. Dial calibration is accurate to within 3 percent.

The Model 2005 can be used for many RF-alignment, tracking, and maintenance applications for con-sumer-electronics products, communications receivers, and indus-trial-control systems. With its straightforward design, it is also well-suited to the many possible educational applications.

CIRCLE 11 ON FREE INFORMATIO V CARD

The suggested retail price for the Model 2005 RF signal generator is \$195.00.-B\&K Precision, Maxtec International Corp., 6470 West Cortland St., Chicago, IL 60635.

DIAL TORQUE GAUGE. The TQ-1800 dial torque gauge, for use on U-Matic cartridge machines, is designed to evaluate the clutchand brake-torque performance for optimum tape handling. It replaces the use of a dummy reel and spring scale, as previously suggested in factory-service manuals. It was that cumbersome dummyreel test procedure that sent Tentel Corp. searching for a better method for critical torque checks.

The TQ-1800 system involves the use of a motorized torque driver,
specially designed to simulate the tape-pulling speed of a U-Matic9.5 cm per second. When it is used in conjunction with the TQ-1800 dial torque gauge, accurate torque measurements can be made, either clockwise or counter-clockwise, directly on the supply or take-up spindle.

CIRCLE 12 ON FREE INFORMATION CARD

No machine disassembly is re-quired-unlike in the dummy-reel method-saving both time and effort, while a high degree of accuracy and reliability in torque measurement is maintained.

The price of the TQ-1800, including the $1800 \mathrm{gm} / \mathrm{cm}$ torque gauge, motorized torque driver, rechargeable battery, recharger, foam-lined carrying case, and manual, is $\$ 295.00$.-Tentel Corp., 1506 Dell Avenue, Campbell, CA 95008.

LOGIC TROUBLESHOOTING KIT. OK Industries' LK-680 kit combines three logic troubleshooting instruments into a single kit. It includes the $L C-160$ multi-pin IC logic monitor, a $20-\mathrm{MHz}$ logic probe (model PRB-20), and a probe-tip adapter with micro-hook (model $P R B-M H 7$). The kit also contains a guide to digital-logic troubleshooting, an operating manual, and power cords. The kit is packaged in a rugged carrying case.

All the instruments in the $L K-680$ are circuit-powered, for use in the field as well as in the laboratory. The multi-pin IC logic monitor

CIRCLE 13 ON FREE INFORMATION CARD
adapts to IC's with up to 16 pins. It indicates Hi, Lo, Pulse, or clock conditions. The LC-160 also has unique IC leg-extension pins for easy individual leg probing of components mounted on a PC board. The slim-profile $P R B-20$ has separate Hi, Lo, and Pulse LED's, and under/over voltage LED's.

The list price for the LK-680 logic troubleshooting kit is \$179.00.OK Industries Inc., 4 Executive Plaza, Yonkers, NY 10701 ; 1-800-523-0667.

CLEANING PADS AND SWABS Chemtronics' premoistened cleaners combine precision solvents and disposable applicators in sealed-foil packets. The selfcontained products eliminate the need to carry containers of liquids, or to dispense solvents, in the field. The pads and swabs are saturated with measured amounts of high-purity cleaning agents that have been ultra-filtered to 0.2 mi crons. They are sealed in individual foil packets.

CIRCLE 14 ON FREE INFORMATION CARD
Optic Prep, a high-grade lens tissue, is premoistened with a mild solvent that removes dust and oils, leaving no residue. Screen Prep, comprising a wet pad for cleaning and a dry pad for polishing, removes dirt and fingerprints from computer screens, while at the same time controlling static-generated dust-build-up.

Chemswab is a unique cleaning tool for hard-to-reach places. A foamtip swab saturated with IPA, it is ideal for cleaning tape heads and transport mechanisms, electronic assemblies, precision devices, and lab equipment. Because it is used only once and then discarded, recontamination of cleaned surfaces is prevented.

For cleaning and protecting printed-circuit board gold fingers and other precious-metal contacts, Gold Guard Pad contains a cleaning agent combined with a heat-resistant polyphenyl ether lubricant. TF Pad contains a pure, mild cleaning agent that is perfect for cleaning and degreasing virtually everything

Optic Prep and Chempad each cost $\$ 8.00$ for a box of 50 . Also packed 50 in a box, Gold Guard Pad costs $\$ 12.00$, and TF Pad costs $\$ 9.00$. Screen Prep, sold in boxes of 25 twin packs, costs $\$ 7.85$, and a box of 25 Chemswabs costs $\$ 12.75$.-Chemtronics Inc., 681 Old Willets Path, Hauppauge, NY 11788.

R-E

[^1]

Whith Just One Probe Hookup You Can Conffdently Analrze Any Maveform To 100 MHz, 10 Times Faster, 10 Iimes More Accurately, Absolutely Error Free, Guaranteed Or Your Money Back . . .

Promises of increased productivity from nther oscijoscopes fade fa3t when compared to the! peed and accuracy of the SC61 Elimina;e the confusing menus, cursors and complexity of regular oscilloscopes at the pust of a button. Here's what the SC61 does for you:

Analyze Waveforms Easily

- Accurate Waveform Dispkay - 60 MHz Bandw.dth (useatle To 100 MHz) To Test The Latest Digital Circuits.
- Rock-Solid Sync - ECL Logic Circuits And Direrential amplifiers Give Fiddle Free Operation.
- Four Times The Measuring Range - MeasureFrom EmV To 2000 Volts (3000 Volts Protection) Fo- Expanded Signal Handling.

AutotrackingTM Digital Readings Analyze The Whole Signal

- Autoranging DC Volts Through Single Probe, Even With AC Coupled.
- Automatic Peak-To-Peak Volts - Even If Variable Control Is "Out Of Cal"
- Automatic Frequency Measurements Without Sensitivity Adjustment Or Range Switching. CIRCLE 198 ON FREE INFORMATION CARD

Digital Delta Tests Analyze Any Part of The Signal.

- Delta Peak-To-Peak Volts - Peak-To-Peak Volts OAny Part Of The Signal.
- Delta Time For Any Time Reading - Including Delay Between Traces
- 1/Delta Time - Frequency Of Part Of The Signal Finds Sources Of Interference Or Ringing.

Frequency Ratio Test - Tests Multiplier And Divider Circuits

Easy To Use - Human Engineered Controls And Virtually No Graticule Counting Or Calculations

The SC61 is designed to give you the measurements you need fast. We make one claim:
"Try the SC61 on your bench for 30 days. If it doesn't cut your present scope time in half, send it back for a complete refund, no questions asked.'

Try the SC61 for 30 days, and discover true troubleshooting speed.
Call 1-800-843-3338 In Canada Call 1-800-851-8866

Communications Corner
 Multiplexing by color.
 HERB FRIEDMAN, COMMUNICATIONS EDITOR

STRICTLY TO BE POLITE AND TO make small talk over dinner, I asked a representative of the biggest of the "Big Eight" accounting firms what he thought would be the key to business success in the immediate future. Bracing myself for at least 10 minutes worth of capitalization, amortization, depreciation and arbitrage, I must admit I was dumbfounded when he answered "fi-ber-optic communications." For the next hour or so I sat absolutely mesmerized as he described how
fiber-optic based communication networks will be in the forefront of business management.

At the conclusion of our talkactually his lecture-he took out the by-now classic photograph of two cables, one a thin fiber optic rated for 225,000 conversations, the other a wire bundle as thick as an elephant's leg rated for under 50,000 conversations. Pointing at the fiber optic he said "It's not enough for tomorrow. Simply to handle business communications
we must be able to increase the capacity of networked fiber cable. We must be able to carry more on less."

Admittedly fascinated, I asked why he, a management consultant, carried around a photograph of wire cables. He replied that he looked at it whenever he came across a compelling naysayer who did not believe that fiber communications was the key to business. He said that had he lived in Edison's time, he would have carried a light bulb to look at when merchants claimed that their bookkeepers needed nothing more than a stand-up desk and a candle.

Multiplexing color

As we have mentioned in previous columns, there are several ways by which we increase the communications-carrying capacity of fiber-optic cables: the primary ones being multiplexed digital encoding and faster transmission rates. Obviously, there are limits

FIG. 2

Radia

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHZ. Use with any FM radio. Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

RADAR SPEED SYSTEMS. Professional units for clocking speeds in baseball, car \& boat racing, etc., starting at $\mathbf{\$ 2 6 9}$ used, $\mathbf{\$ 3 5 0}$ reconditioned. Moving and stationary units availabie with dual displays. All units are road tested and have 30 -day warranties. Catalog \$1. Complete line of TV accessories. New Panasonic multi-line key business telephone systems from \$675. AIS SATELLITE, INC., 106 N. 7th St./P, Perkasie, PA 18944. 215-453-1400.

CIRCLE 190 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 890.00$ per each insertion
- Fast reader service cycle.
- Short lead time for the placement of ads
- We typeset and layout the ad at no additional charge

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.

PC-601 XT BUS EXTENDER BREADBOARD LAB connects to any IBM PC compatible computer and extends all PC electrical bus connections out to the PC-601 for easy circuit prototype connection, testing and trouble-shooting. Includes large 3060 tiepoint breadboard, $\pm 5 \mathrm{~V}$ and $\pm 12 \mathrm{Vdc}$ AC line powered power supplies. Includes buffer card, 2^{\prime} ribbon cable \& 1-Year warranty. Price \$369.95 CHENESKO PRODUCTS, 21 Maple St., Centereach, NY 11720. 516-736-7977, Fax: 516-732-4650 CIRCLE 189 ON FREE INFORMATION CARD

ANALOG ACQUISITION UNIT. CONNECT analog signals from experiments and circuits directly to your computer. Works with IBM, APPLE, TANDY or any computer with a serial port. 4 channels, 8 bit resolution. Up to 4 samples per second. Returns value in HEX or Decimal. \$129.95 Check, Visa or Mastercard accepted. GTC INDUSTRIES, PO BOX 2493, NAPERVILLE, IL. 60566 (312) 369-9815

ZENITH SSAVI UHF INPUT FROM \$199, ch. 3 input $\$ 229$, reconditioned. UHF SSAVI handbook $\$ 6.50$ ppd. Used Sylvania 4040s \$169. New N-12-VS \$99, ch 2 or 3. MLD-1200s ch 2 or 3 . Converters, amplifiers \& accessories. Satellite systems. Professional used radar guns from \$275. New Panasonic multi-line business telephone systems from $\$ 675$. Catalog $\$ 1$. AIS SATELLITE, INC., 106 N. 7th St./O, Perkasie, PA 18944. 215-453-1400.

CIRCLE 81 ON FREE INFORMATION CARD

PANASONIC CABLE CONVERTERS, Wholesale and Retail. Scientific Atlanta and Pioneer Cable Converters in stock. Panasonic model 140 N 68 channel converter \$79.95, Panasonic Amplified Video Control Switch Model VCS-1 \$59.95. Scientific Atlanta Brand new Model \#8528 550MHZ 80 Channels Converter $\$ 89.95$. Video Corrector (MACRO, COPYGUARD, DIGITAL) ENHANCER \$89.95. We ship to Puerto Rico, Caribbean countries, \& So. Amer. Write or call BLUE STAR IND., 4712 AVE. N, Dept 105, Brooklyn, NY 11234. Phone (718) 258-9495.
CIRCLE 85 ON FREE INFORMATION CARD

THE DIGITAL TACHOMETER MONITORS engine speed with a fast, easy to read bar/ graph along with an accurate digital readout. The Digital Speedometer's dual display delivers vehicle speed with a 3 -digit readout and a rapid-read analog display. Adjustable redline on both units. Complete kits only $\$ 75.00$ ea. Assembled \& tested $\$ 99.95 \mathrm{ea}$. Add $4 \% \mathrm{~S} / \mathrm{H}$ 90 day warranty. Contact: DAKOTA DIGITAL, 11301 Kuhle Drive, Sioux Falls, SD 57107. (605) 332-6513. Visa/MC accepted. Dealer inquiries welcome
CIRCLE 191 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\$ 29.95$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

COMMUNICATIONS CORNER

continued from page 36
within the restraints of present technology as to how much multiplexing can be done, and how fast data can be transmitted. But to those two elements, we can now add a third, that of color.

Simply for the sake of illustration, using figures we all can understand, assume that an infrared transmitter and receiver in a fiberoptic system can digitally multiplex two distinct data streams at 9800 baud. (Admittedly, those are nonsense figures in the world of fiber optics, but they allow a newcomer to fiber optics, assuming some personal-computer experience, to visualize the situation.) A data stream might represent computer data, digitized TV pictures or telephone conversations, FAX, or any combination.

Next, imagine that into the same cable we feed two more data streams at 9800 baud, only this time ultraviolet light is used. Both
light signals travel together at the same time, yet neither interferes with the other.

Lots of room

Although the eye is only sensitive to the visible light frequencies between 400 nm (violet) and 700 hm (red), the practical wavelength of the light spectrum ranges from infrared to ultraviolet: $200-1100 \mathrm{~nm}$, a range of $5.5: 1$. It doesn't take much imagination to realize that a $5.5: 1$ frequency range can carry a lot of anything-radio, TV, data, etc. All we need do is have some way to keep visible and near-visible signals from interfering with each other.
In fiber optics, separation is easy to do, once we know how it's done. One way, not immediately practical, is to have LED drivers that cover the light spectrum. Unfortunately, we simply don't have more than a handful of LED colors available at the present time. A similar method uses lasers, and although we still have the problem of limited colors, their phase co-

Crystek Crystals

 FOR OPTIMUM STABILITYAND RELIABILITY IN
FREQUENCY MANAGEMENT

QUARTZ CRYSTALS FOR
\square Industrial Equipment/Instrumentation

- Micro-processor control
- Computers/Modems
- Test/Measurement
*Medical

\square General Communications
- Channet element Service (VHF/UHF)
- Land Mobile 2-way
*Marine
- Aircraft
* Telemetry
- Monitors/Scanners/Pagers

\square Amateurs/2-Meter/General Coverage CB/Hobblest/Experimenter

Pulse of Dependable Communications
Crystek Crystals offers their new 16 page FREE catalog of crystals an oscillators. Offering state of the art crystal components manufactuered by the latest automated technology. Custom designed or "off the shelf." Crystek meets the need, worldwide. Write or call today!

CRYSTEK CORPORATION
 division of whitehall corporation

2351/2371 Crystal Drive •Ft. Myers, FL 33907
P.O. Box 06135 •Ft. Myers, FL 33906-6135

TOLL FREE 1-800-237-3061
PH 813-936-2109/TWX 510-951-7448/FAX 813-939-4226 toll free in the u.s.a. except florida, alaska, hawail
herence simplifies things at the receiving end. As shown in Fig. 1, a simple commercially-available color filter could be used to separate lasers at the receiver, thereby allowing us to use a white-light detector for each of the colors.

Figure 1 is the transmission characteristics of a common type Wratten color filter; available at any decent photographic-equipment dealer. As you can see, there are two distinct bands, at approximately 320 and 439 nm , that have more than 10% transmission. The filter can easily separate two distinct color-coded beams. By the way, the filter's greater than 10% transmission range from 620-1100 nm is part of the problem when using red signal-sources. Virtually no conventional filter attenuates the visible and near-visible red frequencies.

Imagine for a moment what the possibilities would be if we were to use a pencil-thin fiber cable into which we could multiplex specific narrowband colors. The transmission scheme would be similar to the one shown in Fig. 2. Each input color to the cable would originate in a laser (so we have a narrow bandwidth to start with), and the colors would be received through narrowband optical filters. As you can see, each color, even when mixed with the others, would serve as an individual communications path. Notice that the visible and near visible reds have been combined. That is only because we presently have no cost-effective system for precise separation of the reds. Of course, when cost is no object, anything is possible.

Keeping it simple

In future columns we'll get into multiplexing by color blending at the transmitter, and by color splitting at the receiver. For example, a conventional color star shows us that a yellow light could be received as individual red and green components, while its complements would be magenta and cyan. A little juggling of transmitter and receiver filters could give us at least five optic channels from a single color. How come five? Because complementary colors give us neutral densities-another way to separate fiber-optic data. R-E

Shortwave RadIO

General conditions and more on fundamentals.

As EARTH CONTINUES TO MOVE CloSER to the sun, the ionosphere becomes more highly ionized during the daylight hours, and the higher frequencies propagate better. At the same time, seasonal decreases in sporadic-E activity will reduce the number of short-skip openings in the higher bands. As a result, there will be fewer TV-DX openings, and short skip on 10 and 11 meters will decrease as well. However, long-distance openings on the higher frequencies will probably increase.

The best daytime DX will be observed in the 10- through 19-meter bands. At night, the range of frequencies from 49 to 19 meters will be good for DX, and on southerly circuits, from Latin America and

Africa, 16 meters will also frequently be good.

During the equinox months, daylengths in the northern and southern hemispheres are about equal. As a result, propagation over long circuits is better than at any other time of the year. Therefore, reception from Australia, New Zealand and southeast Asia will be at their best during that period. Also, seasonal decreases in noise levels will result in improved broadcast-band DX.

Chit-chat

After approximately forty years of operation, the Voice Of America (VOA) will be discontinuing short-wave broadcasting from its Munich, Germany transmitter
site early next year. The VOA recently concluded an agreement with the Federal Republic of Germany under which it will rent four 500-kilowatt transmitters at Wertachtal, the German supersite near Munich. The 100 -kilowatt transmitters at Munich will be turned over to Bavarian radio. VOA will continue its medium-wave operation from Munich pending the availability of an alternate site.

Now we are going to continue where we left off on our discussion on the fundamentals of short-wave-radio propagation.

Sunspots

If diurnal, seasonal, and geographic variations were the only continued on page 84

Your Career in ELECTRONICS or COMPUTERS

Add prestige and earning power to your technical career by earning your Associate or Bachelor's Degree in electronics or computers-through independent home study.
No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.
Grantham College of Engineering is a specialized institution catering to adults who are employed in electronics and allied fields such as computers. These fields are so enormous that opportunity for advancement is always present. Promotions and natural turn-over make desirable positions available to those who are prepared to move up!

Put Professional Knowledge and a
COLLEGE DEGREE
in your Technical Career through

Accredited by the
Accrediting Commission of the National Home Study Council 10570 Humbolt Street
Los Alamitos, California 90720
Write for our free catalog (see coupon below) or phone (213) 493-4423 (no collect calls) and ask for our "degree catalog."

Grantham offers two B.S. degree programs - one with major emphasis in ELECTRONICS and the other with major emphasis in COMPUTERS. Either program can be completed by correspondence (also known as "distance education.") An A.S. degree is awarded along the way in each B.S. program, but the B.S. program is not complete without the A.S. part. Our catalog gives complete details.

Now in Our 38th Year

Grantham College of Engineering

 P.O.Box 539, Los Alamitos, CA 90720Please mail me your free catalog which explains your distance-education degree programs.

NAME

ADDRESS

ISDN promises to bring the world into a new Age of Information by integrating all our currentand future-communications technologies into a single, worldwide network.

ERIC E. SUMMER*

ABOUT A CENTURY AGO-IN 1887, TO BE EX-act-a young man named Ludovic Zamenhof presented to the world his invention that would end war and international strife. To be sure, the same claim had already been made for the machine gun, and would later be made on behalf of the dirigible, the submarine, the airplane, and nuclear weapons. But Zamenhof's idea was different. The need, as he saw it, was for freer communication among the peoples of the globe, and his invention was a totally new language called "Lingvo Internacia."

In writing about his brainchild, Zamenhof used the nom de plume "Doktoro Esperanto" (Dr. HopefulOne), and the language has come to be called Esperanto.

Esperanto has plenty going for it.

[^2]It's simple, rational, and easy to learn and spell-at least for those familiar with the existing European languages. The reader won't need to be told the meaning of "Lingvo Internacia," for example. And Esperanto has attracted a considerable following. Although it is estimated that as many as $8,000,000$ people speak Esperanto, including many Japanese and Chinese, that is only a small percentage of the world's billions.

Today, however, there is a significant new hope for international com-munication-one that is not strictly linguistic, but technological. For we can now do with machines what Zamenhof could not do with people. We can build them with an innate capability for intercommunication. And we can provide the necessary channels to interconnect different types of equipment.

No one would dare claim that this new technology will end war. But there is little doubt that, should a hotline one day be called upon to avert a global military cataclysm, the messages will be carried over a system that uses the new standard.

An international standard

The exciting new sun on the communications horizon is called the In tegrated Services Digital Network or ISDN. It's the result of a dozen years of effort by communications experts in all the major nations, working together under the aegis of a United Nations agency, the International Telegraph and Telephone Consultative Committee, usually known as CCITT.

The extraordinary potential of ISDN is rooted in technology, both old and new, and in the concept of

DISTANCE WILL BE NO OBSTACLE at a working meeting transformed into a computer conference by ISDN. Participants will be able to write on a computer-generated black-board-that will appear on each video-display terminal- as they converse. The colorcoded cursors will indicate who is doing the writing. Participants will also be able to see each other via electronic portraits arrayed across the top of the screen. Although such an exchange will require the rapid movement of a great deal of information, ISDN connections have the capabilities to make such meetings routine.
standardization. An ISDN computer in the phone company's switching office enables ordinary telephone lines to simultaneously carry voice, computer data, and facsimile messagesor any combination of those. ISDN will also have the capacity to carry an infinite number of other services, including video images, remote data retrieval, and alarm systems. The number of services depends solely upon the telecommunications devices

Like an electrical system, in which a common outlet is used for virtually every device, ISDN eliminates the need for separate networks and special equipment like modems to send computer or fax messages-and makes it possible to talk on the phone about those messages as they are being sent. Millions of miles of ordinary telephone lines-the physical foundation of that single networkare already up and running. Finally, because ISDN comprises a set of internationally accepted standards, compatibility of equipment is ensured.
ISDN is the product of two converging streams of development: One development stream flowed among users; the other has occurred in R\&D
laboratories.
At one time, for example, a business firm was considered very up-todate if it used computers. Today, however, competitive pressures require that same firm to also connect its computers with those of customers, prospects, suppliers, consultants, and so on. And technological developments now permit new levels of sophistication, both within the machines that need to communicate and in the channels of communication available to them.

The first stream made ISDN necessary; the second made it possible.

Like the elephant examined by the three blind sages, the nature of ISDN seems to vary according to the observer. To one person, for example, ISDN means a compatible computer that can talk-with reliability and se-curity-to computers at other locations, even if they are built by different makers. To another person, ISDN refers to a communications sys-
tem that can carry any existing or expected form of encoded signal, be it voice, data, or image. To yet another, it is a network that permits distributed processing of information and shared use of data bases, producing-in effect-computers of unprecedented size and power.

ISDN is all of those things and yet none of them. ISDN is an international networking standard that will provide increased bandwidth for simultaneous, integrated access to voice, data, and signalling information over existing wiring. ISDN is a set of guidelines, or standards, that any designer should use in developing equipment, so it will function effectively within an evolving, worldwide information network

An important agent in establishing those standards is the Institute of Electrical and Electronic Engineers (IEEE), the largest professional organization in the world. Its Standards Board helped determine rates of transmission for data, packet formats, and so on. The IEEE has played a major role in ISDN progress.

A precious resource

For over a century, telephone companies here and abroad have been patiently and inexorably tying the peoples of the world together with an ordinary copper pair of wires-the ubiquitous "twisted pair." Those two conductors thread their way from the heights of modern office buildings to the depths of the most-remote valleys, linking isolated farmhouses to vast government bureaucracies.

The very existence of that almost universal linkage is a resource of unequalled dimensions. It is a multi-bil-lion-dollar infrastructure that would be difficult to duplicate or replace in any reasonable time frame.

Equally important, the latest electronics technologies have given the twisted pair enormous untapped reserves of bandwidth, or informationcarrying capacity. Using such a powerful circuit solely to carry today's few-thousand-Hertz telephone calls ignores most of that potential capacity.

ISDN's creators knew that they could, and should, build the new standards around the twisted pair. They saw that, through creative engineering, they could avoid the need for the high-capacity coaxial cable now used in local interconnection of computers
and other data-handling machines. Among other things, ISDN could protect the world's enormous investment in twisted-pair construction.

In the ISDN scheme of things, a single twisted pair becomes the local link for all types of communications. Furthermore, ISDN exploits the bandwidth of the twisted pair to the hilt. If, for instance, one party to a telephone conversation wishes to send some data to be displayed on a screen in front of the other party, ISDN techniques will enable both voice and data to travel over that one pair of conductors. In the future, fi-ber-optic technology will provide even greater bandwidth for data and video services. (The bulk of telecommunications use is still for voice conversation. But the data side is increasing by some 30% a year, and may equal voice in traffic volume by the early 1990's.)

What to expect from ISDN

Today's information worker is often barricaded behind a mass of high-tech hardware that apparently just grew in place as the worker's communication needs increased. Snaking around, under, and behind it all is a mass of unwieldy, bulky cables. More often than not, the various items are not particularly compatible. There's a telephone, but data from the computer can't be sent over it-at least, not without some complex juggling. There's a printer, but data from the telephone can't be printed on it. And, if a move is required, weeks of advance planning are necessary, and considerable expense is incurred. Sometimes the worker must also acquire a new telephone number, with substantial inconvenience to himself and to his business associates.

ISDN is simplifying all of that. Standards for compatibility of new equipment are being made available to all manufacturers. Existing equipment will be made compatible through special interface devices. Bulky bundles of wire and coaxial cable will become things of the past replaced by the slender, nearly invisible, traditional-telephone pair. A new control technology, called "out-ofband signalling," will give users and their equipment extensive power over network switching.

No less important, ISDN is a prerequisite to the effective use of modern long-distance technologies, such
as fiber-optic circuits. ISDN, with its all-digital encoding, distributed processing, and out-of-band signalling, supplies the means to put the tremendous capacity of such facilities to use.

The beneficial fallout from ISDN will not be restricted to owners of huge mainframes or those who send out daily reams of fax transmissions. Thanks to out-of-band signalling, even home telephones will acquire new capabilities. Call Waiting, for instance, which now involves distracting clicks and maneuvers with the handset hook, will become easy and non-intrusive in the ISDN communications environment.

Other services, often mentioned by consumers as "blue-sky" hopes, become economically feasible through ISDN. For example, hi-fidelity telephones, that reproduce a $20-20,000-$ Hz frequency range at the flip of a switch, would allow a "Shop-atHome" service for consumers who want to sample part of a stereo record or compact disc before buying it. Electronic mail for everyone, via a fax channel woven into the present hometelephone connection, becomes more practical. Other possible services include remote document retrieval-so that a person at home can search for desired documents stored at distant offices, libraries, or agencies, and then view those same documents on a high-resolution TV screen-and conference calls over PC's, including video presentation of photos, maps, and the like, for on-line discussion of family happenings, travel, and entertainment events.

What say the experts?

Not long ago, in a major study to help determine how ISDN's tremendous information-handling capacity would be put to work, the AT\&T Network Systems Group polled a large group of business-telecommunications managers. Those experts answered that their most pressing needs were to cut costs and increase revenues, to evolve their telecommunications equipment gracefully as technology evolves, and to gain more control over their communications systems.

In particular, those managers asked for:

- An end to the high cost of moving people and their communications equipment from one office to another. - Easy access to features without the

FROM AN OFFICE EQUIPPED WITH ISDN, voice, data, and video can be sent to similarly equipped offices and homes. ISDN voice and data transmissions can also be received on standard telephones and computer modems. Terminal adapters provide translation between analog and digital data, ensuring compatibility of all the disparate components used. Possible future applications include catalog shopping, polls, electronic mail, meter reading, and remote control of household systems through a home bus.
need to know-or worry-about cen-tral-office equipment changes.

- Services that are available when customers want them, and that work and keep working.
- Fewer pieces of communications equipment, such as modems, terminals, and telephone sets.
- Elimination of the two-line desk one-line for voice and one for dataand an end to expensive cable webs entangling secretarial stations, communications centers, and data-processing rooms.
- The ability of a business-telecommunications staff to decide-and to control-who gets which telecommunications services and features.
- The ability of users to control services and features--such as Call Forwarding - by just pressing a few buttons at their stations
- The ability of business-telecommunications managers to control network resources-such as lines, features, configurations, and data net-working-and to control the cost of those resources.

True, many of those benefits are already available in some areas, and with some equipment. But only ISDN, with its universal interconnection and complete software control, makes them available wherever there are, or will be, any kind of net-worked-communications service,
from a standard telephone to the most-elaborate data-processing web.

That is so because ISDN is not a "tool built for a task." Rather, it is a set of standards that defines any and all imaginable task-oriented electronic tools can be combined into networks that are more effective and powerful than any single tool can be.

A hundred years ago, for instance, a sufficiently wealthy person might have been able to afford a privatetelephone system between his home and his office. He might even have been able to afford extending it to each of several plants and to several key business associates. But, despite that heavy investment, he could not enjoy the full value of the telephone until it could, at will, be connected to any other telephone throughout the largest possible arca.

Paradoxically, by becoming more
powerful and more valuable, that telephone system simultaneously became affordable even to people of moderate means.

Similarly, most sizable businesses now make extensive use of computers and other data-handling machines; many even have interconnections between some or all of their computers at various locations. But their entire data-processing function is straitjacketed as long as it cannot interact with other data-processing systemsacross town, or around the globe-as the need arises.

Those needs, present and future, stimulated the effort which led to ISDN.

The philosophy of it all

Fundamental to ISDN are two concepts: distributed processing and out-of-band signaling. Let's look at each of them separately.

Distributed processing allows equipment at one location to make use of data and data-processing capabilities at many other locations. (Security measures are, of course, provided to prevent unauthorized use.) For example, let's say you will be traveling from San Francisco to London in two weeks, and wish to make theater reservations for one evening during your stay. Clearly, it would be impractical for travel agents worldwide to store and continually update information about London theaters. However, with a fully ISDNcompatible network of computers and communications channels, your San Francisco travel agent might examine data bases at a variety of London theaters to learn what is playing and what seats are available. Once you have made your selection, that theater's data base can be informed, and those seats set aside for your arrival. Obviously, that is similar to systems now used by airlines. But its use for reservations of all kinds, everywhere, is contingent upon truly international standards of equipment and communication.

Out-of-band signalling occurring on the " D " channel means that the channels carrying user messages are separated from channels carrying signals for controlling the network. That permits greater efficiency, security, and "transparency" of communication than in most of today's systems, where inter-machine signals follow the same channels as user messages.

Out-of-band signalling puts messagerouting control in the hands of the customer rather than in the hands of the communications provider.

Some recently developed telephone capabilities-such as Calling Party Identification, Call Forwarding, and Distinctive Ringing-usually can only be put to full use if both parties are hooked to one exchange. With out-of-band signalling-a technique originated by AT\&T-the required control information flashes from exchange to exchange on a separate channel, and the user is undisturbed by (in fact, unaware of) the many steps involved in making it all happen. The user also need not be concerned about where the required

AT\&T'S 5ESS SYSTEM, USING THE MOST advanced local digital switch, meets today's needs, and can expand to meet tomorrow's demands-including ISDN's three operating modes. The system's 5ESS switching module is shown above, including a test circuit that monitors communication with other modules over lightwave links.
telephone numbers or the instructions for network and equipment manipulation are stored.

Another vital aspect of ISDN has been making certain that those powerful capabilities are not limited just to traditional "telephone" apparatus, but are also available to all types of information-handling equipment, regardless of who owns it, who makes it, or where it is installed. Thus, the benefits of ISDN are available to ordi-nary-voice telephone, computers, video, facsimile, and so on.

Basic structure

In ISDN, all information is digi-
tally encoded before transmission. That applies even to those data-such as voice and video-that were originally analog. With an all-digital network, voices will be transmitted at the same speed with improved sound quality, and data will move about seven times faster.

That analog-to-digital translation is just one of the many functions of an IC called UNITE, which AT\&T developed specifically for ISDN. Current and future equipment can, of course, be designed for ISDN compatibility at the outset. But terminal adapters will smooth the transition by allowing existing equipment to reap ISDN's benefits.

The basic ISDN-operating scheme, or interface, involves two kinds of channels. One carries the user's message (the in-band, or " B " for Bearer, channel). There are two " B " channels. The other type of channel-the out-of-band, or "D" for Data, chan-nel-carries primarily network-signalling or control information.

Two such interfaces, or classes of service, differing mainly in their carrying capacity, are currently defined. The Basic Rate Interface consists of two $64-\mathrm{kb} / \mathrm{s}$ (kilobits per second) Bearer channels and one $16-\mathrm{kb} / \mathrm{s}$ Data channel. The higher-capacity Primary Rate Interface consists of $2364-\mathrm{kb} / \mathrm{s}$ Bearer channels and one 64-kb/s Data channel. In Europe, the Primary Rate Interface has $3064-\mathrm{kb} / \mathrm{s}$ " B " channels with two "D" channels.

Essentially, the Data channel is for signalling and switching between various pieces of network equipment. However, since it will probably not be fully occupied with signalling, some user information may travel on it as well, increasing overall system capacity.

In ISDN, user information, once digitized, travels in one of three ways:

- Circuit Switching is the familiar method, analogous to the way two telephones have been hooked up since the early 1900 's. Once connected, the two-or more-pieces of equipment are kept connected as long as the parties desire.
- UsingPacket Switching, a "packet" or single batch of information is assembled and tagged with an "address." It is then put onto the " D " channel of the ISDN network and, like some futuristic robotic train, is automatically switched from "track"

Electronics Engineers \& Designers! Take 3 books for only $\$ 1.95$
 (Values to \$161.85)

SHARPEN YOUR SKILLS-With Quality, Affordable Professional Books

ENGINEERING MATH

2697 Regular \$19.95
Ready-to-run math programs \& subroutines for scientists and engineers. 304 pp .

1962 Regular \$22.95 247 illustrations, a practical reference to basic electronics math usage. 256 pp .

2727 Regular \$24.95 2612 Regular \$25.95
Perform complex calculations 102 illustrations, step-by-step with simple analog circuits. methods for solving real-world 200 pp . partial and differential equations. 560 pp .

GENERAL SCIENCE

Regular \$16.95
A fascinating book about man's oldest question - the seareh for understanding of cosmic order. 192 pp .

STATE-OF-THE-ART

9808
Regular \$34.95
For both micro and main frame users, second edition of thie all-time best selling guide. 449 pp .

2931
330 illustra ne-volume reference to satellite design and application. 448 pp . Counts as two.

2631
Regular \$22.95
196 illustrations, a practical sourcehook complete with applications examples. 192 pp

COMPUTER SOFTWARE

2890
A 1 -volume language primer, reference manual and subroutine function library. 588 pp . Counts as two.

$9762 \mathrm{P} \quad$ Regular $\$ 21.95$
The classic, definitive work on the IBM PC-fully rev ised and enlarged. 387 pp

Regular \$29.95
183 illustrations, a newly published, reference guide. 496 pp.

9766 P
 Regular \$19.95

Make your IBM PC work for you with Norton's practical and informative guide. 362 pp

2888
Regular \$26.95
How computer networks work, how to make them work for you 340 pp .

9821
Regular \$38.95
An authoritative and provocative look at the state of today's software engineering. 340 pp . Counts as two

How the Club Works

YOUR BENEFITS: You get $\mathbf{3}$ books for $\$ 1.95$ plus shipping \& handling when you join. You keep on saving with discounts up to 50% as a member.

YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every 3-4 weeks, you will receive the EE\&D Book Club News describing the Main Selection and Alternates, as well as bonus offers and special sales, with hundreds of titles to choose from.

AUTOMATIC ORDER: If you want the Main selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no selection at all, simply indicate your choice on the reply form provided. As a member, you agree to purchase at least 3 books within the the next 2 years and may resign at any time thereafter.

BONUS BOOKS: Starting immediately you will be eligible for our Bonus Book Plan with savings of up to 80% off publishers' prices.

IRONCLAD NO-RISK GUARANTEE: If not satisfied with your books, return them within 10 days without obligation!

EXCEPTIONAL QUALITY: All books are quality publishers' editions especially selected by our Editorial Board.

SEND NO MONEY NOW!

INTRODUCTORY 10-DAY FREE EXAMINATION
 ELECTRONICS ENGINEERS \& DESIGNERS BOOK CLUB
Blue Ridge Summit, PA 17294-0860
YES! Please accept my membership in the Electronics Ingineers \& Designers Book Club ${ }^{\ominus}$ and send me the volumes I have listed below, billing me only $\$ 1.95$ plus shipping and handling charges. I understand that the books are sent on a 10 .Day liree Examination basis. If dissatisfied in any way, I ma return the books within 10 days and incur no further obligation. Otherwise I agree to pay the enclosed invoice promptly and to receive regular club bulle tins as described in "How the Club Works." To complete my membership ob ligation I need only purchase 3 additional books at regular members prices during the next 2 years, and may resign at any time thereafter.

to "track," steered by the appended address, until it reaches its destination. ISDN signal and control information is transmitted over the " D " channel in that packetized form. Between network tasks, the " D " channel can also be used to carry packetized user information. Converting a particular transmission into packetized form is another job handled by the terminal adapter, further easing the transition to ISDN.

- In the Virtual-Circuit mode an "information pipeline," of any desired carrying capacity, is maintained for the exclusive use of the subscribing party, in the manner of the traditional private line used by broadcasting networks and the like. Because of its very-sophisticated information-handling capabilities, the ISDN network need not actually tie the virtual circuit to a particular conductor or path, but can use whatever channels are open at any time. The only requirement is that the prescribed data capacity between the two endpoints is preserved.

Thus, as Ian Ross, president of AT\&T Bell Laboratories says, "ISDN will enable users to merge their own internal-data systems seamlessly with the worldwide public networks. On the other hand, if users prefer to take their destinies into their own hands, software will allow them to configure portions of these networks into what are virtually private networks, suited to their individual tastes and needs."

Some hardware

The guiding principle of ISDN is to wring every last drop of communications out of existing and future transmission facilities. So, although the world's stock of data-transmission pathways is growing constantly, with more of everything from the buried line reaching a new suburban development to new fiber-optic light cables, the real ISDN action is elsewhere. It's happening at the nodes-the junctions, terminals, and interchange points where information is put on, and taken off, those lines.

We've already spoken of the terminal adapter that will help bridge the transition to ISDN. It will translate the output of existing electronic equipment into ISDN format, so the information can be transmitted to the desired point. There, if non-ISDN equipment is also in use, a second terminal adapter will re-convert the
information to a suitable form. Of course, the companies involved in setting ISDN standards are cooperating fully with other manufacturers, helping them design and test their new products for future ISDN compatibility.

Very significant, too, is the $5 E S S$ switch, the latest generation of the Electronic Switching System. Twenty million communications lines are already terminated on the thousands of 5ESS-switch offices now in service, and AT\&T Network Systems has ensured that it is capable of handling ISDN signals. The 5ESS switch can be used either as a central office switch or on the premises of a large communications user. Upgrading any 5ESS to support any of ISDN's three modes requires only the addition of the latest enhanced software.

ISDN case histories

Probably the nearest approach yet to "total ISDN" has been made by the McDonald's restaurant corporation, working with Illinois Bell and AT\&T. By the time you read this, McDonald's new headquarters building, specifically wired for ISDN, will be open. McDonald's expects to eventually extend the new technology to include all of its 68 offices and 9,400 restaurants in 45 countries.

According to Bonnie Kos, McDonald's Vice President of Facilities and Systems, ISDN improves the work and productivity of data-processing employees, who can now simultaneously converse and transmit data over the same connection. At the same time, the cost of building wiring and of wiring changes is lowered, because of its simple, twisted-pair wiring. Ultimately, ISDN will permit the consolidation of most of the 20 networks McDonald's previously needed to perform the same tasks. "ISDN is the first product that... will help us manage our business internationally," says Ms. Kos.

There are over 20 ISDN applications in service around the United States, with more being added each month. The ISDN service at American Transtech, in Jacksonville, FL, has been in service since last November. American Transtech, one of the nation's largest telemarketing companies, handles over a million telephone calls and financial transactions per day. Among the distinctive features of American Transtech's

ISDN installation are its nationwide operation and that, due to its great volume, it uses the high-capacity primary rate interface.

As AT\&T Planning Supervisor George Gawrys says, "We've shown how effective ISDN can be in a large universe. We've proven the viability of such features as Automatic Number Forwarding, Call-by-Call Service Selection, and Multi-Media Conferencing-not across the street, but across the nation. This is no longer a trial...it's the same equipment that will be sold to other customers as soon as the tariff is approved by the FCC."

Also putting ISDN to work is Intel, of Santa Clara, CA. At first, they viewed their participation as a learning experience, valuable for them because they are a major manufacturer of communications IC's. But gradually, the advantages became so apparent that Intel decided to link all of its offices digitally, and to consider telecommuting for its personnel. One Intel employee currently spends four days a week at home in Phoenix, AZ, making use of an IBM mainframe in Santa Clara. At the same time, others in his family are using the identical pair of wires for making local telephone calls!

Other firms presently testing ISDN include Chevron Corp.'s Chevron Information Technology Co.; and United Technologies Corp.'s Pratt \& Whitney Division., with 200 ISDN lines, soon to be expanded to 3,000 .

So-What is ISDN, really?

First, ISDN is an international push to get every last bit of communications capacity out of the vast network that has been laid down for the past hundred years.

Second, it represents an all-out effort to upgrade business and home communications, with all the convenience, capability, and economy that the current, and foreseeable, state-of-the-art technologies permit.

Third, ISDN is a set of standards. The fact is that there are now multiple sources of equipment. All equipment, however, must be able to intercommunicate if it is to achieve its full potential. ISDN provides universal standards for interconnection that will make such communication possible.

So, after a hundred years, Ludovic Zamenhof's dream may finally be on the verge of realization.

FIG. 1—UNDER NORMAL conditions, this sensor has a very high resistance. When alcohol comes in contact with the sensor, its resistance decreases in proportion to the alcohol concentration.

FIG. 2-THIS CHART SHOWS how the sensor's resistance changes according to the concentration of various elements that come in contact with it.
ing the sensor's resistance, in relation to the concentration of various elements that come in contact with its surface, is shown in Fig. 2

Circuitry

A block diagram of the Breath Alert's circuitry can be scen in Fig. 3, and the complete schematic is shown in Fig. 4. When power is applied to the circuit, the heater coil in the sensor is energized by the 5 -volt output of IC5, a 7805 voltage regulator. The entire circuit goes through a sample reading, and then after a warm-up period, the circuit automatically resets to a 0 -alcohol level and the ready light comes on. Figure 5 shows a timing chart for the Breath Alert from the moment that power is applied

Breathing into the sensor with alcohol on your breath will lower the sensor's resistance; consequently, the input voltage to the detector circuit, will change. The detector circuit consists of a quad op-amp, IC2 and its
associated circuitry. All sections of the detector circuit are calibrated via R3 and R4, and the inputs to each section are controlled by the voltagedivider network R21-23. As each section is triggered, the outputs go low
and the sample-and-hold circuitry, made up of IC 3 and IC 4 , will latch onto the highest input value and drive the appropriate LED. The different colored LED's represent the following alcohol levels

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1-25,000 ohms, trimmer potentiometer
R2-2000 ohms, trimmer potentiometer
R3, R4-5000 ohms, trimmer potentiometer
R5-R7, R11-R13-220 ohms
R8-R10- 120 ohms
R14, R18- 10,000 ohms
R15, R23- 1000 ohms
R16-880 ohms
R17-4700 ohms
R19-1300 ohms
R20-390 ohms
R21, R22-430 ohms
Capacitors
C1- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
Semiconductors
IC1, IC2-LM324 quad op-amp
IC3, IC4-74LS00 quad 2-input NAND gate
IC5-7805 5-volt regulator
D1-1N4001 diode
LED2, LED4, LED10-Green lightemitting diode
LED3, LED5, LED6-Red light-emitting diode
LED7-Amber light-emitting diode
LED8, LED9-Yellow light-emitting diode
D1-TN4001

SEN1-Nemoto resistive semiconductor alcohol sensor

Other components

BZ1—Piezo buzzer

S1-SPST on/off switch
Miscellaneous: Plastic drinking straws, PC board, jumper wire, 5 K calibration potentiometer, 2 4-pack AA battery holders, 1 case, 1 phono plug and jack, etc.
Note: The following items are available from Breath Alert MFG. Co., 130 Rockland Street, Hanover, MA 02339 (617) 837-0609. Breath Alert sensor: \$16.95. PC board and sensor: \$27.95. Complete set of parts without case or battery holders: $\$ 44.95$. Deluxe kit containing all parts including screen-printed case and battery holders: \$59.95. Charger kit including jack and power-pack adapter: \$7.95. Pre-assembled and calibrated Breath Alert, including Ni -Cd batteries and charger: \$99.95. Quantity discounts available. Allow 2-4 weeks delivery by UPS ground. Add $\$ 4.00$ shipping, and $\$ 3.75$ for C.O.D., Massachusetts residents must add 5\% sales tax. MasterCard and Visa only, call (800) 334-0854, extension 609

FIG. 3-BLOCK DIAGRAM SHOWS a simplified representation of what's inside the Breath Alert.

FIG. 4-THE COMPLETE SCHEMATIC for the Breath Alert. The circuit requires the regulated 5 volts from the 7805 regulator.

1 green-pass
2 yellow-pass (but alcohol present) 0.02%

3 yellow-pass (but alcohol present) 0.05%

4 amber-warning (danger zone) 0.08%

5 red-fail (over legal limit) 0.1%
6 red--fail (way over limit) 0.16%
If the level of alcohol is above the legal limit, or 0.16%, part of another quad op-amp, ICl-d, will turn on both the optional buzzer and LED5. That is an indication of a high level of alcohol present in your blood, and you definitely should not drive.

After a test is taken, the sensor takes a few seconds to ready itself for another test. When the sensor is ready, its input to $\mathrm{ICl}-\mathrm{b}$ (adjusted via R2 to a threshold of 0.5 volt) causes LED4 (ready) to come on. That, in
turn, causes ICl-c to reset the rest of the circuitry. The last section of ICl is biased via R15 and R16, and used to indicate a low-battery condition (when the battery voltage drops below 6.8 volts), which could result in an inaccurate breath test.

Construction

Be sure to follow the directions carcfully, so you won't have to re-do anything later on. A PC board is available either separately, or in kits containing various parts, from the source listed in the Parts List. Start the assembly by installing all of the fixed resistors, and follow Fig. 6 for the correct placement of all components. Then install potentiometers R1-R4.

Now install all of the IC's while observing proper polarity. Be sure to solder all pins carefully and do not
overheat the IC's or the PC board. Also install the 7805 voltage regulator, IC5, making certain to bend it down and solder its tab to the PC board to provide for heat-sinking (see Fig. 7). Next install D1, a IN4001 diode; capacitor C 1 ; the sensor, SEN1, leaving about $3 / 8$-inch clearance underneath it; SI ; BZ1, observing its polarity; and a 1 -inch piece of insulated wire for the jumper (J).

The circuit contains 9 LED's. Find a plastic straw about $1 / 8$-inch in diameter, and cut 9 pieces exactly $1 / 2$-inch long; then slip them over the leads of the LED's so that they will all be exactly the same height off the board. Observe polarity when installing the LED's. Also, make sure that all LED's are uniform in height before soldering. The Parts List indicates the correct colors for the LED's, and the

FIG. 5-A TIMING CHART shows the order in which various functions are performed from the instant the unit is powered up.

FIG. 6-PARTS-PLACEMENT DIAGRAM. You can make your own PC board, or you can buy one from the source mentioned elsewhere in this article. Pay careful attention to the height of the LED's.

Parts-Placement diagram shows you where they go.

The next thing you have to do is to connect the power source to the PC board. The unit requires 8 AA penlight batteries, or else you can use rechargeable Ni -Cd's which require the optional AC charger/adaptor. You have to follow the wiring instructions
shown in Fig. 8, depending upon what kind of batteries you're using. You'll need two 4-pack AA battery holders for throwaway cells and, if you are going to use rechargeable cells, you need a $117 / 18$-volt AC power pack, 8 rechargeable AA cells, a phone jack, a 100 -ohm resistor, and a 1 N 4001 diode as shown. All parts
are available from the source mentioned in the Parts List.

Checkout and calibration

In order to check and calibrate the unit, there are certain instruments and tools that you'll need. Those include a soldering iron, small screwdriver, voltmeter, 5 K calibration potentiometer and wire (see Fig. 9), and some drinkable alcohol, such as vodka, beer, rum, etc.

With no power applied, you'll have to tack-solder the potentiometer assembly that was shown in Fig. 9 to various points on the circuit. Connect the black wire to ground (the bottom left corner of the PC board near IC5), and connect the red wire to the left side (toward the edge of the PC board) of R20. Set potentiometers R1-R4 at mid-range (arrows should be straight up), and connect the positive lead of your voltmeter (be sure to set the meter on a 5 -volt DC scale) to pin 5 of ICl .

Turn on the power using Sl ; the power-on LED and several others should light up. Adjust RI so that the voltmeter reads 0.5 -volt DC. Adjust R2 just past the on/off threshold of LED4 (LED4 should be lit at 0.5 -volt DC). Now turn the unit off and install a 6 -inch jumper wire from pin 8 of ICl to ground. (It will be removed later.) Connect the yellow wire from the calibration potentiometer to pin 5 of ICl . (Leave the voltmeter connected to the same pin while you're doing that.) Now, by adjusting the calibration potentiometer, you should be able to get a voltage reading from 0 - to 5 -volts DC. Also, LED5-LED9 should light individually at some point from 2 volts to 5 volts.

Set the calibration potentiometer to get a reading of 0.5 -volt DC; LED's 2, 4 , and 10 should all be lit. Adjust the calibration potentiometer to read 0.7volt DC. At this point LED4 should not be lit. If it is, turn R2 counterclockwise (just a hair) until LED4 turns off (LED4 should be on at 0.5 volt or lower, and off at 0.7 volts and up). Adjust the calibration potentiometer for a reading of 1.75 -volts DC; LED4 and LEDI0 should be off and LED9 should be on. Now adjust R4 until only LED9 is lit.

Adjust the calibration potentiometer for a reading of 2.5 -volts DC; LED9 should go off and LED8 turn on. Now adjust R3 so that only LED8 continued on page 70

Electronic Thermometer

MARC SPIWAK, ASSOCIATE EDITOR

QUITE OFTEN, THE BEST KIND OF PROIECT to build is just a neat little gadget that you don't necessarily need, but one that will give you something to do without costing you an arm and a leg. That way, you don't have to rush the project in order to meet some deadline. And if you should run into any problems while trying to get your project to work, you won't be ready to kill your friends and family-and believe it or not, the fourth-most leading cause of death in this country is due to crazed electronics hobbyists who have wasted hundreds of dollars and hours on a dead-end project.

The project we are presenting, however, is one that you'll want to build. It is an electronic thermometer that displays a temperature range of 40 degrees Fahrenheit (or about 23 degrees Celsius) on a 16 -LED bar-type display. It's easy to build, very inexpensive, and it is a great desktop-novelty item when it's finished. It's also so small that, with a little customizing, it can be made to fit, along with two small 6 -volt batteries, inside a very small project case.

Circuitry

As you can see from the schematic in Fig. 1, the heart of the electronic thermometer is ICl, a Siemens UAAI70. That IC is really just a 16 LED driver. Depending on the level of the input voltage to pin 11, and how $\mathrm{V}_{\text {REF }}(\mathrm{min})$ and $\mathrm{V}_{\text {REI }}$ (max) (pins 12 and 13) are biased, one of the 16 LED's is illuminated.

The temperature-sensing ability of the circuit is made possible by R10, an NTC (Negative Temperature Coefficient) thermistor. (A thermistor is a temperature-dependent resistor, and NTC means that as the temperature increases, the resistance decreases; PTC means that as the temperature increases, the resistance also increases.) As the ambient temperature increases, the thermistor's resistance, and consequently the input voltage to pin 11, decreases. The 16 LED's on the prototype display from about 50 to

Here's something that you don't really need-but you'll probably want to build one, anyway!

90 degrees Fahrenheit, but you can calibrate the center temperature (the middle LED) via potentiometer RI2.

The circuit also includes an LDR (Light-Dependent Resistor), RJI, that adjusts the display's brightness according to how much light is in the room. The LDR's resistance in bright light is about 350 ohms, and in total darkness its resistance approaches 200,000 ohms. When the prototype was tested, the photoresistor did its job too well. The display's brightness varied greatly between a very pleasant level and an excessively bright one. Thus, the light-dependent resistor was covered with a piece of tape so that the display will maintain the same low (pleasant) level of brightness and the
batteries won't have to work so hard. However, because the LDR is in parallel with an 18 K resistor (RI), the combined total resistance of those two components will never be more than 18 K . Therefore, another alternative is to leave the LDR out of the circuit completely.

Components

The electronic thermometer can be built using parts that you gather individually, or purchased as a complete kit for $\$ 17.54$ from the source listed in the Parts List. The kit includes the PC board and all components except a power supply, ON/OFF switch, and a case. While buying the kit is probably the easiest and cheapest way to build the project, you can also make your own PC board from the pattern in the PC-Service section of this magazine. You may even be able to get away with point-to-point wiring since it's such a simple circuit. Then, if you're lucky, your junkbox may contain all the parts you need except the IC.

The on/OFF switch that was used in the prototype is a momentary push-button-type switch. A momentary switch was used because LED's are very power-hungry, and if the device were left on, the batteries wouldn't last very long. However, if you decide to build or buy a 12 -volt DC power supply, or use a much larger battery pack, then it won't hurt a bit to leave the unit on all the time.

Construction

Begin building the project by installing all of the resistors on whatever PC board you're using, as shown in Fig. 2. Then, install the potentiometer R12, the thermistor R10, the lightdependent resistor RII, the IC socket, and lastly the LED's. Be sure to be very careful when spreading the leads of the LED's, because too much force will crack the LED in half. The kit includes 15 LED's of the same color, and one of a different color. You should install that single LED on the right-hand side of the board (above

R12 in the LEDI6 position) to indicate the maximum temperature on the display. (If you don't buy the kit, it's entirely up to you as far as the colors of the LED's are concerned.) Now just press ICl into its socket

After the board is completely assembled, you'll need some wire, an onorf switch, and whatever you are using as a power supply. The prototype uses two 6 -volt photo batteries (Eveready type A544 or equivalent)

FIG. 1-THE SCHEMATIC FOR the electronic thermometer. It can be built from a kit or from separately purchased pieces on a PC board or perforated construction board.

FIG. 2-PARTS-PLACEMENT DIAGRAM. Follow this when soldering the parts on the board supplied with the kit, or the one you can make from the pattern in PC Service.
taped together, with the positive side of one connected to the negative side of the other. They are held in place inside the case with a piece of doublesided tape. Depending on what size case you're plamning to install the board in, cut and solder appropriate lengths of wire to the + and - terminals on the PC board. Then install S1 in series with the positive supply line and connect the leads to the batteries (Depending on what type of switch you use, and how it's supposed to mount to the project case, you may have to install it in the case first, and then solder it in the circuit.)

Test and calibrate

By now you've probably already pressed the button to see if your thermometer is working-if not, do it now. At least one LED, or two right next to each other, should light up. (If nothing happens, check your soldering and the placement of the compo-nents-there can't be too much wrong with a circuit this simple!)

Once you are sure that your thermometer is working, you have to let it sit for about a half an hour. That's so the board can cool down to room temperature after all the soldering and handling. Try to let the board cool in a room that's at about 70 degreesyou'll have to get an ordinary thermometer, or look at your home thermostat's reading.

After the board's temperature has settled to about 70 degrees, adjust R12 so that the center LED (or one or two LED's higher or lower, depending on the exact room temperature) is illuminated. Now you should take a sheet of paper and draw 16 circles representing the 16 LED's on your display, and write a 70 next to the appropriate circle.

Place both the electronic thermometer and a regular thermometer inside a refrigerator for about ten minutes, and then remove them both. The temperature inside the refrigerator should be lower than 50 degrees, so the far-left LED should light up when the button is pressed. As soon as the next LED begins to light, check the temperature on the regular thermometer, and record it next to the appropriate circle on the sheet of paper. Then you can estimate what temperature the first LED should indicate. As the temperature continues to rise. keep on recording the readings until both thermometers once again
level off at 70 degrees. (Try not to handle the board while you're doing that). If you are in doubt as to whether or not both thermometers are warming up at the same rate, you will have to do the calibrating by allowing both thermometers to level off in environments having different temperatures. Then you will have to approximate the temperatures in between.

Now you have to work near a warm lamp, or some other source of heat, and continue recording the readings until you reach the far-right LED. (It should be about 90 degrees when that LED lights.) Now you have a sheet of paper that represents the entire display on your thermometer. You should now check it out by placing both thermometers in different environments to make sure that they both display approximately the same temperature. At this time you can approximate the readings you ve made in nice even increments, to allow for neat labeling later on.

Final assembly

Now you are ready to put the board in some hind of project case. In order to fit it inside Radio Shack's small project calse (number 270220), the PC board's edges had to be filed down, as

[^3]

FIG. 3-THE BOARD FITS inside the case as.shown. Holes are cut in the cover, and a lens is made using any kind of flexible clear plastic, which is then screwed in place.
well as cutting away the plastic ribs inside the project case. (You can use a larger case if you like.) Then, the cover has to have a hole drilled in it for the switch, and a rectangular slot cut in it so that the faces of the LED's can come through (see Fig. 3). Make sure that the faces of the LED's are flush with the surface of the cover-you might have to put a piece of foam rubber of other kind of non-conductive material underneath the board in order to get them to the right height.

The lens for the display was made from two identical pieces of clear plastic cut from the box that the kit came in. However, any clear plastic, perhaps from bubble-type packaging, may be used. The plastic is cut large enough so that it can fully cover the slot in the case's cover, and also overlap enough to have room to screw it in place (see Fig. 3). Tape both pieces of plastic in place on the case cover, drill a small hole on each side, put a small screw in each hole, and then remove the screws and the tape.

Now take a piece of electrical tape, and cut a strip that is slightly narrower than the faces of the LED's, and the exact length of them (about 4 cm).

Stick the tape down in the exact center of one piece of plastic, and make sure that the edges are tirmly pressed down. At a distance of at least a foot, spray the plastic, tape-side up, with some spray paint (whatever color you like), until you can no longer see through it. Wait until the paint is completely dry, and then pull the tape off.

Now you have a lens that covers the rough edges of the slot in the cover of the case, yet still allows the LED's to be seen. Some rub-on lettering was used on the side without the paint to indicate the temperature scale on the display, as well as to add a protessional appearance to the device. The temperature range on the prototype was divided into 5 -degree increments, and the labeling was evenly spaced along the $4-\mathrm{cm}$ display. The finishing touch is the second piece of plastic used to protect the lettering from being scratched off. The two pieces of plastic are then serewed back in place, and the case is then closed up.

The unit is now ready to be placed in the location of your choice. There it will silently wait, ready at all times, to give you an instant yet accurate temperture reading at the touch of a button.

R-E

Here's an electronic combination lock that prevents unauthorized use of a telephone.

UNATHORIZED TELEPHONE CALLS CAN ROB you blind. With your home telephone, you may think that you have control over the amount of the monthly bill, but in reality, you don't. If you have a business telephone system, it is very difficult to police the incoming and outgoing calls of employees.

Unauthorized telephone costs are usually discovered only if or when the phone company sends you an itemized bill that shows the number of local and long distance calls that were made. But while itemization gives you proof that the calls were made, it doesn't tell you who made them.

The only way to prevent unauthorized use of a home or business telephone is to remove the ability to make the calls by removing all phones from the premises, or by adding a security system in the form of an "invisible" electronic lock; one that can only be "opened" by a special userprogrammed four-digit code that is entered through a Touch-Tone telephone's normal keypad.

The Tele-Guard

Just such a telephone security device is our electronic combination lock, which for simplicity throughout this article we'll call a Tele-Guard. The easy-to-build Tele-Guard, which can be installed into practically any single-line Touch-Tone telephone system, protects your telephone line from unauthorized use by actually disconnecting the telephone from the line until a four-digit code is entered. The code causes a small relay inside the Tele-Guard to close and connect the telephone to the outside line.

STEVE SOKOLOWSKI

At this time, you may ask if the unlocking code must be entered if a telephone call is being received. The answer is No! Tele-Guard automatically by-passes its electronic lock so that the phone can both ring and be answered without entering any code-as if the Telc-Guard didn't exist. When the conversation has been terminated, Tele-Guard automatically arms the locking device.

Extra protection

If you know how many digits are required to unlock the device, most keypad-operated security devices can eventually bc "broken" by entering every possible combination from dial pad; a procedure that can take hours but one that will eventually prove successful. But not with the Tele-Guard, because it automatically resets the decoder circuit every time an incorrect digit is entcred into the system. That means that even if the first two digits of the code are guessed correctly by luck, if the third digit is incorrect Tele-Guard senses the error and resets the complete circuit. It wipes out all memory of the first two correctly entered digits, thereby requiring that the first two digits be entered correctly again, followed by correct third and fourth digits. That kind of design provides high security Touch-Tone telephones.

DTMF is the key

Touch-Tone telephone pads use a special kind of signalling called DTMF, which stands for Dual Tone Multi Frequency. In plain terms, it means that each of the 12 keypad but-
tons on a standard telephone produces a very distinct two-tone output.

Although the standard telephone has 12 buttons, as shown in Fig. 1 the complete DTMF keypad has 16 buttons: the conventional 0-9, *, \#, and $\mathrm{A}-\mathrm{D}$. The $\mathrm{A}-\mathrm{D}$ buttons are used for special communications equipment and are not used, or found, on conventional telephones.

Each button on a Touch-Tone keypad produces a dual-tone output whose frequencies are determined by the row and column the button is in. For example, the number- 5 button is in the $1336-\mathrm{Hz}$ column and $770-\mathrm{Hz}$ row; therefore, pressing the number- 5 button produces a dual-tone output consisting of 1336 Hz and 770 Hz .

DTMF signalling was developed by Bell Laboratories. When first in-

FIG. 1-THE STANDARD DTMF KEYPAD provides 16 individual dual-tone frequency codes. However, the buttons labeled A-D are not used on conventional telephones. Each code consists of a row and column tone.

FIG. 2-THE OUTPUT VOLTAGE OF AN ELECTRONIC KEYPAD is a digitally synthesized stairstep waveform that approximates a pure sine wave. Modern DTMF receivers respond to the staircase as well as to a sine wave.
troduced, the keypad that generated the trequencies used a transistor oscillator whose output frequencies depended on relatively large tapped inductors (coils). Today, DTMF keypads use crystal-controlled IC's that generate the synthesized stairstep waveform shown in Fig. 2; a crude approximation of the pure sine-wave signal that was produced by the older, transistor/coil oscillator-type tone dials. Although the synthesized wave-
form is only an approximation of a sine-wave signal, its stairease waveform can be recognized by DTMF receiving equipment, such as Teltone's $-M-957-01$ receiver IC. (Teltone, Inc., P. O. Box 657, 10801-120th Ave. N.E., Kirkland, WA 98033).

The DTMF receiver

The M-957-01 receiver IC is an extremely complicated device. Older DTMF receivers required large and bulky audio filters. The $M-957-01$ incorporates all the needed filtering within its 22-pin plastic body. It determines if the signal is just noise, a speech pattern, or a dialing signal that is within $+2 \%$ of the DTMF bandwidth of $697-1633 \mathrm{~Hz}$.

The receiver IC processes the conventional DTMF Touch-Tone frequencies to provide a 4 -bit binary output, and a strobe output that goes high when a valid DTMF code is received. The strobe signal is used by the Tele-Guard when converting the binary signal to decimal output.

How it works

Figure 3 is a block diagram of the Tele-Guard. Notice that the telephone is normally powered by the Talk Battery, which is actually a +12 -volt power source within the Tele-Guard. Entering the correct code on the phone's keypad eventually causes relay RY1 to pull in. Relay poles PI and P2, which are part of RY1, switch the telephone through the Off-Hook Detector directly to the Central Office Telephone Line, which then provides the power for the telephone instrument. In that way, the telephone line is isolated from power sources within the Tele-Guard. As you'll see shortly, opto-couplers insure that there can be no direct connection between the Tele-Guard's power supply and the telephone line.

The Talk Battery's 12 volts and the 6 -volt source for the Tele-Guard circuits are provided by the power supply shown in Fig. 4.

As shown in Fig. 5, the TeleGuard's internal combination lock is in a reset state when the device is in its

FIG. 3-THE BLOCK DIAGRAM OF THE TELE-GUARD. To provide total isolation between the device and the telephone line, the telephone's power source is switched from an internal power supply-the Talk Battery-to the normal telephone-line voltage.

FIG. 4-THE POWER SUPPLY does not include a resident power transformer. Transformer T 1 is actually a plug-in wall transformer whose output wires are soldered to terminals on the Tele-Guard's PC board.
normal standby condition. When the telephone handset is lifted from its cradle, the internal transistor of the opto-isolator Off Hook Detector (IC3) conducts and brings pin 5 of that IC low. The low is applied to inverter IC4-a (pin I), which changes the low to a high. The high is applied to switching diode D3, which "blocks" the high; therefore, pins 4 and 10 of both IC8 and IC9 (D-type flip-flops) are floating. The floating pins allow the IC's to change state from high to low when a valid unlocking code is present; but more on those two IC's a little later.

For the proper operation of the Tele-Guard, we must apply a Talk Battery-in this instance +12 volts DC--to the telephone that's to be secured. (The telephone is connected to the Tele-Guard via modular-socket SOI.) The Talk Battery is applied to modular-connector SOI through IC3 and R6.

The telephone's "talking pair," the red and green wires, connect through contacts Pl and P 2 , which are part of relay RY1. The resting position of Pl connects the telephone to the Talk

Battery through R7. The telephone's electrical path to ground is provided by P2 and R6.

Making a call

To show how the system works, let's assume that the No. 8 button is being pressed, thereby applying an 852-/1336-Hz DTMF signal to pin 12 of IC5, the DTMF Receiver.
As shown in Table 1, IC5 converts the $852-/ 1336-\mathrm{Hz}$ signal into its hex-output-format binary equivalent of 1000. In addition to the binary output, IC5 also produces a strobe high for as long as the No: 8 keypad button is pressed. (Pin 18 goes low when the No. 8 button is released.)

Both the binary and strobe outputs are applied to IC6, a 4-to-16 decoder/ demultiplexer. With the DTMF binary output applied to pins 20-23 of IC6, and if pin 19 is held low, the decimal equivalent of the input will appear at IC6's output pins-Nos. 2-11. In this instance, pin 9 of IC6, which corresponds to an input binary code for the number 8 , will go lowall other output pins remain high.
Inverter IC4-b is used to invert the

TABLE 1-DTMF TO BINARY DECODING

Signal	Low- Frequency Component $\mathbf{(H z)}$	High- Frequency Component $\mathbf{(H z)}$	Hex Output Format
	697	1209	$\mathbf{3 2 1 0}$
1	697	1336	0001
2	697	1477	0010
3	770	1209	0011
4	770	1336	0100
5	770	1477	0101
6	852	1209	0110
7	852	1336	0111
8	852		1477
9	941	1336	1000
0	941	1209	1001
$\#$	941	1477	1010

high strobe coming from IC5 into a low strobe for IC6 because pin 9 of IC6 requires a low in order to pass the binary equivalent of its input.

The unlocking code

The section that actually senses the unlocking code is SO2, a header socket that is jumpered to correspond to the unlocking code. We will cover the programming next month,

The unlocking sequence is determined by IC8 and IC9, two dual Dtype edge-triggered flip-flops wired as a sequential pass-on. The sequential pass-on is a series of four independently clocked, cascaded D-type flipflops. The unlocking pulse, which is available at pin 9 of IC9, will go low-thereby causing RY1 to switch the secured telephone to the telephone line-only if unlocking-digit 1 is followed by digit 2 , then by digit 3 , then finally by digit 4 . Each unlocking digit will provide a low from IC6 through SO2 to its corresponding pin on IC8 and IC9.

A low must be applied to pins 4 and 10 of both IC8 and IC9 in order for both to flip-flop. The low can be applied from On-Hook Detector IC3, or from IC7, which functions as a Mis-Dialed-Digit Reset.

Pin 9 of IC 9 goes low when the correct four-digit unlocking code is entered. The low is applied to the base of Q1 through diode D7, turning both transistor Q1 and LED4 on, thereby energizing relay RY1.

Contact PI, which is controlled by RY1, connects the telephone set to the telephone line through modular plug PL1, thereby providing dial tone and normal operation. Also, when Pl toggles to the telephone line it opens pin 2 of IC3, which forces the output of IC4-a low. That in turn forces pins 4 and 10 of IC8 and IC9 low, which resets their flip-flops to standby.

When the telephone connects to the line it also energizes On-Hook-Detector ICl , causing pin 5 of ICl to go low. The low is applied to Q 1 through D5, which keeps RY1 energized during a normal telephone conversation.

Next month

Next month we'll cover how a telephone connection is maintained, how incoming calls are answered, how the header is programmed with a userselected code, and, of course, the construction details for Touch-Tone and pulse-dialed phones.

R-E

इ(u)
 DIFFERENTIAL AUDIO. DISTORTION ANALYZER

This device tells you why an amplifier that passes all conventional tests with flying colors can still sound bad.

HERB FRIEDMAN

the great legendary plumber. Stilson Hammerknock, (yes, plumber, as in "Get someone to fix the pipe!") used to tell customers that "If the rate of evaporation exceeds the rate of drip, your pipe isn't leaking." The audio-testing corollary to Stilson's rate-of-evaporation theory is that "If you can't hear any distortion there is no distortion, regardless of what the instruments show." On the other hand, it also means that the listener might hear an irritating, annoying distortion, even if the distortion can't be measured by conventional test equipment.

David Hafler, one of the pioneers of high fidelity, developed the first truly low-cost high-performance FM-stereo tuner and the highly respected $D y$ naco amplifiers. Hafler observed that conventional audio-amplifier distortion tests do not indicate all possible distortions because the measurements are made under static conditions: a specified input and output, a resistive load, etc. He believes that amplifiers should also be evaluated by a listening test that compares an amplifier's output signal to the input signal under dynamic conditions-meaning, a program signal source and a speaker load.

The Hafler test-one that differentially compares an amplifier's input
and output signals-was discussed in Larry Klein's "Audio Update" column in the September 1988 issue of Radio-Electronics. This month, we'll show you how to build a switching device so you can make your own Hafler-type distortion tests.

There are many reasons why there is a continuing debate over amplifierdistortion tests: what test parameters to use, what the parameters represent, and what the results actually mean. A goodly number of test and measurement specialists claim, and have proven, that by using the same set of parameters they can come up with valid tests that prove an amplifier is either good or bad. How the amplifier actually sounds is something else; it might have no relationship to the test results.

Amplifiers behave differently to a dynamic signal and load than they do to a resistive load and a fixed or pulsed input signal. Actually, it's the resistive load that's the major problem because it does not truly represent the loudspeaker; that is the reason why Amplifier A might sound terrific with Speaker X yet sound rotten with Speaker Z, while Speaker X sounds so-so with Amplifier B, and an absolute disaster with Amplifier C.

The reason for disparities in performance when an amplifier drives a
speaker is due to the fact that a speaker's impedance is not resistive; it is a reactance that varies with the signal frequency. It would be very nice if we could assume that amplifiers are not sensitive to the load, a condition that some manufacturers imply when they claim their amplifier has a "zero-output impedance." But the truth is that amplifiers are load-sensitive, and speaker systems are somewhat sensitive to the output impedance of the driving amplifier. Again, that is why amplifier A sounds good with Speaker X, but Speaker X sounds rotten with Amplifier C.

Another problem is the kind of distortion being measured, which is why many audiophiles and sound purists still argue that even when the amplifier is deliberately driven into distortion, tubed amplifiers always sound better than solid-state amplifiers. In other words, a tubed-amplifier's distortion is less displeasing to listen to than the distortion from a solid-state amplifier. Let's look at why that might be so.

Assume that we have tubed Amplifier A, which-under the exact same signal, power, and operating conditions as solid-state Amplifier X-is producing 3\% THD (Total Harmonic Distortion). Solid-state amplifier X is producing under 0.5% THD. Yet,
without knowing the measured distortion, listeners claim that tubed Amplifier A sounds cleaner. How come?

Harmonically related

The reason why the higher-distortion tubed amplifier sounds better is that it has even-order distortion: second, fourth, etc. Tubed amplifiers, even when driven well into distortion, produce primarily even harmonics, which are musically (harmonically) related. For example, the second harmonic of 440 Hz (the musical note $\left.\mathrm{A}_{4}\right)$ is 880 Hz ; still $\mathrm{A}\left(\mathrm{A}_{5}\right)$, but an octave higher. The fourth harmonic is 1760 Hz , again $\mathrm{A}\left(\mathrm{A}_{6}\right)$, but two octaves higher. Because the distortion is primarily even-order, even the intermodulation products are harmonically related. If the user can't hear the input-signal source, the output signal-even theugh distorted-can sound good, acceptable, or, at worst, still pleasing to the ear.

On the other hand, a solid-state amplifier's distortion products are odd-order: third, fifth, etc. Now the third harmonic of 440 Hz is 1320 Hz , which falls somewhere between the notes $E\left(E_{6}\right)$ and $F\left(F_{6}\right)$. The fifth harmonic of 440 Hz is 2200 Hz , which falls between $\mathrm{C}\left(\mathrm{C}_{7}\right)$ and D $\left(\mathrm{D}_{7}\right)$. As you can see, the distortion products are not harmonically related. For the same reason, the intermodulation products are all over the musical scale. Because harmonic relationship is absent, it's possible for a solid-state amplifier having measurably low distortion to have an edgy, annoying sound.

Not heard at all

It is to avoid discussions about which distortion is caused by what, and what it all means, that Hafler takes the position that no distortion of any kind is tolerable under dynamic conditions, and that the best way to determine whether distortion of any kind exists-even distortions not yet quantified because there's no way to measure them-is to listen to the distortion itself by differential comparison of an amplifier's input and output signals. That can be done by connecting a monitor speaker across the input and output. Because the output signal is in phase with the input signal, nothing will be heard from the
monitor speaker if the amplifier is free of distortion.

However, if the amplifier introduces any kind of distortion-amplitude, frequency, phase, ringing, whatever-there will be no cancellation of the output distortion because there is no corresponding input signal. And something-some kind of sound-will be heard in the monitor speaker. As yet, there is no way to quantify what's heard, so the rule of thumb is: "The less you hear, the less the distortion."

Obviously, one cannot connect a monitor speaker from a voltage-sensitive amplifier input to the amplifier's power output; but, as shown in September's "Audio Update," Hafler gets around the problem by using a power amplifier as the signal source. That way, the monitor speaker can be differentially connected from the speaker output of the signal-source amplifier to the speaker output of the amplifier being tested.

Because a stereo amplifier has two independent channels, the signal source can be one channel, while the amplifier being tested can be the second channel. The only restrictions on the Hafler-type test setup are that both amplifiers must have a grounded output terminal, and the amplifier being tested must not invert the phase of the signal from the input to the output.

Because a power amplifier might have a relatively high distortion, it is logical to question how it can function as a signal source for distortion tests. The fact is that the amount of distortion in the signal source makes no difference; the signal source can be 100% distortion because the Hafler test is concerned only with distortion that is added to the signal source. Regardless of the input signal's distor-

PARTS LIST

R1-R4-10,000 ohms, $1 / 2$ watt, 10%
R5-220 ohms, $1 / 2$ watt, 10%
R6-1000-ohm potentiometer
J1-J8-5-way binding post
J9-phono jack
S1-4P3T rotary switch, see text
Misc:-cabinet, wire, hardware.
tion, if the output of the amplifier being tested is an exact reproduction of the input signal then nothing will be heard from the monitor speaker.

A Hafler tester

A device for making the Hafler distortion test is shown in Fig. 1 and Fig. 2. It is an experimenter's version-in that it uses readily available parts-of the commercial Excelinear unit developed by the David Hafler Co.

Almost anything can be used as a cabinet. The circuit can even be assembled on a piece of wood. Jacks $\mathrm{Jl}-\mathrm{J} 8$ can be anything that will hold a wire, but the 5 -way binding posts shown on the prototype are suggested. If each pair of jacks is spaced on $3 / 4$ inch mounting centers, you will be able to easily connect wires and cables that are terminated with conventional dual banana-plugs.

Function-switch SI is a 3P3T (tri-ple-pole, triple-throw) switch, which is somewhat unusual and is not likely to be found in local stores. The switch used in the prototype was a conventional 4P3T type, with one pole left unused. Be very careful when making connections to the switch. Although it looks easy enough from Fig. 1, the contact-jumpers can be confusing, and you might end up with the connections reversed on two of the three sections.

FIG. 1-THE CIRCUIT LOOKS SIMPLE ENOUGH, but take extreme care when wiring S1 because it's easy to get the wiring reversed on two of the three sections.

FIG. 2-THE PROTOTYPE TESTER is built in a small metal enclosure. To prevent shorting of uninsulated wires, position the parts so the wiring is as direct as possible between the jacks, the switch, and the null control.

Resistors R1-R4 equal a 2500 ohm, 2-watt resistor. A 220()-ohm, 2watt resistor is used in the commercial version of the tester. Unfortunately, 2watt resistors aren't the easiest parts to come by. Because there is no practical difference between 2200 and 2500 ohms, by using four parallel-connected $1 / 2$-watt resistors, we attain the necessary 2 -watt rating with easy-toget parts.

Theoretically, R5 could be eliminated if R6 was a 200 - or a 250 -ohm potentiometer, but your chances of finding a 200/250-ohm carbon potentiometer are almost non-existent. The R5/R6 arrangement shown in Fig. I allows the use of a 1000 -ohm potenti-ometer-a value that's often available locally.

Hook-up

Jacks J 1 and J 2 are connected to the output terminals of the signal-source amplifier. Jack J3, the source output, connects to the auxiliary (AUX) input of the amplifier being tested. The output of the amplifier being tested connects to jacks J5 and J6. The monitor speaker-which should be of high quality, such as one of your hi-fidelity stereo speakers-connects to jacks J7 and J 8 .

The load speaker, which connects
to jacks J3 and J4, should be the speaker that is usually driven by the amplifier being tested. As stated earlier, an amplifier's characteristics can be determined by its load, so you want your amplifier to be working into its usual speaker. But there is a problem in that: You will not be able to hear the weak differential sounds in the monitor speaker if the load speaker is pounding away. So locate the load speaker a long way from the test site-preferably in a closet.

Making the test

Just so you understand what's going on, refer to Fig. 1 as we walk through the functions of switch SI. We will refer to the amplifier being tested as the test amplifier.

When Sl is set to the T (TEST) position the source amplifier is connected to the load speaker through Sl-a, while the monitor speaker is connected to the test amplifier through Sl-b and Sl-c. When Sl is set to the s (SOURCE) position, the load speaker is disconnected, and the monitor speaker is connected to the source amplifier so that you can hear the test signal. When Sl is set to the N (NULL) position, the load speaker is switched in as the load for the amplifier being tested, and the monitor speaker is
connected differentially to the outputs of both the source and the test amplifiers.

After all connections are made, set null-control R6 to off (full counterclockwise), set Sl to the s position (monitor speaker to the source amplifier), connect J3 to the test amplifier's AUX input, and set the test amplifier's volume control almost full open. Using any signal source-disc, tape, radio, even interstation noiseadvance the volume of the source amplifier until the sound in the monitor speaker is the maximum volume you usually use.

Then set Sl to the N position (monitor speaker differentially connected to both amplifiers) and advance R6. The sound in the monitor speaker will increase and then start to decrease (null). Very carefully, adjust R6 around the null for the minimum sound from the monitor speaker. Anything heard in the speaker will be distortion of some kind: amplitude, frequency, or "only heaven knows." A really good amplifier should produce a bare pipsqueak of sound, usually caused by slight variations in the amplifier's frequency response.

The nulling should also result in equalized gain in the test amplifier. In other words, the sound level of the test amplifier should be the same as that of the source - a perfect condition for an A-B listening test.

Taking care not to disturb R6, rock switch SI between the T and S positions, which will switch the monitor speaker between amplifiers. (It will also switch the load speaker between amplifiers to keep both of them loaded at all times.) If the test amplifier truly has low distortion, there should be no discernible difference in sound quality as you switch the monitor speaker between the source and test amplifiers.

You may find that the device has uses that you hadn't thought of. Now you can quickly settle an argument with your friend as to whose stereo has less distortion or better sound reproduction. One thing though-if you have an amplifier that you' ve held in high regard for many years because of its excellent sound quality and precision craftsmanship, then it's probably not such a good idea for you to perform the Hafler distortion test. You may come to an upsetting conclusion that your unit doesn't sound as good as you thought.

R-E

Build REACTS: THE RADIO-ELECTRONICS ADVANCED CONTROL SYSTEM

This month we discuss wireless home automation.

last time we buili the octal I/O module and covered a few of its applications. With the relay option, the octal I/O module provides eight outputs that can control up to 6amps AC at 120 or 240 volts. While that module is excellent for controlling local devices (those near the system), controlling devices that are located further away from the system requires routing high-voltage wiring from the system to the device. We solve that problem this month when we build an X-10-compatible interface module.
This new module will allow you to send control signals through the $A C$ wiring in your house, so you can automatically turn lights, lamps, and appliances on and off from a central location.

For those of you who are unfamiliar with the $\mathrm{X}-10$ system, it is a means of home control; appliances, lights, etc. The system includes a controller module that plugs into an outlet in your home. The controller module then communicates (through the AC wiring in your home) with accessory modules that are plugged into other outlets in the home. The system can then be programmed to control appliances that are plugged into those accessory modules.

The REACTS X-10 module takes the place of the original $\mathrm{X}-10$ controller module so that the REACTS system can now communicate with the X-10 accessory modules. In addition,

the module also contains eight LED's and eight toggle switches that can be assigned to one of the REACTS system's 256 I/O port addresses. The switches are for user-input, and the LED's are for indicating certain status information about the system; whether an X-10 module is on or off, whether one of the octal I/O's relays is closed or open, etc.

The REACTS module is connected to X-10's PL513 Power-Line Interface module using a four-conductor telephone cable with RJ14 plugs at both ends. You simply plug the PL513 into the nearest wall outlet, then plug one end of the telephone cable into the PL513 and the other end into an RJI4 jack (SO3) that is located on the back of the REACTS module (see Fig. I).

There are two types of $\mathrm{X}-10$ remoteoutlet modules that are used to connect a lamp or appliance to the $\mathrm{X}-10$ system. The first type is plugged into
a wall outlet, and the appliance or lamp is then plugged into the module. The other type of $\mathrm{X}-10 \mathrm{re}$ -mote-outlet module replaces the entire wall outlet, and the appliance or lamp is then plugged into that. To adapt an overhead light to work with the X-10 system, the wall switch that controls the light is replaced with an X-10 switch module. (Note that the $\mathrm{X}-10$ modules come with several different power ratings, and that the amount of current drawn by the light or appliance being controlled must be considered when purchasing a module.)

After installing the modules, you must then set them to their own, unique address. Each X-10 remote module has two addressing dials. One dial (called the house-code dial) is labeled A through P, while the other dial (called the unit-code dial) is labeled 1 through 16. There are 16 unit-code addresses for each house-code address. That is; 16 of the $\mathrm{X}-10$ modules can be set to the same house-code address, with the unit-code address providing the distinction between the modules.

REACTS and the X-10

The X-10 enhances the REACTS control system by simplifying the remote control of on/off devices, meaning that no routing of conductors is required. By using REACTS with the $\mathrm{X}-10$ modules, a basic home-control system, complete with decision-making capabilities, can easily be installed in an already-existing home. Indeed, installing the hardware needed to automate a home could

FG. 1-THE X-10 PL513 POWERLINE INTERFACE module has an adapter that plugs directly into the wall and communicates with its corresponding receiver modules right through you home's AC wiring.

RG. 2-THE BLOCK DIAGRAM OF THE X-10 MODULE. It uses the same type of 1/O-port addressing as does other REACTS modules.
conceivably be done in one day or less. As you think of new uses for the X-10 interface, you need only purchase the required $\mathrm{X}-10$ modules, and write the software (which may be the addition of only a few program lines or a short subroutine).

The X-10 interface module can communicate with up to 256 of the X-10's remote modules and can provide on/off control as well as light dimming and brightening. But while the X-10 system greatly expands the REACTS system's capabilities, it does not provide any type of feedback
to the central unit, in this case, the REACTS system,

Feedback is needed in such applications as controlling your home's climate, sensing the opening and closing of windows or doors, or switching lights on and off as darkness falls or as dawn arrives. It's also needed to verify that a command is carried out. However, the eight-bit input portion of the REACTS octal 1/O module is one means of adding feedback, and in future articles we will be discussing additional feedback and monitoring techniques.

Applications

The X-10 kit that is available from the source listed in the Parts List comes with an X-10 interface software driver. Using that driver, writing application programs for the X-10 system is easy. The driver operates in one of two modes. In the first mode you simply assign the string variable $\mathrm{X}-10 \$$ to a string which contains the module's house code, its key code (or unit code), and the type of function to be performed (on, off, brighten, dim.

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1, R4- 10,000 ohms $\times 9$, SIP resistor pack
R2-10,000 ohms
R3-470 ohms $\times 9$, SIP resistor pack
Capacitors
C1-C12- $0.47 \mu \mathrm{~F}, 25$ volts, ceramic disc
C13-47 $\mu \mathrm{F}, 10$ volts, electrolytic
Semiconductors
IC1, IC11-74HC573 tri-state octal Dtype latch
IC2-74HC245 tri-state octal transceiver
IC3, IC4-74HC161 synchronous binary counter.
IC5-IC7-74HC163 synchronous binary counter
IC8, IC9-Programmable Array Logic IC's (custom parts)
IC10-74HC14 inverting Schmitt trigger
IC12-74HC688 8-bit magnitude comparator
LED1-LED8-Green right angle PCmount LED
Other components
114-pin IC socket
5 16-pin IC sockets
5.20-pin IC sockets

140 -pin IC socket
S1-S8-SPST toggle switch
S9-6-segment DIP switch
SO1, SO2-60-pin male and female bus-connector set
SO3-RJ14 6-pin telephone jack
Miscellaneous: PC board, hardware, solder, etc.
Note: The following items are available from DataBlocks, Inc, 579 Snowhill Road, Glenwood, GA 30428, or call (800) 652-1336; in Georgia call (912) 568-7101. A kit containing all parts and a PC board: $\$ 159.00$. A PC board is available for $\$ 39.00$, and the two PAL's (IC5 and IC6) are $\$ 69.00$. Please add $\$ 5.00$ shipping for any order that is less than $\$ 37.00$, and $\$ 10.00$ for any order that is more than $\$ 37.00$.

FIG. 3-COMPLETE SCHEMATIC FOR THE X-10 MODULE. The switches can be programmed so that they can manually control things that are connected to the REACTS
all on, all off). You then call the X-10 driver using the GOSUB statement. For example, if a light were connected to a module addressed at house-code A and key-code 2, the following program extract would turn it on:
$10 \mathrm{X}-10 \$=$ "A, $2, \mathrm{ON}$ "
20 GOSUB X-10
In the case where you were dimming or brightening a light or lamp, the last portion of the string (the function code), would contain the word DIM or BRIGHT, and the percentage of full bright or dim you desire in parenthesis. For example, the following program extract would cause the light connected to the module at house-address A and key-code 2 to burn between full bright and off:
$10 \mathrm{X}-10 \$=$ "A, $2, \operatorname{BRIGHT}(50)$ " 20 GOSUB X-10
In the X-10 driver's second mode, a configuration table is used to assign user-identifiable strings to particular remote modules' addresses along with the type of function to be performed. Constructing the configuration table is performed using a menu-driven configuration program that comes with the REACTS X-10 interface software. As an example, the address of the module that controlled the master bedroom's overhead light could be assigned to a string along with the function to turn the light on. One possibility for the name of the string is "MASTER BEDROOM ON." However, the string's name is limited only by the programmer's imagination. In the actual application program, the string, as in mode 1 , is assigned to the string variable $\mathrm{X}-10 \$$ and the driver is called using the GOSUB statement:
$10 \mathrm{X}-10 \$=$ "MASTER BEDROOM ON"

20 GOSUB X-10
One application for the octal I/O module that we discussed in previous articles (June and July 1988 RadioElectronics) used REACTS to provide an electronic door lock. One method was to use a keypad, located at the front door, to enter the proper combination code to unlock the solenoid deadbolt. One problem with that is seeing the keypad in the dark. If the switch that controlled the porch light were replaced with an $\mathrm{X}-10$ module, that problem could be remedied. The door-lock software would be written so that the first key to be pressed would cause the system to turn on the porch light. The software could be written so that the first key pressed
does not necessarily have to be the first number of the combination - that way, pressing any key would turn on the light. After the first key is pressed, the system could then start looking for the first number of the combination. (It would be good to put a time limit on how long the light stayed on.)

Using the X -IO system, the doorlock keypad can now perform a dual function. Besides being used to lock and unlock the door, it can also be used to selectively turn lights inside the house on or off when arriving at or leaving the home. The software would be written so that pressing a certain key would place the system in either the light mode or the door-lock mode. For example, the asterisk (*) key could be used to initiate the light mode, while the pounds (\#) key could be used to initiate the door-lock mode. In the control program, a flag would be set or reset when either the * or \# key were pressed. When the next key is pressed, the program would input the key number and then check the mode flag to determine which subroutine to branch to.

Three keys would be pressed to turn a light on or off. First, pressing the * key would put the system in the lights mode. Next, the key which corresponds to the appropriate light would be pressed. Finally, the last key pressed would either turn the light on or off. The number-l key could be used to turn a light on, and the number- 2 key could be used to turn the light off.

Module operation

A block diagram for the REACTS X-10 module can be seen in Fig. 2. The control signals that are sent to the $\mathrm{X}-10$ modules must be sent at the zero-crossing point of the AC power line. The control signals are made up of combinations of binary l's and Ø's. A binary 1 is represented by the presence of a $120-\mathrm{kHz}$ signal for 120 milliseconds at the zero crossing of the AC power line, and the absence of that signal represents a binary \emptyset.
-The X-10 PL513 interface outputs a square wave to the REACTS X-10 module. That square wave is synchronous with the zero-crossing of the AC power, and it is used by the REACTS X- 10 module to gate the control signals onto the power line at the proper time. The PL513, in addition to providing the square wave, also provides the $120-\mathrm{kHz}$ signal. The RE-

ACTS X-10 module only has to provide the square-wave signal (to gate the $120-\mathrm{kHz}$ signal onto the power line) if a binary 1 is being output.

The REACTS X-10 module uses the same type of $1 / \mathrm{O}$-port addressing as did previous modules. That is, the 74HC688 magnitude comparator, 1Cl2 (see Fig. 3), compares the A inputs which come from the system bus with the B inputs that are connected to X-10 module's I/O-port addressing switches. When the system's $I / O R \mathrm{e} Q u e s t$ line (IORQ) is high, and the A inputs match the B inputs, the REACTS X-10 module is selected. Note that the system-address lines A0 and AI are not connected to the 74HC688, but are instead connected to IC8. While address lines A ? A 7 are used to select the REACTS X-10 module, lines A 0 and Al are used to enable functions within the module.

One of those functions is, of course, interfacing with the PL513. That function is performed primarily by IC5 and the five binary counters IC3-IC7. The incoming zero-detect square wave from the PL513 interface is connected to IC9 at pin 22. As already mentioned, that signal enables the REACTS X-10 interface to send the gate signal to the PL513 from pin 16 of IC9. The gate signal is used to place the PL5I3's 120-kHz signal onto the AC powerline at the appropriate time; that is, when the $A C$ power is at 0 volts. Besides gating the $120-\mathrm{kHz}$ signal at the appropriate time, the signal must also be gated for the correct length of time, which is I millisecond. Binary counters IC5, IC6, and IC7 divide the system's 1MHz clock signal by 1000 , thus providing the $1-\mathrm{ms}$ window that is required for the $120-\mathrm{kHz}$ gate signal.

Outputting a control signal to a module requires the transmission of two thirteen-bit words. Additionally, except for bright and dim commands, those words must be transmitted twice. As for the bright and dim commands, a command must be sent for each level of brightness or dimness. On the REACTS X-10 module, counters IC3 and IC4 are used to count the number of times that a command is transmitted. When they reach the prespecified count, the counters will halt the command transmissions.

That's all we have room for now. But next month we'll continue discussing the $\mathrm{X}-10$ module's opera-tion-then we'll build it.

R-E

PC Service

THIS IS THE PATTERN for the electronic thermometer.

THIS IS THE COMPONENT side of the Breath Alert alcohol checker.

THE SOLDER SIDE of the Breath Alert alcohol checker is shown here.

BREATH ALERT

continued from page 54
is lit. Adjust the calibration potentiometer to 3-volts DC; LED7 should light. Adjust the calibration potentiometer to 3.5 -volts DC; LED6 should light. Adjust the calibration potentiometer to 4 . 1-volts DC; LED5 should light and BZI should buzz. Turn the power off and remove the jumper wire from pin 8 of ICl and also remove the calibration potentiometer and its connecting wires. The unit is now calibrated to within 0.15% accuracy. If you desire more accuracy, contact the
kit supplier.
To double-check the unit's operation you can light the individual LED's by jumping the following points of the circuit to ground:
LED3- ICl pin 1
LED4-IC1 pin 7
LED5 and BZI-lCl pin 14
LED6-IC3 pin 1
LED7-IC3 pin 9
LED8-IC4 pin 1
LED9--IC4 pin 9
LEDIO-IC4 pin 13
Now you are ready to install the board inside the case, along with the battery holders and the recharging jack, if you're using one. The board

FIG. 7-THE COMPLETED BOARD should look like this when it's finished. Leave about a $3 / 8$-inch space underneath the sensor for the air to flow out.

FIG. 8-REGULAR BATTERIES can be used, eliminating the need for the battery charger (a); however, if the unit is used often, it is a good idea to use rechargeable cells (b).
can be held to the cover with either some silicon glue or hot-melt glue. Just be sure to allow for future access to the calibration potentiometers
Hot-melt glue also works well for holding down the battery holders, or else some double-sided tape will work.

Operation

It is important that certain precautions be taken in order to get an accurate test. Most important is that you do not smoke or drink within 15 minutes before a test. An accurate test of your blood-alcohol concentration must be given only after your body has had time to absorb all the alcohol that you've consumed, and that time can vary from one person to another.

Several LED's may come on when you turn the unit on and the alcohol sensor goes through a brief warm-up period. When it's ready, three indicator LED's will light up: power-on, the 0%-alcohol indicator, and the ready light. The unit uses plastic drinking straws as mouthpieces, and a clean one should be used every time. Insert the straw into the mouthpiece hole and steadily blow into it for about 8 seconds. If there is any alcohol present, the ready light will go out and your BAC will be indicated on the display. An automatic reset will occur when sensor is ready for the next test. If the low-battery indicator lights up, the test will be inaccurate, so the batteries must either be replaced or recharged depending on the type that you use

It is now time to test the unit (in the safety of your own home) using that vodka, beer, rum, etc., we mentioned before. By the way, you may find that testing the unit is even more fun than building it!

Worst case of paremal discretion I've ever seen!

Hardware HACKER

Patents and patenting
The LAN of the eighties
Hacking the handicapped
A new pressure transducer Pressure measurement basics

DON LANCASTER

Patents and patenting and more!

SEVERAL helpline callers have asked just how you can go about accurately measuring the cryogenic temperatures involved with superconductor experiments. Ordinary thermometers won't work.

A plain old silicon diode can be used, provided that you can find one with a package that can handle those liquid-nitrogen temperatures without cracking. Since the forward drop of a silicon diode at a constant current is a measurable function of temperature, you can read the voltage across the diode with a digital voltmeter to get the temperature.

Some special silicon cryogenic temperature sensors are now also readily available. One source is Omega. Those folks also have an outstanding collection of free catalogs and data books on such things as sensors for temperature, pressure, humidity, pH , strain, and conductivity, as well as for tech books and software.

But note that most of Omega's products are premium ones that command premium prices.

Several of the other sources of low-temperature sensors advertise regularly in the Measurements and Control trade journal. That magazine is a great source for sensor and transducer information.

As per usual, this is your column and you can get tech help and off-the-wall networking per the "Need Help?" box. Please also note the names and numbers sidebar, that shows were you can go for more information on many of the sources mentioned.

Let's start off with a look-at....

Patents and patenting

I've received several calls and letters this week that drive home the expensive, energy-wasting, and time-consuming misconceptions that many hackers now have over patents and patenting. We'll start off with the one-word bottom line involving any patents for hardware hackers-don't! Don't even think about it.

Ever.
Three different helpline callers apparently are in the process of getting patents on three ideas that each have a century of totally obvious prior art involved with them. They are all also readily available as off-the-shelf products. One is a capacitance microphone, the second is an electrolytic level, and the third is a fluorescent lamp.

If a Las Vegas casino manager had the gross effrontery to offer the same odds that the patent office does, he would be run out of town on a rail. Your state lottery is probably a far better investment than a patent.

Fact: Not one single patent in one hundred will ever show any positive cash flow.

Fact: Not one single patent in one thousand is "solid" enough

NEED HELP?

Phone or write your Hardware Hacker questions directly to:

Don Lancaster

Synergetics
Box 809
Thatcher, AZ 85552
(602) 428-4073
that it cannot be invalidated or severely reduced in value through a diligent enough search for prior art in obscure enough places.

Fact: A patent does not in any way prevent others from stealing your ideas. All it does is give you the right to sue someone. Once patented, anyone anywhere in the world can get a copy of your idea simply by reading the patent.

Fact: In patent litigation cases, the side with the most resources almost invariably wins. Even with a totally bulletproof patent, the legal process can be made so time-consuming and so costly that the winner loses, and vice versa.
The conventional wisdom goes something like this: First, get an idea. Second, patent it. Third, sell the idea to a large company. Well, each one of those three concepts is "patently" absurd.

I would like to be able to report to you that ideas are still worth a dime a dozen, but those glory days are long gone. Today, ideas are worth less than a dime a bale in ten-bale lots. It is only when an idea is both converted into a form that people can use and in fact are actually and aggressively using it, that the idea gains any value.

Many hackers seeking patents do not bother to search through the literature, especially a!l the trade journals, to find out ahead of time what the competition is, which of the products already exist, and what the demand is in their area. Some will even ignore all of the fundamental physical laws and the other fundamental constraints that lie behind their ideas.

Most larger companies are not in the least interested in new products and ideas. It is far simpler for them to "steal the plans" and go with an established product. They feel that the pioneers are the ones with all the arrows in their backs. As an obvious example, not one of the traditional dino computer firms even entered the personalcomputer market until long after it was thoroughly proven.
And then they did so with some highly conservative and "me too" products. Even at that, many of them failed miserably.

Further, many larger companies will positively refuse to ever look at any submitted patent or idea, since it opens them up to all sorts of "You stole my idea!" litigation hassles, and might compromise in-house research that's already in progress.

So, by all means, continue all of your hacking, and do continue your experimenting and developing of ideas and products. But, for most hackers most of the time, I personally just cannot see any

DON LEW FROM	$E R$
HANDS-ON BOOKS	
Ask the Guru Reprints	24.50
CMOS Cookbook	16.50
TLL Cookbook	16.50
Active Filter Cookbook	15.50
Micro Cookbook vol I or II	16.50
Enhancing your Apple v. I or II	15.50
Applewriter Cookbook	19.50
Apple Assembly Cookbook	21.50
Incredible Secret Money Machine	9.50
PostScript Cookbook (Adobe)	16.50
PostScript Ref. Man. (Adobe)	22.50
PostScript Prog. Man (Adobe)	22.50
UNLOCKED SOFTWARE	
Absolute Reset lle \& llc	19.50
Applewriter/Laserwriter Utilities	49.50
PostScript Show \& Tell (lle/Mac/PC)	39.50
Intro to Postscript VHS Video	39.50
PostScript Perspective Draw	39.50
PostScript Printed Circuits	39.50
PostScript Technical Illustrations	39.50
Postscript BBS stuff	19.50
Apple Ram Card Disassembly Script	24.50
Enhance I or ll Companion Disk	19.50
Applewriter CB or Assy CB Disk	24.50

FREE VOICE HELPLINE VISA/MC

SYNERGETICS

Box 809-RE
Thatcher, AZ 85552 (602) 428-4073

CIRCLE 83 ON FREE INFORMATION CARD

FIG. 1-HERE ARE SOME OF the fundamentals behind pressure measurement.
(relative)

P2
a RELATIVE pressure transducer mesures the pressure difference between inpuls P1 and P2. Most solid-state sensors starl out as relative transducers.
(absolute)

an ABSOLUTE pressure transducer measures the pressure difference between inpul P1 and a good vacuum relerence. A mercury barometer is an absolute transoucers

ambient
a GAUGE pressure transducer measures the pressure diflerence between input $P 1$ and the ambient. or room, air pressure. A water pump gauge is an example

FIG. 2-THERE ARE THREE FUNDAMENTALLY different types of pressure sensors. Most of the new solid-state transducers start out as relative devices.
point whatsoever in seeking out the time, dollar, and psychic-energy sinks that the patent process represents today.

Measuring pressure

The single-quantity price of sol-id-state pressure transducers has now dropped to under $\$ 9$, opening a whole new world of hacker opportunities. Besides the traditional suppliers of Motorola and Micro-Switch, new outfits that in-
clude SenSym, IC Sensors, and Nova-Sensor are now offering lots of high-volume and low-cost pres-sure-sensing products.

Before we look into a typical low-cost sensor and its uses, let's review some of the fundamentals.

Pressure is force per unit area, and is often measured in pounds per square inch (PSI) or in similar units. Figure 1 shows us some important pressure relationships.

If you take a box that is one foot

Discover-Explore-Experience Today's Electronics With ...

MaGraw-Hilis

Contempor
Serics

Now you can meet the challenges of today's electronics quickly and easily. This professional level learning series is as innovative as the circuitry it explains and as fascinating as the experiments you build and explore! And it's for anyone who has an interest in electronics. from the hobbyist to the professional.

Thousands Have Already Experienced the Excitement!

Today's high-tech world demands an entirely new and innovative approach to understanding electronics. That's why McGraw-Hill has developed this unique "hands-on" learning method that brings to life the dynamics of the new electronics. It's a unique combination of interactive materials that gets you involved as you build and experiment with today's latest electronic circuitry.

Just how well this innovative learning approach meets the challenge of the new electronics is confirmed by those who have already completed the Series. . . "You have put me right into the middle of an extraordinary learning experience. With each lab exercise I have gained a new understanding of the intricacies of today's electronics." Or "For me, the Series was just the answer. I felt confident within my specialty, but my grasp of other areas of electronics was slipping away. Your Series helped me upgrade my knowledge of the latest electronics concepts." Or this from a company director of training. . . "We manufacture sophisticated electronic products, with a lot of people in sales, assembly and purchasing. McGraw-Hill has answered a real need in helping our employees see the total picture. They now communicate with customers and each other more effectively."

Your Involvement in the New Electronics Begins Immediately.

You master one subject at a time with 15 McGraw-Hill Concept Modules, sent to you one
every 4 to 6 weeks. You waste no time on extraneous materials or outdated history. It's an entertaining, lively, nontraditional approach to the most modern of subject matter.

Your very first module takes you right to the heart of basic circuit concepts and gets you ready to use integrated circuits to build a digital oscillator. Then, you'll verify the operation of different electronic circuits using a light emitting diode (LED).

And each successive module brings you up to speed quickly, clarifying the latest advances in today's electronics from digital logic and microprocessors to data communications, robotics, lasers, fiber optics, and more.

Unique

Combination of Interactive Instruction Materials Makes Learning Easy.
Laboratory experiments, vividly illustrated text and interactive cassette tapes all blend together to give you a clear, simplified understanding of contemporary electronics.

With each module, you receive a McGrawHill Action-Audio Cassette that brings to life the facts and makes you feel as if you're participating in a lively dialogue with experts.

Your ability to quickly make this knowledge your own is further aided by strikingly illustrated texts that use diagrams, explanations, illustrations, and schematics to drive home and rein-
force the meaning of each important point. Carefully indexed binders conveniently house all this material, as well as the instructions that will guide you through your "hands-on" lab experiments.

Throughout your Series, laboratory experiments reinforce every significant concept. With this essential "hands-on" experience using actual electronic components, you master principles that apply all the way up to tomorrow's VLSI (Very Large Scale Integrated) circuitry.

Discover, Explore,

 Experience for Yourself-15-Day Trial.In all ways, the Contemporary Electronics Series is an exciting learning experience that offers you the quickest and least expensive method available to master today's electronics. and the only one with "hands-on" experience.

With your first module, you'll build this solderless breadboarding system. As you add additional boards, you create increasingty complex circuits easily and quickly, bringing today's electronics concepts to life.

To order your first module for a 15-day
trial examination, simply complete the card and send today! If the card is missing, write to us for ordering information.

3939 Wisconsin Avenue, NW Washington, DC 20016
square by one foot high and fill it with water, it will weigh 62.4 pounds and will thus exhibit a total pressure on its bottom of 62.4 pounds per square foot. It will take a tad under 7.5 gallons of water to do that.

Now, since there are 144 square inches per square foot, the pres-

NAMES AND NUMBERS
 Computer Shopper

Box F
Titusville, FL 32781
(305) 269-3211

Exel

2150 Commerce Dr.
San Jose, CA 95131
(408) 432-0500

Fomebords

2211 N. Elston Avenue
Chicago, IL 60614
(312) 278-9200

Hygenic Manufacturing
1245 Home Avenue
Akron, OH 44310
(216) 633-8460

Measurement \& Control
2994 W. Liberty Avenue
Pittsburgh, PA 15216
(412) 343-9666

Micro Switch
11 West Spring Street
Freeport, IL 61032
(815) 235-6600

Monolithic Memories
2175 Mission College Blvd.
Santa Clara, CA 95054
(408) 970-9700

Motorola

PO Box 20912
Phoenix, AZ 85036
(602) 244-6900

Nova Sensor
1055 Mission Court
Fremont, CA 94539
(415) 490-9100

Omega
One Omega Drive
Stamford, CT 06907
(203) 359-7874

R \& D Electronics
1202H Pine Island Road
Cape Coral, FL 33909
(813) 772-1441

Siemens Components
19000 Homestead Road
Cupertino, CA 95014
(408) 257-7910

SenSym

1255 Reamwood Avenue
Sunnyvale, CA 94089
(408) 744-1500

Xilinx
2069 Hamilton Avenue
San Jose, CA 95125
(408) 559-7778

TECHNICAL RESOURCES FOR THE HANDICAPPED

Apple Special Education

20525 Mariani Avenue 36-M
Cupertino, CA 95014
(408) 996-1010

Children's Computer Group
2095 Rose Street
Berkeley, CA 94709
(415) 841-3224

Children's Resource Center
1056 E 19th Avenue
Denver, CO 80218
(303) 861-6633

Closing the Gap Inc.
PO Box 68
Henderson, MN 56044
(612) 248-3294

Communication Resources
3201 Marshall Road
Kettering, OH 45429
(513) 298-0803

Computer Access Center
2425 16th Street Room 23
Santa Monica, CA 90405
(213) 450-8827

Computer CITE
215 East New Hampshire
Orlando, FL 32084
(305) 299-5000

Disabled Children's Group
1146 South Third Street
Louisville, KY 40203
(502) 584-1239

Disabled Technical Center
5759 Hedgehaven Court
Las Vegas, NV 89120
(702) 382-3358

Handi-Ham System
3915 Golden Valley Road
Golden Valley, MN 55422
(612) 588-0811
sure per square inch is equal to $62.4 / 144$, or 0.434 PSI. If your city water tower is full and it is a hundred feet high, it will give you 43.4 PSI of static line pressure.

Lower pressures, such as those associated with air conditioning and blowers, are sometimes measured in inches of water. An inch of water is $1 / 12$ th of a foot of water, and equal to 0.0361 PSI .

Turning to air instead of water, if you take a column of air that is one square inch in cross section, and equal to the entire atmosphere in height, it will exhibit a pressure at sea level of 14.696 PSI. While the pressure-vs-altitude curve is nonlinear, you will get a pressure drop of roughly 0.5 PSI per thousand feet of elevation on the ground.

National Braille Press
88 Saint Stephen Street
Boston, MA 02115
(617) 266-6160

Pacer Center
4826 Chicago Ave South
Minneapolis, MN 55417
(612) 827-2966

SpecialLink
2512 Canterbury Avenue
Cincinnati, OH 45212
(513) 531-9233

Special Technology Center
West Jackson Elementary School
PO Box 3683
Jackson, TN 38303
(901) 424-9089

Special Technology Center
535 Race St, Suite 220
San Jose, CA 95126
(408) 288-5010

SuperGroup Evaluation
4129 Beaujolais
Kenner, LA 70065
(504) 561-8713

Technical Access Center
183 Lake Avenue
Newton, MA 02159
(617) 969-4279

Technical Assistance
1950 West Roosevelt Road
Chicago, IL 60608
(312) 421-3373

Technology Resources
3023 Canterbury
Salina, KS 67401
(913) 827-0301

Trace Development Center
1500 Highland Avenue
Madison, WI 53705
(608) 262-6966

A terrestrial altimeter with a one-foot resolution would have to be able to resolve 0.0005 PSI. Digitally, that would take a minimum of 12 bits of resolution, and, more realistically, from 14 to 16 bits.

Atmospheric pressure will also vary with the weather. Barometers are pressure transducers that have been optimized for weather-prediction use.

As Fig. 2 shows us, there are three fundamentally different ways of measuring pressure. A relative pressure measurement will measure the difference in pressure between the two liquid or air inputs. Nearly all of today's solid-state pressure transducers start out by measuring relative pressure.

FIG. 3-THE NOVASENSOR NPS-030-D1 is a 5 -PSI $\$ 9$ relative pressure transducer that is packaged in a plastic 6-pin miniDIP.
into an absolute one by evacuating and sealing one input side

Gauge pressure gets measured against the ambient, or atmospheric pressure, that happens to exist here and now. The pressure gauge on a water system measures, of all things, gauge pressure. A relative transducer is converted into a gauge transducer by leaving one of its inputs open to ambient.

Two of the traditional pressure transducers are the Bourdon gauge and the aneroid barometer.
A Bourdon gauge is built by seal-

FIG. 4-THIS SIMPLE CIRCUIT WILL get you started experimenting with the new solidstate pressure transducers. The sensor shown is rated at a relative 0-5 PSI.

FIG. 5-EXTRA RESISTORS CAN BE provided for temperature compensation and for span adjustments. The correct values are specified for each individual pressure sensor.

Absolute pressure measurements are made by comparing one pressure input against a nearly perfect vacuum, or some other precision reference. A relative pressure transducer is converted
ing a pipe end and spiraling it. As the pressure increases or decreases, the spiral will tighten or loosen, moving the sealed end of the pipe. Those New Year's Eve party favors work on the same principle.

Get A Complete Course In

ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.
 Rockford, IL 61103

RELY ON JAN FOR 3-WAY HELP:

\author{

1. TECHNICALLY CORRECT CRYSTALS TO YOUR SPECS.
 2. QUICK TURNAROUND WITH HUGE INVENTORY, PROMPT SERVICE, AND OUR EMERGENCY ORDER PLAN.
 3. LOW PRICES.
}

QUARTZ CRYSTALS FOR TWO.WAY - INDUSTRY MARINE - AMATEURS SCANNERS - CBs MICROPROCESSORS

FOR FREE CATALOG, CALL OR WRITE: JAN CRYSTALS P.O. BOX 06017

FORT MYERS, FL 33906 (813) 936 -2397

TOLL-FREE: 1-800-237-3063
IN FLORIDA: $1.800-226 \cdot \times$ TAL
FAX ORDERS: $1 \cdot 813 \cdot 936$-3750
CIRCLE 104 ON FREE INFORMATION CARD

No costly School. No commuting to class. The Original Home Study course pre pares you for the "FCC Commercial Radio teleptione lieense". This valuable license is vour "ticket" io thousands of exciting jobs in Communications. Radio-TV. Microwave. Computers. Radar. Avonics and more! You don't need a college degree to qualify, but you do need an FCC License.
No Need to Quit Your Job or Go To School
This proven course is easy: fast and low cost! GITARANTEED PASS - You get your FREE facts now. MAIL COUPON TODAY!

[^4]An aneroid barometer consists of a sealed bellows with one fixed end. Should the external pressure change, the bellows will expand or contact, moving its other end.

Both of those have some serious shortcomings. Since each one is a mechanical system, you get stiction that prevents very small motions, and hysteresis where you do not return to the exact same position each time. The linearity is also not all that great, especially for large changes.
Most of those new solid-state transducers consist of a thin silicon diaphragm that has a straingauge resistor bridge placed upon it. One pressure port accesses each side of the diaphragm. As the relative pressure changes, the diaphragm flexes, thus changing the resistance values and giving you a resistance change that can produce an output voltage that is in turn proportional to the pressure difference.

Output levels are typically 100 millivolts full scale, so some amplification and other signal con-

[^5]ditioning is usually needed for real-world uses. Besides that, various temperature and offset compensation schemes also will usually need to be used. As we saw last month, the latest of the new A/D converters are now able to directly accept an unconditioned transducer signal as an input.

Silicon is an extremely linear material that is easily and precisely machined. The linearity, hysteresis, and stiction of the silicon pressure transducers are often ridiculously better than the earlier mechanical systems. Since all of the structures involved are now insanely smaller, the final frequency response is also greatly improved.

So, what can you now do with a cheap pressure transducer? Some obvious applications are altimeters, barometers, pressure gauges, air regulators, liquid-level sensors, air-conditioning and ventilation systems, fluidics, microphones, stream gauges, bloodpressure monitors, intrusion alarms, automotive emission controls, acoustic sensors, speaker enclosures, flowmeters, and weighing scales.

But, why don't you tell me instead? For this month's contest, just dream up an off-the-wall use for a cheap pressure transducer. A paper design will be just fine. We'll have the usual Incredible Secret Money Machine prizes, including an all-expense paid (FOB Thatcher, AZ) tinaja quest for two for the very best entry of all.

As per usual, send your entries directly to me, and not to the Ra-dio-Electronics editorial offices.

A new pressure sensor

The Nova Sensor people recently had a factory-direct, $\$ 9$ in singles sale on their NPS-030-D1 and other sensors. Figure 3 shows us that jewel, which is packaged in a 6 -pin mini-DIP with two pipes out the top. The range is $0-5 \mathrm{PSI}$.

Figure 4 shows you a simple test circuit, which is a plain old resistive Wheatstone Bridge. All you need is a 5 -volt regulated supply and a digital voltmeter. As you blow or suck into a hose connected to one of the pipes, the pressure should change by twenty millivolts or so, corresponding to a 1-PSI pressure difference. Full-
scale sensitivity should be around a hundred millivolts.

If you can get a hold of a highprecision DVM that can resolve to tens of microvolts, pinch off a very short hose connected to one of the pipes, and see if you can't get a 10 -microvolt change for each foot you raise or lower the sensor.

In a real-world application, it will be very tricky indeed to get better than a 50 -foot altimeter accuracy. But please let me know if you can do that, for I know some cave mappers that sure would like to get their hands on an affordable and rugged one-foot altimeter.
Some of the altimetry problems that are involved appear in the SenSym data book.
By the way, several low-cost rubber hoses in hacker lengths are available from Hygienic. Be sure to have the actual data sheet and application notes on hand when using any pressure transducer.
Each transducer is measured at the factory and is provided with a list of compensation resistors that are needed for the best temperature performance. Figure 5 shows us how they are used. It is up to you to provide those resistors yourself. Usually, either R1 or R2 will be a short circuit, and either R3 or R4 will be an open, so a maximum of three compensating resistors are normally needed.

The LAN of the eighties

There sure is plenty of interest these days in LAN's, or Local Area Networks. Many of them are poorly performing, insanely expensive, or grossly limiting in one way or another. But one LAN is clearly head and shoulders above all of the others. So much so, that I like to call it the LAN of the eighties.

The LAN of the eighties is a simple token ring loop. It requires only one single wire between your stations. The wire need not be shielded or a twisted pair, and even bare wire has been used in several of the many tens of thousands of installations in use today.
The LAN loop can be ten or more miles long. While only a few dozen servers is the normal, many hundreds can be installed. In turn, each server node normally is able continued on page 83

CIRCLE 86 ON FREE INFORMATION CARD

DOES YOUR DIGITAL CAPACITANCE METER DOTHIS?

FULL 4 DIGIT 0.5 INCH LCD DISPLAY COMPLETELY AUTORANGING WITH 10 RANGE MANUAL CAPABILITY

AND THIS IDENTIFIES TRANSISTORS (NPN, PNPY AND THEIR LEADS (E, B. C, ETC.) AND THIS
TESTS ZENER DIODES AND RECTIFIERS UP TO 20 V ZENER WITH AC ADAPTOR ZENER VOLTAGE WITH 9V BATTERY DEPENDS ONITS CONDITION -AND THIS
AUTOMATICALLY CALCULATES LENGTHS OF CABLES IN FEET, METRES, MILES, KILOMETRES (THEORETICAL RANGE OF 9.999 MILES)

-AND THIS

ABILITY TO SORT CAPACITORS IN MANY DIFFERENT MODES
AND THIS
ABILITY TO READ LEAKY CAPACITANGE (INSULATION゙ RESISTANCE OR CURRENT) AND THIS
CALCULATES TIME CONSTANTS WITH USER DEFINED RESISTANCE VALUES AND THIS
HOLD FUNCTION FREEZES DISPLAY

MC300
 EDAETRON

a 35 THE BUEO Tech ogies 11 935 THE QUEENSWAY, BOX 641
TORONTO, ONTARIO M8Z 5Y9 CANADA (416)676.1600

DEALER ENQUIRIES INVITED
CIRCLE 187 ON FREE INFORMATION CARD

AuDIO UPDATE

The audio answerman returns

About a year ago i devoted a column to a half dozen or so common hi-fi questions (Radio-Electronics, August 1987). My hope was that I would be lending some aid and comfort to both the novice and the technically beleaguered audiophile. Reader reaction was positive enough that I'm about to do it again with a new batch of old stand-bys from my files. I encourage my readers to write to me with their questions and concerns. When possible and appropriate, I'll provide answers in these pages. Let me hear from you.

Speaker impedance

QThese days most manufac-- turers rate their speaker system impedance at 4 or 8 ohms, but I remember when systems of 16 ohms and even higher were not uncommon. What are the technical reasons for the range of speaker-impedance ratings?

A.I submitted that question to a half-dozen speaker manufacturers, and it evoked a surprising variety of responses. A couple of the replies took a historical approach, stating that 16 -ohm speakers were technically best suited for tube amplifiers, that 4 ohms represented the most appropriate load for the early germanium-output transistors (which could handle high currents but not high voltages), and that 8 ohms is a reasonable choice today since it enables the user to parallel two systems without risking potential overload of the amplifier.

The EIA (Electronic Industry

Association) Amplifier Standard specifies 8 ohms as the primary standard load with which manufacturers rate their amplifier's output capabilities. Nevertheless, a few speaker manufacturers are producing systems rated at 6 ohms as a logical and neat compromise between the opposing dangers of running out of current (low impedance) or running out of voltage (high impedance). The improved protection circuits and current capabilities found in today's amplifiers makes it possible for them to handle paralleled pairs of 6 -ohm speakers.

Several engineers remarked on the nonstandard ways that speaker impedance is rated in manufacturer's literature. Among the various rating methods (each of which would provide different numbers)
are: (1) DC resistance only, (2) minimum impedance in the audible range-which usually occurs in an octave or so above the bass resonance, (3) impedance at some specified frequency, and (4) average impedance. Methods (1) and (2) yield the lowest numbers and are therefore the most conservative. In any case, I know of no official standard way of specifying impedance, so any particular manufacturer's rating depends simply on what he chooses to regard as "nominal."

...and why it varies

O
Is there an electrical or - physical reason why a speaker's impedance varies with frequency?

A.Both. Since the voice coil of a - speaker, like any other wire coil, has inductance, its impedance rises with frequency. The impedance of a speaker system usually starts to rise (unless the designer has taken certain steps to prevent it) somewhere around 400 Hz .

There is another rise-to perhaps five times the rated imped-ance-at the woofer's in-box resonant frequency. When a woofer cone is in motion, the voice-coil movement in the magnetic gap generates a counterelectromotive force, or "back voltage." Because the back voltage is in opposition to the signal voltage, the effect of "motional impedance" is identical to that caused by an increase in electrical voice-coil impedance. (If the speaker voice coil is physically prevented from moving, there is no counter-EMF generated, and no rise in impedance.) Keep in mind that impedance fluctuations at certain frequencies are not synonymous with variations in the power output.

FCC, Part 15

Q.Every FM receiver or tuner I've ever seen has a label of some sort stating that the product "Conforms to FCC Regualtions, Part 15." What exactly are the FCC regulations governing stereo receivers?

AThe FCC regulation in question deals with a diversity of products-including pocket radios, computers, TV sets, and stereo receivers-and establishes limits on the amount of radio-frequency energy that they are permitted to radiate. In FM tuners, the spurious radiation comes about because virtually all of today's tuners use the superheterodyne design configuration. Briefly, the "superhet" circuit has a "local oscillator" whose purpose is to interact (beat) with the incoming signal to provide an intermediate frequency of 10.7 MHz . Since any oscillator operating at radio frequencies is likely to radiate unless preventive steps are taken, the FCC has established maximum external radiation limits to prevent interference with nearby equipment.
In order to market a receiver or tuner in the United States, a manufacturer must provide measurements to the FCC proving that their product does not ex-

THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.
COOK'S INSTITUTE OF ELECTRONICS ENGINEERING

GIE

JACKSON, MISSISSIPPI 39212
CIRCLE 58 ON FREE INFORMATION CARD CIRCLE 182 ON FREE INFORMATION CARD

DOIT YOURSELF

NOW, you can easely make
 yourself your PCB. Using CIF photo positive boards epoxy 1 side or 2 sides, thickness 1/16" 5 years garantee. Made in France. Very simple Process!

We can supply any size on your request Military specifications MIL. P. 13949 F - UL 94 VO

GENERAL DISTRIBUTOR PROSPECT ELECTRONICS PO BOX 9144 ALLENTOWN, PA 18105 TEL. : (215) 770-9029 RETAILERS WELCOME!
ceed the legal RF radiation limit. Those measurements are taken at a receiver's antenna terminals and at its AC line cord, since unwanted signals can be transmitted through the AC power line.

Carbon fiber components

QAs a tennis buff, I've gotten - used to seeing "carbon fiber" and "graphite" featured in advertisements for high-priced rackets. Now carbon fiber seems to be
cropping up in audio products such as speaker cones. What exactly is carbon fiber, and what does that material do for audio performance?

As you are probably aware,
consider audio a "high who also
et," so there is a remote connec-
tion. In any event, there are
several different types of carbon
fiber, but the one used in both ten-
nis rackets and audio products are
made of separate, very fine strands of pure crystalline carbon in an ep-oxy-resin binder. That fiber-andresin "composite," as it is called, has several properties that make it very attractive to product designers. It is, among other things, very rigid, low in mass relative to its volume, inherently well damped, and nonresonant.

In making speaker cones, carbon fiber is added to the "slurry" (a liquid mixture of wood pulp, water, and heaven only knows what else) from which the cones are molded. As part of the cone material, the carbon fibers help stiffen the cone and damp out internal resonances and vibration transmission. Carbon fiber has also been used in tone arms and phonocartridge head shells. In each case, the advantages sought from its use derive from the material's low relative mass, high strength, and high internal damping.

FM hiss

QI usually hear hiss when my - FM tuner is receiving a stereo broadcast. Since there is no hiss when I switch to mono, I assume that the noise is generated by my tuner's multiplex circuit. Would a noise-reduction unit connected between my tuner and my amplifier help?

A.It might, but that's not the way to handle your problem. First of all, the hiss is not generated by the multiplex circuits in your tuner. Because of the way the FM-stereo broadcast system works, a stereo signal is effectively 23 dB weaker at your tuner than an equivalent mono signal. That being the case, I suspect that the stereo broadcasts reaching your tuner are simply too weak.

I suggest that you (1) check your tuner's sensitivity specifications to determine whether they are adequate for your location; (2) determine whether your tuner lives up to its specifications-it may need overhaul or alignment; and (3) determine whether your antenna is oriented properly and is adequate for your tuner and location. In any case, it makes more sense to attack your problem with a better tuner or antenna system than with a
noise-reduction unit.

R-E

CABLE TV SPECIALS

 CONVERTERSJRX-3 DIC- 36 Channel Corded Remote. $\$ 129.95$ RCA 58-3 58 channel set top with Jerrold Decode s99. 95
SB-3 - 'The Real Thing' \$109. 95
SB-3-Taiwan Copy 589.95
DRZ-3D1C-68 Channel Wireless
with Decoder $\$ 199.95$
ZENITH: Z-TaC Cable Add-On \$169.95
VIEW STAR: MXC 2001-65 Channel Wireless- with Parental Lockout s89.95
MXC 2001 A-B-Same as above withA-B Switch\$109.95
MXC 2501-65 Channel Wirelesswith Volume\$119.95
Universal V7472-72 Channel Wireless RemoteMTS Stereo Converter-FullFeature DecoderCompatibles129.95
MISCELLANEOUS
OAK: ECONO-3V Mini-Code s89.95
ECONO-3V Mini-Code Vari-Sync s89.95
ECONO-3V Mini-Code Vari-Sync PlusAuto On -Ofts119.95
OAK: Sine-wave Anti-Jammer Kit \$39.95
JERROLD: $\quad 400$ \& 450 Handheld Transmitters \$29.95
HAMLIN: MLD-1200 Channels 2 or 3 \$99.95
NEW ITEMS: Scientific Atlanta SA-3 \$129.95
general
INSTRUMENTS: VCU Amplified Video Switch
Signal Amplifier$\$ 59.95$aLL UNITS GUARANTEED. QUANTITY PRICES AVAILABLE.P.O. BOX 1206 - ELGIM, ILLIMOIS 60121 - 312-697-0600

HARDWARE HACKER

continued from page 79

to handle as many as several hundred users.
With the LAN of the eighties, each node uses a unique ID in a collision avoidance, token passing protocol. The node first checks to see if other traffic is present. If not, its own uniquely coded packet gets transmitted. Each packet is then repeated several times for the best possible error correction.

Each LAN node is also sophisticated enough that it continuously measures the networks's signal-tonoise ratio. Should any communications problems develop, then an alternate signalling route is automatically selected.

Each node is extremely rugged and requires little maintenance. The nodes use zero electrical input power, by substituting an incredibly ingenious ki-netic-energy-based transfer mechanism.

Along with your LAN of the eighties, a streaming tape drive using quite low-cost media is normally used to continuously and permanently record any and all traffic. Thus any message can be replayed at any time.

On the LAN of the eighties, operator training is extremely fast and ridiculously simple. Even a user in a very high-stress environment can master the entire LAN workings in approximately five seconds, since the entire system is hardware-based.

The LAN of the eighties has been thoroughly tested and debugged. So much so, that the total number or user hours to date ridiculously exceeds that of all of the other LAN networking schemes combined.

Yes, this network is so good that it's clearly the LAN of the eighties.

The eighteen eighties!
I am, of course, talking about the Gamewell firealarm telegraph system, otherwise known as that old mangy red box scunging away on the pole down the street. Patented over a century ago.

Deja Vu, anyone?

Hacking the handicapped

The personal computer has been the great equalizer for the handicapped, and we sure get lots of helpline calls on that topic. So this month, we've included a list of many of the organizations and resources involving special education, therapy, and whatever.

Both Apple and Tandy do have excellent specialeducation contacts and resources available, as do many ham-radio clubs.

New tech info

Field-programmable gate arrays and complex logic modules are starting to drop in price. They go far beyond your usual EPROM or PLA chips, and literally let you build your own custom IC's.

Three good resources to get you started are the Exel Data Book, that Xilinx Programmable Gate Array Design Handbook, and the Monolithic Memories LCA Applications Handbook.
$R \& D$ Electronics is a surplus outfit with some interesting products and excellent prices. Those in-

CIRCLE 203 ON FREE INFORMATION CARD
clude microwave amplifiers at $\$ 2.50$ each and steppers for $\$ 4.95$. Ask for catalog \#100.

We sure get a lot of requests for blue light-emitting diodes. It turns out that there are some fundamental physical laws that make blue LED's rather tricky to build.

So, yes, you can now run out and buy a blue LED. And the price is only a mere several hundred times higher than a green one. But if you really and truly want a blue LED for colorimetry, or instrument calibration, or whatever, Seimens will be happy to sell you their LBD5410. Its peak wavelength is 480 nanometers with a 6 -mcd brightness.

If you are into most any sort of modelmaking, exhibit, or display activities, be sure to investigate the Fomebords people. Start with their Pumping Foam catalog that lists all types of interesting and mindblowing materials.

Turning to my own products, if you want to create and sell your own hacker products or ideas, be sure to check out all the tested and workable insider stuff that's in my underground bestselling Incredible Secret Money Machine book.

As I've mentioned a time or two before, l've got a sister column to this one over in Computer Shopper that's heavily into desktop publishing, PostScrip programming, Apple computing, tinaja questing, and various off-the-wall topics. A sampler of most of the previous columns are available as my Ask the Guru reprints. Included is lots of top-secret stuff.

And our Hardware Hacker reprints should shortly be available. Write or call for information.

CIRCLE 176 ON FREE INFORMATION CARD

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains the necessary preparation for ONLY $\$ 25.00$.

WPT PUBLICATIONS
979 Young Street. Suite A
Woodburn, Oregon 97071
Phone (503) 981-6122
CIRCLE 181 ON FREE INFORMATION CARD

SHORTWAVE RADIO

continued from page 39
factors affecting ionospheric behavior, then forecasting shortwave radio conditions would be simple. On any given day of the year, at any point on Earth, conditions would be about the same as they were on the corresponding day of the year before.

However, that is not the case, as conditions vary from year to year, and sometimes dramatically. The fact is that in addition to the regular variations, there is also a cyclical variation in the ionosphere which is approximately 10.7 years in duration. Caused by sunspots, that variation is the most influential factor affecting the ionosphere.

Sunspots have been observed with the naked eye for thousands of years. However, it was not until the discovery of the telescope, by Galileo in 1610, that recordkeeping of sunspot activity began EMCredit for the discovery of the sunspot cycle goes to a German, Henrick Schwabe, a pharmacist by profession, and an amateur astronomer by avocation. Early in the nineteenth century he began a systematic study of sunspots. Painstakingly recording his observations on every day that he could see the sun, Schwabe gradually accumulated a great mass of data
over a period of some twenty years. By studying the results, he observed that the number of spots varied in a cyclical manner, being high some years, and low others.

In 1843 Schwabe published his findings, concluding that sunspot activity was cyclical in nature, varying from minimum to maximum and back to minimum again every eleven years or so

Sunspots and their effect

Although scientists do not know precisely what causes sunspots, it is currently believed that they are generated by powerful magnetic fields deep within the sun. Those fields, which possess enormous quantities of energy, cause a turbulent, whirlpool-like motion of the gases within the sun. They eventually work their way to the sun's surface, carrying with them rapidly moving atomic particles, as well as radiation, principally in the form of ultra-vioiet light. Accordingly, sunspots are always associated with magnetic fields.

Sunspots generally appear in groups, and range in size from several hundred miles in diameter to as much as 80,000 miles across-a distance large enough to contain ten planets the size of Earth laid next to one another.

Sunspots and sunspot groups can be short-lived, lasting only a day or so, or they can exist for many months, remaining visible

on numerous successive solar rotations. It is for that reason, that radio storms that are associated with a particular sunspot group sometimes recur at 27 -day intervals, coinciding with the rotation of the sun.

Sunspots and the ionosphere

Because ultra-violet radiation from the sun influences the condition of the ionosphere, and since sunspots are a primary source of ultra-violet radiation, it is clear that during years of high sunspot activity, the ionosphere will behave differently than during years of minimum activity. That situation is manifest primarily by the ability of the ionosphere to return higher frequencies to Earth during years of high sunspot activity than during minimum-activity years.

Inasmuch as relatively high sunspot numbers have been observed over the past several months, there has been a marked improvement in the amateur 10 -meter band, the 11-meter citizens band, and in the $15-, 17-, 21$-, and $26-\mathrm{MHz}$ short-wave broadcasting bands.

Figure 1 shows how monthly mean sunspot numbers have varied from January 1945 to the end of 1987. It can be seen that a new sunspot cycle began in September 1986. How high will it go? What will be the impact on radio conditions?

Next time we will attempt to answer those questions.

R-E

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

'386 POW GR AT A '286 PAICG

 Intel's 386xS

BUILD A SYNERGY CARP

to improve your brain power

BUILD A BIOFGEDBACK MONITOR

Learn to control your brain waves Page 95

EDITOR'S Work BENCH R

The 80386's paging mechanism allows you to map 4 K blocks of memory anywhere in the 80386's 4-gigabyte (232) address space. So suppose you have a 512 K motherboard and several megabytes of extended memory (memory located above the first megabyte). With appropriate software, you can re-map 128 K of that extended memory down and have what appears to be a complete 640 K machine. The point is that that happens at a level that DOS never knows about.

Further, with appropriate software, you can also emulate expanded memory using standard extended memory. The advantage is that plain extended memory boards can be built cheaper than expanded (or combination) boards. And some combination boards allow only a portion of the total memory to be used as expanded memory in a regular 80286 PC. On a ' 386 , however, you could set the board up to be used just as extended memory, and let the ' 386 handle the rest.

You can also map memory into the "holes" in the upper address space (between DOS and the video adapter(s), and between the video adapter(s) and the 1-megabyte limit), and run programs there. For example, you could load your mouse driver, PRINT.COM, and a com-mand-line editor there--or SideKick--or some other program. In that way, you can have your cake (RAM-resident programs) and eat it too (have about 600K of free memory for running programs. (A program called 386 max does all those things and more.)

That ability to fine-tune memory usage is what excites hackers and power users, and makes those of us on a budget lust for 386 power. And we haven't even talked about the virtual- 8086 mode yet.

Like the 80286, the 80386 can operate in both real and protected modes. However, within protected mode is another mode that, in combination with the memory-paging mechanism discussed above, allows appropriate software to run several "virtual" 8086 machines simultaneously. It's as if you had several 8088 CPU's in one box, all sharing one keyboard and screen.

DESQview, OmniView, Windows/386, and VM/386 all use virtual mode and memory pasing to let you create several virtual machines. VM/386, in fact, carries the concept so far that each "machine" may have its own CONFIG.SYS and AUTOEXEC.BAT files!

So what's the problem?

The problem is simply that 80386based systems are expensive-often $\$ 2000$ or more above the price of a comparable AT-class machine. So a 386 system has been little more than a wish-list item for most of us.

The 386 SX is going to help change that. It is to the 80386 what the 8088 is to the

8086: functionally equivalent, but with a narrower data bus-in this case, 16 bits. (Also, the address bus is only 24 bits wide, limiting memory to 16 megabytes.) Functionally equivalent means that virtual mode and memory pasing work just the same on the 3865X as on its big brother. The initial version of the K run at 16 MHz ; it's expected that a machine based on it wilf cost $\$ 700$ to $\$ 1000$ less than a full 80386-based system.

Users after the utmost in speed will spurn the 386SX, because the "narrow" 16-bit data bus (which in reality is twice the width of the bus the vast majority of us use now) will allow half the throughput (more or less) of a full 32-bit bus.
For the rest of us, we who need flexibility more than speed, the 386SX is our ticket to the software of the futurewhether it be OS/2, Windows/386, DESQview, OmniView, VM/386, or something we've yet to see.

386SX systems

Compaq, as you might expect, was the first to release a 386SX-based system. A stripped-down version (no hard disk or monitor) lists for about $\$ 3800$. Meanwhiie, NEC, NCR, and AST have announced that they will be releasing 386SX systems soon, and you can bet that every systems manufacturer with any market savy will jump on the bandwagon soon. Let's hope that greed will be held in check, (i.e., retail prices kept down) so that the maximum number of users will be able to afford the new 386SX-based technology.

New chips

Meanwhile, Intel is not resting on its laurels. Even though $25-\mathrm{MHz}$ versions of the 80386 are still scarce, versions of the I C that run at 33 and 40 MHz are expected to ship in 1989, as are samples of the next generation: the 80486. That behemoth is expected to run very fast, and to include virtual ' 286 and virtual ' 386 modes. What could we do with multiple virtual 80386 machines? Let's see, there's DOS, Unix, OS/2,

Memory woes

A financial analyst who has just returned from the Far East (Japan, Korea, and Taiwan) says that, contrary to some speculation, we haven't seen the worst of the memory crunch yet. He expects things to continue as they have been for at least anotheryear-and possibly two!

You may be surprised to know that it's not just the U.S. manufacturers who are suffering from the shortage; so are the Far Eastern manufacturers. in fact, just as some American manufacturers are claiming that the Japanese are getting preferential treatment from the major chip vendors, so are the Far Eastern countries
claiming that the U.S. is getting preferential treatment!

New DOS

Version 4.0 of DOS has been rumored for months, but it appears that the new operating system will be released this summer. It is expected to allow hard disk partitions greater than 32 megabytes, and to include extensive on-line help, a builtin file manager, and a graphic (i.e., Macin-tosh-style) user interface, most of which resides in extended memory on AT-class machines, leaving most of the "lower 640" free for applications.

Also, version 1.1 of $\mathrm{OS} / 2$ is due out in early fall. Version 1.0 has a text-based user interface, version 1.1 has a graphicsbased interface called the Presentation Manager that is similar to Microsoft Windows. Presentation Manager requires more memory than version 1.0 , so it will be interesting to see how development of new applications for PM proceeds.

New bus

AST got into the systems business less than two years ago, but the company is taking the industry by storm. First came the Premium/286, which includes a pair of special expansion slots called FastSlots into each of which a special memory card may be inserted; the card allows $10-\mathrm{MHz} 0$-wait state access to memory on the card. (Normal AT memory is accessed at 6 or 8 MHz with 1 wait state.) The company has also designed an 80386-based accelerator card for the FastSlot.

Next came the Premium/386, which includes a special high-speed memory slot of its own, and a new extension to the standard bus that allows intelligent expansion cards to access the bus (and memory on it) withouthelp from the (PU. In that way, an intelligent disk controller, graphics coprocessor, network adapter or other device could operate much more efficiently.

In addition, AST's newest line of lowcost workstations contains special adapter bus modules for proprietary video controller cards. Use of the adapter module saves use of a regular slot.

Obviously, then, AST has quite a bit of experience designing computer buses. However, AST itself, Compaq, Zenith, Tandy, and nearly every other vendor of 80386-based machines has incompatible bus extensions to handle the 32 -bit address bus of the 80386. Now AST is forming an industry coalition that will try to arrive at an alternative to, on the one hand, IBM's proprietary MCA bus (introduced with the PS/2 line in spring of 1987), and, on the other, the increasing number of non-standard extensions to the standard AT bus.

We applaud the company's efforts, and hope that they are successful. If
they're not, we'll pay the price, because without standards, third-party vendors won't know which systems to design for, so they won't design for any (or only the most popular), so there will be no price competition. Then we'll be forced to buy expansion products only from the original manufacturers, who will be able to charge whatever they want. Because AST sells both boards and systems, they stand to gain either way-shrewd.

In any case, it's in our best interests that someone creates a standard, and somehow convinces, cajoles, or coerces other manufacturers into adhering to it.

Screen Extender

WordStar has been our word processor of choice ever since CP/M days when it ran on a Z80 and a serial terminal. Even though other programs have surpassed it in popularity and sales, it is estimated that 28\% of all users still use the venerable product. And many other products (SideKick, Turbo Pascal, dBASE, Quick BASIC) use the WordStar command set. Version 5.0 of WordStar is due out any day; meanwhile, Stairway Software has an inexpensive (about $\$ 60$) utility that allows anyone with a graphics video adapter (Hercules, C/GA, EGA, or VGA) to see more than an 80×25 matrix of characters.

Screen Extender does its magic by running the adapter in graphics mode, and by painting each character bit by bit. Depending on the adapter, you can get as many as 58 lines of 180 characters, although your eyes probably will not thank you for operating in that mode for very long.

Even so, some of the intermediate modes do allow you to see more of your file on-screen without straining your eyes. On a Hercules Monochrome Graphics Card Plus, we found either 34 or 43 lines of 80 or 90 characters viewable for extended periods of time. All WordStar commands work as expected, whatever the current dimensions of your screen.

It's easy to find the mode most suitable for your graphics adapters (and eyesight),

FIG. 2
because you can press Alt-M at any time to bring up a menu that allows you to set the horizontal and vertical dimensions (independently), screen colors, etc. You can change dimensions at any time, even while editing a file, and you can switch to the default 80×25 mode at any time by pressing Alt-S. When you find a setup you want to stick with, you can save it, and the program will come up in that configuration next time you use it. And the hot keys are definable.

Because the program operates in graphics mode, you expect some sort of slow-down. Surprisingly, it's not bad. (We tested the program on an IBM PC XT with a Microsoft Mach 20 , an $8-\mathrm{MHz}$ accelerator card.)

You load Screen Extender before WordStar; it occupies about 64 K of memory. We found one bus: WordStar's undelete command did not function properly with Screen Extender installed However, the company should have that ironed out long before you read this.

As shown in Fig. 2, a sample screendisplayed letter supplied with ScreenExtender illustrates and explains some of the salient features. For example, the chart shows the possible combinations of rows and columns available from the various graphics cards, while the sample letter itself discusses reverse video displays and the avoidance of conflicts with other memory-resident programs. Also, while you can't see it from our black and white reproduction, the sample letter shows some of the highlighting possibilities available from a color monitor, which includes reverse video-black characters on a white background

Screen Extender is a neat product; if you want to see more text on-screen, you need it. The company is investigating
adapting Screen Extender to other word processors

Dr. Shrink

We aren't normally tempted by "entertainment" software, but this time curiosity overwhelmed us. According to the company's literature, "With Dr. Shrink you can learn more about a person in 10 minutes than many people will find out in a lifetime. ... Dr. Shrink will reveal any person's deepest, innermost secrets, hidden loves and hates, and private libidinal fantasies."

To evaluate someone, the program presents you with a series of about 50 descriptive adjectives (moody, emotional, brilliant, etc.) You must rate the applicability of each to the person you're evaluating on a scale of 1 to 4. Dr. Shrink then tabulates your responses, and prepares a textual report that purports to tell you how to understand that person and manipulate him or her to achieve your ends.

The report first rates your subject on a scale of 1 to 10 on the following characteristics: drive, reliability, sociability, cleverness, emotionality, and asgressiveness. Then it displays several paragraphs of information on the following topics: the subject's "public" imase, the subject's "private" imase, deepest emotions (loves and hates), sex fantasies, how to make friends with the person, and how to influence the person

Is it serious? Does it work? It's certainly better than astrology; some of the reports have an astounding ring of truth, and, true or not, they're fun to read. Here's a sample on how to make friends: "To make friends with X, accept her worrisome ways.

Don't pressure her to be something that she is not or to do that which she is afraid of. She'll be miserable and as a result, you will be too. Be sympathetic to her seemingly endless ruminations. Understand that even though such things seem trivial, they are of paramount importance to her. Provide the security in her life that she requires by being there to listen when she needs a shoulder to lean on."

At \$50, Dr. Shrink may seem a bit expensive. But if it gives you an idea for dealing with that nasging mother-in-law (or boss), it'll be money well spent.

PC-File +

Database managers are plentiful these days. Indeed, the problem is not so much finding a good one, as choosing among many good ones. One that caught our eye recently is a new release of a shareware product that has slowly evolved over the years into an easy to use yet highly capable product. PC-File + is no competition for dBASE III Plus or Oracle, but for small- and medium-size jobs, you don't need all the power provided by the big packages. In addition, setting up and manipulating a database with PCFile + is so easy that you can literally save hours and hours of time.

Overview

A PC-File + database can have 70 fields per record, and 65,533 records per database. Maximum field length is 200 characters, except the last field in a database (called a "superfield") can have about 1.5 K characters. The total length of a record cannot exceed 3000 characters, which would allow a total size of close to 200 million characters. The program requires 384 K of RAM, two floppy disks (or one and a hard disk), and is not copy protected.

There are a number of features that make PC-File + easy to use. First is its 200 context-sensitive heip screens, each of which provides a brief summary of current options. You can call up a help screen at any time by pressing Alt-H, or enter a "teaching mode" (by pressing AltT) in which the help screens pop up automatically depending on what you're doing. If the help window obscures valuable screen information, you can simply move it using the cursor keys. That's a nice touch.

Creating data input screens is simple; you simply "paint" your field names and lengths on the screen where you want them to appear. Or if you don't want to do that, you can simply tell PC-File + field names and lengths, and the program will do it for you.

In a similar manner, you can obtain

PRODUCTS DISCUSSED

- 386^{NAX}, Qualitas, 8314 Thoreau Drive, Bethesda, MD 20817-3164. (301) 469-8848.
- DESOview, Quarterdeck Office Systems, 150 Pico Blvd., Santa Monica, CA 90405. (213) 392-9701.
- OmniView, SunnyHill Software, P.O. Box 33711, Seattle, WA 98133-3711. (206) 367-0650.
- Wincows/386, Microsoft Corporation, 16011 N.E. 36th Way, Box 97017, Redmond, 'NA 98073-9717. (206) 882-8080.
- AST Research, 2121 Alton Avenue, Irvine, CA 92714. (714) 863-1333.
- Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051. (408) 765-8030.
- Screen Extender, Stairway Software, 700 Harris Street, Suite 204, Charlottesville, VA 22901. (800) STAIRWAY, (804) 977-7770.
- Dr Shrink, Neuralytic Systems, 66 Bovet Road, Suite 325, San Mateo, CA 94402. (415) 573-9001
- PC-File + , Buttonware, Inc., P.O. Box 5786, Bellevue, WA 98006. (800) 528-8866.
printed reports in one of several default formats, or you can define your own highly customized report. You can define as many report formats for each database as you wish. Reports can include calculated fields, time and date information, subtotals and totals, headers and footers, information from other files, etc.

You can set up complex Boolean search equations to select just the data you want-e.s., everybody from the state of California whose balance is greater than $\$ 100$ and is more than 90 days past due. You can also display and print bar graphs, pie charts, line and scatter charts. (Hercules, CGA, and EGA video adapters are supported.)

Like searching, sorting is quite powerful. You can sort on as many as ten fields simultaneously, in ascending order, descending order, or both. Unusual features include the ability to sort numbers in sci-entific-notation format, to sort roman numerals, to perform a Soundex sort (wherein fields that sound alike will be sorted next to one another), and more.

A separate program (PC-Label) that is part of the package allows you to print mailing labels from a PC-File + database, comma-delimited form, and others.

Other small but useful features include password protection, a pop-up calculator, keyboard macros, and support for a math coprocessor, if one is present. (If not, a co-processor can be easily added; it simply snaps in.) The program can be customized via an ASCII profile file read at startup or at any time later. Different sets of keyboard macros can be loaded at any time.

The real world

Ease of use is not determined solely by a program's internal features, but aiso in how it interacts with the outside world. Here again, PC-File + is outstanding. You can convert files to and from many different formats, including dBASE, 1-2-3, WordStar, and several others. So, for example, if you've been keeping a mailing list in a WordStar MailMerge file, you can easily import it into PC-File + to obtain the advantages of a real database. On the other hand, if your needs outgrow PCFile + 's capabilities, you can export it to dBASE.

For custom applications, you may want to access a PC-File + database yourself. Doing so is easy, even for inexperienced programmers, because the manual provides example programs in several languages (BASIC, Pascal, C).

All that power costs under $\$ 70$, about 10% of what dBASE III Plus costs. That's for a registered copy with a bound, typeset copy of the manual. Evaluation copies of PC-File + are also available on BBSes nationwide (including ours-call (516) 293-2283 at 300/1200 baud, 8 data bits, 1 stop bit, no parity), the Source, and Compuserve. If you download the program and decide you like it, please don't forget to register, because registration ensures that you will be notified of updates and associated software when available.

The more you use it the more useful it becomes.

We support 300 and 1200 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

Last month we discussed the concepts of hemisphere synchronization (HS) and frequency-following responses (FFR) in the brain. Those terms refer to a technology that uses audio signals to influence brain function. This time we'll show you how to build an expansion card for IBM PC's and compatibles. The Synergy Card can generate sound affects and musical notes, as well as HS signals. In addition, the card has a number of digital I / O lines that can interface your PC to bio-monitoring equipment. With those capabilities, the Synergy Card may be used for research into the affects of sound waves on psychological states.

Circuit overview

First let's look at the block diagram shown in Fig. 1. The address decoder (IC1-IC3) determines where in the micro-

FIG. 1-HEMISPHERE-SYNCHRONIZATION SIGNALS, sound effects, and multi-part music may be synthesized with the inexpensive circuit outlined here.

TABLE 1: Memory MAP

Address
D000:FFF8
D000:FFF9
D000:FFFA
D000:FFFB
D000:FFFC
D000:FFFD
D000:FFFE
D000:FFFF

| Device | |
| :---: | :---: | :---: |
| PPI | 0 |
| PPI | 1 |

Port

Port A - PSG 0
Port B - PSG 1
Port C - PSG 0,1 Ontl
Control Register Port A -IO
Port B - PSG 2
Port C - IO, PSG 2 Cnt1 Control Register
processor's address space the Synergy Card will respond. The card is built around two standard parallel ports; the ports consist of two 8255's (IC5 and IC6), each of which has three bi-directional 8-bit ports. The 8255 is commonly used in PC's and compatibles.

The 8255's drive three Programmable Sound Generators (PSG's, IC7-IC9), which we introduced last time. One bit of IC6 also drives an output relay, which may be used to control the motor of an external cassette recorder. The remaining I/O lines of IC5 are available at J2 for external use. The analog outputs of the PSG's drive a stereo amplifier, and the 48 digital outputs available from the three IC's are not used at all by the Synergy Card. Those outputs aren't brought to a connector on the PC board; but instead, for experimental purposes, we soldered a ribbon cable to the appropriate pins on the foil side of the PC board.

Unusually, the Synergy Card's I/O ports are not decoded in the CPU's I/O address space, but in main memory where programs run and data is stored. This is known as memorymapped I/O, a technique usually reserved for " 6 " family processors (68000, 6502, etc.) Memory-mapped I/O is used becauje Intel supplies few machine-language instructions for manipulating $1 / O$ ports, but many for manipulating main memory. The memory instructions could be simulated using the simple I/O instructions, but speed requirements preclude such simulation.

As shown in Table 1, the Synergy Card's I/O ports are mapped to the eight memory addresses ranging from

D000:FFF8 to D000:FFFF. Address lines 5-7 are not decoded, so the circuit actually responds to addresses in the range D000:FF18 through D000:FFFF. In binary this appears
$110111111111 \times \times \times 11000$ to
110111111111 XXX1 1111
Because A5-A7 are not decoded, each register appears every eight locations ($18,20,28$, etc.). However, our software always addresses the F8-FF offsets. Also, because the Synergy Card is memory-mapped, make sure that no other card (especially EMS cards and network adapters) installed in your PC uses memory in the D000 segment. Otherwise the resulting address contention may well crash your machine.

Each of the Programmable Peripheral Interfaces (PPI's, IC5 and IC6) has 4 registers: one each for the three ports (A, B, C), and a control register for setting operating mode, so that's why eight addresses are required.

The complete schematic is shown in Fig. 2; let's discuss the address decoder first. As shown, IC1 and IC2 enable IC3 when an address in the range specified above is accessed. Assuming IC3's B and C (A3 and A4) inputs are high, the $\overline{y_{6}}$ or \bar{y} output goes low, depending on the state of the A (A2) input. When A2 is high, IC5 is selected; when A2 is low, IC6 is selected. The low-order address lines (A_{0} and A_{1}) then address the desired register in the selected 8255.

The 8255 has many modes of operation; the desired mode is set by placing highs on $A 0$ and $A 1$, and then writing a value to the control register. (Consult Intel's Microsystem Components Handbook, Volume II, for more information on the 8255.) In our software, the PPI's are programmed in Mode 0, so all pins function as outputs. To use any of the I/O pins available at J2 as inputs, you'll have to program a different mode. We'll discuss programming in detail next month

In Mode 0, a value written to one of the 8255's ports (A, B, or C) will be latched on the corresponding output pins,

TABLE 2: PSG Control Registers

BDIR	BC2	BC1	Name	Description
0	0	0	NACT	Inactive
0	0	1	ADAR	Latch register address
0	1	0	IAB	Inactive, data lines high-Z
0	1	1	DTB	Read from PSG
1	0	0	BAR	Latch register address
1	0	1	DW	Inactive
1	1	0	DWS	Write to PSG
1	1	1	INTAK	Latch register address

TABLE 3: PSG Register functions

Registers	Function
R0-R5	Program tone periods
R6	Program noise period
R7	Enable noise and/or tone on selected channel
R8-R10	Select fixed or envelope-variable amplitude
R11-R13	Envelope period and shape
R14	I/O Port A
R15	I/O Port B

PARTS LIST

All resistors are $1 / 4$-watt, 5% unless otherwise noted.
R1-R3-1000 Ohms
R4, R5-500 Ohms
R6, R7-68,000 Ohms
R8, R9-15,000 Ohms
R10, R11-10 Ohms
R12, R13-10,000 Ohms Trimmer Potentiometer
R14, R15-27,000 Ohms
Capacitors
C1, C2-330 pF, mica
C3, C4-2.2 μ F, 15 volts, tantalum
C5, C6-0.01 $\mu \mathrm{F}$, ceramic disc
C7, C8- $10 \mu \mathrm{~F}, 15$ volts, tantalum
C9, C10-0.1 0 F, 15 volts, tantalum
C11, C12-0.047 $\mu \mathrm{F}$, ceramic disc
C13-22 $\mu \mathrm{F}$, 15 volts, tantalum
C14-C18- $0.1 \mu \mathrm{~F}, 15$ volts, tantalum
C19, C20--220 $\mu \mathrm{F}$, axial, 15 volts, electrolytic

Semiconductors

IC1-74LS30N, 8 -input NAND gate
IC2-74LS10P, triple 3-input NAND gate
IC3-74LS138, 3-to-8 decoder
IC4-1.8432-MHz, clock
IC5, IC6-8255A-5, programmable peripheral interface
IC7-IC9-AY-3-8910A, programmable sound generator
IC10, IC11-LM386N-1, audio amplifier
Q1-2N3904, NPN transistor
Other components
J1-9-pin "D" connector, PC mount
J2-15-pin "D" connector, PC mount
RY1-5-volt SPST reed relay (Radio Shack)
Miscellaneous
Metalized hood for 9- and 15-pin connectors.
Shielded plugs and cables for stereo hookup.
$3 / 32^{\prime \prime}$ plug for cassette remote jack.
Note: The following are available from Perceptual Research Ventures, P.O. Box 20151, Missoula, MT 59801: Etched, drilled, tin-plated, and silkscreened PC board (PR-10), \$36.00; assembled, tested, and coated card (PR-48), \$319.95; custom cabling (PR-8), \$28.95; Sleep Lab software, compiled, runs card as a background task, leaving CPU free for other work, (PR-100), $\$ 25$. Unfortunately, due to FCC regulations, the assembled and tested unit may be sold only to qualified research institutions. All orders add $\$ 5$ for postage and handling.
where an attached PSG can then read the signal at its more leisurely pace. Port C of each PPI may be divided into two independent four-bit ports, and that is done here, for purposes of driving the control lines of the PSG's.

Each PSG has three control lines (BDIR, $B C 1$, and $B C 2$) that tell it what to do. Table 2 shows the actions that result from driving those lines in various combinations. Basically, the IC has four states: Inactive (000), Latch Register Address (111), Read Register (011), and Write Register (110). In the inactive state, the IC's data lines are in a high-impedance state

To understand the other states, recall from the block diagram of the IC shown in Fig. 1 last time that the PSG has 16 registers that control operation. To access one of those registers, first its address must be latched by placing that address on the PSG's D0-D7 inputs, and then forcing the three control lines high (i.e., entering the Latch state). Then

R-E Computer Admart

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 900$. Six insertions $\$ 875$. each. Twelve insertions $\$ 845$. each. Closing date same as regular rate card. Send örder with remittance to Computer Admart, Radio Electronics Magazine, 500-B 3i-County Blivd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Computer ads are accepted for this Admart.

CIRCLE 196 ON FREE INFORMATION CARD

CIRCLE 61 ON FREE INFORMATION CARD

WORDFORWORD PROFESSIONAL

The Industry Standard in document conversion.

- Two way conversions
- Preserves all formatting
- Fast and menu-driven
- Special "Smart" ASCII retains page formatting Supports conversions between:

WordStar WordPerlect MutiMate Wor White Word OfficoWriter IBM Writing Asst. Volkswriter
XyWrite EBCDIC
Navy DIF

LAN Version $\$ 299$
Call 800-624-6107, Dept. R
mastersoft, inc.
4621 N. 16th ST.
PHOENIX, AZ 85016

CIRCLE 197 ON FREE INFORMATION CARD
the desired read or write may be performed by placing the correct signals on the control lines and either reading or writing the data lines, as desired.

As for what the registers themselves do, Table 3 indicates briefly the functional groupings. For more information, consult the Microelectronics Data Catalog published by General Instrument.

The control lines of the PSG's are driven by the three least-significant bits (LSB's) of each nibble of each C port of the two 8255 's. The lower nibble of IC6 (pins 14-16) controls IC7, the upper nibble of IC6 (pins 13-11) controls IC8, and the lower nibbie of IC5 (pins 14-16) controls IC9. The "extra" (upper) nibble in IC5 may be used for I/O; it appears at J2. The unused bit in the upper nibble of IC6 drives transistor Q1, which in turn controls the relay (RY1). The unused bit in the lower nibble of IC6 is not used and is not connected.

The A and B ports of the PPI's drive the PSG's in a similar manner. Port B of IC6 drives IC7; Port A of IC6 drives IC8, and Port B of IC5 drives IC9. Port A of IC5 may be used for I/O, and is available through J2.

Counting the sixteen bits of $1 / O$ that are available from each PSG (making a subtotal of 48), and the twelve bits from Ports A and C of $I C 5$, that makes a grand total of 60 . All bits from the PSG's, along with power and ground signals, are available at J3.

Analog outputs

Looking at the output of the PSG's, five voices are mixed (A, B, and C from $I C 8$, and A and B from $I C 7$) to drive the left channel, and four (A, B, and C from IC9, and C from IC7) to drive the right channel.

Each channel has its own LM386 audio amplifier; IC11
for the right, and IC10 for the left. Also, external high-level audio signals may be mixed with the PSG outputs by applying them to the appropriate inputs of J1. The two trimmer potentiometers (R12 and R13) control the output level of each channel. Set each to mid-range.

Other circuits

The relay (RY1) may be activated by driving Port C7 of IC6 high. That turns Q1 on, which then activates the reed relay. The PPI cannot source or sink enough current to drive the relay directly.

The PSG's have a maximum clock speed of $2-\mathrm{MHz}$, and rather than try to divide down the motherboard clock signal, we included an onboard clock module. It delivers a TTL-compatible signal at $1.8432-\mathrm{MHz}$, and can drive the three PSG's directly without buffering.

The power-up (and reset) sequence is as follows. The ReSET lines of the PPI's are connected to the motherboard's ReSET line. When a reset occurs, the PPI control resisters are cleared, and all ports are configured as inputs. The RESET lines of the PSG's are simply tied high; those IC's must be properly configured through software.

Construction

An etched, drilled, and plated PC board is available from the source mentioned in the Parts List. You can also build your own board using the foil patterns we'll show in PC Service. Another option would be to wire the circuit on a prototype card desizned for the PC bus

The only problem is, is that you're soing to have to wait until next month to actually build the Synergy card. At that time we will give you the foil pattern and the Parts Placement, and discuss the necessary software

BUIDA BIOFEEDBACK

 MONITORJIM BARBARELLO

Feeling tense? Then let your computer calm you down.

AIthough most persons think of the IBM PC primarily as a business computer that grinds its way from 9 to 5 through spreadsheets, databases, and documents, it can also be made to serve other, quite-different roles. One such application is as a computer-assisted biofeedback monitor.

Biofeedback is the process of monitoring a biological function that indicates your level of tenseness, and then feeding back that information to you in real time. By allowing you to see what happens when you try to relax, biofeedback lets you discover the techniques that work best for you. You can then practice those techniques to gain more control over daily tension and stress.

One biological function that indicates tenseness is your galvanic skin response, usually called simply GSR, which in non-medical terms simply means the resistance of your skin. As you become more tense, your rate of perspiration increases, thereby lowering the resistance of your skin. As you become less tense-as you "calm down"-the perspiration rate slows and your skin's resistance increases. A variation from your normal or average GSR is therefore an accurate biofeedback indicator of how tense or calm you are at a given instant in time. If you then use a computer to store a record of how tense or calm you were over a period of time, the same computer can provide you with a listing or a graphic display of the effectiveness of your efforts at reaching mental nivana

Measuring GSR

The easiest, and certainly the most simple way to measure GSR would be with an analog resistance-measuring device such as an ohmmeter. Unfortunately, analog measurements are not well-suited to digital computers. There is, however, a surprisingly simple alternative. By using a circuit that generates a digital pulse whose duration is proportional to a resistance, we can use a computer to measure the length of the pulse and then interpolate the pulse-length into a resistance value. That approach forms the basis for a biofeedback monitor for IBMPC-type computers. The monitor's schematic is shown in Fig. 1.

Integrated circuit IC1 is a 555 timer that is configured as a simple pulse generator. The width of its output pulse is
the product of capacitance C1, resistance R1, and the skin resistance present between probes A and B. Since $C 1$ and R1 are constant, any change in the pulse width is the direct result of a change in the resistance between probes A and B. Now all we need to do is to trigger IC1 to force its ouput, output pin 3, high, and measure the period of time until the output on pin 3 goes low (returns to ground- -the end of the pulse).

The printer port

It may seem strange, but the computer's LPT1 parallelprinter port is the ideal way of interconnecting the biofeedback monitor to the computer. The PC's printer port has a number of input and output lines that are normally used to do things like initialize the printer and check for a busy status. Connector PL1 attaches to the PC's printer port. Pin 16 of the connector, the init line, connects to IC1's trigger input, pin 2. Sending out a short init pulse from the computer triggers IC1 and causes IC1's output, pin 3, to go high. Pin 3 goes low at the end of the pulse.

Pin 11 of PL1 is the computer's busy line. If we have the computer check for a low on pin 11, it will know when IC1's pulse has ended.

The common ground between the computer and the biofeedback monitor is through PL1 pin 20. Switch S1 applies power to the circuit through series-connected

FIG. 1-THE PROBES ARE ACTUALLY FOIL STRIPS cemented to the top of the plastic case that houses the circuit. Because absolute stability is needed, batteries B1 and B2 should be secured by a holder, rather than be simply soldered into the circuit.
batteries B 1 and B 2 ．The batteries provide only 3 volts，so the output of IC 1 will also be about 3 volts instead of the more usual 5 volts．Although 3 volts is much less than 5 volts，it is high enough to be sensed by the computer＇s printer port．

The software

The simplicity of the hardware is made possible by the fact that the software does most of the work in creating a screen display of your GSR．Let＇s look at some of the more important aspects of the program，called $P C B I O$ ，that is shown in Listing 1 and available on the REBBS （516－293－2283）．

Line 30 looks to see if a printer port is installed and determines its address．Line 50 uses that information to set the addresses for the trigger input（ T ）and output（ G ）to the circuit．Line 190 begins the process of initialization． Since each person＇s GSR is different，the program takes five initial samples and averases them to determine a mid－range value（ \mathbf{Y} in line 220）．Line 220 also calculates an increment value（INC）used to determine the range from full calm to full tense．Those range values are stored in array L in line 230.

The actual monitoring process begins in line 250．A call to the subroutine at line 320 gets a sample from the hardware as a count stored in variable X ．Lines 280 and 290 determine where the tenseness indicator should be and places it there．The monitoring session ends when either full calm is reached（ $\mathrm{L}>22$ in line 280）or when you press the Esc key during monitoring（ $\mathrm{C}=27$ in line 260）．

The subroutine at line 320 interfaces with the hardware． Line 330 generates a short negative－going pulse to trigger IC1．Line 340 begins counting the time by incrementing variable X and checks to see if IC1＇s output has returned to zero（ $\operatorname{INP(G)=127\text {）．Whenitdoes，line}350\text {checkstosee}}$ if another sample should be taken（ $Z<X F$ ）．Variable XF is a scaling factor used to ensure that the count returned in variable X will always be above 100 （lower counts make the gauge displayed on the screen respond too quickly， and are distracting during the monitoring session）．The commands LOCATE 1,60 PRINT $X_{\text {；：}}$ in line 350 display the actual count number just past the title on the screen display．The number may be removed．

Construction

The circuit can be assembled on a small scrap of perforated wiring board，which is installed along with a battery holder in a Radio Shack 270－220，or similar，plastic case．Simply pass the components＇leads through the appropriate holes and solder them together on the under－ side of the board

Glue the battery holder into the case，as close as possible to one end．If you＇d like to secure the circuit board，it，too，can be glued to the case with a drop of silicon rubber（RTV）adhesive or caulk．

The probes are simply two aluminum foil strips glued to the cover of the case；they are connected to the circuit by wires that run inside the case．Cut two strips of ordi－ nary household aluminum foil to a size of $2 \times 3 / 4$－inch． Apply a drop of white glue to the dull side of the foil． Then，as shown in Fig．2，place the foil（glue side down） on the cover of the case，smoothing out the foil and removing any excess glue that squeezes out with a damp cloth．Let the glue dry for at least one hour and then drill

LISTING 1

1 REMIt PC Biofeedback Monitor Progran
2 REM8：NAME：PCBIO
3 REMAt C 1997，jJ Barbarello，Manalapan，NJ 07726
4 REME V870911
10 CLEAR：DEFINT $G, X: G=0 ; \mathrm{X}=0$ ：DEFSTR $A, B: A=C H R \$(232): 8=5 P A C E S(2)$
20 COLDR 0，6，6：CLS：KEY OFF：HIDTK B0：DIM L（22）
30 OEF SEG $=64$ ：$P A=$ PEEK（ 8 ）+2568 （PEEK（ 9 ））
40 IF PA＝0 THEN COLDR 7，0，0：CLS：60TO 430

60 PRIMT STRINGS $(5,16)$ ；＂P．C．bidfeedeack monitor＂；STRINGs $(5,17)$
70 LOCATE 2，37：PRINT CHRS（201）；STRINGs（5，205）；ChRS（！87）
BO FOR I $=3$ TO 22：LOCATE 1，37：PRINT CHRS（204）；$B_{;} \mathrm{A} ; \mathrm{B}_{\mathrm{j}}$ CHRS（185）：MEXT
90 LOCATE 23，37：PRINT CHRs（200）；STRINGs（5，205）；CHRs（188）
100 LOCATE 3，31：PRINT＂TENGE＂；CHRs（206）
110 LOCATE 13，29：PRINT＂AVERAGE＂；CHRs（206）
120 LOCATE 22，32：PRIMT＇CALK＂；CHRs（206）：PLAY＂L64＂
130 FOR I＝3 TO 22：LOCATE I，40：PRINT＇＇：Ps＝＂N＇＋STRs（60－1t2）：PLAY Ps：NEXT I
140 FOR $\left[=22\right.$ TO 13 STEP－1：LOCATE I，40：PRINT A：Ps $=0^{+1+5 T R \$(60-112) ~}$
150 Play Ps：Locate $1,40:$ print＂＂：mext I：Locate $13,40:$ print a
160 LOCATE 24，22，1：PRINT＂Press（ENTER）to begin，or 〈ESC〉 to end．．．＂；
170 AA $=$ IMPUTS（ 1 ）：$C=A S C(A A): I F C=27$ THEN 400 ELSE IF $C(>13$ THEN 170
180 LOCATE 24，22，0：PRINT SPACES（42）；
190 LOCATE 24，34：PRINT＇INITIALIZING．．．＇：$:$ Y＝0：PLAY＂L64＇：XF＝1
200 G0SUB 320：IF X（100 THEN XF＝XF＋1：PLAY＂164；N32＂：60T0 200
210 FOR $I=1$ TO 5：G0SUB 320：PLAY＇L64；N34＇：$Y=Y+X$ ；NEXT 1
$220 \mathrm{Y}=\mathrm{Y} / 5$ ：INC＝Y／100：LOCATE 24，28：PRINT＇Press 《ESC）to End Trial．＇；
230 PLAY＇L32＂：LOW＝Y－108INC：FOR I＝3 TO 22：L（1）$=$ LOW $+(1-2)$ I INC：NEXT
240 REMII MONITDRIMG
250 Ps＝＇N＂＋STRs（60－（L221）：PLAY Ps：IF $X=0$ THEN 360
260 AA＝IHKEYS：IF AAC＞＂＇THEN $C=A S C(A A): I F C=27$ THEN 370
270 605u8 320
280 IF X L L（L）THEN LOCATE L，40：PRINT＂＂：L＝L＋1：IF L＞22 THEN 370 ELSE LOCATE L，40：PRINT A
290 IF XCL（L）THEN L＝L－1：3F L＜3 THEN L＝3 ELSE LOCATE L＋1，40：PRINT＂＂：LOCATE L，10：PRINT A
3006010250
310 RENHI SAMPLING gubroutine
$320 \mathrm{x}=0: 2=0$
330 OUT T，0：OUT T，4
$340 x=x+1: \mathrm{IF}$（INP（ 6 ）AND 128 ）$=0$ THEN 340
350 l＝2 $+1:$ IF 2 ［XF THEN 330 ELSE LOCATE $1,60:$ PRINT $x_{j}:$ RETURN
360 RENHI TRIAL END
370 LOCATE 13，8，1
380 PRINT＇TRIAL COMPLETED．Press 《ENTER〉 to try agaln，or 〈ESC〉 to end．．．＂；
390 AA＝INPUTS（1）：C＝ASC（AA）：IF C＝13 THEN CLS：60TO 50 ELSE IF C（＞27 THEN 390 400 COLOR 7，0，0：CLS：LOCATE 10，28，1：PRINT＇MONITORING SESSION OVER＊
410 LOCATE 13，1：EMD
420 RENHI CAN＇T FINO STANDARD PRINTER PORT
430 LOCATE $10,27,1$ PRINT＂PRINTER PORT I NOT AVAILABLE ：PRINT：PRINT：END

FIG．2－IT＇S NOT ALL THAT CRITICAL，but this kind of installa－ tion for the foil strips on the cover of the specified case will prove the most convenient for all sizes of hands and fingers．
two $1 / 8$－inch diameter holes at the locations shown in Fig． 2．Place two $4-40 \times 1 / 4$－inch machine screws through the holes and loosely screw a 4－40 nut onto each screw．Wrap the bare end of either of the wires from the circuit board
around either of the screws and tighten the nut. Repeat the procedure for the remaining wire and screw. Figure 3 shows how the prototype was assembled.

FIG. 3-THE COMPLETED PROTOTYPE. Notice how the wires to the foil strips simply connect to the screws that pass through the cover.

PARTS LIST

IC1-555 timer
R1-10,000 ohms, $1 / a$-watt, 10% resistor
C1- $1 \mu \mathrm{~F}, 6$-volt, Tantalum capacitor
B1, B2-1.5 volt, AAA battery
PL1-25 pin D-connector
S1-SPST switch
Miscellaneous-Plastic case, battery holder, perforated wiring board, wire, solder, machine screws, etc.
Note: A compiled, enhanced version of the PCBIO program is available on $51 / 4$-inch diskette from JJ Barbarello, RD \#3, Box 241 H, Tennent Road, Manalapan, NJ 07726. Price of $\$ 7$ includes postage and handling. NJ residents must add appropriate sales tax. If known, indicate the type of computer and its clock speed.

Using the monitor

Connect PL1 to your computer's parallel printer port, apply power to the monitor by closing S1, then load BASIC and the PCBIO program in your computer. When you run the program, the computer will create the screen shown in Fig. 4. In the center is a tenseness gauge resembling a thermometer. The top of the gauge is maximum tenseness, the bottom of the gauge is maximum calm, and the center of the gauge (where you begin) is average. The message on the bottom of the screen asks you to press ENTER to begin monitoring, or ESC to end the session.

The room you're in should be comfortable (about $70^{\circ} \mathrm{F}$). Sit in a chair that provides good support and loosen any tight clothing. Place the biofeedback monitor unit next to you on a table or stand that can support the unit and your forearm. Make sure your fingers are free of oil or excess perspiration. Rest your forearm on the stand in front of the unit, place your first (index) finger on one probe and your second finger on the other probe. It is

FG. :-THE OPENING SCREEN shows a thermometer-type device that ranges from calm to tense.
very mportant that you do not move your fingers or change the pressure on the probes during the moritoring session, as that will change the resistance between the probes and give a false reading.
Press the enter key with your free hand. The message on the bottom of the screen will change to "INITIALIZING" and you will hear a series of beeps as the system measures your initial level of tenseness. After a short time, the message on the bottom of the screen will change to "Press 5 to End Trial"; you are now monitoring your changing level of tenseness. That's indicated by tre moving Cursor in the midcle of the gauge, and a beep with a changing tone. As you become more tense, the beeps frequency and the indicator ascend, as shown in Fig. 5. When you calm down, the beep's frequency and the indicator descend, as shown in Fig. 6. The session witl end whien you either press the esc key or reach maximum calm (rimanid?). The message "TRIAL COMPLETED. Piess Enter to try again, or Escape to end" will appear in the middle of the screen. When you end the session, the

FIG. 5-IF YOU'RE TENSE, the indicator will slide up the thermomeler anc tone from the computer"s speaker will rise in pitch.

FIG. 6-THE CALMER YOU GET the lower the indicator's position, and the lower the tone heard from the speaker.
screen will clear except for the message "MONITORING SESSION OVER."

To test the unit, begin monitoring. Press down hard with your two fingers to simulate increased perspiration (tenseness). The indicator should begin to rise. Release the pressure and note that the indicator begins to fall. Press ESC to end the trial. When you are sure that the unit is working properly, you can begin actual monitorins.
You should now try to concentrate on different imases or thoughts and note the results on the gauge. At first it may seem that trying to calm down actually increases tension. That is normal because the untrained mind tends to race through both conscious and unconscious thoughts. Through practice you will learn how to focus on the imases and thoughts that actually decrease tensiondisregarding everything else, and use them to assist you in your calming process.

Tweaking

The software monitoring subroutine is sensitive to the speed of your computer. The program listing contains the factor "IF X<100" in line 200 to adjust it for use on a standard $4.77-\mathrm{MHz}$ computer. Computers operating at 8 MHz , or AT systems, will respond more quickly and produce a higher count for the same amount of time and seem to be racing along. To compensate for racing, simply change the " 100 " in line 200 to a hisher number (try 300 as a starting value, and adjust it until you are comfortable with the speed).

Enhanced software

The program may have some difficulty with some versions of BASIC on floppy-disk-only systems. If that is the case, you will notice the indicator move very slowly when you initially run the program (normally the indicator zips down the gause and then back up to "AVERAGE"). If you experience the problem, a compiled version of the program is available from the source given in the parts list. It is an executable program that runs in DOS and, thus, does not require the use of BASIC. The compiled program has also been enhanced to include storase and analysis of results: both lists and graphic plots. Figure 7 shows a

FIG. 7-THE COMPILED SOFTWARE will store and then graphically plot the results of a biofeedback session. This is the standard display.

FIG. 8--FOR A MORE PRECISE EXAMINATION of your session, the plot can be expanded.
standard plot display of a monitoring session. Figure 8 shows the same session using the program's expanded plot feature.

Clcsing thoughts

The biofeedback monitor is basically just a self-learning type of device, that also happens to be a lot of fun. It is not meant to take the place of any necessary medical treatment or equipment. However, with practice, the device can help you learn how to reduce everyday stress and tension. Sooner or later you'll find that you do nave the ability to mentally calm and relax yourself. It's just a matter of finding the technique that's right for you.
Another interesting point is that GSR is one measure that is used by polygraphs (lie-detector) to determine whether or not someone is lying. For that reason, the device can be used as a rudimentary "lie detector" for general entertainment at parties and gatherings. We're sure that you'll find many other interesting uses for the biofeedback monitor-perhaps you can even modify it so that you can monitor other bodily functions. If you do, why don't you drop us a note and let us know about." ${ }^{\text {© }}$

Drawing BOARD

More on multiplexing

SOME TIME HAS GONE BY SINCE WE LEFT our discussion of display multiplexing. There was a bit of sidetracking so that we could answer in detail the copy-protection quiz, but now we're back on course. The last thing we talked about was why it was a good idea to consider multiplexing LED's when you have a bunch of them in your circuit. If you remember, the answer was
desire. That last one is usually a function of the current-limiting resistor in series with the LED.

Multiplexing a display makes a lot of sense. You can cut the current requirements, the amount of resistors needed, and, if you plan on making a PC board, you'll find that the trace complexity is usually reduced as well. Now, we all know that there's no way you can get

FIG. 1

FIG. 2
power. A sixteen-LED display can draw anything from 160 mA to half an amp, depending on the LED's being used and the brightness you
something for nothing-you do need extra circuitry in order to multiplex a display.

Or do you?

Figure 1 is the basic block diagram of a multiplexed display. The details depend on the circuit you're putting together but the basic idea is common to all displays. Let's talk about those things one at a time.

The clock can be anything that oscillates fast enough to drive a flicker-free display. The minimum frequency depends on the
number of LED's you'll be usingthe more LED's, the higher the frequency you'll need. We've already seen that the lowest frequency you can get away with is 24 Hz (the repetition rate used by projectors in a movie theater). If, for instance, you were dealing with a 10 -LED display, you would want to make sure that each LED was turned on at least once every 24th of a second. Since there are ten LED's in the display, you would need a minimum frequency of 10×24 or 240 Hz .

All you really need for a clock signal is a square wave that swings as close to the supply rails as possible. The circuit in Fig. 2 is suitable because it doesn't use a lot of components. And there's a good chance that your main circuit (whatever it may be) will have a few unused inverters left over that you can then use for your oscillator. And we all remember Grossblatt's fourth rule: Don't waste silicon. Using all available gates makes for a much slicker circuit, and I wouldn't be surprised if there was some sort of ecological benefit as well.

The oscillator in Fig. 2 produces a nice square wave and, since we're using CMOS parts, the high output is going to be within whispering distance of $+V$. What makes it ideal for our purposes is that we will have control over both the frequency and the duty cycle of the output.

Let's take a closer look at that circuit. The duty cycle is controlled by the combination of R3, D1, and D2. When the output of IC1-a is high, D2 only allows the

Remove copy-protection from video cassettes.

- Digital Filter Type, removes only Macrovision pulses
- No adjustments, crystal controlled
- Compatible with all VCR's, uses automatic vertical blanking level

Macro-Scrubber - We stock the exact parts, PC board, and AC adaptor for an article on Building a Macro-Scrubber appearing in Radio-Electronics December 1987 issue.

JMAK-1 Parts Package \$19.00

Includes all the original resistors, capacitors, diodes, transistors, integrated circuits, and crystal.
JMAK-2 PC Board \$9.95
Original etched and drilled silk-screened PC board used in article

JMAK-3 AC Adaptor
 $\$ 7.95$

Original (14 to 18 volt DC @ 285 ma) AC adaptor used in article.
Free reprint of article on building a Macro-Scrubber with any purchase above. Add $\$ 2.50$ shipping \& handling; $\$ 4.50$ Canadian orders.
Note: Unauthorized duplication of copyrighted material is illegal. Use Macro-Scrubber for viewing only.

72-CHANNEL

MC-702 CONVERTER

CABLE CONVERTER

\$79.95
WITH INFRA-RED REMOTE CONTROL

-72-channel capability

- Wireless, Infra-Red
remote control
- Channef output 2 or 3 switchable
- Microprocessor controlled PLL operation
- Skip channei memory eliminates unused channels

Parental control for all channels

- Last channel recall
- Last channel recall
- UL listed/FCC approved
- Simple installation with any TV
- Includes battery and 3 foot coax cable

Add $\$ 3.50$ shipping \& handling $\$ 9.50$ Canadian orders.

CABLEMASTER

- Record multiple premium play channels
- Turns cable box on and off
- Selects channel for unattended recording
- Thousands sold nationally for $\$ 99.95$

ORDER TOLL FREE ANYTIME 1-800-227-8529

Inside MA: 617-695-8699 VISA, MASTERCARD, or C.O.D.

P.O: BOX 800 • MANSFIELD. MA 02048
© Copyright 1988 by J\&W Electronics Inc
right hand-side of potentiometer R3 to be in the circuit and, when IC1-a's output is low, D1 puts the left side of R3 in the circuit. That gives us separate control of the positive and negative charging of the timing capacitor, C 1 . By rotating R3 one way or the other we can vary the duty cycle from narrow negative going pulses, through 50/50, to narrow positive pulses.
The frequency of that type of oscillator is basically set by the combination of R 2 and C 1 . The values shown for the components will give us nearly a ten-to-one frequency range-from about 40-400 Hz . You'll find that the control gets sensitive when you get near the low end of R2, but you can take care of that problem by using a logtapered potentiometer for R2 rather than a linear-tapered one (R3 should always be linear). If the circuit tends to stop working when you set R2 to zero, put a 10 K resistor in series with R2.
If you want to change the circuit's frequency range you can vary either C1 or R2, because the frequency is set by: $f=$ $1 /(2.1)(\mathrm{R} 2)(\mathrm{C} 1)$. Just make sure that R1 is at least ten times greater than the sum of R2 and R3, and that C1 is more than $0.001 \mu \mathrm{~F}$.

Although every multiplexing circuit needs a clock, the amount of additional circuitry besides the clock depends on the kind of display you're going to use. Single LED's can be handled differently than seven-segment displays. The two remaining blocks in Fig. 1 (the scan counter and the multiplexer/ driver) can be combined into one by using an IC that has both the counter and drivers in one package. We'll show you how to do that next month. R-E

MARKET CENTER

SATELLITE TV

CABLE TV Secrets-the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc Supplier's list included \$8.95. CABLE FACTS, Box 711R, Pataskala, OH 43062.
SATELLITE TV receiver kits! Instruction manual, boards, semiconductor parts! 59° LNA's! LNB's! KuBand LNB's! Catalog \$1.00: XANDI ELEC. TRONICS, Box 25647, Dept. 21KK, Tempe, AZ 85282.

DESCRAMBLERS for movies, networks, $\$ 175$ up. Visa, MC accepted. Catalog $\$ 4$ SKYWATCH, 238 Davenport Road, Toronto, Ontario, Canada, M5R-1J6.
VIDEOCYPHER II descrambling manual, schematics, video and audio DES, cloning, muskateering, EPROM codes. (HBO, Cinemax, Showtime, adult channels.) $\$ 13.95$, $\$ 2$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20814.

Cable TV Converters Why Pay A High Monthly Fee?

Jerrold Products include "New Jerrold Tri-Mode," SB-3. Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call tor info (312) 658-5320. MIDWEST ELECTRONICS, INC., 5143-R W. Diversey, Chicago, IL 60639. MC/Visa orders accepted. No lllinois orders accepted. Mon.-Fri. 8 A.M.-5 P.M. CST

FREE catalog systems, Upgrades, Houston, Uniden, Chaparral, etc. Save, \$\$\$\$ SKYVISION, 2009 Collegeway. Fergus Falls, MN 56537, (218) 739-5231.
SATELLITE TV systems, descramblers, programming, VCR's, TV's, CB's, telephones, at discount prices. ELMIRA ELECTRONICS, 8343 M-32, Elmira, M1 49730. (616) 546-3362.
CABLE descrambler liquidation. Major makes and models available. Industry pricing! (Example: Hamlin combo's, $\$ 44$ each ...minimum 10 orders). DEALERS ONLY! Call WEST COAST ELECTRONICS, (818) 989-0890.
SATELLITE T.V. systems, upgrades, featuring: Uniden, Chaparral, Tee-Comm, Toshiba, LNA's, LNB's, feeds, dishes. Best prices! Catalog $\$ 1.00$ (refundable). CASCADE ELECTRONICS, PO Box 414, Dundee, IL 60118

NEURAL NETWORKS

AMAZING circuts simulate thought \& sensory processing. Plans $\$ 25$. Brochure $\$ 2$ purchase deductible. Author MSEE LP WEBER, Box 621, Dept. RE-1002, Allenwood, NJ 08720.

FOR SALE

TUBES. new, unused. Send self-addressed, stamped envelope for list. FALA ELECTRONICS, Box 1376-2, Milwaukee, WI 53201.
PHOTOFACT folders, under \#1400 \$3.00. Others $\$ 5.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554
TRANSISTORS-tubes: MRF421 \$24.00, MRF454 \$14.50, MRF455-MRF477 \$11.75, MRF492 \$16.00, SRF2072 \$12.75, SRF3800 \$17.50, 2SC2290 \$16.75, 2SC2879 \$22.00, 6LF6, 6LQ6, 6JS6, 8950 , etc-call. New Ranger AR3500 all mode 10 Meter transceiver \$319.00. Quantity discounts! Best prices on hard-to-find parts, antennas, mics, power supplies, \& equipment! Catalog $\$ 1.00$ (refundable), or free with order. RFPC, Box 700, San Marcos, CA 92069. For information or same day shipment-call (619) 744-0728. Visa/MC/C.O.D.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10 Meter and FM conversion kits, repair books, plans, high-performance accessories. Over 12 years of satistied customers! Catalog $\$ 2$.

GBG NTIEITATIOMAL

P.O.BOX 31500RE, PHOENIX, AZ 85046

LASERS, components and accessories. Free cata\log, M.J. NEAL COMPANY, 6672 Mallard Court, Orient, OH 43146.
PICTURE flyer lists quality surplus electronics a low prices. Since 1970. Send for the last 3 issues STAR-TRONICS, Box 683, McMinnville, OR 97128
SATELLITE \& cable equipment. We have those hard-to-find units ready to go. Tired of junk that doesn't work properly? Try our 10 day satislaction guarantee \& 90 day warranty (wholesale only). HI TECH ELECTRONICS, PO BOX 42423, Detroit, MI 48242, (313) 722-9381.
TUBES, name brands, new, 80% off list. KIRBY, 298 West Carmel Drive, Carmel, IN 46032
IS it rue...jeeps for $\$ 44$ through the government? Call tor facts! 1-(312) 742-1142, ext. 4673.

ATTENTION, are you looking for surplus test equipment volt meters oscilloscope, etc. J.B. ELECTRONICS, 9518 W. Grand, Franklin Park, IL 60131, (312) 451-1750.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, N J chures
07712.
FREE power supply, connectors ($\$ 8.95$ valuei with TV project assortment \#103 (February 1984 article) contains PCB, Toko coils, transistors, (BF085), IC's, diodes. article reprint. $\$ 25.00$. Five/\$112.50. Shipping $\$ 2.00$. MC/ VISA, COD accepted. JIM RHODES, INC., PO Box 3421, Bristol, TN 37625.
COMMODORE-Amiga chips, diagnostics, parts or low cost repair. Send for complete catalog, (dealer pricing available). VISA/MC. KASARA, iNC., 31 Murray Hill Drive, Spring Valley, NY 10977, 1-(800) 248-2983 or (914) 356-3131.

TUBES. "Oldest," "latest." Parts and schematics. SASE for list. STEINMETZ, 7519 Maplewood Ave, R E. Hammond, iN 46324.
TESLA coils-Kirlian electrophotography-plasma bulbs...Free 1988 science plan catalog! SCIENTIFIC, Box 1054 HRH, Duvall, WA 98019.
GREAT buys! Surplus prices, ICs, linears, transformers, PS, stepping motors, vacuum pump, phototransistor, meters, isase, FERTIK'S, 5400 Ella, Phila., PA 19120.
TWO-Way-Radio, PC computers, Uniden service. General Radiotelephone licensed technician. Cata-log-RAYS, 2025 Moline, Ft. Worth, TX 76117 (817) 831-7717
AIDS? Yes we have! Cable aids to help you. Zenith, Jerrold, Scientific Atlanta, Oak, Hamlins, much more. No Michigan sales! HOTRONICS, (313) 675-5834.

CABLE TV converters. Remotes, accessoriesfree catalog-ARIZONA VIDEO, 3661 N. Campbell, \#310-A, Tucson, AZ 85719. (602) 323-3330.
TUBES 594 . Year guarantee. Free catalog. Tube checker \$8.95. CORNELL, 4215 University, San Diego, CA 92105.
FAIR prices SB-3, SX3, SA3, TRI-BI, MLD-1200-3. Some Oak, any notch filters. Small deaier only. No Michigan sales (313) 979-8356.
OLD radio TV schematics. Send $\$ 3.00$, make model. RADIO MAPS, P.O. Box 791, Union City, CA 94587.

MONITOR room and/or telephone conversation Range unlimited. $\$ 88.00$. Catalog, $\$ 3.00$, LISTEN, 603 Elgin, Muskogee, OK 74401. 1-(800) 633-8277.
CRYSTAL oscillators, any frequency from 1-1000 MHz , low prices for industrial applications, M.S.I. P.O. Box 429 Kiron, Israel FAX: 972-3-911000 Att: 2025.

SOLAR electric systems. Discount prices. SUN POWER-TEXAS, Dept 01C PO.B. 2788A Freeport, TX 77541. 1-(409) 233-8350.
USED technical books: electronics, mechanics, mathematics, physics; military manuals, magazines, catalogs, handbooks etc. $\$ 1.00$ for 10 page list: SOFTWAVE, 1515 Sashabaw, Ortonville, MI list: SO.
48462.
THE funniest 3 page article ever written in electronics. "The Vom That Never Was." Guaranteed to make you laugh your buns off! Plus free product invention update. Send $\$ 2.50$. SPITFIRE ELECTRONICS, 409 Curry, Royal Oak, MI 48067.
LOW prices ICs, semiconductors, capacitors, switches. SASE SANTECH, 11 Revere Place, Tappan, NY 10983. (914) 359-1130 FAX: (914) 365-0243.

CABLE TV converters Jerrold, Scientific Atlanta, Zenith, most major brands. Dealer inquiries we come. Visa-M/C accepted E \& O VIDEO, 9691 E. 265th Street, Elko, MN 55020, 1-(800) 638-6898.
DESCRAMBLERS. All brands. Special combo Jerrold 400 and SB3 $\$ 165$. Complete cable descrambler kit $\$ 39$. Complete satellite descrambler kit $\$ 45.00$. Free catalog. MJM INDUSTRIES, Box 531, Bronx, NY 10461-0531
SAM'S photofact folder sets new above \#1300 $\$ 9.95$ used under \#1300 \$5.95 add \$1.00 SHIP. PING ELECTRONICS, P.O. 219 , Edgewood, NM 87015.

3-D HOLOGRAMS with any camera. $\$ 2.00$ info STELLAR TECHNOLOGIES, 4710 University Way N.E., \#1003, Seattle, WA 98105 (206) 783-3548. TRS-80 color computer software. Low prices! Huge selection! Free catalog. T\&D, P.O. Box 1256, Holland, MI 49422

SCRAMBLING news. Complete coverage of cable, satellite, wireless. New Z-TAC series compares system and descrambler module with SSAVI. VC pulls keys. News, patents, turn-ons articles, product reviews plus. Scene change detector for Sigma One, etc. Monthly. \$24.95/yr. Sample \$3. Scrambling News-The First Year. 192 pages of original material $\$ 22.95$. New Zenith products. Catalog \$1. 1327R Niagara, Niagara Falls, NY 14303. COD's (716) 284-2163

TUBES - 2000 TYPES DISCOUNT PRICES!
Early, hard-to-find, and modern tubes. Also transformers, capacitors and parts for tube equipment. Send $\$ 2.00$ for 20 page wholesale catalog

ANTIQUE ELECTRONIC SUPPLY

688 W. First St • Tempe, AZ 85281•602/894-9503

PRELIMINARY report on radio frequency brainwaves for sale price U.S. $\$ 2.00$ cash only at TERBALS ELECTRONICS, 919 Pensacola Way S.E Calgary, Alberta, Canada T2A 2G8
LEDs direct. Mix of R, G, Y, T1 $3 / 4$ lamps, 100PCS $\$ 10.00$ postpaid. LED displays $.3^{\prime \prime}$ red 7 segment CA, $\$ 0.50$ each quantities 10 or more. Minimum order $\$ 10.00$. EDC, P.O. Box 4188, Burlingame, CA 94011-4188.
FACTORY direct microprocessor crystals (U18) 3.5795MHZ to 20.0000 MHZ standard values $\$ 0.80$ each, shipping $\$ 2.55$ AE/MC/VS no minimum H.T.S. STE209 2512 Chambers, Tustin, CA. 92680 (714) 259-7733.

SCRAMBLE FACTS 718-343-0130

PHONE TODAY for 3 minutes of satellite TV industry news, technical tips, and new product information

PC products-A/D, D/A, relay, digital I/O cards starting at $\$ 79$. Free catalog-parts, kits, computers JB COMPU-TRONIX, 3816 N, Wadsworth Blvd., Wheat Ridge, CO 80033. Call (303) 425-9586
CABLE TV converters. We sell only the best. Low prices, we ship COD. $\$ 2.00$ for catalog ACE PRODUCTS, P.0. Box 582, Dept. E., Saco, ME 04072 (207) 967-0726.

PLANS AND KITS

VOICE disguisers! FM bugs! Telephone transmit ters! Phone snoops! More? Catalog \$1.00: XAND ELECTRONICS, Box 25647, Dept. 60F, Tempe, AZ 85282.

DETAILED PLANS: $\$ 4.95$
TV-SCOPE
PENN RESEARCH Box 3543 Williamsport, PA 17701

An interesting and worthwhile project. This EASY-TOBUILD circuit lets you use any regular TV set as a simple OSCILLOSCOPE. Build for less than \$10. NO MODIFICATIONS TO TV! Single or dual trace. Send for FREE CATALOG of other plans and kits.

BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

CATALOG: Hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, bugging devices, computers, more! PANAXIS, Box 130-F10 Paradise, CA 95967
KITS*parts*plans. We have hard to find parts! Variable tuning capacitors, tuning coils, crystal headphones, germanium diodes, shortwave, crystal, CB radio kits (no soldering). Very inexpensive. Send large SASE for catalog. YEARY COMMUNICATIONS, 12922 Harbor \#800R, Garden Grove, CA 92640.

CRYSTAL radio sets, plans, parts, kits, catalog \$1.00. MIDCO, 660 North Dixie Highway, Hollywood, FL 33020
PRINTED circuit boards etched \& drilled. Free delivery. K \& F ELECTRONICS, INC., 33041 Groesbeck, Fraser, MI 48026. (313) 294-8720.

VIDEOCIPHER II Manuals. Volume 1 -hardware, Volume 2-software. Either $\$ 29.95$ both $\$ 49.95$! CODS-1-(602) 782-2316. Catalog- $\$ 3.00$. TELECODE, Box 6426, Yuma, AZ 85364-0840.
DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics, for SSAVI, gated sync, sinewave. (HBO, Cinemax, Showtime, etc.) \$8.95, $\$ 2$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20814

DETECTION-surveillance, debugging, kits, plans Latest high-tech catalog $\$ 2.00$. DETECTION SYS TEMS, 2515 E. Thomas, 16-864F, Phoenix, AZ 85016.

REMOTE CONTROL KEYCHAIN

Complete w/mini-transmfter and +5 vdc RF receiver to to build your own including plans to build your own auto alarm
and exfend the range.
\$19.95 Check, Visa or Mic
VISITECT INC (415) 872-0.128 PO:BOX 5442, SO, SAN FRAN, CA 94080

PROJECTION TV. Convert your TV to project 7 foot picture... Easy!...Results comparable to $\$ 2,500$ projectors...Plans and $8^{\prime \prime}$ lens \$24.95...Professional systems available...llustrated catalog free. MACROCOMA, 15GB Main Street, Wash ington Crossing, PA 18977 ...Credit card orders 24HRS (215) 736-3979
TOP quality imported, domestic kits, surplus, dis count electronics, computers, components. Free catalog. TEKTRASONIX, 1120 Avenue of the Americas, 1/fl Suite 4038, New York, NY 10036
"CB Trick of the Trade book" learn CB repair tricks and tuning tricks. Send $\$ 19.95$ to MEDICINE MAN, CB P.O. Box 37, Clarksville, AR 72830
ELECTRONIC kits, devices, testers, components, plans, bugs-software. Catalog $\$ 1.00$. ELEC TRONICS, 1222 Highland, Berwyn, IL 60402.
SURVEILLANCE electronics, debugging, kits Latest high-tech. Catalog $\$ 2.00$. TECHNOLOGY SERVICES, 829 Ginette Street, Gretna, LA 70056.
VOICE scrambling system (Jan. 88 issue) for radios, phones, pocket sized. Complete kit $\$ 29.95$ \$54.95/pair. Board alone \$8.00, instructions \$2.50 WAVELINK LABORATORIES, Box 199, Trumbull CT 06611.

FREE kit catalog. Home, auto, industrial kits. BALLCO, INC., 148S. Clayton, Lawrenceville, GA 30245. (404) 979-5900.

ITEM	UNIT	$\begin{aligned} & 10 \mathrm{OR} \\ & \text { MORE } \end{aligned}$
HAMLIN MCC 300036 CORDED REMOTE CONVERTER (Ch 3 only)	2900	1800
PANASONIC WIRELESS CONVERTER (Our best buy)	9800	7900
PMOVIE TIME VR7200A (manual firm tune)	8800	6900
- \triangle ERROLD 400 COMBO	16900	11900
, ERROLD 400 HAND REMOTE CONTAOL	2900	1800
$\because E R R O L D ~ 450 ~ C O M B O ~$	19900	13900
- ERROLD 450 HAND REMOTE CONTROL	2900	1800
ERROLD SB-ADD-ON	9900	6300
-ERROLD SB-ADD-ON WITH TRIMODE	10900	7500
-M-35 B COMBO UNIT (Ch 3output only)	9900	7000
-M-35 B COMBO UNIT WITH VARISYNC	10900	7500
MINICODE ($\mathrm{N}-12$)	9900	6200
MINICODE (N-12) WITH VARISYNC	10900	6500
MINICODE VARISYNC WITH AUTO ON-OFF	14500	10500
ECONOCODE (minicode substitute)	6900	4200
ECONOCODE WITH VARISYNC	7900	4600
P1LD-1200-3 (Ch 3 output)	9900	6200
PALD-1200-2 (Ch 2 output)	9900	6200
CENITH SSAVI CABLE READY	17500	12500
NTERFERENCE FILIERS (Ch 3 oniy)	2400	1400
EAGLE PD-3 DESCRAMBLER (Ch 3output only)	11900	6500
SCIENTIFIC ATLANTA ADD-ON REPLACEMENT DESCRAMBLER	11900	8500

Quantity	Item	Output Channel	Price Each	TOTAL PRICE
California Penal Code \#593-D forbids us from shipping any cable descrambling unit to anyone residing in the state of California.			SUBTOTAL	
			Shipping Add $\$ 3.00$ per unit	
Prices subject to change without notice.			COD \& Credit Cards - Add 5\%	
			TOTAL	

PLEASE PRINT

Pacific Cable Company, Inc. 73251/2 RESEDA BLVD., DEPT. \#R-10• RESEDA, CA 91335 (818) 716-5914 • No Collect Calls • (818) 716-5140 IMPORTANT: WHIN CALLING FOR INFORMATION

GABLE TV 4BOXIS"

Converters-Descramblers Remote Controls-Accessorles \star Guaranted Best Prices * 1 Year warrany co.D.s
$*$ "Immediale Shipping \# FREE CATALOG thansworforeseco. 12062 Southwest 117th Court, Suite 126 Miami, Florida 38186

The DECODER. Satellite and cable descrambling newsletter. News-schematics-modifications-reviews. \$24.00/year. Sample-\$3.00. TELECODE, Box 6426, Yuma, AZ 85364-0840.
MICRO-link FM stereo audio transmitter. One chip does it all! Transmit your CD VCR/ Walkman in stereo to any FM radio. Free schematic and info. Send a seif addressed/stamped envelope to: DJ INC., 217 E. 85th St., Suite 108, New York, NY 10028

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, in expensive "Free" details. COMMAND, D-176, Box 2223, San Francisco, CA 94126.
ENGINEERING software for IBM-PC. Com pDes ...circuit design. CompMath... math tutor CompView digital signal analysis. $\$ 49$ each. (614) 491-0832. BSOFFT SOFTWARE, 444 Colton Road, Columbus, OH 43207

HOW to rewind power transformers to your specs. \$7.95. BROSS ELECTRONICS, 350 Tremont Suite. D-51, Dept. R-9, Murfreesboro, TN 37130.
SAVE/make \$1000's high technology insider secrets catalog $\$ 2.00$ exotic parts. LEEWARE, Box 5636, Greensboro, NC 27435.
MASTER new skills fast through our short specialized home study courses. Condensed and highly effective! Passport to success! 50 choices Diploma! CIEE-12, Box 20345, Jackson, MS 39209
MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects You get a binder to keep the materials in, and a oneyear membership in the International Society of Performing Magicians with a plastic membership card that has your name gold-embossed. You get a oneyear subscription to our quarterly newsletter, "IT'S MAGIC!" Order now! $\$ 29.95$ for each course $+\$ 3.50$ postage and handling, (New York residents add applicable state and local sales tax.) The Magic Course, $500-\mathrm{B}$ BiCounty Boulevard, Farmingdale, NY 11735, or telephone (516) 293-3751 and ask for Nancy Estrada.

BIG
 BIG ELECTRONIC ASSEMBLY BUSINESS

Start home spare time. Investment knowledge or experience unnecessary. BIG DEMAND assem bling electronic devices. Sales handled by profes sionals Unusual business opportunity

FREE: Complete illustrated literature BARTA. RE-O Bux 248

BUSINESS OPPORTUNITIES

EARN thousands with your own part time electronics business. I do. Free proof, information. INDUSTRY, Box 531, Bronx, NY 10461-0531

EASY, lucrative. One man CRT rebuilding machinery. Free info: (815) 459-0666 CRT, 1909 Louise, Crystalake, IL 60014.
PROJECTION TV ...Make $\$ \$ \$$'s assembling proj ectors easy results comparable to $\$ 2,500$ projectors... Plans, $8^{\prime \prime}$ lens \& dealers information $\$ 22.50$...Professional systems available.... Illustrated catalog free. MACROCOMA 15GBX Main Street, Washington Crossing, PA 18977. Creditcard orders 24 hrs . (215) 736-2880.
YOUR own radio station! AM, FM, TV, cable. Li censed/unlicensed. BROADCASTING, Box $130-$ F10, Paradise, CA 95967.
EARN $\$ 1000$'s or more easily, simply. Quick results Send $\$ 9$ plus $\$ 1$ for $\mathbf{S \& H}$: Box 14008 , Seattle, WA 98104 for information packet.

PC board/circuit design, prototyping, and manufacture, orcad/futurenet/schema, netlists routed. Plotting services: schema hiwire, smartwork, EE DESIGNER, supported call (609) 586-4469.

CAR-STEREO EQUIPMENT

BOOM boom subwoofer systems, electronic crossovers, audio power amplifiers, radio cassettes, CB's etc. Wholesale prices, catalog, information BOOM BOOM ELECTRONICS, 2905 Las Vegas Blvd. North, \#53RE, North Las Vegas, NV 89030 (702) 399-3139.

CALL FOR FREE CATALOG

TEXT TO SPEECH BOARD!

PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK!

A VERY POWERFUL AND AMAZING SPEECH CARD. USES THE NEW GENERAL ANSTRUMENTS SPO256-AL2 SPEECH CHIPAND THECTS256A-AL2TEXT TO SPEECH CONVERTER
THIS BOARD USES ONE SLOT ON THE MOTHERBOARD AND REQUIRES A COM SERIAL PORT. BOARD MAY ALSO BE USEDIN A STAND ALONE ENVIRONMENT WITH ALMOST ANY COMPUTER THAT HAS A RS 232 SERIAL PORT. FEATURES ON BOARD AUDIO AMP OR MAY BE USED WITH EXTERNAL AMPS
DEMONSTRATION SOFTWARE AND A LIBRARY BUILDING PROGRAM ARE INCLUDED ON A $51 / 4$
INCH PC/XT DISKETTE. FULL DOCUMENTAINCH PC/XT DISKETTE. FULL DOCUMENTA-
TION AND SCHEMATICS ARE ALSO INCLUDED

> NEW!

$\$ 69^{95}$
ASSEMBLED

NEW! IC TESTER! \$149.00

SIMILAR TO BELOW EPROM PROGRAMMER. PLUGS IN TO YOUR PC OR XT. TESTS ALMOST ALL 14, 16 , AND 20 PIN $74 \times X$ SERIES. INCLUDES STANDARD POWER, "S" AND "LS" DEVICES. ALSO TESTS CD4000 SERIES CMOS. SOFTWAREINCLUDEDCAN EVEN WITH SIMPLE MOD THIS UNIT CAN ALSO TEST 6.4K AND 256K DRAMS! WITH MANUAL
 AND SOFTWARE: $\$ 149$. PERFECT FOR SCHOOLS.

PC/XT EPROM
 PROGRAMMER \$169

ASK ABOUT OUR NEW PAL PROGRAMMER!

* LATEST DESIGN * PROGRAMS UP IO 4 DEVICES AT ONE TIME * FEATURES EAS TO USE MENU DRIVEN SOFTWARE THAT RUNS UNDER PC OR MS-DOS. ¿ USES AN INTELLIGENT PROGRAMMING ALGORITHM FOR SUPER FAST (BX) EPRON CONTAINING ${ }^{\prime}$ TEXTOOL ZAF SOCKETS NO PERSONALITY MODUEES REQUIRED \# AUTOMATIC VPP SELECTION: $12.5 \mathrm{~V}, 21 \mathrm{~V}$, OR 25 V . *EPROM DATA CAN ALSO BE LOADED FROM OR SAVED TO A DISKETTE. * PROGRAMMING SOFTWARE SUPPORTS: 2716, 2732, 2732A, 2764, 2764A, 27128, 27128A, 27256, 27256A, 27512, AND 27512A. * ASSEMBLED AND TESTED, BURNED. IN WITH MANUAL. \$169 WITH SOFTWARE.
JUST RECEIVED. SAME AS ABOVE PROGRAMMER, BUT PROGRAMS 8 UNITS AT ONE TIME - $\$ 299$.

Digital Research Computers

P.O. BOX 381450 - DUNCANVILLE, TX 75138 - (214) 225-2309

TERMS: Add $\$ 3.00$ postage. We pay balance. Orders under $\$ 15$ add $75 c$ handing. No C.O.D. We accept Visa and MasterCard. Texas Res. add 6-1/4\% Tax. F

[^6]
SPECIAL PURCHASE CCD IMAGING SYSTEM

LATEST technology alternative to Jerrold SB-3 or Radio-Electronics Feb. 1984 project. Featuring electronic tuning, AGC, auto-on/off, AD/DC power, mini-size, A\&T, and more. For literature-SOUTHTECH DISTRIBUTING, (813) 527-2190.

CABLE-TV AT IT'S BEST

SCIENTIFIC Atlanta models $8500-8550$ remote included...\$240.00. SB-3's...\$74.00. TRIBl's...\$95.00. SA-3's... $\$ 99.00$. Zenith (Z-Tac) descramblers... $\$ 169.00$. N -12 (Vari-sync) . $\$ 89.00$ M-35 B (Vari-sync)...\$99.00. Hamlin MLD-1200's...\$89.00. 80-Channel converters... $\$ 95.00$. Dealer discount on (5) units. CallN.A.S. INTERNATIONAL, (213) 631-3552. Fax: (213) 925-3542.

CABLE TV CONVERTERS

CABLE TV converters. Scientific Atlanta, Jerrold, Oak, Zenith, Hamlin. Many others. 'New" Video Hopper "The Copy Killer." Visa, M/C \& Amex. 1-(800) 826-7623. B\&B INC., P.O. Box 21-327, St Paul, MN 55121.

PRINTED CIRCUIT BOARDS AND ARTWORK LAYOUTS
 LOW prices single, double sided boards. No minimum charge. CAD artwork at discounted prices. (704) 464-1164; PCBAL, RT-3, Box 662H, Conover, NC 28613.

PRIVACY PROTECTION

ELECTRONIC surveillance manual, manual plus catalog $\$ 15$. Credited towards purchase. RWB ELECTRONICS, Box 922, Bronxville, NY 10708.

DESCRAMBLER MODULE

INVENTORS! AIM wants-ideas, inventions, new products, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll free in U.S. and Canada 1-(800) 225-5800.
INVENTIONS, ideas, technology wanted! Industry presentation/national exposition. 1-(800) 288-IDEA. ISC-RAD, 903 Liberty, Pittsburgh, PA 15222.

INVENTORS

INVENTORS Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service. 1-(800) 338-5656. In Massachusetts or Canada cal (413) 568-3753.

THIS IS A BOLDFACE EXPANDED AD with a tint background. . If you like this format, request it. Your cost is $\$ 6.25$ per word.

MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

THIS IS AN EXPANDED TYPE AD. Notice how it stands out on this page. To get your ad set in this type style mark your classified ad order, "Expanded-type ad," and calculate your cost at $\$ 4.30$ per word.

Uses a 4096-element line imaging chip. Part of a high-resolution FAX system. Removed from unused machines. Supplied with some documentation. (Sorry, no information on computer interfacing is available.)
The board has the CCD imaging chip and all the required electronics for operation. Video image information available as raw and processed serial binary data. Many possible uses in machine vision, robotics, or high resolution slow scan TV astronomy, etc

CCD Image Board \qquad $\$ 69.95$ Also available
Complete Document Scanner
Mechanism.
$\$ 125.00$
(Call for more information.)
Call or write for our FREE 112 pg. catalog today.

2176 E. Colorado BI. Pasadena, CA 91107 sales co.
1-800-325-9465
CIRCLE 195 ON FREE INFORMATION CARD
\$) PIONEER

10" WOOFER
Heavy duty paper cone with 20 oz . magnet. 60 watts $\mathrm{RMS}, 90$ watts max. Response: $35-3500 \mathrm{~Hz} .1 / 2^{\prime \prime}$ v.c.

$\$ 1690$

THITA $8^{\prime \prime}$ WOOFER $\begin{gathered}\text { Made in } \\ \text { U.S.A. }\end{gathered}$ Ribbed paper cone with poly foam roll edge. 20 oz magnet 40 hm .50 watts RMS, 75 watts max. $11 / 2^{\prime \prime}$ v.g.

\#290-053	$\$ \underset{(1-3)}{2150} \quad \$ \underset{(4 \text { up) }}{\mathbf{9} 95}$
	WOODGRAIN
	GRILL CLOTH

Authentic woodgrain print design cloth. $36^{\prime \prime} \times 60^{\prime \prime}$ \#260-340 \$595

3 $1 / 2^{\prime \prime}$ PIEZO TWEETER

\#270-010	$\begin{gathered} \$ 530 \\ (1-9) \end{gathered}$	$\$ 450$

12" 3-WAY, 100 WATT SYSTEM evaluated the performance characteristics of this speaker system :o ensure the best full range frequency response. wooter, (1) \#280-045 heavy duty $5 / 4^{\prime \prime}$ midrange. (1) \#270-035 4" soft dome crossover, (2) \#260-255 50 watt L-pads, (1) $\# 260-300$ terminal, and (1) $\# 260-340$ woodgrain grill cloth. Recommended cabinet volume: 3.1

Super horn tweeter. Mfg. \#KSN1005A. $3 \mathrm{~K}-30 \mathrm{KHz}$. Pioneer design engineers carefully System includes: (1) \#290-125 poly tweeter, (1) \#260-210 3-way 100 watt cu ft.
\#12-100
(A) MOTOROLA
SPEAKERS AND COMPONENTS (\$) PIONEER

@ PIONEER

CABLE TV DESCRAMBLERS

1-\$89.00 10-\$69.00 100-Call Last channel recall-Favorite channel select75 channel-Channel scan-Manual fine tuneOne year warranty-surge protection-HRC \& Stand ard switchable and much more Call Today!
INFORMATION(402)554-0417
Orders Call Toll Free 1-800-624-1150
M.D. ELECTRONICS 115 NEW YORK MALL SUITE 133E
OMAHA, NE. 68114
CIRCLE 53 ON FREE INFORMATION CARD

YOU MAY HAVE FOUND IT DIFFICULTT TO FOL
low last month's instructions concerning the checkout and final assembly for the IC tester. Hefe's a clearer version of those instructions

Resistors R43-R60 (they were shown in the schematic) are so rarely needed, and they are optional. They might be needed when testing circuits with three-state outputs that are connected to a common bus, such as the data bus of a microprocessor. They can be soldered to the back of the PC board where the pins of SO 2 protrude (see Fig. 4 from last month's issue).

You will need a 20-pin DIP header (PI) for use with the IC tester. Connect all of its pins together with a thin piece of bare wire. Also, to use the tester as a monitor/analyzer, you'll need a 20-pin female header and a ribbon cable with up to 18 microhooks attached to it. It will connect to the 20-pin male header, SO 2 .

The tester will be damaged if it is connected to anything greater than 5.5 volts. For the preliminary check out you will need a 5 -volt source capable of supplying at least 250 mA . Plug the 20-pin DIP header (Pl) into

SOI and connect a jumper from any pin of the header to ground. Turn off all sections of S2 and wrap a thin piece of bare wire around each pin of SO 2 so that all of the pins are con nected together. Then connect a jumper from any pin to ground. Connect the power leads to the 5 -volt sup ply and then press and release S 1 . All of the LED's should be off except LED21

With S2-h open, connect the PI header jumper to 5 volts, then remove it and connect it to ground; all of the LED's should turn on and stay on Now, with S2-h closed, the LED's should turn on when 5 volts is applied and go off when it is removed (pressing and holding SI will have the same effect). If you were able to complete the previous instructions as described, then the tester is working properly. Now remove the power, the header (Pl) from SO 1 , and the SO_{2} test clip.

You must also be aware that on last month's Parts-Placement diagram (Fig. 3), SOI was incorrectly labeled SO 2 . You should change the SO 2 that was on the left to SOI

Active gives you more
 \square SELECTION QUQALITY
 $\boxed{\square}$ SERVICE
 F VALUE

Semiconductors and Integrated circuits. in stock for immediate delivery.

PARTIAL LISTING ONLY
ACTIVE HAS THOUSANDS OF DIFFERENT SEMICONDUCTORS AND INTEGRATED CIRCUITS AVAIL ABLE FOR OFF-THE-SHELF DELIVERY. IF THE TYPE YOU REQUIRE IS NOT LISTED, PLEASE CALL FOR PRICING.

ORDERING FROM ACTIVE IS EASY..
By Phone
Our trained telephone order personnel are ready to take your order from 8.00 AM to 6.00 PM (Eastern) Orders are processed within 24 hours. Please have your credit card (Visa, Mastercard or American Express) handy when you call. 1-800-ACTIVE 4 By Mail
Simply list the tems you would like to order total your order and add 4.00 (UPS Cround) or 7.00 (UPS Blue) shipping/handling (Massachusetts residents please add state sales tax) and send it Active Mallorder Center, 133 Flanders Road, Westborough Mass. 01581
in our Stores

Mt Laurel, NJ	Seattle WA Chicago, IL	Santa Clara, CA Detront, MI
in Canada.		
Quebec, QC	Montreal, QC (2)	Ottawa, CN
Toronto, ON (3)	Winnupeg, MB	Calgary, AB

I
 EIJDR Microdevices1
 Complete customer satisfaction...superior service...friendly, knowledgeable personiel quality merchandise . . providing the best values in leading edge technology.

STATIC RAM5		
	${ }^{256 \times 4}$	
${ }_{2}^{2114}$	(1024x4	12
TM	2048×8	
H	$2048 \times$	1200
HM61	${ }_{204}^{204}$	${ }_{1200}^{1250}$
HM	204	(150nss)/ $/ 1$
	2048×8	(120nsticm
${ }_{\text {H }}$		
HM43256L		(1550nsil CM

\section*{DYNAMIC RAMS
 \begin{tabular}{|c|c|c|}

\hline 4116.250 \& 16384×1 \& (250ns)

\hline 4116-200 \& 16384×1 \& (200ns)

\hline 4116.150
4116.120 \& 16384×1 \& (1150ns)

\hline MK4332 \& 16384×1 \& [120ns)

\hline 4164-150 \& 65536x1 \& (150ns)

\hline 4164-120 \& 65536×1 \& (120ns)

\hline MCM6665 \& 65536x1 \& (200ns)

\hline TMS4164 \& 65536x1 \& (150ns)

\hline 4164.REFRESH \& 65536x1 \& 1150

\hline TMS4416 \& 16384×4 \& (150ns)

\hline 41128.150 \& 131072x1 \& (150ns)

\hline TMS4464-15 \& 65536×4 \& (150ns)

\hline 41256-150 \& 262144×1 \& (150ns)

\hline 41256.120 \& 262144×1 \&

\hline 41256.100

$H M 51258.100$ \& 262144×1 \& 11

\hline \& 262144×1
1048576×1 \& 51/

\hline 1 MB. 120 \& 1048576x1 \& 5!

\hline
\end{tabular}

EPROMS

2738	1024x8	(450ns)(25V)	
2716	2048×8	(450ns)/25V)	
2716-1	2048×8	(350ns1(25V)	
TMS2532	4096×8	(450ns)125V)	
2732	4096×8	(450ns)(25V)	
2732A	4096×8	(250ns)(21V)	
2732 A .2	4096×8	(200ns)(21V)	
27664	8192×8	(250ns)(12.5V CMOS)	
2764	8192×8	(450ns)(12.5V)	
2764-250	8192×8	(250ns)(12.5V)	
2764.200	8192×8	(200ns/12.5V)	
MCM68766	8192×8	(350n3)(21V)(24 PIN)	15
27128	${ }^{16384 \times 8}$	(250ns)(12.5V)	
$27 C 256$	32768×8	(250ns)(12.5V CMOS)	
27256	32768×8	(250ns)(12.5V)	
27512	65536×8	(250ns)(12.5V)	11
$27 C 512$	65536×8	(250ns)(12	

741500					
74Ls00	16	74.5112	29	74LS241	69
74.501	. 18	7415122	45	74LS242	69
74LS02	17	74LS123	49	$74 L S 243$	69
74 LS03	. 18	74LS124	2.75	74LS244	69
74.504	15	74LS125	39	1415245	79
741505	18	74LS 126	39	74 LS251	49
74.508	18	7415132	39	7415253	49
741509	18	74L5133	49	7415257	39
74LS10	16	74LS 136	39	74LS258	49
$74 \mathrm{LS1} 1{ }^{\text {P }}$	22	74LS138	39	74.5259	1.29
74.512	22	7415139	39	7415260	49
74LS13	26	74LS145	99	$74 L S 266$	39
74LS14	39	74LS14?	99	7415273	79
74LS15	26	7415148	99	7415279	39
74LS20	17	74LS151	39	7415280	198
74LS21	22	74LS153	39	7415283	. 59
741522	22	74LS154	149	74.5290	89
74LS27	23	74LS155	59	$74 L S 293$	89
741528	26	7415156	49	7415299	1.49
74 LS30	17	74.5157	35	7415322	3.95
741532	18	74LS 158	29	7415323	2.49
741533	28	7415160	29	7415365	39
741537	26	74LS 161	39	7415367	39
74.5538	26	7415162	49	74 [S3 368	39
74LS42	39	74LS163	39	7415373	79
74.547	75	$74 L S 164$	49	7415374	79
741548	85	7415165	65	7415375	95
741551	17	7415166	95	7415377	79
741573	29	74LS169	95	7415390	1.19
741574	24	7415173	49	74 LS 393	79
741575	29	745174	39	7415549	149
741576	29	7415175	39	7415624	1.95
741583	49	74LS191	49	7415640	99
741585	49	74LS 192	69	$74 L 5645$. 99
74LS86	22	74LS193	69	7415670	89
741590	. 39	74LS 194	69	74LS682	3.20
741592	49	7445195	69	74 LS688	2.40
74LS93	39	74LS 196	59	7415783	
741595	49	7415197	59	25LS252,	2.80
$74 \mathrm{LS107}$	34	74LS221	59	261531	1.95
7415109	36	74.5240	69	26LS32	1.95

7400

741500 inted
5POTLLIGHIT 1 MB EPROMS
 CMOS DESIGN FOR LOW POWER
$\$ 34.95$

MATH COPROCES5ORS

Kind

$\begin{array}{lll}8087 & 5 \mathrm{MHz} & 599.95 \\ 8087-2 & 80 \mathrm{MHz} & 5159.95\end{array}$ $\begin{array}{lr}8087-2 & 8 \mathrm{MHz} \\ 8087-1 & \$ 159.95 \\ 80 \mathrm{MHz} & \$ 229.95\end{array}$ $8028766 \mathrm{MHz} \$ 179.95$ $80287818 \mathrm{NHz}^{5} 249.95$ 80387-16 16 MHz $\$ 499.95$ $80387.2020 \mathrm{MHz} \$ 799.95$2.99
.99
1.49
1.95
3.29
3.95
4.29
4.95
5.49
6.49
6.99
12.95
14.95
19.95

CAPACITORS TANTALLM

MONDLITHIC

 \section*{$\begin{array}{r}.01 \\ 04 \\ \hline\end{array}$
 \section*{$\begin{array}{r}.01 \\ 04 \\ \hline\end{array}$
 榙 RADIAL
 $\begin{array}{cc}\text { adial } & \text { axial } \\ \text { 25: }\end{array}$ $1,4 \quad 25 \mathrm{~V}$
 $\begin{array}{lllll}50 \mathrm{~V} & 11 & 1 / 4 & 50 \mathrm{~V} & 14 \\ 50 \mathrm{~V} & 11 & 22 & 50 \mathrm{~V} & 16 \\ 35 \mathrm{~V} & 13 & 47 & 16 \mathrm{~V} & 14\end{array}$ $\begin{array}{llllll}100 & 35 V & 13 & 47 & 50 \mathrm{~V} & 14 \\ 16 \mathrm{~V} & 15 & 100 & 35 \mathrm{~V} & 19 \\ 220 & 35 \mathrm{~V} & 20 & 470 & 50 \mathrm{~V} & 29 \\ 470 & 25 \mathrm{~V} & 30 & 1000 & 16 \mathrm{~V} & 29\end{array}$ $\begin{array}{llllll}470 & 25 \mathrm{~V} & 30 & 1000 & 16 \mathrm{~V} & 29 \\ 2200 & 16 \mathrm{~V} & .70 & 2200 & 16 \mathrm{~V} & 70\end{array}$}
BYPA55 CAPACITOR5

 01 IA CERAMIC DISC 100/55.00 11 IA MONOLITHIC $100 / 510.00$1 CERAMIC DISC 100 /5650 1 MA MONOLITHIC $100 / 512.50$

"SNAPABLE"

 HEADERSCAN BE SNAPPED APART TO ALL WITH. 1- CENTERS 1×40 STRAIGHT LEAD 1×40 RIGHT ANGLE LEAD $\begin{array}{ccc}2 \times 40 & \text { 2 STRAIGHT LEADS } & 2.49 \\ 2 \times 40 & 2 \text { RIGHTANGLE LEADS } & 2.99 \\ 1 & H\end{array}$
.99
.49
2.49

VOLTAGE REGULATORS

78051	49	7812K	1.39
78081	49	7905K	1.39
7812 T	49	7912K	1.19
7815 T	49	78105	19
$7905 T$	59	78 L 12	19
7908 T	59	79105	39
7912T	59	79112	1.19
7915 T	59	LM323K	4.79
7805K	1.59	LM338K	6.35

DISCRETE

DISCRETE			
1N75	. 15	4N28	69
1N414825	5 7 co	4 N 33	89
1 N4004 10	[10	4 N37	1.19
1N5402	25	MCT-2	59
KBP02	55	MCT-6	129
2N2222	. 25	TIL-111	99
PN2222	. 10	2N3906	10
2N2907	25	2N4401	25
2N3055	. 79	2N4402	25
2N3904	. 10	2N4403	25
4N26	69	2N6045	175
4N27	. 69	TIP31	49

GOLIOER STATION

- adjustable heat setting WITH TIP TEMPERATURE READOUT
- REPLACEMENT TIPS

AVAILABLE $\$ 2.95$

$$
44.9-95
$$

RESIGTOR NETWORKS

SIP	10 PIN	9 RESISTOR	.69
SIP	8 PIN	7 RESISTOR	59
DIP	16 PPN	8 RESISTOR	1.09
DIP	16 PIN	15 RESISTOR	1.09
DIP	14 PIN	7 RESISTOR	99
DIP	14 PIN	13 RESISTOR	99

FOR PSIR

JDR-PR32 JDR-PR16 JDR-PR16PK JDR-PR16V

JDR-PR10 JDR-PR10PK

IBM-PR1

IBM-PR1
IBM-PR2

32 BIT PROTOTYPE CARD
16 BIT CARD WITH IIO DECODING LAYOUT PARTS KIT FO: JDR-PR 16 ABOVE 16 BIT CARD FOR VIDEO APPLICATIONS FOR AT
16 BIT CARD WITH I/O DECODING LAYOUT PARTS KIT FOR JDR-PR 10 ABOVE

FDR XT
WITH + $5 V$ AND GROUND PL ANE
AS' ABOVE WITH ॥O DECODING LAYOUT

IDC CONNECTORS/RIBBON CABLE

description	ORDER BY	CONTACTS					
		10	20	\%	34	40	50
SOLDER HEADER	IDH××S	82	1.29	1. 88	2.20	2.58	3.24
Right angle solder header	IDHx×SR	85	1.35	1.76	2.31	2.72	3.39
WIREWRAP HEADER	IDHxxW	1.86	2.98	3.34	4.50	5.28	6.63
RIGHT ANGLE WIREWRAP HEADER	IDH×xWR	2.05	3.28	4.22	4.45	4.80	7.30
RIBBON HEADER SOCKET	IDSxx	63	89	$\bigcirc 5$	1.29	1.49	1.6
RIBBON HEADER	IDM $\times \times$	-..	5.50	6.25	7.00	7.50	8.5
RIBBON EDGE CARD	IDExx	85	1.25	135	1.75	2.05	2.45
10 Grey ribbon cable	RCxx	1.60	3.20	4.10	540	6.40	7.50

D-SUBMINIATURE CONNECTORS

DESCRIPTION		ORDER BY	CCNTACTS						
		9	15	19	25	37	50		
SOLDER CUP	MALE		DBx×P	45	. 59	.6	69	1.35	1.85
	FEMALE	DBxxS	49	69	$\checkmark 5$	75	1.39	2.29	
RIGHT ANGLE PC SOLDER	MALE	DBxxPR	49	69	--	79	2.27	\cdots	
	FEMALE	DBxxSR	. 55	75	--	85	2.49	\cdots	
WIREWRAP	MALE	D BxxPWW	1.69	2.56	--	3.89	5.60	\cdots	
	FEMALE	DBxxSWW	2.76	4.27	-.	6.84	9.95	-..	
IDC RIBBON CABLE	MALE	TDBx×P	1.39	1.99	--	2.25	4.25	--	
	FEmALE	$108 \times \times 5$	1.45	2.05	--	2.35	4.49	.-.	
HOODS	METAL	MHOODxx	1.05	1.15	125	1.25	...	-..	
	GREY	HOODkx	. 39	. 39	--	39	69	75	

ORDERING INSTRUCTIONS:
INSERT THE NUMBER OF CONTACTS IN THE POSITION MARKED XX OF -HE ORDER BY PART
NUMBER LISTED EXAMPLE A 5 PINRIGHT ANGLE MALE PC SOLDER WOULD BE DBI5PR MOUNTING HARDWARE 59¢

IC SOCKETGIDIP CONNECTORS

description

CONTACTS SOLDERTALL SOCMETS WREWRAP SOCKETS ZIF SOCKETS TOOLED SOCKETS TOOLED WW SOCKETS COMPONENT CARRIERS KCK DPP PIUGS IDCI IDPK | FOR ORDERING INSTRUCTIONS SGE D | .49 | 59 | 1.29 | 1.49 | - | .85 | 1.49 | 1.59 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 LOCML (408) 8E6-6201 FAX (400) 378-6827 ELEX 171-110

WHY THOUSANNDS CHODEE JOR

* quality merchandise COMPETITIVE PAICES
* most draERE Shipped in za hours
- FRIENDLY, KNDWIEDEEAELE STAFF * 30-DAY MONEY BACK GUARANTEE
* tou frie techinical support
* EXCELLENT CLGTOMER SERVICE

CALL FOR VBLUME QUGTES

EXTENDER CARDS

FOR PROTOTYPE DEBUGGING AND TROUBLESHOOTING

EXT-8088 FORXT SYSTEM 29.95 EXT-80286 FOR AT SYSTEM 39.95 EXT-16 MICROCHANNEL 16-BIT 69.95 EXT-32.MICROCHANNEL 32-BIT 99.95

SOLDERLESS BREADBDARDS
WBU-D $\quad 100$ TIE PTS. 2.95 WBU-204 1650 TIE PTS. 24.95

24

GENDER CHANGERS FOR 25 PIN D-SUGMINIATURE CONNECTORS gender-ff female-male GENDER-MM MALE-MALE gender-mp male-female GENDER-NM NULL MODEM GENDER-JB JUMPER BOX $\begin{array}{llr}\text { GENDER-JB } & \text { JUMPER BOX } & \text { B. } 35 \\ \text { GENDER-MT } & \text { MINITESTER } & 14.95 \\ & & \end{array}$

R5-232

BREAKOUT BOX

 - 20 JUMPERS CROSS-CONNEC - 10 leos show circuit activity - GENDER

SPELTRONICS CORPORATION EPROM ERASERS

DATARASE
ERASES 2 EPROMS IN 10 MINUTES VERY COMPACT. NO DRAWER THIN METAL SHUTTERPREVENTS 9545 JOYGTICK - SET X-Y AXIS FOR AUTO CENTER OR FREE MOVEMENT - FIRE BUT TON FOR USE - ADAPTOR CABLE FOR
19.95

Terms Minimum order $\$ 10.00$. For shipping and handling include $\$ 2.50$ Ior UPS ground and $\$ 3.50$ UPS avr. Orders over 1 lb . and Ioreign orders may require additional shipping charges--please contact the sales department for the amount. CA residenis must include applicable sales lax. Prices are subject to change withoul notice. We are not responsible for typographical errors. We reserve the right to imit quantites and to substitute manulaciurer. All merchandise subject to prior sate.
copy of our terms is avalable upon request. Iems piclured may only be representative.
RETALL STDAE: 1255 SOUIM BNSCOM ANE., SNN JOSE, CA (400) SA7-8031 noUis: M-F 10-7 SNI. Q-5 SUM. 12-4

E:JJR Microdevices.
Complete customer satisfaction...superior service...triendy, knowledgeable personnel quality merchandise. . providing the best values in ieading edge technology.

it s time to trade up now that jor breaks the PRICE BARRIER ON 2400 BAUD MODEMS

- SELF TEST ON POWEA
- TOUCHTONE OR PULSE DIALING
- haYES \& BELL SYSTEMS COMPATIBLE
- full or halk duplex
- mirRor II Communications sofiware included

MCT-241
MCT-121 1200 BAUD $1 / 2$ CARU
\$ 69.95
EXTERNAL MODEMS
MCT-12E 1200 BAUD
\$ 99.95
MCT-24E 2400 BAUD
$\$ 169.95$

COMPUTER CASES

ATTAACTIVE, STURDY STEEL CASES FIT THE POPULAR SIZED MOTHERBOARDS AND INCLUDE SPEAKERS. FACEPLATES. EXPANSION SLOTS. FRONT PANEL KEYLOCKS. LED INDICATORS AND ALL NECESSARY haRDWAR

XTSTYLE FLIP-TOP XT STYLE SLIDE-TOP AT STYLE SLIDE.TOP JR. AT STYLE FLIP-TOP - INCLUDES 150 WATT POWER SUPPLY

PDWER SUPPLIES

FOR IBM XT COMPATIBLE $\$ 59.95$ $=+5 \mathrm{~V} .15 \mathrm{~A},+12 \mathrm{~V} 4.2 \mathrm{~A}$

PS-135
PS-150 150W MODEL $\$ 69.95$

FOR IBM AT COMPATIBLE $\$ 89.95$

- 200 WATTS

22A. +12V BA
PS-200
$\$ 34.95$
$\$ 39.95$
$\$ 89.95$
$\$ 149.95$

IBM

COMPATIBLE KEYBDARDG

FULL ONE YEAR WARRANTY

IBM ENHANCED STYLE LAYOUT
$\$ 79.95$

- AUTOSENSE FOR XT OR AT COMPATIBLES
- LED INDICATORS AUTO REPEAT FEATURE

MCT-5339
IBM AT STYLE LAYOUT
$\$ 59.95$

- SOFTWARE AUTOSENSE FOR XT OR AT COMPATIBLES - LED INDICATORS - AUTO REPEAT FEATURE MCT-5060
MAXI-SWITCH KEYBOAROS
ENHANCED STYLE LAYOUT
$\$ 84.95$
- Standard enhanced keyboard layout - TACTILE FEEDBACK
- LIGHTED NUM. CAPS. ANO SCROLL LOCK

MAX-5339
MAX-5060 MAXI-SWITCH. AT STYLE

$\$ 139.95$
$\$ 199.95$
$\$ 59.95$

En irimanatb
Teme:

3.5" FLDPPY DISK DRIVE 5149^{95}

1.44 MR 31/e" ORIVE

- ULTRA HIGH DENSITY
- ALSO WORKS WITH 720 K DISKS

FDD-1.44 \times BLACK FACEPLATE
$\$ 149.95$ FDD-1.44 \times BEIGE FACEPLATE
$\$ 14995$
72DK $31 /$ e' FLOPPY ORIVE $^{\prime}$
FDD. $3.5 \times($ FORXT $)$
FDD-3.5 \times (FORAT)

SS Seagate

THE NEW ST-251-1 DRIVE IS 30% FASTER WITH AN AVERAGE ACCESS TIME OF 28 MS. EASY TO INSTALL HALF-HEIGHT DRIVE,

WITH MCT-HDC CONTROLLER WITH MCT-ATFH CONTROLLER

1/2 HEIGHT DRIVES

20 MB, 65 M5, 5T-225 WITH MCT-HDC CONTROLLER 5225.00 WITH MCT.AIFH CONTROLLER

30 MB RLL, 65 MS, ST-23B WITH MCT-RLL CONTROLLER WITH MCT-ATFH-RLL CONTROLLER

40 MB, 40 M5, 5T-251 WITH MCT-ATFH CONTROLLER

60 MB RLL, 40 MS, ST-277 WITH MCT-RLL CONTROLLER WITH MCT-A-/FH CONTROLLER
$\$ 269.00$ $\$ 339.00$
$\$ 249.00$
$\$ 299.00$ $\$ 389.00$
$\$ 429.00$
$\$ 469.00$ $\$ 539.00$
\$499.00 $\$ 549.00$
$\$ 639.00$ $\$ 639.00$

FULL HEIGHT DRIVES

$30 \mathrm{MB}, 40 \mathrm{MS}, \mathrm{ST}-4038$
$\$ 559.00$
80 MB, 28 MS, ST-4096
\$895.00

INTERFACE CARDS FROM MODULAR CIRCUIT TECHNDLOGY
 \section*{AT MLLT IID CARO}

DISPLAY ADAPTORS

MONOCHROME GRAPHICS CARO 559.95
TRUE HERCULES COMPAT BILIY SUPPORTS LOTUS 123 PT2 USES VLSICHIPS TO ENSURE RELIABILITY MCT-MGP

ENHANCED GRAPHICS AOAPTOR $\$ 149.95$
$100^{\circ} \circ 1 B M$ COMMATIBLE. PASSES IBM EGA DIAGNOSTICS

- 256 K OF VIDEO RAM ALLOWS 640×350 IN 16 OF 64
COLORS COMPATIBLE WITH COLOR AND
COLORS - COMPATIBLE WI
MONOCHROME ADAPIORS
MCT-EGA
COLOR GRAPHICS AOAPTOR $\$ \mathbf{\$ 9 . 9 5}$ COMPATIBLE WITH IBM GRAPHICS STANDARDS - 640320×200 RESOLUTION. LIGHT PEN INTERFACE MCT-CG

MULTIFUNCTION CARDS
 MONDERAPHICS MLLTI IIO $\$ 119.75$

- CTRL 2 FLOPPY S. SERIAL PARALLEL. GAME PORT LOCK CAL RUN COLOR GRAPHICS SOFTWARE ON MONOCHROME MONITOR
MCT-MGMIO
MLLTI IO FLOPPV CONTROLLER $\$ 79.95$
A PERFECT COMPANION FOR OUR MOTHERBOARDS - SERIAL PARALLEL. GAME PORT. CLOCK CALENDAR MCT-MIO
MIO-SERIAL—2ND SERIAL PORT $\$ 15.95$
MLLTI IIO CARD $\$ 59.95$
USE WITH MCT FH FOR A MINIMUM OF SLOTS USED up Parallel printer port addressable as lpt OR LPT2
MCT-IO

ATMLLTIFUNLTIDN CARD \$139.9S

- USER EXPANDABLE TO 15 MB OR 3 MB WITH OPTIONA PIGGYBACK BOARD (O K INSTALLED) INCLUDES SEAIAL AND PARALLEL PORT
MCT-ATMF-MC PIGGYBACK BOARD
$\$ 29.95$ ATMF SERIAL-2ND SERIAL PORT
$\$ 59.95$ - SERALALLEL AND GAME PORTS USES 16450 MCT-ATIO

ATIO-SERIF.L-2ND SERIAL PORT
 $\$ 24.95$

MEMORY CARDG

576K RAM CARO

159.95 - USER SELECTABLE CONFIGURATION UP TO $576 K$ - USES $64 \mathrm{~K}=256 \mathrm{~K}$ RAM CHIPS (ZEROK INSTALLED) MCT-RAM

EXPANDEO MEMORY CARO \$129.95
2 MB OF LOI JS INTEL MICROSOFT COMPATIBLE MEMORY OOR AN XT " CONFORMS TOLOTUS INTELEMS - USEA EXPANDABLE TO 2 MB - CAN BE USED AS EXPANQED
CONVENTIO MAL MEMORY RAMDISK AND SPOOLER MCT-EMS

MCT-ATEM'S AT COMPATIBLE VERSION
 $\$ 139.95$

DRIVE CONTROLLERS

FLOPPY OISK CONTROLLER \$29.95 FLOPPYS : INTERFACES UP TO 4 FDD'S TO AN IBM PC OR COMPATIZLE SUPPORTS BOTH DS DD AND OS OD OR COMPATIBLE SUPPORTS BOTH DS DD AND OS OO MCT.FDC

1. R MB FLDPPY CONTROLLER $\$ 69.95$ ADD VERSATILITY AND CAPACITY YO YOUR X - ALLOWS DATA TO FLOW FREELY FROM XTS TO ATS MCT-FDC-1.2

FLOPPV/HARO CONTROLLER $\$ 139.95$
UP UP INTER ACES UP TO 2 FDD'S \& 2 HDDS. CABLING
FOR 2 FDD 1 HDD SUPPORTS BOTH DS OD \& DS QD MCT-FH

AT/FMCINTROLLER

$\$ 149.95$
FLOPPY HAFO DISK CON ${ }^{+}$ROL IN A TRUE AT DESIGN SUPPORTE UP TO 2360 K 20K 2MB FDO S AS WE MCT-ATFH

RLL OISK CONTROLLER
$\$ 199.95$
MPAOVE SPEED AND STORAGE OF YOUR AT
COMPATIBLE - SUPPORTS UP TO 2 RLL HARD DISCS AND FLOPPY DF IVES SUPPORTS 36072012 MB FLOPPIESIN5 25 \& 3
MCT-ATFH-RLL

INBDARD 38GIPC $\$ 895.00$

UPGRADE YOUR XT TO A 386 FOR LESS IHAN $\$ 4000$ INSTALLED EXPAND TO $3 M B$ WITH PIGGYBACK CARD - 5 YA WARAANTY

NBOARD 386/AT ABOVE BOARD PS 286
ABOVE BOARD 286
$\$ 1199.95$
$\$ 399.95$
$\$ 369.95$
intel

TEAC DISK DRIVE

360K 51/4" ORIVE

- RELIABLE DIRECT DRIVE
$\underset{\substack{\text { DOUBLE-SIDED } / \\ \text { DOUBLE-DENSITY } \\ \text { MOTOR } \\ \text { DOB }}}{ }+\square \square=\square$
1/2 HEIGHT FLAPPY DISK DRINES
51/4 TEAC FD-55G DS/HD 1.2M $\$ 129.95$
51/4" FUJITSU M2551A DS/DD 360K
51/4 FUJITSU M2553K DS/HD 1.2M
51/4" DS/DD 360 K
$51 / 4 \mathrm{DS}^{\prime \prime} / \mathrm{HD}^{1} 2 \mathrm{M}$
51/4 DS/HD 1.2 M \$ $\$ 109.95$
$\begin{array}{ll}\text { MITSUBISHI DS/DD (AT OR XT) } & \$ 129.95\end{array}$

ARCHIVE XL TAPE BACK-UP 5359^{95}

BACK UP 40 MB IN 40 MINUTES'

- EASY-TO-USE MENU DRIVEN

SOFTWARE
USES STANDARD
oIC DATA FORmAT
full $\&$ incriemental

- Partial \& full restore

AR $5240 \times T$
AR 5540 AT AT SONIY $2 \times$ FASTER
TAPE NOT INCLUDED

(\$24.95

2OMB HARD DISK DN A CARD

$\$ 3419$

- saves space and reduces power consumption - DDEAL FOR PC'S WITH FULL HEIGHT FLOPPIES - LEAVES ROOM FOR A HALF LENGTH CARD IN

JUST A NOTE TO LET YOU KNOW THAT MY SALESPERSON, HELEN MORSE, AT YOUR COMPANY HAS BEEN VERY HELPFUL AND COURTEOUS. THIS IS A PLEASANT CHANGE FROM MOST TELEPHONE SALESPEOPLE I DEAL WITH. PLEASE PASS MY THANKS TO HELEN. I PLAN ON DOING FREQUENT BUSINESS WITH JDR AS MY NEW COMPANY, ODEM INC GETS GOING, AND HELEN'S ATTITUDE AND HELPFULNESS ARE A MAJOR REASON WHY LIKE DOING BUSINESS WITH YOU
R.C.K,

BENSALEM, PA
BARGAIN HUNTER'S CORNER
TZOK FLOPPY DISK MITSUBISHI
BY MIT BY MITELBISH

- NLY

MPATVBE

JDi MIGRODEVIGES, 110 KxOMLES DRIVE, LOS ESTOS, CA 9E030 LOCAL (408) 866-6200 FAX (408) 378-8927 TELEX 171-110

BUILI YOUR DWN GYGIEM

OVER RD, DOD JOR SYSTEMS HAVE ALREADY BEEN BLILT EASY TO ASGEMBLE IN JUST ? HOURS WITH A SCREWDRIVER. SAVE MONEY AND LEARN ABDUT YOUR COMPUTER AT THE SAME T/ME

12 MHZ AT COMPATIBLE $\$ 1101^{70}$

- 12 mhz babr at motherboard - 256K RAM MEMORY - MINI-AT CASE WIPOWER SUPPLY - at style keyboabo
- FLoppyihard drive controller - MONOCHROME MONITOR - graphics adaptor

ID MME XT
CПЛМРАTIBLE
क $5 \sqrt{5} 50$
includes serial port 2 paballel PORTS. CLOCK CALENDAR AND GAME A MONOCHROME MONITOR

- motherboard
- 256 K RAM MEMORY
- 135 WAT T POWER SUPPLY
- at style keyboand
- 360K FLOPPY DRIVE
- MONOGRAPHICS IO CARD

16 MHZ
1 MB 386

+ 9 E 98^{65}
- MYLEX 386 MOTHERBOARD
- 1 MB RAM ON BOARD
: 200 WATT POWER SUPPLY
- 200 WAT T POWER SUPPLY
- ENHANCED AT STYLE KEYBOARD
- 1.2 MB FLOPPY DRIVE
- AT FLOPPY HARD CONTROLLER
- MONOCHROME MONITO

MOTHER:DARIES

TURBA 4.77/8 MHZ \$99.95 12 MHZ MINI 8OE86 \$399.95

- 477 OR \& MHZ OPERATION WITH $8088-28$ OPTIONA

8087-2 CO-PROCESSOR

- FRONT PANEL LED SPEED INDICATOR AND RESET
- CHOICE OF NORMAL TURBO MODE OR SOFTWARE ctecr mocessor speed
MCT-TURBO
MCT-XTMB STANDARD MOTHERBOARD
$\$ 87.95$

80286 6/8 MHZ

- 8 SLOT \{2 EIGHT BIT. 6 SIXTEEN BIT) AT MOTHERBOARD - hardware selection of 6 OR 8 MHZ
- 1 Wait State
- KEYLOCK SUPPORTED, RESET SWITCH. FRONT PANEL Led indicator
- SOCKETS FOR I MB OF RAM AND 80287 - bat tery backed clock MCT-ATMB
$\$ 379.9516$ MHz MYLEX 386 \$1649.00
6 MHz . $10 \mathrm{MHz}(0,1$ WAIT STATE). 12 MHz (I WAIT STATE)
- USES ZYMOS ASIC'S FOR LESS CHIPS. GREATER
- RELIABILTTY 56 K-1024K MEMORY
- SUPPORTS 256K-1024K MEMORY . RHARGEABLE HIGH CAPACITY NI.CAD BATTERY
- RE-CHARGEABLE 6 16-BIT SLOTS. 28 -BIT SLOTS
mOUNTS IN STANDARD XT CASE
MCT-BATMB $6 / 10$
MCT-BATMB 6/10 MHZ MINI 80286 BOARD $\$ 389.95$
- 1 mb ram on board

8 SLOTS. 2 8-BIT 6 16-BIT

- SUPPORTS 80287 MATH CO PROCESSOR

SUPPORTS 80387 W ADAPTOR

- 64 KB CACHE FOR NEAR O WAIT STATE

USES AMI BIO
MCT-386 MB-4 4 MB MEMORY INSTALLED $\$ 2649.00$ MCT- 386 MB -MCB MATH CO-PROCESSOR ADAPTOR BOARD

10 MHz SINGLE CHIP XT 512995

- SINGIE CHIP USES IESS POWER MPROVESRELIABLITY - SINGLE CHIP USES LESS POWER IMPROVES R
- KEY SELECTABLE SPEED. 477 MHz OR 10 MHz - 23 TIMES FASTER THAN A STANDARD - RESET SWITCH. KEYLOCK AND SPEED/POWER
INDICATORS SUPPORTED MCT-TURBO 10

DEVEDDPMENI TOOLS

EPROM
 PROGRAMMER
 51F995

PROGRAMS 27XX \& 27XXX EPROMS UP TO 27512

- SUPPORTS VARIOUS PROGRAMMING FORMATS AND
voltages
SPLIT OR COMBINE CONTENTS OF SEVERAL EPROMS
OF DIFFERENT SIZES
READ. WRITE. COPY. ERASE CHECK AND VERIFY
MCT-EPROM
MCT-EPROM-4 4 GANG PROGRAMMER $\$ 189.00$ MCT-EPROM-10 10 GANG PROGRAMMER $\$ 299.95$ MCT-PAL PALPROGRAMMER \$269.95 MCT-MP PROCESSORPROG. $\$ 199.95$

- 1 YEAR WARRANTY DN MCT PRODUCTS

- 30 DAY

 MDNEY BACK GUARANTEE- TDLL-FREE TECHNILAL GUPPDRT
- NEXT DAY A/R GHIP AVA/LABLE

JDA MIGRODEVICES: 110 KHOULES DAIVE. LOS GATOS, CA 95030 LOCAL (408) 856-5200 FAX (803) 378-8927 TELEX 171-110

Radio Shack Parts Place EXCLUSIVE VALUES AT THE SHACK ${ }^{\circledR}$ NEAR YOU

"Hotline" Service for Rare Parts
If the part you need is not in our regular stock, we'll check our substitution guide and special order it for you. Over 200,000 substitutions available, including ICs, microprocessors and support chips, ubes, crystals, phono cartridges, transistors, hybrid modules, and Sams Photofacts. The order will be sent to your local Radio Shack in about a week. No minimum and no shipping charges!

Enhanced-Novice Exam "Prep" Kit

Everything You Need to Quickly And Painlessly Prepare for The New FCC Exam

Take advantage of the new enhanced Novice privileges on Amateur radio This package quickly prepares you for the voice-class license. You get two audio cassettes for self-paced Morse code learning plus practice exam questions and answers to help you get ready for the test. \#62-2402

TLC548 8-Bit A/D Converter IC. 43\% Off. Complete data acquisition system in one IC. High-speed data transfer with few external components. Single 5VDC supply, internal clock. \#276-1796 Sale 3.99
AY-3-8910A Sound Generator IC. Cut 21%. Use with a computer to provide a spectacular variety and range of sounds! Three independent analog outputs. Single 5 VDC supply. 40 -pin DIP. With data. \#276-1787. Sale 7.88

SPO256-AL2 Speech Synthesizer IC. Cut 23\%. Built-in program makes it easy to interface with most computers. Requires 3.12 MHz crystal. With data and circuit examples. 28-pin DIP. \#276-1784 Sale 9.95 CTS256-AL2 Text-to-Speech IC. 30\% Off. Preprogrammed to translate ASCII characters into control data for synthesizer chip (above) for RS-232 hookup. Requires 10 MHz crystal. 40-pin DIP. \#276-1786 Sale 11.88

Computer Helpers

(1)

(1) RS-232 Tester. LEDs indicate status of TD, RTS, DSR, CD, RD, CTS, DTR lines. \#276-1401 . 14.95 (2) RS-232 Spike Protector. Stops transients dead in their tracks. \#276-1402
16.95

4000-Series CMOS
Low As
99°
With Specs

Description	Type	Cat No	Each
Quad NOR GATE	4001	$276-2401$.99
Quad NAND Gate	4011	$276-2411$.99
Dual Type-D	4013	$276-2413$	1.19
Flip Flop	4049	$276-2449$	1.19
Hex Inverter	40		
Decade Counter/	4017	$276-2417$	1.49
Oivider			

Builder Bargains

(1) Magnet Wire. Three-spool set22, 26, 30 gauge \#278-1345 4.79 (2) 1:1 Audio Transformer. \#273-1374
3.49
(3) 1.5-3 VDC Motor.
\#273-223
894

Hard-to-Find Parts

(1)

(2)

Parts-Pourri

(1) Fuse Holder Clips. \#270-739 (2) 8-"AA" Bat. Holder. \#270-387 4. "AA"' Battery Holder. \#270-383 2."AA" Battery Holder. \#270-382 (3) 9-Voll Battery Clips. \#270-325 (4) Thermal Fuse. $139^{\circ} \mathrm{C}$. \#270-1320 Thermal Fuse. $226^{\circ} \mathrm{C}$. $\# 270-1321$

Irresistibles

(1) $25-\mathrm{Ohm}, 5 \mathrm{~W}$ Rheostat. \#271-265, 2.99 (2) 8 -Ohm, 20W Resistor \#271-120
(3) Metal-Oxide Resistors. 10 Ohms. \#271-151 100 Ohms. \#271-152 1000 Ohms. \#271-153
.1 .39
Pkg. 2/29 Pkg. 2/29c Pkg. 2/29c

$$
\text { kg. } 2 / 29 \mathrm{c}
$$

(1) 335 pF Variable Cap. Two-section, PC-mount. \#272-1337............ 4.95 (2) 6 -50 pF Trimmer Caps. 579545 M) Tz \#272-1310 $\quad 1.69$

Sight 'n Sound

(1) Super-Bright Panel LED. Brilliant 500 mcal ruby light. \#276-088 (2) LEDs in Chrome Holders. Red LED. \#276-068
1.89

Green LED. \#276-069
(3) Melodic IC Chime. \#273-071
8.69

Relays \& Switches

(1) SPST Reed Relays.

Contacts: 1A, 125 VAC

Coil	Cat. No.	Each

5VDC, $20 \mathrm{~mA}, 250 \Omega$

(2) Mini SPDT Relay. \#275-248 .. 2.99
(3) Mercury Switch. \#275-027 1.29
(4) Momentary Switch. \#275-1571 . . 2/2.39

500

Builders Bargain Corner

(1) Box With PCB. $21 / 8 \times 35 / 16 \times 13 / 6^{6}$. \# 270.283

As Above. $2^{3 / 4} \times 4^{3 / 16} \times 1^{1 / 4} 4^{\prime \prime}$. \#270-284
3.99
(2) Electret Mike Element. PC mount. \#270-090
4.99
(3) Mini SPST Toggle Switch. \#275-645
(4) 8-Position DIP Switch. \#275-1301

Solderless Breadboard

The $21 / 4 \times 61 / 2^{\prime \prime}$ universal board is mounted on a $4 \times 7^{\prime \prime}$ "stay-put" steel base. Accepts DIPs, discrete components and up to 22-gauge wire. Has 640 plug-in tie points and three binding posts for external power. \#276-169

Pocket Autoranging DVM 24^{95}

- Autopolarity * Diode-Checker

A lot of meter in a little package! "Beep" continuity, low-battery indicator. Measures to 400 volts $\mathrm{AC} / \mathrm{DC}$, resistance to 2 megohms $4^{1 / 2 x}$ $21 / 8 \times 5 / 15^{\prime \prime}$. With batteries, miniprobes and folding case. \#22-171

Mai-Order Alectronics 24 HOUR ORDER HOILINE AIL OTHER WQUIRIES (7AM-SPM PST) 415-592-3097

NEC V2O \& V30 CHIPS
 UPD70108-5 (5MHz) V20 Chip. \$ 7.49 UPD70108-8 (8 MHz) v20 Chip. \$ 8.95 UPD70108-10 (tomHz) V20 Chip \$24.95 \$14.95 UPD70116-8 (9MHz) V30 chio \$1195 UPD70116-10 (10MHz) v30 Chip \$24.95 \$19.95

7400

7400					
Part No.	$1-9$	$10+$	Part No.	1.9	$10+$
7400	29	19	7485	65	55
7402.	. 29	. 19	7486.	.45	35
7404	29	19		205	1.95
7405	35	25	7490	49	39
7406.	39	29	7493	45	. 35
7407	39	29	74121.	45	. 35
7408	35	25	74123	55	45
7410	. 29	19	74125	. 55	45
7414.	49	39	74126	. 69	. 59
7416	39	29	74143	3.95	3.85
7417	. 39	29	74150.	1.35	1.25
7420	35	. 25	74154	1.35	1.25
7430.	. 35	25	74158	159	
7432	. 39	29	74173.	85	. 75
7438.	. 39	29	74174.	. 59	49
7442	. 55	45	74175.	. 59	49
7445	79	. 69	74176.	\bigoplus	. 69
7446	89	79	${ }_{74189} 74181$	195	1.85
7448	2.05	1.95	74193	195	. 69
7472.	. 89	79	74198	1.85	. 75
7473	.39	29	74221.	99	. 89
7474.	39	. 29	74273	1.95	185
7475	49	39	74365	65	
7476	45	35	74367.	. 65	. 55

7425					
74LSCO	29	19	74LS165.	75	65
74L502	29	19	$74 \mathrm{LS166}$.	99	89
74LSO4.	. 35	25	74.5173	59	49
74L505.	35	25	7415174.	49	39
74LS06	109	. 99	74LS175.	49	. 39
74L507.	1.09	99	74LS189.	59	49
74LS08.	29	. 19	74LS191.	59	49
74LS10.	29	19	7415193	79	69
74LS14.	49	39	74LS221.	69	59
74LS27.	35	25	74LS240.	69	59
74LS30	29	19	74LS243	69	59
74LS32.	35	25	7415244.	69	59
74.542.	49	39	$74 \mathrm{LS245}$	89	79
74LS47.	. 99	89	74LS259	99	89
74L573.	39	29	7415273	89	79
7.4LS74	35	25	74LS279.	49	39
74LS75	39	29	74LS322.	405	3.95
74LS76.	55	45	74LS365.	49	39
74LS85.	. 59	49	74LS366.	49	39
74LS86	35	25	74LS367.	49	39
74LS90	49	39	7.14S368.	49	39
74LS933	49	39	7415373	79	69
74LS123	59	49	74LS374.	79	69
74LS125	49	. 39	74LS393	89	79
74LS138	49	39	74LS590.	6.05	5.95
74LS139	49	39	74LS624.	205	1.49
74LS154	1.9	99	74LS629	295	2.85
74LS157	45	35	74LS640	109	99
74 LS158	45	35	74LS645	1.09	99
74LS163	59	49	74LS670.	109	. 99
74LS164	59	49	74LS688	239	2.

74S/PROMS*

CD-CMOS

CD4001	19	CD4076
CD4008.	© 49	CD4081.
CD4011	19	CD. 1082
CD4013.	29	CD4093
CD4016	29	CD4094
CD4017	49	CD40103
CD. 4018.	59	CD40107.
CD4020	59	CD40109
CD4024.	49	CDA510
C04027	35	CD.4511
CD4030.	29	CD4520.
CD4040		CD4522
C04049		
CO4050	29	CD4541
CD4051	59	CD4543
CD4052	59	CD4553
CD4053	59	CD4555
CD4063	1.49	CD4559.
CD4066	29	CD4566
CD4067	+951.49	C04583
CD4069	25	CD4584
CD4071.	25	MC14

8052AMBASIC CPU w/BASIC Interpreter. \$29.95 MC68008L8 32-Bit MPU (8-Bit Data Bus) MC66701 8-Bit EPROM Microcomputer. MC68705P3S 8-Bit EPROM Microcomputer . .St4. $85 \$ 9.95$ MC68705U3S 8-Bit EPROM Microcomputer. Math Co-processor (8 MHz). Math Co-processor (10MHz) Math Co-proc. (16 MHz) grid arfay

st - \cdots \cdots - abray 80286-1 80287-10 80387-16 80387-20

N

MISC. COMPONENTS TANTALUM CAPACITORS
\qquad
POTENTIOMETERS

43 PXX	15	Turn 99	63PXX	ke Walt. 1 Turn	89
TRANSISTORS AND DIODES					
PN2222.		PN2907.			
2 212228A.	35	2 N 440 t .	12	(N4148	
23055	65	in2	25	in4735	25
2 N 3904	12	iN751.	15	C106B	49

SWITCHES
$\begin{array}{lllll}\text { JMI } 123 \text { SPDT On-On } 1.19 & \text { 206-8 SPOT. } 16 \text {-an DIP } & 1.29 \\ \text { MPC121 SPDT: }\end{array}$
D-SUB CONNECTORS

OB25P Male. 25 -pn	.75	DB25S Female. 25 -pn

IC SOCKETS

Soldertail Standard (Gold \& Ini) \& Header Plug Sockets also Availabie
74HCHI-SPEEDCMOS

Part No.	Price	Part No	Price
78 HCOO	25. 19	74 HC 175	- 49
$74 \mathrm{HCO2}$		$74 \mathrm{CC221}$.	+9.89
$74 \mathrm{HCO4}$		$74 \mathrm{HC240}$	99.69
$74 \mathrm{HCO8}$.	¢ 19	$7 \mathrm{HCC244}$	9969
$74 \mathrm{HC10}$	-9 19	$74 \mathrm{HC245}$.	99.79
$74 \mathrm{HC14}$.	+ 29	74HC253	59.39
74HC30.		$74 \mathrm{HC259}$	
$74 \mathrm{HC32}$	29.25	$74 \mathrm{HC273}$	
74HC74		$74 \mathrm{HC373}$	
$74 \mathrm{HC75}$.		$74 \mathrm{HC374}$.	
74 HC 76.		74HC595	
$76 \mathrm{HC85}$	7955	$74 \mathrm{HC688}$	
$74 \mathrm{HC86}$.	э 35	$74 \mathrm{HC943}$	
74 HC 123.	49.69	74 HC 4040	
$74 \mathrm{HC}+25$.		74 HC 4049	
74 HC 132	67.39	74 HC 4050	
74 Cl 138	4939	74HC4060.	9
$74 \mathrm{CC139}$		74HC4511	+ 799
${ }_{7} 74 \mathrm{HC154}$.	+49119	714 C 4514	+79.99
${ }^{74 \mathrm{HC1}} 163$.		$74 \mathrm{HC4538}$	
74 HC 174.	¢9 49	$74 \mathrm{HC4543}$	+9.89
74HCT - CMOS TTL			
74 HCTO	29.17	${ }^{74 \mathrm{HCT} 139}$	59.35
$74 \mathrm{CHCTO2}$ $74 \mathrm{HCT04}$	99.17	${ }^{744 C T C T 157}$	
74HCT04.		${ }^{74 \mathrm{HCTCT} 174}$	
${ }_{7} 7 \mathrm{HCT} 10$.		7 THCT 240	¢99999
74 HCT 32		74HCT2+4	¢9.39
74HCT74.		74 HCT 245	+ 79
74 HCT 78.	49	$74 \mathrm{CCT373}$	+985
74HCT138.	-9.35	74HC1374	${ }_{19} 49$

LINEAR		
O20CN	1.95	LM1458N 39
874CN	1.99	LM1488N
$100-1 \mathrm{CN}$.	895	LM 1489 N . ${ }^{\text {a }}$
LM307N	45	DSICCES (CMOS) 119
LM309k	1.25	LM1496N
LM317\%	45	MC1648P
LM318N		LM1872N . $\quad 1.95$
LM3i9N.	1.29	LM1896N-1 79
LM323K	3.95	ULN2003A $\quad 79$
	. 39	XR2206
LM338K	4.95	XR2211.
Lem39N	. 39	XR2243
Le3448N	1.79	${ }^{266529}$.
LM350T.		26.533.
LF355		$26 L 533 \times 1 .{ }^{1.49}$
LE353N	49	LM2901N . F9. 15
LF357N.	1.09	MC3419CL 3.95
LM358N		MC3446N $\quad 99$
360 N	219	MC345
1361 N		MC3470p
LM380N-8	ง9.85	MC3479P
LM387N.	89 99	MC3486P
[M393N		MC3487P +69 99
Lm399H	2.95	LM3905N $\quad 1.19$
497 CA N		LM3909N 99
NE540H (C590H)	291.49	LM3912 $\quad 1 . .195$
55V		NE5532 $\quad 169$
${ }^{\text {M } 55555}$		NE5534.
58 N		05K LM340K
LM565N	99	7815K (M340K-5) ${ }^{\text {7 }}$
- M ${ }_{\text {che }}$	- 79	78051 (LM3401-5) 49
LMT4ICN	29	7815 T (M340T-15) $\quad .49$
350		7905K LM
MC1372P	$+95$	79051
1377P	- 229	7477 \% 49
MC1398P	954.95	MC14510
LM1414N		45406P

Worldwide • Since 1974 - cualir componkirs compailivepricina an

COMPUTER PERIPHERALS

JE1016 Pictured
JE1015 Standard AT tayout (XT/AT) . . $\$ 59.95$
$\$ 79.95$ JE1016 Enhanced layout (XT/AT) ... \$79.95

Jameco Extended 80-Column Card for Apple lle

JE864 \$39.95
ADD12 (Disk Dive i, $4+$, , (e) $\$ 99.95$

DATA BOOKS

U.S. Funds Only

Shipping: Add 5\% plus \$1.50 Insurance (May vary according to weight)

California Residents:
Add 6\%, 61/2\% or 7\% Sales Tax
(c) 1988 Jameco Electronics

10/88

IBM AT COMPATIBLE KIT Mini-286 6/8/10/12MHz Kit

$14^{\prime \prime}$ EGA Color - EGA/CGA Compat., $720 \times 350 \mathrm{Max}$. Resolution (PC/XT/AT) TE5154. \$399.95
14" EGA Monitor and EGA Card - EGA compatible. 720×350 Max. Resolution - displays up to 16 colors (PC/XT/AT)
JE1059.
$\$ 519.95$
14 " Multiscan Color - VGA/PGC/EGA compatible, 800×600 Max Reso CTX1435.
$\$ 549.95$
IBM PC/XT/AT COMPATIBLE CARDS

JE1052 Color Graphics Card w/Printer Port (PC/XT/AT) \$49.95
JE1055 EGA Card with 256K Video RAM (PC/XT/AT). $\$ 169.95$
JE1071 $\begin{aligned} & \text { Multil NO with Prive Controller } \\ & \text { and Mono Garaphics (PC } / \times T \text {). . }\end{aligned}$
$\$ 119.95$
Multifunction, I/O and Expansion Cards

JE 1060 I/O Card with Serial, Game, Parallel Printer
Fort and Real Time Clock (PC/XT).................. $\$ 59.95$

JE1061	RS232 Serial Half Card (PC/XT/AT)................. $\$ 29.95$
V1065	/O Card with Serial. Game and

JE1065 Parallel Printer Port (AT).
$\$ 59.95$
$\begin{array}{ll}\text { JE1078 } & \text { Expand to } 384 \mathrm{~K} \text { (zero-K on-board) Multifunc w/Seria } \\ \text { Game. Paraliel Printer Port \& Real Time Clock (PC/)XT) }\end{array}$
$\$ 69.95$
JE1081 $\quad \begin{gathered}\text { 2MB of expanded or extended memory } \\ \text { (zero-K an-board) }\end{gathered}$
$\$ 119.95$
3 MB of expanded or extended memory, parallel printer

Floppy and Hard Disk Controller Cards
JE1040 ${ }^{360 \mathrm{~KB}} \mathrm{~F}$ oppy Disk Drive Controller Card (PC/XT) . . . $\$ 29.95$
JE1041 20/40ME Hard Disk Controller Card (PC/XT) $\$ 79.95$
JE1043 360K/720K/1.2MB Floppy Disk Cont. Card (PC/XT/AT) \$49.95
JE1045 $\begin{aligned} & 360 \mathrm{~K} / 720 \mathrm{~K} / 1.2 \mathrm{MB} \text { Floppy/Hard Disk } \\ & \text { Controller Card (AT) }\end{aligned}$
$\$ 149.95$

COMPUTER PERIPHERALS

ST225	20 MB Drive only (PC/XT/AT)	\$224.95
ST225XT	20 MB w/Controller (PC/XT).	\$269.95
ST225AT	20 MB w/Controller (AT).	\$339.95
ST238	$30 \mathrm{MB} \mathrm{Drive} \mathrm{only} \mathrm{(PC/KT/A)}$	\$249.95
ST238XT	30 MB w/Controller (PC/XT).	\$299.95
ST238AT	30 MB w/Controller (AT).	\$389.95
ST251	40 MB Drive only (PC/KT/AT)	\$429.95
ST251XT	40 MB w/Cont. Card (PC/XT)	\$469.95
ST251AT	40 MB w/Controller Card (AT)	\$539.95
ST277	60 MB Drive onty ($\mathrm{PC} / \mathrm{XT} / \mathrm{AT}$).	\$499.95
ST277XT	60 MB w/Controller (PC/XT).	\$549.95
ST277AT	60 MB w/Controlier Card (AT).	\$639.95
40MB Tape Back-Up for IBM PC/XT/AT		
XR4	40MB Tape Back-Up. . . . \$369.95	
TB40	40MB Tape Cattridge. \$24.95	
Jameco 5.25" PC/XT \& AT Compatible Disk Drives JE1022 (Pictured)		

JE1020 360k Black Bzl. (PC/XT/AT) . . . \$ 89.95 JE1021 з60к веіge вzı. ($\mathrm{PC} / \times \mathrm{x} / \mathrm{A}$) . . . \$ 89.95 JE1022 1.2 ms Beige Bzl. ($\mathrm{PC} / \mathrm{KT} / \mathrm{AT}$) . S 109.95 3.5" PC/XT/AT Compatible Disk Drives $352 \mathrm{KU} \quad \begin{aligned} & \text { 3.S" } \\ & \text { lation Kit incl.) (PC }\end{aligned}$

Datatronics

2400/1200/300 Modems
 NEW, Pocket Version Hayes command compat patible. Auto-dial/auto answer FCC approved -year Narranty - Includes Software (excep: 1200P) 1200P 1200/300 Baud Pocket Modem. . . . \$109.95 1200H 1200/300 Baud Internal Modem. . . \$ $\$ 99.95$ 2400S 2400/1200/300 In'ernal Modem. . . \$139.95 1200C 1200/300 Baud External Modem. 2400E 2400/1200/300 External Modem . . . \$179.95

TEST EQUIPMENT
Digital Multimeters
 Pocket Size in hand Carry case Auto or manual ranging Tests AC/DC voltage Resistance anic

KD302 . $\$ 27.95$

	Metex M4650 Handheld , high accuräcy $4^{1} 2$ Digit LCD Manual ranging with Overload Protection Audible continuity tester Tests: $A C / D C$ Voltage Resistance, Continuity Capacitance, Frequency One Year Warranty M4650.. $\$ 89.95$

Data Sheets - 50c each
Prices Subject to Change
Send \$2.00 Postage for a FREE 1988 CATALOG

FAX Numbers: 415-592-2503 or 415-595-2664
Telex: 176043

1355 Shoreway Rd., Belmont, CA 94002 - 24 HR. ORDER HOTLINE 415-592-8097 • All Other Inquiries (7am-5pm PST) 415-592-8121

The answers to all those puzzling questions on electronic parts - are at MCM Electronics!

What's New at AMERICAN DESIGN COMPONENTS?

PLUS 4
(Cust. Returns - Tested Good!) Built-in software incl.: a word processor, spread sheet, graphics, \& a filing system. Comes complete w/power supply \& instruction manual.

Item \#19202 \$49.95
VIC 20 - (Cust. Returns - As is!)
No guarantee. (Power supply not incl.)
$\frac{\text { item \#18770 }}{}$ COMMODORE 8050

Dual Disk Drive

Unit.

The 8050 us
 \section*{8050 uses}

ful-height. 100 TPI

533,248 bytes Ea drives, ea. w/storage cap. of 8 is read/write compatible w/the 8750 track drive. Complete w/built-in wower supply Power req.: $115 \mathrm{VAC} / 60 \mathrm{~Hz}$ (mane sis Dim.: $133 /^{*} \mathrm{~W} \times 13^{3 / 4^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{H}}$ Item\#19313 New
$\$ 89.95$

ADAM COMPUTER

(hust plugs together). Inct: hook-up diagram; Keyboard. 1 cassette digital data drive, 2 game controllers, power supply \& 1 cassette. Capable
of running CPM . has built-in word processor.
tem $\# 7410$ Complete - $\$ 99.00$ ACCESSORIES.
COLECOVISION to ADAM
EXPANSION KIT
Just plugs into your ColecoVision. Wiprinter have a working Adam computer Adam key. board. 1 Smart Basic cassette \& hook-up dia gram also incl. trem \#9918 $\mathbf{\$ 5 9 . 5 0}$ DATA DRIVE - Item \#6641 $\mathbf{\$ 1 9 . 9 5}$ PRINTER POWER SUPPLY
tem \#6642..\$14.95 asclineyboano
tem $\$ 6643$... $\$ 19.95$ CONTROLLERS (Set of 4) tem \#7013.. $\$ 9.95$ RFE ADAM CASSETTES -
Incl. Smart Basic, Buck Rogers \& blank cassette. Item \#7786

Baker's Dozen DISK DRIVE POWER SUPPL

Item \#14603 \$1495
ADAM DAISY PRINT WHEEL
Item \#13305...\$3.95

DR
DRIVES

40 Mb
(AT/XT
Compat
High speed, 40 ms . access time. Quantum \#0540
Item \#17765 New - \$379.00
10 Mb (ST412 Compat.) Major manulacturers
Get them while they last!
Item \#17199 \$99.00 ea
HIGH POWER
SWITCHING POWER SUPPLY

DC Output:
+5V @ 18A
-5V@ 2.5A
$+12 \mathrm{~V} @ 2.5 \mathrm{~A}$
Input: $115 / 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Dim: $13^{\prime \prime} \mathrm{L} \times 41 /{ }^{\prime \prime}{ }^{\text {W }}$ W \times
Mfr - Sola \#39-139
Item \#17210 New - $\$ 29.95$
COMPUTER GRADE
POWER SUPPLY

Other uses-runs CB \& car radios. Comes ready to plug in DC Output: $\quad-5 \mathrm{~V} @ .5 \mathrm{amp}$. -5V @. 5 amp.
$+5 \mathrm{~V} @ 3 \mathrm{mp}$. $+5 V @ 3 \mathrm{amp}$.
$+12 V @ 6 \mathrm{amp}$. Input: $115 \mathrm{~V} / 60 \mathrm{~Hz}$. Dimensions: Input: $115 \mathrm{~V} / 60 \mathrm{~Hz}$. Dimensions:
$91 / 4 \mathrm{~W} \times 3 / 4 \mathrm{H}$. (Rubber tt. incl.) Item \#9501 New - \$24.95

Double Side/Double Density Tandon \#TM $100-2$ or equiv.

Item \#7928 \$79.00 New

HIGH-RESOLUTION

 TTL MONITORS. IOpenFrame)

9"- High Resolution 12VDC Green phosphor. Sche matic included.
Motorola \#MD2003-190
Item \#17198 New-\$14.95
12"- High Resolution 12VDC, green phosphor. Subassemblies, CRT, board \& trans former included. Comes
w/hook-up diagram.
Item \#6811 New - \$19.95 15" Data Display/Monitor Kit Alphanumeric \& graphics display. Green phosphor. Input power reg. 24VDC. Bandwidth: 22-72Khz. Consists of 2 subassemblies (monitor \& board). Hook-up diagram inciuded Wells Gardner \#15v7025.

1 Mb (unformatted), $135 \mathrm{TPI}, 3 \mathrm{~ms}$. access time. Power requirements: $+12,+5$ volts. Removed
from operational computers from operational computers \rightarrow NEC, model FD 1035
Item \#17171 \$79.00 ea.
115 CFM MUFFIN ${ }^{\circledR}$

FANS

115 VAC .
 615. $2 .$, 21.
 28 A. 3100
 minum h, 5 -blade model, alufor blowing or exhaust.
 Dimen: $411 / 11^{\prime \prime}$ sq. $\times 11 / 2^{\prime \prime}$ deep NEW - Mfr: IMC

Item \#1864 \$9.95
USED - Mfr: Centaur/Howard
Item \#5345 \$5.95
12/24VDC
MUFFIN ${ }^{*}$ TYPE FAN 55/100CFM

5 plastic blades with feathered edges. 8W. Can be mounted for blowing or exhaust. Aluminum housing. Brushless, ball-bearhousing. Brushless, $\begin{aligned} & \text { ing type. Mfr: - Centaur, }\end{aligned}$ ing type. Mfr:-
\#CUDC24K4-601
\#CUDC24K4-601
Item \#8541 New
EXTERNAL
DISK DRIVE
CHASSIS

With
60 W
power
supply
(fan cooled)
Can accommodate:
2 full-ht. drives 2 floppy drives... 1 hard drive \& 1 floppy Input: $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Orig for Burroughs computer.
Dim : $11^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{H} \times 12^{\prime \prime}$ d

$$
\begin{aligned}
& \text { Orim. } 11^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \text { deep. }
\end{aligned}
$$

27 CFM MINI FANS

$50 / 60 \mathrm{~Hz}$.,

 12W. Low noise levelfans. Can be mounted for blowing or exhaust.
1" Thin -
Contains 9 plastic blades. Dimensions: $31 / 8^{\prime \prime}$ sq. $\times 1^{\prime \prime}$ deep. Mfr - Tobishi \#U92018

Item \#10960 \$7.95 RFE
1" Standard -
Contains 7 metal blades $\mathrm{M} f r$ - Rotron \#SU2A1
VOICE-ACTIVATED

SWITCH

 etc. Turns on whe first Sound \& off w/the second. Solid-state units
w/adjust. sens control \& pick-up microphone attached to PC board Dim. $23^{\prime \prime} \times 3^{1 / 11 "} \times^{7 / 1^{\prime \prime}}$ Vox in put: 6-9VDC: can be used w/any standard battery. Item $\# 16440$.

3 switches / $\$ 9.95$

We carry a full line of Computer \& Game Equipment and Accessories; Electronic Components; Modules; Integrated Circuits \& Semiconductors! Please Call or Write with Your Requirements!

HIGH-RESOLUTION	RECORDING TAPE	MECHANICAL
INSTRUMENTATION	$71 / 2^{\prime \prime} R e e l, 2400 \mathrm{ft}$.	KEYBOARDS..

TAPE

$1 / 2$ $1 /$ 9 h h d d w 0 1 1 w g 9 a 1

$14^{\prime \prime}$ reets;
9200^{\prime} 'reel.
Wide band.
highly con-
ductive tape
w
w/magnetic
oxide surface
makes it ultrasmooth for chart-
govet \& other critical instrument
applications. Standard hub size. Mfr - Scotch/Ampex \#890/892 Item \#17656 \$8.95 ea.

COLECOVISION

Accessories.
EXPANSION MODULE \#2
Play arcade quality driving \& racing games on your ColecoVision incl. Turbo cartridge. Item \#13146 Now - \$39.95 ROLLER CONTROLLER Gives full 360° game control. Hi-
speed action of an arcade. Can be used whthe Adam. Incl. Slither cartridge
Item \#13147 New - \$39.95
SUPER ACTION
CONTROLLER SET
Gives you indiv. control of $4+$ on. screen players. Includes Baseball cartridge.
Item \#13148 New - \$39.95

RECORDING TAPE
$71 / 2^{\prime \prime}$ Reel, 2400 ft.

1/4 Mil. Bulk erased. Major mfrs. Ampex, Scotch, etc. Item \#6711

COPPER-CLAD PRINTED
CIRCUIT BOARD
(Double-Sided)

Glass coated, epoxy laminated 1 oz . Double sided, 022" thick. Dimensions: $24^{\prime \prime} L \times 18.5^{\prime \prime} H$ Item \#13606

MECHANICAL
KEYBOARDS.

48-KEY - Timex Z81/1000
Item \#6712 New - $\$ 5.95$
75-KEY - Timex or Adam
for computer upgrade-
Item \#7429 New - $\$ 5.95$
66-KEY - Commodore C-16
Item \#9394 New - $\$ 5.95$

COMPUTER/GAME

ADAPTERS

Commodore 64

DC Output: 5VDC @ 7.5W and 9VAC@6.7VA Input: $117 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. Commodore \#310157-02 (black)
Item \#19315
New-\$14.95

ColecoVision

DC Output: $\quad+5 \mathrm{VDC} @ 9 \mathrm{~A}$
-5VDC@.1A
+12VDC@.3A
Input: $120 \mathrm{VAC} / 60 \mathrm{~Hz} .$, ,25A
Coleco \#55416 (black)
Item \#1882 New - \$4.95

GELL CELL/LEAD ACID BATTERIES.. Rechargeable: Used for solar energy storage, alarm systems, model boats, planes,
 cars, trains.
 $6 \mathrm{~V} @ 2.5 \mathrm{AH}$
 Dim: 4 "W $\times 25 / 8^{\prime \prime} \mathrm{H}^{2}$ $\times 11 / 2 \mathrm{D}$. Mfr - Gates
 Item \#9306 \$3.95

6 V @ 4.0AH
Dim: $4^{4} \mathrm{H} \times 25 /{ }^{5}$ "W $\times 13 / 4$ "D.
Major manufacturers.
Item \#15757 $\$ 7.95$
$6 \mathrm{~V} @ 9.5 \mathrm{AH}$
Dim: $51 /{ }^{2} \mathrm{H} \times 41 /{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{W} \times 25 / \mathrm{B}^{\prime \prime}$
Item \#7039 \$14.95

Commodore C16
DC Output: $9.5 \mathrm{~V} @ 1 \mathrm{~A}$ Input: 115 VAC ., $50 / 60 \mathrm{~Hz}$. Commodore \#251539-01/02 (black) Item \#9393 New - $\$ 4.95$
"The First Source"- for electromechanical \& electronic equipment and components - AMERICAN DESIGN COMPONENTS!

AMAZING
 SGIENTIFIC \& ELECTRONIC PRODUCTS
 PLANS_Build Yourself-All Pants Avaitable in Stock
 - LC7-BURNING CUTTING CO 2 LASER
 - RUB4-PORTABLE LASER RAY PISTOL
 - TCC1-3 SEPARATE TESLA COIL.
 PLANS TO 15MEV
 - 10gi-lon ray gun
 - GRA1-GRAVITY GENERATOR
 - EML1-ELECTRO MAGNET COIL GUMLLAUNCHER
 KITS
 - MFI3K-FM vOICE TRANSMITTER 3 MI RANGE
 WWPM7 - TELEPHONE TRANSMITTER 3 MI RANGE
 - BTCCK-250,00 VOLT 10-14" SPARK TESLA COH
 - LHCZK-SIMULATEO MULTICOLOR LASER
 BLS1K-100,000 WATT BLASTER OEFENSE OEVICE
 ITM1K-100,000 VOLT 20' AFFECTIVE
 RANGE NTIMIOATOR
 PSP4K- TIME VARIANT SHOCK WAVE PISTO
 PTG1K-SPECTACULAR PLASMA
 onvado generator
 ASSEMBLED
 PTWIK-SPECIAL EFFECT VISUAL PLASMA GENERATOR
 FOR GLOBES NEON FUBBGG ELC
 - BTC10-50,000 VOLI-WORLO'S SMALLES
 LGU4O-1MW HENe VIIBLLE RED LASER GUN
 - tat30 Auto telephone recoro ing oevice
 - GPVID-SEE IN TOTAL DARKNESS IRVIEWER
 - LIST10-SNOOPER PHONE INFINITY TRANSMITIER
 - PGG70-|NVISIBLE PAIN FIELO GENERATORMULTI MODE
 catalog containing descriptions of above plus HUNDREDS MORE AVAILABLE FOR $\$ 1.00$ OR USE OUR PHONE FOR "ORDERS ONLY" 603-673-4730
 PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS AND PRDDUCTS PLANS ARE POSTAGE PAID. SENDCHECK, MO, VISA, MC IN US FUNDS.
 INFORMATION UNLIMITED P.O. B0X 716 DEPT. RE AMHERST, NH 03031

E L E C \quad C R O

CONSUMEA \& IMDUSTALAL EL CTHONICS CATALOG • I7TH EDIION

CIRCLE 185 ON FREE INFORMATION CARD

ADVERTISING INDEX

Quality • Price • Delivery

Mini-Meters with Maxi-Specs

$10 \square$	D0, 0	5801
SCOPE 31/2 Digit LCD Meter	NEW! SCOPE 31/2 Digit LCD	SCOPE 31/2 Digit LCD with Autoranging
-0.5\% Accuracy • DC Volt age • AC Voltage • DC Curent - Resistance \cdot Dode Test • Batery Lie 300 HIs . $500 \mathrm{~V}, \mathrm{AC}$ 350V, ohms 250 V DC/AC.	8 Function with Transistor Tester	- 0.5% Accuracy - Auto
	Transistor Tester - 0.5\% Accuracy • Audible continuity and diode test	- DC Votage • AC Votage - AC Current •DC Curren
	- 10 Amp measurement -Resistance - DC/AC Vollage.	$\begin{aligned} & \text { Model } \\ & \text { DVM-631 } \\ & \text { Dur frice } \end{aligned} \text { \$4995 }$
$\begin{aligned} & \text { Model } \\ & \text { DVM-630 } \\ & \text { Our Price } \end{aligned} \$ \mathbf{9 9 5}$	Model DVM-632 Reg. S60.00 $\$ 4495$ Our Pric	Special
Zippered carrying case CC. $30 \quad 54.50$	ziopered carrying case CC-30 54.50	Deluxe carrying case CA. 92 $\$ 9.95$

SCOPE Hand-Held Digital Multimeters

- Overioad protection • Auto-decimal LCD readout • Polarity indication
- 300 hr . 9 V battery life - Low battery indicator.

NEW
FORDHAM Function

Generator

- 0.5 Hz - 500 KHz in 6 ranges •Sine, square \& triangle wave forms •VCA and VCF inputs • Accuracy $\pm 5 \%$ of full scale.
Model FG -ur Price
2 $\$ 4990$

FORDHAM LCR Bridge Meter

- Fully transistorized • 1 KHz signal generator • Measures resistance - Inductance - High mechanical and electrical stability - Battery operated.
$\underset{\text { Our Price }}{\text { Model LC-340 }} \$ 4095$

SCOPE Digital
Capacitance Meter

- Digital LCD display • LSI-circuit * High accuracy: $100 \mathrm{ppm} 0.5 \%$ • Broad test range - Fast sampling time - Capacitor discharge protection - Compact, lightweight design • One-hand operation.

Model DCM-602
Our Price

Telephone Orders Now! Everyarar maumomg saturbary
 Fordham
260 Motor Parkway, Hauppauge, NY 11788

In NY State 800-832-1446

[^0]: As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship nised by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper unctioning of reader-built projects based upon or from plans or information published in this magazine

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents. RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.
 RADIO-ELECTRONICS, ISSN 0033-7862) September 1988. Published monthly by Gernsback Publications, Inc., 500-B BiCounty Boulevard, Farmingdale. NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions \$17.97, Canada $\$ 23.97$, all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies $\$ 2.25$. © 1988 by Gernsback Publications. Inc. All rights reserved. Printed in U.SA
 POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept., Box 55115, Boulder, CO 80321-5145.
 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: ATLANTIC CABLE DISTRIBUTING CENTER INC. P.O. BOX 276 - GREENVALE, NY 11548

[^2]: *Vice President of Operations Planning, AT\&T Bell Laboratories

[^3]: All resistors are $1 / 4$-watt, 5%.
 R1, R9-18,000 ohms
 R2- 1500 ohms
 R3-24,000 ohms
 R4- 1000 ohms
 R5-180,000 ohms
 R6, R8-56,000 ohms
 R7-75,000 ohms
 R10-20,000 ohms, NTC thermistor
 R11-350-200,000 ohms, light-dependent resistor
 R12-10,000 ohms, PC-mounting type potentiometer

 ## Capacitors

 C1-22 $\mu \mathrm{F}$, 15 volts, electrolytic Semiconductors
 IC1-UAA170 or equivalent
 LED's 1-16-rectangular LED's

 ## Miscellaneous

 116-pin IC socket, plastic case, clear plastic, wire, solder, screws, tape, momentary switch, etc.
 Note: A kit containing all parts except a power supply, a momentary pushbutton, and a project case, is available for $\$ 17.54$ from all TSM distributers. You can contact the TSM headquarters, at 2065 Boston Post Road, Larchmont, NY 10538, for the TSM distributer nearest you.

[^4]: COMMAND PRODUCTIOMS
 FCC LICENSE TRAINING, Dept. 90
 P.O. Box 2824, San Francisco, CA 94126

 Please rush FREE details immediately!
 NAME
 adodess
 CITY
 state ZIP

[^5]: DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

 While watching rental movies, you will notice an noying periodic color darkening, color shitt, un wanted lines, flashing or jagged edges. This is caused by the copy protec tion jamming signals em bedded in the video tape such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates all copy protec tions and jamming signals and brings you crystal clea pictures.

 FEATURES:

 - Easy to use and a snap to install
 - State-of-the art in-
 tegrated circuit technol-
 - 100\%
 - 100\% automatic - no need for any troublesome adjustments
 - Compatible to all types of VCRs and TVs
 - The best and most exciting Video Stabilizer in the market
 - Light weight (8 ounces) and Compact ($1 \times 3.5 \times 5^{\text {a }}$) - Beautiful deluxe giff box

 Uses a slandard 9 volt
 battery which will last 2 years
 ToOrder: $\$ 49$ ea $+\mathbf{S 3}$ for FAST UPS SHIPPING 1-800-445-9285 or 516-694-1240 Visa, M/C, COD M-F: 9-6 (batiery not included) SCO ELECTRONICS INC.
 Dept. C14 62 Marıne St. Farmingdale NY 11735 Unconditional 30 days Money Back Guarantee

[^6]: (except Canada) add 20% P \& H. Orders over $\$ 50$ add 85 C for insurance.

